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Editorial on the Research Topic

Biomarkers and Clinical Indicators in Motor Neuron Disease

Motor neuron diseases (MNDs) encompass a range of progressive neurodegenerative conditions
with heterogeneous clinical presentations, disability profiles, prognosis, and age of onset. The
umbrella term MND typically includes amyotrophic lateral sclerosis (ALS) (1), primary lateral
sclerosis (PLS) (2, 3), progressive muscular atrophy (PMA), hereditary spastic paraplegia (HSP),
spinal muscular atrophy (SMA) (4, 5), spinal and bulbar muscular atrophy (SBMA) (6), and rare
conditions such as monomelic amyotrophy (MMA), juvenile muscular atrophy of distal upper
extremity (JMADUE) (7), Mill’s disease (8), ALS-FTD complex (9), and progressive bulbar palsy
(PBP) (10). Despite the diversity of the clinical phenotypes, MNDs share a number of fundamental
traits such as a long presymptomatic phase (11), insidious onset (12), considerable diagnostic
challenges (13, 14), relatively low incidence (15, 16), extra-motor (Christidi et al.; Christidi et al.)
and extra-neurological manifestations (6), relentless progression (17, 18), multidisciplinary care
needs (19, 20), and lack of effective disease modifying therapies. These core similarities justify
the discussion of various MNDs in a dedicated collection of articles and offer the opportunity
to exchange research ideas between centres focusing on specific MNDs. There are other shared
challenges across the MND spectrum, which are particularly relevant for therapy development,
chief of which is the lack of validated biomarkers to serve as outcome measures in clinical
trials. Pharmaceutical trials in MNDs mostly rely on functional rating scales and survival instead
of objective, observer-independent markers which reflect on the underlying pathology of the
condition (1, 21, 22).

INTRODUCTION

The dual relevance of biomarker development in MND lies in the characterization of dynamic
pathological processes and its application to individualized patient care. From an academic
perspective, biomarkers have the potential to elucidate the role of specific pathophysiological
mechanisms, such as inflammation, cortical hyperexcitability, inhibitory dysfunction, cell to
cell propagation and anatomical patterns of vulnerability. From a clinical standpoint, validated
biomarkers have the potential to confirm an earlier diagnosis, thus enabling recruitment into
clinical trials at an earlier stage. The key advantage of biomarkers however is their potential
monitoring role in clinical trials; tracking disease progression in vivo and potentially detecting
response to therapy. Biomarkers may also act as prognostic indicators which are indispensable both
for patient stratification in clinical trials as well as individualized patient care.

The academic and clinical importance of biomarker development in MND is universally
recognized by various scientific consortia and is regarded as a strategic funding priority by
MND charities and funding agencies around the world. MNDA, ALSA, ARSLA, NISALS, NEALS,
CALSNIC, RMN, JPND, IMNDA, SPF etc. are just some of the many organizations actively
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engaging in the development of multicenter data repositories,
and establishing biobanking infrastructures for MND. Due to the
limitations of single markers, it is generally accepted that a panel
of biomarkers will most likely aid clinical management, guide
care planning, and serve as monitoring markers in clinical trials.
It is also increasingly clear that precision individualized therapies
will be needed for specific phenotypes and genotypes instead of a
“one-drug-for-all” approach.

The main themes of MND biomarker research include
“wet biomarkers” which focus on disease-specific biofluid
profiles and “dry biomarkers” such as electrophysiological and
neuroimaging measures. Hypothesis-driven, targeted and high-
throughput methods are both widely used in the so-called
“omics” approaches: metabolomics, proteomics, lipidomics, and
transcriptomics. One of the alluring aspects of international
collaborations is that MND centers around the world have
unique local expertise profiles which complement synergistically
the skillset of other centers. Therefore, single ALS centers
are in a position to provide authoritative reviews on specific
aspects of biomarker research efforts. The editors of this
collection are grateful for the expert contribution of 37
renowned research centers from around the globe. The 37
research papers included in this Research Topic discuss
specific aspects of biomarker development in motor neuron
diseases and embrace the diversity of MND phenotypes
from SBMA to ALS-FTD. While the methodological focus
of the papers differs depending the expertise profile of
the authors, there is a cohesive theme among the papers
to appraise biological, molecular, electrophysiological, and
radiological markers which may potentially serve as pragmatic
clinical indicators confirming the diagnosis, predicting the
prognosis, detecting response to therapy or track longitudinal
neurodegenerative changes. Beyond the practical relevance of
ascertaining and quantifying pathological changes in vivo,
biomarkers in MND also provide considerable academic insights
such as the exploration of presymptomatic changes (23, 24),
the description of genotype-associated signatures (25, 26),
the delineation of natural disease trajectories (11, 27), the
characterization of low-incidence phenotypes (2, 28, 29),
confirmation of epigenetic and epidemiological factors (30, 31),
and deciphering the pathological substrate of clinical symptoms
[Finegan et al.; (32, 33)].

One of the commonest adult-onset motor neuron
diseases is amyotrophic lateral sclerosis (ALS) which is an
archetypical neurodegenerative condition with a presumed
long presymptomatic phase (34), considerable delay between
symptom onset and definite diagnosis (35), significant individual
variations in disability profiles (Yunusova et al.), unrelenting
motor decline (36), widespread non-motor symptoms (37, 38),
and complex genetics (39, 40). In this collection of papers
(https://www.frontiersin.org/research-topics/7659/biomarkers-
and-clinical-indicators-in-motor-neuron-disease) wet and
dry biomarkers are equally represented. “Wet” biomarkers
typically refer to spinal fluid, serum or tissue-based indicators,
whereas “dry” markers indicate non-invasive radiological,
neuropsychological and or clinical indicators (41).

WET BIOMARKERS

Two papers are dedicated to the academic and biomarker
role of micro RNAs; Joilin et al. discuss the diagnostic and
prognostic utility of specific microRNAs and Rob Layfield’s
group propose the targeted study of four miRNAs; hsa-
miR-124-3p, hsa-miR-127-3p, hsa-let-7a-5p, and hsa-miR-9-
5p as particularly promising biomarkers (Foggin et al.).
Tan and Guillemin discuss the potential biomarker role of
kynurenine pathway metabolites in ALS, as these are involved in
inflammation, excitotoxicity, oxidative stress, immune responses,
and energy dysregulation. Chen et al. base their study
on the inflammatory hypothesis of ALS etiology and not
only demonstrate increased IL-6 levels in astrocyte-derived
exosomes in ALS patients but identify associations with
rate of progression. Dr. Duguez’s group meticulously reviews
the literature and suggest a multi-tissue biomarker panel
encompassing markers of motor neuron integrity (pNFH
and NF-L, cystatin C, Transthyretin), inflammation (MCP-
1, miR451), muscle integrity (miR-338-3p, miR-206) and
metabolism (homocysteine, glutamate, cholesterol). They argue
that biomarker panels should reflect the multi-system, multi-
tissue nature of ALS-pathophysiology (Vijayakumar et al.).
As ALS is increasingly recognized as a metabolic disorder
(42), De Aguilar provides an eloquent overview of metabolic
markers with a particular focus on proposed lipid biomarkers.
Kirk et al. elaborate on the metabolic spectrum of ALS
from cellular to multi-organ systemic involvement. Dr. Blasco’s
team discusses advances in metabolomics and advocates
for a pharmacometabolomic approach to evaluate individual
response to therapy, to develop personalized treatments for
ALS (Lanznaster et al.). Poesen and Van Damme review the
diagnostic, monitoring and prognostic role of neurofilaments
in ALS.

CLINICAL INDICATORS AND

THERAPEUTIC STRATEGIES

Zhang et al. draw the reader’s attention to comorbid extra-
neurological manifestations in ALS, such as autoimmune
syndromes. Lule et al. contribute an authoritative review of
the key determinants of quality of life in ALS, and underline
the lack of a direct link between physical disability and
quality of life. Professors Lule and Ludolph also emphasize
the key ethical principles of supportive care in ALS which are
centered on patient autonomy, dignity, beneficence and caregiver
support (20, 43–47). Li Hi Shing et al. highlight the complex
symptomatology of post-polio syndrome and discuss the etiology
of under-researched symptoms such as fatigue. Finegan et al.
perform a comprehensive review of the pathophysiology of
pseudobulbar affect (pathological crying and laughing) which
is one of the most prevalent and distressing symptoms of PLS
and ALS, yet it remains surprisingly understudied (32, 33, 48).
Chipika et al. undertake a systematic analysis of the most
promising markers to track pathological progression in vivo,
which may detect response to therapy in future clinical trials of
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ALS. Their primary perspective is the assessment of the pragmatic
utility [Grollemund et al.; (14, 35, 49–51)] of emergingmarkers in
pharmaceutical trials (Chipika et al.). Christidi et al. reviews the
evidence for memory deficits inMNDwith a painstaking analysis
of the available clinical (52), radiological (1) and post mortem
literature (53). Professor Mioshi’s group eloquently reviews the
impact of cognitive and behavioral deficits in ALS on patients
and caregivers drawing attention to an important aspect of ALS
care which is relatively understudied (54, 55). The novelty of their
analysis lies in the identification of viable non-pharmaceutical
strategies to improve patient and caregiver well-being (Caga
et al.). Grollemund et al. perform an in-depth analysis of the ever
expanding literature of machine-learning in MND, and discuss
the advantages and drawbacks of specific mathematical models.
Professor de Carvalho’s group gives an authoritative overview
of respiratory markers and diaphragmatic neurophysiology in
ALS (de Carvalho et al.). Professor Yunosova’s group appraises
the most commonly utilized clinical tools for assessing
and monitoring bulbar dysfunction in ALS and advocate
for the development and validation of novel assessment
protocols (Yunosova et al.). Professor Kabashi’s group gives
an elegant overview of neuromuscular junction involvement
in ALS and examines the evidence from animal models to
clinical observations (Campanari et al.). Dr. Floeter’s group
discuss genotype-specific biomarker panels and presymptomatic
alterations. They review candidate imaging, electrophysiology,
and biofluid markers in patients with C9orf72 hexanucleotide
expansions (Floeter et al.). Christidi et al. discuss the clinical
(38, 56–58), imaging (31, 36, 59, 60), and pathological
correlates of cognitive and behavioral dysfunction in ALS
giving specific screening and assessment recommendations. They
describe which domains are most likely to be affected and
review the impact of neuropsychological deficits on patients
and their caregivers (Christidi et al.). Querin et al. evaluate
monitoring strategies in spinal and bulbar muscle atrophy
(SBMA) and discuss the spectrum of motor, extra-motor,
and extra-neurological manifestations in detail. They give
specific recommendations to screen for endocrine, cardiac and
respiratory involvement (Querin et al.).

From a therapeutic viewpoint, Gouel et al. discuss the
role of neurotrophic growth factors (NTF) in neuroprotection
and neurorestoration. Professor Bogdahn’s group give a real-
life example of using biomarkers in a therapeutic trial of
Granulocyte-colony stimulating factor (G-CSF). They evaluate
the biomarker potential of serum cytokines in ALS and perform
a meticulous analysis of MDC, TNF-beta, IL-7, IL-16, and Tie-2
levels in relation to clinical outcomes (Johannesen et al.).

DRY BIOMARKERS

Electrophysiology is one of the most widely utilized clinical
and research tools in motor neuron diseases [Proudfoot et al.;
(5, 61, 62)]. Professor Kiernan’s group provides an expert
review of electrophysiological markers of upper and lower
motor neuron degeneration and discuss the clinical value of
specific neurophysiological indices (Huynh et al.). Wang et al.
present an elegant electrophysiology study, investigating the

neurophysiological substrate of the split-hand phenomenon.
Imaging is another promising dry biomarker of ALS-associated
degenerative change. In recent years imaging in ALS confirmed
extensive extra-motor pathology in cerebellar (63, 64), extra-
pyramidal (65, 66), subcortical (26, 67), hippocampal [Christidi
et al.; (68, 69)], hypothalamic (42), brainstem [Yunusova et al.;
(70)], and frontotemporal involvement [Christidi et al.; (71)].
Imaging in ALS also helped to decipher the pathological
underpinnings of specific symptoms, such as pseudobulbar
affect [Finegan et al.; (32, 33, 48)], compensatory changes (72),
executive dysfunction (73), extrapyramidal manifestations (65),
metabolic dysfunction (42), memory deficits (59, 74). Imaging
in ALS has also been instrumental to link disability profiles
to pathological TDP-43 burden patterns (36, 53, 75–78) and
track progressive pathological changes [Chipika et al.; (11, 79)].
In this collection of papers, Fortanier et al. demonstrate how
structural imaging data may be used to characterize alterations
in connectivity patterns. Rajagopalan and Pioro elegantly
demonstrate how clinically well-defined ALS sub-populations
have distinctive neuroimaging signatures. Instead of the most
commonly used quantitative techniques, such as diffusion tensor
imaging (80, 81) they demonstrate the utility of alternative
imaging cues on T2-wighted, Flair and proton density imaging
(Rajagopalan and Pioro). Kalra a pioneer of MR spectroscopy,
gives an eloquent overview of the achievements, practical utility
and future applications of metabolic imaging in ALS. Professor
Filippi and Dr. Agosta’s research group contributed an expert
review of diffusion imaging in ALS, discussing methodological
advances, the contribution of network analyses, and the potential
of DTI to track progressive pathological changes (Basaia et al.).
Their observations also highlight the paradigm shift from the
analysis of focal diffusivity changes (80, 81) to the assessment of
network integrity (41, 82). Muller and Kassubek review the utility
of diffusion tensor imaging in ALS with respect to detecting
pathological TDP-43 burden in vivo. They describe how in vivo
measurements may relate to pathological stages and provide an
expert overview of the most frequently utilized analysis methods
(Muller and Kassubek). The majority of imaging studies in motor
neuron disease focus on cerebral pathology (72, 83–85), despite
the pathognomonic involvement of the spinal cord in ALS [El
Mendili et al. (86)], SBMA (6, 10), SMA (4, 5), PLS (2), juvenile
muscular atrophy of distal upper extremity (7, 28, 87) and PPS
(29). In this Research Topic, Professor Pradat’s group gives a
methodological update on advances in spinal imaging and outline
future research directions (El Mendili et al.). Chew and Atassi
discuss how PET radioligands unveil specific pathophysiological
mechanisms such as neuroinflammation, metabolic changes,
neuronal dysfunction, and oxidative stress and how PET may be
utilized both in natural history studies and pharmaceutical trials.
Professor Turner’s group reviews the advances in functional
imaging discussing the contribution of functionalMRI,MEG and
EEG studies to ALS research (Proudfoot et al.). Dr. Grosskreutz’s
group discusses the benefits of data sharing and gives an expert
overview of the methodological and logistical challenges of
data harmonization, hosting large data repositories, generating
consortium bylaws and data protection policies (Steinbach et al.).
Barritt et al. summarize some of the most exciting new imaging
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methods in MND and discuss emerging methods such as Neurite
Orientation Dispersion and Density Imaging (NODDI) (88), and
quantitative Magnetization Transfer Imaging (qMTi) and data
analysis approaches such as Event-Based Modeling (EBM). A
shared aspiration of both “wet” and “dry” biomarker studies
is the transition from describing group-level observations to
the precision categorization and tracking of individual patients
(53, 76, 83, 84, 89–91).

CONCLUSIONS

The ensemble of these articles showcases the determination, drive
and momentum in motor neuron disease research worldwide.
We are particularly proud that renowned research groups from
Australia, France, China, Greece, United Kingdom, Ireland,
United States, Canada, Germany, Belgium and Italy shared their
unique perspective, methodological expertise and their vision for
future research directions. The diversity of research strategies and
the unrelenting enthusiasm of the various research groups give
cause for optimism for the development of precision biomarkers,
and ultimately, a cure for MND.
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Hippocampal pathology in Amyotrophic Lateral Sclerosis (ALS) remains surprisingly

under recognized despite compelling evidence from neuropsychology, neuroimaging and

neuropathology studies. Hippocampal dysfunction contributes significantly to the clinical

heterogeneity of ALS and requires structure-specific cognitive and neuroimaging tools

for accurate in vivo evaluation. Recent imaging studies have generated unprecedented

insights into the presymptomatic and longitudinal processes affecting this structure

and have contributed to the characterisation of both focal and network-level changes.

Emerging neuropsychology data suggest that memory deficits in ALS may be

independent from executive dysfunction. In the era of precision medicine, where the

development of individualized care strategies and patient stratification for clinical trials are

key priorities, the comprehensive review of hippocampal dysfunction in ALS is particularly

timely.

Keywords: hippocampus, amyotrophic lateral sclerosis, neuropathology, neuroimaging, cognition

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is relentlessly progressive neurodegenerative condition with
considerable clinical heterogeneity (1). One of the key clinical dimensions of disease heterogeneity
in ALS is the varying severity and profile of cognitive impairment. The quality of life implications
of cognitive impairment in ALS and its impact on caregiver burden (2), compliance with assistive
devices (3) and survival (4) are now universally recognized. The discovery of hexanucleotide
expansions in C9orf72 in 2011 (5) has given fresh momentum to neuropsychology research in ALS
by confirming shared etiological factors between frontotemporal dementia (FTD) and ALS. The
momentous conceptual advances in the neuropsychology of ALS have taken place in a remarkably
short period of time, from sporadic observations, through the development of diagnostic criteria
(6), to robust family aggregation (7) and genetic studies, to the development of disease-specific
screening instruments (8, 9). The current consensus criteria (6) distinguish ALS with cognitive
impairment; ALS with behavioral impairment; ALS with cognitive and behavioral impairment;
ALS-FTD; ALS-dementia (non-FTD, i.e., Alzheimer dementia (AD), vascular dementia,

13

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2018.00523
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2018.00523&domain=pdf&date_stamp=2018-07-03
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:christidi.f.a@gmail.com
https://doi.org/10.3389/fneur.2018.00523
https://www.frontiersin.org/articles/10.3389/fneur.2018.00523/full
http://loop.frontiersin.org/people/525567/overview
http://loop.frontiersin.org/people/574336/overview
http://loop.frontiersin.org/people/7470/overview
http://loop.frontiersin.org/people/424531/overview


Christidi et al. Hippocampal Dysfunction in ALS

mixed dementia). One of the most exciting aspects of ALS
neuropsychology studies is their localization potential to specific
anatomical circuits and that their observations are widely
corroborated by neuropathology (10–12) and neuroimaging
studies (13). Memory deficits in ALS have traditionally been
regarded as atypical and considered suggestive of coexisting
AD-type pathology. The recognition that memory deficits are
part of the spectrum of ALS-associated cognitive impairment is
relatively recent.

MEMORY IMPAIRMENT IN ALS

Early neuropsychology studies of ALS have predominantly
examined frontal lobe-mediated neuropsychological domains,
and highlighted executive dysfunction, impaired phonemic
fluency, poor set shifting, reduced cognitive flexibility,
impaired response inhibition, planning deficits, problem-
solving difficulties, selective attention, and impaired social
cognition (14). More recently, the spectrum of memory
impairment has been specifically evaluated, including encoding
and retrieval functions (primary memory system) (15, 16) and
storage/consolidation domains (secondary memory system)
(17). Furthermore, population-based studies identified cognitive
phenotypes without executive impairment (18, 19). The
description of episodic memory deficits without coexisting
executive dysfunction in ALS drew attention to temporal lobe
network dysfunction which has been elegantly corroborated by a
series of neuropathology and neuroimaging studies (20).

ANATOMICAL OVERVIEW

The hippocampus (Figure 1A) is a bilaminar structure and
consists of the cornu ammonis (CA) and the dentate gyrus (DG).
Based on its cytoarchitecture and projections, the CA is further
divided into four histological subfields, named CA1-CA4 by
Lorente de No in his seminal paper (21). The dentate gyrus is
a narrow, dorsally concave structure which envelops CA4. The
cornu ammonis, the dentate gyrus, and the subiculum together
form the “hippocampal formation” (Figure 1B). The subiculum
is divided into the following segments: the prosubiculum, the
subiculum proper, the presubiculum, and the parasubiculum.

Each segment of the hippocampal formation receives
afferentation from its neighboring regions but these connections
are not all bidirectional (22). For example, the “trisynaptic
circuit” (23) is a unidirectional network, which arises from layer

Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-r, revised ALS

functional rating scale revised; ALSnci, ALS with no cognitive impairment;

aMCI, amnestic mild cognitive impairment; C9orf72 HRT, chromosome 9 open

reading frame 72 hexanucleotide repeats; CA, cornu ammonis; DG, dentate

gyrus; DTI, diffusion tensor imaging; DWI, diffusion weighted imaging; ECAS,

Edinburgh cognitive and behavioral ALS screen; FTD, frontotemporal dementia;

GM, gray matter; HARDI, high angular resolution diffusion imaging; HC, healthy

control; MND, motor neuron disease; NeuroC, neurological controls; NODDI,

neurite orientation dispersion and density imaging; PP, perforant pathway;

PtwoCI, patients without cognitive impairment; PtwCI, patients with cognitive

impairment; PtwoD, patients without dementia; PtwD, patients with dementia;

TBSS, tract-based spatial statistics; VBM, voxel-based morphometry; WM, white

matter; MRS, magnetic resonance spectroscopy.

II of the entorhinal cortex, its axons perforate the subiculum,
and form the “perforant pathway” (PP). Duvernoy (24) coined
the term “polysynaptic pathway” for the intrinsic hippocampal
circuitry, which refers to a circuit of at least four synapses
that connect the entorhinal cortex, the dentate gyrus, the CA
subfields, and the subiculum. A direct intrahippocampal pathway
has also been identified, which originates from layer III of the
entorhinal cortex and projects directly to the CA1 but not
through the PP (25). The perforant pathway (Figure 1C) arises
from layer II-III neurons of the lateral and medial entorhinal
cortex (26), which is also the origin of the polysynaptic pathway
(27). The PP perforates the subiculum to reach the dentate
gyrus and the hippocampus proper, but minor projections
also originate from the presubiculum and parasubiculum (28).
The majority of the PP fibers reach the stratum moleculare
of the dentate gyrus through the vestigial hippocampal sulcus
(24). The PP contributes to the “Papez circuit” (26, 29, 30)
which is relayed through the following structures; entorhinal
cortex → dentate gyrus → hippocampus → hypothalamus →
thalamus → cingulate cortex→ presubiculum → entorhinal
cortex. In addition to the intrinsic hippocampal circuitry, there
are numerous extrinsic hippocampal projections to subcortical
and cortical regions (31). The main input to the hippocampus
enters via the entorhinal area (31).

INSIGHTS FROM NEUROPATHOLOGY

Neuropathological changes have been consistently reported in
the hippocampus in ALS (Table 1). Early reports highlighted
ubiquitin-positive intraneuronal inclusions (32–35) in medial
temporal structures, neuronal loss in the medial cortex of the
temporal tip (36, 69) and focal depletion of pyramidal neurons in
the pes hippocampi in both patients with and without dementia
(33, 36, 69). A specific focus of interest in histopathological
studies is the PP zone, which has been comprehensively studied
in most neurodegenerative conditions, especially in AD. While
AD is characterized by the extraneuronal deposits of the amyloid
β-protein (Aβ) and the intraneuronal tauopathy (70), ALS is
primarily associated with TAR DNA-binding protein 43 (TDP-
43) deposits (71). ALS patients with and without dementia (37,
38) show neuropathological changes in the dentate gyrus and the
outer lamina of the molecular layer where the PP terminals are
distributed (26, 30, 72). In ALS, the molecular layer of the dentate
gyrus is primarily affected, a pattern which is distinctly different
from AD. The inner molecular layer, which is innervated by the
CA4 (73), is the least affected layer in ALS (38). The intermediate
layer, which receives projections from layer II of the medial
entorhinal cortex, is affected (38), but the outer layer, is the most
affected region in ALS (38). Despite considerable mesial temporal
lobe involvement in both ALS and AD, the distribution of
disease-specific inclusions is strikingly different. Neurofibrillary
tangles in AD are mostly found in the entorhinal cortex and
are positive for tau, whereas the main proteinopathy of ALS is
TDP-43 and mostly affects the transentorhinal cortex (38).

It is now widely recognized that phosphorylated TDP-43
(pTDP-43) aggregates are the hallmark pathology of sporadic
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FIGURE 1 | Anatomical depiction of hippocampus on sagittal, axial and coronal plane of high resolution T1 image from a healthy control subject (A) and schematic

representation of (B) the anatomy of the hippocampus-entorhinal cortex-parahippocampal gyrus system and (C) the intrahippocampal connections. L, left

hemisphere; PHG, parahippocampal gyrus; PreSub, Presubiculum; Sub, Subiculum; CA, Cornu Ammonis; CA1-CA4, Cornu Ammonis subfields; DG, Dentate gyrus;

EC, Entorhinal cortex; I-IV, Layer I-IV; mf, mossy fibers; Sc, Schaffer collaterals.

ALS (39, 74, 75). Based on postmortem observations, a sequential
staging system of pTDP-43 pathology has been proposed, using
stage-defining involvement of specific cortical and subcortical
regions (12). According to this four-stage model of disease
propagation, the PP is predominantly affected in stage IV. A
three-stage model has also been suggested for PP degeneration
(38) where stage I is the “inclusion stage” defined by TDP-
43-positive cytoplasmatic inclusions appearing in the granular
cells of the dentate gyrus, stage II is the “early perforant stage”
where gliosis and neuronal loss of the transentorhinal cortex
are observed, and stage III is the “advanced perforant stage”
defined by the degeneration of the molecular layer of the dentate
gyrus and neuronal loss in the transentorhinal cortex (38). The
chronological stages of hippocampal pathology are closely linked
to its structural anatomy, confirming that disease propagation
occurs along connectivity patterns (76). The TDP-43 stages of
ALS are in line with the notion that gray matter (GM) regions
become sequentially involved via the WM pathways that connect
them (77–79).

THE CONTRIBUTION OF NEUROIMAGING

Neuroimaging studies have already contributed meaningful
structural, metabolic and functional insights in ALS (80,

81) and recent technological advances in imaging techniques
offer unprecedented opportunities to characterize hippocampal
changes in vivo. Following sporadic reports of hippocampal
degeneration (82–85) in whole-brain exploratory studies, recent
studies have specifically focused on the evaluation of this
structure (43) (Table 1). Emerging imaging methods not only
highlight hippocampal volume reductions, but have the potential
to characterize specific sub-regions (78), shape changes (42),
density alterations (20), progressive longitudinal changes (43),
altered connectivity profiles, and functional changes (40, 46, 47).

Structural Neuroimaging
Computational neuroimaging techniques have consistently
captured hippocampal GM changes which was initially thought
to be more significant in ALS patients carrying the C9orf72
hexanucleotide repeats (40), but later studies showed similarly
extensive hippocampal degeneration in C9orf72 negative ALS-
FTD patients (78). Interestingly, unilateral hippocampal changes
were not only captured in patients with cognitive impairment
(42), but also in cognitively intact cohorts (41). Shape and
density analyses of the hippocampus in ALS highlighted
phenotype-specific patterns of hippocampal degeneration (42).
A longitudinal study of hippocampus, which included a small
(∼6%) number of C9orf72 positive patients, identified baseline
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TABLE 1 | Research studies with hippocampal-related neuropathological, neuroimaging, or neuropsychological findings in ALS included in the present review.

References Authors (Date) Sample size Diagnostic

criteria

Genetic

Status

Dementia Cognitive status

NEUROPATHOLOGICAL STUDIES

(32) Wightman et al., 1992 33 ALS N/A N/A Included 19 PtwoCI; 14 PtwCI-D*

(33) Okamoto et al., 1991 27 ALS/50 HC N/A N/A 1 PtwD N/A (1PtwD)*

(34) Okamoto et al., 1992 10 MND N/A N/A 10 PtwD Dementia*

(35) Okamoto et al., 1996 2 ALS N/A N/A N/A Mental changes*

(36) Nakano et al., 1993 54 ALS/35 non

ALS

N/A N/A 10 PtwD 44 PtwoD; 10 PtwD

(37) Takeda et al., 2007 12 ALS N/A N/A 12 PtwD Demented

(38) Takeda et al., 2009 14 ALS N/A N/A 9 PtwD 9 PtwD* (6 PtwMI)

(39) Brettschneider et al.,

2012

102 ALS El Escorial-R N/A 12 PtwD 88 PtwoD; 12 PtwD; 2 unknown

(12) Brettschneider et al.,

2013

76 ALS El Escorial-R 11 C9orf72(+) 5 PtwD 71 PtwoD*; 5 PtwD*

NEUROIMAGING STUDIES: STRUCTURAL GM

(40) Bede et al., 2013 39 ALS/44 HC El Escorial 9 C9orf72(+) N/A Cognitive exam; Unspecified cognitive

groups

(41) Abdulla et al., 2014 58 ALS/29 HC El Escorial-R 3 C9orf72(+) N/A Cognitive exam; Unspecified cognitive

groups

(42) Machts et al., 2015 67 ALS/ 39 HC El Escorial-R C9orf72(-) 7 PtwD Cognitive exam; 42 PtwoCI; 18 PtwCI; 7

PtwFTD

(43) Westeneng et al., 2015 112 ALS/60 HC El Escorial-R 7 C9orf72(+) N/A N/A

(44) Sage et al., 2007 28 ALS/26 HC El Escorial N/A PtwoD No behavioral or cognitive changes;

Unspecified cognitive exam

(45) Sage et al., 2009 28 ALS/26 HC El Escorial N/A PtwoD No behavioral or cognitive changes;

Unspecified cognitive exam

NEUROIMAGING STUDIES: STRUCTURAL WM

(46) Barbagallo et al., 2014 24 ALS/22 HC El Escorial-R N/A N/A 13Pt cognitively examined; Unspecified

cognitive groups

(47) Thivard et al., 2007 15 ALS/25 HC El Escorial-R N/A PtwoD N/A

(48) Prell et al., 2013 17 ALS/17 HC El Escorial-R N/A PtwoD No significant frontal or cognitive

dysfunction; Unspecified cognitive exam

(49) Keil et al., 2012 24 ALS/24 HC El Escorial-R N/A PtwoD No cognitive exam

(50) Kassubek et al., 2014 111 ALS/74 HC El Escorial-R N/A N/A N/A

(51) Christidi et al., 2017 42 ALS/25 HC El Escorial-R N/A PtwoD Cognitive exam; Memory impairment based

on normative data; Unspecified cognitive

groups

(52) Steinbach et al., 2015 16 ALS/16HC El Escorial-R N/A 16 PtwD Cognitive exam; Cognitive categories

based on Phukan criteria#

NEUROIMAGING STUDIES: TASK fMRI

(53) Stoppel et al., 2014 14 ALS/14 HC El Escorial-R N/A PtwoD Cognitive exam; Memory impairment based

on normative data; Cognitive categories

based on Phukan criteria#

NEUROIMAGING STUDIES: RESTING-STATE fMRI

(54) Agosta et al., 2011 26 ALS/15 HC El Escorial-R N/A PtwoD N/A

(55) Zhu et al., 2015 22 ALS/22 HC El Escorial-R N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(56) Heimrath et al., 2014 9 ALS/11 HC El Escorial-R N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(57) Loewe et al., 2017 64 ALS/38 HC El Escorial-R N/A PtwoD Cognitive exam; Specified cognitive

groups#

(Continued)
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TABLE 1 | Continued

References Authors (Date) Sample size Diagnostic

criteria

Genetic

Status

Dementia Cognitive status

NEUROPSYCHOLOGICAL STUDIES

(58) Abrahams et al., 1997 12 ALS/25 HC N/A N/A N/A Cognitive exam; Unspecified cognitive

groups

(59) Chari et al., 1996 50 MND/27

HC/23 NeuroC

El Escorial N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(60) Frank et al., 1997 74 ALS/56 HC N/A N/A N/A Cognitive exam; Unspecified cognitive

groups

(61) Hanagasi et al., 2002 20 ALS/13 HC El Escorial N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(62) Iwasaki et al., 1990 18 ALS/15 HC N/A N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(63) Ludolph et al., 1992 17 ALS/12 HC N/A N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(64) Massman et al., 1996 146 ALS El Escorial N/A N/A Cognitive exam; Cognitive impairment

based on normative data; Unspecified

cognitive groups

(65) Mantovan et al., 2003 20 ALS/20 HC El Escorial N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(66) Christidi et al., 2012 22 ALS/22 HC El Escorial-R N/A PtwoD Cognitive exam; Unspecified cognitive

groups

(67) Machts et al., 2014 40 ALS/39

aMCI/40 HC

El Escorial-R N/A 3 PtwD Cognitive exam; Unspecified cognitive

groups

(68) Burke et al., 2017 203 ALS/117 HC El Escorial-R C9orf72(–) 30 PtwD Cognitive exam; 117 PtwoCI; 56 PtwCI; 30

PtwD

ALS, amyotrophic lateral sclerosis; HC, healthy control; MND, motor neuron disease; N/A, non-available; PtwoCI, patients without cognitive impairment; PtwCI-D, patients with cognitive

impairment-dementia; PtwD, patients with dementia; PtwoD, patients without dementia; PtwMI, patients with memory impairment; PtwCI, patients with cognitive impairment; PtwFTD,

patients with frontotemporal dementia; *unspecified cognitive status; #no comparison between cognitive groups; El Escorial-R, El Escorial revised criteria; C9orf72(+), C9orf72 positive

status; GM, gray matter; WM, white matter.

changes in the left presubiculum, and progressive CA2/3, CA4
and the left presubiculum involvement at follow-up (43).

While diffusion-weighted imaging (DWI) is primarily used
to study white matter (WM) structures, there is increasing
evidence that it may provide useful information on aspects of
GM integrity (86). Evaluation of diffusion tensor imaging (DTI)
metrics have consistently shown low fractional anisotropy (44,
49) and increased mean diffusivity in both hippocampal (44–47)
and parahippocampal regions (48).

DTI has been initially used to characterize medial temporal
lobe WM regions and later to assess limbic circuit integrity
(i.e., fornix; uncinate fasciculus) (87–89). One of the most
unique applications of hippocampal DTI in ALS however
is the ability to reconstruct and evaluate of the PP. (50,
51). Based on in vivo assessments, these studies have not
only confirmed previous neuropathological observations but
also revealed structure-specific clinical correlations (51). The
use of DWI-based PP imaging (90) has contributed to our
understanding of impaired memory processing in a range of
conditions from mild cognitive impairment, through AD, to
traumatic brain injury (91–94). PP imaging is therefore a
relatively well-established approach which has only recently been
applied to ALS. A longitudinal tractography study of ALS (52)
found increased connectivity between the visual cortex and
medial temporal lobe regions which increased further at 3-month

follow-up. Increased connectivity over time in ALS is not an
isolated finding (95) and is often interpreted as a compensatory
mechanism.

Functional Neuroimaging
There are relatively few paradigm-based functional magnetic
resonance imaging (fMRI) studies specifically evaluating
hippocampal function, but a longitudinal fMRI study
identified increased novelty-evoked hippocampal activity
over time (53). Resting-state studies have consistently captured
increased connectivity between the left sensorimotor cortex and
contralateral cortical regions including the parahippocampal
gyrus (54). Additionally, increased low-frequency amplitudes
have been observed in the right parahippocampal cortex
(55). Increased functional connectivity was also identified
between parahippocampal components of the default-mode
network (56). In a relatively large sample of ALS patients
with only minor cognitive changes, (57) decreased functional
connectivity was identified between temporal lobe structures,
including hippocampal and parahippocampal regions. This
was thought to represent early metabolic disturbances before
cell-loss occurs but highlight the fact that increased and
decreased connectivity is both reported in fMRI studies
of ALS.
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INSIGHTS FROM NEUROPSYCHOLOGY

Contrary to the consensus around executive dysfunction in
ALS (96–99), there are strikingly inconsistent reports about
the incidence of memory impairment in ALS (Table 1). Intact
memory function, mild dysfunction, executive functionmediated
memory impairment, and moderate memory deficits have all
been reported (58–65, 97). The primary substrate of amnestic
deficits is still under investigation. Most studies agree that the
primary deficit is in encoding-retrieval (65) which is often linked
to frontal dysfunction, attention, and other executive-based
processes (65–68). However, recognition deficits and memory
consolidation difficulties are likely to be just as important
(66). Compelling evidence also exist for pure episodic memory
dysfunction based on impaired picture recall, word list-learning,
pair associations, and story-recall. These observations would
suggest that memory impairment in non-demented ALS patients
cannot be exclusively attributed to executive dysfunction (100–
102).

In a combined neuroimaging-neuropsychology study,
abnormal immediate and delayed recall scores were identified in
23% of non-demented ALS patients (102). While the ALS cohort
of this study did not exhibit reduced hippocampal volumes in
comparison to healthy controls, their memory performance
correlated with hippocampal volumes. These findings are echoed
by other studies which rely on volumetric analyses and verbal
list-learning test and report significant correlations between the
hippocampal volumes and verbal memory indices such as total
learning, delayed recall, and recognition (41).

While direct clinico-radiological correlations are often
regarded as contentious (103), a positive association has been
reported between verbal memory indices and hippocampal
volumes in several ALS subgroups, including ALSci and ALS-
FTD (42). DTI studies have consistently revealed correlations
between memory performance and memory-associated WM
tracts such as the fornix (88), the uncinate fasciculus (87, 88), and
the hippocampal PP (51). Emerging reports of similar episodic
memory performance in ALS and amnestic mild cognitive
impairment patients (67) corroborates neuropathological
findings of comparable PP changes (37, 38).

Testing Recommendations
Traditionally, the assessment of episodic memory includes tests
for immediate and delayed recall, and performance evaluated
from a learning, retention and recognition perspective. More
recently, distinct memory processes are specifically assessed,
such as encoding, consolidation, and retrieval. (104–106) List-
learning tests (e.g., California Verbal Learning Test; Rey Auditory
Verbal Learning Test; Hopkins Verbal Learning Test etc.)
are particularly useful to assess hippocampus-mediated verbal
memory dysfunction in ALS. These tests enable the clinician to
evaluate immediate recall, delayed recall, and recognition and
can be readily interpreted in terms of encoding, consolidation,
and retrieval performance (66). Story-recall tests, such as the
Wechsler-Memory Scale, are also sensitive to detect episodic
memory impairment and ideally, both list-learning and story-
recall should be performed to comprehensively evaluate episodic

memory in ALS. The accurate assessment of visual episodic
memory is often confounded by motor disability in in ALS
or by coexisting executive dysfunction which may affect the
organization and encoding of complex figures (e.g., Rey-
Osterreith Complex Figure Test). The limitations of short, non-
ALS, cognitive screening tools such as MMSE; ACE; MoCA are
widely recognized in the ALS research community, as these tests
have been developed for other neurodegenerative conditions.
The administration of ALS specific screening tools (ECAS,
ALS-CBS) should be followed by specialist neuropsychological
evaluation if memory impairment is identified or reported by the
patient or caregiver.

DISCUSSION

The synthesis of insights from neuropathology, neuroimaging
and neuropsychology enables the systematic discussion of
structural and functional aspects of hippocampal degeneration
in ALS and helps to integrate focal pathology into a network
perspective.

While hippocampal pathology used to be primarily evaluated
in ALS patients with comorbid dementia (34, 37, 38), recent
studies have increasingly focused on non-demented patient
cohorts (12, 32, 69, 71). With the increased recognition
of neuropsychological deficits beyond executive dysfunction,
imaging studies of ALS have gradually started to evaluate mesial
temporal lobe structures and memory domains have now been
incorporated in ALS-specific cognitive screening tools (8). The
targeted evaluation of memory function and reliance on more
sophisticated indices of episodic memory (65–68) not only
help to characterize the heterogeneity of cognitive profiles but
also confirm that pure episodic memory dysfunction is not
uncommon in ALS and can be detected in the absence of FTD.

Despite the momentous advances in characterizing
hippocampal degeneration in ALS, considerable shortcomings
and inconsistencies can be identified. The commonest problem
is sample size limitations followed by the inclusion of poorly
characterized patients. The comprehensive neuropsychological
assessment of patients is paramount and administering screening
tests alone is not sufficient. Reliance on non-ALS specific
batteries, such as Addenbrooke’s Cognitive Examination, Mini-
Mental State Examination, Montreal Cognitive Assessment, is
not sufficient to characterize ALS-associated cognitive change.
A common shortcoming of ALS neuropsychology papers is
overlooking the confounding effect of medications which affect
cognitive performance. Anticholinergics commonly used for
sialorrhea, tricyclic antidepressants, opiates, benzodiazepines
are all widely used in ALS and have a significant impact
on attention, registration, and recall. Other disease-specific
confounding factors such as hypoxia, hypercapnia, physical
discomfort, fatigue, apathy, low mood, depression also need
careful consideration. Despite established consensus criteria (6)
different batteries are used in different centers to test memory.
There is a paucity of reports where caregivers or family members
are interviewed about the sort of memory impairment they
may have observed. A few targeted questions if the patient
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gets lost in familiar places, misplaces items, forgets names, or
dates etc. may be worth asking from the caregivers. Given the
strikingly quick progression rates observed in ALS compared to
other neurodegenerative conditions, resource allocation, care
planning, assessment of capacity may be important at an early
stage of the disease. ALS patients have to make a number of
important financial, personal, and end-of-life decisions which
may or may not be affected by memory impairment.

The practice of excluding patients with dementia in
neuroimaging studies (44, 47, 49, 55) to evaluate clinically
homogenous samples may also be counterintuitive. More recent
imaging papers include comprehensive cognitive testing (55–
57) which aids the interpretation of extra-motor changes (107).
The lack of cognitive profiling of the healthy controls in many
neuroimaging studies also precludes robust statistics as only
the patient group is then used for correlative analyses. Often,
reference normative neuropsychology data are used for the
interpretation of patient’s memory performance, data which is
independent from the given study and originate from volunteers
who have not been scanned as part of the given study. The
patients’ neuroimaging data on the other hand are contrasted
to scans of controls who had no detailed neuropsychological
evaluation. This unfortunately is a common study design, which
essentially uses a different imaging and neuropsychology control
group. Another common shortcoming of ALS neuroimaging
studies is the lack of adjustment for education, which may impact
on both structural and functional imaging data (80). A binary,
comparative study design of patients versus controls and the
contrasting of two clinically or genetically defined cohorts is not
entirely satisfactory either. The inclusion of mimic cohorts, or
a “disease-control” group with an alternative neurodegenerative
condition such as MCI, AD, or Parkinson disease would also be
desirable. The selection bias of relatively well patients who are
able to lie flat in the scanner and able to make the journey to a
radiology department is seldom acknowledged. It is conceivable
that progressive hippocampal changes occur as the disease
progresses, but these patients are no longer able to partake in
imaging studies. Clinical trial designs are not only hampered
by late recruitment of clinically heterogeneous cohorts, but they
overwhelmingly rely on motor, respiratory, nutritional markers
(108–110). Patient stratification based on cognitive performance
prior to inclusion and monitoring performance during the trial
seems essential, especially given the survival implications of
cognitive impairment (3, 4, 111).

Despite initial enthusiasm that hexanucleotide repeats
account for most of the ALS-FTD cohort (112, 113), it has
quickly become apparent that C9orf72 hexanucleotide repeats

only explain a minority of ALS-FTD cases (114). Emerging
studies confirm that a subgroup of C9orf72 negative patients may
show neuroanatomical alterations similar to the ones observed
in patients carrying the hexanucleotide expansion. Furthermore,
temporal lobe changes have been captured in asymptomatic
hexanucleotide carriers, who also exhibited subcortical gray
matter degeneration prior to symptom onset (115).

Existing multimodal studies which combine neuroimaging
and neurocognitive measures either support a close association
between anatomical changes and memory performance or
highlight a relative dissociation between the two methods. This
inconsistency is epitomized by reports of absent neuroimaging
changes in patients with established memory deficits and
the detection of significant hippocampal changes in patients
with mild memory impairment (41, 42, 102). Based on the
shortcomings of existing hippocampal studies in ALS, future
studies should include large sample sizes, disease-controls,
longitudinal designs, paradigm-based fMRI, comprehensive
neuropsychological profiling, “disease-controls,” anatomical
corrections for education, and genetic screening for mutations
implicated in ALS, FTD, and AD. Furthermore, reliance on
high directional diffusion models such as neurite orientation
dispersion and density imaging (NODDI), high angular
resolution diffusion imaging (HARDI), or Q-ball imaging
may be desirable to characterize early WM alterations in
parahippocampal regions. Finally, combined imaging and post-
mortem studies may provide a validation of the in vivo findings.

In conclusion, hippocampal pathology is a clinically and
academically relevant field of ALS research which has gained
unprecedented momentum in recent years and is likely to
contribute important further insights in the coming years.
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Neuropathological studies revealed the propagation of amyotrophic lateral sclerosis
(ALS) in a sequence of four separate disease-related regional patterns. Diffusion tensor
imaging (DTI)-based analysis was established for the individual mapping of sequential
disease spreading in ALS as the in vivo transfer to neuroimaging. The aim of this review
is to summarize cross-sectional and longitudinal results of these technical approaches in
ALS as an in vivo tool to image ALS propagation stages. This concept was also applied
to restricted phenotypes of ALS, e.g., lower motor neuron disease (LMND) or primary
lateral sclerosis (PLS). In summary, the regional disease patterns in the course of ALS
have been successfully mapped by DTI in vivo both cross-sectionally and longitudinally
so that this technique might have the potential as a read-out in clinical trials.

Keywords: amyotrophic lateral sclerosis, motor neuron disease, diffusion tensor imaging, fractional anisotropy,
magnetic resonance imaging

INTRODUCTION

The potential of neuroimaging as a technical biological marker for cerebral microstructural
alterations in neurodegenerative diseases like motor neuron disorders (MND) is under
investigation (Turner et al., 2011, 2012). This review was designed to summarize diffusion tensor
imaging (DTI)-based approaches for mapping the established propagation patterns in the brain in
amyotrophic lateral sclerosis (ALS) and its variants (restricted phenotypes Ludolph et al., 2015).
Classification of MND is a challenge of growing importance given that the therapeutic portfolio
for ALS might expand in the future, as reflected in the efforts to revise the diagnostic criteria
(Ludolph et al., 2015). With respect to the clinical presentation of ALS, the current revision of
the El Escorial criteria addressed a validated staging system, and it was held that the development
of non-invasive investigations including MRI will assist (Ludolph et al., 2015). For the staging
concept, post-mortem studies of the brain pathology of ALS based on phosphorylated 43 kDa TAR
DNA-binding protein (pTDP-43) revealed a possible dissemination in a regional sequence of four
disease-related patterns (Braak et al., 2013; Brettschneider et al., 2013; Jucker and Walker, 2013),
with the sequential protein pathology spreading initially from the motor neocortex toward the
spinal cord and brainstem, followed by spreading to frontal, parietal and, ultimately, anteromedial
temporal lobes (Ludolph and Brettschneider, 2015). This corticoefferent spreading model has been
transferred in vivo to MRI-based concepts by in silicomodels (Schmidt et al., 2016), microstructural
data (Kassubek et al., 2014, 2018b), and functional connectivity analysis (Schulthess et al., 2016).
Specifically, DTI can be used to detect pathology within the corresponding neuronal white
matter (WM) tracts and to obtain in vivo staging at an individual patient level by fiber-tract of
interest (TOI)-based DTI mapping, i.e., a hypothesis-driven approach that revealed sequential
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involvement of the corresponding WM tracts in cross-sectional
data (Kassubek et al., 2014) and longitudinal data (Kassubek
et al., 2018b). To assess the axonal damage and myelin
degradation, the statistical analysis of DTI metrics can be
performed by various approaches: (1) unbiased voxelwise
comparison by whole brain-based spatial statistics (WBSS)
(Müller et al., 2012) or tractwise comparison by tract-
based spatial statistics (TBSS) (Smith et al., 2006), or (2)
hypothesis-guided tract-based quantification by analyzing DTI
metrics in tract systems by probabilistic tools (Sarica et al.,
2017), or TOI-based tractwise fractional anisotropy statistics
(TFAS) (Müller et al., 2007b). In this review, results of DTI-
based cross-sectional and longitudinal analyses in ALS were
summarized including applications to clinical variants, i.e., lower
motor neuron disease (LMND) and primary lateral sclerosis
(PLS).

DTI DATA ANALYSIS TECHNIQUES

The post-processing and statistical analysis of WBSS and TFAS
was performed by use of the analysis software tensor imaging
and fiber tracking (TIFT) (Müller et al., 2007a). In order to assess
the axonal damage and myelin degradation, DTI metrics effects
at the group level are reported by voxelwise WBSS comparison
(Müller et al., 2012) and tract-based quantification by TOI-based
TFAS (Müller et al., 2007b). Standard pre-processing procedures
contain quality control of the DTI data including elimination of
corrupted DTI volumes (Müller et al., 2011), motion correction
of individual DTI data sets, in case of longitudinal data an
alignment of baseline data and follow-up data by a halfway
rigid-brain co-registration (Menke et al., 2014), normalization to
the Montreal Neurological Institute (MNI) stereotaxic standard
space (i.e., non-linear and iterative normalization to a study
specific template – Müller et al., 2012), and, in case of DTI
data from different scanners, a 3-D inter-protocol correction
which can be applied ex post facto (Rosskopf et al., 2015). The
covariate age should be regressed out due to an age dependency
of FA values (Lim et al., 2015). In case of longitudinal analyses,
the FA differences between the baseline and follow-ups were
normalized to an identical time interval representing comparable
disease durations for all patients before group level comparison
as previously described in detail (Kassubek et al., 2018b), in order
to control for variable follow-up intervals. Post-processing and
statistical analysis was performed by a differentiated analysis, i.e.,
unbiased WBSS (Müller et al., 2012) that statistically compares
voxelwise FA values of two subject groups and hypothesis-
based tractwise quantification by analyzing FA values along tract
systems (TFAS – Müller et al., 2007b).

Fiber tracts were reconstructed from an averaged DTI data
set of MNI transformed controls’ data (Müller et al., 2007b) by
a seed-to-target approach (Kassubek et al., 2014, 2018b); here,
for a given pathway, the corresponding TOI is defined by all
tracts that originate in a defined seed ROI and end in a target
ROI. For quantification of the directionality of the underlying
tract structures, the TFAS technique (Müller et al., 2007b) was
applied. The four-stage corticoefferent sequential axonal spread

of pTDP-43 has been transferred in vivo by a hypothesis-driven
TOI-based analysis that revealed sequential involvement of the
corresponding WM tracts in cross-sectional data (Kassubek et al.,
2014) and longitudinal data (Kassubek et al., 2018b). Staging
categorization for a given patient at the individual level is
possible using an FA-based categorization scheme with sequential
involvement of the specific tract structures (Kassubek et al., 2014,
2018b).

IN VIVO TRANSFER OF THE STAGING
CONCEPT

The TOI-Based Staging Approach
The hypothesis-guided TOI-based staging approach was
suggested to image the neuropathologically proposed sequential
progression of ALS in the respective cerebral tract systems, i.e.,
the CST (as a correlate of ALS-stage 1), the corticorubral and
corticopontine tracts (ALS stage 2), the corticostriatal pathway
(ALS stage 3), and the proximal portion of the perforant path
(ALS stage 4) (Kassubek et al., 2014). The statistical analyses
of TOIs showed differences between ALS patients and healthy
controls for all tract systems; the significance level of the cross-
sectional comparison at the group level in the corresponding
fiber tracts was lower, the higher ALS-stage was (Kassubek
et al., 2014). After a cross-sectional study with 111 ALS patients
and 74 healthy controls with MRI data from 1.5T as well as at
3.0T scanners, a follow-up (mono-centre) study confirmed the
results in 382 ALS patients and 149 healthy controls (Kassubek
et al., 2018b). In a subsample of 67 ALS patients and 31 healthy
controls who obtained at least one follow-up scan after a
median of 6 months, longitudinal FA changes showed significant
alterations in ALS patients compared with healthy controls in
all ALS-related tracts as well as for the grand average of all tract
systems (Kassubek et al., 2018b).

By applying the in vivo categorization cascade at the individual
level (Kassubek et al., 2014), staging categorization for the
baseline scans of 387 ALS patients revealed that 72% of the ALS
patients were categorized into ALS stages with a homogeneous
distribution over the stages. The longitudinal follow-up study
with 67 patients with ALS demonstrated that 27% of the
longitudinally scanned ALS patients showed an increase in ALS
stage after about 4 months, while the other ALS patients remained
stable or had already been classified as ALS stage 4 (Kassubek
et al., 2018b).

The Unbiased Approach Confirms
Results at the Cross-Sectional and
Longitudinal Group Level
A multicentre study of eight contributing centers with 253 ALS
patients and 189 healthy controls (Müller et al., 2016) confirmed
the most significant alterations to be localized in the CST
(corresponding to stage 1) and found additional significant WM
tract changes in the frontal lobe, the brainstem, and hippocampal
regions (corresponding to stages 2–4). The localization of these
DTI-based in vivo results were in accordance with the definition
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of the post-mortem neuropathological stages (Brettschneider
et al., 2013; Braak et al., 2017).

In a longitudinal study with 67 ALS patients and 31
healthy controls and an average inter-scan interval of 6 months
(Kassubek et al., 2018b), longitudinal significant FA alterations
were also observed in the CST, the frontal lobe, the brainstem,
and in hippocampal regions, that way imaging longitudinal
alterations of FA during disease progression.

Hypothetical Longitudinal FA
Dependence in ALS Patients
The cross-sectional and longitudinal FA alterations in ALS
patients for unbiased WBSS and hypothesis-guided TFAS
suggested a hypothetical FA alteration model for the mean FA
values in ALS staging-related tract systems (Figure 1). After a
certain time interval after disease onset in the ALS patients, FA
alterations at the group level appear first in the CST; these FA
alterations increase during the disease course, and FA alterations
in the corticopontine and corticorubral tract as well as in the
corticostriatal pathway can be observed. Finally, FA alterations
in the proximal portion of the perforant path contribute to the
FA alteration pattern. This hypothetical course is based upon the
assumption of almost linear FA alterations. However, there is no
proof yet which mathematical model (linear or polynomial) could
be assumed for the FA decrease. A solution to this challenge could
be the analysis of high-frequency DTI scanning (monthly or even
bi-weekly) in a group of about 10 ALS patients during the course
of the disease.

A study with 65 DTI scans from ALS patients and healthy
controls with several follow-up measurements (Baldaranov et al.,
2017) showed an FA decrease in the CST that correlated
with the revised ALS functional rating scale (ALS-FRS-R –
Cedarbaum et al., 1999). In other studies, both the clinical
severity as assessed by the slope of the ALS-FRS-R and the
disease duration significantly correlated with the resulting staging
scheme (Kassubek et al., 2014, 2018b). Furthermore, the results
were recently supplemented by neuropsychological data: 139
patients with ALS were tested with the Edinburgh Cognitive
and Behavioral ALS screen (ECAS), in addition to DTI brain
measures of pathological spread. Executive function, memory
and disinhibited behavior were selected for cognitive staging
criteria, since these cognitive functions are attributed to cerebral
areas analogous to the pattern of MRI markers of TDP-43
pathology, showing that cognitive impairment follows specific
patterns in ALS and, in analogy to DTI-based staging, these
patterns are useful to set up a cognitive staging (Lulé et al., 2018).

APPLICATION OF THE IN VIVO STAGING
APPROACH TO PHENOTYPIC VARIANTS
OF ALS

Lower Motor Neuron Disease and
Primary Lateral Sclerosis
The current revision of the El Escorial criteria for ALS
addressed restricted phenotypes in the sense of clinical variants

(Ludolph et al., 2015). Adult LMND without clinically overt
upper motor neuron (UMN) pathology accounts for about
10% of all cases of MND types and is also traditionally
named progressive muscular atrophy (PMA) (Norris et al., 1993;
Traynor et al., 2000). On the other hand, PLS is considered
a MND which almost exclusively affects UMN (Wais et al.,
2017).

In a monocentric study of 37 LMND patients vs. 53 healthy
controls, WM microstructure showed characteristic alteration
patterns in patients with LMND (clinically differentiated in fast
and slow progressors according to van den Berg-Vos et al.,
2003), especially along the CST with regional FA reductions
in the motor system; the TOI-based tract-specific analysis in
fast progressing LMND showed significant FA reductions in
ALS-related tracts beyond the CST when compared to slow
progressors or healthy controls (Rosenbohm et al., 2016). These
results were confirmed by a bicentric study of 65 LMND
patients compared to 92 matched healthy controls and 101
matched ALS patients with a “classical” phenotype: the tract-
specific analysis demonstrated significant alterations in ALS-
related tract systems for fast progressing LMND patients
vs. slow progressors and healthy controls (Müller et al.,
2018a).

There is also a longstanding debate if PLS could be classified
as a disease entity separate from ALS or as a slowly progressing
ALS variant with UMN predominance (Singer et al., 2007). In
the revision of the El Escorial criteria, PLS is described as a
restricted phenotype that evolves into ALS in the majority of
patients (Ludolph et al., 2015). In vivo, the analysis of WM
integrity by regional FA reductions in 50 PLS patients vs. 50
controls showed the alterations along the CST and additionally
in frontal and prefrontal brain areas in PLS and ALS patients
(Müller et al., 2018b). The ALS-staging-related tract-specific
analysis demonstrated identical alterations of ALS-related tract
systems for PLS and ALS when compared with controls and
showed no differences for the comparison between ALS and PLS
(Müller et al., 2018b).

APPLICATION OF THE IN VIVO STAGING
APPROACH TO BEHAVIORAL VARIANT
OF FRONTOTEMPORAL DEMENTIA

The characteristic longitudinal distribution pattern of the
underlying pTDP-43 pathology in the behavioral variant of
frontotemporal dementia (bvFTD) across specific brain regions
was demonstrated (Brettschneider et al., 2014). The in vivo
staging approach was transferred to bvFTD (without MND) and
showed an alteration pattern in the involved major WM tracts
(Kassubek et al., 2018a): the TOIs of bvFTD-pattern 1 (uncinate
fascicle), 2 (corticostriatal pathway) and 4 (optic radiation)
demonstrated significant differences for bvFTD patients vs.
controls, whereas the TOI representing the CST (bvFTD-pattern
3) showed no differences for bvFTD vs. controls. Aspects of the
heterogeneous neuropathology of bvFTD which is based upon
pTDP-43 only in about 50% of the cases are an issue of discussion
(Kassubek et al., 2018a).
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FIGURE 1 | Hypothetical FA development/decrease model for the mean FA values in ALS staging related tract systems. Left panel: At baseline, mean FA was
supposed to be identical in patients and controls (with individual error bars). After a certain time interval after disease onset, FA alterations appear first in the CST
(related to ALS stage 1). During the disease course, these FA alterations manifest, and FA alterations in frontal and prefrontal areas as well as in the brain stem are
observed (corticopontine and corticorubral tract as well as corticostriatal pathway, related to ALS stages 2 and 3, respectively). With higher disease duration, FA
alterations in the CST further decrease and alterations in hippocampal areas (proximal portion of the perforant path, related to ALS stage 4) contributed to the FA
alteration pattern. Central panel: Projectional views of fiber tracts used for tractwise fractional anisotropy statistics (TFAS) for each of the four stages. Right panel:
Projectional views of the corresponding whole brain-based spatial statistics (WBSS).

DISCUSSION

In this review, the approach to use DTI metrics in the
assessment of axonal damage and myelin degradation in ALS
is specifically addressed. An unbiased voxelwise comparison
by WBSS (Müller et al., 2012) is an approach to assess
microstructural alterations with an imaging resolution in the
order of millimeters. WBSS directly compares DTI metrics
of subjects at the group level after stereotaxic normalization
for the whole brain without any prior restriction to specific
brain areas. On the other hand, a tractwise comparison by
TOI-based TFAS (Müller et al., 2007b) addresses DTI-based
alterations along specific tract structures both at the group

level and at the individual level; the hypothesis-guided TOI
approach provides a higher statistical accuracy compared to
voxelwise analysis since the whole tract structure is taken
into account. An alternative approach to assess ALS-related
microstructural alterations is TBSS (Smith et al., 2006; Agosta
et al., 2010) that aims at analyzing changes in WM across
individuals, that way relying on the precise changes in WM
across individuals. TBSS is a probabilistic method that generates
multiple solutions to reflect the variability or uncertainty of the
estimated fiber orientation restricting the statistical comparisons
to the centers of WM tracts after non-linear registration (using
FA measurements to realign subjects and extract the centers of
WM tracts).
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In vivo Imaging of TDP-43 Pathology in
ALS and Its Variants
Post-mortem studies demonstrated a concept for patterns of
TDP-43 pathology in ALS with a sequential progression of
pTDP-43 aggregates (Braak et al., 2013), the task remained
to investigate if in vivo neuroimaging measures might be
identified that were consistent with these patterns of pTDP-
43 progression (Kassubek et al., 2018a). The TOI-based staging
approach (Kassubek et al., 2014) was able to map in vivo
the proposed neuropathological progression of ALS cross-
sectionally as well as longitudinally, that way supporting DTI
as a candidate technical marker to image ALS stages in vivo
(Kassubek et al., 2018b). The microstructural alterations were
supplemented by alterations in functional brain organization:
specific intrinsic functional connectivity networks revealed
significantly increased functional connectivity for the motor
network (as the correlate of the neuropathological stage 1),
the brainstem network (neuropathological stage 2), the ventral
attention network (neuropathological stage 3), and the default
mode/hippocampal network (neuropathological stage 4) in
a cross-sectional as well as in a longitudinal study design
(Schulthess et al., 2016). Increased functional connectivity
is strongly indicative for abnormal brain functioning. First,
patterns of increased functional connectivity in ALS that result
from abnormally strong functional coupling within a specific
functional brain network have been attributed to a gradual loss
of the inhibitory influence (Douaud et al., 2011). Second, the
patterns of increased functional connectivity also present as a
network expansion (Schulthess et al., 2016) which is a commonly
observed phenomenon in neurodegenerative diseases (Gorges
et al., 2015). A straightforward interpretation of adaptive changes
is that additional brain areas become functionally integrated,
i.e., additional functionally segregated resources are recruited for
compensating the ongoing cell loss in within-network modules in
order to maintain “normal” performance (Hillary and Grafman,
2017). The application of the in vivo techniques to specific
MND phenotypes (ALS variants) demonstrates central nervous
system involvement of the corticofugal tracts in fast progressive
LMND, in support of the hypothesis that LMND is an ALS
variant (Müller et al., 2018a). Furthermore, the clinical approach
to the phenotype of PLS as an ALS variant was confirmed, in
accordance with the latest revision of the El Escorial criteria
(Agosta et al., 2015a; Ludolph et al., 2015), in favor of the
conclusion that these patients can be treated like ALS and
also may be included into clinical trials of ALS (Müller et al.,
2018a).

Hypothesis Guided Tract-Based Analysis
The DTI-based TOI approach is a microstructural correlate
of the progressive pathological process; this analysis technique
identifies defined anatomical tract systems that represent the
proposed progression patterns based upon histopathology (Braak
et al., 2013) and are not per se determined by a data-driven
analysis (Kassubek et al., 2018a). The approach of analyzing
a “propagation pattern” is longitudinal in nature. Thus, the
analysis according to the progression concept – which has

been developed on the basis of cross-sectional post-mortem
data – targets the identification of patterns that can be
consistently found in a diverse group of neurodegenerative
disorders, each of which entails the aggregation of abnormal
protein inclusions in characteristic locations (Jucker and
Walker, 2013). The longitudinal access of categorizing patients
with ALS could be by longitudinal DTI scans followed
by confirmation by post-mortem pathology analyses, i.e.,
the combination of the in vivo staging with post-mortem
classification in the same subjects. However, the availability of
such data is limited. The role of other neuroimaging modalities
including molecular imaging has to be evaluated in future
studies.

Limitations
A limitation of the staging categorization is that only about 80%
of the MND patients could be categorized. This is a technique-
immanent limitation as thresholds for the differentiation between
patients and controls were defined in a data-driven approach.
Due to an incomplete separation between ALS patients and
controls (the sensitivity is about 80%), not all patients would be
classifiable (Kassubek et al., 2014). The definition of optimized
thresholds by repeated control scans or an increased number
of control scans might increase the sensitivity and thus the
percentage of categorized MND patients. A further limitation
of present neuroimaging approaches is the lack of autopsy-
confirmed data (Kassubek et al., 2018a); thus, the TOI-based
analysis only provides a plausible surrogate pattern for in vivo
“staging” for the pathology in the ALS cohorts. Finally,
since DTI is a quantitative imaging technique, suboptimal
acquisition, data processing and analysis approaches can affect
the quality and reliability of DTI-derived metrices (Jones,
2010).

Summary
Many neurodegenerative diseases feature characteristic patterns
of early neuronal and regional vulnerability, with increasing
evidence that misfolded protein aggregates can spread by a
self-perpetuating process, and novel neuroimaging techniques
can help elucidating how these disorders spread across brain
networks (Agosta et al., 2015b). Measurement of WM tract
involvement seems to be a valid surrogate to assess the in vivo
spreading of pathological proteins and seems to be a valid
approach to provide insights into the trajectory of processes
of neurodegeneration (Agosta et al., 2015b) in order to move
neuroimaging “from snapshots to motion picture” according to
Schuster and co-workers (Schuster et al., 2015).

In ALS as one of the neurodegenerative diseases with such
a propagation pattern, the analysis of the neuropathologically
defined structures demonstrated a characteristic alteration
pattern of the involved WM pathways cross-sectionally as
well as longitudinally (Kassubek et al., 2018a); at present, no
direct neuroimaging marker for pTDP-43 exists, but previous
neuropathological studies have shown the correlation between
the degree of pTDP-43 aggregation and axonal loss (Geser et al.,
2009). The DTI-based analysis of microstructural integrity is a
different approach compared to analysis techniques like regional
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volumetric studies that directly measure regional atrophy or
intrinsic functional connectivity analysis (Filippi et al., 2015).
Thus, the investigation of microstructural integrity by the
DTI/TOI-based approach has potential to serve as a non-invasive
in vivo neuroimaging marker.

The DTI-based techniques have the potential for future
use in the work-up of individual patients, they potentially
enlarge the spectrum of non-invasive biological markers
as a neuroimaging-based read-out for clinical studies
(Kassubek et al., 2018a). These studies also could be used
for the identification of patients that could be elected
for trials targeting at treating the specific histopathologic
abnormalities causing MND (Kassubek et al., 2018a). DTI-
based scores may provide a different target information to
currently available scores for longitudinal screening, as a
candidate read-out for future disease-modifying strategies

on the transmission of TDP-43 in ALS (Kassubek et al.,
2018b).
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Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy’s disease, is a

rare, X-linked, late onset neuromuscular disorder. The disease is caused by a CAG

trinucleotide repeat expansion in the first exon of the androgen receptor gene. It

is characterized by slowly progressive lower motor neurons degeneration, primary

myopathy and widespread multisystem involvement. Respiratory involvement is rare,

and the condition is associated with a normal life expectancy. Despite a plethora of

therapeutic studies in mouse models, no effective disease-modifying therapy has been

licensed for clinical use to date. The development of sensitive monitoring markers for

the particularly slowly progressing pathology of SBMA is urgently required to aid future

clinical trials. A small number of outcome measures have been proposed recently,

including promising biochemical markers, which show correlation with clinical disability

and disease-stage and progression. Nevertheless, a paucity of SBMA-specific biomarker

studies persists, delaying the development of monitoring markers for pharmaceutical

trials. Collaborative efforts through international consortia and multicenter registries are

likely to contribute to the characterization of the natural history of the condition, the

establishment of disease-specific biomarker panels and ultimately contribute to the

development of disease-modifying drugs.

Keywords: SBMA, biomarkers, clinical trials, multisystem involvement, outcome measures

INTRODUCTION

Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy’s disease, is a
rare, X-linked, adult onset, neuromuscular disorder (1) characterized by slowly progressive
lower motor neuron (LMN) degeneration, skeletal muscle pathology and by a spectrum
of multi-organ involvement (2–4). The disease is caused by a CAG repeat expansion
in the first exon of the androgen receptor (AR) gene encoding for a poly-glutamine
(polyQ) tract. A repeat number higher than 38 is considered pathogenic (5). PolyQ-
AR toxicity is hormone-dependent and CAG repeat size inversely correlates with age of
symptom onset but not with disease progression rates (6, 7). Heterozygous female carriers
of the mutation only present subtle signs of neuromuscular involvement such as muscle
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cramps and hand tremor (8, 9). The disease is rare, with an
estimated prevalence of 3.5/100,000 male inhabitants in southern
Europe (10, 11) but the presence of a founder effect is retained to
cause considerable differences in the distribution of the disease
in various geographical regions (12, 13). Subjects with minimal
symptoms and the relatively limited awareness of the condition
make it likely that the real prevalence of SBMA is underestimated.

Despite several promising therapeutic studies (14), no disease-
modifying treatment currently exists for SBMA. Similarly to
SMA, the lack of sensitive monitoring markers for the slow
progression rates of SBMA is one of main the barriers to
successful clinical trials (15, 16). The objective of this work is
the systematic review of candidate biomarkers in SBMA and
the appraisal of their potential in clinical management and
pharmaceutical trials.

THE NEUROLOGICAL PRESENTATION

Limb weakness is present in 97% of SBMA cases. It usually
appears at the of age of 35–40 and starts typically proximally
in the lower limbs (2, 3, 6, 17). However, tremors, muscle
cramps, myalgia, gynecomastia, and exercise intolerance are
often reported long before the onset of frank limb weakness (17,
18). Clinical signs of LMN involvement, such as fasciculations,
muscle cramps, and atrophy are invariably present. Proximal
muscles are predominantly affected, leading to difficulties in
climbing stairs and getting up from a sitting position. Motor
impairment is usually slowly progressive (19) and survival
is only slightly reduced (6, 17). In addition to limb muscle
wasting, fasciculations, and decreased deep tendon reflexes,
clinical features often include a high-frequency postural hand
tremor and postural leg tremor (20).

Bulbar impairment occurs in about 10–30% of patients
at the onset of the disease (17), but it is present in the
majority of the patients at later stages. It slowly progresses
over time and may lead to aspiration pneumonia, which is
a frequent cause of death in SBMA (6). Dysphagia is due
to impaired oro-pharyngeal phase of deglutition (21), and
is associated with tongue’s muscles weakness, fasciculations,
and atrophy (21). Dysarthria is characterized by hypernasality
secondary to incomplete soft palate elevation and is associated
with dysphonia. Speech impairment can evolve into markedly
reduced intelligibility. Facial weakness and asymmetry, perioral
fasciculations, myokymia, and jaw drop are also common clinical
features (21–23). Recurrent laryngospasms have been noted in up
to 47% of SBMA patients (24).

The presence of a distal sensory neuropathy is a hallmark
feature of the disease (25) which has been described in
post-mortem studies (26), sural nerve biopsies (27), and
neurophysiology (28). The sensory neuropathy may be
asymptomatic or manifests in distal numbness and paraesthesia
in the lower limbs and reduced sensation for vibration.
Neurophysiological examination readily detects reduced or
absent sensory action potentials (SAPs) (28, 29). Degeneration of
small myelinated and unmyelinated fibers may explain the high
incidence of neuropathic pain (30) in SBMA.

MULTISYSTEM INVOLVEMENT

Complex multi-organ involvement is a hallmark feature of
SBMA. The core non-neurological features of SBMA include
gynecomastia, testicular atrophy, reduced fertility and erectile
dysfunction. Dysfunction of the AR protein leads to partial
androgen insensitivity (31), manifesting in erectile dysfunction
(3), gynecomastia and reduced fertility (31, 32). Testosterone
and dehydro-epiandrosterone sulfate (DHEAS) are elevated in
up to 38% of patients (32). The Androgen Sensitivity Index (ASI)
(LH× testosterone), which reflects androgen resistance, is found
to be increased in almost half of the patients (3, 32). DHEAS
is thought to correlate with CAG repeat number as well as
disease duration (32). Metabolic syndrome with increased BMI,
elevated serum cholesterol, triglycerides, and fasting glucose is
also a key feature of the disease (3, 31–33) and insulin resistance
is associated with disease severity (34). Liver involvement with
steatosis and sometimes inflammation has been described (33),
but the risk of progression to liver fibrosis is unclear. Recurrent
urinary symptoms and incomplete bladder emptying may affect
more than the third of male SBMA patients even in the absence
of benign prostatic hyperplasia, which is likely to be explained
by pelvic floor and bulbuocanvernosus muscle dysfunction (3).
While there is no evidence of a primary cardiomyopathy in
SBMA (35), Brugada-like ECG abnormalities have been reported
in almost half of the patients in a large Japanese cohort (36).
Obstructive sleep apnea (OSA), poor sleep quality and periodic
limb movements in sleep have also been reported (37).

BIOMARKERS IN SBMA

A biomarker is a parameter that can be measured accurately
and reproducibly and used as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses
to a therapeutic intervention (WHO definition, 1998). An
ideal biomarker should have a predictive value and capture
subtle changes over relatively short periods of time. Additional
requirements to biomarkers include cost-effectiveness, non-
invasiveness, and reproducibility (38, 39). It is generally agreed
that no single biomarker is suitable for diagnostic, prognostic and
monitoring roles and a panel of several markers may be better
suited as multirole indicators (40). SBMA is a rare and slowly
progressing condition, therefore the development of sensitive
outcome measures would enable smaller sample-size and shorter
duration of pharmaceutical trials (41, 42).

BIOMARKERS OF NEUROLOGICAL
INVOLVEMENT IN SBMA

In recent years, an unprecedented interest has developed in
the standardized assessment of neuromuscular performance in
SBMA, evaluation of novel therapeutic strategies (14) and in
the launch of national SBMA registries (42, 43). Many of the
commonly used instruments, such as the MRC score, respiratory
function parameters, the modified Norris scale, ALSFRS-r,
Quantitative Myasthenia Gravis Score etc. are non-specific to
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SBMA, yet remain widely utilized. As these tools have been
developed for other conditions, new batteries of tests have been
recently proposed to specifically appraise disability in SBMA
(Table 1).

6-Minute-Walk-Test (6MWT)
The 6-minute-walk-test (6MWT) was proposed as an accurate
marker of disease progression (44). It measures the distance a
person can walk within 6min and is regarded as a composite
proxy of cardiopulmonary and neuromuscular abilities (61).
Due to its relative simplicity and cost-effectiveness it has been
widely adopted as an outcome measure in several neuromuscular
conditions, such SMA and myopathies (62, 63). The 6MWT
is traditionally considered the most reliable marker of motor
impairment in SBMA, it reliably captures a 10% decline over 1
year (44) and has been used as a primary outcome measure in
clinical trials (45, 57). A shorter version of the test, the “2-MWT,”
also exists and is thought to be reliable (63).

Adult Myopathy Assessment Tool (AMAT)
The Adult myopathy assessment tool (AMAT) is a performance-
based instrument composed of functional and endurance
subscales (46). AMAT provides a comprehensive evaluation of
motor function, and muscle fatigue, which is a key facet of
disability in SBMA (64). One of the strengths of AMAT is that it
can also be applied to non-ambulatory patients. It is widely used
in both SBMA registers (43) and in clinical trials (47, 52).

SBMA Functional Rating Scale (SBMAFRS)
The SBMA functional rating scale (SBMAFRS) SBMAFRS is a
recently validated scale (48, 49), which has been developed from
the ALSFRS-r (65) and specifically adapted for the disability
profile of SBMA. It is a questionnaire-based scale that measures
physical function in activities of daily living (ADL) and consists
of five main domains measuring bulbar, upper-limb, lower-limb,
truncal, and respiratory function. The SBMAFRS has proven
to be more sensitive than the ALSFRS-r in evaluating SBMA
patients with moderate motor deficits (48).

1234-Scale
The 1234-scale is another questionnaire-based scale based on the
ALSFRS-r, which focuses on SBMA-associated motor disability
(50). It includes items such as the ability to do push-ups, ability
to run and to stand up from a squatting position. The 1234-scale
has shown good internal validity and high reliability (50), but its
sensitivity as a monitoring marker has not been confirmed.

Quantitative Muscle Strength Assessment
(QMA)
Manual muscle testing (MMT) is commonly used to describe
muscle weakness in neuromuscular conditions even though
it is highly evaluator-dependent (66). A number of more
objective techniques are available to evaluate muscle strength
quantitatively in the four limbs (67). Grip strength measured
by a handheld dynamometer is one of the simplest and most
reproducible QMA parameters. Significant changes in grip
strength have been observed in a 3-year longitudinal study of

SBMA (19), but progressive changes have not been captured over
a 1-year follow-up (44). QMA of maximal voluntary isometric
muscle strength has been repeatedly proposed as an outcome
measure for clinical trials (46, 47, 52, 54), but its efficacy as a
biomarker is limited by considerable inter-centers variability.

Videofluoroscopy (VF)
Videofluoroscopy (VF) is routinely used to evaluate dysphagia
in a range of neurological conditions. In SBMA, VF can reliably
detect the impairment of the oral phase of deglutition confirming
large amount of oral barium residue (56). VF has been previously
used in clinical trials (51, 55, 68), but the lack of standardization
makes it less suitable for robust multicenter studies.

Fiber Endoscopic Evaluation of Swallowing
Fiber endoscopic evaluation of swallowing has also been assessed
as a candidate biomarker of bulbar impairment, but the
diagnostic and prognostic value of the technique is yet to be
validated (21).

Tongue Pressure
Tongue pressure measurements using an electronic device has
been proposed as a biomarker of dysphagia in SBMA, and has
been shown to be a low-cost and reliable way of detecting
tongue weakness early in the course of the disease (54). An
important limitation is that it is susceptible to a ceiling effect
in subjects with severe bulbar impairment. Nevertheless, it has
been used successfully in a trial of head-lift exercises as a possible
rehabilitation strategy in SBMA-associated dysphagia (55).

Electrophysiology
Standard electrophysiology measures are routinely used in
the diagnostic work-up of SBMA, but they exhibit limited
sensitivity to longitudinal changes (28). This is somewhat
unexpected given the correlation between CAG repeat numbers
and electrophysiological parameters (29). Quantitative Motor
Unit Number Estimation (MUNE) techniques have emerged as
a promising way of quantifying motor neuron loss in a number
of motor neuron diseases (69, 70). Significant MUNE reductions
have been shown in SBMA patients both in cross-sectional and
longitudinal study designs, making it one of the most promising
candidate outcome measures (58, 59). MUNIX is a more recent,
non-invasive method of quantifying motor neuron loss, that has
already been utilized in ALS (71), peripheral neuropathies (72),
and more recently in adult SMA patients (16). The motor unit
size index (MUSIX) (CMAP amplitude/MUNIX) is increasingly
accepted as a measure of compensatory collateral sprouting. This
technique has not been tested in SBMA yet, but is likely be a
promising tool in the evaluation of longitudinal motor neurons
loss.

Quantitative Muscle MRI
While quantitative muscle MRI would be an obvious candidate
marker of disease progression in SBMA, there is a surprising
scarcity of such studies. Existing studies have shown that muscle
imaging can effectively detect muscle pathology in distal leg
muscles which is less obvious on clinical assessment (60).
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TABLE 1 | Research studies considering motor and bulbar skills-related outcome measures.

Primary

outcome

measure

Reference

number

Authors Other outcome measures in the

study

Type of study Number of

patients

Duration of

follow-up

MOTOR SKILLS-RELATED OUTCOME MEASURES

6MWT (44) Takeuci et al. Modified Norris score, ALSFRS-R, grip

strength

Observational, longitudinal study 35 at baseline,

24 at follow-up

12 months

(45) Querin et al. MMT, ALSFRS-R, FVC Pilot, unblinded pharmacological trial

(Clenbuterol)

20 12 months

AMAT (46) Harris-Love et al. QMA, 2MWT, ADL assessment,

SF-36v2

Observational, cross-sectional study 55 /

(47) Shrader et al. QMA, STS test, Timed up and Go test,

Balance tests, SF-36v2, Beck

depression scale, serum CK, IGF-1 and

testosterone

Randomized, evaluator-blinded

pharmacological trial (Physical

exercise)

50 12 weeks

SBMAFRS (48) Hashizume et al. ALSFRS-R, Modified Norris Score Observational, longitudinal study 80 12 months

(49) Querin et al. MMT, 6MWT, ALSFRS-R Observational, longitudinal study 60 8 weeks

1234 scale (50) Lu et al. ALSFRS-R Observational, longitudinal study 81 32 months

ALSFRS-R (51) Banno et al. VF, MMT, FVC, serum CK, AST, ALT,

Beck depression scale, 1C2-positive

cells in scrotal skin biopsies

Randomized, double-blinded

pharmacological trial (Leuprorelin)

50 48+96 weeks

QMA (52) Fernández-

Rhodes

et al.

AMAT, MMT, 2MWT, SF-36v2, IIEF,

MUNE, CMAP VF, FVC, serum CK and

testosterone

Randomized, double-blinded

pharmacological trial (Dutasteride)

50 24 months

Hand grip

strength

(53) Hijikata et al. Modified QMG score, ALSFRS-R,

SBMAFRS, 15-foot timed-walk test,

rise-from-bed test, swallowing

questionnaires, FVC, Multidimensional

Fatigue Inventory, urinary 8-OHdG

Randomized, double-blinded

pharmacological trial (Creatine

Monohydrate)

45 8 weeks

BULBAR FUNCTION-RELATED OUTCOME MEASURES

Tongue

pressure

(54) Mano et al. Modified Norris score, ALSFRS-R,

QMA, grip strength, MMT, modified

QMG score, VF, swallowing

questionnaires, timed walk test

Observational, cross-sectional study

(validity of tongue pressure as marker

of dysphagia)

47 /

(55) Mano et al. VF, modified QMG score, ALSFRS-R,

serum CK and testosterone

Non-randomized, interventional study

(head lift exercises)

6 12 weeks

VF (56) Hashizume et al. ALSFRS-R, SBMAFRS, swallowing

questionnaires, Limbs Norris score,

Bulbar Norris score

Observational, longitudinal study 111 30 days

(57) Katsuno et al. ALSFRS-R, 6MWT, modified QMG

score, 1C2-positive cells in scrotal skin

biopsies, serum CK and testosterone,

ALSAQ-5 score

Randomized, double-blinded

pharmacological trial (Leuprorelin)

204 12 months

FEES (21) Warnecke et al. MMT, modified Rankin scale Observational, cross-sectional study 10 /

INSTRUMENTAL OUTCOME MEASURES

MUNE (58) Suzuki et al. Limbs Norris score, Bulbar Norris

score, ALSFRS-R, grip strength

Observational, longitudinal study 52 12 months

(59) Lehky et al. CMAP, SMUP Observational, cross-sectional study 54 /

CMAP and

SNAPs

(29) Suzuki et al. Limbs Norris score, Bulbar Norris

score, ALSFRS-R, spinal cord tissue

specimens

Observational, cross-sectional study 106 /

Muscle MRI (60) Hamano et al. / Observational, cross-sectional study 3 /

ALSFRS-R, Amyotrophic Lateral Sclerosis functional rating scale-revised; MMT, manual muscle testing; FVC, forced vital capacity; QMA, quantitative muscle assessment, 2 or 6MWT,

2 or 6 minutes-walk-test; ADL, activity of daily living; DXA, Dual-energy X-ray absorptiometry, urinary 8-OHdG, 8-hydroxydeoxyguanosine; VF, videofluoroscopy; AMAT, adult myopathy

assessment tool; IIEF, International Index of erectile function; MUNE, motor unit number estimate; CMAP, compound motor action potential; CK, creatine-kinase; QMC score, quantitative

myasthenia gravis score; SMUP, single motor unit potential.
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Spinal Cord Imaging
Spinal cord imaging has seen unprecedented advances in recent
years and has been applied successfully to other motor neuron
diseases such as ALS (73–75), and SMA (15) to characterize gray
(76) and white matter pathology (77). There is an ongoing study
to test its efficacy in SBMA patients (NCT02885870).

Quantitative Brain Imaging
Quantitative brain imaging studies demonstrated white
matter alterations in the corticospinal tracts (CST), limbic
system (78, 79), brainstem and cerebellum (80). Voxel-based
morphometry (VBM) of SBMA cohorts revealed gray matter
atrophy in the frontal lobes and in the brainstem (78–81).
Frontal hypometabolism has been detected by positron-
emission-tomography (PET) (82). These studies confirm the
multisystem nature of SBMA-associated pathology, and that
neurodegeneration is not limited to LMNs but involve the CSTs
and widespread cerebral regions. Despite imaging evidence of
extra-motor involvement, neuropsychological studies have only
detected subtle frontal dysfunction in small study populations
(83, 84) which were not confirmed in larger cohorts (85, 86).

BIOMARKERS OF MULTISYSTEM
INVOLVEMENT IN SBMA

Increased Serum CK Levels
Increased serum CK levels have been reported by almost every
SBMA study and support the hypothesis of a primary myopathy
in SBMA (87, 88). Elevated serum CK levels can be detected prior

to symptom onset (89) and may be most marked around disease
manifestation (18, 19). Nevertheless, no correlation was found
between serum CK levels and age of onset, CAG repeat numbers,
disease duration or rate of progression (6, 19). As a result, CK
levels are thought to be useful as part of the diagnostic workup,
but of limited use in monitoring disease progression.

Transaminases Levels
Transaminases levels have also consistently been shown to be
raised in SBMA including the pre-symptomatic phase of the
disease (89), but they do not correlate with the progression of
the neurological symptoms. The clinical significance of raised
transaminases in SBMA is a topic of debate and its prognostic
value remains to be established (33).

Serum Creatinine Level
Serum creatinine level has also been proposed as a potential
biomarker (90) despite its lack of specificity to SBMA. It tends
to be reduced in the pre-symptomatic and symptomatic phases
of the disease (91) and correlate well with parameters of motor
impairment (6, 19, 91).

Proxies of Metabolic Syndrome and Insulin
Resistance
Proxies of metabolic syndrome and insulin resistance are
considered closely associated with primary molecular disease
mechanisms. The homeostasis model assessment of insulin
resistance (HOMA-IR) index correlated significantly with motor
function parameters in one study (34), but this relationship has

FIGURE 1 | Milestones of biomarker development in SBMA. (A) Better knowledge of SBMA through animal models and observational studies allows the identification

of possible biomarkers of disease status and of its progression. (B) Different steps are needed to develop and validate a biomarker in order to make it a reliable

outcome measure in clinical trials. (C) Considered the complexity of SBMA and its multi-system presentation, the development of global biomarkers, including both

motor function and biochemical parameters, is warranted with the aim of improving the efficacy of upcoming clinical trials.
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not been confirmed by others (32). Hormones levels and ASI

(Androgen Sensitivity Index) have also been repeatedly proposed
as markers of SBMA. Free testosterone levels correlate with
muscle strength in one study (2) but it does not correlate with
CAG repeat numbers or disease progression according to others
(57). DHEAS levels have been linked to disease duration (91).

Skin Biopsies
Skin biopsies have been performed in some clinical trials to
evaluate changes in the frequency of anti-polyQ antibody-
positive cells after treatment (57). This index may be sensitive to
changes during pharmacological treatment but the methodology
is inherently invasive and poorly harmonized across different
centers.

Adipose Tissue Quantification
A recent study proposed adipose tissue quantification using
whole-body MRI and reported significant subcutaneous fat
accumulation in SBMA patients. This correlated both with CAG
repeat lengths, disease duration and progression rates (32). These
data suggest that adipose tissueMRImay be an additional marker
of multisystem involvement in SBMA.

DISCUSSION AND FUTURE
PERSPECTIVES

Interest in SBMA biomarkers has grown steadily in recent years,
fuelled both by accruing knowledge about pathogenesis and novel
therapeutic strategies (14, 42). SBMA is now widely recognized
as a multisystem syndrome (3). A multitude of studies focus on
multi-organ involvement, and the systemic phenotype is now
considered just as relevant as the neurological manifestations.
It is increasingly recognized that non-neurological features of
the disease have an equally important impact on the patients’
quality of life (3, 31–34, 87, 88, 91, 92). Until now, clinical
trials on SBMA focused almost exclusively on the treatment of
motor symptoms (14, 45, 47, 51–53, 55, 57, 68, 92, 93), but a
shift to targeted molecular therapies (94) and focus on systemic
processes are likely to be witnessed in the near future. From a
clinical trial perspective, ideal biomarkers should undergo robust
validation, sensitivity and specificity profiling, and sampling and
measurement harmonization across different centers. Crucially,
candidate markers should be able to detect the subtle changes
expected after the administration of a specific treatment (95).

Given the particularly slow progression rates observed in SBMA,
the definition of an effective outcome measures is challenging.
The integration of neurological, metabolic, and endocrine
indicators seems essential into composite biomarker panels in
addition to functional scales. Serum creatinine levels appear
to correlate strongly with motor impairment and HOMA-IR
index with disease duration (34). The convincing validation of
these parameters and their use as effective outcome measures in
clinical trials will require robust multicenter study designs (96)
(Figure 1).

Furthermore, the comparison of the specificity profile of
candidate biomarkers seems essential to define their roles
in clinical applications. The establishment of national and
international SBMA registers is a clear priority which will be
an invaluable resource for future SBMA research (42). As in
other neurodegenerative conditions (95, 96), the integration
of clinical, molecular, imaging and neurophysiological markers
may be required for assessing the efficacy of disease-modifying
interventions (95, 96). To conclude, we underline the relevance of
considering both motor (muscle force evaluation, questionnaire
based scales, and performed tasks) and biochemical parameters
as possible outcome measures for a multi-system and complex
pathology as SBMA. Beyond their monitoring roles, validated
biomarkers will also aid patient stratification upon entry into
pharmacological trials (97).
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Amyotrophic lateral sclerosis (ALS) is now universally recognized as a

complex multisystem disorder with considerable extra-motor involvement. The

neuropsychological manifestations of frontotemporal, parietal, and basal ganglia

involvement in ALS have important implications for compliance with assistive devices,

survival, participation in clinical trials, caregiver burden, and the management of individual

care needs. Recent advances in neuroimaging have been instrumental in characterizing

the biological substrate of heterogeneous cognitive and behavioral deficits in ALS. In

this review we discuss the clinical and radiological aspects of cognitive and behavioral

impairment in ALS focusing on the recognition, assessment, and monitoring of these

symptoms.

Keywords: amyotrophic lateral sclerosis, extra-motor involvement, cognition, behavior, neuropsychological

deficits, neuroimaging

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease (MND), a
progressive neurodegenerative condition defined by concomitant lower and upper motor neuron
degeneration (1). Motor symptoms include muscle weakness, fasciculations, cramps, as well as
spasticity and brisk reflexes that accrue to considerable limb and bulbar disability over time, and
eventually respiratory failure (1). The identification of TAR DNA-binding protein 43 (TDP-43)
positive ubiquitinated cytoplasmic inclusions in almost all patients with ALS and more than half
of patients with frontotemporal dementia (FTD) has placed ALS on the so-called “ALS-FTD
continuum,” highlighting the considerable clinical, pathophysiological, and neuroimaging overlap
between the two neurodegenerative conditions (2).

Although mentioned in early descriptions of ALS (3, 4), cognitive and behavioral deficits and
frank dementia were previously considered atypical of ALS. It is not until the end of the twentieth
century that clinical and research interest shifted to the extra-motor features of ALS and it has been
gradually recognized as a genuine multisystem disease (5–8).

Neuropsychological deficits in ALS range from mild impairment to full-blown FTD. Up to 65%
of ALS patients exhibit some cognitive or behavioral impairment (9–12) and 6–15% of sporadic
ALS patients meet diagnostic criteria for FTD (10–13). While hexanucleotide repeat expansions
in C9ORF72 are often associated with ALS-FTD (14), extra-motor symptoms are not unique to
this mutation and extra-motor neuroimaging findings can also be readily identified in a significant
proportion of C9 negative patients (15, 16). The early recognition of extra-motor involvement in
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ALS is crucial due to its impact on functional decline (17),
survival (18), compliance with assistive devices (19), decision-
making, and engagement in end-of-life and legal decisions (20).

COGNITIVE DYSFUNCTION

Much attention has been initially focused on executive
dysfunction (21, 22) in ALS which has been gradually
complemented by the characterization of language (23, 24),
memory (25, 26), praxis (27), and theory of mind deficits
(28) (Table 1). Population-based studies have confirmed distinct
cognitive phenotypes without executive impairment (10, 11, 29).

Executive Dysfunction
Executive dysfunction is the most commonly cited facet of
cognitive impairment in ALS. Executive function however is an
umbrella term encompassing several relatively distinct higher-
order processes, such as planning, organization, goal-directed
activity, working memory, initiation, behavioral regulation, and
inhibitory control, as well as situation-appropriate decision-
making on the basis of projected positive and negative outcomes
in novel, complex or ambiguous situations (30). In addition,
tests of verbal (i.e., phonemic and semantic/category) and
figural/design fluency are also often conceptualized as proxies of
executive performance (31).

Verbal fluency impairment has been consistently reported
in ALS (11, 22, 24, 27, 32–46). Coexisting phonemic and
semantic fluency dysfunction or phonemic fluency deficits
alone are often linked to executive dysfunction, while isolated
semantic fluency deficits are associated with impaired semantic
memory processing. Semantic (24, 34, 40, 44, 46, 47) and figural
(34, 46) fluency are not typically impaired in ALS. A verbal
fluency index has been proposed and is now widely utilized to
account for patients’ motor disability (32, 48). Other executive
processes are also affected in ALS, such as concept formation
and mental flexibility (24, 27, 33, 35, 36, 41, 49–53) which
is typically examined by the Wisconsin Card Sorting Test or
the Dellis-Kaplan Executive Function System Card Sorting Test
(31). However, not all neuropsychology studies corroborate
these findings (34, 38, 39, 45, 46, 54–56). Several studies have
specifically evaluated mental set shifting ability in ALS using
the Trail Making Test; most of them identifying considerable
dysfunction (37, 42, 47, 55, 57), while others have not captured
such deficits (58, 59). Response inhibition and attentional control
are typically examined by the Stroop test, and are often impaired
in ALS (11, 27, 35–37, 51, 53, 57, 60), but unaffected cohorts
have also been reported (39, 40, 44, 49). ALS patients also often
exhibit difficulties in maintaining, manipulating and retrieving
information relying on working memory (27, 32, 34, 37, 43,
46, 61), but preserved working memory has also been observed
(39, 44, 51, 54, 55, 58, 62). Subtle deficits in reasoning and
coordinating rules have been found using ecologically valid
measures of executive functions (44, 63).

Memory Deficits
Following inconsistent initial reports, memory dysfunction in
ALS has received increasing attention recently (7, 64). While

autobiographic memory seems to be preserved in ALS (65),
semantic memory is often affected (66). Episodic memory
is the most commonly evaluated memory domain in ALS,
typically tested by list-learning tests, associate-learning tests,
prose memory, as well as visual memory tests (7). Several studies
have reported mild to moderate episodic memory impairments
which are often interpreted as the corollary of underlying
executive deficits (27, 35, 37, 39, 41, 67–69). Memory impairment
in ALS is rarely identified in isolation (11), but using data-driven
taxonomy approaches a subgroup of patients may show non-
executive memory dysfunction (29). Several studies have found
impaired encoding (37, 60, 68), retrieval (12, 17, 37, 60, 70)
consolidation and recognition (26, 60), although recognition
deficits in ALS are not universally recognized (11, 37, 41).
Visual memory dysfunction has also been noted in ALS (12),
although visual recall is typically less affected than delayed
verbal recall (7). Neuroimaging studies have contributed to
the characterization of ALS-associated memory impairment
highlighting mesial temporal lobe involvement irrespective of
frontal lobe pathology (64).

Language Deficits
Language deficits in ALS have traditionally attracted less
attention compared to other cognitive domains and have been
mostly appraised in association with ALS-FTD (7, 23, 71, 72).
However, language dysfunction is increasingly recognized as
a core feature of ALS and has been consistently detected in
patients without executive dysfunction (24, 29, 73). Patients
with ALS show impaired syntactic processing (74), deficits in
verb naming and action verb processing (75, 76). Selective
impairment in action knowledge (77) has been directly associated
with motor cortex degeneration (78) suggesting a link between
action execution and action conceptualization (79). Grammatical
errors such as incomplete utterances (73, 74) and omission of
determiners (73) have been reported in ALS and seem to be
dissociable from the patients’ motor and executive deficits (73).
Phonemic and semantic paraphasias have also been reported (74,
80). Patients with ALS may find narrative discourse particularly
challenging due to difficulties to establish (81) and adhere to the
main topic of conversation (73, 81). Frequent pauses are another
key characteristic of narrative speech in ALS in both demented
and non-demented ALS cohorts (82). Syntactic comprehension
deficits have also been detected in up to 72% of patients with ALS
(83, 84).

Visuo-Perceptive and Visuo-Constructive
Deficits
Visuo-perceptive and visuo-constructive functions are seldom
specifically examined in ALS. Existing studies tend to focus on
visuospatial memory measures and often fail to reach definite
conclusions (37, 41, 46, 47, 85). Based on large meta-analyses,
these domains are not significantly affected in ALS (7). The
relative absence of visuo-perceptual deficits is further supported
by the lack of reports on Balint’s syndrome in ALS and is
consistent with limited occipital involvement on neuroimaging
(86) and pathology (87). While praxis deficits are also rarely
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TABLE 1 | Most characteristic neuropsychological deficits in ALS categorised per cognitive domain.

Main cognitive domains Target processes/main deficits Representative studies (First author, year, sample size ALS/Control)

Executive functions Verbal fluency Ludolph, 1992 (21/12); Kew, 1993 (16/16); Abrahams, 1995 (12/6); Massman, 1996

(146/–); Abrahams, 1996 (12/6); Abrahams, 1997 (52/28); Frank, 1997 (74/56); Rakowicz,

1998 (18/24); Abrahams, 2000 (21/25); Lomen- Hanagasi, 2002 (20/13); Hoerth, 2003

(44/–); Abrahams, 2004 (28/18); Abrahams, 2005 (20/18); Pinkhardt, 2008 (20/20); Wicks,

2009 (41/35); Witgert, 2010 (225/–); Stukovnik, 2010 (22/21); Phukan, 2012 (160/110);

Taylor, 2013 (51/35)

Concept formation and mental flexibility Abrahams, 1996 (12/6); Massman, 1996 (146/-); Abrahams, 1997 (52/28); Frank, 1997

(74/56); Evdokimidis, 2002 (51/28); Moretti, 2002 (14/15); Lomen-Hoerth, 2003 (44/-);

Schreiber, 2005 (52/-); Libon, 2012 (41/25); Zalonis, 2012 (48/47); Taylor, 2013 (51/35)

Mental set shifting Hartikainen, 1993 (24/26); Hanagasi, 2002 (20/13); Kilani, 2004 (18/19); Witgert, 2010

(225/–)

Response inhibition and attentional control Abrahams, 1997 (52/28); Frank, 1997 (74/56); Hanagasi, 2002 (20/13); Moretti, 2002

(14/15); Lomen-Hoerth, 2003 (44/-); Sterling, 2010 (355/-); Christidi, 2012 (22/22);

Phukan, 2012 (160/110); Zalonis, 2012 (48/47)

Working memory Abrahams, 1997 (52/28); Rakowicz, 1998 (18/24); Abrahams, 2000 (21/25); Hanagasi,

2002 (20/13); Abrahams, 2004 (28/18); Abrahams, 2005 (20/18); Lillo, 2012 (20/18)

Reasoning and coordinating rules using

ecologically valid measures

Meier, 2010 (18/18); Stukovnik, 2010 (22/21)

Memory Episodic memory encoding Hanagasi, 2002 (20/13); Mantovan, 2003 (20/20); Christidi, 2012 (22/22)

Episodic memory retrieval Hanagasi, 2002 (20/13); Ringholz, 2005 (279/129); Christidi, 2012 (22/22); Elamin, 2013

(186/120); Raaphorst, 2015 (26/21)

Episodic memory

consolidation/recognition

Machts, 2014 (40/40); Christidi, 2012 (22/22)

Visual delayed recall Ringholz, 2005 (279/129)

Semantic memory Hervieu-Begue, 2016 (15/-)

Language Verb naming and action verb processing Bak, 2001 (6/20); Grossman, 2008 (34/25); York, 2014 (36/13); Papeo, 2015 (21/14)

Grammatical errors Ash, 2015 (26/19); Tsermentseli, 2015 (26/26)

Phonemic and semantic paraphasias Roberts-South, 2012 (16/12); Tsermentseli, 2015 (26/26)

Establishing and adhering to the main

topic of conversations

Ash, 2015 (26/19); Bambini, 2016 (33/33)

Narrative speech pauses Yunusova, 2016 (85/33)

Syntactic processing/comprehension Yoshizawa, 2014 (25/–); Tsermentseli, 2015 (26/26); Kamminga, 2016 (35/23)

Praxis Constructive apraxia Abrahams, 1997 (52/28)

Orofacial apraxia Lobo, 2013 (1/–)

Speech apraxia Duffy, 2007 (7/–)

Respiratory apraxia Pinto, 2007 (1/–)

Social cognition Theory of mind Meier, 2010 (18/18); Girardi, 2011 (19/20); Burke, 2016 (59/59)

Emotional processing and ability to

recognize emotional facial expressions

Palmieri, 2010 (9/10); Girardi, 2011 (19/20); Crespi, 2014 (22/55); Savage, 2014 (29/30);

Andrews, 2017 (33/22)

Ability to describe intentions and feelings

of others

Gibbons, 2007 (16/16); Staios, 2013 (35/30); Cerami, 2014 (20/56)

Empathy Girardi, 2011 (19/20); Cerami, 2014 (20/56)

Social inferences Staios, 2013 (35/30); Savage, 2014 (29/30)

Behavior Apathy Grossman, 2007 (45/–); Chio, 2010 (70/–); Witgert, 2010 (225/–); Girardi, 2011 (19/20);

Radakovic, 2016 (83/83)

Disinhibition Grossman, 2007 (45/–); Terada, 2011 (24/–)

Pathological crying and laughing McCullagh, 1999 (18/10); Palmieri, 2009 (32/39); Olney, 2011 (35/–); Brooks, 2013 (9/–);

Floeter, 2014 (22/28); Christidi, 2018 (56/25)

ALS, amyotrophic lateral sclerosis.

reported in ALS (27), orofacial (88), speech (89), and respiratory
(90) apraxia have been sporadically reported.

Social Cognition Deficits
Social cognition refers to a diverse set of cognitive skills that
allow humans to understand themselves, interact with and

understand others and are crucial to adopt situation-appropriate,
goal-directed behaviors in everyday social interactions (91).
Despite considerable variations, deficits in theory of mind,
empathy, social perception, social behavior are now recognized
as key elements of the ALS-associated cognitive profile (7, 28,
92). It is however still unclear if these deficits are linked to
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executive dysfunction (29, 93–98) or may be related to non-
executive domains, such as episodic memory function and
visuospatial abilities (99). Patients with ALS may also exhibit
impaired emotional processing and ability to interpret emotional
facial expressions, especially with comorbid FTD (96, 100–
102). Impairments in complex facial affect recognition, affective
prosody recognition and cross-modal integration have also
been found in non-demented ALS cohorts (103). Multiple
subcomponents of theory of mind seem to be affected in ALS,
including the ability to describe the intentions and feelings of
others (95, 98, 104), to recognize and provide explanations for
social “faux pas” (63) and evaluate object preferences based
on the interpretation of eye gaze direction (96, 105). Loss of
empathy (96), impaired emotional empathy attribution (95), and
erroneous social inferences (98, 100) have also been reported in
non-demented ALS cohorts.

Behavioral Deficits
The clinical link between ALS and FTD is exemplified by
overlapping behavioral changes which are similar to those
observed in behavioral variant of FTD (106). These deficits
are typically identified through a structured clinical interview
with the caregivers or through validated questionnaires.
Perseveration, apathy and disinhibition are the most commonly
reported behavioral alterations, followed by loss of disease
insight, indifference, loss of interest, aggression, irritability, and
lability (107).

Apathy is the most commonly reported behavioral symptom
in non-demented ALS (42, 45, 96, 108, 109), which used to
be assessed by generic behavioral instruments, such as the
Frontal Systems Behavior Scale (110) and the Frontal Behavioral
Inventory (111), until the development of ALS-specific scales,
such as the Dimensional Apathy Scale (112) which appraises
initiation, executive and emotional apathy. Initiation apathy is
thought to be particularly prevalent in ALS (113). ALS patients
with apathy may require prompts to initiate or follow through
with a task, including self-care, feeding, and taking medications.
They may appear poorly motivated, aloof or uninterested.
Apathy may impact of rehabilitation, hamper gait initiation,
and curb communication efforts especially in the presence of
bulbar impairment. It can be mistaken for low mood, depression
and withdrawal by inexperienced observers. Disinhibition is
more readily identified and reported by caregivers, and can
precede (108) or follow (114) motor disability. Disinhibited
behavior can manifest in rude, offensive, flirtatious comments,
puns, “Witzelsucht” often violating social norms, personal space
and may result in careless or impulsive decisions. Purchasing
expensive items on a whim, hoarding, compulsive behavior,
overeating, and developing a preference for sweets have also been
reported (115).

Hallucinations have been reported by several groups (116–
119) and are sometimes associated with the C9orf72 genotype.
Symptomatic treatment includes the judicious use of small dose
atypical antipsychotics, if necessary.

Patients with pseudobulbar affect or pathological crying
and laughing exhibit sudden situation-inappropriate emotional
responses (120–122) which may have a negative impact on their

quality of life (123) and lead to social isolation or social stigma. It
is most commonly associated with UMN-type bulbar dysfunction
(124), but frontal abnormalities, executive dysfunction, basal
ganglia pathology and impaired cerebellar gating mechanisms
have also been linked this symptom (27, 122, 125–128).

INSIGHTS FROM NEUROIMAGING

Neuroimaging techniques provide optimal non-invasive tools
to characterize extra-motor pathology in ALS underpinning
cognitive and behavioral deficits and also permit exploratory
correlations with clinical measures (129, 130).

Structural Imaging
Voxel based morphometry (VBM) and surface-based
morphometry (SBM) are reproducible, validated and widely-
used pipelines that use high resolution 3D T1-weighted MR
images to identify focal GM alterations. Beyond the consensus
on motor cortex atrophy (131), many studies also detect
multifocal frontotemporal and parietal GM changes (132). GM
abnormalities have also been identified in subcortical structures
(133), such as the hippocampus (134–136), amygdala (137, 138),
thalamus (134, 135, 139, 140), and insula (141, 142). Reduced
GM density in occipital (139, 143–145) and cerebellar (139, 146)
regions is less commonly reported. GM alterations in extra-
motor areas have been linked to structure-specific cognitive
and behavioral deficits in ALS (147, 148). Recent studies have
highlighted extra-motor cortical changes in ALS patients without
overt cognitive impairment (134, 135, 146, 149, 150). The
anatomical patterns of extra-motor gray matter involvement in
ALS further support the notion of the ALS-FTD continuum (72).

White matter integrity in ALS is most commonly evaluated
by diffusion tensor imaging (DTI). Reduced fractional anisotropy
and increased axial and radial diffusivity in the corticospinal
tracts and corpus callosum are hallmark features of ALS (151,
152). Extra-motor white matter pathology has been consistently
detected in frontal (139, 153–160), temporal (53, 154, 161),
cingular (162), parahippocampal (25, 157, 160), insular (160),
thalamic (141, 159, 163), and cerebellar regions (86, 146, 164).
Similarly to gray matter analyses, extra-motor white matter
involvement has also been identified in ALS patients without
overt cognitive impairment (146).

Metabolic Imaging
MR spectroscopy in ALS has consistently revealed decreased
N-acetyl aspartate (NAA)/choline and NAA/creatine ratios
in motor regions (165–167), but whole brain spectroscopy
also detected extra-motor NAA reductions in frontal, parietal,
thalamic and occipital areas (168, 169).

Most positron emission tomography (PET) studies in ALS
use 18F-FDG PET, but TSPO, GABAA (11C-flumazenil) and
5-HT1A receptor (11C-WAY100635) radioligands have also
been utilized (170). Hypometabolism in motor regions is a
characteristic FDG-PET finding in ALS (171–174), but extra-
motor changes in dorsolateral prefrontal, orbitofrontal, anterior
frontal, anterior temporal, fusiform, and occipital regions have
also been reported (171–174). Frontotemporal hypometabolism
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has been linked to cognitive performance (22, 39, 172), is
thought to precede atrophy (175) and has been linked to shorter
survival (176). There is also evidence of hypermetabolism in
the hippocampus, amygdala midbrain, pons and cerebellum
(173, 174, 177). PET imaging has identified microglial activation
in frontotemporal, thalamic, midbrain, and pontine regions
suggestive of extra-motor inflammation (178–181). Widespread
reduction of 11C-Flumazenil binding to GABAA in sporadic
ALS has been interpreted as inhibitory dysfunction (182) and
is regarded as a one of cornerstones of ALS pathogenesis (183).
Reduced serotonin receptor binding has also been reported in
ALS using the 11C-WAY100635 radio-ligand (184).

Functional Imaging
Resting state fMRI enables the assessment of functional
connectivity between different brain regions by evaluating
synchronized neuronal activity at rest. Reduced (185–189) and
increased (183, 190) functional connectivity have both been
reported in sensorimotor networks of ALS patients which may
be explained by the different sub-regions evaluated (191–193)
and also by the inclusion of patients in different disease-stages.
Similarly, both reduced and increased functional connectivity
alterations have been reported in extra-motor areas which
mediate cognitive and behavioral functions (187, 188, 193, 194).
The functional connectivity of the default mode network (DMN)
has been reported to be both decreased (187, 189, 193) and
increased (193, 195). Increased functional connectivity has been
detected in the DMN using graph theory-based analyses (196).
Increased (193) and decreased (186, 189, 193) fronto-parietal

network integrity has been both reported. Reduced “executive
control network” (middle frontal cortex) and “salience network”
(medial prefrontal cortex, insula) connectivity has been described
in ALS cohorts without dementia (189). Increased connectivity
in ALS has either been interpreted as evidence of attempted
compensation for structural degeneration (197, 198) or proof of
inhibitory dysfunction (183, 190, 199).

Task-based fMRI studies in ALS have consistently revealed
the recruitment of pre- and supplementary motor regions
when executing motor tasks. Additional activation has also
been observed in areas associated with motor learning areas,
such as the basal ganglia and cerebellum (200, 201). Despite
difference in study protocols, an activation shift to premotor
(202, 203), temporal and parietal regions (203–205) has been
often noted. Cognitive paradigms have been particularly helpful
in capturing frontotemporal network alterations. Impaired
verbal fluency was linked to reduced frontotemporal, parietal,
and cingulate activation in non-demented ALS patients (46).
Impaired frontal inhibitory control was confirmed by a number
of fMRI paradigms, such as Stroop, negative priming, antisaccade
tasks, go/no-go tasks etc. Increased activation during the
Stroop paradigm and decreased activation in negative priming
conditions has been reported mostly in left hemispheric regions
(206). Increased activation in supplementary and frontal eye
fields and reduced activation in dorsolateral prefrontal cortex
have been noted in antisaccade tasks (207). Furthermore, in
go/no-go paradigms, ALS patients show increased inhibition-
related activation in frontal and basal ganglia regions and
increased execution-related activity in contralateral sensorimotor

TABLE 2 | ALS-specific instruments to screen for cognitive and behavioral changes at baseline and during the course of the disease.

Screening instrument Duration of

administration

Cognitive and behavioral domains

examined

Parallel forms for longitudinal

assessment

Validation in non-English

speaking populations

Edinburgh Cognitive and

Behavioral ALS Screen

(ECAS)

15–20min Executive functions, Social cognition,

Language,

Visuoconstruction,

Memory

Behavioral changes (including psychotic

symptoms)

Yes American-English; Belgium;

Chinese; Croatian; Czech;

Dutch; French; German;

Swiss-German; Greek; Hebrew;

Italian; Japanese; Norwegian;

Polish; Portuguese; Russian;

Slovak; Slovenian; Spanish;

Swedish; Welsh

ALS Cognitive and

Behavioral Screen

(ALS-CBS)

<10min Executive functions including attention,

concentration, mental tracking and

monitoring, verbal fluency

Behavioral changes

Yes Brazilian; Spanish; Greek

ALS Brief Cognitive

Assessment (ALS-BCA)

5min Executive functions (working memory,

set-shifting), Frontally-mediated language

function, Delayed verbal recall, Behavioral

changes

N/A N/A

Beaumont Behavioral

Inventory (BBI)

5–10min Frontal Behavioral symptoms; Executive

functions; Language; Psychotic symptoms

N/A N/A

Motor Neuron Disease

Behavioral Instrument

(MiND-B)

<10min Behavioral symptoms N/A N/A

ALS Frontotemporal

Dementia Questionnaire

(ALS-FTD-Q)

5–10min Behavioral symptoms (it also includes 3

items for memory, concentration and

orientation in time)

N/A N/A
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regions (208). Few studies have specifically examined the
functional correlates of social cognition to date. Patients with
ALS tend to show increased activation compared to healthy
participants in the right supramarginal, anterior cingulate
and bilateral dorsolateral prefrontal cortex in response to
socio-emotional stimuli (56, 209). The combined use of
motor and memory tasks on fMRI enables the longitudinal
characterization of divergent motor and extra-motor functional
changes. Increased motor activation was found in ALS compared
to controls at baseline, which has decreased on the follow-up
assessment, suggestive of failing compensation. Contrary to the
functional motor changes, hippocampal activation increased on
follow-up when novel stimuli was presented (210).

RELEVANCE TO CLINICAL CARE

The detection (48), expert evaluation (11), categorization (211),
and follow-up (17) of extra-motor deficits in ALS is crucially
important for individualized patient care. While screening tests
(Table 2) are useful for the detection of gross deficits, expert
review by neuropsychologists is indicated for accurate patient
classification. Adherence to treatment, compliance with assistive
devices, participation in clinical trials, making informed financial
and end-of-life decisions, choices in participating in non-licensed
treatments are just some of the aspects of a patient journey which
may be significantly affected by cognitive or behavioral deficits
(19, 212). Cognitive impairment in ALS is widely regarded as
a negative prognostic indicator and linked to reduced survival
(17, 18, 213). Neuropsychological deficits in ALS are thought
to be associated with increased caregiver burden (214, 215) and
reduced quality of life (216). The recognition of the far-reaching
effects of neuropsychological deficits on nearly all aspects of
ALS care, caregiver support, resource allocation, and prognosis,
led to the inclusion of specialist neuropsychologists as core
members of ALS multidisciplinary teams worldwide (217, 218).
The careful evaluation of motor deficits which are not directly
linked to the corticospinal axis and are not reflected in the
ALSFRS-R score, such as extra-pyramidal deficits are also crucial
(219). Extra-pyramidal deficits may contribute to falls and gait
impairment and are increasingly investigated in neuroimaging
studies (220, 221). These symptoms may present early in the
course of the disease, and contribute the clinical heterogeneity
of the condition (220, 222). Postural instability and rigidity may
be associated with other extra-motor deficits, and potentially
linked to poor survival (205, 223). There is some controversy
about the chronology of motor and extra-motor involvement
in ALS. Extra-motor manifestations, such as dementia (224,
225), psychiatric features (226), and extra-pyramidal symptoms

(227) have been reported to precede motor symptoms in some

cases, and there is also compelling evidence of early extra-motor
pathology in cognitively normal ALS patients (134, 135, 146).

RESEARCH OPPORTUNITIES AND
FUTURE DIRECTIONS

Even though the high incidence of cognitive impairment and
its impact on individualized patient care are now universally
recognized, the neuropsychological aspects of ALS are seldom
considered for patient stratification in clinical trials (228). Several
ALS-specific cognitive screening tests have now been validated,
but generic tests, such as MOCA and MMSE are still in use
in some clinics. While neuropsychological scores are often
adjusted for motor-disability and depression, medication-effects,
fatigue, and hypoxia are seldom considered when interpreting
cognitive performance on various instruments. Despite sporadic
reports, the full spectrum of psychiatric manifestations and the
precise incidence of psychosis remain to be established in ALS
(119, 229, 230). Certain cognitive domains, such as memory
and praxis have not been exhaustively characterized in ALS to
date. Relatively little is known of the neuropsychological profile
of ALS-causing mutation carriers before they develop motor
symptoms (231–233). The gaps in our current understanding of
extra-motor pathology in ALS shape future study designs. Novel
technologies such as online assessments, internet-based data
collection,mobile phone apps, andwearable devices are emerging
research resources. Irrespective of specific neuropsychological
instruments, the early detection, and careful of monitoring of
cognitive deficits in ALS is pivotal for optimized patient and
caregiver support and tailoring precision management strategies
to individual patient needs.
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Schriesheim, Germany, 3Department of Hematology, Internal Medicine III, University Hospital Regensburg, Regensburg,

Germany, 4 Stanford Neuroscience Health Center, Palo Alto, CA, United States

Objective: To evaluate safety, tolerability and feasibility of long-term treatment with

Granulocyte-colony stimulating factor (G-CSF), a well-known hematopoietic stem cell

factor, guided by assessment of mobilized bonemarrow derived stem cells and cytokines

in the serum of patients with amyotrophic lateral sclerosis (ALS) treated on a named

patient basis.

Methods: 36 ALS patients were treated with subcutaneous injections of G-CSF on

a named patient basis and in an outpatient setting. Drug was dosed by individual

application schemes (mean 464 Mio IU/month, range 90-2160 Mio IU/month) over a

median of 13.7 months (range from 2.7 to 73.8 months). Safety, tolerability, survival

and change in ALSFRS-R were observed. Hematopoietic stem cells were monitored by

flow cytometry analysis of circulating CD34+ and CD34+CD38− cells, and peripheral

cytokines were assessed by electrochemoluminescence throughout the intervention

period. Analysis of immunological and hematological markers was conducted.

Results: Long term and individually adapted treatment with G-CSF was well tolerated

and safe. G-CSF led to a significant mobilization of hematopoietic stem cells into the

peripheral blood. Higher mobilization capacity was associated with prolonged survival.

Initial levels of serum cytokines, such as MDC, TNF-beta, IL-7, IL-16, and Tie-2 were

significantly associated with survival. Continued application of G-CSF led to persistent

alterations in serum cytokines and ongoing measurements revealed the multifaceted

effects of G-CSF.

Conclusions: G-CSF treatment is feasible and safe for ALS patients. It may exert its

beneficial effects through neuroprotective and -regenerative activities, mobilization of

hematopoietic stem cells and regulation of pro- and anti-inflammatory cytokines as well

as angiogenic factors. These cytokinesmay serve as prognostic markers whenmeasured

at the time of diagnosis. Hematopoietic stem cell numbers and cytokine levels are altered

by ongoing G-CSF application and may potentially serve as treatment biomarkers for

early monitoring of G-CSF treatment efficacy in ALS in future clinical trials.

Keywords: amyotrophic lateral sclerosis, granulocyte-colony stimulating factor, cytokines, hematopoietic stem

and progenitor cells, HSPC, treatment
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a life threatening
neurodegenerative disorder characterized by premature loss of
upper and lower motoneurons in the adult brain and spinal cord
(1). The life time risk of ALS is below one in 400 individuals
(2), the incidence is 2–3 per 100,000 in Europe (3). The unmet
medical need in ALS patients is underlined by a median survival
of 29.8 months from symptom onset, and of 15.8 months from
diagnosis (4). Only modest treatment effects have been observed
by riluzole (5) and edaravone (6).

In view of the great heterogeneity of disease etiology,
neuronal damage likely results from many different pathologic
changes, including neuroinflammation (3). Neurodegenerative
processes with altered homeostasis, protein accumulation and
cell death generates neuroinflammation, and central nervous
system (CNS)-resident immune cells such as astrocytes and
microglia trigger neuroinflammation and neurodegeneration (7).
Inflammation may arise reactive to ALS-related CNS alterations,
but also play an initial role and trigger both onset of disease and
further accelerate progression of ALS (3). A complex, cytokine-
mediated crosstalk between CNS and systemic immune cells
regulates immune responses to either pro- or anti-inflammatory
states, which evolve over time (7).

Granulocyte-colony stimulating factor (G-CSF) is a 20-kDa
glycoprotein and a well characterized growth factor that plays
a key role in production, mobilization, and differentiation of
hematopoietic stem cells (8, 9). It is a widely used compound
for treatment of neutropenia and for mobilization of CD34+

hematopoietic stem cells prior to bone marrow transplantation.
G-CSF enhances immunocompetence and has systemic anti-
inflammatory effects (10). G-CSF is safe and well tolerated; most
common side effects aremoderate bone pain andmusculoskeletal
pain in 20–30% of patients, rarely splenomegaly and allergic
reactions (11). Aside from hematopoietic functions, G-CSF
acts as a neuronal growth factor in the CNS and possesses
neuroprotective and -regenerative properties (12, 13). G-CSF
passes the intact blood brain barrier, and its receptor is widely
expressed within the CNS (12). G-CSF is thought to be
neuroprotective through anti-apoptotic effects (12, 14), it induces
neural differentiation, supports neurogenesis, contributes to re-
endothelialization and arteriogenesis (12, 15). Systemic G-CSF
induced hematopoietic stem cells may contribute on a direct
cellular level in neurodegeneration by migration to the CNS
(16, 17), where they may offer trophic support and modulate
the local CNS immune system (17, 18). Observing G-CSF
induced systemic hematopoietic stem cells may also shed light
upon direct G-CSF effects on neural cells and stem cells as
a surrogate system. Furthermore, G-CSF modulates monocyte
function and attenuates the neuroinflammatory cascade (13).
An interesting bone marrow-brain connection has been shown
as G-CSF induced bone marrow derived cells migrate to
CNS and express microglial phenotype in a mouse model of
cranial irradiation. This was associated with a better functional
outcome and suggested to facilitate neuroprotection by direct
effects on resident CNS cells as well as modulation of cellular
microenvironment in neurovascular niches (15). Angiogenic

factors may promote neurogenesis through direct effects on
neuronal cells (19) and indirectly by angiogenic support of
the highly vascularized neurogenic zones. G-CSF improved
motor function and survival in mouse models of ALS (20–
22). Small trials with G-CSF treatment in ALS patients
demonstrated excellent tolerability and safety (23–25), with
modulation of immune parameters (26), and possible minor
benefits detected by neuroimaging (27). In summary, G-CSF
exerts multiple physiological effects within the CNS and may
be a potent modulator of different functions relevant to ALS
pathophysiology (13). Importantly, from in vitro, mouse model
and human exploratory evidence the mode of action most
relevant for potential treatment effects cannot with certainty be
concluded.

Due to the paucity of available treatment options we provided
individual, off-label G-CSF treatment to ALS patients. G-CSF,
considering its multimodal systemic and CNS effects, may be
a promising treatment option in view of the etiopathological
and clinical heterogeneity of ALS. Biomarkers are measurable
indicators of disease and/or intervention and may be useful
in monitoring long-term degenerative or reparative processes
within the CNS. In view of the above-discussed complexity of
ALS, it seems unlikely that a single biomarker can sufficiently
reflect treatment effects on disease progression. We therefore
used a panel of pro- and anti-inflammatory blood parameters,
angiogenic factors, as well as hematopoietic stem cell markers.
Monitoring pro-differentiation and -mobilization effects on
hematopoietic stem cells may serve as a proxy for G-CSF activity
on neural stem cells in individual patients and/or reflect direct
and indirect beneficial effects of mobilized hematopoietic stem
cells. Observing a panel of peripheral cytokinesmay reveal system
wide immune and inflammatory status relevant for peripheral-
CNS crosstalk.

G-CSF is known to be a safe stem-cell mobilizing agent. We
investigated whether the number of mobilized hematopoietic
stem cells is different in G-CSF treated ALS patients of longer
versus shorter survival. Secondly, we were interested in whether
baseline cytokine levels are associated with survival of G-CSF
treated ALS patients. Lastly, we sought to explore hematopoietic
stem cells and cytokine level alterations during G-CSF treatment.

METHODS

Patients, Procedures and Ethics
Treatment with G-CSF was offered to 36 patients seen at
the University of Regensburg with definite or probable ALS
according to the revised El Escorial criteria (28). As this was not
a prospective clinical trial, the use of formal exclusion criteria
was not considered appropriate. However, neither patients with a
current or past history of neurologic disease other than ALS, nor
patients participating in any interventional study were offered
this treatment option. Individual treatment of ALS patients
and retrospective evaluation was done after written informed
consent. The ethics committee of the University of Regensburg
approved a retrospective analysis (ethics approval: 15-101-0106
and 14-101-0011). The principles of the Declaration of Helsinki
(World Medical Association, revised version 2013) were strictly
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adhered to. Survival was defined as the time between diagnosis
and death from confirmed ALS-related complications, including
suicide.

ALS patients were treated with subcutaneous injections of
recombinant human G-CSF (Filgrastim) on an outpatient basis.
Dose and application modes were adapted individually upon
initiation and over time (Figure 1; Table S1). Adaption was
made with the intent to maximize patient wellbeing and safety
in the presence of any emerging safety signals, and with the
aim of increasing efficacy as monitored by levels of mobilized
hematopoietic stem cells, a potential individual marker of
biological activity of G-CSF. This resulted in heterogeneous
treatment schemes. The intervention and evaluation was initiated
in January 2010 and is still ongoing. The data were analyzed up to
March 2017. The treatment was provided by the hospital and not
funded by a pharmacological company or other external source.
No external or internal funding sources were involved in patient
selection, study design, data analysis or interpretation.

Patient safety was analyzed at baseline (initiation of treatment)
followed by monthly control visits with clinical examinations,
blood counts, cytokines, blood smears and estimation of bone
marrow function. We conducted baseline spleen sonography
with follow-ups upon dose escalation. Clinical ALS progression
was monitored using the established ALSFRS-R (29). If patients
were not able to continue visits and treatment, patient survival
was monitored by phone calls to patients, their families and
general practitioners.

Changes in pro- and anti-inflammatory immune profiles were
evaluated at baseline, at 3 months, and then every 6 months
throughout treatment by multiplex electrochemoluminescence
with the panel assay V-PLEX Human Biomarker 40-Plex
Kit (MesoScale Discovery R©, Maryland, USA). This industry
standard panel has been validated in different immune related
and non-immune diseases (manufacture’s information). In
patients receiving G-CSF on five consecutive days, evaluations
of cytokine levels in the peripheral blood were conducted twice
a month, before (day 0) and after G-CSF application (day 7).

FIGURE 1 | Treatment course. The monthly protocol is illustrated; this

schedule was repeated and individually adapted over the long-term treatment.

G-CSF was administered subcutaneously. Mainly, patients received G-CSF

either as a 5-day bolus (A) once (1st week) or twice (1st and 3rd week) or

continuously (B) on single days up to every second day; G-CSF was

administered in one or two doses á day. Blood was obtained before treatment

onset at baseline (d0) and then once á month (d0) in patients receiving G-CSF

continuously, and before (d0) as well as after a 5-day treatment (d7) in patients

on bolus application. Cytokines were analyzed at d0 in both groups and at d7

in bolus treatment in the first month (baseline), then at the 3rd and 6th month

during ongoing treatment.

In patients receiving G-CSF twice a week or every second
day, analyses were conducted on a monthly basis 1 day after
application. Peripheral blood serum was collected during regular
visits at the hospital and immediately stored at −20◦C for
cytokine assays. For each assay, 25µl of serum samples were used
and test carried out in duplicates, according to themanufacturer’s
instructions.

We analyzed white blood cells including cell differentiation,
platelet and red blood cell counts, and hemoglobin levels with
an automatic cell counter (Sysmex R©, Kobe, Japan). Peripheral
blood smears were done on a 3-month basis by light microscopy.
Peripheral blood CD34+ and CD34+CD38− hematopoietic stem
and progenitor cells (HSPC) were analyzed by flow cytometry
as earlier described by our group (25). In short, 1ml donor
blood was lysed in 9ml NH4Cl lysis buffer and cells were then
stained for 30min at 4◦C with combinations of anti-CD45-FITC
(clone HI30, BD Pharmingen, Franklin Lakes, NJ, USA), CD34-
APC (clone 581, Biolegend, San Diego, CA, USA) and CD38-PE
(clone HIT2, BioLegend) monoclonal antibodies. Analysis was
performed on a BectonDickinsonCALIBUR flow cytometer (BD,
East Rutherford, NJ, US).

Calculations and Statistics
Findings of immune parameters from three time points, baseline
(initiation of treatment), 3 months and 6 months were selected
for analysis. As patients did not always visit the outpatient clinic
on the exact days of the given time points, the time points had
to be defined as time periods. When assessing the ALSFRS-
R at baseline, data from day of treatment initiation ±28 days
were included. For baseline measures of blood counts, stem cell
mobilization parameters and cytokines, only data obtained before
the first G-CSF application were selected. The 3-month time
point was defined as day 45–134 and the 6-month time point as
ranging from day 135 to 224. If patients visited more than once
during these time periods, the day closest to the intended time
point was selected.

The immediate effects of G-CSF treatment on peripheral levels
of cytokines, hematopoietic stem cells and blood counts were
assessed by comparing respective levels 2 days before and 1 day
after a 5-day treatment course with G-CSF. We then explored
different patterns of immune responses depending on individual
survival. Survival time was defined as time elapsed from day of
diagnosis to day of death or day of last observation in the case of
censoring. For this purpose, G-CSF treated patients were divided
into two groups based on their survival being longer or shorter
than 30 months from diagnosis, as this was a time point that
separated the patients into two equal-sized groups. At the point of
database closure, patients who were still alive were censored and
included in the “long survival” group if they had been observed
for over 30 months (n = 7). Patients who were alive and had
not yet been observed for over 30 months were not considered
for this analysis (n = 3). The same censoring was applied for
correlation analysis. We then retrospectively analyzed baseline
levels of cytokines, hematopoietic stem cells and blood counts
in the long and short survivor groups and further correlated
survival with cytokines upon treatment initiation.
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R or GraphPad Prism 7 was employed for statistical analysis
and graph design. Correlations were analyzed using two-tailed
Pearson correlation and presented with correlation coefficient
(r), coefficient of determination (R2) and p-value. Comparisons
were made with Mann-Whitney test and paired Wilcoxon test.
Data were considered significant at p ≤ 0.05. A trend was noted
at p ≤ 0.1. Comparisons were corrected for multiple testing by
false discovery rate approach (FDR, two-stage step-up method of
Benjamin, Krieger and Yekutieli with desired FDR (Q) at 10%)
and considered a discovery at FDR-adjusted p-value (q) < 0.1.
We used an Area Under the Curve (AUC) approach to estimate
mobilization of hematopoietic stem cells after G-CSF treatment
over time. Stem cell measurements before and after G-CSF dosing
were available for patients on the 5-day treatment scheme. For
better comparability regarding long and short survival times after
diagnosis, we selected patients with ongoing 5-day treatment over
the first 4 months. All patient measurements were used in the
calculation. If patients had fewer data points, their mean AUC
value calculated from all data points was applied (in the case of
one patient). The AUC value was calculated with the auc function
of the R-package “flux” (Jurasinski, Koebsch, Guenther and Beetz,
2014). The baseline value at day 0 or from any day prior to
treatment start was used as threshold for the calculation.

RESULTS

Demographics, Intervention and Safety
36 caucasian ALS patients (25 male, 11 female, 28 limb onset, 8
bulbar onset, mean age 51.9 years, mean ALSFRS-R on initiation
38/48) were treated with G-CSF in addition to riluzole treatment.
We here report on individual treatment on a named patient
basis—consequently, treatment schemes were heterogeneous.
Dose and application modes were adapted individually upon
initiation and over time (Table S1). In summary, G-CSF was
injected subcutaneously in a dose-range from 90 to 2160 Mio
IU per month (900–21,600 µg/month), with a mean dose of
464Mio IU/month (4,640µg/month). Applicationmodes ranged
from once weekly to every second day in an ongoing individually
tailored manner. The median duration of treatment was 13.7
months (mean 16.7 months; range from 2.7 to 73.8 months)
(Table 1, Figure 1).

Long-term outpatient treatment with G-CSF was generally
well tolerated in ALS patients and compliance was excellent.
Minor adverse events were mild to moderate bone pain after
G-CSF injection and leukocytosis. One patient experienced an
episode with heat sensation, lightheadedness, and 15min. of
dyspnea on 1 day of drug application 39 months into G-CSF
treatment. Due to the possibility of drug-related intolerance or
mild allergic reaction, G-CSF was discontinued in this patient;
antibodies against G-CSF were not detectable. This patient was
switched from Filgrastim to Pegfilgrastim, a PEGylated form of
recombinant human G-CSF, from his 46th to 53rd month after
initiation, and then ended the off-label treatment without further
adverse reactions. As expected, mild to moderate splenomegaly
evolved during ongoing G-CSF treatment in most patients.
Without any further symptoms or complications, the mean
spleen width increased from 4.3 to 4.9 cm and length from

10.7 to 12.1 cm during treatment. There were no severe adverse
events (SAE), and no signs for pre-malignant transformation in
peripheral blood smears.

Baseline hematology showed no abnormalities in our patients.
G-CSF mobilizes neutrophil leukocytes as well as CD34+ and
CD34+CD38− hematopoietic stem and progenitor cells (HSPC)
from the bone marrow into the peripheral blood. Leukocyte
counts increased significantly in all treated patients, from an
initial mean of 6.9 × 103/µl to 48.2 × 103/µl (range 8.3–118.7
× 103/µl, p < 0.0001) after G-CSF application. A predicted
increase in the average percentage of neutrophils (from 64.8 to
87.3%, p < 0.0001) was accompanied by a relative decrease in
lymphocytes (from 24.1 to 7.0%, p < 0.0001), monocytes (from
8.8 to 4.7%, p < 0.0001) and eosinophils (from 1.8 to 0.7%, p
< 0.0001) as well as a small decrease in red blood cell count
(from 5.03 to 4.83× 103/µl, p< 0.0001), hemoglobin level (from
14.9 to 14.4 g/dl, p < 0.0001) and hematocrit (from 44.2 to 43.6,
p = 0.0362) during monitoring (all comparisons by paired t-
test, two-tailed p-value. Figure S1). There were no significant
changes in basophiles and platelet count during monitoring.
The fold increase of CD34+ and CD34+CD38− HSP cells in
peripheral blood served as an indicator of mobilization efficiency
and was determined by comparing cells at baseline to cells after
mobilization. The mobilization efficacy was heterogeneous with
high intra- and inter-personal variability (data not shown).

G-CSF-Mediated Stem Cell Mobilization
Was Associated With Survival of ALS
Patients
Twenty-six of thirty-six G-CSF treated patients deceased between
January 2010 and March 2017. 10 patients were alive, of which 6
were still treated with G-CSF. The patient who had suffered from
a possible allergic reaction was regularly seen at the clinic. Three
patients ended G-CSF treatment at days 82, 420 and 427, and
were all lost to follow up. The overall median survival of deceased
patients was 24.2 months from diagnosis (mean 25.5; range 3.9–
56.6 months). For further analysis, patients were divided into two
equally sized groups by survival being longer or shorter than 30
months from diagnosis. Patients, who were alive at the time of
database closure, were considered for this analysis had they been
observed for at least 30 months. The mean (median) survival
differed in the two survival groups: 46.59 (39.55) months, SD
16.34 and 17.04 (18.30) months, SD 8.16 (two-tailed p-value <

0.0001; Mann-Whitney t-test). The ALSFRS-R slope over time
was significantly flatter in longer surviving patients (Wilcoxon
test, p= 0.00086; Figure 2). Long survivors were younger (mean
age 46.8 vs. 56.5 y, unpaired t-test, p = 0.0163) and had a longer
latency between diagnosis and treatment onset (mean 333 vs.
163 days, unpaired t-test, p = 0.0377). Their clinical function
upon treatment initiation was not significantly different (mean
ALSFRS-R 38.6/48 vs. 37.3/48). Further, longer surviving patients
were less frequently female (18.8 vs. 47.1%), but had similar
occurrence of bulbar onset of disease (18.8 vs. 17.6%) (Table 1).

G-CSF is known to mobilize HSPC into the peripheral
circulation. CD34+ and CD34+CD38− HSPC were evaluated
in the sera of patients 2 days before (day 0) and 1 day after

Frontiers in Neurology | www.frontiersin.org 4 November 2018 | Volume 9 | Article 97156

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Johannesen et al. G-CSF in ALS

TABLE 1 | Demographics and intervention in G-CSF treated ALS patients.

ALS

patient

Age

(years)

Gender ALSFRS-R

baseline

Site of

onset

Time diagnosis to

treatment (days)

Dose G-CSF

(mean; range

(MioIE/month))

Treatment duration

(months)

Survival (months)

from diagnosis

1 50 F 38 Limb 498 150 (150–150) 19 36.2

2 42 M 32 Limb 619 280 (150–300) 31 52.2

3 77 M 21 Limb 759 173 (150–240) 5 33.4

4 68 F 39 Bulbar 29 150 (150–150) 3 3.9

5 67 M 33 Limb 439 260 (150–300) 20 56.6

6 26 M 33 Limb 486 485 (150–1170) 74 89.7*

7 50 F 33 Limb 536 240 (240–240) 7 25.4

8 73 M 41 Limb 270 166 (150–240) 11 21.4

9 50 M 28 Limb 393 133 (90–150) 7 21.4

10 56 M 37 Limb 770 242 (150–300) 14 40.0

11 41 M 38 Limb 24 287 (150–300) 27 36.3

12 35 F 40 Bulbar 115 296 (240–300) 14 63.7*

13 48 F 46 Limb 38 216 (150–300) 14 29.7

14 43 M 44 Limb 61 561 (192–768) 45 47.3

15 65 F 32 Limb 81 192 (192–192) 14 18.3

16 51 F 42 Limb 101 225 (150–300) 3 6.4

17 60 F 38 Limb 21 192 (192–192) 9 11.5

18 58 M 44 Limb 45 311 (240–480) 25 25.4

19 46 M 46 Limb 249 150 (150–150) 26 34.7

20 50 M - Limb 1 198 (192–240) 8 8.0

21 27 M 44 Limb 53 301 (150–600) 39 71.3*

22 45 M 48 Limb 26 666 (240–1296) 37 39.1*

23 55 M 40 Bulbar 26 263 (150–300) 3 41.9*

24 61 M 44 Limb 66 375 (150–510) 5 9.2

25 60 M 40 Bulbar 135 602 (240–816) 19 23.0

26 65 F 30 Bulbar 122 563 (240–900) 7 11.3

27 43 F 41 Limb 338 628 (240–720) 14 35.7*

28 60 M 42 Limb 23 589 (480–720) 11 12.1

29 45 F 28 Limb 493 535 (150–720) 6 29.6

30 47 M 29 Limb 396 585 (450–720) 5 19.3

31 50 M 40 Limb 23 667 (240–720) 8 13.7

32 39 M 41 Bulbar 343 1015

(450–1170)

20 31.7*

33 56 M 42 Bulbar 525 744 (450–1056) 11 35.6

34 59 M 38 Bulbar 52 1044

(450–1440)

14 #

35 69 M 39 Limb 62 1344

(450–2160)

16 #

36 35 M 38 Limb 288 1141

(300–1440)

14 #

Mean

(SD)

51.9

(12.2)

11 F

25M

38/48 (6.1) 28 Limb

8 Bulbar

236.3 (231.4) 222.7 (104.1) 16.7 (14.4) 25.5 (14.3)

in deceased

patients

Patients marked by # or * were alive upon closure of data admission. Patients who had been observed for less than 30 months at time of closure of data admission are marked by #.

The sign * indicates patients, who at time of closure of data admission, had been observed more than 30 months from diagnosis. Baseline ALSFRS-R was not available in one patient,

marked by -.

(day 7) a 5-day treatment course with G-CSF at baseline, 3
months and 6 months. G-CSF led to a sustained increase of
CD34+ and CD34+CD38− HSPC at all time points (Figure 3).
In patients treated with ongoing 5-day courses of G-CSF t-tests

displayed no significant reductions in mobilization of CD34+

and CD34+CD38− HSPC when comparing the respective levels
after G-CSF treatment at baseline and after 3 and 6 months
of treatment (mean number of CD34+/ml at baseline 30307,
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FIGURE 2 | ALSFRS-R decline is less rapid in patients who survive longer

than 30 months. Patients were assigned to high survival group at survival

longer or at 30 months, and to low survival group at survival below 30 months

from diagnosis. The slope was calculated by robust calculation of the

ALSFRS-R measurements. Median slope in the high survival group was

−0.019 and −0.05 in the low survival group. Wilcoxon test, p-value 0.00086.

at 3 months 35250, at 6 months 22017; mean number of
CD34+CD38−/ml at baseline 3092, at 3 months 2089, at
6 months 1632, all Wilcoxon paired t-test, all p-values not
significant; Figure S2). However, we found a different capacity
to mobilize hematopoietic stem cells in patients surviving
longer or shorter than 30 months from diagnosis. This was
analyzed by Area Under the Curve (AUC) approach to mobilized
CD34+CD38− cells within the first year of G-CSF treatment in
19 available patients, who all received ongoing 5-day treatment.
Longer surviving patients displayed a significantly superior
mobilization of CD34+CD38− cells under G-CSF application at
1 year of treatment. At 4 months this difference was borderline
significant (trend) (Figure 4).

Short and Long-Term Survivors Differed in
Their Baseline Cytokine Levels
Survival in months from diagnosis was negatively correlated
with baseline serum levels of the cytokine TNF-beta. MCP-1
and INF-gamma were, as a trend, negatively correlated with
survival as well. IL-16 baseline levels displayed a positive
correlation with survival. MDC, IL-8, IL-17A, and PIGF were,
as a trend, positively correlated with survival (Table 2, Figure 5).
We then dichotomized G-CSF treated patients according to
their survival of either more or less than 30 months from
diagnosis, and analyzed cytokines at baseline. Patients who
survived longer than 30 months from diagnosis had significantly
higher baseline levels of MDC and Tie-2. For IL-16, IL-17A,
and PIGF we found similar trends. On the other hand, there
were significantly higher baseline levels of TNF-beta and IL-7

in patients who survived less than 30 months from diagnosis.
TNF-alpha and MCP-1 displayed similar trends. However,
when correcting the cytokine comparisons in long and short
survival for multiple testing, none of these findings remained
significant [as assessed by the FDR-adjusted p-values (q-values)
in Table 2].

G-CSF Treatment Modulated Serum
Cytokine Levels of ALS Patients Over Time
The direct effects of G-CSF on cytokine levels were evaluated
by comparing cytokine levels 2 days prior to and 1 day after
ongoing 5-day G-CSF application in a subgroup of patients
allowing this analysis. These immediate effects were determined
at three different time points (baseline, 3 and 6 months after
treatment initiation). Due to individual application modes,
5-day G-CSF applications with corresponding blood samples
were available for 18 patients at baseline, for 17 patients at 3
months, and for 14 patients at 6 months of ongoing G-CSF
treatment.

We found G-CSF to have an immediate effect on the level of
various cytokines (Table 3, Figure S3). The serum level of IL-10
increased after 5 days of G-CSF treatment at baseline, 3 months
and 6 months compared to its respective level before G-CSF
application, however, at 3months only as a trend. The levels of IL-
16, Tie-2, TNF-alpha, MIP1-beta, IL-15, IP-10, VCAM, ICAM-1,
and of Flt-1 were significantly increased after G-CSF treatment at
all above-mentioned time points. The levels of TARC, IL-7, INF-
gamma, and MCP-1 were decreased at all above-mentioned time
points. There was an increase in SAA, IL-12/IL-23p40, CRP, and
VEGF-A levels after G-CSF at baseline and 6 months, the latter at
6 months only as a trend. The levels of VEGF-C and PIGF were
increased after G-CSF at 6 months, that of PIGF also at 3 months
as a trend. There was a decrease of Eotaxin-1, Eotaxin-3 and
VEGF-D after G-CSF application at baseline and 3months. TNF-
beta was decreased at baseline, at 6 months by a trend. MCP-4
was decreased at 6 months, at baseline by a trend. The level of
bFGF was decreased after G-CSF application at 3 months and 6
months.

DISCUSSION

Our Main Findings
Long term and individually adapted off-label treatment with
G-CSF in 36 ALS patients was well tolerated and safe.
The number of G-CSF-mobilized hematopoietic stem cells, as
measured by AUC, was associated with longer survival. Initial
levels of serum cytokines, such as MDC, TNF-beta, IL-7, IL-16,
and Tie-2 were significantly associated with survival, indicating
the potential of prognostic application of these immune markers
in G-CSF treated ALS patients. Continued application of G-
CSF led to persistent alterations in various serum cytokines
and ongoing measurements revealed the multifaceted effects of
G-CSF.

ALS as a Neuroinflammatory Disease
ALS has been recognized as a multifactorial disease.
Neurodegenerative processes trigger neuroinflammation
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FIGURE 3 | (A,B) Mobilization of hematopoietic stem cells (HSPC) in G-CSF treated ALS patients. Plotted are CD34+ (Figure 2A) and CD34+CD38− HSPC

(Figure 2B) in blood 2 days before (d0) and 1 day after (d7) daily application of G-CSF over 5 days in 16 (for CD34+)/15 (for CD34+CD38−) patients at baseline, in 17

patients after 3 months, and in 14 (for CD34+)/13 (for CD34+CD38−) patients after 6 months of treatment. Data are presented as scatter dot plot with mean + SEM.

Paired Wilcoxon t-test, significance was taken at p < 0.05 (two-tailed). T-tests were corrected for multiple testing by FDR-adjusted p-values (q-values), discovery is

indicated by q < 0.1. In CD34+ and CD34+CD38− HSPC at all time points: q-value = 0.0002.

FIGURE 4 | Mobilization of CD34+CD38− HSPC is associated with survival in ALS patients on a 5-day treatment scheme with G-CSF. Area under the curve (AUC)

approach on blood HSPC over 4 months (A) and 1 year (B) in patients treated with 5-day application of G-CSF (n = 20). Patients were assigned survival groups

dependent on survival being longer (high survival n = 8) or shorter (low survival) than 30 months from diagnosis.

and vice versa. Neuroinflammation with microglial activation,
infiltration of peripheral immune cells into the CNS, and
alterations in cytokine levels are pathological features in ALS.
Cytokines aremediators of the immune communication thatmay
cross the blood-brain barrier (BBB) and provide a mechanism
by which the peripheral immune system may directly influence
the CNS (30). In a recent study, we demonstrated a pro-
inflammatory immune response with elevated inflammatory
cytokines both in serum during disease and post-mortem in
the CNS of ALS patients (31). However, immune response in
ALS cannot be clearly dichotomized to a purely pro- or anti-
inflammatory state, as cytokines are often pleiotropic, and their

function may change over time and depend on concentration
and specific disease context. Possibly, cytokine response in early
ALS may be an attempt to restore homeostatic balance, whereas
chronic exposure to pro-inflammatory cytokines might lead
to cell destruction and loss of neuronal function. The latter
supports a self-sustaining inflammatory process and possibly
accelerates disease progression (7). Neuroinflammation and
systemic inflammatory stimuli with their influence upon the
CNS offer targets for therapeutic intervention in ALS (32).
Analysis of peripheral blood is a feasible alternative for ongoing
measurements of immune mediated and pathophysiological
relevant parameters (33).
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TABLE 2 | Cytokine levels at baseline in relation to survival.

Cytokine Level in long survival Correlation Comparison (t-test)

r-value R2-value p-value Median long survival Median short survival p-value q-value

ANTI-INFLAMMATORY

MDC 0.3269 0.1069 0.0726 939 227 0.0494 0.3088

PRO-INFLAMMATORY

TNF-ß −0.4981 0.2481 0.0043 0.535 0.830 0.0038 0.1254

IL-7 – – – 17 27 0.0171 0.2640

TNF-α – – – 2.5 3.0 0.0638 0.3088

MCP-1 −0.3414 0.1166 0.0601 278 957 0.0544 0.3088

INF-γ −0.3264 0.1065 0.0731 – – – –

IL-16 0.4449 0.1979 0.0122 262 133 0.0655 0.3088

IL-8 0.3492 0.1219 0.0542 – – – –

IL-17A 0.3749 0.1406 0.0710 2.58 0.68 0.0912 0.3421

ANGIOGENESIS

Tie-2 – – – 5762 4492 0.0240 0.2640

PIGF 0.3277 0.1074 0.0719 33.8 31.7 0.0933 0.3421

Cytokine levels in pg/ml before first G-CSF application in ALS patients. Arrows indicate cytokine levels in patients with long compared to short survival. Then cytokine levels at baseline

were correlated with survival. Next, Mann-Whitney test was calculated to assess differences in baseline cytokine levels in patients with survival longer or shorter than 30 months from

diagnosis. Number of patients at baseline: 31 (16 long survival). Significance is indicated by bold marking when p < 0.05 (two-tailed p-value), trend when p < 0.1. T-tests were corrected

for multiple testing by FDR-adjusted p-values (q-values), discovery is indicated by q < 0.1.

G-CSF in ALS
ALS is a multifactorial disease. Targeting common pathologic
features such as neuro-inflammation and -degeneration may
thus be beneficial for all ALS patients. Although G-CSF
is an established, well-tolerated and safe growth factor for
mobilization of hematopoietic stem and precursor cells (34),
there is accumulating evidence that it is also a potent
modulator of multiple CNS functions relevant to ALS (13). G-
CSF modulates the immune response (35), it promotes anti-
inflammatory and decreases pro-inflammatory mediators (36).
Small clinical trials with G-CSF in ALS patients have delivered
inconclusive results. Treatment with G-CSF was associated with
a decrease in pro-inflammatory cytokine levels in serum and
cerebrospinal fluid (CSF) of ALS patients (26), andminor benefits
were detected by neuroimaging (27). But promising evidence
for efficacy of G-CSF in ALS animal models has not yet been
translated to ALS patients. It seems likely that a successful clinical
translation requires higher dose, more frequent application and
longer exposure to G-CSF as well as extended observation times
(37). The latter is of crucial importance when aiming at structural
and functional improvements or support of neurogenesis.

G-CSF Treatment in ALS Is Safe and Well
Tolerated
Application of G-CSF in oncological indications is usually limited
to treatment cycles, and the only clinical experience with life-
long G-CSF therapy has accumulated with patients suffering
from severe congenital neutropenia and cyclic neutropenia (38,

39). To our knowledge, we first reported on long-term G-CSF
treatment in a CNS indication (25). We found G-CSF application
to be generally well tolerated in ALS patients, with mild to
moderate bone pain and leukocytosis after G-CSF applications as
frequentminor adverse events. As this was off-label, experimental
treatment of individual ALS patients, we had no control group
for assessment of survival. If we only observe deceased patients
and leave those still alive out, then the mean survival of these
26 patients at 25.5 months from diagnosis indicates no harm by
G-CSF in ALS.

Stem Cell Mobilization Is Efficient and
Associated With Longer Survival in G-CSF
Treated ALS Patients
G-CSF is a well-known mobilizer of hematopoietic stem cells (8,
9). In all patients treated with G-CSF for five consecutive days, G-
CSF increased mobilization of hematopoietic stem cells (CD34+

and CD34+ CD38−) into the peripheral blood. Interestingly,
we found an association between stem cell mobilization and
survival. Patients who survived longer than 30 months from
diagnosis mobilized more CD34+CD38− hematopoietic stem
cells than patients with shorter survival, as measured by
Area Under the Curve after G-CSF treatment up to 1 year
(Figure 4). Higher levels of circulating hematopoietic stem cells
are associated with better clinical outcome and less structural
damage after intracerebral hemorrhage in humans (40). The
mechanism of how hematopoietic stem cells may contribute
to neurodegenerative disease is yet unclear. Migration and
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FIGURE 5 | (A–D) Baseline cytokine levels are associated with survival in G-CSF treated ALS patients. Plotted are initial cytokine levels of TNF beta (A), IL-16 (B), IL-8

(C), MCP-1 (D), IL-17A (E), MDC (F), ING gamma (G), and PIGF (H) in pg/ml before first G-CSF application in 31 patients. Survival was assessed in months from

diagnosis and censored upon data admission in living patients (n = 7). Displayed is Pearson r, the coefficient of determination (R2), p-value (two-tailed) significant at p

< 0.05, trend at p < 0.1.
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TABLE 3 | Cytokine levels before and after G-CSF treatment at different time points.

Cytokine Direction Treatment start 3 months 6 months

Fold change

d0-d7

p-value q-value Fold change

d0-d7

p-value q-value Fold change

d0-d7

p-value q-value

ANTI-INFLAMMATORY

IL-10 1.95 0.0016 0.0018 1.24 0.0856 0.0371 2.02 0.0004 0.0007

PRO-INFLAMMATORY

TNF-ß 0.83 0.0208 0.0112 – – – 0.85 0.0591 0.0268

INF-γ 0.81 0.0214 0.0113 0.78 0.0182 0.0104 0.62 0.0009 0.0014

IL-7 0.66 0.0003 0.0006 0.80 0.0011 0.0014 0.80 0.0107 0.0075

MCP-1 0.83 0.0120 0.0080 0.77 0.0007 0.0012 0.79 0.0107 0.0075

MCP-4 0.94 0.0599 0.0268 0.92 0.0150 0.0089 – – –

TARC 0.87 0.0304 0.0148 0.86 0.0032 0.0030 0.80 0.0166 0.0097

Eotaxin-1 0.88 0.0139 0.0085 0.93 0.0079 0.0059 – – –

Eotaxin-3 0.83 0.0034 0.0030 0.78 0.0034 0.0030 – – –

CRP 4.45 0.0010 0.0014 – – – 3.99 0.0085 0.0062

SAA 2.96 0.0008 0.0013 – – – 2.03 0.0353 0.0168

TNF-α 1.77 <0.0001 0.0003 1.50 0.0046 0.0038 1.79 0.0004 0.0007

IP-10 1.50 0.0002 0.0004 1.34 0.0067 0.0052 1.40 0.0134 0.0085

IL-15 1.14 0.0022 0.0022 1.24 0.0208 0.0112 1.24 0.0016 0.0018

IL-12/IL-23p40 1.24 0.0047 0.0038 – – – 1.19 0.0052 0.0041

IL-16 3.14 <0.0001 0.0003 3.66 0.0011 0.0014 3.78 0.0002 0.0004

MIP1-ß 3.38 <0.0001 0.0003 4.63 0.0013 0.0015 2.91 0.0001 0.0003

ANGIOGENESIS

VEGF-A 1.39 0.0010 0.0014 – – – 1.32 0.0580 0.0268

Tie-2 1.27 <0.0001 0.0003 1.18 0.0032 0.0030 1.19 0.0134 0.0085

Flt-1 1.45 <0.0001 0.0003 1.32 0.0026 0.0026 1.33 0.0001 0.0003

PIGF – – – – – – 1.14 0.0203 0.0112

VEGF-C – – – 0.0984 0.0420 0.86 0.0017 0.0017

VEGF-D 0.88 0.0139 0.0085 0.94 0.0110 0.0075 – – –

bFGF – – – 0.72 0.0232 0.0121 0.81 0.0040 0.0035

VASCULAR INJURY

VCAM 1.40 <0.0001 0.0003 1.28 0.0267 0.0134 1.41 0.0001 0.0003

ICAM-1 1.30 <0.0001 0.0003 1.23 0.0305 0.0148 1.31 0.0001 0.0003

Paired Wilcoxon t-test. Arrows indicate direction, and fold change gives effect size of cytokine modulation when comparing respective levels 2 days before (d0) and 1 day after (d7)

daily application of G-CSF over 5 days. Number of evaluable patients at baseline: 18, at 3 months: 17, and at 6 months: 14. Significance is indicated by bold marking when p < 0.05

(two-tailed p-value), trend when p< 0.1. T-tests were corrected for multiple testing by FDR-adjusted p-values (q-values), discovery is indicated by q< 0.1. Non-significant and non-trend

findings are marked by -.

subsequent trans-differentiation of bone marrow derived cells
within the CNS is controversially discussed (18). However,
G-CSF increases the number of hematopoietic stem cells
translocated to the damaged CNS (16, 17). There, hematopoietic
stem cells modulate the immune system, they may interact with
local cells, and produce neurotrophic factors, which promote

growth of neural progenitors and survival (17, 18). A recent study
in mice exposed to cranial irradiation demonstrated that G-CSF
augments neurogenesis; bone marrow derived G-CSF-responsive
cells migrate to the CNS, where they express macrophage and
microglia phenotypes. The authors found that G-CSF treatment
led to an improved functional outcome, thus arguing for the
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neuroprotective mechanisms of G-CSF on brain repair (15).
Human studies have demonstrated G-CSF to directly affect
monocytes and to modulate monocyte cytokine secretion toward
an anti-inflammatory polarization (41). A recent study applying
G-CSF in healthy humans described expansion of a mature
variant monocyte subtype displaying strong immunosuppressive
properties (42). Next to neural cells, also neural stem cells have G-
CSF receptors and G-CSF treatment induces a neural phenotype
of these cells (12). Effects of G-CSF on hematopoietic stem cells
may therefore serve as a proxy for biological cellular activity of
G-CSF on neural cells.

Cytokine Levels Are Associated to Survival
and Affected by G-CSF
Neuroinflammation contributes to the pathogenesis of ALS (3).
Apart from CNS inflammation, peripheral cytokines and other
inflammatory markers are affected in ALS, and cytokine levels
may serve as biomarkers (43). We found that different cytokines
at baseline were correlated with survival (Table 2, Figure 5).
When dichotomizing patients depending on individual survival
being longer or shorter than 30 months from diagnosis, we
detected different peripheral cytokine levels at baseline (Table 2).
In general, five-day treatment courses with G-CSF exerted
immediate effects on cytokine levels and were able to partly
counteract the harmful immune response in ALS (Table 3,
Figure S3).

The initial levels of 11 cytokines were associated with survival,
of which 8 were altered by G-CSF application. However, the
correlation models, as indicated by the rather low R2-values,
could only explain smaller parts of the variance. Even though
the cytokine comparisons in long and short survival did not
withstand correction for multiple testing, we decided to explore
the findings because they might help to generate hypotheses
for further studies and show biologically important findings
in spite of the small number of patients tested. Moreover, G-
CSF led to change in many inflammatory cytokines, as well as
cytokines involved in angiogenesis and vascular injury, of which
all significant changes remained so after testing for multiple
comparison (Tables 2, 3).

Initial TNF-beta (LTA, lymphotoxin-alpha) levels negatively
correlated with survival and were found at higher levels in
shorter surviving ALS patients upon treatment initiation. G-CSF
application led to reduction in TNF-beta, a pro-inflammatory
cytokine and common cell death effector found to be increased
in ALS sera (31). TNF-alpha was borderline increased in patients
with shorter survival (trend) and G-CSF led to an increase
in its serum levels. TNF-alpha is elevated in ALS (31, 43–46)
and correlates with disease duration (47). But its role in ALS
in unclear and the two TNF-alpha receptors, either associated
with inflammation or neuroprotection, have opposing effects
concerning survival in ALS (48). Dependent on subtype and
context, activation can lead to neuroprotection and neurogenesis
(49), reduced oxidative stress (50) and glutamate excitotoxicity
(51). An increased occurrence of ALS after long-term use of
TNF-alpha inhibitors in rheumatic arthritis, is suggested to
be a consequence of deficient TNF-alpha mediated neuronal

protection (52). Higher initial levels of IL-7 were associated with
shorter survival, and reduced after ongoing treatment with G-
CSF. IL-7 is considered a pro-inflammatory cytokine, and is
increased in CSF (53) and serum (31) of ALS patients. MCP-1
(CCL2) was borderline correlated (trend) with shorter survival
of ALS patients. We confirmed a reduction of MCP-1 levels in
ALS after treatment with G-CSF (26). MCP-1 is a prominent pro-
inflammatory cytokine that can enhance microglial recruitment
to the CNS after injury, which may exacerbate ALS progression
(54). MCP-1 correlates with faster disease progression (55) and
ALS patients have elevated MCP-1 serum levels (31, 55, 56) and
increased protein expression within spinal cord (31). INF-gamma
was borderline negatively correlated with survival in our patients
(trend). As known from healthy donors (57), INF-gamma levels
were decreased by G-CSF. As a hallmark of proinflammatory
cells, INF-gamma is proposed to contribute to motor neuron
death in ALS (58). ALS patients have higher INF-gamma serum
levels (47, 55, 59), that correlate with disease progression (47, 59)
and shorter survival (55).

On the other hand, the pro-inflammatory marker IL-16 was
positively correlated with survival and increased after G-CSF
application. IL-16 also holds an immunomodulatory role by
expansion of regulatory T cells (Treg) (60), that at lower levels
in ALS, are associated with rapid disease progression and shorter
survival (61). Thus, G-CSF related increase in IL-16 might be
beneficial for ALS patients. Another pro-inflammatory cytokine,
IL-17A, was borderline correlated with longer survival (trend)
but not altered by G-CSF treatment. IL-17A has been reported
elevated in serum (55, 62, 63) and CSF (64) of ALS patients.
After G-CSF treatment, Chió et al. found a reduction of IL-
17A in the CSF, but not in serum of ALS patients (26). IL-8
was borderline correlated with longer survival (trend), and not
altered by G-CSF treatment. IL-8 is produced by several cells
in response to inflammation, and higher plasma (44) and CSF
levels (65) are known in ALS. MDC (CCL22) was associated with
longer survival, however, not modulated by G-CSF treatment.
MDC is an anti-inflammatory cytokine, and consistent with
a proposed protective effect, ALS patients have lower MDC
protein expression in the spinal cord (31). Further, angiogenic
factors, such as Tie-2 and PIGF were associated with survival.
Tie-2 was elevated in longer surviving patients and G-CSF led
to an increase in it’s serum levels. Angiogenesis is mediated
by the angiopoietin-1/Tie-2 system (66), and stimulation of
angiogenesis by another pro-angiogenic factor, VEGF, is found
to increase neurogenesis (19). G-CSF treatment led to an
increase in PIGF, and PIGF was as a trend both correlated with
survival and elevated in longer surviving patients. PIGF supports
angiogenesis (67), and may be a marker for the angiogenic
niche.

The following 18 cytokines were significantly altered by G-
CSF, however, not associated with survival. As known from
healthy donors (68), IL-10 was markedly increased after G-
CSF treatment. This anti-inflammatory cytokine is elevated in
ALS-patients with mild symptoms or slow progression (53).
G-CSF application led to reduced systemic levels of the pro-
inflammatory cytokines MCP-4 (CCL13), TARC, Eotaxin-1
(CCL11), and Eotaxin-3 (CCL26). MCP-4 (31, 65), TARC (31)
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and Eotaxin-1 (65) are elevated in ALS serum. The latter is
further associated with Alzheimer’s dementia (69), aging and
inhibition of neurogenesis in mice (70). We also noticed increase
in levels of the pro-inflammatory cytokines CRP, SAA, IP-10
(CXCL10), IL-15, IL-12/IL-23p40, and MIP1-beta after G-CSF
application. The acute-phase proteins CRP and SAA have been
described as elevated in ALS patients (31, 71). IP-10 is negatively
correlated with disease progression rate (72) and increase after
G-CSF treatment has been described (26). IL-15 (31, 55, 73) and
MIP1-beta (31) are elevated in serum of ALS patients. MIP1-beta
shares receptor (CCR5) with MIP-alpha, which is elevated and
considered neuroprotective in ALS (74). MIP-1 beta is negatively
correlated with disease severity and progression rate, and thus
might exert neuroprotective effects in ALS (72). IL-12/IL-23p40
describes the p40 subunit shared by the cytokines IL-12 and IL-
23, and is considered a pro-inflammatory marker. However, we
noted no increase in cytokines induced by IL-12/IL-23p40, such
as INF-gamma and IL-17A, after G-CSF treatment. Aside from
neuroinflammation, impaired neurotrophic support is a hallmark
of ALS. Levels of VEGF-A and Flt-1 were increased, whereas
VEGF-C, VEGF-D, and bFGF levels were decreased after G-
CSF application. VEGF-A and bFGF, two common neurotrophic
and possibly protective factors in ALS (55), are both increased
in ALS CSF (64). Further, VEGF-A supports neurogenesis and
neural development and is an attractant for HSPC that has
been associated with longer survival in ALS (55). We found an
increase in ICAM-1 and VCAM-1 after G-CSF treatment. At
the vascular endothelium these cellular adhesion molecules are
involved in leukocyte transport (75), but their role in ALS is
unclear.

In ALS, a short time delay for diagnosis is associated
with inferior prognosis as these patients are likely to have
a more aggressive disease (76). Accordingly, we observed a
briefer latency between diagnosis and treatment initiation in
patients with shorter survival, which might reflect a more
rapid progression of disease in these patients. Hence, longer
surviving patients presumably initiated treatment at a later
pathophysiological stage of their disease. This might offer an
explanation for the fact that levels of some pro-inflammatory
cytokines such as IL-16, IL-17A, and IL-8 were associated with
longer survival. However, the role of inflammatory markers
in ALS is unclear and our findings may also indicate that
inflammation does not only negatively impact the disease (71).
The remaining relation between cytokines and survival seen
in our cohort highlights the importance of these markers
in predicting individual survival. Thus, different cytokines
may be used as biomarkers for initial patient stratification,
predicting later clinical course, monitoring treatment response
and progression of disease.

Possible direct effects of G-CSF upon the CNS were not
assessed, as we did not obtain post-mortem analysis of deceased
patients. Neuroimaging studies conducted on our G-CSF treated
patient cohort (77) did not directly address possible G-CSF
related structural effects—we also had no patient control group
without G-CSF treatment. One indirect mode of action by
which G-CSF exerts neuroprotective effects may be through
polarization of the immune system toward an anti-inflammatory

state (13). We observed an increase in anti-inflammatory
cytokines and neurotrophic factors as well as a decrease in pro-
inflammatory cytokines. However, we also captured an increase
in some pro-inflammatory cytokines, which might be due to the
pleiotropic effects of G-CSF and possibly reflect an unspecific
cytokine reaction after application. Overall, the effects of G-CSF
on peripheral cytokine levels and ALS appear to be versatile and
should be assessed in a prospective clinical study.

Strengths and Limitations
This retrospective analysis has several limitations. Firstly, we
have not conducted a controlled clinical trial and thus, there
was no placebo-arm. Rather, the aim of the intervention was
to offer individual ALS patients a potentially beneficial off-label
treatment with G-CSF. Evaluation of respiratory function was
driven by clinical indication and not systematically assessed.
Hence, we did not regularly screen for respiratory deficits
upon treatment initiation. The same applied to assessment of
cognitive function. In addition, we did not systematically analyze
for ALS-specific gene mutations. Such factors have predictive
value concerning prognosis (78), the lack of initial screening of
respiratory and cognitive function as well as genetic background
might impede interpretation of the data. Given the objective of
evaluating safety of G-CSF and the absence of a control group, in
this paper we assessed survival from time of diagnosis, and not
from treatment initiation. The latency between symptom onset
and diagnosis was not assessed in this report. This is a limitation,
as quantification of diagnostic delay - being associated with
longer survival (78), could have offered prognostic implications.
During the experimental treatment, patients were routinely seen
on an outpatient basis to monitor safety and blood samples
were regularly obtained. This enabled a dynamic observation
of alterations in neuroinflammation due to ALS disease and
treatment with G-CSF over time. However, with only 36 G-CSF
treated patients caution should be applied in trying to generalize
our findings. Moreover, application and dosing schemes for
G-CSF treatment were decided upon on an individual patient
level and thus complicated the establishment of dose-effect
relationships. When we analyze cytokine levels upon treatment
initiation in our patient cohort retrospectively, we have to take
into account that these patients differ concerning covariant
factors such as age, gender, bulbar vs. spinal-onset, and functional
status (ALSFRS-R). Given the small number of patients treated
with G-CSF, a statistical evaluation of the predictive value of
these subpopulations was not reasonable. There was also great
heterogeneity in the latency between time of diagnosis and
treatment initiation. Cytokine levels alter during progression of
disease. Altogether, these aspects lead to a reduced statistical
power, which may also provide an explanation for the variation
and modest correlation seen between initial cytokine levels and
survival. Moreover, we found that cytokine comparisons in long
and short surviving patients did not withstand correction for
multiple testing. These signals may be of biological relevance, as
they were detected in spite of a small number of patients and
great disease heterogeneity, and thus may assist in hypothesis
generation for future studies.
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CONCLUSION

Altogether, we found that long term G-CSF treatment is
feasible and safe for ALS patients. G-CSF efficiently mobilized
hematopoietic stem cell into peripheral blood, and the amount
of mobilized stem cells was associated with longer survival. Thus,
stem cell mobilization could be a potential biomarker to monitor
treatment response to G-CSF. Peripheral cytokines are relevant in
the course of disease in ALS. We identified TNF-beta, MDC, IL-
16, IL-7, and Tie-2 as cytokines whose baseline levels may predict
G-CSF treatment response and survival. Additionally, long
term G-CSF treatment led to sustained alterations of multiple
cytokines in peripheral blood. Thus, cytokines represent potential
biomarkers for survival prediction and for early monitoring of G-
CSF treatment in ALS, all of which need further validation in a
prospective controlled randomized trial.
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Objective markers of disease sensitive to the clinical activity, symptomatic progression,

and underlying substrates of neurodegeneration are highly coveted in amyotrophic lateral

sclerosis in order to more eloquently stratify the highly heterogeneous phenotype and

facilitate the discovery of effective disease modifying treatments for patients. Magnetic

resonance imaging (MRI) is a promising, non-invasive biomarker candidate whose

acquisition techniques and analysis methods are undergoing constant evolution in

the pursuit of parameters which more closely represent biologically-applicable tissue

changes. Neurite Orientation Dispersion and Density Imaging (NODDI; a form of

diffusion imaging), and quantitative Magnetization Transfer Imaging (qMTi) are two such

emerging modalities which have each broadened the understanding of other neurological

disorders and have the potential to provide new insights into structural alterations

initiated by the disease process in ALS. Furthermore, novel neuroimaging data analysis

approaches such as Event-Based Modeling (EBM) may be able to circumvent the

requirement for longitudinal scanning as a means to comprehend the dynamic stages

of neurodegeneration in vivo. Combining these and other innovative imaging protocols

with more sophisticated techniques to analyse ever-increasing datasets holds the

exciting prospect of transforming understanding of the biological processes and temporal

evolution of the ALS syndrome, and can only benefit from multicentre collaboration

across the entire ALS research community.

Keywords: motor neuron disease, MRI—magnetic resonance imaging, event-based model, quantitative

magnetization transfer imaging, neurite orientation dispersion and density imaging (NODDI)

Neuroimaging modalities sensitive to the dynamics and patterns of tissue degeneration in
amyotrophic lateral sclerosis (ALS) are required as objective biological markers of disease activity in
vivo. Standard clinical assessment is usually adequate for diagnosis, however there is a pressing need
for non-invasive neuroimaging biomarkers that may differentiate between the various phenotypes
within the ALS syndrome, provide more accurate prognostic information, and monitor responses
to therapeutic interventions. There is also a need for neuroimaging techniques which have the
potential to interrogate the specific mechanisms of neurodegeneration, given that conventional
MRI primarily aims to exclude alternative diagnoses (1). As such, it will be important to integrate
new modalities of structural and functional imaging (including MRI and PET) with molecular
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biomarkers of neuronal damage, and indicators of
neuroinflammation if the therapeutic impasse for more
effective disease treatments is to be broken. Diffusion MRI,
particularly diffusion tensor imaging (DTI), has been extensively
researched in patients with ALS to infer structural alterations
within the brain and spinal cord by virtue of the movement of
water molecules induced by magnetic field gradients. Fractional
anisotropy (FA) is consistently reduced, often alongside increased
mean or radial diffusivity (MD or RD, respectively), within the
corticospinal tracts (CSTs) (2–15) and body of the corpus
callosum through which pass the fibers connecting hemispheric
motor areas (3, 5–8, 10, 12, 16, 17). Indeed, DTI changes are
perhaps most reliably encountered within the posterior limb of
the internal capsule (18, 19) which forms a common conduit
for several descending motor pathways including the CST,
cortico-rubro-spinal, and cortico-reticulo-spinal connections
(20). Additional areas within the frontal, temporal (11, 21, 22),
and parietal areas (11, 23) have shown reduced FA, all of which
is consistent with the multisystem motor and extra-motor
regions involved clinically and neuropathologically (24–26).
Nevertheless, establishing the precise substrate or substrates
underlying these changes observed onMRI is not straightforward
and may be complimented by novel magnetic resonance imaging
techniques and emerging big data analysis methods.

NEURITE ORIENTATION DISPERSION AND

DENSITY IMAGING (NODDI)

Diffusion MRI is sensitive to the motion of water molecules
at microscopic level. Nevertheless the signal it measures is
averaged across volumes of 1–2 mm3 (the so-called “voxel”).
For this reason, any interpretation of the signal and its origin
requires some degree of “modeling.” More than one model has
been proposed and each typically incorporates slightly differing
mathematical assumptions to interpret andmodel the signal, thus
providing only indirect inferences on anatomical configurations.
For instance, DTI assumes that water movement will obey
Gaussian properties and is widely accepted to lose consistency
when neuronal fibers bend or fan out within a voxel, or where
otherwise aligned fiber tracts are crossing each other (5) which is
common to areas such as the centrum semiovale and even regions
of the foliated corpus callosum (27, 28). Moreover, a reduction
in FA signifies changes in both neurite density and orientation
dispersion without distinguishing their individual contributions
(28, 29). Therefore, variations on the diffusion tensor model have
been created in an attempt to address these limitations. One
such model is neurite orientation dispersion and density imaging
(NODDI).

NODDI requires acquisition over a longer time than DTI
and compartmentalizes non-Gaussian water diffusion into three
geometric spaces encompassing isotropic (or free), hindered
anisotropic and restricted anisotropic components. These are
known as VISO, VIC, and VEC and each broadly correspond
to free water/CSF, intra-neurite water (of axons and dendrites),
and extra-neurite water (but potentially including glial cells and
neuronal somata), respectively (29–31). The NODDI parameters

ISO, NDI (neurite density index), and ODI (orientation
dispersion index; a marker of the geometric complexity of
neurites) can then be derived, the latter two of which are
considered to provide a more structurally useful breakdown of
single FA values (29) (see Figure 1). NODDI is able to better
delineate white from gray matter, in which normal white matter
displays higher NDI and lower ODI with the reverse in gray
matter (33), and differentiate between different gray matter
structures although might be more susceptible to changes in field
strength in these areas (31). Compared to DTI, NODDI indices,
particularly ODI, have been shown to correlate with histological
measures of orientation dispersion in the spinal cord and might
also display more inter-subject variability with implications for
the sample sizes required for group analyses (33, 34). However,
this may not necessarily be an inaccuracy in modeling rather a
more accurate depiction of tissue composition (31). In addition,
regions which might be expected to demonstrate considerable
axon density and higher NDI values might counterintuitively
show higher ISO due to the larger diameter axons enabling more
freedom of water movement (31, 34).

NODDI has been used to demonstrate tissue alterations
associated with normal aging (35–37) and in a range of
conditions including focal cortical dysplasia (38), stroke (39),
Wilson’s disease (40), multiple sclerosis (33), neurofibromatosis
type 1 (38, 41), and neurodegenerative diseases. Reduction in
NDI and ODI of the contralateral substantia nigra pars compacta
has been shown to correlate negatively with clinical severity of
Parkinson’s disease (42) whereas in pre-manifest Huntington’s
disease reductions in NDI and ODI are seen in a range of
white matter tracts with reduced NDI in the corpus callosum
correlating positively with markers of severity (43). In patients
with young onset Alzheimer’s disease reduction in NDI and ODI
is seen corrected for reduced thickness within several relevant
cortical areas, with lower NDI values in patients scoring less well
on cognitive tests (44), while in a rodent model NODDI indices
correlate more consistently than DTI parameters with the burden
of tau pathology harbored by the cortex, corpus callosum, and
hippocampus (45).

Use of NODDI imaging in ALS has only recently been
undertaken. Whole brain analysis in patients with manifest
disease has demonstrated a significant NDI reduction throughout
the intracranial CSTs up to the subcortical matter of the
precentral gyri and across the corpus callosum, with increased
ODI in the anterior limb of right internal capsule and increased
ISO adjacent to the right lateral ventricle relative to healthy
controls (46). NDI within the right corona radiata and precentral
subcortical white matter was decreased to a greater extent in
those patients with both limb and bulbar involvement compared
to limb alone, and longer disease durations correlated with
reduced ODI in the precentral gyri, dorsolateral prefrontal
cortices, and precuneus. Furthermore, at the statistical threshold
used, FA was reduced as expected within the CSTs but less
extensively than NDI, and changes were not observed within
the corpus callosum, implying NODDI may be more sensitive
than DTI. Indeed, combined NODDI and DTI has also been
performed in pre-manifest C9orf72 mutation carriers alongside
first degree relatives not possessing the pathological repeat
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FIGURE 1 | Models of diffusion for neurite orientation dispersion and density imaging (NODDI) and diffusion tensor imaging (DTI). The diffusion tensor model of DTI is

based upon three orthogonal axes of diffusion (V1, V2, and V3) yielding radial, axial, and mean diffusivity from which fractional anisotropy (FA) can be estimated.

NODDI considers diffusion within three compartments: restricted diffusion in the intracellular compartment, hindered diffusion in the extracellular compartment, and

free diffusion in cerebrospinal fluid (CSF), from which parameter maps representing neurite density (NDI), orientation dispersion (ODI), and isotropic fraction (ISO)

indices can be estimated. Yellow circles highlight a region where changes in FA can be accompanied by changes in both NDI and ODI. Adapted from Rae et al. (32).

expansion (47). The effect size relating to detectable reductions
of NDI within 7 of 11 white matter tracts, including the CSTs,
is greater than that for DTI metrics (in this case increased
axial diffusivity, RD, and MD rather than decreased FA) albeit
statistically significant in just two. Therefore, the results appear
to corroborate the implication that lowered FA (or increased
diffusivity) in the CSTs and corpus callosum results from the
loss of axon fibers rather than increased complexity or dispersion
within tracts. Longitudinal NODDI scans have not yet been
investigated although results from an ancillary imaging study
to the Modifying Immune Response and Outcomes in ALS

(MIROCALS) trial of low dose Interleukin-2 treatment are
awaited.

In any case, neuroimaging techniques are constantly evolving
with a raft of acronyms and employing different protocols aiming
to reflect the true histological framework of gray and white
matter. Although NODDI is considered non-inferior to other
MRI modalities of high-angular resolution in this regard (48), it
may be that acquisition protocols orMRI data modeling methods
undertaken in NODDI, such as spherical (rather than linear)
tensor encoding (49) along with tract-based (50), gray matter
based (37), and gray matter surface based (51) spatial statistics
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are further refined in due course to overcome its own recognized
limitations.

QUANTITATIVE MAGNETIZATION

TRANSFER IMAGING (QMTI)

Magnetization transfer imaging, unlike the NODDI model of
diffusion MRI, essentially utilizes a “two pool” model in which
hydrogen protons are either free or bound to macromolecules
(lipids and proteins) within the semisolid tissue. The latter
protons do not directly contribute to the MRI signal and
are “silent” in diffusion sequences (increased radial diffusivity
with DTI is not specific for demyelination) (52), but can be
indirectly probed thanks to their interaction with the free protons
following off-frequency radiofrequency pulses. The exchange
in magnetization between the two compartments allows the
state of the semisolid pool (saturated) to affect that of the free
protons, resulting in partial saturation and in a decrease of its
overall magnetization (53). The magnetization transfer (MT)
effect can thereby produce a qualitative magnetization transfer
tissue contrast (MTC) image and is already clinically utilized as
part of MR angiography and gadolinium-enhanced T1-weighted
sequences, for instance. Indeed, MTC T1 images in patients
with ALS have shown hyperintensity along the CST (54, 55)
and CC (54) in a proportion of cases (and more conspicuously
than FLAIR) (55) compared to control subjects which was
significantly related to the degree of reduced FA in the same
regions and presumed to reflect damage to the white matter
tracts, although with no clear association with clinical rating
scales or disease duration (54). Acquiring a proton-density image
with and without a MT pulse renders it possible to semi-quantify
the MT effect and produce a voxel-wise magnetization transfer
ratio (MTR) to reflect changes in macromolecular integrity.
Accordingly, reduced MTR within the brain has been reported
within the CSTs (56), the precentral and other frontal and
extramotor gyri (57, 58), in patients with ALS compared to
healthy controls, and independently of gray matter atrophy as
measured by voxel-basemorphometry (57). Significantly reduced
average MTR within the spinal cord has also been reported with
respect to controls (59–61), accompanied by diminished cord
cross-sectional area and average FA (60), and with a longitudinal
decline between sequential scans (59). More recent segmentation
of the cord into gray and white matter areas, and using a
particular adjusted MT protocol called inhomogeneous MT, has
demonstrated localized reductions in MTR to the CSTs and
dorsal columns in addition to the anterior horns at several non-
contiguous cervical levels (62). However, the MTC and MTR are
dependent on a range of imaging variables and their biophysical
basis is undefined (53).

The development of mathematical models able to describe
the MT-weighted signal as a function of the saturating
pulses has enabled more biologically applicable parameters to
be derived from quantitative magnetization transfer imaging
(qMTi), including the macromolecular pool fraction [f; modeled
to essentially represent myelin content], forward exchange rate
of magnetization transfer [kf], and transverse relaxation time
of the free pool [T2

F]. Although qMTi is yet to be explored

in patients with ALS, studies in multiple sclerosis (MS) have
demonstrated reductions in f and kf, and increased T2

F in acute
inflammatory lesions with a subsequent return to baseline over
several months (63). Compared to healthy controls, normal
appearing white matter (NAWM) has reduced f, kf, and MTR
(64), and reduced MTR in chronic MS plaques and has been
shown to correlate with greater disability (65). Incidentally,
reduced MTR in the context of MS is generally considered to
be a marker of demyelination, although a small study subdivided
NAWM according to distance from a T2 hyper-intense plaque
and degree ofMTR reduction and found that, whereas at the edge
of plaques reduced MTR correlates with reduced myelin content
reducedMTR in NAWMmay be result from to swollen microglia
and, perhaps, axons (66), thus highlighting the uncertainty of
its interpretation. MTR in normal appearing gray matter is also
reduced in patients with relapsing-remitting MS (67–69) and
may also correlate with disability, although variable results are
reported (68). Acute increases in kf (but without change in f
or T2f) on qMTi have also been induced within the insula in
the context of a systemic inflammatory stimulus comprising
intramuscular injection of typhoid vaccination and are associated
with increased levels of reported fatigue, in addition to a co-
localized increase in glucose metabolism measured by FGD-
PET (70). Although the mechanisms underlying changes in
magnetization transfer parameters are likely to be very different
between diseases, it is plausible that qMTi would be sensitive to
structural alterations in ALS given the likely role for the immune
system in its pathogenesis (71, 72).

MULTIMODAL MRI

Furthermore, it may be that performing simultaneous qMTi with
several other MR neuroimaging sequences, such as diffusion
and (resting state) functional MRI, will be most helpful in
building a better understanding how both tissue structure and
function are affected by the disease process and, ultimately,
the difference between certain phenotypes to guide more
personalized treatments. Indeed, this is exemplified by the
estimations of the myelinated fiber “g-ratio,” the axon diameter
divided by the diameter of its ensheathing myelin, which is
estimated to ideally be around 0.7 in the central nervous system
(73). As diffusion MRI is insensitive to myelin, the combination
of intraneurite and isotropic fractions from NODDI and the
f value from qMTi is required to calculate the g-ratio across
the brain. Following adolescence, white matter g-ratio tends to
steadily increase with age inferring myelin reduction and knock
on effects with respect to the velocity of neuronal conduction
(74) and premature increases in the g-ratio are accordingly seen
within MS plaques (75, 76). Although ALS is not primarily a
demyelinating disease, new insights into the secondary effects
of the neurodegenerative process may be revealed with these
techniques and correlate with clinical measures.

EVENT-BASED MODELING

Aside from interpreting the deviations of imaging parameters
in terms of current tissue configuration, collecting longitudinal
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FIGURE 2 | Illustration of how the event-based model (EBM) aims to extract temporal information from a cross-sectional data set. Gaussian distributions of fractional

anisotropy (FA) biomarker readings within a tract affected early in the course of the disease, such as the corticospinal tract, would be expected to demonstrate

substantial separation between ALS and Control imaging data (A). However, FA from another area affected at later stages demonstrates much less separation

between distributions (B). By exploiting and characterizing these differences across all biomarkers, the EBM attempts to order the change from “normal” to “diseased”

across the entire disease course.

data is, at least conceptually, the most straightforward approach
to understanding the temporal evolution of neurodegenerative
pathology. However, patient tolerability for repeated MRI
acquisition remains challenging in ALS, particularly, due to
the rapid accumulation of symptoms and perhaps accounts for
the relatively few studies conducted to date (5). Furthermore,
it can be argued that participants who are included would
be those harboring more slowly-progressing disease, and
therefore may not be representative of the majority of patients
with ALS.

Given these limitations, alternative methods such as “big
data” analysis techniques and new modeling approaches
have the potential to greatly increase our understanding of
the mechanisms of disease progression. One such approach
is the Event-Based Model (EBM) (77–79), a generative
probabilistic model originally developed for use in Alzheimer’s
disease (AD) for which it has been validated in addition
to Huntington’s disease (80) and recently in ALS using
oculomotor data (81). The EBM is designed to extract
temporal information from cross-sectional data sets and,
unlike traditional models of disease progression, does not rely
on a priori staging of patients but instead extracts the event
ordering directly from the data, thereby minimizing subjective
bias.

The EBM defines a disease as a series of “events,” where
each event is the change of a biomarker reading from a
“healthy” to a “diseased” state. Crucially, biomarker cut-off
points are not determined beforehand, but are derived from
the data during the modeling process. This not only reduces
subjective bias, but also allows for much finer temporal
characterization of disease progression than is possible under
existing clinically-based staging systems. Healthy control data
are used as a fixed reference, and each biomarker is modeled
as a mixture of two Gaussian distributions (Figure 2). In order
to perform temporal modeling, the EBM assumes that the
disease progression is monotonic for individual biomarkers
(i.e., the severity of disease burden can only increase). Thus,
for biomarkers affected early on in the course of the disease,
there will be larger differences between patient and control
readings, while biomarkers that are affected late on will have

smaller differences between patients and controls. Markov
Chain Monte Carlo (MCMC) techniques can then be used
to determine the most likely event order across the entire
cohort (77).

As with any modeling approach, the EBM has strengths
and weaknesses. The ability to extract fine-grained temporal
information from cross-sectional data is exceptionally novel and
valuable. Use of MCMC techniques also enables the model to
quantify the positional variance of individual biomarkers across
the cohort, thereby allowing a comparison of their relative
importance and variability. In its current form, the EBM reveals
aspects of disease progression that are common across the entire
cohort (an “average” disease progression). The heterogeneity of
ALS means that EBM analyses of stratified subgroups, based
on genetic/prognostic factors, are an important future area for
investigation.

The accuracy of the EBM output, as with any modeling
process, will depend on the quality of the input biomarker
data. As a consequence, ALS event-based modeling can require
large quantities of data, particularly as individual mean cerebral
CST FA values are known to have modest diagnostic power
for ALS [found to have a pooled sensitivity and specificity of
0.68 and 0.73, respectively, in a meta-analysis (82)]. Current
applications of the EBM to ALS data in progress include
analysis of mean FA of white matter (WM) fiber bundles,
modeling of patterns of cortical thinning, volumetric changes
of brain structures, and oculomotor data. Future areas for
development include the application of the EBM to multi-
modal ALS biomarker data. Excitingly, the application of the
EBM to higher order models of diffusion such as NODDI has
the potential to give greater insight into ALS degeneration by
simultaneously modeling the changes within ISO, NDI, and ODI
parameters.

CONCLUSION

Ultimately, all modeling is an attempt to separate meaningful
information from randomness. MRI techniques differentially
model the signal to derive parameters that plausibly relate to
tissue microstructure properties; these parameters can then be
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modeled further using the EBM to reveal patterns that exist
within the data, but which still require human assessment and
interpretation (as well as clinical and histological validation).
Although the innovative imaging and data analysis techniques
presented here constitute a selection of available methods or
protocols, their use singly and in combination has the potential
to transform our understanding of the biological processes and
temporal evolution of ALS, which is likely to benefit further
from multicenter collaboration across the entire ALS research
community.
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Neuroimaging in Amyotrophic Lateral Sclerosis (ALS) has steadily evolved from an

academic exercise to a powerful clinical tool for detecting and following pathological

change. Nevertheless, significant challenges need to be addressed for the translation of

neuroimaging as a robust outcome-metric and biomarker in quality-of-care assessments

and pharmaceutical trials. Studies have been limited by small sample sizes, poor

replication, incomplete patient characterization, and substantial differences in data

collection and processing. This has been further exacerbated by the substantial

heterogeneity associated with ALS. Multi-center transnational collaborations are needed

to address these methodological limitations and achieve representation of rare

phenotypes. This review will use the example of the Neuroimaging Society in ALS

(NiSALS) to discuss the set-up of a multi-center data sharing ecosystem and the

flow of information between various stakeholders. NiSALS’ founding objective was to

establish best practices for the acquisition and processing of MRI data and establish a

structure that allows continuous data sharing and therefore augments the ability to fully

describe patients. The practical challenges associated with such a system, including

quality control, legal, ethical, and logistical constraints, will be discussed, as will be

recommendations for future collaborative endeavors. We posit that “global cohorts”

of well-characterized sub-populations within the disease spectrum are needed to fully

understand the complex interplay between neuroimaging and other clinical metrics used

to study ALS.

Keywords: amyotrophic lateral sclerosis, MRI, data-sharing, NiSALS, quality-control, harmonization, multi-center

INTRODUCTION

Acknowledging the Inherent Heterogeneity in ALS
It is widely accepted that amyotrophic lateral sclerosis (ALS) is a multifactorial disease,
with an etiology that extends far beyond the selective vulnerability of motor neurons.
Heterogeneity stemming from site-of- and age-at-onset, survival, genetic predictors, and the
presence of frontotemporal dementia has severely constrained therapeutic translation (1). Precision
biomarkers provide frameworks for early detection, tracking, and patient stratification, ensuring
that treatment effects are not occluded by phenotypic variability. Today, neuroimaging in ALS isn’t
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limited to merely structural-functional correlations and is on
par with traditional “wet” biomarkers when it comes to group-
and individual-level analyses (2, 3). Neuroimaging represents a
crucial addition to the current repertoire of outcome metrics
used in clinical trials; this includes respiratory measures, muscle
strength, and the Revised Amyotrophic Functional Rating Scale
(ALSFRS-R), the ambiguity of which has been previously
reported (4).

NiSALS: Why Data-Sharing Is the Way

Forward for ALS Research
Given the underlying complexity, low prevalence, and poor
patient longevity, larger, multi-layered data sets are needed to
capture the full spectrum of pathological signatures in ALS and
develop population-specific markers. Such data sets can only
be generated through well co-ordinated, multi-center efforts. In
the wider neurodegenerative field, ventures like the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) have demonstrated
the analytical power of transnational collaborations. ADNI
was launched in 2004 as a multi-site, longitudinal study to
develop biomarkers for Alzheimer’s Disease. To date, over 1,700
publications spanning several topics have resulted from ADNI
data (5–7). ADNI has inspired similar initiatives in various
neurodegenerative conditions, including ALS. “Sampling and
Biomarker Optimization in ALS and other Motor Neuron
Diseases” (SOPHIA) was the most comprehensive of these
efforts and ran from 2012 to 2016, with ∼2.4 million EUR in
funding (http://www.neurodegenerationresearch.eu/fileadmin/
Project_Fact_Sheets/PDFs/Biomarkers/SOPHIA_Fact_Sheet.
pdf). It was conceived with the goal of harmonizing optimal
methodologies for biomarker identification, thereby providing
a pan-European framework within which existing and future
endeavors could integrate. By consolidating expertise from over
15 leading European centers, SOPHIA helped establish the
Progeny database: a web-based sampling infrastructure for the
streamlined collection of clinical, neurophysiological, imaging,
and bio sample-based data. Furthermore, the development
of a centralized repository system for MRI data as part of
SOPHIA led to the establishment of The Neuroimaging
Society in Amyotrophic Lateral Sclerosis (NiSALS). The first
NiSALS meeting (Oxford 2010) recognized the need for
quality-controlled and harmonized MRI data and led to the
publication of consensus guidelines on data acquisition (8).
Annual meetings have since cemented NiSALS’ role as an
international consortium fostering neuroimaging as a key tool
for understanding ALS. Today, a growing number of centers
across Europe, North America, and Australia are NiSALS
members, and are actively contributing data and hosting
symposiums.

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; ALS,

Amyotrophic Lateral Sclerosis; ALSFRS-R, Amyotrophic Lateral Sclerosis

Functional Rating Scale Revised; DICOM, Digital Imaging and Communications

in Medicine; DTI, Diffusion Tensor Imaging; MRI, Magnetic Resonance Imaging;

NiSALS, Neuroimaging Society in Amyotrophic Lateral Sclerosis; QC, Quality

Control; SOPHIA, Sampling and Biomarker Optimization in ALS and otherMotor

Neuron Diseases.

Each year has brought its own set of hurdles and
achievements, showing that large-scale efforts like NiSALS
rather than being monolithic, have the capacity to continuously
adjust to the needs of the scientific community (9, 10). This
review, while not exhaustive, will use NiSALS to illustrate the
stakeholders and processes involved in multi-center data sharing.
We hope to demonstrate that the associated challenges, while not
insignificant, are surmountable, and that only global cohorts can
generate the volume and variety of data needed to understand
complex disorders like ALS.

THE NiSALS ECOSYSTEM: A GENERAL

OVERVIEW

NiSALS’ primary goal was always to function as a self-sustaining
entity that provides the ALS community with the tools needed
to advance neuroimaging-based research. The establishment of
a secure central repository and the institution of a formally
elected steering committee (http://nisals.net/?page_id=159) were
significant first steps. The committee is responsible for the
democratic governance of NiSALS activities, including making
timely project and data-transfer decisions, event management,
and liaising with third-party stakeholders. The general flow
of data and stakeholder-interactions is depicted in Figure 1.
Participating centers can continuously upload MRI data into a
designated repository slot. Folders are available for the collection
of additional clinical data that can be integrated into the server
architecture for appropriate dissemination. However, individual
centers are responsible for (a) obtaining approval for data
sharing from the relevant ethics committee or review board
and (b) appropriate data coding. Contributing centers are
provided with guides, accessible through the NiSALS webpage,
that include recommended packages of established freeware
imaging resources to ensure thorough data de-identification
prior to upload. The uploaded data then undergoes an additional
round of pseudonymization (discussed in Section Data De-
identification) for complete legal compliance. Crucially, each
center has exclusive read/write access to their own data, in
addition to having read-only access to common information
areas. The repository creates individual data root trees to prevent
users from accessing data domains that aren’t theirs. The exact
repository content for each contributor is kept confidential to add
credence to the NiSALS curation mechanisms.

Figure 1 shows that the centralized communication hub
(overseen by the NiSALS co-ordinator and repository curator) is
essential for the streamlined running of the platform. Given the
dynamic data sharing that NiSALS entails, the hub serves as a
liaison point for all stakeholders, especially since data generators
have expressed a desire for continuous feedback on data content
and usage. The co-ordinator is also responsible for organizing
annual NiSALS meetings and collection of associated materials.

The NiSALS webpage (https://nisals.net/) is an indispensable
platform tool. It is used for administrative duties, including
member and event management, compiling support
documentation, and regularly updating legal compliance
notices. The website also serves as an entry-point for interested
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FIGURE 1 | Visual Schematic of the NiSALS ecosystem, including representations of future recommendations.

stakeholders, and is crucial for bolstering outreach. In the
future, the webpage will contain teaching materials and enable
center-specific repository content viewing.

LEGAL FRAMEWORKS AND

DATA-SHARING

Central to any data-sharing effort is the cultivation of trust.
All data-handling procedures are therefore in accordance with
the NiSALS bylaws, which are designed to be collaborative and
transparent. The bylaws recognize that all users need to be
treated equally and should shoulder both the costs and benefits
associated with embargo-free data sharing. Data sharing within
NiSALSmost closely resembles the “learned intermediary”model
(11). Briefly, the model stipulates that an independent panel
reviews applications and grants access to data primarily on the
basis of applicant expertise and the quality of the proposed
research. Within NiSALS, all applications are reviewed by the
steering committee. Applicants must clearly detail (1) intended
scientific analyses, (2) expected time-line to completion, and (3)
specifications of required data in a project proposal. Successful
applicants are bound by a stringent data-sharing agreement i.e., a
legal mechanism to enforce NiSALS’ core bylaws. Of note, are the
following specifics:

1) Following publication, the released data set has to be
destroyed

2) The released data set cannot be shared with third parties
3) Any additional analyses must first be vetted by the

aforementioned application process.

Crucially, NiSALS recognizes that ownership of uploaded data
permanently resides with the uploading center, regardless of
which stage in the data-handling cycle the data is at. Thus,
contributors also have the right to have their data removed from
the repository upon written request.

As with any scientific undertaking, there arises the question
of publications. NiSALS encourages collaborators to define
and agree in writing to authorship roles prior to project
commencement. Authorship credit should be in keeping with the
guidelines developed by the International Committee of Medical
Journal Editors. Responsible data generators should be offered
contributory roles, regardless of the volume of data used. Finally,
authors must reference NiSALS in resulting publications.

In summary, NiSALS operates with maximum practicability
to ensure that (a) the immense benefits of sharing data outweigh
the potential risks and (b) there is no disproportionate burden
on data generators. Of note, when working with multiple
stakeholders across geographical locations, it is unlikely that a
“one size fits all” data-sharing agreement can be developed, as the
judiciary requirements vastly vary between and within countries
and institutions. Similar repositories should ensure that while
their legal frameworks are exacting, they should be broad enough
to facilitate the desired results.

DATA DE-IDENTIFICATION

As within other research domains, data sharing within
neuroimaging is a constant balance between protecting
confidentiality and sharing information to facilitate in-depth
analyses. Multi-centre initiatives add further complexity, as
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individuals have to be universally identifiable, with seamless
linkage of their participation across various projects.

Substantial efforts in bolstering technical inter-operability in
diagnostic imaging resulted in the establishment of the “Digital
Imaging and Communications in Medicine” (DICOM) format.
NiSALS adopted it for repository uploads, as the image-headers
specify the parameters used during image acquisition. This
information is needed for subsequent quality-control (QC) and
harmonization procedures as it is essential for determining which
parameters are most likely to have disturbed image quality or be
most relevant during multi-center data comparison. However,
all original DICOM-files also contain information that needs
to be safeguarded to maintain participant confidentiality. De-
identification within NiSALS is conducted in two basic steps
explained below.

Basic DICOM Pseudonymization
DICOM files are first pseudonymized by removing information
linked to participant identity. As mentioned above, individual
contributing centers are responsible for ensuring this prior
to uploading data. Further, private DICOM-header fields that
are modality- and vendor-dependent must be removed (12,
13). NiSALS’ internal naming conventions require that all
uploaded files use local center-specific pseudonyms; this allows
contributors to (a) keep track of uploaded data, (b) continuously
provide additional data sets, and (c) link insights from the
analysis process back to the original data set.

Internal Repository Pseudonymization
Data within the repository are also subjected to secondary
internal checks prior to being released for analyses. These
checks include the removal of identifiable facial structures
(defacing) and auxiliary whole-DICOM header de-identification
(14). The latter is always in keeping with the current
recommendations by the National Electrical Manufacturers
Association that regularly lists relevant public header fields
(15). Any center-specific information is implicitly removed, as
researchers using the data should be blinded to its source of
origin. All study participants are allocated a unique NiSALS-
generated internal pseudonym. As centers subsequently submit
associated data, it is essential to maintain linkage through
these layers. Therefore, NiSALS’ requires all additional data
to be submitted to the repository following the same pipeline
of pseudonym generation, thus allowing integration with the
individual participant.

QUALITY CONTROL PROCEDURES

As a first layer of QC, robust mechanisms are needed to prevent
inclusion of corrupted MRI data in subsequent analyses. While
being susceptible to obvious errors (e.g., extinction-artifacts),
images in a multi-center set-up can also be compromised by
scanner-hardware/software and modality-specific factors that
may result in bias further downstream (16–18). Manual analysis
and exclusion/inclusion of data sets by a trained rater is time- and
labor-intensive, and contingent on rater expertise. Conversely,
while automated QC procedures may overcome inter- and

intra-rater variability, their applicability to one distinct data-set
may not necessarily be transferable to new data acquired from
different sites, thereby still necessitating visual checks by human
operators (19).

Contributing centers are also responsible for complying
with initial QC requirements prior to upload to minimize the
risk of corrupted data entering the repository. Subsequently,
modality- and analysis-specific QC approaches are applied to the
stored data. Here, the challenge lies in identifying artefacts and
correcting for scanner-specific factors prior to the data entering
a multi-center analysis, whilst minimizing time expenditure and
potential manual bias.

QC mechanisms that enable the processing of large multi-
site data sets have been developed for T1 data. First, covariance
screening of image parameters related to inhomogeneity or
noise is conducted for outlier identification. Hereafter, software-
based preprocessing algorithms for raw T1 images (e.g., as
available with SPM; https://www.fil.ion.ucl.ac.uk/spm/) facilitate
correction of scanner- and protocol-induced systematic artefacts,
whilst minimizing alteration of disease-specific signatures.
Mathematical models likeMahalanobis distance analysis can help
minimize and eliminate software-bias and overcorrection when
identifying technical artefacts in multi-center data sets. These
models provide a meta-analysis of image quality parameters,
indicating which data sets are similar and amenable to pooling
as illustrated in Figure 2. Ultimately, all algorithmic solutions
involve compromise between correction and the biological signal
and therefore need to be continuously improved with feedback
from all users, which is naturally extremely resource-intensive.

Similar QC procedures have been adopted by the NiSALS
DTI Study Group; these include the automated exclusion of
particular gradient directions in single DTI data sets (20, 21)
and correction for acquisition-derived eddy-current-induced
geometric distortions (20). The NiSALS DTI Study Group used
these QC procedures to correct 442 single DTI data sets (from 8
contributing ALS centers) for artefacts like susceptibility-induced
geometric warping, participant motion and chemical shift, prior
to further analysis (10).

CROSS-PLATFORM MRI INTERPRETATION

AND HARMONIZATION

As discussed above, multi-center-studies suffer from poor data
comparability, owing to scanner-hardware/software differences.
For instance, a study using MRI scans of the same subjects
taken at different sites showed that DTI-derived values (e.g.,
fractional anisotropy) showed moderate reproducibility between
different scanners, while particular higher field strengths
and enlarged acquisition resolutions decreased inter-center
variability (22).

Even if different sites use identical scanners, variance can
still arise from differences in derived structural and functional
imaging information; however, harmonization can improve
comparability (23, 24). Processing procedures used at different
sites can also contribute to variability. Therefore, as with ADNI,
standardized MRI-data sets that rely on harmonized acquisition
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FIGURE 2 | Mahalanobis distance analysis of quality parameters for T1-weighted images of 14 ALS centers. (A) Shows the Mahalanobis distances of the raw T1

data, revealing 3 clusters of centers, which although internally homogenous (green squares) could not be pooled into one large data set. (B) Shows the effect of

preprocessing. This allows pooling of T1 data from additional centers with good (green square) or acceptable homogeneity (yellow square). However, 2 centers

although homogenous with each other, could not be pooled with the other data sets (shown in the last 2 rows or right-most columns, respectively).

schemes and have undergone QC are needed to support direct
comparisons of different processing methods.

The majority of MRI-centric publications in ALS are offset
by low sample sizes and high phenotypic heterogeneity within
disease cohorts (3). One of NiSALS’ core objectives was to
define rules for MRI acquisition to help maximize accuracy
and comparability and thereby enlarge study sample sizes. The
published consensus guidelines therefore detail essential and
desirable recommendations for T1, DTI, functional MRI and
spectroscopy data acquisition (8).

ADNI uses a cross-platform calibration procedure that utilizes
traveling phantoms for data harmonization (25). Certainly,
implementing a comparable procedure for ALS centers on a
global scale would require a substantially larger investment of
financial and human resources, partly due to the lower prevalence
of ALS (26). Therefore, NiSALS’ current harmonization
efforts focus on (a) ensuring that previously acquired
neuroimaging data meets standards for multi-center analyses
and (b) using feedback to maximize acquisition accuracy.
Ultimately, MRI acquisition, and harmonization protocols
need to be diligently updated to reflect the latest technical
advances.

Although current uploads primarily include DTI
and T1 data (∼1,000 participants for the latter),
NiSALS welcomes the integration of multi-modal
imaging techniques and combined structural-functional
approaches and hopes to collect and disseminate data
that reflects the full breadth of neuroimaging methods
currently available. However, appropriate set-ups for the
acquisition and use of these modalities also need to be
concurrently developed if they are to be used for multi-site
projects (9).

CLINICAL DATA LINKAGE

Owing to its complexity, ALS cannot be studied as a homogenous
disease. In-depth multi-modal data are required for the
classification of clinical, neuropsychological and imaging-
based phenotypes of sporadic disease and genetic variants.
This is particularly relevant when developing neuroimaging
biomarkers. Incomplete patient characterization has limited
several neuroimaging-based studies; the lack of clinical
data constrains both accurate distinction of ALS from
disease mimics and understanding of pathophysiology and
progression. To fully understand the degree to which MRI
and other modalities can assess disease activity and quantitate
functional progression, they have to be placed within the
framework of core clinical data and other biomarkers. The
latter is crucial as individual biomarkers display different
patterns across the disease course and in different clinical
phenotypes; this has been well described for Alzheimer’s
Disease (27).

Naturally, this is contingent on available resources and
NiSALS therefore advises contributing centers on clinical data
to submit alongside MRI data sets; these have been previously
published (https://www.encals.eu/wp-content/uploads/2016/
09/2015-01-14-ALS-Core-clinical-dataset.pdf). In particular,
NiSALS recognizes the importance of genotyping individuals
and studyingmutation carriers in presymptomatic disease phases
to understand how genetic factors may influence the behavior of
different markers (9).

Further, although data from healthy and disease controls is
being continuously uploaded to the repository and requested
in project proposals, both NiSALS and future efforts need to
rigorously tackle the lack of longitudinal data from these subjects.
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Although a detailed consideration of disease progression
models is beyond the scope of this review, these are important
tools for describing the disease course, particularly when clinical
data cannot be collected at regular time-points for patients.
Models can also help identify center-dependent and independent
biological components. For instance, the newly developed
D50 model enables random sampling of patients, comparisons
between different progressor types and the placement of
biomarker profiles within the functional time course of patients
(28, 29).

FUTURE DIRECTIONS AND

CONCLUSIONS

ALS, although highly heterogeneous, has the advantage of being
measurably progressive. It is crucial to tap into neuroimaging’s
potential and use quantitative tools like MRI to describe
the disease and understand its spread. Efforts like NiSALS
can help the community develop and execute high-level data
sharing, facilitate the replication of results and avoid unnecessary
duplication of efforts. The ecosystem described here provides
a structure for continuous QC and feedback that can help
identify markers that are readily transferable to both the
clinic and industry. Indeed, NiSALS hopes to establish well-
defined collaborations with industrial partners looking to develop
neuroimaging as an outcome metric for clinical trials. NiSALS
can also offer its experience in implementing best practices,
efficiently executing research, and disseminating results for the
benefit of the neurodegenerative community. Future efforts must
build on this momentum and endeavor to make the exercise

more patient-centric by boosting engagement with them and
communicating scientific results to them and the lay population.
Stakeholders should also consider collecting meta-data on the
outcomes of data sharing and how the process can be modified
to better serve the community’s needs.

Resources must also be directed toward building
comprehensive, well-characterized multimodal biomarker
panels. These can help expand the role of imaging beyond
reductive clinico-structural correlations to a precision tool
that can capture subtle pathological changes in population and
individual-level analyses.
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Now that genetic testing can identify persons at risk for developing amyotrophic lateral

sclerosis (ALS) many decades before symptoms begin, there is a critical need for

biomarkers that signal the onset and progression of degeneration. The search for

candidate disease biomarkers in patients with mutations in the gene C9orf72 has

included imaging, physiology, and biofluid measurements. In cross-sectional imaging

studies, C9+ ALS patients display diffuse reductions of gray and white matter integrity

compared to ALS patients without mutations. This structural imaging signature overlaps

with frontotemporal dementia (FTD), reflecting the frequent co-occurrence of cognitive

impairment, even frank FTD, in C9+ ALS patients. Changes in functional connectivity

occur as critical components of the networks associated with cognition and behavior

degenerate. In presymptomatic C9+carriers, subtle differences in volumes of subcortical

structures and functional connectivity can be detected, often decades before the

typical family age of symptom onset. Dipeptide repeat proteins produced by the

repeat expansion mutation are also measurable in the cerebrospinal fluid (CSF) of

presymptomatic gene carriers, possibly throughout their lives. In contrast, a rise in the

level of neurofilament proteins in the CSF appears to presage the onset of degeneration

in presymptomatic carriers in one longitudinal study. Cross-sectional studies indicate

that neurofilament protein levels may provide prognostic information for survival in C9+

ALS patients. Longitudinal studies will be needed to validate the candidate biomarkers

discussed here. Understanding how these candidate biomarkers change over time is

critical if they are to be used in future therapeutic decisions.

Keywords: C9orf72, cortical thinning, diffusion tensor imaging, dipeptide repeat proteins, functional connectivity,

motor neuron disease, neurofilament proteins, biomarker

INTRODUCTION

A repeat expansion mutation in the C9orf72 gene is the most common cause of familial
amyotrophic lateral sclerosis (ALS) in people of Northern European ancestry and accounts for
5-10% of sporadic ALS cases in Europe and the USA (1, 2). The C9orf72 mutation (C9+) is
also a common cause of familial frontotemporal dementia (FTD) (3). The clinical phenotype is
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often mixed, and many C9+ ALS patients have some degree of
cognitive impairment, ranging from mild executive dysfunction
to frank FTD (4). Because mutation carriers can be identified
by genetic testing many decades before symptoms begin,
there is considerable interest in biomarkers to identify when
degeneration begins and to monitor disease progression.
Currently, development of such biomarkers is at the early stage
of identifying measures that differ in group comparisons. This
review will discuss the current status of studies of non-invasive
biomarkers such as imaging and physiology, and minimally
invasive biomarkers derived from biofluids.

IMAGING STUDIES

There is particular interest in neuroimaging as a biomarker
because it offers a way to visualize pathological changes in
the brains of living patients. In autopsy studies, brains from
C9+ patients exhibited the neuronal loss, gliosis, and TDP-
43 inclusions characteristic of sporadic ALS and some FTD
patients (5), as well as the nuclear RNA foci and cytoplasmic
aggregates of dipeptide repeat (DPR) proteins specific to the
C9orf72 mutation (5, 6). The distribution of these pathologic
findings differs between C9+ ALS and C9+ FTD patient brains
(7, 8). The story emerging from neuroimaging studies is that the
diversity of clinical phenotypes reflects the extent to which the
most affected brain regions contribute to networks that underlie
cognitive, behavioral, motor, and language function (9, 10).

Structural MRI—Gray Matter Atrophy
In structural MRI scans, C9+ ALS patients displayed extensive,
relatively symmetric volume loss and cortical thinning compared
to similarly aged healthy subjects (1, 11–14). Compared to
C9– ALS patients (i.e., without the C9orf72 mutation), C9+
ALS patients had greater atrophy of extra-motor cortical
regions, particularly parieto-occipital cortical areas, including
the cuneus and precuneus (11–13), and relatively less atrophy
of the precentral motor cortex (13, 14). Correlations between
volumetric changes and cognitive testing measures have led
several investigators to conclude that the predominant gray
matter imaging pattern in C9+ ALS patients is associated with
cognitive changes (11–14). A similar pattern of diffuse, relatively
symmetric cortical volume loss is found in C9+ FTD patients
(15–19).

Several studies report more atrophy of subcortical structures
in C9+ ALS than in C9– ALS patients. The topographic
specificity of connections between these subcortical structures
and specific cortical regions can lead to discrete functional
deficits. Nearly all volumetric studies to date have reported
thalamic atrophy in C9+ carriers. Thalamic atrophy has been
reported in C9+ ALS patients (11–13), C9+ FTD patients (15,
16, 18–22), and presymptomatic C9+ carriers (23–26). Although
C9+ ALS patients may have more thalamic atrophy compared to
C9– ALS patients with a similar degree of cognitive impairment
(11), the association between thalamic atrophy and cognitive
impairment can be seen in FTD patients with other gene
mutations (27) and C9– ALS patients with cognitive impairment
(28). Because there is topographic specificity of corticothalamic

circuits, degeneration of particular thalamic nuclei should
produce different functional impairments. However, most MRI
studies measured the hemi-thalamus in its entirety. Using a
more refined segmentation scheme in a cohort of C9+ FTD
patients, Lee and colleagues (20) found atrophy specifically in the
medial pulvinar nucleus of the thalamus, a multisensory nucleus
with connections to posterior parietal, prefrontal, and cingulate
cortical areas (29). Schonecker and colleagues reported greater
atrophy of motor sub-regions of the thalamus in symptomatic
C9+ carriers (30).

Atrophy of other subcortical structures has also been reported.
The cerebellum has been of particular interest because high
levels of DPR proteins (8, 31, 32) and RNA foci were found in
cerebellar Purkinje and granule cells in C9+ patients (33), and
levels of cerebellar DPR proteins in C9+ ALS were correlated
with cognitive impairment (31). While a pathological study
reported no appreciable neuronal loss in the cerebellum (15),
cerebellar atrophy has been reported in some, but not all,
imaging studies. Detection differences largely reflect whether the
whole cerebellum or focal cerebellar regions were measured.
Changes in focal cerebellar regions, such as in lobule VIIa/crus
I, were found in several studies of C9+ ALS and C9+ FTD
patients (11, 17, 21, 27, 34). This region of the cerebellum has
been mapped in functional MRI studies to cortical association
networks, including the dorsolateral prefrontal cortex and
parietal association areas that play a role in executive function
(35). Volume loss has also been reported in various nuclei of
the basal ganglia in C9+ ALS and C9+ FTD patients (20, 28,
36), a finding associated with cognitive and behavioral scores
across the spectrum of ALS and FTD, and thought to result
from disruption of corticostriatal circuits (37). Two studies also
reported hippocampal atrophy in C9+ ALS (11, 38), a finding
consistent with the occurrence of hippocampal sclerosis in some
C9+ ALS-FTD brains (5) and memory deficits.

The diffuse nature of the brain atrophy, involving cortical
and subcortical structures, has led to the suggestion that changes
in ventricular volume be used to follow longitudinal disease
progression in C9+ carriers (13, 17, 34) (Figure 1).

Pathological Correlates
The distribution of atrophy in structural MRI scans of C9+ ALS
and FTD patients mirrors the distribution of neuronal loss and
TDP-43 pathology in brains of C9+ ALS-FTD patients (5) and
sporadic ALS and FTD patients (39). However, the relationship
between these hallmarks of degeneration–neuronal loss, gliosis,
and TDP-43 inclusions—and the RNA foci and DPR protein
aggregates specific for the C9+ genotype is still evolving. Unlike
TDP-43 pathology, which closely parallels neurodegeneration,
the distribution of RNA foci (33) and DPR protein pathology
do not (6–8, 33, 40, 41), although reports on the latter have
been somewhat conflicting. A moderate association between the
amount of poly(GA) dystrophic neurites and degeneration in the
frontal cortex was observed (40), and inclusions of poly(GR),
which is especially toxic in in vitro models (42), correlated
with TDP-43 pathology and neurodegeneration in C9+ FTD-
ALS brains (7, 41). Nevertheless, the presence of DPR protein
aggregates and RNA foci did not lead to TDP-43 accumulation
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FIGURE 1 | Representative examples of diffuse cortical atrophy in MRI scans of ALS patients with C9orf72 mutations. The demographic information and scores on

motor and cognitive scales are listed below each patient’s scan. (A) Compared to age-matched controls, mild ventricular enlargement was seen in C9+ patients 1, 2,

and 3 who had ALS, but good cognitive function, as evidenced by their scores on the Mattis Dementia Rating Scale−2 (DRS-2). The surface rendering of one patient

[left side of panel (A)] shows sulci in frontal lobe sulci are also mildly enlarged compared to the occipital lobe. (B) C9+ patients 4, 5, and 6 had ALS-FTD with a similar

degree of motor dysfunction to those in panel (A), as measured by their ALS functional rating scale revised (ALSFRS-R) scores, but marked cognitive impairment with

low DRS-2 scores. There is marked enlargement of ventricles evident in axial slices, as well as enlargement of frontal and temporal sulci in the surface rendering at left

of panel (B).

in a neurologically healthy mosaic carrier (43), and DPR protein
pathology with little, if any, TDP-43 pathology was observed
in a c9FTD kindred with early intellectual disability (44) and
three C9orf72 mutation carriers who developed relatively rapid
cognitive decline but died prematurely due to unrelated illness
(45).

Diffusion Tensor Imaging of White Matter
Tracts
In diffusion tensor imaging (DTI) studies, C9+ ALS patients
showedmore widespread loss of white matter integrity compared
to healthy controls and C9– ALS patients, most commonly in
the frontal white matter, as measured by decreased fractional
anisotropy, increased radial diffusivity, or increased mean
diffusivity (11, 12, 14, 38, 46). Several white matter tracts affected
in C9+ ALS are not typically affected in cognitively intact
C9– ALS patients, including the genu of the corpus callosum,
anterior limbs of the internal capsule, thalamic radiations, and
long association tracts such as the uncinate fasciculus, superior
longitudinal fasciculus, and inferior longitudinal fasciculus (11,

12, 14, 38, 46). These frontal and association tracts were also
affected in diffusion studies of C9+ FTD patients (17, 20, 36),
and presymptomatic C9+ carriers in some studies (47). Motor
tracts, including the corticospinal tract and motor segment of the
corpus callosum, were affected in C9+ ALS patients compared
to healthy controls (11, 46), but exhibited less disruption than in
C9– ALS patients (14). In a group of C9+ carriers with a mixture
of phenotypes, changes in diffusion indices of specific tracts
correlated with clinical measures: frontal white matter correlated
with lexical fluency and behavioral scores, and changes in motor
tracts correlated with the ALS functional rating scale (46).

Unresolved Questions About Structural
Imaging as a Biomarker
Several questions arise from the findings in structural MRI
scans. First, does a genotype-specific C9+ MRI signature
exist? To address this question, Westeneng and colleagues
(38) identified a candidate “genotype-specific MRI signature”
in a model comparing 92 volumetric and DTI variables in
scans of 28 C9+ to 28 C9– ALS patients. Although 11
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imaging variables identified a C9+ specific signature in the
training dataset, nearly 20% of C9– ALS patients in a large
validation dataset were classified as having the C9+ MRI
signature. Misclassified patients scored more poorly on a
measure of executive function, thus underscoring the close
association between neuroanatomical atrophy patterns and
clinical phenotypes. A second question is whether the volumetric
differences in adult C9+ carriers arise during development or
are a consequence of degeneration. This question was addressed
in imaging studies comparing relatively young presymptomatic
C9+ carriers (<age 40) to non-carriers from the same families.
Although older presymptomatic C9+ carriers had clear evidence
of atrophy compared to similarly-aged C9– family members,
so did younger C9+ presymptomatic carriers when compared
to C9– family members of the same age (24–26, 47, 48).
Cortical and subcortical structures were smaller, particularly
the thalamus, in younger C9+ carriers. The common genetic
background of family members with and without the C9orf72
mutation facilitated detection of small differences in these
studies. Lee and colleagues found that smaller gray matter
volumes occurred across a range of ages in presymptomatic
C9+ carriers and had a similar age-related decline as in C9–
controls, suggesting a developmental origin (47). Longitudinal
studies in individual C9+ carriers before and after the onset of
symptoms will be needed to truly determine whether congenitally
small brain structures begin accelerated volume loss with the
onset of degeneration in adulthood or whether the C9orf72
mutation leads to slow, lifelong accumulation of subclinical
pathology. Lastly, because the distribution of atrophy mirrors the
distribution of TDP-43 in pathological studies (5), longitudinal
structural imaging, in combination with clinical phenotyping,
can be used to test hypotheses that TDP-43 pathology spreads
through axonal connections. Pathological studies in sporadic
ALS have led to the proposal that TDP-43 pathology spreads
through corticofugal projections (49). In contrast, in behavioral-
variant FTD, TDP-43 pathology has been proposed to spread
from orbitofrontal cortex to posterior regions through axonal
tracts (50).

Functional Connectivity
Changes in functional connectivity using task-based or resting
state fMRI have been reported prior to development of clinical
symptoms in patients with GRN or MAPT mutations at risk
for FTD (51). Three studies examined changes in functional
connectivity in resting state networks in C9+ carriers. One
study in symptomatic carriers found that C9+ and C9–
behavioral variant FTD patients had disruption of salience
network connectivity that was associated with neuropsychiatric
severity, as well as disruption of sensorimotor connectivity
(20). The disruption of the salience network occurred with
atrophy of different nodes within the salience network in
individual patients (20). Disruption of the salience network
and a network generated from a medial pulvinar nucleus seed
was also observed in young presymptomatic C9+ carriers
(47). Another study reported increased connectivity in the
visual network of C9+ carriers with a mixture of motor and

cognitive phenotypes compared to sporadic cases with similar
phenotypes (11).

Proton Emission Tomography
Hypometabolism in the frontal lobes in FDG-PET studies is
considered supportive of a clinical diagnosis of FTD (52). The
few reports of PET imaging in C9+ carriers had slightly different
findings. In one study, C9+ ALS patients had more widespread
hypometabolism occurring in the cingulate, insula, caudate, and
thalamus, with clusters of hypermetabolism in occipital, left
precentral, left postcentral, and superior temporal cortex when
compared to C9– ALS patients with or without FTD (53).
In contrast, the other study reported that C9+ ALS and C9–
ALS patients exhibited hypometabolism in peri-rolandic cortex;
several prefrontal regions had hypometabolism in both groups,
but C9+ ALS patients alone had focal hypometabolism in the
thalamus and posterior cingulate cortex (54). One case study
also reported frontal and temporal hypometabolism in a C9+
ALS patient who subsequently developed FTD (55). Another
reported that amyloid imaging, but not FDG-PET, distinguished
FTD from Alzheimer disease in a C9+ carrier (56).

PHYSIOLOGY

Physiological methods have been used to assess cortical function
in C9+ carriers. Transcranial magnetic stimulation (TMS)
is a non-invasive technique for assessing cortical excitability.
Numerous TMS studies in sporadic ALS patients have provided
evidence for hyperexcitability of the motor cortex early in disease
(57), with loss of excitability at late stages (58). C9+ ALS patients
were similarly found to have increased cortical excitability
according to several different TMS indices, but presymptomatic
C9+ carriers did not (59–61). Evoked potential measures have
been used to explore particular cognitive functions in C9+
patients (62), but have not been routinely used to identify disease
onset or severity. Electroimpedance myography (63) and Motor
Unit Number Index (MUNIX) (64) are non-invasive methods
that have been used to follow lower motor neuron dysfunction in
ALS patients in clinical trials but, to date, have not been reported
in C9+ ALS patients.

ENERGY METABOLISM

Patients with ALS develop defects in energy metabolism that
include low body mass index (BMI), hypermetabolism, and
hyperlipidemia (65, 66). While the contribution of dysregulated
energy homeostasis to ALS pathogenesis remains to be resolved,
such defects correlate with prognostic factors. For instance,
weight loss and hypermetabolism are associated with faster
disease progression and shorter survival in ALS (66–68).
The cause of these metabolic changes is unknown, but may
result from hypothalamic atrophy. Gorges et al. (69) have
shown that the hypothalamus is atrophied in ALS patients
and in presymptomatic ALS mutation carriers (the latter were
comprised predominantly of C9+ individuals). Furthermore,
they found a modest but significant correlation between
hypothalamic volume and BMI, especially in patients with
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TABLE 1 | Timeframes for detecting changes in selected candidate biomarkers in C9orf72 carriers.

Years prior to

symptom onset

1 year prior to

clinical symptoms

Early–mid stages

of disease

Late stages of

disease

CSF dipeptide repeat proteins • • • •

Functional connectivity salience network (fMRI) • • • •

Thalamic atrophy • • • •

CSF NfL • • ?

Cortical hyperexcitability (TMS) • ?

Reduced integrity of frontal white matter and association tracts (DTI) ? • •

CSF pNfH ? • •

FDG-PET frontotemporal hypometabolism • •

Global loss of functional connectivity • •

Global volume loss–ventricular atrophy, subcortical atrophy • •

Diffuse cortical thinning • •

Diffuse loss of white matter integrity (DTI) • •

CSF, cerebrospinal fluid; DTI, diffusion tensor imaging; FDG-PET, fluoro-deoxyglucose proton emission tomography; fMRI, functional magnetic resonance imaging; pNfH, phosphorylated

neurofilament heavy chain; NfL, Neurofilament light chain; TMS, transcranial magnetic stimulation. Question marks indicate measures needing further study.

familial ALS, and observed that anterior hypothalamic volumes
correlate with age of disease onset (69). While these findings are
not specific to C9+ carriers, they do suggest that hypothalamic
atrophy, BMI, and disturbances in energy homeostasis could
provide prognostic insight.

CSF AND BIOFLUID STUDIES

Fluid-based biomarker discovery efforts for ALS have most
often been conducted using cerebrospinal fluid (CSF) due to
its proximity to affected neuroanatomical regions. However,
progress has been made using plasma and serum, and studies
using urine and saliva are emerging (70). Among themore widely
studied biomarker candidates are inflammatory mediators,
metabolic markers and neurofilament proteins; the latter,
however, have arguably garnered the most attention (70, 71).
Neurofilament proteins, which include neurofilament heavy
chain (NfH), neurofilament medium chain and neurofilament
light chain (NfL), are abundantly and exclusively expressed in
neurons where they form the neuronal cytoskeleton. Because
neurofilament proteins are released from neurons upon axonal
damage or degeneration, they are considered indicators of
neuronal injury for various neurological disorders.

Neurofilament Proteins
In C9+ carriers, levels of CSF phosphorylated NfH (pNfH) were
significantly higher in patients with ALS or FTD compared to
asymptomatic individuals, and strongly associated with survival
in patients with C9+ ALS (72). Notably, C9+ ALS patients had
significantly higher pNFH levels than C9– ALS patients, which
presumably reflected increased neurodegeneration, consistent
with reports that patients with C9+ ALS develop greater brain
atrophy, particularly in extra-motor regions, compared to C9–
ALS patients (11–13). More diffuse degenerationmay account for
the shorter survival of C9+ ALS patients compared to C9– ALS
patients (1, 72–75). Similar to pNfH, CSFNfL levels were elevated

in symptomatic compared to presymptomatic C9+ carriers
(76, 77), and higher NfL levels in symptomatic individuals
correlated with greater disease severity and shorter survival (77).
Furthermore, elevated CSF NfL in C9+ carriers was associated
with lower gray matter volumes in the ventral and dorsomedial
prefrontal cortex, ventral, and dorsal insula, anterior cingulate,
caudate, medial thalamus, and other frontotemporoparietal
regions (77).

These findings supporting CSF pNfH and NfL as prognostic
markers for C9+ patients could significantly impact drug
development. For instance, the heterogeneity of disease course
in C9+ ALS could result in different proportions of fast
and slow progressors in clinical treatment arms. Using pNfH
and NfL levels as surrogates for progression rate could
facilitate stratification of patients into balanced groups to
reduce variability in treatment outcomes. Early evidence also
suggests that NfL in CSF and serum can inform the potential
phenoconversion of individuals from an asymptomatic to a
symptomatic state (78). Through the study of individuals that
carry a mutation in C9orf72 or other ALS-associated genes,
Benatar and colleagues found that NfL in asymptomaticmutation
carriers was elevated above the range seen in healthy individuals
as early as 12 months prior to the earliest clinical symptoms
(78). Should these findings be validated in additional cohorts,
NfL could provide insight on when neurodegeneration begins.
This would facilitate the timely diagnosis of C9+ ALS, and
increase the likelihood of enrolling patients in clinical trials at an
early stage of disease when they are most likely to benefit from
therapeutic intervention.

Dipeptide Repeat Proteins
In addition to prognostic biomarkers, markers of target
engagement would improve the interpretation of clinical trials
for C9+ ALS and FTD. As mentioned above, a characteristic
neuropathological feature of C9+ ALS and FTD is the presence
of neuronal inclusions formed of DPR proteins synthesized from
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expanded C9orf72 repeats. One of these proteins, poly(GP), is
abundantly expressed in the brain of C9+ carriers and is detected
in CSF (72, 77, 79, 80). While several studies observed that CSF
poly(GP) did not associate with age at disease onset, survival,
or markers of neurodegeneration (e.g., CSF pNfH or NfL, or
measures of brain atrophy) (72, 77, 79), poly(GP) shows promise
as a pharmacodynamic biomarker (81).

Since RNA transcripts of expanded C9orf72 repeats are
believed to play a key role in C9+ALS and FTD (82), therapeutic
strategies that target C9orf72 repeat RNA are being developed.
Given that levels of poly(GP) correlated with levels of repeat-
containing RNA in the cerebellum of C9+ carriers (31, 83),
poly(GP) was investigated as a marker of target engagement for
repeat RNA-based therapies. Antisense oligonucleotides (ASOs),
small molecules and genetic modifiers that target C9orf72 repeat
RNA attenuated poly(GP) levels in various preclinical models
including yeast, worms, mice, and C9+ ALS patient cell lines
(81, 84, 85). For example, poly(GP) was detected in CSF of mice
expressing an expanded C9orf72 repeat in the brain, and CSF
poly(GP) was decreased following treatment with a repeat RNA-

targeting ASO. Of note, CSF poly(GP) levels correlated with DPR

protein pathology, repeat RNA levels and RNA foci burden in
the brains of mice (81). These data suggest that monitoring CSF
poly(GP) before and during treatment of patients participating
in clinical trials presents a feasible approach to gauge target
engagement.

SUMMARY

The search for biomarkers of disease onset and progression

in C9orf72 repeat expansion carriers has yielded promising
candidate biomarkers (Table 1). Clinically, cognitive, behavioral,

and motor impairment occur on a continuum in patients with
the C9orf72 mutation. Non-invasive imaging studies in C9+
carriers have identified structural and functional changes in

critical components of the networks associated with cognition
and behavior. Early thalamic involvement has been detected in

structural, functional, and metabolic imaging studies in C9+
carriers across different clinical phenotypes, in both prospective
and retrospective studies. Diffusion changes in frontal white
matter may also occur early in disease. These non-invasive
imaging measures warrant further study in asymptomatic
carriers as early markers of degeneration. Among the minimally
invasive biomarker measures, CSF pNfH or NfL may allow
identification of disease onset in asymptomatic carriers and
forecast survival in symptomatic carriers (72, 77, 78). Now
that C9orf72 mutation carriers can be identified by genetic
testing many decades before symptoms begin, and efforts to
develop gene-directed therapy are underway, it is possible to
imagine that biomarkers will play important roles in future
therapeutic decisions. For example, in the future, persons
known to carry the C9orf72 mutation could undergo periodic
screening with non-invasive tests such as MRI or physiology,
followed by minimally invasive testing to measure CSF or blood
biomarkers when findings suspicious for neurodegeneration
arise.
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Biomarkers research in amyotrophic lateral sclerosis (ALS) holds the promise of improving

ALS diagnosis, follow-up of patients, and clinical trials outcomes. Metabolomics have a

big impact on biomarkers identification. In this mini-review, we provide the main findings

of metabolomics studies in ALS and discuss the most relevant therapeutics attempts

that targeted some prominent alterations found in ALS, like glutamate excitotoxicity,

oxidative stress, alterations in energetic metabolism, and creatinine levels. Metabolomics

studies have reported putative diagnosis or prognosis biomarkers, but discrepancies

among these studies did not allow validation of metabolic biomarkers for clinical use

in ALS. In this context, we wonder whether metabolomics knowledge could improve

ALS therapeutics. As metabolomics identify specific metabolic pathways modified by

disease progression and/or treatment, we support that adjuvant or combined treatment

should be used to rescue these pathways, creating a new perspective for ALS treatment.

Some ongoing clinical trials are already trying to target these pathways. As clinical

trials in ALS have been disappointing and considering the heterogeneity of the disease

presentation, we support the application of a pharmacometabolomic approach to

evaluate the individual response to drug treatments and their side effects, enabling the

development of personalized treatments for ALS. We suggest that the best strategy to

apply metabolomics for ALS therapeutics progress is to establish a metabolic signature

for ALS patients in order to improve the knowledge of patient metabotypes, to choose

the most adequate pharmacological treatment, and to follow the drug response and side

effects, based on metabolomics biomarkers.

Keywords: ALS, metabolomics, pharmacometabolomics, therapeutic, creatinine

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease, which
ultimately leads to death due to respiratory failure usually 3–5 years after the appearance of
first symptoms. ALS wandering diagnosis spreads ∼12 months after symptoms onset—this long
delay being partly related to the lack of specific diagnostic tests. Today, only two pharmacological
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treatments are approved for ALS: riluzole and edaravone, which
only show small effects on survival and decline of functional
impairment, respectively. Numerous clinical trials have been
conducted on the identification of new therapies for ALS, but
their findings are disappointing. One of the reasons of these
failures could be the use of inappropriate methodology in the
clinical studies, like poor design or lack of appropriate cohort
enrichment strategies (1). Early diagnosis could also increase
recruitment of patients in earlier stages of the disease to clinical
trials (2). Moreover, the functional scales used to assess motor
function in ALS patients (ALS Functional Rating Scale-Revised;
ALSFRS-R, forced vital capacity, and muscular testing) may
be insensitive to subtly follow drug response. Thus, the search
and identification of reliable biomarkers for ALS diagnosis and
prognosis is of utmost importance, as biomarkers follow-up
could help in the identification of drug-response phenotypes,
improving evaluation of treatment efficacy.

“Omics” research comprise systemic analyses (including
transcriptomics, genomics, proteomics, lipidomics, and
metabolomics) that advanced immensely in the field of
biomarkers. For example, proteomics research identified a
structural neuronal protein, the neurofilament, as a putative
biomarker for ALS, especially for ALS diagnosis regarding
its sensitivity and specificity (3). Neurofilaments also showed
promising results in the field of prognostic prediction factors
(4–6), but its application was not yet validated in the clinical
practice.

Metabolomics studies identified several metabolites related
to pathways implicated in the pathophysiology of ALS, both
in animal models and in ALS patients, thus improving
our knowledge about the disease mechanisms (7, 8). These
metabolites could represent ALS biomarkers alone or in
combination, by composing a metabolic signature for ALS.
Furthermore, as identified metabolites are related to pathways
that are modified in the disease, adjuvant therapy could target
these pathways, and compensate their dysfunction. Identification
of metabolic signatures also enables a personalized therapy
and the direct follow up of drug effect in each patient—a
proposition of a new field called pharmacometabolomics. In this
review, we provide the main findings of metabolomics studies
in ALS for biomarkers identification or for understanding ALS
pathophysiology. Furthermore, we summarize recent evidence
that support metabolomics applications in the clinical practice, as
improvement of therapeutics and treatment follow-up. Here, we
shed a light into other applications of metabolomics knowledge
through the extension of its interest beyond the biomarkers
research.

WHAT CAN METABOLOMICS ANALYSES

TELL US?

Metabolomics is based on the global search for metabolites,
defined as small molecules that represent the downstream
products of ongoing biological processes in cells, tissues, and
other biological samples (9). A particular metabolic profile—
or “metabotype”—of a systemic biofluid (such as blood or the

cerebrospinal fluid, CSF) reflects directly the metabolic status of
different organs and tissues because of continuous exchanges of
metabolites between tissues and fluids (7). To design a metabolic
profile, metabolites are selected according to their polarity, mass,
and concentrations using high-throughput techniques (10).
After data pre-treatment, metabolites are analyzed by univariate
analysis and multivariate analysis to identify the most important
contributors to the discrimination between samples (11, 12).

Metabolomics research identified several individual
metabolites and metabolic signatures (with or without
identification of each metabolite composing such signature)
that can discriminate ALS from non-ALS cases (10, 13–16).
Metabolomics can also determine metabolic signatures that
identify distinct subgroups of ALS patients according to their
clinical characteristics or disease evolution (17–19). Altogether,
the main objectives of metabolomics studies performed in ALS
have been punctually reached. However, its application in the
clinical routine or its extension to other aims (for example, for
following drug responses) will depend on the ability to overcome
several limitations of the method—for example, the differences in
samples treatment, data analysis, and lack of external validation
for many of these identified signatures.

METABOLOMICS STUDIES IDENTIFIED

METABOLITES RELATED WITH

PATHOPHYSIOLOGICAL MECHANISMS IN

ALS

Although the exact mechanism that initiate ALS pathogenesis
remain partially unknown, glutamatergic excitotoxicity,
oxidative stress, and mitochondrial dysfunction have been
reported as key contributors to the motor neuron degeneration
(20). Metabolomics may provide a new light to evaluate these
pathophysiological pathways by identifying metabolites directly
associated with these pathways (8). Here we summarize the
main findings of metabolomics studies linked with the most
prominent pathophysiological alterations observed in ALS
patients. Interestingly, these alterations were also observed in
ALS models.

Glutamate
Glutamate plays a key role in ALS, as it is not only involved in
excitotoxicity, but also in other mechanisms such as oxidative
stress and metabolism disturbance (21). The only treatment
approved that counteract the glutamatergic hyperactivation in
ALS is riluzole, a non-competitive blocker of glutamatergic
transmission (22–24). Glutamate remains the most cited
metabolite increased in blood samples (12, 25, 26) and CSF (25,
27–29) from ALS patients, as reported by independent research
groups. Recently, a metabolomics study proposed glutamic acid
as a potential biomarker for ALS, after validating it in a healthy
cohort (30). The increase of glutamate in CSF could be linked
with the decrease in astrocytic glutamate transporter (GLT)-1
expression in motor cortex and spinal cord observed in ALS
patients (17, 31, 32). Interestingly, ALS animal models also
present alterations in glutamate levels (33–35). Rats expressing
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the ALS-linked familial mutation Super Oxide Dismutase-1
(SOD1)-G93A showed a decrease in the astrocytic glutamate
transporter expression in the spinal cord (36), as reported in ALS
patients. Is important to note that astrocytes have been pointed
as key elements in the pathophysiology of ALS, as is for their role
in mediating glutamatergic activation or as for their metabolic
support to neurons (37).

Antioxidants
Oxidative stress is also a well-known mechanism involved in
ALS and is directly linked with glutamatergic toxicity that
increases the production of reactive oxygen species (ROS) (38,
39). Astrocytes release ascorbic acid (an endogenous antioxidant)
after glutamatergic stimulation, and the elevated level of
ascorbate in the CSF of ALS patients may reflect a compensatory
mechanism (11, 40). Another antioxidant metabolite, uric acid,
was shown to be involved in ALS pathophysiology. Increased
levels of uric acid were suggested to be associated with a slow
progression of ALS (41, 42). Homocysteine, another endogenous
antioxidant, was also pointed by metabolomics studies as a
potential biomarker for ALS (30, 39).

Lipids
ALS patients usually present compromised energy homeostasis,
including basal hypermetabolism, body weight loss, and
abnormal metabolism of glucose and lipids (43, 44). In agreement
with that, ALS patients present a 10-fold increase in the
cholesterol esters C16:0 and C18:0 in the spinal cord, while in
a mice model of ALS these substances are increased by 4- and
10-fold in the lower spinal cord during the presymptomatic
and symptomatic phases, respectively (45). Postmortem analyses
show that the spinal cord tissue from ALS patients presents a
remarkable decrease in docosahexaenoic acid (DHA) levels and
in n-3 polyunsaturated fatty acids (PUFA), in sharp contrast with
the increase of DHA content found in the brain cortex (46).

Creatinine
Reduced levels of creatinine in the CSF or blood from ALS
patients were reported from different research groups, including
metabolomics studies (42, 47–49). Creatinine reflects skeletal
muscle production and reduced levels of this metabolite are
directly related to amyotrophy, a cardinal ALS symptom. Use of
plasma creatinine levels as a biomarker in ALS was suggested
for monitoring disease progression in clinical trials (50), and
creatinine was the first metabolite already used to evaluate drug
therapy response to dexpramipexole in a clinical trial (51).

Findings regarding metabolomics are promising but
disappointing, as, to date, no biomarker was approved for
diagnosis or prognosis use (10). To go further with this
approach, well-designed and large cohorts studies would be
essential for biomarker validation (52), and the improvement
of analytical and statistical steps may improve the robustness
of the strategy (16, 19). Importantly, all metabolomics studies
published so far have identified metabolites linked to the same
pathophysiological pathways, thus reinforcing the potential
of metabolomics to explain pathophysiological mechanisms
underlying ALS. In this context, we suggest that metabolomics

analyses may be useful for other applications than identifying
diagnostic or prognostic biomarkers, such as for example,
monitoring disease course and identifying treatment outcomes
and side effects in clinical trials.

METABOLOMICS-IDENTIFIED

ALTERATIONS AS TARGETS FOR NEW

THERAPEUTIC STRATEGIES

Disturbed pathways identified through metabolomics studies in
cellular and animal models, as well as in ALS patients, hold the
potential to be used for the discovery of new therapies in ALS
(48). The application of metabolomics findings in preclinical and
clinical studies to target glutamatergic toxicity (21) and energy
metabolism dysfunction (44) were already reviewed. Thus, here
we will summarize the ongoing therapeutics attempts that target
alterations identified bymetabolomics studies and with beneficial
effects in ALS preclinical tests (Table 1).

As mentioned before, metabolomics and non-metabolomics
studies demonstrated alterations in glutamate levels in CFS
and blood of ALS patients. Several clinical trials tried to
demonstrate the effect of anti-glutamatergic drugs—already
approved for the treatment of other neurological diseases—for
the treatment of ALS, but failed to show any improvements.
This is the case for lamotrigine, topiramate, gabapentin,
and talampanel (21). Current active clinical trials investigate
the potential effect of memantine and perampanel in ALS,
drugs used for Alzheimer’s disease and epilepsy treatment,
respectively (21).

Focusing on oxidative stress (as edaravone, the recent drug
approved by the FDA for ALS treatment that is a ROS scavenger),
a clinical trial is investigating the effect of inosine treatment for

TABLE 1 | Ongoing clinical trials with therapeutics interventions focused in

alterations identified by metabolomics studies.

Target Intervention Clinical trials for ALS

Glutamatergic

overactivation

Perampanel Phase II, NCT03377309

(Lebanon); NCT03019419

(Japan); NCT03020797

(Unites States).

Memantine Ongoing (phase II,

NCT02118727, Unites

States).

[No effect observed in

phase II-III; (53)].

Oxidative stress Inosine Phase I, NCT02288091

(United States).

CC100 Phase I, NCT03049046

(United States).

Hypermetabolism Triheptanoin Phase I-II, NCT03506425

(United States).

High caloric fatty diet NCT02306590 (Germany).

Oral nutritional

supplementation (high

fat and protein)

NCT02152449 (France).

Information available in clinicaltrials.gov.
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ALS. Inosine is a precursor of uric acid, an antioxidant molecule
that is found altered in ALS patients. Furthermore, this clinical
trial will follow therapy response by analyzing uric acid levels in
treated individuals, applying metabolomics approaches both at
treatment strategy and follow-up. CC100 (a synthetic form of the
caffeic acid phenethyl ester) is another molecule with antioxidant
properties that is currently being investigated in a Phase I clinical
trial. The caffeic acid phenethyl ester is a natural compound with
effects on lipid peroxidation and lipid metabolism (54).

Considering that energy metabolism is also altered in
ALS patients, several studies focused in providing additional
fuel to increase energy uptake (44). While preclinical studies
successfully showed the beneficial effects of these treatments,
clinical trials failed to show the same results. In the case of
dexpramipexole (an improver of oxidative phosphorylation and
thus of ATP synthesis), a Phase II clinical trial showed prevention
of functional decline of ALS patients following a 12-month
treatment (55). However, Phase III failed to show improvements
(56). A Phase II clinical trial performed between 2009 and 2012
analyzed the beneficial effects of two hypercaloric (one high-
fat and other high-carbohydrate) diets in ALS patients receiving
enteral nutrition. Patients receiving a high-carbohydrate enteral
formula presented less adverse effects compared to control
subjects. They found that both diets were safe and tolerable,
although they did notmodify disease progression (57). Currently,
ongoing clinical trials investigate the effect of high caloric
fatty supplementation (Calogen R©) and high caloric protein/fat
supplementation (Fortimel R©) in ALS patients.

Novel therapeutic strategies may focus on creatinine as a
marker to identify the efficacy of drugs and follow-up of
treatments aiming the inhibition of the muscular loss observed
in ALS, or even in treatments aiming the increase of muscle mass
in the patients. For example, in ALS animal models, inhibition
of myostatin (a negative regulator of muscle growth) improved
muscular mass and strength. Although myostatin treatment did
not change the disease onset and progression, it improved the
muscular function, especially in the diaphragm of the animals
(58). If translated for the human disease, it could improve the
quality of life of ALS patients during disease progression.

METABOLOMICS-DRIVEN THERAPEUTICS

MANAGEMENT: THE ADVENT OF

PHARMACOMETABOLOMICS

Metabotype information can be used to identify alterations in
biochemical pathways in ALS patients that are modified or not by
treatment. This new field, called pharmacometabolomics, allows
clinicians to identify a metabolic state at baseline and after
drug therapy, increasing information about treatment outcomes,
especially drug-response phenotype (59).

Different studies revealed the potential of
pharmacometabolomics to assess drug therapy response
and identify distinct signatures of metabolites before and after
treatment exposure in diverse pathologies, from cancer to
cardiovascular diseases. For ALS, one study analyzed metabolites
and lipids composition of plasma samples from individuals

enrolled in a phase III clinical trial for Olexosime. This study
identified a metabolic profile that distinguished the placebo
from the Olexosime group, characterized mainly by alterations
in the levels of glycine, citrulline/arginine, and kynurenine.
Furthermore, clinical progression of ALS correlated with amino
acids, lipids, and spermidine levels in the Olexosime group, and
with glutamine levels in the placebo group (19). It is noteworthy
to highlight that these metabolites are linked with some of the
pathological pathways involved in ALS pathology (glutamatergic
alteration and energy metabolism dysfunction), as described
before.

In practice, pharmacometabolomics findingsmay improve the
strategy of drug administration scheme, as a complementary
tool of pharmacokinetics, and may provide new light on
drug-response effect and downstream signaling pathways (60).
This information may provide details on biochemical pathways
involved in disease and in treatment effect in ALS patients in a
narrowly controlled process.

METABOLOMICS RESEARCH IN ALS

SHOULD IMPROVE

THERAPEUTICS—CONCLUDING

REMARKS

Metabolomics represent a new approach that is increasingly
gaining importance as it helps to identify biomarkers and
unravels pathways that contribute to the pathophysiology of ALS.
Significant therapeutic advances are based on a deep knowledge
of ALS pathogenesis and metabolomics holds great potential to
play a key role in this objective. However, despite the efforts made
by metabolomics researchers to identify biomarkers for ALS,

FIGURE 1 | Metabolomics applicability enhance ALS therapeutic

management and allows a personalized medicine.
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no biomarker was validated yet. Metabolomics studies should
rather focus in identifying metabolic signatures then individual
biomarkers for ALS. This would be a revolutionary step toward
developing efficient strategies to evaluate not only disease
progression, but also treatment responses to drug therapies (19).

This also point out the urgent need of metabolomics research
to combine analysis and information (1) of different tissues in
ALS patients, as CSF, blood and muscle samples; and (2) by
combining different approaches (proteomics, transcriptomics,
lipidomics, etc.) (52). Combination of “omics” approaches with
clinical evaluation (for example, ALSFRS-R) could be the best
practice for an early diagnosis of ALS (10). Importantly, omics
analysis should be standardized between different research
centers together with refinement of statistical analysis tools
to analyze better the results obtained. Altogether, these efforts
should readily improve metabolomics application in the daily
clinical practice.

Metabolomics can also be applied to identify outcomes of
pharmacological treatment. Usual parameters and endpoints
used in clinical trials to evaluate drug efficacy are probably
not enough sensitive to observe a slight effect. In this regard,
metabolomics could identify biomarkers that are sensitive
enough to detect even small effects of drugs tested in Phase
II clinical trials, allowing them to be investigated into Phase
III. Furthermore, pharmacometabolomics approaches provide
help in evaluating drug effect as a primary or additional
parameter. Metabolome may provide longitudinal, reproducible,
and objective data that are crucial criteria to evaluate drug
effect. Besides, adjuvant therapy based on metabolomics findings
could compensate the identified altered pathways in a subtype
of patients, allowing a personalized therapeutic strategy targeting
specifically these pathways. Ongoing trials using this strategy are
presented in Table 1. However, no study yet tried to approach
several pathways at once, using a combined therapeutic strategy.

This approach should bemore relevant than focusing only on one
altered pathway.

Metabolomics applied early in ALS management should
improve therapeutic strategy and development. The major
interest of metabolomics at disease onset is to build
homogeneous subgroups of patients in order to apply a
personalized therapeutic approach (Figure 1). Metabolomics
complement data obtained from genomics, transcriptomics and
proteomics, and combined with pharmacometabolomics
approaches, they add the final piece of information to
the study of disease pathophysiology and drug response
(60). We propose to combine omics and clinical data to
improve our comprehension about the specific metabolic
pathways affected in each individual patient. Stratification
of patients based on all these findings would considerably
improve trials methodology and care management, as well as
therapeutics strategies by providing a mean to a personalized
medicine. To our knowledge, this review is the first to present
diagnosis and prognosis biomarkers as an initial step to
develop therapeutics. This new light on metabolomics
application is promising for complex and heterogeneous
diseases, like ALS, characterized by successive therapeutics
failures.
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The clinical diagnosis of amyotrophic lateral sclerosis (ALS) relies on determination of

progressive dysfunction of both cortical as well as spinal and bulbar motor neurons.

However, the variable mix of upper and lower motor neuron signs result in the clinical

heterogeneity of patients with ALS, resulting frequently in delay of diagnosis as well

as difficulty in monitoring disease progression and treatment outcomes particularly

in a clinical trial setting. As such, the present review provides an overview of

recently developed novel non-invasive electrophysiological techniques that may serve

as biomarkers to assess UMN and LMN dysfunction in ALS patients.

Keywords: amyotrophic lateral sclerosis, motor neuron disease, neurophysiological biomarkers, transcranial

magnetic stimulation, cortical excitability

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease that was first
described in the 1869 by Jean-Martin Charcot (1–3) although earlier detailed clinicopathological
descriptions of a case of ALS, was published by Radcliffe and Clarke (4). Charcot postulated the
importance of the upper motor neuron in its pathogenesis (3) and its associated degeneration
of motor cortical Betz cells that has become a well-recognized pathological feature (5, 6). The
diagnosis of classical amyotrophic lateral sclerosis (ALS) relies on the clinical identification of
progressive dysfunction in both the cortical (“upper”, UMN) and spinal (“lower”, LMN) motor
neurons involving multiple body regions, much of which is encompassed within the El Escorial
criteria (7, 8). The clinical heterogeneity of ALS is a result of the variable mix of UMN and
LMN signs (9), hence contributing to delay in diagnosis and difficulty in monitoring disease
progression as well as treatment outcomes particularly in a clinical trial setting (6). As such, there
is a critical need to devise objective biomarkers of disease progression in ALS that may facilitate
both improvement in diagnosis as well as to provide meaningful outcome measures to monitor
treatment (10).

The present review will provide an overview of recently developed neurophysiological
biomarkers, with emphases on novel non-invasive electrophysiological techniques used to assess
UMN and LMN dysfunction in ALS patients.

Biomarkers of UMN Dysfunction
An important component in the diagnosis of ALS relies on clinical features of UMN involvement
in the presence of progressive LMN weakness (11), but often these signs of UMN impairment may
be underappreciated in a limb that is concurrently affected by LMN loss especially in early stages of
ALS (6, 12, 13). Upper motor neuron signs may initially be absent in approximately 7–10% of ALS
patients (6, 14). As such, objective UMN biomarkers may be critical for the diagnosis of ALS, as
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potential mimicking disorders such as multifocal motor
neuropathy, Kennedy’s disease and adult-onset spinal muscular
atrophy (SMA), may present as pure LMN syndromes (6, 15, 16).
Autopsy reports have also demonstrated UMN degeneration
in 50–75% of patients with clinically pure LMN syndromes
(5, 17, 18).

Transcranial Magnetic Stimulation
Since its original description more than 3 decades ago
(19), Transcranial magnetic stimulation (TMS) has undergone
significant evolution as a non-invasive technique for cortical
stimulation, providing valuable insight into the functional
integrity of brain pathways. Its main application has been in
the investigation of complex neuronal networks of the primary
motor cortex (M1), which is influenced by both inhibitory and
excitatory mechanisms (20). Transcranial magnetic stimulation
(TMS) biomarkers of cortical hyperexcitability appear to be
useful biomakers of UMN dysfunction in ALS (21). In
addition, TMS have provided insights into the underlying
pathophysiological mechanisms in ALS, thereby allowing for the
development of diagnostic and prognostic biomarkers in ALS
(21).

The TMS technique utilizes a transient magnetic field to
induce an electric current in the cortex (22). This magnetic field
is generated through a stimulating coil held over a subject’s head,
which painlessly and non-invasively penetrates the skull without
attenuation (Figure 1). Depending on stimulation intensity and
coil type, the electromagnetic force can stimulate neurons at a
depth of 1.5–3.0 cm beneath the scalp (23). There have been
several theoretical models postulated to explain the exact effect
of this electromagnetic field on biological tissue, with studies
in both animals and humans conferring that TMS generates a
corticomotoneuronal volley composed of direct (D) and indirect
(I) waves occurs at intervals of 1.5–2.5ms (24). Direct waves
are thought to represent the activation of corticospinal axons
and are only recruited at high intensities or with the TMS
coil positioned such that induces currents in a lateral-medial
direction. Indirect waves seem to be activated at lower intensities
and are mediated by a more complex interaction between cortical
excitatory and inhibitory neurons (25). TMS delivered over the
primary motor cortex (M1) is thought to activate pyramidal
neurons (Betz cells) trans-synaptically via I-waves (26), but
the exact neural circuitries evoked remain to be determined.
These complex neural circuits are critically dependent on
both excitatory and inhibitory interneuronal systems, facilitated
by cellular receptor and neurotransmitter interactions (27).
Excitation is primarily mediated by glutamate/NMDA receptor
interaction, while inhibition is facilitated by γ-aminobutyric acid
(GABA)/GABAA/B receptor action (28).

Cortical hyperexcitability in ALS is heralded by reduced short-
interval intracortical inhibition and CSP duration, in addition to
increased intracortical facilitation and motor evoked potential
amplitude (12, 29, 30). Furthermore, significant bilateral TMS
abnormalities was observed in ALS patients at an early disease
stage (31), consistent with previous studies that have reported
functional abnormalities of the motor cortex as an early and
specific feature of ALS, and preceding the onset of LMN

dysfunction (6, 12, 29, 30, 32–34). More recent studies have
demonstrated changes in TMS parameters indicative of cortical
hyperexcitability, were more prominent over the dominant
motor cortex and in particular, contralateral to the site of disease
onset, suggesting a vulnerability of the dominant motor cortical
neurons and supporting the importance of cortical processes in
the pathophysiology of ALS as postulated first by Menon et al.
(31).

Single-Pulse TMS
The resting motor threshold (RMT) is a reflection of the
ease with which corticomotoneurons are excited, hence the
corticomotoneuronal membrane excitability, as well as the
density of UMN projections onto motor neurons (35). Through
the α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid
(AMPA) receptors, RMT is influenced by the glutamatergic
neurotransmitter system, such that excessive glutamate activity
reduces RMT, and is susceptible to modulation by sodium
channel blockers (28, 36). In ALS, the RMT is reduced early
in the disease (indicative of cortical hyperexcitability) followed
by progressive increase and eventual inexcitability with disease
progression (32, 37–39). As motor threshold is modulated by
glutamate activity (28), the reduced motor threshold supports
the notion that cortical hyperexcitability being an early feature
of ALS contributing to the ensuing lower motor neuron
degeneration (21). The motor cortex is found to be inexcitable
in approximately 20% of ALS patients and appears to be a late
finding. In contrast, motor cortex inexcitability is a relatively
frequent fidning in patients exhibiting the pure UMN phenotype
termed primary lateral sclerosis [PLS] (40).

The central motor conduction time (CMCT) time is
defined by the time interval between stimulation of the
motor cortex and arrival of the corticospinal volleys at the
spinal motor neurons, and is inferred from the motor evoked
potential (MEP) onset latency (21). Prolongation of CMCT
is an invariable finding in ALS being documented in 16–
100% across different series (5, 21, 37, 41–44). In patients
without clinically predominant UMN phenotypes, prolongation
of CMCTs occurs in 50–71% of patients (41, 44). Although
the mechanisms underlying CMCT prolongation are presently
not fully elucidated, an increase in desynchronization of
corticomotoneuronal volleys resulting from degeneration of
the fastest conducting corticomotoneuronal fibers has been
suggested (45, 46). Large discrepancies in sensitivity of this
parameter reported by previous studies are likely attributable
to technique-dependent variations associated with CMCT
calculations.

The cortical silent period (CSP) refers to the interruption
of voluntary electromyography activity in a target muscle after
motor cortex stimulation (47), and the mechanisms that underly
the CSP are complex but thought to be mediated primarily
by the activation of inhibitory neurons acting via GABA-B
receptors within the cortex (21, 48). The CSP duration has
been consistently reduced in patients across all ALS phenotypes
(21, 30, 32, 34, 43, 49–51). The decrease in CSP duration in
ALS patients likely represent a combination of degeneration of
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FIGURE 1 | Paired-pulse threshold tracking transcranial magnetic stimulation (TMS). (A) TMS coil placed over the vertex activates the primary motor cortex and the

response (motor evoked potential, MEP) is recorded from the contralateral abductor pollicis brevis muscle. (B) TMS parameters are mediated by a complex interplay

between intraneural circuits and cortical output cells, with cortical interneurons mediating inhibition by activation of GABAergic synapses leading to influx of chloride

anions (Cl−) and hyperpolarization of post-synaptic neurons. (C) Change in stimulus intensity required to achieve a target MEP of 0.2mV (±20%) is used to quantify

SICI (which is recorded with interstimulus intervals between 1–7ms) and ICF (between 10–30ms).

inhibitory interneurons as well as GABAB-mediated receptor
inhibition dysfunction (21).

Paired-Pulse TMS
In the paired-pulse paradigm, a conditioning stimulus (CS)
precedes and is utilized to modulate the effect of a second test
stimulus (TS). By varying the time interval between the paired
pulses (the interstimulus interval, ISI) a number of parameters
can be determined, using either a constant stimulus method
[in which the CS and TS are kept at a constant level and
MEP amplitude is evaluated (52)] or the threshold-tracking (TT)
TMS protocol (53). TT-TMS was developed to overcome the
markedMEP amplitude variability seen when utilizing the earlier
protocol and uses a fixed MEP response which is tracked by
a varying TS (53, 54). By applying a subthreshold (set at 70%
RMT) conditioning stimulus at predetermined time intervals
prior to a suprathreshold test stimulus, the threshold-tracking
TMS technique allows the short-interval intracortical inhibition
(SICI) and intracortical facilitation (ICF) to be investigated (53,
55) (Figure 1).

Reduction or absence of SICI, which is a biomarker of
cortical interneuronal inhibitory GABAergic function, has been
established as an early feature of ALS (Figures 2A,B), correlating
with biomarkers of peripheral neurodegeneration and at times

preceding the onset of LMN dysfunction in sporadic ALS cohorts
[(31, 53), etc]. Although there were no significant differences in
the degree of reduction observed between the sides of the motor
cortices, there was a trend for more changes observed over the
dominant motor cortex, particularly contralateral to the side of
disease onset (31). The changes were also similar regardless of
the severity of LMN dysfunction, or site of onset (bulbar or limb)
(12, 21, 32, 56).

The reduction in SICI has been a widely reported feature
present in both familial and sporadic forms of ALS with the
alterations observed as an early feature (21, 30, 34, 57–62).
Further to this, longitudinal assessments of asymptomatic SOD-
1 mutation carriers have identified cortical hyperexcitability
developing prior to the clinical onset of ALS, therefore
suggesting that cortical hyperexcitability underlies the process of
neurodegeneration in familial ALS (34).

The use of threshold-tracking TMS may be able to uncover
UMN involvement in ALS phenotypes without clinically
evident UMN signs such as the flail limb variant of ALS
or progressive muscular atrophy (PMA). Moreover, this
technique was able to reliably distinguish between ALS and
other neurological mimic conditions including multifocal
motor neuropathy, spinal muscular atrophy, Kennedy’s disease,
peripheral nerve hyperexcitability disorders, Hirayama disease,
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FIGURE 2 | Cortical excitability in motor neuron disease (MND). Paired-pulse subthreshold conditioning transcranial magnetic stimulation demonstrating (A) reduction

in short-interval intracortical inhibition (SICI, above dotted line) and intracortical facilitation (ICF, below dotted line) and (B) significant reductions in averaged SICI

(between interstimulus intervals of 1–7ms) in MND patients compared with controls (C) Averaged short-interval intracortical inhibition (SICI), between interstimulus

interval (ISI) 1–7ms, was significantly reduced in amyotrophic lateral sclerosis (ALS). (D) The reduction of averaged SICI was comparable in Awaji subgroups. Peak

SICI at ISI (E) 1ms, and (F) 3ms was significantly reduced in Awaji subgroups. ****P < 0.0001. Reproduced with permission license no. 4457360494951 (1) and

license no. 4457440155614 (12).

CIDP, lead neuropathy, hereditary spastic paraparesis, as
well as hereditary motor neuropathy with pyramidal features
(63–68).

SICI abnormalities using the threshold-tracking technique,
appear to be the most robust diagnostic parameter that is

indicative of UMN dysfunction in ALS patients (12, 29, 69).
Using either an abnormal SICI or an inexcitable cortex, this
TMS method demonstrated a sensitivity of approximately 73%
and a specificity of 81% (69). Moreover, an absent SICI was
associated with a 97% sensitivity (33). TMS abnormalities
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were observed in 77% of patients with ALS, with frequency
of abnormalities that were similar across all Awaji diagnostic
groups, using the established cut-off SICI of<5.5% (63) resulting
in 88% of Awaji-criteria possible patients being reclassified as
Awaji-criteria probable or definite (12). More specifically, an
abnormally reduced SICI was demonstrated in 56% of Awaji-
criteria possible patients (12) (Figures 2C–F).

More recent studies have also documented increasing
cortical hyperexcitability with advancing disease indicating
that intracortical inhibitory neurons become progressively
dysfunctional in ALS (Figure 3A) (70). Reduced SICI was also
reported to be an independent prognostic biomarker in ALS
patients within the first 2 years of disease onset (71) (Figure 3B).
Separately, SICI was shown to partially normalize with treatment
by riluzole (72), an anti-glutamatergic agent exhibiting modest
clinical effectiveness in ALS (73, 74). Paralleling the clinical
efficacy Riluzole, the modulating effects last about 3 months
(75), and may be related to overexpression of efflux pumps
located at the blood brain barrier during the disease course (76).
Regardless of the underlying mechanisms, studies of riluzole
have suggested a utility of threshold-tracking TMS in assessing
biological effectiveness of compounds at an early stage of drug
development. Taken together, these results suggest that non-
invasive in vivo monitoring of cortical function and particularly,
SICI may also be an effective biomarker used to monitor the
effects of novel therapeutics in a clinical trial setting.

Biomarkers of LMN Dysfunction
Objective assessment of LMN dysfunction, utilizing
neurophysiological techniques, appear to be more sensitive than
clinical assessments (77, 78). Conventional neurophysiological
techniques, such as nerve conduction studies which measure the
compound muscle action potential (CMAP) amplitude, may be
relatively insensitive in assessing LMN degeneration due to the
process of reinnervation (79).

Estimation of Motor Unit Numbers
As such, various methods to approximate the number of motor
units innervating individual muscles, including motor unit
number estimation (MUNE), and motor unit number index
(MUNIX), may potentially represent valuable biomarkers of
LMN degeneration. Since the development of the first MUNE
technique in 1971 (80), there have been numerous other MUNE
techniques introduced (81–85). The basic principle of MUNE
techniques is the dividing of the maximal CMAP amplitude
by the average surface-recorded motor unit potential (86).
The original MUNE technique utilized incremental stimulation
whereby the stimulus intensity at one point on the nerve
was gradually increased from subthreshold until 10 increments
in the motor response was recorded, but this technique
relied on the assumption that the smallest recorded potential
using the surface electrode over a target muscle following
minimal stimulation represented a single motor unit potential
(Figure 4A). Consequently, the variance in the result MUNE was
considerable and resulted not uncommonly in artificially lower
MUNE counts (86, 88).

FIGURE 3 | (A) Cortical excitability changes with disease progression. Patients

were divided into three groups according to disease stage. The duration of the

illness from onset to death was normalized between zero and one and

expressed as a percentage (%), with data averaged by proportion of disease

duration. Early stage (Circle) was defined as the proportion of disease duration

<33%, mid (Triangle) was 33–66%, and late (Square) was >66%. ALSFRS-R

of patients in early stage was 42.3 ± 0.6, that in mid was 40.2 ± 0.7, and that

in late was 34.8 ± 2.0. SICI at ISI 1–7ms decreased with disease progression.

Data are given as mean ± SE. Reproduced with permission license no.

4456860473754 (70). (B) Kaplan-Meier plots of survival probabilities

according to averaged short-interval intracortical inhibition (SICI) values.

Amyotrophic lateral sclerosis patients with a disease duration under 2 years

were divided into 2 groups according to values in average SICI, interstimulus

interval 1–7ms. Patients with SICI ≤3.1% demonstrated reduced survival

compared to patients with SICI >3.1% (p = 0.034). Estimated median survival

was 28 months in patients with reduced SICI and 36 months in patients with

higher SICI. Reproduced with permission license no. 4456870994973 (71).

The motor unit index (MUNIX) technique is a method
designed to express the number of functioning motor units
within amuscle as an index, instead of providing a direct measure
of their absolute numbers. It is based on patients performing
a voluntary contraction at various intensity levels and surface
interference patterns being captured and decomposed to obtain
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FIGURE 4 | (A) Incremental MUNE in healthy and ALS subjects,

demonstrating a large number of “steps” with increasing stimulus intensity

consistent with a large number of functioning motor units within measured

muscle, whilst there were only four steps in the ALS subject indicating only four

functional motor units remaining in muscle. (B) Percentage changes in MUNE

values (geometric means) and mean ALSFRS-R and CMAP amplitude at 4 and

8 months. Reproduced with permission license no. 4457481173441 (87).

a normalized motor unit size, which is then in turn divided into
the maximal CMAP value to obtain the MUNIX (86, 89, 90).

Recent studies using different MUNE methods have
demonstrated potential utility for assessing disease progression
in ALS patients as reflected by a progressive linear decline in
MUNE counts (87, 91–94). Interestingly, a recently developed
MUNE technique, termed MScan, appeared to be the most
sensitive MUNE method in detecting ALS disease progression
(Figure 4B) (87). Additionally, MUNIX was able to detect
disease progression in presymptomatic muscles in ALS (95, 96),
and changes longitudinally in these muscle groups appeared
more sensitive to those changes in the revised ALS Functional
Rating Scale (ALSFRS-R) (93).

Neurophysiological Index
The neurophysiological index (NI) is a potential
electrophysiological biomarker in assessing lower motor
neuron loss in ALS (97). Using a simple formula, The NI
has the advantage of using routine CMAP amplitude, F-
wave frequency, and distal motor latency of the ulnar-nerve

innervated abductor digit minimi (ADM) muscle and is more
sensitive than the CMAP amplitude alone in demonstrating
longitudinal lower motor neuron loss in ALS. NI was able to
detect motor neuron loss in muscles of the presymptomatic
limb in ALS patients as well as successfully tracking disease
progression, demonstrating continued loss of functional motor
units during this presymptomatic period, when weakness,
atrophy, or fasciculations were not detectable to both patients
and evaluating clinicians (78). The validation of NI as a clinically
meaningful parameter in disease progression of ALS patients was
also demonstrated longitudinally in the symptomatic muscles of
patients that correlated with their ALSFRS-R decline (97, 98).
Additionally, NI was able to detect deterioration that occurred
over a short period of 4 weeks in ALS patients, hence enabling
the utility of this index in a clinical trial setting (77). NI has
favorable reproducibility and low intraindividual variability but
amongst its limitations, the index is only restricted to the ADM
muscle (which is less affected compared to other intrinsic hand
muscles such as the APB and FDI, in keeping with the split hand
pattern of wasting and weakness) (99) and requires persistent
F-waves (that can be frequently absent in ALS) (78).

Split-Hand Index
The split-hand sign is documented as an early and specific
clinical feature in patients with ALS that is not characteristic
in other commonly encountered clinical mimics (99, 100). It
refers to the preferential wasting and weakness of the thenar
complex muscles (APB and FDI) with relative preservation of
the hypothenar muscle, ADM (99), and appeared to have a
cortical origin with the corticomotoneuronal input to the thenar
complex in ALS patients preferentially affected (101, 102). This
clinical observation provided an opportunity to develop a simple
neurophysiological biomarker to aid the diagnosis of ALS using
conventional nerve conduction studies. The split-hand index (SI)
was derived by multiplying the CMAP amplitude of the APB
muscle by the FDI CMAP amplitude and then dividing the
product by the ADMCMAP amplitude. It was demonstrated that
a reduction in the split-hand index was consistent across ALS
phenotypes but appeared most pronounced in those with limb-
onset, and that a cut-off value≤5.2 reliably differentiated between
ALS and other neurological disorders (103).

Electrical Impedance Myography
Electrical impedance myography (EIM) is a novel non-
invasive form of testing to provide quantitative information
on neuromuscular disorders that may be useful and reliable in
assessing longitudinally the severity of a disease process (104–
107). EIM utilizes a small, high-frequency electrical current
applied across two electrodes positioned over a muscle, and the
resulting surface voltages are measured between a second pair
of electrodes, from which the resistive and capacitive properties
of the tissue are obtained (86, 105). The advantage is that
this technique does not rely on inherent electrical activity of
the tissue (which conventional neurophysiological techniques
do), but rather on how the tissue impacts the applied current,
rendering the technique sensitive to structural and compositional
changes in muscle such as denervation, reinnervation, myofiber
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atrophy and fat replacement within the muscle that occur in
ALS (104). EIM values have been shown to correlate with
standard clinical approaches including handheld dynamometry
and MUNE (106, 107), and may be able to provide more than a
five-fold reduction in sample size requirements for ALS clinical
therapeutic trials over standard outcome measures such as the
ALS functional rating scale-revised (ALSFRS-R) (108). Although
EIM can detect changes early in the disease course of ALS as well
as in clinically unaffected muscle groups (105), a limitation of
EIM is that identified changes may not be able to differentiate
ALS from other neuromuscular conditions (109, 110).

CONCLUSION

Amyotrophic lateral sclerosis remains a devastating
neurodegenerative disorder with a poor prognosis, much
of which is attributable to frequent delays in diagnosis, an
incomplete understanding of the underlying pathophysiological
mechanisms, and the current lack of effective disease-modifying
treatment available. As such, there is a critical need to devise
accurate and reliable biomarkers to address the above shortfalls
in current ALS management. The current review has presented
recent developments in novel neurophysiological biomarkers

that are able to effectively interrogate upper and lower motor

neuron dysfunction and characterize their change over time with
disease progression, thereby exhibiting the potential to improve
diagnosis, as well as facilitating in the prognosis and monitoring
of the effects of future therapeutic agents in a clinical trial
setting.
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Advances in neuroimaging, complementing histopathological insights, have established

a multi-system involvement of cerebral networks beyond the traditional neuromuscular

pathological view of amyotrophic lateral sclerosis (ALS). The development of effective

disease-modifying therapy remains a priority and this will be facilitated by improved

biomarkers of motor system integrity against which to assess the efficacy of candidate

drugs. Functional MRI (FMRI) is an established measure of both cerebral activity and

connectivity, but there is an increasing recognition of neuronal oscillations in facilitating

long-distance communication across the cortical surface. Such dynamic synchronization

vastly expands the connectivity foundations defined by traditional neuronal architecture.

This review considers the unique pathogenic insights afforded by the capture of cerebral

disease activity in ALS using FMRI and encephalography.

Keywords: amyotrophic lateral sclerosis, motor neurone disease, biomarker, neuroimaging, neurophysiology,

cortex

INTRODUCTION

Neurodegenerative disorders are increasingly understood as a disintegration of complex cerebral
functional networks (1). Amyotrophic lateral sclerosis (ALS) is characterized by loss of upper and
lower motor neurones of the corticospinal tract, brainstem, and spinal anterior horns, resulting
in progressive weakness of downstream muscles. In addition to protean upstream causes (2, 3),
there is firmly established clinical, pathological, and genetic overlap of ALS with frontotemporal
dementia (FTD). The diagnosis remains a clinical one, with a lack of biomarkers being a significant
barrier to the development of highly-effective disease-modifying therapy. Advanced neuroimaging,
in combination with histopathological insights, has brought the brain to the forefront of biomarker
development (4).

The earliest studies of cerebral blood flow in ALS employed positron emission tomography,
and demonstrated a widened region of cortical activation in response to a simple motor task (5).
Among the hypotheses for this “boundary shift effect” was loss of local inhibitory GABA-ergic
interneuronal circuits [reviewed in (6)]. A consistent pathological feature of ALS has been the
observation of increased cortical excitability, possibly reflecting reduced local inhibitory influences,
measured using short-interval paired transcranial magnetic stimulation (TMS) (7, 8). Through the
characterization of monogenetic associations, ALS research has expanded to include the study
of what is now thought to be a long presymptomatic phase (9), in which cortical functional
abnormalities may be the among the earliest detectable manifestations (10).

Blood oxygenation level-dependent (BOLD)-based functional (FMRI), with the major
advantages of avoiding ionizing radiation and the greater availability of MRI technology, confirmed
a profound alteration in cortical activity inherent to the pathogenesis of ALS. Tools to study cortical
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neurophysiology in real-time have also undergone significant
development in both sensitivity and analysis. This review will
consider the unique insights that FMRI and encephalography
bring to the understanding of the pathogenesis of ALS at the
systems level, which is increasingly of greatest relevance to the
long-term goal of neuroprotective therapy.

FUNCTIONAL MRI

FMRI has been extensively used to characterize network
dysfunction in ALS in cross-sectional, longitudinal, and
presymptomatic study designs. The practical advantages of
FMRI in ALS include the widespread availability of MRI
platforms, the large number of freely available analysis suites
and the ability to provide crucial biological insights in relatively
simple, cost-effective, and non-invasive study designs (11).
Despite some inconsistencies in the literature (12), two main
themes have consistently emerged from the application of FMRI
to ALS: (i) the characterization of compensatory changes, such
as the recruitment of additional cortical (13–16), subcortical
(14, 17, 18), and cerebellar (17, 19) regions to execute motor and
cognitive tasks, and ii) the concept of inhibitory dysfunction as a
key facet of ALS-associated pathophysiology (6, 20).

Methodological Considerations
Functional MRI has been extensively used to characterize
network dysfunction in ALS in cross-sectional, longitudinal,
and presymptomatic study designs (21) (Table 1), but method-
associated limitations are rarely articulated. The protracted
hemodynamic response to neural activity hampers the temporal
resolution of fMRI. Blood oxygen-level dependent (BOLD)
signal typically peaks only 5–6s after focal activation therefore
careful study designs are indispensable for meaningful temporal
inferences (22, 23). Spatial distortions and signal dropout due
to susceptibility gradients near air-tissue interfaces lead to
decreased BOLD signal in lateral parietal, orbitofrontal and
dorsolateral prefrontal regions necessitatingmeticulous sequence
optimization before data acquisition (24–26). Scanner noise may
also impact on the interpretation of BOLD signal, particularly in
the default-mode network (27), and careful experimental designs
are required to minimize the influence of background noise (28).
While fMRI findings are often presented by overlaying activation
maps upon high-resolution structural images, the inherent spatial
resolution of fMRI is limited by the signal-to-noise ratio profile
of consecutive, rapid whole-brain imaging. In the majority ALS
studies, the voxel size of fMRI protocols is two to four times larger
than what is used for structural acquisitions (21).

Motor Paradigms
Pioneering FMRI studies in ALS relied initially on hand
movement paradigms (15, 16), which were gradually
complemented by innovative bulbar studies (13, 29, 30). In
motor-task FMRI studies, different strategies have been utilized
to control for limb weakness, motor effort and lower motor
neuron involvement for the interpretation of cerebral activation.
Motor imagery (31) has attracted considerable attention, not only
for emerging brain-machine interface applications (32) but also

as an FMRI paradigm for a condition like ALS in which patients
typically develop severe motor disability (33). The execution and
imagination of specific movements manifest in similar activation
patterns in ALS and controls (15) suggesting that this approach
may be particularly pertinent to patient cohorts with mixed
disability profiles. Some ALS studies however report divergent
activation maps in motor imagery and execution (34). Similarly
to motor imagery, action observation is also thought to result
in comparable cortical activity to action execution which has
been used to study the mirror-neuron system in ALS (35, 36).
Another approach to control for motor disability and establish
ALS-specific activation patterns is the inclusion of disease-
controls, i.e., non-ALS patients with motor disability (16, 37).
Very few FMRI studies to date have specifically evaluated
functional changes in other rarer motor neurone disorders
such as the upper motor neurone-only primary lateral sclerosis
(PLS) (38, 39) and lower motor neurone-dominated Kennedy’s
disease (30) using motor paradigms. Patient stratification into
separate study groups based on motor disability is another
strategy to interpret functional alterations in the context of
disability (14). In light of the fundamentally divergent study
designs, the inclusion of patients in different stages of their
disease and small sample sizes, the inconsistent findings of motor
activation studies are not surprising. Whilst, hypo- (29, 30, 40)
and hyper-activation (13, 14, 16, 35, 36) of the somatosensory
cortex have both been reported in response to motor tasks, the
recruitment of premotor areas is a relatively consistent finding.
An integrative explanation of the seemingly divergent findings
is that the initial hyper-activation represents an early-stage
adaptive process to execute movement (14), which gradually
gives place to hypo-activation as progressive structural changes
ensue (41, 42). Robust multi-timepoint longitudinal studies are
required to clarify the timeline of functional changes in ALS
as very few task-based longitudinal FMRI studies have been
published to date (33, 43). One longitudinal study identified
reduced motor activation on 3-month follow-up which was
interpreted as compensatory failure due to progressive neural
loss (43), while another study reported increased precentral gyrus
activity 6-month after initial scanning as evidence of ongoing
adaptation (33). In addition to compensatory processes in motor,
premotor and supplementary motor areas (44), evidence also
exist that the basal ganglia (17, 18, 45, 46), the ipsilateral motor
cortex (14, 47), and the cerebellum (17, 19, 47, 48) also contribute
to adaptive network reorganization.

Extra-Motor Studies
With the increasing recognition of cognitive impairment in
ALS (49, 50), a series of elegant language (51), executive
(52), theory-of-mind (36), and memory (43, 53, 54) task-
based activation studies have also been published. In addition
to the cognitive activation paradigms, visual, auditory and
somatosensory stimulation studies have further characterized the
spectrum of extra-motor involvement in ALS (55, 56). Other
innovative non-motor activation studies in ALS include an
anti-saccade study with concurrent eye tracking to investigate
dorsolateral prefrontal cortex (DLPFC) function (57). Similar to
the divergent findings of motor-task studies, increased activation
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TABLE 1 | Selected motor task-based and resting-state fMRI studies in ALS.

Authors Year Study design ALS

(n)

Controls

(n)

Main study findings/interpretation

Li et al. (29) 2009 Motor task: swallowing,

Cross-sectional study

10 10 HC Reduced somatosensory cortex activation in patients with

dysphagia

Mohammadi et al. (30) 2009 Motor: tongue movement,

Cross-sectional study

22 22 HC

5 DC

(SBMA)

ALS patients with bulbar symptoms showed decreased cortical

and thalamic activation

Palmieri et al. (53) 2010 Emotional attribution and

recognition task,

Cross-sectional study

9 10 HC Altered emotional processing similar to patents observed in FTD.

Lule et al. (55) 2010 visual, auditory and

somatosensory stimulation,

Cross-sectional study

14 18 HC Decreased response in secondary visual areas in ALS, delayed

response in secondary auditory areas, reduced response to

somatosensory stimulation

Goldstein et al. (52) 2011 Cognitive task,

Cross-sectional study

14 8 HC Increased left temporal and decreased precentral and left medial

frontal activation: altered inhibitory processing in ALS

Kollewe et al. (13) 2011 Motor task: hand and

tongue movement,

Cross-sectional study

20 20 HC Decreased cortical activation during tongue movements in

patients with bulbar symptoms. Increased activation during hand

movements. Different functional reorganization in limb and bulbar

impairment.

Mohammadi et al. (14) 2011 Motor task,

Cross-sectional study

22 22 HC Patients stratified into three groups based on disability,

Increased activation in early-stage, decreased activation in later

stage disease.

Poujois et al. (15) 2013 Hand motor task

Motor imagery,

Cross-sectional study

19 13 HC Motor execution and imagery yields to similar activation patterns.

Increased contra- and ipsilateral somatosensory cortex activation.

Passamonti (59) 2013 Emotional processing task,

Cross-sectional study

11 12 HC Increased activation in prefrontal areas and altered

amygdala-prefrontal cortex connectivity in ALS, suggestive of

limbic system dysfunction

Witiuk et al. (57) 2014 Antisaccade task with eye

tracking,

Cross-sectional study

12 12 HC ALS patients make more antisaccade direction errors and exhibit

reduced DLPFC activation compared to controls i.e. deficits in

automatic response inhibition are associated with impaired DLPFC

activation

Stoppel et al. (43) 2014 Go/No-Go paradigm,

Longitudinal design

14 14 HC Increased motor activation compared to controls with subsequent

decline on follow-up scanning suggestive of failing adaptive

compensation

Mohammadi et al. (61) 2015 Movement inhibition task

(go/no-go),

Cross-sectional study

17 17 HC Increased motor inhibition and execution related activation in

patients with ALS compared to controls.

Jelsone-Swain et al.

(36)

2015 Action Observation and

Execution task,

Cross-sectional study

19 18 HC Increased activation during action-execution and observation in

ALS patients in opercular, premotor and primary motor regions.

Mirror neuron system mediated compensation.

Li et al. (35) 2015 Action observation

paradigm,

Cross-sectional study

30 30 HC Action observation activates similar networks to action execution.

Increased activation observed in the DLPFC and supplementary

motor regions of ALS patients.

Aho-Ozhan (60) 2016 Cognitive task

Cross-sectional study

15 14 HC Impaired processing of negative emotions such as fear and

disgust in ALS

Vellage et al. (54) 2016 Cognitive task: working

memory

Cross-sectional study

14 14 HC Reduced hemodynamic responses in the left occipital cortex and

right prefrontal cortex in ALS patients compared to healthy

controls

Keller et al. (58) 2018 Cognitive task: ToM and

executive task,

Cross-sectional study

65 33 Increased activation in all ALS patients compared to HC. High

performing patients exhibit more activation than those with

neuropsychological deficits suggestive of compensation.

Mohammadi et al. (66) 2009 Resting-state fMRI,

Cross-sectional study

20 20 HC ICA analyses: decreased DMN activation in the anterior and

posterior cingulate and parietal regions

Jelsone-Swain et al.

(84)

2010 Resting-state fMRI,

Cross-sectional study

20 20 HC ROI analyses: decreased functional connectivity between the right

and left motor cortices

Douaud et al. (20) 2011 Resting-state fMRI,

Cross-sectional study

25 15 HC Increased SMN, premotor, prefrontal and thalamic functional

connectivity, interpreted as compensation and inhibitory

dysfunction

(Continued)
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TABLE 1 | Continued

Authors Year Study design ALS

(n)

Controls

(n)

Main study findings/interpretation

Agosta et al. (42) 2011 Resting-state fMRI,

Cross-sectional study

26 15 HC Increased SMN, cingulate, cerebellar connectivity interpreted as

compensation.

Fekete et al. (76) 2013 Resting state fMRI,

Cross-sectional study

40 30 HC Widespread motor, cerebellar and basal ganglia functional

connectivity alterations in the ALS cohort. Accurate subject

classification using multiple kernel learning.

Zhou et al. (82) 2013 Resting-state fMRI,

Cross-sectional study

12 12 HC Positive correlation between disability and functional connectivity

Agosta et al. (65) 2013 Resting-state fMRI,

Cross-sectional study

20 15 HC ICA analyses: Increased parietal connectivity is associated with

cognitive deficits which may represent compensation

Welsh et al. (67) 2013 Resting state fMRI,

Cross-sectional study

32 31 HC Machine learning (support-vector machine) based on fMRI metrics

achieves over 71% accuracy for disease state classification

Zhou et al. (73) 2014 Resting state fMRI,

Cross-sectional study

12 12 HC Decreased regional brain synchrony in the superior medial SMN

detected by regional coherence measures

Meoded et al. (38) 2015 Resting state fMRI,

Cross-sectional study

14 HC

16 PLS

Increased functional connectivity between the cerebellum and

cortical motor areas and between the cerebellum and frontal and

temporal cortex in primary lateral sclerosis

Schmidt et al. (77) 2014 Resting state fMRI,

Cross-sectional study

64 27 HC A strong positive correlation exist between changes in SC and FC

averaged per brain region; suggesting that structural and

functional network degeneration in ALS is coupled

Chenji et al. (75) 2016 Resting state fMRI,

Cross-sectional study

21 40 HC Increased DMN and reduced SMN connectivity associated with

greater disability interpreted as inhibitory dysfunction

Zhou et al. (69) 2016 Resting state fMRI,

Cross-sectional study

44 44 HC Increased cerebellar, occipital and prefrontal degree centrality (DC)

and decreased DC in the primary motor cortex and sensory motor

regions of ALS patients

Menke et al. (79) 2016 Resting state fMRI,

Presymptomatic study

design

12 12 psALS

12 HC

Increased FC between the cerebellum and precuneus-

cingulate-frontal lobe network in asymptomatic mutation carriers

compared to controls

Trojsi et al. (72) 2017 Resting state fMRI,

Cross-sectional study

21 15 Decreased FC in DMN, salience and fronto-parietal network. More

significant SLN connectivity changes observed in bulbar onset

patients compared to those with spinal onset.

Zhang et al. (74) 2017 Resting state fMRI,

Cross-sectional study

38 35 HC Impaired interhemispheric functional connectivity eidenceed by

voxel mirrored homotopic connectivity (VMHC) reductions,

correlations with CC diffusivity metrics

Zhang et al. (166) 2017 Resting state fMRI,

Cross-sectional study

25 25 HC Reduced occipital surface-based local gyrification index (LGI) is

associated with decreased functional connectivity in the bilateral

precuneus.

Lee et al. (80) 2017 Resting state fMRI,

Presymptomatic study

design

13 psALS

46 HC

Connectivity deficits detected in salience, sensorimotor, default

mode and thalamic networks in presymptomatic C9orf72 carriers

Li et al. (68) 2018 Resting state fMRI,

Cross-sectional study

38 35 HC Graph theory method (functional connectivity density FCD)

Decreased FCD in the primary motor cortex, increased long-range

FCD in the premotor cortex in ALS patients.

Bueno et al. (167) 2018 Resting state fMRI,

Cross-sectional study

20 15 HC Focus on Papez circuit integrity. Decreased functional connectivity

in ALS patients between hippocampal, parahippocampal and

cingulate regions.

Menke et al. (39) 2018 Resting state fMRI,

Longitudinal study

13 3 PLS Multi-timepoint structural-functional study, ICA and DRA,

decreased FC between SMN and frontal pole, increased FC

between primary motor cortex and fronto-parietal network

HC healthy control, DC Disease Control, DLPFC DorsoLateral PreFrontal Cortex, FC functional connectivity, SC Structural Connectivity, SBMA Kennedy’s disease, FTD FrontoTemporal

Dementia, PLS Primary Lateral Sclerosis, DMN Default Mode Network, SMN SensoriMotor Network, ToM Theory of Mind.

(36, 52, 58, 59) and impaired activation (51, 60) have both
been noted on cognitive tasks, which is likely to represent
stages of successful and failing adaptation. More often however
a pattern of coexisting hypo- and hyper- activation is reported
(37, 54, 61).

Resting-State Studies
The analysis of task-free BOLD signal in the so-called resting-
state (rsFMRI) benefits from fast acquisition times with a
data-driven, more consistent experimental design, making
them an attractive add-on to high-resolution structural
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protocols. With the establishment of the internationally
collaborative Neuroimaging Society in ALS (NiSALS) (62) and
successful multi-site initiatives (63), there is interest in FMRI
sequence harmonization and potential for multicentre data
pooling (12, 64). rsFMRI studies differ considerably in their
analysis approaches and their methods span from independent
component analysis (65–67), to graph theory (68, 69) and
amplitude of low frequency fluctuation (ALFF) (70, 71).
rsFMRI studies in ALS identified decreased frontotemporal
(72), sensorimotor (70, 73–75), and cortical-subcortical
(76) network integrity and increased default mode network
(75), and cerebellar (38, 69) connectivity. Large combined
structural-FMRI studies suggest that patterns of structural
degeneration overlap with functionally impaired regions
and that a strong positive correlation exists between
functional and structural connectivity alterations (77).
Longitudinal rsFMRI studies indicate declining functional
connectivity in sensorimotor, thalamic, and visual networks
and increasing connectivity in fronto-parietal and temporal
circuits (39). Multimodal, structural-functional, multi-timepoint
longitudinal studies (39) are best suited to characterize the
natural history of progressive neurodegenerative changes
(78). Data from presymptomatic carriers of ALS-causing gene
mutations revealed increased cerebello-cerebral functional
connectivity (79) and decreased salience, sensorimotor,
default-mode, and thalamic networks connectivity (80). Despite
the controversy around direct clinico-radiological correlations
(81), some studies in ALS have reported significant associations,
most often with functional measures (73, 82–84), disease
duration (59, 73), and progression rates (20, 40, 85).

Practical Limitations
For a condition in which accumulation of physical disability
is accompanied by ventilatory compromise with orthopnoea,
supine MRI limits longitudinal assessment to those with slower
rates of progression (39). The application of such a biomarker
as an outcome measure in a small-scale clinical trial would then
entail costly statistical compromises, since no ideal solution exists
for the imputation of data points selectively lost from those
patients with more aggressive disease (86).

ENCEPHALOGRAPHY

Cortical processes, and the diseases that impact on them, are
inadequately described without reference to dynamic neural
communication (87, 88), but this necessitates temporal precision,
without the dispersive effects of the haemodynamic response
function that smears neural signals across several seconds (89).
Surface electroencephalography (EEG) as a biomarker in ALS is
appealingly practical, well tolerated and non-invasive.

Methodological Limitations
Even a high-density array of surface EEG electrodes still sacrifices
spatial resolution owing to the attenuation and mutation of
neural signals as they pass through several tissue layers with
varying electrical conductivity (89). Magnetoencephalography
(MEG) permits recording of tiny (femtoTesla) fluctuations in the

magnetic field external to (and undispersed by) the scalp (90).
Yet reconstruction of cortical sources remains a mathematically
“ill-posed” problem—any given recorded signal could in theory
be generated by multiple neural sources and the analytical choice
to address this (for example “beamforming”) necessitates certain
assumptions (91). MEG’s improvement in spatial precision
is also offset by expenses and susceptibility to artifact from
ferromagnetic interference, albeit mitigated by acquisition and
analysis standardization (92, 93). The resulting data is feature-
rich, subsequent analysis may necessarily be restricted to a
frequency-band of interest or a selected connectivitymetric, these
choices may in turn influence study conclusions (94) (Table 2).

Evoked Potentials
Small-scale EEG studies have addressed the utility of
somatosensory, visual and brainstem evoked potentials in
ALS (95–100). Reflecting the inconsistency of reported results,
these well-established and standardized assessments have failed
to find any routine clinical application in ALS, although they
may yet find a role in multimodal assessment (101, 102).

To better reflect the pathological burden in ALS studies have
therefore moved toward either motor or cognitive activation
paradigms, initially appraising cortical processes via evoked
response potentials [ERPs, previously reviewed in (103)].
The “Bereitschaftspotential,” a classical lateralized change in
cortical electrical potential, easily recordable during movement
preparation, appeared robustly decreased in ALS (104, 105).
More recent studies have considered the implications of
abnormal movement-related cortical potentials (MRCPs) in ALS
in terms of clinical and structural correlates. While a study of 21
ALS patients demonstrated higher MRCPs overall, the effect was
shown to be driven by patients with a low burden of clinically
detectable UMN morbidity (106). The inference that increased
MRCPs reflect cortical compensatory mechanisms was born out
by longitudinal study of a sub-set in whom MRCPs declined
over 10 months. A comparable study of finger movement in 32
ALS patients revealed reduced MRCPs only in patients with a
high UMN burden, alongside evidence of ipsilateral premotor
activation to suggest a compensatory “boundary shift” (107).
MRCPs are also elicited during imagined movements, but only
a limited study in ALS has thus far been performed (108),
mandating replication before application of these measures in
control and communication devices is to be seriously considered.

Motor Paradigms
Motor events (including self-generated movement) are reflected
in frequency-specific changes to continuous “background”
neuronal oscillations (109). As might be expected, the
neurodegeneration associated with ALS results in distinct
alteration to pre-central sensorimotor rhythms. While studies
are yet to be widely replicated, they show promise both in terms
of relevance to daily motor tasks, and sensitivity to detect early
cortical dysfunction in patients still capable of performing the
task in question. The results may also contribute to the ongoing
efforts to characterize a presymptomatic phase to ALS and have
implications for the development of brain-computer interfaces
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TABLE 2 | Selected motor task-based and resting-state encephalographic studies in ALS.

Authors Year n EEG/MEG (channels) Protocol Main measure Phenotype correlations

Westphal et al. (104) 1998 16 ALS

16 HC

EEG

(11c)

Self-paced R fist closure Reduced BP Spasticity correlation

Thorns et al. (105) 2010 13 ALS

13 HC

EEG

(19c)

Cued R or L index finger

button press

Reduced BP N/A

Inuggi et al. (107) 2011 32 ALS

12 HC

EEG

(29c)

Self-paced R thumb

extension

Reduced MRCPs (only in

UMN+ ALS)

Ipsilateral MRCP correlation

with movement speed

Riva et al. (119) 2012 16 ALS

15 HC

EEG

(29c)

Self-paced R thumb

extension

Reduced beta ERS;

Unaltered beta ERD

ERS correlation with CST

damage via MRI and TMS

Gu et al. (108) 2013 4 ALS

7 HC

EEG

(15c)

Imaginary R wrist extension Slower MRCP rebound N/A

Bizovičar et al. (120) 2014 21 ALS

19 HC

EEG

(30c)

Self-paced R index finger

flexion

Reduced beta ERD;

Lateralised ERS

None

Proudfoot et al. (122) 2017 11 ALS

9 PLS

12 Presymp

10 HC

MEG (306c) Cued R or L index finger

extension

Excess beta ERD;

Delayed ERS

Altered ERS lateralisation in

PLS

Proudfoot et al. (126) 2018 17 ALS

11 HC

5 Presymp

MEG (306c) Cued R and L hand grips Reduced beta CMC;

Reduced inter-hemispheric

beta FC

CMC unaltered in Presymp

Mai et al. (143) 1998 18 ALS

14 HC

EEG

(18c)

Resting Reduced central alpha

power

Alpha correlation with MRC

and Norris scales

Santhosh et al. (144) 2005 12 ALS

12 ALS

EEG

(8c)

Resting Reduced alpha power N/A

Jayaram et al. (145) 2015 6 ALS

32 HC

EEG (124c) Resting Reduced central theta

power; Widespread

increased high gamma

power

Gamma reduced only in

patient with ALSFRS=0

Iyer et al. (147) 2015 18 ALS

17 HC

EEG (128c) Resting Increased FC especially

within salience and

default-mode networks

N/A

Nasseroleslami et al. (148) 2017 100 ALS

34 HC

EEG (128c) Resting Increased FC especially

interhemispheric theta and

fronto-parietal gamma

FC correlation with

structural MRI degeneration

Fraschini et al. (150) 2018 21 ALS

16 HC

EEG

(61c)

Resting Widespread reduced alpha

FC

N/A

Proudfoot et al. (151) 2018 24 ALS

24 HC

15 Presymp

9 PLS

MEG (306c) Resting Widespread increased

broadband FC

Similar changes in PLS.

More subtle changes in

Presymp.

Sorrentino et al. (154) 2018 50 ALS

25 HC

MEG (163c) Resting Broadband increased FC

with disorganized topology

Advanced ALS associated

with a more centralized,

“vulnerable” network

HC healthy control, FC functional connectivity, Presymp asymptomatic ALS-causing gene carriers, BP Bereitschaftspotential, MRCP movement related cortical potential, ERD event

related desynchronization, ERS event related synchronization PLS primary lateral sclerosis, CMC cortico-muscular coherence UMN+ above average quantity of upper motor neuron

signs, CST cortico-spinal tract, ALSFRS ALS functional rating scale (disability metric).

aiming to facilitate environmental control by patients with
advanced ALS (110).

Movement is accompanied by reliable and well-characterized

fluctuations in neural signal power, particularly within

the beta (15–30Hz) band, with recognizable anatomical
localization to motor cortex. Beta-band power is reduced
(event related desynchronization, ERD) prior to and during
movement execution; movement termination is followed by
an equally reliable increase in power well above baseline levels
(synchronization, ERS or post-movement beta-rebound) (111).
Temporally corresponding to fluctuations in cortical excitability

(112), ERD and ERS are adjusted to meet task requirements
[including force (113), speed (114), and complexity (115)], are
sensitive to pharmacological manipulation [particularly synaptic
GABA levels via benzodiazepines (116) or tiagabine (117)] and
may be disrupted by other disease states including Parkinson’s
(118).

Motor Studies (EEG)
Two independent EEG studies have demonstrated attenuation
of ERS in ALS. The first involved 16 patients efficiently
performing self-paced thumb extensions (119). The degree of
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ERS attenuation was shown to correlate with corticospinal
pathological burden as measured by both mean diffusivity on
structural MRI and diminished motor evoked potentials in APB
in response to TMS stimulation. The second study included
21 patients performing both sniffing and right index finger
flexion (120). Although the patients had detectable weakness in
terms of both maximal grip strength and sniff nasal-inspiratory
pressure, there were no group differences in the precise pressure
produced during the task performance. Neural data from the
sniff task were heavily contaminated by facial muscle artifact,
but the finger flexion task resulted in reliable ERD/S. The ALS
patients were observed to have diminished beta ERD, interpreted
as a consequence of pyramidal cell degeneration. Both motor
preparation and execution timepoints were affected, while the
lateralization of beta ERS was also altered. The study failed to
establish clinical correlations with these measures, nor was there
any successful correlation with F-wave elicitability (an imperfect
measure of corticospinal tract integrity in any case).

Motor Studies (MEG)
The neural signal acquired by MEG is far less susceptible to
distortion as it passes through skull and scalp, source modeling is
therefore likely to be more accurate than EEG, and an expanding
range of MEG studies have specifically appraised sensorimotor
rhythms (121). A MEG study involving 11 ALS patients, 9
with PLS, and 12 asymptomatic genetic mutation carriers,
investigated sensorimotor rhythms during a laterally-cued motor
preparation task requiring speeded index finger extension of
either hand (122). Whole-brain source-space data were analyzed
pre, during, and post movement, specifically focusing on beta-
band frequencies. Although the task was behaviorally performed
comparably by ALS patients, the neural data revealed larger beta
ERD, 500ms after cue presentation, during the period ofmaximal
motor preparation, particularly within contra and ipsilateral
gyri. Beta ERS, after movement termination, was delayed
in both patient groups. The asymptomatic carriers produced
excessive beta ERD during motor execution. Conceptually the
results are concordant with cross-modality support for cortical
hyperexcitability in ALS (123, 124).

The integrity of upper motor neurone pathways can also
be non-invasively appraised using MEG. Cortico-muscular
coherence (CMC), by which neural oscillations and surface
electromyography correlate temporally (particularly during
sustained contraction), principally reflects direct corticospinal
drive to the peripheral musculature (125). A MEG study of 17
ALS patients was designed to measure CMC during a bilateral
forearm grip task (126). As expected, source-space beta CMC
was distinctly strongest from the contra-lateral precentral gyrus,
but this frequency specific peak was markedly attenuated in
the ALS group, despite adequate grip production and without
any correlation to force production. The analysis also took
advantage of MEG spatial precision to consider motoric cortico-
cortical communication during the same task performance.
Interhemispheric functional connectivity, in terms of beta band
amplitude envelope correlation, was reduced in ALS patients. The
inference of reduced CMC, a measure that in health indexes the
quality of motor performance (127), is that beta coherence may

serve as a novel UMN specific biomarker at the disposal of future
therapeutic efforts (128).

Extra-Motor Studies
Taking advantage of the high temporal resolution of
encephalographic data, component steps in the complex
cognitive dysfunction associated with the ALS-FTD syndrome
may be examined. The mismatch negativity (MMN) paradigm
considers the attentional modulation of auditory perception. An
early EEG study failed to show any abnormalities within ALS
patients (129). However, using MEG, plus subtle experimental
design adjustments in 12 participants all with bulbar symptoms,
MMN response amplitudes were shown to increase relative
to healthy controls (130). Given the previously demonstrated
sensitivity of MMN responses to ketamine administration, the
authors tentatively linked their findings to the glutamatergic
excitotoxicity ALS pathogenesis theory. This rare example of
“gain of function” was not consistently replicated in two later
EEG studies, which interpreted delayed MMN responses as
evidence of sub-clinical extra-motor dysfunction (131, 132).

Less well-replicated methodologies have also been applied
to ALS patients to consider neural processes underlying
working memory (133, 134), selective attention (135, 136), and
executive control (137, 138). Broadly, these studies have provided
further evidence in favor of sub-clinical disruption to “frontal”
cognitive processes in keeping with the extended non-motor ALS
phenotype (139). Parietal cortex dysfunction was also implicated
in an EEG study involving the Wisconsin Card Sorting Test.
While 26 ALS patients did not differ in performance of a “set-
shifting” task, even patients without mild cognitive impairment
failed to produce the expected enhancement of parietal ERPs
during a task-switch (140). Although the attenuation of the
“switch potential” failed to correlate with neuropsychological
indices, the authors speculated whether such sub-clinical deficits
could predict future behavioral disorder.

A study requiring cognitive task performance during data
acquisition took a very different analytical approach, using 200 s
of data to measure “transfer entropy” between scalp electrodes
rather than the millisecond granularity of evoked potentials. The
directionality of functional connectivity was appraised via EEG in
18 ALS patients, revealing only feedforward (parietal to frontal)
connectivity to increase across a broad frequency band (141).
As the patients engaged in a spelling task with a view to brain-
computer interfacing, sensory (visual) stimuli were hypothesized
to be more readily processed in compensation for the diminished
proprioceptive input resulting from physical disability, but an
alternative explanation in terms of failing cortical inhibition was
also acknowledged (20).

Resting-State Studies (EEG)
The earliest EEG investigations of ALS reflected the emerging
concept of cognitive dysfunction within the ALS clinical
spectrum, with slowed cortical rhythms noted in non-demented
patients (142). A more systematic study of 18 ALS patients
conversely revealed sparse differences to healthy controls (143).
Only at central electrodes, and only within the alpha band (8–
13Hz), was the power of neural oscillations reduced in ALS. The
reduction was interpreted to reflect selective neuronal loss within
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the sensorimotor cortices. A comparable result was described in
a subsequent smaller study (144), and increases in the gamma
band (30–90Hz) power beyond central regions was also reported
(145).

Further ALS electrophysiology studies have reflected a
growing interest in the so-called “dynome” (146), the extent
to which the organization of cortical function is reflected in
particular patterns of active connectivity. High-density (128
channel) surface EEG was used to calculate connectivity between
both scalp points and projected source nodes in an initial study
of 18 patients (147). Fronto-central areas were shown to have
increased connectivity, and this was explored across a broad
range of measures. A subsequent study expanded this work
to 100 patients, including some longitudinal analyses (148),
and confirmed EEG-derived connectivity changes in ALS to
be more striking than limited group differences in the scalp-
recorded power spectrum. This more parsimonious analysis
appraised only sensor-space, deriving coherence estimates
within 8 consecutive frequency bands. Widespread increases
in connectivity were again demonstrated relative to healthy
controls, particularly theta band interhemispheric sensorimotor
connectivity and gamma band fronto-parietal connectivity. As 59
of the ALS patients had undergone contemporaneous structural
MRI, mathematically derived structural “degeneration modes”
(accounting for the large-scale gray and white matter changes
typical in ALS) were shown to correlate with EEG change,
conceptually aligned with the concept of progressive network
decline overlying structural disintegration.

Network structures can also be summarized using graph
theory metrics, this was explored in sensor-space in 21 patients,
demonstrating a more “de-centralised” organization (149). The
connectivity metric chosen in this study was phase-based,
thus insensitive to any group differences in spectral power,
and furthermore was significantly correlated with disability
between individuals. This group later re-analyzed the same
data reconstructed into source-space (150) and filtered into 3
classical frequency bands to show spatially distributed decreases
in connectivity, albeit restricted to the alpha band spectrum.

Resting-State Studies (MEG)
A resting-state MEG study explored functional connectivity
in 24 ALS patients using source-space data acquired after
co-registration with structural MRI (151). Ten minutes of
continuous data was parcellated into 39 regions of interest
and the broad-band (3–40Hz) signal used to calculate “edge”
strength between these 39 “nodes,” In keeping with many FMRI
studies, functional connectivity was broadly increased in ALS
patients relative to age-matched healthy controls, particularly
affecting communication links to the posterior cingulate cortex.
This finding was aligned with the hypothesis of loss of cortical

inhibitory neuronal influences underlying cortical excitability in

ALS (5). Comparable posterior non-motor connectivity changes
were described using FMRI (152). Nevertheless, the diversity
of reported results and interpretations serves to highlight a
need for replication and standardization between centers and
where possible across modalities (153). A further study of 50
patients, using a different (phase-based) connectivity measure,
also described widespread connectivity increases in ALS (154).
The increases were not restricted to specific frequency bands
and the extracted graph theory metrics suggest global network
hyper-centralization to accompany disease progression.

FUTURE DIRECTIONS

MEG is providing broader insight into cognitive mechanisms
underpinning higher cortical function in health (155), and
comparable results may eventually prove achievable using
surface EEG (156). The next generation of wearable sensors may
yet dramatically expand MEG’s application (157). The spinal
cord is a core but functionally understudied aspect of the motor
system disintegration that characterizes ALS. Spinal FMRI is
in its infancy (158), but a number of promising studies have
already been published in animal models (159, 160), healthy
populations (161, 162) and other clinical cohorts (163, 164).
The goal of non-invasively studying the integrated activity of
upper and lower motor neurone pools looks more feasible
with the success in studies involving the dorsal pathways (165).
Cerebral FMRI parameters are likely to take an increasing
role in emerging machine-learning and classification studies
both in diagnostic and prognostic applications (67, 76). Future
studies need robust longitudinal design and to capitalize on
the growing infrastructure for multicentre studies. This will
permit the testing of pathogenic hypotheses within larger cohorts
of clinically more homogeneous ALS patients, and define the
earliest markers of pathology in presymptomatic individuals
essential for the assessment of future neurotherapeutic
interventions.
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120. Bizovičar N, Dreo J, Koritnik B, Zidar J. Decreased movement-related

beta desynchronization and impaired post-movement beta rebound in

amyotrophic lateral sclerosis. Clin Neurophysiol. (2014) 125:1689–99.

doi: 10.1016/j.clinph.2013.12.108

121. Cheyne DO. MEG studies of sensorimotor rhythms: a review. Exp Neurol.

(2013) 245:27–39. doi: 10.1016/j.expneurol.2012.08.030

122. Proudfoot M, Rohenkohl G, Quinn A, Colclough GL, Wuu J, Talbot K, et al.

Altered cortical beta-band oscillations reflect motor system degeneration

in amyotrophic lateral sclerosis. Hum Brain Mapp. (2017) 38:237–54.

doi: 10.1002/hbm.23357

123. Vucic S, Ziemann U, Eisen A, Hallett M, Kiernan MC. Transcranial

magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological

insights. J Neurol Neurosurg Psychiatry (2013) 84:1161–70.

doi: 10.1136/jnnp-2012-304019

124. Turner MR, Hammers A, Al-Chalabi A, Shaw CE, Andersen PM,

Brooks DJ, et al. Distinct cerebral lesions in sporadic and “D90A”

SOD1 ALS: studies with [11C]flumazenil PET. Brain (2005) 128:1323–9.

doi: 10.1093/brain/awh509

125. Baker SN, Kilner JM, Pinches EM, Lemon RN. The role of synchrony

and oscillations in the motor output. Exp. Brain Res. 128, 109–17.

doi: 10.1007/s002210050825

126. Proudfoot M, van Ede F, Quinn A, Colclough GL, Wuu J, Talbot

K, et al. Impaired corticomuscular and interhemispheric cortical beta

oscillation coupling in amyotrophic lateral sclerosis. Clin Neurophysiol.

(2018) 129:1479–89. doi: 10.1016/j.clinph.2018.03.019

127. Kristeva R, Patino L, Omlor W. Beta-range cortical motor spectral power

and corticomuscular coherence as a mechanism for effective corticospinal

interaction during steady-state motor output.Neuroimage (2007) 36:785–92.

doi: 10.1016/j.neuroimage.2007.03.025

128. Fisher KM, Zaaimi B, Williams TL, Baker SN, Baker MR. Beta-

band intermuscular coherence: a novel biomarker of upper motor

neuron dysfunction in motor neuron disease. Brain (2012) 135:2849–64.

doi: 10.1093/brain/aws150

129. Hanagasi HA, Gurvit IH, Ermutlu N, Kaptanoglu G, Karamursel S,

Idrisoglu HA, et al. Cognitive impairment in amyotrophic lateral

sclerosis: evidence from neuropsychological investigation and event-related

potentials.Cogn Brain Res. (2002) 14:234–44. doi: 10.1016/S0926-6410(02)00

110-6

130. Pekkonen E, Osipova D, Laaksovirta H. Magnetoencephalographic

evidence of abnormal auditory processing in amyotrophic lateral

sclerosis with bulbar signs. Clin Neurophysiol. (2004) 115:309–15.

doi: 10.1016/S1388-2457(03)00360-2

131. Raggi A, Consonni M, Iannaccone S, Perani D, Zamboni M, Sferrazza

B, et al. Auditory event-related potentials in non-demented patients with

sporadic amyotrophic lateral sclerosis.Clin Neurophysiol. (2008) 119:342–50.

doi: 10.1016/j.clinph.2007.10.010

132. Mannarelli D, Pauletti C, Locuratolo N, Vanacore N, Frasca V,

Trebbastoni A, et al. Attentional processing in bulbar- and spinal-onset

amyotrophic lateral sclerosis: insights from event-related potentials.

Amyotroph Lateral Scler Frontotemporal Degener. (2014) 15:30–8.

doi: 10.3109/21678421.2013.787628

133. Volpato C, Piccione F, Silvoni S, Cavinato M, Palmieri A, Meneghello F,

et al. Working memory in amyotrophic lateral sclerosis: auditory event-

related potentials and neuropsychological evidence. J Clin Neurophysiol.

(2010) 27:198–206. doi: 10.1097/WNP.0b013e3181e0aa14

134. Zaehle T, Becke A, Naue N, Machts J, Abdulla S, Petri S, et al.

Working memory in ALS patients: preserved performance but marked

changes in underlying neuronal networks. PLoS ONE (2013) 8:e71973.

doi: 10.1371/journal.pone.0071973

135. Pinkhardt EH, Jürgens R, Becker W, Mölle M, Born J, Ludolph AC, et al.

Signs of impaired selective attention in patients with amyotrophic lateral

sclerosis. J Neurol. (2008) 255:532–8. doi: 10.1007/s00415-008-0734-9

136. Volpato C, Prats Sedano MA, Silvoni S, Segato N, Cavinato M,

Merico A, et al. Selective attention impairment in amyotrophic lateral

sclerosis. Amyotroph Lateral Scler Front Degener. (2016) 17:236–44.

doi: 10.3109/21678421.2016.1143514

137. Seer C, Fürkötter S, Vogts M-B, Lange F, Abdulla S, Dengler R, et al.

Executive dysfunctions and event-related brain potentials in patients

with amyotrophic lateral sclerosis. Front Aging Neurosci. (2015) 7:225.

doi: 10.3389/fnagi.2015.00225

138. Seer C, Joop M, Lange F, Lange C, Dengler R, Petri S, et al.

Attenuated error-related potentials in amyotrophic lateral sclerosis

with executive dysfunctions. Clin Neurophysiol. (2017) 128:1496–503.

doi: 10.1016/j.clinph.2017.05.007

139. Goldstein LH, Abrahams S. Changes in cognition and behaviour

in amyotrophic lateral sclerosis: nature of impairment and

implications for assessment. Lancet Neurol. (2013) 12:368–80.

doi: 10.1016/S1474-4422(13)70026-7

140. Lange F, Lange C, JoopM, Seer C, Dengler R, Kopp B, et al. Neural correlates

of cognitive set shifting in amyotrophic lateral sclerosis. Clin Neurophysiol.

(2016) 127:3537–45. doi: 10.1016/j.clinph.2016.09.019

141. Blain-Moraes S, Mashour GA, Lee H, Huggins JE, Lee U. Altered cortical

communication in amyotrophic lateral sclerosis. Neurosci Lett. (2013)

543:172–6. doi: 10.1016/j.neulet.2013.03.028

142. Gallassi R, Montagna P, Morreale A, Lorusso S, Tinuper P, Daidone

R, et al. Neuropsychological, electroencephalogram and brain computed

tomography findings inmotor neuron disease. Eur Neurol. (1989) 29:115–20.

doi: 10.1159/000116391

143. Mai R, Facchetti D, Micheli A, Poloni M. Quantitative

electroencephalography in amyotrophic lateral sclerosis. Electroencephalogr

Clin Neurophysiol. (1998) 106:383–6. doi: 10.1016/S0013-4694(97)00159-4

144. Santhosh J, Bhatia M, Sahu S, Anand S. Decreased electroencephalogram

alpha band [8-13Hz] power in amyotrophic lateral sclerosis patients: a study

of alpha activity in an awake relaxed state. Neurol India (2005) 53:99–101.

doi: 10.4103/0028-3886.15071

145. Jayaram V, Widmann N, Förster C, Fomina T, Hohmann M, Müller Vom

Hagen J, et al. Brain-computer interfacing in amyotrophic lateral sclerosis:

Implications of a resting-state EEG analysis. Conf Proc. (2015) 2015:6979–82.

doi: 10.1109/EMBC.2015.7319998

146. Kopell NJ, Gritton HJ, Whittington MA, Kramer MA. Beyond

the connectome: the dynome. Neuron (2014) 83:1319–28.

doi: 10.1016/j.neuron.2014.08.016

147. Iyer PM, Egan C, Pinto-Grau M, Burke T, Elamin M, Nasseroleslami B,

et al. Functional connectivity changes in resting-state EEG as potential

biomarker for amyotrophic lateral sclerosis. PLoS ONE (2015) 10:e0128682.

doi: 10.1371/journal.pone.0128682

148. Nasseroleslami B, Dukic S, Broderick M, Mohr K, Schuster C, Gavin B,

et al. Characteristic increases in EEG connectivity correlate with changes

of structural MRI in amyotrophic lateral sclerosis. Cereb Cortex (2017)

29:27–41. doi: 10.1093/cercor/bhx301

149. Fraschini M, Demuru M, Hillebrand A, Cuccu L, Porcu S, Di Stefano

F, et al. EEG functional network topology is associated with disability

in patients with amyotrophic lateral sclerosis. Sci Rep. (2016) 6:38653.

doi: 10.1038/srep38653

150. Fraschini M, Lai M, Demuru M, Puligheddu M, Floris G, Borghero G,

et al. Functional brain connectivity analysis in amyotrophic lateral sclerosis:

an EEG source-space study. Biomed Phys Eng Express (2018) 4:037004.

doi: 10.1088/2057-1976/aa9c64

151. Proudfoot M, Colclough GL, Quinn A, Wuu J, Talbot K, Benatar

M, et al. Increased cerebral functional connectivity in ALS: a resting-

state magnetoencephalography study. Neurology (2018) 90:e1418–24.

doi: 10.1212/WNL.0000000000005333

152. Loewe K, Machts J, Kaufmann J, Petri S, Heinze H-J, Borgelt C, et al.

Widespread temporo-occipital lobe dysfunction in amyotrophic lateral

sclerosis. Sci Rep. (2017) 7:40252. doi: 10.1038/srep40252

Frontiers in Neurology | www.frontiersin.org 12 January 2019 | Volume 9 | Article 1148120

https://doi.org/10.1016/j.neuroimage.2012.10.054
https://doi.org/10.1016/j.expneurol.2012.04.024
https://doi.org/10.1016/j.clinph.2011.12.013
https://doi.org/10.1016/j.clinph.2013.12.108
https://doi.org/10.1016/j.expneurol.2012.08.030
https://doi.org/10.1002/hbm.23357
https://doi.org/10.1136/jnnp-2012-304019
https://doi.org/10.1093/brain/awh509
https://doi.org/10.1007/s002210050825
https://doi.org/10.1016/j.clinph.2018.03.019
https://doi.org/10.1016/j.neuroimage.2007.03.025
https://doi.org/10.1093/brain/aws150
https://doi.org/10.1016/S0926-6410(02)00110-6
https://doi.org/10.1016/S1388-2457(03)00360-2
https://doi.org/10.1016/j.clinph.2007.10.010
https://doi.org/10.3109/21678421.2013.787628
https://doi.org/10.1097/WNP.0b013e3181e0aa14
https://doi.org/10.1371/journal.pone.0071973
https://doi.org/10.1007/s00415-008-0734-9
https://doi.org/10.3109/21678421.2016.1143514
https://doi.org/10.3389/fnagi.2015.00225
https://doi.org/10.1016/j.clinph.2017.05.007
https://doi.org/10.1016/S1474-4422(13)70026-7
https://doi.org/10.1016/j.clinph.2016.09.019
https://doi.org/10.1016/j.neulet.2013.03.028
https://doi.org/10.1159/000116391
https://doi.org/10.1016/S0013-4694(97)00159-4
https://doi.org/10.4103/0028-3886.15071
https://doi.org/10.1109/EMBC.2015.7319998
https://doi.org/10.1016/j.neuron.2014.08.016
https://doi.org/10.1371/journal.pone.0128682
https://doi.org/10.1093/cercor/bhx301
https://doi.org/10.1038/srep38653
https://doi.org/10.1088/2057-1976/aa9c64
https://doi.org/10.1212/WNL.0000000000005333
https://doi.org/10.1038/srep40252
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Proudfoot et al. Imaging Cerebral Activity in ALS

153. Höller Y, Uhl A, Bathke A, Thomschewski A, Butz K, Nardone R, et al.

Reliability of EEG measures of interaction: a paradigm shift is needed

to fight the reproducibility crisis. Front Hum Neurosci. (2017) 11:1–15.

doi: 10.3389/fnhum.2017.00441

154. Sorrentino P, Rucco R, Jacini F, Trojsi F, Lardone A, Baselice F, et al.

Brain functional networks become more connected as amyotrophic

lateral sclerosis progresses: a source level magnetoencephalographic

study. NeuroImage Clin. (2018) 20:564–71. doi: 10.1016/j.nicl.2018.

08.001

155. Cope TE, Sohoglu E, Sedley W, Patterson K, Jones PS, Wiggins

J, et al. Evidence for causal top-down frontal contributions to

predictive processes in speech perception. Nat Commun. (2017) 8:2154.

doi: 10.1038/s41467-017-01958-7

156. Baillet S. Magnetoencephalography for brain electrophysiology and imaging.

Nat Neurosci. (2017) 20:327–39. doi: 10.1038/nn.4504

157. Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer SS, et al.

Moving magnetoencephalography towards real-world applications

with a wearable system. Nature (2018) 555:657–61. doi: 10.1038/nature

26147

158. Bede P, Bokde ALW, Byrne S, Elamin M, Fagan AJ, Hardiman O.

Spinal cord markers in ALS: diagnostic and biomarker considerations.

Amyotroph Lateral Scler. (2012) 13:407–15. doi: 10.3109/17482968.2011.

649760

159. Lawrence J, Stroman PW, Malisza KL. Functional MRI of the

cervical spinal cord during noxious and innocuous thermal

stimulation in the alpha-chloralose- and halothane-anesthetized

rat. Magn Reson Imaging (2008) 26:1–10. doi: 10.1016/j.mri.2007.

05.001

160. Malisza KL, Stroman PW. Functional imaging of the rat cervical spinal cord.

J Magn Reson Imaging (2002) 16:553–8. doi: 10.1002/jmri.10185

161. Stroman PW, Krause V, Malisza KL, Frankenstein UN, Tomanek B.

Functional magnetic resonance imaging of the human cervical spinal cord

with stimulation of different sensory dermatomes. Magn Reson Imaging

(2002) 20:1–6. doi: 10.1016/S0730-725X(02)00468-X

162. Kornelsen J, Stroman PW. fMRI of the lumbar spinal cord during a lower

limbmotor task.Magn ResonMed. (2004) 52:411–4. doi: 10.1002/mrm.20157

163. Agosta F, Valsasina P, Caputo D, Stroman PW, Filippi M. Tactile-associated

recruitment of the cervical cord is altered in patients with multiple sclerosis.

Neuroimage (2008) 39:1542–8. doi: 10.1016/J.NEUROIMAGE.2007.

10.048

164. Stroman PW, Kornelsen J, Bergman A, Krause V, Ethans K, Malisza KL,

et al. Noninvasive assessment of the injured human spinal cord by means

of functional magnetic resonance imaging. Spinal Cord. (2004) 42:59–66.

doi: 10.1038/sj.sc.3101559

165. Eippert F, Kong Y, Winkler AM, Andersson JL, Finsterbusch J,

Büchel C, et al. Investigating resting-state functional connectivity

in the cervical spinal cord at 3T. Neuroimage (2017) 147:589–601.

doi: 10.1016/j.neuroimage.2016.12.072

166. Zhang Y, Fang T, Wang Y, Guo X, Alarefi A, Wang J, et al. Occipital cortical

gyrification reductions associate with decreased functional connectivity

in amyotrophic lateral sclerosis. Brain Imaging Behav. (2017) 11:1–7.

doi: 10.1007/s11682-015-9499-9

167. Bueno APA, Pinaya WHL, Moura LM, Bertoux M, Radakovic R,

Kiernan MC, et al. Structural and functional papez circuits integrity in

amyotrophic lateral sclerosis. Brain Imaging Behav. (2018) 12:1622–30.

doi: 10.1007/s11682-018-9825-0

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Proudfoot, Bede and Turner. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurology | www.frontiersin.org 13 January 2019 | Volume 9 | Article 1148121

https://doi.org/10.3389/fnhum.2017.00441
https://doi.org/10.1016/j.nicl.2018.08.001
https://doi.org/10.1038/s41467-017-01958-7
https://doi.org/10.1038/nn.4504
https://doi.org/10.1038/nature26147
https://doi.org/10.3109/17482968.2011.649760
https://doi.org/10.1016/j.mri.2007.05.001
https://doi.org/10.1002/jmri.10185
https://doi.org/10.1016/S0730-725X(02)00468-X
https://doi.org/10.1002/mrm.20157
https://doi.org/10.1016/J.NEUROIMAGE.2007.10.048
https://doi.org/10.1038/sj.sc.3101559
https://doi.org/10.1016/j.neuroimage.2016.12.072
https://doi.org/10.1007/s11682-015-9499-9
https://doi.org/10.1007/s11682-018-9825-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


MINI REVIEW
published: 18 January 2019

doi: 10.3389/fneur.2018.01167

Frontiers in Neurology | www.frontiersin.org 1 January 2019 | Volume 9 | Article 1167

Edited by:

Peter Bede,

Trinity College Dublin, Ireland

Reviewed by:

Siw Johannesen,

University of Regensburg, Germany

Patrizia Longone,

Fondazione Santa Lucia (IRCCS), Italy

*Correspondence:

Koen Poesen

koen.poesen@uzleuven.be

Philip Van Damme

philip.vandamme@uzleuven.be

Specialty section:

This article was submitted to

Neurodegeneration,

a section of the journal

Frontiers in Neurology

Received: 31 October 2018

Accepted: 17 December 2018

Published: 18 January 2019

Citation:

Poesen K and Van Damme P (2019)

Diagnostic and Prognostic

Performance of Neurofilaments in

ALS. Front. Neurol. 9:1167.

doi: 10.3389/fneur.2018.01167

Diagnostic and Prognostic
Performance of Neurofilaments in
ALS
Koen Poesen 1,2* and Philip Van Damme 3,4*

1Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, KU Leuven, Leuven, Belgium,
2 Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium, 3 Laboratory of Neurobiology, Department of

Neurosciences, KU Leuven and Center for Brain & Disease Research VIB Leuven, Leuven, Belgium, 4Department of

Neurology, Neuromuscular Reference Centre, University Hospitals Leuven, Leuven, Belgium

There is a need for biomarkers for amyotrophic lateral sclerosis (ALS), to support the

diagnosis of the disease, to predict disease progression and to track disease activity

and treatment responses. Over the last decade multiple studies have investigated the

potential of neurofilament levels, both in cerebrospinal fluid and blood, as biomarker

for ALS. The most widely studied neurofilament subunits are neurofilament light chain

(NfL) and phosphorylated neurofilament heavy chain (pNfH). Neurofilament levels are

reflecting neuronal injury and therefore potentially of value in ALS and other neurological

disorders. In this mini-review, we summarize and discuss the available evidence about

neurofilaments as diagnostic and prognostic biomarker for human ALS.

Keywords: amyotrophic lateral sclerosis, frontotemporal dementia, neurofilament, cerebrospinal fluid, serum,

plasma, NfL, pNfH

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder primarily affecting the motor
system network, giving rise to progressive muscle weakness in the limbs, the bulbar region, but
also of the respiratory muscles. Survival is typically between 2 and 5 years after disease onset,
but in about 15% of patients a slower disease progression is present (1). The most important
extramotor manifestations of the disease include behavioral changes, executive dysfunction and
language problems, reminiscent of frontotemporal dementia.

As of today, the diagnosis of ALS remains based on clinical judgement and requires a
combination of signs of upper and lower motor neuron involvement in a patients with progressive
muscle weakness, without alternative explanation for the presenting symptoms and signs (2).
Despite efforts to make the diagnostic criteria more sensitive (3, 4), the diagnostic delay remains
about 10–12 months after symptom onset (5). The current clinical criteria also do not discriminate
between different subtypes of ALS, although they may have very different disease trajectories.
Combinations of clinical parameters allow to predict disease progression and survival in ALS
patients, but they do not reflect the underlying biological processes (6).

Biomarkers, which reflect hallmarks of the disease, may not only aid in the diagnostic algorithm
of ALS, but could also be of value in defining homogeneous subgroups of patients. Potentially,
they could also be helpful to track disease progression and treatment responses (7). Neurofilaments
(NF) have been studied extensively in different neurological conditions, and are considered to
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be useful as marker of acute and chronic neuronal injury (8).
Neurofilaments are intermediate filaments of 10 nm in neurons,
composed of heteropolymers of different subunits, neurofilament
light chain (NfL), neurofilament medium chain (NfM), and
neurofilament heavy chain (NfH) (9). Phosphorylation and O-
glycosylation are believed to be important for NF assembly (9)
and especially NfM and NfH undergo these posttranslational
modifications. NF are highly expressed in neurons, provide
structural support for neurons and determine axon caliber
and conduction velocity (10). Mutations in the genes encoding
NfH and NfL can cause the inherited neuropathy Charcot-
Marie-Tooth disease (11), inframe deletions or insertions in
the side arm domain or C-terminal tail domain of NfH have
also been linked to ALS (12). Neurofilamentous abnormalities
and elevated NF levels are not restricted to ALS. However, NF
have been implicated in the pathogenesis of ALS for more than
2 decades (13). In post mortem spinal cord of ALS patients,
accumulations of NF are seen in the perikaryon and axons
of motor neurons (14) and motor neurons display reduced
NfL mRNA levels (15). Overexpression of NfH causes a motor
axonopathy with NF inclusions in mice, which can be rescued by
NfL overexpression (16), suggesting that an imbalance between
the relative expression levels of the different NF subunits may
be important. In line with this hypothesis, reducing the NfL
levels and overexpression of NfH levels in the SOD1 mouse
model of ALS, increased the lifespan of these animals (17, 18).
In this model of ALS, the degeneration of motor neurons is
accompanied by a progressive rise in blood NF levels, and these
levels have been shown to be able to capture treatment responses
(19, 20).

In this review, we will give an overview of the current
knowledge about the diagnostic and prognostic value of NF levels
in cerebrospinal fluid and blood for human ALS.

AVAILABLE METHODS TO MEASURE
NEUROFILAMENTS LEVELS

Numerous studies employed in house developed assays or
commercial “for research use only” ELISAs for NFmeasurements
(20–27). Although the precision and recovery profile of such
kits was acceptable (Table 1), the analytical sensitivity in terms
of limit of detection and limit of quantification was insufficient
to precisely detect NF levels in CSF of controls or in blood of
most patients with ALS (30). Using the same antibodies against
NfL, novel technologies including electrochemiluminescence
(ECL) and Single Molecule Array (SIMOA) enabled to precisely
and sensitively quantify NfL in CSF and blood (22, 29,
40). Furthermore, an improved ELISA assay allowed to
accurately quantify pNfH in blood and CSF of patients with
ALS (39).

DIAGNOSTIC VALUE OF
NEUROFILAMENTS

It is already known for more than 2 decades that NF levels are
roughly 5–10 times higher in ALS patients compared to healthy

controls (41). Numerous studies since then, have shown that NF
levels are increased in patients with ALS, not only in CSF, but
also in serum or plasma (42). As NFs are produced by neurons,
the serum/plasma levels are 10 fold lower compared to CSF
levels.

Several studies showed that NfL and pNfH are elevated in CSF
and serum/plasma in patients with ALS (20, 23, 30–32, 35, 37–
39, 43–55). There is a good correlation between NF levels in CSF
and in blood, and this is the case for NfL and pNfH (34, 39, 40).
Nevertheless, the diagnostic performance was found to be better
in CSF compared to blood (39, 54). Most studies compared
ALS patients to healthy controls, only few studies tested
the diagnostic performance in comparison to ALS mimicking
disorders (23, 30, 31, 39). The sensitivity and specificity for
ALS was better for pNfH than for NfL in studies comparing
both neurofilament subunits (23, 32, 39). Even though there is
considerable elevation in NF in some of the ALS mimicking
disorders, the diagnostic accuracy to detect ALS is still good.
The diagnostic performance of NfL and pNfH assays is shown
in Table 1. One study suggested that the discrimination from
disease controls improved by using the CSF pNfH/complement
C3 ratio (24). For implementation in the routine clinical practice,
assay standardization, and characterization, and independent
validation of the cut-offs are required. Indeed, the development
of reference methods for NF measurements, e.g., by means
of mass spectrometry (56, 57), and of certified reference
materials for traceability of the calibrators and to demonstrate
commutability among the different assays should be encouraged
(58). Independent evaluation of the performance characteristics
of the NF assays enables the public availability of data on
the analytical quality of the different commercially available
assays. Furthermore, automation of immunoassay facilitates
single measurements with similar precision profiles as duplicate
measurements in manually performed ELISAs, the former
significantly reducing the implementation costs for patients
(59). As the range of NF levels in ALS mimicking disorders
is rather wide, the robustness of reported cut-offs might be
challenged by the rather low number of ALS mimicking
disorders included in most studies (23, 39). Multicenter
studies are warranted to establish universally applicable cut-offs
for NF.

Importantly, the increase in NF is already measurable early
in the disease course (23, 31, 40). A recent study showed that
NfL levels increase already several months prior to symptom
onset in SOD1 mutation carriers (60). NFs are elevated in
sporadic and familial ALS patients, although slightly lower in
confirmed SOD1 cases (43) and higher in C9orf72 positive
patients (51).

The neuroanatomical correlate of elevated NF levels in
ALS is not entirely clear. Both NfL and pNFH correlate
with the extent of clinical upper and lower motor neuron
involvement (23), although pNfH levels correlate better
with lower motor neuron involvement and NfL levels
better with upper motor neuron involvement (23, 34). An
imaging study revealed that NfL levels in CSF correlate
with the extent of corticospinal tract involvement on
DTI (48).
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PROGNOSTIC VALUE OF
NEUROFILAMENTS

The levels of both NfL and pNfH have been shown to correlate
with parameters of disease severity, such as the decline on the
ALS functional rating scale-revised or ALSFRS-R (23, 30, 34).
They also predict survival of ALS patients, with higher NF
levels being unfavorable. In Cox regression analyses both NfL
and pNfH have been shown to be independent predictors of
survival, when taking other prognostic factors into account (30,
34, 45, 61). Patients with very long survival typically have low
levels of NFs (23, 53). The predictive value of NFs is present
when using both CSF and blood samples. As higher NF levels
are associated with a faster disease progression in typical ALS
patients, NF levels could theoretically be used to stratify patients
in clinical trials. However, data on this topic are currently
lacking.

The difference in disease progression between different
clinical subtypes of ALS is not always reflected in NF levels.
Patients with C9orf72 ALS have been reported to have higher
pNfH CSF levels (51), but further studies on NF levels are needed
in different motor neuron disease subtypes. In patients with
primary lateral sclerosis (PLS), the levels can also be increased,
but mostly to a lesser extent (30, 31, 34). ALS patients with
cognitive/behavioral impairment or comorbid FTD have a worse
outcome (62, 63), but if this is reflected in NF levels requires
further study (64). The unfavorable outcome of patients with
bulbar onset or respiratory onset ALS may not be reflected in NF
levels.

VALUE OF NEUROFILAMENTS TO TRACK
TREATMENT RESPONSE?

NFs may not only have value to help with the diagnosis and
prediction of disease severity in ALS, they may also become of
value to track the response to treatments. As marker of neuronal
injury it is anticipated that neuroprotective treatments would
result in lower NF levels. For ALS, there are no studies in
patients that report a treatment response on NF levels at present.
Whether the effect of riluzole on survival can be captured by
measuring NF levels remains unknown. On the other hand, a
recent study using rodent mutant SOD1 models, showed a clear
survival benefit of treatment with antisense oligonucleotides,
which was accompanied by a reduction in serum pNfH levels
(65). In addition, in other neurological disorders, such asmultiple
sclerosis, NFs levels reflect the effect of disease-modifying
therapies (66).

In patients with ALS, it is know that NFs levels are relatively
stable during the course of the disease in many patients (51, 67).
However, there is some evidence that the levels may increase
during the first phase of the disease (53). This is backed up
by data from a recent study in SOD1 mutation carriers, which
showed that the levels slowly increase up to 12 months prior to
symptom onset and can continue to rise the months following
symptom onset (60). The NF levels also correlate with the
number of body regions affected by ALS and the ALS progression
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rate (23, 34), suggesting that they reflect the extent and rate
of motor neuron degeneration. Several cross-sectional studies
have reported a negative correlation of NF levels with survival
(30, 34, 53). This may suggest that the levels drop slightly in later
disease stages, although there certainly is a bias introduced by
the enrichment for patients with a longer survival at later time
points. Longitudinal sampling shows a tendency to lower levels
upon follow up, especially in fast-progressing patients (67).

CONCLUSION

Evidence is emerging that NF levels can become valuable
biomarker for ALS, both for diagnosing ALS, for predicting
outcome, and potentially for the monitoring of treatment effects.
The CSF pNfH level seems to be the most accurate diagnostic
marker, but both pNfH and NfL serum or plasma measurements
perform good to predict survival and disease progression. Further
research is needed to establish the value of NF levels for
stratification and for disease monitoring in clinical trials.
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Amyotrophic lateral sclerosis (ALS) represents the major adult-onset motor neuron

disease. Both human and animal studies reveal the critical implication of muscle and

neuromuscular junctions (NMJs) in the initial phase of this disease. Despite the common

efforts, ALS diagnosis remains particularly challenging since many other disorders can

overlap yielding similar clinical phenotypic features. A combination of further research on

the NMJ parameters that are specific for this disease and laboratory tests are crucial

for the early determination of specific changes in the muscle, as well as in motor

neuron and the prediction of ALS progression. Also, it could provide a powerful tool

in the discrimination of particular ALS and ALS-mimic cases and increase the efficacy

of therapeutic treatments.

Keywords: amyotrophic lateral sclerosis (ALS), axonopathy, neuromuscular junction (NMJ), dying back hypothesis,

ALS-mimic diseases

AMYOTROPHIC LATERAL SCLEROSIS

Amyotrophic Lateral Sclerosis (ALS) is a disease characterized by a progressive degeneration of
upper motor neurons (MNs) in the motor cortex and lower motor neurons in the brainstem
and the spinal cord. The death of these neurons leads to spasticity, weakness, and atrophy of the
muscles, progressing to paralysis. The incidence of ALS in Europe is 2–16 per 100,000 each year
(1), with respiratory failure being the predominant mode of death in patients within 3 years of
diagnosis (2). The onset of the disease occurs prevalently during adulthood (peak age of 58–63
years) (3), though with a small proportion of early-onset disease in certain patients (before 35 years
of age). ALS also shares neuropathological and genetic features with another neurodegenerative
disorder, frontotemporal dementia (FTD) (4, 5), with many ALS patients showing some cognitive
or behavioral changes. This has led to consider ALS and FTD as the ends of the same spectrum of
disease (6).

Although the majority of ALS cases occur sporadically (sALS), there is a Mendelian inheritance
in about 10% of the cases (familial ALS, fALS), mainly in an autosomal, dominant fashion (7). The
two are clinically indistinguishable and a variety of genetic defects in more than 20 genetic loci have
been linked with the ALS phenotype (8), with new genes constantly being identified in subsets of
ALS patients (9–11). Four major genes which mutations are known to cause ALS are the f ollowing:
chromosome 9 open reading frame 72 (C9orf72), superoxide dismutase 1 (SOD1), transactive
response DNA-binding protein (TARDBP) and fused in sarcoma (FUS) (12–15). C9orf72 has an
important role inmembrane trafficking and autophagy (16), and SOD1 primary function is thought
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to be as a cytosolic and mitochondrial antioxidant enzyme,
converting superoxide to molecular oxygen and hydrogen
peroxide (17). TARDBP and FUS encode nucleic acid-binding
proteins that reside in the nucleus, and are involved in multiple
aspects of RNA processing, such as transcription and splicing
[reviewed in (18)].

NMJ INVOLVEMENT IN ALS

Despite the progress in our understanding of the molecular
pathogenesis linked to these genes, it is still unclear where
the motor neuron dysfunction begins and the extrinsic factors
that accelerate motor neuron degeneration. This led to the
consideration of ALS as either a dying forward process that
proposes an anterograde degeneration of motor neurons by
glutamate excitotoxicity from the cortex, or a dying back
phenomenon in which motor neuron degeneration starts
distally at the nerve terminal or at the neuromuscular
junction (NMJ) and progresses toward the cell body (3,
19). The NMJ is a tripartite synapse composed by the
presynaptic motor neuron, the postsynaptic muscle and the
synapse-associated glial cells (terminal Schwann cells, TSC)
and allows the transmission of action potentials from motor
neurons to muscles [reviewed in (20)]. In this complex
structure, besides motor neuron degeneration, glial cells, and
muscle fibers play also a major role in ALS onset and
progression.

The muscle contribution in ALS development, through NMJs
disassembly, is still a matter of debate. Nonetheless, increasing
evidence points to the critical role of NMJ defects in the early
stage of the disease in ALS patients [reviewed in (21)] and a
variety of animal models have permitted important advances into
exploring this hypothesis.

The human SOD1G93A transgenic mouse, the first and
most studied ALS model, is the one that has yielded the
majority of information about the muscular deficits in ALS
(22). Spatiotemporal analysis of NMJs in SOD1G93A mouse
revealed end-plates denervation before the appearance of
clinical symptoms and neuron cell body loss (23), with the
fast-fatigable synapses being more vulnerable to denervation
(24). Because of its high expression in ALS muscle biopsies,
the neurite outgrowth inhibitor Nogo-A was proposed as
a factor responsible for motor nerve terminals repulsion
and destabilization at the NMJ at very early asymptomatic
stages (25, 26). This hypothesis was then confirmed in
SOD1G93A mouse model, where genetic ablation of Nogo-A
in muscle led to marked reduction of muscle denervation
and prolonged survival (27). Morphological observation of
NMJs in SOD1G93A also contributed to reinforce the dying
back hypothesis, showing more detailed NMJ alterations
prior to functional symptom onset (28). A detailed overview
of the findings concerning neuromuscular defects in the
SOD1G93A mouse model has been reviewed by Dupuis and
colleagues (22).

Despite the predominant use of rodent models for studying
pathomechanisms and potential therapeutic targets in ALS, the

use of smaller animal models, like Drosophila melanogaster
and zebrafish (Danio rerio), is continually increasing.
Their advantages lie in their fast development allowing
quick generation of lines, their availability and the ease in
manipulating gene expression and in drug screening. In
drosophila, studies showed locomotor defects, reduced life span,
and anatomical defects at the NMJ, causing impairments in
synaptic transmission, in loss and gain of function models of
TARDBP (29, 30). Similar results were found for FUS. Gene
deficiency and overexpression of FUS in Drosophila models
caused decreased synaptic transmission, reduced number of
presynaptic active zones, altered postsynaptic glutamate receptor
subunit composition at the NMJ, motor neuron degeneration
and impaired motor behavior (31, 32). Zebrafish studies have
highlighted gain and loss of function mechanisms for TARDBP
and FUS, demonstrating shorter axonal projections from
motor neurons, premature and excessive branching, impaired
synaptic transmission at the NMJ leading to swimming defects
(33–35). C9orf72 gene has also been modeled in zebrafish in a
loss-of-function model that displayed behavioral and cellular
deficits related to locomotion (36).For more details about the
different models, all the ALS gene mutations that have been
modeled are summarized in a recent review by Van Damme
et al. (37).

Altogether, fundamental research supports the crucial role
that NMJ could play in ALS pathogenesis and its possible
employment as efficient early marker of the disease.

ALS DIAGNOSTIC CHALLENGES

The difficulty to diagnose ALS resides mainly in the existence of
several mimic syndromes, unrelated to ALS but which present
similar clinical features (38, 39).

Motor neuron diseases (MNDs) are classified in four main
groups in which ALS represents the most common form
(Table 1). Although these diseases affect people in different
ways, they share several symptoms due to motor neuron
loss of function. All of them present progressive weakening
of skeletal muscles, which eventually affects the ability to
speak, swallow and breathe. ALS diagnosis is even more
difficult if we add to the list other neurological conditions
unrelated to MNDs which can mimic its early symptoms.
Moreover, increasing evidences point to a possible direct
implication of muscle in the early stage of the disease,
adding myopathies to the list of ALS-mimic pathologies
(Table 1).

Standard diagnostic criteria for ALS have been established
in 1991 [El Escorial criteria [EEC] (40)] and were revised in
1997 [AirlieHouse criteria [AHC] or El Escorial Revisited (41)].
Even though the essential requirements for ALS diagnosis were
defined by these criteria, many neurologists and neuromuscular
clinicians were missing the diagnosis, proving the low clinical
accuracy of these diagnostic roles (42).

In 2008, electrodiagnostic studies, known as the Awaji criteria
(43), were included in the clinical procedure to allow earlier
and more accurate assessment of ALS diagnosis. However, the
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TABLE 1 | General overview of neuromuscular diseases and ALS-mimic

pathologies.

MOTOR NEURON DISEASES (MND)

Amyotrophic Lateral Sclerosis (ALS)

Primary Lateral Scerosis (PLS)

Progressive Muscular Atrophy (PMA)

Progressive Bulbar Palsy (PBP)

OTHER NEUROLOGICAL CONDITIONS THAT CAN MIMIC ALS

Mithochondrial Disorder (MID)

Psedobulbar Palsy

Spinal Muscular atrophy (SMA)

Primary lateral sclerosis (some

subtupes not related to ALS)

Progressive spinal muscular atrophy

(some subtype not related to ALS)

Spinobulbar muscular atrophy (SBMA

or Kennedy’s disease)

Autoimmune Syndromes Monoclonal

Myopathies

Cachectic myopathy

Polymyositis Sarcoid myositis

Carcinoid myopathy

Nemaline myopathy

Inflammatory myopathies Polymyositis (PM)

Dermatomyositis

Inclusion-body myositis (IBM)

Neuromuscular Disorders (NMD) implicate deficits and degeneration of nerves (motor and

sensory neurons) and muscles (skeletal muscles) of the central and peripheral nervous

system, leading to muscles weaken and waste away (atrophy). NMDs are classified in

4 categories, with Amyotrophic lateral sclerosis representing the main one. ALS-mimic

pathologies is a vast group of diseases characterized by weakness and wasting away

of muscle tissue, with or without the breakdown of nerve tissue, thus mimicking ALS

symptoms. Currently, no cure exists for NMDs and the treatments aim to relieve the

symptoms and delay disease progression.

application of those sets of defined features are still insufficient
to rule out other similar and related diseases (44, 45).

Methods for Diagnosis
Although the main ALS evaluation remains the clinical
one, laboratory testing, based on advanced techniques of
electrodiagnosis, neuroimaging, immunobiochemistry, and
neurogenetics, is required for accurate ALS diagnosis.

Tests to rule out other neuromuscular conditionsmay include:

Electromyogram (EMG)
The needle EMG is the most important study in determining
diagnostic certainty of ALS (46). During this test, a needle
electrode is inserted through the skin into various muscles,
starting with the most severely involved limb (Figure 1). The
examination then progresses through four anatomical region:
bulbar, cervical, thoracic, and lumbar. At least three anatomical
regions have to be positive to this test to define ALS. The
fasciculation potential (FP) has been included in Awaji criteria as
a hallmark of ALS muscular denervation. In general, a decreased
number of motor unit recruitment, with long duration of the

motor unit potential, and abnormal spontaneous activity, are
measured at the EMG in ALS patients [reviewed in (47)].

Nerve Conduction Study (NCS)
This test measures how fast an electrical impulse moves through
the nerve (Figure 1). During the test, one electrode placed on the
skin stimulates the nerve of interest with a very mild electrical
impulse. Variations in time spent to reach a second electrode can
help in identifying a nerve damage. Whereas, EMGmeasures the
electrical activity in the muscles, the nerve conduction study is
specific for nerves and helps to localize the disorder among nerve,
neuromuscular junction, and muscle. NCS is a powerful tool
to discriminate ALS from axonal demyelination or conduction
block impairments (48). NCS parameters are generally normal
in ALS, albeit the presence of prolonged distal motor latency and
slowed conduction velocity could be consistent with the diagnosis
of ALS (49, 50). These changes suggest loss of large myelinated
fibers, but also motor axons regeneration phenomena (50).

Magnetic Resonance Imaging (MRI)
This technique is able to produce detailed images of the brain
and spinal cord, the latter with the advantage of simultaneously
investigating the upper and lower motor neurons. During several
years, its application was related to the exclusion of other
disorders, as tumors or hernias that can display certain of the
ALS-mimic symptoms (51). The evolution and improvement
of this multimodal tool has recently become essential for the
diagnosis of ALS. MRI scans can show cerebral degeneration and
gray/white matter atrophy [reviewed in (52)], and also detect
abnormalities in ALS muscle, likely due to denervation atrophy
process (53).

Blood and Urine Tests
Testing hematological factors is helpful to exclude diseases that
are capable of mimicking ALS symptoms. Recently, a population-
based study, proposed serum albumin, creatinine levels, and
lymphocyte count as markers for ALS, indicating muscle waste
and inflammation respectively (54). Other markers potentially
related to a better ALS outcome have been proposed: LDL/HDL
levels, which are elevated in ALS plasma and represent a general
unexplained hypermetabolism (55, 56); serum uric acid levels,
which are decreased among ALS patients, further demonstrating
the possible role of oxidative stress in the induction and
propagation of the disease (57); serum ferritin levels which are
elevated in ALS patients and could reflect perturbation in iron
metabolism (58); concentrations of certain amino acids, which
are decreased in ALS (59); levels of serum proinflammatory
cytokines, such as IL-6, which are increased in ALS (60). Finally,
high level of circulating AChE and metalloproteinases (MMP)
have been reported in ALS plasma (61, 62) and although the
exact source of these two classes of enzymes remains uncertain,
it could in part reflect a disruption of extracellularly bound
AChE at the NMJ and early change in the nerve-muscle
integrity.

Spinal Tap (Lumbar Puncture)
Using this particular test, a small amount of cerebrospinal fluid
(CSF) is taken from the lower back of the patient for laboratory
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FIGURE 1 | Schematic representation of the nerve conduction and muscle contraction studies. Nerve Conduction Velocity (NCV - left) measures the velocity and the

quality of conduction of the electrical signal in a nerve. During the test, your nerve is stimulated, with an electrode attached to your skin. One or two more electrodes

patches are placed on the skin over your nerve. The electrical impulse of the stimulated nerve pass from the stimulator to the other receiving electrode. The time (in

milliseconds) spent by the impulse to move from a point to another, on the order of millimeters, represent the Velocity. In ALS, the impulse conduction is slower

respect with control cases and is worsened by the increase of axonal degeneration. The electromyogram (EMG-right) measures the electrical activity of the muscles at

rest and during contraction. There are two kinds of EMG: surface EMG and intramuscular EMG. In the first one the muscle activity is recorded by one or more

electrodes patched on the skin and it asses the contractile response of superficial muscles. This approach presents several limitation since the result signal is

influenced by the depth of the subcutaneous tissue at the site of the recording and by the discharges of adjacent muscles. With the intramuscular EMG, specific deep

muscle activity is recorded by using one needle electrode inserted into the muscle. EMG and NCV tests are often done together to give more complete information.

tests. Thanks to its proximity to the central nervous system,
the CSF is considered one preferred tissue to search for ALS
biomarkers [reviewed in (63)]. Several markers for ALS have
been identified in CSF such as Tau, TDP43, Nefl, and MMP
levels [reviewed in (64)]. In particular, MMPs with their ability
to digest collagen, proteoglycan, and laminin (65), may reflect
ongoing destruction of the matrix which wraps synapses (66) and
pathological changes at the brain-blood barrier (62).

Muscle Biopsy
With this technique, a small portion of muscle is removed by
needle biopsy and sent to a laboratory for histopathological
analysis. Rarely performed because of its painful and
invasive nature, this tool is useful when ALS diagnosis is
in doubt. Generally, ALS muscles present signs of active
denervation/reinnervation and an increased number of atrophic
fibers (67).

Genetic Testing
People with familial ALS (fALS) background can get an efficient
diagnosis through genetic testing (68, 69). This technique
may help ALS patients to understand the basis of their
condition, and improve the genotype-specific treatments (70).
Unluckily, there is a lack of consensus among clinicians
above the definition of fALS, since newly genes related to
ALS are continuously found (71). Nowadays, genetic testing
is not wildly used because of its high cost and the belief
that ALS genetics is not well-enough understood to provide a
better treatment plan, as reported in 2017 in a study which

involved 167 clinicians from 21 different countries around the
world (71).

EXAMPLES OF NMJ PATHOLOGIES

ALS-MIMIC

Here we report some examples of ALS-mimic pathologies.
The Spinal muscular atrophy (SMA) is an inherited MND
that prevalently affects children. Its incidence is 1 per 11,000
live births (72). All forms of SMA are caused by the loss
of SMN1, a gene implicated in axonal mRNA transport and
snRNP biogenesis (73). Studies involving mice and fly mutants
demonstrated that the probable origin of this pathology resides
in the early loss of sensory information from proprioceptive
neurons (74), which in turn causes degeneration of α motor
neurons. In consequence, progressive muscle weakness, and,
in severe cases, respiratory failure appear (75). Despite being
considered a child’s illness, the SMA type 4, that has an
adult onset, overlaps with ALS diagnosis (76). Furthermore,
like in ALS, several studies reveal the early implication of
NMJs in SMA, with synaptic pathology prior to the appearance
of clinical symptoms (77–81). However, the first evidence of
neuromuscular pathology occurred at different time points of
the disease progression, with presynaptic pathology preceding
morphological changes at the endplate in ALS, and simultaneous
pre and post-synaptic pathologies in SMA, suggesting the
possibility to study this particular zone in diagnosis (81).
Histochemical skin biopsy comparison was suggested as a
powerful diagnostic tool in differentiating ALS and SMA, since
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the small collagen fibrils and the increased amount of amorphous
material, which are characteristic of ALS, are not in SMA (82).

The Spinobulbar muscular atrophy [(SBMA) Kennedy’s
disease] is a X-linked hereditary lower motor neuron disease,
where the expanded trinucleotide repeat (CAG > 37) in the
androgen receptor gene (AR) causes its nuclear inclusions and
impairment of its function (83, 84). The disease affects 1 per
200,000 males in Europe and Asia each year (85). In this
pathology, degeneration of anterior horn cells of the spinal cord,
where androgen receptors are widely expressed, is observed (86,
87). Although SBMA patients exhibit facial weakness as first sign
of the disease, they progressively develop myopathic features,
such as muscle atrophy and necrotic myofibers (88). Like ALS,
SBMA disease reveals mixed pathological findings, with both
myopathy and neurogenic atrophy features, which is the cause
of misdiagnosis at the early stage of the disease.

Among the autoimmune syndromes, myasthenia gravis (MG)
overlaps ALS syndrome. The annual incidence ranges from
3 to 30 per 1,000,000 people (89). In fact, the binding of
autoantibodies to components of the NMJ in MG causes a
characterized muscle weakness and fatigability (90). Even if
acetylcholine receptor antibodies are considered to be highly
specific for the diagnosis of MG, ALS patients can also present
these autoantibodies at the blood test (91, 92). In these cases, it is
very difficult to define the false positive cases and an experimental
treatment with AChE inhibitors is necessary to differentiate MG
from ALS (93).

The skeletal muscle disorders are represented with the term
Myopathies. Myopathies hold a list of pathologies (Table 1)
where muscle weakness can begin in the hands and feet (distal
muscles) as well as in the muscles near the center of the
body (proximal muscles) sometimes mimicking ALS features,
confusing the diagnostic and the treatment decision. Among
them, Inclusion Body Myositis (IBM) (94) is the most common
ALS-mimic disease. It is the most common adult myopathy in 50
year-old persons and older, and its incidence is 3.5 per 100,000
(95). It is characterized by inflammatory cells surrounding
and invading non-necrotic muscle fibers, rimmed vacuoles,
congophilic inclusions, and protein aggregates in muscle (96, 97).
In this case, the unique way to exclude ALS is the muscle

biopsy combined with quantitative electromyographic analysis,
especially in those patients where disease progression is slow and
atypical (98).

CONCLUSION

Amyotrophic Lateral Sclerosis (ALS) and MNDs are not yet
curable. However, accurate diagnosis is crucial to provide
adequate counseling and information about the prognosis and
disease course, and to avoid inappropriate therapy. Moreover, a
good diagnosis could furnish a more equal stratification of cases
and be important in the choice of additional medical support,
as for example nutritional intervention strategies or physical
therapy.

Currently, there is not a common consensus in the
use of laboratory analysis for ALS diagnosis. Basically,
clinicians decide for the application of certain techniques
based on their experience, expertise and hospital practice.
Progress in molecular genetics and identification of specific
biomarkers is ongoing, which will translate to a refined
diagnostic certitude. Therefore, there is the emerging need
to establish a widely accepted protocol for laboratory tests to
discriminate the majority of cases that present clinical features
resembling ALS.

Increasing human and animal evidence proposed NMJ
impairments as possible biomarkers for detection and
discrimination of ALS and mimic diseases in an early, preclinical
stage. However, further studies are needed to understand how
these impairments could be monitored and specifically treated.
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Bulbar impairment represents a hallmark feature of Amyotrophic Lateral Sclerosis

(ALS) that significantly impacts survival and quality of life. Speech and swallowing

dysfunction are key contributors to the clinical heterogeneity of ALS and require

well-timed and carefully coordinated interventions. The accurate clinical, radiological

and electrophysiological assessment of bulbar dysfunction in ALS is one of

the most multidisciplinary aspects of ALS care, requiring expert input from

speech-language pathologists (SLPs), neurologists, otolaryngologists, augmentative

alternative communication (AAC) specialists, dieticians, and electrophysiologists—each

with their own evaluation strategies and assessment tools. The need to systematically

evaluate the comparative advantages and drawbacks of various bulbar assessment

instruments and to develop integrated assessment protocols is increasingly recognized.

In this review, we provide a comprehensive appraisal of the most commonly utilized

clinical tools for assessing and monitoring bulbar dysfunction in ALS based on the

COnsensus-based Standards for the selection of health Measurement INstruments

(COSMIN) evaluation framework. Despite a plethora of assessment tools, considerable

geographical differences exist in bulbar assessment practices and individual instruments

exhibit considerable limitations. The gaps identified in the literature offer unique

opportunities for the optimization of existing and development of new tools both

for clinical and research applications. The multicenter validation and standardization

of these instruments will be essential for guideline development and best practice

recommendations.

Keywords: amyotrophic lateral sclerosis, Bulbar ALS, outcome assessment (Health Care), dysphagia, dysarthria,

COSMIN

INTRODUCTION

ALS is a relentlessly progressive neurodegenerative disease with considerable clinical heterogeneity
compared to other neurodegenerative conditions. Bulbar impairment (oro-motor, dysarthria and
dysphagia) is a hallmark feature of the disease and has been associated with the condition since
its earliest descriptions (1). While only approximately 30% of patients exhibit bulbar symptoms at
onset, the majority of patients develop speech and swallowing difficulties with disease progression.
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Bulbar signs and symptoms play an important role in the
diagnosis of ALS and pose unique management challenges.
Bulbar presentation has been associated with shorter survival
(2, 3), faster functional decline (4), reduced quality of life (5–7)
and increased multidisciplinary support needs (8, 9). Dysarthria
has been consistently associated with low mood, withdrawal
from activities and social isolation (10, 11). Dysphagia in ALS
may lead to weight loss, malnutrition, dehydration, aspiration
pneumonia, hospitalization and reduced quality of life (12, 13).
Despite these important sequelae, bulbar impairment in ALS
is relatively understudied, and the research literature is sparse
(14). Proxies of bulbar impairment are underrepresented among
outcome measures in clinical trials (15). Validated diagnostic,
monitoring and prognostic markers of bulbar dysfunction are
lacking and clinical assessment practices vary considerably across
various centers (16).

Assessment measures are broadly classified as “diagnostic”
when their primary purpose is to confirm the diagnosis, exclude
mimics, or classify individual patient according to disease-onset.
Some measures have been optimized to characterize symptom
severity, while other indices are primarily used to monitor
longitudinal change. Depending on the primary purpose of a
measure, it is subject to a specific set of requirements defined
by the COnsensus-based Standards for the selection of health
Measurement INstruments (COSMIN) guidelines (17). These
require that, in order to reliably integrate assessment tools into
clinical practice, their measurement properties need to be firmly
established relative to their primary purpose. All tests need to be
assessed for validity and reliability (reproducibility). Diagnostic
and screening tests should also be evaluated for their detection
abilities (i.e., sensitivity/specificity). Discriminative measures
need to be able to detect group differences and measures
proposed to track longitudinal change need to be assessed for
their ability to capture progressive changes.

The objective of this paper is to provide a review of established
bulbar measures in ALS from a diagnostic, screening and
disease monitoring perspective. This work is not intended as an
exhaustive review of all available measures of bulbar impairment
in ALS but as a summary of the current state of the field and its
most pressing needs.

Abbreviations: AAC, augmentative alternative communication; ALS,

Amyotrophic Lateral Sclerosis; ALSFRS-R, Amyotrophic Lateral Sclerosis—

Functional Rating Scale—Revised; ALSSS, ALS Severity Scale; CNS-BFS, Center

for Neurologic Study-Bulbar Function Scale; COSMIN, COnsensus-based

Standards for the selection of health Measurement Instruments; CNE, Cranial

nerve exam; DDK, dysdiadochokinesis; EAT-10, Eating Assessment Tool-

10; EIM, electrical impedance myography; EMG, electromyography; FLAIR,

Fluid-attenuated inversion recovery; FDA, Frenchay Dysarthria Assessment;

FEES, fiberoptic evaluation of swallowing; FSE, Videofluoroscopic swallowing

evaluation; FT9, Fine’til 9; GRE/SWI, gradient recalled echo/susceptibility

weighted imaging; IOPI, Iowa Oral Performance Instrument; KPa, kilopascal;

LMN, lower motor neuron; MAIP, maximum anterior isometric pressure; MiToS,

Milano-Torino staging; MR, magnetic resonance; MRI, magnetic resonance

imaging; MUNE, Motor Unit Number Estimation; MTP, maximum tongue

pressure; MUNIX, Motor unit number index; MUPs, motor unit potentials;

NdSSS, Neuromuscular Disease Clinical Status Scale; OSS, Oral Secretion Scale;

SCM, sternocleidomastoid; SLPs, speech-language pathologists; SSS, Sialorrhea

Scoring Scale; SIT, Sentence Intelligibility Test; syl/sec, syllables per second; T1W,

T1 weighted; UMN, upper motor neuron; WPM, words-per-minute.

TOOLS FOR DIAGNOSING AND

SCREENING FOR BULBAR ALS

Table 1 provides a summary of tools primarily used for the
diagnosis of bulbar dysfunction in ALS highlighting their main
advantages and limitations.

Cranial Nerve Exam (CNE)
Clinical evidence of upper motor neuron (UMN) and lower
motor neuron (LMN) degeneration is required for the diagnosis
of ALS. With regards to bulbar impairment, clinical UMN signs
include pathological reflexes (e.g., brisk jaw jerk, gag, and other
facial reflexes) (18) and LMN signs encompass muscle weakness,
atrophy and fasciculations in the jaw, face, tongue and palate
(33). Although the clinical neurological examination remains
“the best way to localize neurodegeneration in vivo and to follow
the process in real time,” (34) and the reliability of CNE has
been evaluated in various neurologic populations (21, 35), the
quantitative psychometric profile of CNE i.e., inter and intra-
later reliability, sensitivity, specificity, and responsiveness, have
not been systematically evaluated in ALS to date. This represents
a research priority for the standardization of assessments.

Needle EMG
The role of electromyography (EMG) in ALS is the confirmation
of acute and chronic denervation. The former may be
evidenced by fibrillations, positive sharp waves and fasciculation
potentials, which in the tongue are not readily detectable since
complete relaxation is difficult to achieve (22). Polyphasic motor
unit potentials (MUPs) with prolonged duration, increased
amplitude and decreased recruitment are suggestive of chronic
denervation. Quantitative motor unit action potential analysis
in subclinical bulbar involvement is thought to be superior
to peak ratio interference pattern analysis (36). Depending on
local protocols, the genioglossus is the most commonly assessed
muscle (37), but the evaluation of the sternocleidomastoid (38),
masseter, temporalis, frontalis (39), mentalis (40), and trapezius
(22) muscles have also been proposed to resolve diagnostic
uncertainty. While Motor Unit Number Estimation (MUNE)
techniques (41, 42), such as MUNIX (43) have been extensively
utilized to quantify motor neuron loss in the limbs, they have
only been relatively recently adopted to assess the denervation
of the tongue (44) and further development is required for their
acceptance to clinical practice.

Clinical Neuroimaging
While brain imaging is not required to establish the diagnosis
of ALS, MRI is commonly used as part of the diagnostic
work-up to rule out alternative neurological conditions which
may mimic ALS (45, 46). In bulbar onset patients the careful
evaluation of the brain stem for structural, neoplastic, vascular,
inflammatory and infiltrative processes is particularly important.
Pathological processes superior to the brainstem; demyelination,
neurovascular syndromes, neurosarcoidosis, leukodystrophies,
malignancies, and neurodegenerative conditions may also
manifest in bulbar symptoms if involving the corticobulbar
tracts or the bulbar segments of the motor cortex. A number
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of extrapyramidal and cerebellar conditions may also present
with localization-specific (ataxic, hypokinetic, hyperkinetic)
dysarthria and imaging has a role to rule out gross striatal,
nigral and cerebellar pathologies. The incidental identification
of tongue tumors on MRI in patients with suspected ALS has
also been reported (47). A number of radiological cues have been
associated with ALS, such as high signal along the pyramidal
tracts on T2 weighted or FLAIR imaging, low signal in the
precentral gyrus on GRE/SWI, isolated motor cortex atrophy
on T1W, but these qualitative visual cues are not specific to
ALS and are not sensitive for diagnostic or monitoring purposes
(48). Quantitative imaging studies of ALS on the other hand
have successfully captured the cortical (UMN) components of
bulbar dysfunction in a somatotopic distribution (49, 50) and
characterized the pathological substrate of pseudobulbar affect
(51, 52). With relentless methodological (53) and conceptual
advances in neuroimaging (54), the establishment of multicenter
data repositories (55) and the increasing availability of 7
Tesla systems (56), the anatomical underpinnings of bulbar
dysfunction are likely to be characterized in further detail.

Auditory-Perceptual Dysarthria Evaluation

and Frenchay Dysarthria Assessment
“The Mayo Clinic” method of dysarthria categorization involves
auditory-perceptual evaluation of specific voice and speech
features during a passage reading, phonation of /a/, and oral
dysdiadochokinesis (DDK) with /pa, /ta/, /ka/, and /pataka/ (57–
59). The identification of “harsh,” “strained,” or “strangled” voice
quality, slow speaking rate and “excess and equal” stress pattern
during passage reading and DDK are typically linked to UMN
dysfunction and “spastic dysarthria.” “Breathy” or weak voice,
hypernasality, nasal emissions, and articulatory imprecision
without changes in speaking rate are classically associated with
LMN dysfunction and “flaccid dysarthria.” ALS is typically
characterized by mixed spastic-flaccid dysarthria presenting
with articulatory imprecision, hypernasality, harshness, slow
rate and prosodic abnormalities. Although the reliability of
observational assessments have been repeatedly questioned
(10), protocol standardization, assessor training, and reference
samples are thought to improve assessment reliability (60).
Despite these efforts, auditory-perceptual assessment remains
surprisingly underutilized, requiring standardization of practices,
psychometric evaluation and multi-center validation in ALS.

Tools like the Frenchay Dysarthria Assessment (FDA) (26)
are particularly well-suited for diagnostic purposes as they
can comprehensively assess both structure and function of the
bulbar musculature through a combination of CNE items and
the auditory-perceptual dysarthria assessment. However, FDA
was not specifically developed for ALS, and the evaluation of
its measurement properties in ALS is lacking. DDK, which is
included in CNE, FDA and perceptual dysarthria assessments,
is commonly used to track disease progression, and has shown
high sensitivity but low specificity for detecting bulbar signs
in the prodromal phase of bulbar ALS (61, 62). With further
optimization, DDK may have a diagnostic potential, particularly
if certain performance constrains are imposed or its complexity
is increased (63, 64).

Dysphagia Diagnosis and Screening
Videofluoroscopic swallowing evaluation (VFSE) remains the
gold standard of dysphagia assessment in most neurological
conditions allowing the direct visualization of swallowing safety
and efficiency i.e., aspiration and the presence of residue,
respectively. In ALS however, VFSE is underutilized (16) due to
a number of factors such as the presumed lack of therapeutic
relevance, lack of access to equipment or perceived patient
burden etc. A number of screening tools have been recently
evaluated for the early identification of those at risk for
dysphagia in ALS. Currently, the Eating Assessment Tool-10
(EAT-10) demonstrated good sensitivity and adequate specificity
for detecting aspiration in ALS (30), while instrumental measures
of airflow during voluntary cough showed excellent sensitivity
and specificity to detect aspiration (32). The bedside 3oz water
swallow test is also extensively utilized, but its measurement
properties in ALS are still unknown. There is a general consensus
among SLPs that patients who fail dysphagia screening should be
further evaluated by instrumental techniques to directly visualize
the swallowing process using VFSE or fiberoptic evaluation
of swallowing (FEES) techniques (65). This is an important
consideration given the high incidence of “silent” aspiration
in this patient population. Instrumental assessments, not only
confirm the diagnosis of dysphagia, but inform on swallowing
safety, help to identify the specific etiology of dysphagia, and
guide therapeutic strategies that can be tested during the
instrumental exam by directly visualizing their impact.

TOOLS FOR DISEASE

MONITORING—STAGING AND

LONGITUDINAL TRACKING

Certain bulbar measures have been optimized to track the decline
of bulbar function in individual patients and entire cohorts.
Table 2 summarizes proposed bulbar monitoring tools in ALS.

Bulbar Monitoring (Overall)
A recent clinical practice survey of ALS care in the United States
revealed that the Revised ALS—Functional Rating Scale
(ALSFRS-R) bulbar sub-score, clinician or patient administered,
represented the only measure routinely used to evaluate
bulbar dysfunction in the clinical setting (16). It contains
only 3 questions to address changes in speech, swallowing
and salivation that are each merely rated on a four-point
ordinal scale. While the total ALSFRS-R score is thought to have
excellent reliability, the measurement properties of the individual
sub-scores (e.g., bulbar) have not been specifically evaluated to
date (66, 67, 91, 92). The Center for Neurologic Study-Bulbar
Function Scale (CNS-BFS) is a 15-item questionnaire of bulbar
involvement which has recently been validated against the
ALSFRS-R and “timed” speech and swallowing tasks, and has
already been successfully utilized in a clinical trial (71, 72).
However, the CNS-BFS still needs to be validated against VFSE.

The Appel scale is one of the best characterized tools to
track ALS-associated impairment and functional decline (73).
Other clinician-administered instruments include the Norris
(74), Tuffs (93), and Charing Cross (94) scales, but their original
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development, optimization and validation studies can be difficult
to acquire and subsequently, their performance is relatively
difficult to judge. The ability of these instruments to represent
specific stages and their potential to track progressive bulbar
impairment is largely unknown. A number of global ALS staging
systems have been developed recently, such as the King’s clinical
staging system, the Milano-Torino (MiToS) functional staging,
the Fine’til 9 (FT9) framework (95, 96), but bulbar impairment is
just a small component of these instruments. Among the staging
tools, the ALS Severity Scale (ALSSS) is particularly noteworthy,
as it uses a 10-point scale for two bulbar functions, speech and
swallowing. It was designed to guide rehabilitation efforts in ALS
and, and pending formal psychometric evaluation, it may prove
to be particularly useful (97).

Functional Monitoring of Dysphagia and

Oral Secretion Scales
The Neuromuscular Disease Clinical Status Scale (NdSSS), which
focuses solely on dysphagia, underwent one of the most rigorous
psychometric evaluations to date. This tool exhibited excellent
inter- and intra- rater reliability and correlated well with the
functional oral intake scale (77). It has not been validated against
VFSE yet, and given the potential for considerable geographical
differences in oral intake, it is unclear how this tool may be
validated around the world. While there are several tools to
assess sialorrhea in ALS, such as the Oral Secretion Scale (OSS)
and Sialorrhea Scoring Scale (SSS) available (78), these also need
comprehensive psychometric evaluation and validation.

Functional Monitoring of Dysarthria
“Speech intelligibility” refers to the degree to which a speaker is
understood by a listener, and “speaking rate” refers to speaking
speed. Although both of these measures can be assessed on
a 5 or 7-point Likert scale (49), the Sentence Intelligibility
Test (SIT) is often preferred by SLPs, as it provides a more
fine-grained estimate of speech intelligibility (i.e., percent of
words transcribed correctly) and speaking rate (i.e., number
of words produced per minute) (98). Speech intelligibility is
considered abnormal when it falls below 97%, and speaking rate
is considered abnormal below 160 words-per-minute (WPM)
(99, 100). Speech intelligibility is a general indicator of the
severity of dysarthria and it declines relatively late in the course
of the disease (101). Speaking rate typically declines prior
to significant changes in speech intelligibility, and it changes
more linearly with symptom duration than speech intelligibility.
Therefore, speaking rate is particularly useful in monitoring
bulbar impairment longitudinally (102, 103). A speaking rate of
125WPMor less is the recommended cut off for to trigger referral
to the augmentative and alternative communication services (99).

Digital speech recordings and automated analyses can
provide new opportunities for in-depth, observer-independent
evaluations, especially during a passage reading and syllable
repetition (DDK) tasks. In passage reading tasks, such as
the Bamboo Passage, which has been specifically developed
to support automatic analyses, certain phrases are semi-
automatically identified, and speech duration and pause intervals
can be accurately quantified (83). The measures derived
from this analysis e.g., percentage pause time, mean phrase

duration etc. have been identified to be sensitive to the
prodromal stages of bulbar dysfunction (61) and also showed
to detect response to pharmaceutical interventions such as
dextromethorphan/quinidine (Nuedexta) therapy (85). A recent
longitudinal study suggested that the main advantage of the DDK
tasks may be in their ability to reliably distinguish slow- and
fast-progressors (86).

Physiological Monitoring
Muscle strength testing in ALS has been initially performed
using force transducers (strain gauges) (104, 105) and later with
pressure bulbs via the Iowa Oral Performance Instrument (IOPI)
(IOPI Medical LLC) or TPM-01 (JMS, Hiroshima). Lingual
pressure testing using the IOPI revealed adequate reliability
of a maximum tongue pressure estimate (MTP, or maximum
anterior isometric pressure, MAIP) but not for the measure of
endurance (89). Only one study assessed longitudinal changes
in MTP in ALS to date (90) and reported its decline in patients
with bulbar onset within 3 months and for those with spinal
onset within 6 months. Tongue strength has also been shown
to be an independent predictor of survival (88); however, formal
psychometric evaluation is awaited to determine theMTP’s utility
to measure progressive changes over time.

DISCUSSION

In order to firmly establish the clinical utility of specific bulbar
instruments and their potential as outcome measures in clinical
trials, their measurement properties need to be comprehensively
characterized. Among the diagnostic dysphagia instruments,
screening tools, such as EAT-10 and voluntary cough (30,
32) have been well evaluated. Among speech measures, only
DDK rate came close to demonstrating diagnostic utility (61).
The remaining tools require extensive evaluation with regards
to their diagnostic accuracy. While a large number of novel
assessment tools have been proposed to track the progression
of bulbar impairment, only the ALSFRS-R, the CNS-BFS and
some bulbar staging systems (e.g., NdSSS, OSS, SSS) meet at
least basic measurement requirements. Most existing disease
monitoring tools lack the ability to capture subtle progressive
changes, which is indispensable for disease tracking tools. Robust
systematic psychometric evaluation is needed to improve the
currently available clinical, academic and pharmacological-trial
assessment tools.

Despite the gaps in the current literature and the limitations
of current clinical trial designs, we are likely to witness
considerable advances in standardized bulbar assessments and
the emergence of purpose-designed, disease-specific, well-
validated bulbar assessment tools. Emerging technologies such
as quantitative neuroimaging, muscle ultrasound, electrical
impedance myography (EIM), high-resolution manometry,
videomanofluoroscopy, and speech acoustic monitoring are
likely to soon complement our armamentarium of clinical
tools. A number of promising imaging techniques have already
been utilized to characterize the pathological substrate of
bulbar impairment in ALS including diffusion tensor imaging
(106, 107), cortical thickness measurements (50, 108, 109),
morphometry-type analyses (49, 110), magnetization transfer
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ratio imaging (106), MR spectroscopy (111), MRI intensitometry
(112), and task-based functional MRI (113, 114). Despite these
advances, MRI-derived metrics remain underutilized in the
clinical setting and as outcome measures in pharmacological
trials. This is in sharp contrast with clinical trials in Multiple
Sclerosis, where MRI plays an established role as a key outcome
measure in phase III clinical trials (115). Muscle ultrasound may
capture tongue fasciculations in the absence of fasciculation
potentials on EMG and the combination of ultrasound and EMG
may help the detection of early denervation (116). Likewise,
EIM shows promise in detecting changes in the structural
composition of the tongue in ALS and may evolve into an
important tool to detect early bulbar involvement (117, 118).
High-resolution manometry and videomanofluoroscopy
may provide unique insights into the dynamics of bolus
movement and swallowing pressures enabling early detection
of bulbar dysfunction and thus, timely interventions (119, 120).
Acoustic analysis of speech has been proposed as a means
for the objective assessment of bulbar impairment for over
two decades, but until recently extracting these measure
has been extremely time consuming. Recent developments
in automatic audio and video analysis methods and smart
phone technologies make speech analysis technologically
feasible, enabling observer-independent multiparametric
analyses (121–123). These emerging methodologies will
need careful development, optimization and evaluation
according to established methodological guidelines (e.g.,
COSMIN framework).

CONCLUSIONS

Recent advances in neuroimaging, development of staging
systems, patient-reported outcome measures and the emergence
of novel instrumental speech and swallowing assessment

techniques promise novel insights into bulbar dysfunction in
ALS. However, in order for these methods to be integrated into
routine clinical practice and pharmacological trials, they have
to be rigorously evaluated with respect to their measurement
properties, diagnostic performance and longitudinal tracking
abilities. The establishment of large international collaborations
and relentless biomarker research efforts give cause for optimism
for the development of validated bulbar assessments, which in
turn will contribute to best practice recommendations, enable
well-timed clinical interventions and facilitate accurate patient
stratification in clinical trials.
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The main reason for short survival in amyotrophic lateral sclerosis (ALS) is involvement

of respiratory muscles. Severe compromise of diaphragmatic function due to marked

loss of motor units causes poor inspiratory strength leading to symptomatic respiratory

fatigue, and hypercapnia and hypoxemia, often firstly detected while sleeping supine.

Weakness of expiratory muscles leads to cough weakness and poor bronchial clearance,

increasing the risk of respiratory infection. Respiratory tests should therefore encompass

inspiratory and expiratory function, and include measurements of blood gases during

sleep. Non-volitional tests, such as phrenic nerve stimulation, are particularly convenient

for investigating respiratory function in patients unable to perform standard respiratory

function tests due to poor cooperation or facial weakness. However, SNIP is a sensitive

test when patients with bulbar involvement are able to perform the necessary maneuvers.

It is likely that central respiratory regulation is disturbed in some ALS patients, but

its evaluation is more complex and not regularly implemented. Practical tests should

incorporate tolerability, sensitivity, easy application for regular monitoring, and prognostic

value. Impending respiratory failure can cause increased circulating inflammatory

markers, but molecular assessment of respiratory distress requires further study. In future,

home-monitoring of patients with accessible devices should be developed.

Keywords: amyotrophic lateral sclerosis, diaphragm physiology, progression, respiratory function tests, survival

INTRODUCTION

Respiratory insufficiency (RI) in ALS usually emerges in the late stage of disease progression,
although it may sometimes be the presenting feature (1, 2). Respiratory complications, especially
hypoventilation (2), reduced bronchial clearance and lung infection (3) account for the majority of
deaths in ALS. Mild respiratory involvement causes fatigue in daily-life activities and disruption of
sleep, with negative impact on quality of life (4, 5) and hypoxemia may impair cognitive function
(6), especially important in a population with a lower cognitive reserve.

ALS affects both inspiratory and expiratory muscles, as well as upper airway muscles (7). Cough,
an essential reflex for airway protection and clearance, depends on effective glottis closure and
efficient expiratory muscle function. Bulbar muscle dysfunction impairs the former and, for this
reason, cough effectiveness is not always correlated with expiratory muscle weakness (8). Weakness
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of pharyngeal and laryngeal muscles increases the risk of
aspiration and lung infection. The latter is more critical when
associated with marked cough deficiency. For active inspiration
the diaphragm is the most important muscle, although other
muscles function as accessory muscles of inspiration, e.g.,
sternocleidomastoid, scalenus, trapezius, external intercostal,
pectoralis, and paraspinal muscles. These are particularly
important when the diaphragm is weak and during exercise.
Severe diaphragm weakness leads to hypoxemia and carbon
dioxide retention, since the work capacity of these accessory
muscles is not sufficient to compensate. Furthermore, these
muscles are themselves progressively involved in the disease
process (2). In ALS, the major reason for frank respiratory
failure is involvement of the diaphragm (2). The phrenic nerve
motor nuclei in the cervical spinal cord are located in a region
early affected in ALS, shown by early morphometric changes
in these neurons (9). Dyspnea in ALS is closely correlated with
diaphragmatic dysfunction (10). Indeed, diaphragm weakness as
assessed by the evoked response to transcutaneous phrenic nerve
stimulation is predictive of hypoventilation (11) and survival
(12). It is therefore relevant to assess the physiology of the
diaphragm in people with ALS.

DIAPHRAGM PHYSIOLOGY

The diaphragm is the most important muscle of ventilation.
It is a dome-shaped muscle that separates the thoracic and
abdominal cavities. It has a musculo-fibrous structure, formed by
a central non-contractile fibrous region, and contractile muscle
fibers that radiate circumferentially from the central tendon
to attach peripherally to the upper three lumbar vertebrae
posteriorly (crural diaphragm) and onto the inner surface of
the lower six ribs and costal cartilages antero-laterally (costal
diaphragm). In humans, the diaphragm comprises approximately
equal numbers of type I and type II fibers, but these muscle
fibers are smaller than in the expiratory muscles. They have
a rich capillary supply and are resistant to aging (13). Muscle
spindles are present only in small numbers in the diaphragm
(14), so muscle stretching does not much modulate phrenic
neuronal excitability. Diaphragm is well adapted to the rhythmic
continuous periodical inspiration of ventilation and to ocassional
more forceful contractions, as in deep breaths and coughing. The
mean diaphragm thickness at the point of functional residual
capacity is 2.29 ± 0.4mm, as measured by ultrasound (15)
but is variable over its surface, and also dependent on body
position. Diaphragmatic thickness can increase two-fold during
full inspiration (16).

The motor innervation of the diaphragm is almost exclusively
from the phrenic nerve (C3–5), which branches to innervate
the entire muscle. Contraction of the diaphragm causes axial
descent of the dome of the muscle, decreasing intrapleural
pressure, and increassing intrabdominal pressure, thus exerting
an expansive force on the lower thorax (17). This negative
intrathoracic pressure causes an inflow of air to the lungs,
promoting inspiration. The diaphragm is a very mobile muscle.
With full inspiration it flattens, expanding the thorax down to the

level of costal margin anteriorly, and during forced expiration it
rises anteriorly to the level of the fourth or fifth intercostal space.

There is appreciable force reserve in the diaphragm. In
humans the maximum transdiaphragmatic pressure is about 11
kPa, whichmore than 10 times the valuemeasured during eupnea
(18). Indeed, normal respiration activates fatigue-resistant slow-
units (19). However, coughing and sneezing are demanding
maneuvers requiring very strong diaphragmatic contraction,
close to 50% of the maximum transdiaphragmatic pressure,
which implies activation of fast-fatigable motor units (19).

During calm breathing at rest expiration, unlike inspiration,
is a passive phenomenon resulting from the relaxation of the
inspiratory muscles and reduction of lung compliance. However,
active forced expiration relies on recruitment of expiratory
muscles, namely the internal intercostals and the abdominal
ventro-lateral muscles (20). Generation of an adequate expiratory
flux is needed for coughing, sneezing or vomiting. This is only
possible with strong inspiration, closure of the glottis, and a
sudden increase of intra-abdominal and intra-thoracic pressures.
Effective peak cough flow (PCF) in healthy subjects exceeds 360–
400 L/min (21). Peak flow values >160–200 L/min are needed
for effective mucus expectoration (22) and values above 250–270
L/min are required to prevent aspiration pneumonia in patients
with neuromuscular disorders (23).

The inspiratory pace-maker is located in the pre-Bötzinger
Complex in the medulla (24). Its activity, both during inspiration
and expiration, is modulated by inhibitory pre-motor neurons
and by the Bötzinger Complex (18). Although expiration is a
passive movement, active expiration involves a rostral generator,
the retrotrapezoid nucleus (25). Synaptic drive to phrenic
nerve nuclei is derived from pre-motor neurons located in the
ipsilateral ventrolateral and dorsomedial medullary tracts, which
respond to central chemoreceptors, sensitive to hypercapnia,
and peripheral chemoreceptors, especially the carotid bodies,
that are sensitive to hypoxemia. These premotor neurons
are also sensitive to sleep-wake state modulation (18). Spinal
interneurons can modulate phrenic motoneuronal activity, in
particular via intercostal muscle afferents signaling strain of the
chest wall (26). Voluntary control of breathing depends on fast,
direct corticospinal inputs, which are also critical for respiratory
control during speech (18). This pathway can be investigated by
magnetic stimulation of cortical areas.

ASSESSMENT OF RESPIRATORY
DYSFUNCTION IN ALS

In ALS inspiratory and expiratory muscles, as well as upper
airway muscles are progressively involved. Studies of a possible
dysfunctional central respiratory drive are few, but it is likely
this could be affected in some patients with ALS (27). As such,
different tests are necessary to provide a global view of the
respiratory function of diseased subjects. The American (28)
and the European (29) guidelines agree that a first respiratory
evaluation should be made at the baseline clinical assessment
and then periodically thereafter. Nevertheless, this must be
adjusted individually, according to the rate of progression of
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the disease and when there are intercurrent events, such as
infection, that may affect respiratory function. A summary
of the available tests, their utility and limitations is provided
in Table 1.

Global Respiratory Evaluation
Forced vital capacity (FVC) is a non-invasive respiratory test
that has long been used in ALS. It assesses both the inspiratory
and expiratory loops, requiring expiration done forcefully after
a maximal inspiration, as opposed to slow vital capacity (SVC).
This test is sensitive to change and predictive of hypoventilation
and survival in ALS (30). The change of FVC is an adequate test
to follow ALS patients (30, 31), since its decline rate tends to be
linear (∼3.5/month), there is a high interpatient variability (32)
but this rate is a strong predictor of survival (33). FVC can be
an unreliable measure of ventilatory function in patients with
bulbar involvement due to orofacial weakness, due to air leakage
around the mouthpiece (2). FVC is more sensitive in detecting
diaphragmatic weakness when performed in the supine position
(34), but this position is often poorly tolerated due to secretions
or to the extent of diaphragmatic weakness. In addition, it is not
a very sensitive test to detect hypercapnia, since gas exchange is
well maintained until FVC values are very low (35). SVC is easier
to perform in patients with bulbar involvement, because the air
is exhaled slowly, with less air-leakage around the mouthpiece.
SVC has been preferred in a number of recent trials, as it is very
strongly correlated with FVC (and with other respiratory tests
such as Maximal Inspiratory Pressure and Maximal Expiratory
Pressure), as well as with ALSFRS-R (36). It is a predictor
of progression, the need for positive pressure ventilation, and
survival in ALS (37, 38).

Maximal voluntary ventilation (MVV) assesses respiratory
function on maintained efforts. The patient is asked to breathe
in and out, through a mounthpiece, as deeply and quickly as
possible during 12 s, for at least two trials (39). The value is
extrapolated for 1min. The test is demanding for ALS patients,
due to their respiratory fatigue. It can be a sensitive measure of
disease progression (30), but only in the early stages of the disease
(39). This test is rarely performed in daily practice.

Nocturnal pulse oximetry (NPO) is a useful, non-invasive,
inexpensive, and convenient method, which accesses respiratory
function in a demanding state—when patients are lying and
sleeping. It can be used individually or during polysonography,
the latter allowing for clear characterization of possible central
and/or peripheral apnea. NPO assesses percutaneous oxygen
saturation (maximum,median, andminimum values), in relation
with heart rate. Further, the pattern of the oxygen saturation
curve overnight can be explored. NPO has been shown to
be predictive of survival in ALS (40, 41). In addition, it can
indicate central drive dysfunction in patients with normal
respiratory muscles, a factor that is probably more common in
spastic patients (42). NPO is a mandatory method to follow
non-invasive ventilation adaptation in patients, which permits
home-telemonitoring and distance alteration of ventilatory
settings (43). Transcutaneous capnometry (PtcCO2) is a more
modern approach to evaluate respiratory function in ALS
and other neuromuscular disorders (44). PtcCO2 recordings

show strong correlation with arterial measurements. A value
higher than 49 mmHg during ≥10% of the total recording
time indicates respiratory insufficiency (44). Transcutaneous
capnography has been strongly recommended for detection
of nocturnal hypoventilation in patients with ALS (45). In
patients on non-invasive ventilation, PtcCO2 can be helpful
to monitor a proper ventilation, in particular to differenciate
between hypoventilation and hypoxemia related to other reasons
like as ventilation/perfusion mismatch, as well as in detecting
hyperventilation (46). Both techniques have some limitations,
for example they cannot discriminate other causes of sleep
disturbances, such as obstructive sleep apnea, drug-effect, or
associated lung disorder. Nonetheless they are very convenient
as a screening method.

Blood gas measurements provide information about CO2

retention and hypoxemia when respiratory failure is severe.
Because respiratory assessment is desiged to evaluate early
changes, this test is not extensively used in ALS; however, it
can provide relevant information for respiratory management in
some patients.

Sleep studies have been investigated for a long time in
ALS. In this disorder, reduction of the rapid eye movement
(REM) sleep stage is typically observed, in particular when
the diaphragm is markedly affected and accessory respiratory
muscles are weak (47). It has been speculated that disturbed
REM sleep might protect patients from hypoventilation (48).
However, in patients with preserved diaphragmatic function,
signs of sleep hypoventilation are observed as frequently in
REM and non-REM phases (27), probably due to reduced
respiratory drive (42). Arnulf et al. (48) found that ALS patients
with upper motor neuron involvement to respiratory muscles
tended to have abnormal REM sleep and poor prognosis.
There is a strong link between severity of respiratory function
impairment, poor quality of sleep, and daytime somnolence, in
ALS (49).

Evaluation of Inspiration
Maximal inspiratory pressure (MIP) and nasal inspiratory
pressure during a maximal sniff (SNIP) are inexpensive and non-
invasive respiratory measures that access maximal inspiratory
muscular strength, the first against a mouth occlusion and the
second using a plug inserted in one nostril (50–52). In both, it is
necessary to secure cooperation from patients to breath forcefully
against a resistance. While 3 consistent measures are necessary to
determine MIP (53), the number rises to 10 for SNIP, 5 in each
nostril (53, 54), as the result improves with practice. Fatigue is
a limiting factor for both techniques. MIP is more sensitive than
FVC in detecting hypoventilation (55). However, its marked early
decline (floor effect) limits its use in following patients and it is
difficult to perform in patients with orofacial weakness (56) or
with spasticity. SNIP is a sensitive tool especially suited for ALS
patients with orofacial weakness. It is predictive of survival (57)
and of the onset of significant hypoventilation in spinal-onset
patients (5). There is some uncertainty about the best technical
approach to test ALS patients in order to obtain reliable values
(58). SNIP seems to depend more on diaphragm force and MIP
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TABLE 1 | A summary of the most relevant respiratory tests in ALS.

Tolerability Simplicity Reliability Sensitivity Rate of

change

Technical difficulty Cost* Ease for

monitoring**

Experience

in trials

GLOBAL

FVC ++ ++ ++ + ++ Volitional. Limited by

orofacial paresis and

dyscognition.

++ ++ +++

SVC ++ +++ ++ + ++ Volitional. Limited by

orofacial paresis and

dyscognition.

++ ++ +++

MVV + + + +? +? Volitional. Needs motivation;

Limited by orofacial paresis,

fatigue, and dyscognition.

++ +? 0

NPO +++ +++ +++ ++ + Limited by cold hands or

poor sleep.

+ +++ 0

TCP +++ +++ +++ ++ +? Limited by cold hands and

poor sleep.

++ +++ 0

Sleep studies + 0 + +++ + Limited by poor sleep. +++ + 0

INSPIRATORY TESTS

MIP + + ++ +++ +++ Volitional. Limited by

orofacial paresis, fatigue,

and dyscognition; early floor

effect.

++ + 0

SNIP ++ ++ ++ ++? ++ Volitional. Limited by

orofacial paresis and

dyscognition.

+ ++ +++

Diaphragm US +++ +++ +++ ++? ++ Limited by dyscognition. ++ ++ 0

Phrenic stimulation + ++ ++ + ++ Limited by electrical

stimulation intolerance.

++ ++

EXPIRATORY TESTS

PEF ++ ++ ++ +? ++ Volitional. Limited by

orofacial paresis and

dyscognition.

++ ++ 0

PCF ++ +++ ++ +? ++ Volitional. Limited by

orofacial paresis and

dyscognition.

+ ++ 0

MEP + + ++ +++ +++ Volitional. Limited by

orofacial paresis, fatigue,

and dyscognition; early floor

effect.

++ + 0

CENTRAL DRIVE FUNCTION

P01 ++ + + +? +? Volitional. Limited by

orofacial paresis, fatigue

and dyscognition.

++ + 0

FVC, forced vital capacity; SCV, slow vital capacity; MVV, maximal voluntary ventilation; NPO, nocturnal percutaneous oximetry; TCP, percutaneous capography; MIP, maximal inspiratory

pressure; US, ultrasound; PEF, peak-expiratory flow; PCF, peak-cough flow; MEP, maximal expiratory pressure; P01, mouth occlusion pressure (100ms).
*Cost (greater number of plus symbol means higher cost) was estimated taking into account equipament price and the requirement of a technician.
**Ease for monitoring was estimated considering patient confort and technical complexity.

more on the sternocleidomastoid muscle power, making these
tests complementary (59).

Transdiaphragmatic pressure (Pdi) can be assessed by
inserting balloon catheters in the stomach and mid-esophagus
and measuring the differential pressure during active maximal
inspiration (60) or following stimulation of the phrenic nerve
(61). This is an uncomfortable test that is not suited to
clinical application.

Diaphragmatic ultrasound (US) is a non-invasive technique
that assesses diaphramatic dynamics, and measures the muscle
thickness at tidal volume and on maximal inspiration, as

well as the ratio between baseline and maximal inspiration,
useful measures to detect diaphragm involvement (62, 63).
Significant correlations have been found between these
measurements and FVC, SNIP, and the amplitude of the
motor response of the phrenic nerve (62–64). However,
ultrasound studies are less sensitive than phrenic nerve motor
responses in assessing early deterioration of the diaphragm in
ALS (65).

Phrenic nerve stimulation by percutaneous electrical or
magnetic stimulation in the neck to elicit diaphragm motor
responses is an objective, non-volitional test (66, 67) that can
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FIGURE 1 | Represents the progressive parallel decline of FVC and phrenic nerve compound muscle action potential amplitude in an ALS patient with slow

progression. Values were normalized to 100% of normal at first assessment. This figure is simply for representative purposes and not intended to present research

findings.

be used to assess the number of functional motor units in the
diaphragm (68). Abnormal amplitude (or area) of the motor
response has good predictive value for hypoventilation in both
bulbar- and spinal-onset patients, and is correlated to FVC
(11). This technique is useful in patients with marked facial
weakness or in those unable to cooperate, for example those
with fronto-temporal dementia. The amplitude of the motor
response declines significantly over 3–6 months, and correlates
with FVC and SNIP change (69); it is predictive of survival in
ALS (12). Figure 1 represents the progressive and parallel decline
of FVC and phrenic nerve compound muscle action potential in
an ALS patient.

Evaluation of Expiration
The efficiency of the expiratory muscles can be easily addressed
by evaluating the peak expiratory flow (PEF) and the peak cough
flow (PCF), and maximal expiratory pressure (MEP) evaluates
the strength of these muscles. These three volitional tests are
simple to perform, inexpensive, and non-invasive. Although they
measure expiratory muscle function, they depend on central
motor control as well as on the efficiency of the inspiratory
muscles. Abnormally reduced values indicate inability to expel
bronchial secretions, leading to a high risk of respiratory
infections (39), leading to increased morbility and mortality
(70). MEP values are measured by asking the patient to exhale
forcefully against an ocluded mouthpiece. Abnormal values are
common in ALS patients (8, 71), and correlate with inspiratory
involvement. PEF and PCF use peak flow meters, coupled with
a face mask for PCF testing, and assess the ability to exhale
forcefully after a maximal inspiration (72, 73) and to cough after
a submaximal inspiration (60). Coughing can also be assessed by
the gastric pressure generated during a maximal cough, which is

a sensitive method to assess expiratory muscle strength, but this
is an invasive and poorly tolerated test (74).

Evaluation of the Central Respiratory Drive
Both NPO and sleep studies can detect respiratory center
dysfunction, in particular in patients with normal respiratory
muscles in whom nocturnal hypoventilation is detected without
obstructive apnea (27). Inspiratory mouth occlusion pressure at
100ms during quiet breathing (P0.1) is considered an indicator
of respiratory drive. Spastic patients with normal diaphragm
function tend to show abnormal P0.1/FVC values, associated
with a poor prognosis for survival (42). P01 values are similar in
bulbar and spinal-onset patients at presentation (56), suggesting
that impaired central drive does not depend on the region of
onset. The observation of “respiratory apraxia” in ALS patients
highlights the complexity and importance of the cortical control
of respiration and its potential involvement in ALS (75).

CONCLUSIONS

There are many tests available to evaluate different features of
respiratory function in ALS. In general, most centers follow
a conventional approach by evaluating SVC and FVC, which
are are often applied in clinical trials. Patients may also be
asked to undergo maximal pressure measurements, expiratory
peak flows and nocturnal oximetry, sometimes associated
with EEG recordings. Less commonly, diaphgram ultrasound
or phenic nerve motor responses to percutaneous cervical
electrical stimulation of the nerve are tested. Percutaneous
capnography is emerging as a relevant technique. Disparity in
patients’tolerability and technical limitations would recommend
to apply more than one single test to assess respiratory function
in ALS patients.
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A future study combining most of these tests in a single
set of ALS patients would provide more information about
diagnostic accuracy, sensitivity, realibility, and convenience
for monitoring disease progression. This would have major
potential implications in clinical trials, since changing the rate
of respiratory decline is critical for improving survival and
functional capability.

The identification of a molecular marker of respiratory
impairment in ALS would be a convenient and valuable
test. Some research indicates that respiratory insufficiency can
precipitate an inflammatory response (76, 77), and this is a new
avenue yet to be fully explored. User-friendly devices for in-
home respiratory evaluation is another future step. New tests to
directly evaluate strength of respiratory muscles will require a
better understanding of their physiology.
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Background: Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive

neurodegenerative condition with limited therapeutic options at present. Survival from

symptom onset ranges from 3 to 5 years depending on genetic, demographic,

and phenotypic factors. Despite tireless research efforts, the core etiology of the

disease remains elusive and drug development efforts are confounded by the lack

of accurate monitoring markers. Disease heterogeneity, late-stage recruitment into

pharmaceutical trials, and inclusion of phenotypically admixed patient cohorts are some

of the key barriers to successful clinical trials. Machine Learning (ML) models and

large international data sets offer unprecedented opportunities to appraise candidate

diagnostic, monitoring, and prognostic markers. Accurate patient stratification into

well-defined prognostic categories is another aspiration of emerging classification and

staging systems.

Methods: The objective of this paper is the comprehensive, systematic, and critical

review of ML initiatives in ALS to date and their potential in research, clinical, and

pharmacological applications. The focus of this review is to provide a dual, clinical-

mathematical perspective on recent advances and future directions of the field. Another

objective of the paper is the frank discussion of the pitfalls and drawbacks of specific

models, highlighting the shortcomings of existing studies and to provide methodological

recommendations for future study designs.

Results: Despite considerable sample size limitations, ML techniques have already

been successfully applied to ALS data sets and a number of promising diagnosis

models have been proposed. Prognostic models have been tested using core clinical

variables, biological, and neuroimaging data. Thesemodels also offer patient stratification

opportunities for future clinical trials. Despite the enormous potential of ML in ALS

research, statistical assumptions are often violated, the choice of specific statistical

models is seldom justified, and the constraints of ML models are rarely enunciated.
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Conclusions: From a mathematical perspective, the main barrier to the development

of validated diagnostic, prognostic, and monitoring indicators stem from limited sample

sizes. The combination of multiple clinical, biofluid, and imaging biomarkers is likely to

increase the accuracy of mathematical modeling and contribute to optimized clinical

trial designs.

Keywords: amyotrophic lateral sclerosis, machine learning, diagnosis, prognosis, risk stratification, clustering,

motor neuron disease

1. INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is an adult-onset multi-
system neurodegenerative condition with predominant motor
system involvement. In Europe, its incidence varies between
2 or 3 cases per 100 000 individuals (Hardiman et al.,
2017) and its prevalence is between 5 and 8 cases per 100
000 (Chiò et al., 2013b). An estimated 450 000 people are
affected by ALS worldwide according to the ALS Therapy
Development Institute. While no unifying pathogenesis has
been described across the entire spectrum of ALS phenotypes,
the incidence of the condition is projected to rise in the
next couple of decades (Arthur et al., 2016) highlighting the
urgency of drug development and translational research. Given
the striking clinical and genetic heterogeneity of ALS, the
considerable differences in disability profiles and progression
rates, flexible individualized care strategies are required in
multidisciplinary clinics (den Berg et al., 2005), and it is also
possible that precision individualized pharmaceutical therapies
will be required.

Depending on geographical locations, the terms “ALS”
and “Motor Neuron Disease” (MND) are sometimes used
interchangeably, but MND is the broader label, encompassing a
spectrum of conditions, as illustrated by Figure 1. The diagnosis
of ALS requires the demonstration of Upper (UMN) and Lower
Motor Neuron (LMN) dysfunction. The diagnostic process is
often protracted. The careful consideration of potential mimics
and ruling out alternative neoplastic, structural, and infective
etiologies, is an important priority (Hardiman et al., 2017).
ALS often manifests with subtle limb or bulbar symptoms
and misdiagnoses and unnecessary interventions in the early
stage of the disease are not uncommon (Zoccolella et al.,
2006; Cellura et al., 2012). Given the limited disability in
early-stage ALS, many patients face a long diagnostic journey
from symptom onset to definite diagnosis which may otherwise
represent a valuable therapeutic window for neuroprotective
intervention. Irrespective of specific healthcare systems the
average time interval from symptoms onset to definite diagnosis
is approximately 1 year (Traynor et al., 2000). ALS is
now recognized as a multi-dimensional spectrum disorder.
From a cognitive, neuropsychological perspective, an ALS-
Frontotemporal Dementia (FTD) spectrum exists due to shared
genetic and pathological underpinnings. Another important
dimension of the clinical heterogeneity of ALS is the proportion
of UMN / LMN involvement which contributes to the spectrum
of Primary Lateral Sclerosis (PLS), UMN-predominant ALS,

classical ALS, LMN-predominant ALS, and ProgressiveMuscular
Atrophy (PMA), as presented in Figure 1.

The genetic profile of MND patients provides another
layer of heterogeneity. Specific genotypes such as those
carrying the C9orf72 hexanucleotide expansions or those
with Super Oxide Dismutase 1 (SOD1) mutations have been
associated with genotype-specific clinical profiles. These
components of disease heterogeneity highlight the need
for individualized management strategies and explain the
considerable differences in prognostic profiles. Differences
in survival due to demographic, phenotypic, and genotypic
factors are particularly important in pharmaceutical trials so
that the “treated” and “placebo-control” groups are matched in
this regard.

With the ever increasing interest in Machine Learning (ML)
models, a large number of research papers have been recently
published using ML, classifiers, and predictive modeling in ALS
(Bede, 2017). However, as these models are usually applied to
small data sets by clinical teams, power calculations, statistical
assumptions, and mathematical limitations are seldom discussed
in sufficient detail. Accordingly our objective is the synthesis
of recent advances, discussion of common shortcomings and
outlining future directions. The overarching intention of this
paper is to outline best practice recommendations for ML
applications in ALS.

2. METHODS

Machine learning is a rapidly evolving field of applied
mathematics focusing on the development and implementation
of computer software that can learn autonomously.
Learning is typically based on training data sets and a
set of specific instructions. In medicine, it has promising
diagnostic, prognostic, and risk stratification applications
and it has been particularly successful in medical oncology
(Kourou et al., 2015).

2.1. Main Approaches
Machine learning encompasses two main approaches;
“supervised” and “unsupervised” learning. The specific method
should be carefully chosen based on the characteristics of the
available data and the overall study objective.

“Unsupervised learning” aims to learn the structure of
the data in the absence of either a well-defined output or
feedback (Sammut and Webb, 2017). Unsupervised learning
models can help uncover novel arrangements in the data which
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FIGURE 1 | The clinical heterogeneity of Motor Neuron Disease common phenotypes and distinct syndromes.

in turn can offer researchers new insights into the problem
itself. Unsupervised learning can be particularly helpful in
addressing patient stratification problems. Clustering methods
can be superior to current clinical criteria, which are often based
on a limited set of clinical observations, rigid thresholds, and
conservative inclusion/exclusion criteria for class membership.
The K-means algorithm is one of the most popular methods.
It recursively repeats two steps until a stopping criterion is
met. First, samples are assigned to the closest cluster, which are
randomly initialized, then cluster centers are computed based on
the centroid of samples belonging to each cluster. Unsupervised
learning methods have been successfully used in other fields of
medicine (Gomeni and Fava, 2013; Marin et al., 2015; Beaulieu-
Jones and Greene, 2016; Ong et al., 2017; Westeneng et al., 2018).
Figure 2 represents an example of a patient stratification scheme
using an unsupervised learning algorithm.

Supervised learning focuses on mapping inputs with outputs
using training data sets (Sammut and Webb, 2017). Supervised
learning problems can be divided into either classification
or regression problems. Classification approaches allocate test
samples into specific categories or sort them in a meaningful
way (Sammut and Webb, 2017). The possible outcomes of
the modeled function are limited to a set of predefined
categories. For example, in the context of ALS, a possible

classification task is to link demographic variables, clinical
observations, radiological measures, etc. to diagnostic labels
such as “ALS,” “FTD,” or “healthy.” Schuster et al. (2016b),
Bede et al. (2017), Ferraro et al. (2017), and Querin et al.
(2018) have implemented diagnostic models to discriminate
between patients with ALS and healthy subjects. Regression
problems on the other hand, deal with inferring a real-
valued function dependent on input variables, which can be
dependent or independent of one another (Sammut and Webb,
2017). For instance, in the context of prognosis, a possible
regression task could consist of designing a model which
accurately predicts motor decline based on clinical observations
(Hothorn and Jung, 2014; Taylor A. A. et al., 2016). When a
regression task deals with time-related data sequences, often
called “longitudinal data” in a medical context, it is referred to
as “time series forecasting.” The core characteristics of the data,
which are most likely to define group-membership are referred to
as “features.”

2.2. Common Machine Learning Models
While a plethora of ML models have been developed and
successfully implemented for economic, industrial, and
biological applications (Hastie et al., 2009; Bishop, 2016;
Goodfellow et al., 2017), this paper primarily focuses on ML

Frontiers in Neuroscience | www.frontiersin.org 3 February 2019 | Volume 13 | Article 135158

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Grollemund et al. ML in ALS: An Overview

FIGURE 2 | Clustering model for patient stratification. The available data consist of basic clinical features; age and BMI. Given this specific ALS patient population, the

objective is to explore if patients segregate into specific subgroups. After running a clustering algorithm, we obtain clusters and cluster memberships for each patient.

Further analysis of shared traits within the same cluster can help identify novel disease phenotypes. (A) Initial data samples without output. (B) Identify cluster and

cluster membership. (C) Stratify samples based on shared feature traits.

methods utilized in ALS research. These include Random Forests
(RF) (Hothorn and Jung, 2014; Ko et al., 2014; Beaulieu-Jones
and Greene, 2016; Sarica et al., 2016; Taylor A. A. et al., 2016;
Ferraro et al., 2017; Fratello et al., 2017; Huang et al., 2017;
Jahandideh et al., 2017; Seibold et al., 2017; Pfohl et al., 2018;
Querin et al., 2018), Support Vector Machines (SVM) (Srivastava
et al., 2012; Welsh et al., 2013; Beaulieu-Jones and Greene,
2016; Bandini et al., 2018; D’hulst et al., 2018), Neural Networks
(NN) (Beaulieu-Jones and Greene, 2016; van der Burgh et al.,
2017), Gaussian Mixture Models (GMM) (Huang et al., 2017),
Boosting methods (Jahandideh et al., 2017; Ong et al., 2017),
k-Nearest Neighbors (k-NN) (Beaulieu-Jones and Greene, 2016;
Bandini et al., 2018). Generalized linear regression models are
also commonly used (Gordon et al., 2009; Taylor A. A. et al.,
2016; Huang et al., 2017; Li et al., 2018; Pfohl et al., 2018), but
will not be presented here. Please refer to Bishop (2016) for
additional information on linear modeling. Our review of ML
model families does not intend to be comprehensive with regards
to MLmodels utilized in other medical subspecialties. Additional
models with successful implementation in neurological
conditions include Latent Factor models (Geifman et al., 2018)
and Hidden Markov Models (HMM) (Martinez-Murcia et al.,
2016) which have been successfully implemented in Alzheimer
disease cohorts.

2.2.1. Random Forests
Tree-based methods partition the input space into sets that
minimize an error function, impurity, or entropy (Hastie et al.,
2009). A decision tree is a tree-based method that can be
described as a series of bifurcations with yes/no questions. To
compute the output of a data sample, one needs to start at the
top of the tree, and iteratively decide where to go next based on
the answer. Figure 3 illustrates an example of a decision tree for
diagnosis modeling in ALS.

“Random Forest” (RF) is a ensemble method based on
decision trees. By relying on multiple learning algorithms to
combine their results, ensemble methods obtain a more efficient
prediction model. Each tree in the RF is built on a random
subset of the training data and available features. This increases
robustness to outliers and generalizability. The final estimation
is the average or majority of the trees’ estimation depending on
whether the target is a regression or classification task (Louppe,
2014). Most RFs contain more than a hundred decision trees and
decision tree length and width can also be sizable depending on
the number of input features. In ML, the term “interpretability”
refers to the degree to which the machine’s decision is
comprehensible to a human observer (Miller, 2017). While
global model interpretability is de facto rather low, RFs evaluate
feature importance with regards to its discriminatory power.
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FIGURE 3 | Decision tree model for diagnosis. The available data consist of

three basic neuroimaging features: average Corticospinal Tract (CST)

Fractional Anisotropy (FA), Motor Cortex (MC) thickness, and average Corpus

Callosum (CC) FA. For patient 0, these features are reduced CST FA, reduced

MC thickness, reduced CC FA. The target is to classify subjects between

healthy and ALS subjects. Establishing a diagnosis requires to run through the

decision tree till there are no more questions to answer. At step 1, the closed

question directs to the right node due to patient 0’s CST pathology. At step 2,

the closed question directs to the right node due to patient 0’s MC pathology.

At step 3, the closed question directs to the left node due to patient 0 CC

involvement. Step 3 is the last step as there is no more steps below. The

diagnosis for patient 0 is the arrival cell value which is ALS.

Feature relevance is appraised based on the error function upon
which the decision trees were built. Extremely Randomized Trees
(Extra Trees) have shown promising results for discriminating
patients suffering from Progressive Supranuclear Palsy (PSP) and
Multiple System Atrophy (MSA) using speech analysis (Baudi
et al., 2016). Please refer to Breiman (2001) for a more thorough
description of decision trees and RFs and to Rokach (2016)
and Shaik and Srinivasan (2018) for a general overview of
forest models and their evolution. Figure 4 illustrates a possible
diagnostic application of RF in ALS.

2.2.2. Support Vector Machines
Support Vector Machines (SVM) map input data into high
dimensional spaces, called feature spaces, using a non-linear
mapping function (Vapnik, 2000). They define a hyperplane that
best separates the data. While traditional linear modeling is
performed in the input space, SVMs perform linear modeling
after projecting the data into another space. The features which
discriminate in the projected space, also known as “feature space,”
derive from input features but these are not readily interpretable.
The feature space hyperplane is defined by a limited set of
training points called support vectors, hence the name of the

method. The chosen hyperplane maximizes the margins between
the closest data samples on each side of the hyperplane, which is
why SVMs are also referred to as “large margins classifier.” These
vectors are identified during the “learning phase” after solving a
constrained optimization problem. SVMs work as a “black box”
as the logic followed by the model cannot be directly interpreted.
SVM were state-of-the-art models before being outperformed by
NN architecture. That being said, SVMmodels can adjust well to
imaging specific tasks such as anomaly detection using one class
SVM. Medical applications of one class SVMs have addressed the
issues of tumor detection (Zhang et al., 2004) or breast cancer
detection (Zhang et al., 2014). Please refer to Bishop (2016) for
more information on SVMs. Figure 5 illustrates an example of a
SVM used to predict prognosis in ALS.

2.2.3. Neural Networks
A “perceptron,” also called “artificial neuron,” is a simplified
representation of a human neuron. It is defined by its afferents
(inputs), the inputs’ respective weights and a non-linear function.
The perceptron’s output is the linear combination of its inputs
onto which the non-linear function is applied. The linear
combination consists of the sum of the multiplications of each
input and their respective weight. Perceptrons can be compiled,
the output of one perceptron providing the input of the next
perceptron. The resulting structure is called a “multi-layer
perceptron” which is the most common Neural Network (NN)
framework. The contribution of each input to the neuron is
modulated by its respective weight which is commonly regarded
as a “synapse.” NN structures are chosen based onmanual tuning
and model weights are selected using iterative optimization
methods. The stochastic gradient descent method is one of
the most popular approaches. Specific model architectures are
optimally-suited for specific data types such as “Recurrent NNs”
(RNN) for time series or “Convolutional NNs” (CNN) for images.
Deep learning models are NN models with significant depth or
number of layers (hence the name deep learning) and extensive
height or number of nodes per layer, which strongly limits their
direct interpretability, similarly to SVMs. Deep learning models
are currently state-of-the-art in multiple domains, specifically
those which deal with imaging data. Substantial achievements
were reached in the field of oncology with regards to melanoma
(Esteva et al., 2017), breast cancer and prostate cancer detection
(Litjens et al., 2016). Advanced neural network architecture such
as the Generative Adversarial Networks (GAN) (Goodfellow
et al., 2014) have been tested in a medical imaging synthesis
(Nie et al., 2017) or patient record generation (Choi et al., 2017)
contexts. Please refer to Goodfellow et al. (2017) for additional
material on NNs, Amato et al. (2013) for NN applications in
medical diagnosis, Lisboa and Taktak (2006) for NN models in
decision support in cancer and Suzuki (2017). Figure 6 provides
a schematic example of NNs to aid prognostic modeling in ALS
using a two layer multi-layer perceptron.

2.2.4. Gaussian Mixture Models
Gaussian Mixture Models (GMM) are probabilistic models
which can be used in supervised or unsupervised learning.
The model hypothesis is that the data can be modeled as
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FIGURE 4 | Random forest for diagnosis. The available data consist of basic biomarkers features which are MUNIX, CSF Neurofilament (NF) levels, Vital Capacity

(VC), and BMI. The objective is to classify subjects between healthy and ALS patients. The RF contains 3 decisions trees which use different feature subsets to learn a

diagnosis model. Tree A learns on all available features, Tree B learns on MUNIX and VC, Tree C learns on NF levels and BMI. Each tree proposes a diagnosis. RF

diagnosis is computed based on the majority vote of each of the trees contained in the forest. Given that two out of three trees concluded that patient 0 had ALS, the

final diagnosis suggested by the model is ALS.

FIGURE 5 | SVM model for prognosis. The available data consist of basic clinical and demographic features; age and site of onset. The objective is to classify patients

according to 3-year survival. In the input space (where features are interpretable), no linear hyperplane can divide the two patient populations. The SVM model

projects the data into a higher dimensional space—in our example a three dimensional space. The set of two features is mapped to a set of three features. In the

feature space, a linear hyperplane can be computed which discriminates the two populations accurately. The three features used for discrimination are unavailable for

analysis and interpretability is lost in the process.

a weighted-sum of finite Gaussian-component densities. Each
density component is characterized by two parameters: a mean
vector and a covariance matrix. Component parameters are
estimated using the “Expectation Maximization” (EM) algorithm
based on maximizing the log likelihood of the component

densities. Inference is performed by drawing from the estimated
mixture of Gaussian densities. GMMhas achieved good results in
medical applications, including medical imaging (de Luis-García
et al., 2011) and diagnosing of PD (Khoury et al., 2019). Please
refer to Rasmussen (2005) for additional material on GMMs,
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FIGURE 6 | Neural Network model for prognosis. The available data consist of basic demographic and clinical features: age, BMI and diagnostic delay. For patient 0,

these features are 50, 15kg/m2, and 15 months, respectively. The objective is to predict ALSFRS-r in 1 year. The multi-layer perceptron consists of two layers. Nodes

are fed by input with un-shaded arrows. At layer 1, the three features are combined linearly to compute three node values, C1, C2, and C3. C1 is a linear combination

of age and delay, C2 is a linear combination of age, delay and BMI, and C3 is a linear combination of BMI and delay. For patient 0, computing the three values returns

10, 2, and 2 for C1, C2, and C3, respectively. At layer 2, outputs from layer 1 (i.e., C1, C2, and C3) are combined linearly to compute two values, CA and CB. CA is a

linear combination of C1 and C2 while CB is a linear combination of C1 and C3. For patient 0, computing the two values gives 24 and 14 for CA and CB, respectively.

Model output is computed after computing linear combination of CA and CB and applying a non-linear function (in this case a maximum function which can be seen

as a thresholding function which accepts only positive values). The output is the predicted motor functions decline rate. For patient 0, the returned score is 26.

Moon (1996) for more information on the EM algorithm and
Roweis and Ghahramani (1999) for a global overview of Gaussian
mixture modeling.

2.2.5. k-nearest Neighbors
k-Nearest Neighbors (k-NN) is an instance-based model.
Inference is performed according to the values of its nearest
neighbors. The advantage of the model is that limited training
is required: all of the training data is kept in memory and is
used during the prediction phase. Based on a selected distance
function, the K most similar neighbors to the new sample are
identified. The new sample’s label is the average of its nearest
neighbors’ label. An advanced version of the method is called
Fuzzy k-NN (Fk-NN) which has been used to diagnose PD based
on computational voice analyses (Chen et al., 2013). Please refer
to Bishop (2016) for more information on k-NNmodels and Aha
et al. (1991) for a review on instance-based ML models.

2.2.6. Boosting Methods
Boosting algorithms are ensemble methods: they rely on a
combination of simple classifiers. In contrast to RFmodels, which
are made up of decision trees and output a result based on
the average or majority vote of the decision belonging to the
RF mode, boosting algorithms are based on simple classifiers.
The concept behind boosting is combining multiple “weak”
(performance wise) learning models. This combination provides
a more robust model than working with a simple base model.
Model learning is based on finding the right weighting of the

weak learners which make up the model to learn an efficient
global model. Recent applications of boosting models include
analysis of genetic information to inform on breast cancer
prognosis (Lu et al., 2019) and cardiac autonomic neuropathy
(Jelinek et al., 2014). Please refer to Bishop (2016) for more
information on boosting methods and (Schapire, 2003) for a
general overview of boosting methods.

As opposed to relying on a single ML model, models have
been increasingly used in combination. For example, NN has
been combined with a RF in Beaulieu-Jones and Greene (2016)
where the NN output is fed into the RF model. Learning sub-
models on specific feature sets have been used to feed sub-model
outputs to another ML model as in Fratello et al. (2017) which
trained two RF models on different imaging data sets (functional
and structural MRI features) and combined intermediate outputs
as the final model output. Model combination and model
integration can significantly enhance overall performance, but
the complexity of both approaches is often underestimated. ML
model constraints are even more stringent when used as part of
combined or integrated models.

2.3. The Limitations of Machine Learning
Approaches
ML models have considerable advantages over traditional
statistical approaches for modeling complex datasets. Most
ML models, including the six approaches presented above,
do not require stringent assumptions on data characteristics.
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They offer novel insights by identifying statistically relevant
correlations between features and, in the case of supervised
learning, of a specific outcome. Despite the pragmatic advantages,
the application of ML models requires a clear understanding
of what determines model performance and the potential
pitfalls of specific models. The most common shortcomings
will be discussed in the following section. Concerns regarding
data analyses will be examined first, which include data
sparsity, data bias, and causality assumptions. Good practice
recommendations for model design will then be presented,
including the management of missing data, model overfitting,
model validation, and performance reporting.

2.3.1. Data Sparsity
“Data sparsity” refers to working and interpreting limited data
sets which is particularly common in medical applications.
Medical data is often costly, difficult to acquire, frequently
require invasive (biopsies, spinal fluid), uncomfortable (blood
tests), or time consuming procedures (Magnetic Resonance
Imaging). Other factors contributing to the sparsity of medical
data include strict anonymization procedures, requirements
for informed consent, institutional, and cross-border data
management regulations, ethics approvals, and other governance
issues. The processing, storage, and labeling of medical data
is also costly and often requires specific funding to upkeep
registries, DNA banks, brain banks, biofluid facilities, or
magnetic resonance repositories (Turner et al., 2011; Bede et al.,
2018b; NEALS Consortium, 2018; Neuroimaging Society in ALS,
2018). Multicenter protocols are particularly challenging and
require additional logistics, harmonization of data acquisition,
standardized operating procedures, and bio-sample processing,
such as cooling, freezing, spinning, staining, etc.

Most ML models have originally been intended, developed,
and optimized for huge quantities of data. Accordingly, the
generalizability of most ML models depends heavily on the
number of samples upon which it can effectively learn.
Additionally, there is the “curse of dimensionality.” The number
of samples required for a specific level of accuracy grows
exponentially with the number of features (i.e., dimensions)
(Samet, 2006). If the number of samples is restrictively low,
then the features lose their discriminating power, as all samples
in the dataset seem very distinct from one another (Pestov,
2007). MLmodels learn the underlying relationship between data
samples through feature correlations. This requires the ability
to discriminate between similar and dissimilar samples in the
dataset. Calculating the Sample to Feature Ratio (SFR), i.e., the
number of samples available per feature, is a simple way to assess
whether the sample size is satisfactory for a given model. An
“SFR” of around 10–15 is often considered the bare minimum
(Raudys, 2001), but this is based on historical statistical models
and may be insufficient for working with complex ML models.
Working with a low SFR can lead to both model “underfitting” or
“overfitting.” These concepts will be introduced below.

2.3.2. Data Bias
Discussing data bias is particularly pertinent when dealing
with medical data. Most ML models assume that the training

data used is truly representative of the entire population. The
entire spectrum of data distribution should be represented in
the training data, just as observed in the overall population,
otherwise the model will not generalize properly. For example, if
a model is presented with a phenotype which was not adequately
represented in the training data set, the model will at best label
it as an “outlier” or at worst associate it to the wrong category
label. Medical data are particularly prone to suffer from a variety
of data biases which affect recorded data at different analysis
levels (Pannucci and Wilkins, 2010). The four most common
types of bias include: study participation bias, study attrition bias
, prognostic factormeasurement bias, and outcomemeasurement
bias (Hayden et al., 2013). In ALS, study participation bias, -
a.k.a. “clinical trial bias,” is by far the most significant. It affects
prognostic modeling in particular, as patients in clinical trials
do not reflect the general ALS population: they are usually
younger, tend to suffer from the spinal form of ALS and have
longer survival (Chio et al., 2011). Unfortunately, very little
can be done to correct for participation bias post-hoc, therefore
its potential impact needs to be carefully considered when
interpreting the results. Study attrition bias also influences ALS
studies as data censoring is not always systematically recorded.
“Censoring” is a common problem in medical research; it refers
to partially missing data, typically to attrition in longitudinal
studies. Prognostic factor measurements can be influenced by
subjective and qualitative medical assessments and by “machine
bias” in imaging data interpretation. The single most important
principle to manage these factors, especially if limited data
are available, is overtly discussing the type of bias affecting a
particular study, and openly reporting them.

2.3.3. Causality Assumption
ML models identify strong (i.e., statistically significant)
correlations between input features and the output in the case
of supervised learning. Models can only capture observed
correlations which are fully contained within the training
data. Causality between features and the output cannot be
solely established based on significant correlations in the
dataset, especially when working with small and potentially
unrepresentative population samples. Causality is sometimes
inferred based on ML results which can be misleading.

2.4. Good Practice Recommendations
2.4.1. Feature Selection
Identifying the most appropriate features is a crucial step in
model design. In “sparse data” situations, the number of features
should be limited to achieve an acceptable SFR and to limit
model complexity. Various feature selection and engineering
approaches exist, which can be chosen and combined depending
on primary study objectives. It can be performed manually based
on a priori knowledge or using a RF model which ranks data
features based on feature importance. This method is commonly
used in medical contexts as it easily gives a broad overview
of the feature set. Dimension reduction is another option,
with linear methods such as Principal Component Analysis
(PCA) or Independent Component Analysis (ICA) and non-
linear methods such as manifold learning methods. Automated
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feature selection methods, such as the “wrapper” or “filtering,”
undergo an iterative, sometimes time-consuming process where
features are selected based on their impact on overall model
performance. Finally, provided that sufficient data are available,
NN Auto Encoders (AE) models can also reliably extract relevant
features. To this day, feature selection and engineering cannot
be fully automated and human insight is typically required
for manual tuning of either the features or the algorithms
performing feature selection. Please refer to Guyon et al. (2006)
for further information on feature selection strategies, Fodor
(2002) for an overview of dimension reduction techniques and
(Lee and Verleysen, 2007) for additional material on non-linear
dimension reduction.

2.4.2. Missing Data Management
While most ML models require complete data sets for adequate
learning, medical data are seldom complete and missing
features are also common. Missing data may originate from
data censoring in longitudinal studies or differences in data
acquisition. One common approach tomissing data management
is the discarding of incomplete samples. This has no effect
on model design provided there is sufficient data left and
that sample distribution is unaltered after discarding. This
strategy usually requires large volumes of data with only a
small and random subset of missing records. This condition
however is rarely met in a clinical setting, where data is
sparse, and missing data patterns are typically not random.
Missing data can often be explained by censoring or specific
testing procedures. Discarding data in these situations may
increase data bias as it alters the sample distribution. The
first step to missing data management is therefore to explore
the mechanisms behind missing data features. Features can
be “missing completely at random,” without modifying the
overall data distribution, “missing at random,” when missing
feature patterns are based on other features available in
the dataset or “non-missing at random” for the remaining
cases. Depending on the type of missing data, an appropriate
imputation method should be selected. Basic data imputation
methods, such as mean imputation, work well on “missing
completely at random” cases but induce significant bias for
“missing at random” scenarios. In this case, advanced imputation
methods such as “Multiple Imputation using Chained Equations”
(MICE) (van Buuren, 2007) or “Expectation Maximization”
(EM) (Nelwamondo et al., 2007) algorithms operate well.
Recently, missing data imputation has been managed using
Denoising Auto-Encoders (DAE) models (Nelwamondo et al.,
2007; Costa et al., 2018), which have a specific NN architecture.
MICE and EM algorithms are statistical methods which
substitute missing feature values with feature values from
the most similar records in the training set. DAE models
build a predictive model using the data available with no
missing features to assess substitution values.“Non-missing at
random” patterns are usually dealt with missing at random
imputation methods, but this induces bias in data which
needs to be specifically acknowledged. Please refer to Little
(2002) for general principles on missing data management and

(Rubin, 1987) for missing data imputation for “non-random
missing” patterns.

2.4.3. Model Overfitting
Each model design is invariably associated with a certain type
of error. “Bias” refers to erroneous assumptions associated
with a model, i.e., certain interactions between the input
and the output may be overlooked by the model. ‘Variance’
refers to errors due to the model being too sensitive to
training data variability. The learnt model may be excessively
adjusted to the training data and poorly generalizable to the
overall population if it has only captured the behavior of
the training dataset. “Irreducible error” is inherent to model
design and cannot be dealt with post-hoc. “Bias” and “variance”
are interlinked, which is commonly referred to as the “bias-
variance trade-off.” A high level of bias will lead to model
“underfitting,” i.e., the model does not represent adequately
the training data. A high level of variance will lead to model
“overfitting,” i.e., the model is too specific to the training data.
Overfitting is critical, as it is easily overlooked when evaluating
model performance and with the addition of supplementary
data, the model will not be able to accurately categorize
the new data. This severely limits the use of “overfitted”
models. Complex models tend to “overfit” more than simpler
models and they require finer tuning. Carefully balancing
variance and bias is therefore a key requirement for ML model
design. Please refer to Bishop (2016) for more information
on overfitting.

2.4.4. Validation Schemes
Working with an optimal validation scheme is crucial in ML.
Validation schemes usually split available data into “training”
and “testing” datasets, so that performance can be assessed on
novel data. Training and testing data should share the same
distribution profile, which in turn should be representative of
the entire population. Overfitting is a common shortcoming
of model designs and carefully chosen validation schemes can
help to avoid it. Several validation frameworks exist, “hold out
validation” and “cross validation” being the two most popular.
The former splits the initial dataset into two sets, one for training
the other for testing. The latter performs the same splitting
but multiple times. The model is learned and tested each time
and the overall performance is averaged. Nevertheless, caution
should be exercised in a sparse data context as validation schemes
do not compensate well for poorly representative data. Please
refer to Bishop (2016) for additional considerations regarding
validation schemes.

2.4.5. Harmonization of Performance Evaluation and

Reporting
Formal and transparent performance assessments are
indispensable to compare and evaluate in ML frameworks.
To achieve that, standardized model performance metrics are
required. In classification methods, model evaluation should
include sensitivity and specificity, especially in a diagnostic
context. Sensitivity (or “recall”) is the true positive rate, and
specificity is the true negative rate. “Accuracy” and Area Under
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the “Receiver Operating Curve” (ROC) metrics can be added but
should never be used alone to characterize model performance.
Accuracy is the average of sensitivity and specificity. ROC
is used to represent sensitivity and specificity trade-offs in a
classifier model (Fawcett, 2004). The ROC space represents the
relationship between the true positive rate (i.e., sensitivity) and
the false positive rate (which is 1 - specificity). Given a threshold
sensitivity rate, the prediction model will return a specificity rate,
adding a data point to the ROC. Multiple thresholding enables
the generation of the ROC curve. Perfect predictions lead to
100% sensitivity and 100% specificity (i.e., 0% false positives)
which leads to an Area Under the ROC (AUC) of 1. Random
predictions will return a 50% accuracy rate which is represented
by a continuous straight line connecting the plot of 0% sensitivity
with 100% specificity and the plot of 100% sensitivity with 0%
specificity, which leads to an AUC of 0.5. Accuracy can hide a
low specificity rate if there is a class imbalance and AUC can
be misleading as it ignores the goodness of fit of the model and
predicted probability values (Lobo et al., 2008). In regression
approaches, Root Mean Squared Error (RMSE) (also referred
to as Root Mean Square Deviation) and R2, the coefficient of
determination, are good metrics. R2 represents the ratio of
explained variation over the total variation of the data (Draper
and Smith, 1998). The closer this index is to one, the more the
model explains all the variability of the response data around its
mean. Hence the model fits the data well. It is advisable to report
multiple performance index for model evaluation as each metric
reflects on a different aspect of the model. Using confidence
intervals when possible is another good practice, as it conveys
the uncertainty relative to the achieved error rate. General
reporting guidelines for model design and model evaluation
are summarized in the Transparent Reporting of a multivariate
prediction model for Individual Prognosis or Diagnosis, or
TRIPOD, statement (Moons et al., 2015).

Both “supervised” and “unsupervised” learning approaches
have a role in clinical applications, the former for diagnosis and
prognosis, the latter for patient stratification. There are a large
number of ML models available, but recent work in medicine
has primarily centered on three models: RF, SVM, and NN
models. The advantages and drawbacks of the specific models
are summarized in Table 1 (Hastie, 2003). The following factors
should be considered when implementing ML models for a
specific medical project:

Data limitation considerations:

– SFR assessment
– Data bias assessment
– Causality assumptions

Model design considerations:

– Feature selection with regards to SFR
– Missing data management
– Overfitting risk assessment
– Validation framework selection
– Performance metric selection
– Comprehensive model performance reporting.

3. RESULTS

Diagnostic, prognostic, and risk stratification papers were
systematically reviewed to outline the current state of the art
in ML research efforts in ALS. Consensus diagnostic criteria,
established monitoring methods, and validated prognostic
indicators provide the gold standard to which emerging ML
applications need to be compared to.

3.1. Current Practices in ALS
3.1.1. Current Practices in ALS for Diagnosis
The diagnosis of ALS is clinical, and the current role of
neuroimaging, electrophysiology, and cerebrospinal fluid (CSF)
analyses is to rule out alternative neurological conditions
which may mimic the constellation of symptoms typically
associated with ALS. Patients are formally diagnosed based on
the revised El Escorial criteria (Brooks, 1994; Brooks et al., 2000;
de Carvalho et al., 2008) which achieve low false negative rates
(0.5%), but suffer from relatively high false positive rates (57%)
(Goutman, 2017). As most clinical trials rely on the El Escorial
criteria for patient recruitment, erroneous inclusions cannot
be reassuringly ruled out (Agosta et al., 2014). Additionally,
misdiagnoses are not uncommon in ALS (Traynor et al., 2000)
and these, typically early-stage, ALS patients may be left out from
pharmaceutical trials.

3.1.2. Established Prognostic Indicators
Providing accurate prognosis and survival estimates in the
early-stage ALS is challenging, as these are influenced by a
myriad of demographic, genetic and clinical factors. There
is a growing consensus among ALS experts that the most
important determinants of poor prognosis in ALS include,
bulbar-onset, cognitive impairment, poor nutritional status,
respiratory compromise, older age at symptom onset, and
carrying the hexanucleotide repeat on C9orf72 (Chiò et al., 2009).
Functional disability is monitored by the revised ALS Functional
Rating Scale (ALSFRS-r) worldwide (Cedarbaum et al., 1999),
which replaced the AALS scale (Appel ALS) (Appel et al., 1987).
The ALSFRS-r is somewhat subjective as it is based on reported
abilities in key domains of daily living, such as mobility, dexterity,
respiratory and bulbar function. Despite its limitations, such
as being disproportionately influenced by lower motor neuron
dysfunction, the ALSFRS-r remains the gold standard instrument
to monitor clinical trials outcomes. Prognostic modeling in ALS
is typically approached in two ways; either focusing on survival
or forecasting functional decline.

3.1.3. Current Practices in ALS for Patient

Stratification
Current patient stratification goes little beyond key clinical
features and core phenotypes. These typically include sporadic
vs. familial, bulbar vs. spinal, ALS-FTD vs. ALS with no
cognitive impairment (ALSnci) (Turner et al., 2013). A number
of detailed patient classification schemes have been proposed
based on the motor phenotype alone, as in Mora and Chiò
(2015) and (Goutman, 2017): “classic,” “bulbar,” “flail arm,” “flail
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TABLE 1 | Overview of model pros & cons, updated from Hastie (2003).

Characteristics Neural

network

SVM Decision

tree

RF Generelized

linear model

Gaussian

mixture model

k-NN Boosting

Model complexity High High Low Fair Low High Low Fair

Sensitivity to data

sparsity

High High Low Fair Low High High Fair

Sensitivity to data bias High High High High High High High High

Interpretability Poor Poor Fair Poor Good Poor Good Poor

Predictive power Good Good Poor Good Poor Good Poor Good

Ability to extract linear combinations

of features

Good Good Poor Poor Poor Poor Poor Poor

Natural handling of

missing values

Poor Poor Good Good Poor Good Good Good

Robustness to outliers in input space Poor Poor Good Good Fair Good Good Good

Computational scalability Poor Poor Good Good Good Poor Poor Good

SVM, Support Vector Machine; RF, Random Forest; k-NN, k-Nearest Neighbors.

leg,” “UMN-predominant,” “LMN-predominant,” “respiratory-
onset,” “PMA,”“PLS,” “Mills’ syndrome,” etc. Patients may also be
classified into cognitive phenotypes such as ALS with cognitive
impairment (ALSci), ALS with behavioral impairment (ALSbi),
ALS-FTD, ALS with executive dysfunction (ALSexec) (Phukan
et al., 2011), as presented in Figure 1. Diagnostic criteria for
these phenotypes tend evolve, change and are often revisited once
novel observations are made (Strong et al., 2017). Irrespective
of the specific categorization criteria, these classification systems
invariably rely on clinical evaluation, subjective observations,
choice of screening tests, and are subsequently susceptible to
classification error (Goutman, 2017). Adhering to phenotype
definitions can be challenging, as performance cut-offs for some
categories, such as cognitive subgroups (i.e., ALSbi/ ALSci) may
be difficult to implement (Strong et al., 2009; Al-Chalabi et al.,
2016). Al-Chalabi et al. (2016) used muscle bulk, tone, reflexes,
age at onset, survival, diagnostic delay, ALSFRS-r decline,
extra-motor involvement, symptom distribution, and family
history as key features for patient stratification. ALS and FTD
share common aetiological, clinical, genetic, radiological and
pathological features and the existence of an ALS-FTD spectrum
is now widely accepted. Up to 15% of patients develop frank
dementia (Kiernan, 2018) and 60% show some form of cognitive
or behavioral impairment (Phukan et al., 2011; Elamin et al.,
2013; Kiernan, 2018). The presence of cognitive impairment
is hugely relevant for machine-learning applications because
neuropsychological deficits have been repeatedly linked to poorer
survival outcomes (Elamin et al., 2011), increased caregiver
burden (Burke et al., 2015), specific management challenges
(Olney et al., 2005), and require different management strategies
(Neary et al., 2000; Hu et al., 2009).

Clinical staging systems
One aspect of patient stratification is to place individual patients
along the natural history of the disease by allocating them to
specific disease phases or “stages.” The utility of staging in ALS
is 2-fold; it guides the timing of medical interventions (non-
invasive ventilation, gastrostomy, advance directives) and also

allows the separation of patients early in their disease trajectory
from “late-phase” patients in clinical trials. Three staging systems
have been recently developed; Kings’ (Roche et al., 2012), MiToS
(Chiò et al., 2013a), and Fine Till 9 (FT9) (Thakore et al.,
2018). While the MiToS stage can be directly calculated based
on ALSFRS-r scores, the Kings’ stage is a derived measure. It is
noteworthy, that the stages and the ALSFRS-r score are highly
correlated (Balendra et al., 2014a). Both staging systems have
been cross-validated, compared and they are thought to reflect
on different aspects of the disease (Hardiman et al., 2017). The
MiToS system is more sensitive to the later phases of the disease,
while Kings’ system reflects more on the earlier phases of ALS.
The FT9 system is not partial to earlier or later stages. The FT9
framework defines stages based on ALSFRS-r subscores, using
9 as a threshold after testing different values on the PRO-ACT
dataset. One of the criticism of MiToS, is that stage reversion is
possible and that it does not directly capture disease progression
(Balendra et al., 2014b). Ferraro et al. (2016) compared MiToS
and King clinical staging systems and Thakore et al. (2018)
compared all three systems on PRO-ACT data.

Current diagnostic approaches in ALS are suboptimal and
often lead to considerable diagnostic delay. Prognostic protocols
are not widely validated and current patient stratification
frameworks don’t represent the inherent heterogeneity of ALS.
Accordingly, machine-learning approaches have been explored to
specifically address these three issues.

3.2. Results in Diagnosis
3.2.1. Advances in Biomarker Research
The majority of ML research projects focus on the development,
optimization, and validation of diagnostic biomarkers. These
typically include clinical, biofluid, and neuroimaging indicators.
Diagnostic model performance depends on the feature’s ability to
describe how the disease affects the subjects. Optimal diagnostic
biomarkers should not only discriminate between ALS patients
and healthy controls but also between ALS patients and patients
with mimic or alternative neurological conditions (Bede, 2017).
Ideally, an optimal diagnostic model should have outstanding
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early-stage sensitivity and specificity so that patients can be
recruited into clinical trials early in their disease.

Clinical biomarker research
MUNIX (Fathi et al., 2016) is a non-invasive neurophysiological
method which is extensively used in both clinical and research
settings. It may also have the ability to capture pre-symptomatic
motor neuron loss (Escorcio-Bezerra et al., 2018), therefore it has
the potential to confirm early-stage disease in suspected cases.
An earlier diagnosis would in turn enable the earlier initiation
of neuroprotective therapy with established drugs and more
importantly, earlier entry into clinical trials.

Biological biomarker research
Cerebrospinal Fluid (CSF) Neurofilaments (NF) are regarded
as one of the most promising group of “wet” biomarkers
in ALS (Rossi et al., 2018; Turner, 2018). Typically, research
studies assess both Neurofilament Light (NF-L) chain and
phosphorylated Heavy (pNF-H) chain levels that are released
due to axonal degeneration and can be detected in the CSF
and serum. Studies have consistently shown increased CSF pNF-
H levels in ALS and up to ten times higher levels than in
patients with Alzheimer disease (Brettschneider et al., 2006) or
other neurological conditions (Gresle et al., 2014; Steinacker
et al., 2015). Even though ALS studies have consistently detected
raised pNF-H concentrations, these values vary considerably in
the different reports. CSF NF-L levels were linked to reduced
pyramidal tract Fractional Anisotropy (FA) and increased Radial
Diffusivity (RD) (Menke et al., 2015) and NF-L levels are
also thought to correlate with progression rates (Tortelli et al.,
2014). Other biological biomarkers include proxies of oxidative
stress, such as CSF 4-hydroxy-2,3-nonenal (4-HNE) (Simpson
et al., 2004) or 3-nitrotyrosine (3-NT) (Tohgi et al., 1999).
Neuroinflammation is another important feature of ALS, and
several studies have detected an increase in inflammation-
associated molecules, such as interleukin-6 (IL-6) and TNF alpha
(TNF − α) (Moreau et al., 2005) and galectin-3 (GAL-3) (Zhou
et al., 2010). Increased levels of CSF Chitotriosidase-1 (CHIT1)
is thought to indicate increased microglial activity (Varghese
et al., 2013). Raised levels of CSF hydrogen sulfide (H2S) was
also reported in ALS, which is released by astrocytes andmigrolia
and is known to be toxic for motor neurons (Davoli et al., 2015).
These are all promising wet biomarkers, indicative of disease-
specific pathological processes and it is likely that a panel of
several biomarkers may be best suited for diagnostic purposes.

Genetic biomarker research
A shared pathological hallmark of neurodegenerative conditions
is protein aggregation. The accumulation of the Transactive
Response DNA Binding Protein 43 (TDP-43) is the most
consistent pathological finding in approximately 95% of ALS
cases (Neumann et al., 2006). Given the widespread aggregation
and accumulation of TDP-43 in FTD-ALS spectrum, TDP-43
detection, measurement or imaging is one of the most promising
biomarkers strategies. A recent meta-analysis evaluated the
diagnostic utility of CSF TDP-43 levels in ALS (Majumder et al.,
2018) and found that increased levels may be specific to ALS, as

TDP-43 levels are significantly raised compared to FTD as well.
Reports on SOD1 levels in the CSF of ALS patients have been
inconsistent; some studies detected increased levels (Kokić et al.,
2005) whereas others have identified decreased levels (Ihara et al.,
2005) or levels comparable to controls (Zetterström et al., 2011).

Proteomics biomarker research
Beyond the interpretation of clinical and imaging data, ML
models have an increasing role in genetics, RNA processing and
proteomics (Bakkar et al., 2017). Using IBMWatson 5 new RNA-
Binding Proteins (RBPs) were identified which were previously
not linked to ALS; Heterogeneous nuclear ribonucleoprotein
U (hnRNPU), Heterogeneous nuclear ribonucleoprotein Q
(SYNCRIP), Putative RNA-binding protein 3 (RBMS3), ell
Cycle Associated Protein 1 (Caprin-1) and Nucleoporin-like 2
(NUPL2). ML models play an important role in modern genetic
analyses (Libbrecht and Noble, 2015) but considerable variations
exist in their application between various medical subspecialties.
One of the roles of ML in genomics is to identify the location
of specific protein-encoding genes within a given DNA sequence
(Mathé et al., 2002). In the field of proteomics, ML has been
extensively utilized to predict 3-dimensional folding patterns
of proteins. Approaches such as Deep Convolutional Neural
Fields (DeepCNF) have been successful in predicting secondary
structure configurations (Wang et al., 2016). In proteomics, ML
models are also utilized for loopmodeling, and protein side-chain
prediction (Larranaga et al., 2006).

Imaging biomarker research
Neuroimaging offers unique, non-invasive opportunities to
characterize disease-associated structural and functional changes
and imaging derived metrics have been repeatedly proposed as
candidate biomarkers (Turner et al., 2011; Agosta et al., 2018a;
Bede et al., 2018b). The primary role of MRI in current clinical
practice is the exclusion of alternative structural, neoplastic and
inflammatory pathology in the brain or spinal cord which could
manifest in UMN or LMN dysfunction similar to ALS. Diffusion
tensor imaging (DTI) has gained a lot of attention as DTI-
derived metrics, such as FA, Mean Diffusivity (MD), RD, or Axial
Diffusivity (AD) have already been successfully used to identify
ALS patients in ML models (RF) (Bede et al., 2017; Querin et al.,
2018). The DTI signature of ALS is firmly established thanks to
a myriad of imaging studies, and it includes the commissural
fibers of the corpus callosum and the bilateral Corticospinal Tract
(CST) (Turner et al., 2009; Bede et al., 2014). The latter has
been associated to clinical UMN dysfunction, as well as rate of
progression in specific sub-regions (Schuster et al., 2016a). White
matter degeneration in frontal and temporal regions have been
linked to cognitive and behavioral measures (Agosta et al., 2010;
Christidi et al., 2017) and specific genotypes (Bede et al., 2013a).
While callosal (Filippini et al., 2010; Bede et al., 2013a) and
CST (Agosta et al., 2018b) degeneration seems to be a common
ALS-associated signature, frontotemporal and cerebellar white
matter degeneration seems to be more specific to certain
phenotypes (Prell and Grosskreutz, 2013; Bede et al., 2014). From
a gray matter perspective, motor cortex atrophy is a hallmark
finding irrespective of specific genotypes and phenotypes (Bede
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et al., 2012) which is readily captured by cortical thickness or
volumetric measures. Other gray matter regions, such as frontal
(Lulé et al., 2007), basal ganglia (Bede et al., 2013c, 2018a; Machts
et al., 2015), or cerebellar regions (Prell and Grosskreutz, 2013;
Batyrbekova et al., 2018) may be more specific to certain patient
cohorts. What is important to note, is that considerable white
matter degeneration can already be detected around the time
of diagnosis which progress relatively little, as opposed to the
incremental gray matter findings in the post-symptomatic phase
of the disease (Bede and Hardiman, 2017; Menke et al., 2018).
The relevance of these observations is that white matter metrics
may be particularly suitable for diagnostic models, whereas gray
matter metrics in monitoring applications.

3.2.2. Overview of Research in Diagnosis
ML methods have already been extensively tested to aid the
diagnosis of ALS (Gordon et al., 2009; Welsh et al., 2013; Sarica
et al., 2016; Schuster et al., 2016b; Bede et al., 2017; Ferraro et al.,
2017; Fratello et al., 2017; D’hulst et al., 2018; Li et al., 2018;
Querin et al., 2018). Diagnostic models are typically developed
within a classification framework with limited category labels,
such as “healthy” vs. “ALS.” Srivastava et al. (2012) implemented
a model to discriminate patients within the Spinal Muscular
Atrophy (SMA) spectrum. A similar attempt has not been made
in ALS yet but could prove very valuable. A number of imaging
features have been explored in recent years (Sarica et al., 2016;
Schuster et al., 2016b; Bede et al., 2017; Ferraro et al., 2017;
Fratello et al., 2017; D’hulst et al., 2018; Querin et al., 2018).

Performance was highest using combined imaging metrics
(Bede et al., 2017) outperforming diagnostic models relying solely
on clinical features (Li et al., 2018) which typically achieve up
to 68% sensitivity and 87% specificity. Current models however
are severely limited by small sample sizes and achieve lower
true positive rates than the El Escorial’s criteria but dramatically
improve false negative rates. In general, diagnostic models
based on imaging data achieve a sensitivity above 80% which
is very encouraging especially given the emergence of larger
data sets (Müller et al., 2016). It is crucial to evaluate model
performance in comparison to the current gold standard criteria
and report both sensitivity (true positive rate) and specificity
(true negative rate). Additional metrics seem also necessary such
as accuracy and AUC which provides a global indication of the
model’s performance.

Performance analysis
Welsh et al. (2013),Schuster et al. (2016b),Bede et al.
(2017),Ferraro et al. (2017),Fratello et al. (2017),D’hulst et al.
(2018), and Querin et al. (2018) only used single-centre imaging
data for their model design. Bede et al. (2017) used a canonical
discriminant function and achieved an accuracy of 90% (for 90%
sensitivity and 90% specificity). Sarica et al. (2016),Ferraro et al.
(2017),Fratello et al. (2017), and Querin et al. (2018) used RFs
achieving accuracy rates between 77.5 and 86.5%. Schuster et al.
(2016b) used a binary logistic regression model and reached
78.4% (90.5% sensitivity and 62.5% specificity). Welsh et al.
(2013) and D’hulst et al. (2018) used SVMs reaching an accuracy
of 71 and 80%, respectively. A relatively low accuracy of 71%

(Welsh et al., 2013) and low specificity of 12.5% (D’hulst et al.,
2018) may stem from model overfitting. The complexity of
SVM models, class imbalance (D’hulst et al., 2018), data sparsity
(Welsh et al., 2013) are some of the factors which may contribute
to their relatively poorer performance. Li et al. (2018) used a
linear regression model based on clinical data and reached 77.5%
accuracy, 68% sensitivity and 87% specificity. Half of the studies
(Welsh et al., 2013; Sarica et al., 2016; Bede et al., 2017; D’hulst
et al., 2018; Querin et al., 2018) focused on discriminating ALS
patients from healthy controls. Four studies (Gordon et al.,
2009; Ferraro et al., 2017; Fratello et al., 2017; Li et al., 2018)
went further and attempted to identify ALS within a range of
neurological diseases including patients with Parkinson’s Disease
(PD), Kennedy’s Disease (KD), PLS, etc. Srivastava et al. (2012)
focused on identifying specific SMA phenotypes. Please refer to
Table 2 for an overview of ML papers focusing on the diagnosis
of ALS.

Technical analysis
From a methods point of view, all of the above papers overtly
present their pre-processing pipeline (Sarica et al., 2016; Schuster
et al., 2016b; Bede et al., 2017; Ferraro et al., 2017; Fratello
et al., 2017; D’hulst et al., 2018; Querin et al., 2018) and feature
selection strategy (Gordon et al., 2009; Srivastava et al., 2012;
Welsh et al., 2013; Sarica et al., 2016; Schuster et al., 2016b;
Bede et al., 2017; Fratello et al., 2017; Querin et al., 2018).
Imaging analyses need to take the effect of age, gender, and
education on MRI data into account, as these have a major
impact on white and gray matter metrics. Studies control for
these demographic factors differently; while age is generally
adjusted for (Zhang et al., 2018), the effect of gender (Bede
et al., 2013b) and education (Cox et al., 2016) are often
overlooked which can affect model development. Judicious
feature selection is paramount as model complexity is directly
related to the number of features fed into the model. Limiting
model complexity, especially in the context of sparse data is
crucial to avoid model overfitting. Feature selection is often
based, either on group comparisons or a priori imaging or
pathological information. Features often include imaging
measures of key, disease-associated anatomical regions, such as
measures of the motor cortex or pyramidal tracts (Bede et al.,
2016). Existing studies use very different validation schemes to
test model performance. Cross-validation is the most commonly
used (Srivastava et al., 2012; Sarica et al., 2016; Schuster et al.,
2016b; Fratello et al., 2017; Querin et al., 2018), followed by
holdout validation (Bede et al., 2017; Ferraro et al., 2017) and
leave-one-out validation (Welsh et al., 2013; D’hulst et al.,
2018). While robust validation schemes are essential, they don’t
circumvent overfitting especially when limited data are available.
“Cross validation” and “leave-one-out” approaches are generally
more robust than holdout validation. Special caution should
be exercised with regards to validation reports in sparse data
situations, where validation schemes have a limited ability to
assess model performance. Querin et al. (2018) and Li et al.
(2018) both show SFR higher than ten (15 and 12 ,respectively)
which comply with minimum SFR recommendations
(Raudys, 2001).
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TABLE 2 | Research overview: diagnosis.

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Biomarker(s)

type

Pre-processing

(if any)

Validation

(if any)

Model(s)

tested

Performance

Gordon et al.,

2009

Eleanor and

Lou Gehrig

MDA/ALS

Research

Center

Real-life 34 ALS, UMN,

PLS

Clinical FS None

described

Linear

regression

-

Srivastava

et al., 2012

Boston

Children

Hospital

Real-life 46 SMA

phenotypes

Clinical,

genetic

FS CV SVM AUC (0.928)

Welsh et al.,

2013

Michigan

MND Clinic

Real-life 63 ALS, healthy Imaging FS LOOV SVM AUC:0.7,

Acc:71%,

Spec:74%,

Sens:68.8%

Sarica et al.,

2016

Catanzaro

Magna

Graecia

University

Real-life 48 ALS, healthy Clinical,

imaging

SP, FS CV RF Acc:80%

Schuster

et al., 2016b

Trinity College

Dublin

Real-life 147 ALS, healthy Imaging SP, FS CV Logistic

regression

Acc:78.4%,

Sens:90.5%,

Spec:62.5%

Bede et al.,

2017

Trinity College

Dublin

Real-life 150 ALS, healthy Imaging SP, FS HOV Discriminant

function

Acc:90%,

Sens:90%,

Spec:90%

Ferraro et al.,

2017

MND Clinics

in Northern

Italy

Real-life 265 ALS, UMN,

ALS mimics

Imaging SP HOV RF Acc:87%,

Spec:75%,

Sens:92%

Fratello et al.,

2017

UK PD Brain

Bank

Real-life 120 ALS, PD,

healthy

Imaging SP, FS CV RF Acc:80%

D’hulst et al.,

2018

University

Hospital

Leuven and

Turino ALS

Center

Real-life 370 ALS, healthy Imaging SP LOOV SVM Acc:80%,

Sens:85%,

Spec:12.5%

Li et al., 2018 Australia Clinical trial 81 ALS, KD,

ALS mimics

Clinical FS None

described

Linear

regression

Acc:77.5%,

Sens:68%,

Spec:87%

Querin et al.,

2018

Pitiè

Salpêtrière

Hospital

Real-life 105 ALS, healthy Imaging SP CV RF AUC:0.96,

Acc:86.5%,

Sens:88%,

Spec:85%

CV, Cross Validation; LOOV, Leave One Out Validation; HOV, Hold Out Validation; AUC, Area under the ROC Curve; Acc, Accuracy; Sens, Sensitivity; Spec, Specificity; PD, Parkinson’s

Disease; FS, Feature Selection; SP, Signal Processing.

3.3. Results in Prognosis
3.3.1. Advances in Biomarker Research
As the precise mechanisms of disease propagation in ALS are
largely unknown (Ravits, 2014; Ayers et al., 2015), research
has focused on the identification of candidate prognostic
biomarkers including potential clinical, biological, imaging, and
genetic indicators. Prognostic model performance depends on
the feature’s ability to capture the disease spread. Optimal
prognostic biomarkers should not only discriminate between
different ALS phenotypes but categorize individual patients to
common disease progression rates (slow vs. fast progressors)
(Schuster et al., 2015).

Clinical biomarker research
Several recent studies examined the specific impact of
psychosocial factors, cognitive impairment, nutritional status
and respiratory compromise, on prognosis. Psychosocial

adjustments in ALS may have an under-recognized impact on
prognosis (Matuz et al., 2015). The potential effect of mood on
disease progression has only been investigated on a relatively
small number of samples to date (Johnston et al., 1999).

Biological biomarker research
Recent research suggests that prognostic modeling that does
not rely on a priori hypotheses could lead to more accurate
prognostic models than does driven by pre-existing hypotheses.
For instance, elevations in Creatine Kinase (CK) were linked
to LMN involvement and faster disease progression (Rafiq
et al., 2016; Goutman, 2017) using the PRO-ACT data
(Ong et al., 2017).

Genetic biomarker research
In a clinical setting, genetic testing is often only performed in
familial forms of ALS. C9orf72 repeat expansions account for
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40% of hereditary ALS cases and 10% of sporadic ALS cases
(Goutman, 2017) and hexanucleotide repeats are associated
with specific clinical traits (Byrne et al., 2012). More than
30 genes have been implicated in the pathogenesis of ALS to
date and samples are often screened for Angiogenin (ANG),
Dynactin subunit 1 (DCTN1), Fused in sarcoma (FUS),
Optineurin (OPTN), SOD1, Transactive Response DNA Binding
Protein (TARDBP), Ubiquilin (UBQLN2), Valosin-Containing
Protein (VCP) (Chen et al., 2013; Renton et al., 2013; Taylor
J. P. et al., 2016), Alsin Rho Guanine Nucleotide Exchange
Factor (ALS2), Polyphosphoinositide phosphatase (FIG4),
Probable Helicase Senataxin (SETX), Spatacsin (SPG11),
Vesicle-Associated membrane protein-associated Protein B/C
(VAPB) (Chen et al., 2013; Renton et al., 2013), Heterogeneous
nuclear ribonucleoprotein A1 (HNRNPA1), Profilin 1 (PFN1),
Sequestosome 1 (SQSTM1) (Renton et al., 2013; Taylor J. P. et al.,
2016), Coiled-coil-helix-coiled-coil-helix domain-containing
protein 10 (CHCHD10), Matrin 3 (MATR3), Serine/Threonine-
protein Kinase (TBK1) (Taylor J. P. et al., 2016), sigma-1 receptor
(SIGMAR1), Diamine oxidase (DAO) (Chen et al., 2013),
Charged multivesicular body protein 2b (CHMP2B), Ataxin-2
(ATXN2), Neurofilament Heavy (NEFH), Elongator complex
protein 3 (ELP3) (Renton et al., 2013) as well as Receptor
tyrosine-protein kinase (ERBB4), Unc-13 homolog A (UNC13A),
Peripherin (PRPH), TATA-binding protein-associated factor
2N (TAF15), Spastin (SPAST), Lamin-B1 (LMNB1), Sterile
alpha and TIR motif-containing protein 1 (SARM1), C21orf2,
(never in mitosis gene a)-related kinase 1 (NEK1), Granulin
Precursor (GRN), Microtubule Associated Protein Tau (MAPT)
and Presenilin 2 (PSEN2). IBM Watson software has been
successfully utilized to identify other candidate genes; such as
hnRNPU, SYNCRIP, RBMS3, Caprin-1 andNUPL2 (Bakkar et al.,
2017). Genomic research teams have increasingly capitalized on
ML methods worldwide, as they can handle copious amounts of
data for systematic processing, genomic sequence annotation,
DNA pattern recognition, gene expression prediction, and the
identification of genomic element combinations (Libbrecht and
Noble, 2015).

The benefit of multiparametric datasets
Early machine learning efforts have been hampered by the
lack of large data sets in ALS, which is increasingly addressed
by the availability of large international repositories, such as
those maintained by NISALS (Müller et al., 2016; Neuroimaging
Society in ALS, 2018), NEALS (NEALS Consortium, 2018), and
PRO-ACT which includes more than 10 000 patient records
from 23 clinical trials in total. Similar initiatives had been
carried out in other neurological conditions, as part of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller
et al., 2005), the Parkinson’s Progression Marker’s Initiative
(PPMI) (Marek et al., 2011) and Tract HD (Tabrizi et al., 2012).
Emerging large data sets, like PRO-ACCT, also serve as validation
platforms for previously identified biomarkers. For example,
vital capacity was identified as early as 1993 (Schiffman and
Belsh, 1993) as a predictor of disease progression and proved
relevant in the Prize4Life challenge (Küffner et al., 2014). Other
validated biomarkers include creatinine (Atassi et al., 2014;

Küffner et al., 2014; Ong et al., 2017), BMI (Atassi et al., 2014;
Küffner et al., 2014; Ong et al., 2017), CK (Ong et al., 2017),
Alkaline Phosphatase (ALP)(Küffner et al., 2014; Ong et al.,
2017), albumin (Ong et al., 2017), total birilubin (Ong et al.,
2017), and uric acid (Atassi et al., 2014). Other predictive clinical
features such as onset at age, region of onset, and respiratory
compromise have long been firmly established (Chio et al., 2009;
Creemers et al., 2014).

3.3.2. Overview of Research in Prognosis
While prognostic forecasting has historically been undertaken
using traditional statistical approaches in ALS (Ince et al., 2003;
Forbes, 2004; Visser et al., 2007; Coon et al., 2011; Atassi et al.,
2014; Elamin et al., 2015; Marin et al., 2015; Rong et al., 2015;
Tortelli et al., 2015; Wolf et al., 2015; Knibb et al., 2016; Reniers
et al., 2017), ML models have an unprecedented potential to
identify novel prognostic indicators (Gomeni and Fava, 2013;
Hothorn and Jung, 2014; Ko et al., 2014; Beaulieu-Jones and
Greene, 2016; Taylor A. A. et al., 2016; Huang et al., 2017;
Jahandideh et al., 2017; Ong et al., 2017; Schuster et al., 2017;
Seibold et al., 2017; van der Burgh et al., 2017; Bandini et al.,
2018; Pfohl et al., 2018; Westeneng et al., 2018). Most prognostic
models use clinical features to determine prognosis in ALS but
two recent papers enriched their clinical data with imaging
measures (Schuster et al., 2017; van der Burgh et al., 2017).
Seven studies designed their prediction model around both
clinical and biological data, (Hothorn and Jung, 2014; Ko et al.,
2014; Beaulieu-Jones and Greene, 2016; Huang et al., 2017;
Jahandideh et al., 2017; Ong et al., 2017; Seibold et al., 2017)
and nine studies developed their prognostic model based on
PRO-ACT data, (Gomeni and Fava, 2013; Hothorn and Jung,
2014; Ko et al., 2014; Beaulieu-Jones and Greene, 2016; Taylor
A. A. et al., 2016; Huang et al., 2017; Jahandideh et al., 2017;
Ong et al., 2017; Seibold et al., 2017). Prognosis is typically
defined either as functional decline or survival and is either
approached as a classification problemwith predefined categories
or as a regression problem with a specific survival or functional
thresholds. The most accurate regression approach had a RMSE
of 0.52 (with regards to the ALSFRS rate) (Hothorn and Jung,
2014) and one of the most accurate classification method (Ko
et al., 2014) reached 66% accuracy, 66% sensitivity, and 65%
specificity using a RF. Bandini et al. (2018) achieved 87% accuracy
with a SVM model a fairly complex model built on only 64
samples - which puts the model at a high risk of overfitting. For
outcome prediction as a regression problem, best results were
reached by Pfohl et al. (2018) using a RF. For outcome prediction
as a classification problem, best performance was achieved by
Westeneng et al. (2018) with 78% accuracy using a multivariate
Royston-Parmar model.

Statistical methods
Previous prognostic studies in ALS primarily used traditional
statistical approaches, mostly Cox regressions, mixed effect
models and Kaplan-Meier estimators. These models have
relatively stringent data assumptions which limit model validity
and limit data exploration. Nevertheless, they were instrumental
in identifying key prognosis indicators in ALS, such as diagnostic
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delay (Forbes, 2004; Elamin et al., 2015; Marin et al., 2015;
Wolf et al., 2015; Knibb et al., 2016; Reniers et al., 2017),
age at symptom onset (Forbes, 2004; Marin et al., 2015; Wolf
et al., 2015; Knibb et al., 2016; Reniers et al., 2017), functional
disability (Visser et al., 2007; Elamin et al., 2015; Marin et al.,
2015; Wolf et al., 2015; Reniers et al., 2017), El Escorial
categorization (Forbes, 2004; Marin et al., 2015; Wolf et al.,
2015), comorbid FTD or executive dysfunction (Elamin et al.,
2015; Wolf et al., 2015; Knibb et al., 2016), site of onset
(Forbes, 2004; Elamin et al., 2015), Riluzole therapy (Forbes,
2004; Knibb et al., 2016), vital capacity (Visser et al., 2007),
muscle weakness (Visser et al., 2007), involvement of body
regions (Visser et al., 2007), gender (Wolf et al., 2015), BMI
(Atassi et al., 2014), presence of C9orf72 mutations (Reniers
et al., 2017). Other prognostic studies focused on the macrophage
marker Cluster of Differentiation 68 (CD68) (Ince et al., 2003),
neuropsychological deficits (Coon et al., 2011), creatinine and
uric acid levels (Atassi et al., 2014), tongue kinematics (Rong
et al., 2015), anatomical spread (Tortelli et al., 2015), and LMN
involvement (Reniers et al., 2017). A number of studies have
specifically focused on survival (Forbes, 2004; Visser et al.,
2007; Coon et al., 2011; Atassi et al., 2014; Elamin et al.,
2015; Marin et al., 2015; Tortelli et al., 2015; Wolf et al.,
2015; Reniers et al., 2017). Ince et al. (2003) performed an a
posteriori analysis of disease progression based on MRI data.
Coon et al. (2011) analyzed the impact of language deficits and
behavioral impairment on survival. Rong et al. (2015) assessed
the implications of early bulbar involvement. To this date,
most reliable predictive features are clinical factors, but similar
approaches can be extended to biofluid, genetic, and imaging
data. Both ML and traditional statistical approaches perform
better with multi-modal data. Existing ML studies in ALS show
considerable differences in their methodology and validation
approaches. Please refer to Table 3 for an overview of ALS papers
focusing on prognostic modeling.

Performance analyses
RF is the most commonly used model in ALS, implemented in
eight of the fourteen reviewed studies (Hothorn and Jung, 2014;
Ko et al., 2014; Beaulieu-Jones and Greene, 2016; Taylor A. A.
et al., 2016; Huang et al., 2017; Jahandideh et al., 2017; Seibold
et al., 2017; Pfohl et al., 2018) and it is also one of the best
performing methods (Beaulieu-Jones and Greene, 2016; Taylor
A. A. et al., 2016; Huang et al., 2017; Pfohl et al., 2018). Boosting,
another ensemble method, was tested by Jahandideh et al. (2017)
and Ong et al. (2017). The boosting algorithm outperformed the
RF model in Jahandideh et al. (2017). NN models were used
successfully in two studies: Beaulieu-Jones and Greene (2016)
and van der Burgh et al. (2017). Regression models have also
been extensively used in ALS, including generalized linearmodels
(Taylor A. A. et al., 2016; Huang et al., 2017; Pfohl et al., 2018),
Royston-Parmar models for Westeneng et al. (2018), and non-
linear Weibull models (Gomeni and Fava, 2013). Regression
models, despite their stringent assumptions, have great potential
in clinical applications (Westeneng et al., 2018). Seibold et al.
(2017) used an innovative RF approach to establish the impact
of Riluzole therapy on functional decline and survival. Out of

the ten models built on clinical data, nine were based on PRO-
ACT data (Gomeni and Fava, 2013; Hothorn and Jung, 2014; Ko
et al., 2014; Beaulieu-Jones and Greene, 2016; Taylor A. A. et al.,
2016; Huang et al., 2017; Jahandideh et al., 2017; Ong et al., 2017;
Seibold et al., 2017).

Prognosis in ALS is typically either addressed as a
classification or a regression problem. In studies using the
classification approach, categories are defined based on
functional decline (Gomeni and Fava, 2013; Ko et al., 2014; Ong
et al., 2017;Westeneng et al., 2018), survival (Schuster et al., 2017;
Pfohl et al., 2018), or disease phase (Bandini et al., 2018). Studies
using the regression approach predicted survival (Beaulieu-Jones
and Greene, 2016; Huang et al., 2017; van der Burgh et al., 2017;
Pfohl et al., 2018), Riluzole effect (Seibold et al., 2017), functional
decline (Hothorn and Jung, 2014; Taylor A. A. et al., 2016),
or respiratory function (Jahandideh et al., 2017). ALSFRS-r is
invariably used in these studies, highlighting that it remains the
gold standard instrument to monitor disease progression. Most
prognostic models rely solely on clinical features,sometimes
enriched with biological data. Radiological data are seldom
used in these models, and often rely on relatively small datasets;
Schuster et al. (2017) included 69 and van der Burgh et al. (2017)
135 subjects. Despite their considerable sample size limitations,
these models achieved relatively promising results with accuracy
rates above 79%. Unfortunately, as in the case of diagnostic
modeling, large datasets of imaging data, especially longitudinal,
are still relatively difficult to acquire in single-centre settings.

A variety of metrics have been utilized for model performance
evaluation. For classification tasks, these typically include AUC,
specificity and sensitivity, accuracy and concordance (C-index),
and for regression methods, RMSE, R2, mean absolute error,
and Pearson correlations between real and predicted estimates
are usually reported. Approximately half of the reviewed papers
used RF to assess variable importance (Hothorn and Jung,
2014; Huang et al., 2017; Jahandideh et al., 2017; Ong et al.,
2017; Seibold et al., 2017; Pfohl et al., 2018; Westeneng et al.,
2018). Pfohl et al. (2018) carried out correlation analysis
and PCA component projection analysis which proved very
instructive. Gamma glutamyl-transferase, was identified as a
potential prognostic indicator by Ong et al. (2017). Despite
the obvious advantages, model testing is only rarely carried
out on external data sets (Jahandideh et al., 2017) for which
population data should ideally be used (Taylor A. A. et al.,
2016). Many referral centres develop models based on local
datasets (Schuster et al., 2017; van der Burgh et al., 2017; Pfohl
et al., 2018), which are more accessible than population-based
data. Population-based data are increasingly available thanks to
national (Donaghy et al., 2009; Talman et al., 2016) and regional
(Rosenbohm et al., 2017) registries and increasingly thanks to
international consortia (Turner et al., 2011; Müller et al., 2016;
Westeneng et al., 2018).

The direct comparison of model performances in ALS ML
studies is challenging as performance metrics, prediction targets,
sample sizes and study designs are hugely divergent. There
is little evidence that a specific type of input data, clinical
features alone or clinical data enriched with other data types,
enhances model performance. This is due to the lack of large
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TABLE 3 | Research overview: prognosis with statistical models.

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Biomarker(s)

type

Pre-processing

(if any)

Validation

(if any)

Model(s)

tested

Ince et al., 2003 Newcastle

upon

Tyne MND

clinic

Real-life 81 Progression Imaging None described Not required Univariate

analysis

Forbes, 2004 Scottish

ALS-MND

Register

Population 1226 Outcome Clinical None described Not required Cox time

dependent

regression

modeling

Visser et al., 2007 Dutch

university

hospitals

Real-life 37 Outcome Clinical,

genetic,

biological

None described Not required Univariate

analysis

Coon et al., 2011 Mayo Clinic Real-life 56 Outcome Clinical,

imaging

None described Not required KM analysis

Atassi et al., 2014 PRO-ACT Clinical trial 8635 Outcome,

progression

Clinical,

biological

Data cleaning Not required Multivariate

analysis

Elamin et al., 2015 Irish and

Italian

(Piemonte)

ALS registry

Population 326 Outcome Clinical,

genetic

FS HOV Proportional

hazards Cox

Marin et al., 2015 FRALim

register

Population 322 Outcome Clinical None described Not required Cox

regression

(KM)

Rong et al., 2015 - Clinical trial 66 Progression Clinical FS Not required Linear Mixed

Effect, KM

analysis

Tortelli et al., 2015 University of

Bari MND

Center

Clinical trial 145 Outcome Clinical None described Not required Bivariate

model for

correlation

Wolf et al., 2015 Rhineland-

Palatinate

Register

Population 193 Outcome Clinical FS Not required Cox

proportional

hazards

Knibb et al., 2016 South-East

England

Register

Population 575 Outcome,

progression

Clinical MVR CV Cox

proportional

hazards, ACT

Reniers et al.,

2017

University

Hospitals

Leuven

Real-life 396 Outcome Clinical None described Not required Univariate

and

multivariate

Cox

regression

HOV, Hold Out Validation; CV, Cross Validation; ACT, Accelerated Failure Time; KM, Kaplan Meier; MVR, Missing Value Removal; FS, Feature Selection.

scale databases which routinely store biological samples and
imaging data along with clinical observations. It is likely that
the incorporation of genetic, biological, and imaging features,
will improve prognostic modeling. Some studies candidly discuss
their methodological limitations, and model overfitting is the
most often cited shortcoming. Data censoring is often mentioned
when using PRO-ACT data and selection bias when relying on
clinical trial data. Most studies discuss the issues around feature
selection and the importance of limiting feature dimension.
Model interpretability concerns are sometimes raised when using
NN models (van der Burgh et al., 2017). Westeneng et al.
(2018) published their findings according to the methodology
introduced by Moons et al. (2015) setting an example of
performance reporting. Please refer toTables 4, 5 for an overview
of ML studies in ALS focusing on prognostic projections.

Data management approaches
Most studies perform some kind of data pre-processing, such
as feature selection (Gomeni and Fava, 2013; Ko et al., 2014;
Taylor A. A. et al., 2016; Huang et al., 2017; Jahandideh et al.,
2017; Schuster et al., 2017; Bandini et al., 2018; Pfohl et al.,
2018; Westeneng et al., 2018), signal processing (Schuster et al.,
2017; van der Burgh et al., 2017; Bandini et al., 2018), and
address missing data (Hothorn and Jung, 2014; Beaulieu-Jones
and Greene, 2016; Taylor A. A. et al., 2016; Huang et al., 2017;
Jahandideh et al., 2017; Ong et al., 2017; Seibold et al., 2017;
Pfohl et al., 2018; Westeneng et al., 2018). Feature importance
analysis prior to model design provides important insights before
feature selection (Hothorn and Jung, 2014; Taylor A. A. et al.,
2016; Huang et al., 2017; Jahandideh et al., 2017; Ong et al.,
2017; Seibold et al., 2017; Pfohl et al., 2018). Feature selection
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TABLE 4 | Research overview: Prognosis with ML models (1/2).

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Biomarker(s)

type

Pre-processing

(if any)

Validation

(if any)

Model(s)

tested

Performance Framework

Gomeni and Fava,

2013

PRO-ACT Clinical trial 338 Progression Clinical FS HOV non-linear

Weibull

AUC:0.96 Classification

Hothorn and Jung,

2014

PRO-ACT Clinical trial 1822 Progression Clinical,

biological

MVI, VIA HOV RF RMSE:0.52

(ALSFRS rate),

PC:40%

Regression

Ko et al., 2014 PRO-ACT Clinical trial 1822 Progression Clinical,

biological

FS HOV RF Spec:66%,

Sens:65%,

Acc:66%

Classification

Beaulieu-Jones and

Greene, 2016

PRO-ACT Clinical trial 3398 Outcome Clinical,

biological

MVI CV NN, RF,

SVM, k-NN,

DT,

NN with RF

(best)

AUC:0.692 Classification

Taylor A. A. et al.,

2016

PRO-ACT,

Emery ALS

Clinic

Clinical trial,

real-life

4372 Progression Clinical FS, MVR,

VIA

HOV GLM,

RF (best)

R2:58.2%,

MC:0.942,

ME:-0.627

(ALSFRS

score)

Regression

van der Burgh et al.,

2017

University

Medical

Center

Utrecht

Real-life 135 Outcome Clinical,

imaging

SP HOV NN Acc:84.4% Classification

Huang et al., 2017 PRO-ACT Clinical trial 6565 Outcome Clinical,

biological

FS, MVR,

VIA

CV GP, Lasso,

RF (best)

C-ind:0.717 Regression

Jahandideh et al.,

2017

PRO-ACT,

NEALS

Clinical trial,

population

4406 Progression Clinical,

biological

FS, MVI,

VIA

CV RF,

XGBoost,

GBM (best)

RMSE:0.635

(FVC),

R2:66.9%

Regression

Ong et al., 2017 PRO-ACT Clinical trial 1568-6355 Progression,

outcome

Clinical,

biological

MVR, VIA CV Boosting For P:

AUC:0.82,

Acc:56.5%,

Spec:74%,

Sens:39%,

For O:

AUC:0.83,

Acc:76.7%,

Spec:76.1%,

Sens:77.3%

Classification

CV, Cross Validation; HOV, Hold Out Validation; AUC, Area under the ROC Curve; Acc, Accuracy; Sens, Sensitivity; Spec, Specificity; MC,Model Calibration; ME, Mean Error; PC,

Pearson’s Correlation; DT, Decision Tree; GLM, Generalized Linear Model; k-NN, k-Nearest Neighbors; FS, Feature Selection; MVI, Missing Value Imputation; VIA, Variable Importance

Analysis; MVR, Missing Value Removal; P, Progression; O, Outcome; C-ind, Concordance; GP, Gaussian Process; GBM, Gradient Boosting Model; SP, Signal Processing; FVC, Forced

Vital Capacity.

is automated when using RF, NN, or boosting models. Missing
data management is crucial when dealing with medical data
sets as it has a strong impact on data bias and overall model
performance. Huang et al. (2017),Seibold et al. (2017),Taylor
A. A. et al. (2016), and Ong et al. (2017) discarded data
samples with missing features which can introduce further bias
in sparse data situations. Mean imputation, which is a simple
imputation method, was performed by Jahandideh et al. (2017)
and Hothorn and Jung (2014). Simple imputation methods
can increase bias in data as these methods assume missing
‘completely at random’ characteristics which rarely reflect real-
life scenarios. Consequently, multiple imputation approaches
such as NN approaches (Beaulieu-Jones and Greene, 2016) or
MICE (Westeneng et al., 2018) are favored. With few exceptions,
Seibold et al. (2017), most studies report their validation

framework in detail. Cross-validation schemes are used by some
(Beaulieu-Jones andGreene, 2016; Huang et al., 2017; Jahandideh
et al., 2017; Ong et al., 2017; Bandini et al., 2018; Pfohl et al.,
2018; Westeneng et al., 2018) and hold out validation schemes
are implemented by others (Gomeni and Fava, 2013; Hothorn
and Jung, 2014; Ko et al., 2014; Taylor A. A. et al., 2016; van der
Burgh et al., 2017). Dataset population ranges between 64 and
11 475 samples which explains the considerable methodological
differences in pre-processing, data analysis and overall model
design. SFR ranges between < 1 (with 135 samples for 2 376
features (van der Burgh et al., 2017)) to close to 1100 (with 6
565 samples for 6 features (Huang et al., 2017)). Small SFRs are
mostly due to either data type scarcity (Schuster et al., 2017;
van der Burgh et al., 2017; Bandini et al., 2018) or the use of
complex models such as NN (Beaulieu-Jones and Greene, 2016).
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TABLE 5 | Research overview: Prognosis with ML models (2/2).

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Biomarker(s)

type

Pre-processing

(if any)

Validation

(if any)

Model(s)

tested

Performance Framework

Schuster et al.,

2017

Trinity

College

Dublin

Real-life 69 Outcome Clinical, imaging SP, FS CV Logistic

regression

Spec:83.34%,

Sens:75%,

Acc:79.19%

Classification

Seibold et al.,

2017

PRO-ACT Clinical trial 2534-3306 Progression,

outcome

Clinical,

biological

MVR, VIA None RF Treatment

effect on

outcome and

progression

Regression

Bandini et al.,

2018

- Clinical trial 64 Progression Clinical SP, FS CV k-NN, SVM

(best)

Spec:86.1%,

Sens:88.8%,

Acc:87%

Classification

Pfohl et al., 2018 Emery ALS

Clinic

Real-life 801 Outcome Clinical MVI, FS,

VIA

CV GLM,

RF (best)

RMSE:547

+/-46 days,

R2:52%,

AUC:0.85

Regression,

Classification

Westeneng et al.,

2018

14 European

ALS centers

Real-life 11475 Outcome Clinical FS, MVI CV MRP Acc:78%,

MC:1.01,

AUC:0.86

Classification

CV, Cross Validation; AUC, Area under the ROC Curve; Acc, Accuracy; Sens, Sensitivity; Spec, Specificity; MC, Model Calibration; GLM, Generalized Linear Model; k-NN, k-Nearest

Neighbors; MRP, Multivariate Royston-Parmar; FS, Feature Selection; MVI, Missing Value Imputation; VIA, Variable Importance Analysis; MVR, Missing Value Removal;SP, Signal

Processing.

Six studies have used less than nine features for model design
(Gomeni and Fava, 2013; Hothorn and Jung, 2014; Ko et al.,
2014; Huang et al., 2017; Ong et al., 2017; Westeneng et al., 2018)
reaching SFRs over 100 samples per feature.

3.4. Advances in Risk Stratification
Accurate patient stratification is not only essential for clinical
trial designs but also for individualized patient care (Kiernan,
2018). Current stratification strategies are surprisingly limited
and do not utilize patient clustering for pharmaceutical research
and medical interventions. Only two drugs have been approved
by the FDA to treat ALS to date: Riluzole (Rilutek) and Edavarone
(Radicava).While there is some debate if themaximal therapeutic
benefit of Riluzole may be in late-stage disease (Dharmadasa
et al., 2018; Fang et al., 2018), recent research suggest that
Edavarone effect may be superior in the earlier phases of
ALS (Goutman, 2017; Kiernan, 2018). It is also noteworthy,
that past clinical trials were primarily based on heterogeneous
ALS populations. The inconclusive findings of admixed cohorts
may not apply to specific patient subgroups (Bozik et al.,
2014) or presymptomatic cohorts. Rigorous patient stratification
would have an important role in addressing these shortcomings.
Unsupervised learning methods, such as the one carried out by
Beaulieu-Jones and Greene (2016) using denoised autoencoder
and t-distributed Stochastic Neighbor Embedding (t-SNE),
provide novel means of monitoring patients. However, as for
most unsupervised learning methods, selecting the appropriate
number of patient clusters requires extensive empirical testing.

3.4.1. Overview of Stratification Initiatives
Patient stratification in ALS is often explored from a prognostic
perspective (Visser et al., 2007; Gomeni and Fava, 2013; Ko et al.,
2014; Elamin et al., 2015; Marin et al., 2015; Beaulieu-Jones

and Greene, 2016; Ong et al., 2017; van der Burgh et al., 2017;
Pfohl et al., 2018; Westeneng et al., 2018) approaching it as a
classification problem and patient categories are defined to build
the model. Balendra et al. (2014a) analyzed progression patterns
using the King’s staging system. Clinical stages are potential input
variables for stratification, and therapeutic intervention can be
tested based on disease subgroups or disease stage.

Patient stratification was performed based on clinical
observations alone in seven recent studies (Visser et al.,
2007; Balendra et al., 2014a; Ko et al., 2014; Elamin et al.,
2015; Burke et al., 2017; van der Burgh et al., 2017; Pfohl
et al., 2018). Variables, such as limb involvement (Visser
et al., 2007), disease-stage (Balendra et al., 2014a), ALSFRS-
r decline (Ko et al., 2014), executive dysfunction (Elamin
et al., 2015), behavioral impairment (Burke et al., 2017), and
survival (van der Burgh et al., 2017; Pfohl et al., 2018) have
been used for patient stratification. Other studies relied on
unsupervised techniques to identify patient subgroups. These
methods either used model estimation (Gomeni and Fava, 2013;
Westeneng et al., 2018), K-means (Ong et al., 2017), a tree-
growing algorithm called Recursive Partitioning and Amalgation
(Marin et al., 2015) or NNs with a denoising autoencoder
(Beaulieu-Jones and Greene, 2016). Clustering was performed
either based on clinical features alone (Gomeni and Fava, 2013;
Marin et al., 2015; Westeneng et al., 2018) or based on clinical
features and biological data (Beaulieu-Jones and Greene, 2016;
Ong et al., 2017).

Contrary to supervised learning problems, unsupervised
learning methods do not have clear and easily presentable
performance metrics. Possible options include the description
of inter- and intra-patient subgroup distances and outlier
distribution. The optimal number of models (equivalent to
cluster number) can be identified using an iterative procedure
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for studies based on model estimation (Gomeni and Fava, 2013;
Westeneng et al., 2018).

Clustering methods
Patient clustering was performed on various datasets in ALS;
clinical trial data (Gomeni and Fava, 2013; Balendra et al., 2014a;
Ko et al., 2014; Ong et al., 2017), “real-life data” (Visser et al.,
2007; van der Burgh et al., 2017; Pfohl et al., 2018; Westeneng
et al., 2018) and population data (Elamin et al., 2015; Marin
et al., 2015; Burke et al., 2017). The term “real-life” data is used
to samples which derive from local recruitment, typically single-
center non-pharmacological studies, where data are acquired
prospectively but do not represent entire populations. Access to
large patient databases with limited missing data is fundamental
to the development of accurate stratification schemes. Recent
initiatives such as the Prize4Life challenge (Küffner et al., 2014),
the PRO-ACT database and Euro-MOTOR consortium (Rooney
et al., 2017; Visser et al., 2018) have proven invaluable resources
for research and should be continued and expanded. PRO-
ACT’s main limitation with regards to patient stratification
is its inclusion bias. Working with population data leads to
more representative results as clinical trial datasets tend to be
associated with considerable bias. The identification of specific
patient subgroups is most accurate when the data truly represents
an entire patient population.

The maximum number of clusters does not typically exceed
five in ALS research; Gomeni and Fava (2013), Ko et al.
(2014), Beaulieu-Jones and Greene (2016), Ong et al. (2017),
and Pfohl et al. (2018) work with only two patient subgroups,
Visser et al. (2007), Elamin et al. (2015), van der Burgh
et al. (2017), and Burke et al. (2017) with three patient
subgroups, Marin et al. (2015) with four patient subgroups
and Balendra et al. (2014a); Westeneng et al. (2018) with five
patient subgroups. Depending on the available data, feature
type, and data source working with a limited number of
clusters may be desirable. This can be particularly challenging
in ALS, where a number of phenotypes contribute to clinical
heterogeneity. Identifying the correct number of clusters is a
common problem in unsupervised learning which can only
be solved with ad-hoc analyses. Please refer to Tables 6, 7

for an overview of studies focusing on risk stratification
in ALS.

ALS studies approach patient stratification in strikingly
different ways. Visser et al. (2007) proposed an innovative PMA
strategy which is based on limb involvement and focuses on
symmetrical vs. asymmetrical limb weaknesses. Current ALS
phenotyping already considers aspects of limb involvement, but
this could be extended to adopt more detailed characterization.
Gomeni and Fava (2013) divided patients into slow- and
fast-progressing groups based on non-linear Weibull model
estimation, which can account for linear, sigmoid or exponential
evolutions. Two clusters were retained based on model fitting,
as three-cluster attempts proved less conclusive. Balendra et al.
(2014a) explored King’s stages (Roche et al., 2012) on LiCALS
and Mito Target data and demonstrated a viable alternative
to ALSFRS-r and traditional patient stratification strategies.
Clinical staging is thought to represent pathological stages

better than ALSFRS-r. Alternative clinical staging systems,
such as MiToS (Chiò et al., 2013a) or Fine’Till 9 (Thakore
et al., 2018) could be tested further to assess if they are
more sensitive in the earlier or later stages of the disease.
Ko et al. (2014) performed an interesting patient classification
study based on ALSFRS-r decline but choice of threshold,
0.6 ALSFRS-r point / month was not expounded. Elamin
et al. (2015) divided patients into three risk groups based
on a scoring system, which was based on site of onset,
ALSFRS-r, and executive dysfunction. Marin et al. (2015)
identified four groups using an unsupervised ML technique:
Recursive partitioning and amalgamation. Membership rules
were derived from analyzing ALSFRS-r decline and El Escorial
criteria. Beaulieu-Jones and Greene (2016) investigated PRO-
ACT survival data using denoising autoencoders, a deep learning
model, and used the visualization algorithm t-SNE to visualize
how the NN model had divided the subjects according to short
vs. long survival. These results are particularly promising as
NN models can work well without extensive feature selection.
van der Burgh et al. (2017) segregated patients into three
classes based on survival times defined by Elamin et al. (2015).
Burke et al. (2017) proposed three subgroups for clustering
based on executive dysfunction (“non-significant,” “mild,” and
“severe symptoms”) using the Beaumont Behavioral Inventory
(Elamin et al., 2016), a questionnaire on patient behavior
completed by the patient and caregivers. Ong et al. (2017) used
unsupervised ML techniques Partitioning Around Medoids and
K-Means to identify patient clusters for disease progression and
survival. Partitioning Around Medoids and K-Means differ on
cluster computing as the former computes the medoid (data
point whose average dissimilarity with the other data points
is minimal) while the latter computes the average value. Two
clusters were optimally suited for both algorithms. Pfohl et al.
(2018) used empirically defined survival times based on clinician
experience. Westeneng et al. (2018) identified five patient
groups after Royston-Parmar model analysis and estimation.
Differing patient stratification strategies can be successfully
combined as demonstrated by Burke et al. (2017) who analyzed
cognitive impairment stratification with regards to King’s clinical
staging system.

4. DISCUSSION

4.1. Summary of Main Findings
4.1.1. Diagnosis
ML models have been increasingly explored in diagnostic
applications in ALS. Thesemodels have the potential to supersede
the current gold standard diagnostic approach which is based
on clinical evaluation and uses the El Escorial criteria. The
El Escorial criteria is thought to suffer from low specificity
(Goutman, 2017). Recent ML models in ALS have reached
comparable sensitivity and specificity values to the El Escorial
criteria. The main barriers to model performance stem from
limited data availability for training and poor sample to
feature ratios. Future strategies should centre on models using
multimodal data, and models which discriminate phenotypes
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TABLE 6 | Research overview: Patient stratification (1/2).

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Approach Clustering

feature(s)

Number of

clusters found

Visser et al., 2007 Dutch university

hospitals

Real-life 37 Progression Clinical

observations

Limb involvement 3

Gomeni and Fava,

2013

ProACT Clinical trial 338 Progression Unsupervised

(non-linear

Weibull model

estimation)

Clinical features 2

Balendra et al.,

2014a

LiCALS, Mito

Target

Clinical trial 725 Progression Clinical

observations

Clinical stages 5

Ko et al., 2014 ProAct Clinical trial 1822 Progression Clinical

observations

ALSFRS decline

rate

2

Elamin et al., 2015 Irish ALS registry,

Italy (Piemonte

Region)

Population 326 Outcome Clinical

observations

Score based

on onset type,

ALSFRS rate

an executive

disfunction

3

Marin et al., 2015 FRALim register Population 322 Outcome Unsupervised

(RECPAM)

Clinical features 4

RECPAM, Recursive Partitioning and Amalgation.

TABLE 7 | Research overview: Patient stratification (2/2).

Key Dataset(s)

origin

Dataset(s)

type

Dataset(s)

length

Scope Approach Clustering

feature(s)

Number of

clusters found

Beaulieu-Jones

and Greene, 2016

ProAct Clinical trial 3398 Outcome Unsupervised

learning (DA)

Clinical and

biological features

2

van der Burgh

et al., 2017

University

Medical Center

Utrecht

Real-life 135 Outcome Clinical

observations

Survival time

based on

Elamin2015

categories

3

Burke et al., 2017 Irish ALS Register Population 383 Progression Clinical

observations

Behavioral

impairment based

on BBI score

3

Ong et al., 2017 ProAct Clinical trial 1568-6355 Progression,

outcome

Unsupervised

(PAM and

K-Means)

Clinical and

biological features

2x2

Pfohl et al., 2018 Emery ALS Clinic Real-life 801 Outcome Clinical

observations

Survival time

(empirical)

2

Westeneng et al.,

2018

14 European ALS

centers

Real-life 11475 Outcome Unsupervised

(RP model

estimation)

Clinical features 5

DA, Denoising Autoencoders; PAM, Partitioning Around Medoids; RP, Royston-Parmar; BBI, Beaumont Behavioral Inventory.

within the ALS spectrum and distinguish ALS from disease-
controls. Optimally, these models should be developed to enable
an early, definite, and observer independent diagnosis of ALS.

4.1.2. Prognosis
The development of accurate prognostic models attracts
considerable interest, and is fuelled by initiatives like the
challenge launched by Prize4Life (Küffner et al., 2014).
Prognostic model performance depends heavily on each
feature’s relevance to disease propagation. Current models
rely primarily on clinical findings and laboratory tests which
might not be sufficient to predict disease evolution. Despite

these challenges, recent models have provided a reasonable
gross estimate of death risk (Ong et al., 2017), survival
(Schuster et al., 2017; van der Burgh et al., 2017; Westeneng
et al., 2018) and progression rates (Ong et al., 2017). The
most important constraints of prognostic modeling stem from
significant data bias, limited data availability, poor missing
data management, and limited sample to feature ratios.
Performance reporting should be standardized for model
comparisons, reproducibility, and benchmark development.
Future studies should include multimodal data, multiple
timepoints, include ALS patients with comorbid FTD and
appraise disease progression in terms of clinical stages instead
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of solely relying on ALSFRS-r. Effective prognostic modeling
should also account for disease heterogeneity to provide
patients and clinicians with accurate prognostic insights across
multiple phenotypes.

4.1.3. Risk Stratification
Novel computerized risk stratification initiatives are urgently
required in ALS, as this aspect of ALS research has been
relatively ignored to date. Existing studies tend to stratify patients
according to rather basic categorization rules, limiting their
analyses to a restricted number of clusters and focusing mostly
on clinical features. Future research should focus on working
with multimodal and longitudinal datasets and analyzing model-
derived clustering with commonly used ALS phenotypes.
Optimized patient stratification schemes will undoubtedly
improve clinical trial design and has the potential to identify
clinically relevant ALS subtypes.

5. CONCLUSIONS

ML models have enormous academic and clinical potential
in ALS. With the increasing availability of large datasets,
multicentre initiatives, high-performance computer platforms,
open-source analysis suites, the insights provided by flexible ML
models are likely to supersede those gained from conventional
statistical approaches. The choice of the ML model need to
be carefully tailored to a proposed application based on the
characteristics of the available data and the flexibility, assumption
and limitation profile of the candidate model. While ALS
research to date has overwhelmingly relied on conventional ML
approaches, emerging models and neural network architectures
have considerable potential to advance the field. Novel models
such as “black box” methods however may suffer from similar
pitfalls than established algorithms. The meticulous evaluation

of data characteristics, appraisal of data bias, missing data,
sample to feature ratio is indispensable irrespective of the
choice of ML model. Novel models may have outperformed
traditional approaches, but data constraints and limitations are
often overlooked. Model overfitting is the most commonly
encountered shortcoming of recent studies which limits the
generalizability of a proposed model. Transparent performance
assessment using standardized metrics, robust missing data
management and adherence to reporting guidelines are key
requirements for future machine learning studies in ALS.
Despite the drawbacks of current models and the methodological
limitations of recent studies, the momentous advances in the field
suggest that ML models will play a pivotal role in ALS research,
drug discovery, and individualized patient care.
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GLOSSARY

ALS : Amyotrophic Lateral Sclerosis
ALSbi : Behaviorally impaired ALS
ALSFRS : ALS Functional Rating Scale
ALSbi : behaviorally impaired ALS
ALSnci : ALS with no cognitive impairment
ALSci : ALS with cognitive impairment
ALSexec : ALS with executive dysfunction
AUC : Area Under the ROC Curve
AD : Axial Diffusivity
CNN : Convolutional Neural Network
CSF : Cerebrospinal fluid
CST : Corticospinal
DeepCNF : Deep Convolutional Neural Fields
DTI : Diffusion Tensor Imaging
FA : Fractional Anisotropy
FTD : Frontotemporal Dementia
GMM : Gaussian Mixture Model
KD : Kennedy’s disease
k-NN : k-Nearest Neighbors
LMN : Lower Motor Neurons
MD : Mean Diffusivity
ML : Machine Learning
MND : Motor Neuron Disease
NN : Neural Network
PBP : Progressive Bulbar Palsy
PCA : Principal Component Analysis
PD : Parkinson’s Disease
PLS : Primary Lateral Sclerosis
PMA : Progressive Muscular Atrophy
PRO-ACT : Pooled Resource Open-Access ALS Clinical Trials
RBP : RNA-Binding Protein
RD : Radial Diffusivity
RF : Random Forest
RMSE : Root Mean Squared Error
RNN : Recurrent Neural Network
ROC : Receiver Operating Curve
SFR : Sample to Feature Ratio
SMA : Spinal Muscular Atrophy
SVM : Support Vector Machine
t-SNE : t-distributed Stochastic Neighbor Embedding
UMN : Upper Motor Neurons
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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with limited

treatment options. Despite decades of therapeutic development, only two modestly

efficacious disease-modifying drugs—riluzole and edaravone—are available to ALS

patients. Biomarkers that can facilitate ALS diagnosis, aid in prognosis, and measure

drug pharmacodynamics are needed to accelerate therapeutic development for patients

with ALS. Positron emission tomography (PET) imaging has promise as a biomarker

for ALS because it permits visualization of central nervous system (CNS) pathology

in individuals living with ALS. The availability of PET radioligands that target a

variety of potential pathophysiological mechanisms—including cerebral metabolism,

neuroinflammation, neuronal dysfunction, and oxidative stress—has enabled dynamic

interrogation of molecular changes in ALS, in both natural history studies and human

clinical trials. PET imaging has potential as a diagnostic biomarker that can establish

upper motor neuron (UMN) pathology in ALS patients without overt UMN symptoms,

as a prognostic biomarker that might help stratify patients for clinical trials, and as a

pharmacodynamic biomarker that measures the biological effect of investigational drugs

in the brain and spinal cord. In this Review, we discuss progress made with 30 years

of PET imaging studies in ALS and consider future research needed to establish PET

imaging biomarkers for ALS therapeutic development.

Keywords: amyotrophic lateral sclerosis, neuroimaging, positron emission tomography, biomarker, diagnostic

biomarker, pharmacodynamic biomarker, therapeutic development

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by degeneration of
motor neurons in the brain and spinal cord. It is clinically heterogeneous and shares clinical and
pathological features with frontotemporal dementia (FTD). ALS invariably leads to weakness and
death;∼70–80% of ALS patients die within 5 years of symptom onset (1).

Riluzole and edaravone are currently the only disease-modifying treatments for ALS. More
efficacious therapy is urgently needed. Fortunately, the recent expansion of knowledge about
genetics and pathophysiology of ALS (2) has generated a large pipeline of potential therapeutic
agents to be tested in ALS. Biomarkers for ALS are now urgently needed to stratify patients for
trial enrollment, to demonstrate biological drug effect, and to guide dose-selection and go-no-go
decisions in early phase clinical trials.

Multiple types of biomarkers are being developed for use in ALS (3–5). Electrophysiological
biomarkers of the upper motor neurons (UMNs) [transcranial magnetic stimulation (6)] and
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lower motor neurons (LMN) [motor unit number index (7) and
electrical impedancemyography (8)] directly quantify physiology
of diseased tissues. Biological fluid-based biomarkers such as
phosphorylated neurofilament heavy chain in cerebrospinal
fluid (CSF) (9, 10), neurofilament light chain from CSF
or serum (10–14), and urine p75 neurotrophin receptor
extracellular domain (15) are being evaluated as markers
of neuronal degeneration. Neuroimaging biomarkers using
magnetic resonance imaging (MRI) or positron emission
tomography (PET) techniques can objectively visualize changes
associated with the disease processes and help to understand the
mechanisms of neurodegeneration in vivo (16).

This Review will focus on development of PET molecular
imaging biomarkers for ALS. References for this Review were
identified by searching PubMed for the terms “amyotrophic
lateral sclerosis” or “ALS” or “motor neuron disease” or “MND”
AND “PET” or “positron emission tomography.” As of October
11, 2018, 222 articles were identified. We excluded articles that
were not focused on motor neuron diseases (17), were animal or
post-mortem studies (18), were not focused on PET imaging (19),
were not dedicated to brain or spinal cord (2), were not written
in English (12), were inaccessible (7), studied fewer than 5 ALS
or MND cases (20), or were literature reviews or guidelines (21),
resulting in 48 papers.

THE DEVELOPMENT OF PET IMAGING IN
ALS

PET imaging uses positron-emitting radioisotopes that are
incorporated into molecules of interest (“tracers”), which are
injected intravenously and enter the central nervous system
(CNS). When positrons encounter electrons, they annihilate and
emit pairs of gamma rays that travel away from one another at a
180◦ angle. The detection of gamma ray pairs by the PET camera
enables localization of the annihilation event and subsequent
three-dimensional reconstruction of radiotracer distribution in
the tissue of interest (16). The development of PET tracers
that permit visualization of glucose metabolism, cerebral blood
flow, neurotransmitter metabolism, neuroreceptor binding,
inflammation, and oxidative stress have permitted a deep
investigation into the molecular pathophysiology of ALS
in vivo (Table 1).

Glucose Metabolism and Cerebral Blood
Flow
The first PET study in ALS, conducted in 1987, used the
tracer 18F-fluorodeoxyglucose ([18F]-FDG) to demonstrate that
ALS patients with UMN involvement had diffuse cortical
hypometabolism compared to healthy controls (18). Subsequent
[18F]-FDG PET studies found variable cortical hypometabolism
in ALS (22–24). PET studies using radiolabeled carbon dioxide
(C[15O]2), which detects alterations in regional cerebral blood
flow (40–42), revealed decreased cerebral blood flow to the
prefrontal cortex (41–43) and thalamus (41, 43) that correlated
with cognitive impairment in ALS. These early PET findings
suggested that ALS pathology expanded outside themotor cortex,

years before ALS was widely accepted as a disorder on the same
spectrum as frontotemporal dementia (FTD).

The 2011 discovery that C9orf72 hexanucleotide repeat
expansions cause both ALS and FTD (64–66) motivated
new [18F]-FDG PET studies that explored genotype-phenotype
correlations and cognition in ALS. One study suggested that
ALS patients with C9orf72 expansions had more widespread
cortical hypometabolism than sporadic ALS patients (33), though
this finding was not replicated (32). Other studies demonstrated
frontal and prefrontal hypometabolism in patients with sporadic
ALS-FTD compared to ALS patients without FTD (33–35).

In recent years, large cross-sectional [18F]-FDG PET
studies have established that sporadic ALS is associated with
hypometabolism in the premotor and frontal cortices and
hypermetabolism in the brainstem (28, 31, 32). There is now
interest in spinal cord imaging: two [18F]-FDG PET studies
demonstrated hypermetabolism in the cervical cords of ALS
patients (36, 38). These findings suggest potential differences
between cortical vs. brainstem and spinal cord metabolism that
warrant further exploration.

Neuroinflammation
Neuroinflammation, specifically microglial activation, is a
pathological hallmark of ALS (67, 68) and is associated with
rate of disease progression (69). The 18 kD translocator protein
(TSPO) is highly expressed on activated microglia and astrocytes
(70, 71). Radiotracers that bind to TSPO thus can visualize
neuroinflammation and gliosis in vivo. Indeed, early PET
studies of neuroinflammation in ALS used the first-generation
TSPO ligands [11C]-PK11195 (44) and [18F]-DPA-714 (21) to
demonstrate the presence of widespread glial activation in brains
of ALS patients compared to healthy controls.

The second-generation TSPO tracer [11C]-PBR28, which
binds TSPO with an 80-fold higher specificity than [11C]-
PK11195 (72), has enabled more precise PET evaluation of
glial activation. Several [11C]-PBR28 PET studies demonstrated
increased tracer uptake isolated to the motor cortices of ALS
patients compared with controls (46, 47, 50). Areas of increased
uptake correlated positively with Upper Motor Neuron Burden
Scale and negatively with ALS Functional Rating Scale-Revised
(ALSFRS-R) scores (46, 47, 50). Integrated [11C]-PBR28 PET and
MRI scans established that areas of increased uptake co-localize
with areas of cortical thinning and reduced fractional anisotropy
(47, 50).

[11C]-PBR28 PET studies in patients with primary lateral
sclerosis (PLS) found a pattern of glial activation similar to
that seen in ALS patients, though tracer uptake was greatest in
subcortical white matter in PLS patients and in cortical gray
matter in ALS patients (48). The differences between ALS and
PLS scans highlight the increased specificity of [11C]-PBR28
tracer and merit further investigation into why such differences
in glial activation might exist in these two conditions.

In the largest longitudinal ALS PET study to date, 10
patients underwent [11C]-PBR28 PET scans twice over
6 months. Tracer uptake remained stable despite disease
progression, as measured by a 3-point decrease in ALSFRS-R
(50). This stability may mirror the pattern of beta-amyloid
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TABLE 1 | PET studies in ALS.

References Tracer Target(s) Cross sectional results Longitudinal results Clinical correlation

GLUCOSE METABOLISM

Dalakas et al.

(18)

18F-FDG Glucose

metabolism

12 ALS vs. 11 HC: diffuse

hypometabolism in cortex and basal

ganglia of ALS patients with UMN

involvement. Cerebellar metabolism similar

between ALS and HC.

4 ALS with 2+ scans; variable

changes in metabolism over time

No statistically significant

difference in cortical metabolism

between ALS patients without

UMN signs and HC.

Hatazawa

et al. (22)

18F-FDG Glucose

metabolism

12 ALS vs. 11 HC: diffuse

hypometabolism, greatest in

motor-sensory cortex and putamen. No

difference in metabolism in patients

without UMN involvement

4 ALS with repeat studies

showed reduction in metabolism

over time

Cortical hypometabolism

associated with disease duration

at time of scan.

Ludolph et al.

(23)

18F-FDG Glucose

metabolism

18 ALS vs. 12 HC: diffuse

hypometabolism in frontal regions not

reaching statistical significance

None Hypometabolism in frontal

regions correlates with frontal

dysfunction measured by

neuropsychologic testing. No

correlation between

hypometabolism and disease

duration at time of scan.

Hoffman et al.

(24)

18F-FDG Glucose

metabolism

7 ALS vs. 11 HC: no statistically significant

difference when corrected for multiple

comparisons

3 ALS with repeated scans after

1 year; no significant reduction in

uptake despite clinical

progression

Decreased motor strength

correlated with hypometabolism

in precentral gyri and

hypermetabolism in middle

frontal gyrus

Garraux et al.

(25)

18F-FDG Glucose

metabolism

3 ALS-FTD vs. 46 HC, 10 FTD vs. 46 HC:

frontal and anterior temporal

hypometabolism

None No statistically significant

differences in cortical

hypometabolism between 3

ALS-FTD patients and 10 FTD

patients when corrected for

multiple comparisons

Jeong et al.

(26)

18F-FDG Glucose

metabolism

8 ALS-FTD vs. 11 HC: hypometabolism in

bilateral frontal lobes, basal ganglia,

thalamus

None No statistically significant

differences in cortical

metabolism between 8 ALS-FTD

and 29 FTD patients

Renard et al.

(19)

18F-FDG Glucose

metabolism

4 ALS-FTD vs. 6 ALS None ALS patients with FTD had

hypometabolism in dorsolateral

prefrontal, medial/lateral

premotor cortices, insular

cortices, anterior temporal lobes

compared to ALS patients

without FTD

Boeve et al.

(27)

18F-FDG Glucose

metabolism

5 C9 ALS: in 4 of 5, hypometabolism in

anterior cingulate, frontal cortices

compared to age-segmented normative

database

1 ALS with second scan after 2

years showing more prominent

cortical hypometabolism

Frontal cortical and anterior

cingulate hypometabolism

correlated with poor

performance on

neuropsychological measures of

psychomotor speed, word

fluency, sustained attention

Cistaro et al.

(28)

18F-FDG Glucose

metabolism

32 ALS vs. 22 HC: Hypermetabolism in

amygdala, midbrain, pons, cerebellum.

None 13 bulbar onset vs. 19 spinal

onset ALS: relative

hypometabolism in bilateral

frontal cortex, right insula,

anterior cingulate, precuneus,

interior parietal lobe. Bulbar

onset patients with lower

neuropsychological scores in

verbal fluency

Lai et al. (29) 18F-FDG Glucose

metabolism

10 spinobulbar muscular atrophy vs. 5

HC: hypometabolism in frontal areas

None None reported

Clark et al.

(30)

18F-FDG Glucose

metabolism

9 Primary spastic dysarthria vs. HC:

variable degrees of hypometabolism in

premotor and motor cortices

None Hypometabolism in premotor

and motor cortices associated

with symptom duration >2 years

(Continued)
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TABLE 1 | Continued

References Tracer Target(s) Cross sectional results Longitudinal results Clinical correlation

Pagani et al.

(31)

18F-FDG Glucose

metabolism

195 ALS vs. 40 HC: Hypometabolism in

frontal, premotor, occipital cortices.

Hypermetabolism in midbrain, temporal

pole, hippocampus

None Bulbar onset ALS patients had

more rostral pattern of

hypometabolism compared to

spinal onset ALS patients.

Analysis of Brodmann areas 6, 7,

9-11, 13, 17, 18, 21, 22, 24, 32,

37-40, 47 discriminated ALS

from HC scans with 95.4%

sensitivity and 82.5% specificity

Van Laere

et al. (32)

18F-FDG Glucose

metabolism

59 sALS vs. 20 HC: Hypometabolism in

premotor and frontal cortices.

Hypermetabolism in hippocampus,

amygdala, brainstem, occipital,

cerebellum.

Similar pattern between 59 sALS, 7 PLS

and 11 C9 ALS

None Severe hypometabolism in

frontotemporal regions

correlated with shorter survival.

Prefrontal hypometabolism is

correlated with lower ALSFRS-R

scores.

Support vector machine analysis

discriminated ALS from HC

scans with 95.8% sensitivity,

80% specificity; PLS from HC

with 57.1% sensitivity, 100%

specificity.

Cistaro et al.

(33)

18F-FDG Glucose

metabolism

15 C9 ALS vs. 30 sALS: hypometabolism

in cingulate, insula, caudate, thalamus, left

frontal and superior temporal cortex.

Hypermetabolism in midbrain, occipital

cortex, globus pallidus, left inferior

temporal cortex.

12 sALS-FTD vs. 30 sALS:

hypometabolism in orbitofrontal,

prefrontal, anterior cingulate, insula.

Hypermetabolism in occipital, left

precentral/postcentral, superior temporal

cortices.

15 C9ALS vs. 12 sALS-FTD:

hypometabolism in left temporal cortex.

None Genotype-phenotype correlation:

widespread cortical

hypometabolism in C9 ALS more

reminiscent of sALS-FTD than

sALS, despite lack of FTD

diagnosis in C9 patients.

Rajagopalan

and Pioro (34)

18F-FDG Glucose

metabolism

18 ALS-FTD vs. 15 HC: hypometabolism

in frontotemporal lobes, cingulum,

cerebellum, and motor cortex when

normalized against pons and whole-brain.

Most areas of hypometabolism

corresponded with areas of gray matter

atrophy.

None None reported

Canosa et al.

(35)

18F-FDG Glucose

metabolism

20 ALS-FTD vs. 150 ALS (94 cognitively

normal, 37 with cognitive impairment, 9

with behavioral impairment, 10 with

nonspecific impairment): hypometabolism

in frontal and prefrontal regions.

None Continuum of frontal lobe

hypometabolism correlates with

continuum of cognitive

impairment

Van

Weehaeghe

et al. (17)

18F-FDG Glucose

metabolism

70 ALS (training set), 105 ALS (validation

set) vs. 20 HC (used for both training and

validation set): hypometabolism in frontal,

premotor, inferolateral, parietal cortices.

Hypermetabolism in primary visual cortex,

cerebellum, upper brainstem, medial

temporal cortex. 10 PLS vs. 20HC with

similar pattern.

Training and validation ALS cohorts had

identical hypo- and hyper-metabolism

patterns when compared to HC.

None Frontotemporal hypometabolism

predictive of shorter survival.

Using volume of interest

(VOI)-based discriminant analysis

of training set: 88.8% accuracy

in classifying ALS or PLS vs. HC

in 105 prospective validation

cases, if PMA scans excluded.

Using voxel-based support

vector machine (SVM) approach:

100% accuracy for classifying

ALS or PLS vs. HC, if PMA

scans excluded.

Marini et al.

(36)

18F-FDG Glucose

metabolism

30 ALS vs. 30 HC: hypermetabolism in

spinal cord

None Spinal hypermetabolism (>5th

decile) associated with higher

mortality rate at 3 years

(Continued)
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TABLE 1 | Continued

References Tracer Target(s) Cross sectional results Longitudinal results Clinical correlation

Matias-Guiu

et al. (20)

18F-FDG

18F-

florbetaben

Glucose

metabolism,

amyloid

deposition

18 ALS vs. 24 HC: hypometabolism in

frontal area, hypermetabolism in

cerebellum.

Concurrent use of tracer 18F-florbetaben

showed no significant difference in amyloid

uptake between ALS and HC.

None Cognitive impairment associated

with decreased frontoparietal

metabolism

Buhour et al.

(37)

18F-FDG Glucose

metabolism

37 ALS vs. 37 HC: hypometabolism in

right paracentral lobule, left inferior parietal

gyrus, bilateral thalamus, left superior

medial frontal gyrus, cerebellar vermis.

Hypermetabolism cerebellar lobules,

medial temporal cortex, fusiform cortex.

None Hypometabolism in

hippocampus negatively

correlated with changes in

memory. Hypometabolism in left

fusiform gyrus negatively

correlated with theory of mind

Yamashita

et al. (38)

18F-FDG

11C-

flumazenil

Glucose

metabolism,

blood flow

measured

by early

flumazenil

binding

10 ALS vs. 10 HC: hypermetabolism in

spinal cord ipsilateral to weakness at C5

and T1. No difference in flumazenil in

spinal cord.

Concurrent use of tracer 11C-flumazenil

showed no difference in spinal cord

uptake between ALS and HC.

None Cervical hypermetabolism

associated with ipsilateral arm

weakness

D’Hulst et al.

(39)

18F-FDG Glucose

metabolism

ALS (175 training scans from Belgium,

195 validation scans from Italy): minor

differences in metabolism between ALS

groups across two centers.

HC (20 training scans from Belgium, 40

validation scans from Italy): prefrontal

hypometabolism in Italian HC compared to

Belgian HC cohort.

Italian HC scans from patients with lung

malignancy (no neurologic disease) who

underwent oncologic surveillance PET

scans

None Using SVM analysis of training

set, classified ALS or HC from

validation set with 95%

sensitivity, 12% specificity.

Unable to reverse analysis using

validation cohort as training

cohort and vice versa.

Diagnostic algorithm to classify

ALS from control scans was

unsuccessful when control scans

came from patients with

non-neurologic illness rather than

healthy volunteers

CEREBRAL BLOOD FLOW

Kew et al. (40) C15O2 Regional

CBF

12 ALS vs. 6 HC: At rest, decreased CBF

in sensory and motor cortex,

supplementary motor area, parietal

regions. With joystick movement task,

increased CBF in contralateral motor

cortex and adjacent premotor and parietal

areas

None In ALS, poorer verbal fluency

associated with decreased CBF

in right parahippocampus,

bilateral anterior thalamus, right

anterior cingulate during joystick

movement task

No correlation between verbal

fluency and resting CBF

Kew et al. (41) C15O2 Regional

CBF

10 ALS vs. 5 HC: decreased CBF during

joystick movement task

None In ALS, poorer verbal fluency

associated with decreased CBF

in right parahippocampus,

anterior thalamus, anterior

cingulate during task

Tanaka et al.

(42)

C15O2
15O2

Regional

CBF

9 ALS vs. 13 HC: non-significant

reductions in CBF and oxygen

metabolism.

4 ALS with dementia vs. 13 HC:

decreased CBF and metabolism in anterior

cerebral hemispheres and cerebellum

None Comparison of CBF between

ALS with and without clinical

dementia not reported

Abrahams

et al. (43)

C15O2 Regional

CBF

6 ALS vs. 6 HC: decreased activation

(smaller increase in CBF compared to CBF

in control condition) during word

generation task in right dorsal prefrontal,

bilateral inferior parietal lobule, left

middle/superior temporal gyri

6 ALS with cognitive impairment vs. 6 HC:

decreased activation during word

generation task in bilateral dorsolateral

prefrontal cortex, medial pre-frontal,

premotor, anterior thalamic, insular cortex

None Poor verbal fluency associated

with decreased activation in

bilateral prefrontal, premotor,

insular cortices, thalamus

(Continued)
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TABLE 1 | Continued

References Tracer Target(s) Cross sectional results Longitudinal results Clinical correlation

NEUROINFLAMMATION

Turner et al.

(44)

11C-

PK11195

TPSO 10 ALS vs. 14 HC: increased uptake in

precentral gyri, pons, thalamus,

dorsolateral prefrontal cortices

None Increased uptake correlated with

UMN-B. No correlation in

ALSFRS-R or disease duration.

Johansson

et al. (45)

11C-L-

deprenyl-

D2

MAO-B—

postulated

nonspecific

measure of

astrocytosis

7 ALS vs. 7 HC: increased binding rate in

white matter and pons, decreased binding

rate in parietal and temporal cortices

2 ALS scans at 8 and 10

months, no change

No statistically significant

correlation between binding and

clinical characteristics

Corcia et al.

(21)

18F-

DPA-713

TPSO 10 ALS vs. 8 HC: increased uptake in

primary motor, supplementary motor, and

temporal cortex. No increased activation in

pons of bulbar-onset ALS patients.

None No correlation between uptake

and age, disease duration, or

ALSFRS-R

Zurcher et al.

(46)

11C-

PBR28

TPSO 10 ALS vs. 10 HC: increased uptake in

motor cortices and corticospinal tracts

None Increased uptake correlated

negatively with ALSFRS-R,

positively with UMN-B score.

Alshikho et al.

(47)

11C-

PBR28

TSPO 10 ALS vs. 10 HC: increased uptake in left

motor cortex correlates with decreased

cortical thickness and fractional anisotropy

None Increased uptake correlated

positively with UMN-B score.

Paganoni

et al. (48)

11C-

PBR28

TSPO 10 PLS vs. 10 HC: increased uptake in

anatomically relevant motor regions

co-localized with regional gray matter

atrophy and decreased subcortical

fractional anisotropy

None No correlation between uptake

and UMNB and ALSFRS-R

Albrecht et al.

(49)

11C-

PBR28

TSPO 10 ALS, 10 HC, 10 low back pain.

Occipital cortex may serve as

pseudoreference region rather than whole

brain for measuring PBR28 uptake.

None None reported

Alshikho et al.

(50)

11C-

PBR28

TSPO 53 ALS vs. 21 HC: increased uptake in

precentral and paracentral gyri. 11 PLS vs.

21 HC: increased uptake in subcortical

white matter of same regions. Increased

uptake colocalizes with cortical thinning,

reduced frational anisotropy, increased

mean diffusivity.

10 scans 6 months apart, no

significant change despite

decrease in ALSFRS-R by 3

points

Increased uptake in regions of

interest correlated positively with

UMNB score. Uptake did not

change significantly despite

clinical decline

Ratai et al.

(51)

11C-

PBR28

TSPO 40 ALS: PBR28 uptake correlates

positively with mI/Cr and negatively with

NAA/Cr in precentral gyri.

None ALSFRS-R score correlated

positively with NAA/Cr and

negatively with mI/Cr. UMNB

score correlated positively with

PBR28 uptake and mI/Cr,

negatively with NAA/Cr

GABAergic FUNCTION

Lloyd et al.

(52)

11C-

flumazenil

GABAa

receptor

17 ALS vs. 17 HC: decreased uptake in

bilateral prefrontal, parietal, visual

association, left premotor/motor cortex.

None No differences in uptake

between ALS patients with or

without pseudobulbar affect

Turner et al.

(53, 54)

11C-

flumazenil

GABAa

receptor

24 sALS vs. 24 HC: decreased uptake in

premotor, motor, posterior association

regions.

10 SOD1 D90A ALS vs. 24 HC:

decreased uptake in left frontotemporal

junction, anterior cingulate.

2 pre-symptomatic SOD1

D90A—decreased uptake in left

frontotemporal junction.

4 PLS vs. HC: relative preservation of

anterior and orbitofrontal binding

compared to ALS.

None In sALS, decreased uptake in

dominant hemisphere correlated

with higher UMN-B score. No

correlation between uptake and

ALSFRS-R.

In SOD1 D90A ALS, uptake

correlated positively with

ALSFRS-R rather than UMNB.

Wicks et al.

(55)

11C-

flumazenil

GABAa

receptor

12 ALS with cognitive testing None Correlation between poorer

performance in verbal fluency

and reduced binding in right

inferior frontal gyrus, superior

temporal gyrus, anterior insula.

(Continued)
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TABLE 1 | Continued

References Tracer Target(s) Cross sectional results Longitudinal results Clinical correlation

Correlation between poorer

confrontation naming and

reduced binding in left inferior

frontal gyrus/middle frontal gyrus.

Yabe et al.

(56)

11C-

flumazenil

GABAa

receptor

10 ALS with cognitive testing None Correlation between writing

errors and reduced binding in

bilateral anterior cingulate gyrus

SEROTONERGIC FUNCTION

Turner et al.

(57)

11C-

WAY100635

5-HT1a

receptor

21 ALS vs. 19 HC: marked decreased

global cortical binding (21%). Regional

decreased binding in frontotemporal

regions, cingulate, lateral precentral,

parahippocampal, and fusiform gyri

None Greater decrease in cortical

binding in ALS (21%) compared

to historical data in depression

(12%) and Parkinson’s (15%).

Trend toward greater reductions

in binding in patients with bulbar

involvement

Turner et al.

(58)

11C-

WAY100635

5-HT1a

receptor

11 SOD1 D90A ALS vs. 19 HC: decreased

global cortical binding (12%), less

dramatic when compared with reduction

in binding in sporadic ALS vs. HC (21%)

None Less reduction in cortical binding

of D90A ALS compared to

sporadic ALS, despite lower

ALSFRS-R scores

DOPAMINERGIC FUNCTION

Takahashi

et al. (59)

18F-6-

fluorodopa

Levodopa

metabolism

16 ALS vs. 13 HC: no difference in mean

striatal uptake

None Negative correlation between

6-fluorodopa uptake and

duration of ALS symptoms. No

correlation between uptake and

severity of symptoms.

Przedborski

et al. (60)

18F-6-

fluorodopa

Levodopa

metabolism

7 SOD1 familial ALS, 7 non-SOD1 familial

ALS, 14 HC. 5/14 familial ALS with

reduced uptake in nigrostriatal region,

more commonly seen in non-SOD1

patients.

None No correlation between binding

and duration of symptoms

Hideyama

et al. (61)

18F-6-

fluorodopa,
11C-N-

methyl-

spiperone

Levodopa

metabolism

and D2/D3

receptor

antagonist

5 ALS with clinical parkinsonism:

preganglionic and postganglionic

striatonigral dopaminergic systems

preserved

None Parkinsonism in ALS patients not

correlated with striatonigral

dysfunction

Fu et al. (62) 18F-

fallypride

D2/D3

receptor

antagonist

17 ALS vs. 11 HC: decreased binding in

bilateral nucleus accumbens, frontal lobes,

superior frontal gyri, left temporal lobe, left

angular gyrus. No difference in striatum.

None None reported

OXIDATIVE STRESS

Ikawa et al.

(63)

62Cu-

ATSM

Intracellular

reductive

state

12 ALS vs. 9 HC: increased uptake in

bilateral pre- and post- central gyri and

paracentral lobule, right superior parietal

lobule.

None Increased uptake negatively

correlated with ALSFRS-R. No

correlation between uptake and

disease duration

ALS, amyotrophic lateral sclerosis; ALSFRS-R, ALS functional rating scale-Revised; C9, C9orf72 hexanucleotide repeat expansion; CBF, cerebral blood flow; FTD, frontotemporal

dementia; HC, healthy control; mI/Cr, myoinositol/creatine ratio; NAA/Cr, N-acetylaspartate/creatine ratio; PMA, primary muscular atrophy; sALS, sporadic ALS; SOD1, superoxide

dismutase 1; TSPO, translocator protein; UMN, upper motor neuron; UMN-B, Upper Motor Neuron Burden scale.

brain deposition in Alzheimer’s disease, as measured by
Pittsburg compound B (PiB) PET imaging: PiB uptake rises
in patients developing mild cognitive impairment, then
plateaus upon development of Alzheimer’s dementia (73).
Alternatively, it may reflect a bias toward recruitment of
slowly-progressive patients into longitudinal neuroimaging
studies. Longitudinal studies with larger sample sizes, rapidly
progressing patients, and patients early in the disease course
are needed to determine the natural history of glial activation
in ALS.

GABAergic Function
Cortical excitability is altered in ALS (6). To evaluate whether loss
of GABAergic inhibition contributes to cortical hyperexcitability
in ALS, PET studies were conducted using the GABAA receptor
ligand [11C]-Flumazenil. These studies showed widespread
reductions in binding in ALS patients compared to controls
(52), and found that reduced binding in the frontal lobes (55)
and anterior cingulate gyri (56) in ALS patients correlated
with poorer performance on language tasks. Additionally,
patients with slowly progressive ALS caused by SOD1 D90A
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mutations had smaller reductions in binding compared to
sporadic ALS patients (53). Taken together, these findings could
suggest that loss of GABAergic cortical inhibition is part of
ALS pathogenesis, though it is also possible that it reflects
generalized cortical neuronal loss rather than specific loss of
GABAergic inhibition.

Serotonergic Function
The serotonin 5-hydroxytryptamine (5-HT1a) receptor is
expressed widely in the cortex, including on layer III and V
pyramidal neurons in the cortex (74). A PET imaging study using
the 5-HT1a ligand [11C]-WAY100635 demonstrated decreased
tracer binding in the frontotemporal regions, precentral,
cingulate, parahippocampal, and fusiform gyri in non-depressed
ALS patients compared to healthy controls (57). A follow
up study reported smaller reductions in [11C]-WAY100635
uptake in patients with slowly progressive SOD1 D90A genetic
ALS compared to sporadic ALS (58). Like the studies using
GABAA ligands, these studies suggest widespread neuronal loss
or dysfunction in ALS patients that is less apparent in slowly
progressive disease.

Dopaminergic Function
Evidence of extramotor involvement in ALS has raised questions
about its overlap with neurodegenerative disorders such as
Parkinson’s disease. Rare patients with ALS have parkinsonism,
and post-mortem evaluation has revealed degeneration of the
substantia nigra in ALS (75). To evaluate whether dopaminergic
dysfunction plays a role in ALS pathogenesis, several PET
studies were conducted using ligands that interrogate levodopa
metabolism [[18F]-fluorodopa (59, 61)], bind to dopamine
receptors in the striatum [[11C]-N-methylspiperone (61)], and
bind to dopamine receptors in the cortex [[18F]-fallypride (62)].
The [18F]-fluorodopa and [11C]-N-methylspiperone studies
showed no significant difference in levodopa metabolism or
dopamine receptor binding in the striatum of ALS vs. control
subjects, even in patients with overt parkinsonism (59, 61).
Conversely, the [18F]-fallypride PET study showed decreased
dopamine binding in the cortex of ALS patients (62), even
though the patients were not noted to have clinical parkinsonism.
One interpretation of these studies is that ALS is associated
with cortical rather than striatal dopaminergic dysfunction.
However, PET studies demonstrating decreased cortical binding
of GABAergic, serotonergic, and now dopaminergic ligands
in ALS patients argues against dopamine-specific pathogenesis
of ALS and supports a generalized cortical neuronal loss or
dysfunction in disease.

Oxidative Stress
Oxidative stress is considered one of the pathogenic mechanisms
underlying neurodegeneration in ALS (76) and is the proposed
target of edaravone, a free radical scavenger recently approved
for treatment of ALS (77). The PET ligand [62Cu]-ATSM is a
copper-linked small molecule structurally similar to superoxide
dismutase (78). It distributes to areas of hypoxia and oxidative
stress in PET studies of patients with Parkinson’s disease
(79) and mitochondrial diseases (80). One [62Cu]-ATSM

PET study in ALS showed increased tracer accumulation in
the motor cortices, paracentral lobules, and right superior
parietal lobule in ALS patients compared to controls
(63). Areas of increased uptake negatively correlated with
ALSFRS-R score.

Notably, Cu-ATSM was selected as an investigational drug for
ALS because human [62Cu]-ATSM PET studies demonstrated
effective penetration into the brain. Cu-ATSM’s proposed
mechanism of action is free radical scavenging and delivery of
copper into the CNS (81). Cu-ATSM slowed disease progression
in SODG93A mouse models of ALS (81, 82) and is now
entering phase I human clinical trials for ALS (Clinicaltrials.gov
NCT02870634).

CHALLENGES AND OPPORTUNITIES IN
THE DEVELOPMENT OF MOLECULAR
IMAGING BIOMARKERS FOR ALS

The FDA-NIH Biomarker Working Group defines a biomarker
as a “characteristic that is measured as an indicator of normal
biological processes, pathogenic processes, or responses to an
exposure or intervention, including therapeutic interventions”
(83). Because PET imaging can localize molecular changes in the
brain, it has unique promise for use as a diagnostic, prognostic,
and pharmacodynamic biomarker. Its advantages and
disadvantages complement other biomarkers being developed for
ALS (Table 2).

PET Imaging as a Diagnostic Biomarker
Mounting evidence of quantifiable PET imaging differences
between ALS and control brains has generated interest in using
PET as a diagnostic biomarker for ALS. Indeed, the sensitivity
of PET makes it uniquely positioned to detect or confirm UMN
dysfunction in suspected ALS patients, which has traditionally
been difficult to measure.

Three successive studies recently assessed the diagnostic
potential of [18F]-FDG PET in ALS (17, 32, 39). In these studies,
the authors used group differences in scans from ALS and
control subjects to generate algorithms (“diagnostic algorithms”)
for classifying individual scans as ALS vs. control. Group-level
differences in FDG uptake between ALS and control scans were
consistent across time and between two imaging centers. Within
one center, the diagnostic algorithm generated from a training
cohort achieved high accuracy when classifying scans from a
validation cohort (as ALS or control), though accuracy decreased
when scans from PLS patients were included in the analysis
(17). However, in a multicenter study, the diagnostic algorithm
derived from one center’s scans (training cohort) achieved 94.8%
sensitivity but only 12.5% specificity in classifying scans from a
second center (validation cohort) as ALS or control (39). The
low specificity was attributed to relative frontal hypometabolism
in the validation control scans, compared to training control
scans. The validation control scans came from patients
with non-neurologic malignancies undergoing surveillance
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TABLE 2 | Advantages and disadvantages of potential biomarkers for ALS.

Biomarker type Advantages Disadvantages

Neuroimaging biomarkers:

Positron emission tomography

(PET)

Ability to interrogate disease mechanisms of interest using specific

molecular ligands (e.g., energy metabolism, neuroinflammation,

neuronal dysfunction, oxidative stress)

Dynamic ligand binding enables visualization of treatment effect in

central nervous system (CNS)

Sensitive to early pathological changes

Localizes pathology in CNS

Cost

Limited scalability due to expertise and resources

required (local cyclotron for production of radioisotopes)

Small risk associated with repeated radiation

Use may be limited by patient orthopnea

Neuroimaging biomarkers:

Magnetic resonance imaging

(MRI)

Widely available

Advanced techniques permit evaluation of brain activation

(functional MRI), white matter tracts (diffusion tensor imaging), and

cellular metabolites (magnetic resonance spectroscopy)

Free of radiation

Localizes pathology in CNS

Large sample sizes required to demonstrate treatment

effect limits pharmacodynamic potential (84)

Use may be limited by patient orthopnea

Biological fluid-based

biomarkers

Scalable

Cost-effective

Ease of collection

Potential for standardization and centralization in core laboratory

Non-localizing

Electrophysiological

biomarkers

Directly measures physiology of organs affected by disease

Accepted use in diagnosis (electromyography)

Sensitive to early pathological changes

Good face value for monitoring disease progression

Reliability and reproducibility

Sensitive to technical artifacts

Potential patient discomfort (electromyography)

brain PET, whereas the training control scans came from
healthy volunteers.

These studies highlight the challenges in translating
population-level PET data into diagnostic criteria for individual
patients. While progress is being made, PET is not yet a
valid diagnostic biomarker for ALS. Validation will require
longitudinal studies to determine whether prospectively
collected scans of patients undergoing evaluation for ALS
can distinguish UMN dysfunction before clinical signs
emerge. The studies will also need to distinguish motor
neuron disease not just from healthy volunteers, but also
from disease mimics. If validated as a diagnostic biomarker,
PET imaging could shorten the time from ALS symptom
onset to diagnosis and facilitate earlier intervention in the
neurodegenerative process.

PET Imaging as a Prognostic Biomarker
PET imaging has potential for prognostic use in ALS. Two studies
in ALS patients found an association between mortality rate and
presence of extensive frontotemporal hypometabolism on [18F]-
FDG PET scans (17, 32). Conversely, patients with spinal cord
hypermetabolism in the top 20% of one study cohort had a
significantly higher mortality rate compared to the rest of the
cohort (36). Further longitudinal studies that evaluate whether
PET imaging findings can predict the likelihood of future events
(such as survival, development of cognitive impairment, or
spread of disease from one anatomical region to another) are
needed to establish valid prognostic PET biomarkers in ALS.

One intriguing potential use for prognostic PET imaging is in
identifying when asymptomatic ALS gene carriers enter a high-
risk period for developing clinical disease (“phenoconversion”).
Rising levels of serum neurofilament light chain can detect
neurodegeneration ∼1 year before phenoconversion in
asymptomatic ALS gene mutation carriers (13). To evaluate

whether PET imaging can detect also changes that predict
phenoconversion, longitudinal [11C]-PBR28 PET studies are
being conducted in asymptomatic gene mutation carriers to
look for neuroinflammation before disease onset. Prognostic
biomarkers of phenoconversion may facilitate development of
gene therapy trials designed to prevent ALS, which may be the
best opportunity for treating or even curing certain genetic forms
of ALS.

PET Imaging as a Pharmacodynamic
Biomarker
PET imaging has value as a pharmacodynamic marker in ALS
because it can rapidly measure and localize biological activity
of investigational agents in the target tissue—the brain. The
variety of available PET ligands may enable direct visualization
of multiple pharmacologic targets. PET imaging’s sensitivity to
molecular changes can increase statistical power to detect a
drug effect.

[11C]-PBR28 PET is an appealing pharmacodynamic
biomarker for ALS clinical trials because binding is dynamic
and rapidly responsive to treatment: in Parkinson’s disease (85)
and traumatic brain injury (86) patients, anti-inflammatory
treatment reduced cortical [11C]-PBR28 binding in as little
as 4 weeks (85). Additionally, the stability of [11C]-PBR28
uptake in ALS over 6 months of disease progression permits
a marked reduction in sample size needed to determine drug
effect. A simulated sample size and power calculation using
longitudinal [11C]-PBR28 PET data found that 30 participants
are needed in a single-arm ALS clinical trial to show a 2%
change in [11C]-PBR28 uptake after drug treatment, whereas
hundreds of participants are needed to show a 30% reduction in
ALSFRS-R slope (50). Currently, four ongoing clinical trials are
using [11C]-PBR28 PET as a pharmacodynamic biomarker to
assess the biological activity of investigational treatments in ALS
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(Clinicaltrials.govNCT02714036, NCT02469896, NCT03127514,
NCT03456882) (87).

In the future, PET imaging using an array of ligands will
enable efficient evaluation of multiple pharmacologic targets.
Pharmacodynamic data from PET studies may help confirm
the biological activity of ALS drugs in the target tissue and
inform dose selection based on biological activity. Data derived
from these trials will enable deeper understanding of the role of
different molecular mechanisms in disease pathogenesis.

CONCLUSIONS AND FUTURE
DIRECTIONS

Thirty years of PET imaging has shed light on the
pathophysiology of ALS and the expanding boundaries of
cortical dysfunction in disease. Because PET imaging can localize
molecular changes in the CNS in vivo, it has the potential to fill
a critical gap in our armamentarium of diagnostic, prognostic,
and pharmacodynamic biomarkers for ALS. To realize this
potential, major limitations of the research to date will need
to be addressed. First, most PET studies in ALS were small.
Only 7 published studies enrolled more than 50 ALS patients
(17, 31–33, 35, 39, 50), which raises concern for false positive
and/or negative findings generated by studies with small sample
sizes. Second, minimal longitudinal PET data exists in the ALS
literature. A total of 24 ALS patients have had longitudinal
PET scans in published studies (18, 22, 24, 27, 45, 50). Third,
clinical-radiological correlations reported in the literature are
insufficiently characterized and often contradictory. To address
these limitations, we must conduct collaborative, multicenter
longitudinal studies to collect PET imaging and clinical data in
large patient cohorts. Moreover, to ascertain accurate clinical-
radiologic correlations, clinical data should be captured by
validated instruments that separate motor and cognitive deficits
and reliably measure UMN dysfunction.

From a practical standpoint, the widespread use of PET
imaging is presently limited by cost, need for expertise and
local production of radioactive isotopes. Therefore, PET imaging
currently is most useful as a pharmacodynamic biomarker for
early clinical trials in ALS. Future multicenter longitudinal
studies will allow us to establish the relationship between
PET imaging findings and meaningful clinical outcomes, and

thus develop and validate the PET imaging biomarkers that
can accelerate drug development and advance care for people
with ALS.
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Motor neuron disease (MND) is a fatal progressive neurodegenerative disorder

characterized by the breakdown of the motor system. The clinical spectrum of MND

encompasses different phenotypes classified according to the relative involvement of the

upper or lower motor neurons (LMN) and the presence of genetic or cognitive alterations,

with clear prognostic implications. However, the pathophysiological differences of these

phenotypes remain largely unknown. Recently, magnetic resonance imaging (MRI) has

been recognized as a helpful in-vivo MND biomarker. An increasing number of studies is

applying advanced neuroimaging techniques in order to elucidate the pathophysiological

processes and to identify quantitative outcomes to be used in clinical trials. Diffusion

tensor imaging (DTI) is a non-invasive method to detect white matter alterations

involving the upper motor neuron and extra-motor white matter tracts. According to this

background, the aim of this review is to highlight the key role of MRI and especially DTI,

summarizing cross-sectional and longitudinal results of different approaches applied in

MND. Current literature suggests that DTI is a promising tool in order to define anatomical

“signatures” of the different phenotypes of MND and to track in vivo the progressive

spread of pathological proteins aggregates.

Keywords: amyotrophic lateral sclerosis, motor neuron disease, diffusion tensor imaging, fractional anisotropy,

network analysis, magnetic resonance imaging, structural connectomics

INTRODUCTION

Motor neuron disease (MND) is a group of fatal neurodegenerative diseases characterized by
progressive damage of the upper motor neurons (UMN) in the cortex and/or lower motor neurons
(LMN) in the brainstem and spinal cord. Depending on the relative involvement of UMN and
LMN, MND can be classified in a wide range of clinical phenotypes (including amyotrophic
lateral sclerosis [ALS], primary lateral sclerosis [PLS], and progressive muscular atrophy [PMA]),
characterized by different clinical presentation and progression rate. Advanced brain imaging
techniques, such as magnetic resonance imaging (MRI), have been developed over the last
decades in order to detect in vivo structural and functional brain abnormalities and to monitor
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neurodegeneration in the central nervous system of MND
patients. Although neurodegeneration primarily affects the gray
matter (GM), pathological alterations in the white matter (WM)
have also been reported (1), involving not only the corticospinal
tract (CST), but also non-motor regions (2).

The present review aims to discuss the current state of the art
of MRI within different phenotypes of MND, focusing on WM
microstructural alterations, underlining the role of MRI as a tool
to understand disease pathophysiology and to provide potential
biomarkers for diagnosis and prognostic stratification. Moreover,
we also highlight emerging techniques, such as graph analysis,
that will likely provide further insights in disease pathogenesis
and might help in monitoring disease progression.

DIFFUSION TENSOR IMAGING

Basic Principles
Diffusion tensor imaging (DTI) is the most common MRI
technique that allows to investigate WM microstructural
changes. DTI is based on the random diffusion of water
molecules in the fiber bundles, also known as Brownian motion
(3). DTI analysis relies on the concept that, in a spherical
volume, the diffusion of water has no preferential direction and
spreads equally in three different directions (λ1, λ2, and λ3).
Nevertheless, the movement of water molecules within the WM
is approximately elliptical, having the greatest movement along
axons (axial diffusivity [λ1]) caused by the restriction in the
minor axes (radial diffusivity [λ2 and λ3]) imposed by myelin.
In order to analyze the diffusion of water molecules, it is possible
to define four parameters: (1) fractional anisotropy (FA), which
describes how strongly directional is the movement of water
molecules within the tissue; (2) radial diffusivity (RD, which is
the average of λ2 and λ3); (3) axial diffusivity (AD, or λ1); (4)
mean diffusivity (MD, obtained by the average of diffusion in
the λ1, λ2, and λ3 axes). While the first three parameters (FA,
RD, and AD) describe the spatial variation of water movement,
MD reflects the average displacement of water molecules within
the volume of interest. Axonal integrity will preserve diffusion
parallel to the main fiber direction, resulting in higher FA
and lower MD, while damage to the WM will lead to lower
FA and higher MD (4). To date, there are several approaches
to analyze DTI metrics: regions of interest (ROI) approach,
whole-brain voxel-wise methods or tract-based spatial statistics
(TBSS). These techniques provide complementary information
and are characterized by relative strengths and limitations. The
ROI approach is based on the delineation of defined areas or
the reconstruction of WM tracts of interest in each subject’s
native space, in order to extract average DTI metrics to be
compared among subjects; although this procedure allows a
precise anatomical definition of WM structures and does not
involve the coregistration of multiple scan images, it masks local
alterations by averaging all voxels within the ROI, usually needs
an a priori hypothesis and might be influenced by inter-subject
anatomical variability (5). The most straightforward approach
to assess local DTI alterations is to coregister all subjects’ scans
and perform statistical tests among groups within each voxel
of the whole-brain WM mask; however, whole-brain voxel-wise

approaches are sensitive to registration errors (6). To reduce
the effects of local misregistrations, TBSS projects all voxels
of the DTI image onto the nearest location on a “skeleton”
delineating themainWM tracts (7). In addition to thesemethods,
graph theory is one of the most recent approaches to investigate
WM changes, building models of structural connectivity in
brain disorders based on nodes and edges (8). Current evidence
provided by each of these techniques for the study of MND is
summarized in the following paragraphs.

The weakness of DTI is the lack of specificity in voxels
presenting multiple fiber populations (termed “crossing fibers”)
(9). In order to overcome this problem, novel data acquisition
approaches have been proposed such as high angular resolution
diffusion imaging (HARDI), neurite orientation dispersion and
density imaging (NODDI) and diffusion spectrum imaging.
Although these approaches hold the promise to provide
further insights on the pathogenic mechanisms underlying WM
degeneration and are likely sensitive to even subtle alterations
in several neurodegenerative conditions (10), current evidence
in the context of MND is scarce and should be considered
preliminary (11, 12).

DTI Signatures in ALS
Several studies have consistently demonstrated decreased FA
and increased MD, RD, and AD along the entire CST in ALS
patients relative to healthy controls (13–18). Several studies
showed specific alterations of DTI metrics only in some parts of
the CST: subcortical WM of the precentral gyrus, corona radiata,
posterior limb of the internal capsule, cerebral peduncles and
pons (19–21). DTI studies have also detected altered metrics in
the middle and posterior part of the corpus callosum in ALS
patients relative to healthy controls (22, 23). Cervical cord studies
also consistently showed DTI alterations in the lateral columns
of ALS patients (24–27), which were more severe at more distal
cervical segments (25).

Many neuroimaging studies characterized the structural
“signatures” in ALS patients with specific underlying genetic
mutations. In particular, diffuse WM abnormalities were
observed inC9orf72 repeat expansion carriers (themost common
genetic mutation) (28, 29). Particularly, C9orf72 patients showed
an involvement of the CST, whole corpus callosum and superior
longitudinal fasciculus compared with healthy controls, in terms
of decreased FA and increased MD (29). Only few structural MRI
studies were performed in carriers of pathogenic mutations in
SOD1, showing a relative preservation of brain motor networks
compared to sporadic ALS patients (30, 31).

Cross-sectional DTI studies shed light on the
pathophysiological processes associated with the development
of ALS. However, the definition of biomarkers that could
track progressive changes over time has crucial importance.
To date, relatively few longitudinal studies focused on DTI
changes over time in these patients, due to the difficulties in
enrolling enough cases with a rapidly evolving disease who could
undergo an appropriate number of follow-up scans. Most of
the studies, using a ROI approach or TBSS, showed decreasing
values of FA over time in CST, corpus callosum, frontal areas
and cerebellum (21, 32–35). One study demonstrated also
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that diffusivity increased both in the external and internal
capsule (21). Nevertheless, there are also studies showing
inconsistent results, probably due to different sample sizes,
follow-up intervals and, most importantly, the heterogeneity of
MND patients (36–38). The same limitations apply to the few
longitudinal studies assessing the evolution of cervical cord DTI
alterations (27, 36) that showed diverging results about the entity
of cord FA decrease over time. One recent study was performed
in ALS patients carrying C9orf72 mutation, demonstrating the
spreading of diffusivity alterations from anterior to posterior
WM regions over a 6-month period (39).

Phenotyping the MND Spectrum
DTI measures might also be crucial to distinguish different
MND phenotypes. Indeed, DTI metrics were widely used for
the identification of “signatures” in PLS. In particular, one study
demonstrated that PLS patients showed lower CST FA values
relative to healthy controls and ALS patients (40). Degeneration
in extra-motor areas has also been found to be similar (41) or
even more severe (40) in PLS patients compared to ALS patients.
Furthermore, widespread DTI alterations were found to correlate
with the severity of cognitive deficits in PLS patients (42).
On the other hand, the least extensive microstructural changes
were observed in patients with predominant LMN involvement,
with diverging results in literature concerning the extent and
significance of such damage (43–45). Particularly, a recent two-
center study suggested that WM integrity was disrupted along
the CST and in frontal and prefrontal regions in patients with
predominant LMN disease relative to healthy controls (46). Only
patients with predominant LMN involvement and a higher rate
of disease progression showed significant WM alterations in the
specific ALS-related tract systems (46).

Clinical and Neuropsychological

Correlations
Many DTI studies aimed to test the relationship between WM
changes and clinical and neuropsychological measures in MND.
Decreased FA in the CST related with disease severity and rate
of disease progression in ALS, identifying an association between
worsening disability and degeneration of WM tracts, both in the
brain (21) and the cervical cord (24, 27). These findings support
the potential use of connectivity measures as markers of disease
progression in ALS. Inconsistencies among different studies have
been reported as for the relationship between DTI measures
and disease duration in ALS patients, as longer disease duration
has been paradoxically associated with both increased FA (47)
and increased MD values of the CST (48). These discrepancies
may be explained by the different progression rates of the two
samples. DTI changes in the CST and corpus callosum, as
well as in the cingulum, inferior longitudinal, inferior fronto-
occipital, and uncinate fasciculi have been found to correlate with
performance at cognitive tests assessing attention and executive
functions (49). Additional extensive WM damage to extra-
motor frontotemporal tracts has also been shown, underlying
variable degree of behavioral and cognitive disturbances in ALS
patients (45, 50, 51). Particularly, one study demonstrated that
WM abnormalities of the corpus callosum and frontotemporal

tracts, including uncinate, cingulum, and superior longitudinal
fasciculi, are the best predictor of executive and non-executive
deficits and behavioral changes within the MND spectrum (51).

Network-Based Analyses
Network-based analysis of structural connections is a new
powerful technique that allows studying the brain of healthy
subjects or patients with neurodegenerative disorders. The
techniquesmentioned so far allow tomapWM tracts individually
using DTI. Recently, neuroimaging research has moved to the
study of the human connectome, which aims to map all the
possible pathways of the human brain (52). With such new
approach, it is possible to provide information about how
networks are embedded and interact in the brain. Using graph
analysis and connectomics, brain regions can be depicted as a
set of nodes, linked by edges representing structural connections.
Maps of structural connectivity are created following the
following steps: (1) network nodes are identified applying a
selected atlas of GM structures to the brain; (2) following
definition of the brain regions, WM tracts are reconstructed
using DTI; (3) streamlines of the whole brain touching each
couple i and j of the segmented GM nodes are selected; (4) the
number of streamlines is calculated for each tract and inserted
into a matrix; (5) for each structural connection, the level of
microstructural integrity is measured extracting the mean FA,
MD, RD, and AD values; (6) finally, all the values are inserted
into four different matrices. From the analysis of these matrices,
it is possible to provide information concerning the topological
organization of network architecture (53). Many studies have
examined the global and local graph metrics such as: (1) nodal
strength and degree, which provide information regarding the
effect of a node in the network; (2) clustering coefficient and
local efficiency, which reflect the level of local organization of
a network; (3) path length, that is the number of steps needed
to connect each pair of nodes; (4) global efficiency, calculated
as the inverse of path length, which represents the efficacy of
a network to communicate between each pair of nodes; (5)
modularity, which gives information regarding segregation of a
network, reflecting the level of modular organization (54, 55).
To date, modifications of brain topological organization and
disruption of structural connectivity have been associated with
several neurodegenerative disorders (56–58), including MND.

In a first cross-sectional study, structural brain networks were
compared between ALS patients and healthy controls applying
network-based statistics (59). ALS patients showed regions with
reduced WM connectivity, centered around the primary but also
included secondary motor regions (frontal cortex and pallidum).
In addition, overall efficiency and clustering coefficient were
found to be decreased in ALS patients. A second study studied
WM alterations using network analysis, comparing results with
those obtained using TBSS (60). The results, consistent with the
previous study, showed an impaired motor-frontal-subcortical
subnetwork in the ALS patients compared with controls (60).
The study also revealed that the results obtained with the
network analysis have a strong correspondence with voxel-based
approaches (60).
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To date, only a few longitudinal studies aimed to investigate
the effect of ALS on the brain network over-time. Particularly,
one study showed an expanding sub-network of impaired brain
connections after six months, with a central role of the primary
motor regions (61). The loss of structural connectivity was found
to propagate to frontal and parietal regions, supporting the idea
that disease spreads along WM connections following a pattern
classified into sequential stages (62).

DTI as a Non-invasive in-vivo Biomarker of

Disease Spreading
Neuropathological studies identified the cytoplasmic inclusions
of TDP-43 as the molecular hallmark in up to 98% of ALS cases
(63). In the last few years, several studies have speculated that the
progressive regional accumulation of TDP-43 aggregates in the
brain might be reflected by the consecutive deterioration of WM
fiber tracts (61). In light of this, DTI-based approaches have been
used to study propagation patterns in the brain of MND patients.
A DTI study, using a tract of interest-based staging approach,
confirmed the neuropathological progression of ALS in the
following order: CST (stage 1); corticorubral and corticopontine
tracts (stage 2); corticostriatal pathway (stage 3) and proximal
portion of the perforant path (stage 4) (64). Furthermore, the
extracted tracts of interest were used to categorize ALS patients
into the predefined stages according with their WM damage.
Staging categorization at baseline was able to classify 72% of the
ALS patients into the different stages. After 6 months, there was
an increase in ALS stage in 27% of ALS patients (64). Recent
studies applied the in-vivo staging approach also to phenotypic
variants of ALS. One study aimed to figure out if PLS might be a
separate disease or just a slowly progressive variant of ALS (41).
Microstructural changes were analyzed using the same approach
as “classical” ALS, demonstrating that ALS and PLS patients
showed identical alterations in the ALS-related tract systems,
considering consequently PLS as phenotypical variant of ALS
(41) (Figure 1).

The previously considered studies investigated pathology
spreading in ALS-related tracts that were selected a priori,
according with post-mortem neuropathological stages. In order
to overcome this a-priori selection, one study applied network
analysis to investigate the underlying pathogenic mechanism of
ALS (65). The results showed that regions involved by TDP-
43 pathology in early disease stages are highly structurally
interconnected in the brain (65). Furthermore, brain regions of
subsequent neuropathological stages were found more closely
interconnected than regions of more distant stages (65),
suggesting that spread of TDP-43 in ALS occurs along axonal
pathways (Figure 2). The DTI-based in-vivo staging of MND
patients needs to be confirmed in future longitudinal studies with
post-mortem confirmation.

DISCUSSION AND FUTURE DIRECTIONS

In the context of therapeutic trials, it is essential to identify
a useful biomarker that might help for diagnosis, stratification
and tracking the disease progression within the MND spectrum.

FIGURE 1 | (A) Whole brain-based spatial statistics (WBSS) of fractional

anisotropy (FA) maps at the group level for amyotrophic lateral sclerosis (ALS)

patients, primary lateral sclerosis (PLS) patients, and controls. WBSS of FA

maps demonstrated multiple clusters of regional FA reductions at p < 0.05

(corrected for multiple comparisons), projectional views. (B) Tractwise

fractional anisotropy statistics (TFAS) of FA maps at the group level for ALS

patients, PLS patients, and controls. TFAS demonstrated significant regional

FA reductions in ALS-related tract systems and in the grand average between

ALS patients and controls as well as between PLS patients and controls. No

alterations between groups were observed in the reference tract. *p < 0.05,

**p < 0.001. Reproduced with permission from Müller et al. NeuroImage

Clinical 2018 (41) (published open-access under a CC BY-NC-ND 4.0 license).

In order to provide new drugs that could aid the early
treatment of the disease, the identification of such biomarker
is a crucial point to be addressed. Within such a framework,
MRI has been long recognized as in-vivo biomarker and, in
the last few years, an increasing number of studies applied
advanced neuroimaging techniques in order to understand the
underlying mechanisms in MND. Particularly, we highlighted
the important role of DTI, as a very useful tool in order to
characterize microstructural changes during the progression of
the disease, to find “signatures” of the different phenotype of
MND and to track in vivo the progressive spread of TDP-
43 aggregates. In order to detect WM changes of different
phenotypes of MND, cross-sectional studies were performed
highlighting alterations within specific tracts, especially in the
CST as well as in the corpus callosum. In light of the fact that
decreased FA and increased MD describe the microstructural
damage in MND patients, we support the idea that the most
potential promising DTI biomarkers are FA or MD changes
in the CST and corpus callosum. Additionally, connectivity
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FIGURE 2 | (A) Network topological distance between nodes of stage I, stage I and stage II, stages I, and III and between stages I and IV show a strong ordering

effect (p = 0.002). Significance of differences in network topological distances between stages is marked as follows: *p < 0.05, **p < 0.005. (B) Matrix of mean

network topological distances between all four stages. Reproduced with permission from Schmidt et al. NeuroImage 2016 (65) (published open-access under a CC

BY-NC-ND 4.0 license).

measures might potentially be considered as a marker of disease
progression. This is because decreased FA and disease severity
and rate of disease progression are highly correlated. In the last
few years, the focus has shifted towards the analysis of disease
progression. Particularly, several longitudinal neuroimaging
studies are confirming the recently proposed neuropathological
staging model (62), demonstrating an expanding subnetwork of
impaired brain connections from the primary motor cortex to
frontal and parietal regions. All these findings support the idea
that WM tract involvement might be a valid biomarker to assess
in vivo the spreading of pathological proteins and to track the
neurodegeneration process.

In conclusion, DTI analysis has the potential to be a valid
technique for use at the individual patient level in the future.
However, there is urgent need for more longitudinal studies.

The combination of the in vivo staging using longitudinal DTI
scans with the post-mortem classification might be very useful
to understand deeply the pathophysiology of the disease and to
provide as soon as possible disease-modifying therapies.
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Previously thought to be a pure motor disease, amyotrophic lateral sclerosis (ALS) is now

established as multisystem neurodegenerative disorder that lies on a continuum with

frontotemporal dementia (FTD). Cognitive and behavioral symptoms primarily extend to

executive function, personality, social conduct, and emotion processing. The assessment

and management of cognitive and behavioral symptoms is complicated as they must

be differentiated from psychological responses to a terminal diagnosis and progressive

physical impairment. This is made more difficult by the limited number of studies

investigating how these symptoms specifically affect patients and caregivers well-being.

The current review focuses on the impact of cognitive and behavioral symptoms

on patient and caregiver well-being and their implications for future research and

interventions in ALS. This is an important area of research that could form the basis

for more tailored, and potentially more successful, non-pharmacological interventions to

improve psychological well-being among patients with ALS and their caregivers.

Keywords: amyotrophic lateral sclerosis, dementia, depression, quality of life, caregiver, burden, adherence,

non-pharmacological interventions

BACKGROUND

Amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disorder which includes
a broad spectrum of non-motor symptoms that can dominate the clinical presentation (1, 2).
Cognitive and behavioral symptoms include impaired executive function, deficits in social and
emotional cognition, apathy, disinhibition, and perseveration similar to that seen in frontotemporal
dementia (FTD). Frontotemporal dysfunction of varying severity can affect more than 50% of
ALS patients (3), with ∼8–14% meeting full diagnostic criteria for FTD (4–8). As such, early
detection and timely management of cognitive and behavioral symptoms is widely acknowledged
as an important aspect of contemporary ALS care (9). However, fully assessing cognitive and
behavioral symptoms in ALS ismade difficult by the fact that these symptomsmust be distinguished
from psychological reactions to a terminal diagnosis and the progressive physical loss that
comes alongside it. Our narrative review focuses on evaluating the impact of cognitive and
behavioral symptoms on patient and caregiver well-being and their implications for developing
future non-pharmacological interventions in ALS. Gathering this research can help form more
appropriate and effective non-pharmacological interventions to improve psychological well-being
among patients with ALS and their caregivers.
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SEARCH STRATEGY AND SELECTION
CRITERIA

For this narrative review references were primarily searched
through PubMed. The following terms were systematically
searched: “amyotrophic lateral sclerosis”; “motor neuron(e)
disease”; “cognitive”; “behavioral”; “depression”; “anxiety”;
“quality of life”; “psychological health”; “caregiver”; “carer”;
“burden”; “strain”; “stress”; “compliance”; “adherence”;
“psychosocial intervention”; “non-pharmacological
intervention”; “support”; “manage”; “intervention”; “care”;
“caring”; “coping”; “cope”; “frontotemporal dementia.” The
section on non-pharmacological interventions for cognitive and
behavioral symptoms in ALS also used the MEDLINE, EMBASE,
PsycINFO, AMED, and CINAHL databases. Searches included
papers published in English between May/2013 and July/2018.
Research articles relevant to ALS and FTD were included in
the review.

PSYCHOLOGICAL SYMPTOMS IN ALS

The psychological impact of ALS has been widely addressed in
the literature. Anxiety and depression, particularly depression
are often used as clinical markers of psychological morbidity in
patients diagnosed with ALS. Self-report measures, particularly
the Hospital Anxiety and Depression Scale and Beck’s Depression
Inventory remain the most widely used measures. Based on the
Structured Clinical Interview for the Diagnostic and Statistical
Manual of Mental Disorders, the “gold standard” for assessment
of depression, the rate of clinical depression ranges between
9 and 12% in ALS (10, 11). Perhaps not surprisingly, self-
report measures of depression tend to show more variable rates
of depression ranging from 20 to 64% (12–20). Similarly, the
prevalence rates of anxiety vary widely, with rates ranging as low
as 8% to as high as 88% among patients with ALS (12, 14, 18,
19, 21). The severity of symptoms appear to be predominantly
in the mild range. Despite the low rates of clinical depression and
anxiety, patients with ALS have been shown to be at increased risk
of being diagnosed with depression, anxiety and other neurotic or
stress-related disorders following diagnosis (21–25), however this
may be attributable to the clinicopathological overlap between
ALS and FTD (24).

Management of psychological symptoms is crucial to
maintaining quality of life. ALS patients provided with an
assistive communication device in the early stages of the disease
have been found to experience higher quality of life, particularly
in the domains related to psychological and existential well-
being (26). Quality of life and depression appear to be largely
unrelated to patients’ desire for hastened death (27) and end-
of-life choices (28). This may be due to satisfactory levels of
quality of life typically reported by ALS patients (29, 30). In
fact, several studies have shown that caregivers and healthy
controls tend to underestimate ALS patients quality of life and
psychological well-being (31), possibly reflecting a “disability
paradox” (32). However, it should be noted that many quality of
life measurements used were not ALS specific.

THE IMPACT OF COGNITIVE AND
BEHAVIORAL SYMPTOMS ON ALS
PATIENT’S PSYCHOLOGICAL
WELL-BEING

To date, there is a paucity of research specifically examining
cognitive/behavioral symptoms and patients’ psychological
well-being. The majority of recent studies on patients’
psychological well-being have either excluded patients with
cognitive/behavioral symptoms or have not specifically discussed
findings in relation to cognitive/behavioral symptoms. This
is an important area for future research given emerging
findings showing a relationship between depression and
cognitive/behavioral changes. Higher levels of depression
have been associated with lower cognitive performance on
the Edinburgh Cognitive and Behavioral ALS Screen (17),
specifically the subtests measuring social cognitive deficits
and inhibitory control (12). Findings regarding anxiety and
cognitive function are inconsistent, with one recent study finding
no relationship (12) and another showing a weak association
between anxiety and cognitive performance, perhaps reflecting
underlying behavioral changes, namely disinhibition (17).
Indeed, the findings available on behavioral and psychological
symptoms appear to be more consistent. A large scale study of
cognitive and behavioral impairment, and depression showed
that patients with behavioral impairment exhibited higher levels
of depression and hopelessness (10). This may partly reflect the
overlap between depression and behavioral symptoms, namely
apathy (33, 34).

THE IMPACT OF COGNITIVE AND
BEHAVIORAL SYMPTOMS ON
TREATMENT ADHERENCE IN ALS

Adherence to treatment recommendations in ALS can extend
survival (e.g., non-invasive ventilation or Riluzole), improve
patients’ quality of life (35, 36), and likely to reduce caregiver
burden. Review articles of cognition and behavioral symptoms
in ALS discuss the likely impact of these symptoms on
treatment adherence (37–40), however only one study to date
has investigated the effect of non-motor symptoms on treatment
adherence in ALS (41). Non-adherence to non-invasive positive-
pressure ventilation and percutaneous endoscopic gastrostomy
recommendations was 75 and 72% respectively for patients
with ALS-FTD compared to 38 and 31% those with “motor
only” symptoms. Therefore, the presence of a frontotemporal
syndrome reduced adherence by half in ALS.

In general, ALS patients are compliant with recommendations
made in multidisciplinary clinics (36). Out of a total of 287
recommendations made to 25 patients with ALS, patients
complied fully with 59% of the recommendations made by
the team. Not surprisingly, recommendations were greatest
for physical needs (e.g., medications for symptoms such as
spasm, saliva, sleep difficulties and interventions for nutrition
and speech) and adherence was also highest for this category
of recommendations. Interestingly, while patients with marked
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cognitive impairment were excluded in this study, patients
with milder cognitive and behavioral symptoms (e.g., executive
dysfunction) were included and may help explain why less than
half of all recommendations were recalled (40%) and only a small
proportion of patients (32%) had retained the written list of
recommendations provided after the clinic visit. In total, <5%
of the total recommendations were for mental health needs of
patients (e.g., anti-depressants) and almost no recommendations
(<2% of total recommendations) were made for caregivers (e.g.,
increase caregiver hours, ALS respite care program, and caregiver
training to aid in patient transport).

In general, studies of treatment adherence in ALS have not
typically characterized non-motor symptoms in patient cohorts
[e.g., physiotherapy exercises (42); respiratory support (43);
tolerability of oral vs. tablet Riluzole (44); tolerability of early
non-invasive ventilation use (45)] and is an exclusionary criteria
in some studies [e.g., aerobic exercise therapy vs. cognitive
behavioral therapy (46)]. It is therefore not surprising that
motor predictors of treatment adherence are often reported.
For example, symptomatic orthopnoea and dyspnoea, nocturnal
hypoventilation, and spinal onset of symptoms have been
associated with adherence to non-invasive ventilation (47–50).
Functional scores (forced volume vital capacity and the revised
ALS Functional Rating Scale) have also been identified as
independent predictors of adherence to clinical trials and fewer
protocol deviations (51).

CAREGIVER BURDEN IN ALS

Several studies have shown that caregiving in ALS affects
caregivers’ level of distress and quality of life (52). The
psychological symptoms experienced by caregivers have a
significant impact on caregiver burden (53). Burke et al. (54)
demonstrated that caregiver distress explained 39% of the
variance in caregiver burden (54). In another study where
caregivers were dichotomized into low and high burden groups,
there were no differences across groups with respect to motor
function (revised ALS Functional Rating Scale), bulbar/spinal
onset, or survival time. Significant differences were only found
when high and low-burden caregivers were compared on
levels of anxiety, depression, distress and quality of life (55).
A longitudinal study involving ALS patients with relatively
preserved cognition demonstrated that anxiety and depression in
caregivers were the best long-term predictors of burden (56).

An interesting study using a mixed methods approach
(quantitative and qualitative) to assess burden in 81 informal
ALS caregivers, showed that increased psychological distress,
hours of care provided, and lower quality of life were the best
predictors of caregiver burden, explaining 53% of variance. These
caregivers identified difficulties related to four main themes:
(a) the caregiving role and tasks associated with management
of the condition, (b) psychosocial and emotional impact, (c)
limitated time and restricted social life, and (d) significant impact
in relationships with others and also identity (the process of
“becoming” and “being” a caregiver) (57). Longitudinal studies
have also demonstrated that disease severity causes strain and
burden in caregivers over time (58, 59).

THE IMPACT OF COGNITIVE AND
BEHAVIORAL SYMPTOMS ON CAREGIVER
BURDEN

Recent evidence has demonstrated that both cognitive and
behavioral symptoms contribute to caregiver burden in ALS
(54, 60). A study involving 33 ALS patient-caregiver dyads
showed that caregiver burden (Zarit Scale) was associated
with executive dysfunction and behavioral changes, such as
apathy and disinhibition (54). Similarly, findings from a
Chinese study revealed that the degree of frontal dysfunction
and behavioral changes (predominantly disinhibition) was
significantly associated with caregiver burden (60).

More severe cognitive deficits have also been shown to predict
caregiver burden in ALS (61). Conversely, a study involving
84 ALS patient-caregiver dyads found no correlation between
caregiver burden (Caregiver Burden Inventory) and cognitive
functioning (ALS-Cognitive Behavioral Screen). Only disease
progression and behavioral symptoms were correlated with
caregiver burden (62). Indeed, the level of burden for caregivers
of ALS-FTD patients appears to increase with disease progression
compared to a persistently high level of burden among caregivers
of FTD patients (63).

Few studies have found specific motor symptoms associated
with caregiver burden. One study linked poor motivation
and difficulties with everyday skills to higher burden (64),
while another study revealed that caregiver burden was
predicted by behavioral problems and severity of limb
involvement (65).

These findings highlight the support caregivers require from
health care professionals and family/friends to not only manage
the emotional and physical burden of caregiving (66), but also
cognitive and behavioral symptoms that can greatly impact on
their caregiving experience.

DISCUSSION

Assessment and management of cognitive and behavioral
symptoms forms the larger goal of preservation of quality of
life in both ALS patients and caregivers. Timely assessment of
cognitive and behavioral symptoms has important prognostic
and therapeutic implications. The presence of dysexecutive
symptoms is not only likely to impact on patient and caregiver
psychological well-being but also decision-making, adherence
to life-sustaining interventions, and capacity to engage and
benefit from non-pharmacological interventions. Additionally,
cognitive and behavioral symptoms may exist before full blown
motor symptoms (67) and, therefore, the ability to make
informed decisions may be effected early in the disease course.
While treatments for symptomatic management in ALS is
often most beneficial if initiated early [e.g., (68)] and clinicians
value proactive decisions (69), failure to identify cognitive and
behavioral symptoms may mean that patients are not fully
supported by their health care team and caregivers to undertake
informed decision-making that is in accordance with their
current personal philosophy and values (70).
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The provision of practical support by ALS specialists is known
to facilitate adherence in ALS. Increased educational training and
adaptation facilitates adherence to non-invasive ventilation (71);
telemonitoring decreases emergency room visits and hospital
admissions, and follow-up care between clinical visits increase
adherence to clinical recommendations (36, 72). Support from
other ALS patients through online platforms can also increase
treatment adherence such as with medication adherence (73).

It is also essential to recognize the importance of caregivers
in the management of ALS from an early stage, informing them
about the possibility of burden, offering themhealth care support,
and monitoring their well-being over time (74). Weisser et al.
(75) showed that the needs of ALS caregivers were multiple,
including practical, social, and psychological needs. A model of
coping was subsequently proposed integrating resilience, burden,
needs, and rewards (75). An intervention to reduce maladaptive
coping strategies has also been found to improve well-being in
caregivers of patients with ALS (76). Furthermore, the use of
technological approaches (e.g., telemedicine) for ALS patients
and their caregivers that live in remote and rural areas which have
reduced access to health care services may be especially beneficial
(77). Provision of training for health care professionals to help
patients and caregivers during the advanced stages of the disease
would also ensure that important factors such as fatigue, stress,
and ethical challenges related to end-of-life care are adequaly
addressed (78).

To the best of our knowledge, there are currently no evidence-
based studies which examine interventions to manage the
cognitive and behavioral symptoms of ALS patients, though there
are a few that examine caregiver burden in response to behavioral
symptoms (79). In the absence of such evidence, it is possible
to extrapolate findings from intervention studies in non-ALS
populations as possible non-pharmacological interventions for
cognitive and behavioral symptoms in ALS. Behavioral variant
FTD and cognitively impaired ALS show similar cognitive
profiles, although cognitive deficits are more severe in patients
with behavioral variant FTD in most domains (4). In both
disorders, considerable impairment in social cognition, fluency
and verbal memory is found, whereas impairment of visual
memory and attention is less prominent (3, 4). Due to the
similarity of symptoms, studies examining management of
behavioral variant FTD may be relevant to ALS, though caution
should be used in extrapolating their conclusions.

Environmental management has shown promise in addressing
cognitive/behavioral symptoms of FTD patients (80). For
example, reducing noise and stimulation, lessening clutter,
or simplifying social situations can help patient’s better
focus on a nominated task or response (80, 81). Removing
access to problematic stimuli or modifying public outings
to reduce the opportunity for inappropriate interactions are
also effective FTD-specific environmental manipulations (80,
81), which could also be implemented when working with
ALS patients presenting symptoms of disinhibition or loss of
social cognition.

Though the research on behavioral modification in FTD is
also limited and consists mainly of case studies and reports,
clinicians have typically focused on disinhibition, apathy
and compulsive behaviors (80, 82). In a few specific cases,
behavioral interventions successfully reduced behaviors that
were most distressing for patients’ and caregivers’, improved
the relationship between patients’ and caregivers’, and helped
to prevent the patients from being institutionalized (82, 83).
Two case reports used behavior theory techniques including
reducing stimuli, introducing new non-verbal cues, and
creating reward systems (82, 83). Similarly, Tailored Activities
Programs have been shown to reduce agitation in behavioral
variant FTD patients (83–85). Support groups for family
caregivers have also proved helpful (in person and when using
online live streams) and most effective when caregivers are
experiencing similar behaviors and challenges with the patient
(86, 87).

There are limitations to understanding the impact of
cognitive and behavioral changes on patients with ALS and
their caregivers. The majority of published studies have been
completed in developed countries and thus results cannot be
extrapolated to all countries. Also, many of these studies do
not take into consideration the various socioeconomic variables
attributable to the patient and caregivers daily experience with
ALS, such as the individual’s wealth or their country’s health
care system.

Despite the clinical necessity of an intervention to manage
cognitive and behavioral symptoms, there has been a lack of
research on the topic which further widens the gap between
research and practice. Drawing from interventions in dementia,
there is a large landscape of possible, untested interventions
for cognitive and behavioral symptoms of ALS. Early and
comprehensive management of cognitive and behavioral
symptoms not only promotes holistic care of patients but
would also further enhance caregiver’s psychological well-
being and likely to reduce the healthcare and societal burden
of these symptoms due to poor intervention adherence and
avoidable hospitalizations.
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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by

the deterioration of motor neurons. However, this complex disease extends beyond the

boundaries of the central nervous system, with metabolic alterations being observed at

the systemic and cellular level. While the number of studies that assess the role and

impact of metabolic perturbations in ALS is rapidly increasing, the use of metabolism

biomarkers in ALS remains largely underinvestigated. In this review, we discuss current

and potential metabolism biomarkers in the context of ALS. Of those for which data

does exist, there is limited insight provided by individual markers, with specificity for

disease, and lack of reproducibility and efficacy in informing prognosis being the largest

drawbacks. However, given the array of metabolic markers available, the potential exists

for a panel of metabolism biomarkers, which may complement other current biomarkers

(including neurophysiology, imaging, as well as CSF, blood and urine markers) to overturn

these limitations and give rise to new diagnostic and prognostic indicators.

Keywords: amyotrophic lateral sclerosis, ALS, metabolism, biomarker, motor neurone disease

OVERVIEW

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by the death
of motor neurons in the brain and spinal cord. The loss of neuronal input leads to progressive
paralysis and patient mortality within 2–5 years from diagnosis (1). ALS likely arises from a
combination of genetic susceptibility and environmental exposures (2, 3), although it is recognized
that ALS is a complex, multi-system disease (4, 5).

Given the complex and heterogeneous nature of ALS, diagnosis and tracking of prognosis
remains difficult. Current diagnostic criteria typically follow tests to rule out other pathological
causes of symptoms and include: indicators of upper and lower motor neuron involvement,
nerve conduction tests, electromyography and “watchful waiting” (4). As a result, researchers
have attempted to utilize a wide range of biomarkers—observable biological measurements that
confirm the presence or progression of a change in body status, as a means of diagnosing and
following disease progression. While the current range of biomarkers in ALS offer some diagnostic
and prognostic benefit, there is a need to identify a biomarker that satisfies the following six
attributes: specificity to disease; reproducibility; appearance early in the disease; stability across the
diurnal period; independence of dietary status and behavior; and a notable change during disease
progression. Bymeeting these criteria, a biomarker can be used to reliably identify and track disease
progression, in a manner that can easily be reproduced in a clinical setting.

Metabolic perturbations occur in ALS patients and in mouse models of the disease; both at the
systemic and cellular level (6, 7). Clinically, an increase in resting energy expenditure (REE) and
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decline in body mass index (BMI) is linked to worse outcome
(8–10), suggesting prognostic potential in metabolic biomarkers.
Given that changes in metabolic status are generally reflected
in overall body weight, body composition, and tissue/cellular
metabolic function, metabolic changes at the anthropometric,
tissue and cellular levels may represent appreciable metabolism
biomarkers of ALS onset, progression, and/or severity (Figure 1).
A list of the potential biomarkers of metabolism in ALS, and their
quality relative to the aforementioned identifying attributes are
summarized in Table 1.

ANTHROPOMETRIC BODY MEASURES

Lower premorbid BMI is associated with increased risk for ALS
(11–13), and the degree of decline in premorbid BMI predicts
ALS risk and survival (14, 15). Lower BMI, or a decline in
BMI following diagnosis correlates with worse survival (16, 17),
although this association is not always observed (18, 19, 23, 24).
Rather, the mortality risk for ALS relative to BMI exists as a U-
shaped curve, in which mortality decreases with increasing BMI,
until BMI levels indicate premorbid obesity. Thereafter, mortality
risk increases again (8, 20). This seemingly complex association
could be explained by changes in body composition throughout
disease progression.

BMI is often used as an indirect measure of fatness.
However, conventional anthropometric measures of BMI and
body adiposity index (BAI) do not always accurately reflect
changes in fat and/or fat free mass (FFM) in ALS (69). In this
regard, fat mass (FM) and FFM at diagnosis are not associated
with survival risk (14), yet redistribution of adipose tissue does
occur in ALS (29), and visceral fat is correlated with functional
status and survival (28). Moreover, serial assessment of body
FM indicates that increases in FM are associated with longer
survival (14). While a decrease in FFM serves as an independent
prognostic factor for shorter survival in ALS (23), we did not
identify any studies that document progressive changes in muscle
mass as a potential marker of disease progression in ALS. As a
hallmark of ALS, however, there is potential to use the loss of
FFM as a marker of disease progression. Such measures must
consider the technical difficulties associated with assessing FFM
in patients who experience significant and progressive disability,
while also accounting for whole body and regional changes in
FFM, which differ greatly between patients.

Despite BMI and BAI being poor predictors of body
composition in ALS, changes in BMI may offer reliable measures
for progressive changes in the overall nutritional status of the
patient, and by proxy, disease progression. As documented by
Kasarskis et al. a progressive decline in body weight is commonly
observed in ALS patients in the months prior to death, and
this reduction in body weight or BMI likely reflects a state of
undernutrition (25). In recent years, lower BMI has been found
to be associated with lower ALSFRS-R scores (70), and a loss of
body weight (14, 21, 23, 24, 26, 27, 71) and BMI (14, 17, 22, 24)
throughout disease course is consistently associated with shorter
survival. Not surprisingly, these observations, while serving as

markers for disease progression, have resulted in the adoption of
interventions aimed at slowing weight loss in ALS (72).

SKELETAL MUSCLE PATHOLOGY

With findings suggesting that FFM is a prognostic factor in ALS
(23), analysis of skeletal muscle, the primary component of FFM,
may offer insights into tissue-specific metabolism biomarkers.
Assessment of cellular metabolic changes in skeletal muscle can
be challenging, especially when weighing the clinical benefit
against that of an invasive procedure on a patient undergoing
significant muscle wasting. Furthermore, heterogeneity in site of
disease onset leads to variable muscle pathophysiology between
patients (73).

Despite these limitations, creatine kinase, an enzyme that
is linked with muscle damage and deterioration, has been
studied intensely in ALS. While not strictly a metabolic marker,
creatine kinase can be considered as an important modulator
of body composition (74). As such, it may indirectly influence
systemic metabolic processes. Numerous reports of increased
creatine kinase in ALS (36–43), and particularly in limb-onset
patients (38, 43), highlight the potential for its use as a marker
of disease. However, contradictory observations of associations
between creatine kinase and clinical parameters of disease, and
disease progression and survival attest to the need for further
investigations into determining the utility of creatine kinase as
a biomarker in ALS.

MITOCHONDRIAL DYSFUNCTION

In human ALS muscle, mitochondrial defects including
dysregulation of respiratory complex I (44), decreased
respiratory complex I and IV activity (45, 75), decreased
muscle mitochondrial protein expression (75) and upregulation
of muscular mitochondrial uncoupling protein 3 (76) indicate
that impairments in mitochondrial function could serve as a
metabolic marker of ALS. It should be noted, however, that
these studies were unable to correlate mitochondrial defects with
functional parameters of disease progression, despite studies in
animal models reporting a strong relationship between the two
(77–79). Therefore, while there is clear evidence of mitochondrial
defects in ALS, mitochondrial defects per se cannot currently be
used as a biomarker due to the difficulty in both easily observing
these defects in a clinical setting, and linking such defects to a
marker of disease progression and/or survival. Instead, emphasis
could be placed on the assessment of the more easily detectable
metabolites that drive mitochondrial function.

GLUCOSE METABOLISM

Glucose use in the brain of ALS patients has been evaluated using
fluorodeoxyglucose F18 positron emission tomography (F18-
PET) (30–33). These studies have identified decreased glucose use
in the primary motor cortex of ALS patients, suggesting that this
brain region is hypometabolic (32). Other studies have reported
a decrease in the use of glucose across other brain regions
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FIGURE 1 | Potential metabolism biomarkers in amyotrophic lateral sclerosis (ALS). Metabolic alterations in ALS offer opportunities to use metabolism biomarkers for

the diagnosis, categorization, and tracking of disease. Non-invasive anthropometric measures include body weight, body mass index (BMI), fat free mass, fat mass,

and fat distribution. Invasive measures include the use of F18-PET to assess glucose metabolism in the central nervous system, or require the sampling of saliva,

blood, cerebrospinal fluid (CSF), muscle tissue, and urine. Although few independent markers are specific, reproducible or able to track disease in ALS, used together

with complementary biomarkers (including neurophysiology and imaging), these markers may provide deeper insights into metabolic perturbations that are potentially

involved in the onset and progression of disease.

(31, 33); although this may reflect the differences in experimental
cohorts. In this regard, Claassen et al. investigated a cohort of
patients with primary lateral sclerosis, while the study by Ludolph
et al. evaluated ALS patients with both upper and lower motor
symptoms. Given that the degree of cerebral hypometabolism
in ALS is correlated with the duration of clinically-identified
symptoms (30), the ability of the motor cortex to utilize glucose
may allow for monitoring of disease progression. However, since
brain glucose hypometabolism is not specific to ALS (80), its use
as a diagnostic/prognostic marker is limited.

F18-PET has also been used to assess the uptake and
utilization of glucose in the cervical spinal cords of ALS
patients (34, 35, 81). Overall, observations of spinal cord glucose
hypermetabolism (34, 35, 81) is congruent with increased levels
of glucose in the CSF of ALS patients (47). In a study by
Yamashita et al. glucose hypermetabolism on the ipsilateral side
to the patient’s symptoms was found to be positively correlated
with ALSFRS-R, suggesting that changes in spinal cord glucose
metabolism are specific to the affected corticospinal tract and
the degree of disease severity (35). By contrast, the study by

Marini et al. reported spinal cord glucose hypermetabolism
independent of disease duration and functional impairment (34).
As such, the degree of glucose use in the spinal cord may present
some use for diagnostic testing, but provides limited insights
for evaluation of disease progression and prognosis. Indeed,
glucose hypermetabolism in the spinal cord extends to other
neurological conditions (82, 83), thereby limiting its use as a
specific biomarker for ALS. Finally, as the reproducibility of F18-
PET in both the brain and spinal cord is low (84), more rigorous
testing is required to determine if results are consistent across a
heterogeneous ALS population.

Alterations in glucose metabolism in ALS extend beyond the
central nervous system (CNS). Glucose tolerance tests conducted
by Pradat et al. indicate that ALS patients have a significant
increase in blood glucose levels following the provision of a
glucose load when compared to age- and sex-matched controls.
Within ALS patients, a degree of heterogeneity was observed,
with 33% of participants meeting World Health Organization
criteria for impaired glucose tolerance (53). Impaired glucose
tolerance is in line with reports of insulin resistance in ALS
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(85), and could explain observations of increased expression of
pyruvate dehydrogenase kinase 4 (PDK4) in skeletal muscle of
ALS patients (46). Similarly, mannose, an epimer of glucose that
has recently been shown to be a predictor of insulin resistance
(86), has been reported to be significantly increased in the plasma
of ALS patients (54). While the assessment of glucose tolerance
and insulin resistance is relatively straightforward, these tests
lack reproducibility and specificity to ALS (87–89). Therefore,
although glucose metabolism is altered in ALS, it cannot be used
as an independent biomarker for ALS diagnosis and prognosis.

FATTY ACIDS AND KETONES

In patients with ALS, the resting level of circulating free fatty
acids (FFAs) is significantly increased (53). While higher levels
of FFAs has been linked to impaired glucose tolerance in ALS,
it has not been shown to be correlated with any markers of
disease progression or severity. Ketones, including β-hydroxy-
butyrate (63) and 2-hydroxy-butyrate and α-ketoglutarate (54),
which are produced through fatty acid metabolism under fasting
conditions, are also significantly increased in ALS. Similar
to FFAs, no correlations have been observed between disease
status and the expression of ketones. Thus, FFAs and ketones
cannot currently be considered as reliable biomarkers for ALS,
and the lack of specificity for ALS-centric pathology indicate
that they may not present as particularly valuable diagnostic
markers individually.

DOWNSTREAM METABOLITES

Metabolites, the downstream indicators of metabolic function,
are also impacted in ALS. While not specific to ALS, altered
expression of metabolites may offer a potential avenue for
biomarker discovery. In line with disease heterogeneity, reported
levels of metabolites in the blood and CSF are variable. Notably,
the levels of lactate (47, 50) and pyruvate (51) in the CNS
are increased, potentially reflecting an increase in metabolic
output, or increased release of metabolites into the CSF following
neuronal deterioration. Given that mitochondrial dysfunction is
observed in ALS, further evaluation of the ratio between these
metabolites may hold significant informative value in ALS due to
the diagnostic value of this test for mitochondrial disorders (90).

Blood levels of acetate are increased in ALS (63), although
this is not readily observed in the CSF (47, 51). Acetate is
a key metabolite in the oxidation of fatty acids. As acetate
synthesis precedes the formation of citric acid in the Krebs cycle,
changes in circulating acetatemay occur due to excess production
via an increase in fatty acid oxidation, increased release from
deteriorating muscle cells, or other disruptions to mitochondrial
membrane integrity (e.g., due to the presence of free radicals).
Such potential mechanisms align with ALS pathology. As a whole,
downstream metabolites hold promise as potential biomarkers,
and further work that can interrogate relationships between
metabolites and clinical parameters of disease would add merit
to their use as metabolic biomarkers of disease.

ENDOCRINE MODULATORS
OF METABOLISM

Insulin is an anabolic hormone that has been reported to be
decreased in the blood (64) and CSF (52) of ALS patients. By
contrast, other studies have reported no significant differences
in plasma insulin levels in ALS patients (91, 92). Other anabolic
hormones that have been found to be decreased in ALS include
growth hormone (in CSF and blood) (52, 92–94) and gastric
inhibitory peptide in blood (64). Conversely, hormones that
promote catabolism, such as cortisol (65, 67), and adiponectin
(64) are increased or dysregulated in saliva and blood of patients
with ALS. Furthermore, ghrelin, an important modulator of
appetite, is also reduced in the plasma/blood of ALS patients
(64, 66). Given that alterations in these hormones are likely
to be symbolic of a change in metabolic function/homeostasis,
studies that confirm a link between endocrine markers of
metabolism and clinical markers of disease offer potential for
their development as prognostic biomarkers.

METABOLISM OF STRUCTURAL LIPIDS

While fatty acids and their derivatives serve as energy substrates
through mitochondrial respiration, they also play an essential
role in maintaining cellular integrity. Phospholipids, particularly
phosphatidylcholine, are significantly increased in the CSF of
ALS patients (48). Sphingolipids, such as stearoyl sphingomyelin
and ceramide, are also increased in patient blood (48, 54).
Interestingly, in the study by Blasco et al. predictions of
clinical measurements, such as ALSFRS-R, were found to be
correlated to CSF sphingomyelins and triglycerides with long-
chain fatty acids (48). Such findings are favorable for the
development of biomarker assays, but further tests are required
to confirm the reliability of predictive models, before use as a
prognostic biomarker.

An increase in cholesterol esters has been observed in ALS
patient spinal cord (95). However, cholesterol and its carriers
prove to be more difficult to characterize, with variable levels
of HDL and LDL cholesterol being reported in ALS. In a
population-based longitudinal study, a positive association was
found between LDL cholesterol and ALS risk (55), however, there
was no indication of the impact of LDL on disease progression or
mortality. Nonetheless, this could serve as a diagnostic biomarker
for ALS risk. Previously, higher levels of cholesterol, LDL, as
well as an elevated LDL/HDL ratio in ALS patient blood have
been correlated with increased survival (56–58). Conversely,
similar increases in total cholesterol, LDL, and HDL cholesterol
in ALS patient blood (59, 60) and CSF (49) have not been
found to be correlated with disease progression. Furthermore,
a small number of studies contradict these findings, reporting
that cholesterol, LDL, and HDL levels do not vary between ALS
patients and controls (53, 61, 62), although lower levels of serum
lipids may correlate with worse respiratory function (61). Based
on these contradictory observations, the validity of cholesterol as
a biomarker remains uncertain. Further studies that address these
disparate data are required.
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NOVEL METABOLISM-
ASSOCIATED BIOMARKERS

p75 neurotrophin receptor (NTR) belongs to the tumor necrosis
factor family of receptors. It is a transmembrane receptor which
binds neurotrophins and pro-neurotrophins (96). p75NTR has
been implicated in processes of energy expenditure (97), glucose
uptake, and insulin sensitivity (98). In ALS, the secretion of the
extracellular domain of p75NTR (p75ECD) in urine was recently
established as a biomarker for disease progression and prognosis
(68, 99). Urinary p75ECD increases as disease progresses, and an
elevation of urinary p75ECD is observed alongside a decrease in
ALSFRS-R scores (68). While it is not clear if increases in urinary
p75ECD in ALS match metabolic derangements that accompany
disease progression (such as changes in energy metabolism,
glucose uptake and insulin sensitivity), the introduction of
p75ECD as a fluid biomarker in ALS provides an opportunity
for the evaluation and possible co-development of metabolism-
associated biomarkers.

CONCLUSION

The complexity and heterogeneity of disease between patients
limits the scope for the use of a single reliable biomarker
of ALS. Significant changes in metabolism seen in ALS may
represent a potential avenue for biomarker development. As
documented in this review, a range of markers might be
relevant (Figure 1). However, as investigations into the cause
for metabolic derangements in ALS are ongoing, and little
emphasis has been placed on the development of metabolism
biomarkers as diagnostic or prognostic indicators, few reliable
metabolism biomarkers exist (Table 1). Moreover, because

metabolic alterations in ALS likely arise from the dysregulation
of a number of processes, the utility of biomarkers for assessing
early or progressive changes in themetabolic state of ALS patients
would necessitate the development of a panel that captures the
spectrum of metabolic changes that occur at the systemic and
cellular level.

As there is no single biomarker for ALS that sufficiently
meets the six major attributes of a biomarker, it is clear
that the assessment of biomarkers that cover multiple
dimensions of the disease is needed in order to generate a
comprehensive view of the state of disease. The complementary
assessment of metabolism markers alongside other biomarkers
including neurophysiology, imaging, as well as CSF, blood,
and urine markers may form a more convincing and reliable
diagnostic/prognostic platform, while providing insights into the
multifactorial nature of disease.
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Amyotrophic lateral sclerosis (ALS) encompasses a heterogeneous group of phenotypes

with different progression rates, varying degree of extra-motor involvement and divergent

progression patterns. The natural history of ALS is increasingly evaluated by large,

multi-time point longitudinal studies, many of which now incorporate presymptomatic

and post-mortem assessments. These studies not only have the potential to characterize

patterns of anatomical propagation, molecular mechanisms of disease spread, but

also to identify pragmatic monitoring markers. Sensitive markers of progressive

neurodegenerative change are indispensable for clinical trials and individualized patient

care. Biofluid markers, neuroimaging indices, electrophysiological markers, rating scales,

questionnaires, and other disease-specific instruments have divergent sensitivity profiles.

The discussion of candidate monitoring markers in ALS has a dual academic and clinical

relevance, and is particularly timely given the increasing number of pharmacological

trials. The objective of this paper is to provide a comprehensive and critical review of

longitudinal studies in ALS, focusing on the sensitivity profile of established and emerging

monitoring markers.

Keywords: motor neuron disease, amyotrophic lateral sclerosis, biomarkers, magnetic resonance imaging,

neuroimaging

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a clinically, genetically, and pathologically heterogeneous
neurodegenerative condition (1–3). Clinical heterogeneity in ALS is multidimensional owing
to variations in upper motor neuron (UMN) and lower motor neuron (LMN) involvement,
extra-motor symptoms, age of onset, survival, and progression-rates. Disease heterogeneity hinders
biomarker development (3, 4) which in turn impedes the reliable assessment of candidate drugs in
clinical trials (1). Current clinical trials recruit relatively heterogeneous cohorts of symptomatic
patients, despite the notion that considerable pathological changes can already be detected at
the time of diagnosis (5, 6). The considerable variability in progression rates in ALS is another
confounding factor in clinical trial designs (1, 7–10). Imaging and electrophysiological markers
have been repeatedly proposed as candidate monitoring markers (11, 12), but it is increasingly clear
that a panel of several “wet” and “dry” biomarkers may be required to capture subtle changes over
short periods of time (13, 14). The objective of this paper is the comprehensive and critical review
of longitudinal studies in ALS, focusing on study designs, statistical power, clinical correlations, the
sensitivity profile of proposed monitoring markers and their applicability to clinical trials.
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METHODS

A formal literature search was performed on PubMed using
the core search terms “amyotrophic lateral sclerosis” and
“longitudinal” combined with each of the following keywords

Abbreviations: 2D-DIGE, two-dimensional fluorescence difference gel

electrophoresis; ABG, arterial blood gas; ACE-3, Addenbrookes Cognitive

Examination - Third Edition; ACE-R, Addenbrooke’s Cognitive Examination-

revised; AD, axial diffusivity; ADM, abductor digiti minimi; ADQ, abductor

digiti quinti; AGA, arterial gas analyses; AHB, abductor halluces brevis; ALS,

amyotrophic lateral sclerosis; ALSAQ-40, ALS assessment questionnaire; ALS-

CBS, ALS Cognitive Behavior Screen; ALS-CFB, ALS computerized frontal

battery; ALS-FBI, ALS-Frontal Behavioral Inventory; ALSFRS-r, revised ALS

functional rating scale; ALSS, ALS severity scale; ALSSQoL-R, revised ALS-

specific Quality of Life questionnaire; APB, abductor pollicis brevis; ARSLA,

Association pour la recherche sur la SLA; ATLIS, accurate test of limb isometric

strength; BAI, body adiposity index; BMI, body mass index; CALR, Calreticulin;

CALSNIC, Canadian ALS Neuroimaging Consortium; CHI3L1, chitinase-3-like

protein 1; CHI3L2, chitinase-3-like protein 2; CHIT1, chitotriosidase-1; Cho,

Choline; CIDP, chronic inflammatory demyelinating polyneuropathy; CIS20-R,

checklist individual strength; CK, creatinine kinase; CLIC1, Chloride intracellular

channel protein 1; CMAP, compound muscle action potential; CMCT, central

motor conduction time; CMT, Charcot-Marie-Tooth disease; CNS-BFS, Center

for Neurologic Study-Bulbar Function Scale; CNS-LS, Center for Neurologic

Study-Lability Scale; COWAT, controlled oral word association test; Cr, creatinine;

CSF, cerebrospinal fluid; CSP, cortical silence period; CypA, peptidyl-prolyl cis-

trans isomerase A; DCMAP, distal compound muscle action potential; D-KEFS,

Delis–Kaplan Executive Function System; DTI, diffusion tensor imaging; DWI,

diffusion-weighted imaging; ECAS, Edinburgh Cognitive and Behavioral ALS

Screen; ECL, electrochemiluminescence; EDB, extensor digitorum brevis; EMG,

electromyography; ERp57, protein disulfide-isomerase A3; EURALS, European

Registry of ALS Consortium; EUROMOTOR, European multidisciplinary ALS

network identification to cure motor neurone degeneration; FA, fractional

anisotropy; FAB, frontal assessment battery; FBI, frontal behavioral inventory;

FD, fiber density; FEV1, forced expiratory volume; fibs-sw, fibrillation/sharp-

waves; FM-ADP, fat mass air displacement plethysmography; FPs, fasciculation

potentials; FSS, fatigue severity scale; FUBP1, far upstream element-binding

protein 1; FVC, forced vital capacity; GM, gray matter; GSTO1, glutathione

S-transferase omega-1; HADS, hospital anxiety and depression scale; HDAC4,

histone deacetylase 4; HHD, handheld dynamometry; HSC70, heat shock cognate

71 kDa protein; IL, interleukin; IFN, interferon; IRAK4, Interleukin-1 receptor-

associated kinase 4; JPND, EU Joint Programme for Neurodegenerative Disease

Research; LGVF, letter guided verbal fluency; LMN, lower motor neuron; MAS,

modified Ashworth scale; McDESPOT, multi-component driven equilibrium

single pulse observation of T1/T2; MDRS-2, Mattis Dementia Rating scale-Second

Edition; MEP, maximal static expiratory mouth pressure; MiND-B, motor neuron

disease behavior scale; MIP, maximal inspiratory pressure; MiRNAs, micro-RNAs;

MITOS, Milano-Torino staging system; MMSE, mini mental state examination;

MMT, manual muscle testing; MND, Motor neuron disease; MoCA, Montreal

Cognitive Assessment; MR, magnetic resonance; MRC, Medical Research Council

Scale for muscle strength; MRCSS-LL, Medical Research Council sum score;

MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; MS,

multiple sclerosis; MU, motor unit; MUNE, motor unit number estimation;

MUNIX, motor unit number index; MUPs, motor unit potentials; MUSIX, motor

unit size index; NAA, N-acetylaspartate; NEALS, Northeast ALS Consortium; NF-

L, neurofilament light chain; NI, neurophysiology index; NISALS, Neuroimaging

Society in Amyotrophic Lateral Sclerosis; NMR, nuclear magnetic resonance;

nUHPLC LC-MS, nano ultra-high performance liquid chromatography tandem

mass spectrometry; p75ECD, neurotrophin receptor p75 extracellular domain;

PA28a, proteasome activator complex subunit 1; PBA, pseudobulbar affect;

PCR, polymerase chain reaction; PDI, protein disulfide-isomerase; PEFT, peak

expiratory flow time; PET, positron emission tomography; PGGM, precentral

gyruses gray matter; PGRN, progranulin; PLS, primary lateral sclerosis; PMA,

progressive muscular atrophy; pNFH, Phosphorylated neurofilament heavy

chain; PRDX2, peroxiredoxin-2; PRO-ACT, Pooled Resource Open-Access ALS

Clinical Trials; QoL, quality of life; RD, radial diffusivity; RMN, Research Motor

separately: “staging,” “monitoring,” “outcomes,” “clinical,”
“clinical trials,” “electrophysiology,” “neurophysiology,”
“electromyography,” “transcranial magnetic stimulation,” “motor
unit number estimation,” “motor unit number index,” “positon
emission tomography,” “single photon emission computed
tomography,” “magnetic resonance imaging,” “neuroimaging,”
“imaging,” “blood,” “urine,” “cerebrospinal fluid,” “saliva,”
and “muscle.” A supplementary search combined the core
search terms with the following keywords: “presymptomatic,”
“asymptomatic,” and “post-mortem.” Inclusion criteria included
longitudinal studies investigating imaging, neurophysiological,
clinical, or biofluid biomarkers in ALS. Animal studies, review
papers, opinion pieces, editorials, case reports, and case series
were excluded. Only articles written in English and published
between January 1980 and August 2018 were reviewed. Based
on the above criteria a total of 118 original research papers
were selected and reviewed in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) recommendations.

RESULTS

Neuroimaging
The sample size characteristics, study design features, follow-
up intervals of longitudinal neuroimaging, neurophysiology,
and clinical studies are summarized in Table 1. Whilst most
longitudinal imaging studies in ALS evaluate cerebral alterations
(10), a number of promising spinal studies have now also
been published. Spinal imaging has gradually overcome the
technical challenges of physiological motion, small cross-
sectional dimensions and susceptibility gradients (19, 110–118).
The majority of longitudinal studies in ALS are single-center
studies eliminating the need for cross-platform MR sequence
harmonization and inter-rater reliability tests. Given the
low incidence of certain phenotypes such as primary lateral
sclerosis (PLS), progressive muscular atrophy (PMA), and
spinal and bulbar muscular atrophy (SBMA) however, multisite
collaboration is often necessary (119). The infrastructure,
funding and governance of such multicenter collaborations
are now established via international consortia like the
Neuroimaging Society in Amyotrophic Lateral Sclerosis
(NISALS) or the Northeast ALS Consortium (NEALS)
(16, 23, 120, 121). The need to include disease-controls in
addition to healthy controls to describe ALS-specific changes

Neuron; ROA2, Heterogeneous nuclear ribonucleoproteins A2/B1; RSA, relative

surface area; rsfMRI, resting state functional magnetic resonance imaging; SCA,

spinocerebellar ataxia; SBMA, spinal and bulbar muscular atrophy; SEIQOL-DW,

Schedule for the Evaluation of the Individual Quality of Life-Direct Weighting;

SF-36, 36-Item short form health survey; SMA, spinal muscular atrophy; SMUAP,

single motor unit action potential; SNIP, sniff nasal inspiratory pressure; SOD1,

superoxide dismutase 1; SOP, Standard operating procedure; SPECT, single

photon emission computed tomography; SPO2, peripheral capillary oxygen

saturation; SVC, slow vital capacity; TA, tibialis anterior; TDP-43, TAR DNA-

binding protein 43; TiM, Telehealth in Motor Neuron disease; TMS, transcranial

magnetic stimulation; TNF, tumor necrosis factor; TUG, timed up and go test;

Tw Pdi, twitch trans-diaphragmatic pressure; TWBC, total white blood cell count;

UMN, upper motor neuron; VC, vital capacity; WALS, Western ALS Consortium;

WVFI, Written Verbal Fluency Index.
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TABLE 1 | Longitudinal “dry biomarker” studies in ALS: Neuroimaging, Neurophysiology and Clinical Studies.

Author(s) and year of

publication

Follow-up

interval

(months)

Number of

patients/Number

or controls

Clinical assessment

batteries/Functional

rating scales

Imaging data Main study findings

IMAGING STUDIES

Floeter et al. (15) 6–18 28/28 ALSFRS-R, letter

fluency, FBI, MMSE

DWI, structural (T2) - progression and propagation detected (DTI

measures) over 6 months - DTI measures

correlated with ALSFRS-R, King’s stage and

cognitive measures

Kassubek et al. (16) 6 67/31 ALSFRS-R DTI - progression detected at group level and 27%

of individual patients (DTI measures) - FA

correlated with ALSFRS-R

Stampfli et al. (17) 3–6 21/13 ALSFRS-R T1, DWI -progression detected (FD values)

Baldaranov et al. (18) 26 6/6 ALSFRS-R DTI -progression detected (FA, AD/RD values) and

correlated with progression on ALSFRS-R

Bede et al., 2017 (14) 4 32/69 ALSFRS-R structural,

DTI

-progression detected (GM)

de Albuquerque et al.

(19)

8 27/27 ALSFRS-R, UMN scale structural (T1, T2) - progression detected (AD, MD) - correlation

with ALSFRS-R change

Menke et al. (20) 24 16/0 ALSFRS-R, UMN score T1, DTI, rs-Fmri - progression detected - correlation with

ALSFRS-R decline

Simon et al. (21) 3–6 21/13 ALSFRS-R,

MRCSS-LL, MUNE

DTI, structural (T1) - progression detected (FA values) -

correlations with ALSFRS-R change, MUNE,

functional disability and strength

Floeter et al. (22) 6 49/28 ALSFRS-R, FBI,

MDRS-2, letter fluency,

MMSE, D-KEFS

structural (T1) -progression detected (ventricular volume)

Schulthess et al. (23) 6 135/56 ALSFRS-R rs-Fmri, DTI - progression detected (functional connectivity)

- correlation with physical disability

McMillan et al. (24) 12 20/25 neuropsychology structural (T1) -hypermethylation protective against

progression, correlation with protection of

some components of neuropsychological

assessment

Steinbach et al. (25) 3 16/16 ALSFRS-R,

neuropsychology

DTI -progression detected

Westeneng et al. (26) 5.5 112/60 ALSFRS-R structural (T1) - progression detected (volume measures) -

correlation with ALSFRS-R

Menke et al. (4) 6 60/36 ALSFRS-R, ACE-R structural (T1), DTI -progression detected (GM)

Schuster et al. (27) 3–15 77/60 ALSFRS-R structural (T1) -progression detected (cortical thickness)

Stoppel et al. (28) 3 40/42 ALSFRS-R, MRC,

neuropsychology

structural, Fmri - progression detected - correlation with

ALSFRS-R and MRC

Verstraete et al. (29) 5.5 24/19 ALSFRS-R DTI, structural (T1) - no progression detected -

propagation detected

Ignjatovic et al. (30) 6 46/26 ALSFRS-R structural (T1, T2,

FLAIR)

-progression detected (hypointensities in

PGGM)

Kwan et al. (31) 1.26–2.08

years

45/19 ALSFRS-R, finger

tapping

T1, DTI -progression detected (cortical thickness, GM

volume)

Keil et al. (32) 6 24/24 ALSFRS-R, SF36, FAB,

MMSE

DTI, structural (T1, T2) - progression detected (FA values) -

correlations with ALSFRS-R, physical and

executive function

Menke et al. (33) 6 24/0 ALSFRS-R DTI -progression detected (AD)

Ichikawa et al. (34) NA 6/NA NA NA -progression detected, correlated to

neuropsychology assessment

van der Graaff et al. (35) NA 48/12 ALSFRS-R, finger

tapping

DWI -progression detected

Zhang et al. (36) 8 17/19 ALSFRS-R structural (T1), DTI - progression detected (FA)

(Continued)
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TABLE 1 | Continued

Author(s) and year of

publication

Follow-up

interval

(months)

Number of

patients/Number

or controls

Clinical assessment

batteries/Functional

rating scales

Imaging data Main study findings

Agosta et al. (37) 9 16/10 ALSFRS structural (T1) - progression detected (GM)

Agosta et al. (38) 9 17/20 ALSFRS DWI, structural - progression detected (cord area, cord

average FA)

Avants et al. (39) 5.3 4/4 0 structural (T1) - progression detected (cortical atrophy)

Lule et al. (40) 6 25/15 ALSFRS-R Fmri, structural (T1) - progression detected (activity)

Unrath et al. (41) 6 11/0 ALSFRS MRS, T1 - progression detected (NAA, NAA/Cr+Cho)

Suhy et al. (42) Every 3

months

28/12 0 MRS, T1, T2 - progression detected (NAA, Cr, Cho)

Block et al. (43) 24 33/20 0 MRS - progression detected

Irwin et al. (44) 143/0 MMSE, LGVF structural VBM - no progression on MRI reported

Kolind et al. (45) 42 30/12 ALSFRS-R, ACE, mcDESPOT - progression detected in PLS only

Verstraete et al. (46) 6 45/25 ALSFRS-R structural (T1) - no progression reported

Blain et al. (47) 6–12 23/25 ALSFRS-R, ALSS structural (T2), DWI - no significant progression detected (DTI

measures)

Rule et al. (48) 3–12 45/17 0 MRS, structural (T1, T2) - no clear pattern of progressive change over

time (NAA rations)

Author(s) and year of

publication

Follow-up

interval

(months)

Total number of

patients/Total

number of

controls

Neurophysiology

modality

Target muscle Key study findings

NEUROPHYSIOLOGY STUDIES

Escorcio-Bezerra et al.

(49)

4.3 21/21 MUNIX tibialis anterior (TA),

abductor pollicis brevis

(APB) and abductor

digiti minimi (ADM)

muscles

- progression detected (mean MUNIX)

de Carvalho et al. (50) 3–6 73/37 FPs, MUPs, fibs-sw,

jitter- MU physiology

tibialis anterior - progression detected

Boekestein et al. (51) 8 18/24 MUNIX, HD-MUNE,

CMAP, MUSIX

thenar - progression detected (MUNE, MUNIX)

Cheah et al. (52) 3 37/0 CMAP, axonal

excitability

abductor pollicis brevis - progression detected (CMAP)

Ahn et al. (53) NA 135/NA NA NA - asymmetric progression (MUNE)

Cheah et al. (54) 3 58/NA NI, CMAP abductor digiti minimi

and ulnar nerve

- progression detected (NI)

de Carvalho et al. (55) 6 28/0 NI, CMAP, MUNE abductor digiti minimi

muscles

- progression detected (CSP)

Neuwirth et al. (56) 15 7/8 MUNIX, CMAP, abductor pollicis brevis

(APB), abductor digiti

minimi (ADM), abductor

halluces brevis (AHB),

extensor digitorum

brevis (EDB)

- progression detected (MUNIX)

Floyd et al. (57) 18 60/33 TMS, CMCT, MEP abductor digiti minimi

(ADM) and tibialis

anterior (TA)

-linear progression detected (TMS threshold,

CMCT, TMS amplitude corrected)

Gooch et al. (58) NA 64/NA-1 TMS, MUNE, NA -progression detected (MUNE)

Liu et al. (59) 12 112/12 MUNE, CMAP Abductor pollicis brevis

(APB) and abductor

digiti quinti (ADQ)

- progression detected (MUNE), correlated to

ALSFRS descent

Albrecht et al. (60) 11.5 10/25 MUNE, S-MUAP extensor digitorum

brevis

- progression detected (MUNE)

(Continued)
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TABLE 1 | Continued

Author(s) and year of

publication

Follow-up

interval

(months)

Total number of

patients/Total

number of

controls

Neurophysiology

modality

Target muscle Key study findings

Wang et al. (61) 12 20/70 MUNE, SMUP, CMAP,

MU loss

thenar - progression detected - (Thenar

MUNE, CMAP)

Chan et al. (62) 24 NA motor units thenar - progression detected

Felice et al. (63) 12 NA MUNE thenar - progression detected (MUNE)

Yuen et al. (64) 6 NA CMAP, MUNE abductor digiti minimi - progression detected (MUNE, fiber density)

Vucic et al. (65) 7–100 days 25/30, 35 cortical and axonal

excitability- MEP,

CMAP- TMS

abductor pollicus brevis - aim to determine effect of riluzole

Aggarwal et al. (66) 36 31/57 MUNE tibialis anterior,

abductor pollicis brevis

(APB), deltoid, and first

dorsal interosseous

muscles

- no progression reported

Arasaki et al. (67) NA NA MUNE, extensor digitorum

brevis (EDB)

- no progression reported

de Carvalho et al. (68) 11.6 NA CMAP, MEP, TMS NA - no progression detected

Swash et al. (69) NA 14/NA single fiber EMG NA - no definite progression detected

Author(s) and year publication Follow-up

interval

(months)

Number of

patients/Number of

controls

Clinical assessment

batteries/Functional rating scales

Summary of findings

CLINICAL STUDIES

ALSFRS-R

Thakore et al. (70) NA 3367/0 ALSFRS-R, ALSFRS, bloods-

creatinine, uric acid, CK, albumin,

sodium bicarbonate, hematocrit,

TWBC

- ALSFRS-R progression detected, pre-slope

and post-slope have effects on survival

Rooney et al. (71) NA 407/0 ALSFRS-R - progression detected in ALSFRS-R subscores

*ACTS trial. (72) NA 75/NA ALSFRS progression detected (ALSFRS-R), associated

with motor and pulmonary function

Cognitive and behavior assessments

Floeter et al. (73) 18 NA ALSFRS-R, letter fluency, FBI - progression detected (ALSFRS-R, FBI, letter

fluency)

Elamin et al. (74) NA 186/NA cognitive testing - progression detected (cognitive function)

Roberts-South et al. (75) 24 16/12 neuropsychology, language,

discourse sampling, perfusion

computerized transaxial tomography,

pulmonary, clinical

- progression detected (cognitive language

deficits)

*Duning et al. (76) 3 10/32 ALSFRS, clinical neuropsychological

battery, imaging

- progression detected (DTI)

Poletti et al. (77) 24 168/0 ECAS - no progression detected, ECAS scores

improved over time

Xu et al. (78) 6 108/60 ACE-3, FAB, ECAS executive, MoCA,

ALSFRS-R, ALS-FTD-Q, MiND-B

- no progression detected

Gillingham et al. (79) 9 20/36 ALS-CFB, ALSFRS-R - no progression reported

Mioshi et al. (80) 6 79/53 MiND-B- apathy, disinhibition,

stereotypical behavior, ACE-R,

ALSFRS-R

- no progression reported

Quality of life assessments

Jakobsson Larsson et al. (81) 24 36/0 SEIQoL-DW, ALSFRS-R, HADS - anxiety decreased over time, depression

correlated to QOL, QOL remained stable

despite physical deterioration

(Continued)
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TABLE 1 | Continued

Author(s) and year publication Follow-up

interval

(months)

Number of

patients/Number of

controls

Clinical assessment

batteries/Functional rating scales

Summary of findings

BMI and other clinical assessments

Beck et al. (82) 6 78/39 skin water loss - progression detected (skin water loss)

Garruto et al. (83) NA 31/66 bone mass (wrist radiograph) - progression detected (bone loss)

Ioannides et al. (84) 6 44/29 FM-ADP, BMI, BAI, ALSFRS-R - BMI and BAI not accurate measures of fat

mass in ALS

Peter et al. (85) 3 393/791 BMI, ALSFRS-R - alterations in body weight present in ALS

patients decades before manifestation of

symptoms

Nunes et al. (86) 3 37/0 BMI, serum albumin, transferrin, total

cholesterol

- no progression reported

Jablecki et al. (87) NA NA clinical scores - no progression reported

Respiratory and muscle assessments

Andres et al. (88) 4–21 100/0 ATLIS, ALSFRS, VC - ATLIS more sensitive to change than ALSFRS

and VC

de Bie et al. (89) 12 10/0 RSA, ALSFRS-R, FVC - progression detected(RSA and ALSFRS-R)

Shellikeri et al. (90) NA 33/13 kinematic measures of tongue and

jaw movement, speaking rate,

intelligibility, ALSFRS-R

- progression detected (tongue movement size

and speed)

Londral et al. (91) 2–20 19/26 typing activity, ALSFRS-R - progression detected (typing activity)

Panitz et al. (92) 12 51/0 fatigue severity scale (FSS), CIS20-R-

subjective fatigue experience,

concentration, motivation, activity,

ALSFRS-R, MRC, SVC

- progression detected (FSS, CIS20-R),

correlated to ALSFRS-R, and ALSFRS-R

progression

Atassi et al. (93) NA 8635/0 ALSFRS-R, VC - PRO-ACT database- progression detected

(ALSFRS-R and VC)

Watanabe et al. (94) 1.7 years 451/0 ALSFRS-R, MRC, MMT -progression detected (ALSRS-R)

Leonardis et al. (95) every 3

months

NA/0 ALSFRS-R, Norris-r, AGA, FVC, MIP,

MEP, SNIP

- progression detected (respiratory measures)

Mahajan et al. (96) NA 362/0 VC - progression detected (VC)

Pinto et al. (97) 4–6 49/0 Diaphragm amplitude, ALSFRS-R,

MIP, FVC, SNIP, SPO2

- progression detected (Diaphragm amplitude,

ALSFRS-R, respiratory measures)

Montes et al. (98) 6 31/0 TUG, ALSFRS-R, FVC, MMT - linear progression detected (TUG) -

associated with ALSFRS-R, MMT

Vender et al. (99) NA 139/0 FVC - progression detected (FVC)

Wilson et al. (100) NA 55/NA respiratory- FVC, FEV1, PEFT - linear progression detected (PEFT)

Poloni et al. (101) NA NA VC, Motley index, FEV1 - progression detected (respiratory measures)

Andersen et al. (102) 6–59 20/0 respiratory- SVC, cough peak flow,

max inspiratory muscle strength,

SNIP, max insufflation capacity

- no progression reported

Quaranta et al. (103) NA NA respiratory function - no progression reported

Proudfoot et al. (104) 24 61/39 eye tracking- anti saccadic, trail

making, visual search tasks,

ALSFRS-R, ACE-R, UMN, imaging)

- no progression detected

*Lenglet et al. (105) 18 512/0 ALSFRS-R, MMT, SVC - clinical trial

Yamauchi et al. (106) Every 6

months

43/30 ALSFRS-R, phrenic nerve conduction

study (DCMAP), respiratory function

tests (SNIP, FVC), nocturnal pulsed

oximetry, MMT

- no progression reported

Mendoza et al. (107) NA 161/0 MIP, FVC - no progression reported

Marti-Fabregas et al. (108) NA NA FVC - no progression detected

Palmowski et al. (109) NA NA electro-oculography - not well-defined progression

Studies detecting progressive changes are listed first followed by studies not capturing longitudinal changes.

*indicates clinical trial.
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is increasingly recognized (30, 43, 44). With few exceptions
(122–124), most ALS imaging studies use 3 Tesla platforms
and 7 Tesla systems are more commonly used in post-mortem
studies (125, 126). Disease progression has been detected across
a range of MR imaging metrics including structural (22, 26),
diffusion (16, 18), functional (28, 40), and spectroscopy (41, 42)
measures. As the majority of studies have a two-timepoint
design, it is often unclear if specific imaging metrics show
linear or exponential changes. The few existing multi-timepoint
studies suggest that pathological change is not linear (10). The
revised ALS functional rating scale (ALSFRS-r) is the most
commonly reported clinical measure (16, 18–20), with only
few imaging studies reporting associations with staging (15) or
neuropsychological performance (15, 24).

Neurophysiology
Most longitudinal neurophysiology studies are single center
studies, reducing the risk of inter-rater and inter-center
variability (127). As presented in Table 1, follow-up interval
ranges between 7 days (65) and 3 years (66), and up to
7 follow-up time-points have been included in some studies
(57, 60). Surprisingly few studies include disease controls
such as peripheral neuropathy (60) or benign fasciculation
syndrome (50). Clinical assessments performed in conjunction
with neurophysiology typically include ALSFRS-r (51), forced
vital capacity (FVC) (55), slow vital capacity (SVC) (56), grip
strength (64), pinch strength (58), and manual muscle testing
(MMT) (58), however, correlations between neurophysiological
measures and clinical assessments are seldom reported. The
majority of longitudinal neurophysiological studies focus on
upper limb muscles, e.g., abductor pollicis brevis, deltoid, first
dorsal interrosseus, extensor digitorum brevis, abductor digiti
minimi (51, 52, 55, 60, 61) with relatively few studies evaluating
lower limb muscles such as abductor hallicus brevis and
tibialis anterior (50, 56, 57, 66). The most commonly reported
longitudinal neurophysiological indices include compound
muscle action potential (CMAP) (51, 52), single motor unit
action potential (SMUAP) (60),MUNE (55, 59),MUNIX (49, 56),
neurophysiology index (NI) (54, 55), TMSmeasures (57, 58), and
axonal excitability (52). Progressive neurophysiological changes
have been detected by MUNIX (49, 51, 56), MUNE (51, 58, 60),
CMAP (52, 61), NI (54), and TMS measures (57) and allowing
for study-design limitations, the consensus is that degenerative
changes are not linear.

Clinical Biomarkers and Instruments
Robust clinical longitudinal studies in ALS have up to 6 follow-
up time points (88, 89, 91), the interval between the assessments
can be as short as 3 months (95) and the sample size can be as
big as several thousands (70, 93) (Table 1). Few multi-timepoint
studies include disease controls such as motor neuropathies (91),
alternative neuromuscular diseases (78), or neurodegenerative
conditions (83). Large, multi-timepoint longitudinal studies
invariably suffer from considerable attrition rates, but these
are rarely explicitly reported in the manuscript abstracts (10).
Detailed genotyping is only available in aminority of longitudinal
studies (15, 77, 79, 94). The most widely utilized rating scale

in longitudinal studies is the ALSFRS-r (70, 71, 128) which
provides a composite score of bulbar, limb and respiratory
dysfunction, and is invariably evaluated in clinical trials (72,
105). Quality of life (QoL) in ALS is increasingly evaluated by
disease-specific instruments such as the 40-item ALS assessment
questionnaire (ALSAQ-40) or the revised ALS-specific Quality
of Life questionnaire (ALSSQoL-R) (129–131). A number of
symptom-specific instruments are also commonly used such as
the Center for Neurologic Study-Bulbar Function Scale (CNS-
BFS), a 21-item self-report scale of bulbar function, and the
Center for Neurologic Study-Lability Scale (CNS-LS), a 7-item
self-report scale of pseudobulbar affect (PBA) (132). Tapping
rates, composite reflex scores, The Penn UMN Score (133), the
Modified Ashworth scale (MAS) are often used as proxies of
UMN degeneration (132).

In clinical trials, muscle strength is often estimated by
handheld dynamometry (HHD) (134), manual muscle testing
(MMT) (105), scoring systems such as the Medical Research
Council (MRC) Scale for muscle strength (135) and some studies
also report limb circumference (136). Respiratory function in
ALS is typically monitored by sniff nasal inspiratory pressure
(SNIP), SVC, or FVC in addition to measures such as early
morning arterial blood gas (ABG) and overnight pulse-oximetry
(137, 138). Measures of typing ability (91), tongue movements
(90), vital capacity (VC) (96), FVC (99), SNIP (97), and
diaphragm amplitude (97) all show progressive longitudinal
changes. Nutritional markers such as body mass index (BMI)
and lipid profile are now established prognostic indicators (139,
140). Cognitive and behavioral domains are routinely assessed
thanks to the availability of validated screening instruments
such as the Edinburgh Cognitive and Behavioral ALS Screen
(ECAS) (141), the Beaumont Behavioral Inventory (BBI) (142)
and the ALS Cognitive Behavioral Screen (ALS-CBS) (143). In
contrast to the relentlessly progressive motor deficits of ALS, the
trajectory of cognitive and behavioral deficits is less clear due to
considerable individual variations, genotype-associated profiles
(144, 145), differences in assessment strategies and practice-
effects (146). Several longitudinal neuropsychology studies do
not detect progression (77, 147, 148), progressive behavioral
impairment has been noted in the absence of cognitive change
(149), and some studies report improved performance as a result
of practice effects (77).

Wet Biomarkers
The findings, study design characteristics, and follow-up
intervals of longitudinal biofluid studies are summarized in
Table 2. Phosphorylated neurofilament heavy chain (pNFH),
neurofilament light chain (NF-L), progranulin (PGRN),
cytokines, TAR DNA-binding protein 43 (TDP-43), cystatin C,
creatinine, micro-RNAs (miRNAs), chitotriosidase-1 (CHIT1),
chitinase-3-like protein 1 (CHI3L1), chitinase-3-like protein
2 (CHI3L2) have been evaluated in both research studies
(152, 153, 157, 158, 162, 164, 168, 171) and clinical trials
(150, 156, 157, 160, 161). Markers of iron metabolism and
ferroptosis are relatively recent domains of ALS biomarker
research (172, 173). Most biofluid studies are either serum
(150, 157) or CSF studies (152, 167), but urine (155) and skeletal
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muscle-based (153) studies have now also been published.
Quantitative enzyme-linked immunosorbent assay (ELISA) is
the most commonly used antibody-based technique (13, 174)
which can be performed with one antibody (indirect ELISA), or
with two antibodies (sandwich ELISA). Increased CSF (13) and
serum (175) pNFH detected by ELISA is thought to be a sensitive
marker of axonal degeneration in ALS (152, 171, 176, 177). The
specificity of this marker however may be inadequate to reliably
differentiate ALS from other neurodegenerative conditions
(13, 176). Other antibody-based techniques such as Western
blot (171) and electrochemiluminescence (ECL) (153, 168)
may improve detection sensitivity and reliability (13). Panels of
multiple proteins can be evaluated by multiplex immunoassays
such as planar or microbead assays (13). Mass spectrometry
based methods using chromatin-immunoprecipitation-based
surfaces, two-dimensional gel electrophoresis or high-resolution
mass spectrometry have identified cystatin-C and transthyretin
as candidate biomarkers (178–180). The longest wet biomarker
study followed patients for 4 years (164). The majority of studies
have at least 2 follow-up timepoints (155, 162, 170) and one study
included 13 follow-up timepoints (156, 159). Large multi-center
trials include asmuch as 1,000 participants (156). One of themost
striking shortcomings of existing longitudinal studies is that very
few included disease controls such as Parkinson’s disease cohorts,
patients with multifocal motor neuropathy with conduction
block, Kennedy’s disease, chronic inflammatory demyelinating
polyneuropathy (CIDP), cervical or lumbar radiculopathy,
Charcot-Marie-Tooth disease (CMT), benign fasciculation,
and cramp syndrome etc. (152, 159, 162). Another limitation
of many longitudinal studies is the lack of comprehensive
genotyping (12) as very few studies report comprehensive
screening for ALS-associated mutations (153, 159, 169, 171).
Exhaustive clinical profiling, such as medications (152, 164),
neuropsychological assessments (171), quality of life indices are
rarely reported in longitudinal studies. The majority of studies
limit their clinical descriptions to ALSFRS-r, FVC, MRC, and
Ashworth scores (153, 161, 162). Serum and plasma biomarkers
such as creatinine (150, 156), pNfH (158, 159), and micro-RNAs
(157), CSF biomarkers such as CHI3L1 (152), tau (160, 161),
and cystatin-C (162), and urinary (155) and skeletal muscle
(153) biomarkers are some of the promising tools for detecting
disease progression. While no progressive changes have been
detected in NFL levels, it is likely to be a useful as a diagnostic
biomarker (168, 171).

Studies of Asymptomatic Mutation Carriers
Current clinical trials only recruit symptomatic cases despite
accruing evidence that ALS has a long presymptomatic phase
(5). Imaging studies of asymptomatic mutation carriers have
consistently confirmed disease-specific cerebral and spinal cord
changes prior to symptom onset (181–184) indicating that this
disease-phase may represent a crucial window for therapeutic or
neuroprotective intervention. The majority of presymptomatic
studies assess a single time-point, as opposed to the longitudinal
tracking of asymptomatic carriers of ALS-causing mutations
(15). While the overwhelming majority of presymptomatic

studies focus on C9orf72 hexanucleotide carriers (183, 185–
187), no prognostic markers have been validated to predict
whether single patients will develop ALS or FTD. Compared to
imaging studies, strikingly few presymptomatic neurophysiology
studies have been undertaken (66). Studies of asymptomatic ALS-
causing mutation carriers have enormous potential for academic
research and may pave the way for asymptomatic pharmaceutical
trials (5, 181).

DISCUSSION

Clinical trials currently evaluate the efficacy of candidate drugs
using the revised ALS functional rating scale (ALSFRS-r), muscle
strength assessment tools such as manual muscle testing (MMT),
respiratory function indices such as forced vital capacity (FVC),
slow vital capacity (SVC) and sniff nasal inspiratory pressure
(SNIP), neurophysiological measures and survival (102, 116,
120, 188, 189). These measures however primarily reflect late-
stage functional impairment and are not indicative of early
stage pathology. Brain and spinal cord imaging has been
evaluated as early-stage biomarkers with both diagnostic and
monitoring potential (116, 120, 190). The core neuroimaging
signature of ALS, irrespective of the disease-stage, includes
corticospinal tract (191, 192), corpus callosum (193) and motor
cortex degeneration (194). Atrophy in frontotemporal regions
has been primarily associated with neuropsychological deficits
(195–197) and linked to hexanucleotide repeats in C9orf72
(145, 198). Longitudinal imaging studies are superior to cross-
sectional studies as they readily detect dynamic structural and
functional changes and may elucidate compensatory processes
(10, 14, 23, 28, 40, 120, 199). The emergence of multi-timepoint
study designs (14, 20) enable the characterization of anatomical
propagation patterns (200) and provide invaluable temporal
insights into the disease trajectory of late-stage ALS. Inter-
scan intervals as short as 3 months can detect longitudinal
changes (14, 18, 120). Many longitudinal studies make use of
multiple magnetic resonance (MR) metrics which is particularly
useful in establishing an optimal panel of monitoring markers
(120). Several longitudinal studies have indicated that white
matter degeneration can be detected relatively early in the
course of ALS with restricted further progression over time,
whereas gray matter pathology shows relentless progression
in the symptomatic phase of the disease (4, 14, 120). In
addition to structural imaging studies, connectivity-based,
metabolic, peripheral nerve, and, whole body muscle imaging
have contributed to our understanding of longitudinal changes
(20, 201–203).

Needle electromyography and nerve conduction studies
play an important clinical role in ruling out alternative
conditions and confirming a suspected diagnosis of ALS.
Despite variations in local protocols, neurophysiological tests
are recognized as objective, reliable and cost-effective tests
of neuromuscular dysfunction, and have also been repeatedly
proposed as longitudinal markers (55, 204). CMAP is generated
by depolarization of muscle fibers through the stimulation of
a single nerve, where amplitude reductions are interpreted as
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loss of motor axons (205, 206). While CMAP measurements
capture longitudinal decline, it is confounded by variations in
temperature, limb positioning and electrode placement (56, 207).
CMAP-derived measures such as MUNE and MUNIX are now
extensively utilized to characterize progressive changes in ALS.
MUNE estimates motor neuron numbers, and may detect the
rate of motor neuron loss, making it a more reliable method of
appraising disease progression than CMAP (208, 209). However,
its early-phase sensitivity has been questioned, as its use is
limited to distal muscles, and the technique requires considerable
training, especially for inter-rater and multi-site comparisons
(205, 210). TMS allows the characterization of upper motor
neuron dysfunction, and may be particularly useful in detecting
progressive changes (57, 205).

Functional rating-scales are often the monitoring instruments
of choice in clinical trials (55), as they are easy to administer,
cost-effective to utilize and have acceptable inter- and intra-
rater reliability profiles (7). The most widely used rating scale
in clinical longitudinal studies is the ALSFRS-r. Despite its
ease of administration, it has considerable limitations, as it
may be disproportionately influenced by LMN dysfunction, does
not account for laterality or asymmetry of symptoms, omits
cognitive impairment, and may be affected by medications
(14, 128, 188, 211).

Proteomics, metabolomics and lipidomics have seen
significant advances in ALS research and CSF and serummarkers
are now used in longitudinal academic and pharmacological
studies (172). Potential biomarkers for the detection of disease
progression include serum and plasma biomarkers such as
creatinine (150, 156), pNfH (158, 159), and micro-RNAs
(157), CSF biomarkers such as CHI3L1 (152), tau (160, 161),
and cystatin-C (162), and urinary (155) and skeletal muscle
(153) biomarkers.

Prediction Analyses
Age at symptom onset (212), BMI (139), bulbar involvement
(213), cognitive impairment (214), C9orf72 genotype status
(144), respiratory insufficiency (215), “definite ALS” by the El
Escorial criteria (216), and functional disability (217) are the
most commonly cited determinants of poor prognosis in ALS.
SNIP (218) and less commonly used measures such as twitch
trans-diaphragmatic pressure (Tw Pdi) (219) and maximal static
expiratory mouth pressure (MEP) were shown to be good
predictors of ventilator-free survival (219). A combined panel of
several clinical, wet, and dry biomarkers is likely to offer the most
accurate prognostic information (115, 120, 216, 217, 220). While
cerebral (217, 221, 222) and spinal (115) imaging measures have
been repeatedly linked to survival outcomes, these have not been
utilized in a clinical setting. Neurophysiological variables, such as
phrenic nerve stimulation outcomes (223) and biofluid markers,
such as pNFH and NFL (165, 168, 224–226) are also thought to
be accurate predictors.

Patient Stratification
Attempts to enroll patients in the early stages of the disease
are hampered by the universally long diagnostic delay in ALS
(227). Patient stratification in trials is typically based on site of

onset (228), instead of other variables which have an established
prognostic impact (138, 229). Admixed patient cohorts within a
trial may hamper the ability to detect how different phenotypes
and genotypes may exhibit a different response to a candidate
drug (230–232). The stratification of heterogeneous cohorts is
now aided by the development of validated staging systems,
such as the King’s (233), Milano-Torino (MITOS) (234) or
the Fine’til 9 (FT9) (235) staging systems. The King’s Staging
system is based on the number of body regions affected, and the
presence of nutritional or respiratory failure (233). The MITOS
staging system is based on the ALSFRS-r, and is particularly
sensitive to changes in later stages of the disease (236, 237).
However, none of these staging systems account for cognitive or
behavioral changes (236). Pathological staging systems suggest
a four-stage model of ALS based on anatomical patterns of
pTDP-43 load (238, 239). This system has now been validated
by in vivo neuroimaging studies (240) and signals that accurate
pathological staging and patient stratification may be possible
based on neuroimaging (199, 240).

International Consortia
Only few ALS centers maintain dedicated biobanking facilities to
store and process molecular markers in human biofluid locally.
Similarly, relatively few centers are in a position to generate
sufficient number of MRI and neurophysiology data sets of rare
phenotypes to make meaningful inferences in a single center
setting. Brain and tissue banks are also challenging to establish,
maintain and fund, despite their invaluable contribution to ALS
research (241–243).

Biospecimen samples are also often collected during
clinical trials, and discarded after negative outcomes, despite
their enormous potential for biomarker discovery (172).
One of the most important achievements of biomarker
development efforts is the establishment of national and
international research consortia such as Association pour la
recherche sur la SLA (ARSLA), Neuroimaging Society in ALS
(NISALS), Research Motor Neuron (RMN), Canadian ALS
Neuroimaging Consortium (CALSNIC), EU Joint Programme
for Neurodegenerative Disease Research (JPND), European
multidisciplinary ALS network identification to cure motor
neurone degeneration (EUROMOTOR) which maintain vital
biobanking facilities, registries, data repositories for multicenter
data interpretation (121, 244). Clinical trial networks are also
increasingly recognized as valuable platforms for multisite data
collection and interpretation as they operate with carefully
standardized protocols. Consortia such as the European Registry
of ALS (EURALS) Consortium, the Western ALS (WALS)
Consortium and the Northeast ALS (NEALS) Consortium are
other examples (245). NEALS is one of the largest consortia
with over 100 member sites from the US, Canada, Mexico,
Italy, Lebanon and Australia (246). EURALS coordinates
research studies and clinical trials relying on population-based
European registries and include centers from Scotland, England,
Netherlands, Spain, Ireland, Serbia, Italy, France, and Germany
(241, 247, 248). ALS research consortia promote patient-oriented
research, maintain biofluid, imaging and DNA banks, and have
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the potential to translate scientific advances into pragmatic
clinical interventions.

Telehealth
Novel trends in longitudinal data collection include
telemedicine-based technologies, wearable sensors and mobile
phone applications (230). The continuous collection of data via
telephone or telemedicine applications such as the Telehealth
in Motor Neuron disease (TiM) system circumvent the
inconvenience of patients and caregivers traveling long distances
for research appointments (249). Once local data-protection
and governance guidelines are complied with, information
uploaded from these systems can be made available to healthcare
professionals of multidisciplinary teams in real time (249).
The feasibility of telehealth for ALS patients via live video-
conferencing has also been evaluated (250) and is considered a
particularly promising clinical and research platform (249, 250).
A number of cognitive-behavioral screening tools have also been
adapted for phone administration (251) including modified
versions of the ALS Cognitive Behavior Screen (ALS-CBS), the
Controlled Oral Word Association Test (COWAT), the Center
for Neurologic Study-Lability Scale (CNS-LS) and found to
be statistically equivalent to face-to-face assessments (251).
Performance on other tests however, such as the telephone
versions of the ALS-Frontal Behavioral Inventory (ALS-FBI)
caregiver interview and the Written Verbal Fluency Index
(WVFI) was not equivalent to clinic-based assessments (251).
The continued development of telephone and internet-enabled

devices are likely to provide further insights to longitudinal
physical, cognitive and behavioral changes (251).

CONCLUSIONS

While clinical indicators of disease progression remain
indispensable, neuroimaging, neurophysiology, and biofluid
measures are particularly promising, objective, quantitative
biomarker candidates. The validation of combined “wet” and
“dry” biomarker panels will not only enable the detection
of subtle progressive changes in ALS, but allow precision
stratification of heterogeneous patient cohorts in clinical trials
and improve existing prediction algorithms.
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Pathological crying and laughing (PCL) has significant quality-of-life implications in

amyotrophic lateral sclerosis (ALS); it can provoke restrictive life-style modifications and

lead to social isolation. Despite its high prevalence and quality of life implications,

it remains surprisingly understudied. Divergent pathophysiological models have been

proposed, centered on corticobulbar tract degeneration, prefrontal cortex pathology,

sensory deafferentation, and impaired cerebellar gate-control mechanisms. Quantitative

MRI techniques and symptom-specific clinical instruments offer unprecedented

opportunities to elucidate the anatomical underpinnings of PCL pathogenesis. Emerging

neuroimaging studies of ALS support the role of cortico–pontine–cerebellar network

dysfunction in context-inappropriate emotional responses. The characterization of

PCL-associated pathophysiological processes is indispensable for the development of

effective pharmacological therapies.

Keywords: pathological crying and laughing, pseudobulbar affect, emotional lability, involuntary emotional

expression disorder, motor neuron disease, amyotrophic lateral sclerosis, biomarkers, magnetic

resonance imaging

INTRODUCTION

The terms “pathological crying and laughing,” “pseudobulbar affect,” “emotional lability,” and
“involuntary emotional expression disorder” are often used interchangeably depending on
geographical location and year of publication. Despite the differences in terminology, recurrent
episodes of involuntary or exaggerated emotional expression, particularly in the form of crying
and laughing, are common in several neurological conditions including, in order of prevalence:
motor neuron disease (MND), traumatic brain injury (TBI), multiple sclerosis (MS), stroke,
multiple system atrophy-cerebellar type (MSA-C), Alzheimer’s disease (AD), and Parkinson’s
disease (PD) (1–6).

The disorder is particularly common in motor neuron diseases (MND): amyotrophic lateral
sclerosis (ALS) and primary lateral sclerosis (PLS). Prevalence estimates vary, but between one
quarter and one half of MND patients are thought to be affected (5, 7–11). While there is a paucity
of studies comparing PCL prevalence across the spectrum of MND phenotypes, a recent study
confirmed the relationship between clinical upper motor neuron dysfunction and PCL prevalence;
PCL was most commonly identified in PLS and UMN-predominant patients (39%), followed
by typical ALS (29%) and lower motor neuron (LMN) predominant groups (10%). Consistent
with this pattern, there was a single case of PCL in a group of 12 patients with progressive
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muscular atrophy (PMA) (12). While the manifestations of the
episodes may be congruent with the person’s contemporary
emotional state (10, 13, 14), the magnitude of emotional
responses is disproportionate to the emotive stimulus and
the social context. Such episodes may cause significant
distress, embarrassment, and ultimately may lead to social
withdrawal (15).

The primary objective of this review is to systematically
appraise PCL-related studies in MND from a dual academic and
clinical perspective. We outline established and emerging
disease-models based on neuroimaging, neurosurgical
and neurophysiological studies. The spectrum of clinical
presentations, diagnostic challenges, functional impact, and
treatment options are also discussed. We preferentially use the
term “pathological crying and laughing” (PCL) in this review,
in its broadest sense: encompassing the entire spectrum of
presentations. Furthermore, while PCL in ALS is the primary
focus of this review, we draw further information from PCL
studies in other neurological conditions to discuss unifying,
symptom-specific, pathophysiological concepts.

METHODS

A formal literature search was conducted using PubMed/Medline
and Embase using the terms “pathological crying and laughing,”
“pseudobulbar affect,” “emotional lability,” involuntary emotional
expression disorder” separately, and in combination with terms
“amyotrophic lateral sclerosis,” “motor neuron disease,”
“pseudobulbar palsy,” “clinical trials,” “treatment,” and
“pathology.” Only articles in English, published between
1988 and October 2018 were included. A total of 220 articles
met these criteria; these were systematically reviewed for
information relating to diagnosis, disease-mechanisms,
anatomical localization, and treatment options.

Historical Context and Terminology
The abundance of terms used to describe this syndrome
epitomizes the tireless efforts to characterize the underpinnings
of both physiological and pathological emotional expression.
Charles Darwin observed in 1872 that “certain brain-diseases,
as hemiplegia, brain-wasting, and senile decay, have a special
tendency to induce weeping” (16). Oppenheim (17) used the term
“pseudobulbar affect” (PBA), based on the important observation
that the disorder commonly occurs in association with motor
features of pseudobulbar palsy, a condition resulting from

Abbreviations: AD, Alzheimer’s disease; ALS, Amyotrophic lateral sclerosis;

B.I.D., Bis in die/twice daily; CNS-LS, Center for Neurologic Study-lability

scale; DxQ, Dextromethorphan-quinidine; EL, Emotional lability; ELQ, Emotional

lability questionnaire; EMA, European Medicines Agency; FDA, US Food

and Drug Administration; LMN, Lower motor neuron; MND, Motor neuron

disease; MRI, Magnetic resonance imaging; MS, Multiple sclerosis; MSA-C,

Multiple system atrophy-cerebellar type; NMDA, N-methyl-D-aspartate; PBA,

Pseudobulbar affect; PC, Pathological crying; PCL, Pathological crying and

laughing; PD, Parkinson’s disease; PLACS, The pathological laughing and crying

scale; PLS, Primary lateral sclerosis; PMA, Progressive muscular atrophy; SPECT,

Single-photon emission computed tomography; SSRI, Selective serotonin re-

uptake inhibitor; TBI, Traumatic brain injury; TCA, Tricyclic anti-depressant;

UMN, Upper motor neuron.

bilateral corticobulbar tract pathology. Although this association
is still well-recognized (13, 18), the term PBAmay be misleading;
new evidence suggests that corticobulbar tract dysfunction
alone is neither necessary, nor sufficient to cause PCL (19–
23). “Emotional Lability” (EL) was described by Pierre-Marie as
early as 1892, a term still commonly used in the literature (24).
The term pathological crying and laughing (PCL) was used by
Wilson in his influential essay of 1924, in which he introduced
his unifying theory of the disorder (25). More recently, the term
“involuntary emotional expression disorder” (IEED) has been
proposed to encompass the wider range of emotional symptoms
which may accompany the disorder (26).

Clinical Presentations, Diagnosis and
Monitoring
A useful conceptualization of PCL is that symptoms may lie
on a spectrum, (27) with infrequent, mood congruent but
disproportionate episodes at one end, and frequent, mood
incongruent episodes at the other. While there is considerable
variability in episode type and character across patients, within
individuals episodes tend to be consistent over time in terms
of symptom type (i.e., uncontrolled laughing or crying), the
context in which the episodes recur, the severity, duration, and
the degree of voluntary control that the individual retains over
the episodes (26, 28). The wide range of presentations coupled
with the lack of unifying terminology, has hampered efforts to
establish widely adopted diagnostic criteria. Several criteria have
been proposed and later revised, reflecting evolving concepts of
the PCL (29). Poeck’s 1969 criteria (30), focus on episodes that
are entirely situation inappropriate or unrelated to the patient’s
internal emotional state. Recent criteria are less restrictive,
encompassing presentations across the entire spectrum (26, 27).
Revised criteria proposed by Cummings et al. for “involuntary
emotional expression disorder” (IEED) (26) are inclusive of
episodes that are either disproportionate to the emotive stimulus
or to the individual’s internal emotional state. The episodes must
represent a distinct change from the patient’s emotional reactivity
prior to the onset of a neurological disease. These criteria
specifically require the exclusion of alternative causes for the
symptoms; mood, facial tics, dystonia, or substance effects. More
recently, Miller et al. proposed to include supportive features
such as the presence of pseudobulbar signs and a proneness to
anger (27). The latter reflects accruing observations from several
studies (14, 23, 27, 31).

PCL needs to be carefully distinguished from mood disorders
through careful clinical evaluation (1, 9, 32). A key difference is
that crying in depression or excessive laughter in mania occur
in the context of pervasive low or elevated mood, respectively
(33). In the case of clinical depression, associated symptoms
can also be identified such as anhedonia and insomnia (27,
34). Although some studies report an association between
depression and PCL (12), more commonly, no significant
association is found (8, 13, 35). The clinical distinction may
be particularly challenging in cases where pathological crying
co-exists with depressive symptoms (2, 36). Emerging evidence
suggests that PCL may respond to selective serotonin reuptake
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inhibitors (SSRIs) within days, whereas depression typically
only responds to pharmacological intervention after several
weeks (37).

Similarly to the multitude of diagnostic criteria proposed
for PCL, several screening and symptom severity scoring
instruments have been developed. While not all of these have
been extensively validated, these tools have been used in both
academic research and clinical trials. The pathological laughing
and crying scale (PLACS) was validated for use in stroke patients
with “PBA” in 1993. The authors used it as an efficacy measure
in a small placebo-controlled trial of nortriptyline; treatment
was associated with symptom reduction (38). The Center for
Neurologic Study-Lability Scale (CNS-LS) was introduced as a
self-reported measure of “affective lability” in ALS (39). This
short, self-administered questionnaire consists of 7 items; 4
relating to labile laughing and 3 relating to crying. The scale
evaluates subjective burden of symptoms over the preceding
week, in terms of episode burden and severity. While this scale
relies on retrospective patient account, it has been shown to
be an accurate indicator of episode frequency (40). The CNS-
LS has been adopted as an efficacy measure in several recent
clinical trials (41–44). Another assessment tool, the “emotional
lability questionnaire” (ELQ) has also been validated in ALS.
It extends the period over which symptoms are assessed from
one up to four weeks prior to screening, which helps to capture
patients who experience less frequent episodes (45, 46). In
addition to PCL, it also includes a specific section on abnormal
smiling. One of the strengths of the ELQ is that it includes the
caregiver’s perspective, which helps to identify lack of insight
if significantly discordant scores are given by the patient and
the carer. Interestingly, in ALS, there is significant agreement
between patient and caregiver scores, indicating that patients are
keenly aware of PCL symptoms (45). This concordance contrasts
with behavioral deficits in ALS-FTD, where patient reports may
differ substantially from caregivers reports (47).

Although screening instruments are valuable tools for
identifying and monitoring PCL, they don’t evaluate the impact
of PCL on individual patients. There is evidence, that PCL
impacts on the quality-of-life and social functioning of affected
individuals (48) and may contribute to carer distress (49). There
is a growing effort to understand the individualized experiences
of patients with PCL (14, 35, 50, 51).

DISEASE MODELS

Traditional and Revised Hypotheses
The traditional PCL model, proposed by Wilson in 1924 has,
until recently been the most widely accepted one (25). Under
physiological circumstances, it contends, emotional expression is
influenced by both voluntary motor and involuntary emotional
centers. These pathways descend onto the medullary “facio-
respiratory” centers, which mediate the facial movements and
breathing patterns necessary to convey emotion. This model
predicts that disruption of the descending voluntary inputs
to the brainstem, such as may occur in pseudobulbar palsy,
results in disinhibition of involuntary emotional influence on
expression. In support of this model, Wilson cited cases of

dissociated emotional and voluntary facial expression, such as
the observation that some patients with pseudobulbar palsy
are unable to make voluntary facial movements but can be
observed to smile, laugh or cry in response to emotional
stimuli. This phenomenon is usually termed “voluntary facial
palsy” (52). The contrary, “mimic palsy” or “emotional facial
palsy” is sometimes observed, in which a patient with entirely
normal voluntary facial movements, exhibits a complete lack of
movement on one side of the face when reacting to emotional
stimuli (53).

Parvizi et al. highlighted several limitations of the traditional
model (54). Patients with bilateral voluntary facial paralysis, as
in Wilson’s example do not seem to be excessively prone to PBA,
as would be predicted by the “disinhibition”model. Furthermore,
patients with severe PBA symptoms are usually able to voluntarily
mimic laughing or crying, indicating that involuntary expression
can occur alongside intact voluntary control.

The revised model of PCL draws on the increasing
appreciation of the role of the cerebellum in cognitive processes
(55, 56). This model suggests that the cerebellum plays a
key role in gating and modulating emotional output in
response to contextual cues from cortical and limbic areas
(54). Modulation is believed to be mediated through cortico-
ponto-cerebellar pathways. In normal motor control, the
cerebellum is known to modulate motor output in response
to multiple sensory inputs; disruption of these inputs produces
motor modulation deficits, including dysmetria. The involuntary
emotional expression resulting from disruption of cortico-
ponto-cerebellar emotional circuits has, analogously been termed
“affective dysmetria” (57).

Insights From Imaging and
Neurophysiological Studies Across
Neurological Diseases
Research over the past 30 years has led to a revision of
the traditional model of PCL; studies have provided strong
evidence to refute a simple causal relationship between PCL
and corticobulbar tract dysfunction (58). Instead, a disruption
within a widely dispersed network of emotional control appears
to underlie the disorder. Tables 1, 2 provide an overview of
studies highlighting key anatomical regions implicated in the
pathogenesis of PCL. An MRI-based lesion study in post-
stroke pathological crying classified patients based on symptom
severity (70). It found a positive pathoanatomical correlation
between lesion size and location and pathological crying severity.
Bilateral pontine infarcts were associated with greatest severity,
while bilateral anterior hemispheric infarcts were associated with
moderate PCL severity.

Among the likely neurotransmitters involved in the
physiological expression of emotion, serotonin and glutamate
have received particular attention (27, 71, 74). Evidence
for dysfunction within these neurotransmitter pathways in
PCL comes from the success of serotonergic (31, 38, 75),
and anti-glutamatergic drugs (42) in PCL treatment. The
selective serotonin re-uptake inhibitors (SSRIs) and tricyclic
antidepressants (TCAs), are thought to work by increasing
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TABLE 1 | Neuroanatomical regions implicated in PCL circuitry based on clinical observations.

References Neurological

condition

Terminology n Main study findings Anatomical

localization

CLINICAL CASES

Parvizi et al. (3) Cerebellar cyst PC 1 PC+ Midline cerebellar cyst Cerebellum (vermis)

Parvizi et al. (59) MSA-C PCL PCL+:

1 PM

and

9 clinical MSA-c

Pathological changes confined to

cerebellum, basilar pons and olives

cerebellum and

brainstem

connections

Chattha et al. (60) PD with STN-DBS PBA 1 PBA+ Laughter with DBS stimulation of

sub-thalamic nuclei

Basal ganglia: STN

Saini et al. (61) CPM PBA 1 PBA+ Basilar pons demyelination CPC tracts: Pons

Martin et al. (62) Anti-Yo cerebellar

degeneration

PBA 1 PBA+ Breast cancer presenting as uncontrollable

crying and motor cerebellar syndrome

Cerebellum

McCullagh et al. (20) ALS PCL 10 PCL +

8 PCL-

10 HC

Executive dysfunction in PCL+ Pre-motor frontal

cortex

Palmieri et al. (45) ALS EL 29 EL+ Correlations: (1) bulbar disease and EL (2)

bulbar disease and executive impairment.

However, no correlation between PCL and

cognitive changes

Extra-motor frontal lobe

Olney et al. (13) ALS PCL 21 PCL+, 14 PCL– Laboratory study: PCL+ had impaired

regulation of facial expression

Frontal cortex

Hübers et al. (63) ALS PCL 10 PCL+, 10 HC PCL+ more susceptible to

mood-incongruent stimuli than controls,

PCL associated with emotional

lability/suggestibility

Frontal cortex

NEUROSURGICAL CASES

Krack et al. (64) PD with STN-DBS Mirthful

laugh

2 PL+ Associated with DBS stimulation of bilateral

STN in one patient and right STN in other

Basal ganglia: STN

Okun et al. (65) PD post-thalamotomy PBA 1 PBA+ Post-thalamotomy pathological laughing Basal ganglia

Okun et al. (66) PD with STN-DBS PC 1 PC+ Pathological crying with DBS stimulation of

left sub-thalamic nucleus

Basal ganglia: STN

Famularo et al. (67) Cerebellar

ependymoma

PL 1 PL+ PC as sole presenting feature of

cerebellar vermis tumor abutting the floor of

the fourth ventricle

Cerebellum (vermis)

Low et al. (68) PD with STN-DBS PC 1 PC+ Pathological crying with DBS stimulation in

region of caudal internal capsule (without

signs of PBP)

Internal capsule

(caudal)

Wolf et al. (69) PD with STN-DBS PC 1 PC+ Pathological crying with DBS stimulation of

sub-thalamic nuclei

Basal ganglia: STN

CPC, cortico-ponto-cerebellar pathways; CPM, Central Pontine Myelinolysis; Dx, Diagnosis; HC, Healthy control; MSA-C, Multiple system atrophy, cerebellar type; n, sample size;

PBP,Pseudobulbar Palsy; PC, Pathological crying; PL, pathological laughing; PM, Post-mortem/Autopsy; SERT, Serotonin transporter; STN-DBS, Subthalamic nucleus, deep brain

stimulation; UMN, Upper motor neuron; WM, White matter.

availability of serotonin at synapses in corticolimbic and
cerebellar circuits (32).

A SPECT study found reduced brainstem serotonin receptor
(SERT) densities in post-stroke PCL (71), providing further
evidence of the role of serotonergic transmission in PCL.
Serotonergic neurons from the raphe nuclei have widespread
projections from the paramedian brainstem to cortical,
subcortical, and cerebellar targets (76, 77). Also consistent with
the serotonin hypothesis, lesions involving these nuclei and their
projections are frequently associated with PCL (70). An MRI
study of PBA in MS patients showed an association between
symptoms and lesions in key regions: brainstem, bilateral inferior
parietal, and medial frontal regions (23).

There is increasing recognition of the role of sensory
deafferentation of the cerebellum in PCL (78). Evidence from
neurophysiological studies in PCL suggests that the cerebellum

may filter emotional output through a “gate-control” mechanism
(79). At a cellular level, cerebellar Golgi cells may play a crucial
role in gate-control. It has been demonstrated that Golgi cells,
when activated from various peripheral inputs, show decreased
firing rate, thereby reducing inhibition of granule cells (80).
This finding, suggests, that rather than providing “gain-control,”
Golgi cells may act as a “context-specific gate” on transmission
through the mossy fiber–granule cell pathway. A study of PCL
in MSA-cerebellar type found a prevalence of 36% in this
condition, in which clinically-significant cerebellar dysfunction
is apparent (59).This prevalence estimate exceeds those of studies
in idiopathic Parkinson’s disease (5), suggesting that cerebellar
pathology is linked to PCL in Parkinsonian disorders. Several
neurological and neurosurgical case-reports have linked PCL
to cerebellar pathology, especially in association with vermis
pathology (3, 62, 67, 81). These studies support the cerebellar
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TABLE 2 | Anatomical conclusions of neuroimaging studies in PCL.

References Neurological

condition

Terminology n Main study findings Anatomical localization

Andersen et al. (70) Stroke PC 12 PC+ Isolated, bilateral pontine lesions in most

severe cases; bilateral basal ganglia lesions

in intermediate group; unilateral subcortical

lesions in milder

Pons (raphe nuclei),

Basal ganglia,

Subcortical WM

Murai et al. (71) Stroke PC 6 PC+

9 PC–

Reduced SERT binding ratios in

midbrain/pons in PC

Brainstem (raphe nuclei)

Tateno et al. (72) TBI PCL 92 PCL+ PLC associated with traumatic frontal lobe

lesions, particularly lateral left frontal lobe

Frontal lobes (esp. left

lateral)

Ghaffar et al. (23) MS PBA 14 PBA+

14 PBA–

Greater lesion volume in PBA subjects in

brainstem; bilateral inferior parietal and

medial inferior frontal; right medial superior

frontal

Brainstem; Parietal lobes

(bilateral inferior); frontal;

basal ganglia

Floeter et al. (10) ALS PBA 22 PBA+

25 PBA–

28 HC

PBA+ (vs. PBA-): reduced FA underlying

left motor cortex, Increased MD underlying

the frontotemporal cortex, the transverse

pontine fibers, and MCP. IC pathology in

both groups

widespread disruption of

CPC

tracts in PBA

Wang et al. (21) Stroke PCL 56 PCL+, 56 PCL– PCL associated with pontine infarcts,

particularly paramedian lesions

Pons

Christidi et al. (73) ALS PCL 28 PCL+

28 PCL–

25 HC

PCL+ vs. PCL-: Reduced GM volume: left

orbitofrontal cortex, frontal operculum,

putamen; and bilateral frontal poles. WM

pathology: decreased FA in left cingulum

bundle, posterior corona radiata

Frontal cortex: left

orbitofrontal; and operculum

Cingulate WM

CPC, cortico-ponto-cerebellar pathways; CPM, Central Pontine Myelinolysis; Dx, Diagnosis; HC, Healthy control; MSA-C, Multiple system atrophy, cerebellar type; n, sample size; PBP,

Pseudobulbar Palsy; PC, Pathological crying; PL, pathological laughing; PM, Post-mortem/Autopsy; SERT, Serotonin transporter; IC, Internal Capsule; STN-DBS, Subthalamic nucleus,

deep brain stimulation; UMN, Upper motor neuron; WM, White matter.

gate-control theory of emotional expression, indicating that the
disruption to cortico-ponto-cerebellar emotional circuitry may
underlie this disorder.

Insights From PCL Studies in Motor
Neuron Disease
Corticobulbar tract dysfunction in ALS has been linked to
cognitive impairment, and in particular to executive dysfunction
(82). A study of PCL in ALS found an association between PCL
and poor performance in executive tasks, implicating pre-frontal
cortical areas in the disorder (20). Other studies, in contrast
have found no such associations (8, 45). Systematic studies of
social cognition in patients with PCL are lacking. Despite the
conflicting findings, evidence from imaging and neurophysiology
studies support the involvement of frontal cortical dysfunction in
PCL (73, 79).

Advanced neuroimaging techniques enable the
characterization of symptom-specific structural (83, 84),
and functional (85, 86) alterations, providing insights into
disease mechanisms (87, 88). Given the high prevalence of
PCL in MND, it provides unique opportunities to explore
PCL-specific network alterations (58). Floeter et al. used MRI
diffusion methods to explore the white matter signature of PCL
in ALS and PLS (10). Both ALS and PLS patients exhibited
considerable white matter pathology in the corticospinal
tracts and the corpus callosum. PCL-associated white matter

changes were identified in frontotemporal regions, transverse
pontine fibers and the middle cerebellar peduncles. A recent
multimodal MRI study by Christidi et al. used the CNS-LS
to divide a large group of ALS patients into PCL-positive and
PCL-negative groups (73). The PCL-positive group showed
significant gray and white matter changes compared with the
PCL-negative group. The gray matter assessment found reduced
volume of left orbitofrontal cortex, operculum, putamen, and of
bilateral frontal poles. White matter analyses revealed diffusion
abnormalities in the left cingulum, the posterior corona radiata
and in the left middle and bilateral inferior cerebellar peduncles.
The finding of cerebellar involvement in PCL in ALS again
implicates cerebellar dysfunction in the pathophysiology of PCL,
across a range of neurological diseases. While it is challenging
to detect cerebellar signs clinically in the presence of pyramidal
and lower motor neuron degeneration in ALS, imaging studies
suggest that cerebellar degeneration is an important feature of
ALS pathology, which is likely to contribute to PCL (89–91).

THERAPEUTIC OPTIONS

Antidepressant Medication in the
Management of PCL
Divergent pharmacological strategies have been explored in
the management of PCL. SSRIs and TCAs are the most
frequently used off-label medications (75). Surprisingly, we did
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not identify any placebo-controlled trial of any antidepressants
for PCL in ALS. In the absence of robust clinical trial data
in ALS, evidence from other neurological conditions, most-
commonly stroke, is used to guide treatment. There have
been positive results in small placebo-controlled trials of SSRIs
including citalopram (92), fluoxetine, (31) sertraline (93) and
of the TCA nortriptyline (38), in post-stroke PCL. Case-reports
and uncontrolled trials reported symptom improvement with
amitriptyline (94) and duloxetine (95) in ALS; memantine in
AD (96); and mirtazapine in post-stoke PCL (97). A 2010
Cochrane review of treatments for “emotionalism” after stroke
concluded that there is “suggestive but not definitive” evidence
that antidepressants reduce frequency of symptoms, although
it highlighted “several methodological deficiencies” in available
studies (98).

Management of PCL in Motor Neuron
Disease
In 2010, dextromethorphan/quinidine (Dx/Q) became the first
FDA-approved treatment for PCL, following more than a decade
of research into the potential benefits of the commonly-used
anti-tussive for this indication (99). Dextromethorphan acts as a
non-competitive glutamate antagonist on NMDA-receptors and
as an agonist on sigma receptors (100).When administered alone,
it is rapidly metabolized by first-pass metabolism through the
cytochrome P450-2D6 system. The addition of the CYP-2D6
inhibitor, quinidine, dramatically increases the bioavailability
of dextromethorphan (101). In 2004, a randomized, double-
blinded study compared treatment with Dx/Q (30/30mg twice
daily) with dextromethorphan alone in ALS patients with PBA,
defined by a CNS-LS score ≥13 (43). The combination not
only reduced CNS-LS scores and episode frequency but also
led to improvements in quality-of-life measures. Treatment-
related side effects including nausea, dizziness, somnolence,
and loose stools were relatively common however; about one
quarter of patients withdrew from treatment, the majority within
1 week (102). A follow-up study in 2010 assessed whether
a lower quinidine dose would reduce adverse effects relative
to the earlier trial, while maintaining efficacy (42, 103) The
study randomized ALS (n = 197) and MS (n = 129) patients
with PBA to Dx/Q 30/10mg BID, Dx/Q 20/10mg BID or
placebo BID. Both Dx/Q doses were found to reduce episode
frequency, CNS-LS scores and to improve the likelihood of
symptom remission compared to placebo. There was a lower
discontinuation rate than in the earlier trial. It is interesting
to note the considerable placebo response rate across efficacy
endpoints in both trials. It must also be pointed-out that CYP450
2D6-poormetabolizers (104) were excluded from the efficacy and
safety analyses raising questions about the requirement to screen
for this phenotype prior to prescribing (105). Efficacy outcomes
were also maintained in a 12-week open label extension study
(106). A 52-week open-label study in 553 patients, including
199 patients with ALS, reported no serious drug-related adverse
effects (75). However, clinicians must be cognizant of underlying
cardiac conditions as quinidine can cause serious QT-interval
prolongation (107).

Limitations of Currently Available
Treatments
While the emergence of the first FDA-approved drug for
PCL is an important advancement, the effective treatment
of PCL remains challenging. Unfortunately, there have been
no head-to-head trials of Dx/Q and any commonly used
antidepressant. This knowledge-gap is particularly problematic
given the current cost of Dx/Q, which may be prohibitive.
Not only is the price of the approved combination product
higher than alternative options, it is dramatically more
expensive than the combined cost of its individual components
(108). Finally, although Dx/Q was granted approval by
the European Medicines Agency (EMA) in 2013, it was
subsequently withdrawn by the manufacturer in 2016, on
commercial grounds. (109, 110) A 2017 Cochrane review of
“symptomatic treatments” in ALS highlighted emotional lability,
as a symptom for which there is a “significant gap” in studies
regarding the effectiveness of available treatments (111). There
is a pressing and unmet need for robust clinical trials of
antidepressants in the management of PCL. Finally, there is
evidence that ALS patients and carers, lack awareness of the
association between PCL and their underlying neurological
condition (112), highlighting the importance of enquiring about
PCL symptoms in patients with high-risk conditions, such
as ALS.

CONCLUSIONS

Pathological crying and laughing is a shared symptom of
many neurological conditions across infective, vascular,
inflammatory, and neurodegenerative etiologies. Various
terminologies have been used to encompass the heterogeneity
of symptoms, which vary in severity, emotional congruity,
frequency, and degree of control. After centuries of insightful
observations, lesion studies and case reports, neuroimaging
methods now provide long-awaited in-vivo insights into
the specific pathophysiological mechanisms underlying
the disorder. Patho-anatomical correlations indicate, that
irrespective of the pathology (i.e., neurodegeneration, stroke,
demyelination, TBI), the disorder occurs due to disruption
in circuits involved in the initiation and modulation of
emotional output. Key components of the network include
sensori-motor cortical regions and their pontine and cerebellar
connections. Further research is needed to elucidate the specific
role of individual components within the network and their
interactions. Effective symptomatic treatments are available;
however, further studies are needed to establish individualized
treatment strategies for patients experiencing impaired social or
occupational functioning.
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It is one of the primary goals of medical care to secure good quality of life (QoL)

while prolonging survival. This is a major challenge in severe medical conditions with

a prognosis such as amyotrophic lateral sclerosis (ALS). Further, the definition of

QoL and the question whether survival in this severe condition is compatible with

a good QoL is a matter of subjective and culture-specific debate. Some people

without neurodegenerative conditions believe that physical decline is incompatible with

satisfactory QoL. Current data provide extensive evidence that psychosocial adaptation

in ALS is possible, indicated by a satisfactory QoL. Thus, there is no fatalistic link of loss

of QoL when physical health declines. There are intrinsic and extrinsic factors that have

been shown to successfully facilitate and secure QoL in ALS which will be reviewed in the

following article following the four ethical principles (1) Beneficence, (2) Non-maleficence,

(3) Autonomy and (4) Justice, which are regarded as key elements of patient centered

medical care according to Beauchamp and Childress. This is a JPND-funded work

to summarize findings of the project NEEDSinALS (www.NEEDSinALS.com) which

highlights subjective perspectives and preferences in medical decision making in ALS.

Keywords: ethics, quality of life (QoL), care, amyotrophic lateral sclerosis (ALS), well-being, depression, coping,

psychosocial adaptation

QUALITY OF LIFE IN ALS

Amyotrophic lateral sclerosis (ALS) is among the most devastating neurological conditions:
patients lose the ability to speak, to walk and eventually to breathe. On average, patients die
within 3 years after symptom onset. If life-sustaining measures such as invasive ventilation are
taken, patients may terminate in a locked-in state with a clear mind in a paralyzed body. There
is no cure for ALS and care focuses on maintaining functional ability and providing palliative
and symptomatic interventions to relieve the burden of symptoms (1). The communication of the
diagnosis is a major stressful event for patients, families and caretakers and thus most challenging
with regard to medical counseling (2).

There are different ways of how patients cope with these major changes. Quality of life (QoL)
is one possible measure of good psychosocial adaptation to disability such as ALS, similarly to
depression (3). There have been contradictory reports whether QoL is lost in the course of physical
decline (4–6). This discrepancy is partly attributed to selection of patient subgroups (e.g., shortly
after diagnosis vs. long-term survivors) and the use of different QoL definitions. QoL is the
general well-being of a person and includes physical (individuals’ perception of their physical
state), psychological (individuals’ perception of their cognitive and affective state) and social
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dimensions (individuals’ perception of the interpersonal
relationships and social roles in their life). It is therefore not
simply a state of physical integrity (7). QoL is increasingly
used to supplement objective clinical or biological measures to
evaluate health care provision and interventions in research and
clinical trials (8).

There is a debate which QoLmeasure is truly patient centered.
Measures are either based on hedonic concepts focusing on
subjective factors and emotional evaluation or eudaimonic
concepts with more objective factors of QoL such as physical
health or economic status (9). As physical health declines
in ALS and mobility becomes heavily restricted, these QoL
measures provide evidence for low QoL in ALS simply by the
nature of the underlying concept. These clinimetric endpoints
are increasingly considered overly reductionistic (10) as they
include aspects, which are no longer relevant or are out of
range of an immobile patient, e.g., physical activity (11); thus,
patients often prefer more subjective scales of QoL as these better
capture their emotional state of well-being (Table 1). They might
as well be regarded as possible outcome measures in clinical
trials to determine the subjective benefit of a treatment for a
patient. Observations concerning hedonic QoL are often counter-
intuitive: simultaneous deterioration of physical integrity and
well-being does not necessarily occur (19). Accordingly, ALS
patients may experience a surprisingly high subjective QoL and
an only moderately increased affective state as compared to
healthy subjects (6, 20–27) which can be maintained throughout
the course of ALS (27–29). This may even be true in the final state
of complete immobility, the locked-in state [LIS; (30, 31)].

The lack of association of severity of illness and subjective
QoL has been shown for several diseases and is referred to as
the “well-being-paradox” (32). Prerequisite for this paradox is a
process of psychosocial adaptation to the altered circumstances
of severe physical function loss. According to the theory of
homeostasis in quality of life, everybody has his/her individual
level of well-being which he/she aims to reach which is usually
in the range of 70–80% of the maximum QoL (33). Provided
that sufficient time (29) and intrinsic (e.g., successful coping) and
extrinsic resources (e.g., strong family support) are given, patients
may show a process of ongoing change and adaptation of their
expectations to the actual circumstances [TOTE model; (34)].
The capability of adaptation is not simply a matter of disease
state or general personality traits (21). It can be successfully
supported by medical teams through patient centered medical
care. The different intrinsic and extrinsic factors in medical
care to facilitate QoL in ALS and the individualistic perspective
in medical decision making have been evaluated within the
JPND-funded project NEEDSinALS (www.NEEDSinALS.com).
These factors may be subsumed under the four ethical principles
of good medical care according to Beauchamp and Childress
(35), namely beneficence, non-maleficence, autonomy and justice
(Figure 1).

Beneficence
This principle requires that everything should be done in
the best interest of the patient. Therapeutic interventions are
usually introduced by the physician and their interdisciplinary
teams to facilitate QoL in ALS. No cure is available yet, but

different therapeutic interventions e.g., non-invasive ventilation
(NIV) may be means also to prolong survival (36). Previous
studies have provided extensive evidence that ALS patients
with NIV have an increased QoL (20, 37, 38). Permanent
respiratory insufficiency may lead to disturbed sleep, fatigue
and reduced physical fitness, all these symptoms may be
relieved by ventilation (39). Thus, ventilation may positively
impact QoL and patients with ventilation may show even
higher QoL than those without (20). Further, nutritional
support is a major element of beneficence in ALS as a loss
in BMI is a negative prognostic factor (40). Unfortunately,
fear of choking during meals is widely prevalent in patients
with bulbar symptoms (41), so many patients fear to eat at
all. Thus, introduction of a PEG may be a highly useful
approach to improve QoL as it allows for weight control
while relieving the patient from the pressure to eat. As
patients may nevertheless be able to have oral food intake,
the pleasure and sensuality of eating can be maintained
which additionally supports QoL. However, in some patients
the positive effect of PEG insertion might be outbalanced
by “particularly strong feelings of loss of control” (41),
highlighting the subjective perspective on patient centered
care (8). Other therapeutic interventions may as well-facilitate
QoL such as application of botox to stop the debilitating
syndrome of “drooling” (sialorrhoea). Also, therapies such as
physiotherapy, occupational therapy (ergotherapy) and speech
therapy (logopedics) may relieve physical symptoms of pain,
muscle tension and stiffness which all finally may help to improve
QoL (42).

Apart from therapeutics, there is one major extrinsic factor
which may substantially improve QoL which is social support
(23). Family is the most frequently named aspect of individual
QoL in ALS (26, 29, 43). And, as satisfaction with family was
often good among patients, the patient’s QoL is also often good
(44). For healthy subjects, there are other factors which are
important for well-being (finances, career) whereas most ALS
show a response shift toward social support in the course (20).
Thus, inclusion of family members in clinical counseling and
supporting the patient in refocusing on social resources may
facilitate QoL.

Apart from these extrinsic factors, QoL in serious illness is
highly depending on intrinsic factors, such as resilience which is a
general characteristics addressing the capacity to recover quickly
from difficulties (45). In this context, there has been evidence
in ALS that appraisal of coping potential and mental attitudes
may be crucial to adapt (23). A re-set of preferences referred to
as response shift (46) may support these inner processes with
the ability to see what is still there and what is untouched by
the disease [e.g., spiritual well-being; (20)]. Further, reframing,
the ability to see the same situation from a different perspective
[e.g., instead of looking at what you lose, you pay attention to
what is spared such as your emotions, feelings and desires; (20)]
can be highly supportive for psychosocial adaptation. Finally,
many years of research about adapting to and living with chronic
diseases suggest that mindfulness in the sense of accepting the
circumstances which cannot be changed without judgement and
focus on the present (47) may reduce the negative psychological
impact of the illness (48, 49).
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TABLE 1 | Examples of most widely used measures of subjective, patient-centered QoL.

Abbreviation Measure Procedure Outcome

MEASURES OF GLOBALE SUBJECTIVE QoL

ACSA (12) Anamnestic comparative

self-assessment

Culturally independent and well-tolerated measure of general QoL; patient is asked to

rate his or her current QoL on a scale from −5 to +5. Minus 5 indicates the worst,

plus 5 the best ever experienced QoL. It is thus, a rating within each individual’s own

framework of QoL

ACSA score between

−5 to +5

SEIQoL(-DW)

(13)

Schedule for the Evaluation of

Quality of Life direct weighting

Overall subjective QoL as judged by the patient through a semi-structured interview.

The patients have to (1) name the life areas which are important to their QoL, (2) rate

the current level of importance of each area and (3) rate the satisfaction with each of

the areas

SEIQoL-Index-Score

between 0 and 100%

Ganzini QoL

(14)

QoL-single-item question Single-item question to assess patients self-perceived overall QoL with end-points

labeled 1 = “my quality of life is as good as it can be” and 6 = “my quality of life is

very bad, horrible.”

Score between 1 and 6

Krampe QoL

(15)

QoL-single-item question Single-item question to assess patients self-perceived overall QoL with end-points

labeled: “Over the past 7 days, the quality of my life has been”: very poor (0)–excellent

(10).

Score between 0 and

10

ALSSQoL

(16)

ALS-Specific Quality of Life

Questionnaire

Fifty item disease-specific questionnaire on 6 domains adressing (1) Negative

Emotion; (2) Interaction with People and the Environment; (3) Intimacy; (4) Religiosity;

(5) Physical Symptoms; (6) Bulbar Function

Average total QOL

score, and 6 domain

scores

MEASURES OF GLOBALE SUBJECTIVE QoL COMBINED WITH PHYSICAL QoL

WHOQOL-

BREF

(17)

Short version of the World Health

Organization Quality of Life

(WHOQOL)-Group questionnaire

Twenty-six item non-disease specific questionnaire on Physical, Psychological, Social

Relations, Environment within cultural context

Domain scores

between 0 and 100

MQoL (18) The McGill Quality of Life

Questionnaire

Subjective QoL according to five subscales: physical function, physical well-being,

psychological symptoms, existential well-being and social support

MQoL score as mean

of 5 subscales between

0 and 10

Including MQOL single-item

scale (SIS)

Single-item Score (SIS) of the MQoL for overall QoL on a visual analog scale MQoL SIS score

between 0 and 10

FIGURE 1 | Factors according to medical ethics which facilitate QoL in ALS.

Patients can be encouraged to use these inner resources
mentioned above. Psychotherapeutic interventions may help to
improve the QoL of patients and may even prolong survival as
the psychoemotional state of the patient has impact on QoL (50)
and survival time (49). The beneficence of the above mentioned

intrinsic factors may as well be addressed in clinical routine by
physicians and medical staff to encourage patients to give more
room in life for any beneficial intrinsic process.

Beneficence requires the knowledge of the patient’s wishes
as peer evaluations might not meet the patient’s actual needs.
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There is evidence for discrepancy between patient’s well-being
and the perspective on patient’s well-being of people without
neurodegenerative conditions (27, 29). Peers judgement of
patient’s well-being is primarily based on personal opinion when
they anticipate a low QoL in severely disabled patients. This
is true for people without experience in ALS and is even
true for caregivers and physicians if they lack experience with
ALS (51). Healthy subjects may be blind toward the patient’s
process of ongoing change and adaptation and instead they may
conclude from their personal perspective. The more experienced
healthcare professionals are, the more they know about the
capacity to adjust and are thus abled to correctly anticipate
patient’s quality of life, affective state, and wish for hastened
death (51).

Thus, the knowledge of and believe in beneficence in ALS is a
matter of the physician’s experience. As many patients gradually
adjust to their situation and also possibly change their therapeutic
preferences in the course of the disease (52), beneficence from
the patient’s perspective is a dynamic construct which needs to
be recognized and may be supported by caretakers and medical
care teams.

Non-maleficence
Primum non-nocere, refrain from harm is the other side of the
coin of beneficence and thus, similar aspects concern maleficence
than beneficence. Non-maleficence needs to be considered the
moment the diagnosis is communicated. “Breaking the news” is
a highly delicate balance between patient’s need to be informed
which requires veracity and fidelity on the one hand and the
right for denial on the other hand which can be a helpful
strategy at least shortly after diagnosis (23). Maleficence in the
sense of the emotional burden of diagnosis can be reduced by
using a thorough approach for breaking the news as it may
attenuate negative impact on QoL (53). But also providing
sufficient information can prevent maleficence: patients with
sudden respiratory insufficiency in an emergency situation who
have been informed on all aspects of respiratory support may feel
more competent to take the right decision (41).

Advance directives and living wills are crucial to
prevent maleficence, e.g., insertion of a tracheostomy in
an emergency if the patient does not want to [possibly
because he/she is afraid of the burden for others; (52)].
Many therapeutic options secure QoL (e.g., ventilation)
but most patients are unable to anticipate this shortly after
diagnosis. During the course of ALS, some might dismiss
the idea of maleficence of invasive ventilation and might
realize the beneficial effect of this therapeutic treatment (29).
Therefore, dynamic adjustment to living wills is a key aspect to
prevent maleficence.

Preferences regarding therapeutic measures are highly
determined by patient’s personal values, religious beliefs and
cultural background (54).

Cultural differences exist: in Japan, invasive ventilation
is more regarded as routine therapeutic treatment
than in other countries [33% in Japan; (55)]. In some
countries, life prolongation might be regarded as

maleficence and more life-shortening treatments are
suggested (56). Thus, social context may define what
is beneficence and maleficence in the context of cultural
norms (54, 57).

Patient’s Autonomy
Patient’s sense of autonomy is a key issue of quality of life
and goes beyond being physically autonomous to perform an
action. Autonomy also encompasses the sense of capability to
take decisions and the feeling of being an author of one’s own
action which is a key feature of self-efficacy and thus for QoL (58).
Taking decisions also sustains the feeling of social embeddedness
disregarding physical disability, e.g., the patient can be included
in family decisions andmay participate in daily routine if possible
(59). This allows the patient to be an active part of daily routine:
to participate in decision making, to be asked questions, to
express concerns, address fears and anxieties, express wishes,
values, desires, and hopes. It is noteworthy that possible minor
cognitive deficits in some patients do not interfere with the
competency to decide and participate (60).

It is especially challenging to secure patient’s autonomy in
LIS as there is lack of direct means to communicate in this
state. Assisted communication (20, 29) becomes important for
individual QoL in the course of ALS, but is not mentioned
by patients in early stages of the disease (20). Many patients
use letter board for communication which requires considerable
effort from a second person to record which item the patient
selected from the board. Technical devices may allow for
communication but these are time consuming and strenuous
to use and also additional assistance is required (59). Thus,
knowledge on patient’s wishes, desires and thoughts in advanced
stages is sparse and there is substantial lack of understanding
which factors may impact the dynamics of QoL and affective
state in the course of ALS (30). Communication via eye-gaze
control is possible, including standardized interviews (61, 62) but
the latter are rarely performed. Brain Computer Interfaces (BCI)
are promising technologies for communication and interaction
(63, 64) but in a subgroup of patients only (65). Other means
of BCI-use such as unrestricted access to web browsers of which
some are adaptable to home based BCI systems (66) secure new
degrees of freedom in severe paralysis (67–70). Some patients
already use these techniques in their home environment for
communication and painting (71–76) and first evidence support
the notion that these techniques positively impact QoL (71, 77).
In the future, with major advances in communication technology
well-being in ALS might possibly be facilitated. BCIs might also
be indirectly used in evaluation and recognition of well-being
and emotional state in highly advanced patients (78) such as
the amplitude of the N400, a negative deflection of the EEG
curve following a meaningful event (79), which was higher in
patients with high QoL compared to those with a poor. Thus,
the N400 may serve as an objective physiological indicator of
individual QoL in non-responsive ALS patients (80). Overall,
there is still a long way to go until BCI will be a standard
tool for home care for a majority of ALS patients (63, 81). But
for patient-centered care, compensation for progressive loss of
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FIGURE 2 | Examples of setting differences which may interfere with justice in medical care despite optimized care provision by the medical team.

verbal speech is mandatory to secure patient’s autonomy and
QoL (52).

Justice
This ethical principle of care requires that all patients are treated
in an equal way without prejudice or social discrimination.. In
the sense of justice, patients in similar situations should have
access to the same care options. Palliative care intervention
improves quality of life in patients and caregivers (82) and
medical care may facilitate this positive dynamics by offering this
care to every patient. ALS patients expect dignified care (82) but
instead, patients are often dissatisfied with health care services
(83). Every patient needs to be treated differently according to
the actual preferences and needs (54). There is no justice in
defining every person by the diagnosis with a nihilistic view of the
disease which has to be prevented under all circumstances (48).
Instead, to grant justice every patient has to be regarded as an
individual with specific needs and the right to be treated the same
according to his/her preferences, disregarding mental, societal or
financial status.

Further, providing sufficient information according to the
patient’s needs as outlined above is also a matter of justice. Thus,
granting the patient the right for information is similarly a matter
of justice as granting the right for not-knowing. In this sense, it is
a matter of justice to grant patient’s will even if it interferes with
the physician’s personal and professional opinion.

Finally, justice in medical care is secured in many countries
as most healthcare systems secure this kind of justice by

providing coverage of (most) costs. Despite that most medical
systems are based on a solidary idea allowing for justice,
the impact of the disease may vary between patients thus
justice in clinical care is not easy to accomplish. There are
basic settings which significantly hamper justice in care
provision which cannot be changed by the medical team,
e.g., there is variance of the paid costs by the insurance
companies. Further, in some instances, only basic technical
equipment is provided which possibly don’t meet the
patient’s actual needs. Thus, patients have to cover the
extra charges for the devices which fully meet their needs.
And finally, there are personal settings (e.g., living and
working conditions) which may heavily impact patient’s
life with ALS and which interfere with the principle of
justice (Figure 2).

CONSEQUENCES AND
FUTURE DIRECTIONS

There is evidence that considerate medical care within
multidisciplinary teams (84) helps patients to find their own
way of coping with the disease to gain or maintain a satisfactory
QoL (48). Living with a fatal disease creates a crisis loaded
environment and adapting to the disease is a psychological
process rendering mandatory a strong support from these
specialists’ teams (41). Following the ethical principles of medical
care as outlined in this text allows for a holistic support of the
patient to secure QoL.
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Amyotrophic lateral sclerosis (ALS) is a fatal degenerative disease primarily characterized

by the selective loss of upper and lower motor neurons. To date, there is still an unmet

need for robust and practical biomarkers that could estimate the risk of the disease and

its progression. Based on metabolic modifications observed at the level of the whole

body, different classes of lipids have been proposed as potential biomarkers. This review

summarizes investigations carried out over the last decade that focused on changes

in three major lipid species, namely cholesterol, triglycerides and fatty acids. Despite

some contradictory findings, it is becoming increasingly accepted that dyslipidemia, and

related aberrant energy homeostasis, must be considered as essential components of

the pathological process. Therefore, it is tempting to envisage dietary interventions as a

means to counterbalance the metabolic disturbances and ameliorate the patient’s quality

of life.

Keywords: amyotrophic lateral sclerosis, biomarker, cholesterol, fatty acid, triglyceride

ALS AND THE NEED FOR BIOMARKERS

Amyotrophic lateral sclerosis (ALS) is a degenerative disease of upper and lower motor neurons
mainly characterized by progressive muscle wasting, fasciculations, dysarthria, dysphagia, altered
reflexes, and spasticity. It affects about 2 per 100,000 people per year, and usually appears at 40–70
years of age. A significant proportion of cases also presents cognitive or behavioral abnormalities
typical of frontotemporal dementia (FTD). The etiology of ALS still remains elusive. About 90%
of cases are considered as sporadic. The remaining 10% are inherited mostly in an autosomal
dominant manner. Most familial cases can be explained by mutations in four major genes,
includingC9ORF72, SOD1, FUS, and TARDBP. Based on this genetic diversity, multiple pathogenic
mechanisms have been implicated in triggering motor neuron degeneration, adding considerable
complexity to the understanding of the disease (1).

From a clinical point of view, ALS is easily recognized in its full-blown presentation. However,
the diagnostic process may be challenging at very early stages. The diagnosis is based on
clinical examination, electrophysiological findings, medical history, and exclusion of confounding
disorders. In practice, a correct diagnosis may take as long as 1 year (2). Moreover, disease
progression is very heterogeneous. Death may occur between 1 and 5 years after diagnosis,
but 20% of patients live longer than 5 years, and 10% survive for more than 10 years (3).
Promising biomarkers of diagnosis and prognosis have been proposed based on advanced
neurophysiological and neuroimaging techniques. However, many of these practices still lack
validation and standardization between clinical centers, and they have been applied only to small
cohorts of patients [(4–6), and references therein].
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As far as molecular biomarkers are concerned, a great number
of molecules have been isolated from patient material, including
cerebrospinal fluid, blood and tissues, that recognized and/or
monitored ALS with more or less accuracy [(7, 8), and references
therein]. To date, changes in the amounts of neurofilament
proteins found in cerebrospinal fluid and blood have been
postulated as the most promising candidates [(9), and references
therein]. However, these and other proposed molecular markers
have not reached routine clinical application. Therefore, there is
still an incontestable lack of robust and practical biomarkers that
could facilitate an earlier diagnosis and improve the prognosis
of ALS.

ALTERED ENERGY HOMEOSTASIS AND

LIPID METABOLISM IN ALS

Amyotrophic lateral sclerosis was classically attributed to an
intrinsic defect of upper and lower motor neurons. Now
it is generally accepted that non-neuronal cells surrounding
motor neurons, additional neuronal cell types, as well as
other cells outside the nervous system participate actively in
the pathological process [(10–12), and references therein]. In
particular, compelling evidence has emerged over the last decade
showing a characteristic imbalance between energy intake and
consumption, which is associated with metabolic alterations
at the level of the whole body of yet unexplained etiology
[(13), and references therein]. Seminal studies revealed that
many ALS patients show an increase in energy expenditure, or
hypermetabolism, which could account, at least in part, for the
decline of their nutritional status (14, 15). It was also recently
reported that hypermetabolic patients have a worse prognosis
than normometabolic ones (16), which could be related to a
detrimental weight loss. In fact, patients that lost more than 5%
of body mass at the time of diagnosis had an increased risk of
death (17). In addition, a lower body mass index appeared to
precede the symptomatic stage of the disease (18). Overall, these
studies strongly support that the energy imbalance in ALS could
contribute to the rapid deterioration of the patients.

The origin of the hypermetabolism in ALS is currently
unknown, although recent studies have pointed to the altered
function of hypothalamic neurons involved in the regulation of
food intake and energy homeostasis (19, 20). From a therapeutic
point of view, pioneering preclinical studies conducted on an
ALS mouse model, which carries a mutation in the Sod1 gene,
provided part of the answer to this question. An increase
in energy consumption occurs in these mice well-before the
onset of the first motor symptoms. This is accompanied by a
reduction of adiposity and lower levels of circulating leptin.
Most importantly, these studies revealed that sustaining the
hypermetabolic rate of ALS mice with a highly-energetic high-
fat diet partially protected motor neurons and extended lifespan
(21). Likewise, a higher premorbid intake of high-fat food was
observed in ALS patients (18). Moreover, a moderate increase
in fat mass over the course of the disease was associated with
a decreased risk of death, and increasing circulating levels of
leptin were positively associated with longer survival (17, 22).

Although there is no conclusive evidence of a mechanistic link
between the hypermetabolism present in ALS and altered levels
of lipids, altogether, these studies suggest that the utilization of
lipids as energy substrates could offer benefit, by counteracting
an increased metabolic rate and compensating the associated
weight loss. In this respect, several pilot studies reported positive
effects of highly caloric fat supplements on ALS patients (23,
24). It was also shown that the administration of acetyl-L-
carnitine, which supports the transport of fatty acids into
mitochondria for being used as energy substrates, retarded
the worsening of the patients (25). Recent research has made
efforts to identify specific changes in lipid metabolism that could
provide clues for future nutritional interventions, as well as
serve as robust biomarkers for the disease. This review covers
some of the most significant findings published during the
last decade.

APOLIPOPROTEIN E AND THE RISK

OF ALS

Apolipoprotein E (APOE) is a constituent of lipoprotein particles
primarily involved in the transport of triglycerides and their
clearance from the bloodstream. It is mainly synthesized in the
liver but it is also produced by astrocytes in the brain, where
APOE is the most important cholesterol carrier. The human
APOE gene exists as three major alleles called ε2, ε3, and ε4.
The identification of APOE ε4 as a risk factor for Alzheimer’s
disease represented a major breakthrough in the field [(26), and
references therein]. On the contrary, most studies on ALS did
not observe any association of APOE ε4 with an increased risk
(27–30), excepted some recent findings (31). Additional reports
showed complex interactions between particular APOE alleles
and other genetic or physiopathological variables. Penco and
collaborators identified a combination of seven genetic variants,
inluding one affecting APOE, that distinguished between ALS
patients and control subjects (32). It was also found that
individuals who had suffered from head trauma in the adulthood
were more prone to have ALS, and this association was stronger
in the presence of APOE ε4 (33). In contrast, the frequency of
APOE ε2, which is a priori neuroprotective, was higher in ALS
patients that had practiced sport regularly (30). APOE ε2 also
increased the risk of developing FTD in a cohort of patients
with ALS (34). It must be noted, however, that the implication
of APOE in the incidence of this form of dementia is rather
controversial. The increase in the probability of having FTD was
associated with APOE ε2 in some cases, and with APOE ε4 in
other cases [(35), and references therein].

The influence of APOE on the course of ALS has also
been contradictory. Initial reports revealed that APOE ε4 was
associated with earlier age at onset but not with disease duration
(27). However, follow-up studies failed to show any relationship
between APOE ε4 and age at onset or rate of progression,
although this allele was more frequent in men with bulbar-onset
ALS (28). Parallel investigations did not find any association
between theAPOE genotype and age of onset, site of onset, rate of
progression, cognitive impairment or survival (36). Overall, the
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implication of APOE in the incidence and progression of ALS is
therefore not clearly established.

THE INTRIGUING CASE

OF CHOLESTEROL

Cholesterol is an essential lipid molecule, which is transported
through the bloodstream by several types of lipoprotein particles.
In clinical practice, increased levels of total cholesterol or low-
density lipoprotein cholesterol (LDL-c), in combination with
decreased levels of high-density lipoprotein cholesterol (HDL-c),
are indicative of a higher risk of atherosclerotic cardiovascular
disease. In the case of ALS, hypercholesterolemia, as detected
prior to the onset of motor symptoms, was initially associated
with a lower risk (37). However, follow-up studies contradicted
these findings. An increase in the premorbid intake of cholesterol
was associated with a higher incidence of the disease, as shown
after examination of dietary habits obtained from food frequency
questionnaires (18). In addition, individuals with increased levels
of LDL-c and a higher LDL-c/HDL-c ratio were more prone to
develop ALS later (38). Finally, the analysis of GWAS databases
revealed that particular alleles predisposing to elevated levels
of LDL-c and total cholesterol appeared associated with an
increased risk (39).

In many studies, the proportion of hypercholesterolemia
individuals or the average contents of total cholesterol and LDL-c
were shown to be higher in the ALS population and, in some
cases, this increase was noticeable at the time of diagnosis (40–
44). In agreement with these findings, a detailed analysis of
circulating lipoprotein particles also showed increased levels of
LDL-1, which is a LDL subfraction very enriched in cholesterol
(44). Other reports, however, did not find clear-cut differences
(45–48), or even revealed opposite results (49).

From a prognostic point of view, decreased levels of
total cholesterol or LDL-c and a lower LDL-c/HDL-c ratio
were associated with a severe respiratory impairment (42,
45). Contrasting with these findings, Delaye and collaborators
did not observe any association between several cholesterol
parameters and disease progression (44). Yet, most authors
agree that hypercholesterolemia, present as elevated levels of
total cholesterol and LDL-c or a higher LDL-c/HDL-c ratio,
associates with longer survival. This association, however, did
not reach significance after adjusting for potential confounding
demographic and clinical factors (37, 40, 43, 49–51).

In addition to the biomarker potential of cholesterol per se,
a few studies have focused on the implication of oxysterols,
which are oxidized derivatives mainly involved in maintaining
cholesterol homeostasis. Levels of several oxysterol metabolites,
including 27-hydroxycholesterol, 24-hydroxycholesterol esters,
and 3β,7α-dihydroxycholest-5-en-26-oic acid and other related
compounds, were shown to be lower in ALS patients. These
changes were detected in blood or cerebrospinal fluid, or both,
and they were attributed to a deficit in the metabolism of excess
cholesterol, which would result in subsequent toxicity in the
brain (46, 52, 53). On the other hand, additional studies reported
increased levels of 25-hydroxycholesterol in cerebrospinal fluid

and serum of ALS patients. The accumulation of this toxic
oxysterol derivative was associated, at least in serum, with a
higher rate of disease progression (54).

THE ENERGIZING TRIGLYCERIDES IN ALS

Triglycerides are a primary source of energy for the body but,
when accumulated in an excessive manner, they represent an
important risk factor for cardiovascular disease. Triglyceride
contents should be expected to change in ALS patients according
to their characteristic high rate of energy expenditure. In
this respect, the proportion of hypertriglyceridemia individuals
was more important among ALS patients than in the normal
population (55). Hypertriglyceridemia was also found in ALS
women (42), and higher triglyceride levels were associated with
a better functional status (48). Other reports, however, failed
to reproduce these findings (40, 47, 48). Moreover, Blasco and
collaborators identified a lipidomic signature in the cerebrospinal
fluid of ALS patients, in which certain triglyceride species were
found reduced at levels associated with a better prognosis (56).
Finally, as in the case of cholesterol, hypertriglyceridemia was
associated with longer survival, but this association appeared to
have no effect after adjusting for confounding factors (47, 55).

THE ENTRANCE OF FATTY ACIDS ON

STAGE

Fatty acids are lipid molecules key for sustaining the structural
integrity of cell membranes, providing energy and serving in
signaling pathways. They can be mainly transported through the
bloodstream attached to a glycerol molecule (that is, in the form
of triglycerides) or as non-esterified free fatty acids. The studies
relating to the implication of fatty acids as biomarkers for ALS are
scarce. Based on food frequency questionnaires, Fitzgerald and
collaborators showed that a higher intake of ω3 polyunsaturated
fatty acids, which are considered as neuroprotective factors,
were associated with a reduced risk of ALS (57). Similar studies
did not find the same association but rather reported a higher
premorbid intake of trans- and saturated fatty acids associated
with an increased risk (18). On average, the proportion of
polyunsaturated fatty acids in the lipid fraction of clotted blood
was decreased in ALS patients while that of monounsaturated
fatty acids was concomitantly increased (58). Polyunsaturated
fatty acids were also lower in the free fatty acid fraction of
plasma (59). Finally, a higher palmitoleic/palmitic fatty acid
ratio, indicative of increased adiposity, correlated with a better
functional status, and was associated with longer survival (58).

CONCLUSION

Over the last decade, many lipid molecules have been proposed
as promising biomarkers for ALS, but none of them has been
translated into effective tools in clinical practice. There are several
issues of concern that still need to be addressed. On the one
hand, the etiology of ALS is multifactorial, and it is likely that the
pathological process in subpopulations of patients, with different
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genetic and environmental backgrounds, is not the same. In the
future, the use of cohorts of well-defined patients should improve
statistical robustness. It would also be interesting to compare
between patients with ALS and other patients suffering from
mimic conditions. On the other hand, lipid changes at the level of
the whole body can be affected by a myriad of factors, including
genetic, nutritional, physical and pathological factors, which can
introduce bias on the results. It is also noteworthy to mention
that for those studies that used food frequency questionnaires
to estimate food preferences and evaluate eating behavior, they
depend, at least in part, on their interpretation probing the
patient’s perception of food intake, hence lacking sensitivity and
objectiveness. Therefore, protocols and measurements need to be
standardized between study centers.

Despite some conflicting findings, most studies presented in
this review show important alterations of the circulating contents
of cholesterol (and related lipoprotein particles), triglycerides
and fatty acids, which occur prior to and over the course of
ALS. These changes seem to reflect a metabolic environment,
which would be appropriate to meet the high energy demands
imposed by the increased metabolic rate present in the disease.
The understanding of the mechanisms underlying this “low-
grade dyslipidemia” is still insufficient but, from a clinical point
of view, it leaves open the possibility for therapeutic nutritional
intervention. In this respect, recent studies that analyzed the
eating behavior of ALS patients revealed marked modifications
in their food preferences. In particular, an increase in the

intake of saturated fat and meat protein was associated with
longer survival (60–62). Moreover, two clinical trials have been
initiated, which aim at retarding disease progression by using
high-caloric food supplements. The first trial (NCT02306590) is
a randomized, parallel-group, double-blind study that compares
between placebo and a treatment consisting of a high caloric
fatty diet, which is equivalent to an additional intake of 45 g
fat per day. The primary objective of this study is to evaluate
the impact on survival. The second trial is a randomized,
parallel-group, open label study that will determine the effects
of a high-protein, high-energy supplement on the functional
status of newly diagnosed ALS patients (NCT02152449). The
results of these trials as well as the ongoing research on lipid
biomarkers and on the understanding of their implication
in ALS will certainly pave the way for developing new
therapeutic tools.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

J-LG received funds from Association pour la Recherche sur
la Sclérose Latérale Amyotrophique et autres Maladies du
Motoneurone (ARSLA).

REFERENCES

1. van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink

JH, et al. Amyotrophic lateral sclerosis. Lancet. (2017) 390:2084–98.

doi: 10.1016/S0140-6736(17)31287-4

2. Cellura E, Spataro R, Taiello AC, La Bella V. Factors affecting the diagnostic

delay in amyotrophic lateral sclerosis. Clin Neurol Neurosurg. (2012) 114:550–

4. doi: 10.1016/j.clineuro.2011.11.026

3. Pupillo E, Messina P, Logroscino G, Beghi E, SLALOM Group. Long-term

survival in amyotrophic lateral sclerosis: a population-based study. Ann

Neurol. (2014) 75:287–97. doi: 10.1002/ana.24096

4. Vucic S, Ziemann U, Eisen A, Hallett M, Kiernan MC. Transcranial

magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological

insights. J Neurol Neurosurg Psychiatr. (2013) 84:1161–70.

doi: 10.1136/jnnp-2012-304019

5. Bede P, Hardiman O. Lessons of ALS imaging: pitfalls and future

directions - a critical review. Neuroimage Clin. (2014) 4:436–43.

doi: 10.1016/j.nicl.2014.02.011

6. Fatehi F, Grapperon AM, Fathi D, Delmont E, Attarian S. The utility of motor

unit number index: a systematic review. Neurophysiol Clin. (2018) 48:251–9.

doi: 10.1016/j.neucli.2018.09.001

7. Robelin L, Gonzalez De Aguilar JL. Blood biomarkers for amyotrophic

lateral sclerosis: myth or reality? Biomed Res Int. (2014) 2014:525097.

doi: 10.1155/2014/525097

8. Costa J, de Carvalho M. Emerging molecular biomarker targets

for amyotrophic lateral sclerosis. Clin Chim Acta. (2016) 455:7–14.

doi: 10.1016/j.cca.2016.01.011

9. Xu Z, Henderson RD, David M, McCombe PA. Neurofilaments as biomarkers

for amyotrophic lateral sclerosis: a systematic review and meta-analysis. PLoS

ONE. (2016) 11:e0164625. doi: 10.1371/journal.pone.0164625

10. Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici

K. Amyotrophic lateral sclerosis - a model of corticofugal axonal spread. Nat

Rev Neurol. (2013) 9:708–14. doi: 10.1038/nrneurol.2013.221

11. Lee J, Hyeon SJ, ImH, Ryu H, Kim Y, Ryu H. Astrocytes and microglia as non-

cell autonomous players in the pathogenesis of ALS. Exp Neurobiol. (2016)

25:233–40. doi: 10.5607/en.2016.25.5.233

12. Loeffler JP, Picchiarelli G, Dupuis L, Gonzalez De Aguilar JL. The role of

skeletal muscle in amyotrophic lateral sclerosis. Brain Pathol. (2016) 26:227–

36. doi: 10.1111/bpa.12350

13. Dupuis L, Pradat PF, Ludolph AC, Loeffler JP. Energy metabolism

in amyotrophic lateral sclerosis. Lancet Neurol. (2011) 10:75–82.

doi: 10.1016/S1474-4422(10)70224-6

14. Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufrère B, et al.

Factors correlated with hypermetabolism in patients with amyotrophic lateral

sclerosis. Am J Clin Nutr. (2001) 74:328–34. doi: 10.1093/ajcn/74.3.328

15. Bouteloup C, Desport JC, Clavelou P, Guy N, Derumeaux-Burel H, Ferrier A,

et al. Hypermetabolism in ALS patients: an early and persistent phenomenon.

J Neurol. (2009) 256:1236–42. doi: 10.1007/s00415-009-5100-z

16. Jésus P, Fayemendy P, Nicol M, Lautrette G, Sourisseau H, Preux PM,

et al. Hypermetabolism is a deleterious prognostic factor in patients

with amyotrophic lateral sclerosis. Eur J Neurol. (2018) 25:97–104.

doi: 10.1111/ene.13468

17. Marin B, Desport JC, Kajeu P, Jesus P, Nicolaud B, Nicol M, et al. Alteration

of nutritional status at diagnosis is a prognostic factor for survival of

amyotrophic lateral sclerosis patients. J Neurol Neurosurg Psychiatr. (2011)

82:628–34. doi: 10.1136/jnnp.2010.211474

18. Huisman MH, Seelen M, van Doormaal PT, de Jong SW, de Vries JH, van der

Kooi AJ, et al. Effect of presymptomatic body mass index and consumption

of fat and alcohol on amyotrophic lateral sclerosis. JAMA Neurol. (2015)

72:1155–62. doi: 10.1001/jamaneurol.2015.1584

19. Vercruysse P, Sinniger J, El Oussini H, Scekic-Zahirovic J, Dieterlé

S, Dengler R, et al. Alterations in the hypothalamic melanocortin

pathway in amyotrophic lateral sclerosis. Brain. (2016) 139:1106–22.

doi: 10.1093/brain/aww004

20. Gorges M, Vercruysse P, Müller HP, Huppertz HJ, Rosenbohm A, Nagel

G, et al. Hypothalamic atrophy is related to body mass index and age at

Frontiers in Neurology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 284260

https://doi.org/10.1016/S0140-6736(17)31287-4
https://doi.org/10.1016/j.clineuro.2011.11.026
https://doi.org/10.1002/ana.24096
https://doi.org/10.1136/jnnp-2012-304019
https://doi.org/10.1016/j.nicl.2014.02.011
https://doi.org/10.1016/j.neucli.2018.09.001
https://doi.org/10.1155/2014/525097
https://doi.org/10.1016/j.cca.2016.01.011
https://doi.org/10.1371/journal.pone.0164625
https://doi.org/10.1038/nrneurol.2013.221
https://doi.org/10.5607/en.2016.25.5.233
https://doi.org/10.1111/bpa.12350
https://doi.org/10.1016/S1474-4422(10)70224-6
https://doi.org/10.1093/ajcn/74.3.328
https://doi.org/10.1007/s00415-009-5100-z
https://doi.org/10.1111/ene.13468
https://doi.org/10.1136/jnnp.2010.211474
https://doi.org/10.1001/jamaneurol.2015.1584
https://doi.org/10.1093/brain/aww004
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


González De Aguilar Lipids in ALS

onset in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatr. (2017)

88:1033–41. doi: 10.1136/jnnp-2017-315795

21. Dupuis L, Oudart H, René F, Gonzalez de Aguilar JL, Loeffler JP. Evidence

for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a

high-energy diet in a transgenic mouse model. Proc Natl Acad Sci USA. (2004)

101:11159–64. doi: 10.1073/pnas.0402026101

22. Nagel G, Peter RS, RosenbohmA, KoenigW, Dupuis L, Rothenbacher D, et al.

Adipokines, C-reactive protein and Amyotrophic Lateral Sclerosis - results

from a population- based ALS registry in Germany. Sci Rep. (2017) 7:4374.

doi: 10.1038/s41598-017-04706-5

23. Dorst J, Cypionka J, Ludolph AC. High-caloric food supplements in the

treatment of amyotrophic lateral sclerosis: a prospective interventional

study. Amyotroph Lateral Scler Frontotemporal Degener. (2013) 14:533–6.

doi: 10.3109/21678421.2013.823999

24. Wills AM, Hubbard J, Macklin EA, Glass J, Tandan R, Simpson EP, et al.

Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis:

a randomised, double-blind, placebo-controlled phase 2 trial. Lancet. (2014)

383:2065–72. doi: 10.1016/S0140-6736(14)60222-1

25. Beghi E, Pupillo E, Bonito V, Buzzi P, Caponnetto C, Chiò A, et al.

Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for

ALS. Amyotroph Lateral Scler Frontotemporal Degener. (2013) 14:397–405.

doi: 10.3109/21678421.2013.764568

26. Yu JT, Tan L, Hardy J. Apolipoprotein E in Alzheimer’s

disease: an update. Annu Rev Neurosci. (2014) 37:79–100.

doi: 10.1146/annurev-neuro-071013-014300

27. Zetterberg H, Jacobsson J, Rosengren L, Blennow K, Andersen PM.

Association of APOE with age at onset of sporadic amyotrophic lateral

sclerosis. J Neurol Sci. (2008) 273:67–9. doi: 10.1016/j.jns.2008.06.025

28. Praline J, Blasco H, Vourc’h P, Garrigue MA, Gordon PH, Camu W,

et al. APOE ε4 allele is associated with an increased risk of bulbar-onset

amyotrophic lateral sclerosis in men. Eur J Neurol. (2011) 18:1046–52.

doi: 10.1111/j.1468-1331.2010.03330.x

29. Govone F, Vacca A, Rubino E, Gai A, Boschi S, Gentile S, et al.

Lack of association between APOE gene polymorphisms and

amyotrophic lateral sclerosis: a comprehensive meta-analysis.

Amyotroph Lateral Scler Frontotemporal Degener. (2014) 15:551–6.

doi: 10.3109/21678421.2014.918149

30. Albani D, Pupillo E, Bianchi E, Chierchia A, Martines R, Forloni G, et al.

The role of single-nucleotide variants of the energy metabolism-linked genes

SIRT3, PPARGC1A and APOE in amyotrophic lateral sclerosis risk. Genes

Genet Syst. (2016) 91:301–9. doi: 10.1266/ggs.16-00023

31. De Benedetti S, Gianazza E, Banfi C, Marocchi A, Lunetta C,

Penco S, et al. Serum proteome in a sporadic amyotrophic lateral

sclerosis geographical cluster. Proteomics Clin Appl. (2017) 11, 1–7

doi: 10.1002/prca.201700043

32. Penco S, Buscema M, Patrosso MC, Marocchi A, Grossi E. New application

of intelligent agents in sporadic amyotrophic lateral sclerosis identifies

unexpected specific genetic background. BMC Bioinformatics. (2008) 9:254.

doi: 10.1186/1471-2105-9-254

33. Schmidt S, Kwee LC, Allen KD, Oddone EZ. Association of ALS with head

injury, cigarette smoking and APOE genotypes. J Neurol Sci. (2010) 291:22–9.

doi: 10.1016/j.jns.2010.01.011

34. Chiò A, Brunetti M, Barberis M, Iazzolino B, Montuschi A, Ilardi

A, et al. The role of APOE in the occurrence of frontotemporal

dementia in amyotrophic lateral sclerosis. JAMA Neurol. (2016) 73:425–30.

doi: 10.1001/jamaneurol.2015.4773

35. Su WH, Shi ZH, Liu SL, Wang XD, Liu S, Ji Y. Updated meta-analysis

of the role of APOE ε2/ε3/ε4 alleles in frontotemporal lobar degeneration.

Oncotarget. (2017) 8:43721–32. doi: 10.18632/oncotarget.17341

36. Jawaid A, Poon M, Strutt AM, Rice LK, McDowell EJ, Salamone AR, et al.

Does apolipoprotein E genotype modify the clinical expression of ALS? Eur J

Neurol. (2011) 18:618–24. doi: 10.1111/j.1468-1331.2010.03225.x

37. Seelen M, van Doormaal PT, Visser AE, Huisman MH, Roozekrans MH,

de Jong SW, et al. Prior medical conditions and the risk of amyotrophic

lateral sclerosis. J Neurol. (2014) 261:1949–56. doi: 10.1007/s00415-014-

7445-1

38. Mariosa D, Hammar N, Malmström H, Ingre C, Jungner I, Ye W, et al. Blood

biomarkers of carbohydrate, lipid, and apolipoprotein metabolisms and risk

of amyotrophic lateral sclerosis: a more than 20-year follow-up of the Swedish

AMORIS cohort. Ann Neurol. (2017) 81:718–28. doi: 10.1002/ana.24936

39. Chen X, Yazdani S, Piehl F, Magnusson PKE, Fang F. Polygenic link

between blood lipids and amyotrophic lateral sclerosis. Neurobiol

Aging. (2018) 67:202.e1–202.e6. doi: 10.1016/j.neurobiolaging.2018.

03.022

40. Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-

Rousselot D, Bittar R, et al. Dyslipidemia is a protective factor

in amyotrophic lateral sclerosis. Neurology. (2008) 70:1004–9.

doi: 10.1212/01.wnl.0000285080.70324.27

41. Dedic SI, Stevic Z, Dedic V, Stojanovic VR, Milicev M, Lavrnic

D. Is hyperlipidemia correlated with longer survival in patients

with amyotrophic lateral sclerosis? Neurol Res. (2012) 34:576–80.

doi: 10.1179/1743132812Y.0000000049

42. Ikeda K, Hirayama T, Takazawa T, Kawabe K, Iwasaki Y. Relationships

between disease progression and serum levels of lipid, urate,

creatinine and ferritin in Japanese patients with amyotrophic lateral

sclerosis: a cross-sectional study. Intern Med. (2012) 51:1501–8.

doi: 10.2169/internalmedicine.51.7465

43. Rafiq MK, Lee E, Bradburn M, McDermott CJ, Shaw PJ. Effect of

lipid profile on prognosis in the patients with amyotrophic lateral

sclerosis: Insights from the olesoxime clinical trial. Amyotroph Lateral

Scler Frontotemporal Degener. (2015) 16:478–84. doi: 10.3109/21678421.2015.

1062517

44. Delaye JB, Patin F, Piver E, Bruno C, Vasse M, Vourc’h P, et al. Low IDL-B and

high LDL-1 subfraction levels in serum of ALS patients. J Neurol Sci. (2017)

380:124–7. doi: 10.1016/j.jns.2017.07.019

45. Chiò A, Calvo A, Ilardi A, Cavallo E, Moglia C, Mutani R, et al.

Lower serum lipid levels are related to respiratory impairment in patients

with ALS. Neurology. (2009) 73:1681–5. doi: 10.1212/WNL.0b013e318

1c1df1e.

46. Wuolikainen A, Acimovic J, Lövgren-Sandblom A, Parini P, Andersen

PM, Björkhem I. Cholesterol, oxysterol, triglyceride, and coenzyme Q

homeostasis in ALS. Evidence against the hypothesis that elevated 27-

hydroxycholesterol is a pathogenic factor. PLoS ONE. (2014) 9:e113619.

doi: 10.1371/journal.pone.0113619

47. Huang R, Guo X, Chen X, Zheng Z, Wei Q, Cao B, et al. The

serum lipid profiles of amyotrophic lateral sclerosis patients: a study

from south-west China and a meta-analysis. Amyotroph Lateral Scler

Frontotemporal Degener. (2015) 16:359–65. doi: 10.3109/21678421.2015.

1047454

48. Barros ANAB, Dourado MET Jr, Pedrosa LFC, Leite-Lais L. Association

of copper status with lipid profile and functional status in patients

with amyotrophic lateral sclerosis. J Nutr Metab. (2018) 2018:5678698.

doi: 10.1155/2018/5678698

49. Sutedja NA, van der Schouw YT, Fischer K, Sizoo EM, Huisman MH,

Veldink JH, et al. Beneficial vascular risk profile is associated with

amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatr. (2011) 82:638–42.

doi: 10.1136/jnnp.2010.236752

50. Paganoni S, Deng J, Jaffa M, Cudkowicz ME, Wills AM. Body mass

index, not dyslipidemia, is an independent predictor of survival in

amyotrophic lateral sclerosis.Muscle Nerve. (2011) 44:20–4. doi: 10.1002/mus.

22114

51. Blasco H, Patin F, Molinier S, Vourc’h P, Le Tilly O, Bakkouche S,

et al. A decrease in blood cholesterol after gastrostomy could impact

survival in ALS. Eur J Clin Nutr. (2017a) 71:1133–5. doi: 10.1038/ejcn.

2017.54

52. Abdel-Khalik J, Yutuc E, Crick PJ, Gustafsson JÅ, Warner M, Roman G, et al.

Defective cholesterol metabolism in amyotrophic lateral sclerosis. J Lipid Res.

(2017) 58:267–78. doi: 10.1194/jlr.P071639

53. LaMarca V, Maresca B, SpagnuoloMS, Cigliano L, Dal Piaz F, Di Iorio G, et al.

Lecithin-cholesterol acyltransferase in brain: does oxidative stress influence

the 24-hydroxycholesterol esterification? Neurosci Res. (2016) 105:19–27.

doi: 10.1016/j.neures.2015.09.008

54. Kim SM, Noh MY, Kim H, Cheon SY, Lee KM, Lee J, et al. 25-

Hydroxycholesterol is involved in the pathogenesis of amyotrophic

lateral sclerosis. Oncotarget. (2017) 8:11855–67. doi: 10.18632/oncotarget.

14416

Frontiers in Neurology | www.frontiersin.org 5 April 2019 | Volume 10 | Article 284261

https://doi.org/10.1136/jnnp-2017-315795
https://doi.org/10.1073/pnas.0402026101
https://doi.org/10.1038/s41598-017-04706-5
https://doi.org/10.3109/21678421.2013.823999
https://doi.org/10.1016/S0140-6736(14)60222-1
https://doi.org/10.3109/21678421.2013.764568
https://doi.org/10.1146/annurev-neuro-071013-014300
https://doi.org/10.1016/j.jns.2008.06.025
https://doi.org/10.1111/j.1468-1331.2010.03330.x
https://doi.org/10.3109/21678421.2014.918149
https://doi.org/10.1266/ggs.16-00023
https://doi.org/10.1002/prca.201700043
https://doi.org/10.1186/1471-2105-9-254
https://doi.org/10.1016/j.jns.2010.01.011
https://doi.org/10.1001/jamaneurol.2015.4773
https://doi.org/10.18632/oncotarget.17341
https://doi.org/10.1111/j.1468-1331.2010.03225.x
https://doi.org/10.1007/s00415-014-7445-1
https://doi.org/10.1002/ana.24936
https://doi.org/10.1016/j.neurobiolaging.2018.03.022
https://doi.org/10.1212/01.wnl.0000285080.70324.27
https://doi.org/10.1179/1743132812Y.0000000049
https://doi.org/10.2169/internalmedicine.51.7465
https://doi.org/10.3109/21678421.2015.1062517
https://doi.org/10.1016/j.jns.2017.07.019
https://doi.org/10.1212/WNL.0b013e3181c1df1e.
https://doi.org/10.1371/journal.pone.0113619
https://doi.org/10.3109/21678421.2015.1047454
https://doi.org/10.1155/2018/5678698
https://doi.org/10.1136/jnnp.2010.236752
https://doi.org/10.1002/mus.22114
https://doi.org/10.1038/ejcn.2017.54
https://doi.org/10.1194/jlr.P071639
https://doi.org/10.1016/j.neures.2015.09.008
https://doi.org/10.18632/oncotarget.14416
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


González De Aguilar Lipids in ALS

55. Dorst J, Kuhnlein P, Hendrich C, Kassubek J, Sperfeld AD,

Ludolph AC. Patients with elevated triglyceride and cholesterol

serum levels have a prolonged survival in amyotrophic lateral

sclerosis. J Neurol. (2011) 258:613–7. doi: 10.1007/s00415-010-

5805-z

56. Blasco H, Veyrat-Durebex C, Bocca C, Patin F, Vourc’h P, Kouassi

Nzoughet J, et al. Lipidomics reveals cerebrospinal-fluid signatures

of ALS. Sci Rep. (2017b) 7:17652. doi: 10.1038/s41598-017-

17389-9

57. Fitzgerald KC, O’Reilly ÉJ, Falcone GJ, McCullough ML, Park Y, Kolonel

LN, et al. Dietary ω-3 polyunsaturated fatty acid intake and risk

for amyotrophic lateral sclerosis. JAMA Neurol. (2014) 71:1102–10.

doi: 10.1001/jamaneurol.2014.1214

58. Henriques A, Blasco H, Fleury MC, Corcia P, Echaniz-Laguna A, Robelin L,

et al. Blood cell palmitoleate-palmitate ratio is an independent prognostic

factor for amyotrophic lateral sclerosis. PLoS ONE. (2015) 10:e0131512.

doi: 10.1371/journal.pone.0131512

59. Nagase M, Yamamoto Y, Miyazaki Y, Yoshino H. Increased oxidative

stress in patients with amyotrophic lateral sclerosis and the

effect of edaravone administration. Redox Rep. (2016) 21:104–12.

doi: 10.1179/1351000215Y.0000000026

60. Ahmed RM, Caga J, Devenney E, Hsieh S, Bartley L, Highton-Williamson E,

et al. Cognition and eating behavior in amyotrophic lateral sclerosis: effect on

survival. J Neurol. (2016) 263:1593–603. doi: 10.1007/s00415-016-8168-2

61. Ahmed RM, Highton-Williamson E, Caga J, Thornton N, Ramsey E, Zoing

M, et al. Lipid metabolism and survival across the frontotemporal dementia-

amyotrophic lateral sclerosis spectrum: relationships to eating behavior and

cognition. J Alzheimers Dis. (2018) 61:773–83. doi: 10.3233/JAD-170660

62. Kim B, Jin Y, Kim SH, Park Y. Association between macronutrient intake

and amyotrophic lateral sclerosis prognosis. Nutr Neurosci. (2018) 1–8.

doi: 10.1080/1028415X.2018.1466459

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 González De Aguilar. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 6 April 2019 | Volume 10 | Article 284262

https://doi.org/10.1007/s00415-010-5805-z
https://doi.org/10.1038/s41598-017-17389-9
https://doi.org/10.1001/jamaneurol.2014.1214
https://doi.org/10.1371/journal.pone.0131512
https://doi.org/10.1179/1351000215Y.0000000026
https://doi.org/10.1007/s00415-016-8168-2
https://doi.org/10.3233/JAD-170660
https://doi.org/10.1080/1028415X.2018.1466459
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


MINI REVIEW
published: 12 April 2019

doi: 10.3389/fneur.2019.00350

Frontiers in Neurology | www.frontiersin.org 1 April 2019 | Volume 10 | Article 350

Edited by:

Justin John Yerbury,

University of Wollongong, Australia

Reviewed by:

Virginie Callot,

Centre National de la Recherche

Scientifique (CNRS), France

David Devos,

Université de Lille, France

*Correspondence:

Pierre-François Pradat

pierre-francois.pradat@psl.aphp.fr

†These authors have contributed

equally as co-senior authors

Specialty section:

This article was submitted to

Neurodegeneration,

a section of the journal

Frontiers in Neurology

Received: 30 December 2018

Accepted: 21 March 2019

Published: 12 April 2019

Citation:

El Mendili MM, Querin G, Bede P and

Pradat P-F (2019) Spinal Cord

Imaging in Amyotrophic Lateral

Sclerosis: Historical Concepts—Novel

Techniques. Front. Neurol. 10:350.

doi: 10.3389/fneur.2019.00350

Spinal Cord Imaging in Amyotrophic
Lateral Sclerosis: Historical
Concepts—Novel Techniques
Mohamed Mounir El Mendili 1,2, Giorgia Querin 2,3, Peter Bede 2,3,4† and

Pierre-François Pradat 2,3*†

1Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 2 Biomedical Imaging

Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France, 3Department of Neurology, Pitié-Salpêtrière University

Hospital (APHP), Paris, France, 4Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland

Amyotrophic lateral sclerosis (ALS) is the most common adult onset motor neuron

disease with no effective disease modifying therapies at present. Spinal cord

degeneration is a hallmark feature of ALS, highlighted in the earliest descriptions of

the disease by Lockhart Clarke and Jean-Martin Charcot. The anterior horns and

corticospinal tracts are invariably affected in ALS, but up to recently it has been

notoriously challenging to detect and characterize spinal pathology in vivo. With recent

technological advances, spinal imaging now offers unique opportunities to appraise

lower motor neuron degeneration, sensory involvement, metabolic alterations, and

interneuron pathology in ALS. Quantitative spinal imaging in ALS has now been used

in cross-sectional and longitudinal study designs, applied to presymptomatic mutation

carriers, and utilized in machine learning applications. Despite its enormous clinical

and academic potential, a number of physiological, technological, and methodological

challenges limit the routine use of computational spinal imaging in ALS. In this review,

we provide a comprehensive overview of emerging spinal cord imaging methods and

discuss their advantages, drawbacks, and biomarker potential in clinical applications,

clinical trial settings, monitoring, and prognostic roles.

Keywords: ALS (Amyotrophic lateral sclerosis), MRI—magnetic resonance imaging, MND, spinal cord,

neuroimaging

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disorder.
Anterior horn pathology and corticospinal tract degeneration has been identified as a core feature
of ALS since the earliest descriptions of the condition (1, 2). Despite repeated attempts to detect
and characterize spinal cord pathology in vivo (3), technological constraints have traditionally
precluded reliable quantitative spinal imaging in ALS. Due to the plethora of methodological
challenges, such as the small cross-sectional area of the human spinal cord, respiratory, and
cardiac movement effects, the overwhelming majority of imaging studies have focused on cerebral
alterations in ALS (4).
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The diagnosis of ALS is primarily clinical and requires the
careful exclusion of ALS-mimics (5). Given the heterogeneity of
clinical presentations and the prevalence of atypical phenotypes,
diagnostic delay in ALS is not uncommon, and the average
period between symptom onset and definite diagnosis is ∼12
months worldwide (6). The median survival from symptom
onset ranges from 20 to 48 months (7–9). Progression rates
in ALS show considerable variation, and prognosis depends on
age at onset, region of onset, co-morbid cognitive impairment,
nutritional status, and certain genotypes are associated with faster
progression (10–16). Given the considerable clinical, cognitive,
and genetic heterogeneity of ALS, there is an unmet need for
early diagnostic biomarkers to aid patient stratification into
specific phenotypes (17). Clinical trials of ALS continue to
rely on survival, functional scores and respiratory measures as
outcome measures despite the potential of candidate imaging
markers (18).

Magnetic resonance imaging (MRI) not only contributed to
the characterization of ALS-associated cerebral changes, it has
also contributed important pathophysiological insights, such
as the role of inflammation (19), patterns of spread (20, 21),
inhibitory dysfunction (22, 23), and network-wise propagation
(24, 25). In addition to describing unifying disease-associated
signatures, imaging studies of ALS have gradually characterized
the features of specific genotypes (26, 27), phenotypes (28, 29),
the substrate of cognitive and extra-pyramidal impairments (30),
as well as presymptomatic (31) and longitudinal changes (32).
Despite the momentous advances however, the overwhelming
majority of imaging studies in ALS remain cerebral, overlooking
a disease-defining site of ALS pathology; the spinal cord (3).

SPINAL CORD IMAGING

One of the key challenges of spinal cord imaging stems from
its elongated dimensions, small cross-sectional area in the
axial plane coupled with long sagittal and coronal expansion
(33). Furthermore, the cord is surrounded by tissues that
have very different magnetic susceptibility profiles and is it
subject to both direct (cardiac and respiratory) and fluid-
mediated [cerebrospinal fluid (CSF)] movement effects. The
main challenges of quantitative spinal cord imaging include (i)
partial volume effects, (ii) an inhomogeneous magnetic field
environment, and (iii) physiological and patient motion (34).

Abbreviations: 1H-MRS, proton spectroscopy; A-P, anterior-posterior; AD, axial

diffusivity; ALS, Amyotrophic lateral sclerosis; ALSFRS-R, revised ALS functional

scale; Cho, choline; CNR, contrast-to-noise ratio; Cr, creatine; CSA, cross-sectional

area; CSF, cerebrospinal flood; CST, corticospinal tract; DTI, diffusion tensor

imaging; FA, fractional anisotropy; fMRI, functional MRI; ihMT, Inhomogeneous

magnetization transfer; LMN, lower motor neuron; MD, mean diffusivity; MRI,

Magnetic resonance imaging; MRS, Magnetic resonance spectroscopy; MT,

Magnetization transfer; MTR, Magnetization transfer ratio; Myo, myo-Inositol;

NAA, N-Acetyl Aspartate; NODDI, neurite orientation dispersion and density

imaging; RD, radial diffusivity; RL, right-left; SNR, signal-to-noise ratio; TMS,

transracial magnetic stimulation; SOD1, superoxide dismutase 1 gene; SOD1+,

presymptomatic superoxide dismutase 1 gene.

METHODOLOGICAL CHALLENGES

Partial Volume Effects
Partial volume refers to scenarios where different tissues
contribute to the same voxel. In spinal cord imaging this occurs
when a voxel is at the CSF/white matter, white matter/gray
matter, CSF/vascular, white matter/vascular interfaces. Signals
from different tissue densities with different amounts of spins
contribute to the total MR signal in these voxels, which results
in indistinct tissue-boundaries. Partial volume effects can be
reduced by increasing the spatial resolution, but this in turn
results in lower signal-to-noise (SNR) and contrast-to-noise
ratios (CNR). Magnetic fields strengths of three or seven Tesla
compared to conventional 1.5 Tesla platforms (35–38), higher
number of phased-array coils with parallel imaging (35, 38,
39), and corrections for physiological motion improves spatial
resolution, SNR, and CNR (35, 38, 39).

Physiological and Patient Motion
Due to its proximity to the lungs and the heart, almost the entire
spinal cord undergoes repetitive displacement due to respiration,
CSF, and cardiac pulsation (40–43). The movement of the human
spinal cord linearly increases caudally with distance from the
head. The available literature suggest that physiological anterior-
posterior (A-P) cord movement (0.60 ± 0.34mm) exceeds those
observed in superior-inferior (SI) (0.4 ± 0.1mm) and right-
left (RL) direction (0.17 ± 0.09mm) (44, 45). Spinal imaging
is also susceptible to movement artifacts from swallowing and
patient movements during long MR acquisitions which can
create ghosting artifacts (42, 46). By “gating” the acquisition, i.e.,
synchronizing with the respiratory or cardiac cycles, the effect of
periodical movements can be significantly reduced (38, 39, 47).
Motion artifacts can also be reduced using “saturation bands”
that cover the esophagus, chest, and abdomen, by attenuating
signals from moving structures so that it does not corrupt
the signal from the spinal cord itself. Velocity compensating
gradient sequences and signal averaging across multiple phases
of motion can also be applied to minimize motion artifacts.
Reducing acquisition time by using fast sequences, i.e., fast-
spin-echo, parallel imaging that increases acquisition speed by
factors from 1.5 to 3, i.e., SENSitivity Encoding/GeneRalized
Autocalibration Partial Parallel Acquisition-type reconstructions,
partial Fourier imaging, reducing the size of the phase-encoded
direction, and decreasing the k-space matrix size effectively
reduce both physiological and subject motion effects (48–53).
MRI compatible cervical collars, which minimize involuntary
neck movements, may also reduce movement artifacts (46).
Co-registration of all data when dealing with multiple series
acquisition, e.g., diffusion tensor imaging (DTI) and functional
MRI (fMRI), can also be performed to limit the inconsistency in
derived maps (54, 55).

Inhomogeneous Magnetic
Field Environment
The spinal canal is surrounded by bones, ligaments, disks,
arteries, and venous plexi. Its proximity to the esophagus,
mediastinum, and the lungs, each containing various amounts of
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air, create a challenging scanning environment. Adipose tissue,
bone, and air have different magnetic susceptibility profiles, and
respiration-induced B0 field fluctuations (43) also contribute
to the inhomogeneity of the magnetic field around the spinal
cord, resulting in geometric distortions and signal intensity
loss (56). To some extent, these artifacts can be counteracted
with “shimming.” Shimming aims at compensating for field
inhomogeneities by creating an auxiliary magnetic field via shim
coils (57). While shimming improves overall field homogeneity,
it is limited to smooth variations across larger regions and
cannot fully compensate for small, and localized field variations,
such as those observed at cartilaginous discs between the
vertebral bodies. Echo planar imaging sequences, such as DTI, are
particularly sensitive to geometric distortions around vertebral
disks. In addition to shimming, parallel imaging, and careful
slices positioning may reduce magnetic field inhomogeneity,
i.e., slices centered in the middle of each vertebral body and
perpendicular to the spinal cord (38, 47, 58). The specific
geometry of the magnetic field inhomogeneities should be
considered in order to correct for its effect (59–61).

SPINAL CORD IMAGING IN ALS

The role of conventional spinal MRI in ALS is to rule of
alternative structural, inflammatory or neoplastic pathologies
which may result in a combination of upper and lower
motor neuron involvement mimicking ALS (62). Compressive
myelopathies and radiculopathies are relatively common and
early, predominantly lower limb presentations of ALS are
sometimes attributed to these radiological findings resulting
in laminectomies and other invasive procedures (63, 64).
Conventional, clinical spinal sequences are typically only
qualitatively interpreted without specific measurements. The
majority of clinical spinal scans in ALS are reported as
normal, but non-specific signs such as high signal along the
corticospinal tracts are occasionally observed on T2-weighted
imaging (65–67).

In sharp contrast with clinical sequences, advanced
quantitative spinal protocols allow for the detailed and
quantitative characterization of spinal gray and white matter
integrity (38, 47, 58, 68). These protocols provide high resolution,
high SNR, and high CNR images compared to standard clinical
sequences. Furthermore, purpose-designed spinal protocols are
based on mathematical MR signal modeling (e.g., diffusion-
based methods, quantitative magnetization transfer, and MR
spectroscopy) and the derived outputs can be quantitatively
interpreted to provide accurate, motion-corrected white, and
gray matter metrics.

Cord Morphometry
Gross axonal and gray matter loss have traditionally been
estimated by measuring spinal cord cross-sectional areas at
specific levels and interpreted as a proxy of atrophy in the context
of reference normative values (69–72). The “cross-sectional
approach” consists of estimating a mean cord cross-sectional
area over a representative number of slices at a given vertebral
level (70, 71, 73, 74), which can be relatively easily calculated

from conventional MR sequences such as T1- or T2-weighted
images. A variety of indexes, such as A-P dimension, L-R width,
and radial distance can be derived from the cross-sectional area
(CSA) approach. These measures reflect on different aspects
of pathology, such as global vs. regional, lateral vs. anterior
tissue loss, and are often interpreted as predominantly motor
or sensory involvement (70, 75). More specific gray and white
matter measures can be derived from higher resolution images
followed by tissue-type segmentation methods (72, 76, 77). Novel
quantitative approaches, such as tensor based morphometry
and surface based-morphometry permit a more fine-grained
characterization of cord topography and the definition of disease-
associated signatures (74, 78). Recent studies demonstrated that
spinal cord atrophy, especially gray matter atrophy, correlates
with disability and disease progression and may be predictive of
respiratory failure and of survival in ALS (58, 70, 72, 73, 79). The
main findings of structural spinal cord studies are summarized in
Table 1.

Diffusion Weighted Imaging
Diffusion weighted imaging (DWI) relies on the evaluation
of water diffusion in CNS tissues and is primarily used
to characterize white matter integrity (90, 91). DWI-derived
metrics, such as axial diffusivity (AD), mean diffusivity (MD),
fractional anisotropy (FA), radial diffusivity (RD) enable the
quantitative characterization of white matter integrity. Novel
high-directional approaches, such as high-angular resolution
diffusion imaging (92), q-ball imaging (93), diffusion kurtosis
imaging (94), diffusion basis spectrum imaging (DBSI) (95)
are particularly well-suited to assess the integrity of crossing-
fibers (96, 97). Emerging diffusion techniques such as neurite
orientation dispersion and density imaging (NODDI) (98) help
to estimate the microstructural attributes of dendrites and axons
(99). While in ALS NODDI has been primarily used in cerebral
studies in ALS (100, 101), it also has been also piloted in spinal
applications (90, 102). Specific DTI indices (AD, RD) have been
associated with specific pathological processes, such as axonal
(103, 104) vs. myelin-related (105, 106) degeneration, but this
interpretation is likely to be simplistic, as DTI measures are
affected by axonal density, axonal diameter, myelin thickness and
fiber orientation, fiber coherence, and acquisition parameters.
DTI has been extensively used to study cerebral changes in ALS
and describe phenotype-associated (107), genotype-specific (27),
presymptomatic (32), and longitudinal white matter changes in
the brain (81). In contrast to the plethora of cerebral DTI studies,
relatively few spinal DTI studies have been published in ALS to
date (58, 69, 73, 80–82, 85). These have consistently highlighted
both motor and sensory tract alterations (Table 1).

Magnetization Transfer Imaging
Hydrogen nuclei linked to macromolecules such as the proteins
and lipids of the myelin sheet have an extremely short T2
signal. While these macromolecules are not directly detectable by
standard MRI sequences, magnetization transfer (MT) imaging
enables the characterization of these structures. Macromolecular
spins can be saturated using an off-resonance RF pulse, then
the magnetization transfer between bound and free pools
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TABLE 1 | Quantitative spinal imaging studies in ALS, ALS, amyotrophic lateral sclerosis; ALSFRS-r, the revised ALS functional scale; FA, fractional anisotropy; CSA,

cross-sectional area; CST, corticospinal tract; FVC, force vital capacity; ihMT, inhomogeneous magnetization transfer; ihMTR, inhomogeneous magnetization transfer ratio;

MD, mean diffusivity; MT, magnetization transfer; MTR, magnetization transfer ratio; MMT, manual muscle testing; SC, spinal cord; SOD1, superoxide dismutase 1 gene.

Author

year of

publication

(references)

Patient cohort

n

Controls

n

Spinal imaging

technique

Spinal cord

region

evaluated

Main findings

Valsasina et al. (80) 28 Sporadic ALS 20 CSA/DTI Cervical

spinal cord

Decreased FA and CSA decreased in ALS. Strong

correlation between FA and the ALSFRS and

moderate correlation between spinal and brain FA

Agosta et al. (81) 17/17 at

baseline/follow-up

(9 months)

Sporadic ALS

20 CSA/DTI Cervical

spinal cord

Longitudinal FA, MD, and CSA changes detected.

Brain CST diffusivity measurements are stable over

time and do not correlate with cord measures

Nair et al. (82) 14 Sporadic ALS 15 DTI C2-C6

vertebral

levels

Reduced FA and RD in ALS. FA and RD correlate

with finger and foot tapping rates. RD correlates

with FVC and ALSFRS-R

Carew et al. (31) 23 sporadic ALS,

24

presymptomatic

SOD1carriers

29 1H-MRS C2 vertebral

level

Reduced NAA/Cr and NAA/Myo ratios in both

SOD1+ and sporadic ALS. Reduced Myo/Cr in

SOD1+ subjects but not in sporadic ALS. Reduced

NAA/Cho in sporadic ALS but not in SOD1+

subjects

Carew et al. (83) 14 Sporadic ALS 16 1H-MRS C2 vertebral

level

Reduced NAA/Cr and NAA/Myo ratios in ALS.

NAA/Myo and NAA/Cho reductions correlate with

FVC

Ikeda et al. (84) 19 Sporadic ALS 20 1H-MRS C2 vertebral

level

Reduced NAA/Cr and NAA/Myo ratios in ALS.

NAA/Cr and NAA/Myo correlate with ALSFRS and

FVC. NAA/Cr, NAA/m-Ins, and m-Ins/Cr are

markedly altered in patients with C2 denervation

and neurogenic changes

Cohen-Adad et al.

(69)

27 sporadic ALS,

2 SOD1-linked

familial ALS

21 CSA/DTI/

MT

C2-T2

vertebral

levels

Altered DTI and MT metrics in the lateral and dorsal

columns. FA correlates with ALSFRS-r. Segmental

cord atrophy is associated with disability. FA profile

of the cervical cord is suggestive of retrograde CST

degeneration i.e., “dying back”

Branco et al. (70) 25 Sporadic ALS 43 CSA C2 vertebral

level

Decreased CSA in ALS. CSA correlates with

disease duration, ALSFRS-r, and ALS severity scale

El Mendili et al.

(73)

29 at baseline,

14 at follow-up

– CSA/DTI/

MT

C2-T2

vertebral

levels

CSA correlates with MMT. At follow-up, CSA

predicts upper limb ALSFSR-R subscores, and FA

predicts lower limb disability. CSA and MTR

decrease between baseline and follow-up

Wang et al. (85) 24 Sporadic ALS 16 DTI C2-C4

vertebral

levels

CST FA and ADC changes in ALS. No difference in

FA or ADC between patients with “definite” and

“probable” ALS. No correlations between DTI

parameters and modified Norris or ALSFRS-r scores

Iglesias et al. (86) 21 Sporadic ALS 21 DTI Cervical

spinal cord

Abnormal DTI metrics indicate decreased integrity of

ascending sensory fibers. Significant correlation

between DTI metrics and the depression of the

peripheral afferent volley. The combination of SEP

and DTI reveals sub-clinical sensory deficits in 85%

ALS patients

Rasoanandrianina

et al. (58)

10 Sporadic ALS 20 CSA/DTI/MT/ihMT Cervical

spinal cord

Spinal GM and WM atrophy in ALS. GM atrophy

correlates with UMN scores. FA and MTR decrease

in the CST. Axial diffusivity and ihMT decreased in

the CST and dorsal columns. CSA correlates with

the ALSFRS-r and spinal ALSFRS-R subscores. DTI

and MT/ihMT metrics correlate with disease

duration and MRC scores

de Albuquerque et

al. (87)

27 at baseline,

27 at follow-up

8 months apart

27 CSA/DTI C2 vertebral

level

Longitudinal reduction in CSA. Cord area reduction

correlates with change in ALSFRS-r

(Continued)
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TABLE 1 | Continued

Author

year of

publication

(References)

Patient cohort n Controls

n

Spinal imaging

technique

Spinal cord

region

evaluated

Main findings

Querin et al. (79) 49 sporadic ALS – CSA/DTI/MT C2-T2

vertebral

levels

Spinal MRI parameters are more predictive of

survival than clinical variables (ALSFRS-R, MMT,

and disease duration)

Paquin et al. (72) 27 sporadic,

2 SOD1-linked

familial ALS

22 CSA C3-C6

vertebral

levels

Spinal gray matter metrics are more sensitive to

discriminate ALS patients from controls than overall

cord CSA. Gray matter and spinal cord CSA

correlates with ALSFRS-r and MMT arm scores.

ALSFRS-r prediction improves when including a

combination of gray and white matter CSA

Querin et al. (76) 60 sporadic ALS 45 CSA/DTI/MT Cervical

spinal cord

Random forest classification algorithm leads to

good diagnostic performance distinguishing

patients with ALS from controls with a sensitivity of

88% and specificity of 85%. The highest

discrimination ability was achieved by evaluating

RD, followed by FA, and CSA at the C5 spinal level

Piaggio et al. (88) 23 Sporadic ALS 18 CSA Level of the

Foramen

magnum

Spinal cord area at the foramen magnum is

significantly lower in ALS patients than in control

subjects and is significantly correlated to ALSFRS-r.

Spinal cord CSA at the foramen magnum correlates

with disability in ALS independently of cerebral

measures

Grolez et al. (89) 40 at baseline,

40 at follow-up

3 months apart

21 SC volume Cervical

spinal cord

Longitudinal change in cervical spinal cord volume

is predictive of slow vital capacity decline and is also

associated with survival

can be measured (108). Magnetization transfer occurs by
means of cross relaxation processes, such as dipole-dipole
interactions and chemical exchange. Magnetization transfer
ratio (MTR) is calculated as the percentage difference of
MT images with macromolecules signal saturation and one
without. MTR enables inferences on myelin content, axonal
count, and density as shown by three MS histological
studies, and has been used extensively to assess demyelination,
remyelination, and degeneration in MS (109–111). Conversely,
relatively few studies have used cerebral MT imaging in
ALS, and the majority of these focused on corticospinal
tract alterations (112–115). Relatively few studies evaluated
spinal MT changes in ALS, but they have shown progressive
reduction overt time and correlation with muscle weakness
(58, 69, 73). The key findings of spinal MT imaging studies
in ALS and associated technical challenges are summarized in
Tables 1, 2.

Inhomogeneous Magnetization
Transfer Imaging
Inhomogeneous magnetization transfer (ihMT) imaging is
a novel method (116, 117), which allows the unprecedented
characterization of myelin integrity, by isolating key myelin
components from the broader macromolecular pool.
ihMT shows unparalleled potential to detect and quantify
demyelination (118) and may be adapted to spinal applications.
ihMT imaging has already been applied to ALS cohorts and

demonstrated significant correlation with muscle strength and
disability profiles (58).

MR Spectroscopy
Magnetic resonance spectroscopy (MRS) is well-established,
non-invasive imaging tool which provides neurochemical
insights based on the concentration and relaxation profile of
specific metabolites in cerebral and spinal tissues. MRS has
been extensively used in cerebral studies of ALS (119), used
to assess the therapeutic effect of Riluzole (120, 121), and also
used to study brainstem metabolic alterations (122). Cross-
sectional and longitudinal (123), single voxel and whole brain
multi-voxel studies have both contributed to our understanding
of ALS pathophysiology (124). The main targets of proton
spectroscopy (1H-MRS) include the following metabolites; N-
Acetyl Aspartate (NAA), creatine (Cr), choline (Cho), and myo-
Inositol (Myo). These metabolites are typically associated with
neuronal integrity/viability (NAA), tissue energy metabolism
(Cr), membrane integrity (Cho), and glial function (Myo).
(125). Relatively few studies have used 1H-MRS to characterize
metabolic changes at the spinal level, and the majority of these
studies focused on multiple sclerosis (126, 127) MRS however
seems particularly applicable to ALS cohorts, where it promises
the characterization of presymptomatic changes and by including
both the upper and lower motor components of the motor
system, it has led to particularly significant clinico-radiological
correlations (31, 83, 84). For the contribution of MRS studies to
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TABLE 2 | The advantages and methodological challenges associated with specific spinal imaging techniques.

Imaging technique Advantages of specific techniques in ALS Challenges and correction strategies

Diffusion-weighted imaging Evaluation of specific white matter bundles; motor; and sensory white

matter tracts integrity. Availability of multiple derived diffusivity metrics

reflecting on various histological aspects of white matter integrity; AD, MD,

RD, FA. Emerging high angular resolution diffusion techniques to assess

crossing fiber integrity. Derived metrics can be interpreted in comparative,

longitudinal, correlation, and machine learning analyses

Motion artifacts:

- Gating the acquisition (DWI, CSA, and volume

estimation, fMRI, 1H-MRS)

- Saturation bands (all modalities)

- Velocity compensating gradient sequences (DWI)

- Signal averaging acrossmultiple phases of motion (DWI,

fMRI, 1H-MRS)

- Fast sequences (DWI)

- MRI compatible cervical collar (DWI, CSA, and volume

estimation, fMRI, 1H-MRS)

- Co-registration of all data (DWI, fMRI)

- Non-linear co-registration between T1 with and without

magnetization transfer saturation pulse (MTR, ihMT)

Magnetic field inhomogeneities:

- Shimming (all modalities)

- Parallel imaging (all modalities)

- Corrections for gradients nonlinearity induced

geometric distortion (DWI, MT, ihMT, CSA, and

volume estimation, fMRI)

- Corrections for breathing induced B0 field fluctuations

(DWI, fMRI, CSA)

Partial volume effect (all modalities)

- Higher magnet field strength

- Higher number of phased-array coils with parallel

imaging

- Multi-channel image acquisition

- Limiting physiological motion

Magnetization transfer

imaging

Evaluation of both white and gray matter integrity. Sensitive detection and

measurement of demyelination. Derived metrics can be evaluated at

individual and group-level statistical analyses

Inhomogeneous

magnetization transfer

imaging

Applicability to both gray and white matter tissue components, superior

sensitivity to detect demyelination

Cross-sectional area and

volume estimation

Automated segmentation pipelines enable the estimation of overall cord

cross-sectional area and gray and white matter components separately.

Gray matter components correlate with clinical and electrophysiological

lower motor neuron (LMN) measures, therefore may be regarded an imaging

proxy of LMN integrity

1H-MR spectroscopyd MRS provides a number of metrics which reflect on focal neuronal integrity

(NAA), energy metabolism (Cr), membrane integrity (Cho), and glial function

(Myo). MRS readily captures segmental metabolic alterations in

symptomatic and presymptomatic ALS cohorts

Functional MRI As an emerging technique spinal fMRI has the potential to detect segmental

cord activation during motor tasks and at rest

ALS, amyotrophic lateral sclerosis; ALSFRS-r, revised ALS functional scale; FA, fractional anisotropy; CST, corticospinal tract; FVC, force vital capacity; MD, mean diffusivity; MMT,

manual muscle testing.

ALS research and specific methodological considerations please
see Tables 1, 2.

Functional MRI
Functional MRI (fMRI) detects local variations in blood
oxygenation level-dependent MR signal at rest and during
activation paradigms (128). FMRI has been extensively applied
to ALS cohorts to describe network changes and assess altered
activation patterns when performing motor or cognitive tasks
(129–131). Following decades of successful cerebral studies, the
first spinal fMRI studies have now been published (55, 132).
Emerging spinal cord fMRI studies in healthy controls provide
proof of feasibility and the first studies using spinal fMRI in
neurological conditions are underway (133).

THE CONTRIBUTION OF SPINAL IMAGING
TO ALS RESEARCH

Evidence for Motor Involvement in ALS
Quantitative spinal MRI studies in ALS have consistently
detected corticospinal tract and anterior horns degeneration
and changes correlated with functional disability (36, 58, 80,
82, 85). Segmental spinal cord atrophy was not only linked to
muscle weakness (58, 70, 88), but also to electrophysiological
markers such as transracial magnetic stimulation (TMS) and
motor evoked potentials (69). Two studies have demonstrated
that both white and gray matter atrophy contributes to global

cord atrophy in ALS (58, 72), but a recent study indicates that
cord atrophy in ALS may be predominantly driven by anterior
horn degeneration (72), confirming the role of spinal MRI as a
putative LMNmarker. DTI and MTR indices of the corticospinal
tract (CST) correlated with TMS facilitation motor thresholds, a
functional parameter that reflects pyramidal tract integrity.

Longitudinal Spinal Cord Changes in ALS
In contrast to the plethora of longitudinal cerebral studies in ALS
(21), relatively few longitudinal spinal studies are available to
demonstrate that spinal MRI metrics can track subtle progressive
changes over time (73, 81, 87, 89). These longitudinal studies
captured decreasing CSTMTR and progressive cord atrophy (73,
87) While some longitudinal studies also captured progressive
DTI alterations (81), other studies did not (73). Some studies
suggest that CSA estimates may be more reliable markers of
longitudinal cord pathology than MTR or DTI metrics (73, 87).
Progressive cord atrophy not only mirrors clinical progression,
but early cervical cord atrophy is thought to predict respiratory
dysfunction in ALS (89, 134). Furthermore, spinal MRI metrics
may be superior predictive indicators of survival than clinical
measures (79). Given the scarcity of longitudinal spinal imaging
studies in ALS, it remains to be establishedwhich imagingmetrics
capture early ALS-associated changes, therefore may be used in
diagnostic applications, and which metrics can track changes in
the later stages making them suitable as monitoring markers.
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Evidence for Sensory Involvement in ALS
Several spinal MRI studies (58, 69) have captured dorsal column
degeneration using DTI, MT, and ihMT imaging, and one study
demonstrated progressive sensory tract degeneration over time
(135). Dorsal column pathology can be detected relatively soon
after symptoms onset, which suggests that sensory involvement is
a core and relatively early feature of ALS. Combined spinal DTI
and neurophysiology studies have also confirmed considerable
sensory pathway degeneration in ALS patients without sensory
symptoms (86). The combined MRI-neurophysiology approach
revealed sub-clinical sensory deficits in 85% of ALS patients.
These findings suggest that sensory dysfunction may have been
underestimated by previous studies and that sensory afferent
pathways may be affected early in the course of ALS and are
important facets of ALS pathogenesis (69, 86). In contrast to
longitudinal cerebral studies (4, 32), longitudinal spinal studies
suggest that dorsal column metrics (73), and CST DTI indices
(87) may be relatively constant (135).

Evidence for Spinal Metabolic Alterations
in ALS
1H-MRS studies in ALS have shown reduced NAA/Cr and
NAA/Myo ratios at the C2 vertebral level (31, 83, 84). One spinal
MRS study captured reduced NAA/Myo and NAA/Cr ratios in
presymptomatic superoxide dismutase 1 gene (SOD1+) carriers
(31). In addition to group-level differences in symptomatic
and presymptomatic ALS cohorts, NAA/Myo and NAA/Cho
reductions correlate with force vital capacity (FVC) and revised
ALS functional scale (ALSFRS-r) and inversely correlated to the
rates of decline (31, 83, 84).

FUTURE DIRECTIONS

Existing spinal studies in ALS indicate that it is possible to
detect disease-specific imaging signatures at a group level,
and emerging machine-learning studies (76) have demonstrated
that it may be possible to classify individual scans into
“ALS” and “Healthy” groups. Despite the pioneering studies
however, it is clear that spinal imaging lags behind cerebral
imaging. Cerebral imaging has shown that phenotype and
genotype specific patterns can be detected, multi-time point
longitudinal studies have shown divergent rates of gray and
white matter degeneration, studies have been validated by post
mortem examination and robust multi-site studies have also
been published (136). It is likely that improved coil designs

with higher number of phased-array elements, new generation
scanners with higher gradients optimized for advanced diffusion-
weighted imaging, ultra-high filed platforms with superior
spatial resolution, and SNR, spinal imaging will contribute
unprecedented insights in ALS. It is conceivable that spinal
imaging will contribute to the longstanding debate about
dying back and dying forward, and ALS being a primarily
spinal vs. cerebral disease. Spinal imaging provides a unique
opportunity to appraise both lower and upper motor neuron
degeneration. It is also likely that imaging sequences currently
primarily used in cerebral imaging in ALS such as resting
state fMRI, task-based fMRI, quantitative susceptibility weighted
imaging, presymptomatic imaging, texture analyses, and post
mortem imaging will filter down to spinal applications. Data-
sharing initiatives, cross-platform harmonization, inclusion
of upper motor neuron (UMN) and lower motor neuron
(LMN) predominant ALS cohorts, correlations with advanced
neurophysiological techniques are trends of ALS imaging
which is likely to be adopted in spinal studies. One of
the key ambitions of multiparametric spinal imaging is to
overcome the methodological challenges of thoracic and
lumbar imaging.

CONCLUSIONS

The momentous advances in spinal imaging in ALS suggest
the spinal metrics may soon be used as validated diagnostic,
monitoring, and prognostic markers, contributing both to
individualized patient care and pharmacological trials.
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The F-wave test allows for the non-invasive assessment of spinal motoneuron
excitability. We investigated the difference in spinal motoneuron dysfunction between the
first dorsal interosseous (FDI) and abductor digit minimi (ADM) muscles by investigating
F-waves and to assess the contribution of spinal mechanisms to split-hand syndrome in
patients with amyotrophic lateral sclerosis (ALS). Sixty-five consecutive ALS patients
and twenty age- and gender-matched healthy controls (HCs) were enrolled. Motor
nerve conduction studies and F-waves were performed bilaterally on median and
ulnar nerves in all subjects. HCs revealed prominently longer F-wave latencies, lower
chronodispersion, mean F-wave amplitude, and mean and maximal F/M amplitude ratio
(P < 0.001) in the FDI compared to the ADM. However, no significant differences
in almost all F-wave parameters between the FDI and ADM were observed in ALS
patients with affected hands except the minimal and mean F-wave latency. These data
suggest that excitability is greatly changed in the spinal motoneurons innervating the
FDI. Furthermore, the mean F-wave amplitude (r = 0.454, P = 0.002) of the FDI was
significantly correlated with the FDI/ADM CMAP amplitude ratio in ALS patients with
affected hands but not of the ADM. Our findings suggested that the dysfunction of spinal
motoneurons between the FDI and ADM was different in ALS, and spinal motoneuron
dysfunction was associated with development of the split-hand phenomenon.

Keywords: amyotrophic lateral sclerosis, F-wave, motor neuron, split-hand, first dorsal interosseous muscle,
motor neuron disease

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder involving
both upper and lower motor neurons (LMNs) and is often characterized by muscle weakness and
atrophy, especially the small hand muscles. Dissociated atrophy of intrinsic hand muscles as an
early and specific clinical feature of ALS, termed the split-hand sign, refers to preferential weakness
and wasting of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) muscles with
relative sparing of the abductor digit minimi (ADM) (Kuwabara et al., 1999, 2008; Wilbourn,
2000; Eisen and Kuwabara, 2012; Eisen et al., 2017). Menon et al. (2014b) reported that the
split-hand sign was often evident in 62% of patients at the time of visiting and in 95% at follow-up.
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Although the thenar complex muscles (APB/FDI) and
hypothenar muscles (ADM) constituting the split-hand are
innervated through the same spinal segments (C8 and T1),
the FDI and ADM, which are differentially affected, share
ulnar innervation (Weber et al., 2000; Kuwabara et al., 2008;
Eisen and Kuwabara, 2012). Corticomotoneuronal input and
spinal/peripheral mechanisms have been suggested to be involved
(Weber et al., 2000; Bae et al., 2009; Eisen and Kuwabara, 2012;
Shibuya et al., 2013; Menon et al., 2014b; Eisen et al., 2017), and
cortical dysfunction is considered as the likely pathophysiological
mechanism underlying the split-hand phenomenon, while axonal
dysfunction may appear as a downstream process (Menon et al.,
2014a,b). The spinal mechanisms underlying the development
of split-hand in ALS remain controversial. For example, Cengiz
et al. (2018) reported no significant difference in cutaneous silent
period measurements between the ADM and FDI, suggesting no
role of spinal cord excitability changes in split-hand syndrome.
However, Wilbourn (2000) reported the finding of split-hand
in ALS in 1992, as well as in other diseases with only LMN
dysfunction, and suggested that the lesion responsible for the
ALS split-hand was at the level of the cervical anterior horn
cell (Schelhaas et al., 2003). Further, Fang et al. (2016) found
differences between the dysfunction of spinal motoneurons
innervating the APB and the ADM in ALS. Thus, in the present
study, we examined the hypothesis that spinal mechanisms
contribute to split-hand in ALS.

The F-wave is a late response that reflects antidromic
activation of motoneurons. Previous studies have shown that
F-waves were not only used to assess changes in the excitability
of spinal motoneurons (Espiritu et al., 2003; Lin and Floeter,
2004; Argyriou et al., 2006) but also as a probe to determine
the activity of the motor cortex (Mercuri et al., 1996; Rivner,
2008). A direct comparison of the F-wave variables of the FDI and
ADM innervated by the same nerve and the same spinal segments
may provide more valuable information on the excitability
changes of the spinal motoneuron pool and shed light on the
complex mechanisms of split-hands. To date, the characteristics
of multiple F-wave variables in the FDI have not been assessed in
healthy subjects and ALS in previous studies. Therefore, the aims
of this study were to (1) identify the characteristics of F-waves of
the FDI, and (2) to ascertain the difference in spinal motoneuron
dysfunction between the FDI and ADM in patients with ALS and
HCs and to clarify the spinal pathophysiology of split-hand.

MATERIALS AND METHODS

Subjects
Sixty-five consecutive patients diagnosed as having definite,
probable and laboratory-supported probable sporadic ALS
according to the revised El Escorial criteria were included in this
study. All patients were recruited at the department of neurology
in Peking Union Medical College Hospital between December
2017 and November 2018. Patients with ALS complicated by
diabetic neuropathy, alcohol abuse, carpal tunnel syndrome,
cervical myelopathy, and other neurological disorders were
excluded. Control data were obtained from 20 age- and gender-
matched healthy volunteers, whose nerve condition studies

were normal. In each patient the muscle strength was assessed
using the Medical Research Council (MRC) score, and a total
MRC score was calculated for the following muscle groups
assessed bilaterally: shoulder abduction, elbow flexion, elbow
extension, wrist dorsiflexion, finger abduction, thumb abduction,
hip flexion, knee extension, and ankle dorsiflexion (Menon
et al., 2014b). The maximum possible total MRC score was 90.
The clinical status of each patient was evaluated with the ALS
Functional Rating Scale-Revised (ALSFRS-R) and upper motor
neuron (UMN) score, as previous studies described (Cedarbaum
et al., 1999; Grapperon et al., 2014). Two groups were established
from the ALS patients, an affected hand group with wasting and
weakness in the intrinsic hand muscles, where the data from
the more affected hands were analyzed (45 patients), and an
unaffected hand group, where the data for bilateral hands were
analyzed in this group (20 patients). The hand was considered
to be unaffected if the intrinsic hand muscles contained APB,
FDI and ADM of normal strength; no wasting or weakness;
and the nerve conduction studies (NCSs) were within normal
limits. The hands of the healthy controls (HCs) were analyzed
bilaterally. To estimate the influence of UMN involvement in the
split-hand phenomenon, two subgroups were formed from ALS
patients in the affected hand group, designated as the P group
(pyramidal signs) and the NP group (no pyramidal signs). A more
conservative but robust criterion for UMN lesion was used in
the present study, requiring both increased tendon reflexes and
positive Hoffman’s sign in defining the presence of pyramidal
lesion in the arm (de Carvalho et al., 2002). The study was
approved by the Peking Union Medical College Hospital Clinical
Research Ethics Committee (Beijing, China), and all participants
provided signed informed consent.

Nerve Conduction Studies
All patients underwent routine NCSs and electromyography
(EMG) using an EMG machine (Medtronic-Dantec Electronics,
Skovlunde, Denmark). A peak-to-peak amplitude of maximal
compound muscle action potential (CMAP) was elicited by using
supramaximal (120%) surface stimulation of the median and
ulnar nerves at the wrist and recorded from the APB, FDI
and ADM muscles according to previously described standard
methods (Stimulus duration: 0.1 ms; Filter setting: 20 Hz–10 kHz
Gain: 200 µV/division; Sweep speed: 5 ms/division). Specifically,
for FDI recording, the active electrode (G1) was placed on its
belly and the reference electrode (G2) at the medial aspect of
the proximal interphalangeal joint of the index finger (Kuwabara
et al., 2008). The distance between the cathode and active (G1)
recording electrodes for ADM muscles was 6.5 cm, while the
distance between the cathode and active (G1) electrode for the
FDI muscle was 8–10 cm. There was no evidence of conduction
block or M response temporal dispersion in ALS patients. The
skin temperature was maintained above 32◦C. The following
parameters were obtained: distal motor latency (DML), motor
conduction velocity (MCV), CMAP amplitude (peak-to-peak),
and the FDI/ADM CMAP amplitude ratio.

F-Wave Studies
The F-waves of ulnar nerves were recorded with surface
electrodes attached to the skin over the FDI and ADM muscles,
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the same position as in motor nerve conduction studies (de
Carvalho et al., 2002; Kim, 2011). One hundred consecutive
supramaximal (120%) percutaneous stimuli were delivered to the
ulnar nerve at the wrist at a frequency of 1 Hz with the cathode
proximal to the anode (Filters setting: 20 Hz–3 kHz; amplifier
gain: 200 µV/division). A peak-to-peak deflection from baseline
of at least 40 µV was accepted as an F-wave (Peioglou-Harmoussi
et al., 1985). The following F-wave variables were measured
in the FDI and ADM: the minimum, mean and maximum
latency corrected according to the subject’s height (FLmin/H,
FLmax/H, FLmean/H) (ms/m); chronodispersion; persistence;
mean and maximum F-wave amplitude (peak-to-peak); mean
and maximum F/M amplitude ratio (average or maximum peak-
to-peak amplitude of F-waves expressed as a percentage of
maximum distal CMAP amplitude); and the number of repeater
F-waves. The repeater F-waves were identified as having the
same shape, latency, and amplitude, and were calculated by the
following indices as described by Chroni et al. (Chroni et al.,
2012): index repeating neuron (index RN) (number of repeating
neuron/ number of traces with different F-wave shapes in a
series of 100 stimuli × 100), and index repeater F-waves (index
Freps) (total number of F-wave repeaters/total number of traces
with F-waves in the same nerve × 100). Due to the nature
of the applied F-wave technique, which requires recording of
a significant number of F-waves, we only examined the FDI
and ADM muscles with strength of MRC of 2 or higher. And
nerves without F-waves or the CAMP amplitude ≤ 2.0 mV were
excluded from our analysis.

Statistical Analysis
All analyses were performed using SPSS for windows version
24.0 (SPSS, IBM, Chicago, IL, United States). Normality was
checked by the Shapiro–Wilk test. Normally distributed data
are expressed as the mean ± SD and were compared using
one-way ANOVA and the Student-Newman-Keuls (SNK) test.
Mean values of measured variables between the FDI and ADM

within the same group were compared using Student’s t-test.
Non-normally distributed data are expressed as the medians
(IQR) and were compared using the Kruskal–Wallis H-test.
Once the null hypothesis was rejected, pairwise comparisons of
the groups were tested using the Mann–Whitney U-test and
Bonferroni correction with a significance level of P < 0.017.
The relationship between the F-wave parameters and FDI/ADM
CAMP amplitude ratio was assessed using Pearson’s correlation
and Spearman’s rank correlation test. For comparison of the
frequency distribution of categorical variables (gender and
disease onset), the χ2 test was used. The level of statistical
significance was established at P < 0.05.

RESULTS

The clinical profiles of the ALS patients and HCs are presented
in Table 1. Among the ALS groups, all patients studied
herein had a clinically predominant LMN syndrome and none
had a pure UMN syndrome. The total MRC scores were
higher in the unaffected hand group than the affected hand
group. Disease duration, UMN score and ALSFRS-R were not
significantly different between the affected hand and unaffected
hand groups. The age at examination, gender ratio, and height
were comparable between patients and controls.

Table 2 summarizes the overall comparisons between motor
conduction values obtained from the ulnar nerves (FDI and
ADM) of both patients with ALS and HCs. In HCs, the mean
CMAP amplitude in FDI was greater than that in ADM, and
the mean FDI/ADM CMAP amplitude ratio was calculated as
1.38. A significant reduction of FDI/ADM CMAP amplitude ratio
(0.9 ± 0.3) was observed in the affected hand group compared
with HCs, confirming that the split-hand phenomenon was
evident in the present ALS patients (Kuwabara et al., 2008).

The results of F-wave variables are displayed in Table 3. When
the FDI and ADM were compared in HCs, the FDI showed

TABLE 1 | Clinical profile of participants.

Parameters Affected hand
(A, n = 45)

Unaffected
hand (B, n = 20)

HCs
(C, n = 20)

P-value

A vs. C B vs. C A vs. B

Age (year) 53.42 ± 8.82
(34–66)

51.20 ± 9.71
(35–69)

52.4 ± 9.13
(39–73)

>0.05 >0.05 > 0.05

Gender (male:female) 25:20 7:13 11:9 >0.05 >0.05 > 0.05

Height (cm) 165.84 ± 8.57 163.85 ± 7.56 166.3 ± 8.18 >0.05 >0.05 > 0.05

Disease duration (months) 14.73 ± 8.89
(3–45)

11.70 ± 6.97
(4–27)

NA NA NA 0.158

Disease onset (bulbar: upper limbs: lower limbs) 9:28:8 9:3:8 NA NA NA 0.002

Total MRC scores 73.44 ± 10.27
(43–88)

83.35 ± 6.78
(67–90)

NA NA NA < 0.001

UMN scores 39.24 ± 14.03
(4–64)

32.10 ± 12.87
(5–54)

NA NA NA 0.057

ALSFRS-R 40.44 ± 4.18
(28–47)

42.30 ± 2.76
(36–46)

NA NA NA 0.099

HCs, healthy controls; MRC, Medical Research Council; UMN, upper motor neuron; ALSFRS-R, amyotrophic lateral sclerosis functional rating scale-revised;
NA, not applicable.
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TABLE 2 | Results of nerve conduction studies and split-hand.

Parameters Affected hand
(A, n = 45)

Unaffected
hand (B, n = 40)

HCs
(C, n = 40)

P-value

A vs. C B vs. C A vs. B

DML (ms)

FDI 3.60 ± 0.40 3.45 ± 0.38 3.42 ± 0.32 0.005 0.519 0.089

ADM 2.47 ± 0.45 2.20 ± 0.26 2.19 ± 0.25 0.001 0.784 0.002

CMAP amplitude (mV)

FDI 7.05 ± 4.31 17.91 ± 4.73 17.78 ± 3.77 < 0.001 0.825 < 0.001

ADM 7.49 ± 3.41 13.31 ± 2.80 14.62 ± 2.85 < 0.001 0.027 < 0.001

FDI/ADM CMAP amplitude ratio 0.90 ± 0.30 1.42 ± 0.28 1.38 ± 0.21 < 0.001 0.593 < 0.001

MCV (m/s)

FDI 56.99 ± 4.53 60.11 ± 1.94 60.18 ± 1.45 < 0.001 0.159 < 0.001

ADM 55.89 ± 3.66 60.12 ± 1.22 60.20 ± 1.46 < 0.001 0.102 < 0.001

DML, distal motor latency; FDI, first dorsal interosseous; ADM, abductor digit minimi; CMAP, compound muscle action potential; MCV, motor conduction velocity; HCs,
healthy controls. All data are expressed as the mean ± SD. Values with significant differences printed in bold characters.

TABLE 3 | Results of F-wave variables in the ALS patients and the healthy controls.

Parameters Affected hand
(A, n = 45)

Unaffected
hand (B, n = 40)

HCs
(C, n = 40)

P-value

A vs. C B vs. C A vs. B

Minimal F latency (ms/m)

FDI 16.37 ± 0.95∗∗ 15.84 ± 0.71∗∗ 15.13 ± 0.46∗∗ < 0.001 < 0.001 0.022

ADM 15.62 ± 0.92∗∗ 14.93 ± 0.79∗∗ 14.50 ± 0.47∗∗ < 0.001 0.016 < 0.001

Maximal F latency (ms/m)

FDI 18.93 ± 1.78 17.70 ± 0.92∗ 16.74 ± 0.57∗∗ < 0.001 < 0.001 < 0.001

ADM 18.59 ± 1.70 16.99 ± 0.89∗ 15.13 ± 0.46∗∗ < 0.001 < 0.001 < 0.001

Mean F latency (ms/m)

FDI 17.41 ± 1.15∗ 16.53 ± 0.72∗∗ 15.82 ± 0.54∗∗ < 0.001 < 0.001 < 0.001

ADM 16.80 ± 1.03∗ 15.81 ± 0.84∗∗ 15.17 ± 0.52∗∗ < 0.001 < 0.001 < 0.001

F-wave chronodispersion (ms)

FDI 4.22 ± 2.27 3.04 ± 0.95∗ 2.49 ± 0.55∗ < 0.001 0.001 0.004

ADM 4.91 ± 2.31 3.34 ± 0.70∗ 2.88 ± 0.66∗ < 0.001 0.003 < 0.001

F-wave persistence (%)

FDI 62 (41) 96.5 (9.25)∗ 100 (0.75) < 0.001 < 0.001 < 0.001

ADM 71 (54.5) 99 (1)∗ 100 (0) < 0.001 0.002 < 0.001

Mean F-wave amplitude (µV)

FDI 269 (216.5) 178.5 (127.25)∗ 174.5 (90.75)∗∗ 0.002 0.648 0.015

ADM 266 (199.5) 257.5 (124)∗ 264.5 (126.5)∗∗ > 0.05 > 0.05 > 0.05

Mean F/M amplitude ratio (%)

FDI 3.99 (5.96) 1.04 (0.6)∗∗ 1.03 (0.57)∗∗ < 0.001 0.950 < 0.001

ADM 3.76 (3.47) 2.13 (1.23)∗∗ 1.85 (0.80)∗∗ < 0.001 0.258 < 0.001

Maximal F/M amplitude ratio (%)

FDI 11.97 (9.72) 3.37 (3.28)∗ 2.80 (1.82)∗∗ < 0.001 0.020 < 0.001

ADM 10.01 (11.51) 5.86 (4.09)∗ 4.33 (2.52)∗∗ < 0.001 0.017 < 0.001

Index RN (%)

FDI 16.67 (23.07) 1.62 (3.23)∗∗ 0 (0) < 0.001 < 0.001 < 0.001

ADM 18.18 (29.81) 0 (1.79)∗∗ 0 (0) < 0.001 0.017 < 0.001

Index Freps (%)

FDI 55.81 (51.57) 4.12 (13.33)∗∗ 0 (0) < 0.001 < 0.001 < 0.001

ADM 50 (59.12) 0 (3.77)∗∗ 0 (0) < 0.001 0.017 < 0.001

HCs, healthy controls; FDI, first dorsal interosseous; ADM, abductor digit minimi. Normally distributed data are expressed as the mean ± SD, and non-normally
distributed data are expressed as the medians (IQR). Values with significant differences printed in bold characters. ∗∗P <0.001, ∗P <0.05, between the FDI and
the ADM in each group. For comparisons of F-wave variables among affected hand group, unaffected hand and healthy control group, Bonferroni correction with a
significance level of P < 0.017.
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FIGURE 1 | The mean F-wave amplitude (A), and the mean and maximal F/M amplitude ratios (B,C), recorded over the FDI and ADM muscles were significantly
increased in ALS patients with affected hands compared with those with unaffected hands. When the FDI and ADM were compared in HCs and the unaffected hand
group, the FDI showed a noticeably lower mean F-wave amplitude, and a lower mean and maximal F/M amplitude ratios, than for the ADM. By contrast, there were
no differences in F-wave measurements between the FDI and ADM in the affected hand group. ∗∗P < 0.001; ∗P < 0.05. The numerical data on the Y-axis were
logarithmically transformed (Log2).

noticeably longer F-wave latencies and lower chronodispersion,
mean F-wave amplitude, and mean and maximal F/M amplitude
ratios than the ADM. This trend was similar in the unaffected
hand group (Figures 1A–C). In contrast, no differences between
the FDI and ADM for F-wave measurements were observed in
the affected hand group except the FLmin/H and FLmean/H.
Concerning the F-wave variables in the unaffected hand group,
the F-wave latencies, persistence, chronodispersion of the FDI
and ADM and index RN, and index Freps of the FDI were
significantly changed compared to controls, along with the
relative normal mean F-wave amplitude, mean and maximal F/M
amplitude ratios of the FDI and ADM and index RN and index
Freps of the FDI (column B vs. C). Table 4 shows the comparison
of F-wave parameters in ALS patients with pronounced split-
hands between subgroups of those with (P) and without (NP)

pyramidal signs. No difference was observed between the P and
NP groups. Additionally, the difference between the FDI and
ADM was not significant in both groups.

The results of the correlation analysis conducted between
the F-wave parameters and FDI/ADM CMAP amplitude
ratio displayed in Supplementary Table S1. Combining these
parameters, it was evident that the F-wave amplitude (r = 0.454,
P = 0.002) of the FDI was significantly correlated with the
FDI/ADM CMAP amplitude ratio in the affected hand group,
but not with the ADM. There was no significant correlation
between other F-wave variables in both the ADM and FDI and
the FDI/ADM CMAP amplitude ratio in the affected hand group
of ALS patients. No significant relation was observed between the
F-wave variables and FDI/ADM CMAP amplitude ratios in the
unaffected hand group and HCs.
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TABLE 4 | Comparison of F-wave parameters in ALS patients with split-hands
between subgroups of those with (P) and without (NP) pyramidal signs.

Parameters P group
(n = 21)

NP group
(n = 24)

P-value

F-wave persistence (%)

FDI 62 (40) 59 (42.75) 0.637

ADM 84 (50) 52.5 (60) 0.255

Mean F-wave amplitude (µV)

FDI 219 (180) 310.5 (286) 0.481

ADM 209 (162) 326.5 (181.25) 0.062

Mean F/M amplitude ratio (%)

FDI 3.47 (3.01) 5.03 (7.39) 0.387

ADM 2.89 (1.74) 4.26 (3.41) 0.055

Maximal F/M amplitude ratio (%)

FDI 11 (8.97) 15.2 (18.11) 0.106

ADM 9.09 (7.65) 13.47 (12.10) 0.116

FDI, first dorsal interosseous; ADM, abductor digit minimi; P, with pyramidal signs;
NP, without pyramidal signs; Non-normally distributed data are expressed as
the medians (IQR).

DISCUSSION

Results Related to the Changes in ALS
Our NCSs variables of the FDI and ADM and F-wave values of the
ADM in HCs and patients with ALS showed a close resemblance
to the previous findings (Peioglou-Harmoussi et al., 1985;
Kuwabara et al., 2008; Buschbacher et al., 2015; Fang et al., 2016).
In the present study, ALS patients with an unaffected hand did
not show significant changes in DML, CMAP amplitude, or MCV
recorded over the FDI and ADM in contrast with HCs. While
a significantly decreased CMAP amplitude was associated with
increased DML and slowed MCV in both the FDI and ADM were
observed in our patients with affected hands. These findings are
compatible with the chronic denervation/reinnervation process,
and are associated with the pathophysiological changes in ALS
(de Carvalho et al., 2002; Argyriou et al., 2006).

We used F-waves as an indicator of dysfunction of spinal
motoneurons. The F-wave amplitudes are related to the
excitability of spinal motoneurons and axonal compensatory
reinnervation (Argyriou et al., 2006; Hachisuka et al., 2015).
Specifically, the F/M amplitude ratio was used as a quantified
index of the proportion of the motoneuron pool, as this measure
is minimally influenced by muscle wasting (Argyriou et al.,
2006). In ALS patients, the mean F-wave amplitude, and mean
and maximal F/M amplitude ratios, were increased in the
FDI and ADM. Similar findings were reported and inferred
that both anterior horn cell hyperexcitability (Argyriou et al.,
2006) and the formation of large post-reinnervation motor units
due to LMN dysfunction (Drory et al., 2001) are important
factors. In the present study, ALS patients also showed reduced
F-wave persistence and increased repeater F-waves. Similar
changes were reported in post-polio syndrome (PPS) (Hachisuka
et al., 2015). Both F-wave persistence and repeater-F waves are
influenced by the number of functional LMNs and motoneuron
excitability. A low F-wave persistence indicates loss of function
of LMNs and decreased excitability of the motoneuron pool
(de Carvalho et al., 2002; Argyriou et al., 2006; Rivner, 2008).

With respect to the mechanism of production of repeater
F-waves in PPS, it was proposed that loss of motoneurons
or decreased excitability of some anterior horn cells caused
the remaining anterior horn cells with increased excitability to
produce more frequent repeated backfiring (Hachisuka et al.,
2015). This underlying pathophysiology in PPS may also explain
the increased repeater F-waves in ALS (Chroni et al., 2012;
Hachisuka et al., 2015). In addition, the F-wave latencies
and chronodispersion were markedly prolonged in our ALS
group. However, the F-wave latencies commonly thought to be
influenced by height and preferential loss of fast-conduction
neurons and the chronodispersion represent the conduction
velocity of the motor neurons recruited, which are valuable
markers of the conduction properties of motor axons (Fisher,
1998; Espiritu et al., 2003; Rivner, 2008). Their prolongation
may be related to axonal degeneration, demyelination secondary
to proximal axonal swellings or loss of fast conducting fibers
(Argyriou et al., 2006; Hachisuka et al., 2015). As such,
analyzing F-waves, especially the amplitude, mean and maximal
F/M amplitude ratios, persistence, and the repeater F-waves,
may provide an indicator of changes in spinal motoneuron
pool excitability (Espiritu et al., 2003; Lin and Floeter, 2004).
Intriguingly, we note that F-wave latencies and chronodispersion
prolongation, persistence decline and repeater F-waves increase
progressively early in patients with unaffected hands, suggesting
early dysfunction of motor axons and LMNs in ALS and
that subtle subclinical alterations may be reliably assessed by
F-wave test.

Results Related to Split-Hand Syndrome
Our study shows a significantly decreased FDI/ADM CMAP
amplitude ratio (<0.9) in ALS patients, and this finding reflects
the split-hand phenomenon in ALS (Kuwabara et al., 2008;
Menon et al., 2013) and presents evidence of LMN involvement.
Further, there was a higher CMAP amplitude of the FDI and
a lower amplitude of F-waves compared with the ADM in
HCs, which has not been previously reported. The reduction
in F-wave amplitude is often caused by damage to the LMNs
and decreased motor neuron excitability (Taniguchi et al., 2008).
The lower amplitude of F-waves, and the lower mean and
maximal F/M amplitude ratios in the FDI compared with the
ADM of HCs, is likely caused by physiological differences in
the excitability of their motoneuron pools, and may relate to
central impulses in favor of inhibition in the FDI (Menon
et al., 2014c). Similar physiological differences, including lower
mean F-wave amplitude, and lower mean and maximal F/M
amplitude ratios, in the FDI, compared with the ADM, were
also observed in ALS patients with unaffected hands. In addition,
compared with the ADM, lower F-wave persistence and increased
repeater F-waves were observed in the FDI in the unaffected
hands group. These findings suggest a greater degree of spinal
motoneuron hypoexcitability and loss of function of LMNs in
the FDI. However, patterns of F-wave measurements changes
in this study, especially those parameters detecting excitability
of the spinal motoneuron pool (F-wave persistence, amplitudes,
mean and maximal F/M amplitude ratio and repeater F-waves),
were similar in FDI and ADM in ALS patients with affected
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hands. The absence of differences in F-wave variables between
the FDI and ADM in ALS may imply a significantly enhanced
excitability of spinal motoneurons innervating the FDI. We also
found a significant correlation between F-wave amplitude in the
FDI with the FDI/ADM CMAP amplitude ratio, but not with the
ADM, suggesting that the different changes in spinal motoneuron
excitability between the FDI and ADM were associated with
development of the split-hand phenomenon in ALS.

At the segment spinal motoneuron level, the excitability of the
motoneuron pool may be affected by the excitatory and inhibitory
central nervous system (Mastaglia and Carroll, 1985; de Carvalho
et al., 2002). To further clarify the impact of UMN activity drive
on the excitability of the anterior horn cells in ALS patients with
split-hand, we examined the F-wave parameters in our subgroup,
including persistence, amplitude, and the F/M amplitude ratio,
which presumptively are influenced by the corticospinal tract and
cortical activity (Lin and Floeter, 2004; Rivner, 2008; Hara et al.,
2010). However, we found no differences in F-waves between
the P and the NP subgroups or between the FDI and ADM
subgroups. The differences in segmental motoneuron excitability
were not closely correlated to UMN involvement in our study.
Thus, we suspect that the pathophysiology of the split-hand may
also have spinal mechanisms.

Our study has some limitations. This was exploratory research
with a small sample size. Thus, more patients and follow-
up studies are required to confirm our findings on spinal
motoneuron excitability associated with split-hand syndrome
in ALS. Because of the stimulation of the ulnar at the wrist,
the distance from the stimulus site to the target muscle is
considerably longer for the FDI than for the ADM. The
comparison of F-wave latencies in the FDI and ADM may
be of less value. Owing to the predominant involvement of
LMN in ALS, signs of pyramidal lesions may be difficult to
detect. Moreover, we defined pyramidal lesions in the upper
limbs requiring both increased tendon reflexes in the arm and
Hoffman’s sign, which may lack sensitivity. So, subclinical or
possible involvement of UMN cannot be excluded in the NP
group, and because of the relative small sample size, the results
of F-wave parameters between the P and NP subgroup need to
be verified in a larger population of ALS patients. Moreover,
F-waves do not allow for accurate measurement of changes
in UMN excitability influenced on spinal motoneurons, and
a reliable method is needed for further studies. Combining
transcranial magnetic stimulation (TMS) with the F-wave test
investigates the UMN involvement and spinal motoneuron
excitability at the same time and on the same patient groups

could elucidate the pathophysiological basis of the split-
hand in ALS.

In summary, the present study draws attention to a particular
pattern of F-wave abnormalities in the FDI and ADM. Spinal
motoneurons innervating the FDI have physiologically greater
inhibitory modulation than the ADM, and in ALS, the
enhanced excitability is more prominent in spinal motoneurons
innervating the FDI that is consistent with the split-hand
sign. Although cortical mechanisms could also be involved, we
propose that spinal motoneurons dysfunction is associated with
the development of the split-hand syndrome.
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Proton magnetic resonance spectroscopy (MRS) provides a means of measuring

cerebral metabolites relevant to neurodegeneration in vivo. In amyotrophic lateral

sclerosis (ALS), neurochemical changes reflecting neuronal loss or dysfunction

(decreased N-actylaspartate [NAA]) is most significant in the motor cortex and

corticospinal tracts. Other neurochemical changes observed include increased

myo-inositol (mIns), a putative marker of gliosis. MRS confirmation of involvement of

non-motor regions such as the frontal lobes, thalamus, basal ganglia, and cingulum are

consistent with the multi-system facet of motor neuron disease with ALS being part of a

MND-FTD spectrum. MRS-derived markers exhibit an encouraging discriminatory ability

to identify patients from healthy controls, however more data is needed to determine

its ability to assist with the diagnosis in early stages when upper motor neuron signs are

limited, and in distinguishing from disease mimics. Longitudinal change of NAA and mIns

do not appear to be reliable in monitoring disease progression. Technological advances

in hardware and high field scanning are increasing the number of accessible metabolites

available for interrogation.

Keywords: biomarker, magnetic resonance spectroscopy, neuroimaging, amyotrophic lateral sclerosis,

neurodegeneration

BACKGROUND AND TECHNICAL CONSIDERATIONS

Magnetic resonance imaging has emerged as a promising tool to provide a biomarker in
neurological and psychiatric disorders. Routine structural MRI is not helpful in this regard in ALS
as signal intensity and gross volume changes in T1 and T2 weighted images is not apparent in
the vast majority of cases (1). Advanced imaging and post-processing methods are necessary to
reveal pathology that is not evident to the naked eye. Numerous studies have demonstrated the
potential of MRS in research and clinical care in brain disorders, including ALS. Results have been
consistent amongst investigators using different methods to quantify key metabolites such as NAA,
and renewed interest along with advancing technology are leading to studies probing previously
inaccessible chemicals such as Gama-aminobutyric acid (GABA).

With routine structural MRI, the abundance and microenvironment of protons is quantified
resulting in essentially images of the distribution of water since it is the most abundant proton-rich
molecule. The most basic MRS experiment quantifies instead protons in molecules other than
water. The experiment is usually a measurement from a defined volume (rather than the whole
brain), and produces a spectrum rather than an image. Different peaks in the spectrum arise
from different protons and their microenvironment. The positioning along the x-axis of peaks is
dependent on the spin frequency of the protons contributing to the peak, with the area under the
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peak dependent on the number of protons. Small shifts in
frequency can occur due to magnetic field perturbations arising
from nearby molecules, leading to a change the shape of a peak
(singlets, doublets, triplets, etc.). The frequency of a peak and its
splitting structure are key elements used in the identification of
the metabolite from where the peak arises.

Images can be produced from metabolites such as NAA,
however these are of much lower resolution than structural MRI
(which is essentially MRS of water) because of the very low
concentrations of suchmolecules. The lower concentration of the
target metabolites also means that MRS scans are comparatively
longer than routine structural imaging. Rather than a structural
evaluation, MRS is a means of quantifying neurochemistry in the
brain of low abundance metabolites. MR spectra can be obtained
using other nuclei, including phosphorus, fluorine, carbon, and
sodium. These typically require alternate hardware (e.g., specific
RF coils) to that typically available with clinical and clinical
research systems used for proton MRS.

Metabolites
The metabolites that are visible and quantifiable is dependent
on a number of factors, and requires a sufficient concentration
typically in the range of micromoles/gm. Spectral resolution
and SNR must be sufficient to accurately identify and quantify
individual peaks, and this is determined by many factors
including B0 field strength and homogeneity, acquisition
sequence (PRESS, STEAM, MEGA-PRESS, etc.), and TE,
amongst others. Higher field strengths and lower TE in general
give access to more metabolites.

There are a number of metabolites detectable using
contemporary methods that have relevance in neurological
disease (Figure 1). N-acetylaspartate (NAA), along with a small
contribution from N-acetylaspartylglutamate, is localized only
in neurons and their processes, and thus NAA serves as a
marker of neuronal integrity. The total creatine peak arises
from metabolites (creatine plus phosphocreatine) involved in
energy metabolism. Total choline (choline, phosphorylcholine,
glycerophosphorylcholine) is a marker of membrane turnover.
Increased levels are reported with cell proliferation, both
neuronal and glial.

Beyond NAA, there are a number of metabolites that can be
measured which are of particular relevance to neurodegeneration
in ALS. Myo-inositol (mIns) has a preferential distribution in
glial cells, and is as such a putative glial marker. Glutamate is
the primary CNS excitatory neurotransmitter. It is difficult to
separate using routine MRS techniques from glutamine, and is
thus may be expressed as “Glx.” GABA is the primary inhibitory
neurotransmitter in the brain. Glutathione functions as an
antioxidant. Glutamate, GABA, and glutathione can be measured
at ultrahigh field (7 T), or high field (3 T) using advanced spectral
editing methods.

Acquisition
MRS can be performed using the same hardware systems as for
structural imaging. The lowest field strength advised, and indeed
what many papers to date report experiments from, are studies
at 1.5 T. The benefits of high field imaging include access to

FIGURE 1 | (A) Localization methods. Neurochemical data are acquired from

specified volumes during a single MRS scan. A single spectrum is recorded in

single voxel spectroscopy (SVS), such as from the left precentral gyrus in the

example at top. With magnetic resonance spectroscopic imaging (MRSI)

multiple spectra are acquired, such as from a 2 dimensional plane centered

over the central sulcus in the example at bottom. (B) A representative

spectrum from the motor cortex of a healthy individual compared to one from

a patient with ALS. N-acetylaspartate is reduced in ALS, reflecting reduced

neuronal integrity. Cho, choline; Cr, creatine; Glu, glutamate; mIns,

myo-inositol; NAA, N-acetylaspartate.

more metabolites, shorter acquisition times, and higher spatial
resolution. The former comes from increased SNR and increased
chemical shift dispersion. The benefit is particularly relevant
to detecting metabolites that have very low concentration or a
complex resonance peak structure such as glutamate and GABA.

Unlike whole-brain structural imaging the location from
where a spectrum is acquired usually must be pre-defined.
Traditional localization schemes to define where spectra are
acquired, include single voxel spectroscopy (SVS) and multivoxel
spectroscopic imaging (MRSI) (Figure 1). In the former, a single
spectrum is acquired from a discrete volume of interest (VOI),
such as the motor cortex, internal capsule, etc. With MRSI,
individual spectra are acquired from multiple regions within a
2-dimensional slab or a 3-dimensional volume. These volumes
are positioned at the time of scanning, and the acquired spectra
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within the volume are selected after processing. Critical steps
during data acquisition, but beyond the scope of this review, are
water and lipid suppression, and shimming to minimize local
field inhomogeneity.

Data Post-processing and Quantification
Post-processing of data includes a number of steps (e.g., residual
water suppression, Fourier transformation, phase correction),
with ultimately the production of spectral peaks. These are
baseline corrected and fitted. The area under a fitted peak
correlates with the number of protons contributing to the signal
and thus metabolite density. Processing and quantification is
available on MRI consoles, or with stand-alone software such as
LCModel (2).

It is paramount to be aware that a metabolite resonance
reflects its contributing protons throughout the voxel being
sampled, including all cell and tissue types (neurons, glia,
gray matter, white matter) and compartments (intracellular,
extracellular). The derivation of absolute concentrations (i.e.,
mmol/L) requires additional MR experiments and processes to
correct, for example, partial volume effects, coil loading, field
inhomogeneity, and relaxation effects with a potential concern
to data reliability. Resonance signals are thus often reported as a
ratio to a reference metabolite, such as Cr or Cho (NAA/Cr); this
inherently performs the aforementioned correction, however it
requires the assumption that the reference metabolite is stable in
the disease under question. Normalization with a water signal is
used by some as an alternative and obviates the issue of whether
Cr or Cho are unchanged, though comes with its own issues.

Recent Advances
High and Ultrahigh Field Imaging, and “New

Metabolites”
Within the last decade, research and clinical MR systems have
transitioned from a low field of 1.5 T to a high field of 3 T. Studies
at the latter are becoming common place, with studies at the
ultrahigh field of 7 T emerging.

The benefits of high field imaging include access to
more metabolites, shorter acquisition times, and higher spatial
resolution. The former comes from increased SNR and
increased chemical shift dispersion; this is particularly relevant
to metabolites that have very low concentration or complex
resonance peak structure such as glutamate, GABA, and
mIns. Higher field systems are accompanied by a number of
challenges that require attention for successful spectroscopy
experiments: greater main (B0) and applied RF (B1) field
inhomogeneity and chemical shift mis-registration, altered T1
and T2 relaxation times, greater safety concerns, and higher
purchase and operating costs (3).

3D MRSI and Automated Quantification
Single voxel spectroscopy and MRSI constrain the acquisition of
data from small and discrete regions (volume of interest). These
spatial restrictions are necessary, in part, for optimization of field
homogeneity. Thus, MRS scans demand an additional level of
knowledge, expertise, and experience from the MR technologist
required for accurate positioning of the VOI. Larger sampling

of the brain can be done with multislice MRSI (4–6), or 3D
MRSI (7), however these further increase acquisition times.
Echo-planar spectroscopic imaging (EPSI) has been an exciting
development as it permits high resolution volumetric (whole
brain) spectroscopic imaging in a single acquisition within a
clinically acceptable timeframe (8). It has been applied in ALS to
study the neurochemistry of the CST in its 3-dimensional extent
(9, 10), and of multiple spatially discrete areas (11, 12).

RESULTS

At the time of writing, a general survey reveals there have
been just over 60 papers published describing human proton
MRS experiments in ALS, with inclusion of ∼1,400 patients
with ALS or related motor neuron disease (primary lateral
sclerosis, progressive muscular atrophy). The majority of papers
have interrogated neurochemistry of the motor system, namely
the primary motor cortex and corticospinal tract. Published
works also report findings in “extra-motor” regions including the
prefrontal cortex, subcortical gray, brainstem, and spinal cord.
Longitudinal MRS studies are few, as they are with other imaging
modalities. With few exceptions, studies published since 2011
have been done at high field (3 T) or ultrahigh field (7 T).

Participants in studies have consisted of patients meeting El
Escorial Criteria for ALS with combined upper and lower motor
neuron signs. The number of MND participants in each study
range from 7 to 169, with many studies having 10–30. Some
have included subjects with no UMN signs (PMA) (6, 11, 13–
16) generally showing the expected correlation of more normal
NAA in such subjects. All studies have been conducted at a single
center, except for a prospective multicenter study conducted
at 4 sites in the Canadian ALS Neuroimaging Consortium
[ClinicalTrials.gov # NCT02405182 and in press (Neurology:
Clinical Practice)].

Cross-Sectional
Motor Cortex
The regional focus of most studies has been on the motor cortex
or CST. NAA ratios to Cr, Cho, or Cr+Cho are reduced in the
precentral gyrus (4–6, 12, 13, 15, 17–39). A decline in absolute
quantities of NAA (14, 16, 21, 22, 31, 40–43) corroborate these
observations of reduced ratios of NAA. A gradient effect can be
observed when spectra are acquired from the motor cortex and
regions immediately surrounding it, such that less prominent
reductions are present in the postcentral gyrus and premotor
areas compared to the precentral gyrus (13, 25).

Corticospinal Tract
The corticospinal tract has been interrogated using various
methods. One group found reduced NAA/Cr+Cho) in the
centrum semioval (CSO) and internal capsule combined, but not
individually in these two regions (4). In part contrary to this, a
study using a coronalMRSImethod in the plane of the CST found
reduced NAA/Cr in the precentral gyrus and corona radiata, but
normal levels in the internal capsule and cerebral peduncle (44).
Another found reduced NAA/Cr in both the motor cortex and
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IC (32). NAA of the entire CST was found to be reduced using a
whole-brain 3D spectroscopic acquisition protocol (9, 10).

Extra-Motor Regions
The presence of frontotemporal lobar degeneration (FTLD) is
supported by reduced NAA indices in various frontal regions
including the dorsolateral (11, 23) and mesial prefrontal (19, 45)
cortices. Mesial prefrontal cortex neurochemistry is abnormal
in patients who for the most part are not cognitively impaired,
suggesting MRS may be more sensitive to detecting FTLD than
clinical measures (45). “Extra-motor” degeneration was similarly
demonstrated in the mid-cingulate gyrus (34), thalamus (34, 46),
and basal ganglia (46). As expected, NAA is normal in the parietal
and occipital lobes (5, 11, 23, 25, 26, 33, 40) and cerebellum (14).

Brainstem
Reductions in NAA indices are described by most (21, 43, 47, 48)
but not all studies (33) that have examined the brainstem.

Spinal Cord
MRS of the upper cervical spinal cord revealed substantially
reduced NAA ratios 25–40% in patients with ALS (49, 50).
Notably, a single voxel was used enclosing the breadth of the
cord. Thus, the spectrum included contributions from both
white matter tracts and the anterior horn and other cells in the
gray matter. One group extended their methods to investigate
neurochemical changes in asymptomatic SOD1+ individuals
(51). They found comparably reduced NAA/Cr and NAA/mIns
in asymptomatic (39.7% and 18.0%) and patients with ALS
(41.2% and 24.0%) compared to healthy controls, inferring the
presence of neurochemical changes early in the disease and even
before symptoms or signs are present.

Other Metabolites
Reflective of astrogliosis, mIns is increased in the motor cortex
(29, 40, 43, 48, 52, 53). TheNAA/mIns ratiomay be amore robust
marker of degeneration as it reflects the combined pathology
of decreased neuronal integrity and gliosis with the individual
metabolite levels becoming abnormal in opposite directions in
the motor cortex (16, 29, 48) and mesial prefrontal cortex (45).

Given one of the putative pathophysiological mechanisms
is excitotoxicity, one may have expected Glu to be increased.
However, results have been conflicting for the motor cortex
where it (or Glx) were normal (16, 21, 43, 52), increased (32),
or decreased (40). Studies at 7 T where its quantification may
be more precise were conflicting with levels in the motor cortex
normal (48) or increased (53). Glx was increased in the medulla
(54) along with a negative correlation with the ALSFRS bulbar
subscore. Later studies of the pons revealed normal pontine
Glu or Glx (43, 48). MRS measurements of the inhibitory
neurotransmitter GABA in the motor cortex have been reported
to be reduced using the MEGA-PRESS technique at 3T (43, 55),
but normal using a STEAM sequence at 7T (53). As discussed
above MRS measurements will largely reflect the intracellular
metabolic rather than synaptic neurotransmitter pool; as such,
reductions may simply be the result of neuronal loss.

Initial findings of decreased glutathione in the primary motor
cortex (35) which would have been supportive of a role for

oxidative stress in the pathogenesis of ALS were not replicated
by subsequent studies at 3 T or 7 T (48, 53).

Diagnostic Accuracy
A number of studies have assessed the discriminatory power
of NAA and its ratios in the motor cortex to separate ALS
patients from healthy controls. Sensitivity ranges from 53 to
100%, specificity ranges from 37 to 100%, with the average
amongst the studies ∼80% for both. MRS improves the accuracy
when combinedDTI assessment of the corticospinal tract (56, 57)
or of signal change on structural imaging (36, 56).

Longitudinal
A number of studies suggest a decline in NAA indices over
varying intervals; interpretation of these reports is difficult due
to small numbers of patients (5, 19, 22, 52, 58, 59).

In a more rigorous design, longitudinal change in absolute
NAA and its ratio to Cr and Cho were measured every 3 months
out to 1 year. Changes were seen in the motor cortex and outside
the motor cortex over 3 and 9 months, respectively depending on
the El Escorial designation, but overall did not follow a consistent
pattern (27). In a treatment trial of growth hormone, the placebo
arm of 20 patients did not have any change in motor cortex
NAA/(Cho+Cr) at 0, 6, or 12 months (60).

In a larger study of 43 patients, 30 had at least one follow
up scan on a 3 month interval, demonstrating a non-significant
(p= 0.06) decline in motor cortex NAA/Cr (6).

Recently, longitudinal neurochemical observations weremade
at 7 T at 6 and 12 months. Motor cortex NAA/mIns declined and
pontine Glx increased. In a sub group analysis, this pattern of
neurochemical change was not present in those whose upper limb
and bulbar function did not deteriorate over time (61).

Correlations
The presence of correlations with an imaging finding provides
a degree of biological validity to the imaging metric. Not
surprisingly, NAA indices are more reduced in patients with a
greater severity of UMN findings on neurological examination
(13–15, 20, 28, 31, 40, 52), however this is not always the
case (48). As a measure of UMN function, finger tapping has
the advantage of being objective and providing a continuous
measure. Correlations with tapping have been reported in a
number (4, 6, 16, 18, 39), but not all, (44) studies. A few
studies have also noted a correlation with the El Escorial criteria
(15, 27, 48). Reports are conflicting with respect to associations
with disease duration, progression rate, or disability as quantified
by ALSFRS-R. With respect to the latter this is not surprising
given that disability is largely driven bymuscular weakness which
in turn is dependent considerably on LMN status.

The evaluation of neurochemical associations with cognitive
or behavioral impairment is limited in ALS. As would be expected
dorsolateral prefrontal cortex NAA/Cr correlates with cognitive
measures of executive function, including verbal fluency (11) and
theWisconsin Card Sorting Test (23). However, mesial prefrontal
cortex NAA/mIns did not correlate with the Addenbrook
Cognitive Examination or verbal fluency (45); this may have
been due to the localization of the voxel (mesial rather than
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dorsolateral) or that the ACE may not be an optimal cognitive
screening measure in ALS (62).

The marked clinical heterogeneity of patients with ALS makes
prognostication a difficult task, yet this would be extremely
helpful in clinic for counseling patients and to assist as
an enrichment strategy in clinical trials. MRS was the first
neuroimaging modality to reveal an association of cerebral
degeneration with survival. Reducedmotor cortex NAA/Cho was
the strongest predictor of shorter survival, followed by older age
and shorter symptom duration (30).

MONITORING TREATMENT

There have been several studies evaluating treatment effects
usingMRS. The commencement of riluzole, an antiglutamatergic
agent, is accompanied by an increase in NAA/Cr in the motor
cortex observed at 1 day (63) and 3 weeks (58) after its
initiation. Increases in NAA/Cr suggest the existence of a
population of metabolically dysfunctional neurons amenable to
treatment. This supposition is supported by the observation
of maintained NAA/Cr levels in ALS patients in contrast to a
decline in NAA/Cr in healthy controls who received creatine
supplementation (24). Changes in NAA/Cr were not observed
with gabapentin (25), intrathecal BDNF (26), or minocycline
(64). Preliminary observations have also been made on the Glx
signal with creatine supplementation (24, 65). In contrast to the
studies discussed thus far, there have been reports from studies
that have performed sub-analyses on patients comparing those
who are taking riluzole to those who are riluzole-naïve (43, 48);
these have had varying results.

CONCLUSIONS AND FUTURE
DIRECTIONS

What has MRS delivered in the field of ALS thus far, and what
is needed?

Cross sectional changes reflecting cerebral neuronal
impairment (abnormal NAA indices) are consistently present,
and with reasonable accuracy in discriminating patients
from controls in group analysis. However, with regards to
diagnostic utility, a biomarker of cerebral degeneration will be
most helpful in the clinic for patients presenting with LMN
signs but insufficient UMN signs; MRS data (as for much of
the neuroimaging field) is lacking for such patients. In the

more immediate future, MRS should be able to play a part in
addressing phenotypic heterogeneity, as associations have been
demonstrated with various behavioral measures. Future studies
addressing diagnostic potential and heterogeneity would benefit
from larger sample sizes, deep phenotyping, inclusion of disease
mimics, incorporation of other imaging modalities (e.g., DTI),
and incorporation of biofluids for correlative and validation
analyses. Of note, there is very little known of the association
of cerebral neurochemicals with cognitive impairment
in ALS.

There is sensitivity to measuring longitudinal change in
metabolites that appears best observed with time intervals of
at least 3 months. However, there is considerable variability,
which currently prohibits its use as a biomarker of disease
progression. The experience of MRS to date of assessing
response to therapy has been largely proof of principle.
Progress in this area has been hampered in part by the
lack of robust disease modifying therapies upon which to
frame spectroscopy experiments. Inclusion of MRS in phase II
clinical trials may provide opportunities validating metabolites
as measures of disease progression, target engagement, or
therapeutic response.

The feasibility for MRS to be applied for clinical and routinely

for research applications, especially for multicenter efforts and to

allow inter-study comparison of results, will require refinement,
optimization, and standardization of acquisition and processing

protocols, in parallel with greater user expertise. Reference to
general (66) and ALS-specific guidelines (67) are starting points
for such an endeavor. The advent of whole brainMRSI combined
with automated quantification is a significant advancement that
could facilitate the modality’s uptake to more research labs and
eventually clinics.

Advances in technology (higher fields, new sequences) are
already permitting the quantification of previously undetectable
disease-relevant metabolites and of anatomical regions
previously inaccessible (spinal cord). This will continue to
provide opportunities for exploring biological insights in vivo
and for evaluating novel disease markers that may meet the
desperate need of a biomarker in ALS.
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Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is an incurable

neurodegenerative condition, characterized by the loss of upper and lower motor

neurons. It affects 1–1.8/100,000 individuals worldwide, and the number of cases

is projected to increase as the population ages. Thus, there is an urgent need to

identify both therapeutic targets and disease-specific biomarkers–biomarkers that would

be useful to diagnose and stratify patients into different sub-groups for therapeutic

strategies, as well as biomarkers to follow the efficacy of any treatment tested during

clinical trials. There is a lack of knowledge about pathogenesis and many hypotheses.

Numerous “omics” studies have been conducted on ALS in the past decade to identify

a disease-signature in tissues and circulating biomarkers. The first goal of the present

review was to group the molecular pathways that have been implicated in monogenic

forms of ALS, to enable the description of patient strata corresponding to each pathway

grouping. This strategy allowed us to suggest 14 strata, each potentially targetable

by different pharmacological strategies. The second goal of this review was to identify

diagnostic/prognostic biomarker candidates consistently observed across the literature.

For this purpose, we explore previous biomarker-relevant “omics” studies of ALS and

summarize their findings, focusing on potential circulating biomarker candidates. We

systematically review 118 papers on biomarkers published during the last decade.

Several candidate markers were consistently shared across the results of different studies

in either cerebrospinal fluid (CSF) or blood (leukocyte or serum/plasma). Although these

candidates still need to be validated in a systematic manner, we suggest the use

of combinations of biomarkers that would likely reflect the “health status” of different

tissues, including motor neuron health (e.g., pNFH and NF-L, cystatin C, Transthyretin),

inflammation status (e.g., MCP-1, miR451), muscle health (miR-338-3p, miR-206) and

metabolism (homocysteine, glutamate, cholesterol). In light of these studies and because

ALS is increasingly perceived as a multi-system disease, the identification of a panel of

biomarkers that accurately reflect features of pathology is a priority, not only for diagnostic

purposes but also for prognostic or predictive applications.

Keywords: circulating biomarkers, ALS, patients stratification, multi-system biomarkers, motor neuron disease
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurological
disorder with an adult onset around 54–67 years old (1). Its
clinical hallmark is the degeneration of both upper and lower
motor neurons (2, 3), leading to progressive muscle atrophy
and weakness, and ultimately to paralysis. Death, often resulting
from swallowing problems and respiratory failure (4, 5), generally
occurs within 2–4 years from disease onset (6–8), although

5–10% of ALS patients survive over 10 years (7). ALS has a
median incidence of about 2.8 cases per 100,000 persons per year

and a median prevalence about 5.4 cases per 100,000 persons
for a median age at 61.8 ± 3.8 years (1). The incidence and

prevalence thus increases with age and reaches a cumulative
lifetime risk of 1 in 400 after 80 years old (9, 10). Due to
the projected aging of the global population, ALS cases are

expected to increase by 69% in the next 25 years (11), underlining
the urgent need to identify causes, biomarkers and therapeutic
targets for ALS.

The causes of ALS are largely unknown, with ∼90% of
cases being sporadic (sALS) while only ∼10% are familial
ALS (fALS) (12). Intensive research since the 1990’s has
aimed to unravel the mechanisms involved in motor
neuron degeneration. These studies suggest that ALS is a
complex disease driven by a combination of several systemic
parameters. To date, up to 30 genes (Figure 1) are described
as monogenic causes of ALS, with the most frequent being
C9orf72, SOD1, FUS, and TARDBP/TDP43 (13–15). In
motor neurons, these identified mutations are functionally
associated with an alteration of electrophysiological properties
(16), accumulation of stress marks (17) and sensitivity to
stress (18) (Figure 2). However, these monogenic forms

FIGURE 1 | Distribution of genetic basis among the ALS population. A treemap representation of the proportion of ALS patients carrying known causative

mutation. The full rectangle represents 100% of all ALS cases. The fALS are highlighted in gold with a frequency adjusted to represent 7.5% of the total (as fALS is

estimated at 5–10% of all ALS cases). The two light blue blocks represent those with no known ALS-associated gene mutation among sporadic and familial cases.

Cases with known mutations are represented in the other blocks, broken down by affected gene. The color code for each gene is preserved between familial and

sporadic cases. The size of each block is proportional to the percentage of ALS associated to the considered genes–proportions given in Volk et al. (13). Overall,

some 80% of ALS cases (sALS and fALS combined) are not explained by a known mutation.
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FIGURE 2 | Sequential events that could be involved in motor neuron death in ALS. Gene mutations, epigenetic changes, or DNA damage that occur either

spontaneously or due to environmental risk factors such as exposure to toxins or infectious agents, or behavioral factors, have all been proposed as potentially leading

to cellular dysfunction (9, 13, 14, 20–23). Cellular dysfunction could include abnormal protein aggregations, alteration of RNA processing, secretion of neurotoxic

vesicles by surrounding cells such as astrocyte, muscle cells, glutamate excitotoxicity, and mitochondrial disorganization and dysfunction leading to oxidative stress

(24–30). These cellular dysfunctions may take place in motor neurons and/or surrounding cells and, combined or alone, could lead to an alteration of the

electrophysiological properties of the motor neuron, and/or to an induction of secretion of neurotoxic elements by surrounding cells, in either case ultimately leading to

motor neuron death (16–18).

explain only 15% of sporadic cases and 66% of familial cases
(12) (Figure 1).

Furthermore, the penetrance of these disease-associated
mutations is quite variable and can increase with age (12, 19).
The variability in penetrance as well as the lack of identification
of a single associated genemutations in 85% of sALS suggests that
some ALS cases have a multigenic component, and/or involve
epigenetic modification, and/or result from DNA damage,
environmental risk factors, or viral infections (9, 14, 20–23)
(Figure 2). In these cases, it is likely a combination of these
factors that leads to cellular dysfunction such as glutamate-
mediated excitotoxicity (24), abnormal protein aggregation
(25), mitochondrial disorganization and dysfunction (26, 27)
contributing to the oxidative stress (28–30) (Figure 2). Adding
to the complexity of ALS, several studies suggest that not only
themotor neurons are affected but also the surrounding cells, and
that these cells participate in the propagation and burden of the
disease. For instance, activated microglia cells release superoxide
and nitric oxide metabolites, elements that are toxic to neuronal
cells (31). Astrocytes can also participate in the propagation of
neurotoxic elements (32, 33) such as SOD1 aggregates (34–36),
and a failure of astrocytes to remove extracellular glutamate
may mediate excitotoxicity (37–39). Ultimately, the intracellular
dysfunction of the motor neuron combined with aberrant
secretion of neurotoxic elements of surrounding cells leads to
motor neuron stress, aberrant electrophysiological properties,
and consequently to motor neuron death (Figure 2).

In the absence of a reliable diagnostic test for ALS, diagnosis
is based on clinical and electrophysiological criteria such as
evidence for progressive involvement of both upper and lower
motor neurons and exclusion of diseases mimicking ALS as set

out in the Revised El Escorial Criteria (REEC), Airlie House
criteria (AHC) and Awaji criteria (2, 40). The process of diagnosis
can be lengthy and there is a typical diagnostic delay of 9-15
months from onset to diagnostic confirmation (41). Considering
that the average survival from onset is 2–4 years (6–8) and that
efficacy of Riluzole is improved by early treatment (42), there
is an urgent need to improve diagnostic speed and accuracy for
ALS. One way of achieving this is the identification of biomarkers
specific to ALS pathology, to enable the development a reliable
fast diagnostic test. As well as diagnostics, it is also important to
identify prognostic biomarkers that can be used to monitor the
status of the pathology–various candidates may serve both these
purposes. The identification of ALS biomarkers will contribute
to a better understanding of the disease pathogenesis, and permit
targeted drug development and patient stratification for more
efficient clinical trials, assuming that different sub-cohorts of ALS
patients respond differently to treatments. Biomarker discovery
can be achieved by examining the “omics” contents of ALS
patient tissues.

The present review has two aims: (1) to identify pathways
commonly affected in genetic forms of ALS, and stratify the
patients accordingly, and (2) to explore previous genomic,
transcriptomic, proteomic, metabolomic and miRNomic studies
of ALS published during the last decade, and summarize the
findings, highlighting potential biomarker candidates for ALS
disease management and treatment.

Genetic Markers for ALS Patient
Stratification
The first gene identified to be associated with ALS was SOD1 in
1993 (43). Since then 29 new genes have been identified (13–15),
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representing the most frequent genetic mutations included in
current diagnostic processes (13, 44) (Figure 1). These 30 genes
offer crucial clues in understanding the pathogenesis of ALS—
some of the gene products interact with each other (14)—
and enable the identification of diverse cellular pathways that
are disrupted in ALS patients (Table 1). Even if most ALS
cases are sporadic, the pathways disrupted in familial cases
may also be affected in sporadic cases, as both sALS and
fALS can share common molecular signatures or functional
biological effects such as FUS or TDP43 protein aggregations
or accumulation of stress granules formation (45), disruption
in RNA processing (46), or disruption of autophagy and
mitochondrial functions (47). When sorting the genes associated
to ALS according to their primary cellular functions, several
categories of dominantly affected pathway can be highlighted,
such as (1) mitochondrial metabolism and turnover, (2) axonal
transport and the cytoskeleton, (3) autophagy and proteostasis,
(4) endosomal and vesicular trafficking, (5) DNA repair, and
(6) ribostasis/RNA alteration/Nucleocytoplasmic transport—
with most of the genes being involved in multiple pathways.
It may be possible to group patients into strata depending on
which combination of pathways is dysregulated, and to recruit
patients accordingly for translational research and clinical trials.
We have cautiously assigned each causal gene to one of 14
strata, depending on the profile of its affected pathways (Table 1).
These groupings represent our effort to summarize current
understanding and are not intended to be definitive—indeed, it
will be important to modify and update them on an ongoing
basis with improvements in the knowledge of protein function
and the impact of mutations. Although these 14 strata are directly
applicable to only 20% of total ALS cases (Figure 1), future
work may determine whether (and which of) these molecular
signatures are implicated in the remaining cases.

The Search for Circulating Biomarkers
The identification of circulating markers associated with ALS
pathology would be important tools to provide early disease
diagnosis and to track progression or treatment. There has been a
concerted focus aimed at identifying such biomarkers in different
body fluids over the past 20 years. In Table S1, we summarized 76
studies that investigated proteins, miRs, mRNAs, andmetabolites
as potential biomarkers in cerebrospinal fluid (CSF) or blood
(blood cells, serum or plasma). To date, little has been done
investigating urine-based biomarkers, and thus urine biomarker
analyses are not reported in the current review. CSF is the most
frequently used sample source, and several studies (Table S1)
report a consistent decrease in protein levels of transthyretin—
involved in neurogenesis, nerve repair and axonal growth (171)—
and cystatin c—an endogenous cysteine protease inhibitor that
can protect motor neurons against neurotoxicity by stimulating
autophagy and inhibition of cathepsin B (172). In addition, CSF
cystatin C protein levels positively correlated with the survival of
ALS patients and could be thus potentially used as a prognostic
biomarker (173). However, both transthyretin and cystatin C
decreases are not specific to ALS patients and a similar pattern
is observed in other neurodegenerative diseases (173) such as
Alzheimer’s (171), suggesting that the protein levels of both

transthyretin and cystatin C level are a common signature for
neuron vulnerabilities and neurodegeneration. The protein levels
of neurofilament light chain (NF-L) and the phosphorylated form
of neurofilament heavy chain (pNFH) were also consistently
found to be increased in the CSF of ALS patients across multiple
studies (Table S1), with a high level of either NF-L or pNFH
predicting a shorter life expectancy (174–178). NF-L and pNFH
are markers for axonal damage (179). In this context, similarly to
M-creatine kinase for myofiber fragility in muscular dystrophy
(180), NF-L and pNFH thus directly reflect the health of the
neurons –the cells specifically impacted by ALS.

Combining NF-L and pNFH with other markers that
reflect the “health status” of other tissues such as glial cells,
skeletal muscle, or inflammatory response, may represent a
useful addition, as ALS is now perceived as a multisystemic
disease. Such a multi-marker approach may represent a useful
complement to a panel of biomarkers to test the efficacy of
drugs in clinical trials. In this respect, miR-451—an inhibitor
of microglial cell activation (181)—was consistently decreased
in leukocytes of ALS patients (Table S1), while the pro-
inflammatory MCP-1, secreted by the glial cells and neurons
(182), was found to be increased in both serum and plasma
(Table S1). Both miR-451 and MCP-1 could thus potentially
inform the status of inflammatory cell recruitment and activation
(181, 182). In addition, miR-206, which is essential for skeletal
muscle growth and regeneration (183), as well as miR-338-3p,
a regulator of neuromuscular junctions (184), are consistently
upregulated in leukocytes—with miR-206 also consistently
reported to be upregulated in serum and plasma samples across
multiple studies (Table S1). In this context, miR-206 and miR-
338-3p could be clinically useful candidate biomarkers of the
health status of skeletal muscle (185).

Regarding circulating mRNAs, no obvious consistent
candidates have been identified yet across previous studies
(Table S1). With regard to analyses of circulating metabolite
candidates, huge variation is observed between studies, though
there was a general tendency for upregulation of specific
metabolites in serum and plasma (Table S1), which is consistent
with the hypermetabolism observed in some ALS patients (186).
For instance, creatine, which is linked to cell energy metabolism,
was consistently increased in CSF and plasma across studies
(Table S1). Pyruvate and glucose were also found to be increased
in CSF and plasma of ALS patients (Table S1), potentially
reflecting a dysregulation of glycolytic metabolism as observed
in SOD1-G93A motor neurons (187), and in some ALS cases
(188, 189). This upregulation of glycolysis correlates with a
shorter survival time and thus could be used as a prognostic
biomarker (188, 189). Similarly, the upregulation of cholesterol
and LDL observed in CSF and plasma across studies (Table S1)
could also reflect a global dysregulation of lipid metabolism in
ALS patients (190, 191). Other neurotoxic metabolites, such
as homocysteine, were consistently increased in all body fluids
(Table S1). Altogether, these data suggest a global dysregulation
of the energy metabolism in ALS patients.

Other types of molecules could be investigated as biomarkers
in ALS, such as long non-coding RNA (lncRNA), which can act in
cis to either silence or enhance the expression of proximal genes
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FIGURE 3 | Summary of candidate biomarkers consistently found across studies. Candidates observed in CSF are highlighted in brown, in leukocytes in gray, in

serum light blue and in plasma dark blue. These candidate biomarkers reflect the motor neuron health, the inflammatory status, skeletal muscle health, and

metabolism status–as indicated in each text block. Some of these candidates were found in postmortem central nervous tissue or on muscle biopsies. NMJ,

neuromuscular junction.

(192) and which are known to have a key role in normal neuronal
development, as well as in development and progression of
neurodegenerative diseases [see (193) for review]. The lncRNA
have also been detected in body fluids and have been suggested
as potential diagnostic and/or prognostic biomarkers in, but not
only, lung cancer (194), triple negative breast cancer (195) and
cardiovascular diseases (196). In this context, lncRNA could be
investigated as new biomarker candidates for neurodegenerative
diseases (193), including ALS.

EXPLORING POTENTIAL ALS
SIGNATURES IN TISSUE

Studying changes at the molecular level of specific tissues
affected in ALS should improve our understanding of the disease
mechanisms and multi-systemic impact.

Postmortem brain or spinal cord have been widely
investigated. Accumulation of pNF-H and NF-L in brain
tissue (Table S2) positively correlate with the accumulation of
these markers in CSF (Table S1), and may be reflective of motor

neuron breakdown (179). Similarly, miR-146a and miR-338-3p,
both increased in spinal cord (Table S2), are also detected

at a greater level in circulating blood cells of ALS patients

(Table S1). These two miRNAs are involved in the regulation
of the inflammatory response (197) and the neuromuscular
junction (184, 198). In addition, miR-206, a skeletal muscle

growth regulator (183), is increased in ALS muscles across
studies [Table S1, 2 studies show significant increases (199, 200),
the third study only shows a tendency toward an increase in

levels (201)]. Together these data reinforce the suggestion that
these candidate biomarkers may have utility in determining the

status of motor neurons, inflammatory cells and muscle in ALS
at different stages of the disease.

When looking at the proteomic and transcriptomic signature

of ALS tissues, most observations have not been reproduced
across studies. This lack of repeatability could be attributed to

numerous factors, such as: different study populations; different

types of control subject; different sample sources; different stages
of the disease; and the use of different methodological strategies
(Table S2).
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However, when looking at the different pathways affected
in nervous or muscle tissues, we can identify dominant
signatures. For instance, skeletal muscle exhibits a dysregulation
of pathways involved in muscle atrophy/growth, cytoskeletal
maintenance and metabolism, while the central nervous system
exhibits inflammatory and excitotoxicity features accompanied
by disruptions in axonal transport, cell death, autophagy,
metabolism, and RNA processing (Table S2). Concordantly, the
systematic decrease of N-acetyl-aspartate observed in vivo by
magnetic resonance spectrometry in the central nervous system
across studies reflects (Table S2) neuron degeneration. These
markers likely capture most strongly the endpoints of ALS
disease, including degeneration processes inmotor neuron death,
and muscle denervation and atrophy, and it will be important for
future studies to identify biomarkers that track early features of
the disease.

CONCLUSION

The number of monogenic forms, combined with potential
multisystemic contributions to ALS pathology, render it difficult
first to unravel physiopathological events, and then to understand
which of these events could be pharmacologically targeted.
However, by taking a wide-angle view of the pathways affected
in different monogenic forms of the disease, it is possible to
discern patient strata, with each stratum potentially representing
a separate target for therapeutic intervention. Such a strategy is
directly applicable to monogenic forms of ALS—known in∼20%
of current ALS cases—and future work may discover the extent
to which each of these potential targets are transferrable to the
80% of cases in which causal links (genetic or otherwise) have not
been identified. Identifying biomarkers to diagnose ALS patients
and predict their progression (prognostic biomarkers) may also
lead to the identification of patient strata in these non-causally
linked forms of ALS.

Identifying such biomarkers in ALS is a significant challenge
as it involves the assessment, not only of motor neuron
health status, but also that of other cell types affected in ALS
such as astrocytes, microglia, skeletal muscle and inflammatory
cells. In this review, we collated across a large number of
recently published studies on ALS biomarkers covering several
different cell and tissue types (76 studies on body fluids and
42 studies on tissues), and identified only a relatively few
candidates that are consistently identified as potential biomarkers
across multiple independent studies. These candidate biomarkers
are predominantly reflective of motor neuron health, the
inflammatory status, and skeletal muscle health (Figure 3). As
ALS is increasingly recognized as a multi-systemic disease, it is
thus important to track the progression or the recovery of these
multiple tissues during clinical trials. In addition, some of these

candidates have been confirmed in murine models, e.g., miR-206
in SOD1-G93A mice reflects disease progression in the murine
model (202), making them interesting candidates for assessment
in pre-clinical studies. As a multi-systemic disease, it is likely that
a panel of biomarkers will be needed to fully capture features of
ALS pathology.

Considering the different source tissues and the potential
implication of each of these in the pathology, our capacity to
detect them in accessible fluids, and also the desire to have
biomarkers that are confirmed in multiple studies, we would
suggest that a useful approach to obtain an overall picture
of disease progress in any given patient, may be to combine
biomarker candidate molecules from across those listed in
Table 2. For example, of biomarkers confirmed in multiple
studies, we could suggest a panel of Cystatin C, pNFH and NF-
L, all reflecting neuronal survival, MCP1 as a pro-inflammatory
marker, the MiRs 206 and 133b reflecting muscle origin and
neuromuscular junction, respectively, and some indicators of
dysregulated metabolism such as homocysteine, glutamate, or
cholesterol. Such a panel (or a variation of it with similarly diverse
properties in terms of tissue origin), would be useful to assess
the overall “health status” of different tissues. However, all of the
biomarkers so far proposed require further validation, as would
any specific combination of them.

The development of a heterogeneous multi-biomarker
panel—likely including robust new biomarkers and the
biomarkers cited in this report—could be seen as a priority,
not only for diagnostic purposes but also for prognostic or
predictive applications.
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215. Vrabec K, Boštjančič E, Koritnik B, Leonardis L, Dolenc Grošelj L, Zidar J, et

al. Differential expression of several miRNAs and the host genes AATK and

DNM2 in leukocytes of sporadic ALS patients. Front Mol Neurosci. (2018)

11:106. doi: 10.3389/fnmol.2018.00106

216. Waller R, Goodall EF, Milo M, Cooper-Knock J, Da Costa M, Hobson E, et

al. Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers

for amyotrophic lateral sclerosis (ALS). Neurobiol Aging. (2017) 55:123–31.

doi: 10.1016/j.neurobiolaging.2017.03.027

217. Tasca E, Pegoraro V, Merico A, Angelini C. Circulating microRNAs as

biomarkers of muscle differentiation and atrophy in ALS. Clin Neuropathol.

(2016) 35:22–30. doi: 10.5414/NP300889

218. Raheja R, Regev K, Healy BC, Mazzola MA, Beynon V, Von Glehn F, et

al. Correlating serum micrornas and clinical parameters in amyotrophic

lateral sclerosis. Muscle Nerve. (2018) 58:261–9. doi: 10.1002/mus.

26106

219. Blasco H, Corcia P,Moreau C, Veau S, Fournier C, Vourc’h P, et al. 1H-NMR-

based metabolomic profiling of CSF in early amyotrophic lateral sclerosis.

PLoS ONE. (2010) 5:e13223. doi: 10.1371/journal.pone.0013223

220. Lawton KA, Cudkowicz ME, Brown MV, Alexander D, Caffrey R, Wulff JE,

et al. Biochemical alterations associated with ALS. Amyotroph Lateral Scler.

(2012) 13:110–8. doi: 10.3109/17482968.2011.619197

221. Ihara Y, Nobukuni K, Takata H, Hayabara T. Oxidative stress and metal

content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis

patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol

Res. (2005) 27:105–8. doi: 10.1179/016164105X18430

222. Wuolikainen A, Andersen PM,Moritz T,Marklund SL, Antti H. ALS patients

with mutations in the SOD1 gene have an unique metabolomic profile in

the cerebrospinal fluid compared with ALS patients without mutations.Mol

Genet Metab. (2012) 105:472–8. doi: 10.1016/j.ymgme.2011.11.201

223. Kumar A, Bala L, Kalita J, Misra UK, Singh RL, Khetrapal CL,

et al. Metabolomic analysis of serum by (1) H NMR spectroscopy

in amyotrophic lateral sclerosis. Clin Chim Acta. (2010) 411:563–7.

doi: 10.1016/j.cca.2010.01.016

224. Lawton KA, Brown MV, Alexander D, Li Z, Wulff JE, Lawson

R, et al. Plasma metabolomic biomarker panel to distinguish

patients with amyotrophic lateral sclerosis from disease mimics.

Amyotroph Lateral Scler Frontotemporal Degener. (2014) 15:362–70.

doi: 10.3109/21678421.2014.908311

225. Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB,

et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral

sclerosis. Ann Neurol. (1990) 28:18–25. doi: 10.1002/ana.410280106

226. Iwasaki Y, Ikeda K, Kinoshita M. Plasma amino acid levels in patients with

amyotrophic lateral sclerosis. J Neurol Sci. (1992) 107:219–22.

227. Gray E, Larkin JR, Claridge TDW, Talbot K, Sibson NR, Turner MR.

The longitudinal cerebrospinal fluid metabolomic profile of amyotrophic

lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. (2015)

16:456–63. doi: 10.3109/21678421.2015.1053490

228. Wuolikainen A, Jonsson P, Ahnlund M, Antti H, Marklund SL, Moritz

T, et al. Multi-platform mass spectrometry analysis of the CSF and

plasma metabolomes of rigorously matched amyotrophic lateral sclerosis,

Parkinson’s disease and control subjects. Mol Biosyst. (2016) 12:1287–98.

doi: 10.1039/c5mb00711a

229. Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar J-L, Bonnefont-

Rousselot D, Bittar R, et al. Dyslipidemia is a protective factor

in amyotrophic lateral sclerosis. Neurology. (2008) 70:1004–9.

doi: 10.1212/01.wnl.0000285080.70324.27

230. Valentino F, Bivona G, Butera D, Paladino P, Fazzari M, Piccoli T,

et al. Elevated cerebrospinal fluid and plasma homocysteine levels

in ALS. Eur J Neurol. (2010) 17:84–9. doi: 10.1111/j.1468-1331.2009.

02752.x

231. Levin J, Bötzel K, Giese A, Vogeser M, Lorenzl S. Elevated levels of

methylmalonate and homocysteine in Parkinson’s disease, progressive

supranuclear palsy and amyotrophic lateral sclerosis. Dement Geriatr Cogn

Disord. (2010) 29:553–9. doi: 10.1159/000314841

232. Zoccolella S, Simone IL, Lamberti P, Samarelli V, Tortelli R,

Serlenga L, et al. Elevated plasma homocysteine levels in patients

Frontiers in Neurology | www.frontiersin.org 14 May 2019 | Volume 10 | Article 400302

https://doi.org/10.12659/MSM.909348
https://doi.org/10.1016/J.ARR.2018.10.008
https://doi.org/10.1016/j.jneuroim.2016.01.003
https://doi.org/10.1016/j.jns.2016.06.046
https://doi.org/10.1016/j.nbd.2012.08.015
https://doi.org/10.1016/J.NBD.2018.02.009
https://doi.org/10.1371/journal.pone.0089065
https://doi.org/10.1111/j.1471-4159.2005.03478.x
https://doi.org/10.1002/mus.21683
https://doi.org/10.1212/01.wnl.0000203129.82104.07
https://doi.org/10.1016/j.neuroscience.2018.03.023
https://doi.org/10.1001/jamaneurol.2016.6179
https://doi.org/10.1001/jamaneurol.2016.5398
https://doi.org/10.1002/mus.21625
https://doi.org/10.1212/WNL.62.10.1758
https://doi.org/10.1371/journal.pone.0025545
https://doi.org/10.3389/fnmol.2017.00099
https://doi.org/10.3389/fnmol.2016.00069
https://doi.org/10.1007/s10048-014-0420-2
https://doi.org/10.3389/fnmol.2018.00106
https://doi.org/10.1016/j.neurobiolaging.2017.03.027
https://doi.org/10.5414/NP300889
https://doi.org/10.1002/mus.26106
https://doi.org/10.1371/journal.pone.0013223
https://doi.org/10.3109/17482968.2011.619197
https://doi.org/10.1179/016164105X18430
https://doi.org/10.1016/j.ymgme.2011.11.201
https://doi.org/10.1016/j.cca.2010.01.016
https://doi.org/10.3109/21678421.2014.908311
https://doi.org/10.1002/ana.410280106
https://doi.org/10.3109/21678421.2015.1053490
https://doi.org/10.1039/c5mb00711a
https://doi.org/10.1212/01.wnl.0000285080.70324.27
https://doi.org/10.1111/j.1468-1331.2009.02752.x
https://doi.org/10.1159/000314841
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Vijayakumar et al. The Search for Circulating Biomarkers for ALS

with amyotrophic lateral sclerosis. Neurology. (2008) 70:222–5.

doi: 10.1212/01.wnl.0000297193.53986.6f

233. Cieslarova Z, Lopes FS, do Lago CL, França MC, Colnaghi

Simionato AV. Capillary electrophoresis tandem mass spectrometry

determination of glutamic acid and homocysteine’s metabolites: potential

biomarkers of amyotrophic lateral sclerosis. Talanta. (2017) 170:63–8.

doi: 10.1016/J.TALANTA.2017.03.103

234. Brettschneider J, Lehmensiek V, Mogel H, Pfeifle M, Dorst J, Hendrich C,

et al. Proteome analysis reveals candidate markers of disease progression

in amyotrophic lateral sclerosis (ALS). Neurosci Lett. (2010) 468:23–7.

doi: 10.1016/j.neulet.2009.10.053

235. Zhou J-Y, Afjehi-Sadat L, Asress S, Duong DM, Cudkowicz M, Glass JD,

et al. Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis:

discovery by a proteomics approach. J Proteome Res. (2010) 9:5133–41.

doi: 10.1021/pr100409r

236. Liu J, Gao L, Zang D. Elevated levels of IFN-γ in CSF and serum of

patients with amyotrophic lateral sclerosis. PLoS ONE. (2015) 10:e0136937.

doi: 10.1371/journal.pone.0136937

237. Gao L, Zhou S, Cai H, Gong Z, Zang D. VEGF levels in CSF

and serum in mild ALS patients. J Neurol Sci. (2014) 346:216–20.

doi: 10.1016/j.jns.2014.08.031

238. Lind A-L, Wu D, Freyhult E, Bodolea C, Ekegren T, Larsson A, et

al. A multiplex protein panel applied to cerebrospinal fluid reveals

three new biomarker candidates in ALS but none in neuropathic pain

patients. PLoS ONE. (2016) 11:e0149821. doi: 10.1371/journal.pone.01

49821

239. Kano O, Tanaka K, Kanno T, Iwasaki Y, Ikeda J-E. Neuronal apoptosis

inhibitory protein is implicated in amyotrophic lateral sclerosis symptoms.

Sci Rep. (2018) 8:6. doi: 10.1038/s41598-017-18627-w

240. Lima C, Pinto S, Napoleão P, Pronto-Laborinho AC, Barros MA, Freitas

T, et al. Identification of erythrocyte biomarkers in amyotrophic lateral

sclerosis. Clin Hemorheol Microcirc. (2016) 63:423–37. doi: 10.3233/CH-1

62066

241. Edri-Brami M, Rosental B, Hayoun D, Welt M, Rosen H, Wirguin

I, et al. Glycans in sera of amyotrophic lateral sclerosis patients

and their role in killing neuronal cells. PLoS ONE. (2012) 7:e35772.

doi: 10.1371/journal.pone.0035772

242. Otto M, Bahn E, Wiltfang J, Boekhoff I, Beuche W. Decrease of S100 beta

protein in serum of patients with amyotrophic lateral sclerosis.Neurosci Lett.

(1998) 240:171–3.

243. Häggmark A, Mikus M, Mohsenchian A, Hong M-G, Forsström B,

Gajewska B, et al. Plasma profiling reveals three proteins associated to

amyotrophic lateral sclerosis. Ann Clin Transl Neurol. (2014) 1:544–53.

doi: 10.1002/acn3.83

244. Williams SM, Khan G, Harris BT, Ravits J, Sierks MR. TDP-43 protein

variants as biomarkers in amyotrophic lateral sclerosis. BMC Neurosci.

(2017) 18:20. doi: 10.1186/s12868-017-0334-7

245. Freischmidt A, Müller K, Ludolph AC, Weishaupt JH. Systemic

dysregulation of TDP-43 binding microRNAs in amyotrophic

lateral sclerosis. Acta Neuropathol Commun. (2013) 1:42.

doi: 10.1186/2051-5960-1-42

246. Benigni M, Ricci C, Jones AR, Giannini F, Al-Chalabi A, Battistini S.

Identification of miRNAs as potential biomarkers in cerebrospinal fluid

from amyotrophic lateral sclerosis patients. Neuromolecular Med. (2016)

18:551–60. doi: 10.1007/s12017-016-8396-8

247. Waller R, Wyles M, Heath PR, Kazoka M, Wollff H, Shaw PJ, et

al. Small RNA sequencing of sporadic amyotrophic lateral sclerosis

cerebrospinal fluid reveals differentially expressed miRNAs related to neural

and glial activity. Front Neurosci. (2017) 11:731. doi: 10.3389/fnins.2017.

00731

248. Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B,

Murugaiyan G, et al. Modulating inflammatory monocytes

with a unique microRNA gene signature ameliorates murine

ALS. J Clin Invest. (2012) 122:3063–87. doi: 10.1172/JCI

62636

249. Freischmidt A, Müller K, Zondler L, Weydt P, Volk AE, BoŽič AL,
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Neuroinflammation plays an important role in amyotrophic lateral sclerosis (ALS)
pathogenesis. However, it is difficult to evaluate inflammation of the central nervous
system (CNS) or the relationship between neuroinflammation and disease progression
in ALS patients. Recent advances in the field of exosomes and CNS-derived exosomes
extraction technology provide the possibility of measuring the inflammatory status in the
CNS without brain biopsy. In this pilot study, we extracted astrocyte-derived exosomes
from the plasma of sporadic ALS patients and age-, sex-matched healthy controls
and determined Interleukin-6 (IL-6) levels by an enzyme-linked immunosorbent assay
(ELISA). The IL-6 levels in astrocyte-derived exosomes were increased in sALS patients
and positively associated with the rate of disease progression. However, the association
between IL-6 levels and disease progression rate was limited to patients whose disease
duration were less than 12 months. These data suggest an increased inflammatory
cascade in the CNS of sALS patients. Our pilot study demonstrates that CNS-derived
exosomes could be useful to reveal neuroinflammation of the CNS in ALS patients.

Keywords: amyotrophic lateral sclerosis, astrocytes, exosomes, disease progress, interleukin-6

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a rare, progressive neurodegenerative disease that affects
upper and lower motor neurons and leads to fatal paralysis (Brown and Al-Chalabi, 2017).
Ultimately, most ALS patients die within 3–5 years after disease onset due to respiratory failure.
Approximately 90–95% of ALS cases are the sporadic type (sALS), and the remaining cases are the
familial type (fALS). To date, more than 20 genes that cause fALS and sALS have been identified
(Brown and Al-Chalabi, 2017). Scientific advances in genetic studies in the ALS field have improved
our understanding of ALS pathogenesis. However, the exact etiology and pathogenesis of ALS are
still unknown. As a result, there is no effective treatment for the disease. Riluzole and edaravone are
the only two approved drugs for the treatment of ALS, and they solely delay disease progression for
several months (Kumar et al., 2016; Rothstein, 2017).

Numerous intrinsic and extrinsic factors are involved in ALS motor neuron degeneration. One
possible factor involved in motor neuron degeneration in ALS is neuroinflammation. Accumulating
evidence indicates that ALS patients have chronic inflammation, as demonstrated by activated
microglia and astrocytes, as well as infiltration of peripheral monocytes and lymphocytes into
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the CNS (Zhao et al., 2013; Liu and Wang, 2017). Increased
serum/plasma and CSF levels of some cytokines, such as tumor
necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-8, and
interferon-beta (IFN-β), have been detected in ALS patients
when compared to controls (Ono et al., 2001; Mitchell et al.,
2009; Fiala et al., 2010; Mitchell et al., 2010; Italiani et al.,
2014; Ehrhart et al., 2015; Liu et al., 2015; Hu et al., 2017).
Beyond demonstrating ongoing inflammatory processes in ALS
patients, these inflammatory biomarkers could also be used as
diagnostic and prognostic biomarkers for clinical use because
they have been reported to distinguish ALS from healthy or
disease controls (Vu and Bowser, 2017; Gonzalez-Garza et al.,
2018) and to predict the disease prognosis (Su et al., 2013; Liu
et al., 2015). Activated microglia and astrocytes in the CNS play
a vital role in the neuroinflammation process in ALS patients;
however, the determination of the inflammatory biomarkers in
serum/plasma and CSF only indirectly reflects the status of the
CNS. Recently, scientific advances in the field of exosomes and
CNS-derived exosome extraction technology have provided the
possibility of measuring the inflammatory status in the CNS
without brain biopsy.

Exosomes are approximately 30–100 nm extracellular vesicles
with lipid bilayer membranes that are secreted by almost all types
of cells, including neurons, microglia and astrocytes (Raposo
and Stoorvogel, 2013; Yanez-Mo et al., 2015). Exosomes contain
proteins, lipids and RNA and transfer them between cells.
Therefore, exosomes play an important role in intercellular
communication. Moreover, different cell types can secrete
exosomes with different biomarkers, which could help to identify
the exosome source (Beninson and Fleshner, 2014). Due to their
specific characteristics, exosomes have attracted large amounts of
attention in various studies ranging from mechanistic analyses
to clinical research (Jarmalaviciute and Pivoriunas, 2016; Goh
et al., 2017). In addition, exosomes can cross the blood-brain
barrier (BBB) from both directions. As a result, CNS-derived
exosomes can be detected in the blood and may help to reveal the
pathophysiology of brain diseases without the use of brain biopsy
and CSF analysis (Mustapic et al., 2017). In recent studies, several
strategies to extract CNS-derived exosomes from peripheral
blood have been reported (Mustapic et al., 2017; Kuwano et al.,
2018). However, CNS-derived exosome-based studies focusing
on ALS have not been previously reported.

Based on the above information, we hypothesized that
inflammatory biomarkers in astrocyte-derived exosomes (ADEs)
may increase and may be associated with clinical features in
ALS patients. In this pilot study, we extracted ADEs from the
plasma of sporadic ALS patients and age-, sex-matched healthy
controls to determine the IL-6 levels in ADEs and, ultimately, we
detected increased IL-6 levels in ADEs of sALS patients, which
were positively associated with the rate of disease progression.

PARTICIPANTS AND METHODS

Participants
This study was approved by the Ethics Committee of the Perking
University Third Hospital, Beijing, China. All ALS patients

and age-, sex-matched healthy control individuals signed the
informed consent before peripheral blood samples were drawn.
Patients and controls were recruited from the Department
of Neurology of Perking University Third Hospital. Clinically
definite and probable sALS patients were diagnosed based on
the EI Escorial revised criteria (Brooks et al., 2000) and further
evaluated by the revised ALS functional rating scale (ALSFRS-R)
(Cedarbaum et al., 1999). The rate of disease progression
(1FS) was calculated as follows: 1FS = (48 -ALSFRS-R at
“time of diagnosis”)/duration from onset to diagnosis (month)
(Kimura et al., 2006).

Plasma Sampling in ALS Patients and
Controls
Samples containing two milliliters of peripheral blood from
ALS patients and healthy control individuals were collected into
EDTA tubes. To extract plasma, blood samples were centrifuged
at 1500 g for 10 min to remove blood cells. Then, the supernatant
was subjected to another centrifugation at 2500 g for 20 min to
remove the platelets and cell debris. Finally, the plasma was stored
at −80◦C until use.

Extraction of ADEs From Plasma
The method to extract the ADEs from plasma was modified
from a previously published article (Mustapic et al., 2017).
Briefly, 0.25 ml plasma was incubated with 0.2 µl thromboplastin
(System Biosciences, Mountain View, CA, United States)
for 5 min. Then, 298 µl calcium- and magnesium-free
Dulbecco’s Balanced Salt Solution (DBS−2) was added with
protease inhibitor cocktail (Roche, Indianapolis, IN) and
phosphatase inhibitor cocktail (Thermo Fisher Scientific),
followed by centrifugation at 10,000 rpm for 5 min at 4◦C.
The supernatants were harvested, followed by addition of
126 µl per tube of ExoQuick (System Biosciences, Mountain
View, CA, United States). After a second centrifugation at
1500 g for 30 min at 4◦C, total exosomes were harvested by
removing the supernatant. To enrich ADEs, total exosomes were
resuspended in 250 µl of ddH2O with protease inhibitor cocktail
and phosphatase inhibitor cocktail and incubated for at least
120 min at 4◦C. Then, 1.5 µg biotinylated mouse anti-human
glutamine aspartate transporter (ACSA-1) antibody (Miltenyi
Biotec, Auburn, CA, United States) in 50 ml of 3% bovine serum
albumin (BSA; 1:3.33 dilution of Blocker BSA 10% solution in
DBS−2; Thermo Fisher Scientific) was added per tube and mixed
for 60 min at room temperature, followed by the addition of 10 µl
streptavidin-agarose Ultralink resin (Thermo Fisher Scientific) in
40 ml 3% BSA and incubation with mixing for another 20 min
at room temperature. After centrifugation at 400 g for 10 min at
4◦C, the supernatant was removed, and each pellet was suspended
in 200 µl cold 0.1 M glycine-HCl (pH = 3.0) by gentle mixing for
10 s and centrifugation at 4,500 g for 5 min. The supernatants
were then harvested, and 25 µl of 3% BSA and 15 µl of 1 M Tris–
HCl (pH = 8.0) were added. Finally, 260 µl mammalian protein
extraction reagent (M-PER, Thermo Fisher Scientific) was added,
and the solution was mixed. The resultant 0.5 ml lysates of ADEs
were stored at −80◦C. Evidence for enrichment of exosomes
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from neural sources in plasma has been demonstrated previously
(Mustapic et al., 2017).

Measurement of IL-6 Levels in ADEs and
Plasma
Astrocyte-derived exosome proteins were quantified using a
single-plex high-sensitivity and high-dynamic-range ELISA for
IL-6 (Rockville, MD, United States Cat# K151AKC) (Chaturvedi
et al., 2015) and by using enzyme-linked immunosorbent assay
(ELISA) kits for the tetra-spanning exosome marker CD81
(Cusabio Technology, Wuhan, China), according to the suppliers’
directions. The mean value for all determinations of CD81 in
each assay group was set at 1.00, and the relative values for each
sample were used to normalize their recovery. The plasma IL-6
levels in both groups were also measured. The protein levels were
measured by board-certified laboratory technicians who were
blinded to the clinical information.

To ensure the specificity of the tests, negative control groups
were set up in this study. In the negative control group one, the
biotinylated anti-ACSA-1 antibody was replaced with 3% BSA.
In the negative control group two, the total exosomes solution
resuspended from ExoQuick pellet was replaced by ddH2O.

Statistical Analyses
Data are presented as numbers, means and standard deviations,
or medians (interquartile range, IQR) as appropriate. Normal
distributions of datasets were assessed by the Shapiro–Wilks test.
Unpaired Student t-tests, χ2 test or one-way ANOVA, followed
by Tukey analysis, were used to examine differences between
groups. Pearson’s correlation was used for statistical correlation
analysis. The differences between groups were considered
significant if the p-value was less than 0.05 (two-tailed). All
statistical analyses and graphs were performed using GraphPad
Prism 6 (GraphPad Software Inc., San Diego, United States).

RESULTS

In this pilot study, 40 ALS patients and 39 healthy controls
were recruited. The detailed clinical information for these two
groups are summarized in Table 1. The ALS patients and controls
were comparable, as there was no difference in age or sex ratio
between the two groups. Of the 40 ALS patients, 12 were bulbar
onset and 28 were limber onset; 10 ALS cases were diagnosed as
definite, and the remainder were probable. The median delay of
diagnosis for all patients was 9.23 months. The mean ALSFRS-R
score for the patients was 39.83 ± 1.08, and the median disease
progression rate was 0.56. The extracted ADEs were validated
by western blot. The result showed that the ADEs were positive
for CD63, but negative for calnexin (Supplementary Figure S1).
The ADEs were also verified by transmission electron microscope
(Supplementary Figure S2). In the CD81 and IL-6 test, the
negative control group one and two were all at background levels.
The CD81-normalized levels of IL-6 in ADEs were significantly
higher in ALS patients (40.40 ± 2.11 pg/ml) than in controls
(22.45 ± 1.90 pg/ml) (Figure 1A). However, among 40 ALS
patients and 39 healthy controls, the IL-6 was detectable only

in 12 controls and 15 ALS patients. There was no difference
in detection rate between the two groups. The plasma IL-6
levels ranged from 0.13 to 4.58 pg/mL in controls and 0.39
to 15.69 pg/ml in ALS patients (Supplementary Figure S3A).
There was no difference in plasma IL-6 levels between controls
and ALS patients (p = 0.3614) and there was no correlation
between IL-6 levels in plasma and ADEs (r = 0.3384, p = 0.2173
for ALS group; r = −0.2657, p = 0.4038 for control group;
Supplementary Figures S3B,C).

The ALS patients were further divided into subgroups
according to the following: onset site: bulbar onset (ALS-B)
or limber onset (ALS-L); diagnosis level: definite (ALS-D) or
probable (ALS-P); and disease duration: less than 12 months
(ALS < 12) or greater than or equal to 12 months (ALS ≥ 12).
As shown in Figures 1B–D, compared with the control group,
the levels of IL-6 in ADEs were increased in all ALS subgroups.
However, there was no difference between the ALS subgroups.

The correlations of the levels of IL-6 in ADEs with clinical
parameters are shown in Figure 2. The IL-6 levels correlated
positively with the disease progression rate (r = 0.4696, p = 0.002).
However, IL-6 levels in the ADEs of ALS patients did not correlate
with total ALSFRS-R scores (r = −0.2021, p = 0.2110), diagnosis
delay (r = −0.1735, p = 0.2845) or patient age (r = −0.1087,
p = 0.5560). In controls, IL-6 levels also did not correlate with
age (data not shown). When the patients were separated into two
groups according disease duration (ALS < 12 m or ALS ≥ 12 m),
a positive correlation between IL-6 levels and disease progression
was only verified in the ALS < 12 m group (r = 0.6605, p = 0.015)
(Figure 3A) but not in the ALS ≥ 12 m group (r = 0.3510,
p = 0.1291) (Figure 3B).

DISCUSSION

The present study demonstrated that the levels of IL-6 in ADEs
of sALS patients were increased and positively associated with
the rate of disease progression, especially in patients at an earlier
disease stage. These data suggest that the inflammatory cascade
is augmented in the CNS of sALS patients. Analysis of CNS-
derived exosomes in peripheral blood has recently attracted
immense attention. Numerous studies have demonstrated that
CNS-derived exosomes could be helpful to understand the

TABLE 1 | Characteristics of ALS patients and healthy controls.

Control ALS p

Cases (male/female) 39 (25/14) 40 (26/14) 1

Age (mean ± SE) 55.74 ± 1.32 54.35 ± 2.02 0.57

Onset site: bulbar/limb NA 12/28 NA

Diagnosis delay (months) NA 9.23 (9.68) NA

Definite/probable NA 10/30 NA

ALSFRS-R NA 39.83 ± 1.08 NA

1FS NA 0.56 (0.71) NA

IL-6 (pg/ml) 22.45 ± 1.90 40.40 ± 2.11 <0.001

Diagnosis delay, interval from the initial symptoms to diagnosis; ALSFRS-R, revised
amyotrophic lateral sclerosis functional rating scale; 1FS, disease progression rate.

Frontiers in Neuroscience | www.frontiersin.org 3 June 2019 | Volume 13 | Article 574308

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00574 June 4, 2019 Time: 15:47 # 4

Chen et al. IL-6 in ADEs of ALS

FIGURE 1 | Comparison IL-6 levels in ADEs from plasma of ALS and healthy subjects. Panels (A–D) show the levels of IL-6 in ADEs of (A) ALS patients and
controls; (B) ALS patients with bulbar (ALS-B) or limb onset (ALS-L) and controls; (C) definite ALS (ALS-D) or probable ALS (ALS-P) and controls; (D) ALS
duration ≥ 12 months (ALS ≥ 12) or <12 months (ALS < 12) and controls. ∗∗, ∗∗∗ indicate p < 0.01 and p < 0.001, respectively, compared with controls.

pathophysiology of brain disease and the identification of
biomarkers (Abner et al., 2016; Winston et al., 2016; Goetzl et al.,
2018; Ohmichi et al., 2018). However, to our knowledge, no
studies have been reported on CNS-derived exosomes in ALS
patients. Therefore, our pilot study is the first to demonstrate
that CNS-derived exosomes could be useful to reveal the
pathophysiology of CNS in ALS patients.

Several inflammatory biomarkers have been found to be linked
to ALS. As a well-known cytokine, IL-6 has been extensively
investigated in neurodegenerative disorders and associated with
ALS in numerous studies (Sekizawa et al., 1998; Ehrhart et al.,
2015; Lu et al., 2016; Blasco et al., 2017; Hu et al., 2017). However,
the results are not consistent across all studies (Moreau et al.,
2005; Tanaka et al., 2006). In addition, one study reported an
increase in IL-6 levels at the late stage of disease (Lu et al.,
2016), whereas another study reported that the levels of IL-
6 were high at disease onset followed by a subsequent decline
(Ehrhart et al., 2015). The plasma IL-6 levels were also measured
in this study. However, the IL-6 was detectable in only 12 controls
and 15 ALS patients and undetectable in most of the samples.
Among the 12 controls and 15 ALS patients, the IL-6 levels were
highly variable and no difference has been found between the
two groups. The highly variable plasma IL-6 levels in our study
and the contradictory results from previous studies indicate that
the peripheral IL-6 levels may be influenced by complex factors.
A recent study showed that the levels of IL-6 in blood could be

influenced by aging and respiratory dysfunction in ALS (Pronto-
Laborinho et al., 2019). Thus, determining the IL-6 levels in blood
may not be a good way. CNS-derived exosomes could directly
reflect the situation in the CNS, and peripheral factors might have
little effect on cytokines in CNS-derived exosomes. Therefore, the
measurement of IL-6 levels in CNS-derived exosomes, compared
with blood or CSF, may be better to illuminate the actual role
of IL-6 in ALS. Astrocytes have been reported play an important
role in the pathogenesis of ALS, and the predominant CNS source
of IL-6 is the activated astrocyte (Van Wagoner and Benveniste,
1999). Hence, in this pilot study, we chose to measure IL-6 levels
in ADEs. Compared with the plasma IL-6 levels, the IL-6 levels
in ADEs were relatively high and stable and the IL-6 levels in the
ADEs didn’t correlate with age. Moreover, it was supposed that
there may be connection between IL-6 levels in plasma and ADEs.
However, no correlation had been found between two groups.
All these results indicate that CNS-derived exosomes may be a
promising object to help find biomarkers for ALS.

The important findings of our study were that IL-6 levels in
ADEs increased in sALS patients and were positively associated
with the rate of disease progression. These data suggest that the
IL-6 in ADEs may be a candidate biomarker for ALS. However,
neuroinflammation is a common phenomenon in almost all
neurological disease. Therefore, it is believed that the IL-6 levels
in ADEs probably increase in other neurological conditions.
Actually, it has been reported that the IL-6 levels in ADEs
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FIGURE 2 | Correlations between IL-6 levels in ADEs of ALS patients with the disease progression rate, ALSFRS-R score, diagnosis delay and patient age.
(A) shows that the IL-6 levels in ADEs of ALS patients positively correlate with the disease progression rate. However, the IL-6 levels in ADEs of ALS patients do not
correlate with the ALSFRS-R score (B), diagnosis delay (C), and patient age (D).

FIGURE 3 | Correlations between IL-6 levels in ADEs of ALS subgroups with the disease progression rate. ALS patients were divided into two groups according to
the disease duration. (A) The IL-6 levels in ADEs of the ALS < 12 group positively correlate with the disease progression rate. However, the Il-6 levels in ADEs of the
ALS12 group do not correlate with the disease progression rate (B).

increased in AD patients (Goetzl et al., 2018). Thus, the IL-6 levels
in ADEs may not be suitable to help discriminate ALS from other
neurological diseases. According to our study, measuring the IL-
6 levels in ADEs may be helpful to reflect the neuroinflammation
status and predict disease progression.

We could not determine the precise role of IL-6 in ALS
patients because of its complex physiological functions. Increased
IL-6 secretion could be a neuroprotective reaction against CNS
damage or a pro-inflammatory agent (Spooren et al., 2011).

However, most views consider IL-6 as a pro-inflammatory
cytokine in ALS patients. The anti-IL-6 antibody, tocilizumab,
has been proposed as a therapeutic drug for ALS (Fiala et al.,
2013). Therefore, we speculate that the increase in IL-6 observed
in this study was harmful to ALS patients. Our further analyses
revealed that the levels of IL-6 did not differ between ALS
subgroups, and the correlation between IL-6 and the rate
of disease progression was only observed during the initial
12 months. These results indicated that IL-6 produced by
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astrocytes might be more important during the early stage of
disease. However, our sample size was limited, and the results
should therefore be confirmed in further studies.

CONCLUSION

The present study demonstrated that the levels of IL-6 in ADEs
of ALS patients were increased and positively associated with the
rate of disease progression, especially in patients at an earlier
disease stage. Our pilot study is the first to demonstrate that CNS-
derived exosomes could be useful to reveal the pathophysiology
of CNS in ALS patients.
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MicroRNAs (miRNAs) represent potential biomarkers for neurodegenerative disorders

including amyotrophic lateral sclerosis (ALS). However, whether expression changes of

individual miRNAs are simply an indication of cellular dysfunction and degeneration,

or actually promote functional changes in target gene expression relevant to disease

pathogenesis, is unclear. Here we used bioinformatics to test the hypothesis that

ALS-associated miRNAs exert their effects through targeting genes implicated in disease

etiology. We documented deregulated miRNAs identified in studies of ALS patients,

noting variations in participants, tissue samples, miRNA detection or quantification

methods used, and functional or bioinformatic assessments (if performed). Despite lack

of experimental standardization, overlap of many deregulated miRNAs between studies

was noted; however, direction of reported expression changes did not always concur.

The use of in silico predictions of target genes for the most commonly deregulated

miRNAs, cross-referenced to a selection of previously identified ALS genes, did not

support our hypothesis. Specifically, although deregulated miRNAs were predicted to

commonly target ALS genes, random miRNAs gave similar predictions. To further

investigate biological patterns in the deregulated miRNAs, we grouped them by tissue

source in which they were identified, indicating that for a core of frequently detected

miRNAs, blood/plasma/serum may be useful for future profiling experiments. We

conclude that in silico predictions of gene targets of deregulated ALS miRNAs, at least

using currently available algorithms, are unlikely to be sufficient in informing disease

pathomechanisms. We advocate experimental functional testing of candidate miRNAs

and their predicted targets, propose miRNAs to prioritise, and suggest a concerted move

towards protocol standardization for biomarker identification.

Keywords: microRNA, amyotrophic lateral sclerosis, ALS, MND, biomarker, ALS genes, bioinformatics,

neurodegeneration

INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNAs, typically 20–22 nucleotides (nt) long, which
act as post-transcriptional regulators of gene expression (1). MiRNA seed sequences provide
specificity for the 3′ untranslated region (UTR) of target mRNA, leading to mRNA degradation or
translational inhibition (2). Around a third of human gene products are regulated by miRNAs (3),
being present in both intracellular and extracellular environments and in almost all biological fluids
(4, 5). Extracellularly, miRNAs are detected within membrane vesicles and also freely, forming
complexes with other macromolecules (6).
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Amyotrophic lateral sclerosis (ALS) is characterized by the
progressive loss of upper and lower motor neurons in the
spinal cord, cerebral cortex, and brainstem, resulting in muscle
weakness and wasting (7, 8). Life expectancy is 2–5 years
after onset (9). Approximately 5% of ALS patients develop
frontotemporal dementia (FTD) and the ALS-FTD spectrum is
hereafter referred to as ALS (10). Around 90% of ALS cases are
sporadic (sALS) and 10% are familial (fALS), being associated
with inherited mutations. Multiple genes have been linked with
ALS (11). Interestingly, some ALS-associated genes, including
TARDBP and FUS, encode RNA-binding proteins which are
involved in miRNA processing (12), and indirectly implicate
miRNAs in ALS pathophysiology. However in addition to RNA
metabolism, ALS-associated genes show diverse functions, with
roles in intracellular transport, proteostasis, axonal outgrowth,
and glutamatergic signaling (7).

MiRNAs are unusually well-preserved in a range of biological
samples, including blood plasma, serum, and cerebrospinal
fluid, and are measurable with greater sensitivity and stability
than proteins (5, 13). As a result, the last decade has seen
a drive to identify specific miRNA biomarkers for ALS,
in order to potentiate more rapid and accurate diagnosis,
disease stratification and monitoring. Numerous studies have
demonstrated deregulation of miRNAs in ALS patients, most
aiming to identify clinically-relevant biomarkers.

Relevant to the ALS context, CSFmiRNAs are potentially good
representatives of central nervous system (CNS) disorders, since
a blood-CSF barrier would prevent CNS miRNA dilution in the
wider circulation (14). However, it is possible for miRNAs to
transfer across this barrier, such that blood miRNAs may provide
a window on nervous system dysfunction (15). Although the
functional significance of circulating miRNAs is less clear, it has
been demonstrated that cells can transfer functional miRNAs
between one another in an exosome-mediated manner (16). It
has been proposed cells can select the miRNAs to be released
(17), although cells also shed material when degenerating.
Thus, extracellular vesicles (EVs) may reflect the cells of origin,
and some of these circulating miRNAs potentially mirror
ALS pathophysiology.

Despite considerable efforts, no specific, robust diagnostic
molecular biomarker set has been identified for ALS (18).
Recently, Dardiotis et al. (19) reviewed the results of 24 studies,
from 2010 to 2017, documenting miRNAs reported in ALS
biomarker studies, aiming to clarify those most appropriate for
future evaluation. In this same Frontiers issue, Joilin et al. (20)
review recent attempts to define a “biomarker-relevant” signature
of miRNAs, discussing their great potential and the challenges
once the field moves toward clinical validation. However, beyond
the key importance of biomarker identification, most studies
so far do not attempt systematic bioinformatic or experimental
functional interpretation of transcripts targeted by ALS-relevant
miRNAs. Consequently, whether changes in miRNA expression
simply reflect cellular dysfunction and degeneration, or are active
participants in the functional changes of target genes relevant to
disease pathogenesis, is unknown.

Here, we also focus on miRNA profiling studies comparing
expression levels of miRNAs from ALS patients and controls,

over the 2013–2018 period. Our approach aims to evaluate
various strategies that can be used to analyse these deregulated
miRNAs: number of reported studies for a given miRNA,
predicted functional targets, and tissue distribution (i.e., where
detected). We document the overlap between miRNAs reported
as deregulated in these studies; and for these miRNAs, propose
a series of in silico methods to identify those predicted to
target known ALS genes, evaluating current limitations of
such predictions in informing disease pathogenesis. Finally, we
consider the source of patient tissue samples used for miRNA
profiling, highlighting overlap of givenmiRNAs and revealing the
importance of sample analyzed.

RESULTS AND DISCUSSION

Literature Analysis
To define relevant studies we performed a PubMed literature
search with the MeSH terms “microRNA” AND “amyotrophic
lateral sclerosis” from 1/1/2013-31/12/2018. We identified 27
peer-reviewed studies fulfilling our selection criteria, which
specifically included those recording and comparing levels of
multiple miRNAs directly from ALS patients and controls
(Table S1). Of these studies, 15 were previously considered by
Dardiotis and colleagues, whilst Joilin et al. (20) in this same issue
considered 11 of the studies presented here.

Detailed observation noted a large degree of variation
between the studies, from sample source (serum, plasma, whole
blood, CSF, spinal cord, muscle etc.), numbers and clinical
characteristics of patient participants (both sALS and fALS) and
controls (healthy and other diseases), to the methods used for
sample preparation, miRNA profiling and analysis. Additionally,
we identified the need for reporting specific arms of mature
miRNAs, since in ambiguous cases we could only assume the
dominant strand as that reported/detected (miRBase release
22.1: 2018).

In those few studies that investigate functional implications
potentially derived from miRNA changes, a wide variety of
bioinformatic approaches were used to identify possible mRNA
targets of deregulated miRNAs, including different versions of
TargetScan, Pictar, miRanda, DIANA-Tarbase, and miRtarbase.
Further attempts to identify those gene/signaling networks
targeted, built on protein-protein interaction (PPI) networks,
gene ontology and pathway analysis, generating a variety of
outcomes (21, 22).

Most Commonly Deregulated microRNAs
As a first approach to select potentially pathologically relevant
miRNAs, we ranked them according to the number of times
they were reported as deregulated in different studies. In the 27
miRNA profiling studies, a total of 559 miRNAs were shown
as deregulated. Among these, nine miRNAs were reported six
or more times, compared to 38 reported in five or more
studies, directing the threshold selected for our analysis. Those
nine most frequently reported (≥6) are shown in Table 1A.
Since any miRNA deregulation could have deleterious effects on
gene targets, initial selection did not discriminate between up-
vs. down-regulation. Indeed, for many miRNAs, the reported
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direction of deregulation was inconsistent between studies, which
may be accounted for by differences in the analytical protocol
and/or miRNA profiling technique.

Of the most frequently reported miRNAs, hsa-miR-133a-3p
was found deregulated in 9/27 studies. The high ranking of hsa-
miR-133a-3p may be explained by the fact it is a knownmyomiR,
enriched in muscle tissue (24) and several of the analyzed studies
focused on expression levels of myomiRs alone, potentially
introducing tissue bias (25–29) (Table S1). However despite
its myomiR label, hsa-miR-133a-3p has also been suggested as
motor neuron enriched (30).

Frequently Deregulated microRNAs and
Target Prediction of ALS Genes
To connect biomarker reporting and potential functional
relevance we have outlined an in silico method to determine
whether these commonly reported miRNAs preferentially target
selected known ALS-associated genes (http://alsod.iop.kcl.ac.
uk/ [last updated 2015], an ALS bioinformatics repository
online database) (31). The 37 ALS genes considered were (in
alphabetical order):

ALS2, ANG, ARHGEF28, ATXN2, C9orf72, CHCHD10,
CHGB, CHMP2B, CRYM, DAO, DCTN1, ERBB4, FIG4, FUS,
GLE1, LUM, MATR3, NEFH, OPTN, PARK7, PFN1, PLEKHG5,
SETX, SIGMAR1, SOD1, SPG11, SQSTM1, SS18L1, SYNE,
TAF15, TARDBP, TBK1, TRPM7, TUBA4A, UBQLN2, VAPB,
and VCP.
Although not updated since 2015, this database provides
information regarding the ALS patients harboring mutations in
these genes, such as patient numbers (fALS and sALS), gender
and mean onset age as well as site of disease (bulbar/limb).
Additionally, all ALS genes reviewed by Kirby et al. (10) except
hnRNPA1 are included in this list. For the prediction analysis we
used DIANA-microT-CDS v5.0 (32, 33). As reviewed by Riffo-
Campos et al. (34), the DIANA-microT attempts to apply a
more balanced predictive approach, displaying TargetScan, and
miRanda comparisons in its analysis.

From the in silico analysis, 8/9 most frequently deregulated
miRNAs were predicted to target at least one of these ALS genes
(Table 1A), with hsa-miR-9-5p, predicted to target 4/37 of the
genes. There appeared to be no obvious relationship between the
total number of ALS genes the individual miRNAs were predicted
to target and the number of studies reporting these miRNAs as
deregulated. The most frequently predicted ALS targeted genes
were ARHGEF28, CHMP2B, and MATR3 (2/9 miRNAs). The
total count of predicted ALS target genes for the combined nine
miRNAs was 18, and overall, 15/37 ALS genes were predicted as
targets of at least one of the nine miRNAs. Whilst this approach
highlights the potential of in silico predictive methods, evaluation
of comparable analyses with less frequently reported deregulated
miRNAs is also merited.

Other Deregulated microRNAs and Target
Prediction of ALS Genes
To determine if the most commonly identified ALS miRNAs
are the most relevant, the same analysis must be performed

with an identical number (nine) of randomly selected miRNAs,
which although reported to be deregulated in the 27 ALS studies,
appeared in fewer than six reports. Randomization was achieved
by selecting from all deregulated miRNAs, without duplicates,
using a Microsoft Excel randomization function. The results
of this preliminary analysis are shown in Table 1B. Of the
nine miRNAs, deregulation was reported in between 1 and 5
(of 27) studies. 7/9 of these randomly selected miRNAs were
predicted to target at least one of the 37 ALS genes. Further, one
of the miRNAs, hsa-miR-766-3p (deregulated in 2/27 studies)
was predicted to target 4/37 ALS genes. The most frequently
predicted ALS targeted gene was ERBB4 (4/9 miRNAs). The
total count of predicted ALS target genes for the combined
nine miRNAs was 16, comparable to that of the nine most
commonly deregulated miRNAs (18, Table 1A). Overall, 10/37
ALS genes were predicted as targets of at least one of the
nine miRNAs. Although this second analysis could indicate all
deregulated miRNAs are equally important in their capacity to
potentially target ALS relevant genes, a further in silico step
requires comparison with a group of miRNAs not deregulated in
biomarker studies.

Analysis of Randomly Selected and
Non-deregulated microRNAs
To investigate if predicted gene targets for deregulated ALS
miRNAs reflected an enrichment compared to non-deregulated
miRNAs, we performed an example test with nine randomly
selected mature miRNAs not reported as deregulated in any
of the 27 studies and performed the same analysis (Table 1C).
We selected from all Homo sapien mature miRNA sequences
recorded on miRBase release 22.1: October 2018 (35). One of
the random miRNAs, hsa-miR-603-3p, was predicted to target
6/37 of the ALS genes, including ERBB4. The major ALS gene,
TARDBP, was predicted most frequently (3/9 miRNAs).

Compared to the nine most frequently reported (Table 1A)
or not frequently reported deregulated miRNAs (Table 1B), this
random miRNA selection gave a total count of 13 predicted ALS
target genes (Table 1C), representing only 8/37 of the ALS genes.
Notably, 5/9 of these randommiRNAs were predicted to target at
least one of the 37 ALS genes. Further selections of different sets
of nine random miRNAs showed similar results (not shown).

The systematic approach outlined above would potentially
allow the use of statistical analysis (i.e., binomial test) to
indicate whether deregulated miRNAs from ALS patient studies
more frequently target ALS genes (at least based on in silico
predictions) than randomly selected miRNAs, but we suggest
greater numbers of miRNAs would need to be considered. This
analysis would not be trivial and is outside the scope of this
article, which seeks to propose a workflow. Further, consideration
of additional (to the 37 used here) ALS genes is likely merited,
again expanding the complexity of the analysis. Current ALS
genes also relate to different signaling networks, and more
specific gene pathways may be required for target enrichment.
In summary, we have defined a systematic in silico analysis that
should be extended in the future to investigate functional links
between deregulated miRNAs and ALS pathological processes.
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TABLE 1 | The ALS genes predicted by DIANA-microT-CDS v5.0 to be targets of (A) the nine most frequently reported miRNAs from the studies, (B) nine deregulated miRNAs randomly selected from all ALS studies,

and (C) nine randomly selected miRNAs not reported to be deregulated in the ALS studies.

miRNAs Number of Studies

deregulated

(out of 27)

Direction of

deregulation (up,

down or both)

ALS genes predicted by DIANA-T-CDS

(A) Most Frequently

Reported miRNAs

hsa-miR-133a-3p 9 Both TUBA4A VAPB MiRNA hits (8/9)

Genes (15/37)

Total (18)
hsa-let-7a-5p 7 Both ARHGEF28

hsa-miR-127-3p 6 Both

hsa-miR-155-5p 6 Both TBK1 UBQLN2

hsa-miR-206-3p 6 Both ATXN2 MATR3

hsa-miR-26a-5p 6 Both ARHGEF28 ERBB4 MATR3

hsa-miR-455-3p 6 Both TARDBP

hsa-miR-9-5p 6 Both CHMP2B CRYM NEFH TRPM7

hsa-miR-124-3p 6 Both CHMP2B SIGMAR1 SQSTM1

(B) Random miRNAs

from ALS studies

hsa-let-7b-5p 5 Down ARHGEF28 MiRNA hits (7/9)

Genes (10/37)

Total (16)
hsa-let-7c-5p 4 Down ARHGEF28

hsa-miR-204-3p 1 Down ERBB4 VAPB

hsa-miR-766-3p 2 Both DAO DCTN1 SIGMAR1 VAPB

hsa-miR-212-3p 2 Down C9orf72 ERBB4 FIG4

hsa-miR-329-3p 2 Down

hsa-miR-876-3p 1 Down ERBB4 MATR3 TUBA4A

hsa-miR-302a-5p 1 Down ARHGEF28 ERBB4

hsa-miR-154-5p 3 Down

(C) Random miRNAs

absent from ALS

studies

hsa-miR-3168-5p TARDPB MiRNA hits (5/9)

Genes (8/37)

Total (13)
hsa-miR-875-5p

hsa-miR-611-5p

hsa-miR-603-3p ATXN2 ERBB4 MATR3 OPTN TARDBP VAPB

hsa-miR-500b-5p DCTN1 ERBB4

hsa-miR-325-5p

hsa-miR-764-5p

hsa-miR-665-3p DCTN1

hsa-miR-4277-5p DAO TARDPB VAPB

Note that we report mature miRNAs; where specific miRNAs were not reported we considered dominant strands as reported on miRBase release 22.1: October 2018. For (A), all miRNAs deregulated in at least six studies were

considered. For (B) nine miRNAs were randomly selected from those reported by <6 of the 27 studies. Further analysis regarding strand specificity was also performed on this group and on the nine miRNAs not found deregulated in

the studies (C). MiRNAs in bold have confirmed interactions with the target experimentally, using miRTarBase v7.0 (23).
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FIGURE 1 | Different tissue sources and overlap of miRNAs identified from ALS patients in 26/27 studies. n=the number of papers examined in each compartment.

For simplicity, specific miRNA arms are not shown. The CSF-spinal cord/nervous tissue overlap is shaded. The miRNAs deregulated between patient neuromuscular

junction and control blood and deregulated miRNAs from sALS patient fibroblasts are not included since they do not belong in any of the distinct source group

compartments used here (21, 36). The total miRNAs present in each group are given. MiRNAs within a single compartment are not shown.

Tissue Distribution of Deregulated miRNAs
Next, we considered the different tissue sources of the ALS-
relevant miRNAs identified in 26/27 studies (n = 410 unique
miRNAs, for exclusions see Figure 1 legend), and grouped
the miRNAs based on four “compartments”: CSF, spinal
cord/nervous tissue, muscle, and plasma/blood/serum. Figure 1
shows the overlap between studies after mapping the deregulated
miRNAs to the compartment (tissue) they were determined
in. 265/410 deregulated miRNAs were present in at least two
different tissues.We noted considerable correspondence between
miRNAs extracted from plasma/blood/serum with those from
CSF (total of 16/24 miRNAs within the CSF group), supporting
the notion that blood miRNAs can provide a window into CSF
changes (15). Since ALS is a neurodegenerative disorder, those
miRNAs deregulated in patient CSF and spinal cord/nervous
tissue were of particular interest and these 18 miRNAs are shown
in a shaded region in Figure 1. Of these 18 miRNAs, two are
exclusive to only these two sources (hsa-miR-92a-5p/3p and hsa-
miR-574-5p/3p). Notably, of the nine most frequently reported
miRNAs found to be deregulated in the 27 studies (Table 1A),
four overlapped with these 18 miRNAs.

Most Frequently Deregulated miRNAs
Within the CSF-Spinal Cord/Nervous
Tissue Overlap
As noted above, four miRNAs in the CSF-spinal cord/nervous
tissue overlap are also amongst the most frequently reported
deregulated miRNAs (Table 1A; hsa-miR-124-3p, hsa-miR-127-
3p, hsa-let-7a-5p, and hsa-miR-9-5p). The latter is discussed in
the section MicroRNAs Present in all Tissue Sources.

Hsa-miR-124-3p was reported down-regulated in ALS
patients in five studies (21, 37–40), with only one study finding it
upregulated (41). Despite the caveats to the predictive approach
highlighted above, it is notable that the predicted targets of
this miRNA are CHMP2B, SQSTM1, and SIGMAR1. Hsa-miR-
124-3p has been shown to be deregulated in the spinal cord
and brainstem of SOD1 transgenic mice and has been linked to
astrocyte differentiation and neurogenesis in the mouse brain
(42, 43). Further, hsa-miR-124-3p is found to be expressed
almost exclusively in the brain and spinal cord (44).

Hsa-miR-127-3p was not predicted to target any of the
ALS genes and was found almost consistently down-regulated
in ALS patients (22, 37, 39, 45, 46) with only one study
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reporting its upregulation (41).Whilst little is reported in relation
to ALS, hsa-miR-127-3p has been found deregulated in FTD
patients compared to control groups and Alzheimer’s disease
patients (47). This result is consistent with hsa-miR-127-3p
predominantly being expressed in brain tissue (44).

Hsa-let-7a-5p, most highly expressed in the cerebellum, is
predicted to target ARHGEF28 (Table 1A) (44). Let-7a-5p has
been found downregulated in the plasma of Parkinson’s disease
patients compared to healthy controls, showing it may not be
useful as an ALS specific biomarker (48).

MicroRNAs Unique to the CSF-Spinal
Cord/Nervous Tissue Overlap
The two miRNAs unique to the CSF-spinal cord/nervous tissue
group are hsa-miR-92a-5p/3p and hsa-miR-574-5p/3p. Hsa-
miR-92a-5p/3p’s predicted targets are CHCHD10, TARDBP,
PLEKHG5, and NEFH and hsa-miR-574-5p/3p’s are VAPB and
SIGMAR1. According to a miRNA tissue atlas, both miRNAs
show neither specific tissue specificity nor ubiquitous expression
(44). Despite this, deregulation of these miRNAs in ALS could be
tissue specific.

MicroRNAs Present in all Tissue Sources
Hsa-miR-132-5p/3p, hsa-miR-146a-5p/3p, hsa-miR-28-5p/3p,
and hsa-miR-9-5p/3p were deregulated in all tissue samples
(Figure 1) and are all predicted to target at least one
ALS gene. Hsa-miR-132-3p has been implicated in a range
of neurodegenerative disorders including multiple sclerosis,
Parkinson’s disease and Alzheimer’s disease, demonstrating wider
relevance beyond ALS (49). This is consistent with the miRNA
tissue atlas, where it is primarily expressed in the brain (44).
Downregulation of miR-146a-5p in cortical aberrant astrocytes
has been implicated in motor neuron degeneration in ALS,
whereas its upregulation has been implicated in motor neuron
loss in spinal muscular atrophy (50, 51). No links between
miR-28-5p/3p and ALS have yet been made, consistent with it
being predicted to target just one ALS-associated gene (SETX).
Mutations in TARDBP have been reported to cause deregulation
of miR-9-5p and miR-9-5p/3p has been shown to be upregulated
in mutant SOD1 mice (52, 53). MiR-9-5p has been implicated in
axon extension and branching via targeting of Map1b (54). It is
also predominantly expressed in the brain and spinal cord (44).

CONCLUSIONS

We have shown that miRNAs found deregulated in published
studies investigating ALS patients have limited overlap, likely due
to the wide variation in tissue extraction and miRNA detection
methods. Future emphasis should therefore be on standardizing
tissue extraction and miRNA profiling methods.

However, we identified nine miRNAs repeatedly reported
as deregulated in the 27 studies. Despite these miRNAs
being commonly predicted to target ALS-associated genes, the
randomly selected miRNAs not found deregulated in ALS
patients, showed similar predictions. Therefore, our in silico
analysis provided no clear correlation between deregulated

miRNAs and the collection of ALS-linked genes analyzed. This
indicates that whilst the ability to predict thousands of candidate
genes with in silico methods remains informative, they should
be used with caution and in combination with other methods,
of which experimental functional testing is recommended.
Although limitations of the bioinformatics approachmay explain
our observations, the currently identified ALS-associated genes
may offer a limited view on the pathological pathways altered
during disease progression. It is thus tempting to suggest in silico
analyses are currently underpowered. In the future it would be
interesting to perform this bioinformatics approach using ALS
genes grouped by their relation to specific functional pathways,
for example proteostasis or RNA metabolism.

We have additionally shown the source can influence the
miRNAs detected, since only four deregulated miRNAs appeared
in all tissue sources analyzed. Importantly, we have shown the
four miRNAs reported most frequently deregulated appear in
CSF, spinal cord/nervous tissue and blood/plasma/serum. This
suggests miRNAs may indeed “travel” between CSF and blood,
the latter potentially providing a clinically accessible source
which may mirror ALS pathology in the CNS. We therefore
propose four miRNAs—hsa-miR-124-3p, hsa-miR-127-3p, hsa-
let-7a-5p, and hsa-miR-9-5p—as good candidates for further
study and suggest blood, serum or plasma as a clinically
accessible source.

Overall we have demonstrated the need for a multifaceted
approach, utilizing patient data, bioinformatics, but most
critically, experimental follow-up, to resolve the true biological
significance of these implicated miRNAs and determine the real
disease culprits of ALS.

Note Added After Submission
Whilst this manuscript was under review, Yao et al. (55)
identified SQSTM1 as a target of miR-124-3p. Notably
our analysis had indicated that hsa-miR-124-3p, present
in the CSF-spinal cord/nervous tissue overlap (Figure 1),
was one of the most frequently reported deregulated
miRNAs (6/27 studies) and was predicted to target
SQSTM1 (Table 1A).
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Amyotrophic lateral sclerosis (ALS) is an incurable and progressively fatal
neurodegenerative disease that manifests with distinct clinical phenotypes, which are
seen in neuroimaging, and clinical studies. T2- and proton density (PD)-weighted
magnetic resonance imaging (MRI) displays hyperintense signal along the corticospinal
tract (CST) in some ALS patients with upper motor neuron (UMN)-predominant
signs. These patients tend to be younger and have significantly faster disease
progression. We hypothesize that such ALS patients with CST hyperintensity (ALS-
CST+) comprise a clinical subtype distinct from other ALS subtypes, namely patients
with UMN-predominant ALS without CST hyperintensity, classic ALS, and ALS with
frontotemporal dementia (FTD). Novel approaches such as fractal dimension analysis
on conventional MRI (cMRI) and advanced MR techniques such as diffusion tensor
imaging (DTI) reveal significant differences between ALS-CST+ and the aforementioned
ALS subtypes. Our unbiased neuroimaging studies demonstrate that the ALS-CST+
group, which can be initially identified by T2-, PD-, and FLAIR-weighted cMRI,
is distinctive and distinguishable from other ALS subtypes with possible differences
in disease pathogenesis.

Keywords: MRI, UMN-predominant ALS, corticospinal tract hyperintensity, diffusion tensor imaging,
micropathologic differences, fractal dimension, ALS phenotypes

INTRODUCTION

Etiology and site of origin of amyotrophic lateral sclerosis (ALS) within the central nervous
system (CNS) are unknown (Mitsumoto et al., 1998). ALS diagnosis is based on motor neuron
degeneration in both the CNS and peripheral nervous system (PNS), which include the upper
motor neuron (UMN) and lower motor neuron (LMN), respectively. However, whether ALS begins
in the CNS (Eisen et al., 1992) or PNS (Chou and Norris, 1993) is debated. Even if we consider a
CNS origin, precisely where degeneration begins along the UMN pathway is unknown, as it can be
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anywhere along its rostrocaudal extent. If pathology originates
in the corticomotoneuron within the cerebral cortex it would be
considered a “neuronopathy”; if it originates somewhere along
the axon in motor tracts (e.g., corticospinal and corticobulbar)
within the subcortical white matter or spinal cord, it would
be considered an “axonopathy.” If ALS is an axonopathy,
degeneration would begin distal to the neuronal cell body, and
proceed retrogradely to affect it later; if it is a neuronopathy, the
neuronal cell body would be affected first with subsequent loss of
the entire axon because of wallerian degeneration.

In previous studies, we have evaluated brain MRI changes
in patients with ALS based on their clinical phenotype and
extent of UMN or cognitive impairment, including in those
with UMN-predominant ALS, classic ALS [expressing relatively
equal amounts of UMN and lower motor neuron (LMN)
dysfunction], or ALS with frontotemporal dementia (ALS-FTD).
Although an ALS diagnosis relies on the clinical presence of
both UMN and LMN signs, a proportion of patients with
ALS present with evidence of only UMN abnormalities and
develop LMN signs later. A hyperintense signal is visible along
both corticospinal tracts (CST’s) on conventional T2-, proton
density (PD)-, and FLAIR- weighted MRI in some patients
with predominant or exclusive UMN signs (Mitsumoto et al.,
1998), while others do not (Matte and Pioro, 2010), even
though both patient groups have comparable degrees of clinical
UMN dysfunction. A review of the literature revealed 17–67%
(median 40%) of ALS patients with CST hyperintensity (Pioro,
2006), while a preliminary analysis at the Cleveland Clinic
found this change in ∼30% of ALS patients (Matte and Pioro,
2010). Although the precise cause of CST hyperintensities is
unknown, an early radiologic-histopathologic study showed
demyelination and wallerian degeneration in fibers of the
tract (Yagishita et al., 1994). Even though ALS is primarily
a motor neuron disorder, previous studies (Abrahams et al.,
1996, 2005; Chang et al., 2005; Mezzapesa et al., 2007; Sage
et al., 2007) have demonstrated involvement of extramotor
regions subserving cognition and behavior, especially in ALS
patients with dementia. Unlike Alzheimer’s dementia, cognitive
impairment in ALS patients with dementia predominantly
affects frontotemporal regions of the brain and is termed
frontotemporal dementia (FTD).

Unlike LMN abnormalities, which can be identified by
routinely used electromyography (EMG), even if such signs are
subclinical, objectively identifying UMN abnormalities (Brooks
et al., 2000) is more challenging. Techniques applied to assess
the latter such as transcranial magnetic stimulation and proton
magnetic resonance spectroscopy are more labor intensive, and
primarily used in research settings (Kaufmann et al., 2004).
The neurologic examination remains the gold standard for
detecting UMN abnormalities, but this is relatively subjective
and dependent on the skill and acumen of the clinician. If in
contrast, LMN changes like muscle atrophy, hypotonia, and
hyporeflexia are very prominent, coexistent UMN signs can be
masked, making diagnosis of ALS very difficult. Therefore, we
evaluated conventional neuroimaging techniques used during
routine clinical evaluation to provide non-invasive objective
measures of UMN involvement.

The focus of this review is to summarize our previously
published findings of how non-biased conventional MRI
sequences acquired at 1.5T have identified differences between
ALS patients with specific clinical phenotypes. Our goal was to
demonstrate the utility of widely accessible routine clinical MRI
in revealing unique macropathologic differences in vivo between
such ALS patient groups and possibly to gain insights into disease
pathogenesis and progression.

PATIENT DATA CONSIDERED

Groups of individuals evaluated by conventional clinical
T2/PD/FLAIR-weighted MRI included: (1) UMN-predominant
ALS patients with CST hyperintensity (ALS-CST+), (2) UMN-
predominant ALS patients without CST hyperintensity
(ALS-CST−), (3) patients with classic ALS (ALS-Cl), and
(4) ALS patients with frontotemporal dementia (ALS-FTD),
and (5) neurological controls. UMN-predominant ALS patients
were defined as those with LMN signs that were either
absent, or if present, were restricted to only one neuraxial
level (bulbar, cervical, or lumbosacral) at time of MRI.
UMN-predominant patients with CST hyperintensity were
those in whom hyperintense signal was observed along the
CST bilaterally in T2-, FLAIR-, and especially PD-weighted
images. Patients with ALS-FTD displayed cognitive or
behavioral impairment during clinical evaluation, as assessed
by EP Pioro, including disturbances of language, executive
function and impulse control. Such patients underwent
bedside evaluation, including MoCA testing, extensive formal
neuropsychometric testing by an experienced neuropsychologist,
and usually both.

MRI STUDIES

After identifying CST hyperintensity on T2-, FLAIR-, and
PD-weighted sequences in several ALS patients with UMN-
predominant phenotype, we were puzzled when we observed
other patients, relatively indistinguishable at initial clinical
evaluation, who did not have CST hyperintensity. Since diffusion
tensor imaging (DTI) could provide more insight with its diverse
metrics (which are based on diffusion of water molecules),
we studied the DTI metrics: fractional anisotropy (FA), axial
diffusivity (AD), radial diffusivity (RD), and mean diffusivity
(MD) along the CST in ALS patients of ALS-CST+ and ALS-
CST− groups, compared to neurologic controls (Rajagopalan
et al., 2011). Four levels along the rostrocaudal extent of the CST
(identified by diffusion tensor tractographic reconstruction) in
the white matter (WM) were examined: (1) subjacent to primary
motor cortex (subPMC), (2) centrum semiovale at top of lateral
ventricle (CSoLV), (3) posterior limb of internal capsule (IC), and
(4) cerebral peduncle (CP), as shown in Figure 1. This allowed
us to determine in our UMN-predominant ALS patients the
level(s) where abnormalities in DTI metrics occur along the CST.
Furthermore, it enabled us to determine whether quantitative
differences exist corresponding to the qualitative presence or
absence of CST hyperintensity.
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FIGURE 1 | Sagittal view of control subject brain with superimposed FA color
map showing tractography-derived virtual CST fibers between subjacent to
primary motor cortex (subPMC) rostrally and cerebral peduncle (CP) caudally.
DTI metrics are also obtained at two intervening CST levels, including centrum
semiovale at top of lateral ventricle (CSoLV) and posterior limb of the internal
capsule (IC). cc corpus callosum.

Volumetric Studies in ALS-CST+ and
ALS-CST− Patients
Our gray matter voxel based morphometry study (Rajagopalan
and Pioro, 2014) revealed no significant difference in gray
matter (GM) volume between ALS-CST+ and ALS-CST− groups
in any brain region. Also, our brain parenchymal fraction
(which includes GM and WM volume) study (Rajagopalan
and Pioro, 2015) failed to reveal any significant difference in
brain parenchymal fraction values between ALS-CST+ and ALS-
CST− groups.

DTI Metrics Distinguish Between
ALS-CST+ and Other ALS Patient
Groups
Fractional anisotropy values were reduced in both ALS-CST+
and ALS-CST− groups when compared to controls. On the other
hand, the AD and RD metrics showed significant differences
at the internal capsule level only between controls and the
ALS-CST+ group but not in the ALS-CST− group. It is in
the posterior limb of the IC that hyperintensity is usually
reported in the ALS literature (Yagishita et al., 1994; Ellis
et al., 1999; Toosy et al., 2003; Pioro, 2006). Considering
that AD and RD metrics reflect axonal and myelin integrity
(Beaulieu, 2009), their abnormality in the ALS-CST+ group but
not the ALS-CST− group suggests micropathologic differences
along the CST. These results suggest that ALS patients with
CST hyperintensity probably have different underling pathology
from those who do not, which could arise from differing
pathogenic mechanisms.

We further investigated whether neuroimaging, and
specifically DTI metrics along the CST could objectively
differentiate the ALS-CST+ group from the other ALS subtypes
and neurologic controls (Rajagopalan et al., 2013b). In this study,
we found that FA and AD values were lowest in the ALS-CST+

FIGURE 2 | Fractional anisotropy (FA) values at four CST levels in left (A) and
right (B) hemispheres of ALS patients compared to controls showing
significant differences as ∗P < 0.05. CP, cerebral peduncle; IC, posterior limb
of internal capsule; CSoLV, centrum semiovale at top of lateral ventricle;
subPMC, subjacent to primary motor cortex. Reproduced with permission
from Springer Nature.

group when compared to controls and also when compared to
the other ALS groups at rostral CST levels. When considering
the CST separately in each hemisphere, significant FA differences
were observed between controls and both ALS-CST+, and ALS-
CST− groups (Figure 2). These findings, as well as significant
differences in AD values between controls and patients in the
ALS-CST+ group (but not between neurologic controls and
those in ALS-CST− group) suggest differing micropathologies
in the subcortical axons of the various ALS patient groups
(Figure 3). Furthermore, AD, MD, and RD measures were
significantly different between the ALS groups, distinguishing
these values at IC and CSoLV levels of CST between patients in
ALS-CST+ and ALS-FTD groups (Figures 3–5).

Diffusion Tensor Tractography Reveals
Motor Fiber-Specific Truncation
The above studies demonstrated distinct pathological changes
in regions of interest (ROIs) along the CST in the ALS-CST+
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FIGURE 3 | AD values at four CST levels in left (A) and right (B) hemispheres
of ALS patients compared to controls showing significant differences as
∗P < 0.05. CP, cerebral peduncle; IC, posterior limb of internal capsule;
CSoLV, centrum semiovale at top of lateral ventricle; subPMC, subjacent to
primary motor cortex. Reproduced with permission from Springer Nature.

group compared to other ALS groups and neurologic controls.
However, the ROI approach is limited because of operator bias
where voxels are placed, and evaluation of the CST only where
voxels are placed, rather than along its entire length. In order
to more accurately and objectively identify areas along the
tract’s entire length, we used diffusion tensor tractography (DTT)
to reconstruct a “virtual” CST (Rajagopalan and Pioro, 2017).
DTT identified virtual CST fibers between the CP and just
beneath (Sub) the primary motor cortex (PMC) in ALS-
CST+ patients, ALS-CST− patients, and neurologic controls.
Surprisingly, we observed partial absence of virtual CST fibers in
both groups of ALS patients but not in any controls. Specifically,
these fibers were absent (“truncated”) at the SubPMC level,
which is between the PMC and CSoLV levels in several patients
of both ALS-CST+ and ALS-CST− groups, as shown from
a representative patient in Figure 6. Of note, no truncation
was observed in any of the neurologic control subjects. CST
truncation occurred primarily in ALS-CST+ patients (9 of 21,
42.8%) and less frequently in ALS-CST− patients (4 of 24,

FIGURE 4 | Mean diffusivity (MD) values at four CST levels in left (A) and right
(B) hemispheres of ALS patients compared to controls showing significant
differences as ∗P < 0.05. CP, cerebral peduncle; IC, posterior limb of internal
capsule; CSoLV, centrum semiovale at top of lateral ventricle; subPMC,
subjacent to primary motor cortex. Reproduced with permission from
Springer Nature.

16.6%; P = 0.049). Further, the frequency of virtual CST
truncation was significantly (P = 0.018) higher in all ALS
patients (both ALS-CST+ and ALS-CST− groups combined)
than in the control group. To determine if this truncation
was specific to descending motor fibers, we identified virtual
non-motor fiber tracts connecting the primary sensory cortex
(PSC) and subcortical white matter. Because most of these
sensory fibers are afferents to the PSC, they should generally
be unaffected by corticomotoneuron degeneration. In fact,
truncation of such virtual non-motor (sensory) tracts occurred
in only one subject from each of the ALS patient groups: 1
of 21 (4.7%) in ALS-CST+, and 1 of 24 (4.1%) in ALS-CST−
groups. Our DTT findings of subcortical truncation of essentially
only virtual motor (and not sensory) fibers, as shown from
a representative patient in Figure 6, suggest microanatomic
specificity of the underlying pathophysiologic process. This is
in keeping with the notion that the sensory system remains
relatively unaffected in ALS with the minority of patients
reporting sensory symptoms.
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FIGURE 5 | Radial diffusivity (RD) values at four CST levels in right (A) and left
(B) hemispheres of ALS patients compared to controls showing significant
differences as ∗P < 0.05. CP, cerebral peduncle; IC, posterior limb of internal
capsule; CSoLV, centrum semiovale at top of lateral ventricle; subPMC,
subjacent to primary motor cortex. Reproduced with permission from
Springer Nature.

Importantly, the truncation of motor fibers more frequently
in one ALS phenotype than another, no truncation in neurologic
controls, and differential involvement of motor but not sensory

fibers all suggest that virtual CST truncation is and disease- and
fiber-type specific. Therefore, these results further support unique
pathologies along the CST in these two UMN-predominant
ALS patient groups.

Disease Progression Rates Differ in
Patients of ALS-CST+ and ALS-CST−
Groups
Differences in the DTT findings between the two groups are
supplemented by clinical observations of significantly shorter
duration of symptoms prior to MRI in the ALS-CST+ group
(9.6 ± 5.5 months, mean ± SD) compared to ALS-CST−
group (36.4 ± 44.2 months, P < 0.001), as previously reported
(Rajagopalan and Pioro, 2017; Table 1). The shorter disease
duration in patients of the ALS-CST+ group compared to those
of the ALS-CST− group translated into much faster disease
progression in the former patients, even though both groups had
essentially identical motor function scores of the revised ALS
functional rating scale (ALSFRS-R) at time of MRI (34.6 ± 7.8,
mean ± SD, vs. 34.1 ± 8.1, respectively). The monthly decline in
ALSFRS-R (1FS) was three time higher in the ALS-CST+ group
(1.38 ± 1.64, mean ± SD) compared to the ALS-CST− group
(0.46± 0.43; P = 0.001), indicating a significantly faster decline of
motor function in the former group of patients. Of note, duration
of disease in the ALS-CST− group averaged 3 years prior to
MRI (36.4 ± 44.2 months, mean ± SD), reflecting their slow
progression, and was over 48 months in a one-third of them. This
suggests that some of these slowest progressing patients without
CST hyperintensity may have, in fact, represented a group with
primary lateral sclerosis (PLS) (Gordon et al., 2006).

Fractal Dimension Analyses Reveal ALS
Group Differences in White Matter
Complexity
At a microscopic level, ALS pathology includes axonal swelling
with neurofilament accumulation, dendritic attenuation, and
wallerian degeneration of axons (Cluskey and Ramsden,
2001). Evidence of such micropathology, including axon
degeneration and demyelination can be detected at a
macroscopic level in vivo by certain MRI techniques (Metwalli
et al., 2010). Neuronal degeneration with resultant loss of

FIGURE 6 | Truncated virtual CST fibers arising from primary motor cortex (red, arrowheads) are contrasted with intact sensory fibers projecting to/from primary
sensory cortex (yellow, arrows) in an UMN-predominant ALS patient with faster disease progression rate. Virtual tracts are projected on a coronal b0 image (a), and
on sagittal images of left (b), and right (c) hemispheres. cc, corpus callosum. Reproduced with permission from Elsevier.

Frontiers in Neuroscience | www.frontiersin.org 5 July 2019 | Volume 13 | Article 704325

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00704 July 11, 2019 Time: 17:37 # 6

Rajagopalan and Pioro MRI-Micropathologic Differences in ALS Phenotypes

TABLE 1 | Clinical parameters of ALS patients.

Clinical measure/ALS ALS-CST+ ALS-CST−

subgroups Mean ± SD Mean ± SD P

n 21 24 NS

Age 52.3 ± 11.4 59.5 ± 12.1 < 0.05

Symptom duration prior to 9.6 ± 5.5 36.4 ± 44.2 < 0.001

MRI (months)

ALSFRS-R score 34.6 ± 7.8 34.1 ± 8.1 NS

Disease progression rate 1.38 ± 1.64 0.46 ± 0.43 0.001

Key: SD, standard deviation. ALS-CST+, ALS patients with predominant upper
motor neuron (UMN) signs and hyperintense signal along the corticospinal tract
(CST) on conventional proton density (PD) and T2-weighted images and no clinical
dementia. ALS-CST−, ALS patients with predominant UMN signs without CST
hyperintensity and no clinical dementia (ALS-CST−). ALSFRS-R, ALS functional
rating score-revised. NS, not significant.

dendrites and axons has been shown to reduce complexity of
subcortical WM structure. Therefore, measuring WM structural
complexity may reveal the effects of neuronal degeneration
occurring in ALS.

Fractals are geometry objects that are self-similar at different
scales, and were first proposed by Mandelbrot. The fractal
dimension (FD) is a non-integer number that characterizes the
morphometric variability of a complex and irregular shape. FD
analysis can quantitatively measure the internal shape complexity
of brain WM from MRI by characterizing multifractal behavior of
different textures instead of using only pixel intensity values (Liu
et al., 2003). Higher FD values reflect more WM complexity, as
would be expected in healthy states, whereas lower values result
with aging, and when WM becomes diseased more amorphous.
In a study of patients with multiple sclerosis, reduced brain WM
FD values were proposed to represent a more amorphous tissue
state resulting from inflammation, decreased myelin content, and
increased water content (Esteban et al., 2007).

We used FD analysis to evaluate WM structural degeneration
in each of the four ALS patient groups: ALS-CST+, ALS-
CST−, ALS-Cl, and ALS-FTD. In this study (Rajagopalan
et al., 2013a), we estimated three quantitative measureable
WM features using FD shape representations, including
WM skeleton, GM/WM surface structure, and WM general
structure. The skeleton captures the central line of the WM
structure, which preserves the topological and geometric
information of the WM, and represents its interior structure
complexity. The surface structure comprised of voxels at
the gray matter (GM)-WM interface, represents the shape
of gyral and sulcal convolutions over the cortical surface.
Finally, FD of general structure incorporates all WM voxels,
including those at the GM/WM interface and skeleton in
segmented images, and thereby represents brain volume.
Because FD measures of skeleton, surface structure, and
general structure represent different components of WM, they
provided novel information about ALS-induced changes in
brain WM structure and shape. General structure and skeleton
FD values were significantly different between ALS-CST+
and ALS-FTD groups. Whole brain skeleton (P = 0.001)
and general structure (P = 0.02) were significantly higher in
ALS-CST+ patients compared to ALS-FTD patients, as shown
in Figure 7. Although not significant, whole brain skeleton
FD values in ALS-CST+ group patients trended higher than
those in ALS-CST− (P = 0.10) and ALS-Cl (P = 0.10) groups.
However, neurologic controls and ALS patients revealed no
significant differences in FD values. These results indicate
that shape complexity in the ALS-CST+ patient group was
significantly greater than in the ALS-FTD group, and trended
higher than in the other two patient subtypes. Although
the significance of this higher FD in ALS-CST+ patients is
unclear, it is likely related to differences in integrity of axons,
myelin, and other changes within the neuropil, including
inflammatory processes.

FIGURE 7 | Between group comparisons show significant differences in fractal dimension values of skeleton-whole brain (A), skeleton right hemisphere (B), and
general structure whole brain (C). Uncorrected means are represented as dashed lines and corrected means (mixed model) and standard error of the mean are
shown as solid lines. Data for mixed models with gender, age as covariates are shown in blue or with gender, age, and ALSFRS-R as covariates are in green.
Corrected mean comparisons between groups are performed using the Tukey multiple comparison method. †p < 0.1,∗p < 0.05, ∗∗p < 0.001. Reproduced with
permission from PlosOne.
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Clinical Differences Between Patients in
ALS-CST+ and Other Groups
Patients in the ALS-CST+ group were younger when compared
to those in the ALS-CST− group (P < 0.05) (Table 1). In
contrast, patients with ALS-FTD were significantly older than
ALS-CST+ patients and neurologic controls. ALS-CST+ group
revealed significantly shorter symptom duration compared to
those in ALS-CST− (p < 0.001) and ALS-FTD groups (p < 0.05),
indicating earlier neurologic evaluation after symptom onset.
Also, disease progression rate was significantly faster in ALS-
CST+ patients than in ALS-CST−, ALS-Cl, and ALS-FTD
groups, as had been observed in a preliminary study of another
group of ALS patients (Matte and Pioro, 2010). The revised
ALSFRS-R score, which is a validated measure of physical
function in ALS (Cedarbaum et al., 1999), was significantly
lower (worse) in ALS-FTD patients compared to the ALS-Cl
patients but essentially identical in ALS-CST+ and ALS-CST−
patients at time of MRI.

CONCLUSION

The aforementioned brain MRI studies uniformly revealed
objective differences in patients with the various ALS subtypes:
UMN-predominant ALS with CST hyperintensity (ALS-CST+),
UMN-predominant ALS without CST hyperintensity (ALS-
CST−), classic ALS (ALS-Cl), and ALS with FTD (ALS-FTD).

Specifically, patients in the ALS-CST+ group show distinctive
and distinguishable changes from the others, including patients
in the ALS-CST− group, which appear phenotypically similar,
at least in relation to extent of UMN dysfunction. Coupled with
the patients’ distinct clinical characteristics, these neuroimaging
abnormalities strongly suggest that CST hyperintensity, as
revealed by conventional MRI (cMRI) T2/PD, and FLAIR
sequences used during routine clinical evaluation, is not
artefactual or non-specific but identifies a unique ALS patient
group. We hypothesize that ALS-CST+ patients comprise a distinct
phenotype from ALS-CST−, ALS-Cl, and ALS-FTD with unique
micropathology of the CST and potentially important differences
in ALS pathogenesis. Prescreening ALS patients for the presence
of CST hyperintensity may be useful when enrolling or stratifying
into clinical trials.
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Post-polio syndrome (PPS) is a neurological condition that affects polio survivors decades

after their initial infection. Despite its high prevalence, the etiology of PPS remains elusive,

mechanisms of progression are poorly understood, and the condition is notoriously

under-researched. While motor dysfunction is a hallmark feature of the condition,

generalized fatigue, sleep disturbance, decreased endurance, neuropsychological

deficits, sensory symptoms, and chronic pain are also often reported and have

considerable quality of life implications in PPS. The non-motor aspects of PPS are

particularly challenging to evaluate, quantify, and treat. Generalized fatigue is one of the

most distressing symptoms of PPS and is likely to be multifactorial due to weight-gain,

respiratory compromise, poor sleep, and polypharmacy. No validated diagnostic,

monitoring, or prognostic markers have been developed in PPS to date and the mainstay

of therapy centers on symptomatic relief and individualized rehabilitation strategies such

as energy conservation and muscle strengthening exercise regimes. Despite a number

of large clinical trials in PPS, no effective disease-modifying pharmacological treatments

are currently available.

Keywords: postpolio syndrome, PPS, polio, poliomyelitis, neuroimaging, biomarker, clinical trials, motor

neuron disease

INTRODUCTION

Poliomyelitis was one of the most acutely debilitating infections of the twentieth century that
affected millions in the 1940 and 1950s and more recently in India during an outbreak in 1988
(1). Following the introduction of the polio vaccine in the mid-1950s and early 1960s, there has
been a dramatic decline in the number of new polio cases and it is estimated to be 99% eradicated
today. Despite the enormous progress in the eradication of the polio virus, 15–20 million people
across the world still suffer from the sequelae of the infection (2). A large proportion of polio
survivors has been presenting with a constellation of new neurological symptoms that has been
described as Post-Polio Syndrome (PPS). The description of PPS is attributed to Jean-Martin
Charcot in 1875 but was only widely recognized by the medical community in the early 1980s
(3). PPS is characterized by new neurological deficits after a long period of neurological stability,
typically at least 15 years after the initial polio infection. PPS may manifest as new, persistent, and
progressive muscle weakness, atrophy, limb fatigability, myalgia, arthralgia, and dysphagia, but also
as generalized fatigue, which typically has a considerable impact on the patients’ quality of life. The
estimates of the percentage of polio patients affected by PPS are inconsistent, varying between 20
and 85% (4, 5) depending on the diagnostic criteria applied (2). As a result, despite the rarity of
acute polio infection in the modern world, PPS is likely to persist for the next few decades. Despite
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its prevalence, post-polio syndrome remains surprisingly under-
researched and poorly characterized. The purpose of this review
is to provide a comprehensive overview of the aetiological,
genetic, diagnostic, prognostic factors, and treatment modalities
in PPS while highlighting key gaps that require further research.

METHODS

A literature search was performed on PubMed using the
search term “post-polio syndrome,” “postpolio syndrome”
or “post-polio syndrome” alone and in combination with
“epidemiology,” “pathophysiology,” “clinical features,” “fatigue,”
“neurophysiology,” “brain imaging,” “electromyography,”
“inflammation,” “diagnosis,” “management,” “clinical trial,”
“longitudinal,” “cross-sectional,” “case report,” “autopsy,” and
“post mortem.” Only articles written in English and published
between January 1980 and May 2019 were selected for literature
review. Identified publications were categorized into “academic”
papers discussing pathophysiology, genetic susceptibility,
biology, and “clinical” papers focusing on diagnostic criteria,
management, rehabilitation, and clinical trials.

Abbreviations: 101-PNR, 101- point numeric rating; 10MWT, 10-meter walk

test; 2MWT, 2-minute walk test; 6MWT, 6-minute walk test; ALS, Amyotrophic

lateral sclerosis; BDI, Beck depression inventory; BiPAP, Bilevel positive

airway pressure; CAS, cytokine analysis study; CBT, Cognitive behavioral

therapy; CK, Creatine kinase; CMAP, Compound muscle action potential;

CMV, Controlled mechanical ventilation; CSE, Clinical study extension; CSF,

Cerebrospinal fluid; CSF-MC, cerebrospinal fluid mononuclear cells; ELISA,

Enzyme-linked immunosorbent assay; EMG, Electromyography; ESS, Epworth

sleepiness scale; FIS, Fatigue impact scale; FSS, Fatigue severity scale; FVC,

forced vital capacity; HDsEMG, High density surface electromyography; HHD,

hand-held dynamometry; IASP, International Association for the Study of Pain;

IBM-FRS, Inclusion body myositis functional rating scale; IPAP, inspiratory

positive airway pressure; KAFO, Knee ankle foot orthosis; LIC, lung insufflation

capacity; LVR, Lung volume recruitment; MAF, Multidimensional assessment of

fatigue; MD, Myotonic dystrophy; MEP, Maximal expiratory pressure; MFI-20,

Multidimensional functional inventory; MFM scale, Motor function measurement

scale; MIP, Maximal inspiratory pressure; MMPI, Minnesota multiphasic

personality inventory; MRC, Medical Research Council Scale for muscle strength;

MRI, Magnetic resonance imaging; MRS, Magnetic resonance spectroscopy;

MUAP, Motor unit action potential; MV, Minute ventilation; MVA, Maximal

voluntary activation; MVC, Maximal voluntary contraction; MVIC, Maximal

isometric voluntary contraction; NHP, Nottingham health profile; NIPPV, Nasal

intermittent positive pressure ventilation; NIV, Non-invasive ventilation; OSA,

Obstructive sleep apnea; PASE, Physical activity of the elderly; PBMC, peripheral

bloodmononuclear cells; PCF, unassisted peak cough flow; PFS, Piper fatigue scale;

PFT, Pulmonary function test; PLMS, Periodic limb movements of sleep; PPL,

Polio problem list; PPS, Post-polio syndrome; PV, Polio virus; qMRI, quantitative

magnetic resonance imaging; QMT, Quantitative motor test; rCT, randomized

controlled trial; RDBPC, Randomized double-blind placebo controlled; REE,

resting energy expenditure; RLS, Restless leg syndrome; RNA, Ribonucleic acid;

RQ, respiratory quotient; RR, respiratory rate; RT-PCR, Reverse transcription

polymerase chain reaction; rTMS, Repetitive transcranial magnetic stimulation;

S-SFEMG, Single fiber electromyography stimulation; SF-36, 36-item short form

survey; SFEMG, Single fiber electromyography; SFQ, Short fatigue questionnaire;

SIP, Sickness impact profile; SIPP, Self-reported impairments in persons with

late effects of polio; SMN gene, Survival motor neuron gene; SNIP, Sniff nasal

inspiratory pressure; SSS test, Sit-stand-sit test; tDCS, Transcranial direct current

stimulation; TQNE, Turf ’s quantitative neuromuscular examination; TUG test,

Timed-Up-and-Go test; UW-SES, University of Washington self-efficacy scale;

VAS, Visual analog scale; VAS-F, Visual analog scale for fatigue; VCO2, carbon

dioxide production; VO2, oxygen consumption; WBV, Whole body vibration;

WHOQOL-BREF, World Health Organization quality of life abbreviated scale.

RESULTS

Pathophysiology
During the acute poliomyelitis infection, 95% of those infected

remain asymptomatic or only suffer flu-like symptoms while

the remaining 5% succumb to the paralytic form of the disease.

Acute poliomyelitis is typically spinal, affecting the limbs and

respiratory musculature, but bulbar manifestations affecting

speech and swallow are also well-documented. Polioenterovirus

type 1 is the main cause of meningeal, spinal cord and
brain inflammation as it can cross the blood-brain barrier
independently from poliovirus receptors (6, 7). Ensuing anterior
horn degeneration, and apoptosis post infection has been widely
recognized as the hallmark feature of paralytic poliomyelitis.
Following the acute phase, axonal sprouting takes place
reinnervating the muscle of the affected regions (8, 9). Motor
units gradually become abnormally enlarged, up to 7-fold their
original size (10) rendering them metabolically unsustainable
(11). This process can take up to three decades from the
acute infection to the development of PPS symptoms (12). The
concomitant denervation-reinnervation process is evidenced by
electromyography (EMG) findings (13–17) and muscle histology
showing small angulated fibers (18, 19) and muscle fiber type-
grouping (15). Metabolic stress (11, 20), overuse (21, 22),
physiological aging (20, 23), and persistent inflammation (24)
are also thought to contribute to gradual motor unit failure.
Motor units loss has been consistently correlated to functional
decline in longitudinal studies (13, 14, 25, 26). Overuse of
functioning muscle units is thought to induce detrimental
structural alterations (27, 28). Cellular adaptation in the muscles,
such as fiber alteration from type II (fast) to type I (slow)
(28), changes in contractile properties (29–31), and muscle
hypertrophy (9) are likely to contribute to muscular fatigue and
myalgia in PPS. The persistence or reactivation of polio virus in
polio survivors has also been suggested with conflicting reports.
Two research studies (7, 32) have identified polio-virus (PV)
genomic sequences in the CSF and peripheral leucocytes as well
as high serum IgM anti-PV antibody titres, which were absent
in stable polio survivors and in other neurodegenerative groups
(33). Other studies however could not confirm these findings
(34). An inflammatory or autoimmune basis to post-polio
syndrome has also been proposed. This hypothesis originates
from post mortem observations of inflammatory changes in the
spinal cord of PPS patients (35, 36). The role of inflammation
is also supported by in vivo evidence. Increased serum and
CSF levels of pro-inflammatory cytokines and peptides such
as TNF-α, IFN-γ were repeatedly observed in PPS (37–39).
Furthermore, TNF-α and IFN-γ levels respond to IVIg therapy
in PPS, and remain unchanged in controls (37, 38, 40). However,
no correlations have been detected between symptom severity
(38), rate of decline (37), and pro-inflammatory peptide levels.
Skeletal muscle biopsies also exhibit inflammatory changes and
increased expression of prostaglandin E2 synthetic pathway
enzymes (41). Relatively limited evidence exists to support the
autoimmune basis of PPS. One study identified high titres of
PV antibodies concurrently with high levels of regulatory T cells
(42), while another study (43) found normal levels of immune
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complexes in PPS patients. No specific anti-muscle or anti-
neuronal autoantibodies have been associated with PPS (44).
A genetic predisposition for PPS has also been investigated,
but no conclusive risk profile has been identified to date. SMN
gene deletion (45, 46) associated with spinal muscular atrophy
(SMA) was not reported in PPS, but Fc-gamma receptor IIIA
polymorphisms may play a role in the predisposition to PPS (47).

Neuropathology and Neuroimaging
Post-mortem studies are conflicting with regards to cerebral
involvement in post-polio syndrome. Post-mortem studies (48)
from 50 to 70 years ago suggest that polio virus preferentially
affects the reticular formation, posterior hypothalamus,
thalamus, putamen, caudate, locus co-eruleus, and substantia
nigra which may account for the late-onset fatigue and attention
deficit (49–52). Interestingly, cortical involvement is relatively
selective and preferentially involves the precentral gyrus and pre-
motor areas. A more recent case report (53) and a retrospective
analysis of formalin-fixed central nervous system (CNS) tissue of
a small cohort of patients (33) arrived at a different conclusion.
They identified no cerebral involvement at all, but selective
spinal cord pathology affecting the anterior roots with dorsal
root sparing. These studies detected enterovirus RNA in spinal
cord only. There have also been rare reports of polio patients
developing ALS with characteristic histopathological findings
(54, 55). Compared to other motor neuron diseases (56), there is
a striking paucity of brain (57) and spinal cord imaging studies
in PPS (58). Magnetic resonance imaging (MRI) has been used
to evaluate volumetric changes (59) and to correlate anatomical
changes to post mortem findings (48). The main focus of existing
brain imaging studies in PPS was to explore the substrate of
fatigue. Multiple hyperintensities were identified in the reticular
formation, putamen and medial lemniscus in the majority of
PPS patients (48) which is consistent with previous post mortem
studies (49–52). A large study of 118 participants compared the
brain volume profile of 42 PPS patients, 49 multiple sclerosis
patients and 27 controls, and no statistically significant volume
reductions were identified in PPS (59). No association was
identified between fatigue and brain volumes. The majority
of existing studies are cross-sectional which provide limited
insights into progressive longitudinal alterations (60). There
is an ongoing longitudinal, case-control study to characterize
spinal cord alterations in PPS (61).

Diagnosis
Post-polio syndrome is a clinical diagnosis, supported by
electrophysiological findings and possible mimics need to
be reassuringly ruled out. An extensive work-up including
laboratory tests, imaging studies, cerebrospinal fluid sampling,
detailed electrophysiological evaluation, andmuscle biopsiesmay
be required to exclude alternative diagnoses. The diagnostic
criteria for PPS was first proposed by Halstead in 1991 (62) and
evolved over time to the current March of Dimes diagnostic
criteria (63, 64) which include:

1. Prior paralytic poliomyelitis with evidence of motor neuron
loss, as confirmed by history of the acute paralytic illness, signs

of residual weakness and muscle atrophy on examination, or
signs of denervation on EMG.

2. A period of partial or complete functional recovery after acute
paralytic poliomyelitis, followed by an interval (usually 15
years or more) of stable neuromuscular function.

3. Gradual onset (rarely abrupt) progressive and persistent new
muscle weakness or abnormal muscle fatigability (decreased
endurance), with or without generalized fatigue, muscle
atrophy, or muscle and joint pain. Onset may at times follow
trauma, surgery, or a period of inactivity. Less commonly,
bulbar dysfunction or respiratory weakness occurs.

4. Symptoms that persist for at least a year.
5. Exclusion of alternative neuromuscular, medical, and

orthopedic problems as causes of symptoms.

PCR amplification of poliovirus RNA in the CSF is indicative of
prior history of poliomyelitis (6, 7, 32) and the presence of pro-
inflammatory cytokines may also be detected (39, 65). Proteomic
CSF markers such as gelsolin, hemopexin, peptidylglycine
alpha-amidating monooxygenase, glutathione synthetase, and
kallikrein 6 have been proposed as diagnostic markers but
supporting evidence from larger studies is lacking (4). On
muscle biopsy, hypertrophic muscle fibers type I (66, 67),
indicative of compensatory reinnervation and small angulated
fibers, indicative of active denervation (19) may be observed.
CSF sampling and muscle biopsy also allows the exclusion
of other neuromuscular mimics. People with PPS typically
undergo detailed spinal imaging to rule out alternative structural,
neoplastic, compressive, or inflammatory spinal etiologies which
could manifest in lower motor neuron dysfunction (58, 68–
70). Electromyography (EMG) is an invaluable tool to assess
suspected post-polio cases, as it allows the confirmation of a prior
history of poliomyelitis while excluding differential diagnoses
(71). A variety of EMG techniques have been used in post-
polio research studies including single fiber EMG (SFEMG),
high density surface EMG (HDsEMG) (72), and macro-EMG.
Ongoing denervation can be detected on conventional EMG
by the presence of fibrillation and fasciculation potentials and
increased jitter on SFEMG in newly weakened muscles (73).
Needle EMG can also readily detect sub-clinically affected
muscles in PPS (74). EMG measures correlate well with muscle
strength and endurance (75, 76). While EMG provides important
insights, EMG measures don’t differ significantly between those
with PPS and stable polio (77) and thus EMG is not regarded as
an electrodiagnostic tool to confirm PPS (73). PPS is therefore a
clinical diagnosis supported by laboratory tests.

The Spectrum of Clinical Manifestations
Post-polio patients characteristically experience new onset
muscle weakness, decreased endurance, muscle atrophy, myalgia,
and fasciculations (78). Additional symptoms often include
generalized fatigue, cold intolerance, dysarthria, dysphagia, and
respiratory compromise (79, 80). New symptoms typically occur
in previously affected areas but sub-clinically affected body
regions can also get affected (74). Ambulatory difficulties often
necessitate assistive devices, and may lead to increased fall
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risk (81). PPS is also associated with a wide range of non-
motor symptoms. Frank sensory deficits may be detected and
paraesthesias are often reported by PPS patients. Changes in
sensory evoked potentials have been linked to cord atrophy
on MRI (82). There have been consistent reports of cognitive
deficits (83) in PPS including word finding difficulties (84),
poor concentration, limited attention, memory impairment
(85), and mood disturbances (86). The non-motor aspects
of PPS are often under evaluated despite their considerable
quality of life implications (87). Due to the combination of
motor disability (88) and non-motor symptoms, many patients
engage less in social activities (89) which may lead to social
isolation. Generalized fatigue is one of the most distressing
sequelae of PPS which is likely to be multifactorial due to
muscle unit pathology, weight-gain, respiratory compromise,
polypharmacy, and poor sleep (Figure 1). The identification of
the key “fatigue-factors” in individual patients is indispensable
for the effective pharmacological and non-pharmacological
management of fatigue. Fatigue is thought to exhibit circadian
variations throughout the day (90). Sleep disorders such as
restless leg syndrome (RLS) (87, 91–94), sleep related breathing
disturbances (95), obstructive sleep apnoea (OSA) (96), excessive
daytime somnolence (EDS), and periodic limb movement in
sleep (PLMS) (97) are not only often reported in PPS but they
are likely to play an important role in the pathogenesis of
fatigue in PPS (98, 99). Fatigue is thought to be more severe
in PPS with RLS, and correlate to the severity of RLS (87).
The simultaneous onset of RLS and PPS symptoms (91) and
the positive response to pramipexole in an uncontrolled trial by
Kumru et al. (93) have been interpreted as a pathophysiological
link between RLS and PPS (98). The putative link between RLS
and neuroimmunological alterations (100, 101) may also suggest
shared pathophysiological processes between PPS and RLS (99).
Furthermore, a higher incidence of cauda equina syndrome
(102) and renal impairment (103) has also been reported in
PPS but the association between these syndromes remains to
be elucidated.

Progression, Assessment, and Monitoring
The majority of longitudinal studies (14, 25, 104–107) detect
progressive muscle weakness, which contributes to deteriorating
gait performance (107) and decliningmobility (105). Quantifying
the rate of decline in PPS is challenging and no reliable
functional predictors have been validated. Male gender is thought
to be a negative prognostic indicator (108), but PPS is more
common in females (12). Most PPS patients who participated
in research studies have lived with PPS for over 13 years
suggesting that PPS is a relatively slowly progressive condition.
There have also been however sporadic reports of rapidly
progressive and life-threatening forms of PPS (109), which raises
the question of occasional misdiagnoses or a link between PPS
and amyotrophic lateral sclerosis (ALS) (54). The severity of
PPS-associate disability is typically evaluated clinically but a
number of rating scales and questionnaires have been developed
and validated for both clinical and research use. In addition
to mobility and dexterity, these instruments evaluate the non-
motor aspects of the condition such as fatigue, pain, sleeping

disturbances, and mood (110). Clinical tests used to assess motor
disability include the 6-min walking test (6MWT) (111) at self-
preferred speed, the 2-min walking test (2MWT) at maximal
speed (112), Timed-Up-and-Go test (TUG) (113), 10 meters
walking test (10MWT), Sit-Stand-Sit test (SSS) (114). Muscle
strength is typically appraised by manual muscle testing using
the MRC scale, or more objectively using a dynamometer
during maximal isokinetic and isometric voluntary contraction.
Endurance is measured using isometric contraction peak torque,
isometric endurance, tension time index (TTI) or recovery
of torque after endurance test (76). Quantitative muscle mass
assessment can be performed using ultrasound parameters such
as muscle echo intensity and muscle thickness which are non-
invasive tools for disease monitoring (115). The most commonly
used instruments to assess non-motor domains include the
Fatigue Severity Scale (FSS) (116), Fatigue Impact Scale (FIS),
Piper Fatigue Scale (PFS), Short Fatigue Questionnaire (SFQ),
Nottingham Health Profile (NHP), Physical activity scale for the
elderly (PASE) (117), Polio Problem List (PPL), Visual analog
scale (VAS) (118), Multidimensional Fatigue Inventory (MFI-
20) (119), World Health Organization quality of life abbreviated
scale (WHOQOL-BREF) (120), University of Washington Self-
Efficacy Scale (UW-SES) (121), Sickness Impact Profile (SIP), 36-
item Short Form Health Survey (SF-36) (112). Sleep disturbances
(97) and respiratory function can be formally assessed through
polysomnography and pulmonary function tests (PFT) (122,
123). RLS is typically diagnosed clinically (124) and most
commonly evaluated using the validated international RLS rating
scale (IRLS) (87, 93, 125). Maximal inspiratory and expiratory
pressures (MIP andMEP), sniff nasal inspiratory pressure (SNIP)
(126), and arterial blood gases are validate markers of respiratory
function in PPS.

Non-pharmacological Interventions
The effective management of the heterogeneous symptoms
of PPS requires individualized care in a multidisciplinary
setting (127). Expert input from physiotherapists, occupational
therapists, speech and language therapists, respiratory physicians,
podiatrists, psychologists, dieticians, pain specialists, social
workers, nurse specialists, and orthotists are needed to meet
the multifaceted care and support needs of PPS patients (128).
Individualized lifestyle modifications and energy conservation
strategies are indispensable in the effective management of PPS
(129). PPS-specific training regimens alternating active intervals
and rest have been developed to improve cardiorespiratory
fitness, conserve energy during routine activities, and maintain
independence (130). Isokinetic, isometric, resistance, and
endurance training are thought to improve muscle strength and
endurance without further muscle unit degeneration (131–140).
Combining aerobic and flexibility training is also thought to
improve QoL. Supervised training is advised in those with
significant disability (141). Training in a warm environment may
have longer lasting effects than training in colder temperatures
(142). Patients with arthralgia may benefit from dynamic water
exercises (143) as well as exercising in a group setting (144).
Deconditioning of the cardiorespiratory system (145) may limit
the effectiveness of aerobic training in PPS (146), therefore
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FIGURE 1 | Putative factors in the etiology of generalized fatigue in post-polio syndrome. RLS, Restless leg syndrome; PLMS, periodic limb movement in sleep; CNS,
Central nervous system.

aerobic regimens must be carefully tailored to individual fitness
levels (147). While some studies show improved endurance
following mid- to high-intensity aerobic exercises (139, 140), a
recent study (148) highlights that high-intensity aerobic exercise
may not be beneficial in PPS patients with fatigue. Due to the
heterogeneity of disability profiles in PPS, individualized training
regimes and exercises that don’t rely on anti-gravity strength are
particularly important (148–150). Home-based arm ergometry
for example is a well-tolerated and safe form of aerobic exercise
(149, 150). Whole body vibration (WBV) has been proposed as
an alternative to exercise in PPS (151) and improved mobility
was reported in a small study (152), but no improvement was
noted in muscle strength or gait performance (153). Orthoses
are commonly prescribed for PPS patients to improve mobility
and reduce pain. New powered-type Knee Ankle Foot Orthosis
(KAFOs) offer limited benefits on gait symmetry or walking
speeds but were shown to improve base support, swing time,
stance-phase, and knee flexion during swing phase (154). The
emergence of novel, light-weight materials such as carbon fiber
(155) and the biomechanical analysis of individual walking
patterns have helped to optimize orthosis-design for patients.
The use of MIG3 Bioceramics fabrics for example had beneficial
effects on pain and periodic limbmovement (156). Other lifestyle
modification such as weight loss, smoking cessation, increased
physical activity, and modification to daily activities have all been
beneficial to patients with PPS (22). There are sporadic reports
that anodal transcranial direct current stimulation (tDCS)
of premotor regions (157), repetitive transcranial magnetic
stimulation (rTMS) of the left prefrontal cortex (158) and
static magnetic fields (159) may ameliorate fatigue, improve
sleep, reduce pain, and even improve motor functions in PPS,
but these studies have not been replicated. PPS patients with
bulbar involvement require expert phonatory and swallowing

assessments by a speech-and-language therapist (160) and careful
follow-up. Instrumental modalities such as ultrasonography and
videofluoroscopy (161) and clinical instruments (162) can be
used to detect progressive bulbar dysfunction and appraise the
risk aspiration. Compensatory swallowing techniques, dietician
input for food consistency alterations, individualized speech
therapy, and laryngeal muscle training may be helpful in PPS
patients with bulbar involvement (163). PPS patients who
suffer from respiratory compromise and sleep related breathing
disorders benefit from lung volume recruitment (LVR) (164)
and non-invasive ventilation (NIV) such as Bi-PAP (165) or
nasal intermittent positive-pressure ventilators (NIPPV) (166).
Invasive ventilatory support with a tracheostomy is seldom
required in PPS (167).

Addressing the non-physical aspects of PPS; mitigating
psychological responses, emotional reactions, frustration, and
fear of falling are equally important aspects of multidisciplinary
care (168). Despite its positive effects on self-esteem (169),
cognitive behavioral therapy (CBT) is not superior to standard
multidisciplinary care in the treatment of fatigue (170–
172). Psychotherapy is primarily aimed at reducing anxiety,
improving depressive symptoms (173), alleviating pain (174,
175), and enhancing subjective well-being (176). Hope-oriented
psychotherapy and encouraging participation in work (177)
promote resilience in polio survivors and is associated with
improved social functioning (178), satisfaction with social roles,
improved quality of life, and superior mental health (179). Peer-
support groups are also instrumental in buffering the impact
of a functional impairment on psychosocial well-being (180).
Furthermore, a reduction of physical demands at work and
ergonomic adaptations at the workplace not only help PPS
patients to maintain their occupational activities but enjoy their
work (181). Rehabilitation nurses also play an important role in
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TABLE 1 | Pharmaceutical and non-pharmaceutical clinical trials in post-polio syndrome; study characteristics and key outcomes.

References Study Design/selection

criteria of PPS patients

Number of follow-up

time points

Follow-up interval

(months)

Number of participants

receiving drug/placebo

Assessment tools used Key study findings

PREDNISONE

Dinsmore et al. (183) RDBPC/U 3 3 7/7 MRC scale, MVIC using electronic
strain gauge tensiometer, fatigue on
a 0–3 scale

- Short-lived improvement in muscle
strength

- No improvement in fatigue
- Not recommended

AMANTADINE

Stein et al. (184) RDBPC/S (fatigue) 2 2 10/13 FSS, VAS-F, MMPI, BDI,
somatization scale, reaction time
evaluation

- Not superior to placebo for fatigue

PYRIDOSTIGMINE

Trojan et al. (185) RDBPC/S(fatigue/muscle
weakness)

6 at 6 weeks, 10 weeks,
and 6 months

43/42 SF-36, modified TQNE, MVIC by
electronic strain gauge, Hare
Fatigue Symptom Scale, FSS,
IGF-1 serum levels

- Very weak muscles became slightly
stronger

- IGF-1 increased in compliant
patients

- No clear benefits on QoL, muscle
strength, and fatigue

Horemans et al. (186) RDBPC/S (fatigue and
muscle weakness)

5 0.75 31/31 NHP, FSS, 2MWT at comfortable
pace, time to walk 75m at fastest
speed, ambulatory activity monitor,
MVC by chair dynamometer, MVA
by interpolated stimulation; muscle
fatigability by sEMG during 30 s
sustained isometric contraction at
40% of MVC, NMJ defects by jitter
on S-SFEMG

- No significant effects on fatigue
- Significant effects on walking
distance

- Little effects on walking duration,
muscle strength, MVA

- Limited benefits in
physical performance

MODAFINIL

Chan et al. (187) RDBPC cross-over/S
(fatigue)

12 0.25 7/7 Cross-over 7/7 PFS, ESS, aural digit spans,
reaction time

- Not effective in fatigue

Vasconcelos et al. (188) RDBPC cross-over/ S
(fatigue)

2 1.5 18/18 Cross-over 18/15 FSS, VAS-F, FIS; SF-36 - Not superior to placebo in fatigue
and QoL improvement

CO-ENZYME Q10

Skough et al. (189) Parallel RDBPC/S(ability to
perform resistance training)

2 3 7/7 Sit-stand-sit test (SSS); Timed up
and go (TUG) test, 6MWT,
dynamometer, bloods for CK, LD

- No change in CK or LD
- No additional effects of the
Co-enzyme Q10 supplementation
during resistance training

Peel et al. (190) Parallel RDBPC/S (fatigue) 2 2 54/49 MAF (revised Piper Fatigue Scale),
FSS

- Not effective in fatigue

LAMOTRIGINE

On et al. (191) RDBPC/S (ambulatory with
lower limb involvement only)

3 0.5 15/15 VAS, NHP, FSS - Superior to placebo for pain,
fatigue, and QoL as detected in
VAS, NHP, FSS

(Continued)
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TABLE 1 | Continued

References Study Design/selection

criteria of PPS patients

Number of follow-up

time points

Follow-up interval

(months)

Number of participants

receiving drug/placebo

Assessment tools used Key study findings

INTRAVENOUS IMMUNOGLOBULIN (IVIg)

Gonzalez et al. (38) Controlled open-label/U 2 1.5-2 16PPS; 26OND/0 CSF for CSF-MC, PB for PBMC,
real-time quantitative RT-PCR for
relative quantitation of mRNA

- Significant decrease of CSF-MC
expression of TNF-α and IFN-γ not
seen in PBMC expression of
cytokines

Kaponides et al. (192) Uncontrolled open-label/S
(ambulatory, BMI < 28)

3 at 2 and 6 months 14/0 Dynamic dynamometer, 6MWT,
SF-36

- No significant effect on muscle
strength and physical performance

Gonzalez et al. (193) RDBPC/U 2 3 67/68 Dynamometer, SF-36, 6MWT, TUG,
PASE, sway, sleep quality, VAS,
MFI-20

- Positive changes in muscle strength,
physical activity, and those with
significant pain

- No change on QoL, fatigue sleep
quality, “better” limb muscles or
mild pain

Farbu et al. (40) RDBPC/U 5 3 10/10 MAF (revised Piper Fatigue Scale),
FSS, CSF, and PB for expression of
cytokines (TNF-α, IFN-γ, IL-6, IL-1β,
IFN-β, IL-10) using ELISA

- Positive effects on pain after 3
months

- No effects on muscle strength and
fatigue

- TNF-α increased in CSF

Werhagen et al. (194) Uncontrolled open-label/S
(pain)

2 6 45/0 Neurological examination, sensory
testing, soft tissue palpation, and
joint assessment, VAS, pain
classified according to IASP

- Better results on pain in younger,
those with more pronounced
paresis, had acute polio <10 yo

Östlund et al. (195) Uncontrolled
open-label/S(fatigue,
muscle weakness)

2 6 113/0 SF-36, PASE, VAS - Likely responders include those
with pain intensity above VAS of
20mm, younger than 65 yo, and
paresis in lower extremities

Gonzalez et al. (65) RDBPC and controlled
quantitative cytokine
study/U

2 12 CSE: 20/21
CAS: 20/30

CSE: SF-36, 6MWT, VAS
CAS: CSF and PB for cytokines
(TNF, IL-23, IFN-γ, TGF-β, IL-10,
IL-13) using RT-PCR

- Improvement in QoL but not in pain
and walking ability compared to
placebo

- Decline in CSF IFN-γ and IL-23, TNF,
and increase in IL-10 and IL-13

- No changes in PB cytokine levels

Bertolasi et al. (196) RDBPC/U 3 2 24/26 SF-36, MRC scale, dynamometer,
6MWT, VAS, 101-PNR, FSS

- Improvement in QoL; mental activity
subscale

- No effects on gait, muscle strength,
fatigue, and pain

L-CITRULLINE

Schmidt et al. (197) RDBPC/U 5 6 15/15 6MWT, MFM scale, qMRI, MRS,
bloods for muscle necrosis (CK),
oxidative stress (8OHDG, 4-HNE),
nitrosative stress(nitrotyrosine,
cGMP), mitochondrial-related

- Ongoing clinical trial

(Continued)
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TABLE 1 | Continued

References Study Design/selection

criteria of PPS patients

Number of follow-up

time points

Follow-up interval

(months)

Number of participants

receiving drug/placebo

Assessment tools used Key study findings

genes (Citratsynthase, Cytochrome
C oxidase subunit 1, Succinate

dehydrogenase subunit A), QMT
using HHD,
SIPP,IBM-FRS,WHOQOL-BREF

RESPIRATORY SUPPORT

Kaminska et al. (164) Feasibility/S(restrictive
respiratory defects)

2 3 7ALS, 7PPS, 5MD SF-36, SIP, standard spirometry
(FVC, FVC% predicted, LIC,
LIC-FVC difference, PCF, MIP, MEP)

- LVR Feasible
- Encouraging effects on respiratory
mechanics

- LIC increased

Gillis-Haegerstrand
et al. (165)

Randomized
comparative/S(using VCV)

2 30min 8 BP, oxygen saturation, ABG,
indirect calorimetry (SaO2, VO2,
VCO2, REE, RQ, RR, IPAP)

- BiPAP PSV decreases oxygen cost
of breathing in PPS with respiratory
failure without decreasing ventilation
efficiency.

- Significant PaCO2 decrease using
this ventilation modality.

- Maintains adequate ventilation in
PPS patient with resp. failure

Barle et al. (167) Comparative /S (nocturnal
invasive CMV)

7 30min 9 BP, oxygen saturation, ABG,
indirect calorimetry (SaO2, VO2,
VCO2, REE, RQ, MV,RR, IPAP)

- Invasive BiPAP reduces oxygen
cost of breathing in long-standing
tracheotomized PPS compared to
CMV.

EXERCISE PROGRAM

Murray et al. (149) Assessor blinded rCT/U 2 2 months 26/29 6-MAT, PASIPD, 6MWT, FSS,
SF-MPQ-2, QMA, exercise log

- Home-based ergometry is a well-
tolerated form of aerobic exercise

- No improvement of physical fitness,
fatigue, activity

- Slight decrease in BP in
interventional group

PRAMIPEXOLE

Kumru et al. (93) Uncontrolled open label/U 3 At 0, 2 months and 6
months

16/0 RLS severity scale - Significant decrease of RLS severity
detected on RLS rating scale

- Maintenance of improvement of
RLS with pramipexole at 6
months follow-up

rCT, randomized controlled trial; S, selected (i.e., fatigued); U, unselected; RDBPC, Randomized double-blind placebo controlled.
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the setting of realistic health goals, encouraging resiliency, and
providing emotional support (182).

Pharmacological Trials
Several randomized controlled clinical trials (RCT) were
conducted in PPS (Table 1). High-dose prednisone (183),
amantadine (184), and modafinil (187, 188) showed no
superiority to placebo in the management of fatigue. Prednisone
therapy, showed a short-lived improvement in muscular strength
but no meaningful functional improvement (183). The evidence
for the benefit of pyridostigmine therapy remains conflicting.
Some studies (185) identified no benefit onmuscle function while
others reported a slight improvement in walking performance
(186). Co-enzyme Q10 supplements are thought to have no effect
on muscle strength, endurance or fatigue in PPS (189, 190).
A small RCT of lamotrigine, demonstrated improvements in
VAS, NHP, and FSS suggesting that it may be beneficial to treat
pain and fatigue and improve quality of life (191). Given the
inflammatory and autoimmune hypothesis of PPS pathogenesis,
intravenous immunoglobulin has been extensively investigated
for its potential therapeutic effects. Its benefit with regards to
pain, muscle strength, physical functioning, and quality of life
is inconsistent. Improved pain control and overall vitality (192,
196) seem to be the main benefit of intravenous immunoglobulin
(IVIg) treatment. Two small uncontrolled trials (38, 194) and
two larger RCTs (40, 65) arrived to similar conclusions with
regards to pain control and improvement in serum and CSF
inflammatory markers. The main indicators for response to
IVIg include severe pain, fatigue, <65 years of age, and paresis
mainly affecting the lower extremities (194, 195, 198). Studies are
somewhat conflicting on its effect on muscle strength (65, 193).
These findings however encourage further large RCTs to establish
the target PPS cohort for IVIg treatment, treatment intervals,
and dose optimisation. A single-center, double-blind RCT trial
of L-citrulline (197) is currently underway to investigate its effect
on muscle metabolism and function. It is at clinical phase IIa
and has proven to be of beneficial in muscular dystrophies in
improving endurance in both aerobic and anaerobic exercise. The
symptomatic management of non-motor symptoms in PPS also
has considerable quality of life benefits. Restless leg syndrome in
PPS often responds to dopamine agonists such as pramipexole
(93, 199). The use of analgesics and antidepressants such as
amitryptiline, duloxetine, and codeine may decrease physical

discomfort and improve mood but need careful monitoring as
they may worsen fatigue and lead to poor concentration. Adverse
reactions to certain anesthetic agents are well-documented in
PPS. Post-anesthesia fatigue, somnolence, and weakness are well-
recognized, and fatal outcomes due to respiratory arrest have
also been reported (200, 201). The diagnosis of PPS needs to be
carefully discussed with the anaesthesiologists, so the appropriate
muscle relaxants and anesthetics can be used, and patients
should be advised of the possibility of a prolonged post-operative
phase (202).

CONCLUSIONS

Despite being one of the most devastating neurodegenerative
conditions in the world, surprisingly limited research is
undertaken in post-polio syndrome. Its pathogenesis remains
elusive, no sensitive diagnostic tools have been developed,
and validated prognostic and monitoring markers are lacking.
Non-motor symptoms of PPS have considerable quality of
life implications and are notoriously challenging to manage.
The etiology of fatigue in PPS is yet to be elucidated and
successful individualized management strategies are needed
to maintain mobility, independence, and patient autonomy.
There is striking a paucity of neuroimaging studies in PPS
that could provide anatomical insights into the substrate of
extra-motor symptoms. Ultimately, the characterization of PPS-
associated pathology may help research efforts in other motor
neuron diseases.
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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that typically

results in death within 3–5 years after diagnosis. To date, there is no curative

treatment and therefore an urgent unmet need of neuroprotective and/or neurorestorative

treatments. Due to their spectrum of capacities in the central nervous system—e.g.,

development, plasticity, maintenance, neurogenesis—neurotrophic growth factors (NTF)

have been exploited for therapeutic strategies in ALS for decades. In this review we

present the initial strategy of using single NTF by different routes of administration to

the use of stem cells transplantation to express a multiple NTFs-rich secretome to finally

focus on a new biotherapy based on the human platelet lysates, the natural healing

system containing a mix of pleitropic NTF and having immunomodulatory function. This

review highlights that this latter treatment may be crucial to power the neuroprotection

and/or neurorestoration therapy requested in this devastating disease.

Keywords: Amyotrophic lateral sclerosis, growth factors, therapeutic, stem cell, human platelet lysate

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting the upper
and lower motor neurons in the cerebral cortex, brainstem and spinal cord that lead to a
progressive, irreversible muscle paralysis, and swallowing and respiratory dysfunctions. Death
eventually occurs 3–5 years after diagnosis (1). The majority of ALS cases (90%) are sporadic with
unknown cause (2). To date, there is no curative treatment in ALS. Therefore, the development
of new and effective treatment is highly urgent. Among the different approaches, the delivery of
neurotrophic factors (NTFs) is explored since the 90’s because NTFs are necessary to regulate
several physiological processes such as neuronal differentiation and survival, axonal outgrowth
and synapses maintenance (3–5), proliferation and differentiation of stem cells in the nervous
system (6–9). Therefore, these trophic factors represent a promising therapeutic strategy to treat
neurodegenerative diseases (10) such as ALS.
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Graphical Abstract | From single to synergistic neurotrophic growth factors therapies.

PRECLINICAL EVIDENCE OF

NEUROTROPHICS GROWTH FACTORS

ABILITIES TO TREAT AMYOTROPHIC

LATERAL SCLEROSIS (TABLE 1)

Recombinant NTFs Delivery by Injection
Some trophic factors have been demonstrated to promote
cell survival and be protective in both in vitro and in vivo
models of neuronal degeneration: Ciliary Neurotrophic Factor
(CNTF), Brain-derived Neurotrophic Factor (BDNF), Glial-
Derived Neurotrophic Factor (GDNF), Insulin-like Growth
Factor 1 (IGF-1), Vascular Endothelial Growth Factor (VEGF),
and Granulocyte-Colony Stimulating Factor (G-CSF). In vivo
experiments performed in ALS models using single recombinant
growth factors are described in this section.

CNTF, one of the first NTF studied in ALS models, injected
intraperitonally in pmn/pmn mice, mouse model for human
spinal motor neuron disease (11) or subcutaneously in wobbler
mice (12) improved motor function and survival, and decreased
neuronal degeneration and muscle atrophy (13). In addition,
Mitsumoto et al. demonstrated a synergic effect of CNTF
and BDNF, respectively, to arrest disease progression for 1
month (14).

The fusion protein BDNF with the c fragment of the tetanus
toxin (BDNF-TTC) exhibited enhanced neuroprotective effect

in SOD1G93A ALS mice model, but no synergic effect was
observed compared to TTC alone (55). Recently, motor function
improvement and less neuronal loss were observed in SOD1G93A

mice treated with the flavonoid 7,8-dihydroxyflavone, a small-
molecule mimicking the effect of BDNF (56). Two receptors
binding the BDNF, p75NTR and TrkB.T1, were highlighted in
SOD1G93A: a decreased of p75NTR expression correlated with a
delay of mortality and motor impairment (57); a deletion of the
TrkB.T1 increased survival and delayed motor deficit (58).

Treatment with encapsuled GDNF-secreting cells in pmn/pmn
mice did not impact motor neuron degeneration and lifespan
(15). The authors suggest a combined treatment for GDNF with
others NTFs. Recently, astrocytic GDNF triggered by the tumor
necrosis factor α (TNFα) was highlighted in the SOD1G93A

mice, and found to limit motor neuron degeneration and disease
progression (59).

Intraperitoneal (16) or intracerebroventricular (17) injection
of VEGF at doses of 1 g/kg/d and 0.2 µg/kg/d in SOD1G93A mice
and rats, respectively, increased lifespan and improved motor
performance. Similar data were observed in a sporadic model
of ALS rats induced by excitotoxic administration of AMPA
(60, 61).

Finally, protective properties of G-CSF were observed in
SOD1G93A mice when delivered continuously at dose of 30
µg/kg/d (18). Indeed, disease progression was reduced and
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TABLE 1 | Different routes of NTFs delivery and therapies in pre-clinical models.

NTF Delivery route Model Outcomes References

RECOMBINANT NEUROTROPHIC GROWTH FACTORS

CNTF I.P pmn/pmn mice (20–21 d) MP+, S+ (11)

S.C Wobbler mice MP+, MC+ (12–14)

BDNF S.C Wobbler mice MP+ (14)

GDNF S.C pmn/pmn mice (15–18 d) No effect (15)

VEGF I.P SOD1G93A mice (74 d) MP+, DDO+, S+11 d (16)

I.C.V SOD1G93A/LSd rats (60 d) MP+, DDO+, S+10 d (17)

I.S.P Excitotoxic model in rats MP+, DDO+, S+10.5 d, +5 d (18, 19)

Viral vector based gene therapy

AAV-NTF

IGF-1 I.M SOD1G93A mice (90 d) MP+, S+22 d (20)

I.S.P SOD1G93A mice (60 d) MP+, DDO+, S+12.3 d ♂ (21)

In D.C.N SOD1G93A mice (88–90 d) MP+, S+14 d (22)

I.M SOD1G93A mice (60 and 90 d) MP+, DDO+, S+29 d and +15 d ♂,

+24 d and +14 d ♀

(23)

I.V SOD1G93A mice (90 d) MP+, S+10 d (24)

I.C.V SOD1G93A mice (80–90 d) DDO+, S+12 d (25)

VEGF I.C.V SOD1G93A mice (80–90 d) DDO+, S+9 d ♂, +20 d ♀ (25)

I.T SOD1G93A mice (90 d) DDO+, S+12 d (26)

GDNF I.M SOD1G93A mice (90 d) MP+, DDO+, S+16.6 d (27)

I.V SOD1G93A rats (25 d) MP +/–, S– (28)

G-CSF I.S.P SOD1G93A mice (70 d) MP+, DDO+, S+ (29)

Stem cell based therapy

AAV-NTF

hSC-NSC I.S.P SOD1G93A rats (56–62 d) MP+, DDO+, S+11 d (30, 31)

gm hNSC line (VEGF) I.T SOD1G93A mice (70 d) DDO+, S+12 d (32)

hSC-NPC I.S.P SOD1G93A mice (40 d) MP+, S+5 d (33)

gm hNPC (GDNF) I.S.P SOD1G93A rats (∼80 d) rats

(∼80 d)

MP–, S– (34, 35)

Cortex SOD1G93A rats (∼80 d)

macaques

DDO+, S+14 d (36)

hBM-MSC I.S.P SOD1(G93A)dl mice (28w) MP+ (37)

SOD1G93A mice MP+ (38)

mBM-MSC I.V SOD1G93A mice (90 d) MP+, S+17.3 d (39)

gm hBM-MSC (GDNF, VEGF, GNDF/IGF-1, BDNF) I.M SOD1G93A rats (80 d) MP+, S+28 d and +18 d for GDNF,

+ 13 d for VEGF, +28 d for

GDNF/VEGF

(40, 41)

mBM I.S.P and I.M mdf/ocd mice (6 weeks) MP+ (42, 43)

mASC I.V SOD1G93A mice (76–77 d) MP+, S– (44)

hASC I.V and I.C.V SOD1G93A mice (70 d) MP+, DDO+, S+ (45)

hUCBC I.V SOD1G93A mice (56 d, 66 d) DDO+, S+21 d, +38.5 d, +23.8 d (46–48)

SOD1G93A mice (60 and 90 d) MP+, S+10 d (49)

I.T SOD1G93A mice No effect (50)

I.S.P SOD1G93A mice (40 and 90 d) MP+, S+6 d for 40 d mice (51)

I.C.V SOD1G93A (70 d)

Wobbler mice (28 d)

MP+, S+18 d

MP+

(52)

gm hUCBC (VEGF, GDNF, and/or NCAM) I.V SOD1(G93A)dl mice MP+, S+ (53, 54)

I.P, intraperitoneal; I.M, intramuscular; I.V, intravenous; I.C.V, intracerebrovascular; I.S.P, intraspinal; I.T, intrathecal; S.C, subcutaneous; DCN, deep cerebellar nuclei; gm, genetically

modified for expression of NTFs in brackets; hSC-NSC: human spinal cord-neural stem cell; m/hBM-MSC, murine/human bonemarrow-mesenchymal stem cell; m/hASC, murine/human

adipose derived MSC; hUCBC, human umbilical cord blood cells. Main results are summarized as follow: MP, motor performance; DDO, delay of disease onset; S, survival. The age of

the model at the treatment is noted in brackets (d, days old; w, weeks). +, improvement; –, deterioration. ♂, male; ♀, female.
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survival increased by rescuing motoneurons. Similar results were
obtained with subcutaneous injection of pegfilgrastim, a more
stable analog of G-CSF (19).

As protein infusion has known drawbacks (invasive method
of delivery, protein stability over time, short half-life) others
strategies, such as viral vector-based gene therapy and stem cell-
based therapy have been developed to express NTFs of interest
and avoid chronic injection.

NTFs Delivery by Viral Vector-Based Gene

Therapy
Many studies focused on IGF-1. The intramuscular injection
of adeno-associated viral (AAV)-IGF-1 in SOD1G93A mice
before or at the time of disease symptoms delayed disease
onset and increased lifespan (20). Intraparenchymal spinal cord
delivery was also tested, showing higher expression of IGF-1
but partial rescue (21), whereas a stereotaxic injection into the
deep cerebellar nuclei significantly extended mice lifespan (22).
Recently the injection of self-complementary adeno-associated
viral vector 9 (scAAV9), a more efficient transducing agent for
IGF-1, extended survival, and motor performance of SOD1G93A

mice when injected either intramuscularly (23) or intravenously
(24). Also, the intracerebroventricular injection of AAV4-VEGF
was studied and gave similar results than AAV4-IGF-1 by slowing
disease progression. No combined effect of these 2 constructions
was observed in SOD1G93A mice (25). Similarly the intrathecal
injection of scAAV9-VEGF showed positive impact on lifespan
and motor performance in mice (26). The AAV-GDNF, injected
intramuscularly in SOD1G93A allowed expression of the protein
at the sites of injection, a retrograde transport in anterior horn
neurons, and was associated with a delay in the onset and the
progression of the disease (27). However, the systemic injection
of AAV9-GDNF in SOD1G93A rats showed limited functional
improvement and no survival extension (28). Finally the efficacy
of intraspinal delivery was showed for AAV-G-CSF in SOD1G93A

mice with minimal systemic effects (29).

NTFs Delivery by Stem Cell-Based Therapy
Different types of stem cells exist—based on their source,
clonogenic capacity, differentiation potential and availability—
and exert a paracrine effect, suitable for therapy in
neurodegenerative disease such the ALS (62–65). We mainly
focus here on stem cells with potential clinical application,
engineered or used as such, e.g., a mix of NTFs.

Neuroprotection With Neural Stem Cells (NSC) and

Neural Progenitor Cells (NPC)
Human NSC graft into lumbar protuberance of SOD1G93A

rats was shown to delay the onset and the progression of the
disease, with their integration into the spinal cord (30, 31).
Similarly, the intraspinal administration of human NPC delayed
the progression of the disease in SOD1G93A mice (33).

NSC were also engineered to secrete specific one. Intrathecal
transplantation of human NSC overexpressing VEGF in
SOD1G93A mice delayed the onset of the disease and increased
survival with an integration and differentiation of NSC-VEGF
into the spinal cord (32). Human neural progenitor cells NPC

(hNPC) were also genetically modified to secrete GDNF. The
transplantation of such engineered cells in SOD1 rats were
integrated into the spinal cord, limitedmotoneuron degeneration
but failed to improve motor function (34, 35). However, the
transplantation of hPNC-GDNF into the cortex extended the
survival of SOD1G93A rats and was safe for primates (36).

Mesenchymal Stromal Cells (MSC)
Bonemarrow (BM)MSC (BM-MSC), when injected intraspinally
(37, 38) or intravenously (39) in SOD1G93A mice, allowed
decreased motoneurons degeneration, improved survival
and motor function, prevented pro-inflammatory factors.
Indeed, MSC display immunomodulatory properties by
secreting anti-inflammatory cytokines such as TGF-β or IL-
10 (66) Since neuroinflammatory markers were detected in
neural tissues of ALS patients (67) promising results can be
expected with MSC based therapy. Moreover, intramuscular
transplantation of human BM-MSC genetically modified
to secrete GDNF in SOD1G93A rats, showed a decrease in
motoneuron loss and an overall increased lifespan (40). In
addition they demonstrated a synergic effect of the combined
intramuscular delivery of hMSC-GDNF and hMSC-VEGF
with an increased survival, protection of neuromuscular
junction and motoneuron degeneration, greater than either
growth factor delivered individually (41). Even though
human BM-MSC injections have positive effects on the
disease progression, it should be noted that the whole BM
intraspinally transplanted showed a greater improvement
of motor functions than BM-MSC in mdf/ocd mice (42)
and increased motoneurons survival when intramuscularly
transplanted (43).

Others reported positive results with adipose derived MSC
when administrated by systemic (44), or intracerebroventricular
administration (45).

Human Umbilical Cord Blood (hUCB)
The first study performed on SOD1G93A mice irradiated
and transplanted intravenously with hUBC mononuclear cells
(MNC), showed a delay in the onset of symptoms and increased
the survival (46, 47). Transplanted cells integrated regions of
motoneuron degeneration and expressed neural markers (48).
Recently, the efficiency of chronic intravenous injections of
UCB MNC in symptomatic SOD1G93A mice was demonstrated,
with increased lifespan and reduced inflammatory effectors (49).
Similarly, the intraspinal as the intracerebroventricular injection
of hUCB in pre-symptomatic SOD1G93A or wobbler mice
increased survival and motor performance (51, 52). However,
intrathecal administration of hUCB did not affect the lifespan of
motor function of ALS mice (50).

Some authors engineered hUCB MNC to secrete some NTFs
or to enhance homing at the site of degeneration (68, 69).
Recently, transplanted hUCB transduced with AAV encoding
VEGF, GDNF and/or neural cell adhesionmolecule (NCAM), led
to a high rate of SOD1G93A mice survival and improved motor
function. Moreover, transplanted cells were detected 1 month
after grafting into the lumbar spinal cord (53, 54).

Frontiers in Neurology | www.frontiersin.org 4 August 2019 | Volume 10 | Article 835346

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gouel et al. Growth Factors Therapies and ALS

CLINICAL TRIALS WITH GROWTH

FACTORS: EVIDENCE AND HYPOTHESIS

FOR THE FAILURE

Regarding the promising effects obtained in ALS animal models,
clinical trials were conducted to examine the neuroprotective
effects of these growth factors therapies in ALS patients (Table 2).

Trials Involving NTFs Protein Systemic

Injections
CNTF
In 90’s the ALS CNTF Treatment study group published results
obtained in phase I (70) and phase II/III (72) clinical trials
where enrolled patients received subcutaneous administration of
recombinant human CNTF (rHCNTF) at different doses, 15 or
30 µg/kg, three times a week for 9 months. The phase II/III
randomized, placebo-controlled evaluated the safety, tolerability,
and efficacy. No statistically difference between rHCNTF-treated
patients and placebo-treated patients were observed and side
effects were sufficiently severe to limit dosing in many patients.
A second trial, same year, did not show any positive effect
either (71).

One year later, Penn et al. published results of a phase I
clinical trial with intrathecal pump delivery (73). The disease
progression was not modified either but no systemic side effects
were observed. Thus, intrathecal administration may be the
preferred route of administration. To our knowledge, no further
clinical study are under investigation.

BDNF
Due to a promising phase I/II clinical trial showing the
safety and efficacy of subcutaneous administration of BDNF
in 1995, a phase III was designed (74). Results failed to
demonstrate an effect on survival but post-hoc analyses showed
that those ALS patients with early respiratory impairment
showed benefit (75). One year later a phase I trial showed
the feasibility of intrathecal method of delivery (76) but two
other trials conducted in 2003 and 2005 felt to detect any
efficacy (77, 78).

IGF-1
In the late 90’s, two clinical trials used IGF-1 at a dose of 0.1
mg/kg/d by subcutaneous delivery and found contradictory and
opposite results (79, 80). In 2008, a phase III showed no benefit
of this route of delivery in 2 years of trials (82). In a pilot study
conducted in 2005, intrathecal administration had beneficial
effect using high doses of IGF-1 (3 µg/kg every 2 weeks) but it
was not placebo-controlled (81).

G-CSF
Ten years ago, two pilot clinical trials with subcutaneous G-CSF
administration at a dose of 5µg/kg/d reported a trend for slowing
down the disease progression (84) and a delay in motor decline
(83). A Phase II clinical trial is under investigation but results are
not yet available.

VEGF
Three clinical trials assessed the safety, tolerability, and the
possible motor function improvement as well as survival time of
the intracerebroventricular administration of 4 µg/d VEGF. To
our knowledge, no results are published.

6- Failure Hypothesis
Most of the clinical trials based on direct protein administration
gave disappointing outcomes in view of the promising preclinical
results. Different hypotheses can be raised to explain those
failures (70–84):

- The route of administration: subcutaneous injection seems less
efficient than the intrathecal one

- The minimal ability of these growth factors to cross the blood
brain barrier

- The dose: highest safe dose in humans can be lower than
those determined in animals, as the clinical trial with
CNTF demonstrated

- The treatment start time: in animals, treatment start before
the onset of the disease whereas in humans the diagnosis is
performed at later stage

- The need of synergic association of numerous
neurotrophic factors

Trials Involving Adeno-Associated Viral

Gene Therapy
To our knowledge, there is no reported clinical trial using
adeno-associated viral gene therapy despite promising results
obtained with SOD1G93A mice. AAV2 and AAV9 are vectors
having the greatest potential, one specific for neuron tissue, one
passing the blood brain barrier and exhibiting neuronal tropisms,
respectively. One of the drawbacks of genes therapies for ALS can
be the safety. Indeed to stop delivery will not be possible if serious
adverse events occur during the treatment.

Trials Involving Stem Cell Therapy
Twenty-two trials involving stem cells-based therapy are
registered on ClinicalTrials.gov. Most of them use MSC from
different origins and few have results available. This section is an
overview of all the known clinical trials.

Neural Stem Cells
In 2012, two trials sponsored by Neuralstem used NSC by
intraspinal injection. The phase I did not show any adverse
events (85, 86), but the phase II has an unknown status on the
ClinicalTrials.gov website.

Recently, published results of a phase I trial, proposing
transplantation of human NSCs into the lumbar spinal
cord, demonstrated the safety and reproducibility of this cell
therapy. Moreover, because the brain tissue used was from
natural miscarriages, ethical concerns may be eliminated (87).
An ongoing clinical trial concern neuronal progenitor cells
engineered to produce GDNF. This is a phase I/IIA trial, active
but not recruiting. No results are available for now.
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TABLE 2 | Clinical trials with growth factors.

NCT number NTF Delivery

method

Phase and status of

the trial

Cohort

size

Outcomes References Year

PROTEIN INFUSION

Not provided CNTF SC Phase I, terminated 57 No adverse neurologic effects, safe,

and tolerated

(70) 1995

Not provided SC Phase I, terminated 570 No beneficial effect, adverse events

dose related, increased number of

death at the highest dose, no

beneficial effect on ALS progression

(71) 1996

Not provided SC Phase II/III 730 Disease progression not modified,

minor adverse side effects

(72) 1996

Not provided IT Phase I 4 Pain syndromes dose-related, no

systemic side effect, no improvement,

or worsen of motor function

(73) 1997

Not provided BDNF SC Phase I/II, terminated 283 Tolerated, Trend of improved survival,

less deterioration of predicted FVC

(74) 1995

Not provided BDNF SC Phase III 1 135 Disease progression not modified,

Patients with early respiratory

impairment and with altered bowel

function showed benefit

(75) 1999

Not provided BDNF IT Phase I/II, terminated 25 Well tolerated, feasible (76) 2000

Not provided BDNF IT Phase III, terminated 17 No adverse events, no effect (77) 2003

Not provided BDNF IT Phase II/III, terminated 13 No effect (78) 2005

Not provided IGF-1 SC Not specify 266 Slowed the progression of functional

impairment, slow the decline in

health-related quality of life

(79) 1997

Not provided SC Not specify 183 Safe and well-tolerated, no effect (80) 1998

Not provided IT Not specify 9 No serious adverse effect, modest

beneficial effect

(81) 2005

NCT00035815 SC Phase III, completed 330 No benefit (82) 2008

Not provided G-CSF SC Phase I, terminated 13 Safe, less decline of ALSFRS score (83) 2009

Not provided SC Phase I, terminated 39 Safe, no significative effect on

ALSFRS score

(84) 2010

NCT00397423 Not

specify

Phase II, completed 40 Not available

NCT01999803 VEGF ICV Phase I, terminated 15 Not available

NCT02269436 ICV Phase I, terminated 11 Not available

NCT01384162 ICV Phase I/II, terminated 15 Not available

STEM CELLS

NCT number Type of stem

cells

Delivery

method

Phase and status of

the trial

Cohort

size

Results References Year

NCT01348451 NSC ISP Phase I 12 No major adverse events (85, 86) 2012

NCT01730716 NSC ISP Phase II, unknown

status

18 Not available

NCT02943850 NPC ISP Phase I/IIa, active, not

recruiting

18 Not available

NCT01640067 NSC ISP Phase I, completed 6 Safe approach, no increase of

disease progression

(87) 2015

NCT00781872 MSC IT, IV Phase I/II, terminated 19 Safe and feasible, ALS-FRS score

stable the first 6 months

(88) 2010

NCT03085706 PBMC ISP Phase NA, completed 14 Not available

NCT01933321 HSC IT Phase II/III, completed 14 Not available

NCT01609283 MSC IT Phase I, active, not

recruiting

27 Not available

NCT01142856 MSC IT Phase I, completed 1 Not available

(Continued)
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TABLE 2 | Continued

NCT number NTF Delivery

method

Phase and status of

the trial

Cohort

size

Outcomes References Year

NCT00855400 MSC ISP Phase I/II completed 11 No severe adverse event, no

acceleration in the rate of decline,

possible neurotrophic activity

(89) 2012

NCT02286011 MC IM Phase I, active, not

recruiting

20 Not available

NCT00855400 MC ISP Phase I, completed 11 Safe approach, no worsening of the

disease

(90) 2016

NCT03268603 MSC IT Phase II, recruiting 60 Not available

NCT01254539 MSC ISP, IT Phase I/II, completed 63 Infusion of MSC produces spinal

changes unrelated with clinical events

and disease worsening

(91) 2013

NCT01363401 MSC IT Phase I/II, completed 64 Possible benefit lasting at least 6

months with safety

(92) 2018

NCT02917681 MSC IT Phase I/II, recruiting 28 Not available

NCT02987413 MSC IT Phase I, completed 3 Not available

NCT02290886 MSC IV Phase I/II, active, not

recruiting

52 Not available

NCT01051882 MSC IM or IT Phase I/II, completed 12 Safe and tolerated, no serious

adverse event, possible benefits on

ALS-FRS score, and percentage of

FVC

(93) 2016

NCT01777646 MSC IM + IT Phase IIa, completed 14

NCT03280056 MSC IT Phase III, Recruiting 200 Not available

NCT02017912 MSC IM, IT Phase II, completed 48 Not available

NCT01759797 MSC IV Phase I/II, completed 6 No adverse events, ALS-FRS score

reduced, FVC percentage reduced

(94) 2019

NCT01771640 MSC IT Phase I, completed 8

FVC, force vital capacity; HSC, hematopoietic stem cells; I, intramuscular; ISP, intraspinal; IT, intrathecal; IV, intravenous; MC, mononuclear cell; MSC, mesenchymal stem cells; NPC,

neuronal progenitor cells; NSC, neural stem cells; NTF, neurotrophic factor, PBMC, peripheral blood mononuclear cell; SC, subcutaneous.

Blood Cells
Two clinical trials, one using autologous peripheral blood
mononuclear cell for intraspinal transplantation and one in phase
II/III using hematopoietic stem cells for intrathecal injection
were conducted and completed but no results were reported
to our knowledge. One trial using autologous bone marrow
mononuclear cells (90) for intraspinal injection showed the safety
of the procedure.

Mesenchymal Stromal Cells
Among 14 clinical trials using MSCs from diverse origin
such as bone marrow, adipose tissue or engineered to secrete
particular NTFs, through diverse types of delivery (intrathecal,
intraspinal, intramuscular, intravenous, or intraventricular), 5
have no published results, 4 are ongoing, and 5 are completed
with published results. All of them are listed in the Table 2 and
the last 5 are detailed below and involved the use of the bone
marrow derived MSCs.

In 2012, a phase I/II, using autologous bone marrow MSCs
administered by intraspinal delivery, was conducted. No severe
adverse event were observed, no acceleration of the disease
progression noticed and an increase of the motoneurons in the
treated segments compared with the untreated segments for

patients who died for unrelated reasons to the procedure. Thus,
this trial demonstrates the safety of intraspinal infusion of MSCs
and suggests their neurotrophic activity (89). In 2013, a phase I/II
confirmed the safety of BM-MSC infusion (91).

In 2016, two clinical trials in small groups of patients,
phase I/II, used bone marrow MSCs engineered to secrete
NTFs. Intramuscular transplantation for early ALS patients and
intrathecal transplantation for progressive ALS patients were
evaluated. They concluded that both route of administration are
safe and provide indications of possible clinical benefits that need
to be confirmed on a bigger cohort (93).

In 2018, a phase I/II trial was initiated to evaluate the safety
and efficacy of these cells through intrathecal delivery. A possible
benefit seems to last at least 6 months with apparent safety (92).
A phase II is required to evaluate long-term efficacy and safety.

Finally, recent phase I/II trials showed safety and feasibility of
intravenous and intrathecal transplantation of autologous bone
marrow MSCs (94). Indeed, no adverse events were reported
and the ALS-FRS score and the force vital capacity percentage
were significantly reduced. Additional trials with bigger cohort
are needed.

To conclude, stem cells-based therapy as a future therapy to
treat ALS patients is premature due to the lack of results. As for
the protein infusion, some questions need to be considered:
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- The delivery method
- The timing of intervention
- The number of cells to transplant to obtain a

therapeutic efficacy
- The capacity of transplanted cells to migrate to the area of

interest and to mature in the hostile environment
- The evaluation of the long-term efficacy

Nevertheless, trophic factors remain essential for neuronal
maintenance and survival and remain a promising candidate
to treat ALS patients. Another source of those factors
can be the natural healing system, namely the platelet
lysate, and a continuous infusion into the brain by
intracerebroventricular (ICV) injection can be a route of
administration, avoiding the potential problem with the blood
brain barrier crossing.

HOW TO IMPROVE GROWTH FACTORS

THERAPEUTICS IN ALS: A NEW

THERAPEUTIC APPROACH BASED

ON THE HUMAN PLATELET LYSATE

The lack of clinical efficacy of single NTF infusion, despite a
good diffusion, required increasing the dose to a point where
they finally induced poor tolerance (i.e., µg). A single NTF
was therefore unable to induce the complex set of signaling
pathways required to promote efficient neuroprotection. Platelets
constitute abundant, natural sources of physiological balanced
mixtures of many growth factors [e.g., Platelet Derived Growth
Factor (PDGF), VEGF, IGF-1, EGF, or TGFβ) (95) and are used to
enhance wound healing and tissue repair (96). In addition, they
express adhesion molecules, secret chemokines (97) giving thus
neuroinflammatory property to the platelate lysate that could
be of an additional interest in ALS therapy. Interestingly, it
was demonstrated that ICV injection of human platelet lysates
significantly reduced infarct volumes in rats with permanent

middle cerebral artery occlusion, improved motor function
and promoted endogenous neural stem cells proliferation (98).
Similar results were obtained with platelet rich plasma in
ischemic rats (99). Moreover, intranasal (IN) administration
of platelet lysates was demonstrated to be neuroprotective in
Alzheimer and Parkinson’s disease animal models (100, 101). To
pursue with the neuroprotective potential of platelets lysate in
neurodegenerative diseases, we developed a heated low protein
human purified platelet lysate (HPPL) preparation, compatible
with ICV and IN intermittent administration, to deplete
fibrinogen, avoid thrombogenic, and proteolytic activities. We
demonstrated its neuroprotective effect in in vitro and in
vivo model of Parkinson’s disease and its anti-inflammatory
properties (102). To extend the concept to ALS, HPPL was
tested on a motoneuron-like model and strongly protected from
apoptosis and oxidative stress (103). Higher neuroprotection
was obtained with HPPL compare to single growth factor or
combination of 4 (PDGF, BDNF, BFGF, VEGF) and involved
specific signaling pathway such as Akt and MEK (103). These
results give a real hope for neuroprotective therapy and need to be
confirmed in in vivo ALS model with ICV or IN administration
of HPPL.
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Amyotrophic lateral sclerosis (ALS) is a disease of which the underlying etiology and

pathogenesis are unknown. Numerous data indicate an important role of the immune

system and mitochondrial function in the disease. Primary biliary cirrhosis (PBC) is an

autoimmune liver disease resulting from a combination of genetic and environmental

risk factors. Patients with PBC develop innate and adaptive immune reactions against

mitochondrial antigens. Therefore, common mechanisms could exist in both diseases.

We present two cases of ALS with PBC to explore the relationship between the two

diseases from the immunological and mitochondrial aspects. Further attention should

be given to immune-modulating therapy in ALS patients.

Keywords: amyotrophic lateral sclerosis, primary biliary cirrhosis, immunological mechanism, mitochondrial

mechanism, ursodeoxycholic acid

INTRODUCTION

Primary biliary cirrhosis (PBC) is an autoimmune cholestatic disease characterized by the
non-suppurative destruction of intrahepatic small bile ducts which can eventually progress to liver
cirrhosis (1). It mainly affects middle-aged females, and the female to male ratio is about 10:1 (1).
A diagnostic serum marker for PBC is an anti-mitochondrial antibody (AMA) which is positive in
more than 90% of the patients (2). Autoimmunity plays an important role in the pathogenesis of
PBC (3, 4).

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder involved with
the upper (brain, brainstem, and spinal cord) and lower (cranial nerve nuclei, anterior horn cells
of spinal cord) motor neurons (5). It is characterized clinically by progressive muscle atrophy,
muscle weakness, and respiratory insufficiency with a fatal course (6, 7). The median survival
duration is 3–5 years after the onset of the disease, while 10% of the patients can survive for over
10 years (8). The proposed hypotheses for the pathogenesis include glutamate excitotoxicity (9),
mitochondrial dysfunction (10), gene defects (11), free radical-mediated oxidative stress (12) and
immunological mechanism (13). To date, many patients with ALS and immune diseases (multiple
sclerosis, myasthenia gravis, etc) have been reported (14), but ALS concomitant with PBC hasn’t
been reported.

Here we firstly report two cases of ALS with PBC and analyze the possible relationship between
them, mainly from immunological, and mitochondrial aspects.
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CASE REPORTS

Case 1
A 47-year-old female was admitted to the office with limbs
weakness and dysarthria in February 2017. She firstly presented
with left upper limb weakness in October 2016. Her symptoms
deteriorated rapidly, and 2 months later, she suffered from
mild dysarthria and sometimes choking while drinking water,
difficulty in lifting and fastening buttons, and walking <100
meters. She reported no weight loss during the last 4 months. She
had no remarkable past medical history.

During hospitalization, her vitals were stable. On neurological
physical examination, the patient had no obvious muscular
atrophy but had fasciculations noted in bilateral bicep and tricep
muscles. Power was Medical Research Council (MRC) grade
3/5 in the bilateral upper extremities and 4/5 in the lower
extremities. Tendon reflexes were 4+ in all extremities. She
had hyperpharyngeal reflex and palmomental reflex. Bilateral
Hoffman signs were positive. Neither sensory nor cerebellar
dysfunction were identified. A complete blood count, serum
biochemical studies, thyroid function, tumor marker showed
normal results. Hepatitis panel was negative. Antinuclear
antibody (ANA) was positive at a titer of 1:3,200 and AMA
was over 1:40. The laboratory test showed that levels of
immunoglobulins were within normal limits and alexins were
almost within normal range. To rule out Sjogren’s syndrome,
we ordered Saliva Flow Rate (SFR), corneal fluorescein staining
(CFS), breaking up time (BUT), Schirmer I test (SIT),
anti-Sjogren syndrome A (SSA) antibody, and anti-Sjogren
syndrome B (SSB) antibody. The results were all negative. The
magnetic resonance imaging (MRI) of the brain and cervical
spinal cord showed no abnormalities. Her chest computed
tomography (CT) showed multiple subpleural inflammatory
nodules. Considering the absence of cough and fever, we advised
her to have a regular examination. The upper abdominal
CT was suggestive of splenomegaly and liver cirrhosis. It
showed that the morphology of the liver was abnormal, the
velamen was not smooth, and the surface was rough. Multiple
enlarged lymph nodes were observed near porta hepatis.
No expansion or stenosis was observed in the intrahepatic
and extrahepatic bile ducts. Electromyography (EMG) showed
active and chronic denervation in all limbs, and in the
sternocleidomastoid and paraspinal muscles. Nerve conduction
studies (NCS) revealed decreased compound muscle action
potential (CMAP) amplitudes of right median and ulnar nerve.
Ursodeoxycholic acid (UDCA), a hydrophilic tertiary bile acid
as the first line treatment of PBC, and riluzole were prescribed.
In the late follow-up by telephone, she showed bed-bound at
home, dysphagia, and weight loss of 40 kg a year after the
symptom’s onset.

Case 2
The second case was a 64-year-old woman diagnosed with PBC
in June 2010, when she started UDCA 750 mg/d. Some months
later, she was started on endoscopic sclerotherapy and injection
of cyanoacrylate glue for gastric fundal varices. In December
2017, gastroesophageal varicose vein ligation and stripping were

demonstrated for uncontrolled gastric bleeding. She had a 3-
year history of type 2 diabetes mellitus, treated by keeping
an appropriate diet for blood sugar. She developed dysphonia
and weakness of the hands 3 months before admission. The
symptoms gradually progressed. Twomonths later, she presented
weakness in her lower limbs, therefore, she was admitted to our
hospital in May 2018. She had lost 10 kg of weight over 3 months.
She had no family history of neurodegenerative diseases.

Upon physical examination, muscle atrophy was observed
bilaterally in the first dorsal interosseous muscles and the thenar,
hypothenar muscles. Fasciculations and atrophy were evident in
the tongue. Power was MRC grade 3/5 in the upper limbs and 4/5
in the lower limbs bilaterally. Deep tendon reflexes were brisk in
all extremities. Positive bilateral Hoffman signs and hyperreflexia
in the pharyngeal muscles were observed. No abnormality was
observed in sensations and cerebellar function. AMA (>1:40)
and ANA (1:320) were both positive. Hepatitis markers were
negative, so were tumor markers. The levels of white blood
cell count (1.80∗109/L), red blood cell count (3.11∗1012/L),
hemoglobin (105 g/L), and platelet (30∗109/L) all decreased. The
biochemical results showed aspartate aminotransferase (AST)
41.3U/L and total bilirubin (TBIL) 26.0 umol/L. Baseline data of
the patient was as follows (Table 1). There were some lacunar
infarctions in bilateral frontal, temporal lobes, and left basilar
ganglia on brain MRI. A thyroid ultrasound scan showed small
nodules on the left and right lobes (Figure 1). Clear lungs were
observed on her chest CT. Abdominal ultrasound visualized
out of proportion hepatic lobes, mild heterogeneous decrease in
echogenicity of the portal vein consistent with mural thrombus,
splenomegaly (Figure 2) and dilated splenic vein, neither biliary
obstruction nor space-occupied lesions. The CMAP amplitudes
of right median and ulnar nerve decreased on NCS. EMG
revealed florid active denervation changes in bulbar muscles and
all limbs. Lumbar puncture was not executed because of her low
platelet count. She was given UDCA, riluzole, and edaravone
(Radicava), a new medication for ALS in 2017 approved by Food
and Drug Administration (FDA) (15). At the follow-up, she had
indwelled gastric tube and difficulty in ambulation in 8 months.

DISCUSSION

Our patients both presented dysarthria and limbs weakness.
One was a limb onset, while the other was bulbar. The disease
courses were short. On physical examination, pharyngeal reflex,
and tendon reflexes were active or hyperactive. EMG showed
denervation changes in all 4 body segments including bulbar,
cervical, lumbar, and paraspinal. The clinically-definite diagnosis
of ALS requires the presence of combined upper (UMN) and
lower motor neurons (LMN) signa, and/or symptoms in at least 3
body segments (16). Therefore, our patients were consistent with
clinically-definite ALS.

The diagnosis of PBC requires the exclusion of other liver
diseases, no evidence of extrahepatic biliary tract obstruction
on imaging, and two of the three criteria are met:(i) AMA titer
higher than 1:40, (ii) alkaline phosphatase (ALP) over 1.5 times
normal upper limit for 24 weeks at least, (iii) characteristic
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TABLE 1 | Baseline data of the patient in case 2.

Laboratory values

Blood routine Hepatitis screening

White blood cell count, 1.80*109/L

(3.50–9.50)

HBsAg ELISA Negative

Red blood cell count,

3.11*1012/L(3.80–5.10)

Anti-HCV ELISA Negative

Hemoglobin, 105 g/L (115–150) Anti-HBc Total Negative

Platelet, 30*109/L(125–350) HIV ELISA Negative

Coagulation routine Immune indices

International normalized ratio, 1.02

(0.80–1.20)

Immunoglobulin G, 15.5 g/L (7–16)

Activated partial thromboplastin time,

28.9s (25.4–38.4)

Immunoglobulin A, 2.21 g/L (0.7–4.0)

Thrombin time, 13.1 s (10.3–16.6) Immunoglobulin M, 1.22 g/L (0.4–2.3)

Biochemistry Antinuclear antibody, Positive (1:320)

Aspartate aminotransferase, 41.3 U/L

(13–35)

Anti-mitochondrial antibody, Positive

(>1:40)

Alanine aminotransferase, 31.4 U/L

(7–40)

Alexin C3, 0.74 g/L (0.80–1.60 g/L)

r-Glutamyltransferase, 101 U/L (7–45) Alexin C4, 0.18 g/L (0.16–0.38 g/L)

Alkaline phosphatase, 112 U/L

(50–135)

Thyroid function

Albumin, 39.7 g/L (40–55) Free triiodothyronine, 4.15 pmol/L

(2.76–6.45)

Total bilirubin, 26.0 umol/L (3.4–17.1) Free thyroxine, 12.80 pmol/L

(8.75–22.00)

Creatinine, 48.1 umol/L (41–81) Thyroid-stimulating hormone, 2.92

mIU/L (0.35–4.31)

Tumor marker Other indicators

Alpha fetoprotein, <0.61

ng/ml(0–10.9)

Blood ammonia, 35 umol/L(9–30)

Carcino-embryonic antigen, 2.05

ng/ml(0–10)

Glycated hemoglobin, 8.00%

(4.00–6.00)

Glycogen antigen CA125, 34.78

U/ml(0–35)

Folic acid, 3.43 ng/ml (>3.38)

Glycogen antigen CA199, 35.3 U/ml

(0–37)

VitaminB12, 640 pg/ml (211–911)

liver histology, especially non-suppurative cholangitis and
interlobular bile duct injury (17, 18). Our first patient was a
middle-aged female diagnosed with PBC during hospitalization.
Considering her negative results of hepatotropic virus, we ruled
out cirrhosis caused by long-term hepatotropic virus infection.
And no obstruction was found in extrahepatic bile duct on
abdominal CT. AMA was positive in 95% of patients with PBC
and ANA was 70%. In our case, AMA was positive (> 1:40)
and ANA tire reached up to 1:3,200. The results of SFR, CFS,
BUT, SIT, rheumatism factor, and lupus anticoagulant were all
negative which excluded Sjogren’s syndrome, systemic lupus
erythematosus, and rheumatoid arthritis. The patient refused a
liver biopsy. It had been found that up to 0.5% of the population
in screening studies were AMA positive, typically, 50% of those
having normal liver biochemistry (19). Our patient was initially
diagnosed as PBC though her liver enzymes were normal. The
second case had a history of PBC, and started a long-term use

FIGURE 1 | Hypoechoic nodule of right lobe of thyroid (white arrow).

FIGURE 2 | Splenic enlargement (white asterisk).

of UDCA. She presented end-stage liver performance, like liver
cirrhosis, portal hypertension, hypersplenism, bleeding disorder,
esophageal-gastric varices, and abnormal blood ammonia risk of
hepatic encephalopathy (20).

It had been reported that 70% of PBC patients had
extrahepatic diseases, but none with ALS. One study showed that
PBC patients with overlapping characteristics of autoimmune
hepatitis (AIH) would progress rapidly to cirrhosis and liver
failure (21). Whereas, another study suggested that patients with
superimposed features were more prone to develop esophageal
varices, ascites and liver failure compared with typical PBC
patients (22). Therefore, we analyzed the disease characteristics
of ALS overlapped with PBC: (i) both patients were female,
possibly due to the significant female susceptibility to PBC (1),
and some scholars suggested that the gender difference might
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be related to the presence of genes to control immune tolerance
on X chromosome (23) and sex hormone levels (24), (ii) both
had a short course of disease, 4 and 3 months, respectively, (iii)
clinical signs were involved with upper and LMN, and EMG
showed wide denervation, (iv) in view of the follow-up, they
both progressed quickly. The second patient might progress
more rapidly than the first one as a consequence of end-stage
liver disease.

The incidence of ALS ranges between 1.5 and 2.5 for 100,000
per year in the general population of the world (25) and the
incidence of PBC is 4–40 per 100,000 people (26). Thus, the
probability of co-occurrence of the two diseases in a single
patient is statistically speaking very low, which may indicate
common unknown mechanisms between the two diseases. The
robust evidence points to a crucial role of urinary tract infection
(UTI) caused by Escherichia coli (E. coli) in increasing the risk
of PBC. E. coli infection is a key factor in the breaking of
mitochondrial autoantigen immune tolerance, leading to the
generation of specific AMA (27). Human PDC-E2 shares a
significant homology with E. coli PDC-E2 which may reason for
it. Besides, hepatocytes and bile epithelial cells in the liver of
PBC patients express large amounts of human leucocyte antigen
classes I and II molecules. Therefore, both CD4+ and CD8+
autoreactive T cells also play a crucial role in PBC (28). Thus, the
pathogenesis of PBC is associated with the interaction between
mitochondrial autoantigens and anti-mitochondrial antibodies
and T cell-mediated toxicity (29). Changes in the immune
system have also been observed in the spinal cord and cortical
motor areas of ALS patients (30). The activity of CD8+ T
cells could be found in both PBC and ALS. In the early stage,
T cell subsets and M2 microglias are activated to prevent the
neurodegenerative process. In the late stage, the activity of M1
microglia and CD8+ increases leading to decreased numbers
of regulatory T cells. To some extent, the neurotoxic effect
exceeds the neuroprotective effect, which results in the loss of
neurons (31, 32). Association between the two diseases may be
driven by dysregulation of the immune system particularly in
CD8+ T cells.

The cumulative data shows that structural and functional
abnormalities of mitochondria play an important role in ALS
(33–35). PBC ensues from loss of mitochondrial antigen immune
tolerance, and the mitochondrial autoantigens are found in all
nucleated cells. Although it’s said that the attack is predominantly
for PDC-E2 expressed by bile epithelial cells, it is still under
debate (36). Therefore, we speculate that immune attack of
PBC may also impair other parts of the body, like motor
neurons. Thus, (i) the normal process of electron transport
chains is disturbed, causing less production of ATP (37), (ii)
the destruction of Ca2+ homeostasis, resulting in synaptic
dysfunction and neuronal damage (38), (iii) the apoptotic
signaling is perturbed (39), leading to ALS. The hypothesis
remains to be demonstrated.

With regards to treatment, UDCA is the approved medical
treatment to reduce progression of disease in PBC and riluzole
in ALS. However, there is no literature on specific medical doses

in patients with ALS-PBC overlap syndrome. We recommended
our patients to take the medications in regular doses and
reexamine one time every 3 months, because most liver enzyme
levels are elevated within the first 3 months of riluzole treatment
(40). The patients responded satisfactorily except for intermittent
nausea in the first patient. Her nausea was relieved by taking
the drug in combination with food probably due to less abrupt
rises in plasma concentrations. Our case report fills a gap in
the researches on ALS-PBC overlap syndrome but the treatment
about it has yet to be further studied. PBC is associated with
immune-mediated destruction of intrahepatic bile ducts. In ALS,
the immune system also plays a pivotal role. UDCA, as an
immunomodulatory agent, protects cholangiocytes from bile
acid toxicity in PBC patients and takes therapeutic effect on ALS
(41). Recently, it has been showed that tauroursodeoxycholic acid
(TUDCA) can slow progression in ALS patients (42). Compared
with the first patient, our second one developed ALS after a
long time with PBC, which may be related to her use of UDCA.
Thus, we speculate that immune-modulating therapy for prior
ALS, like UDCA, may have some protective or suppressive
effect to delay the onset of motor neuron damage. However,
it should be noted that this is still speculation based on a
clinical phenomenon, and further studies are needed to verify
the hypothesis.

CONCLUSION

The coexistence of ALS and PBC indicates a relationship
between the two diseases from immunological andmitochondrial
aspects. The pathomechanisms of them and the effects of
immune-modulating therapy at an early stage before onset of
ALS symptoms remain to be elucidated combined with more
clinical data.
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Amyotrophic Lateral Sclerosis (ALS) currently lacks a robust and well-defined biomarker
that can 1) assess the progression of the disease, 2) predict and/or delineate the various
clinical subtypes, and 3) evaluate or predict a patient’s response to treatments. The
kynurenine Pathway (KP) of tryptophan degradation represent a promising candidate
as it is involved with several neuropathological features present in ALS including
neuroinflammation, excitotoxicity, oxidative stress, immune system activation and
dysregulation of energy metabolism. Some of the KP metabolites (KPMs) can cross the
blood brain barrier, and many studies have shown their levels are dysregulated in major
neurodegenerative diseases including ALS. The KPMs can be easily analyzed in body
fluids and tissue and as they are small molecules, and are stable. KPMs have a Janus
face action, they can be either or both neurotoxic and/or neuroprotective depending
of their levels. This mini review examines and presents evidence supporting the use of
KPMs as a relevant set of biomarkers for ALS, and highlights the criteria required to
achieve a valid biomarker set for ALS.

Keywords: kynurenine pathway, amyotrophic lateral sclerosis, biomarker development, neurodegeneration,
motor neuron disease, neuroinflammation and neurodegeneration, tryptophan

AMYOTROPHIC LATERAL SCLEROSIS

The diagnosis of amyotrophic lateral sclerosis (ALS) can only be fully confirmed by the post mortem
detection of ALS-associated protein inclusions such as TDP-43 and SOD1 (Turner et al., 2013).
Coupled with the spectrum of symptoms seen in the clinical presentation of ALS, the diagnosis
of ALS relies on presentation to a neurologist and the elimination of other neurological and/or
muscular diseases such as Kennedy’s disease or myasthenia gravis, based on the El Escorial criteria
that requires the assessment of disease progression (Brooks et al., 2000; Lambrechts et al., 2007; Al-
Chalabi et al., 2016; Hardiman et al., 2017). This results in the average time from onset of symptoms
after diagnosis of ALS being 10 months, in a disease with survival of 24–48 months (Chiò et al.,
2009; Hardiman et al., 2017).

Abbreviations: 3HAA, 3-hydroxyanthranilic acid; 3HK, 3-hydroxykynurenine; 5-HT, serotonin; AA, anthranilic acid; ALS,
amyotrophic lateral sclerosis; BBB, blood brain barrier; BH4, tetrahydrobiopterin; ChAT, choline acetyltransferase; CNS,
central nervous system; CSF, cerebrospinal fluid; GCMS, gas chromatography mass spectrometry; HPLC, high performance
liquid chromatography; IHC, immunohistochemistry; KP, kynurenine pathway; KPM, KP metabolites; KTR, kynurenine:
tryptophan Ratio; KYN, kynurenine; KYNA, kynurenic acid; LC-MS/MS, liquid chromatography tandem mass spectrometry;
MS, multiple sclerosis; NAD+, nicotinamide adenine dinucleotide; NMDA, N-methyl-D-aspartate; PIC, picolinic acid;
QUIN, quinolinic acid; QUINA, quinaldic acid; SOD1, Cu/Zn superoxide dismutase; TRP, tryptophan; XA, xanthurenic acid.

Frontiers in Neuroscience | www.frontiersin.org 1 September 2019 | Volume 13 | Article 1013360

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01013
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.01013
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01013&domain=pdf&date_stamp=2019-09-20
https://www.frontiersin.org/articles/10.3389/fnins.2019.01013/full
http://loop.frontiersin.org/people/528254/overview
http://loop.frontiersin.org/people/148622/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01013 September 20, 2019 Time: 15:33 # 2

Tan and Guillemin Kynurenine Pathway Metabolites as Biomarkers for ALS

Defined as characteristic that is objectively measured
and evaluated as an indicator of normal biological process,
pathogenic process, or a pharmacogenomic process to
therapeutic intervention, biomarkers include genomics,
proteomics, metabolomics, neurophysiology, and neuroimaging
(Ganesalingam and Bowser, 2010; Turner et al., 2011). The
lack of a reliable biomarker for ALS hampers a rapid, definitive
diagnosis of disease, determination of ALS subtypes, monitoring
of disease progression in patients, and limits the ability of
clinicians and scientists to achieve an unbiased assessment of the
efficiency of new treatments (Turner et al., 2009; Ganesalingam
and Bowser, 2010). For patients and their families, a sensitive
and specific biomarkers could allow detection of ALS at early
stages, and allow the prognosis of the clinical subtype of ALS
to predict disease aggressivity and subtype (Ganesalingam and
Bowser, 2010; Al-Chalabi et al., 2016). This research gap in
biomarker discovery and development for ALS comes not only as
an impediment for patients and their families, but also at a cost
to the pharmaceutical industries, through the monitoring of drug
effects and disease progression in clinical trials. In particular, the
repeated failure of drugs demonstrating clinical efficacy, and the
inability to detect improvements, or non-improvements rapidly
(Aggarwal and Cudkowicz, 2008; Ganesalingam and Bowser,
2010; Petrov et al., 2017).

THE KYNURENINE PATHWAY

One of the hallmarks of ALS is the presence of
neuroinflammation and the kynurenine pathway (KP) is
known to be strongly induced by inflammatory cytokines such
as IFN-γ (McGeer and McGeer, 2002; Moffett and Namboodiri,
2003; Chen et al., 2010; Oxenkrug, 2011). The KP is the
major route of tryptophan (TRP) catabolism, and feeds into
the serotonin pathway, immune related tetrahydrobiopterin
(BH4) pathway, glycolysis, and de novo nicotinamide adenine
dinucleotide (NAD+) pathway (Figure 1) (Stone, 1993; Grant
et al., 2010; Oxenkrug, 2013; Sasaki, 2019); linking it to fatigue,
depression, inflammation, and decrease in energy metabolism
(Sandyk, 2006; Grant et al., 2010; Oxenkrug, 2013).

The essential amino acid tryptophan originates from the
diet, if which up to 85% is bound to albumin in blood
circulation, and 99% metabolized in the liver (Quagliariello
et al., 1964; Yuwiler et al., 1977; Badawy, 2017). Activation of
the KP is achieved by the triggering of the first enzyme of
the pathway, indoleamine 2,3 dioxygenase (IDO1) (Guillemin
et al., 2005c; Badawy, 2017). This results in the production
of several neuroactive metabolites such as the excitotoxins
quinolinic acid (QUIN), and 3-hydroxykynurenine (3HK) by
activated monocytic cells (Guillemin et al., 2003b); and the
neuroprotective kynurenic acid (KA) and picolinic acid (PIC)
by astrocytes and neurons, respectively (Heyes et al., 1988;
Beninger et al., 1994; Guillemin et al., 2001, 2007; Badawy,
2017). The KP is active in most cell types, particularly in the
liver (Takikawa et al., 1986; Heyes et al., 1997), and is highly
activated in monocytic cells during inflammation (Jones et al.,
2015). Only a limited number of KP can cross the blood

brain barrier (BBB). TRP, Kynurenine (KYN), 3HK, anthranilic
acid (AA) are actively transported by the large neutral amino
acid carrier system; and others via passive diffusion (Fukui
et al., 1991; Ruddick et al., 2006). This indicates that peripheral
activation of the KP by inflammation can be translocated to
the central nervous system (CNS), altering immune regulation
and increasing neurotoxicity (Owe-Young et al., 2008). In the
CNS, most cells contain the complete set of KP enzymes, and
are capable of degrading TRP (Guillemin et al., 2005c; Lee et al.,
2017). However, neurons, astrocytes and oligodendrocytes are
incapable of synthesizing QUIN, only activated microglia and
infiltrating macrophages produce QUIN (Guillemin et al., 2000;
Lim et al., 2007).

The concept of using kynurenine pathway metabolites (KPMs)
as markers for diseases dates back to the 1950s (Musajo
et al., 1955; Tompsett, 1959), where excretion of KPMs were
observed in the urine of patients diagnosed with cancer,
rheumatoid arthritis, cardiovascular events and fevers (Musajo
et al., 1955; Takahashi et al., 1956; Tompsett, 1959; McMillan,
1960; McManus and Jackson, 1968; Mawatari et al., 1995). More
recently, the KP is investigated mostly in other liquid biopsies
such as serum and plasma (Lewitt et al., 2013). The levels of
the KPMs has been shown to be well correlated between the
cerebrospinal fluid (CSF) and blood (Curzon, 1979; Chen et al.,
2010; Myint, 2012; Jacobs et al., 2019), however, they are not
always identical; and only few studies (Curzon, 1979; Widner
et al., 2002; Chen et al., 2010; Zuo et al., 2016; Havelund
et al., 2017; Lim et al., 2017; Jacobs et al., 2019) correlate the
KP levels in different biofluids from the same patients at the
same time. KPMs have been historically measured using thin
layer chromatography, and detected under UV light, or via
radioactive metabolites (Musajo et al., 1955, 1956; McMillan,
1960; McManus and Jackson, 1968; Shibata, 1988). Today, KPMs
are more often measured using more sensitive methods and
equipment such as high performance liquid chromatography
(HPLC), Gas chromatography mass spectrometry (GCMS), and
liquid chromatography tandem mass spectrometry (LC-MS/MS)
(Heyes and Markey, 1988; Bizzarri et al., 1990; Smythe et al.,
2003; de Jong et al., 2009; Pedersen et al., 2013; Miller et al.,
2018). The most commonly measured KPMs are TRP, KYN,
and KYNA, and are often presented as ratios. As they are small
molecules, the KPMs such as KYN, KYNA, Xanthurenic acid
(XA) and AA have been shown to be stable. With the exception
of 3-hydroxy anthranilic acid (3HAA), which is known to be
particularly unstable over time and sensitive to light (Darlington
et al., 2010; Midttun et al., 2014).

Ex vivo, the KPMs have been measured using
immunohistochemistry (IHC) in tissue sections (Guillemin
et al., 2005a; Steiner et al., 2011; Lim et al., 2013). More
recently, techniques such as tissue-based Matrix-assisted laser
desorption/ionization (MALDI) Mass spectrometry Imaging
(MSI) and tissue microarray has been used to not only detect, but
localize the presence of TRP and KYN in tumors ex vivo (Puccetti
et al., 2015; Ait-Belkacem et al., 2017). This specific localization
will allow for focal observation of KPMs changes within tissue,
and targeted applications of monitoring and altering of the KP if
this can be translated in vivo.
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FIGURE 1 | The Kynurenine Pathway and its downstream pathways of Serotonin/Melatonin, BH4, Glycolysis, and NAD+. Tryptophan is converted into serotonin and
melatonin, that regulate mood and sleep. The tetrahydrobiopterin (BH4) pathway interacts with the KP in three ways, (1) the sharing of the enzyme TPH that degrades
tryptophan, (2) the inhibition of a key BH4 pathway enzyme, sepiapterin reductase, (3) both BH4 and KP are induced by inflammatory cytokines. Tryptophan also
feeds into the glycolysis cycle via ACMS, affecting ATP production. Finally, the KP is the de novo synthesis pathway of NAD+ which is associated with cellular energy,
repair and fatigue. The key KPMs are bolded, neurotoxic metabolites represented in red, neuroprotective metabolites in green, and dual functioning in blue.

Using the levels of KPMs, the activity of their associated
enzymes can be derived as a proxy of the concentrations of direct
derivatives of the metabolites as a ratio (Darlington et al., 2007;
Sathyasaikumar et al., 2011; Lim et al., 2013) – most commonly
measuring IDO1 via the Kynurenine: Tryptophan ratio (K/T
ratio; KTR); or via direct enzymatic assays (Sathyasaikumar
et al., 2011). Although few studies have looked at the
direct correlation between metabolite ratio and enzymatic
concentrations (Baran et al., 1999).

In vitro, neurotoxic KPMs such as QUIN and 3HK, have
been shown to induce neurodegeneration and neuronal cell death
through excitotoxicity, N-methyl-D-aspartate (NMDA) receptor
antagonism, increased glutamate release, and the production of
reactive oxygen species (Kim and Choi, 1987; Koh and Choi,
1988; Khaspekov et al., 1989; Nakagami et al., 1996; Shoki
et al., 1998; Guidetti and Schwarcz, 1999; Leipnitz et al., 2007;
Guillemin, 2012b; Kalonia et al., 2012; Pierozan et al., 2015).
The neurotoxic mechanisms of QUIN is well established, and
overlaps with mechanisms of neurodegeneration in ALS such
as excitotoxicity, hyperphosphorylation, and protein dysfunction
(Pierozan et al., 2010; Guillemin, 2012a; Lee et al., 2017). Some of
the KPMs such as KYNA, PIC, and 3HAA have neuroprotective
and immunomodulatory properties (Foster et al., 1984; Behan
and Stone, 2000; Grant et al., 2009; Krause et al., 2011; Lugo-
Huitrón et al., 2011). Other KPMs such as 3HAA, have both

neurotoxic and neuroprotective functions depending on their
relative concentrations (Colín-González et al., 2013; Pérez-
González et al., 2017). The KPMs can influence each other
levels (Perkins and Stone, 1982; Jhamandas et al., 1990), and the
balance of KPMs is crucial for managing the equilibrium between
neurotoxicity and neuroprotection. The dysregulation of KPMs,
especially excessive QUIN production, has been correlated with
variations of other neuroinflammatory markers (Heyes et al.,
1992; Guillemin et al., 2003a; Kalonia et al., 2011), making the
modulation of KPMs a plausible target for the regulation of the
immune response within the CNS (Stone et al., 2012; Bohár et al.,
2015; Jacobs and Lovejoy, 2018).

Using these modern techniques, the KP has been investigated
as a marker for progression, severity, and prognostic for diseases
such as systemic lupus erythematosus (Perl, 2015; Åkesson et al.,
2018), cancers (Jin et al., 2015; Zuo et al., 2016; Xie et al.,
2017; Huang et al., 2018; Liu et al., 2018; Khan et al., 2019),
cardiovascular disease (Sun et al., 2013; Zuo et al., 2016), lung
cancer and chronic obstructive pulmonary disease (Chuang et al.,
2014; Zinellu et al., 2018), chronic kidney disease and diabetes
(Hirayama et al., 2012; Zhao, 2013), acquired immunodeficiency
syndrome (AIDS) and HIV-dementia (Fuchs et al., 1990; Heyes
et al., 1991; Sardar et al., 2002; Guillemin et al., 2005b; Favre
et al., 2010; Lee et al., 2016; Wang et al., 2019), pancreatic
cysts (Park et al., 2013), acute myeloid leukemia and lymphomas
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(Giusti et al., 1996; Finger et al., 2017), vitamin levels (Midttun
et al., 2014), tuberculosis (Weiner et al., 2012; Feng et al.,
2015), malaria (Medana et al., 2003), irritable bowel syndrome
(IBS) (Clarke et al., 2012; Gupta et al., 2012), rheumatoid
arthritis (Spiera and Vallarino, 1969; Schroecksnadel et al., 2003),
growth deficits (Kosek et al., 2016), obesity (Mangge et al.,
2014), and preeclampsia (Nilsen et al., 2012). In the nervous
system, the KP has been shown to associate with pathologies
such as stroke (Darlington et al., 2007), schizophrenia (Müller
and Schwarz, 2006; Kegel et al., 2014; Oxenkrug et al., 2016),
Parkinson’s (Ogawa et al., 1992; Widner et al., 2002; Lewitt et al.,
2013; Havelund et al., 2017), neuropsychiatric disorders such
as depression and stress (Mackay et al., 2009; Gabbay et al.,
2010; Olsson et al., 2010; Steiner et al., 2011; Kocki et al., 2012;
Erhardt et al., 2013; Comai et al., 2016; Küster et al., 2017;
Huang et al., 2018; Kuwano et al., 2018), suicide (Erhardt et al.,
2013; Bay-Richter et al., 2015; Brundin et al., 2016), multiple
sclerosis (Rejdak et al., 2002; Lim et al., 2017), Alzheimer’s
disease (Guillemin et al., 2005a; Hartai et al., 2007), Huntington’s
disease (Schwarcz et al., 1988; Beal et al., 1990; Stoy et al., 2005;
Byrne and Wild, 2016), brain tumors (Adams et al., 2012, 2014),
Autism Spectrum Disorders, and Attention Deficit Hyperactivity
Disorder (ADHD) (Aarsland et al., 2015; Bryn et al., 2017). More
recently, studies have demonstrated that the KPMs could be used
for the prognosis of MS, and also to differentiate between disease
subtypes (Aeinehband et al., 2015; Lim et al., 2017).

AMYOTROPHIC LATERAL SCLEROSIS
AND KYNURENINE-ASSOCIATED
PATHWAYS

The levels of KPMs are known to be dysregulated in the
serum, CSF, and tissue of ALS patients (Ilzecka et al., 2003;
Chen et al., 2010) (Table 1). The first study by Ilzecka et al.
(2003) investigated the presence of KYNA in ALS patients and
matching healthy controls. Broadly, the results did not show any
significant differences in the levels of KYNA between patients
and controls in either serum or CSF. However, CSF KYNA
was higher in (1) patients with severe clinical status; and (2)
in patients with bulbar onset, compared to patients with limb
onset. The authors concluded that this increase likely associated
with the neuroprotective role of KYNA. The authors also showed
that the concentrations of KYNA in CSF and in serum were
not correlated, indicating that KYNA in the CNS is mostly
produced in the brain by astrocytes (Guillemin et al., 2001), and
this confirms that KYNA is able to cross the BBB and may be
imported from the PNS. This is supported by the presence of
astrogliosis as part of the neuroinflammatory features found in
ALS brain. In 2010, our team reported increased levels of TRP,
KYN, and QUIN in both CSF and serum. This study did not
investigate KYNA or astrogliosis as Ilzecka et al. did, however,
does confirm the neuroinflammatory status in ALS patients,
with presence of activated microglia and activation of the KP in
the motor cortex.

Other studies have indirectly reported associations between
ALS and the KPMs. Jhamandas et al. (1990) showed that

injections of the excitotoxin QUIN and 3HAA, directly into
the rat brain, triggers a decrease in choline acetyltransferase
(ChAT) activity, and that KYNA, PIC, quinaldic acid (QUINA),
and AA co-injections could antagonize the QUIN-induced
neurotoxicity. In addition, QUIN injections were associated
with neuronal loss, but also glial proliferation, highlighting the
important roles played by KPMs in neuroinflammation and glial
activation in ALS.

Aside from the KP, tryptophan is also metabolized by
pinealocytes into serotonin (5-HT), and then melatonin, a
serotonin downstream metabolite. Pinealocytes are external to
the BBB, and thus directly affected by the KP in the periphery,
but not directly by the KP in the CNS (Ruddick et al., 2006).
Within the brain, serotonin is modulated by tryptophan levels.
A decrease in serotonin levels has been linked to depression
through tryptophan depletion (Owens and Nemeroff, 1994;
Ruddick et al., 2006; Maes et al., 2011), and with the decrease of
melatonin, and sleep disturbances, which are both symptoms in
ALS patients (Sandyk, 2006). Furthermore, motoneurons affected
in ALS are heavily innervated by serotoninergic neurons; whereas
those resistant to ALS-associated degeneration are less innervated
by serotonin neurons, possibly linking serotonin with induction
of neuronal excitability and neurodegeneration. The roles of
serotonin in ALS has been reviewed (Sandyk, 2006). Melatonin
has been shown to confer neuroprotection in ALS patients and
Cu/Zn superoxide dismutase (SOD1) mice models, likely by
decreasing systemic oxidative stress, caspase activation, and by
increasing ATP availability to increase cell repair mechanisms to
limit neuronal death (Weishaupt et al., 2006; Zhang et al., 2013).

The metabolic pathway of tryptophan degradation also feeds
into the cell’s energy metabolism through the production of
NAD+ and glycolysis. Its dysregulation increases the risk for the
development of neurodegenerative diseases as many repair and
neuroprotective systems perform at a suboptimal level. NAD+
depletion can lead to fatigue (Procaccini et al., 2016; Camandola
and Mattson, 2017; Sasaki, 2019). Altered energy metabolism
has also been investigated in ALS (Dupuis et al., 2004; Ngo
and Steyn, 2015), and has been shown to be altered by QUIN
via the respiratory chain and Krebs cycle (Ribeiro et al., 2006;
Colín-González et al., 2015). The NAD+ pathway represents
an important therapeutic avenue, and is being targeted using
precursors such as nicotinamide phosphoribosyl transferase, or
nicotinamide ribosyl directed at ageing, neurodegeneration, and
in particular, axonal degeneration (Sasaki et al., 2006; Imai and
Yoshino, 2013; Verdin, 2015; Pehar et al., 2018).

A pathway that has been understudied in ALS is the
tetrahydrobiopterin (BH4) pathway (Figure 1). Interconnected
to the KP via the modulatory effect of XA, and as a co-substrate
for tryptophan hydroxylase (Zhang et al., 2006; Cronin et al.,
2018), studies on BH4 have largely focused on inflammation,
pain and neuroprotection (Oxenkrug, 2007; Ghisoni et al.,
2015; Cronin et al., 2018). BH4 is strongly associated with
neuroinflammation, and is also an essential co-factor in nitric
oxide synthases in oxidative stress (Sakai et al., 1995; Guix
et al., 2005; Cronin et al., 2018) - both pathological features
present in ALS. Several reports have associated BH4 with
neurodegeneration, such as the differential methylation of BH4
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TABLE 1 | Summary of Kynurenine Pathway metabolite levels in controls and ALS patients collated from Ilzecka and Chen.

References KPM Population Serum CSF Trend observed

Serum CSF

Ilzecka Kyna pmol/ml Control (n = 14) 59.6 ± 20.5 2.41 ± 1.7

ALS (n = 16) 57.8 ± 35.0 1.59 ± 0.9 Mild > Severe Control < Bulbar

Bulbar (n = 6) 59.5 ± 39.3 3.61 ± 2.0 Control > Severe Bulbar > Limb

Limb (n = 10) 59.6 ± 31.2 1.70 ± 1.0 clinical status Control < Severe

Mild clinical status (n = 6) 81.6 ± 41.2 1.75 ± 09 clinical status

Severe clinical status (n = 8) 39.9 ± 14.7 3.26 ± 2.1

Chen TRP (µM) Control (n = 17) 75.0 ± 10.5 2.58 ± 0.16 Control < ALS∗∗ Control < ALS∗∗

ALS(140) 143.3 + 5.6 5.0 ± 0.2

sALS (n = 133) 133.3 ± 6.0 4.67 ± 0.19

fALS (n = 7) 166.4 ± 20.7 5.20 ± 0.87

Bulbar (n = 31) 128.2 ± 10.6 4.58 ± 0.33

Limb (n = 109) 137.3 ± 6.9 4.73 ± 0.22

KYN (µM) Control (n = 17) 2.52 ± 0.19 0.027 ± 0.00 Control < ALS∗∗ Control < ALS∗∗

ALS(140) 4.0 + 0.2 0.23 + 0.02

sALS (n = 133) 4.05 ± 0.21 0.22 ± 0.01

fALS (n = 7) 3.24 ± 0.36 0.26 ± 0.05

Bulbar (n = 31) 3.99 ± 0.29 0.22 ± 0.02

Limb (n = 109) 4.00 ± 0.24 0.21 ± 0.03

PIC (µM) Control (n = 35) 2.4 ± 0.4 0.51 ± 0.11 Control > ALS∗ Control > ALS (p = 0.09)

ALS(140) 1.4 + 0.1 0.36 + 0.03

sALS (n = 133) 1.46 ± 0.13 0.35 ± 0.07

fALS (n = 7) 1.80 ± 0.51 0.60 ± 0.21

Bulbar (n = 31) 1.45 ± 0.16 0.30 ± 0.06

Limb (n = 109) 1.49 ± 0.10 0.35 ± 0.07

QUIN (µM) Control (n = 35) 0.30 ± 0.03 0.038 ± 0.004 Control < ALS∗ Control < ALS∗

ALS(140) 0.37 + 0.02 0.053 + 0.005

sALS (n = 133) 0.38 ± 0.02 0.05 ± 0.01

fALS (n = 7) 0.36 ± 0.04 0.04 ± 0.01

Bulbar (n = 31) 0.43 ± 0.04 0.04 ± 0.01

Limb (n = 109) 0.36 ± 0.02 0.05 ± 0.01

IDO Activity (K/T ratio) Control (n = 17) 0.039 ± 0.004 0.011 ± 0.001 Control < ALS

ALS (n = 40) 0.037 ± 0.0025 0.044 + 0.002

sALS (n = 133) 0.04 ± 0.00 0.04 ± 0.00

fALS (n = 7) 0.02 ± 0.00 0.04 ± 0.01

Bulbar (n = 31) 0.04 ± 0.00 0.04 ± 0.00

Limb (n = 109) 0.04 ± 0.00 0.04 ± 0.00

Mild clinical status defined as mild to moderate according to Munsat, Severe clinical status defined as severe to terminal according to Munsat. KMP, KP metabolites;
Kyna, kynurenic acid; TRP, tryptophan; KYN, kynurenine; PIC, picolinic acid; QUIN, quinolinic acid; IDO, indoleamine dioxygenase; K/T ratio, kynurenine/tryptophan ratio;
sALS, sporadic ALS; fALS, familial ALS. ∗p < 0.05; ∗∗p < 0.0001.

in monozygotic twins discordant for ALS (Young et al., 2017);
and particularly in Parkinson’s Disease (Choi et al., 2004; Foxton
et al., 2007; Yoon et al., 2010).

With all these evidences associating the KP in ALS,
especially the unbalance between neuroprotective and neurotoxic
metabolites, the KPMs represent a relevant set of biomarkers to
characterize disease subtypes and to assess disease progression.
As mentioned previously, such biomarkers are lacking especially
for the response to treatments and for testing new drugs
in clinical trials. One of the main reasons supporting the
role of KPMs as a biomarker for ALS is its association with
neuroinflammation. The KTR (indication of IDO activity, and

thus KP activation) is a very sensitive and specific marker for
inflammation. This KTR ratio is well suited as a surrogate
progressive, or end-point marker for neuroinflammation. Apart
from CSF, body fluids such as blood and urine are easiest to
collect. Measurement of KPMs levels in blood present a rapid
and reliable set of markers as there are validated quantification
methods, and they are stable. However, there are still some
limitations using the KPMs as a biomarker for diseases.

Firstly, a potential pitfall using the KPMs as a biomarker
for neurological diseases and psychological disorders is that KP
activation is not specific of one disease as it is present in all
neuroinflammatory diseases. Thus, the KP cannot be used a
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diagnostic marker, but is relevant as a prognostic/progression
marker, and to identify disease subtypes. Diagnostically, the
KPMs still have a great potential as a confirmatory biomarker
in conjunction with a shortlisted clinical diagnosis, or subtype.
For example in MS, we were able to differentiate MS subtypes
from patients diagnosed with MS (Lim et al., 2017). Similarly,
when a patient is suspected to have ALS, or has been diagnosed
with ALS by a neurologist, the KPMs can be used to differentiate
between disease subtypes (e.g., bulbar or lower motor neuron
symptoms) and be able to differentiate between patients predicted
to be fast or slow progressors. The addition of other inflammatory
markers such as cytokines, chemokines, C Protein Reactive, etc,
in combination with KPMs would increase the sensitivity and
specificity of the biomarker set.

Secondly, the biological functions of all the KPMs are not
fully understood – it is a very complex system that is intertwined
other regulatory pathways such as BH4 (Cronin et al., 2018),
and ultimately regulate the immune system. Further, there is
only a limited direct correlation between enzymatic activities
and the metabolite formation and their ratios. This is not a
key issue in using the KP as surrogate biomarkers, as the crux
is that the KPM ratios (ratios of the bioactive metabolites)
are what confer biological activity and biomarker association;
rather than the function of measuring the enzyme activity. The
levels of KPMs in the general population has been directly
investigated by Zuo et al. (2016) (n = 7015) and Gostner
et al. (2015) (n = 100), which showed that some KPMs are
influenced by both age (KTR, KYN, HAA), and gender (TRP)
(de Bie et al., 2016a,b). Further, tryptophan has been shown
to increase through to adolescence (Lepage et al., 1997) and in
adulthood (Mangge et al., 2014). An earlier study by Medana
et al. (2003) investigated the KPMs in Malawian children and
Vietnamese adults who were affected by Malaria, showing that
increases in QA and PIC in both populations could predict a fatal
outcome. On the contrary, differences in KA levels in Malawian
children as compared to Vietnamese adults (Medana et al., 2003),
although it is unclear if this difference was attribute to age,
disease, or ethnicity. Further, the correlation of the KPMs in
different biofluids need to be better established for correlation
and pathway studies. Urine represents the ideal biofluid as it is
non-invasive. However, it is not homeostatic, and apart from
early studies when the KP was discovered in urine (Musajo
et al., 1955, 1956; Tompsett, 1959; McMillan, 1960; Mawatari
et al., 1995), only few recent studies have analyzed the KPMs
in urine (Fukuwatari et al., 2004; Pedersen et al., 2013; Dolina
et al., 2014). Recent research mostly use serum or plasma to
assess the KPMs (Darlington et al., 2007; Favre et al., 2010;

Hirayama et al., 2012; Aarsland et al., 2015; Comai et al., 2016;
Oxenkrug et al., 2016; Lim et al., 2017), and some when available,
CSF (Erhardt et al., 2013; Havelund et al., 2017; Sühs et al., 2019).
Further, the KP has been proposed as therapeutic intervention
for neurodegenerative diseases such as ALS, and has been well
reviewed (Füvesi et al., 2012).

As for other potential candidate biomarkers for ALS, the
need for defined classifications of ALS subtypes or stages of
disease progression (Gil et al., 2017) is critical. Standardized
operation procedures for a defined analysis of progression rate,
imaging, biopsy retrieval and storage, and biomarker analysis
techniques need to be implemented to ensure consistency
across centers to achieve an objective assessment. Biobanks
storing clinical and biopsies of patient and control samples
will be crucial to achieving the aim of a clinically applicable
biomarker for ALS.

CONCLUSION

Overall, the KPMs have potential to be used as a sensitive and
specific biomarker for patients diagnosed with ALS. Such markers
would also have the ability to be used for surrogate clinical
and prognostic biomarkers as we previously demonstrated for
MS (Lim et al., 2017) and Alzheimer’s disease (Chatterjee et al.,
2018; Jacobs et al., 2019). The strong correlation of the KP
with neuroinflammation, depression, and immune regulation
makes it a valid candidate as a surrogate biomarker for ALS,
for disease progression (fast/slow progressors) and possibly
disease subtyping. Combining the KPM levels together with
(1) other markers of inflammation or neurodegeneration, (2)
clinical information, and (3) imaging would strongly increase
both sensitivity and specificity of the biomarker set.
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Background: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive
neurodegenerative disorder. Diffusion magnetic resonance imagining (MRI) studies have
consistently showed widespread alterations in both motor and non-motor brain regions.
However, connectomics and graph theory based approaches have shown inconsistent
results. Hub-centered lesion patterns and their impact on local and large-scale brain
networks remain to be established. The objective of this work is to characterize
topological properties of structural brain connectivity in ALS using an array of local,
global and hub-based network metrics.

Materials and Methods: Magnetic resonance imagining data were acquired from 25
patients with ALS and 26 age-matched healthy controls. Structural network graphs were
constructed from diffusion tensor MRI. Network-based statistics (NBS) and graph theory
metrics were used to compare structural networks without a priori regions of interest.

Results: Patients with ALS exhibited global network alterations with decreased global
efficiency (Eglob) (p = 0.03) and a trend of reduced whole brain mean degree (p = 0.05)
compared to controls. Six nodes showed significantly decreased mean degree in ALS:
left postcentral gyrus, left interparietal and transverse parietal sulcus, left calcarine
sulcus, left occipital temporal medial and lingual sulcus, right precentral gyrus and
right frontal inferior sulcus (p < 0.01). Hub distribution was comparable between the
two groups. There was no selective hub vulnerability or topological reorganization
centered on these regions as the hub disruption index (κ) was not significant for the
relevant metrics (degree, local efficiency and betweenness centrality). Using NBS, we
identified an impaired motor subnetwork of 11 nodes and 10 edges centered on the
precentral and the paracentral nodes (p < 0.01). Significant clinical correlations were
identified between degree in the frontal area and the disease progression rate of ALS
patients (p < 0.01).
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Conclusion: Our study provides evidence that alterations of structural connectivity in
ALS are primarily driven by node degree and white matter tract degeneration within
an extended network around the precentral and the paracentral areas without hub-
centered reorganization.

Keywords: ALS, MRI, connectivity, DTI, hub, graph theory

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative motor
neuron disorder characterized by progressive upper and lower
motor neuron degeneration, leading to severe motor disability
and death due to respiratory failure within few years (Kiernan
et al., 2011). While the etiology of ALS remains elusive, ALS is
now widely regarded as a multisystem disorder with considerable
extra-motor involvement (Al-Chalabi et al., 2016; Christidi et al.,
2018). Neuroimaging studies in ALS have consistently captured
clinico-radiological correlations in the central nervous system
(Cirillo et al., 2012; Bede and Hardiman, 2014).

Structural changes are relatively difficult to ascertain in
ALS with conventional, clinical magnetic resonance imagining
(MRI) sequences, therefore research studies rely on quantitative
techniques, such as diffusion tensor imaging (DTI; Grolez et al.,
2016), cortical thickness mapping (Schuster et al., 2017; Consonni
et al., 2019) or MRI spectroscopy (Kalra, 2019). DTI studies
have highlighted fractional anisotropy (FA) reductions in both
motor and extra-motor regions (Foerster et al., 2013) and FA
proved to be a sensitive DTI metric for both diagnostic (Tang
et al., 2015; Bede et al., 2017) and progression modeling (Menke
et al., 2012; Müller et al., 2016). Tractography studies in ALS
readily detect white matter tract degeneration principally in the
corticospinal tracts (Agosta et al., 2010). These studies have
described anatomical patterns of white matter degeneration,
but the impact of focal white matter changes on brain
network integrity has not been fully characterized to date
(Bede, 2017).

Structural connectivity studies based on graph theory offer a
valuable tool to analyze the topological organization of cerebral
networks and elucidate how different brain regions relate to
each other (Bullmore and Sporns, 2009). In connectomics,
cortical and subcortical brain regions can be parcellated in
nodes with white matter tracts between them representing the
edges of a mathematical graph. The human connectome has
been extensively studied with graph theory in physiological and
pathological contexts and it exhibits non-random features such as
the presence of highly connected regions, named hubs (Achard,
2006). Connectivity hubs of the human brain support integrative
processing and adaptive behaviors with high metabolic demands
and represent vulnerable foci of neurodegeneration (Buckner
et al., 2009; van den Heuvel et al., 2013; Proudfoot et al., 2019).

Abbreviations: ALS: amyotrophic lateral sclerosis; ALSFRS-R: revised ALS
functional rating scale; BC: betweenness centrality; CSF: cerebrospinal fluid;
DTI: diffusion tensor imaging; Eglob: global efficiency; Eloc: local efficiency;
FA: fractional anisotropy; FTD: frontotemporal dementia; NBS: network-based
statistics; ROI: region of interest.

In ALS, few structural connectivity studies have reported
both motor (Verstraete et al., 2011) and extra-motor node
impairment (Verstraete et al., 2014; Buchanan et al., 2015;
Dimond et al., 2017) and corticobasal connectivity is seldom
evaluated specifically (Bede et al., 2018). However, due to
methodological differences, the findings of these studies are
inconsistent; some authors have described decreased (Dimond
et al., 2017), while others reported preserved global efficiency
(Buchanan et al., 2015). While many brain disorders, such as
Alzheimer disease (Buckner et al., 2009; Verstraete et al., 2011)
or schizophrenia (Rubinov and Bullmore, 2013) exhibit a hub-
centered pattern, this finding is not evident in ALS connectivity
studies (Crossley et al., 2014). It is still not clear if the clinical
manifestations of ALS are primarily driven by white matter
degeneration or by hub topology alterations.

Accordingly, the main objective of this prospective MRI study,
is the characterization of structural connectivity in ALS using
graph theory methods at different scales: global, local (nodal) and
network analysis using statistical methods such as the Network-
based Statistics (NBS; Zalesky et al., 2010) allowing us to analyze
both cortical and white matter integrity.

MATERIALS AND METHODS

Ethics
This prospective imaging study was approved by the regional
Ethics Committee (Sud Mediterranee I). All subjects provided
informed consent in accordance with the principles of the
Declaration of Helsinki.

Participants
Twenty-five consecutive patients with ALS, diagnosed according
to the revised El Escorial criteria (Brooks et al., 2000), were
recruited from the ALS Center of Marseille University Hospital,
France. Comorbid neurological conditions or coexisting
frontotemporal dementia (FTD; Rascovsky et al., 2011) were
considered as exclusion criteria. Twenty-six healthy volunteers
were also recruited as radiological controls. Healthy controls
had no history of prior head injuries, neurological or psychiatric
diagnoses and had a normal clinical examination.

Clinical Evaluation
All ALS patients underwent a standardized clinical examination
on the day of the MRI. The recorded demographic and
clinical parameters included: disease duration, site of onset,
revised ALS functional rating scale (ALSFRS-R) scores
(Cedarbaum et al., 1999) and disease progression rate defined as
(48-ALSFRS-R)/disease duration (months).
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FIGURE 1 | Pipeline of image processing and graph analysis. T1w and diffusion MRI sequences were acquired from all patients and controls (A). Following
automatic parcellation of the structural images into cortical and subcortical regions (B), the two set of images were non-linearly co-registered (C). White matter tracts
were reconstructed based on diffusion data using the probabilistic algorithm of MRtrix (D). Individual brain network maps were generated using nodes and white
matter connections resulting in a FA-weighted connectivity matrix for each subject. Graph analyses were performed on the FA-based connectivity matrix (E).

MRI Acquisition
Magnetic resonance imagining data were acquired on a 3T
MAGNETOM Verio system (Siemens, Erlangen, Germany)
using a 32-channel phased-array 1H head coil. The protocol
included a high-resolution 1H T1-weighted (T1w) 3D-
Magnetization-Prepared Rapid Acquisition Gradient-Echo
(MPRAGE) sequence (TE/TR/TI = 3/2300/0.9 ms, 160 slices,
resolution of 1 × 1 × 1 mm3, acquisition time = 6 min), and
a single shot echo-planar imaging DTI sequence (64 encoding
directions, b = 1000 s/mm2 and b0, TE = 95 ms, TR = 10700 ms,
slice thickness 2 mm, 60 contiguous slices, resolution of
2 × 2 mm2, acquisition time = 12 min). A T2-weighted
3D-Fluid-Attenuated Inversion Recovery (FLAIR) sequence
(TE/TR/TI = 395/5000/1800 ms, 160 slices, 1 × 1 × 1 mm3

spatial resolution, acquisition time = 6 min) was also performed
in both patients and controls and systematically reviewed to
ensure the absence of vasculopathic white matter abnormalities
which may affect focal diffusivity parameters.

Image Processing (Figure 1)
Anatomical Cortical and Subcortical Parcellation
Cortical and subcortical brain regions of each subject were
parcellated using the Freesurfer software1 (v5.0) with the
Destrieux atlas, based on the T1w MPRAGE images to obtain

1http://surfer.nmr.mgh.harvard.edu

164 regions of interest (Destrieux et al., 2010). Subcortical
regions included the thalamus, caudate nucleus, putamen,
pallidum, hippocampus, amygdala, nucleus accumbens and
ventral diencephalon.

Co-registration Between T1w Images and Diffusion
Images
Tissues-type segmentation was performed based on T1w and
b0 diffusion images using the Statistical Parameters Mapping
software2 (SPM12) to extract cerebrospinal fluid (CSF) maps
(Figure 1B). T1w and b0 CSF maps were used as source and
target images, respectively, to estimate geometric distortions with
a non-linear registration procedure (Syn Model of ANTs library
(Avants et al., 2008; Figure 1C). The resulting deformation map
obtained from this co-registration was applied on the parcellation
mask (Destrieux labels). Nearest neighbor interpolation was
applied on the mask to keep the integer values of the
original labels.

Diffusion Image Preprocessing
Each diffusion dataset was aligned to its b0 image using
affine registration to correct for head movement and Eddy-
currents using FSL3 (version 5.0.8, FMRIB Software Library,
Destrieux et al., 2010).

2https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
3https://fsl.fmrib.ox.ac.uk
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TABLE 1 | Demographic and clinical parameters of ALS patients and controls.

Demographic and clinical variables ALS patients Healthy controls P-value

n (male/female) 25 (16/9) 26 (15/11) 0.64

Age mean ± SD (years) 55 ± 10 51 ± 10 0.17

Handedness (right/left) 23/2 21/5 0.24

Disease duration mean ± SD;
[range] (months)

18 ± 15; [5–61] N/A N/A

Disease onset site Spinal n = 19 (left LL: n = 6, right LL: n = 7, left UL:
n = 1, right UL: n = 5)

N/A N/A

Bulbar n = 6 N/A N/A

Revised El-Escorial criteria Definite n = 5 N/A N/A

Probable n = 10 N/A N/A

Probable
Laboratory
Supported

n = 5 N/A N/A

Possible n = 5 N/A N/A

ALSFRS-R mean ± SD; [range] 39 ± 6; [23–47] N/A N/A

Disease progression rate mean ± SD; [range] 0.9 ± 0.9; [0.1–3.6] N/A N/A

ALSFRS-R, revised ALS functional rating scale; LL, lower limb; N/A, not applicable; UL, upper limb.

Tractography and Connectomes Construction
White matter tracts were reconstructed adopting a whole-
brain probabilistic fibertracking approach using MRtrix4 (Brain
Research Institute, Melbourne, Australia). The method has
been previously presented in detailed (Besson et al., 2014).
A combined bi-hemispheric white matter mask was 1 mm
dilated and defined as the region of interest (ROI) for the
tracking algorithm (Figure 1D). One million fibers were then
generated from all voxels included in this ROI with a probabilistic
tracking algorithm [tckgen command, FOD model (Behrens
et al., 2003)]. The algorithm generated one million fibers with a
minimum length of 20 mm. Default tracking parameters included
a minimum radius of curvature of 1 mm, a FOD cutoff of 0.1
and a step size of 0.2 mm. Finally, FA values were interpolated
at each point of the fibers and the FA-based connectivity matrix
(size 164 × 164) were generated from all streamlines and the
parcellation mask (164 labels) previously warped in the diffusion
dataset space (tck2connectome command, MRtrix) (Figure 1E).

Network Construction and Graph Theory
Based Analysis
We modeled the structural undirected brain network of each
participant using the reconstructed white matter tracts and
the parcellated brain regions obtained in the previous steps
(Bullmore and Sporns, 2009). Each region was used to define
a node of a network graph. Edges were determined by
tractography streamlines connecting any pair of nodes. An edge
was considered present between two nodes if a streamline was
generated with start and end points in each region. Network
metrics were computed using the Brain Connectivity Toolbox
(Rubinov and Bullmore, 2013). We investigated measures
of global network architecture of each subject with global
efficiency and mean degree. Local structural alterations were

4http://www.brain.org.au/software/

TABLE 2 | Global network analysis.

Graph metrics ALS patients Healthy controls P-value

Eglob 0.3395 0.3507 0.0348

Degree mean ± SD 106.15 ± 29.77 111.46 ± 29.10 0.0523

Eloc mean ± SD 0.3775 ± 0.0249 0.3854 ± 0.0244 0.12

BC mean ± SD 169.80 ± 245.61 170.06 ± 209.02 0.98

Statistical significance was set at p < 0.05. Eglob, global efficiency; Eloc, local
efficiency; BC, betweenness centrality.

evaluated based on local efficiency, degree and betweenness
centrality of each region.

As defined by Rubinov and Sporns (2010), global efficiency
(Eglob) is the average inverse shortest path length in a network
and is inversely related to the characteristic path length. It is a
metric of functional integration that reflects on the brain’s ability
for specialized processing across distributed brain areas. Node
degree is defined as the number of edges connected to the node
and is a fundamental basic network measure to assess the central
role of a brain region among a network.

Mean degree of the whole network was also computed and
defined for one subject as the mean of each node degree of
this subject. Betweenness centrality (BC) is the fraction of all
shortest paths in the network that pass-through a given node.
The local efficiency (Eloc) is the global efficiency computed on
the neighborhood of the nodes.

Hub Analysis
In connectomics, hubs are described as highly connected nodes
with topological centrality and a critical role in integrative
processes and adaptive behaviors. Hubs are typically defined
as nodes with the highest degree, i.e., a degree one standard
deviation higher than the average degree of all nodes in
the studied population (van den Heuvel and Sporns, 2011;
Llufriu et al., 2017).
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FIGURE 2 | Hubs in ALS patients and controls. Panels (A,B) represent coronal and axial views illustrating the hubs in patients (A, red) and controls (B, blue). The size
of the nodes is proportional to their degree values. Panel (C) shows the 6 nodes with significantly reduced mean degree in patients at the Bonferroni corrected
threshold (red, p < 0.0003) and at the 1/n exploratory threshold (yellow, p < 0.006).

To assess if the topologic reorganization was more prevalent
in hubs, we also calculated the hub disruption index, κ, as
defined by Achard (Achard, 2006). κ index is the gradient of
a straight line, plotting the mean value at each node in the

healthy controls group (x-axis) versus the difference between
patient and control groups at each node, for any given metric
(y-axis). For example, a negative κ index, crossing the zero
line on the y-axis, reveals a trend for high-value regions in
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controls to decrease in the studied subject, and low-value
nodes to increase.

Network Based Statistics
Considering a 164-node network, 26732 network connections
can theoretically be generated. As a result, standard statistical
tests for nodal analyses may be underpowered after correcting
for multiple comparisons. Accordingly, we used the NBS
approach to identify impaired subnetworks in patients
compared to controls. The NBS methodology improves the
statistical power by controlling for type I error (Zalesky
et al., 2010). The NBS network was computed using the
parameters detailed in a previous ALS study (Verstraete et al.,
2011) permitting the identification of an altered network
derived from the FA-based connectome. The mean FA of
each tract of this isolated subnetwork was calculated for each
subject and the total FA sum (NBS FA sum) was compared
between the two groups.

Statistical Analyses
Statistical analyses were performed using JMP 9.0.1, SAS Institute
Inc (JMP R©, Version 9. SAS Institute Inc., Cary, NC, 1989–2019).
Group characteristics were compared using the non-parametric
Kruskal-Wallis test for age and Chi-squared test for gender and
handedness. Differences in global connectivity between patient
and control groups were assessed using pairwise non-parametric
Wilcoxon signed-rank tests for multiple comparisons with
uncorrected p < 0.05 being considered statistically significant.
For each node, group differences in the mean degree, Eloc,
and Eglob were also explored with non-parametric Wilcoxon
tests (p < 0.05).

At the nodal scale, we used two thresholds to study differences
between patients and controls: a first p = 0.05/164 = 0.0003
threshold corresponding to Bonferroni corrections applied with
164 brain regions, and a p exploratory threshold 1/n (p < 0.006)
(Ridley et al., 2015).

The connectivity metrics with significant differences between
patients and controls were then correlated with clinical
parameters including ALSFRS-R score and disease progression
rate, using a Spearman Rank test with multiple corrections.
A p < 0.0125 for global metrics (Eglob and mean degree)
and a p < 0.004 for local metrics (6 nodes with significant
connectivity differences between patients and controls) were
considered statistically significant.

RESULTS

Demographic and Clinical Parameters
The demographic and clinical profile of the participants
is presented in Table 1. Twenty-five patients with ALS
(mean age 55; SD 10 years; 16 males and 9 females, 2
left-handed) and 26 healthy controls (mean age 51; SD
10 years; 15 males and 11 females, 5 left-handed) were
included. There was no statistical difference in age (p = 0.17),
gender (p = 0.64) and handedness (p = 0.24) between

the study groups. The mean ALSFRS-R score in the ALS
cohort was 39 ± 6.

Global Metrics
Global network analyses are presented in Table 2. Compared
to controls, ALS patients showed a significant decrease in
Eglob (0.3395 vs. 0.3507, p = 0.0348). A trend of reduced
mean degree of the whole brain was found in ALS patients
(106.15 vs. 111.46, p = 0.0523).

Nodal Analysis
Using the Bonferroni corrected threshold, we found a significant
decrease in ALS patients for the left postcentral gyrus
(p < 0.0001) and for the left interparietal and transverse parietal
sulcus (p < 0.0001) mean degree. No significant differences
were identified in Eloc or BC in any nodes at this threshold.
Furthermore, using the exploratory threshold, we found a
significant decrease in the mean degree of the left calcarine sulcus
(p = 0.0021), the left occipital temporal medial and lingual sulcus
(p = 0.0009), the right precentral gyrus (p = 0.0021) and the right
frontal inferior sulcus (p = 0.0009) (Figure 2C and Table 3).

Hub Analysis
Seventeen regions among 164 were defined as hubs both
in patients and controls. The results are illustrated in
Figure 2. Three hubs in controls were not identified
as hubs in ALS patients: the left precuneus, the left
parietal inferior angular gyrus and the left postcentral
gyrus (Figure 3), but regarding the hub disruption
index, no significant differences were found in
κ-Eloc (p = 0.1270), κ-BC (p = 0.6511) or κ-degree
(p = 0.6647) (Figure 4).

Network-Based Statistics
Network-based statistics highlighted a subnetwork (11 nodes, 10
edges) of impaired connectivity in the ALS group (p = 0.015)
(Figure 5). This network included the left precentral gyrus,
the left paracentral gyrus, the left caudate nucleus, the left
suborbital sulcus, the left inferior temporal sulcus, the left

TABLE 3 | Significant mean degree nodes differences between ALS
patients and controls.

Nodes ALS patients Healthy controls P-value a,b

Left postcentral gyrus 133.64 ± 9.30 142.35 ± 8.16 0.0001a

Left interparietal and
transverse parietal sulcus

126.68 ± 12.93 138.81 ± 7.93 0.0001a

Right precentral gyrus 139.52 ± 9.88 147.31 ± 6.83 0.0021b

Right frontal inferior
sulcus

98.04 ± 15.00 110.69 ± 11.94 0.0009b

Left calcarine sulcus 76.52 ± 19.76 96.69 ± 21.03 0.0021b

Left occipital temporal
medial and lingual sulcus

97.36 ± 12.13 109.11 ± 13.15 0.0009b

Values are reported as mean ± SD. aStatistical significance was set using
Bonferroni corrections based on 164 brain regions (p < 0.0003). bStatistical
significance was set using an exploratory threshold 1/n (p < 0.006).
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FIGURE 3 | Hub distribution patterns among controls (A) and patients (B). Hubs were defined as nodes with a degree one standard deviation higher than the
average node degree. 17 hubs were identified in patients and 17 hubs in controls. Nodes (A,B) are sorted out by increasing values of degree in controls showing
similar distribution.

cingulate marginal gyrus, the right middle frontal gyrus, the
right pallidum, the right accumbens area, the right anterior
cingulate gyrus and sulcus and the right inferior superior parietal
gyrus. The total FA sum of the edges in this subnetwork
(NBS FA sum) was significantly reduced in ALS compared to
controls (p < 0.0001).

Correlation Between Connectivity
Metrics and Clinical Parameters
Among the six nodes identified in the Nodal Analysis results
section, degree in the right frontal inferior sulcus was correlated
with the disease progression rate (p = 0.0089, rho = −0.5396) and
a trend of association was also identified with ALSFRS-R scores
(p = 0.0456, rho = 0.4033).

No significant correlations were found between the other
nodes and ALSFRS-R score or disease progression rate. There
were no significant associations between Eglob and ALSFRS-R
score or disease progression rate.

DISCUSSION

This study provides evidence of disease-specific structural
connectivity changes in ALS. We report global efficiency
reductions in structural networks in ALS characterized by a
significant decrease in Eglob and a trend of mean degree

reduction. The use of the graph theory enables a topological study
of the entire cerebral network, without targeting a priori regions
of interest. Our results are in line with the reports of decreased of
Eglob in previous studies (Zhang et al., 2019). Our findings also
support the notion of widespread, multisystem, multi-network
degeneration in ALS which has been conceived based on other
structural (Keil et al., 2012; Menke et al., 2012; Bede et al.,
2016; Müller et al., 2016) and functional methods (Agosta et al.,
2011; Douaud et al., 2011; Geevasinga et al., 2017; Dukic et al.,
2019; Nasseroleslami et al., 2019). Reduced global connectivity
underpins the impaired integration of multiple cerebral circuits
in ALS, which may be driven by long-range connectivity changes
(He et al., 2009). Previous structural connectivity studies did not
capture significant reductions in global parameters (Verstraete
et al., 2011; Buchanan et al., 2015) which may be explained
by differences in post processing pipelines which were used to
generate structural connectomes (deterministic fiber tracking
algorithm, number of tracts or different parcellation atlas).

At a local scale, we evaluated parcellated brain regions with
multiple metrics (Eloc, degree and betweenness centrality) to
determine if the global disturbances were due to the alteration
of specific nodes. Nodal analysis demonstrated a significant
reduction of degree in 6 out of 164 regions in ALS patients.
These six nodes are located in pathognomonic brain regions
closely associated with ALS. Precentral and frontal structural
degeneration is a hallmark feature of ALS confirmed by a
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FIGURE 4 | Hub disruption index. The box plots show the κ index of each subject for 3 metrics: κ-degree, κ-Eloc, κ-BC. No significant differences were identified
between ALS patients and controls. Differences were considered significant at p < 0.05 for each metric.

multitude of cortical gray and subcortical white matter studies
(Kasper et al., 2014; Schuster et al., 2016; Mazón et al., 2018).
The intraparietal sulcus is part of the supplementary motor areas
which is also affected in ALS based on both functional and
structural studies (Abidi et al., 2019). The involvement of the
temporal lingual sulcus may be the substrate of the spectrum
of cognitive changes observed in ALS (Abrahams et al., 2004;
Phukan et al., 2007). Intrahemispheric connectivity alterations
and the degeneration of the sensorimotor network have also been
previously reported in ALS by studies demonstrating widespread
pre- and postcentral FA reductions (Rose et al., 2012).

To explore internodal interactions, we used NBS (Zalesky
et al., 2010). This tool permits the integrated analysis of a
subgroup of nodes that belongs to a single altered network.
In our study, we identified an impaired subnetwork centered
on motor nodes: precentral, paracentral and frontal gyri.
This subnetwork is comparable to the ones described in
previous studies (Verstraete et al., 2011; Buchanan et al., 2015).
Our finding of parietal and temporal lobe involvement is
in line with recently proposed pathological staging systems
(Brettschneider et al., 2013), and longitudinal connectivity
studies (Verstraete et al., 2014).

Interestingly, no major topological reorganization of hubs
was evidenced in ALS in the present study. The human
connectome is known to follow characteristic topological
patterns based on hubs, defined by a subnetwork of highly
connected nodes with a high number of tracts playing a

central role in the brain’s structural architecture. Due to
their anatomical position and their high metabolic demands,
these regions are considered particularly vulnerable in many
neurological and psychiatric disorders (Buckner et al., 2009;
Sharma et al., 2011; Rubinov and Bullmore, 2013; Gollo et al.,
2018). Previous studies have shown that the selective hub
degeneration occurs in a disease-specific pattern in several
neurological and psychiatric conditions such as Alzheimer’s
disease or schizophrenia (Crossley et al., 2014). Hub pathology
in ALS, however, has not been specifically investigated to
date and no graph theory based structural studies have been
performed to evaluate the distribution of hubs and the extent
to which they are reorganized in ALS patients relative to
controls. We showed here that both the number and the
distribution of hubs are similar between patients and controls.
To our knowledge, this first use of the hub disruption index in
ALS demonstrating the absence of hub reorganization, suggests
that disease propagation in ALS does not follow hub-based
patterns. Despite motor network changes evidenced by the
NBS analysis, the precentral nodes kept their hub properties.
Impairment of the global efficiency seems to be related to local
structural abnormalities rather than a complex compensatory
hub reorganization as reported in other disorders such as
multiple sclerosis and epilepsy (Ridley et al., 2015; Faivre et al.,
2016; Tur et al., 2018).

Noteworthy, we found associations between structural
connectivity metrics and clinical parameters, such as disease
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FIGURE 5 | Network based statistics (NBS) impaired subnetwork. Coronal and sagittal views of impaired subnetwork nodes and interconnections identified by NBS
(11 nodes and 10 edges). Edge diameter is based on the FA reduction (the larger connections are the more affected, with significant FA reduction).

progression rate and ALSFRS-R score. Correlations between
brain imaging metrics and clinical parameters are often difficult
to establish in ALS (Chipika et al., 2019) because motor disability
is not merely due to upper but also lower motor neuron
degeneration and the considerable clinical heterogeneity of
the disease precludes direct clinico-radiological associations
(Verstraete et al., 2015). It is therefore not surprising that no
direct correlations were identified between clinical parameters
and global connectivity measures. Node degree and their white
matter integrity indexes seem to better explain the clinical deficits
observed in ALS.

This study is not without limitations. The sample size
of our ALS cohort is relatively limited which did not allow
the phenotypic stratification of ALS patients into subgroups.
Nonetheless, our study presents compelling evidence that
graph-analyses and connectomics provide meaningful non-
invasive insights into the degenerative changes of ALS.
Furthermore, genetic information was not available for all
patients which is a limitation as certain ALS genotypes may
be associated with specific white matter alterations and more
extensive network impairment (Menke et al., 2016; Floeter
and Gendron, 2018). The lack of standardized cognitive
evaluation is another limitation given the evidence of phenotype-
specific morphometric changes along the ALS-FTD continuum
(Omer et al., 2017). Future studies should therefore include

ALS-FTD patients and ALS patients with behavioral and
executive dysfunction to characterize the connectivity signature
of these cognitive phenotypes. An additional limitation is
the significantly higher proportion of male ALS patients in
the present study. Given the evidence of gender-associated
developmental and radiological features in ALS and healthy
populations (Menzler et al., 2011; Vivekananda et al., 2011; Bede
et al., 2014), future connectivity studies should seek to recruit
gender-balanced cohorts.

CONCLUSION

In conclusion, our structural connectivity study highlights
a diffuse, non-focal network impairment in ALS without
selective hubs vulnerability or topological network
reorganization. These results suggest that clinical
manifestations in ALS could be more driven by tract
degeneration than by hub topology alterations. Based on
these observations, a prospective longitudinal study is
required to characterize dynamic progressive connectivity
changes. Recent imaging studies have shown evidence
of considerable presymptomatic structural changes in
ALS-associated mutation carriers (Schuster et al., 2015;
Querin et al., 2019). A connectomic analysis of such cohorts
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could identify early network alterations in the most vulnerable
circuits and provide invaluable insights on disease propagation.
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Amyotrophic lateral sclerosis (ALS; MND, motor neuron disease) is a debilitating

neurodegenerative disease affecting 4.5 per 100,000 people per year around the world.

There is currently no cure for this disease, and its causes are relatively unknown.

Diagnosis is based on a battery of clinical tests up to a year after symptom onset, with no

robust markers of diagnosis or disease progression currently identified. A major thrust

of current research is to identify potential non-invasive markers (“biomarkers”) in body

fluids such as blood and/or cerebrospinal fluid (CSF) to use for diagnostic or prognostic

purposes. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), are found at

detectable and stable levels in blood and other bodily fluids. Specific ncRNAs can vary

in levels between ALS patients and non-ALS controls without the disease. In this review,

we will provide an overview of early findings, demonstrate the potential of this new class

as biomarkers, and discuss future challenges and opportunities taking this forward to

help patients with ALS.

Keywords: amyotrophic lateral sclerosis, motor neuron disease, biomarkers, non-coding RNA, microRNA

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is themost prevalent adult onset form ofmotor neuron disease.
As a result of progressive death of motor neurons in the primary motor cortex, brainstem and
spinal cord, there is atrophy of the muscles that are innervated by these neurons. This results in
muscle weakness and paralysis with death usually occurring within 3–5 years. Over the last decade,
significant progress has been made in identifying the genes responsible for familial cases of ALS
(fALS). Of these, the most frequently mutated genes are chromosome 9 open reading frame 72
(C9orf72), superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP; TDP-43),
and FUS RNA binding protein (FUS), accounting for over 70% of fALS cases (1). Nevertheless,
fALS constitutes approximately 10% of all cases, with the genetic underpinnings of sporadic ALS
(sALS) mostly unknown, though C9orf72 is known to account for 5% of sALS cases.

The lack of a common cause has resulted in difficulties not only in timely disease diagnosis
resulting in delay of treatment, but in developing drugs and treatments for the disease. Thus,
identifying useful biomarkers as tools for early diagnosis, for determining subgroups in relation
to pathogenesis and/or phenotype, and as indicators of treatment response, are urgently required.
Development of biomarkers that are minimally invasive to obtain, simple to undertake, and time
efficient are key and those derived from biofluids, such as blood, are well suited for this. Further, it
is not necessary for the biomarkers to underlie the pathology of the disease if it correlates strongly
and specifically to the disease. Indeed, this is more difficult to assess in diseases such as ALS where
the underlying molecular causes of pathology is unknown or unclear.
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One class of molecules increasingly investigated as potential
biomarkers are short ncRNA species (those under 100
nucleotides long), which include tRNA, rRNA, piwi-RNA
(piRNA), and microRNA (miRNA). MiRNA have been the main
focus of most studies to date, driven by a good understanding
of their biogenesis and function, an ease in profiling their
expression with a range of techniques including microarray,
RNA-seq, and RT-qPCR, a relatively simple structure, increased
stability from RNase degradation and freeze-thaw cycles, and a
presence in a range of biofluids including blood, cerebrospinal
fluid (CSF), and urine (2, 3). To date, a number of studies
have shown that miRNAs are differentially expressed in ALS
patients when compared to controls in a variety of biofluids,
including CSF, and in the blood-derived components plasma
and serum (4–18) (summarized in Table 1). This review
will aim to present recent work identifying miRNA-based
biomarkers in biofluids, the possibility of using other ncRNA
as biomarkers, and the next steps required to move this into a
clinical setting.

EXISTING CIRCULATING RNA
BIOMARKERS FOR ALS

Serum-Based Biomarkers
Freischmidt and colleagues have undertaken a number of
studies to identify potential miRNA-based biomarkers in the
ALS patient serum (4, 6, 8). Their first study selected ten
miRNAs previously identified to regulate the ALS-related gene
TARDPB and found five miRNAs were differentially expressed
in serum of sALS patients (4). Their later study focused on
miRNA expression in serum from fALS patients using Affymetrix
miRNA array chips, and found downregulation of a set of 30
potential miRNA biomarkers for the disease [Table 1; 3]. Four
miRNA were selected based on their false discovery rate (FDR)-
adjusted p-value (MIR1915-3p, MIR3665, MIR4530, MIR4745-
5p) and their downregulation validated with RT-qPCR in the
fALS patients, and all but MIR1915-3p were further observed to
be downregulated in sALS patients. While increased variability
was observed in sALS patients, this suggested that there may
be similarities in the miRNA profile between the two groups.
Curiously, these three miRNAs (MIR3665, MIR4530, MIR4745-
5p) were found not to be differentially expressed in their most
recent study using sALS patients, which described onlyMIR1234-
3p and MIR1825 as being downregulated (8). An interesting
aspect of their 2014 study was investigating miRNA expression
in non-symptomatic patients who had ALS-related genetic
mutations, but predicted to present disease symptoms within the
next 20 years. These predicted pre-symptomatic carriers shared
91.7% of the downregulated miRNA of symptomatic patients,
although to a lesser dysregulation. This suggests that these
biomarkers may be present before symptoms and could be used
to identify potential ALS cases. Furthermore, considering there
were differences between pre-symptomatic and symptomatic
patients in the degree of dysregulation, this may suggest that
these biomarkers could change with time. However, further work
would be needed to determine this and if it would apply to

sALS cases along with whether these biomarkers are specific
to ALS itself.

Other studies have also identified potential biomarkers
that may be differentially expressed in serum from ALS
patients. The upregulation of MIR143-3p and MIR206, and
the downregulation of MIR374B-5p were observed in 23 sALS
patients and were further validated in an additional 27 sALS
patients (13). Of these, 22 samples were in a longitudinal
study and MIR143-3p and MIR374B-5p both became more
dysregulated, suggesting a link to disease progression, though
MIR206 remained stable for at least 3 months later. Another
study using patient serum also found MIR206 upregulation in
ALS patients along with MIR106b, differences that were reflected
in a SOD1-G93A mouse model of ALS (7). MIR206, described
as a myoMiR due to its high abundance in skeletal muscle
tissue, is one of the few miRNA biomarkers identified across
multiple studies, including those described below in serum and
plasma (11, 12). The working hypothesis has been that as a
result of muscle death, MIR206 is released from the muscle fibers
and into the blood stream as a waste product (19). However,
MIR206 has been identified as a blood-based biomarker for
other muscle-related diseases and therefore not specific to ALS
(20, 21). Nonetheless, it could play an important role in helping
to identify ALS patients if used in conjunction with other
biomarkers to help distinguish from ALS-like conditions. Lastly,
one study has investigated the exosomes present in serum, and
investigated a single miRNA (MIR27A-3p) based on the research
group’s previous work with myoblast exosomes (18). However,
the normalization to MIR16-5p may limit the interpretation
of this data as it has been shown to be dysregulated in ALS
(15, 22) and no evidence was shown that MIR16-5p was stable.
Nonetheless, with a fuller investigation, identifying dysregulated
miRNA present in exosomes in ALS may provide clues as to
the source, destination, and thus function of circulating miRNA
in ALS.

Plasma-Based Biomarkers
Two studies have investigated biomarkers in sALS patients using
plasma; the portion of blood which contains clotting factors.
Using microarray analysis followed by RT-qPCR, Takahashi
et al. (9) found significant upregulation of MIR4649-5p and
downregulation ofMIR4299 in ALS patients compared to healthy
controls. Interestingly, this study incorporated a follow up
analysis of the expression of miRNAs in seven of the patients,
including one patient 24 months later. However, no significant
change in the expression of any of the miRNAs were found,
although there was a trend for an increase of MIR663b over
time. Similarly, in another study, while MIR424 and MIR206
were found to be overexpressed in plasma of sALS patients, they
did not show significant changes over 6 and 12 months in a
cohort of sALS patients (11). This lack of change in MIR206
over time is consistent with the above results of Waller et al.
(13). This suggests that for these miRNA, their expression levels
are not correlated with disease progression and changes in the
patient condition. This may mean that they may only be suitable
as diagnostic markers and not useful in tracking treatment
responses in disease.
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Cerebrospinal Fluid-Based Biomarkers
In addition to serum and plasma, differential expression of
ncRNA has also been investigated in CSF. Although CSF is
not as easily obtainable as blood, changes in expression may
potentially be more insightful due to its close proximity to
the central nervous system. Using RT-qPCR, De Felice et al.
(5) not only found MIR338-3p to be over-expressed in serum,
but also in CSF, blood leukocytes, and spinal cord tissue in
ALS patients compared to controls and other patient groups
(including patients with Alzheimer’s and Parkinson’s disease).
In situ hybridization staining of spinal cord tissue post mortem
found that MIR338-3p was localized in the dorsal root gray
matter and overexpressed in ALS patients, suggesting a potential
source of the miRNA. In contrast, Freischmidt et al. (4) used the
biomarkers identified in their serumwork to find out if there were
similar changes in the CSF. While four of those miRNAs were
dysregulated, only MIR143-3p showed a significant correlative
relationship between the serum and CSF, suggesting there is low
correlation in miRNA expression between these two biofluids.
Combined with generally higher concentrations of miRNA in
the serum, the authors concluded that there might be separate
regulatory mechanisms underlying the levels of miRNAs in these
two body compartments. This is supported by other papers
looking into CSF which have shown very little overlap with other
serum studies, but studies that have looked at both within the
same sample groups are limited.

EMERGING THEMES IN ALS BIOMARKER
DISCOVERY

Recently, two main themes are starting to emerge in biomarker
discovery, including in those for ALS. Firstly, it is becoming
evident that seeking to identify singular biomarkers for disease
is unlikely, underscored by the minimal overlap demonstrated
by the above studies. In a study to identify miRNA biomarkers
in CSF, using ratios between the expression of two miRNA as
determined by RT-qPCR increased sensitivity and specificity in
identifying sALS cases compared to using a single miRNA (10).
The study pointed out that the use of more than one miRNA as a
“biomarker signature” is preferable as it reduces the dependency
on variation between individuals. The pairing of the upregulated
MIR181A-5p, with either of their two downregulated miRNA,
MIR21-5p and MIR15B-5p, increased both the sensitivity and
the specificity, with MIR15B-5p increased by 15% on average.
Another study has also used this concept for miRNA present
in serum, using a number of pairs to identify not only
patients with ALS, but other neurological disorders such as
Alzheimer’s disease, frontotemporal dementia, and Parkinson’s
disease (12). Having identified 37 brain- or inflammation-
enriched miRNA, they found the combination of the three
pairs of miRNAs (MIR206/MIR338-3p, MIR9/MIR129-3p, and
MIR335-5p/MIR338-3p) were able to clearly distinguish between
ALS and control patients in their cohort with a sensitivity of 84%
and a specificity of 82%. Furthermore, other paired combinations
were able to differentiate between other neurodegenerative
diseases and ALS. Sheinerman et al. (12) found an 8-fold

increase in MIR206 levels in the plasma of ALS patients when
compared to the controls and this was enough to distinguish ALS
patients from controls by itself. Therefore, on the whole, pairs
of miRNA were able to distinguish between the various diseases
and controls with higher accuracy than could be achieved by an
individual miRNA.

Secondly, recent advances have improved the generation of
high quality libraries from small amounts of starting RNA,
allowing unbiased screening of potential ncRNA biomarkers by
the RNA-seq technique. In one of the first studies, following on
from their work with serum, Waller et al. (14) used RNA-seq
to profile miRNA expression in the CSF of ALS patients. While
they were able to successfully sequence the miRNA and identify
potential candidates, they were unable to confirm those with RT-
qPCR because of technical issues. Nonetheless, it supports the
conclusion of the above studies that differences in miRNA can
be detected in CSF and that CSF could be a source of biomarkers.

More recently, one study has used total blood to screen
for miRNA biomarkers in ALS using RNA-seq (15). Following
identification of 42 differentially expressed miRNA in the
discovery cohort, 38 were validated using RT-qPCR, most
of which have been previously reported in other papers.
Interestingly, seven of the miRNAs (MIR30B-5p, MIR30C-5p,
MIR106B-3p, MIR128-3p, MIR148B-3p, MIR186-5p, MIR342-
3p) were able to distinguish between spinal and bulbar onset,
with decreased expression present for those with spinal onset.
Furthermore, this study also carried out RNA-seq on mRNAs in
the same samples to help identify targets that could be regulated
by the miRNA. The use of total blood, however, limits the
interpretation of these results due to the presence of red blood
cells in the samples and the possibility of variable numbers
of different types of white blood cells between patient and
control groups.

Matamala et al. (16) also utilized RNA-seq for the
identification of ALS biomarkers, but started by profiling
serum samples from transgenic mouse models of ALS, followed
by RT-qPCR validation in human samples. While a number
of miRNAs were found to change in levels between the ALS
model and controls, there was limited cross-validation when
this was taken forward to the human studies. Two miRNA that
did show differences between ALS patients and controls in the
human studies were MIR142-3p and MIR1249-3p. The authors
found that MIR142-3p seemed to correlate negatively with a
decline in clinical disability scale ALSFRS-R in patients, thus
suggesting that this could be used to measure the effect of any
disease-slowing treatment. Further, it was found to potentially
target the expression of the ALS genes TARDBP and C9orf72.
Interestingly, Matamala et al. (16) also briefly described the
detection of non-miRNA ncRNA with their RNA-seq, but did
not state if they were differentially expressed or whether they
were investigated further. As such, there may be a range of
potential biomarkers that have not yet been identified. Indeed,
several other ncRNA species have been detected in serum
including rRNA and tRNA (23–25). These have also been
highlighted as potential biomarkers in diseases other than ALS
in blood (26–29) and other tissues (24, 30–32). To this end, we
are currently using RNA-seq to identify potential biomarkers in
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ALS within the full cohort of ncRNA species, and early results
suggest that we have potential candidates, which include miRNA,
piRNA, and tRNA.

CHALLENGES AND OPPORTUNITIES

Across these studies, there is very little overlap in the miRNA
species as potential biomarkers in the biofluids (see Table 1),
and there are multiple potential reasons for this. Firstly, as
these are mostly from elderly human patients, some of these
patients could have other conditions which could alter the
miRNA composition of the biofluids themselves, thus confound
the detection of ALS-specific biomarkers; careful screening of
patients therefore is required. Further, some of these studies
do not include patients from ALS disease mimics to help
identify ALS-specific markers. This is important as some
biomarkers identified such as MIR206 are not specific to ALS
as described above. Additionally, most of these studies have
been carried out on samples from one population group. As
differences may exist between different populations with the
disease, the lack of cross-validation of changes in miRNA
expression between studies may be reflective of differences in the
patient population, whether that be mediated genetically and/or
environmentally. The number of patients also differ, from 12 to

72 ALS patients, and so the statistical power for some of these
biomarkers is limited.

Alternatively, the causes could be related to the methodology
of the study, from the extraction of the biofluids and RNA,
through to the screening and validation of the miRNA
biomarkers. As seen in Table 1 and Figure 1, a range of different
workflows have been undertaken across all the studies, all of
which may contribute to differences in the changes that are
detected. In addition, some of these factors potentially could
affect the strength of some of these studies. For example, how
the samples were collected and processed may vary. Some of the
studies did not describe their collection procedures, and it is well
known that differences in the centrifugation time post-collection,
speed of centrifugation, and temperature can all affect the quality
and quantity of RNA in the samples (33, 34).

Further, techniques used to normalize the RT-qPCR could
be considered questionable in a number of studies. Due to
the minimal and varied amount of RNA in biofluids, and
the resultant difficulty in quantifying the RNA concentration,
most miRNA RT-qPCR kits used fixed sample volumes instead
of fixed total RNA amounts. Therefore, miRNA RT-qPCR
normalization must control for input RNA, not just for technical
variation, by crucially using a reliable target as a normalizer.
However, no universal normalizer for biomarker work exists,
and identification of a suitable normalizer is a problem across

FIGURE 1 | Summary of the different sample types, techniques, and tools that were used to profile miRNA biomarkers in ALS in the studies presented in this review. As

can be seen alongside Table 1, numerous different combinations of these sample types and tools across the techniques were employed across a number of studies.
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all biofluid biomarker studies (35, 36). Normalizers should be
selected per study from those ncRNA with the most stable
expression in their screen and then validated. Instead, a number
of the above studies have used the synthetic spike-in cel-MIR39B,
but this would only control for technical variation introduced
from RNA extraction onwards, not for the total RNA amount
in the starting volume. Others have used miRNA recommended
as normalizers such as MIR16-5p, but as described above, it has
been shown to be regulated in ALS (15, 22), and also in stress and
in red blood cells (37, 38). Indeed, as some studies did not check
for hemolysis in their samples, the observed changes may be due
to released miRNA from the lysed red blood cells. Taken together,
this underlies why there may be limited cross-validation between
studies and thus careful consideration of identifying objective
normalizers are required.

One question is how do these miRNA-based biomarkers
compare to other biomarkers for ALS? While the properties of
miRNA as biomarkers as described above are ideal, there are
other molecules such as DNA, RNA, protein, and metabolites
that could also be used. One of the most commonly used
biomarkers in ALS is the neurofilament proteins, which form
part of the cytoskeleton of neurons and has been found to
be present in both CSF and serum. Studies have shown that
neurofilaments are able to help with identification of ALS cases
but like MIR206 are not specific to ALS, and rather a measure
of axonal death. As such, it is likely that singular miRNA or
neurofilaments by themselves will not be able to help with ALS
diagnosis or prognosis, but they could form part of any potential
biomarker signature. Therefore, it is likely that an integrative
approach is required, using data on the levels of a number of
ncRNA biomarkers, as has been shown for other diseases (39).
Such approaches include utilizingmultiple biomarkers, including
both miRNA and non-miRNA based biomarkers, and integrating
them into a signature model such as a discriminant model, or
by using ratios of miRNA expression and using them to help
with classification of the disease state, and a number of the
above studies have done this. Together, this may help allow
ALS patients to be specifically identified, not only from healthy
controls but from disease mimics. Therefore, taking this work

forward into larger cohorts of patients is vital to test integrating
these biomarkers together.

Indeed, opportunities from well-designed studies to validate
their biomarkers in separate and larger cohorts could allow for
these biomarkers to be used clinically. Further, these studies have
been designed first and foremost to find biomarkers for ALS
with little attempt to determine the biology underlying these
changes, as presence alone does not infer function. Nonetheless,
considering the wide and varied biological roles of miRNAs,
determining their biological function will be important. Future
studies need to include their source and destination, potentially
by investigating exosomes and their contents and function. These
studies would provide new insights into the mechanisms that
may underlie ALS. Therefore, not only do larger cohorts need
to be screened but proper experimental design needs to be
undertaken to ensure that results are valid and can be used to
progress the field further.

What is ultimately being sought is a set of biomarkers that
are able to help with the diagnosis and prognosis of ALS
patients. Diagnosis and prognosis of patients based on an ncRNA
biomarker could assist with the development of tailored and
targeted treatments to extend or improve patients’ quality of life.
As such, these studies have shown that there is potential here
for ncRNA-based biomarkers to be identified, and with careful
consideration, future work will help to further refine this to
progress this to the clinical setting.
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