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Editorial on the Research Topic

Multiple Sclerosis – From Bench to Bedside: Currents Insights Into Pathophysiological

Concepts and Their Potential Impact on Patients

More than 2 million patients worldwide suffer from multiple sclerosis (MS) (1), and it is the most
common cause of disability in young adulthood. Different disease courses are described, possibly
reflecting different pathophysiological scenarios. Although treatment options for MS have changed
dramatically in recent decades, the cause of the disease is still unknown (2, 3).

The special topic “Multiple Sclerosis—From Bench to Bedside: Currents Insights into
Pathophysiological Concepts and Their Potential Impact on Patients” deals with diverse aspects
of MS, and contains 22 articles that approach MS from different angles.

Findings from histopathological studies have shown that different immune cells also play
a role in different disease courses. The significance of B and T cells in these various disease
courses were summarized in a review (Lassmann). The importance of B cells was also highlighted
in neuromyelitis optica spectrum disorder (NMOSD) and related diseases (Häusser-Kinzel and
Weber). In a study, Faigle et al. examined the role of citrullinated peptides identified in the MS
brain tissue, and concluded that citrullination may not be important for the activation of T cells,
but could be the consequence of the inflammatory cascade. Di Pauli and Berger reviewed antibody
diagnostics and discussed the clinical presentation and pathology ofMOG-antibody disease. Zhong
et al. examined differential diagnostic questions of MOG-antibody disease in connection with
epilepsy and encephalopathy.

Animal models can provide new insights into immunological processes, although findings
should be extrapolated to MS with caution. In two experimental autoimmune encephalomyelitis
(EAE) models of progressive MS—one with T-cell infiltration in the CNS and one
without—cytokines and transcriptomes were identified as potential candidates for biomarkers
by means of bioinformatic analyses (Omura et al.). The importance of synapses in the neuronal
network and their function and possible interventions were investigated in an EAE study by
LoPresti. Another animal study showed that carnosol inhibits Th17 cells and may be a potential

5
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candidate for the treatment of MS (Li et al.). Connexin was
identified as a possible modulator of microglia activity in EAE
(Fang et al.).

The analysis of the cerebrospinal fluid (CSF) is important for
establishing diagnosis, distinguishing MS from other diseases,
and obtaining information about immunological processes
within the CNS environment. Deisenhammer et al. summarized
the most important questions about the CSF in MS, its
importance, but also limitations, and potential novel biomarkers.
The distinction between MS and other autoimmune diseases,
particularly rheumatological diseases, is often difficult. Venhoff
et al. examined 108 patients suffering from rheumatological
diseases with CNS involvement or MS, and investigated the
significance of the measles virus, rubella virus, and varicella
zoster virus reaction (MRZ)-reaction in differential diagnosis. It
was found that in cases, where clear clinical separation was not
possible, the MRZ reaction was useful in addition to oligoclonal
bands (OCBs) and specific autoantibodies (Venhoff et al.).

Cytokines are part of the immunological cascade and their
importance for inflammation and disease activity is undisputed.
Redundant role and interconnection among a multitude of
cytokines complicate interpretation. Computational intelligence
could be one possibility for evaluation, and such approaches
could help to use cytokine levels as prognostic markers (Goyal
et al.; Omura et al.). Besides influencing disease activity, such
as relapses and the progression of disability, cytokines can also
play a role in the development of symptoms. Hanken et al.
showed that fatigue and IL-1ß are linked and that disease-
modifying treatments lead to a decrease in cytokine levels and
an improvement in clinical symptoms.

The importance of environmental factors, the microbiome,
aging, gender, and hormones appears to play a role in the
susceptibility to MS. The relevance of epidemiological studies
is undisputed and can help to demonstrate these relationships.
These factors were considered in several articles (Ghareghani
et al.; Krementsov et al.; Jiang et al.; Sena et al.).

The number of therapies for relapsing MS has increased in
the recent decades, allowing a more personalized treatment
approach after weighing, among others risks, efficacy, pregnancy
issues, and convenience for patients. The mode of action
and immunological effects of all approved treatments were
highlighted in a review (Rommer et al.). In a longitudinal
analysis, Hegen et al. showed that glatiramer acetate,
interferon-beta, and natalizumab had no effect on the anti-JCV
index. By introducing highly effective treatments, however, more
attention has to be paid to the risk of infections and possible
vaccinations. The extent to which vaccinations can protect
against infections, or whether vaccination protection can be built
up under the therapies, must be discussed in complex terms.

There is scientific consensus that vaccinations cannot cause MS.
Zrzavy et al. summarized known data on vaccinations. While
the number of therapeutic options for the relapsing course has
been significantly increased (Rommer et al.), the treatments for
the progressive course are very limited. In a review by LoPresti,
possible interventions for patients with a progressive course
were discussed.

With a few exceptions, immunotherapies for MS are not
approved during pregnancy. Registry data that investigate the
effects of therapies on the unborn child are therefore of
paramount importance. Using data from the Danish Multiple
Sclerosis Registry, Andersen et al. studied the experience with
teriflunomide in pregnant women.

The unparalleled growth in knowledge about MS has enabled
a range of therapeutic options that was unthinkable just 20 years
ago. The compelling data is causing a frenzied debate and the
Internet is being flooded with questions about whether MS is
curable. By definition, health is a state of complete physical,
mental and social well-being and not merely the absence of
disease or infirmity (www.who.int)1, and this definition has not
changed since 1948. In this sense, we cannot achieve cure at
present, but highly effective therapies provide options of no
disease activity for years, and perhaps even ultimately in a
subgroup of patients. First treatments for progressive disease
has recently become available, and attention has been shifted
to develop therapies for this type of MS. A possible future
improvement that could be achieved in the near future would be a
clearer stratification of treatment allocation to specific subgroups
of patients. Such stratification would be of immediate benefit to
all patients, as it would most likely drastically reduce the risk of
treatment failure. An increasingly better understanding of the
complex interactions in the human body, and interaction with
the environment could be a basis for future developments. There
is a need for better risk stratification, for further therapy options
for progressive MS, for neuroprotection, and for improving
quality of life—by reducing disease activity and providing
increasingly diverse and effective symptomatic treatments. The
cause of MS is and will probably remain unclear for some time to
come, and the identification of such factors is a long-term goal of
health, and therefore, to some extent, of cure.
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With Different Clinical Courses of
Multiple Sclerosis
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In the majority of patients multiple sclerosis starts with a relapsing remitting course

(RRMS), which may at later times transform into secondary progressive disease (SPMS).

In a minority of patients the relapsing remitting disease is skipped and the patients

show progression from the onset (primary progressive MS, PPMS). Evidence obtained

so far indicate major differences between RRMS and progressive MS, but no essential

differences between SPMS and PPMS, with the exception of a lower incidence in

the global load of focal white matter lesions and in particular in the presence of

classical active plaques in PPMS. We suggest that in MS patients two types of

inflammation occur, which develop in parallel but partially independent from each other.

The first is the focal bulk invasion of T- and B-lymphocytes with profound blood brain

barrier leakage, which predominately affects the white matter, and which gives rise

to classical active demyelinated plaques. The other type of inflammation is a slow

accumulation of T-cells and B-cells in the absence of major blood brain barrier damage

in the connective tissue spaces of the brain, such as the meninges and the large

perivascular Virchow Robin spaces, where they may form aggregates or in most severe

cases structures in part resembling tertiary lymph follicles. This type of inflammation

is associated with the formation of subpial demyelinated lesions in the cerebral and

cerebellar cortex, with slow expansion of pre-existing lesions in the white matter and with

diffuse neurodegeneration in the normal appearing white or gray matter. The first type of

inflammation dominates in acute and relapsing MS. The second type of inflammation is

already present in early stages of MS, but gradually increases with disease duration and

patient age. It is suggested that CD8+ T-lymphocytes remain in the brain and spinal

cord as tissue resident cells, which may focally propagate neuroinflammation, when

they re-encounter their cognate antigen. B-lymphocytes may propagate demyelination

and neurodegeneration, most likely by producing soluble neurotoxic factors. Whether

lymphocytes within the brain tissue of MS lesions have also regulatory functions is

presently unknown. Key open questions in MS research are the identification of the target

antigen recognized by tissue resident CD8+ T-cells and B-cells and the molecular nature

of the soluble inflammatory mediators, which may trigger tissue damage.

Keywords: relapsing remitting MS, secondary progressive MS, primary progressive MS, inflammation,

demyelination, neurodegeneration
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INTRODUCTION

Multiple sclerosis is a chronic inflammatory disease of the
central nervous system which leads to the formation of focal
confluent lesions of primary demyelination in the white and
gray matter and to diffuse damage and neurodegeneration in
the entire brain (1). In general the disease starts in patients
in the third decade of life with a relapsing and remitting
clinical course. On average after 10–15 years the disease
in the majority of patients converts into a course of slow
progression (secondary progressive MS). In a subset of patients,
in particular in those with higher age at onset, the disease
starts with a progressive course [primary progressive MS; (2)].
It is currently an open debate, whether primary progressive MS
is a distinct disease entity or whether it just represents part
of the variable clinical disease spectrum (3–5). This question
has major pathogenic implications. Most researchers regard MS
as a primary inflammatory disease, in which demyelination
and tissue injury is driven by immune mediated mechanisms
throughout all different stages and in all different courses (6, 7).
In this case PPMS would be just a clinical variant of a common
disease process. The other view suggests that MS is a primary
neurodegenerative disease, which is modified and amplified by
the inflammatory process. In this situation PPMS could reflect
the primary disease process of MS and the other courses (RRMS
and SPMS) are those, modified by an inflammatory reaction (3).

There is no doubt that major differences exist between the
relapsing and progressive stages ofMS and this is also reflected by
the different response to currently available immunosuppressive
or immunomodulatory treatments (8, 9). However, there is an
overlap in pathological features, pathogenic mechanisms and
therapeutic responses between relapsing and progressive MS (10,
11). In particular, evidence for subclinical disease activity, defined
by the presence of new focal contrast enhancing lesions, can be
present in patients with SPMS as well as PPMS. For this reason, it
has been suggested to classify MS patients, who have entered the
progressive disease stage into those with or without evidence of
disease activity and with or without disease progression (2). The
consequence of such a clinical disease classification could be to
skip the distinction between primary and secondary progressive
MS. Whether this may be justified or not and what are the
pathogenic implications will be discussed in this review article.

CLINICAL COURSE, EPIDEMIOLOGY, AND
GENETICS

Clinical and MRI Features
The term primary progressive MS clinically defines a disease,
which develops with increase of neurological deficits in the
absence of prior or intermittent exacerbations and remissions.
This differs from the relapsing-remitting course of the disease,
characterized by new bouts of the disease followed by stages
of clinical remission. Relapsing/remitting MS may after several
years of disease duration, and when patients have reached a
moderate level of clinical disability (EDSS scape 3–4), transform
into a secondary progressive disease course (12, 13). While
disease relapses are associated with new and contrast enhancing

lesions in MRI, the brain and spinal cord changes during
progressive disease were thought to be reflected by a steady
increase of brain and spinal cord atrophy. However, using more
sophisticated tools for clinical monitoring of the patients, as
for instance applied in controlled therapeutic trials, it turned
out that a significant proportion of patients with PPMS and
SPMS show signs of clinical or MRI-based “disease activity” (2)
as defined above. Overall, no qualitative differences regarding
disease activity between PPMS and SPMS were found, although,
as reflected by the original disease definitions, relapses associated
with new focal white matter lesions are less frequent in PPMS.
Similarly, no essential differences between SPMS and PPMS were
seen by MRI (14).

The average disease onset in patients with RRMS is within
the third decade of life. In contrast disease onset in patients with
PPMS peaks in the 5th decade of life, which is similar to the age,
when patients with RRMS tend to convert into SPMS (15, 16).
Clinical disease severity and the speed of disease progression is
highly variable between patients, but on average the speed of
progression is similar between patients with PPMS and SPMS,
and is independent from the severity of previous relapses of the
disease (12, 13).

GENETICS

The male to female ratio in patients with RRMS and SPMS
is 1:3, while patients with PPMS show a lower female
predominance (10, 17). Interestingly, disease risk is also
transferred from unaffected females to theirMS affected offspring
than from males, raising the possibilities of the involvement of
mitochondrial genes, epigenetic effects or a pathogenic role of
intrauterine exposure to exogenous risk factors (18). Genome
wide association studies have now identified numerous gene
regions, associated with increased disease susceptibility, each
of the individual genes providing only a very minor effect
(19, 20). Interestingly nearly all of the gene regions identified
so far contain genes involved in immune mechanisms, which
is in line with clinical, immunological, and neuropathological
data defining MS as an immune mediated disease. Importantly,
within the familial risk in multiplex families there is no
clear discrimination between the different MS courses. Thus,
within the same family different patients may develop relapsing,
secondary or primary progressive MS, although the concordance
rate of clinical courses is moderately increased in siblings of the
PPMS cohort (21, 22). In line with these observations, so far no
clear differences in genetic associations became evident between
PPMS and other disease forms in genome wide association
studies (23). However, recent studies suggest that different genes
may be associated with relapse risk vs. the speed of EDSS increase
(24) and genetic variants, described to be pathogenic in some
neurodegenerative diseases, have been identified in a (small)
subset of patients with PPMS, but not in patients with other
disease courses (23). One of these examples is a variant of a
gene involved in transcriptional regulation (NR1H3), which was
only found to be associated with PPMS, but not with other
disease forms (25). This observation, however, also highlights a
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caveat regarding the interpretation of such data, since it has not
been confirmed in a detailed analysis of the much larger dataset
(26). Overall, however, these data indicate that there is a basic
polygenic pattern determining the global MS risk and this is
the same for all disease courses and involves immune mediated
mechanisms (27), while the development of progressive disease
may be additionally fostered by genetic variants associated with
lipid metabolism or neurodegeneration. However, this may not
apply for all, but only for a small subset of patients with PPMS.

IMMUNOLOGY AND BIOMARKERS

Many immunological studies have been performed with the
aim to identify MS specific biomarkers and disease mechanisms
and to find markers able to predict clinical disease course
and outcome. These data are summarized in comprehensive
recent review articles (28, 29). Besides MRI and markers related
to therapy (induction of blocking antibodies) or JC virus
infection, they include markers for neurodegeneration, such as
neurofilaments, markers for astrocytic activation (e.g., chitinase
or GFAP). Neurofilament protein detected in the serum or
cerebrospinal fluid appears to be a good marker for the extent of
active neurodegeneration, but this is not MS specific. Chitinase
may be a good marker for active disease in relapsing remitting
disease, reflecting the degree of astrocyte activation, or damage
in active lesions.

So far the highest clinical relevance is reported for the
presence of intrathecal immunoglobulin synthesis, reflected by
an increased IgG index and oligoclonal bands. It is associated
with MS with high sensitivity, but found also in other (chronic)
inflammatory diseases of the central nervous system (30).
Regarding PPMS its presence is an important paraclinical
marker for diagnosis and, thus, detection of intrathecal IgG
synthesis has been re-introduced into the new diagnostic criteria
(31). Cytokines, chemokines, and adhesion molecules have
been analyzed and a comprehensive immunophenotyping of
inflammatory cells in the cerebrospinal fluid has been performed
as well. Overall these studies showed increased levels inMS serum
and CSF, being most significantly altered in patients with (active)
RRMS followed by patients with SPMS and PPMS (32–34). These
markers have some clinical value for diagnosis and monitoring of
disease activity, but none of them have turned out to specific for
MS. In addition, so far no specific serum or CSF marker profile
has been identified, which allows the distinction between SPMS
and PPMS.

To overcome this problem, the question regarding potential
biomarkers for MS diagnosis and clinical subtypes has recently
been approached with an innovative technology. By using
an unbiased simultaneous screening for the concentration
of 1.128 proteins together with new machine learning and
bioinformatics technology, CSF protein profiles were established
in a large sample of patients with RRMS, SPMS, and PPMS
and the findings were compared with those seen in patients
with other inflammatory and non-inflammatory CNS diseases
(35). Using these new tools profiles were detected, which
allowed to differentiate between MS and other inflammatory or

non-inflammatory CNS diseases and to clearly separate RRMS
from progressive forms of the disease. However, no significant
differences appeared in the comparison between SPMS and
PPMS. Deciphering the biomarker profile defined important
pathogenic pathways. The protein profiles, which allowed the
best differentiation between MS and other inflammatory CNS
diseases, were those related to B-cell and Plasma cell function.
This may represent an independent confirmation of the long
standing observation that intrathecal immunoglobulin synthesis
occurs in MS patients (30, 36). However, it also is in line
with observations from pathology, that the contribution of B-
cells differentiates MS lesions from non-MS inflammatory brain
diseases better than it is the case for T-cell subsets or the
activation of macrophages and microglia (37, 38). However,
this profound B-cell component in the inflammatory response
may not be specific for MS, since it is apparently also seen in
certain other chronic human inflammatory diseases of the central
nervous system, such as neurotuberculosis, borreliosis, lues, and
others (39–41).

The CSF protein profiles most significantly associated with
progressive MS were related to the formation of tertiary lymph
follicles, and these markers were also associated with the extent
of subpial cortical demyelinating pathology (42). Other markers
being prominent in patients with progressive disease were related
to innate immunity activation and oxidative injury as well as
markers, which reflect neuronal and axonal injury, such as for
instance neurofilament protein (42–44).

In another approach an un-biased metabolomic plasma
profiling has been performed in PP vs. RRMS patients and the
data were further compared to those obtained from patients
with Parkinson’s disease and healthy controls (45). The most
dramatic metabolic changes were seen in PPMS patients and
were mainly related to decreased profiles of glycerophopholipids
and linoleic acid metabolism. These changes were not only
present in the global MS population in comparison to controls,
but even allowed to discriminate PPMS from RRMS. SPMS
patients were not included in this study. It remains unresolved,
whether these lipid changes just reflect the higher degree of
global demyelination and neurodegeneration in progressive MS
vs. RRMS. In addition, information on these lipid changes in
proper disease controls with brain inflammation, demyelination
or neurodegeneration is very limited.

Overall the immunological and metabolic data suggest
that there are quantitative differences in immunological
and neurobiological marker profiles between relapsing and
progressive MS, which indicate that inflammation (systemic
and intrathecal) is more pronounced in patients with relapsing
disease and neurodegenerative events are more severe in the
progressive stage of the disease. However, such differences
vanish, when SPMS and PPMS patients are directly compared.

NEUROPATHOLOGY AND
IMMUNOPATHOLOGY

There are several pathological hallmarks, which distinguish MS
from other diseases of the central nervous system (1). The
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FIGURE 1 | Active Lesions in early MS (acute and RRMS). (A) The dominant pathology in early MS is the presence of focal confluent demyelinated lesions in the white

matter, many of them being in the stage of activity; section of a patient with acute multiple sclerosis, stained for myelin by immunohistochemistry for proteolipid

protein. Magnification bar: 1mm. (B) The classical active lesions in early MS develop around a central vein with inflammatory infiltrates, composed of CD8+ T-cells

(red), CD20 positive B-cells (green), and few plasma cells (blue). While B-cells and plasma cells mainly remain in the perivascular space, the CD8+ T-cells also diffusely

infiltrate the lesion parenchyme. The lesion (blue) is massively infiltrated by macrophages. Many of the lymphocytes are in the process of passing the vessel wall and

this is associated with profound blood brain barrier leakage. This results in profound edema, which expands beyond the area of active demyelination (light blue). (C–E)

Myelin staining (immunocytochemistry for proteolipid protein) shows patchy areas of active demyelination, which is associated with dense infiltration of the tissue by

macrophages (D,E). (F, G) Immunohistochemistry for the T-cell marker CD8 shows perivascular accumulation of T-cells, and their diffuse infiltration of the lesion

parenchyme. (H) The perivascular inflammatory infiltrates contain numerous CD20+ B-lymphocytes. (I,J) Staining for IgG reveals massive leakage of the blood brain

barrier and only a small number of IgG containing plasma cells in the perivascular space (I); the profound blood brain barrier leakage is also reflected by extensive

leakage of fibrinogen through the inflamed vessels (J). (K) A subset of macrophages expresses the activation marker CD163, a feature which is typically found in

active MS lesions. The magnification bars in the figures (C,G,I) represent 100µm. Similar histological images as shown in this figure have been previously published.

Structure of the lesions: Frischer et al. (46); Inflammatory reaction: Frischer et al. (47); Machado Santos et al. (37); Microglia and macrophages: Zrzavy et al. (38); Fibrin

and blood brain barrier injury: Hochmeister et al. (48).

most specific pathological changes are focal lesions with primary
demyelination and astrocytic scaring, which develop on the
background of a chronic inflammatory process (Figure 1). These
lesions are not restricted to the white matter, but are also
abundant in the gray matter of the cortex, the deep brain

stem nuclei and the spinal cord (49–51). Primary demyelination
means that myelin sheaths and their supporting cells, the
oligodendrocytes, are destroyed, while axons are at least in part
preserved. However, axonal and neuronal injury in gray and
white matter lesions is pronounced. When it passes the threshold
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of functional compensation its extent is currently the best
pathological predictor for permanent neurological deficit in the
patients (52). Focal demyelinated lesions in the white and gray
matter can be partly or completely repaired by remyelination,
although the degree of remyelination is highly variable between
patients (53, 54). In addition to these focal changes, diffuse
neurodegeneration is present in the normal appearing white
and gray matter, which results in brain atrophy, reflected by
profound focal and diffuse loss of brain and spinal cord volume.
All these changes are present in all MS patients, but their relative
contribution to the global pathology varies between different
patients and different forms, courses, or stages of the disease.

Inflammation
MS is a chronic inflammatory disease of the central nervous.
Inflammation, characterized by the presence of perivascular T-
and B-lymphocytes and their dispersion into the parenchyma, is
most pronounced in patients, who have died in early stages after
disease onset and declines with age of the patients and disease
duration [(47); Figure 1]. However, even in the progressive stage
of the disease pronounced inflammation is present, which is
quantitatively in the range of other acute and chronic infectious
or inflammatory diseases and massively exceeds that seen in
patients with metabolic or neurodegenerative diseases (37). In
progressive disease pronounced inflammation is mainly seen in
those patients with clinical or radiological evidence of disease
activity or of ongoing disease progression during the last months
or year (Figures 2, 3), while in patients with stable disease during
the last year prior to death and/or at very late disease stages tissue
infiltration by leukocytes may decrease to levels present in age
matched controls (47). In these patients ongoing active axonal
injury, detected by focal accumulation of amyloid precursor
protein as a marker for disturbance of fast axonal transport,
has also declined to the levels seen in age matched controls
(47). This adaptive inflammatory process is associated with
microglia activation and infiltration of the tissue bymacrophages,
which is most extensive at sites of active demyelination and
neurodegeneration, but, in particular in patients with progressive
disease, diffusely affects also the normal appearing white and gray
matter.

Similarly as in other chronic inflammatory diseases of the
human CNS, inflammatory cells from the adaptive immune
system mainly consist of MHC Class I restricted CD8+ T-cells,
while MHC class II restricted CD4+ T-cells are rare or even
absent [(55, 56); Figure 1]. These T-cells display the phenotype
of resident memory cells and show focally restricted activation
within active lesions (37, 57). It has been suggested from
experience obtained inmodels of autoimmune encephalomyelitis
that CD4+ T-cells are the major drivers of the inflammatory
process, a concept that is also supported by the genetic
association of MS withMHC class II haplotypes and of molecules
involved in the regulation of MHC Class II restricted T-cell
mediated inflammation (27). However, at the time, when new
lesions and neurodegeneration appear in the nervous system,
only sparse or even no CD4+ T-cells are present in the tissue
(37, 57). Thus, CD4+ T-cells may be involved in the initiation of
the immune response in MS patients, but less in the effector stage

FIGURE 2 | Inflammatory reaction in the brain of patients with progressive MS

and its relation to active demyelination and neurodegeneration. The

inflammatory reaction in the brain of patients with progressive MS is mainly

seen in the large connective tissue spaces of the meninges and the

periventricular Virchow Robin spaces. These inflammatory sites mainly contain

CD8+ T-cells, a major component of CD20+ B-cells and a variable number of

plasma cells and may in their most severe manifestations become organized in

structures with features of tertiary lymph follicles (green dots). In addition there

are perivascular cuffs mainly composed of CD8+ T-cells, which are more

broadly dispersed within the white matter of the brain (red dots). Inflammation

with T-cells, B-cells and Plasma cells (green dots) is associated with slow

expansion of demyelinated lesions, defined by a rim of activated microglia

cells, which in part contain early myelin degradation products in the cortex and

the white matter (thick blue lines). Active demyelination and diffuse tissue injury

occurs at a distance from the lymphocytic infiltrates and may, thus, be

propagated by a soluble demyelinating or neurotoxic factor. Inactive plaques

(thin green lines) can still be centered by a vein with a dominant infiltrate by

CD8+ T-cells (red dots).

of brain inflammation, immune mediated demyelination and
neurodegeneration. In contrast to many other acute of chronic
inflammatory brain diseases, cells from the B-cell lineage are
a major component of the adaptive immune inflammation in
the brain and spinal cord of MS patients (37). They consist in
the early stage and in early lesions mainly of CD20+ B-cells,
while during lesion maturation and in the progressive stage of
the disease plasma-blasts and plasma cells dominate (37, 47).
Their possible role in the propagation of demyelination and
neurodegeneration is indicated by the highly effective therapeutic
response of MS patients in clinical trials targeting B-cells by
antibodies against CD20 (58, 59). B-cells in MS lesions may
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FIGURE 3 | Slowly expanding lesions in the progressive stage of MS in the cortex and the white matter. (A) Active cortical lesions are associated with inflammatory

infiltrates in the meninges, which are composed of CD8+ T-cells (red), CD20+ B-cells (green) and plasma cells (blue). Active demyelination occurs at a distance of the

inflammatory infiltrates and is associated with activated microglia (blue lesion rim). The lesions gradually expand from the pial surface of the cortex toward the depth of

the gray matter. Lymphocyte infiltrates are rare or completely absent in the cortical tissue and in particular at the zone of active demyelination. It is suggested that

the inflammatory infiltrates in the meninges produce a soluble factor, which induces demyelination and neurodegeneration either directly or indirectly through microglia

activation (arrows). (B) In slowly expanding lesions in the white matter T-cell, B-cell and plasma cell infiltrates are present in the large perivascular Virchow Robin

spaces. Active demyelination and neurodegeneration occurs at a distance and is associated with microglia activation. Also in these lesions it is suggested that

demyelination and neurodegeneration is driven by a soluble factor, produced by the perivascular lymphocytes or plasma cells (arrows). (C–F) Active cortical lesion in a

patient with progressive MS. Subpial myelin is completely lost in an area with meningeal inflammation (C); CD8+ T-cells are present in the meningeal infiltrates, but do

not enter the cortical parenchyme (D); The meningeal infiltrates also contain IgG positive plasma cells (E), there is however no indication of IgG leakage from the

vessels into the tissue, suggesting an intact blood brain barrier. Activated microglia and macrophages are seen at the site of active demyelination in the depth of the

gray matter (F). (G,H) Slowly expanding lesion in the white matter of a patient with progressive MS. The inactive plaque center contains vessels with perivascular cuffs

of lymphocytes but the active demyelination at the lesion edge is associated with a rim of activated microglia (G,H). Lymphocytes, such as for instance CD8+ T-cells

and B-cells are present in the large perivascular space of the vessels, but there is little or no infiltration into the lesion parenchyme (I,J). No fibrinogen leakage is

observed around inflamed vessels, indicating intact blood brain barrier function (K). Magnification bar representative for all images: 100µm. Similar histological images

as shown in this figure have been previously published. Structure of the lesions: Frischer et al. (46); Inflammatory reaction: Frischer et al. (47); Machado Santos et al.

(37); Microglia and macrophages: Zrzavy et al. (38); Fibrin and blood brain barrier injury: Hochmeister et al. (48).
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augment T-cell mediated inflammation for instance through
effective auto-antigen presentation, but may also have direct
effects in disease pathogenesis. In this line some data suggest that
B-cells within the central nervous system of MS patients produce
factors that can trigger demyelination and neurodegeneration in
vitro (60, 61). In addition, however, plasma cells in MS lesions
express interleukin 10, suggesting a potential regulatory role (37).

It has been suggested that lymphocyte infiltration is less
pronounced in patients with primary progressive compared
to secondary progressive MS (62), but this observation was
restricted to the analysis of focal white matter lesions and based
on a limited number of patients only. It was not confirmed in
a more recent study (47). In addition, a major component of
the inflammatory response accumulates in the large Virchow
Robin spaces of periventricular veins (63) and in the meninges,
where they may form inflammatory aggregates, which in the
most severe variants reveal the structure of tertiary lymphatic
follicles (64). Some studies described a lower degree of meningeal
inflammation and in particular the absence of tertiary follicle
like structures in the meninges of PPMS in comparison to SPMS
patients (65, 66), but this was not the case in PPMS patients with
rapid disease progression in other studies (49, 67).

Focal White Matter Lesions
The inflammatory process in MS is associated with the formation
of different focal lesion types in the white matter of the brain and
spinal cord. They include classical active lesions with pronounced
blood brain barrier injury, chronic active or slowly expanding
lesions with a low degree of demyelinating activity at the lesion
edge and no major blood brain barrier damage, inactive lesions
and remyelinated shadow plaques (46, 68, 69). While classical
active focal white matter lesions are most numerous in patients
with early disease (acute and relapsing MS; Figure 1), they
become rare in the patients who have entered the progressive
stage. In the latter patients slowly expanding or chronic active
lesions contribute on average 30% of all focal demyelinated or
remyelinated plaques [(46); Figure 3]. Their speed of expansion
is very low and longitudinal follow up for several years is
necessary to document their enlargement at 7T MRI (70). MRI
studies indicate that focal white matter lesions are less abundant
in patients with primary vs. secondary progressive MS (71,
72). However, very large neuropathological studies on more
than 300 patient autopsies did not reveal significant differences
between PPMS and SPMS patients in the global extent of white
matter plaques or the relative incidence of different focal white
matter lesions, such as active, chronic active (slowly expanding),
or inactive plaques (46, 69). This discrepancy between MRI
and pathology data may in part be due to a sampling bias
in pathology, where the selection of tissue areas for detailed
analysis is focused on brain areas with macroscopically visible
lesions. In this line, a study focusing on the analysis of very
large hemispheric and double hemispheric MS brain section
showed a lower incidence of active white matter lesions and
more remyelinated plaques in the brain of patients with PPMS
compared to SPMS, but this study was based on a rather small
sample of patients (73).

The issue is further complicated by the observation of
a subset of MS patients, who present with a cortico/spinal
variant of multiple sclerosis. In these patients focal demyelinated
white matter lesions are present only in the spinal cord
and are associated with extensive cortical demyelination and
neurodegeneration (74). They were present in cohorts of
SPMS as well as of PPMS. Such patients show diffuse mainly
periventricular white matter abnormalities in the brain in
MRI. The nature of these diffuse white matter abnormalities
is currently unresolved, but may be due to a combination of
diffuse white matter inflammation, secondary degeneration due
to neuronal loss in the cortex and age related comorbidity, such
as small vessel disease [leukoarayosis; (74), see Figure 1 in (67)].
An extreme variant of this scenario appears to be a condition,
designated as cortical variant of MS, which appears to be due
to severe cortical damage with only very sparse and small white
matter lesions in the brain and spinal cord (67, 75).

Demyelination in the Gray Matter
Cortical lesions, present in the forebrain, the cerebellum, and the
hippocampus, have recently been identified as a major substrate
of MS pathology [(49, 65, 66, 76–78); Figure 3]. More than 90%
of cortical lesions can be visualized by post mortem scanning
of the brain by high field magnetic resonance imaging using
very long imaging times (79, 80). However so far, their detection
in the living patients in vivo is very incomplete, depicting only
an estimate of 10–15% of cortical demyelination, even when
ultra-high field MRI is applied (81). Most lesions depicted in
MRI are cortico/subcortical or intra-cortical, while the most
abundant subpial lesions largely remain unrecognized. Cortical
lesions, including the subpial lesions, may already arise in the
early stages of MS, being present in brain biopsies or autopsies
of patients with a disease duration of weeks to months (82), but
the number and size increases with disease duration, thus being
most extensive in patients with progressive disease (49). So far no
significant differences in the incidence and size of cortical lesions
have been observed between patients with primary or secondary
progressive disease.

As discussed above, subpial cortical lesions are associated with
meningeal inflammation (Figure 3). Meningeal inflammation is
present in the form of diffuse infiltrates or of inflammatory
aggregates containing densely packed T-cells, B-cells, and
Plasma cells, which in most severe forms resemble tertiary
lymphatic follicles (64). The severity of meningeal inflammation
correlates with the extent of subpial cortical demyelination and
neurodegeneration (83). Neuropathology, based on a limited
number of cases, indicated that tertiary lymph follicles in the
meninges are a feature of patients with secondary progressive
disease (65), being absent in patients with primary progressive
MS (66). However, this does not appear to be the case in
PPMS patients with rapid disease progression (49). Furthermore,
the presence of tertiary lymph follicles is not mandatory for
active cortical demyelination, since active cortical lesions are also
present in cases with lower degree and more diffuse meningeal
inflammation.

While lymphocytes and plasma cells are restricted to the
meninges, active cortical demyelination occurs in an outside/in
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gradient and is associated with microglia activation at the site of
active myelin destruction (49, 84). These observations indicate
that active demyelination and neurodegeneration in the cortex
may be driven by a soluble factor, produced in the meningeal
inflammatory infiltrates, either directly or indirectly through
microglia activation (42, 84, 85). The existence of such a soluble
demyelinating or neurotoxic factor has been described in the
serum and cerebrospinal fluid of MS patients decades ago (86)
and it seems to be produced by B-lymphocytes (60, 61). Although
the nature of the demyelinating or neurotoxic factor has so far not
been identified, several potential candidates have been suggested,
including ceramide (87) or semaphorin 4A (88).

Cortical demyelination is accompanied by profound axonal
and neuronal degeneration (50, 89). It results in profound
neuronal loss following a gradient from the meningeal surface
toward the depth of the cortical ribbon (84). Although neuronal
loss in the cortex is highest in demyelinated lesions, it is also
present in the normal appearing cortex (74).

Other gray matter areas, affected in the disease process of
MS are the deep gray matter nuclei, including the thalamus,
hypothalamus and basal ganglia as well as the gray matter of
the spinal cord (50, 90, 91). As in the cerebral cortex these
structures contain focal demyelinated plaques, but active lesions
at these sites are not associated with meningeal, but perivascular
inflammation. As in cortical lesions, active demyelination
expands at a distance from the lymphocytic perivascular
infiltrates and is associated with microglia activation. In contrast
to cortical lesions, demyelinated plaques in deep gray matter
nuclei are already present at early stages of MS and their number
and size only moderately increases with disease duration (50). In
addition to the presence of focal demyelinated lesions there is
also a profound diffuse neuronal loss within the deep gray matter
nuclei, associated with inflammation and oxidative injury, which
may reflect augmentation of oxidative injury by the high iron
content in the deep gray matter nuclei (50).

Diffuse Injury in the Normal Appearing
White and Gray Matter
Diffuse injury in the normal appearing white matter is prominent
in the MS brain and spinal cord, in particular in patients in the
progressive stage of the disease. It consists of small perivascular
inflammatory infiltrates, some diffuse infiltration of the tissue,
predominantly by CD8+ T-lymphocytes, diffuse axonal injury
with secondary demyelination, reactive astrocytic scaring and
global microglia activation. The average axonal loss in focal white
matter lesions is in the range of 60% (52, 92, 93). The extent of
cortical demyelination in the brain of patients with progressive
MS is extensive (49) and can affect in extreme cases up to 90%
of the cortical ribbon. Within the cortical lesions, but also in
the surrounding normal appearing cortex, neuronal loss is seen,
which may reach up to 60% of cortical nerve cells (84). Thus, a
major part of the axonal neurodegeneration in the white matter
appears to be due to secondary Wallerian degeneration as a
consequence of axonal trans-section in plaques and neuronal
loss in the gray matter (94). Wallerian tract degeneration in the
human brain is a very slow process, reflected by the presence of

degenerating axons even months after the focal trans-section in
a lesion. Thus, ongoing axonal demise in the normal appearing
white matter in the absence of lesions with active demyelination
may to a major part reflect secondary anterograde or retrograde
degeneration as a consequence of axonal or neuronal damage,
that has occurred even months before.

Alternatively, diffuse neurodegeneration in the normal
appearing gray and white matter may occur independently of
focal lesions. Diffuse axonal damage in the normal appearing
white matter of the spinal cord has been shown to be associated
with inflammation in the meninges (95) and a similar process
may trigger neuronal loss in the normal appearing cortex. In
addition, age related neurodegeneration and comorbidities, such
as vascular pathology and subsequent diffuse hypoxia are likely
to be additional factors, driving diffuse neurodegeneration in the
brain of patients with progressive MS (50).

Some studies have shown profound diffuse myelin lipid
changes in the normal appearing white matter of patients with
progressive MS. This can be visualized by myelin imaging inMRI
as well as by neuropathological or biochemical analysis (96, 97).
Overall, these changes consist of diffusemyelin abnormalities and
diffuse alterations in phospholipids, and it was suggested that
these changes reflect a metabolic disturbance of myelin, which
may be the primary cause of MS or amplify myelin damage (98).
An alternative explanation is that these changes reflect Wallerian
degeneration, since they are associated with diffuse axonal injury
in pathology.

All these diffuse changes in the normal appearing white and
gray matter are increasing with age and disease duration of
the patients and are, thus, most pronounced in patients with
progressive disease. So far, however, they have been seen in
similar extent in patients with PPMS and SPMS.

PATHOGENETIC IMPLICATIONS

All the data discussed above show that there are differences
in clinical disease, pathology and immunology between the
relapsing and the progressive stage of MS. However, when
primary and secondary progressive MS are compared with each
other no qualitative differences become apparent, but there
are some quantitative differences in the presence of focal and
active classical white matter lesions and the global degree of
inflammation, being lower in PPMS compared to SPMS. The key
issue, however, is to explain the difference between early acute
and relapsing MS and the progressive disease stage.

Overall these differences could be explained by acknowledging
that there are two different types of inflammation in MS patients
(Figures 1–3). The first, which is associated with the formation
of new focal lesions mainly in the white matter, is the focal bulk
invasion of inflammatory cells into the brain, which is associated
with a major disturbance of the blood brain barrier. Like in
experimental models of brain inflammation, such as for instance
autoimmune encephalomyelitis, lymphocytes enter the brain in
the course of immune surveillance, and when they recognize
their cognate antigen within the central nervous system, they
may become activated, produce a variety of pro-inflammatory
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mediators and recruit additional cells and serum components
through the impaired blood brain barrier (99). It has originally
been thought that this process is mediated by MHC Class II
antigen restricted CD4+ T-lymphocytes. However, as discussed
above, more recent neuropathological data and experience from
therapeutic trials do not support their dominant role in patients
with established disease. Instead, CD8+ T-cells or CD20+ B-cells
may bemore important at least at the stage, when the lesions arise
or expand in the brain and spinal cord.

Themere presence of T- and B-cells in the brain ofMS patients
alone does not allow conclusions regarding their potential
involvement in the disease process. The CD8+ T-cells in the
MS brain show the phenotype of tissue resident memory cells.
They could have entered the brain and spinal cord as disease-
unrelated bystander cells during disease activity and persist as
tissue resident memory cells without any direct involvement in
the disease process. Support for this view comes from a recent
study, showing that similar CD8+ tissue resident memory T-cells
without signs of activation also populate in small numbers the
brain of normal controls and patients with neurodegenerative
disease (100). Similarly, a major component of the intrathecal
antibody response in MS patients is directed against measles,
rubella and varicella zoster virus (101), possibly reflecting the
B-cell repertoire at the time of their recruitment into the
inflammatory brain lesions. However, in contrast to controls
the CD8+ T-cells in the MS brain focally proliferate and show
signs of activation (37, 57) or clonal expansion (102), indicating
local antigen recognition. Such cells could either promote
disease or have regulatory function. Although they do not
express interleukin 10 or TGF-ß, a regulatory function through
interferon-γ of perforin mediated mechanisms, as suggested
to operate in a mouse model of EAE cannot be excluded
(103, 104). However, in the MS brain these cells are associated
with active demyelination and neurodegeneration, indicating a
disease promoting role in the lesions (37, 57). Regarding B-cells
the therapeutic effect of anti-CD20 antibodies supports their
pathogenetic role in MS patients. However, plasmablasts and
plasma cells within the MS lesions highly express interleukin 10
(37) suggesting that these cells may ameliorate inflammation.
Thus, the role of cells derived from the B-cell lineage inMS lesion
may depend upon their stage of differentiation in different types
or activity stages of the lesions (105, 106).

The acute inflammatory process may lead to focal areas
of primary demyelination with variable axonal injury, mainly
accomplished by activated microglia and macrophages and
possibly also by specific antibodies and may give rise to the
appearance of different types of active focal MS plaques (107).
One possible pathogenic demyelinating autoantibody is directed
against myelin oligodendrocyte glycoprotein (MOG), which,
however, is present in patients with a disease that turned out to
be different from MS (108). In addition, antibodies binding to
the surface of oligodendrocytes and astrocytes (109, 110) have
been found in MS patients, but the molecular nature of the target
antigen is so far undefined. The acutely recruited and activated
lymphocytes are in part destroyed by programed cell death (37)
and microglia and macrophages are transformed in part into
an anti-inflammatory phenotype (38). Thus, these lesions may

become inactive and a subset of them may even be repaired by
remyelination (53). New bouts of the disease (also termed disease
activity in clinical terms) will then be induced by new waves of
T-cells and B-cells, focally entering the brain in association with
blood brain barrier damage, a process termed “disease activity” in
clinical and imaging studies (2).

The second pattern of inflammation in the MS brain is
an inflammatory reaction, which accumulates in the large
connective tissue spaces of the brain and spinal cord, dominantly
affecting the meninges (111) and the large periventricular
Virchow Robin spaces (63). Clearance of T- and B-cells from
the central nervous system by apoptosis is highly effective
for those cells, which penetrate the brain tissue, but is only
minor or absent in lymphocytes present in the perivascular and
meningeal connective tissue (112). The phenotype of CD8+ T-
cells in these chronic lesions is similar to that of tissue resident
memory T-cells, which are largely present in an inactive stage,
but show focal spots of activation (37, 57). Regarding cells
of the B-cell lineage, CD20 positive cells are most frequent
in active lesions, but the majority of cells present in chronic
lesions are plasmablasts and plasma cells (37). In the meninges
and perivascular space this inflammatory reaction is present
diffusely but it may form focal aggregates or structures, which
resemble tertiary lymph follicles with clearly separated T-cell, B-
cell and plasma cells areas (111). In contrast to the inflammatory
reaction in classical active white matter lesions blood brain
barrier damage is minor or absent in this compartmentalized
inflammatory reaction in chronic MS (48). The meningeal and
perivascular infiltrates are associated with slow expansion of
pre-existing focal white matter lesions, with subpial cortical
demyelination and with diffuse damage of the normal appearing
white and gray matter, which are the changes typically found in
the brain and spinal cord of patients with active demyelination
and neurodegeneration in the progressive stage of the disease
(113). Tissue injury may at least in be part mediated by a cascade
involving microglia and macrophage activation, oxidative injury
and mitochondrial damage (5). All these data indicate that
demyelination and neurodegeneration in MS is driven by the
inflammatory process in all disease stages. However, it is unlikely
that inflammatory T- and B-cells interact by direct contact with
the specific target cells. More likely, soluble factors, produced by
the inflammatory cells, may exert tissue damage either directly
or indirectly by the activation of microglia or macrophages
(84, 85).

These two types of inflammation occur in parallel in patients
with relapsing as well as progressive disease. However, classical
active plaques with inflammation and leaky blood brain barrier
are most frequent in the early disease stages and then decline
with age and disease duration in patients with progressive disease
and are even less frequent in particular in patients with primary
progressive disease (46, 69, 73). It is so far not clear, whether these
two different types of inflammation reflect immune reactions
to different target antigens within the brain or just represent
inflammatory reactions to a single antigen. To answer this
question, knowledge on the specific target antigens for T-cells
and B-cells in the MS brain is required, but so far lacking
(6, 7).
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In summary, inflammation in the brain and spinal cord
is present in all patients with active disease, reflected by
classical active lesions in the early disease stages and by
slowly expanding lesions in the white and gray matter and
ongoing neurodegeneration in the progressive stage of the
disease. The dominant inflammatory cells are CD8+ T-cells
with proliferenation and activation in early stages of classical
active lesions and a phenotype of tissue resident memory cells
with focal activation in lesions with ongoing demyelination and
neurodegeneration in the progressive stage. Numerous CD20+

B-cells are found in perivascular and meningeal inflammatory
aggregates in relation to lesion activity in all disease stages, but
they apparently transform into plasmablasts and plasma cells in
the course of lesion maturation. Depending on the lesion stage
lymphocytes may play a role in the induction of tissue damage or
have regulatory function. Demyelination and neurodegeneration
takes place at a distance from the T- and B-lymphocytes and
is associated with activated microglia and macrophages. The
structure of active lesions suggests that tissue damage is driven by
a soluble factor, produced by lymphocytes. Neither the molecular
nature of the soluble factor nor the antigen specificity of the
infiltrating T- and B-cells has been identified so far.

ARE DIFFERENT COURSES OF MS
REPRODUCED IN EXPERIMENTAL
AUTOIMMUNE ENCEPHALOMYELITIS?

Experimental autoimmune encephalomyelitis (EAE) is an acute
or chronic neuro-inflammatory disease of the brain and spinal
cord, induced by sensitization of animals with tissue or specific
antigens of the central nervous system. The value and limits
of different EAE models for MS research has recently been
reviewed in detail (99), and therefore only few points directly
related to the current topic are mentioned here. EAE can be
induced in most, if not all, mammalian species including humans
and leads to an inflammatory disease, which, depending upon
the model, is associated with focal plaques of demyelination
and/or diffuse neurodegeneration. The respective experimental
models provide excellent tools to elucidate basic mechanisms
of brain inflammation and immune mediated tissue injury
in the central nervous system, mediated by different T-cell
populations and components of the innate immune system. Most
importantly, many anti-inflammatory or immunomodulatory
therapies, which have been proven effective in MS patients, have
been developed with the help of EAE models. However, the value
of these treatments in patients, who have reached the progressive
stage of MS, is limited. In addition, effective anti-inflammatory
treatments in MS so far target many different immune
cells simultaneously, including different T-cell populations, B-
lymphocytes and in part also macrophages, while treatments
selectively directed against the MHC Class II restricted CD4+

T-cell population, which drives inflammation in most EAE
models, have so far not provided significant beneficial effects
(99). Furthermore, the nature of the inflammatory response and
the mechanisms of demyelination and neurodegeneration in
the lesions are different between MS and EAE, and so far no

EAE model is available, which reproduces the specific clinical
and neuropathological features of progressive MS (99). Thus,
despite the undisputed value of EAE for basic research related to
mechanisms of brain inflammation and immune mediated tissue
injury, their value as models for MS is limited and the elucidation
of specific mechanisms related to MS pathogenesis depends
on the analysis of the human disease itself. However, EAE
models induced by sensitization with myelin oligodendrocyte
glycoprotein (MOG) in rats and primates are perfect models
for MOG auto-antibody associated inflammatory demyelinating
disease (99), which however is a disease distinctly different from
MS (108).

FUTURE PERSPECTIVES OF MS
RESEARCH

There are at present a number of key questions, which require
focused attention:

1) One key point is to elucidate the function of tissue resident
memory CD8+ T-cells, which are the most abundant
inflammatory cells in MS lesions. Further studies are
necessary to define their activation stages, their molecular
profiles and their functional role in MS lesions in relation
to active tissue damage, clearance of tissue debris and tissue
repair. CD8+ resident memory cells have originally been
defined and functionally characterized in experimental
models of virus induced disease (114, 115). It is unlikely
that such cells will develop in a condition of classical
autoimmunity, when they are directed against an antigen,
which is ubiquitously present within the target tissue
and is not eliminated in the course of the inflammatory
response. Thus, it will be of critical importance to
identify the specific antigen(s), which are recognized
by tissue infiltrating T- and B-lymphocytes within MS
lesions at different stages of lesion formation and disease
development (7).

2) Accumulating evidence supports an important role of CD20
positive B-lymphocytes in MS pathogenesis. Although their
role may in part be related to the augmentation of T-cell
mediated inflammatory responses (116), for instance through
effective antigen presentation, an (additional) more direct
involvement in the inflammatory process is likely (see above).
In addition, they may have disease promoting or regulatory
functions, dependent on their differentiation stage in the
evolution of the brain lesions. Functional studies so far have
concentrated on the production and pathogenic involvement
of (auto) antibodies, but little is known regarding the role of B-
cells themselves in the process of immune surveillance of the
normal brain, in brain inflammation and in immunemediated
tissue injury.

3) Another key feature, which is not well-reproduced in models
of EAE is cortical demyelination, associated with meningeal
inflammation. The only EAE models, which show MS like
cortical demyelination are those, which are mediated by a
combination of an encephalitogenic T-cell response in concert
with a demyelinating antibody response against myelin
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oligodendrocyte glycoprotein [MOG, (99, 117)]. Despite
extensive search the identification of MS-specific target
antigens for demyelinating antibodies was not convincingly
successful up to now.

4) Most evidence from pathological studies suggests that
demyelination and neurodegeneration in MS is driven by
the inflammatory cells, but that these processes are not
directly induced by cellular contacts. In addition, plaque
like primary demyelination is a specific feature of MS, not
seen in other inflammatory conditions of the brain and
spinal cord with the exception of diseases with viral infection
of oligodendrocytes (89). Evidence from expanding cortical
lesions and slowly expanding white matter lesions suggest

that demyelination and neurodegeneration is driven by an
MS specific soluble factor, produced by inflammatory cells,
which induces tissue damage either directly or indirectly
through microglia activation (83), and that this soluble factor
may be produced by B-cells from MS patients, but not from
controls (60). To identify the molecular nature of this soluble
factor will be instrumental for our understanding of MS
pathogenesis.
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Our pathophysiological concept of the most common central nervous system

demyelinating disease, multiple sclerosis, strikingly evolved by recent discoveries

suggesting that B lymphocytes substantially contribute in its initiation and chronic

propagation. In this regard, activated B cells are nowadays considered to act as

important antigen-presenting cells for the activation of T cells and as essential source

of pro-inflammatory cytokines. Hereby, they create a milieu in which other immune cells

differentiate and join an orchestrated inflammatory infiltration of the CNS. Without a

doubt, this scientific leap was critically pioneered by the empirical use of anti-CD20

antibodies in recent clinical MS trials, which revealed that the therapeutic removal of

immature and mature B cells basically halted development of new inflammatory flares

in otherwise relapsing MS patients. This stabilization occurred largely independent of

any indirect effect on plasma cell-produced antibody levels. On the contrary, peripherally

produced autoantibodies are probably the most important B cell component in two

other CNS demyelinating diseases which are currently in the process of being delineated

as separate disease entities. The first one is neuromyelitis optica in which an antibody

response against aquaporin-4 targets and destroys astrocytes, the second, likely distinct

entity embraces a group of patients containing antibodies against myelin oligodendrocyte

glycoprotein. In this review, we will describe and summarize pro-inflammatory B cell

properties in these three CNS demyelinating disorders; we will however also provide

an overview on the emerging concept that B cells or B cell subsets may exert

immunologically counterbalancing properties, which may be therapeutically desirable to

maintain and foster in inflammatory CNS demyelination. In an outlook, we will discuss

accordingly, how this potentially important aspect can be harnessed to advance future

B cell-directed therapeutic approaches in multiple sclerosis and related diseases.

Keywords: B cells, multiple sclerosis, central nervous system, antigen-presenting cell, cytokine secretion,

regulatory B cells, anti-CD20 therapy, neuromyelitis optica-spectrum disorders

INTRODUCTION

The fulminant clinical success of anti-CD20 antibodies in the treatment of multiple sclerosis (MS)
and neuromyelitis optica-spectrum disorders (NMO-SD) raised awareness that beside T cells, B
cells play a decisive role in their initiation, and propagation. Here, the rather immediate benefit
of anti-CD20 therapy has been mainly attributed to the extinction of B cells from the blood, but
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even more so from immunological relevant organs, such as
lymph nodes and spleen (1). In these peripheral compartments, B
cells interact with other immune cells after encountering antigen,
promote their differentiation and in turn undergo expansion
and maturation themselves (2). In NMO-SD, this peripheral B
cell activation results in a highly relevant antibody response
against CNS antigen. Consequently, most investigations focused
on elucidating mechanisms by which B cells contribute to the
pathogenesis of MS and NMO-SD in the periphery. These studies
revealed that beyond antibody production, cellular properties of
B cells such as antigen presentation and cytokine production
shape the response of other immune cells such as T cells
and myeloid cells both in a pro-inflammatory, but also in a
regulatory manner. Besides these properties in the periphery, B
cells and their antibodies probably play an important role within
the CNS, which may however substantially differ between MS
and NMO-SD.

B CELLS CONTRIBUTE AS

ANTIGEN-PRESENTING CELLS TO THE

ACTIVATION OF T CELLS

B cells are professional antigen-presenting cells (APC): they
recognize even low concentrations of antigens specifically and
constitutively express major histocompatibility complex (MHC)
class II and co-stimulatory molecules. This enables B cells to
prime T cells and in turn induces their own differentiation into
memory cells and antibody-producing plasma cells (Figure 1A).
In contrast to myeloid APC, which randomly ingest peptides,
B cells are capable of specifically recognizing, and internalizing
natively folded “conformational” protein antigens via their B cell
receptor. Subsequently, B cells process these structures to short
linearized peptides and present it to antigen-specific T cells via
MHC class II molecules. Thus, B cells are most efficient APC
when they share antigen recognition with responding T cells (3).
In genetically-altered mice containing myelin specific B and T
cells, the mere coexistence of these cells induces a spontaneous
form of experimental autoimmune encephalomyelitis (EAE) (4,
5), a commonly used murine model for human inflammatory
CNS demyelinating disorders. In the very same model, the
selective ablation ofMHC class II on B cells rendersmice resistant
to disease induction (6), showing their substantial contribution
as APC to this model. However, efficient priming of naïve T cells
does not only rely on peptide presentation via MHC class II, but
furthermore requires the ligation of co-stimulatory molecules,
such as CD40, CD80, and CD86. The quality of these signals in
conjunction with soluble factors shapes the emerging effector T
cell type. While for instance a strong cell-cell contact via CD40
on B cells and CD40 ligand (CD40L) on T cells is necessary for
the generation of pro-inflammatory T cells, a weaker molecular
contact induces rather regulatory T cell functions and a complete
block of CD40-CD40L interaction even prevents EAE (7, 8). In
line with these findings, B cells of active MS patients compared
to controls express increased amounts of CD40 together with
higher level ofMHC class II andCD80 (9, 10) suggesting that they
harbor an enhanced APC capacity. Furthermore, peripheral as

well as CNS B cells exhibit signs of chronic activation with a shift
toward antigen-experienced memory B cells (11, 12) pointing
toward an active involvement of B cells in MS pathogenesis.
This assumption is further corroborated by functional studies
which revealed that in a subgroup of relapsing-remitting MS
patients, B cells were capable of initiating proliferation, and
interferon-gamma (IFN-γ) secretion of potentially pathogenic
CD4+ T helper (Th)1 cells ex vivo (13). In summary,
these findings point toward an active involvement of B cells
in the pathogenesis of MS, potentially by activating CNS-
infiltrating T cells that in turn drive inflammation in brain and
spinal cord.

B CELLS SECRETE PATHOGENIC, BUT

ALSO REGULATORY CYTOKINES, WHICH

CONTROL OTHER IMMUNE CELLS

Besides being equipped with molecules required for direct cell-
cell contact, B cells provide a variety of cytokines for inter-
cell signaling. This is important as T cell activation does
not only rely on the strength of co-stimulatory signals, but
furthermore the cytokine milieu provided by the presenting
cell (Figure 1B). For instance, interleukin (IL)-6 secreted by B
cells fosters the differentiation of Th17 cells, while it prevents
the generation of regulatory T cells (14, 15). Thus, in a B
cell dependent EAE setting, B cell-restricted IL-6 deficiency
diminished the Th17 response and ameliorated the disease
severity (6, 16). B cells isolated from the blood of MS patients
though exhibit an abnormal pro-inflammatory cytokine profile
when compared to healthy controls. They secrete elevated
amounts of IL-6, lymphotoxin alpha and tumor necrosis factor
alpha (TNF-α), and produce less anti-inflammatory IL-10 (11,
16). The observation that these abnormalities were apparent
upon polyclonal stimulation suggests that not only autoreactive
B cells but rather the B cell pool at large is deregulated in
individuals with MS (11, 17). Moreover, MS patients showed
an increased frequency of memory B cells that co-express the
pro-inflammatory cytokines granulocyte-macrophage colony-
stimulating factor (GM-CSF), IL-6, and TNF-α. In the small MS
cohort investigated, therapeutic removal of B cells including the
latter memory B cell subpopulation resulted in a diminished
pro-inflammatory IL-6 response by macrophages in a GM-CSF-
dependent manner (18). An observation that points toward an
inflammation-promoting potential of B cells in MS. However, a
similar investigation aiming to assess the activation of myeloid
APC in blood before and after therapeutic B cell removal in MS
and NMO patients did not reveal such uniform results. Here,
the macrophages of the study participant showed similar TNF-
α secretion before treatment initiation, but varied widely after
anti-CD20 therapy (19). This suggests that B cell depletion had a
differential effect on the activation of myeloid cells in individual
patients, with either pro-inflammatory, or anti-inflammatory
outcomes (Figure 1C). Moreover, it indicates that in a subgroup
of MS patients, B cells may exert immune regulatory functions
prior to their therapeutic removal. Indeed, B cells are not
only a relevant source of pro-inflammatory, but moreover of
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FIGURE 1 | B cells, T cells, and myeloid cells shape each other’s immune response via direct interaction and/or secretion of cytokines. (A) B cells encounter protein

antigens specifically via their B cell receptor and present linearized peptides bound to the major histocompatibility complex (MHC) class II to T cells. Thereby, they act

as efficient antigen-presenting cells and control the differentiation of T cells by the density of co-stimulatory molecules on their cell surface and the cytokine milieu they

provide. In turn, this interaction fosters (B) the differentiation of B cells into antibody-producing plasma cells and memory B cells. B and plasma cells secrete pro- and

anti-inflammatory cytokines, which affect the expression of co-stimulatory molecules and the production of chemokines/cytokines by myeloid antigen-presenting cells.

Vice versa, myeloid cells have an impact on B cell activity through the secretion of distinct cytokines and chemokines. (C) Myeloid antigen-presenting cells, such as

monocytes, macrophages, and dendritic cells internalize antigen randomly or opsonized antigen specifically via Fcγ receptors, process them, and present the

linearized peptides via MHC class II to T cells. They are able to induce both pro- and anti-inflammatory T cells, controlled by the expression density of co-stimulatory

molecules on myeloid APC and their distinct secretion of cytokines.

anti-inflammatory cytokines: while antigen-activated B cells
mostly secrete pro-inflammatory ones, antigen-naïve B cells,
plasmablasts, and plasma cells produce relevant amounts of anti-
inflammatory IL-10, IL-35, and transforming growth factor beta
(TGF-β). In the context of EAE, adoptive transfer of IL-10-
secreting B cells for instance suppressed disease (20), while B cell-
restricted abrogation of IL-10 or IL-35 augmented its severity.
Moreover, both B cell-derived IL-10 and IL-35 were required
for physiological recovery from an acute disease flare (21, 22),
and the presence of B cell-secreted TGF-β limited the induction
phase of EAE (23). In all of these studies, augmented EAE
severity went along with an increased number of differentiated,
pro-inflammatory Th1, and Th17 cells, suggesting that anti-
inflammatory cytokines secreted by B cells were required to limit
the pathogenic T cell response during EAE. In humans, similar
regulatory B cell properties have been described (24) and are
assumed to be impaired in MS patients (11). However, further
research is required to validate this assumption and to ascertain
whether regulatory B cells are equally relevant in MS as they
are in EAE. If this proves true however, future therapies should
aim to maintain or restore regulatory B cell functions, while
targeting pro-inflammatory properties selectively; an issue that
currently available therapies cannot address (25, 26). In this
context, a promising approach may be the inhibition of Bruton’s

tyrosine kinase (Btk), an enzyme that is present in B cells, and
innate immune cells, such as myeloid APC, but not in T cells.
B cells require Btk for proper B cell receptor signaling, where
it rather modulates the signal responsiveness, than turning it
on or off (27). Thus, its inhibition does not deplete B cells, but
presumably lowers their response to B cell receptor stimuli (28).
In this way, Btk inhibition is assumed to foster the induction
and maintenance of tolerogenic B cells, while it counteracts their
antigen-mediated pro-inflammatory activation (29–31). In mice
with collagen-induced arthritis and in a murine lupus model,
both autoimmune disorders with pathogenic B cells involvement,
an orally applied Btk inhibitor reduced the amount of circulating
autoantibodies and inhibited the development of disease (32),
showing its ability to limit a pathogenic B cell response. In MS,
first phase II clinical trials testing evobrutinib (ClinicalTrials.gov
Identifier: NCT02975349), an orally applied, highly selective Btk
inhibitor, significantly reduced the number of new enhancing
T1, and new or enlarging T2 lesions when compared to
placebo (ECTRIMS Online Library. Montalban X. Oct 12, 2018;
232075). These preliminary results suggest that a monotherapy
aiming to inhibit Btk can be promising in MS. Moreover, Btk
inhibition may be suitable as maintenance therapy after initial
anti-CD20-mediated B cell depletion to avoid recurrence of
pathogenic B cells.
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B CELLS DIFFERENTIATE INTO

ANTIBODY-PRODUCING PLASMA CELLS

As mentioned before, the process of antigen presentation does
not only activate the responding T cell but in turn induces
the proliferation of the presenting B cell and its subsequent
differentiation into memory cells and antibody-producing
plasma cells. Hence, the presence of persisting oligoclonal
immunoglobulins (Ig) termed oligoclonal bands (OCB) in the
cerebrospinal fluid (CSF) of most MS patients (33–35) can be
construed as a first evidence of the pathogenic activation of
B cells in MS. More detailed investigation revealed that these
intrathecal Ig were most likely produced by plasma cells within
the CSF as the CSF Ig proteome and the Ig transcriptome of
CSF-located B cells matched with each other (36). In addition,
intrathecal B cells show signs of somatic hypermutation and
clonal expansion (37, 38) pointing toward a germinal center-
like reaction with antigen-driven affinity maturation within the
CNS. However, there is new evidence that these terminally
differentiated B cells in the CSF were not solely a product of
intrathecal maturation, but can cross the blood-brain barrier and
interact with the peripheral immune system (39–42). How this
migration though influences the maturation of intrathecal B cells
in detail and whether it affects the peripheral B cell response is
not yet fully understood. Up to now, the expression pattern of
OCB in the CSF do not have an apparent correlate in the blood,
indicating that despite the ability of B cells to exchange, antibody-
secreting plasma cells mainly accumulate within the CNS of MS
patients. However, the pathogenic relevance of these CNS-located
B cells and their products for the pathogenesis of MS is still
controversially discussed. The presence of co-localizing Ig and
complement depositions in ongoing MS lesions (43) suggests
that autoantibodies are involved in CNS injury. A assumption
that has been further fueled by studies demonstrating that
antibodies isolated from the CSF of MS patients induce axonal
damage and complement-mediated demyelination when applied
to human CNS tissue ex vivo or in vitro (44, 45). Nevertheless,
the particular antigen(s) recognized by these antibodies are still
unclear (46). Reiber et al. (47) for instance claimed that OCB
of MS patients were mostly directed against CNS-unrelated
antigens, such as rubella, measles, and varicella zoster virus
indicating an unspecific “bystander” activation of B cells. Others
however proposed autoantibodies against CNS structures, such
as myelin, astrocytes, and neuroglial cells to be part of this
intrathecal humoral immune response. They report that OCB of
MS patients contain autoantibodies against myelin basic protein
(48), myelin-associated lipids (49), contactin-2 (50), and KIR4.1
(51). However, the variety of proposed antibody specificities and
the fact that some of the aforementioned findings were not
easily reproducible by other laboratories (52–54) possibly reflect
the complexity of MS pathogenesis. Alternatively, it suggests
that MS may consist of multiple disease entities with distinct
disease driving mechanisms. In fact, the first clinical variant
of MS, which has been separated from the “core disorder”
was NMO based on the discovery of anti-aquaporin (AQP)4

autoantibodies in the patients’ blood (55, 56). AQP4 is a water
channel found both in peripheral organs such as the kidney
(57) as well as in the CNS (58). There it is mainly expressed
on the end feet of astrocytes (59, 60), most densely in the optic
nerve and spinal cord where astrocytes and oligodendrocytes
are in close proximity (61). Hence, these are the regions where
NMO lesions predominantly occur. Since AQP4 is not expressed
on oligodendrocytes themselves (58), astrocytes are suggested
to be the main target in NMO (62, 63). Corroborating this
notion, active NMO lesions contain areas of co-localizing Ig
and complement depositions with a vast loss of AQP4 and
glial fibrillary acid protein immunoreactivity that points toward
an antibody-mediated destruction of astrocytes. Older lesions
however show in addition a reduced number of oligodendrocytes
and extensive demyelination of gray and white matter (56, 64,
65) indicating that demyelination occurs secondarily in later
stages of the disease as a result of the preceding astrocyte
loss. Hence, NMO is nowadays recognized as an autoimmune
astrocytopathy (66) which is, at least in part, mediated by
autoantibodies against AQP4. Interestingly, anti-AQP4 antibody
titer are relatively low or even absent in the CSF of NMO
patients even when the corresponding antibody titer in the
blood are high (67). Furthermore, only 15–30% of NMO patients
have OCB in the CSF, which in addition mostly disappear
with disease progression (68). These findings together suggest
that in NMO, B cells are in the first place activated outside
the CNS resulting in a pronounced humoral immune response
against AQP4 in the periphery. However, new data indicate
that also in NMO patients, similar to MS, B cells exchange
across the blood-brain barrier resulting in the presence of AQP4-
specific B and plasma cells both in the blood and the CSF (69).
Nevertheless, the particular trigger(s) of these astrocyte-directed
attacks and the exact sequence of B cell activation including
the circumstances under which AQP4-directed B cells and/or
antibodies gain access to the CNS to induce lesion formation
are not fully understood. Despite these pending mechanistic
issues, the diagnosis of NMO is nowadays closely tied to the
presence of antibodies against AQP4. However, some patients
with clinical features suggestive for NMO do not have detectable
anti-AQP4 antibody titers. Instead, about a third of them
produce antibodies against myelin oligodendrocyte glycoprotein
(MOG) in the blood (70–72). MOG is a transmembrane protein
expressed on the outermost lamella of the myelin sheath and
the surface of oligodendrocytes (73). Its extracellular localization
and its lack of expression in the thymus renders MOG a
plausible target for autoimmune responses (74, 75). Patients
with autoantibodies against MOG have a severe disease course
with high relapse rates, strong brainstem, and spinal cord
involvement and do hardly respond to several disease-modifying
treatments (54). Evaluation of their CSF and histological analysis
of biopsy/autopsy tissue revealed no astrocytopathy, but myelin
damage as primary injury in the CNS (1, 54, 76–78). Similar
to classical NMO, OCB occur only occasionally (79), and anti-
MOG antibodies can be found in the serum, but not in the CSF
(80, 81).
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PATHOGENIC INVOLVEMENT OF B CELLS

AND THEIR PRODUCTS IN THE

PERIPHERY AND WITHIN THE CNS

The occurrence of a peripheral humoral immune response
against CNS antigen is the most striking similarity between
patients with anti-AQP4 and anti-MOG antibodies. It delineates
them distinctly from MS patients, which show an accumulation
of Ig in the CSF, but have no apparent reflection of these
antibody patterns in the blood. However, the pathogenic role
of these autoantibodies outside the CNS is still elusive. In
mice, it has been demonstrated that peripheral anti-MOG
antibodies foster the activation of encephalitogenic T cells in the
periphery by opsonization of otherwise unrecognized traces of
CNS antigen, which results in the induction of EAE (82, 83).
How these endogenous CNS antigens though reach the periphery
is uncertain, but presumably by being drained from the CNS
to peripheral lymph nodes along lymphatic vessels (84). Even
though it is not yet proven that this mechanism is of relevance for
the human condition, it is conceivable as antibodies isolated from
anti-MOG antibody positive patients were capable of opsonizing
human MOG (83). Furthermore, traces of myelin have been
found in cervical lymph nodes of MS patients as well as healthy
controls (85, 86) indicating that also in humans, CNS structures
can be made accessible to the peripheral immune system by this
route. Consequently, it includes the possibility that CNS antigens
are recognized and opsonized by CNS-directed autoantibodies
in the periphery. Overall, these findings suggest that anti-AQP4
antibody positive NMO as well as MOG antibody-associated
disease is primarily driven by a pathogenic B cell activation in
the periphery resulting in the generation of antibody-producing
plasma cells, again in the first place in the periphery. In contrast,
in MS, B cells probably exert their pathogenic properties both
in the periphery as well as within the chronically inflamed
CNS itself, but most probably independent of CNS-specific
peripheral antibodies. After activation, B cells migrate through
blood or lymph vessels into peripheral lymphoid organs, where
they undergo full activation and maturation. Currently available
immune-modulating MS therapies are very efficient in targeting
these peripheral immune cells, but have only little or no access to
the CNS-compartmentalized cells (87, 88). New concepts though
suggest that two, probably independent, inflammatory processes
drive CNS injury in MS, and potentially involve B cells: on
the one hand, de novo infiltration of immune cells from the
periphery into the CNS that correspond with focal inflammation,
MRI-detectable lesions, and relapses. On the other hand, chronic
progression supposedly driven by CNS-intrinsic inflammation
that is promoted by CNS-resident immune cells in conjunction
with CNS-trapped leukocytes (89). The first mechanism is
premised on abnormally activated immune cells that migrate
from lymphatic tissue, the location of their priming, across the
blood-brain barrier into the CNS. There, these leukocytes are
assumed to reactivate and contribute to the injury of axons
and glial cells (90–92) forming focal lesions. These lesions are
typically located perivascular and contain T cells, monocytes, B,
and plasma cells (93). Since anti-CD20-mediated B cell depletion
is highly efficient in preventing the formation of such focal CNS
lesions, its assumed therapeutic efficiency is mainly based on the

abrogation of the aforementioned cellular B cell properties in
the periphery, and within the perivascular space (94). Chronic
progression in contrast is characterized by gradual expansion of
consisting lesions with myelin-containing macrophages at the
lesion border, gray, and white matter atrophy as well as diffuse
aberrant inflammation of the normal-appearing white matter
(95, 96). In progressive MS, this cortical demyelination has been
further associated with B cell-rich structures in the meninges
(97, 98) as well as with plasma cell accumulation in experimental
CNS inflammation (99). These findings point toward a gradual
shift of disease-driving B cell functions from the periphery to
the CNS with disease progression. Furthermore, they indicate
that B cells may be involved—directly or indirectly—in cortical
injury. An observation that is further corroborated by the
findings of Lisak et al. (100) demonstrating that secretory
products independent of antibodies and multiple cytokines
produced by B cells of progressive MS patients are cytotoxic to
oligodendrocytes and neurons (101). In line with these results, it
is not surprising that even though anti-CD20 is highly efficient
in limiting the formation of new CNS lesions, it does not
entirely stop chronic progression. This further strengthens the
assumption that chronic CNS injury in MS is not primarily
caused by de novo infiltrating immune cells, but by an established
CNS-compartmentalized inflammation, which results in a CNS-
autonomous immune response over time.

CONCLUSION

Current research indicates that in MS, B cells contribute
to the formation of relapses as well as to the progression
of the disease independent of de novo CNS infiltration.
In contrast, in NMO and anti-MOG antibody-associated
demyelination, a peripherally generated CNS-targeting
antibody response is suggested to be the main disease
driver. Accordingly, these delineating disease entities may
require MS-independent therapeutic strategies, a concept
that is currently evolving. Thus, therapies targeting distinct
aspects of NMO-relevant B cell functions such as plasma
cell differentiation and complement fixation are currently
under evaluation. First trials showed promising results for the
treatment with tocilizumab, an therapeutic antibodies against
IL-6 receptor (102, 103), and eculizumab, an complement
component 5-specific antibody (104). Besides these pathogenic
B cell properties, B cells, or B cells subsets likely exert a
therapeutically desirable regulatory function in either disease,
limiting tissue inflammation as well as pro-inflammatory
activation of other immune cells. Accordingly, one of the
prime challenges for the long-term targeting of B cells in MS
and related demyelinating diseases will be to delineate and
specifically target pathogenic B cell properties by novel strategic
concepts, such as the selective depletion of differentiated B cells,
interference with their activation or ablation of a disease-driving
antibody response.
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Immune responses to citrullinated peptides have been described in autoimmune

diseases like rheumatoid arthritis (RA) and multiple sclerosis (MS). We investigated the

post-translational modification (PTM), arginine to citrulline, in brain tissue of MS patients

and controls (C) by proteomics and subsequently the cellular immune response of

cerebrospinal fluid (CSF)-infiltrating T cells to citrullinated and unmodified peptides of

myelin basic protein (MBP). Using specifically adapted tissue extraction- and combined

data interpretation protocols we could establish a map of citrullinated proteins by

identifying more than 80 proteins with two or more citrullinated peptides in human

brain tissue. We report many of them for the first time. For the already described

citrullinated proteins MBP, GFAP, and vimentin, we could identify additional citrullinated

sites. The number of modified proteins in MS white matter was higher than control

tissue. Citrullinated peptides are considered neoepitopes that may trigger autoreactivity.

We used newly identified epitopes and previously reported immunodominant myelin

peptides in their citrullinated and non-citrullinated form to address the recognition of

CSF-infiltrating CD4+ T cells from 22MS patients by measuring proliferation and IFN-γ

secretion. We did not detect marked responses to citrullinated peptides, but slightly more

strongly to the non-modified version. Based on these data, we conclude that citrullination

does not appear to be an important activating factor of a T cell response, but could be

the consequence of an immune- or inflammatory response. Our approach allowed us

to perform a deep proteome analysis and opens new technical possibilities to analyze

complex PTM patterns on minute quantities of rare tissue samples.
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INTRODUCTION

Citrullination is one of more than 400 known PTMs in human
proteins. The enzyme, peptidylarginine deiminase (PADI), is
responsible for modifying the amino acid arginine to the amino
acid citrulline. PADI is part of an enzyme family with five known
members (1), and each of these shows a distinct tissue and
substrate specificity. The enzymatic reaction results in the loss
of a positive charge of the peptide fragment and a mass increase
by 1 Da. The process of deimination is considered irreversible
since no citrulline-iminase is known so far (2). Gudman and
colleagues described citrullination in the context of diseases and
reported and postulated an increase of citrullinated proteins in
all inflammatory diseases (3). The effects of citrullination on
protein function depend on the location of the protein and the
position of the amino acid arginine. Since it removes a positive
charge from arginine, it may loosen protein interactions and
render them more prone to denaturation and degradation (4, 5).
Citrullination plays a role in several physiological mechanisms
like skin keratinization, myelin formation/remyelination, gene
regulation and immune functions. In specialized cells like
neutrophils, histone hypercitrullination is an essential process
in the formation of highly decondensed chromatin structures
termed neutrophil extracellular traps (NETs), which enable
these cells to trap and kill bacteria. During the last 10 years,
great attention has been paid to citrullination because of its
role in inducing anti-citrullinated proteins/peptide antibodies
(ACPA) (6). Involvement of citrullination in various diseases
like rheumatoid arthritis (RA), multiple sclerosis (MS), psoriasis,
chronic obstructive pulmonary disease (COPD), and Alzheimer
has been reported (7). In RA, immune reactivity toward various
citrullinated self-proteins and self-peptides like fibrinogen,
vimentin, fibrin, collagen type II, α-enolase and its involvement
in the disease pathogenesis have been well-established (8).

In MS, a chronic inflammatory demyelinating autoimmune
disease of the central nervous system (CNS), the amount of
the citrullinated myelin sheath protein myelin basic protein
(MBP) is increased in white matter as compared to control
brains (9), although these findings remain controversial (10,
11). In MBP that has been purified from MS brain tissue,
citrullination of six of the nineteen arginines has been found.
Among the myelin components, MBP has been studied in
greatest detail due to its importance for inducing experimental
autoimmune encephalomyelitis (EAE), a rodent model for MS
(12). The identification of CD4+ T cells reactive against epitopes
of several myelin proteins has been a consistent finding (12).
We had previously described reactivity of peripheral blood T
cells against post-translational modifications of autoantigens,
specifically against citrullinated peptides, in MS patients
(13). These preliminary studies hinted at elevated T cell
reactivity against citrullinated MBP and indicated that T cells
specific for citrullinated epitopes could escape central immune
tolerance (13, 14).

In the last years the focus has shifted from peripheral

blood-derived T cells to those that are found within the CNS

compartment, i.e. in the brain and cerebrospinal fluid (CSF)

(15, 16), since CNS-infiltrating T cells are considered more likely

to be relevant than those from the peripheral blood due to their
infiltration of the target tissue. Besides MBP, few other proteins
including glial fibrillary acidic protein (GFAP), neurogranin,
and histone H3 have been described to be citrullinated in MS
brain (10, 17).

MATERIAL AND METHODS

Human Brain Tissue Preparation
Tissue Collection
The UK Multiple Sclerosis Tissue Bank (UK Multicenter
Research Ethics Committee, MREC/02/2/39 and KEK-ZH-
Nr. 2014-0243), funded by the Multiple Sclerosis Society of
Great Britain and Northern Ireland (registered charity 207495)
supplied all the tissue samples. Tissue samples from white- and
gray matter were isolated from 9 control and 15MS cases. Gray
matter samples were from 6 controls and 6MS cases, white
matter samples from 3 controls and 9MS cases. All brains have
been screened by a neuropathologist to confirm the diagnosis
of MS and to exclude other confounding pathologies (UK MS
Tissue Bank).

Immunohistochemistry
All tissues were analyzed by immunohistochemistry. In order
to differentiate between white and gray matter, we stained the
tissue with anti-myelin oligodendrocyte glycoprotein antibodies
(MOG) and Luxol fast blue (LFB) for myelin as well as anti-
HLA-DR for macrophages/microglia. Regions of gray matter,
white matter, as well as lesions with active inflammation,
areas of remyelination, and demyelinated lesions without active
inflammation, could be identified. For LFB staining, LN3
(anti-HLA-DR), and MOG cryostat sections (12µm) were
fixed for 10min in 4% para-formaldehyde (PFA). Endogenous
peroxidase was blocked with 0.6% hydrogen peroxide in PBS
or 80% methanol for MOG staining. MOG staining was further
delipidated in 100% methanol at −20◦C for 8min. Tissues
were blocked with blocking buffer 1% normal donkey serum
(NDS), 0.1% Triton, 0.05% Tween in PBS, LN3: 5% NDS, 1%
fish skin gelatin 0.3M glycine in PBS) and incubated with the
primary antibodies at 4◦C overnight. Secondary biotinylated
antibodies were applied for 2 h at room temperature followed by
the ABC complex reagent (Vector Labs, Burlingame, California,
USA) for 1 h. The color reaction was performed with 3-Amino-
9-ethylcarbazole (18). For some sections, counterstaining in
hematoxylin was applied for 1min followed by rinsing the slide
in running tap water. For citrulline staining fresh frozen tissue
sections were first air-dried for 20min. before fixing them in
methanol at −20◦C. Incubation of sections with PBS before and
blocking in PBS/10%BSA for 1 h at RT. Incubation with antibody
F95 was performed overnight at 4◦C. Secondary biotinylated
antibody was applied for 1 h at RT followed by the ABC
complex reagent (VectorLabs) for 1 h. The color reaction was
performed with “ImpactDAB” (VectorLabs) and counterstaining
with hematoxylin as described above. Antibodies: LN3 (Abcam,
ab190298, 1:250), anti-MOG (Clone Z12, 1:100), anti-citrulline
F95 (Millipore, Burlington, Massachusetts, USA). LFB staining
was done with cryostat sections (12µm), fixed for 10min in 4%
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PFA. Sections were washed in PBS (3 × 5min) and ddH2O (2
× 1min), then incubated in 50% ethanol (5min), 70% ethanol
(5min), 80% ethanol (5min), and 96% ethanol (5min). Sections
were incubated in 0.1% LFB solution for 20 h at 56◦C. Sections
were washed in ethanol and ddH2O and developed in lithium
carbonate (0.05% in ddH2O) for 15 s and 70% ethanol for 1min
at RT. After cresyl violet staining (4min, RT) sections were
differentiated in 96% ethanol (30 s), dehydrated in ethanol and
xylol and finally mounted with “Entellan” (Merck Millipore).

Protein Extraction Protocol
We analyzed gray and white matter tissue from post-mortem
human brains (control and MS patients) in order to establish
a spectral library and protein database of the main protein
constituents of the CNS. The characterization of the tissue
used for the analysis is illustrated in Figure 1A. An overview
of samples that were used in the analysis together with
medical records is listed in Supplementary Table 1. For
protein extraction, a barocycler (Barocycler 2320EXT, Pressure
BioSciences, Inc, South Easton, MA, USA) was used. Tissue
samples of the size of a needle-head (2–3mg) were put into
barocycler 150 µl micro tubes. The tubes were filled with 30 µl
of lysis buffer (8M urea and 0.1M ammonium-bicarbonate) and
complete protease inhibitor cocktail (Roche, Basel, Switzerland)
and closed with 150 µl microcaps. After pre-heating the
barocycler for 30min at 33◦C, run cycles were performed at 45
kpsi for 60 cycles and 1min each. Each cycle lasted 50 s at high
pressure and 10 s at ambient pressure.

Reduction and alkylation were carried out as follows: Mixing
of TCEP [tris (2-carboxyethyl) phosphine] 2.5mg and IAA
(iodoacetamide) 3.7mg in 50 µl of lysis buffer. A volume of 4.9
µl of this buffer was added to each tube, incubated at 25◦C in
a thermomixer while shaking at 1,000 rpm and protected from
light. By adding lysis buffer, the urea concentration was diluted
from 8 to 6M. Lys-C enzyme digestion was applied to an enzyme
to substrate ratio of 1:40. Lys-C (mass spectrometry grade,Wako,
Richmond, VA, USA 20 µg/µl) was dissolved in “Milli-Q-water”
to a final concentration 4 µg/µl. Digestion was performed in
barocycler with 20 kpsi for 45min. and cycles of 50 s duration
at high pressure and 10 s ambient pressure.

A further dilution of urea from 6 to 1.6M with 0.1M
ammonium-bicarbonate buffer was necessary to achieve trypsin
digestion conditions. Trypsin (sequencing grade modified,
Promega, Madison, WI, USA) was added to an enzyme to
substrate ratio 1:20. The digestion took place for 90min at 37◦C
in a barocycler at 20 kpsi and cycle periods of 50 s at high
pressure and 10 s at ambient pressure (19). Finally, the solution
was transferred to a 1.5ml Eppendorf tube. The volume was
adjusted to 1ml by adding a 0.1%TFA/3%ACN solution and the
reaction was stopped by adding 10% TFA and pH adjusted to a
value between pH 2 and 3. The peptides were desalted on solid
phase extraction columns (C18/Finisterre, Wicom, Heppenheim,
Germany) according to manufacturer protocol. The samples
were vacuum concentrated in a “SpeedVac” and the peptides re-
dissolved in 3% ACN/0.1% formic acid in a volume of 20–50
µl to a final concentration of 1 µg/µl. Peptide concentration
was measured with Nanodrop instrument (Nanodrop 1000,

FIGURE 1 | (A) Histopathological examination of control and MS tissue. To

identify normal as well as lesioned tissue, tissue blocks containing white as well

as gray matter tissue were stained for MOG, HLA-DR, and Luxol Fast-Blue.

White and gray Matter control tissue showed no sign of demyelination and

inflammation (A–C and J–L). Also, NAWM and NAGM did not show any signs

(Continued)

Frontiers in Immunology | www.frontiersin.org 3 April 2019 | Volume 10 | Article 54032

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Faigle et al. Brain Citrullination in Multiple Sclerosis

FIGURE 1 | of demyelination or inflammation (D–F and M–O). However, MOG

as well as LFB staining clearly show demyelination in lesional areas (G and I).

Further, a strong HLA-DR staining was visible in lesion tissue (H). (B)

Citrullination pattern in WM and GM of MS brain (staining with anti-citrulline

antibody F95). Inserts showing detail view of corresponding tissue. (C) 2–3mg

of brain tissue was disrupted in barocycler and digested by Lys-C and trypsin.

All treatments were performed in barocycler instrument. Finally, peptides were

desalted and dried.

spectrophotometer (Thermo Scientific, Wilmington, DE, USA)
and a solution of a concentration of 0.5 µg/µl prepared.

Hydrophilic Interaction Liquid

Chromatography (HILIC)
Pools of peptide samples of control tissue (C), as well as the
MS tissues from gray and white matter were prepared (300
µg each) and separated using Hydrophilic Interaction Liquid
Chromatography (HILIC) (Agilent LC1200 equipped with a
column Polyamin II 250 × 3.0mm 120 Å, 5µm). The applied
gradient was formed of the two solvents: A: 75% ACN, 8mM
KH2PO4 and B: 5% ACN, 100mM KH2PO4 (pH4.0) for 60min.
Fractions of 1ml were collected in 27 tubes (detailed protocol
as Figure S2). To reduce the number of the samples to be
analyzed on the mass spectrometer the fractions were pooled
from two tubes. Before injection, samples were purified on
“Finisterre SPE” columns (Wicom International, Heppenheim,
Germany). Samples of 1ml were vacuum dried and dissolved
in an appropriate buffer, 3%ACN/0.1%TFA. In total 11 fractions
for each tissue sample (control and MS of gray and white
matter) were prepared. After another vacuum drying, peptides
were dissolved in 3%ACN/0.1%FA buffer. Concentrations were
measured with Nanodrop instrument and adjusted to 0.25µg/µl.
Reference peptides (iRT) were added (iRT, Biognosys, Schlieren,
Switzerland) to each sample.

Data-Dependent Acquisition (DDA) of the HILIC

Fractionated Samples
The HILIC fractionated samples, 44 in total, were run on
Easy-nLC 1000 linked to an Orbitrap Fusion instrument
(Thermo Fisher, Waltham, Massachusetts, USA) on a gradient
of 80min. Column material was ReproSil-Pur, C18, 120 Å,
AQ, 1.9µm (Dr. Maisch GmbH, Ammerbuch Germany) and
column dimensions ID 0.075 mm/length 150mm. Solvent A
0.1% formic acid in water and Solvent B 0.15 formic acid in
acetonitrile. 4 µl of the sample at a concentration of 0.25 µg/µl
was injected.

Peptide and Protein Identification of
HILIC Samples
Identification by “Mascot”
We converted “Raw” files converted into “mgf” (20) files
and analyzed them on MASCOT software with a human
UniProtKB/Swiss-Prot protein database (date: March 22, 2016
with 40,912 entries): Search parameters were 0.05 Da fragment
mass tolerance and 10 ppm precursor mass, minimal number
of peptides 2, and FDR (false discovery rate) of 0.1%, allowing

2 mis-cleavages on trypsin fragments. We set carbamidomethyl
at cysteine as a static modification and oxidation of methionine,
deamidation on arginine (R) (with or without neutral loss),
glutamine (Q) and asparagine (N) as variable modification.
To estimate FDRs separately for deamidated and all the other
proteins the mascot.dat files were converted to the bibliospec file
format (Skyline).

Peptide Identification With “Ursgal”
The universal python module combining bottom-up proteomics
tools for large-scale analysis (Ursgal) was used to perform
a search with multiple search engines (xtandem vengeance,
msgfplus_v9979 and MyriMatch 2 2 140) (21). Evaluation
and post-processing of the search results were performed
using percolator_2_08.We adjusted the do_it_all_folder_wide.py
“Ursgal” example script (https://ursgal.readthedocs.io/en/latest/
example_scripts.html#do-it-all-folder-wide) to our input data.
We set the variable and fixed modifications in the same as for
“Mascot.” For instrument settings, we used the Q-Exactive+
Ursgal profile. We used the “unified_percolator_validated.u_
merged_accepted.u_merged.csv” tables (PRIDE), generated by
“Ursgal” for further analysis.

Post-translational Modifications, Citrullination and

Local False Discovery Rate (FDR) Determination
For each peptide, we selected the best peptide-spectrum match
(PSM) according to the lowest PEP- (percolator) or Mascot Ion
score. We computed the peptide FDR using the target-decoy
approach (22) implemented in the R-package TargetDecoyFDR
prozor (https://github.com/protViz/TargetDecoyFDR; https://
github.com/protViz/prozor). The FDR was estimated separately
for the deamidated and citrullinated peptide sequences and all
other sequences. The FDR for deamidated and citrullinated
peptide sequences increased much faster than for all other
sequences (see Figure S1) resulting in a more demanding
cutoff score for those sequences. We deposited the mass
spectrometry proteomics data in the ProteomeXchange
Consortium via the PRIDE (23) partner repository with the
dataset identifier PXD008344.

Isolation, Expansion, and Proliferative
Testing of T Cells
Peripheral Blood Mononuclear Cell Isolation
Allogeneic peripheral blood mononuclear cells (PBMCs) where
isolated freshly from anonymized buffy coats obtained from
the Blood Bank of the University Hospital in Zurich. Buffy
coats were first diluted 1:1 in PBS, and later PBMCs extracted
using a Ficoll gradient. Irradiated (45 Gray) allogeneic PBMCs
were used during the freezing procedure of the CSF cells and
again during the expansion of CSF-infiltrating CD4+ T cells
where they functioned as feeder cells. Fresh blood was obtained
in EDTA-containing tubes from all patients, from whom CSF
samples were available. PBMCs were isolated from fresh blood
using Ficoll density gradient centrifugation (PAA, Pasching,
Austria) and cryopreserved in 90% FCS (Eurobio) and 10%
DMSO (Applichem, Darmstadt, Germany).
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Isolation and Expansion of CSF-Infiltrating CD4+

T Cells
Fresh bulk CSF-derived mononuclear cells from the 22
CIS/RRMS patients were mixed with 5 × 106 allogeneic
irradiated PBMCs, and CD4+ T cells were subsequently
positively selected with anti-CD4 magnetic beads according to
the manufacturer’s instructions (Miltenyi, Bergisch-Gladbach,
Germany). CD4+ cell fractions were seeded at 1,500 cells per
well in 96-well U-bottom microtiter plates together with 1.5 ×

105 allogeneic irradiated PBMCs, 1µg/ml of PHA-L (Remel,
Thermo Fisher, USA) and IL-2 supernatant, derived from the
IL-2t6 (myeloma cells IL-2t6, a human lT cell leukemia line;
kindly provided by Federica Sallusto, Institute for Research
in Biomedicine, Bellinzona). The cell culture was cultivated
in RPMI 1640 medium (Pan-Biotech, Aidenbach, Germany)
supplemented with 2mM glutamine (Pan-Biotech), 1% (vol/vol)
non-essential amino acids (Gibco), 1% (vol/vol) sodium pyruvate
(Gibco, Carlsbad, California, USA), 50µg/ml penicillin-
streptomycin (Corning, NY, USA), 0.00001% β-Mercaptoethanol
(Gibco) and 5% inactivated human AB positive serum (Blood
Bank Basel). Additional IL-2 was added every 4 days. Growing
wells were transferred to 48/24 well plates and finally to 75 cm3

cell culture flasks until cells were fully rested (20–25 days). Cells
were highly expanded in a single round of stimulation.

Peptide Stimulation
Peptides were synthesized by Peptides and Elephants GmbH
(Henningsdorf, Germany) and dissolved in DMSO at a stock
concentration of 5mM. The peptides and their sequences which
we used are listed in Supplementary Table 2. The response of
PHA-expanded CSF-infiltrating CD4+ T cells to citrullinated
or non-citrullinated myelin and the CEF (CMV, EBV, influenza
virus, tetanus toxoid) (Peptides and Elephants GmbH), peptide
pool was tested by seeding 6 × 104 of expanded CSF-
infiltrating CD4+ T cells and 2 × 105 irradiated autologous
PBMCs in quadruplicates per each condition of peptide
stimulation or in the absence of peptides. Stimulation with
anti-CD2/CD3/CD28 beads (Miltenyi) was used as additional
positive control.

Proliferation Assay
The above described peptide stimulations of bulk CD4+ T
cells from CSF of oligoclonal band (OCB) positive relapsing-
remitting (RRMS) patients were then used to test T cell
reactivity with autologous irradiated PBMCs as antigen-
presenting cells. Proliferation of T cells was measured by
3H-thymidine incorporation. At day 2, the cells were pulsed
with 1 µCi of methyl-3H-thymidine per well (Hartmann
Analytic, Braunschweig, Germany) and harvested after 16 h
onto a membrane (Filtermat A, GF/C, Perkin-Elmer, Waltham,
Massachusetts, USA) using a semi-automated harvester (Tomtec,
Hamden, Connecticut, USA). Incorporation was measured by β-
scintillation counting (Wallac 1450, Perkin-Elmer). Proliferative
responses were given as counts per min (cpm) and the
stimulatory index (SI) was calculated as follows: SI = Mean
(replicates cpm peptide)/Mean (replicates cpm without peptide).

Cytokine Measurement
After 48 h of incubation and before adding thymidine, 100
µl of cell culture supernatant were removed in order to
test the cytokine secretion. Here, CD4+ T cell reactivity
to peptides was analyzed in supernatants for IFN-γ
using an IFN-γ ELISA (Biolegend, San Diego, California,
USA) according to manufacturer’s instructions. Cytokine
production higher than 100 pg/ml was considered as a strong
positive response.

HLA Typing
Individuals were typed for HLA class I and -II alleles at
Histogenetics LLC, NY, USA. Isolation of DNA fromwhole blood
was performed with a standard DNA isolation protocol using a
Triton lysis buffer and Proteinase K treatment. Purified genomic
DNA with a final concentration of 15 ng/µl was used to type
for HLA class I (A∗ and B∗) and HLA class II (DRB1∗, DRB3∗,
DRB4∗, DRB5∗, DQA1∗, and DQB1∗) using high-resolution
HLA sequence-based typing (SBT). The patients’ information is
summarized in Supplementary Table 3.

Statistical Analysis
Pearson correlation analysis was performed between responses
obtained from proliferation assay (thymidine incorporation) and
cytokine secretion (IFN-γ) for MOG and CEF peptides.

RESULTS

Characterization of Brain Tissue
To identify the different tissue types, e.g. normal appearing white
matter (NAWM) or lesion tissue, sections from tissue blocks
were immunohistochemically stained and analyzed (Figure 1A).
Stainings were performed for MOG (A, D, G, J, M), and HLA-
DR (LN3; B, E, H, K, N), as a marker for microglia and
macrophages and luxol fast blue (C, F, I, L, O), as markers
for myelin and oligodendrocytes (Figure 1A). Figure 1 shows
representative staining for control- (C) and MS tissue. LFB and
anti-MOG antibody staining identified sites of demyelination
(Figures 1A:G,I). Staining with anti-HLA-DR antibody shows
inflammatory cells (Figure 1A:H). Based on the staining, tissue
types were defined and then cut for protein isolation. Tissue
was taken from normal appearing gray matter (NAGM), normal
appearing white matter (NAWM) as well as from active lesions
from the diseased tissue. From control tissue, parts of gray
(GMC)- andwhitematter (WMC)were excised. Figure 1B shows
an immunohistochemistry staining of citrulline in a section
of MS brain to illustrate the distribution of citrullination. We
observed substantially higher citrullination staining in white
compared to gray matter tissue.

Identification of Specific
Post-translationally Modified Peptides and
Proteins in Pre-fractionated Brain
Tissue Samples
For proteomic analysis we decided to extract proteins from
the brain tissue by barocycler. This technique allows to
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extract proteins efficiently from small sample sizes. It has the
advantage of using a single test tube from tissue disruption
until the tryptic digestion, thereby reducing the introduction of
technical variations in the samples (Figure 1C). To be able to
achieve a higher resolution of the brain proteome we decided
to render the samples less complex and therefore easier to
analyze. We first separated our peptide digests by hydrophilic
interaction chromatography (HILIC), and then two fractions
were pooled and injected into liquid chromatography coupled
to a mass spectrometer (see illustration in Figure S2). The pre-
fractionation process allowed us to identify 10,343 proteins
in gray matter and 8,730 proteins in white matter tissue.
These numbers correspond to combined data from control
and MS patients (Figure 2). The higher number of proteins in

gray matter tissue is not surprising since gray matter tissue
is more densely packed with cells than white matter tissue.
Overall, 7,950 proteins were common in both groups, white and
gray matter. In gray matter 2,393 proteins could be uniquely
identified compared with 780 in white matter (Figure 2A).
Since we were interested in the fraction of proteins involved in
processes of inflammation and the immune system an analysis
with “STRING-DB” (https://string-db.org/) was performed. We
submitted the entire protein list that we had obtained from MS
white matter and control tissue. The MS white matter showed a
network of proteins involved in immune reactions, which were
completely absent in WM control. Control tissue showed an
enrichment of a protein network of the nervous system (data
not shown).

FIGURE 2 | Overall distribution of proteins identified in white and gray matter (control and MS combined). A total number 10,343 proteins was identified in gray matter

and 8,730 proteins in white matter with an overlap of 7,950 proteins in both tissues (A). A number of 780 proteins were uniquely attributed to white matter and 2,393

proteins to gray matter. (B) Shows all peptide counts in the different search engines from white matter tissue (representative for all tissues analyzed). (C) This graph

presents the percentage of tryptic peptide sequence coverage of the whole protein, MOG, CNP, Neurogranin, MBP, and GFAP and their identification in the four

tissues analyzed, gray matter control (GMC), gray matter MS (GMMS), white matter control (WMC), and white matter MS (WMMS).
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Identification of Myelin Sheath- and Other
CNS Proteins
An important first step for the comparison of different brain
tissue samples is to assure that the protein extraction steps
worked with equal efficiency for the different samples. For
that reason, we analyzed “representative proteins” from the
myelin sheath and considered their presence as quality control
for the extraction efficiency. For myelin proteins, myelin
basic protein (MBP), myelin oligodendrocyte protein (MOG),
myelin-associated glycoprotein (MAG), myelin proteolipid
protein (PLP), and 2′,3′-cyclic nucleotide 3′-phosphodiesterase
(CNPase), for astrocytes, glial fibrillary acidic protein (GFAP),
and neurogranin as neuronal marker, we identified a high
number of peptides covering a major part of the respective
protein sequences. Figure 2C shows the peptide coverage (in %)
of these proteins. For MBP the coverage is optimal with more
than 90%. The sequence coverage of MOG was between 30 and
40% and for CNPase around 80%. Peptide sequence coverage
of GFAP was more than 90% and for neurogranin more than
45%. These numbers indicate a comparable efficiency of peptide
extraction from the tissues analyzed.

Identification of “in vivo”
Citrullinated Proteins
Our main goal was to analyze as detailed as possible, which
proteins are citrullinated inMS- and control brain tissue and also
for the main regions of the brain, i.e., gray and white matter..
In Figure 2B, we show the identification of all peptides from
white matter from control and MS. The search with “Mascot no
NL” (without neutral loss) identified 57,339 peptides, “MascotNL”
(Mascot, with neutral loss) revealed 56,858 peptides and “Ursgal”
identified 65,776 peptides. The majority of peptides was common
to all three algorithms; 51,780 peptides. Unique to the individual
search engines were 674 peptides for “Mascot no NL,” 279
to “MascotNL” and 10,912 peptides for “Ursgal” (Figure 2B).

Similar distributions were observed for gray matter tissue (data
not shown).

We based the further analysis on combined identification
from the software searches in Mascot (no NL), Mascot (NL) and
“Ursgal.” For most of the following analysis, we used peptides,
which had been identified by at least 2 of the search engines
since not all of them could be identified with all three. The
distribution of all spectral peptide matches and citrullinated
spectral peptide matches and their corresponding proteins
numbers from the different tissues are illustrated in Figure 3

and Supplementary Data 1. The highest number of citrullinated
spectral matches peptides was found in WM tissue (Figure 3A).
The lower part of the panel labeled with NO_Citr., represents the
overall number of spectral matches from the four different tissues
and shows a higher number in GM tissue. Further, very similar
numbers were found for gray matter of controls andMS (179,299
and 172,620), and similarly also for white matter tissue (146,867

in controls and 145,040 inMS). In Figure 3A (Citr., upper part of
the panel ) the peptide spectral matches show a strong increase of
the citrullinated fraction in the white matter tissue of MS (1,612)

vs. control (1,013). In contrast, in gray matter tissue, the numbers
were slightly lower in MS tissue (470) compared to control (500).

With respect to overall peptide numbers, there is little
difference between MS and control tissue (lower panel). The
elevated numbers of citrullinated peptides in white matter
therefore indicate a specific enrichment ofmodified peptides. The
diagram in Figure 3B shows the number of citrullinated proteins.
Here we only show white matter proteins in control and MS.
From the 179 proteins in MS white matter (WMMS) and 145 in
control white matter (WMC), we found 36 citrullinated proteins
to be unique to white matter tissue and 70 unique to gray matter
with an overlap of 109 in both tissues. A more detailed analysis of
these citrullinated proteins (>80) is shown in Table 1 as a non-
exhaustive list. It represents a selection of citrullinated proteins,
for which we identified at least two citrullinated peptides.
We grouped the proteins into functional or cellular processes,

FIGURE 3 | (A) The number of spectrum matched peptide of citrullinated peptides in all tissues are shown in upper panel (Citr.). All peptide spectrum matches found

in all four types of tissue gray (GM) and white matter are shown (WM) in lower panel (NO_Citr.). (B) Number of citrullinated proteins that were identified in white matter

tissue. From the total amount of 179 proteins in MS tissue and 145 in controls 70 proteins were unique in MS tissue and 36 proteins in control tissue with an overlap

of 109 proteins in both tissues.
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TABLE 1 | List of proteins with at least two citrullinated peptides identified in classified in functional groups.

Myelin associated proteins Synapse

P02686-5 MBP_HUMAN Myelin basic protein

P20916|MAG_HUMAN Myelin-associated glycoprotein

P09543|CN37_HUMAN 2′,3′-cyclic-nucleotide 3′-phosphodiesterase

Q92597|NDRG1_HUMAN Protein NDRG1

Q8TAM6|ERMIN_HUMAN Ermin

Q13875|MOBP_HUMAN Myelin-associated oligodendrocyte

basic protein

Q92686|NEUG_HUMAN Neurogranin

P61764|STXB1_HUMAN Syntaxin-binding protein 1

Q8N3V7|SYNPO_HUMAN Synaptopodin

Q9C0H9|SRCN1_HUMAN SRC kinase signaling inhibitor 1

Q13424|SNTA1_HUMAN Alpha-1-syntrophin

Neuronal development Membrane trafficking

Q09666|AHNK_HUMAN Neuroblast differentiation-associated protein

AHNAK

O15075|DCLK1_HUMAN Serine/threonine-protein kinase DCLK1

P78324|SHPS1_HUMAN Tyrosine-protein phosphatase non-receptor

type substrate 1

Q16555|DPYL2_HUMAN Dihydropyrimidinase-related protein 2

Q14195|DPYL3_HUMAN Dihydropyrimidinase-related protein

3P21291|CSRP1_HUMAN Cysteine and glycine-rich protein 1

Q9NRW1|RAB6B_HUMAN Ras-related protein rab6B

P63027|VAMP2_HUMAN Vesicle-associated membrane protein 2

Chaperonine like activity

P02511|CRYAB_HUMAN Alpha-crystallin B chain

P07900|HS90A_HUMAN Heat shock protein HSP 90-alpha

O95817|BAG3_HUMAN BAG family molecular chaperone regulator 3

Neuronal skeleton RNA binding proteins

P10636|TAU_HUMAN Microtubule-associated protein tau

P07196|NFL_HUMAN Neurofilament light polypeptide

P12036|NFH_HUMAN Neurofilament heavy polypeptide

Q16352|AINX_HUMAN Alpha-internexin

P61978|HNRPK_HUMAN Heterogeneous nuclear ribonucleoprotein K

P22626|ROA2_HUMAN Heterogeneous nuclear ribonucleoproteins A2/B1

P38159|AUXI_HUMAN RNA-binding motif protein, X chromosome

P23588|IF4B_HUMAN

Q14011|CIRBP_HUMAN Cold-inducible RNA-binding protein

P68104|EF1A1_HUMAN Elongation factor 1-alpha 1

P38159|RBMX_HUMAN RNA-binding motif protein, X chromosome
Astrocyte specific

P14136|GFAP_HUMAN Glial fibrillary acidic protein

Membrane signaling Histone

Q8N7J2|AMER2_HUMAN APC membrane recruitment protein 2

Q9NZH0|GPC5B_HUMAN G-protein coupled receptor family C group

5 member B

P62807|H2B1C_HUMAN Histone H2B type 1-C/E/F/G/I

Cytoskeleton Cell adhesion

Q13885|TBB2A_HUMAN Tubulin beta-2A chain

Q9UEY8|ADDG_HUMAN Gamma-adducin

P04350|TBB4A_HUMAN Tubulin beta-4A chain

P07437|TBB5_HUMAN Tubulin beta chain

Q9BQE3|TBA1C_HUMAN Tubulin alpha

Q71U36|TBA1A_HUMAN Tubulin alpha-1A

P46821|MAP1B_HUMAN Microtubule-associated protein

P11137|MTAP2_HUMAN Microtubule-associated protein

P60709|ACTB_HUMAN Actin, cytoplasmic 1

O94811|TPPP_HUMAN Tubulin polymerization-promoting protein

Q9BW30|TPPP3_HUMAN Tubulin polymerization-promoting protein

family member 3

P35611|ADDA_HUMAN Alpha-adducin

Q8N7J2|AMER2_HUMAN APC membrane recruitment protein 2

Q14847|LASP1_HUMAN LIM and SH3 domain protein 1

P06396|GELS_HUMAN Gelsolin

O01082|SPTB2_HUMAN Spectrin beta chain, non-erythrocytic 1

Q96PY5|FMNL2_HUMAN Formin-like protein 2

O43491|E41L2_HUMAN Band 4.1-like protein 2

O75122|CLAP2_HUMAN CLIP-associating protein 2

O75781|PALM_HUMAN Paralemmin-1

Q13813|SPTN1_HUMAN Spectrin alpha chain, non-erythrocytic 1

Q92614|MY18A_HUMAN Unconventional myosin-XVIIIa

Q16181|SEPT7_HUMAN Septin

Q15149|PLEC_HUMAN Plectin

Q14244|MAP7_HUMAN Ensconsin

Q9H3Q1|BORG4_HUMAN Cdc42 effector protein 4

Q07157|ZO1_HUMAN Tight junction protein ZO-1

Q9UDY2|ZO2_HUMAN Tight junction protein ZO-2

P26232|CTNA2_HUMAN Catenin alpha-2

Cell matrix interaction

Q14CZ8|HECAM_HUMAN Hepatocyte cell adhesion molecule

P78333|GPC5_HUMAN Glypican-5

Endocytosis

O75061|AUXI_HUMAN Putative tyrosine-protein phosphatase auxilin

O00193|SMAP_HUMAN Small acidic protein

Q9UBC2|EP15R_HUMAN Epidermal growth factor receptor substrate 15-like 1

Phosphatase inhibitor

Q96A00|PP14A_HUMAN Protein phosphatase 1 regulatory subunit 14A

Endoplasmic Reticulum

Q9UNZ2|NSF1C_HUMAN NSFL1 cofactor p47

Energy transduction

P12277|KCRB_HUMAN Creatine kinase B-type

P11216|PYGB_HUMAN Glycogen phosphorylase, brain form

(Continued)
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TABLE 1 | Continued

Q765P7|MTSSL_HUMAN MTSS1-likEprotein

P35241|RADI_HUMAN Radixin

Q9H9H5|MA6D1_HUMAN MAP6 domain-containing protein 1

Immune response

P43243|MATR3_HUMAN Matrin-3

P17858|PFKAL_HUMAN ATP-dependent 6-phosphofructokinaseNuclear membrane

P20700|LMNB1_HUMAN Lamin-B1

P02545|LMNA_HUMAN Prelamin-A/C

Q9H910|HN1L_HUMAN Hematological and neurological expressed

1-like protein

FIGURE 4 | Continued
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FIGURE 4 | (A) A StringDB representation of citrullinated proteins in MS (red) and controls (blue) tissue. Edge settings is high-confidence (minimum required

interaction score 0.700). Overlapping in both tissues are depicted in pink. (B) Altman Bland plot. Vertical axis shows the mean number of peptide spectrum matches

against citrullinated sequences in controls and MS donor for white matter. The vertical axis shows the differences in PSM between MS and controls. Highlighted in

Red are proteins discussed in the text. (C) This figure shows a list of other most citrullinated proteins. Overall numbers of tissue distributions are shown: Vimentin,

2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CN37), ermin (juxtanodin), dihydropyrimidinase-related protein 2 (DPYL2 or crmp2) and neurofilament medium

polypeptide (NFM). Most of the proteins show a higher range of citrullinated peptides in white matter of diseased tissue. Only NFM is citrullinated in a similar manner in

all tissues analyzed. (D) Distribution of citrullinated sites in one of the major citrullinated proteins in brain tissue MBP. The bars represent the numbers of modified

arginine sites in corresponding tissue of control and MS cases. Peptide spectral matches, which were used for quantification of the modified sites are shown as

supplements. MBP sequence (P02686-5) with modified arginine found in our analysis. 16 out of 19 arginine sites were found to be citrullinated in control and diseased

brain (MS) tissue. Sites R6, R10, and R55 were never found to be altered. We never found R171 to be citrullinated in gray matter tissue. (E) Distribution of citrullinated

sites in another major citrullinated protein in brain tissue GFAP. The bars represent the numbers of modified arginine sites in corresponding tissue of control and MS

cases. Peptide spectral matches, which were used for quantification of the modified sites are shown as supplements.

such as myelin-associated proteins, neuronal development,
neuronal skeleton, astrocytes, synapse, energy transduction,
membrane trafficking, cytoskeleton in general immune response
and anti-apoptotic activity. The distribution and the possible
interactions of the citrullinated proteins are illustrated in

Figure 4A in the protein interaction network generated by String
(24). Figure 4B shows the differences regarding citrullination as
numbers of peptide-spectrummatches betweenMS and controls.
For GFAP and MBP much higher numbers of spectra matching
citrullinated sequences were detected in MS than in controls.
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Other proteins worth mentioning are vimentin (VIME) and
CNPase (CN37). Proteins with strong citrullination pattern, i.e.
more than three citrullination sites, are represented in Figure 4C.

Vimentin, an intermediate filament protein, is important for
maintaining the structure of a cell. It had already been described
in AD (25) and is one of the most citrullinated proteins besides
MBP and GFAP in WMMS. We found an increased number of
modifications in both tissues of MS in comparison to controls.

CNPase is an oligodendrocyte-specific protein and one of the

most abundant proteins in CNS myelin. Its function remains
unknown. CN37 has been described as an autoantigen inMS (26)
and had been identified to be citrullinated in a mouse model (27).

We identified a higher number of citrullinated CN37 peptides
in human brain white matter tissue as compared to published
data (28). In gray matter, we noticed slightly more citrullinated

spectral matches in controls.
We describe for the first time citrullinated sites of members

of neurofilament protein family (NFL, NFM and NFH), DPYL2
(dihydropyrimidase-related protein 2, CRMP2), a protein
involved in neuronal development and polarity (29), and human
ermin, a protein playing a role in myelin development and
maintenance and stability of myelin sheath (30). Among the
threemembers of neurofilament proteins, there was no difference
with regard to citrullination across tissues and donors. We show
neurofilament medium chain (NFM) as a representative member
of that group.

The protein DPYL2 showed a particularly increased number
of modified peptides in WMMS tissue and a slight increase
in GMC.

The protein with the highest number of modified/citrullinated
peptides in all tissues was MBP followed by GFAP, which
will be described in more detail. The analysis of total spectral
counts showed that overall comparable amounts of spectra were
observed in control and MS tissue of gray matter, and in white
matter citrullinated spectral counts were strongly increased in
MS white matter whereas the number of citrullinated spectral
counts in gray matter was slightly reduced in MS tissue.

Citrullination and Other Modifications of
Myelin Basic Protein
We examined in more detail MBP as one of the import
proteins of the myelin sheath and due to its role as
target in autoimmune responses. MBP can undergo post-
translational modifications at various sites. Those modifications
are phosphorylation, methylation, oxidation, citrullination and
deamidation/isomerization. So far, very little is known about the
implication of these modifications in disease processes in MS
(31–33). In our study, we found 16 out of the 19 arginine sites to
be modified into citrulline (Figure 4D). Earlier studies described
6–9 arginine sites in MBP to be citrullinated in MS “in vivo” (32,
34). In these studies, MBP was purified prior to analysis, while we
analyzed whole tissue extracts from histologically characterized
sites. We observed various modifications on different amino
acids and will describe some of them in more detail. The
peptide MBP (77–92) “(K)SHGRTQDENPVVHFFK(N)” was
modified at multiple sites. Modifications occurred at asparagine

(N-85), arginine (R-80), and glutamine (Q-82); DENP, HGRT,
and RTQD. The peptide “(K)GVDAQGTLS(K)” (144–154) was
deamidated at DAQG (Q-148). We mention these deamidations
since these modifications have been analyzed previously in MS
patients and healthy donors (32, 35). These two reports show
that deamidation of the latter peptide (MBP 144–154) can
increase with age in MS patients and others in animals (32).
The deamidation of glutamine (Q) in the peptide sequence (82–
90) (QDENP) has been shown to block its degradation by the
protease cathepsin-D in Alzheimer’s Disease (36). In our analysis,
we found that 15 (16) identified citrullination sites were present
in control as well as in MS tissue, in gray—and in white matter. A
16th position could only be found in WMMS.

To see if there is any specific citrullination pattern of
MBP, we counted the number of peptides and the respective
citrullinated sites and plotted them over the whole protein
sequence (Figure 4D). Citrullination is not unique to MS tissue
and neither in GM nor WM tissue. Some citrullinated sites were
strongly over-represented in MS tissue, i.e., R26, R32, R34, R44,
R50, R66, and R98. In GM, only the sites R26 and R44 were
slightly more citrullinated in MS tissue compared to control.

The situation for the structural protein GFAP looked similar.

GFAP protein was found to be much more modified in

WM as compared to GM from MS tissue. Highly modified

sites among others were positions R12, R36, R41, R49, and

R390 and R416. Similar to MBP, GM tissue generally shows
a much lower state of citrullination and a relatively higher
rate in control tissue (Figure 4E; Supplementary Data 1). Since
citrullination depends on the activity of PADI, we looked for
the presence of PADI in the tissues. We could identify a
substantial number of peptides from the isoform PADI2 (between
18 and 20 peptides across all tissue representing between 32
and 45% of protein sequence, data not shown). No peptide of
PADI4, the other isoform described to be present in CNS (17),
could be found.

Immunological Reactivity Against
Citrullinated MBP Peptides
In order to find out if the citrullinated MBP peptides are targeted
by the immune system we examined CSF-infiltrating CD4+ T
cells from 22MS patients. We analyzed CSF-derived T cells
under the assumption that they are more likely to be biologically
relevant in MS than peripheral blood lymphocytes, since the T
cells have already infiltrated the CNS compartment. For that
purpose, CD4T cells were freshly isolated and expanded as
described (16) from CSF of 19 relapsing remitting MS, 2 primary
progressive MS and 1 clinically isolated syndrome patients
(Table 2 and Supplementary Table 3), and, subsequently tested
in quadruplicates for eight newly identified citrullinated MBP
peptides together with the non-modified peptides. Furthermore,
seven immunodominant myelin peptides were examined, and,
only for MBP, the most abundant citrullinated epitopes were
included in the assay (Supplementary Table 2). Proliferation and
IFN-γ production were used as functional readouts. Positive
responses to CEF, a peptide pool of CMV, EBV, influenza virus
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TABLE 2 | Main clinical information and CSF findings of MS patients.

MS patients (22 subjects)

Age (y) 37.3 ± 12.6 (17–58)

Gender (F/M) 15/7

Disease duration (y) 1.6 ± 4.4

Patients with disease duration < 12 months (%) 16 (73%)

Time from last relapse (m) 1.3 ± 2.2 (0–8)

Patients with MRI-LP delay < 1 month (%) 20 (91%)

MRI active patients (%) 11 (50%)

CSF-restricted IgGOCB 21 (95.5%)

Patients with IgG Index > 0.70 (%) 15 (68.2%)

Blood-brain barrier damage (%) 5 (22.7%)

CSF cell count (/µL) 7 ± 3

Disease duration was defined as the time-span between disease onset and lumbar

puncture (median value and range are reported). The “time from last relapse” value did not

include Primary Progressive MS data. As indicated by the narrow interval between MRI

and LP (MRI-LP delay), the great majority of MS patients received MRI the day before

LP. Blood Brain Barrier (BBB) damage was considered when the albumin quotient (QAlb)

exceeded the normal value for patient’s age (i.e., age/15 + 4). y, years; m, months.

and tetanus toxoid, and global T cell stimulation by anti-
CD2/CD3/CD28 beads were tested in parallel as positive controls.
Four patients (1444ME, 1479CR, 1453AN, 1489HE) showed
responses to CEF peptides with a stimulation index (SI) > 2, but
we did not observe specific recognition of citrullinated- and non-
citrullinated MBP peptides in proliferation assays (Figure 5A).
When we analyzed the IFN-γ secretion in the culture supernatant
of the same wells tested for proliferation, we did also not
find strong IFN-γ release upon exposure to citrullinated MBP
peptides, but weak responses in only a few patients and one
of the four replicate wells (Figure 5B). On the other hand, in
two patients (1673UR, 1283RO), IFN-γ secretion (∼50 pg/ml)
in response to several non-modified epitopes of the MBP protein
was seen (Figure 5B). Given these results, we conclude that the
non-modified peptides are more frequently recognized by CSF-
infiltrating CD4+ T cells compared to the citrullinated version
and that the reactivity to the latter is overall very low.

Global T cell stimulation resulted in clear responses in all
donors, whereas responses to CEF peptides were less frequent.
The reactivity observed in proliferation assays to CEF positive
control peptides was partially paralleled by IFN-γ release. Only
two out of the four patients (1453AN, 1489HE) responding
in thymidine incorporation assay, produced also IFN-γ at
high concentrations (∼400 pg/ml). However, additional patients
(1460ML, 1188ZA) responded to these antigens (Figure 5B).

When examining other immunodominant myelin peptides
(9, 37) we observed in most cases IFN-γ secretion. Several
patients reacted clearly to MOG2 (35–55) peptide (Figure 6A).
1444ME showed proliferation with a stimulatory index (SI) of
5 (data not shown), 1673UR, 1283RO, and 1560RO release
of IFN-γ (∼300 pg/ml). 1283RO responded with high IFN-
γ release to other non-citrullinated, immunodominant MBP
peptides (Figure 6A) in comparison to the citrullinated version
(Figure 6A). These data show that bulk CSF-infiltrating CD4+

T cells of MS patients are able to recognize at the same
time different epitopes of the same protein but also different

antigens. No significant association between peptide recognition
and the MS risk-associated HLA-DRB1 alleles, i.e., DRB1∗15:01,
DRB1∗13:01, and DRB1∗03:01, was observed (reported below
the graphs).

Since we observed substantial differences in the results
obtained from the two response readouts, i.e., thymidine
incorporation vs. IFN-γ release, we wanted to assess a correlation
between the two measures and applied Pearson Correlation
testing on CEF- and MOG peptides responses. We observed
(Figure 6B) a strong positive correlation (r = 0.7671) for CEF
peptides (p < 0.0001), but only a weak correlation for MOG (r =
0.1857), where the majority of responses were detected by ELISA.
These results show that IFN-γ secretion appeared to be more
sensitive than proliferation as readout.

DISCUSSION

We investigated the composition of citrullinated proteins from
human post-mortem brain tissue. Tissues were characterized by
immunohistochemistry staining with antibodies against MOG
and HLA-DR and LFB. These markers allowed to distinguish
tissue with lesions from NAWM. Some of the tissue sections
showed increased staining for citrullination in white matter
compared to gray matter tissue, an observation that correlated
well with our proteomic findings. Based on mass-spectrometry,
we could identify a high number of citrullinated proteins,
which far exceeded the numbers already published in human
CNS (9, 38). By establishing a “spectral peptide library”
from different disease-relevant brain tissues and controls, we
provide a basis for further, more extensive investigation of
the MS brain proteome. We combined an optimized protein
extraction technique based on PCT (pressure cycle technology)
with chromatographic pre-fractionation, HILIC, to obtain high
proteome coverage. We searched our mass spectrometry data
with various search engines to distinguish post-translational
modifications and identify citrullination. The difficulty of
correctly identifying minute mass changes, i.e., an increase
of 1 Da per citrullinated site, made it necessary to apply
complementary bioinformatics approaches to validate the results,
since another post-translational modification, deamidation,
which also increases the molecular mass by 1 Da, occurs in aging
tissue on asparagine (N) and glutamine (Q) and can be a source
of misinterpretation. Therefore, we used different algorithms
to interpret the spectra and features, which are inherent of
citrullinated proteins, i.e., resistance to tryptic digestion and the
neutral loss of 43 Da inside the mass spectrometer instrument
(39). Most of the citrullinated proteins we identified, as well
as new citrullinated sites of MBP had not been described in
MS tissue before. So far, citrullinated myelin proteins had been
analyzed from excised bands (SDS-PAGE) or after “in vitro”
citrullination, but not from entire tissue. We used two software
“Mascot” and “Ursgal” to identify citrullination. Depending on
the search parameters and software the number of identified
peptides varied as illustrated in Figure 2B. We could not
detect any of the N-terminal arginines to be citrullinated. This
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FIGURE 5 | Recognition of citrullinated vs. non-citrullinated MBP in CSF-infiltrating T helper cells of MS patients. (A,B) Reactivity of CSF-infiltrating CD4+ T cells from

untreated MS patients to citrullinated MBP (left) and non-citrullinated MBP peptides (right), using irradiated autologous PBMCs as antigen-presenting cells. Each

square represents one well. MS risk-associated HLA-DRB1 alleles are reported for each individual under the respective graph. (A) Proliferative responses to MBP

peptides, CEF peptides or anti-CD2/CD3/CD28 stimulation as positive control are given as stimulatory index (SI). The strength of the response is depicted by color

coding. A SI > 2 is considered as positive response. (B) Responses detected by IFN-γ secretion against to MBP peptides or CEF peptides in the same wells that

have been tested in the proliferation assay. The IFN-γ concentration in culture supernatants is depicted as pg/ml.

phenomenon had been reported earlier concluding that “N-
termini” are less prone to be citrullinated (38).

Citrullination facilitates enzymatic degradation of MBP but
in the situation of increased citrullination, especially of myelin
proteins, scavenger cells like macrophages might have difficulties
coping with a high amount of proteins to degrade. It could also
be that the presence/absence or activity of specific proteases like
cathepsins play a role.

Citrullinated residues can be considered “neo-antigens” since
they are not necessarily available during thymic selection of T
cells and since citrulline is not one of the naturally occurring

L-amino acids. Hence, T cells with high avidity T cell receptors
against citrullinated peptides, which are presented via MHCII
molecules, might escape negative selection in the thymus and
target citrullinated peptides in the CNS. Earlier data from
testing PBMCs and PBMC-derived T cell lines with proteolytic
fragments (13) and 6 modified arginines in MBP, which had
been known at that time (40), had indicated increased reactivity
against citrullinated MBP epitopes. However, these data were
preliminary due to incomplete knowledge of the citrullinated
sites and other limitations. After analyzing in detail the possible
citrullination sites in the present study, we wanted to expand the
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FIGURE 6 | Recognition of citrullinated vs. non-citrullinated immunodominant myelin peptides and correlation of readouts. (A) Reactivity of CSF-infiltrating CD4+ T

cells to immunodominant MBP citrullinated (up) and immunodominant myelin (down) peptides, using irradiated autologous PBMCs as antigen-presenting cells. Each

square represents one well. MS risk-associated HLA-DRB1 alleles are reported for each individual under the respective graph. Responses detected by IFN-γ secretion

in culture supernatants are depicted as pg/ml. (B) Pearson correlation analysis is performed for MOG and CEF peptides. Data obtained from ELISA and proliferation

assay are compared and each dot represents one well-tested. Significant strong correlation between the readouts is detected for CEF (p < 0.0001) while for MOG a

mild correlation is shown (p = 0.0136).

prior data by testing bulk CSF-infiltrating CD4+ T cells, i.e., from
the CNS compartment, against MBP peptides containing the
newly identified citrullinated sites and against control antigens.
These studies aimed at the question if T cell reactivity against
citrullinated epitopes of MBP is increased in MS as it has been
described in a subset of rheumatoid arthritis patient for antibody
reactivity against citrullinated peptides (41), and, if not generally
increased in MS, whether it is found in a subset of patients. Our
findings show that there is very little reactivity again citrullinated
MBP epitopes and that it is thus unlikely to play a role in the
autoimmune response inMS.When comparing the present study
with previous data (12, 13), the testing of CSF-infiltrating T
cells, which are more likely to be disease-relevant than PBMC-
derived T cells, and of a larger number of individuals are the
most important differences. The fact that we observed reactivity
against MOG- and CEF peptides in a number of individuals,
indicate that the lack of reactivity against citrullinated MBP
peptides was not a technical problem. The observation that
some wells were only positive when testing for IFN-γ, is likely
explained by the fact that individual functions of T cells require
different strengths of stimulation (42). Modified/citrullinated
peptides may be less potent ligands compared to native peptides
and, since only one antigen concentration was tested, it is possible
that responsiveness was only observed for one functional readout
instead of both (42).

Since we did not examine antibody reactivity against
citrullinated proteins, the possibility remains that humoral
responses could still play a role in MS as is the case in RA (42).
Bodil et al. did not find elevated levels of antibodies either against
citrullinated proteins or PAD in MS patients (43). Furthermore,
decreased reactivity against citrullinated MBP was found in
serum and CSF of MS patients. However, this study examined
only two citrullinated MBP peptides (44).

Besides myelin proteins, we also identified additional
citrullinated sites in vimentin and CN37 from WMMS, whereas
numbers of CN37 and DPYL2 citrullinated peptides were slightly
increased in GMC tissue (Figure 4C). Some of the newly
identified citrullinated proteins like ermin (juxtanodin) and
DPYL2 (crmp-2) are of particular interest. Little is known about
ermin. It appears to be expressed only by oligodendrocytes and
involved in the compaction of myelin (45) and the formation
of axonal microtubules (46). It is interesting to note that
citrullinated ermin is present in tissue were compaction of
myelin is lost. Moscarello et al. were the first to hypothesize that
damage of white matter in MS results from a failure to maintain
compact myelin sheaths due to an increased citrullination of
MBP (47). Citrullination of ermin may occur as “collateral
damage.” MBP like ermin belongs to a group of proteins, which
are characterized as “intrinsically disordered proteins” that adopt
tertiary structure depending on the molecular environment (48).
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DPYL2 or (CRMP2) is a protein, which has been linked to
neurodegenerative disorders (49) and shown to be involved in
synaptic function. It appears in an interactome with proteins
involved in B cell differentiation (49) and in T cells in the
context of neuroinflammation in an animal model (50). Further,
it has been shown to have multiple PTMs and potentially many
interactors, among them structural proteins as tubulin (51).

Our list of citrullinated proteins shows a large number
of molecules involved in cytoskeleton formation, especially
vimentin, GFAP, tubulin and actin. The picture we obtained
from our MS tissues indicates that structural proteins are the
main targets of this particular post-translational modification.
Citrullination is considered to result from insult and damage,
leading to molecular and cellular breakdown. In addition,
recent publications show that post-translational modifications as
citrullination and deamidation also occur in the aging brain (32,
34, 36). Therefore, it is possible that the citrullination patterns
we obtained from control brain reflect the natural aging of brain
tissue. Nevertheless, citrullination occurred with a much higher
frequency in MS tissue as compared to control. This could be
due to inflammation, even if tissue is not overtly inflamed and
considered “normal-appearing,” and support the argument that
citrullination is not an initiator of the disease but the result.
Other PTM, such as phosphorylation occur also on MBP, but
their possible influence on disease course is currently not clear.

In summary, our study provides a comprehensive analysis
of citrullinated peptides in white- and gray matter of MS
patients and controls. We combined efficient protein extraction-
and separation techniques to analyze very small samples.
Thorough data mining with the support of complementary
software allowed us to establish a map of citrullinated
peptides and proteins. This proteomic approach in principle
provides the basis for multiple other studies on the role of
citrullination in MS brain tissue, but more broadly also with
respect to analyzing other post-translational modifications in
small tissue samples and identifying potential neo-antigens.
This information, i.e., whether structural proteins and or
those involved in inflammatory processes are citrullinated,
should improve the understanding whether citrullination is
implicated in distinct pathomechanisms in MS. Altered myelin,
either via structural alterations, during the processes of
de- and remyelination, neuronal/axonal loss or autoimmune
inflammation could result in neoantigens and thereby induce an
autoimmune reaction or increase demyelination (5).

The immunological testing in the present study focussed
on citrullinated MBP epitopes based on previous reports, and,
even though we examined CSF-infiltrating CD4+ T cells, we
did not find a marked response, which argues against a major
pathogenetic involvement of autoimmune T cells directed against
citrullinated MBP epitopes in MS.
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Inflammatory demyelinating CNS syndromes include, besides their most common entity

multiple sclerosis (MS), several different diseases of either monophasic or recurrent

character—including neuromyelitis optica spectrum disorders (NMOSDs) and acute

disseminated encephalomyelitis (ADEM). Early diagnostic differentiation is crucial for

devising individual treatment strategies. However, due to overlapping clinical and

paraclinical features diagnosis at the first demyelinating event is not always possible.

A multiplicity of potential biological markers that could discriminate the different

diseases was studied. As the use of autoantibodies in patient management of other

autoimmune diseases, is well-established and evidence for the critical involvement of B

cells/antibodies in disease pathogenesis in inflammatory demyelinating CNS syndromes

increases, antibodies seem to be valuable diagnostic tools. Since the detection of

antibodies against aquaporin-4 (AQP-4), the understanding of immunopathogenesis

and diagnostic management of NMOSDs has dramatically changed. However, for

most inflammatory demyelinating CNS syndromes, a potential antigen target is

still not known. A further extensively studied possible target structure is myelin

oligodendrocyte glycoprotein (MOG), found at the outermost surface of myelin sheaths

and oligodendrocyte membranes. With detection methods using cell-based assays

with full-length, conformationally correct MOG, antibodies have been described in

early studies with a subgroup of patients with ADEM. Recently, a humoral immune

reaction against MOG has been found not only in monophasic diseases, but

also in recurrent non-MS diseases, particularly in pediatric patients. This review

presents the findings regarding MOG antibodies as potential biological markers in

discriminating between these different demyelinating CNS diseases, and discusses

recent developments, clinical implementations, and data on immunopathogenesis of

MOG antibody-associated disorders.

Keywords: multiple sclerosis, myelin oligodendrocyte glycoprotein antibody-associated disorders, neuromyelitis

optica spectrum disease, inflammatory demyelinating CNS syndromes, clinically isolated syndrome
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INTRODUCTION

Inflammatory demyelinating CNS diseases are a heterogeneous
group, coveringmonophasic andmultiphasic diseases, prognoses
ranging from benign to fulminant, and a variety of different
treatment responses. Although the sensitivity and specificity of
diagnostic criteria, particularly for multiple sclerosis (MS), the
most common demyelinating CNS disease, have significantly
improved (1), misdiagnosis is not infrequent and occurs
in up to 10% of cases (2). Differential diagnoses are beside
other neurological non-inflammatory diseases, in particular
neuromyelitis optica spectrum disorder (NMOSD), acute
disseminated encephalomyelitis (ADEM), multiphasic
disseminated encephalomyelitis (MDEM), and atypical
demyelinating CNS syndromes (3, 4). Diagnosis is based
on a combination of anamnesis, clinical presentation, and
radiological findings (1, 5, 6) and allows, for the most part,
correct stratification.

Given the recommendation for early treatment initiation in
MS, and the availability of highly effective treatments (7), in the
last few years efforts have been made to establish the diagnosis
as early as possible. However, this in turn increases the risk
of beginning a possibly harmful treatment regimen in patients
without MS. The first detection of a laboratory biomarker in
MS concerned the description of oligoclonal bands (OCBs)
more than 60 years ago (8). However, so far analysis of the
target antigen of an intrathecal immunoreaction has not been
successful, and no specific antibodies have been found to be
associated with MS (9).

In 2004, a change in the diagnosis and research of
inflammatory demyelinating CNS diseases was evoked with the
description of specific autoantibodies in patients with NMOSD
(10). These antibodies are directed against aquaporin-4 (AQP-
4), an abundant water channel in the CNS on astrocytic endfeets
(11). However, a subgroup of clinically defined NMOSD patients
are seronegative, and no marker is so far established for other
differential diagnoses (12).

In animal models of MS (experimental autoimmune
encephalomyelitis, EAE) a well-known target structure
is myelin oligodendrocyte glycoprotein (MOG) (13), a
protein comprising 245 amino acids that is exclusively
expressed on the outermost surface of the myelin sheath
and oligodendrocyte plasma membrane in the CNS, and which
is easily accessible by a humoral immune reaction (14, 15). After
passive immunization with tissue homogenates of CNS, the
predominant antigen target in EAE is MOG, and inflammatory
and demyelinating changes are enhanced by MOG antibodies
(16–19). Furthermore, in combination with complement,
demyelination, and diseases relapses have been induced and

Abbreviations: ADEM, acute disseminated encephalomyelitis; ADEMON,

acute disseminated encephalomyelitis followed by optic neuritis; AQP-4,

aquaporin-4; CSF, cerebrospinal fluid; CRION, chronic relapsing inflammatory

optic neuropathy; EAE, experimental autoimmune encephalomyelitis; LETM,

longitudinally extensive transverse myelitis; MDEM, multiphasic disseminated

encephalomyelitis; MS, multiple sclerosis; MOG, myelin oligodendrocyte

glycoprotein; NMOSD, neuromyelitis optica spectrum disorder; OCBs, oligoclonal

bands; ON, optic neuritis; RON, recurrent optic neuritis; TM, transverse myelitis.

MOG antibodies seem to be involved in macrophage mediated
myelin destruction/phagocytosis (12).

Given these promising results, a multiplicity of studies
have attempted to identify MOG antibodies in demyelinating
CNS diseases. Numerous techniques and heterogeneous study
populations have been included in these, leading to conflicting
and inconsistent data on the prognostic and diagnostic value
in MS (20–24). However, the establishment of methods similar
to that used for the analysis of AQP-4 directed antibodies
has enabled the reliable detection of antibodies against native
correctly folded and glycosylated MOG (12, 25). With these cell-
based assays, a humoral immune response against MOG has been
consistently identified—initially in ADEM and subsequently in
a subgroup of particular pediatric patients with inflammatory
demyelinating CNS diseases (20, 22, 24, 26).

In the last few years, the MOG antibody-associated disorder
spectrum has been rapidly broadening, making more data
regarding clinical, radiological, and laboratory findings available,
as well as elucidating immunopathogenesis. The current paper
discusses the developing clinical spectrum, histopathological
data, and immunopathogenesis, alongside the implications of the
same for daily clinical practice.

CLINICAL PRESENTATION AND
PROGNOSIS OF MOG
ANTIBODY-ASSOCIATED DISORDERS

The first evidence for the potential use of antibodies against
native MOG as a biological marker for ADEM was published
by O’Connor et al. (26). Self-assembling radiolabelled MOG
tetramers were established and a humoral immunoreactivity
against MOG reliably identified in a subgroup of children
with ADEM. Initially, these antibodies seemed to be associated
with monophasic disease courses, predominantly present in
children with an ADEM-like onset (27–29). Subsequent studies,
however, revealed that the spectrum ofMOG antibody-associated
disorders is much broader. MOG antibodies have been found
to be present in a subset of patients with ADEM, NMOSD,
monophasic, and recurrent optic neuritis (ON), and transverse
myelitis (TM), demyelinating syndromes overlapping with anti-
NMDA receptor encephalitis or glycine receptor alpha 1 subunit
antibody positive ON, Figure 1 (26, 27, 29–48). It is now well-
accepted that MOG antibodies are in particular associated with
ON and TM (49). In MS, a humoral immune response against
MOG is only rarely seen (12). In atypical MS with a distinct
clinical phenotype of e.g., severe brainstem and spinal cord
involvement, immunoreactivity against MOG has been described
in up to 5% of cases (50). In this subgroup, frequent relapses
and insufficient responses to disease-modifying treatment seem
to be a common feature. As co-incidence of MOG and AQP-
4 immunoreactivity is an exception, disease mechanisms have
been suggested to be at least partly different in these two
entities (24).

However, clinicalMOG antibody-positive patients can present
with an NMOSD phenotype. Mader et al. were the first to
describe the presence of MOG antibodies in this patient group
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FIGURE 1 | Spectrum of MOG antibody-associated disorders.

(51). Subsequent studies supported the results: overall, in AQP-
4 negative patients, MOG antibodies have a prevalence of 25%
(12). In contrast to AQP-4 antibody-associated disorders with the
well-defined clinical phenotype of NMOSD, in MOG antibody-
associated disorders, the clinical presentation is less well-defined.
Still, particularly in children, the sensitivity in ADEM is highest,
at an average of 36% in different studies (12).

The two largest cohorts looking at the clinical features ofMOG
antibody-associated disorders were recently published (49, 52).
Clinical presentation based on a trimodal distribution with age
clusters of <20 years, 20–45 years, and >45 years, ADEM was
most common in the age group <20 years; whereas ON (20–45
years) and bilateral ON (>45 years) were more frequent in adult
patients with MOG antibody positive disorders (52). A short TM
occurred in 14% of patients >45 years, but was rarely described
in younger patients. The age-dependent clinical presentation was
confirmed in a further study, with a predominance of ON found
in adult onset MOG antibody-associated disorders, compared to
a predominance of ADEM-like patterns in children as well as
better recovery from neurological symptoms in children (53).

The second largest study to include MOG antibody positive
patients supported ON/TM as the main manifestations, given
they represented clinical onset in over 90% of adult patients
(49). However, NMOSD criteria (54) were fulfilled in only
19% of patients. Interestingly, in this study population, an
encephalogenic phenotype was described with clinical signs
of meningeal symptoms, retrograde amnesia, and seizures—
uncommon symptoms in classical MS. Furthermore, seizures
and encephalitis-like presentations are more common in MOG
antibody-associated disorders compared to AQP-4 antibody
positive diseases (55). Three recent case reports also found MOG
antibodies to be associated with clinical presentation of cortical
encephalitis and steroid responsiveness (56–58), indicating a new
phenotype of MOG antibody-associated disorders.

Initial studies assumed MOG antibody-associated disorders
to be monophasic, but it is now well-known that monophasic
and recurrent diseases are both associated with MOG antibodies
(59). In children, MOG antibodies are predictive not only of non-
MS disease with a specificity of 100% but also of a recurrent
non-MS disease course with a specificity of 75% including
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NMOSD, recurrent ON (RON), MDEM, and ADEM followed by
optic neuritis (ADEMON) (48). Overall, 39% of MOG antibody
positive children have been found to have a recurrent disease
course, but only 5% a typical MS. It is important to note that as
low levels of MOG antibodies were also measured in healthy and
other neurological controls, a cut-off for positivity was in most
studies defined as ≥1:160 (12). However, this study introduced
a new cut-off for seropositivity, to increase the specificity for
prediction of non-MS diseases with only a moderate decrease of
sensitivity, at a titer of ≥1:1,280 (48).

Higher age, female sex, and MRI findings atypical of MS were
found to be risk factors for a recurrent disease course. This
reported risk was found to vary across different studies. Relapses
were observed in 36% of 252 MOG antibody positive patients
in the UK, with an annualized relapse rate of 0.2 (52), with the
highest risk in patients with ON or NMOSD phenotypes. These
relapse rates seem to be lower than those of AQP-4 antibody
positive patients (37, 39, 49, 60). However, disease reoccurrence
of up to 80% with an annualized relapse rate of 0.9 has been
described as associated with a humoral immune reaction against
MOG (61); in particular, a NMOSD phenotype seemed to be
correlated with a relapsing disease (62). The highly variable data
on further attacks and relapse rates may be due to the different
characteristics of patients included for study, as well as the
higher detection probability in relapsing diseases compared to
monophasic diseases according to study design.

In several studies, a favorable outcome seemed to be associated
with MOG antibodies (34, 39, 63). Patients seropositive for
MOG antibodies less frequently suffer motor disability and
have a better EDSS score after recovery compared to AQP-
4 antibody positive patients (37). In patients with TM, the
presence of MOG antibodies has also been associated with
a better recovery from acute attack, indeed similar frequency
of severe attacks at onset and similar relapse rates to AQP-4
antibody-associated disorders (64). Although, MOG antibody-
associated ON is mainly a recurrent disease, accompanied by
severe visual loss in the acute phase, visual recovery was found
to be good (65); the outcome was better in MOG- compared
to AQP-4 antibody positive patients correlating with a better
preserved retinal fiber layer thickness (65, 66). However, in
another study, severe functional loss was described in nearly half
of MOG antibody positive patients and retinal axonal damage
was similar in both conditions (61, 67). In a recent study,
visual function outcomes and ambulation were significantly
better in MOG antibody-associated disorders than in AQP-
4 antibody-associated disorders; indeed, permanent disability
was described in nearly half of the patients after a median
disease duration of 16 months, and permanent bladder and
erectile dysfunction in∼1 quarter of the MOG antibody positive
patients (52). In a subgroup of adult MOG antibody positive
patients, severe disease courses and lack of response to DMT
were also noted (50). Though more data are necessary to
confidently evaluate the prognostic value of MOG antibodies
regarding disability, data indicates a favorable outcome at least
in the majority of patients; however, severe disease courses with
pronounced functional loss are possible, and may warrant early
immunotherapy.

LONGITUDINAL ANALYSIS OF MOG
ANTIBODIES: IMPLICATIONS FOR
CLINICAL PRACTICE

Prognostic assessment in MOG antibody positive patients who
have had their first demyelinating event, with a possibility of
an ensuing multiphasic disease course, is a challenge in clinical
practice, and has important implications regarding further
initiation of disease-modifying treatment. An association of
longitudinal antibody level change with clinical course has been
suggested (28, 29). Studies have also revealed an association of
MOG antibody titer decrease with a monophasic disease course
compared to stable or increasing titer in patients withmultiphasic
diseases (36, 45, 49, 50, 68). Persistent MOG antibodies have
been predominantly found in recurrent non-MS diseases such
as MDEM, NMOSD, and ADEMON (48). Furthermore, in a
cohort of ON patients, 98% presented with persistent MOG
antibodies, and of these 80% relapsed (65). A recent publication
on adult and pediatric seropositive ADEM patients supported
the clinical usefulness of serial MOG antibody testing for relapse
prediction, as 88% with persistent MOG antibodies relapsed
during long-term follow-up compared to 12% with transient
antibodies (69). In the largest MOG antibody positive cohort to
date, 72% of patients were persistently MOG antibody positive
during the disease course; of these, 60% relapsed, whereas
all transient antibody positive patients were relapse-free (52).
Cobo-Calvo et al. confirmed the trend toward association of a
relapsing disease with persistent antibodies only in a subgroup
of patients; in some groups, no such association was observed
(49). Similarly, Duignan et al. found persistent MOG antibodies
in relapsing and monophasic diseases alike (70). In addition,
one study showed that in adult MS patients, a subgroup had
an immunoreactivity against MOG as well as associated severe
brainstem and spinal cord involvement, frequent relapses, and
a less favorable treatment response, with fluctuating and non-
persistent antibody levels (50).

Promising results for the use of MOG antibodies as treatment
biomarkers were published in 2017 in a study showing
conversion to seronegativity during immune-directed therapies.
The conversion was found to be a predictive marker for disease-
free activity during the subsequent disease course (71). Although
there is evidence for the potential use of serial testing as a
long-term disease marker and potential treatment marker, more
prospective data are necessary for the final evaluation of the
predictive value of serial MOG antibody testing, as the results
are in part inconsistent, and severe, relapsing disease courses
have been described in patients with decreasing/disappearing
antibody levels.

PARACLINICAL FINDINGS AND MOG
ANTIBODIES

In ADEM, an intrathecal IgG synthesis as measured by IgG
index or OCBs, is rare (72)—in contrast with MS, in which
OCBs are present in over 90% of cases. OCBs are included
in recent diagnostic MS criteria, and count for dissemination
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in time (1). Similar findings have been confirmed for MOG
antibody-associated disorders: OCBs are uncommon, occurring
in ∼10% of cases, and cerebrospinal fluid (CSF) reactivity to
MOG has only been shown in cases of high serum levels (27,
28, 46, 73). These findings indicate a peripheral production of
MOG antibodies and secondary diffusion in the CNS similar to
that in NMOSD (74). Possible explanations include: a direct CNS
infection with leakage of CNS antigens in the periphery, and a
secondary peripheral immune reaction against MOG (20); or a
peripheral infection that stimulates MOG antibody production
via molecular mimicry (20, 22).

Other routine CSF analyses were also comparable between
MOG antibody-associated disorders and NMOSD. CSF
pleocytosis was detected in 55–70% of cases, with neutrophilic
granulocytes in more than half of patients and cell counts
higher than in typical MS (37, 61, 75). In addition, similarities
were found between CSF cytokine profiles in MOG antibody-
associated disorders and AQP-4 antibody-associated NMOSD,
with a predominant up-regulation of T helper 17 related
cytokines in the latter, whereas in MS, T helper 1 related
cytokines were found (75, 76), suggesting shared immunological
pathomechanisms in the two diseases.

Besides clear differences in clinical and laboratory findings,
MRI also provides a useful means of discriminating MOG
antibody-associated disorders from other CNS demyelinating
diseases, in particular MS. Brain MRI abnormalities at onset
range from 40 to 77% (41, 49, 61, 77, 78) and supratentorial
lesions have been found in nearly half of patients during the
disease course and brainstem, respectively, cerebellar lesions in
one third of the patients. Brain MRI abnormalities are associated
with pathological CSF findings (49). According to the typical
clinical manifestations of TM, the most common imaging finding
is a longitudinally extensive transverse myelitis (LETM) or a
short TM (61). InMOG antibody-associated ON, typical imaging
characteristics are a contrast enhancement of the optic nerve,
a perineural enhancement in a proportion of the patients,
and in 80%, more than half of the pre-chiasmic optic nerve
length being affected (65, 79). Lesion distribution in children
seems to be age-dependent, with poorly demarcated, widespread
lesions in younger children, in contrast with a normal brain
MRI in older children (80). It has been possible to distinguish
MOG antibody-associated NMOSD from MS with a specificity
of 95% and a sensitivity of 91% by employing predefined
MRI criteria for lesion distribution, including Dawson’s fingers,
subcortical U fiber lesions, and lesions adjacent to the lateral
ventricles, as typical for MS (81). A subsequent study confirmed
these results, and was able to accurately discriminate MS
from MOG antibody-associated disorders by the presence of
ovoid lesions adjacent to the body of the lateral ventricles,
Dawson’s fingers, and T1 hypointense lesions, whereas fluffy
lesions and three lesions or less were typical for MOG antibody-
associated disorders (82). However, there was an overlap between
MRI characteristics for AQP-4 and MOG antibody-associated
disorders. Moreover, a further study could not identify typical
radiological features to discriminate between the diseases; indeed,
thalamus, and pons lesions were more common in MOG
antibody-associated disorders, and in 16% of patients, a cortical

involvement, and in 6% a leptomeningeal enhancement, was
described (49).

Although MRI is variable in MOG antibody-associated
disorders, depending on the clinical presentation and age of the
patient, it is an important diagnostic tool. In the absence of
an unique imaging finding, typical features of MOG antibody
positive patients are characterized as a normal brainMRI or large,
confluent, poorly marginatedMRI lesions (if clinically presenting
with ADEM), LETM, perineural enhancement of the optic nerve,
brainstem and hypothalamic lesions, and a leukodystrophy-like
MRI pattern (25, 83).

DIAGNOSTIC RECOMMENDATIONS FOR
MOG ANTIBODY-ASSOCIATED
DISORDERS

The International Panel on Diagnosis of Multiple Sclerosis
published in 2017 its most recent diagnostic criteria for MS. The
revised diagnostic criteria were based on further knowledge of a
combination of clinical, MRI, and CSF findings, and emphasized
the important role of OCBs in the diagnosis of MS and in
reducing the risk of misdiagnosis (1). Although MOG antibody
testing was not included in the revised criteria, due to a lack of
full validation of antibody testing, special clinical situations were
described for which antibody testing was recommended.

NMOSD and MS are often precisely discriminated by
clinical and paraclinical features (84), of which the important
therapeutic consequences regarding DMT requires special
attention. NMOSD, therefore, should be considered in every
suspected case of MS (1). The presence of antibodies against
MOG and AQP-4 should be tested for in patients with clinical
symptoms suggestive of NMOSD, such as bilateral ON, severe
brainstem involvement, or LETM, in special patient groups with a
high risk of NMOSD, if there is evidence of large cerebral lesions,
if MS criteria of dissemination in space are not fulfilled, or if
brain MRI is normal (1). As lack of OCBs is a very rare finding
in typical MS; MOG antibody testing should be considered in
OCB negative MS patients. In pediatric onset MS, antibody
testing can support the diagnosis of AQP-4 negative NMOSD,
ADEM followed by RON or with including chronic relapsing
inflammatory optic neuropathy (CRION). In 2017, Hacohen
et al. more precisely described the routine diagnostic use of
MOG antibody testing for pediatric patients in clinical practice,
and proposed a diagnostic algorithm for any episode of CNS
demyelination (83). According to the revised McDonald criteria,
first of all the diagnosis of MS should be evaluated by spinal
and brain MRI and CSF findings. Given the 2010 McDonald
diagnostic criteria (85), in this cohort diagnosis MS is also
reliable in children independent of age and no further diagnostic
steps are required. However, if there are features of NMOSD or
ADEM in cases where the patient is AQP-4 antibody negative,
MOG antibody analysis is strongly recommended. In contrast,
preceding criteria advised to apply the McDonald criteria with
caution for children under 12 years, as the validation of the
predictive value is lacking (86). In addition, MOG antibodies
are much more frequent in children; therefore, less stringent
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indications for antibody testing should be implemented in the
clinical practice.

Other red flags indicating the usefulness of MOG antibody
testing identified in the study of Hacohen et al. included
poorly marginated lesions located in the cerebellar peduncle
and a leukodystrophy-like MRI pattern. As MOG antibody
positive patients have distinct clinical features (being young,
less frequent area postrema syndrome, typically presenting
ADEM initially, lower disability during follow-up, a longer
time interval till the first relapse), the authors regard MOG
antibody-associated disorder as a new phenotype, discriminating
it in terms of its diagnostic algorithm from MS, AQP-4
antibody positive NMOSD, and antibody-negative recurrent
demyelinating syndrome (83).

Due to the rising relevance, in 2018 an international
recommendation based on expert consensus was proposed for
indication of antibody testing for patients with a demyelinating
CNS disease of suspected autoimmune etiology and either
a monophasic or relapsing disease course (25). Jarius et al.
proposed the urgent necessity of stringent indications for MOG
antibody testing, as screening for a rare biomarker in large,
unselected patient cohorts significantly decreases the predictive
power of a test (25). This limitation applies particularly to adult
patients, as in children MOG antibodies are more common.
Based on a combination of clinical, imaging, and laboratory
findings, MOG antibody testing should be performed in patients
with high risk of a MOG antibody-associated disorder and/or
in the case of findings that are atypical for MS. Concrete
antibody testing indications are: “Monophasic or relapsing
acute ON, myelitis, brainstem encephalitis, encephalitis, or any
combination thereof, AND radiological or, only in patients with
a history of ON, electrophysiological (VEP) findings compatible
with CNS demyelination” (25). In addition, at least one further
finding is necessary, of clearly defined MRI, Fundoscopy, CSF,
or clinical features, or typical treatment response. Among others,
a progressive disease course, progressive lesion load shown by
MRI during clinically inactive time periods, AQP-4 AND MOG
antibody positivity, andMOG IgM antibodies are regarded as red
flags for a false positive result.

As discussed above, no exact clinically unique phenotype
has been identified in patients with MOG antibodies. However,
MOG antibody-associated disorders share similar features and
a common treatment response, making their inclusion in
diagnostic criteria for all patient age ranges of important
clinical relevance. Therefore, two research groups independently
suggested diagnostic criteria for MOG antibody-associated
disorders, the newly introduced entity was termed as “MOG
encephalomyelitis” (25), respectively, “MOG IgG associated
disorders” (69). Jarius et al. propose the possible diagnostic
criteria for “MOG encephalomyelitis” in adult patients, as
including MOG antibody seropositive patients with either a
monophasic or relapsing ON, TM, brainstem encephalitis,
or encephalitis (or a combination of these syndromes), if
MRI or electrophysiological findings are compatible with CNS
demyelination (25). In the second proposal for diagnostic criteria
of Lopez-Chiriboga et al., similar findings are required: MOG-
IgG seropositivity measured by a cell-based assay with clinical

findings of ADEM, ON, CRION, TM, brain or brainstem
syndrome compatible with demyelination, or any combination
of the described syndromes, after exclusion of other differential
diagnoses (69).

These suggested criteria are preliminary: validation
experiments are essential for confirming final use in clinical
practice. Furthermore, depending on future data and antibody
testing methods, which may offer improvements in sensitivity
and specificity, adaptions will be necessary. In particular in large,
experienced MS centers, screening for MOG antibody positivity
in typical MS cohorts, and critical consideration of results,
could yield enhanced knowledge of the whole spectrum of MOG
antibody positive disorders.

HOW TO TEST FOR MOG ANTIBODIES

Several detection methods have been applied in identifyingMOG
antibodies in inflammatory demyelinating CNS diseases. Given
the inconsistent results generated by ELISA and immunoblot
in MS patients, these techniques are now regarded as obsolete
(21). However, reliable results have been recorded with cell-
based assays expressed in human cells using immunofluorescence
or fluorescence-activated cell sorting. With this method, the
expression of natural conformation full length native MOG at
the cell surface is possible, and subsequently, so is the detection
of antibodies targeting human MOG. Different expression
vectors, cell lines, and read-out systems have been reliably used.
Immunohistochemistry is not recommended, due to reduced
sensitivity depending on the tissue donor, and limited data
regarding specificity (12, 87). As mentioned above, a cut-off is
important, as in healthy individuals as well as other neurological
controls, low-titer antibodies are detectable, leading to a lack of
disease specificity for low-titer MOG antibodies. Most studies
have used a cut-off of≥1:160 (88). A higher prognostic specificity
has been described using a higher cut-off titer for positivity, but
further prospective studies are required for the evaluation of
optimal cut-off.

Waters et al. were able to improve the test using an IgGI-
specific secondary antibody, in response to the problem of cross-
reactivity of the anti-human IgG secondary antibody with IgM
and IgA antibodies. This optimization increased the specificity
of the MOG antibody assay in cases of non-MS disease, and
the method provided class II evidence for the discrimination
of non-MS CNS demyelinating disorders from MS (89). As
an alternative, IgG Fc antibodies can be used (25). As data
suggests peripheral production of MOG antibodies, analysis of
serum samples results in higher specificity than CSF samples
(28, 46), and CSF analysis is only recommended in rare
cases (46).

Although the value of longitudinal testing warrants further
evaluation, the current authors recommend serial analysis of
positive patients at 6–12 months. As there is no evidence
for seroconversion from negative to positive (48), there is
no expectation of additional information by retesting negative
patients during the disease course. However, as there is no gold
standard for MOG antibody analysis, in particular cases with
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clinical and paraclinical findings suggestive for a MOG antibody
associated disorder retesting is reasonable.

LESSONS FROM NEUROPATHOLOGY

Only limited data, mainly by single case reports, are available
regarding MOG antibody positive patients and underlying
histopathology. However, the existent neuropathological findings
are consistent and show in most cases MS pattern II pathology
(12). To the current authors’ knowledge, to date only nine
cases with available neuropathology are described in the
literature, Table 1 (47, 56, 58, 90–94). Most cases revealed
MS pattern II lesions with demyelination, relatively preserved
axons, pre-oligodendrocytes, an absence of myelin, and myelin-
laden macrophages. The inflammatory hallmark is an infiltrate
consisting of T cells as well as a complement and antibodies
(12)—indicative of humoral pathogenesis in these cases. The
clinical presentation of MOG antibody positive patients with
MS pattern II pathology varies, and includes cases with CIS,
MS, NMOSD, recurrent LETM followed by tumefactive lesions,
and atypical inflammatory demyelinating CNS syndromes (47,
58, 90–94). Tough the clinical presentation corresponded to
NMOSD, the typical pathological hallmarks of NMOSD with
AQP-4 and astrocyte loss, necrosis, complement activation, focal
perivascular or confluent extensive demyelination, eosinophilic,
and neutrophilic cell infiltration (95), and thickened hyalinized
vessel walls (96) were missing.

Similar results have been obtained for ADEM. No clinical
ADEM MOG antibody positive case to date, according to the
diagnostic criteria, has the ADEM typical neuropathological
findings with perivenous demyelination (compared to confluent
demyelination in MS) (97) and cortical microglial activation
(35). In accordance with this, it has previously been shown
that 9% of patients with ADEM according to clinical criteria
were misdiagnosed, since the pathology was MS typical and
the patients developed MS during long-term follow-up (97).
Complications in ADEM diagnosis are still possible with biopsy,
as an overlap of confluent and perivenous demyelination has
been described. However, two recently published MOG antibody
positive cases presented with a distinct pathology and clinical
presentation (56, 58). In the first case, a bilateral cortical frontal
steroid-responsive encephalitis with ADEM-like lesions and ON
was associated with MOG antibodies and mild inflammatory
changes with intact myelin sheaths (56). Comparably, in the
second case, of cerebral cortical encephalomyelitis, epilepsy,
and steroid responsiveness, biopsy revealed slight inflammation
without distinct demyelination, and in contrast to the first
case, mild loss of MOG (58). Whether these two cases
extended the spectrum of MOG antibody-associated disorders
to a subgroup of cortical inflammatory encephalitis without
pronounced demyelination needs to be further elucidated.

To summarize the available rare data, MOG antibody-
associated disorders seem to be mainly associated with MS
pattern II pathology, independent of clinical features, pointing
to a distinct humoral-mediated disease group of demyelinating
CNS diseases.

EVIDENCE FOR THE PATHOGENIC ROLE
OF MOG ANTIBODIES

In animal models, it is well-established that MOG antibodies
have a pathogenic effect (12); however, in humans, the role of
MOG antibodies in disease pathogenesis is less clear and still
under debate, including the subjects of direct, antibody-mediated
cell induced tissue destruction or their presence of a bystander
phenomenon.

Initial studies showing evidence for a pathogenic effect of
humoral immune response against MOG involved purified
human MOG antibodies; these antibodies were able to induce
cell death of MOG-expressing cells, as well as natural killer-
cell mediated cell death, with the extent of cell damage
dependent on antibody levels (27, 30). In addition, MOG
antibodies belong mainly to the complement binding IgG1
subtype, and have been found to be able to activate the
complement cascade, finally leading to complement-dependent
destruction of MOG expressing cells (31, 51). A disruption of
the oligodendrocyte cytoskeleton, with the effect of a functional
modification, has been described (73); however, results from
in vivo studies of the ability of MOG antibodies to damage tissue
are inconclusive. Patient purified antibodies injected in EAE
increased demyelination (30), and reversibly damaged axons,
though no inflammatory reaction or complement deposition was
induced (98). One possible explanation is that human and rodent
MOG differs, and human MOG antibodies do not recognize
rodent MOG (99).

However, in CNS antigen-presenting cells (APCs),
accumulation of MOG antibodies has been described, with
a subsequent activation of autoreactive T cells, as well as a
MOG antibody induced Fc-mediated APC recognition of
MOG, followed by induction of peripheral autoreactive T cells
(100, 101). A recent study confirmed the pathogenic effect
on rodents of affinity-purified MOG antibodies transferred
from patients. These purified MOG antibodies were not
only able to mediate MS pattern II pathology with typical
immunoglobulin-mediated tissue destruction, but also induce, in
combination with MOG reactive T-cells, a clinical disease with
enhanced T-cell recruitment and reaction (102). Importantly,
results revealed that MOG antibodies alone did not induce
inflammation and tissue destruction—their interdependence
with T-cells was required to evolve their pathogenic
potential.

Evidence is arising that MOG antibodies have a pathogenic
potential, but the exact pathomechanism and the synergy with T
cells requires further elucidation. However, if MOG antibodies
are mainly bystanders and only slightly contribute to disease
development and pathogenesis, their important role as disease
biomarkers is obvious.

TREATMENT

As there have been no controlled treatment trials in MOG
antibody positive diseases, therapy regimes are based on
the suspected individual prognosis and clinical experiences.
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TABLE 1 | Histopathological findings in MOG antibody-associated disorders. Modified after (12, 24).

Sex Age Clinical diagnosis Neuropathological

classification

Inflammatory

infiltrates and

confluent

demyelinationa

Perivascular

complement

deposition

and/or AQP-4

lossb

Eosinophilic cell

infiltrationb
Comment References

M 71 Fulminant encephalomyelitis MS pattern II, in addition

lesions with complement

activation and AQP4 loss

+ + in a single lesion

of optic chiasm

nr Late

seroconversion to

low-titer AQP-4

antibody positivity

during disease

course

(91)

M 46 Encephalitis, ADEM-like

lesions and unilateral optic

neuritis

Mild inflammatory changes na na na No demyelinating

lesions

(56)

F 29 Cerebral cortical

encephalitis with epilepsy

and bilateral optic neuritis

Inflammatory infiltrates in the

cortex and subcortex

na na na No demyelinating

lesions

(58)

F 63 CIS MS pattern II + – – – (93)

W 49 RRMS MS pattern II + – – – (90)

M 49 ADEM MS pattern II with an

overlap of MS pattern III

+ – – Oligodendrocyte

apoptosis and loss

(94)

M 34 ADEM MS pattern II + – – –

F 66 Recurrent myelitis and

brainstem involvement

followed by tumefactive

bilateral lesions

MS pattern II + – – – (92)

F 67 NMOSD, recurrent myelitis

followed by cerebral

tumefactive lesions

No pattern classification,

inflammatory demyelination

without astrocyte loss

+ nr nr – (47)

aTypical neuropathological findings of MS and NMOSD.
bTypical neuropathological findings of NMOSD, nr, not reported; na, not applicable.

In an acute attack, similar approaches are used as in
other inflammatory demyelinating CNS diseases such as MS
(intravenous methylprednisolone and plasma exchange). A
favorable recovery has been demonstrated in 70–90% of patients
given intravenous methylprednisolone (39, 103). Long-term
treatment with corticosteroids reduces the risk of relapse and
cessation has been associated with breakthrough disease (103).
Jarius et al. describe similar results, with a full recovery in
50% of cases, partial recovery in 44%, and no recovery in 6%
(61). Of particular importance is that tapering or finishing of
corticosteroids was followed by a flare-up of the disease and
early relapses (25, 52, 103). Thus, some authors have favored
long-term steroid treatment over 6 months, given alongside
other immunomodulatory or immunosuppressive drugs. When
there is suggestion of an antibody-mediated immune reaction,
plasma exchange, which is normally initiated if corticosteroid
therapy is insufficient, is promising for managing the acute
attack. Use of plasma exchange seems to be associated in
several reports with a better outcome and improved neurological
deficits after the failure of corticosteroids (50, 80). However,
though plasma exchange seems mainly to be followed by a good
functional outcome, in a substantial proportion of patients, only
partial recovery was achieved (61). On balance, plasma exchange
seems to be a reasonable therapy after the treatment failure

of corticosteroids, or in selected patients as an early treatment
option.

A challenge in MOG antibody-associated disorders is the
choice of long-term immunotherapy, since clinical courses
and prognoses substantially vary between individuals. When
considering the underlying pathogenesis as involving B cells and
antibodies, therapies directing the humoral immune response
may prove most promising.

Although the data shows that recurrent disabling disease
courses are common with MOG antibody-associated disorders,
they are treated less often than AQP-4 associated diseases
(104). Only 40% received a long-term maintenance therapy
(52). As mentioned above, a combination of corticosteroids
and other immune-mediated therapies seems favorable.
Ramanathan et al. found a reduction of relapse rates with
different immunotherapies such as azathioprine, rituximab,
and mycophenolate, maintenance corticosteroids and rituximab
being most effective in preventing disease activity (103).
In addition, further studies confirmed the positive effect
of immunosuppression/immunomodulation, including
azathioprine, methotrexate, and rituximab, on the risk of relapse
and the annualized relapse rate (23, 49, 52), in particular if
treatment is maintained for more than 3 months (52). Recently,
a study including children with relapsing MOG antibody
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associated disorders demonstrated a benefit of intravenous
immunoglobulins on the annualized relapse rate (78). Classical
MS drugs such as natalizumab, interferon, and glatirameracetat
showed no treatment efficacy (61). To the knowledge of the
current authors, so far only one case has been published detailing
treatment with alemtuzumab, a highly effective treatment in
MS. Similar to reports of alemtuzumab use in AQP-4 antibody
NMOSD (105), treatment failed and disease activity resumed
(106). The failure of a treatment effective in MS is well-known
in NMOSD, suggesting a distinct pathomechanism in antibody-
associated disorders. In conclusion, promising treatment regimes
include maintenance corticosteroids and rituximab, although
for a more definitive statement, prospective controlled trials are
required.

CONCLUSION

Inflammatory demyelinating CNS diseases include a broad
spectrum of different diseases, among which single diseases
might show distinct clinical phenotypes and prognoses. For
disease stratification, prognostic evaluation, treatment decisions,
and patient counseling an early diagnosis is important.
Diagnostic procedures now include a combination of clinical,
imaging, and laboratory findings. However, correct diagnosis
at disease onset is still a challenge and an exact prognostic
estimation regarding occurrence of relapses and disability is
remains out of reach. Biomarker research has therefore been
a focus of interest for several decades, given that in MS, in
particular, new treatment allows for early therapy initiation.
However, since newly available treatments are not only more
effective but also more aggressive, carrying more side effects and
risks, overtreatment should be avoided.

Over the past few years our knowledge of clinical, imaging,
and laboratory data regarding MOG antibody-associated
disorders has evolved. Clear differences in this spectrum have

not only been found with MS, but also, to a lesser degree, with
AQP-4 associated disorders. Although there is no unique clinical
phenotype, clinical presentation, prognosis, and treatment
response is distinct in this demyelinating CNS disease subgroup.
In particular, in MOG antibody-associated NMOSD a different
immunopathogenesis, with an oligodendrogliopathy rather than
a classical astrocytopathy, is suggested. These differences are
mirrored in the histopathological findings of MOG antibody-
associated disorders, where there is a preponderance of MS
pattern II findings. This finding is clearly different from AQP-
4 associated disorders, and suggests that other therapeutic
strategies might be promising. An integration of the two
diseases would be short-sighted, as there are not only important
implications for further research but also for patient counseling
and treatment considerations.

Various research groups have published diagnostic
recommendations for MOG antibody-associated disorders
and introduced them as a new spectrum disorder. International
cooperation for the development of diagnostic consensus
criteria, either as stand-alone or for inclusion in the MS or
NMOSD criteria, would constitute further important progress.
In addition, serial testing is now upcoming in the generation of
prognostic, and perhaps also therapeutic, biomarkers; its routine
use in clinical practice warrants further prospective trials, in
particular for patients undergoing long-term treatment. Overall,
MOG antibody-associated disorders should, it is suggested,
be classified as distinct spectrum disorders, though research is
still in its early stages in understanding the exact underlying
pathomechanism and its prognostic implications.
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University, Perth, WA, Australia

Background: Myelin oligodendrocyte glycoprotein (MOG) antibody associated

encephalomyelitis is increasingly being considered a distinct disease entity, with

seizures and encephalopathy commonly reported. We investigated the clinical features

of MOG-IgG positive patients presenting with seizures and/or encephalopathy in a

single cohort.

Methods: Consecutive patients with suspected idiopathic inflammatory demyelinating

diseases were recruited from a tertiary University hospital in Guangdong province,

China. Subjects with MOG-IgG seropositivity were analyzed according to whether they

presented with or without seizure and/or encephalopathy.

Results: Overall, 58 subjects seropositive for MOG-IgG were analyzed, including 23

(40%) subjects presenting with seizures and/or encephalopathy. Meningeal irritation

(P = 0.030), fever (P = 0.001), headache (P = 0.001), nausea, and vomiting (P = 0.004)

were more commonly found in subjects who had seizures and/or encephalopathy, either

at presentation or during the disease course. Nonetheless, there was less optic nerve

(4/23, 17.4%, P = 0.003) and spinal cord (6/16, 37.5%, P = 0.037) involvement as

compared to subjects without seizures or encephalopathy. Most MOG encephalomyelitis

subjects had cortical/subcortical lesions: 65.2% (15/23) in the seizures and/or

encephalopathy group and 50.0% (13/26) in the without seizures or encephalopathy

group. Cerebrospinal fluid (CSF) leukocytes were elevated in both groups. Subgroup

analysis showed that 30% (7/23) MOG-IgG positive subjects with seizures and/or

encephalopathy had been misdiagnosed for central nervous system infection on the

basis of meningoencephalitis symptoms and elevated CSF leukocytes (P = 0.002).
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Conclusions: Seizures and encephalopathy are not rare in MOG encephalomyelitis,

and are commonly associated with cortical and subcortical brain lesions.

MOG-encephalomyelitis often presents with clinical meningoencephalitis symptoms

and abnormal CSF findings mimicking central nervous system infection in pediatric and

young adult patients.

Keywords: MOG-IgG, MOG antibody-associated encephalomyelitis, seizures, encephalopathy, demyelinating

disease

BACKGROUND

Immunoglobulin-G against myelin oligodendrocyte glycoprotein
(MOG-IgG) is considered a potential demyelinating disease-
associated autoantibody. Previous experimental studies have
established MOG-IgG as a pathogenic antigen rather than an
epiphenomenal bystander or a secondary immune reaction
caused by previous demyelination (1–4). Although some cases
of MOG-IgG positive patients fulfill the diagnostic criteria of
neuromyelitis optica spectrum disorders (NMOSD), multiple
sclerosis (MS), acute disseminated encephalomyelitis (ADEM),
or other idiopathic inflammatory demyelinating diseases
(IIDDs), there are no distinct types of IIDDs that can explain
all presentations of MOG-IgG positive patients. Currently,
most experts consider MOG-IgG-associated demyelination as
an isolated disease entity distinct from both classic MS and
aquaporin-4 (AQP4)-IgG-positive NMOSD (5–7).

MOG encephalomyelitis is associated with a wide spectrum
of symptoms, including seizure and encephalopathy. Of note,
seizure and encephalopathy have been recommended recently as
typical clinical findings of MOG encephalomyelitis (8). In several
case reports, MOG-IgG positive patients, who initially presented
with optic neuritis (ON) (9) or ADEM (10), developed seizures in
subsequent disease course. MOG-IgG positive patients often had
an aggressive disease course with residual cognitive dysfunction
(11). Several observational studies with small sample sizes
reported the presence of seizures ranged from 14.70 to 36.36%
in MOG-IgG positive patients (12, 13), and the main symptoms
were generalized seizure with or without encephalopathy (12, 14).
Nevertheless, studies with detailed description of the clinical,
radiological, laboratory characteristics, and disease course of
MOG-IgG positive patients with seizures and/or encephalopathy
are lacking.

In our registry of patients with IIDDs, MOG-IgG
positive patients with seizures and/or encephalopathy were
also observed. In the present study, we investigated the
clinical profiles of MOG-IgG positive patients with seizures
and/or encephalopathy.

Abbreviations: ADEM, acute disseminated encephalomyelitis AQP4, aquaporin-

4; ATM, acute transverse myelitis; CNS, central nervous system; CSF, cerebrospinal

fluid; EDSS, expanded disability status scale; IIDDs, idiopathic inflammatory

demyelinating diseases; MOG, myelin oligodendrocyte glycoprotein; MOG-

IgG, immunoglobulin G against myelin oligodendrocyte glycoprotein; MRI,

magnetic resonance imaging; MS, multiple sclerosis; NMOSD, neuromyelitis

optica spectrum disorders; OCB, oligoclonal bands; ON, optic neuritis;

LEON, Longitudinally extensive optic neuritis; LETM, Longitudinally extensive

transverse myelitis.

METHODS

Subjects
Consecutive MOG encephalomyelitis patients who were
seropositive for MOG-IgG and seronegative for AQP4-IgG were
recruited from the Third Affiliated Hospital of Sun Yat-sen
University in Guangzhou, China, between June 2015 and
December 2017. These patients were prospectively enrolled and
followed up for at least 1 year after diagnosis. Our hospital is
a tertiary general hospital with a demyelinating disease center.
Over 2,000 IIDDs patients, such as patients with MS, NMOSD,
and ADEM and so on, are follow-up in outpatient per year, and
about 300 newly diagnosed IIDDs patients attended every year.
This study was approved by the Ethics Committees of the Third
Affiliated Hospital of Sun Yat-sen University. Written informed
consent was obtained from each participant.

We diagnosed MS, NMOSD, and ADEM according to the
2010 McDonald diagnostic criteria for MS (15), the 2015
Wingerchuk criteria for NMOSD (16), and the 2012 criteria for
ADEM (17), respectively. Data of clinical presentation, initial
clinical diagnosis, MOG-IgG serum titer, cerebrospinal fluid
characteristics, MRI characteristics, treatments and prognosis
were collected. A clinical relapse was defined as a sudden
appearance of new symptoms lasting for at least 24 h, with an
increase in the Expanded Disability Status Scale (EDSS) score
over 1.0 and magnetic resonance imaging (MRI) showing the
presence of enhanced lesions or new T2 lesions. The remission
phase was defined as a period when the neurological condition of
the patient had been stable for more than 3 months and the next
relapse did not occur for at least a further 3 months. The EDSS
score was evaluated at the nadir of disease recurrence when the
patient first came to our hospital and at the last follow-up.

Detection of MOG-IgG and AQP4-IgG
All subjects were tested for serum MOG-IgG and AQP4-IgG.
Serum was collected at the nadir of clinical relapse when the
subjects first came to one of our academic centers. MOG-IgG
in serum was tested by an in-house, cell-based assay using live
cells transfected with full-length human MOG, as we described
in other published articles (18, 19). Full-length humanMOG was
subcloned into the pIRES2-EGFP plasmid. The purified plasmids
were DNA sequenced and they were used to transiently transfect
HEK293T cells using Lipofectamine2000 reagent, according
to the manufacturer’s instructions (Thermo Scientific, USA).
Thirty-six hours after transfection, live cells were incubated
at room temperature with centrifuged serum [1:50, diluted in
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Dulbecco’s modified Eagle’s medium (DMEM)] from patients
and the control group for 30min. After removing the media
and washing with PBS, the HEK293T cells were fixed with
4% paraformaldehyde for 20min and blocked with 5% goat
serum for 30min. Cells were then immunolabeled with an
AlexaFluor 546 secondary antibody against human IgG (1:1,000;
Thermo Scientific) for 1 h at room temperature. Images were
acquired using a Zeiss Axiovert A1 fluorescence microscope
(Supplement). Indirect immunofluorescence test systems
for detecting human AQP4-IgG (Euroimmun Medizinische
Labordiagnostika, Lübeck, Germany) were used according to the
manufacturer’s instructions.

Study of Cerebrospinal Fluid

(CSF) Samples
Lumbar puncture was performed in the acute phase of
the disease. Cerebrospinal fluid (CSF) leukocyte count, total
protein, and absence/presence of oligoclonal bands (OCB) were
determined by the hospital laboratories.

Magnetic Resonance Imaging Scanning
Brain and spinal cord MRI scans of subjects were performed for
routine clinical diagnostic purposes using a 1.5 or 3.0 T Siemens
system (Siemens). All MRI were performed using T1 with and
without gadolinium enhancement and T2. In brainMRI scans T2
were also performed with T2 fluid-attenuated inversion recovery
sequences. Lesions in the brain and spinal cord were scanned
sagittally and axially, and the results were analyzed anonymously
by two independent radiologists whowere blinded to the subjects’
clinical features. Lesions were scored as “large” if their size
exceeded 2 cm in any plane.

Statistical Analysis
For continuous variables, the data were reported as mean ±

standard deviation or median with range. The Mann–Whitney
U-test and chi-square test were used to compare clinical,
laboratory and MRI data between subjects in different groups or
subgroups. The Wilcoxon test was used to compare MOG-IgG
titers at relapse and at remission within a group. Correlations
between MOG-IgG titers and clinical data were analyzed using
Spearman’s correlation coefficient. All statistical analyses were
performed using SPSS 23.0 software (SPSS Inc., Chicago, IL,
USA) for Windows. Differences with P < 0.05 were considered
statistically significant.

RESULTS

Clinical Presentation
Overall, we recruited 58 subjects seropositive for MOG-IgG
and seronegative for AQP4-IgG, including 23 (39.7%, 23/58)
subjects with seizures and/or encephalopathy and 35 subjects
without seizures or encephalopathy. The demographic and
clinical features of the subjects were shown in Table 1.

Subjects with seizures and/or encephalopathy had a younger
onset age and a higher EDSS score at the nadir stage of disease

TABLE 1 | Comparison of clinical features between MOG-IgG positive subjects

with or without seizures and/or encephalopathy.

Subjects with

seizures or

encephalopathy

(n = 23)

Subjects without

seizures or

encephalopathy

(n = 35)

Sex, male, N(%) 12 (52%) 17 (49%)

Onset age, years (range) 12 (3–56)* 26 (3–63)

Disease duration, months (range) 34 (9–85) 22 (8–120)

Follow-up, months (range) 13 (5–85) 15 (4–50)

Multiphasic disease course, N(%) 18 (78%)* 16 (46%)

Number of attacks, N (range) 3 (2–8) 3 (2–5)

Time to second attack, months,

median (range)

5 (1–48) 3 (1–48)

Annualized relapse rate, ARR

median (range)

1.16 (0.67–2.77) 1.42 (0.38–3.75)

With prodromal symptoms, N (%) 7 (30%) 6 (17%)

Manifestations at onset, N(%)

Seizures 11 (48%)* 0 (0%)

Disturbance of consciousness 6 (26%)* 0 (0%)

Psychiatric symptoms 2 (9%) 0 (0%)

Cognitive disorders 3 (13%)* 0 (0%)

Meningeal symptoms 3 (13%)* 0 (0%)

Optic nerve symptoms 4 (17%)* 21 (60%)

Spinal symptoms 5 (22%) 10 (29%)

Brainstem symptoms 2 (9%) 2 (6%)

Diencephalon 2 (9%) 0 (0%)

Cerebrum symptoms 5 (22%) 3 (9%)

Cerebellar symptoms 0 (0%) 0 (0%)

Fever 13 (57%)* 4 (11%)

Headache 13 (57%)* 4 (11%)

Dizziness 4 (17%) 3 (9%)

Nausea and Vomiting 5 (22%)* 0 (0%)

Ever manifestations of full

course, N(%)

Seizures 14 (61%)* 0 (0%)

Disturbance of consciousness 9 (39%)* 0 (0%)

psychiatric symptoms 4 (17%)* 0 (0%)

Cognitive disorders 4 (17%)* 0 (0%)

Meningeal symptoms 4 (17%)* 0 (0%)

Optic nerve symptoms 11 (48%) 24 (69%)

Spinal symptoms 7 (30%) 15 (43%)

Brainstem symptoms 4 (17%) 6 (17%)

Diencephalon 4 (17%)* 0 (0%)

Cerebrum symptoms 9 (39%)* 5 (14%)

Cerebellar symptoms 2 (9%) 0 (0%)

Fever 14 (61%)* 4 (11%)

Headache 14 (61%)* 4 (11%)

Dizziness 6 (26%) 3 (9%)

Nausea and Vomiting 11 (48%)* 1 (3%)

EDSS score

EDSS score at peak stage (range) 5 (2–8) * 3 (1–8.5)

EDSS score at last follow up

(range)

0 (0–2) * 1 (0–5)

(Continued)
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TABLE 1 | Continued

Subjects with

seizures or

encephalopathy

(n = 23)

Subjects without

seizures or

encephalopathy

(n = 35)

Autoantibody, N (%)

Concomitant autoantibody 3 (13%) 5 (14%)

Coexisting autoimmune disease# 1 (4%) 1 (3%)

MOG-Ab titer, N (%)

1:25-1:100 10 (43%) 16 (46%)

1:320-1:640 9 (39%) 14 (40%)

≧ 1:1280 4 (17%) 5 (14%)

AQP4-IgG, N (%) 0(0%) 0(0%)

Time to second attack and annualized relapse rate refers to multiphasic patients.

EDSS, expanded disability status scale.

NA, not available.

#Coexisting autoimmune disease refers to autoimmune disease other than IIDDs.

*P < 0.05.

compared to those without seizure and/or encephalopathy.
At disease onset, the percentages of meningeal irritation
(including nuchal rigidity, Brudzinski sign, or Kerning sign),
fever, headache, nausea and vomiting were significantly higher
in subjects who experienced seizures and/or encephalopathy.
But there was less optic nerve involvement in the patients had
seizures and/or encephalopathy.

Seizures and Encephalopathy in MOG-IgG

Positive Subjects
During the course of the disease, seizure was observed in
14 subjects among the whole 58 patients recruited in our
study (all in the MOG encephalomyelitis with seizures and/or
encephalopathy group): 11 (79%) subjects had seizure as the first
symptom, and 3 (21%) developed seizure during the subsequent
relapse at 5, 29, and 42 months, respectively after the disease
onset. The types of seizure were generalized tonic-clonic seizure
(n = 7, 50%), focal seizure with secondary generalization (n = 5,
36%), complex partial seizure with alternated conscious and facial
twitching (n = 1, 7%), and simple partial seizure with focal left
arm twitching (n= 1, 7%).

Encephalopathy was observed in 13 subjects during the period
of the disease. This symptom was the first symptom in 10
(77%) subjects; subjects had disturbance of consciousness with
varying degrees of somnolence and stupor, psychiatric symptoms
including hallucinations, confused speech and apathy, and,
cognitive disorders including memory impairment and acalculia.

Electroencephalogram (EEG) was abnormal among 15
(25.9%) subjects, including slowed background (theta to delta
rhythm), intermittent low amplitude fast waves, focal sharp-wave
complex and asymmetry focal slow waves.

Initial Clinical Diagnosis
A significantly higher proportion of subjects suffered from
seizures and/or encephalopathy were diagnosed as non-specific
IIDDs, while NMOSD was a common diagnosis in the patients
who did not subject from seizures or encephalopathy (Figure 1).

MOG-IgG Serum Titer
The median serum MOG-IgG titer at the nadir stage of disease
was 1:320 (range 1:25–1:1280). There was no difference in the
MOG-IgG titer between subjects with and without seizure and/or
encephalopathy (Table 1, Figure 2).

In the seizures and/or encephalopathy group, the MOG-IgG
titer at the peak stage was positive related with EDSS score at last
follow-up (Table 2).

Other Autoantibodies and

Autoimmune Disease
Rheumatoid and thyroid autoantibodies were found in a small
number of subjects, including antinuclear antibody (3/58, 5%),
anti-Sjogren syndrome A antibody (SSA) (2/58, 3%), anti-
thyroid peroxidase antibodies (aTPO) and/or antithyroglobulin
antibodies (aTG) (5/58, 9%). Concurrent systemic autoimmune
diseases were found in 2 subjects; one had systemic vasculitis and
the other has autoimmune hyperthyroidism (Table 1).

CSF Investigation
Records of CSF were available for analysis in 45 (78%, 45/58)
subjects, including 18 (78%, 18/23) subjects in the seizures
and/or encephalopathy group and 27 (77%, 27/35) subjects
in the without seizures or encephalopathy group. Some CSF
data in remaining 13 (22%, 13/58) subjects were examined
in the local hospitals which the patients had visited before
they came to our hospital and were not offered to us. CSF
leukocytosis was noted in 61% (11/18) subjects subjected
from seizures and/or encephalopathy and 41% (11/27) subjects
who did not have seizures or encephalopathy, and there was
no statistical significance in the levels of CSF leukocytosis
between these groups. No difference was found in the CSF
protein concentration between the two groups. Oligoclonal
band was present in 7 (12%, 7/58) subjects, and no difference
was noted among those with or without seizure and/or
encephalopathy (Table 3).

MRI Findings
Brain MRI was performed in 46 (79%, 46/58) subjects. In
MOG-IgG positive subjects with seizures and/or encephalopathy,
the lesions in cortical/subcortical (15/23, 65%), white matter
(including periventricular and corpus callosum, 21/23, 91%),
deep gray matter (including thalamus and basal ganglia, 13/23,
57%), and infratentorial (including cerebral peduncle, brain stem
and cerebellum, 14/23, 60.9%) areas were involved (Figure 3).
There was a higher proportion of deep white matter and cerebral
peduncle in the seizures and/or encephalopathy group.

Spinal MRI was performed in 40 (69%, 40/58) subjects,
including 16 subjects with seizures and/or encephalopathy and 24
subjects without seizures or encephalopathy. Less involvement of
the spinal cord was found in the seizures and/or encephalopathy
group (Table 4).

Clinical Course Over Time
After followed up for at least 1 year, subjects suffered
from seizures and/or encephalopathy had more multiphasic
disease course compared to those without seizure and/or
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FIGURE 1 | Initial clinical diagnosis in MOG-IgG positive patients with or without seizures and/or encephalopathy. A significantly higher proportion of subjects with

seizures and/or encephalopathy were diagnosed as non-specific IIDDs (P = 0.030), while NMOSD were commonly diagnosed among subjects without seizures or

encephalopathy (P = 0.035).

FIGURE 2 | Serum MOG-IgG titers in MOG-IgG positive patients with or without seizures and/or encephalopathy. In the seizure and/or encephalopathy group,

MOG-IgG titers were significantly higher at the nadir stage of relapse when compared with titers at last follow-up (P = 0.021), although there was no difference in

serum MOG-IgG titers between relapses and remission in the without seizures or encephalopathy group (P = 0.080).

encephalopathy. At the last follow-up, complete recovery (EDSS
0) was noted in over half (n = 14, 61%) of the subjects who
had seizures and/or encephalopathy, and a smaller proportion
of benign prognosis was observed in the counterparts without
seizures and/or encephalopathy (n = 13, 37%). Throughout
the period of the disease, the percentages of meningeal
irritation, fever, headache, nausea and vomiting, diencephalon,
and cerebrum symptoms were significantly higher in subjects
with seizures and/or encephalopathy than those without. The

proportions of number of attacks, time to the second attack and
annual relapse rate were not significantly different between the
two groups.

We evaluated the longitudinal changes in serum MOG-IgG
titres during the remission phase at the last follow-up in 17
(73.9%) subjects who had seizure and/or encephalopathy and 14
(40.0%) subjects not experiencing these symptoms; MOG-IgG
titer decreased 65% and 57% in the two groups, respectively.
In the seizures and/or encephalopathy group, MOG-IgG titers
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TABLE 2 | Correlations between MOG-IgG titers at relapse and clinical features in

MOG-IgG positive patients.

Patients with

seizures and

encephalopathy

(n = 23)

Patients without

seizures or

encephalopathy

(n = 35)

r value r value

MOG-IgG titers at last follow up 0.558* 0.921*

EDSS score at peak stage 0.150 0.415*

EDSS score at last follow up 0.494* −0.188

Annual relapse rate −0.020 −0.024

CSF leukocyte −0.134 0.368

CSF total protein −0.188 0.462*

r: correlation coefficient.

CSF: cerebrospinal fluid; EDSS, expanded disability status scale; MOG-IgG,

immunoglobulin G against myelin oligodendrocyte glycoprotein.

NA, not available.
*P < 0.05.

TABLE 3 | Comparison of CSF features between MOG-IgG positive patients with

or without seizures and/or encephalopathy.

Patients with

seizures or

encephalopathy

(n = 18)

Patients without

seizures or

encephalopathy

(n = 27)

Presence of oligoclonal bands, N (%) 3 (16.7%) 4 (14.8%)

Leukocyte count, x106/L, median

(range)

21 (0–457) 2 (0–314)

Total protein (mg/L), median (range) 0.25 (0.09–1.06) 0.28 (0.07–0.99)

were significantly higher at the nadir stage compared with last
follow-up (Figure 2).

Treatments
All subjects received treatment for acute attacks. High-dose
intravenous methylprednisolone (10–20 mg/kg/d for 3–5 d) was
used in 22 (96%) subjects with seizures and/or encephalopathy,
and 5 (22%) received intravenous immunoglobulin. For
subjects without seizure and/or encephalopathy, intravenous
methylprednisolone was used in 35 (100%) subjects, and
3 (9%) received intravenous immunoglobulin. Low-dose
oral glucocorticoid (4–8mg qd/qod) for maintenance was
used in 10 (44%) subjects suffered from seizures and/or
encephalopathy and 20 (57%) subjects who did not have
seizure and/or encephalopathy. Long-term immunosuppressive
or immunomodulatory treatments were used in 7 (30%)
of subjects with seizures and/or encephalopathy: rituximab
(n = 3, 13%), azathioprine (n = 2, 9%), mycophenolate mofetil
(n = 1, 4%), and tacrolimus (n = 1, 4%). For subjects without
seizure and/or encephalopathy, 12 (34%) subjects were treated
with immunosuppressive or immunomodulatory treatments:
azathioprine (n = 7, 20%), mycophenolate mofetil (n = 2,
6%), rituximab (n = 1, 3%), tacrolimus (n = 1, 3%), and
cyclophosphamide (n= 1, 3%).

The two subgroups have similar response to the
corticosteroids and immunosuppression. In the seizure and/or
encephalopathy group, 18 subjects had multiphasic disease
course. And 10 of these 18 subjects were treated by low-dose
oral glucocorticoid at the early stage of disease, but 40% (4/10)
of them were suffered from relapse and started the combination
therapy of oral glucocorticoid and immunosuppressive; however,
1 of the patients receive combination therapy still experienced
treatment failure. Another 3 subjects with a high relapse rate did
not recurrence after immunosuppressive treatment. Among the
16 subjects without seizure and/or encephalopathy, low-dose
corticoid was utilized in 9 subjects, and 33.3% (3/9) of them
relapse but refuse to immunosuppression, with 2 of these 3
subjects experienced recurrence after steroid withdrawal. No
relapse was observed after immunosuppression was used in
7 subjects.

In the seizures and/or encephalopathy group, antiviral drugs
were used in 4 (17%) subjects who were initially suspected to
have CNS viral infection, antibiotics were used in 5 (22%) subjects
initially suspected to have a CNS bacterial infection, and 1 (4%)
subject initially diagnosed as tuberculosis meningoencephalitis
was treated with anti-tuberculosis drugs.

Some subjects (10/14, 71%) with seizure were treated with
anti-epileptic drugs, including levetiracetam (n = 4, 29%),
oxcarbazepine (n= 3, 21%), carbamazepine (n= 2, 14%), sodium
valproate (n= 2, 14%), and nitrazepam (n= 1, 7%).

Subgroup Analysis of Subjects

With Seizures
Among the 14 (24%) subjects who developed seizure, 11 (79%)
subjects had seizure as their first symptoms. These subjects
were younger (P < 0.001) and were associated with more
clinical relapses (P = 0.007). In addition to seizure, these
subjects commonly presented with disturbance of consciousness,
meningism, fever, headache, nausea and vomiting, as well as
cognitive and brainstem symptoms (P < 0.05) (Table 1). CSF
leukocytosis and cortical/subcortical brain lesions on MRI were
noted in this subgroup (P < 0.05) (Tables 3, 4).

Subgroup Analysis of Subjects

With Meningoencephalitis
A small subgroup of subjects (n = 7, 12%) presented
with symptoms suggesting CNS infection, including fever,
headache, nausea, meningism, seizures, and encephalopathy.
Antiviral or antibacterial treatments were prescribed. The
CSF showed raised opening pressure (median 205mm) and
marked leukocytosis (median 177 × 106/L), and raised total
protein (median 0.49 mg/L).

DISCUSSION

We have presented the clinical features of a cohort of
Chinese patients with MOG-associated encephalomyelitis
from Guangdong, China. We found that seizures and/or
encephalopathy were commonly seen in pediatric and young
adult patients with MOG-IgG, often complicating with a
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FIGURE 3 | Brain MRI of MOG-IgG positive patients with seizures and/or encephalopathy. (A) Cortical and subcortical lesions; (B) Deep white matter lesions and

periventricular lesions; (C) Thalamus lesions; (D) Cerebral peduncle lesions; (E,G) Large white matter lesions of a patient in temporal lobe and parietal lobe, with

prominent gadolinium enhancement (F,H).

relapsing disease course. Unlike older patients with classical optic
neuritis, myelitis, or brainstem syndromes, these patients were
often diagnosed as CNS infection due to clinical, radiological,
and CSF findings. MOG encephalomyelitis should be considered
to be a differential diagnosis in these patients.

Consistent with previous studies, ON, myelitis, and/or
brainstem symptoms were the predominant clinical features
in most adult MOG-encephalomyelitis patients, whilst in
children and younger adults there was a shift toward
ADEM imitation (8, 18, 20–22), with encephalopathy as a
clinical characteristic.

In our study, the percentage of subjects with seizures and/or
encephalopathy was 40%, which is higher than most of the
previous studies, and is more consistent with a recent study by
Gutman et al. (13). However, our study had a much larger sample
size (n = 58). Therefore, we speculate that the proportion of
seizures and encephalopathy in MOG encephalomyelitis patients
is higher than originally thought, but in the past, these patients
might be diagnosed as CNS infection rather than immune
mediated encephalomyelitis. Moreover, most of these patients
had seizures (79%) and/or encephalopathy (77%) as their first
symptoms. Furthermore, generalized seizure was the main type
of seizure in our study, which is consistent with a study by Ogawa
et al. (14). In our cohort, 42% subjects had focal seizure with
secondary generalization, suggesting that epileptogenic regions,
such as the cortex and temporal lobe, may be affected. This was
supported by the finding of cortical lesions on MRI brain in 40%
of our cohort.

In addition, we added further knowledge to previous
studies by showing that meningoencephalitis symptoms,
including fever, headache, nausea/vomiting, meningeal

irritation, and CSF leukocytosis were common in MOG
encephalomyelitis patients who were suffered from seizures
and/or encephalopathy. Some of these symptoms had been
noticed in various previous studies; however, most of the
studies did not discuss the symptoms with seizures and/or
encephalopathy meanwhile (23). Often, these patients may
have delayed immunosuppressive treatment because of being
misdiagnosed as CNS infection. Therefore, young patients
with fever and meningoencephalitis should also be evaluated
for possible MOG encephalomyelitis. Immunosuppressive
treatment could be commenced if CSF microbiological results
were negative and MOG-IgG was positive, which may improve
clinical prognosis.

Another finding was the multiphasic course of patients who
were subjected to seizures and/or encephalopathy. Similarly,
disease relapse was reported in all 5 MOG-IgG positive
patients with seizures in a study by Hamid et al. (12).
Yet our patients who had not experienced seizures or
encephalopathy had a lower multiphase ratio which were
analogous to the previous researches (23–25). Thus, maintenance
immunomodulation treatment should be used to prevent
relapse in MOG encephalomyelitis patients who had seizures
and/or encephalopathy.

From another perspective, part of the clinical features of
our MOG encephalomyelitis patients with seizures and/or
encephalopathy was close to that of MOG encephalomyelitis
patients without seizures or encephalopathy, suggesting that
these two subgroups were the same disease. For instance,
our MOG encephalomyelitis patients who were suffered
from seizures and/or encephalopathy also had a less female
dominance, a relative lower coexisting autoimmunity rate, a
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TABLE 4 | Comparison of MRI features between MOG-IgG positive patients with

or without seizures and/or encephalopathy.

Patients with

seizures and

encephalopathy

Patients without

seizures or

encephalopathy

BRAIN MRI, N (%)

Total abnormal 21 (91%) 22 (85%)

Frontal lobe 18 (86%) 12 (55%)

Parietal lobe 13 (62%) 12 (55%)

Temporal lobe 11 (52%) 7 (32%)

Hippocampus 3 (14%) 1 (5%)

Occipital lobe 7 (33%) 5 (23%)

Insula 7 (33%) 2 (9%)

Meninges 3 (14%) 2 (9%)

Cortical 7 (33%) 4 (18%)

Subcortical 14 (67%) 12 (55%)

Deep white matter 20 (95%)* 10 (45%)

Periventricular 14 (67%) 9 (41%)

Corpus callosum 7 (33%) 4 (18%)

Thalamus 7 (33%) 5 (23%)

Hypothalamus 0 (0%) 1 (5%)

Basal ganglia 8 (38%) 6 (27%)

Internal capsule 1 (5%) 2 (9%)

cerebral peduncle 7 (33%)* 0 (0%)

Midbrain 4 (19%) 3 (14%)

Pons 6 (29%) 4 (18%)

Medulla 4 (19%) 2 (9%)

Cerebellum 7 (33%) 2 (9%)

Extensive white matter lesions 8 (38%) 3 (14%)

SPINAL MRI, N (%)

Total abnormal 6 (37.5%)* 17 (71%)

LETM 4 (67%) 8 (47%)

Distribution

Cervical 5 (83%) 16 (94%)

Thoracic 4 (67%) 11 (65%)

Lumbar 1 (17%) 2 (12%)

OPTIC NERVE MRI, N (%)

Total abnormal 6 (75%) 9 (69%)

Bilateral ON 2 (33%) 7 (78%)

LEON 2 (33%) 4 (44%)

LEON, Longitudinally extensive optic neuritis; LETM, Longitudinally extensive

transverse myelitis.

NA, not available.
*P < 0.05.

better response to steroid and immunosuppression and a more
benign prognosis compared with NMOSD and other IIDDs
(21, 23–26). Moreover, these patients had a correlation between
disease condition and MOG-IgG antibody titer which was the
same as the counterparts who did not experience seizures or
encephalopathy (27).

Seizures and encephalopathy, which suggest neuronal
damage on top of demyelinating disease affecting the

white matter, further support MOG encephalomyelitis
as a broader disease entity. The observations in the
present study suggest that MOG encephalomyelitis
with seizures and/or encephalopathy may be a distinct
clinical disease entity in addition to commonly recognized
demyelinating diseases.

CONCLUSIONS

Seizures and encephalopathy are common among
subjects with MOG-associated encephalomyelitis, and
may be associated with cortical and subcortical brain
lesions. Young subjects with high titers of MOG-
IgG may present with meningoencephalitis mimicking
CNS infection.
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Previously, we have established two distinct progressive multiple sclerosis (MS)

models by induction of experimental autoimmune encephalomyelitis (EAE) with myelin

oligodendrocyte glycoprotein (MOG) in two mouse strains. A.SW mice develop ataxia

with antibody deposition, but no T cell infiltration, in the central nervous system

(CNS), while SJL/J mice develop paralysis with CNS T cell infiltration. In this study,

we determined biomarkers contributing to the homogeneity and heterogeneity of two

models. Using the CNS and spleen microarray transcriptome and cytokine data,

we conducted computational analyses. We identified up-regulation of immune-related

genes, including immunoglobulins, in the CNS of both models. Pro-inflammatory

cytokines, interferon (IFN)-γ and interleukin (IL)-17, were associated with the disease

progression in SJL/J mice, while the expression of both cytokines was detected

only at the EAE onset in A.SW mice. Principal component analysis (PCA) of CNS

transcriptome data demonstrated that down-regulation of prolactin may reflect disease

progression. Pattern matching analysis of spleen transcriptome with CNS PCA identified

333 splenic surrogate markers, including Stfa2l1, which reflected the changes in the

CNS. Among them, we found that two genes (PER1/MIR6883 and FKBP5) and one gene

(SLC16A1/MCT1) were also significantly up-regulated and down-regulated, respectively,

in human MS peripheral blood, using data mining.

Keywords: multi-variate analysis, primary progressive EAE, principal component analysis (PCA), patternmatching,

data mining
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory demyelinating disease
of the central nervous system (CNS) (1). World-wide, MS affects
about 2.5 million people (2). Although the precise etiology of MS
remains unclear, MS has been proposed to be a disease caused by
interactions between autoimmunity, microbial infections, and/or
genetic factors (3). The clinical courses of MS are classified into
four types: (1) clinically isolated syndrome (CIS), (2) relapsing-
remitting (RR), (3) primary progressive (PP), (4) secondary
progressive (SP) (4). CIS is a first clinical episode with CNS
inflammation and demyelination (5). RR-MS is defined by
“relapses” (disease attacks) with periods of “remission” (recovery)
and is the most frequent occurring. SP-MS is defined by an initial
RR disease course followed by continuous disease progression.
Approximately 95% of RR-MS patients develop SP-MS (6). PP-
MS progresses continuously from the onset without recovery.
There is no biomarker that can be used to classify or predict
clinical courses of the four subtypes of MS (7).

Neuroimaging studies suggest that MS lesions shifted from
inflammatory demyelination to neurodegeneration during the
disease progression (8, 9). In contrast, neuropathology studies
suggest that the pathogenesis of MS remained the same
throughout the course (10, 11). There was neither a definite
mechanistic explanation of how the pathogenesis shifts from
inflammatory demyelination to neurodegeneration in all MS
cases, nor an explanation of whether the two conflicting views
based on neuroimaging or neuropathology observations can
be reconciled. The different views on disease pathogenesis in
MS could be attributed to the fact that each view is based on
one aspect of the disease: neuroimaging or histological changes.
Alternatively, MS pathogenesis might differ among individual
patients (12). The neuropathological view might be based on
MS patients whose effector mechanism remains the same during
the disease course, while the neuroimaging view could be based
on the patient subgroup whose effector mechanism changes
during the disease course. We hypothesized that inconsistencies
of effectiveness of treatment, neuroimaging and neuropathology
among progressive MS patients could be heterogeneities of the
pathogenesis of MS.

Clinical courses of animal models for MS are also variable.

Experimental autoimmune encephalomyelitis (EAE) can be
induced by sensitization with CNS antigens, including myelin

basic protein (MBP), myelin proteolipid protein (PLP), and
myelin oligodendrocyte glycoprotein (MOG) (3, 13). The

clinical course of EAE can be RR, PP, and SP, which
are similar to the various forms of MS: RR-MS, PP-MS,
and SP-MS, respectively. Several EAE models with different
clinical courses have been established: RR-course in SJL/J mice
with PLP139−151, PLP178−191, or MOG92−106, PP-, and SP-
course in A.SW mice with MOG92−106 and SJL/J mice with
MOG92−106 and additional treatment (ultraviolet irradiation,
injection of Bordetella Pertussis, apoptotic cell, or curdlan)
(14–17). Monophasic EAE can also be induced in PL/J mice
with MBP1−11 and C57BL/6 mice with MOG35−55 (18, 19).
In this study, we used two PP-EAE models, A.SW mice
sensitized with MOG92−106 and SJL/J mice sensitized with

MOG92−106 and curdlan. Previously, we reported that A.SW
mice sensitized with MOG92−106 developed PP-EAE with large
areas of demyelination, immunoglobulin deposition, neutrophil
infiltration, and spleen atrophy (14, 16).

Systemic and multivariate analyses of data from animal
models for MS are powerful methods to characterize each
model. In MS, microarray analyses have been performed mainly
using peripheral blood lymphocytes. Several reports showed that
various genes related to the immune response, apoptosis, and
cell cycle progression were up- or down-regulated in disease
(20, 21), while microarray analyses using human CNS tissues
have been limited by its nature (22). In most microarray analyses
in EAE, genes related to the immune response, such as cytokines,
chemokines, and complement components, are known to be
up-regulated in the CNS (23–26).

We aimed to determine CNS biomarkers and peripheral
surrogate markers that could characterize the two PP-EAE
models induced in A.SW and SJL/J mice. We have conducted
microarray and bioinformatics analyses, using the brains and
spleens which reflect the changes in the CNS and peripheral
lymphoid organs, respectively. There were differences in
numbers of genes that were up- and down-regulated in the
brains and spleens between A.SW and SJL/J mice with PP-
EAE, while immune response-related genes were highly up-
regulated in the brains and erythrocyte-related genes highly
down-regulated in the spleens from both mouse strains. Pathway
analysis showed that Fc receptor and complement-related genes
were up-regulated in both mouse strains’ brains, but pro-
inflammatory cytokine-related genes were up-regulated only
in SJL/J mouse brains. Genes irrelevant to immune responses
were down-regulated in the spleens of PP-EAE mice, and the
expression of T helper (Th)1/Th2-related genes differed between
A.SW and SJL/J mouse brains. Principal component analysis
(PCA) of transcriptome data of brains and spleens separated
between control and EAE groups. Pattern matching analysis
between brain PCA data and spleen transcriptome data identified
the spleen surrogate marker candidates that reflect the gene
expression patterns in the brain. Translational application of our
bioinformatics approach would be useful to identify the brain
biomarkers and peripheral surrogate markers for MS.

MATERIALS AND METHODS

Animal Experiments
To induce PP-EAE, 5-week-old female nine SJL/J mice and
13A.SW mice (The Jackson Laboratory, Bar Harbor, ME) were
sensitized in the base of the tail with 100 nmol of MOG92−106

peptide (DEGGYTCFFRDHSYQ, Core Facility, University of
UtahHuntsmanCancer Institute, Salt Lake City, UT) in complete
Freund’s adjuvant (CFA) (14–16). On day −1 prior to MOG
injection, 5mg curdlan (a Th17 inducer produced by Alcaligenes
faecalis var. myxogenes, Wako Pure Chemical Industries, Osaka,
Japan) in PBS was injected for SJL/J mice intraperitoneally (27).
To induce RR-EAE, six SJL/J mice were sensitized PLP139−151

(HSLGKWLGHPDKF) in CFA (28). Mice were given standard
laboratory rodent chow and water ad libitum. All experimental
procedures were reviewed and approved by the Institutional
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Animal Care and Use Committee of Louisiana State University
Health Sciences Center (LSUHSC)-Shreveport, and performed
according to the criteria outlined by the National Institutes of
Health (NIH) (29).

Clinical signs of EAE and body weights were monitored daily
(14, 30). Mice were euthanized at disease peak and remission
of RR-EAE and at latent period, onset and peak of PP-EAE
(Figure 1). At each time point, brains and spleens were harvested
from three to six mice per group and frozen immediately in
liquid nitrogen.

RNA Preparation
Brains and spleens from three to six mice per group
were homogenized individually in TRI-Reagent R© (Molecular
Research Center, Cincinnati, OH), using the Kinematica
PolytronTM homogenizer (Kinematica, Bohemia, NY). Total
RNA was extracted with an RNeasy Mini Kit (Qiagen,
Germantown, MD) according to the manufacturer’s instructions
from brain and spleen homogenate. DNase treatment was
performed during RNA isolation with an RNase-Free DNase
Set (Qiagen). All samples were purified to an absorbance ratio
(A260/A280) between 1.9 and 2.1 (31).

Real-Time PCR
We reverse-transcribed 1 µg of total RNA into cDNA,
using ImProm-IITM Reverse Transcription System (Promega
Corporation, Madison, WI) (n= 3–7). We mixed 50 ng of cDNA
with RT2 Fast SYBER R© Green qPCR Master Mixes (Qiagen)
and primer set. The mixture was amplified and monitored
using iCycler iQ System (Bio-Rad Laboratories, Hercules, CA).
The following primer sets were purchased from Real Time
Primers (Elkins Park, PA): interferon (IFN)-γ, interleukin
(IL)-17A, chemokine (C-X-C motif) ligand 13 (CXCL13),
lipocalin 2 (LCN2), CD3 antigen γ subunit (CD3G), Kell blood
group (KEL), and stefin A2 like 1 (STFA2L1). The results
were normalized using housekeeping genes, glyceraldehyde-3-
phosphate dehydrogenase (Gapd) or phosphoglycerate kinase
1(Pgk1) (32, 33).

Microarray Analysis
We used total RNA samples of brains and spleens from
three mice with PP-EAE at the disease peak and three age-
matched control mice for each mouse strain. We conducted
microarray analyses, using Affymetrix GeneChip R© Mouse
Gene 1.0 ST Array (Affymetrix, Santa Clara, CA), according
to the manufacturer’s instruction. The data were visualized
and quantified by Affymetrix GeneChip Command Console
(AGCC), and normalized by Robust Multi-array Average
(RMA) using Expression Console. Data were analyzed using
the Ingenuity Pathway Analysis R© (Qiagen), NetAffx database
(Affymetrix; http://www.affymetrix.com/index.affx), and Mouse
Genome Informatics (The Jackson Laboratory, Bar Harbor, ME;
http://www.informatics.jax.org/). The datasets generated and/or
analyzed during the current study are available in the Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
repository in National Center for Biotechnology Information
(NCBI) (Accession number: GSE99300).

Bioinformatics and Statistics Analyses
Volcano Plot
We drew a volcano plot, using the OriginPro 8.1 (OriginLab
Corporation, Northampton, MA), to visualize significance and
fold changes of transcriptome data (34–36). In the volcano
plot, log ratios (logarithms of fold changes to base 2) of gene
expression in the brains and spleens from EAE mice compared
with age-matched control mice were used as an x-axis and the
logarithms of P values to base 10 were used as a y-axis.

Heat Map
We drew heat maps to determine the expression patterns of top
20 up- or down-regulated genes of brain and spleen samples from
EAE mice, and compared the expression levels between EAE vs.
control groups, using R version 3.2.2 and the programs “gplots”
and “genefilter” (37). A list of abbreviations of genes is shown in
Supplemental Table 1.

K-means Clustering
To find the differences of gene expression patterns between
organs or mouse strains, we conducted k-means clustering using
an R package “cclust” (37). We used Davies-Bouldin index (38)
to determine the optimum number of clusters and obtained the
lowest score (0.78), when microarray data were separated into 35
clusters (Supplemental Figure 2). Graphs were drawn using 240
genes (top 80, middle 80, and bottom 80 genes) in each cluster.
A radar chart was drawn using the expression patterns of cluster
center genes.

Ingenuity Pathway Analysis (IPA)
To classify the genes functionally, we used IPA (Qiagen) where we
entered the genes whose genes were over- or under-transcribed
more than 2-fold compared with control samples (P values
<0.05). IPA shows possible networks involved in microarray
profiles by the IPA Network Generation Algorithm (39). The
algorithm clustered and classified the entered genes, which
generated the networks, each of which was composed of three
canonical pathways. The networks were ranked by the network
score. The network score was calculated based on the right-tailed
Fisher’s Exact Test that uses several parameters, including the
numbers of network eligible molecules in the network, the given
dataset, and the IPA database. We focused the networks whose
network score was higher than 35, since the only networks with
high network scores have interpretable connections.

Principal Component Analysis (PCA)
Using PCA, we reduced the dimensionality of a microarray
data set consisting of 28,853 mRNA expression signals into two
components, principal component (PC) 1 and PC2 (37, 40, 41).
PCA was conducted as an “unsupervised” analysis to clarify the
variance among microarray data from brain and spleen samples
using an R program “prcomp,” as we described previously (37,
42). The proportion of variance was also calculated to determine
the percentage of variance explained by each PC, while factor
loading for PC1 or PC2 was used to rank a set of genes
contributing to PC1 or PC2 values.
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FIGURE 1 | Kinetics of interferon (IFN)-γ and interleukin (IL)-17 expression of relapsing-remitting (RR)-experimental autoimmune encephalomyelitis (EAE) and primary

progressive (PP)-EAE in SJL/J mice (blue column) and A.SW mice (red column). Expression of IFN-γ and IL-17 in brains were determined by real-time PCR.

Expression levels were shown as fold changes compared with three control mice of each strain. In SJL/J mice with RR-EAE, both IFN-γ and IL-17 levels were high at

the disease peak and low during remission (n = 3, at each time point). On the other hand, in PP-EAE, expression levels of both IFN-γ and IL-17 were associated with

disease activity in SJL/J mice with EAE (n = 3, at each time point), while they increased at the onset (no increase at latent period) but decreased at the disease peak in

A.SW mice with EAE (n = 3–6, at each time point). Data are presented as means ± standard error of the mean (SEM). *P < 0.05, **P < 0.001, ANOVA.

Pattern Matching Analysis
To find the splenic genes whose expression patterns correlated
with PC1 values in PCA of the brains, we conducted a pattern
matching analysis based on correlation (43), using the R. We
focused the genes whose expression levels, compared with
control samples, were up- or down-regulated more than 2-
fold, and whose correlation coefficients (r) were more than 0.8
or <−0.8.

Data Mining on Human MS Transcriptome Database
We obtained the gene expression profile datasets relevant to MS
patients from GEO profile database (https://www.ncbi.nlm.nih.
gov/geoprofiles/), using search keywords with the gene symbols
identified in the current study as follows:

“multiple sclerosis”[All Fields] AND “Homo
sapiens”[Organism] AND “peripheral blood”[All Fields]
AND “disease state”[Flag Information] AND (gene symbols
connected by OR). The data were processed according to the
instructions of GEO profile database (44), and the differentially
expressed genes (P < 0.05) between MS patients and controls
were extracted.

Statistics
The data were shown as mean ± standard error of the mean
(SEM). Statistical comparisons were conducted using the Student
t test or analysis of variance (ANOVA), using the OriginPro 8.1.
P < 0.05 was considered as significant difference.

RESULTS

Levels of IFN-γ and IL-17 Were Associated
With Disease Activity of PP-EAE in SJL/J
Mice, but Not in A.SW Mice
The precise effector mechanism of PP-MS is currently unknown.
Since the pro-inflammatory cytokines, IFN-γ, and IL-17 have

been shown to be key effector molecules in many, but not all
EAE models (15, 16, 45–48), we first examined the kinetics of
IFN-γ and IL-17 in animal models for PP-MS, using two mouse
strains. We induced PP-EAE with MOG92−106 in A.SW mice as
we described previously (14–16). We also induced PP-EAE in
SJL/J mice with MOG92−106 sensitization, 1 day after injection
of curdlan. In SJL/J mice, disease continuously progressed
until mice became moribund without remission within 20 days
after initial clinical signs (Supplemental Figure 1). A.SW mice
developed ataxic EAE and weight loss 1 month post induction
(p.i.) of EAE (14, 16), while SJL/J mice developed classical
EAE with tail and limb paralysis and weight loss in both PP-
and RR-EAE.

Using real-time PCR, we conducted a time course analysis
of IFN-γ and IL-17 mRNA levels in the brains of A.SW and
SJL/J mice with PP-EAE (Figure 1). For comparison, we also
used brain samples from SJL/J mice with RR-EAE. In both RR-
EAE and PP-EAE in SJL/J mice, clinical signs were associated
with increased levels of both IFN-γ and IL-17 in the brain.
However, in PP-EAE in A.SW mice, the levels of IFN-γ and IL-
17 increased at the disease onset, but declined during the disease
progression. These results suggested that the effectormechanisms
in disease progression of SJL/J mice and A.SW mice differed
at the disease peak. Thus, we decided to analyze potentially
distinct pathomechanisms of disease progression between A.SW
and SJL/J mice with PP-EAE.

Volcano Plots of Brain and Spleen
Transcriptome Data Showed Overall
Greater Changes in SJL/J Mice, While
A.SW Mice Had More Down-Regulated
Spleen Genes
To compare the potentially distinct effector mechanisms
during the disease progression between A.SW and SJL/J mice,

Frontiers in Immunology | www.frontiersin.org 4 March 2019 | Volume 10 | Article 51671

https://www.ncbi.nlm.nih.gov/geoprofiles/
https://www.ncbi.nlm.nih.gov/geoprofiles/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Omura et al. Computational Analyses for PP-MS Models

we conducted conventional “supervised” two-way comparison
analyses of the brain and spleen transcriptome data at the
disease peak from the two mouse strains with PP-EAE. First,
using volcano plots, we visualized the numbers of genes whose
expression levels were significantly (P < 0.05) up- or down-
regulated more than 2-fold compared with control samples
(Figures 2A,B). In the brain, higher numbers of genes were
up- or down-regulated in SJL/J mice than in A.SW mice,
suggesting that molecular changes in SJL/J mice could be
more complex than in A.SW mice (Figure 2A). On the other
hand, in the spleen, the numbers of down-regulated genes
were higher in A.SW mice, while those of up-regulated genes
were higher in SJL/J mice (Figure 2B). An increased number
of down-regulated genes in A.SW mouse spleen seemed to be
associated with spleen weight changes at disease peak in PP-
EAE, where the spleen of A.SWmice, but not SJL/J mice, showed
significant atrophy (16).

Heat Maps Revealed the Up-Regulation of
Immune Response-Related Genes in the
Brains and Down-Regulation of
Erythrocyte-Related Genes in the Spleens
From Both Mouse Strains
Next, to visualize the differences in most highly up- or down-
regulated genes in the brains and spleens, we drew heat maps,
using microarray data at the disease peak (Figures 2C–F).
Overall, heat maps of each organ (brain or spleen) were similar
among samples from A.SW and SJL/J mice. Most of the highly
up- or down-regulated genes in each organ in A.SW mice were
also up- or down-regulated in SJL/J mice. On the other hand,
heat maps between brains and spleens were different regardless of
the mouse strains. Only serine (or cysteine) peptidase inhibitor,
clade A, member 3N (Serpina3n) was highly up-regulated in
both brains and spleens in both mouse strains. In the heat maps
based on brain gene expression levels from A.SW (Figure 2C)
and SJL/J mice (Figure 2D), commonly up-regulated genes
included: lipocalin 2 (Lcn2); chemokines, such as chemokine
(C-X-C motif) ligand 13 (Cxcl13); and chemokine (C-C motif)
ligand 3 (Ccl3); complement-related genes, C3 and complement
component 3a receptor (C3ar1); immunoglobulin (Igkv1-110);
MHC class II-related genes, H2-Aa and Cd74 (CLIP). Serine (or
cysteine) peptidase inhibitor, clade B, member 1a (Serpinb1a),
and UDP galactosyltransferase 8A (Ugt8a) were down-regulated
in common.

In the spleen heat maps based on gene expression levels
from A.SW (Figure 2E) and SJL/J mice (Figure 2F), several
genes, including pyruvate dehydrogenase kinase, isoenzyme
4 (Pdk4), testis specific gene A13 (Tsga13), and Serpina3n,
were up-regulated in common, while erythrocyte-related genes,
such as glycophorin A (Gypa), Kell blood group (Kel), Rh
blood group, D antigen (Rhd), and claudin 13 (Cldn13)
(49), were down-regulated significantly. On the other hand,
lactotransferrin (Ltf ) and lymphocyte antigen 6 complex, locus
G (Ly6g/Gr1, a granulocyte marker) (50) showed different
expression patterns between the spleens of two mouse strains
with PP-EAE, down-regulation in A.SW mice and up-regulation

in SJL/J mice. In addition, tryptase α/β 1 (Tpsab1) and γ-
aminobutyric acid (GABA) A receptor, subunit θ (Gabrq)
were up-regulated only in the spleen of A.SW mice, while
immune response-related genes, such as chitinase-like 3 (Chil3),
interferon induced transmembrane protein 6 (Ifitm6), and
haptoglobin (Hp), were up-regulated only in the spleen of
SJL/J mice.

K-means Clustering Revealed the Different
Expression Patterns of Genes Between the
Brains and Spleens of A.SW and SJL/J
Mice With PP-EAE
To further identify the genes that had distinct expression patterns
among the transcriptome data from brains and spleens of A.SW
and SJL/J mice with PP-EAE at the disease peak, we divided
all genes into 35 clusters, using k-means clustering, based on
Davies-Bouldin Index (Supplemental Figures 2, 3). The centroid
genes of the 14 of 35 clusters showed substantial changes (>2-
or <1/2-fold compared with controls), at least, in one organ or
in one mouse strain (Supplemental Figures 3, 4, lists of genes in
each cluster were shown in Supplemental Tables 2–15). A radar
chart for centroid genes of each cluster showed that, in most
clusters, gene expression levels in one organ between the two
mouse strains were similar, while those between brains vs. spleens
were different (a radar chart using the 14 clusters in Figure 3A;
radar chart using all the 35 clusters in Supplemental Figure 4).
The radar chart showed that, in most clusters, the gene
expression patterns in one organ between the two mouse
strains were similar, while those between brain and spleen
were different.

The genes in the spleen were up-regulated in cluster 3
and down-regulated in cluster 22 in both mouse strains,
while there were no substantial changes (log ratios ≈0,
compared with controls) in cluster 3 or 22 in the two
mouse brain samples (Figure 3B). Cluster 3 included stefins
(Stfa1 and Stfa2l1) (Supplemental Table 4), while cluster 22
included erythrocyte-related genes, such as Kel, Rhd, and Gypa
(Supplemental Table 10). On the other hand, the genes in
clusters 8 and 25 were up-regulated only in the brains, but
not in the spleens, in both mouse strains. Immune response-
related genes were included in clusters 8 and 25: Cxcl9, Cxcl10,
and Cd3g in cluster 8; Lcn2, Cd74, and H2-Aa in cluster 25
(Supplemental Tables 6, 12). Some genes in cluster 8 were up-
regulated only in the brains of SJL/J mice (e.g., Cd3g: 1.3-fold in
A.SW mice, 4.9-fold in SJL/J mice), while several genes in cluster
25 were only down-regulated in A.SW mouse spleens (e.g., Lcn2:
0.3-fold). Up-regulation of Cd3g in SJL/J mouse brain, but not
A.SWmouse brain, was consistent with our previous histological
finding that CNS CD3+ T cell infiltration was seen only in
SJL/J mice (14, 16). Thus, k-means clustering clearly showed that
groups of immune response-related genes were induced in each
organ commonly in two mouse strains, but differentially between
brains vs. spleens at the peak of disease progression. However,
k-means clustering alone was insufficient to identify individual
genes that were expressed differentially between the two strains,
requiring further analyses.
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FIGURE 2 | (A,B) Volcano plots of up- or down-regulated genes in the brains (A) and spleens (B) of PP-EAE mice. Gene expression profiles in the brains and spleens

of three mice with PP-EAE at the disease peak and three age-matched control mice for each mouse strain were determined by microarray. Fold changes were

calculated by division of signal values of EAE samples by those of controls. P values were calculated using the Student t test. Dots in the white areas were genes

whose expressions were up- or down-regulated more than 2-fold (log2 ratio = 1, compared with controls), significantly (P < 0.05). In the brain, SJL/J mice had

substantially higher numbers of both up- and down-regulated genes, compared with A.SW mice. On the other hand, in the spleen, SJL/J mice had a higher number

of up-regulated genes, but a lower number of down-regulated genes, compared with A.SW mice. (C–F) Heat maps of identified genes among most highly up- or

down-regulated 20 genes in the brains and spleens at disease peak of PP-EAE. Red, blue, and white indicate up-regulation, down-regulation, and no change,

respectively. (C) In the brains of A.SW mice with PP-EAE, significantly up-regulated genes included: lipocalin 2 (Lcn2), complement-related genes, and chemokines.

(D) In the brains of SJL/J mice with PP-EAE, Lcn2, chemokine-, MHC molecule-, and immunoglobulin-related genes were highly up-regulated. (E,F) In the spleens of

both A.SW (E) and SJL/J (F) mice with PP-EAE, erythrocyte-related genes were down-regulated significantly. Overall, heat maps between A.SW and SJL/J mice were

similar in the brains or spleens. A list of abbreviations of genes is shown in Supplemental Table 1.

Brain Pathway Analysis Revealed That Fc
Receptor and Complement-Related Genes
Were Up-Regulated in Both Mouse Strains
Brains, but Pro-inflammatory
Cytokine-Related Genes Were
Up-Regulated Only in SJL/J Mice
Using the IPA, we clustered and categorized the genes up- or
down-regulated in the brains and spleens of mouse models
for PP-EAE (Figures 3C–F). The IPA identified one network

in A.SW mice and five networks in SJL/J mice with a high
network score (>35). The network identified in the brains
of A.SW mice was categorized as “Cell-To-Cell Signaling
and Interaction,” “Hematological System Development and
Function” and “Immune Cell Trafficking” (Figure 3C). This
network contained up-regulation of immune response-related
genes: particularly MHC molecules [H2-Aa (MHC class II), H2-
Q2 (MHC class I), and Cd74 (invariant polypeptide of MHC
class II molecule)]; immunoglobulin-related genes, including
immunoglobulin J chain (Igj) (51) and Fc receptors (Fcgr2a,
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FIGURE 3 | (A,B) K-means clustering for brain and spleen microarray data from two models. (A) A radar chart of 14 cluster center genes whose log ratios were

higher than 1 or lower than −1, at least in one organ or in one mouse strain, compared with controls, among the total 35 clusters. (B) Dynamic expression patterns of

four clusters. AB, SB, AS, and SS indicate A.SW mouse brain, SJL/J mouse brain, A.SW mouse spleen, and SJL/J mouse spleen, respectively. We used microarray

data from three PP-EAE and three naïve mice of each strain (the total number of mice = 12). Genes in cluster 3 were up-regulated in the spleens of both models.

Genes in cluster 8 were up-regulated in the brains of SJL/J mice. Genes in cluster 22 were down-regulated in the spleens of both models. Genes in cluster 25 were

up-regulated in the brains of both models. (C–H) Gene networks up-regulated in the brains or down-regulated in the spleens from two models. Transcriptome data at

disease peak were clustered and categorized by the Ingenuity Pathway Analysis (IPA) Network Generation. (C) The top network in the brains of A.SW mice was

categorized as “Cell-To-Cell Signaling and Interaction,” “Hematological System Development and Function,” and “Immune Cell Trafficking,” which were composed of

Fc receptor and complement-related genes. (D) The top network in SJL/J mouse brain was categorized as “Immunological Disease,” “Endocrine System Disorders,”

and “Gastrointestinal Disease,” which were composed of IFN-α/β-induced genes and nitric oxide synthase 2 (Nos2). (E) The top network in A.SW mouse spleen was

categorized as “Cell Cycle,” “Reproductive System Development and Function,” and “Cancer” which were composed of cell cycle-related genes. (F) The top network

in SJL/J mouse spleen was categorized as “Small Molecule Biochemistry,” “Hematological Disease,” and “Metabolic Disease” which were composed of GATA1- and

transporter-related genes. (G,H) Up- or down-regulated genes associated with MOG in the brains of A.SW mice (G) and SJL/J mice (H). Pro-inflammatory genes

were down-regulated in A.SW mice and up-regulated in SJL/J mice, while Th2-associated genes were up-regulated in A.SW mice and down-regulated in SJL/J mice.

Red and blue nodes indicate up- and down-regulated genes, respectively. Solid and dashed lines indicated direct and indirect connections, respectively. Score =

network score.
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Fcgr2b, Fcer1a, and Fcer1g); and complement-related genes,
including complement component 3 (C3), C3a receptor 1
(C3ar1), C5a receptor 1 (C5ar1), complement component factor
h (Cfh), and C1q α chain (C1qa) (52, 53).

In the brains of SJL/J mice, all five networks with a
high network score were associated with immune responses
(Figure 3D and Supplemental Figure 5). The top 1 network
was categorized as “Immunological Disease,” “Endocrine System
Disorders,” and “Gastrointestinal Disease” (Figure 3D). The
network was composed of up-regulated genes related to IFN-α/β
and nitric oxide synthase 2 (Nos2). The top 2 network contained
similar genes to the top 1 network of A.SW mouse brain, such
as Fc receptor and complement-related genes, while substantial
up-regulation of the genes related to IL-6-related genes and
costimulatory molecules Cd80/Cd86 (B7-1/B7-2) was seen only
in SJL/J mice (Supplemental Figure 5). All the top 3, 4, and
5 networks were associated with pro-inflammatory cytokines,
IL-1β, tumor necrosis factor (TNF)-α, and IFN-γ, respectively.

Spleen Pathway Analysis Revealed That
Genes Irrelevant to Immune Responses
Down-Regulated in the Spleens of PP-EAE
Mice
In the spleen of A.SW mice, we identified three networks,
which were composed of mainly down-regulated genes
that are irrelevant to immune responses (Figure 3E and
Supplemental Figure 6). The top 1 network in the spleens
of A.SW mice was categorized as “Cell Cycle,” “Reproductive
System Development and Function,” and “Cancer,” including
down-regulated genes: cyclin family (Ccne1, Ccnb1, and
Ccnb2) and cell division cycle family (Cdc20, Cdc25b, and
Cdc25c) (Figure 3E). The top 2 and 3 networks were mainly
composed of down-regulated GATA binding protein 1 (Gata1)-
related genes and transporter genes (Abcb6, Slc25a39, and
Slc25a37), respectively (Supplemental Figure 6). On the
other hand, in the spleens of SJL/J mice, we identified only
one network with a high network score (Figure 3F). The
network was categorized as “Small Molecule Biochemistry,”
“Hematological Disease,” and “Metabolic Disease,” which were
composed of down-regulated genes that were listed in the
top 2 and 3 networks of A.SW mouse spleen: Gata1-related
genes and transporter genes (Abcb6, Slc25a39, and Slc25a37).
Gata1-related genes are essential for normal hematopoiesis,
particularly erythropoiesis (54), while transporter genes
are cell membrane proteins that control the uptake and
efflux of various compounds (55, 56). The network also
included up-regulated genes, such as Toll-like receptor 13
(Tlr13) and transforming growth factor (TGF) β receptor
III (Tgfbr3).

MOG-related Pathway Analysis Revealed
That Expression of Th1/Th2-Related Genes
Differed Between Two Mouse Brains
In both mouse strains, we also determined the gene expression
changes in a MOG-related network in the brains, using
IPA (Figures 3G,H). Mog itself was down-regulated in both

mouse strains (A.SW, 0.81-fold, P < 0.05; SJL/J, 0.85-
fold, P < 0.05). The gene expression of several cytokines
and chemokines was up-regulated similarly in both mouse
strains, including Cxcl10, Ccr1, and Il6. However, some pro-
inflammatory genes, such as Ifng, Cxcl11, Mmp9, and Nos2,
were down-regulated in A.SW mice (Figure 3G), while they
were up-regulated in SJL/J mice (Figure 3H). On the other
hand, Th2-related genes (Gata3 and Il5, but not Il4) were up-
regulated in A.SW mice, while they were down-regulated in
SJL/J mice.

PCA of Transcriptome Data of Brains and
Spleens Separated Two EAE Groups
To identify the molecules (biomarkers) that distinguish the
samples between PP-EAE and control mice, we analyzed
microarray data, using an unsupervised approach, PCA
(Figure 4). PCA clearly separated brain samples into four
groups, each of which was composed of samples from A.SW and
SJL/J mice with PP-EAE, and their control mice (Figure 4A),
showing that distinct gene expression patterns were present
between the four groups. PCA showed that PC1 likely reflected
the presence or absence of EAE, while PC2 reflected strain
differences. Proportion of variance indicated that PC1 explained
33% of variance among samples, while PC2 explained 20% of
variance (Figure 4B). By using factor loading for PC1, we ranked
the genes that contributed to the PC1 values (Figure 4C and
Supplemental Table 16). Up-regulation of immune response-
related genes, including Lcn2, Cxcl13, Chil3, immunoglobulins
(Igkv8-28 and Ighv1-55), and MHC class II molecule (H2-Aa),
as well as down-regulation of prolactin (Prl), contributed to
the PC1 values. Among factor loadings for PC2, although most
genes were unidentified, cytochrome P450, family two, subfamily
g, polypeptide 1 (Cyp2g1), and BPI fold containing family B,
member 9B (Bpifb9b) were listed (Supplemental Figure 7 and
Supplemental Table 17).

PCA of spleen microarray data also separated samples
clearly into four groups (Figure 4D). PC1 explained 40% of
variance among samples, while PC2 explained 23% of variance
(Figure 4E). PC1 reflected the presence or absence of EAE, while
PC2 reflected the strain difference. Factor loading showed that
stefin A2 like 1 (Stfa2l1), deleted in malignant brain tumors
1 (Dmbt1), and trypsin genes (Try5 and Try10) contributed
to the PC1 values positively, while erythrocyte-related genes
(Gypa, Kel, Rhd, and Cldn13) contributed to the PC1 value
negatively (Figure 4F and Supplemental Tables 18, 19). Among
top or bottom 100 genes that were listed in factor loading for
PC1 values, only three genes, Chil3, Serpina3n, and leucine-rich
α-2-glycoprotein 1 (Lrg1), were in common in the brains and
spleens: Chil3, which is also known as Ym1, is rodent-specific
chitinase-like protein and associated with Th2 inflammation
(57), Serpina3n is an inhibitor of granzyme b (58), and Lrg1 is
related to TGF-β signaling pathway (59). Thus, most CNS gene
expression changes seemed to occur independently from those in
the peripheral lymphoid organs, during the disease progression
of EAE.
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FIGURE 4 | (A–F) Principal component analysis (PCA) of transcriptome data of brains and spleens from A.SW and SJL/J mice with PP-EAE and control mice. PCA

separated the samples into four groups in both brains (A) and spleens (D), where principal component (PC) 1 reflected the presence of EAE, while PC2 reflected strain

difference. The proportion of variance showed that PC1 explained variance among samples 33% in the brains (B) and 40% in the spleens (E). In the brain (C), factor

loading for PC1 showed that up-regulation of immune response-related genes, including lipocalin 2 (Lcn2), CXCL13, and immunoglobulins, and down-regulation of

prolactin (Prl) contributed to PC1 values. In the factor loading for PC1 of spleen PCA (F), stefin A2 like 1 (Stfa2l1) and erythrocyte-related genes (Gypa, Kel, and Rhd)

contributed to PC1 distribution positively and negatively, respectively. Transcriptome data from three PP-EAE and three naïve mice of each strain were used. (G) A flow

(Continued)
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FIGURE 4 | chart of pattern matching analysis using brain PC1 values and spleen microarray data from A.SW and SJL/J mice. To find peripheral surrogate

biomarkers that reflect the changes in the brain, we conducted pattern matching analysis. Genes whose fold changes were >2 or <0.5 with correlation coefficients of

>0.8 or <-0.8 were identified as surrogate marker candidates (Supplemental Table 15). Stfa2l1 and Kel genes, which were up- and down-regulated significantly in

the spleens of PP-EAE mice, respectively, were strongly correlated with brain PC1 values (Stfa2l1: r = 0.89, P < 0.01; Kel: r = −0.86, P < 0.01). We used microarray

data of brains and spleens of three mice with PP-EAE and three age-matched control mice for each mouse strain (the total number of mice = 12).

Pattern Matching Analysis Showed Spleen
Surrogate Marker Candidates That Reflect
the Gene Expression Patterns in the Brain
In the above PCA, we attempted to find peripheral surrogate
markers that reflect the changes in the brain. However, we were
not able to identify the common genes using factor loading
for PC1 among the brain and spleen transcriptome data. Thus,
we conducted a pattern matching analysis using brain PC1
values and spleen microarray data from two PP-EAE models
and controls; pattern matching analysis allowed us to find
splenic genes whose expression patterns matched the PC1 values
of brain samples (Figure 4G). When the results were sorted
by correlation coefficients (r >0.8 or <-0.8) and expression
ratios (>2- or <1/2-fold, compared with controls), 333 genes
showed strong correlation (Supplemental Table 20). Among the
333 genes, we found 29 splenic genes positively correlated
with the brain PC1 values, including adhesion G protein-
coupled receptor G2 (Adgrg2), Lrg1, and phosphoinositide-3-
kinase interacting protein 1 (Pik3ip1). On the other hand, we
found 304 splenic genes negatively correlated with the brain
PC1 values, including progestin and adipoQ receptor family
member IX (Paqr9), RAB3A interacting protein (rabin3)-like 1
(Rab3il1), and Josephin domain containing 2 (Josd2). Among
the positively and negatively correlated genes, Stfa2l1 (r = 0.89)
and erythrocyte-related genes, including Kel (r = −0.86), were
listed in the top 10 of factor loading for PC1 in spleen PCA
(Figure 4F). Thus, using pattern matching analysis, we were able
to find the peripheral surrogate marker candidates among non-
immune-related molecules that could reflect the gene expression
changes in the brain.

Next, we determined whether the genes listed as
peripheral surrogate marker candidates in the mouse spleens
(Supplemental Table 20) were also up- or down-regulated in
blood transcriptome of human MS patients obtained from
the GEO profile database, using a data mining approach
with following search keywords: “multiple sclerosis,” “Homo
sapiens,” “peripheral blood,” “disease state,” and the 29 up-
regulated gene symbols or the 304 downregulated gene symbols
(Supplemental Table 21). Among the 29 positively correlated
genes listed in Supplemental Table 20, we found that two genes,
period circadian clock 1 [PER1, also known as microRNA
6883 (MIR6883)] and FK506 binding protein 5 (FKBP5) were
up-regulated in MS peripheral blood, significantly (P < 0.01,

Supplemental Table 21). Among the 304 negatively correlated
genes, we found that only one gene, solute carrier family

16 member 1 [SLC16A1, also known as monocarboxylate
transporter (MCT) 1] was down-regulated in MS peripheral

blood, significantly (P < 0.05, Supplemental Table 21). Up-

regulation of Per1 and down-regulation SLC16A1 were found

in the data set (60) from 12MS patients compared with 15

unaffected controls, whose other clinical data were not available.

Upregulation of FKBP5 was found in the data set of peripheral
blood cells from three MS patients with high serum levels of

transmembrane-type semaphorin (Sema4A) (but not from MS

patients with low Sema4A levels), compared with four healthy
controls with low serum levels of Sema4A (61).

Validation of Transcriptome Data of
Biomarker Candidates in the Brains and
Spleens
To validate transcriptome data of brain and spleen samples, we
conducted real-time PCR for the representative genes listed in
the clustering, PCA factor loading and pattern matching data
(Supplemental Figure 8). The expression patterns of Cxcl13,
Lcn2, and Cd3g in the brain samples and those of Kel and Stfa2l1
in the spleen samples between microarray and real-time PCR
data were consistent. The levels of Cxcl13, Lcn2, and Cd3g in
the brains with PP-EAE were higher in SJL/J mice than in A.SW
mice. Similarly, in the spleen, the expression of Stfa2l1 was also
up-regulated. On the other hand, Kel was down-regulated in the
spleens of both PP-EAE mice. Expression of Lcn2 in the spleens
was significantly down-regulated in A.SWmice and up-regulated
in SJL/J mice.

DISCUSSION

There have been controversies on whether MS is a heterogeneous
or homogenous disease (12, 47, 62). The heterogeneity of
MS can be further discussed in three aspects; whether MS is
heterogeneous or homogenous (1) “in time (during the time
course),” (2) “in space” in individual patients with MS, and (3)
in the pathology type among MS patients. These theories are
based on mainly clinical neuroimaging and neuropathological
studies of human MS cases, which have limitations; for example,
longitudinal biopsies of CNS tissues are not possible in one
individual. While such human studies have often supported one
theory, and tended to deny the other theories, this can be due to
the limitation of the methodology employed in each study. Our
current computational studies of two EAEmodels for progressive
MS can be a proof of concept that autoimmune demyelinating
diseases can be either homogenous or heterogeneous in all three
aspects, to some extent.

First, “Is MS a heterogeneous in time?” in other word, “Is MS
a 1-stage or 2-stage disease (47)?” The “1-stage” disease theory
is that the pathophysiology (effector mechanism) of MS is the
same during the entire course of MS in individual patients. The
“2-stage” disease theory is that CNS tissue damage is caused by
inflammation in Stage 1, while neurodegeneration in Stage 2
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is independent of inflammation, leading to disease progression.
While some neuropathology studies in MS supported the 1-
stage disease theory, neuroimaging and clinical studies, such as
drug responses and epidemiological data, supported the 2-stage
disease theory (63, 64).

In our current study, when we assessed kinetics of IFN-γ and
IL-17 levels, these pro-inflammatory cytokines were associated
with disease activities in RR-EAE and PP-EAE in SJL/J mice
(common effector mechanism in initiation, acute attack, and
disease progression), while IFN-γ and IL-17 levels in PP-EAE
in A.SW mice were up-regulated only in disease initiation,
but declined at disease peak. Since these results suggested
that another effector mechanism independent of the pro-
inflammatory responses could contribute to disease progression
in A.SW mice, we further conducted transcriptome analyses
of the CNS at disease peak of PP-EAE in both mouse strains.
Volcano plots of transcriptome data showed the different number
of up- or down-regulated genes between brains and spleens
or between A.SW and SJL/J mice. While many genes were
up-regulated in the brains and down-regulated in the spleens,
down-regulation of genes in the spleen may be associated with
splenic atrophy (16). Heat maps showed highly up-regulated
genes in each brain and spleen of two mouse strains as a
result of “supervised” two-way comparison. In the brains of
both models, several genes were up-regulated in common.
Among the genes, Lcn2 was the most highly up-regulated
gene, which has been reported as an immune mediator of
EAE and MS (65, 66). Glycoprotein nonmetastatic melanoma
B (Gpnmb) is a type I transmembrane protein which works
in various biological processes, such as inflammation (67, 68).
Activation of complement components, including C3, plays a
pivotal role by recruiting inflammatory cells, increasing myelin
phagocytosis by macrophages, and exerting direct cytotoxic
effects on oligodendrocytes (69). Cxcl13 attracts B lymphocytes
and Th cells via chemokine receptor CXCR5 (70) and can be used
as a biomarker of inflammation inMS (71). Since Cybb/Nox2was
also up-regulated, oxidative stress may be related to damage in
the brain (72).

In the spleens of both models, we found significant down-
regulation of Kel, Rhd, Gypa, and Cldn13, which have been
reported as erythrocyte-related genes (Figures 2E,F) (49). This
is consistent with splenic pathway analysis data (Figure 3F and
Supplemental Figure 6A), in which we found down-regulation
of Gata1-related genes that are essential for erythropoiesis (54).
Stfa2l1, which acts as a cathepsin inhibitor, was up-regulated
in common and could regulate antigen presentation processes
involved in immune response and autoimmune diseases (73).
Interestingly, two neutrophil-associated proteins, Ltf, and Ly6g
were down-regulated in A.SW spleens, but up-regulated in SJL/J
spleens. Ltf is a protein contained in secondary granules of
neutrophils and can ameliorate the signs of EAE (74), while Ly6g
is expressed in neutrophils and can regulate leukocyte activation
and adhesion (75). Distinct expression of these genes suggested
the different role of neutrophils in two PP-EAE models.

Interestingly, our bioinformatics analyses, including
pathway analyses and PCA, demonstrated that antibody-
mediated pathophysiology (composed of immunoglobulin-,

complement-, and FcR-related molecules) seemed to be
active in both mouse strains. We confirmed the presence of
immunoglobulin deposition and complement receptor positive
cells by immunohistochemistry (data not shown). In PP-EAE
in SJL/J mice, bioinformatics analyses also showed that the
top network present in the CNS was associated with pro-
inflammatory responses composed of most major inflammatory
pathways, including those of IFN-α/β, IFN-γ, IL-17, IL-6, TNF-
α, and IL-1β. Thus, in SJL/J mice, the pro-inflammatory effector
mechanism could play a pathogenic role during the entire
course (here, the disease might look a homogeneous disease, if
one focuses only on these pro-inflammatory responses), while
the antibody-mediated effector mechanism also seemed to be
active at disease peak in both mouse strains (Figure 5). On the
other hand, downregulation of prolactin also contributed to the
separation between EAE and control groups in PCA. Prolactin is
secreted not only by the anterior pituitary but also extra-pituitary
tissues including immune cells, while prolactin receptor is found
on lymphocytes and other immune cells (76). Prolactin has
several roles including immunomodulation and remyelination.
Although our current PCA demonstrated downregulation of
prolactin could be associated with EAE progression, prolactin
has been suggested to exacerbate other EAE models (77).
Similarly, in human MS, an association between prolactin levels
and disease activities remains controversial (76). Ysrraelit and
Correale proposed that prolactin may exert dual and opposing
effects in MS and that caution must be taken when prolactin
levels are manipulated in MS.

However, these results do not deny the possibility of
disease progression based on the 1-stage disease theory,
since uncontrolled pro-inflammatory cellular responses alone
can lead to disease progression regardless of the presence
of involvement of antibody and complement, in theory.
Indeed, many experimentally proven encephalitogenic antigens,
including MBP, PLP, and neurofilament light chain (NF-L), can
induce only pathogenic T cell responses that cause neurological
deficits (antibodies to MBP, PLP, and NF-L do not cause tissue
or cell injury because their epitopes are not expressed on cell
surface) (78).

Our bioinformatics transcriptome analyses also addressed
the second question, “Is MS pathology homogeneous or
heterogeneous in space, in one patient, and at one time point?”
or “Is there only one pathology (one effector mechanism) present
in the CNS or are multiple different pathologies simultaneously
present in the CNS in one patient?” At the disease peak
of A.SW mice with PP-EAE, we identified only one major
effector mechanism (= antibody and complement-mediated
tissue damage), while two effector mechanisms may be involved
in SJL/J mice: (1) antibody and complement-mediated tissue
damage and (2) pro-inflammatory CD3+ T cell-mediated tissue
damage. Histologically, in SJL/J mice, we found that some areas
showed antibody deposition without T cell infiltration and other
areas contained T cell infiltration with or without antibody
deposition (data not shown). These results suggested that CNS
demyelinating pathology can be homogenous (contain one
pathology type) or can be heterogeneous (contain more than two
pathologies) in a single individual. In most CNS peptide-induced
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FIGURE 5 | The disease theories in A.SW and SJL/J mice with PP-EAE.

(A) When Th1/Th17 cells vs. Th2 cells is well-balanced, no disease is induced.

(B) In A.SW mice, increased Th1/Th17 immune responses initiate disease.

Later, the Th1/Th17 responses decline, and increased Th2 immune responses

help auto-antibody production. Here, effector mechanism switches from

proinflammatory Th1/Th17 responses (first stage) to antibody-mediated

pathology (second stage). (C) In SJL/J mice, while Th1/Th17 cells play an

effector role during the entire disease course, anti-myelin antibody also

contributes to disease progression at the “second” stage.

EAEmodels, pathology has been shown to be homogeneous since
most peptides are either major T cell epitopes or B cell epitopes,
but not both. In contrast, multiple effector mechanisms as well
as heterogeneous neuropathology can be present in one single
EAEmodel, when EAE is induced with encephalitogens that have
both T-cell and B-cell epitopes [for example,MOG92−106 (current
experiment) and brain homogenates].

Our results also addressed the third question, “Is MS
pathophysiology homogeneous (common) in all MS patients,
or are there heterogeneities in pathophysiology among

MS patients?” Our current experiments showed that a
single encephalitogen (MOG92−106) can cause two different
pathophysiologies (pro-inflammatory and antibody-mediated).
This supports a concept and clinical pathology findings that
MS neuropathology is heterogeneous. However, this does
not deny the presence of possible common (homogeneous)
pathologic component of demyelinating diseases. For example,
in our current studies, the antibody-mediated tissue damage
seemed to be a common effector mechanism in two PP-
EAE models; we also found that some genes, such as Lcn2
and Chil3, were commonly up-regulated in two models. In
addition, common neuropathology and effector components
have been demonstrated among several different EAE models
that were induced with different encephalitogenic antigens.
For example, EAE can be induced in SJL/J mice or C57BL/6
mice, using different encephalitogens, such as PLP139−151,
PLP178−192, MOG92−106, and MOG35−55 (13, 79). Here,
neuropathology and pro-inflammatory immune responses
in EAE induced with these different peptides were overall
indistinguishable (14, 28, 80). In this context, it should also
be noted that virus-induced demyelinating models share a
common pathology and effector mechanism (3). Therefore,
in theory, the cause of MS (several different autoantigens or
even viruses) can be homogeneous or heterogeneous. Here,
one autoantigen can cause different (heterogeneous) pathology
depending on the genetic background or the presence of
adjuvant (which mimics polymicrobial infection). On the
other hand, several different autoantigens (different causes)
can induce the same (homogeneous) pathology in the CNS of
MS patients.

In this study, we have also conducted splenic transcriptome
analyses to find peripheral surrogate markers that reflect the
change in the CNS. In clinical studies in MS, while some
reports showed that immune profiles in the blood reflected
disease activity, others showed that peripheral profiles did not
reflect the change in the CNS (81, 82). Using heat map and
network/pathway analyses, we found that highly up-regulated
and down-regulated genes and pathways were different between
the spleens and brains in both mouse strains. Interestingly,
in splenic pathway analysis, both mouse strains had down-
regulation of GATA1-related genes and transporter genes
(Figure 3F and Supplemental Figures 6A,B), while only A.SW
mice had down-regulation of a network related to the cell cycle
(Figure 3E). Cell cycle arrest could occur in the atrophic spleen
with apoptosis in A.SW mice with progressive EAE, as we
reported previously (16). Thus, A.SW mice had an additional
major change in the network, comparing with SJL/J mice;
this is in contrast to the CNS network profiles where SJL/J
mice had an additional effector mechanism, comparing with
A.SWmice.

We also conducted PCA using splenic transcriptome data
from A.SW and SJL/J mice. Although PC1 values reflected the
presence or absence of EAE in both the CNS and spleens,
we did not find commonly up- or down-regulated genes
contributing to PC1 between the brain and spleen factor
loading for PC1. Thus, both supervised two-way comparison
and unsupervised PCA showed that there were only three
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genes in common between the brains and spleens: Chil3,
Serpina3n, and Lrg1. This could be consistent with a hypothesis
that immune responses in progressive MS are sequestered
from the systemic immune responses; the pathophysiology
in the CNS at this stage may occur within the intact
blood-brain barrier, and be independent of systemic immune
responses (83).

On the other hand, our pattern matching analyses between
the brain PC1 (that may reflect brain disease) and spleen
transcriptome data showed that the pattern changes in a set of
peripheral genes were significantly correlated with the brain PC1
values. Interestingly, the splenic genes showed the significant
correlation with brain PC1 values were not immune-mediated
genes. Although the causal relationship between the brain
pathophysiology and splenic transcriptome changes is unclear,
these set of splenic genes could be used as surrogate markers,
or may be the contributing factor and/or outcomes of the
pathology in the CNS. Among the genes listed as peripheral
surrogate marker candidates (Supplemental Table 20), three
genes, PER1, FKBP5, and SLC16A1 were up- or down-
regulated significantly in the peripheral blood data sets
from MS patients, although these data sets were from
small numbers of patients with unknown clinical histories
(Supplemental Table 21). PER1 encodes microRNA6883, which
is associated with circadian rhythm (84). FKBP5 is a member of
immunophilin protein family which works in immunoregulation
and interacts with the progesterone receptor and GATA-
2 (85). SLC16A1 encodes the MCT1, whose inhibition has
been found to modulate T cell responses (86, 87). This
is the first report showing the association between these
three genes and MS. Peripheral surrogate marker candidates
identified in this study might be worth monitoring in MS
blood samples.
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The Selective HDAC6 Inhibitor
ACY-738 Impacts Memory and
Disease Regulation in an Animal
Model of Multiple Sclerosis
Patrizia LoPresti*

Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States

Multiple sclerosis (MS) is a complex disease characterized by autoimmune demyelination

and progressive neurodegeneration. Pathogenetic mechanisms of the disease remain

largely unknown. Changes in synaptic functions have been reported; however, the

significance of such alterations in the disease course remains unclear. Furthermore,

the therapeutic potential of targeting synapses is not well-established. Synapses have

key signaling elements that regulate intracellular transport and overall neuronal health.

Histone deacetylase (HDAC)6 is a microtubule-associated deacetylase. The interaction

between HDAC6 and microtubules is augmented by HDAC6 inhibitors. In this study,

experimental autoimmune encephalomyelitis (EAE) mice, an animal model of MS, were

treated with the HDAC6 inhibitor drug ACY-738 (20 mg/kg) on day 9 and day 10

post-immunization. Mice were assessed for working memory using the cross-maze

test at 10 days post-immunization (d.p.i.), whereas disease scores were recorded over

approximately 4 weeks post-immunization. We observed that ACY-738 delayed disease

onset and reduced disease severity. Most importantly, ACY-738 increased short-term

memory in a manner sensitive to disease severity. We induced EAE disease with various

amounts of myelin oligodendrocyte glycoprotein (MOG35-55). EAE mice receiving 100

µg of MOG35-55 and treated with ACY-738 had a statistically significant increase

in short term-memory compared to naive mice. Additionally, EAE mice receiving 50

µg MOG35-55 and treated with ACY-738 had a statistically significant increase in

short term-memory when compared to EAE mice without drug treatment. In contrast,

ACY-738 did not change short-term memory in EAE mice immunized with 200

µg of MOG35-55. Because ACY-738 increases short-term memory only with lower

amounts of EAE-inducing reagents, we hypothesize that the inflammatory-demyelinating

environment induced by higher amount of EAE-inducing reagents overpowers (at day 10

post-immunization) the synaptic molecules targeted by ACY-738. These studies pave

the way for developing ACY-738-like compounds for MS patients and for using ACY-738

as a probe to elucidate disease-sensitive changes at the synapses occurring early in the

disease course.
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INTRODUCTION

Multiple sclerosis (MS) is a central nervous system (CNS)
neurodegenerative disease. The causes of this devastating disease
are largely unknown, although autoimmune demyelination and
brain inflammation are considered pivotal in the CNS damage
that occurs throughout the disease course. In both MS and
experimental autoimmune encephalomyelitis (EAE) (an animal
model of MS), there are changes in synaptic transmission
and function (1, 2) linked to the neurodegeneration, which
eventually emerges during the disease with devastating clinical
outcomes. Ziehn et al. (3) described deficits in memory function
at 40 days post-immunization (d.p.i.) in EAE mice during
the chronic form of the disease. Acharjee et al. (4) described
emotional and cognitive deficits in chronic EAE during the
presymptomatic stage, between 6 and 8 d.p.i. Further, LoPresti
(5) identified subclinical, progressive memory decline in the
relapsing-remitting (RR) EAE. Indeed, in this model, memory
function was not significantly different among groups; however,
memory decline occurred over time, with an initial apparent
improvement in memory function as early as 10 d.p.i. Although
memory function progressively declined, mobility impairment
recovered, suggesting that the disease has both progressive and
remitting components. Overall, such studies have elucidated that
changes in synaptic transmission occur at a relatively early stage
during the disease, often subclinically; such early changes may
eventually be responsible for late neurodegeneration (6).

The cytoskeleton at the synapse has received attention for its
role in synaptic plasticity regulation and various neuropsychiatric
diseases (7). At the synapse, key functional interactions involve
tubulin, end-binding proteins (EBs), Ankyrin, and actin (8).
Such protein-protein interactions at the synapse regulate synaptic
function and plasticity. Histone deacetylase (HDAC)6 is a
microtubule-associated deacetylase (9), and such protein-protein
interaction increases with administration of HDAC6 inhibitors.
HDAC6 inhibitors also promote the interaction of HDAC6 with
EBs (10).

HDACs are a class of enzymes targeting both histone and non-
histone substrates. Non-histone substrates include transcription
factors, cytoskeletal proteins, metabolic enzymes, and chaperones
(11). HDAC classes consist of 18 types. HDAC6 is localized
predominantly in the cytoplasm and does not deacetylate
histones in vivo (11). The main substrate for HDAC6 is α-
tubulin, although additional substrates have been identified. Such
substrates include Hsp90 (heat shock protein 90) (12), cortactin
(cortical actin binding protein) (13), and beta-catenin (14). Beta-
catenin regulates cell–cell adhesion and gene transcription.

In vivo treatment with HDAC6 inhibitors increases brain
α-tubulin acetylation, with no changes in acetylation levels of
histones (15). Although the loss of HDAC6 does not cause
toxicity, apoptosis, or major neurodevelopmental defects in
rodents, it causes an antidepressant-like phenotype and memory
deficits (16–19).

In this study, we analyzed EAE mice after treatment for only
2 days with the HDAC6 inhibitor ACY-738 and observed that
ACY-738 delayed disease onset and attenuated disease severity.
In addition, we observed that short-term memory in the cross-
maze test was improved in EAE mice treated with the drug at 9

and 10 d.p.i. and tested at 10 d.p.i. Such effect was sensitive to the
amount of reagent used to induce the disease.

MATERIALS AND METHODS

EAE Induction
To induce EAE, we used an emulsion obtained from Hooke
Lab (EK-0111, Hooke KitTM) and Pertussis toxin (#10033-540,
Enzo Life Sciences; VWR). The emulsion from Hooke lab
(see Supplementary Table 1A) contained ∼1 mg/mL of myelin
oligodendrocyte glycoprotein (MOG35-55) and ∼5 mg/mL of
killed Mycobacterium tuberculosis H37/Ra (MT). We injected
the emulsion at volumes of 200, 100, and 50 µL. Thus,
200 µL contained 200 µg of MOG35-55 and 1mg of MT,
100 µL contained 100 µg of MOG35-55 and 0.5mg of MT,
and 50 µL contained 50 µg MOG35-55 and 0.250mg MT.
Pertussis toxin (200 ng/100 µL/mouse) remained constant for
all experiments and was injected intraperitoneally (ip) on the
day of immunization and 2 days later. With higher amounts
of reagents, we observed a more severe form of the disease,
with a persistent severe disease score above two at 3 weeks
post-immunization. With lower amounts of reagents, most of
the mice recovered from a severe disease score above two. The
mice were examined for ∼4 weeks post-immunization. The
amounts used in this study to induce chronic (CH) vs. relapsing-
remitting (RR)-EAE are included in Supplementary Table 1A,
together with a summary of previous work showing various
concentrations of the reagents used to induce either CH- or
RR-EAE (Supplementary Table 1B).

C57BL/6 female mice between 7 and 8 weeks of age were
ordered from Jackson Laboratory and housed for 1 week before
EAE induction. Mice were immunized subcutaneously (sc)
(200 µL/mouse) with 200 µg/mouse of MOG35–55 peptide
emulsion in complete Freund’s adjuvant (CFA) (EK-0111, Hooke
KitTM). Experiments were also performed with volumes of 100
µL/mouse and 50 µL/mouse (from kit EK-0111, Hooke KitTM).
Pertussis toxin (200 ng/100 µL/mouse) remained constant for all
experiments and was injected ip on the day of immunization and
2 days later. EAEmice were graded on a scale of 0–5: 0, no disease;
1, limp tail; 2, hind limb weakness; 3, one or two hind limb
paralysis; 4, hind and fore limb paralysis; and 5, moribund and
death (5). Disease scores were the averages obtained at each time
point from five mice/group/experiment. Mean disease scores
(±SEM) were calculated from these disease scores. We collected
44 disease scores per group from seven experiments.

Drug Treatment
ACY-738 powder (Celgene Corporation, Acetylon
Pharmaceuticals) was dissolved in dimethyl sulfoxide (DMSO)
and diluted in phosphate-buffered saline (PBS) for ip injection
of 200 µL (20 mg/kg) on days 9 and 10 post-immunization. The
drug was injected on day 9 (∼1:00 p.m.) and day 10 (∼12:00
p.m.) post-immunization; mice were tested in the cross-maze
test on day 10 post-immunization. The EAE mice treated with
the drug (EAE+ D) were tested starting 1 hour and 30min after
the last drug injection.
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Cross-Maze Exploration Test
The Cross-maze exploration test was performed to evaluate
spatial working memory using a protocol described previously
(5). Briefly, each mouse was placed in the center of a four-arm
cross-maze apparatus and was permitted to enter each arm
freely (each arm was marked A, B, C, or D). Each mouse was
evaluated for up to 31 entries. An entry occurred when all four
paws entered the arm. An alternation occurred when an entry
occurred into each of the four distinct arms (e.g., A, D, C, B,
or C, D, A, B; but not D, A, C, A). Percentage of alternation
was used as an indicator of memory strength, when successive
entries took place into the four arms in overlapping quadruple
sets. Data are indicated as percent alternation, an indicator of
short-term memory. Percent alternation value is equal to the
ratio of actual/possible alternations×100 (5). Data are presented
as mean ± SEM in the Table 2, and are presented as mean ± SE
in the corresponding histogram.

Statistical Analysis
Each experiment comprised five mice/group. Disease scores
were the averages calculated from five mice per group at distinct
times. Forty-four disease scores were collected per group and
from seven independent experiments. Mean disease scores
(±SEM) were calculated from the disease scores. Mean disease
scores (±SEM) were compared with independent samples
t-test. We measured mean disease scores between 11 and 14,
15 and 18, and 19 and 32 d.p.i. In Table 1, “n” represents the
number of disease scores obtained over time and from distinct
experiments. In addition to independent samples t-test, statistical
analysis was performed using mixed effects linear regression
model. Clustering of observations within experiments (ICC =

0.46, z = 2.01, p = 0.0224) was accounted for with a random
intercept term.

For the cross-maze test, we applied independent samples
t-test and one-way ANOVA. At each dosage level, one-way
ANOVA with two degrees of freedom was used to test the null
hypothesis of equal means across all the three groups (naïve,
EAE, and EAE + D). Pairwise comparisons were made using
independent samples t-test and the more conservative Tukey’s
test. One-way ANOVA was used to compare the overall mean
response across the three dosage levels. For the independent
samples t-test, we used GraphPad QuickCalcs online program.
For one-way ANOVA and mixed effects linear regression model,
we used the PROC ANOVA in SAS version 9.4.

For disease scores, p < 0.05 was considered statistically
significant using the independent samples t-test. For behavioral
test, p < 0.05 was considered statistically significant using the
independent samples t-test and one-way ANOVA (∗∗ p < 0.05).
One asterisk (∗p < 0.05, independent samples t-test) denotes p <

0.1 with one-way ANOVA.

RESULTS

The Selective HDAC6 Inhibitor ACY-738
Regulates Experimental Autoimmune
Encephalomyelitis Disease
Drug administration on days 9 and 10 post-immunization
(20 mg/kg) reduced disease severity in both RR and CH

EAE. Representative examples are provided in Figure 1A

for RR-EAE and in Figure 1B for CH-EAE. Disease
score was the average calculated from five mice/group,
indicated in blue for EAE mice and in red for EAE+ D
mice (Figures 1A,B).

Disease scores collected at distinct times over ∼4 weeks
post-immunization were obtained from seven independent
experiments. Disease score was the average calculated from five
mice/group at a specific time and from distinct experiments. The
experiments included both RR- and CH-EAE disease. Table 1A
shows that of the 44 disease scores, twenty-five disease scores
were higher than 1.5 in EAE mice; whereas only seven disease
scores were higher than 1.5 in EAE + D mice. In addition,
we calculated mean disease scores (±SEM) from disease scores
taken at various times during the disease and from independent
experiments. Early in the disease (11–14 d.p.i.), mean disease
score was 1.160 ± 0.248 in EAE mice vs. 0.360 ± 0.160 in
EAE + D mice, with a statistically significant difference of p
= 0.0267 (n = 5, where n indicates the number of disease
scores). During the mid phase of the disease (15–18 d.p.i.), mean
disease score was 1.989 ± 0.205 in EAE mice vs. 0.989 ± 0.114
in EAE + D mice, with a statistically significant difference of
p = 0.0001 (n = 18). At the end of disease course (19–32
d.p.i.), mean disease score was 1.657 ± 0.220 in EAE mice vs.
0.857 ± 0.175 in EAE + D mice, with a statistically significant
difference of p = 0.0069 (n = 21). Thus, the difference between
untreated and treated groups reached statistical significance
(independent samples t-test) over the entire course of the
disease. In addition, by combining all the disease scores collected
from the various experiments at various times, the cumulative
disease score was 76.4 in EAE mice vs. 37.6 in EAE + D
mice, which showed an overall reduction in disease severity of
about 50%.

In addition, mixed effects linear regression model revealed
that the effects of treated vs. untreated was −0.67 (p = 0.0188),
indicating that the disease score was 0.67 less in the treated
animals than in the untreated animals at any time point.
Estimated means from the linear regression model and results
of the independent samples t-test of the main effects indicate a
statistically significant reduction in disease score with treatment
(p = 0.0188). The estimates from the model accounted for
the clustering of repeated measures, whereas the independent
samples t-test assumed each of the two compared groups were a
set of independent observations. In contrast, the estimated slope
in EAE mice was −0.003 (p = 0.8471), whereas in EAE + D
mice, it was 0.00 (p = 1.000). The two parallel lines across time
for EAE and EAE + D mice had a common slope of −0.0015 (p
= 0.8907), indicating a slight decrease that was not statistically
significant. Thus, the slope was the same in both groups,
suggesting that the disease, although diminished in its severity
secondary to drug treatment, was not altered in its dynamics;
i.e., the disease displayed similar trends in EAE vs. EAE + D
mice, although EAE + D had significantly lower disease scores
(Figure 1C, Table 1B).

Notably, drug treatment delayed disease onset. Disease onset
occurred between 11 and 14 d.p.i. Figure 1A shows that in
RR-EAE +D mice, the disease had not yet started at 14
d.p.i., whereas EAE mice with no drug treatment already
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FIGURE 1 | The selective HDAC6 inhibitor ACY-738 regulates experimental autoimmune encephalomyelitis in both Relapsing-Remitting (A) and Chronic (B) EAE

mice. (C) Shows all disease scores and an estimated line for the disease scores.

TABLE 1 | (A) Disease score analysis with t-test and (B) Disease score analysis with mixed effects linear regression model.

(A)

Treatment Disease score

≥ 1.5

Mean disease score

± SEM at 11–14 d.p.i.

Mean disease score

± SEM at 15–18 d.p.i.

Mean disease score

± SEM at 19–32 d.p.i.

Cumulative disease score

EAE 25/44 1.160 ± 0.248 1.989 ± 0.205 1.657 ± 0.220 76.4

EAE + D 7/44 0.36 ± 0.160 0.989 ± 0.114 0.857 ± 0.175 37.6

n= 5; p = 0.0267** n = 18; p = 0.0001** n = 21; p = 0.0069** n = 44

(B)

Disease score t-test for EAE vs. EAE + D

Mean SE 95% C.I. t = 2.40, do = 74, p = 0.0188

EAE 1.670 0.197 1.241 2.100

EAE + D 1.000 0.197 0.570 1.430

The drug administered on days 9 and 10 post-immunization (20mg/kg) reduced disease severity in both Relapsing-Remitting (RR) (A) and Chronic (CH) (B) EAE mice. Figures 1A,B

have the disease scores. Each disease score is the average obtained from five mice/group, in blue for EAE mice and in red for EAE + D mice. Figure 1C shows all disease scores

collected from seven experiments at distinct times, together with an estimated line for the disease scores of EAE (blue) and EAE + D (red) mice.

In (A), n represents the number of disease scores. Among the 44 disease scores per group, EAE mice had twenty-five over 1.5, whereas EAE + D mice had only seven over 1.5. (A)

has mean disease scores (± SEM) during early (11–14 d.p.i.), mid phase (15–18 d.p.i.), and at the end of disease course (19–32 d.p.i.) with statistically significant differences in EAE

vs. EAE + D mice over the course of the entire disease. The cumulative disease score (from all the disease scores) shows also an overall decrease in disease severity of about 50%

in EAE+D mice. (B) displays the statistical analysis with a linear regression model and statistically significant differences between EAE and EAE + D mice (Mean = 1,670 and 1,000,

respectively; p = 0.0188). n indicates the number of disease scores. Disease score is the average obtained from five mice/group. **p < 0.05.

exhibited mobility defects revealed by disease scores above zero.
Such delay in disease onset was striking when a high dose
(50mg/kg) of a single drug injection was administered at 10 d.p.i.
(Supplementary Material). In this experiment conducted with
five mice per group, differences were evident at 11 d.p.i. (24 hours
post-treatment), suggesting that the drug abruptly halted
the disease.

The Selective HDAC6 Inhibitor ACY-738
Regulates Short-Term Memory in a Manner
Sensitive to Disease Severity
We measured short-term memory with the cross-maze test at

day 10 post-immunization. We combined the data from three

independent experiments performed with mice receiving 200
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FIGURE 2 | The selective HDAC6 inhibitor ACY-738 regulates short-term memory in a manner sensitive to disease severity. **p < 0.05 independent samples t-test

and one-way ANOVA. *p < 0.05 independent samples t-test.

TABLE 2 | The selective HDAC6 inhibitor ACY-738 regulates short-term memory in a manner sensitive to disease severity.

MOG35-55 NAÏVE (N) EAE (E) EAE + D (ED) p-values

t test t test t test

µg n mean ± SEM n mean ± SEM n mean ± SEM N vs. E N vs. ED E vs. ED One-way ANOVA

200 15 54.3 ± 2.2 15 52.4 ± 1.5 15 51.4 ± 1.8 0.4854 0.3335 0.6950 0.5569

100 20 49.3 ± 1.4 20 53.6 ± 1.7 19 55.3 ± 1.5 0.0613 0.0058** 0.4562 0.0234**

50 15 50.2 ± 1.7 15 49.5 ± 1.6 15 54.3 ± 1.5 0.7633 0.0828 0.0396* 0.0890

Naïve mice were not administered any drug. EAE was induced with various amounts of EAE-inducing reagents (200, 100, and 50µg MOG35-55). Data are presented as mean ± SEM

in the Table, and as mean ± SE in the corresponding histogram. Comparison with independent samples t-test revealed that in EAE mice administered 100µg MOG35-55, the difference

between Naïve and EAE + D mice was statistically significant (p = 0.0058). This difference was also statistically significant at α = 0.05 using Tukey’s studentized range test. Comparison

with independent samples t-test revealed that in mice receiving 50µg MOG35-55, the difference between EAE and EAE+ Dmice was also statistically significant (p= 0.0396). One-way

ANOVA revealed a statistically significant difference in the group administered 100µg MOG35-55 (F = 4.02, p = 0.0234) and in the group administered 50µg MOG35-55 (F = 2.56,

p = 0.0890). One-way ANOVA data are displayed as boxplots. In boxplots, the central black line represents the median, the bottom and top boundaries represent quartiles. n indicates

the number of mice. **p < 0.05 independent samples t-test and one-way ANOVA. *p < 0.05 independent samples t-test.

µg MOG35-55. No significant differences among the groups
were observed. We combined the data from four independent
experiments performed with 100 µg MOG35-55. A statistically
significant difference between Naïve and EAE + D groups
was observed. We combined the data from three independent
experiments performed with 50 µg MOG35-55. A statistically
significant difference between EAE and EAE + D groups was
noted (Figure 2 and Table 2).

Experiments With 200 µg MOG35-55
Fifteenmice (n= 5 each for Naïve, EAE, and EAE+D)were used
for each experiment. Each experiment was repeated three times,
and the data obtained with the cross-maze test on day 10 post-
immunization were combined. We observed that the difference
between Naïve and EAE mice was not statistically significant

(mean ± SEM, 54.3 ± 2.2 vs. 52.4 ± 1.5, respectively; p =

0.4854). The difference between Naïve and EAE + D mice was
not statistically significant (mean ± SEM, 54.3 ± 2.2 vs. 51.4 ±

1.8, respectively; p= 0.3335). In addition, the difference between
EAE and EAE+ Dmice was not statistically significant (mean±

SEM, 52.4 ± 1.5 vs. 51.4 ± 1.8, respectively; p = 0.6950). There
were also no statistically significant differences across the means
of the three groups as determined by one-way ANOVA (F= 0.59,
p= 0.5569).

Experiments With 100 µg MOG35-55
Fifteen mice (n = 5 each for Naïve, EAE, and EAE + D) were
used for each experiment. Each experiment was repeated four
times, and the data were combined. In one of the experiments,
only fourteen mice were analyzed (n= 5 each for Naïve and EAE,
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and n= 4 for EAE+D).We observed that the difference between
Naïve and EAE mice was not statistically significant (mean ±

SEM, 49.3± 1.4 vs. 53.6± 1.7, respectively; p= 0.0613); whereas
the difference between Naïve and EAE+ Dmice was statistically
significant (mean ± SEM, 49.3 ± 1.4 vs. 55.3 ± 1.5, respectively;
p = 0.0058). Such difference was significant at α = 0.05 using
Tukey’s studentized range test. In contrast, the difference between
EAE and EAE+ Dmice was not statistically significant (mean±

SEM, 53.6± 1.7 vs. 55.3± 1.5, respectively; p= 0.4562). One-way
ANOVA, revealed a statistically significant difference between the
three group means (F= 4.02, df= 2, p= 0.0234).

Experiments With 50 µg MOG35-55
Fifteen mice (n = 5 each for Naïve, EAE, and EAE + D) were
used for each experiment. Each experiment was repeated three
times, and the data were combined. We found that the difference
between Naïve and EAE mice was not statistically significant
(mean ± SEM, 50.2 ± 1.7 vs. 49.5 ± 1.6, respectively; p =

0.7633). The difference between Naïve and EAE + D mice was
not statistically significant (mean ± SEM, 50.2 ± 1.7 vs. 54.3 ±

1.5, respectively; p = 0.0828). In contrast, the difference between
EAE and EAE + D mice was statistically significant (mean ±

SEM, 49.5 ± 1.6 vs. 54.3 ± 1.5, respectively; p = 0.0396). There
was a statistically significant difference between group means as
determined by one-way ANOVA (F = 2.56, df = 2, p = 0.0890).
The contrast between EAE vs. EAE+ D was significant using a
independent samples t-test but not under the more conservative
Tukey’s test. Comparison of all the data in the group with 200,
100, and 50µg MOG35-55 revealed no statistically significant
differences across the group means as determined by one-way
ANOVA (F= 0.57, df= 2, p= 0.5665) (data not shown).

DISCUSSION

The positive effects of ACY-738 on disease course occurred
after one or two injections, and protection occurred within 24
hours post-treatment. Work by Ren et al. (20) showed that
ACY-738 decreased innate and adaptive immune responses in
a model of systemic lupus erythematosus; ACY-738 reduced
disease pathogenesis by altering differentiation of T and B cells
(21). However, these positive effects were observed after long-
term treatment lasting several weeks. We did not assess the
mechanisms by which ACY-738 protects from EAE disease;
however, the beneficial outcomes within 24 hours post-treatment
may be related to an effect of ACY-738 on the neuronal
cytoskeleton and/or secondary to a lethal, acute, effect of ACY-
738 against cells attacking myelin. Indeed, it was previously
shown that ACY-738 induces cell death in vitrowhen used at high
concentrations (22). In addition, Guo et al. (23) reported that
HDAC6 inhibition reverses axonal transport defects in motor
neurons derived from FUS-ALS patients. Mutations in FUS
(fused in sarcoma) cause amyotrophic lateral sclerosis (ALS). It
is known that early in EAE, axonal transport deficits are present,
and reduced levels of KIF5A (kinesin heavy chain isoform
5A) were reported in MS patients (6, 24, 25). Thus, part of
the beneficial effects observed for the disease course could be
secondary to positive regulation of axonal transport exerted by

ACY-738. Indeed, the inhibition of HDAC6 may regulate both
anterograde and retrograde transport due to the regulation of
kinesin and dynein motors (26).

Acetylation of α-tubulin occurs at lysine 40 at the inner
surface. Additional sites of acetylation have been identified in
both α- and β- tubulin (27). Further studies are required to
determine the functional consequences of HDAC6 inhibitors on
post-translational modification of these various sites of tubulin.
This information could facilitate effective pharmacological
targeting of cytoskeleton dynamics at the synapse, with beneficial
impacts on axonal transport regulation.

Drugs such as TSA (Trichostatin A) or SAHA (suberoyl
+ anilide + hydroxamic acid) inhibit both HDAC6 and class
I isoforms, whereas drugs such as tubacin and tubastatin A
selectively inhibit HDAC6 (11, 28, 29). Interestingly, ACY-738 is
a selective inhibitor of HDAC6 and has the unique property of
rapid distribution in the brain, with a short plasma half-life of
12min (11).

Pathways that regulate synaptic plasticity are critical for brain
health and prevention of neuropsychiatric and degenerative
diseases (7). In this study, we developed an experimental
model that can establish pharmacological targets at the synaptic
cytoskeleton upon which ACY-738 acts. Further, ACY-738 will
allow us to investigate how short-term memory is regulated.
While the role of HDAC6 in synaptic plasticity and memory is
established (30), the dynamics of cytoskeletal interactions at the
synapse require additional investigation. Our model may reveal
dynamic regulation at synapses that requires pharmacologic
rescue to treat selective memory deficits during various diseases
of the CNS.

Jochems et al. (11) reported that upon acute treatment,
ACY-738 improved ambulation levels and decreased anxiety.
Majid et al. (31) showed that ACY-738 improved Alzheimer’s
disease phenotype in amyloid precursor protein/presenilin 1
mice. In particular, this study indicated that drug administration
increased cognition; however, the drug was administered for
21 and 90 days. In addition, Selenica et al. (32) showed that
tubastatin A, a selective HDAC6 inhibitor, improved memory
and reduced total tau levels in a mouse model of tau deposition.
However, the mice were treated for 2 months. Zhang et al. (33)
used tubastatin A and ACY-1215 to rescue cognitive deficits
in a mouse model of Alzheimer’s disease and found that both
tubastatin A and ACY-1215 reduced behavioral deficits, amyloid-
β load, and tau hyperphosphorylation. However, the mice were
treated for 20 consecutive days; ACY-1215 is a selective HDAC6
inhibitor. In contrast, in this study, we analyzed mice after
treatment with ACY-738 for only two days and observed an
increase of short-term memory.

The cross-maze test relies on working memory, which
depends on selected CNS areas including the hippocampus,
septum, basal forebrain, and prefrontal cortex. The cytoskeleton
at the synapse has a role in synaptic plasticity regulation
and various neuropsychiatric diseases (7). Protein-protein
interactions at the synapse regulate synaptic function and
plasticity. At the synapse, key functional interactions involve
tubulin, EBs, ankyrins, and actin (8). HDAC6 inhibitors increase
the interaction of HDAC6 with microtubules and EBs (10).
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HDAC6 also regulates growth factor-induced actin remodeling
and endocytosis (34); thus, HDAC6 inhibitors may also alter
functional regulation of actin. Anxiety- and depression-like
behaviors were described in EAE mice before any motor defect
became apparent (2, 4), so our experimental conditions may have
brought the antidepressive properties of ACY-738 to light (11).
Finally, the positive effects on memory may be partly explained
by enhancement of stress resilience through HDAC6-mediated
regulation of glucocorticoid receptor chaperone dynamics (11).
In this respect, additional studies are necessary to elucidate the
mechanisms by which ACY-738 acts on memory regulation.
Nicotine, previously shown to inhibit HDAC6 and chaperone-
dependent activation of glucocorticoid receptors in cultured cells,
had a neuroprotective effect in an experimental model of MS
(35, 36). In summary, with the aim of developing the most
effective treatments for MS patients, future studies should aim to
understand similarities and differences among various inhibitors
directed at HDAC6, so selective drugs of such class with the
highest safety and efficacy could provide breakthrough therapy
for the neurodegeneration in patients affected by MS.
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Pervasive axonal transport deficits in multiple sclerosis models. Neuron.

(2014) 84:1183–90. doi: 10.1016/j.neuron.2014.11.006

26. Chen S, Owens GC, Makarenkova H, Edelman DB. HDAC6 regulates

mitochondrial transport in hippocampal neurons. PLoS ONE. (2010)

5:e10848. doi: 10.1371/journal.pone.0010848

27. Sadoul K, Khochbin S. The growing landscape of tubulin acetylation: lysine 40

and many more. Biochem J. (2016) 473:1859–68. doi: 10.1042/BCJ20160172

28. Bertrand P. Inside HDAC with HDAC inhibitors. Eur J Med Chem. (2010)

45:2095–116. doi: 10.1016/j.ejmech.2010.02.030

29. Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP.

Rational design and simple chemistry yield a superior, neuroprotective

HDAC6 inhibitor, tubastatin A. J Am Chem Soc. (2010) 132:10842–6.

doi: 10.1021/ja102758v

30. Perry S, Kiragasi B, Dickman D, Ray A. The role of histone deacetylase

6 in synaptic plasticity and memory. Cell Rep. (2017) 8:1337–45.

doi: 10.1016/j.celrep.2017.01.028

31. Majid T, Griffin D, Criss ZII, Jarpe M, Pautler RG. Pharmocologic treatment

with histone deacetylase 6 inhibitor (ACY-738) recovers Alzheimer’s disease

phenotype in amyloid precursor protein/presenilin 1 (APP/PS1) mice.

Alzheimers Dement. (2015) 1:170–81. doi: 10.1016/j.trci.2015.08.001

32. Selenica ML, Benner L, Housley SB, Manchec B, Lee DC, Nash KR, et al.

Histone deacetylase 6 inhibition improves memory and reduces total tau

levels in a mouse model of tau deposition. Alzheimers Res Ther. (2014) 6:12.

doi: 10.1186/alzrt241

33. Zhang L, Liu C, Wu J, Tao JJ, Sui XL, Yao ZG, et al. Tubastatin A/ACY-1215

improves cognition in Alzheimer’s disease transgenic mice. J Alzheimers Dis.

(2014) 41:1193–205. doi: 10.3233/JAD-140066

34. Gao YS, Hubbert CC, Lu J, Lee YS, Lee JY, Yao TP. Histone deacetylase 6

regulates growth factor-induced actin remodeling and endocytosis. Mol Cell

Biol. (2007) 27:8637–47. doi: 10.1128/MCB.00393-07

35. Sun LC, Lin JT, Li W, Zhang L, Zhou TL, Zhang XY. Nicotine inhibits

histone deacetylase 6 activity and chaperone-dependent activation of the

glucocorticoid receptor in A549 cells. Chin Med J. (2012) 125:662–6.

doi: 10.3760/cma.j.issn.0366-6999.2012.04.019

36. Naddafi F, Reza Haidari M, Azizi G, Sedaghat R, Mirshafiey A. Novel

therapeutic approach by nicotine in experimental model of multiple

sclerosis. Innov Clin Neurosci. (2013) 10:20–5. doi: 10.1007/s13760-014-

0392-x

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 LoPresti. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 8 June 2019 | Volume 10 | Article 51990

https://doi.org/10.1128/MCB.01154-06
https://doi.org/10.1111/cei.13046
https://doi.org/10.1016/j.clim.2015.11.007
https://doi.org/10.1111/bjh.12388
https://doi.org/10.1038/s41467-017-00911-y
https://doi.org/10.1186/s12974-015-0375-8
https://doi.org/10.1016/j.neuron.2014.11.006
https://doi.org/10.1371/journal.pone.0010848
https://doi.org/10.1042/BCJ20160172
https://doi.org/10.1016/j.ejmech.2010.02.030
https://doi.org/10.1021/ja102758v
https://doi.org/10.1016/j.celrep.2017.01.028
https://doi.org/10.1016/j.trci.2015.08.001
https://doi.org/10.1186/alzrt241
https://doi.org/10.3233/JAD-140066
https://doi.org/10.1128/MCB.00393-07
https://doi.org/10.3760/cma.j.issn.0366-6999.2012.04.019
https://doi.org/10.1007/s13760-014-0392-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


August 2018  |  Volume 9  |  Article 18071

Original Research
published: 13 August 2018

doi: 10.3389/fimmu.2018.01807

Frontiers in Immunology  |  www.frontiersin.org

Edited by: 
Martin S. Weber,  

Universitätsmedizin Göttingen, 
Germany

Reviewed by: 
Fred Lühder,  

Georg-August-Universität  
Göttingen, Germany  

Anneli Peters,  
Ludwig-Maximilians-Universität 

München, Germany

*Correspondence:
Guang-Xian Zhang 

guang-xian.zhang@jefferson.edu;  
Yuan Zhang  

yuanzhang_bio@126.com

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted  

to Multiple Sclerosis and 
Neuroimmunology,  

a section of the journal  
Frontiers in Immunology

Received: 23 April 2018
Accepted: 23 July 2018

Published: 13 August 2018

Citation: 
Li X, Zhao L, Han J-J, Zhang F, Liu S, 

Zhu L, Wang Z-Z, Zhang G-X and 
Zhang Y (2018) Carnosol Modulates 

Th17 Cell Differentiation and 
Microglial Switch in Experimental 
Autoimmune Encephalomyelitis.  

Front. Immunol. 9:1807.  
doi: 10.3389/fimmu.2018.01807

carnosol Modulates Th17 cell 
Differentiation and Microglial switch 
in experimental autoimmune 
encephalomyelitis
Xing Li1,2†, Li Zhao1†, Juan-Juan Han1†, Fei Zhang1, Shuai Liu1, Lin Zhu3, Zhe-Zhi Wang1, 
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Medicinal plants as a rich pool for developing novel small molecule therapeutic medicine 
have been used for thousands of years. Carnosol as a bioactive diterpene compound 
originated from Rosmarinus officinalis (Rosemary) and Salvia officinalis, herbs extensively 
applied in traditional medicine for the treatment of multiple autoimmune diseases (1). In 
this study, we investigated the therapeutic effects and molecule mechanism of carno-
sol in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple 
sclerosis (MS). Carnosol treatment significantly alleviated clinical development in the 
myelin oligodendrocyte glycoprotein (MOG35–55) peptide-induced EAE model, markedly 
decreased inflammatory cell infiltration into the central nervous system and reduced 
demyelination. Further, carnosol inhibited Th17 cell differentiation and signal transducer 
and activator of transcription 3 phosphorylation, and blocked transcription factor NF-κB 
nuclear translocation. In the passive-EAE model, carnosol treatment also significantly 
prevented Th17  cell pathogenicity. Moreover, carnosol exerted its therapeutic effects 
in the chronic stage of EAE, and, remarkably, switched the phenotypes of infiltrated 
macrophage/microglia. Taken together, our results show that carnosol has enormous 
potential for development as a therapeutic agent for autoimmune diseases such as MS.

Keywords: Carnosol, multiple sclerosis, experimental autoimmune encephalomyelitis, Th17  cell, macrophage/
microglia

INTRODUCTION

Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), 
are chronic immune-mediated demyelinating diseases of the central nervous system (CNS), char-
acterized by infiltrated inflammatory cells, demyelination, and damage to neurons (2). Although 
the underlying mechanism of MS has not been well defined, a growing body of evidence supports 
its being an autoimmune disease (3). While Th1  cells have been considered pathogenic for MS/
EAE, Th17 cells, a subpopulation of pro-inflammatory T helper cells defined by their secretion of 
IL-17 (4), have recently emerged as an important player in inflammatory and autoimmune dis-
eases via the secretion of pro-inflammatory cytokines, such as IL-17A, IL-17F, GM-CSF, and IL-22  
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(5, 6). Polarization of Th17 populations and the related cytokine 
production are directly regulated by RORγt (7), and the signals 
that cause Th17 cells to differentiate actually inhibit regulatory 
T cell (Treg) differentiation (8). Therefore, targeted inhibition of 
RORγt transcription or a Th17 differentiation-related signaling 
pathway such as NF-κB and signal transducer and activator of 
transcription 3 (STAT3) represents an encouraging therapeutic 
strategy in treatment of Th17-related diseases (4, 9, 10).

Current MS therapies either have limited efficacy or impor-
tant safety issues (11, 12). A great deal of research effort has 
gone into developing novel therapies that specifically target 
Th17 cells, while sparing other immune cells. Recently, several 
new anti-inflammatory or immunomodulatory drugs derived 
from medicinal plants have been explored and are considered 
to have great potential for treatment of autoimmune diseases 
(4, 13–15). These natural compounds represent a rich source for 
the identification of effective and safe candidate medicines with 
innovative targets and/or mechanisms of action in the therapy of 
MS and other autoimmune diseases.

Rosmarinus officinalis (rosemary) and Salvia officinalis are 
common household plants that grow all over the world and have 
been used as medicinal herbs due to their powerful antioxidant 
and anti-inflammatory effects (16, 17). Carnosol, a major diter-
pene present in R. officinalis (rosemary) and S. officinalis, has been 
reported to possess strong antioxidant, anti-tumor, anti-viral, 
and especially anti-inflammatory properties (18–20). Carnosol 
treatment also induced T-cell leukemia/lymphoma apoptosis 
and decreased IL-6 and TNF-α levels in serum (21, 22). These 
studies indicate that carnosol may be effective in the treatment 
of autoimmune diseases; however, this possibility has not been 
tested. To elucidate this question, in the present work, we studied 
the potential therapeutic anti-inflammatory abilities of carnosol 
on actively induced and adoptively transferred EAE models and 
the mechanism of its action.

MATERIALS AND METHODS

EAE Induction and Treatment
Female C57BL/6 mice (purchased from the Fourth Military 
University (Xi’an, China)) were used at the age of 8  weeks. 
All animal experiments were performed with the approval of 
the Institutional Animal Care and Use Committee of Shaanxi 
Normal University and according to the approved institutional 
guidelines and regulations. For acute and chronic EAE, a previ-
ously described method was followed (23). Briefly, mice were 
subcutaneously injected with 200 µg of myelin oligodendrocyte 
glycoprotein (MOG) peptide 35–55 (Genescript, Piscataway, NJ, 
USA) in 200  µl of emulsified complete Freund’s adjuvant with 
5  mg/ml Mycobacterium tuberculosis H37Ra (Difco, Lawrence, 
KS, USA). For adoptive transfer EAE, mice were sacrificed 
10  days after MOG35–55 immunization, and splenocytes and 
draining lymph nodes were provided as previously described 
(4). Cells were cultured for 3 days in the presence of 25 µg/ml 
MOG35–55, 10 ng/ml rmIL-23, and 2 ng/ml rmIL-2 (R&D Systems, 
Minneapolis, MN, USA) at 1 ×  107 cell/ml. CD4+ T  cells were 
purified by CD4+ T cell isolation kit and 4 × 106 cells per mouse 
were transferred via intravenous (i.v.) injection. Pertussis toxin 

(200  ng/mouse) was injected intraperitoneally (i.p.) on days 0 
and 2. Clinical EAE was assessed by daily scoring using a 0–5 
scale as described previously (24). Carnosol was obtained from 
Sigma-Aldrich (St. Louis, MO, USA) and was injected (50 mg/kg/
day) i.p. daily starting at day 0 p.i.

Histological and Immunofluorescence 
Staining
Mice were euthanized at different time points after drug adminis-
tration, and transcardially perfused with PBS. Tissues (brains and 
spinal cords) were collected for pathological assessment. Spinal 
cords were fixed with 4% paraformaldehyde overnight, cut into 
5 µm sections and stained with H&E (hematoxylin and eosin) for 
inflammation and Luxol fast blue (LFB) for demyelination. Slides 
were examined and assessed following a previously described 
method (23).

For immunofluorescence, brain and spinal cord were 
cryopreserved in OCT compound (Tissue-Tek, Sakura Finetek, 
Japan) for frozen sections and cut into 12  µm sections (25). 
Immunofluorescence staining was performed using general 
methods and the appropriate dilutions of primary antibodies 
were applied. Immunofluorescence controls were routinely 
performed with incubations in which primary antibodies were 
omitted. Images were acquired by Nikon Eclipse E600 fluorescent 
microscopy (Nikon, Melville, NY, USA). For quantification of 
CD45+, MOG+, MBP+, iNOS+, Arg1+, and CD68+, 10 areas of the 
sections were selected and analyzed as previously described (23).

Cytokine Measurement by ELISA
Splenocytes from EAE mice were prepared and cultured in 
triplicates in RPMI 1640 supplemented with 10% fetal bovine 
serum (Thermo Fisher Scientific) and stimulated with 25 µg/ml 
MOG35–55 for 3 days. Cell-free supernatants were harvested and 
analyzed for IFN-γ, IL-17, GM-CSF, IL-5, and IL-10 by ELISA 
Kits (R&D Systems).

Mononuclear Cell (MNC) Preparation
Splenocytes of EAE mice were mechanically pushing spleen 
tissue through a 70 µm strainer (Falcon, Tewksbury, MA, USA) 
and treated with red blood cell (RBC) lysis buffer (Biolegend, San 
Diego, CA, USA) for 60 s. Collected cells were flushed with pre-
cold PBS before stimulation. To collect MNC from CNS tissue, 
brain and spinal cords were administered with Liberase (Roche, 
Nutley, NJ, USA) for half hour and dissociated through a 70 µm 
strainer and flushed with pre-cold PBS. Cells were then separated 
by 70/30% percoll (Sigma-Aldrich) gradient method following 
previously described (26).

In Vitro T Cell Polarization
Polarization of Th1, Th17, and Treg cells was induced in  vitro 
following a previously described method (4). Naive 8-week-old 
female C57BL/6 mice were sacrificed and spleen tissue was dis-
sociated to single cell. Mouse CD4 microbeads (Miltenyi Biotech 
Inc.) were used to purify the CD4+ T  cells. Then, cells were 
cultured for 3 days under their respective polarizing conditions 
(27). Cells were stimulated for 3 days and examined on FACSAria 
(BD Biosciences).
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Figure 1 | Carnosol ameliorated clinical severity of experimental 
autoimmune encephalomyelitis (EAE). C57BL/6 mice were injected i.p. 
with PBS or carnosol (50 mg/kg) daily starting on the day of EAE 
induction, and scored daily following a 0–5 scale (A). (B) Mice were 
sacrificed at day 30 p.i. and spinal cords were harvested. Sections at 
lumbar level (L3) were analyzed by H&E and Luxol fast blue (LFB) (scale 
bar = 1 mm), and pathology scores of inflammation (C) and percentage of 
demyelination area (D) were evaluated. Data are mean ± SD (n = 5 each 
group). **p < 0.01 and ****p < 0.0001, determined by two-way ANOVA 
(A), or nonparametric test (C,D). One representative of three independent 
experiments is shown.
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Flow Cytometry Analysis
For cell surface staining, fluorochrome-conjugated Abs to CD4 
(BD Biosciences, San Jose, CA, USA) or isotype control Abs were 
added to cells for 30  min. For all intracellular staining, CNS-
infiltrating MNCs or splenocytes were stimulated for 5  h with 
phorbol 12-myristate 13 acetate (50 ng/ml), ionomycin (500 ng/
ml) (Sigma-Aldrich), and GolgiPlug (BD Biosciences). The stain-
ing procedure was performed following a previously described 
protocol (4). Data were analyzed with FlowJo software (Treestar, 
Ashland, OR, USA).

Quantitative PCR
Total RNA from T  cells or microglia cells was extracted by 
RNeasy Plus Mini Kit (QIAGEN, Valencia, CA, USA). cDNA 
was synthesized with QuantiTect Reverse Transcription Kit 
(QIAGEN). Quantitative PCR was performed in ABI Prism 7500 
Sequence Detection System (Applied Biosystems, Foster City, 
CA, USA) using QuantiFast SYBR Green PCR Kit (QIAGEN). 
All experiments involving mRNA levels were normalized to 
glyceraldehyde 3-phosphate dehydrogenase and primers that 
were based on published cDNA sequences are listed in Table S2 
in Supplementary Material.

Western Blot
T cells were activated on 24-well plate under Th17 differentiation 
condition w/o carnosol 10 µg/ml for 18 h and were then collected. 
Cells were lysed by cell lysis buffer (Cell Signaling Technology, 
Danvers, MA, USA) supplemented with 1  mM phenylmethyl-
sulfonyl fluoride (Cell Signaling Technology). All samples con-
taining 15 µg total proteins were separated by 10% SDS-PAGE 
and transferred to polyvinylidene difluoride membrane (Pierce 
Chemical, Rockford, IL, USA). Membranes were blocked with 
5% (w/v) nonfat dry milk powder in Tris-buffered saline (TBS) 
for 2  h at room temperature. This was followed by incubation 
at 4°C overnight with primary antibodies. Afterward, the mem-
brane was washed three times in TBS plus Tween and incubated 
with the corresponding secondary antibodies (Cell Signaling 
Technology). The protein band was detected using Pierce ECL 
Western Blotting Substrate (Thermo Fisher Scientific, Waltham, 
MA, USA).

Statistical Analysis
Data were analyzed using GraphPad Prism 6 software (GraphPad, 
La Jolla, CA, USA), and are presented as the mean  ±  SD. 
Significant differences in comparing multiple groups, data were 
analyzed by Tukey’s multiple comparisons test. All other sta-
tistical comparisons were done using nonparametric statistical 
tests. Differences with p values of less than 0.05 were considered 
significant.

RESULTS

Carnosol Treatment Remarkably Alleviated 
Acute Clinical EAE
We first tested whether carnosol was effective in ameliorating 
the clinical severity of MOG-induced EAE by scoring disease 

signs daily on a 0–5 scale. The PBS-treated group of mice showed 
the first signs of EAE on day 10 p.i., while the carnosol-treated 
mice did so on day 12 p.i. Further, daily carnosol administration 
apparently led to decreased disease severity compared to the PBS-
treated control group (p < 0.01; Figure 1A).

We then evaluated pathological changes by histologic analyses 
in lumbar spinal cords to examine CNS inflammatory infiltration 
and demyelination at day 30 p.i. As shown in Figure 1B, massive 
inflammatory infiltration and demyelination was observed in the 
spinal cord of PBS-treated EAE mice; by contrast, the carnosol-
treated group displayed mild to moderate signs (p  <  0.0001; 
Figures  1B–D). These results indicated that carnosol had a 
significantly suppressive effect in acute EAE.
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Figure 2 | Carnosol treatment suppressed inflammatory infiltration in the central nervous system (CNS). Mice were treated with PBS or carnosol at the day of 
experimental autoimmune encephalomyelitis induction and sacrificed at day 30 p.i. (A) Spinal cords were subjected to immunostaining analysis. (A) Representative 
sections of thoracic spinal cord from PBS- and carnosol-treated mice were stained with CD45 and MOG (scale bar = 100 μm), and the number of CD45+ cells  
(B) and the intensity of MOG staining (C) were statistically analyzed. (D) Spinal cords and brains were harvested and mononuclear cells (MNCs) isolated (n = 10 
each group). Total MNC numbers in CNS were counted under light microscopy. (E) The percentage of CD4+ T cells was measured by flow cytometry. (F) Absolute 
numbers of infiltrated CD4+ T were calculated by multiplying the percentages of these cells with total numbers of MNCs in each spinal cord and brain tissue. (G–J) 
Frequencies of IFN-γ+, IL-17+, GM-CSF+, and Foxp3+ cells among CD4+ cells were assessed by flow cytometry, and (K) the percentages of these cells in total CD4+ 
cell numbers in each CNS are shown. Symbols represent mean ± SD (n = 5 each group). **p < 0.01 and ***p < 0.001. Student’s t-test. One representative of three 
independent experiments is shown.
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Figure 3 | Carnosol treatment decreased inflammation and cytokine 
production. Mice were treated with PBS or carnosol at the day of 
experimental autoimmune encephalomyelitis induction and sacrificed at day 
30 p.i. as described in Figure 1A. Splenocytes were harvested and 
stimulated with 25 µg/ml MOG35–55 for 3 days. Cytokine concentrations in 
culture supernatants were measured by ELISA. n = 5. Symbols represent 
mean ± SD (n = 5 each group). *p < 0.05 and **p < 0.01. Nonparametric 
test. One representative of three independent experiments is shown.
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Carnosol Suppressed CNS Inflammation 
and Modulated Peripheral Immune 
Response in Acute EAE
To evaluate the therapeutic effects of carnosol on CNS pathology, 
spinal cords were obtained from carnosol- and PBS-treated EAE 
mice. Analysis of spinal cord tissue sections showed abundant 
CD45+ inflammatory cells in the lesion area in the PBS-treated 
group, while these cells could barely be detected in the spinal cord 
tissue sections of carnosol-treated mice (p < 0.01; Figures 2A,B). 
Correspondingly, there was significantly reduced demyelination 
(MOG− area) in carnosol-treated mice compared with the PBS-
treated group (p < 0.01; Figures 2A,C). These results were consist-
ent with the HE and LFB staining, indicating that carnosol inhibited 
inflammatory cell infiltration and demyelination in the CNS.

To further evaluate the effects of carnosol on the infiltrated 
inflammatory T cells into the CNS, MNCs were separated from 
the CNS and analyzed by flow cytometry. The total number of 
MNCs was 703.8  ±  119.0  ×  104 per mouse in the PBS-treated 
group vs. 382.6  ±  93.59  ×  104 in the carnosol-treated group 
(p < 0.01; Figure 2D). In addition, carnosol treatment significantly 
decreased the percentage and absolute numbers of CD4+ cells in 
the CNS compared to the PBS-treated control (Figures  2E,F). 
Furthermore, while the percentages of CD4+IFN-γ+ (Th1) and 
CD4+Foxp3+ (Treg) cells remained unchanged, percentages of 
CD4+IL17+, CD4+GM-CSF+, and IFN-γ+IL-17+ cells decreased 
dramatically after carnosol treatment (p < 0.001; Figures 2G–K; 
Figure S1 in Supplementary Material). These results indicate 
that carnosol may play a significant role in the inhibition of CNS 
inflammatory infiltration, especially in the pathogenic Th17 cell 
population.

To study the autoantigen-induced cytokine production in the 
peripheral immune system of carnosol-treated mice, spleen cells 
were collected at day 30 p.i. and pulsed with MOG35–55. As shown 
in Figure 3, the protein levels of IL-17 and GM-CSF in cell culture 
supernatants were significantly decreased in the carnosol-treated 

group, which was consistent with the findings in the CNS infil-
trated cells, as shown in Figures 2G–K. Overall, our data show 
that carnosol specifically inhibited the cytokine production of 
pathogenic Th17 cells.

Carnosol Mediated Its Immunomodulation 
Function by Inhibiting Th17 Cell 
Differentiation
To clarify the mechanism underlying the effects of carnosol on 
CD4+ T cell subsets, we defined its function in Th1, Th17, and 
Treg cell polarization in vitro. Under Th17-differentiation con-
dition, about 25% of CD4+ cells were IL-17+ in the PBS group, 
while carnosol treatment at a dose of 10 µM significantly reduced 
Th17-polarized (IL-17-producing) CD4+ T cells (25.06 ± 2.13 vs. 
4.47 ±  0.52%, p <  0.01) (Figures 4A,D). In addition, carnosol 
treatment suppressed Th17 differentiation in a dose-dependent 
manner. We then investigated the effects of carnosol on Th1 and 
Treg cell differentiation. In contrast to the findings for Th17 cells, 
IFN-γ or Foxp3 expression under Th1 or Treg polarizing condi-
tion was not significantly affected under carnosol treatment 
(Figures 4B–D). Taken together, these data suggest that carnosol 
selectively inhibits Th17 polarization.

Carnosol Suppressed STAT3 and NF-κB 
Phosphorylation, Which Is Required for 
Th17 Differentiation
Inflammatory cytokine production depends on early events in the 
NF-κB signaling pathway (28). In order to study the mode of action 
of carnosol in T cell differentiation, the phosphorylation status 
of NF-κB was determined by Western blot. p65 phosphorylation 
at Ser536 regulates its activation and nuclear translocation (29). 
Results showed that carnosol suppressed cell response by a shift 
of NF-κBp65 to the cell nucleus, which was demonstrated by the 
proper shift in the ratio of phosphorylation NF-κB/total NF-κB 
(Figures 4E,F). Further, the pro-inflammatory cytokines in the 
downstream of NF-κB signal pathway, including IL-2 and TNF-α, 
were also significantly decreased (Figure 4H).

Signal transducer and activator of transcription 3 activities 
play an important role in the differentiation of Th17 cells. We 
determined that the basal STAT3 phosphorylation level was 
significantly decreased. The phosphorylation status at Tyr705 
induced nuclear translocation and DNA binding, which 
promotes IL-17 production (30). Our results showed that 
carnosol treatment significantly suppressed STAT3 activation 
(Figures 4E,G) and IL-17A and IL-17F production of Th17 cells 
(Figure  4I) compared with the PBS-treated cells. In contrast, 
similar expression levels were observed for NF-κB and STAT4 
phosphorylation in carnosol- and PBS-treated Th1 cells (Figure 
S2 in Supplementary Material). Together, these results indicate 
that carnosol may specifically inhibit differentiation of Th17 cells 
but not Th1 cells.

Carnosol Suppressed Pathogenicity  
of Th17 Cells in Passive EAE
To assess the effect of carnosol on the encephalitogenicity of 
Th17  cells, at day 10 p.i., MNCs were collected from lymph 
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Figure 4 | Carnosol suppressed Th17 cell differentiation by blocking the function of NF-κB and signal transducer and activator of transcription 3 (STAT3).  
(A) CD4+ cells were isolated from C57Bl/6 mice and cultured under the Th17 polarizing condition with different concentrations of carnosol for 3 days. Percentage of 
Th17 cells was analyzed by intracellular staining of IL-17. (B,C) CD4+ cells were cultured under the Th1 and regulatory T cell (Treg) polarizing condition with carnosol 
(10 µM) for 3 days. Percentages of Th1 and Treg cells were analyzed by intracellular staining of IFN-γ+ and Foxp3+, respectively. (D) Statistical analysis of  
(A–C). (E) CD4+ T cells were cultured under Th17 polarizing condition and treated with 10 µM carnosol or PBS for 3 days. Cells were then analyzed for NF-κB  
and STAT3 expression by Western blot. (F,G) Statistical analysis of (E). (H,I) Cells were harvested as described in (E) and subjected to RNA extraction and cDNA 
production. Expression of pro-inflammation cytokines and IL-17 members (IL-17a and IL-17f) was determined by real-time PCR. Symbols represent mean ± SD 
(n = 3 each group). *p < 0.05 and **p < 0.01. Student’s t-test. One representative of three independent experiments is shown.
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nodes and spleen of IL-17A-IRES-GFP mice (C57BL/6 back-
ground), of which IL-17A-producing cells are GFP+ (The 
Jackson Laboratory, Stock # 018472). Cells were cultured 
under Th17-polarizing conditions with PBS or carnosol, and 
stimulated by MOG35–55 (20  µg/ml). After 3  days of culture, 

CD4+ T cells were separated and i.v. injected into naïve C57BL/6 
recipient mice. As shown in Figure 5A, carnosol-treated T cells 
transferred significantly reduced clinical disease compared to 
the PBS-treated group (p  <  0.01). Mice were sacrificed after 
20 days, and brain tissues from different groups were collected 
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Figure 5 | Carnosol decreased clinical severity in an adoptive transfer 
model of experimental autoimmune encephalomyelitis (EAE). For adoptive 
transfer EAE, single-cell suspensions were derived from spleen and lymph 
nodes of IL-17A-IRES-GFP EAE mice at day 10 p.i. MOG (25 µg/ml) plus 
IL-23 (10 ng/ml) and IL-2 (2 ng/ml) were added to cultures in the presence or 
absence of carnosol (10 µM) for 3 days. 1 × 106 CD4 T cells were i.v. injected 
to the recipient mice. (A) Mean clinical score of adoptive transfer EAE 
(mean ± SD; n = 5 each group). **p < 0.01, Two-way ANOVA with Sidak 
test. (B) Mice were sacrificed at day 20 after cell transfer, and brains were 
subjected to immunostaining analysis of CD45+ and GFP+ cells (marker for 
Th17 cells). Statistical analyses of total CD45+ cell numbers (C) and the 
percentage of GFP+CD45+ cell (D) for staining in (B) are shown. Scale 
bar = 100 µm. Symbols represent mean ± SD (n = 5 each group) **p < 0.01, 
determined by two-way ANOVA (A), or nonparametric test (C,D). One 
representative of two independent experiments is shown.
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for immunohistochemistry. Results showed similar CD45+ cell 
numbers in the tissue; however, in the CNS, the percentages of 
GFP+/CD45+ cells in the carnosol-treated group were mark-
edly reduced compared with the PBS-treated group (p < 0.01; 
Figures  5B–D). These in  vivo results further demonstrated a 
suppression function of carnosol on the encephalitogenicity of 
MOG-reactive Th17 cells.

Carnosol Alleviated Clinical Disease When 
Treatment Started at Chronic Stage of EAE
To further explore the therapeutic effects of carnosol, the chronic 
EAE model was used in this study. Mice were treated starting 
from day 25 p.i., when CNS demyelination and chronic tissue 
damage were already established. While clinical scores in the 
PBS-injected mice remained at 2.5–3.0, the disease was signifi-
cantly alleviated in the carnosol-treated group after 10 days of 
treatment (p < 0.01–0.001; Figure 6A). The results indicate that, 
compared to the PBS-treated mice, carnosol showed potential 
for blockade of demyelination and recovery from neurological 
damage in the CNS, even when treatment was started after the 
peak of disease.

Compared to acute EAE (e.g., day 25 p.i.), in chronic EAE (e.g., 
day 60 p.i.; Figures  6B,C), rare infiltration inflammation cells 
were observed in the white matter of both PBS- and carnosol-
treated mice, suggesting that neuroinflammation is no longer the 
major pathogenesis in the chronic stage (23). On the other hand, 
while PBS-treated EAE mice tended to have more severe demy-
elination, as shown by LFB and MBP staining, the demyelination 
area was obviously decreased in carnosol-treated mice compared 
to PBS-treated control mice. Increased MBP expression after car-
nosol treatment compared to that before treatment (day 25 p.i.) 
suggests that carnosol might induce myelin protein regeneration 
(Figures 6D–G).

Carnosol Promoted an M1/M2 Phenotype 
Shift of Macrophage/Microglia
Given that microglia/infiltrating macrophages with the activated 
type 1 phenotype (M1) have a significant role in CNS inflamma-
tion during EAE chronicity, whereas type 2 phenotype (M2) cells 
are immunomodulatory and promyelinating (31, 32), we deter-
mined the effects of carnosol on these cells in the CNS tissues 
of EAE mice that were euthanized after 60 days p.i. The number 
of M1 microglia/infiltrating macrophages (iNOS+CD68+) was 
decreased and an increase in M2 (Arg1+CD68+) phenotype was 
observed in carnosol-treated mice compared to PBS-treated 
control (Figures  7A–D). These results indicated that, at least 
partially, carnosol inhibited demyelination and promoted myelin 
recovery through inhibiting M1 microglia and switching them to 
M2. To further confirm this hypothesis, primary microglia were 
cultured with or without carnosol. Carnosol effectively inhibited 
production of important mediators of microglia activation, e.g., 
TNF-α (Figure 7E), and expression levels of IL-1β, NOSII, and 
TNF-α were also significantly decreased (Figure  7F). These 
results indicated that carnosol inhibits the infiltration of M1 
phenotype microglia and switches it to a promyelinating and 
immunoregulatory M2 phenotype that promotes the process of 
myelin regeneration (32).

DISCUSSION

This work for the first time shows the beneficial effect of carnosol 
on both acute and chronic stages of EAE. Carnosol significantly 
decreased inflammatory infiltration into the CNS and the demy-
elination process, thus halting disease development. The role of 
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Figure 6 | Carnosol treatment alleviated the clinical severity of chronic experimental autoimmune encephalomyelitis (EAE) mice. (A) Clinical scores of carnosol- and 
PBS-treated mice at the chronic stage (treatment starting from day 25 p.i.) of EAE. Mice were sacrificed at day 60 p.i. (n = 5 each group), and spinal cords were 
harvested and evaluated for cell infiltration by H&E staining (B), which was scored on a 0–3 scale (C), and for demyelination by Luxol fast blue (D). (E) Demyelination 
area was measured using Image-Pro Plus software. (F) Sections of lumbar spinal cord from (A) were assayed for demyelination by MBP staining. (G) Quantitative 
analysis of MBP expression. MBP intensity was measured in the lesion areas in the lumbar spinal cord using Image-Pro. Data represent mean ± SD (n = 10 each 
group). Scale bar = 1 mm (B,D) or 100 µm (F). *p < 0.05, **p < 0.01, and ****p < 0.0001. Student’s t-test. One representative of three independent experiments is 
shown.
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carnosol in acute EAE is primarily due to its inhibitory effect 
on Th17 cell differentiation, CNS infiltration, and encephalito-
genicity, in which the STAT3 signaling pathway plays an impor-
tant role. Further, the shift of microglia/infiltrated macrophage 
phenotype from a pro-inflammatory (M1) to an immunoregula-
tory one (M2) may be an important mechanism underlying the 
therapeutic effect of carnosol on the chronic stage of EAE.

Carnosol, an ortho-diphenolic of abietane-type diterpene-
lactone, consists of an abietane carbon skeleton with hydroxyl 
groups at positions C-11 and C-12 and a lactone moiety across 
the B ring (18). Carnosol showed a broad range of physiological 
benefits and bio-pharmacological effects, as well as exerted strong 
anti-oxidant, anti-cancer, and neuroprotection effects (17, 20). 
Furthermore, carnosol was reported to exert anti-inflammatory 
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Figure 7 | Carnosol promoted an M2 phenotype in macrophages/microglia. 
Spinal cords of mice described in Figure 6 were stained for markers for M1 
[iNOS; (A)] and M2 [Arg-1; (B)] on microglia/infiltrating macrophages (CD68+ 
cells). (C,D) Quantitative analysis of the percentages of double positive cells. 
(E,F) Primary microglia were prepared from newborn B6 mice, stimulated 
with LPS (100 ng/ml), and treated with carnosol at different concentrations 
for 2 days and (E) supernatants were harvested for TNF-α production and  
(F) cells were collected for expression levels of IL-1β, NOSII, and TNF-α by 
real-time PCR. Glyceraldehyde 3-phosphate dehydrogenase was used as an 
internal control. Scale bar = 100 µm. Data are shown as mean values ± SD 
(n = 5 each group). ANOVA with Tukey’s multiple comparisons test was used. 
*p < 0.05 and **p < 0.01. One representative of three independent 
experiments is shown.
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effects by reducing cytokine release (e.g., IL-1, IL-6) and iNOS 
formation (18). Also, carnosol, as an anti-inflammatory 
and anti-oxidant agent, has been considered as a potentially 

promising therapeutic drug for many incurable diseases, such 
as neurodegeneration, cancer, and cardiovascular disorders (33, 
34). However, the mechanism underlying these functions has not 
been completely elucidated. Although it has already been shown 
that carnosol stimulates the MAPKs signaling pathway and 
down-regulates multiple transcription factors, including NF-κB 
as well as pro-inflammation protein such as COX-2 level (35–37), 
to our knowledge, this is the first study to show that carnosol 
treatment leads to an inhibition in Th17 differentiation and that 
it modulates microglial switch.

The major challenge for the clinical application of natural 
compounds is determining their detailed molecular mechanism 
(4). Indeed, the mechanism of carnosol’s action on T helper cell 
differentiation in autoimmune disease remains largely unknown. 
It has been suggested that carnosol suppresses inflammation by 
targeting NF-κB signaling (37, 38), whose activation has been 
found in MS brain lesions (39, 40) and peripheral blood (41), as 
well as in the development of EAE (42, 43). Further, IL-17 plays a 
key role in the pathogenesis of MS and EAE (9, 44). Specifically, 
activated STAT3 is considered to be necessary for IL-17 produc-
tion in mouse and human Th17  cells (45, 46). STAT3 controls 
various genes that contribute to the Th17 population cells includ-
ing the IL-17 locus itself (47), and binds to genes encoding tran-
scription factors that are critical for Th17 polarization, including 
Rorc, Irf4, and Batf (48). In our study, carnosol altered the level 
of Th17 lineage-associated cytokine IL-17. This finding suggests 
that carnosol inhibits polarization of T cells into Th17 cells, which 
may be due to carnosol’s ability to diminish Th17-associated 
cytokines by targeting the NF-κB signaling pathway. In response 
to cytokines, STAT3 is phosphorylated by receptor-associated 
Janus kinases and forms homo- or heterodimers that translocate 
to the cell nucleus, where they act as transcription activators. 
Here, we show that carnosol suppressed STAT3 phosphorylation 
at the site of tyrosine 705, in response to the ligand IL-6. These 
findings further identified the mechanism of carnosol through 
suppressed NF-κB and STAT3 phosphorylation to block Th17 
differentiation.

We have further identified the therapeutic effects of carnosol 
on chronic stage of EAE, and investigated the involvement of 
M1/M2 microglia shift as a potential mechanism of its action. 
Persistent CNS inflammation, particularly the activation of 
infiltrated macrophage/microglia, is recognized to be a crucial 
mechanism underlying EAE chronicity (49). Pro-inflammatory 
cytokines, including IL-1β, IL-6, and TNF-α, were secreted by 
these inflammatory cells, which, together with the accumulation 
of neurodegeneration inhibitors, form a hostile microenviron-
ment against remyelination and neural repair (24). Therefore, 
diminishing the inflammatory cytokines of the CNS niche and 
promoting its change to a supportive environment for neural 
repair and remyelination will be helpful for treatment. Here, 
we showed that carnosol suppressed infiltrated macrophage/
microglia activation both in EAE mice in  vivo and microglia 
culture in vitro. A shift from M1 to M2 phenotype was observed 
following carnosol treatment. Previous studies indicated that 
carnosol reduced LPS-induced iNOS mRNA and protein 
expression. Administration of carnosol resulted in a reduction 
of nuclear factor-kappa B (NF-κB) subunit translocation and 
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NF-κB DNA binding activity in activated macrophages (50). 
Further experimental data added proof that carnosol blockades 
the IL-1β induced nuclear translocation of NF-κBp65, indicat-
ing that it mainly regulates through the NF-κB signaling (38). 
These findings were consistent with our results and indicated that 
carnosol could switch infiltrated macrophages/microglia from 
M1 to M2 phenotype and may play an essential role in myelin 
protein recovery.

One of the major mechanisms contributing to the chronic 
progression in MS is loss of neurotrophic factor support for both 
oligodendrocytes and neurons, resulting in persistent damage to 
CNS tissue damage, i.e., demyelination, axonal degeneration, and 
neuronal dysfunction (23). Exploring a novel medicine that both 
targets neuroinflammation and promotes neuroregeneration 
will, therefore, be of great value. Recently, Wang et al. showed the 
protective role of carnosol against spinal cord injury (37). This 
study led us to determine whether carnosol has a neuroprotec-
tive function in demyelinating disease. In the present study, we 
observed that carnosol blocks demyelination by means of the M1/
M2 switch. However, no significant differences were observed in 
OPC differentiation in vitro or in the cuprizone-induced demy-
elination model (data not shown). This finding may illustrate 
that the underlying mechanism of carnosol-induced recovery 
in EAE mice is not due to its direct effect on oligodendrocyte 
differentiation/maturation, but rather an indirect effect through 
immunomodulation and reduced CNS inflammation and the 
M1/M2 switch, thus providing a supportive microenvironment 
for neural cells.

Although we demonstrated the efficacy of carnosol treat-
ment of EAE, the immunomodulatory mechanism is not clear. 
We showed that carnosol could suppress IL-17 and GM-CSF 
production of splenocytes, but we also found that carnosol exerts 
its anti-inflammatory effect on microglia. Increasing evidence 
shows that carnosol can cross the blood–brain barrier (BBB) 
as a neuroprotective agent. We, therefore, provide compelling 
evidence supporting an effective role of carnosol in inhibiting 
Th17 cell differentiation in the periphery and modulating micro-
glia phenotype by penetrating the BBB in the CNS.

In addition, a previous study showed that carnosol has anti-
tumor capacity through prevention of Treg cell differentiation, 
decreasing IL-4 and IL-10 production, and enhancing IFN-γ 
secretion in tumor-associated lymphocyte populations (51). 
Tumor Tregs are a highly heterogeneous population that arises 
through disparate pathways and mediates immunologic effects 
by various means including soluble cytokines (52). An explana-
tion of the principal mechanism of their increase would include 
a reaction to autoimmunity, tumor-specific factors, and control 
of inflammation. Although autoimmune disease and cancer both 
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Glial connexins (Cxs) form gap junction channels through which a pan-glial network plays

key roles in maintaining homeostasis of the central nervous system (CNS). In multiple

sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE),

expression of astrocytic Cx43 is lost in acute lesions but upregulated in chronic plaques,

while astrocytic Cx30 is very low in normal white matter and changes in its expression

have not been convincingly shown. In Cx30 or Cx43 single knockout (KO) mice and

even in Cx30/Cx43 double KO mice, acute EAE is unaltered. However, the effects of

Cx30/Cx43 deficiency on chronic EAE remains to be elucidated. We aimed to clarify

the roles of Cx30 in chronic neuroinflammation by studying EAE induced by myelin

oligodendrocyte glycoprotein peptide 35–55 in Cx30 KO mice. We found that Cx30

deficiency improved the clinical symptoms and demyelination of chronic but not acute

EAE without influencing CD3+ T cell infiltration. Furthermore, increased ramified microglia

in the naïve state and induced earlier and stronger microglial activation in the acute and

chronic phases of EAEwas observed. These activatedmicroglia had an anti-inflammatory

phenotype, as shown by the upregulation of arginase-1 and brain-derived neurotrophic

factor and the downregulation of nitric oxide synthase 2. In the naïve state, Cx30

deficiency induced modest enlargement of astrocytic processes in the spinal cord gray

matter and a partial reduction of Cx43 expression in the spinal cord white matter. These

astrocytes in Cx30 KO mice showed earlier and stronger activation during the acute

phase of EAE, with upregulated A2 astrocyte markers and a significant decrease in

Cx43 in the chronic phases. Spinal cord neurons and axons were more preserved

in Cx30 KO mice than in littermates in the chronic phase of EAE. These findings

suggest that Cx30 deficiency increased ramified microglia in the CNS in the naïve state

and improved chronic EAE through redirecting microglia toward an anti-inflammatory

phenotype, suggesting a hitherto unknown critical role of astrocytic Cx30 in regulating

microglial number and functional state.

Keywords: astrocyte, chronic neuroinflammation, connexin, experimental autoimmune encephalomyelitis,

microglia, multiple sclerosis
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory demyelinating disease
of the central nervous system (CNS) (1). It initially presents
as relapsing remitting MS (RRMS) but later evolves into
secondary progressive MS (SPMS) in ∼20% of patients, even
after disease-modifying therapies (DMTs) are introduced (2, 3).
Most DMTs, mainly targeting the peripheral immune system,
can effectively reduce relapses in RRMS; however, they are
of little benefit for chronic progression in SPMS (4–6). Thus,
chronic progression in MS is currently a matter of concern
for research and drug development. Recently, siponimod (7)
and ozanimod (8), new functional antagonists of sphingosine-
1-phosphate receptor 1 (S1P1), were reported to be effective
for preventing disability progression in SPMS. These drugs may
directly act on glial cells harboring S1P1 such as microglia and
astroglia, in addition to their inhibitory effects on lymphocyte
egress from the secondary lymphoid organs (9–11). In chronic
MS lesions, persistent demyelination with varying degrees of
remyelination and neuroaxonal degeneration are accompanied
by the presence of activated microglia but few T cells (12,
13), suggesting a key role of microglia, which are not targeted
by the peripherally acting DMTs, in chronic inflammation in
SPMS.

Connexins (Cxs) form gap junction (GJ) channels, which
allow the intercellular exchange of ions and secondary
messengers (14). In the CNS, astrocytes express Cx43, Cx30, and
Cx26, while oligodendrocytes express Cx47, Cx32, and Cx29
(15–17). These Cxs constitute a pan-glial network through GJ
channels and play key roles in maintaining CNS homeostasis
(18–20). We and others have reported dynamic changes of
glial Cxs in MS and Baló’s concentric sclerosis lesions (21–23).
Oligodendrocytic Cx47 and Cx32 are persistently lost in acute
and chronic MS plaques, while astrocytic Cx43 is lost in acute
lesions and then upregulated in chronic astrogliotic plaques
(22–24). Similar changes in Cx47, Cx32, and Cx43 were also
observed in acute and chronic experimental autoimmune
encephalomyelitis (EAE), an animal model of MS (25–28). These
findings suggest the involvement of glial Cxs in inflammatory
demyelination.

Consistent with this notion, oligodendrocytic Cx32 knockout
(KO) mice developed aggravated acute and chronic EAE, with
increased demyelination despite a similar degree of inflammation
upon immunization with myelin oligodendrocyte glycoprotein
(MOG), compared with wild type (WT)mice (25). By contrast, in
astrocytic Cx30 or Cx43 single KO mice and even in Cx30/Cx43
double KO mice, acute EAE was unaltered (29). However, it
remains to be elucidated whether a deficiency in Cx30 or Cx43
influences chronic EAE.

Because the expression level of astrocytic Cx30 is very low
in normal white matter, changes of Cx30 in MS or EAE
lesions have not been well demonstrated (22, 23, 30). Cx43
exists in both mature and immature astrocytes, while Cx30 is
expressed only in mature astrocytes (31–33), thus gliotic scar
astrocytes show an upregulation of Cx43 but no detectable
changes of Cx30 (23). Similarly, cultured astrocytes express
detectable levels of Cx43 but not Cx30, although they can

express Cx30 after very long term culture (33, 34). These
features of Cx30 make it difficult to study its dynamics and
roles in inflammatory demyelination, and therefore there have
been few studies of Cx30 in EAE. However, the non-channel
functions of Cxs have recently gained increasing attention: Cx30
can change astrocyte morphology, thereby modulating astrocyte
functions such as synaptic transmission (35). Cxs also inhibits
DNA synthesis, which affects the gene expression network
(36, 37).

In the present study, we aimed to clarify the roles of Cx30
in chronic neuroinflammation by studying chronic EAE in
Cx30 KO mice. Here, we report Cx30 deficiency induces anti-
inflammatory microglia and improves clinical symptoms and
demyelination of chronic but not acute EAE.

MATERIALS AND METHODS

Ethics Statement
The experimental procedures were designed to minimize the
number of animals used as well as animal suffering. All animal
experiments were carried out according to the guidelines for
proper conduct of animal experiments published by the Science
Council of Japan and the ARRIVE (Animal Research: Reporting
of in vivo Experiments) guidelines for animal research. Ethical
approval for the study was granted by the Animal Care and Use
Committee of Kyushu University (#A29-146-3).

Animals and Genotyping
Twelve-to-sixteen-week-old female Cx30 KO mice were used
in this study. Cx30 KO mice (38) that had been backcrossed
to C57BL/6J at the archiving center were purchased from the
EuropeanMouseMutant Archive. C57BL/6 mice were purchased
from KBT Oriental (Tosu, Japan). All mice were bred and
maintained under specific pathogen free conditions in the Center
of Biological Research, Graduate School of Medical Sciences,
Kyushu University. The Cx30 KO mice were genotyped by PCR
of DNA obtained from tail biopsies. Primer pairs for detecting
Cx30 KO were Cx30 KO-1 (LACZ e Neo): 5′-GGT ACC TTC
TAC TAA TTA GCTTGG-3′; Cx30 KO2 (LACZ e Neo): 5′-AGG
TGGTACCCATTGTAGAGGAAG-3′; and Cx30 KO-3 (LACZ
e Neo): 5′-AGC GAG TAA CAA CCC GTC GGA TTC-3′. The
Cx30 KO and WT littermate DNA products were 460 and 544
bps in size, respectively. Cx30 KOmice and their littermates were
principally used for the animal experiments, unless otherwise
specified.

Induction and Clinical Evaluation of EAE
EAE was induced by immunization of mice with 200 µg of
MOG35−55 peptide (TS-M704-P; MBL, Nagoya, Japan) in 50
µl phosphate buffered saline (PBS) emulsified in an equal
volume of complete Freund’s adjuvant (CFA) containing 1
mg/ml Mycobacterium tuberculosis H37RA (#231131; BD Difco,
Lawrence, KS, USA), followed by intraperitoneal injections of 500
ng pertussis toxin (# 180-A1; List Biological Laboratories Inc.,
Campbell, CA, USA) on days 0 and 2. Mice were examined daily
for signs of EAE and scored as follows: 0, no disease; 1, limp tail;
2, abnormal gait and hind limb weakness (shaking); 2.5, paralysis
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of one hind limb; 3, paralysis of two hind limbs; 3.5, ascending
paralysis (able to move around); 4, tetraplegia; 5, moribund.

Tissue Preparation
Animals were deeply anesthetized by isoflurane (Pfizer Japan Inc.,
Tokyo, Japan), and perfused transcardially with PBS and then
with 4% paraformaldehyde (PFA) in 0.1M PBS. Spinal cords,
brains and optic nerves were carefully dissected. The tissues
were fixed overnight in cold 4% PFA at 4◦C, then processed
into paraffin sections (5µm). For frozen sections (20µm), spinal
cords were harvested and fixed overnight in 4% PFA using the
same protocol as above and sequentially displaced with 15 and
30% sucrose in PBS for 24 h each at 4◦C. The resulting tissues
were embedded in Tissue-Tek O.C.T. Compound (4583, Sakura
Finetek, Torrance, CA, USA) and stored at−80◦C.

Histopathological and
Immunohistochemical Analyses
Paraffin-embedded sections of spinal cord were stained with
hematoxylin and eosin (HE). Paraffin-embedded sections of
optic nerves were subjected to immunohistochemistry using an
indirect immunoperoxidase method. After deparaffinization,
endogenous peroxidase was quenched with 0.3% hydrogen
peroxide in absolute methanol for 30min. The sections
were permeabilized with 0.1% Triton in PBS (PBS-T) for
10min, washed using Tris-HCl for 5min, dipped in 10mM
citrate buffer, and then autoclaved (120◦C, 10min). All
sections were cooled to room temperature and incubated with
anti-brain-derived neurotrophic factor (BDNF) antibodies
overnight at 4◦C (Supplementary Table 1). The next day,
after rinsing, sections were labeled with either a streptavidin-
biotin complex or an enhanced indirect immunoperoxidase
method using Envision (K4003, Dako, Glostrup, Denmark);
3,3-diaminobenzidine tetrahydrochloride (DAB; D5637,
Sigma-Aldrich, Tokyo, Japan) was used for the DAB
color reaction. Finally, sections were counterstained with
hematoxylin.

Confocal Microscope
Immunofluorescence Analysis
Paraffin sections of brain and optic nerves were deparaffinized
in xylene and rehydrated through ethanol. After washing
and autoclaving, sections were incubated with anti-arginase1,
anti-nitric oxide synthase 2 (NOS2), anti-Iba-1, anti-glial
fibrillary acidic protein (GFAP), anti-Cx43, anti-Cx30,
anti-myelin basic protein (MBP), anti-NeuN, purified anti-
neurofilament H (NF-H) (SMI-31), and anti-IL-34 antibodies
(Supplementary Table 1) overnight at 4◦C. The following day,
the sections were washed, incubated with Alexa Fluor 488- or
546-conjugated secondary antibodies (1:1,000; Thermo Fisher,
Rockford, IL, USA) and 4′,6-diamidino-2-phenylindole (DAPI;
Sigma-Aldrich, Tokyo, Japan) overnight at 4◦C, then dehydrated
and sealed with Permafluor (#TA-030-FM; Thermo Scientific,
Fremont, CA, USA). The frozen sections of spinal cords were
cut at 20µm with a cryostat microtome (Leica CM 1850,
Leica Microsystems GmbH, Wetzlar, Germany) and floated in
PBS-T. The sections were washed 3 times in PBS-T, blocked

with 10% normal goat serum in PBS for 2 h, then incubated
overnight at 4◦C with anti-arginase1, anti-NOS2, anti-Cx30,
anti-Cx43, anti-Iba-1, anti-GFAP, anti-CD45, anti-CD3, anti-
C3, and anti-CD169 antibodies (Supplementary Table 1).
The sections were also treated with anti-S100a10 antibody
in the same way but without blocking by normal goat serum
(Supplementary Table 1). After rinsing the next day, the
sections were incubated with Alexa Fluor 488- or 546-conjugated
secondary antibodies (1:1,000; Thermo Fisher) or FluoroMyelin
Red Fluorescent Myelin Stain (1:1,000; #F34652; Thermo Fisher)
and DAPI overnight at 4◦C, then washed in PBS-T and sealed
with Permafluor. Immunofluorescence was captured by a
confocal laser microscope (Nikon A1; Nikon, Tokyo, Japan),
equipped with 405, 488, and 561 nm laser lines, at the same
magnification, laser intensity, gain, offset values, and pinhole
settings. Quantification of immunofluorescence was performed
using ImageJ version 1.6.0_24 (Windows version of NIH Image;
downloaded from https://imagej.nih.gov/ij/download.html) on
three-to-five lumbar spinal cord sections for each animal in each
group.

Quantification of Myelin Density and Cell
Infiltration in the Spinal Cord, Brain, and
Optic Nerve
For the quantification of GFAP, Iba-I, Cx30, Cx43, CD3, CD169,
CD45, S100A10, C3, BDNF, NOS2, and IL-34, fluorescent
images from the anterior part of the lumbar spinal cord,
cerebellum, cerebrum, and optic nerve were analyzed (ImageJ
version 1.6.0_24) using the area fraction technique as previously
described (39, 40). Briefly, identical microscope settings were
applied to all photographs from each experiment and images
from the same areas were acquired. Images were de-noised
and set to the same threshold baseline across experimental
groups for each antibody to measure the area of cellular
staining, instead of cell density measurement or cell number
counting, because most infiltrating cells were focally clustered.
For the quantification of myelin and MBP immunostaining
results, whole spinal cord images were captured under the
microscope and separated into anterior or posterior parts for
analysis. SMI-31 immunostaining images were captured under
the microscope and spinal cord anterior white matter areas
were used for analysis. Image analysis was performed using
ImageJ software. Mean pixel intensity values were compared
between genotypes (41). For the quantitative analyses of NeuN-
positive cells, transverse sections of the spinal cord were divided
into the left and right regions by a vertical line through the
central canal. The size of each microscopic field was 1.6384
mm2. The left or right positive cell region areas (0.33–0.44
mm2) were calculated automatically by ImageJ. NeuN-positive
cells were counted manually and used to calculate the cell
density (neurons/mm2) (42). The investigator performing the
analysis was blinded to the genotypes. All assessments were
made from three-to-five sections per mouse (n = 3 to 8 mice
in each group). In the quantification graph, the mean value
of three-to-five sections was used as scatter dots to represent
each mouse.
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Immunocolocalization Analysis
We delineated the same areas of focus in the spinal cord
white matter, optic nerve, and arbor vitae of the cerebellum
in all samples to be analyzed. Colocalization of arginase-1
and Iba-1 was expressed as a Pearson’s correlation coefficient
and the intensity correlation analysis plugin of ImageJ was
used (43). Pearson’s correlation values range from 1 to −1,
with 1 representing complete positive correlation and −1 a
negative correlation, with zero representing no correlation. All
quantifications were obtained from a minimum of three sections
from the spinal cord, optic nerve, cerebellum, and cerebrum per
mouse.

Microglial Circularity Analysis
ImageJ was used to automatically calculate the circularity of
microglial cells (circularity= 4πS/L2). Cells with circularity close
to 1 were regarded as having a morphology close to round,
indicating an activated state (44, 45).

Microglial Cell Isolation and Flow
Cytometry
Brains and spinal cords were harvested and homogenized.
Mononuclear cells were separated with a 30 and 70% Percoll
(GE Healthcare, Tokyo, Japan) gradient as previously described
(46). Cells were stained with anti-CD45-PerCP and anti-CD11b-
PE/Cy7 antibodies, sorted and analyzed on a SH800 Cell Sorter
(Sony Corporation, Tokyo, Japan).

Gene Expression Microarray
Total RNA was isolated from cells using an RNeasy Mini Kit
(Qiagen) according to the manufacturer’s instructions. RNA
samples were quantified by an ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA) and the
quality was confirmed with a 2200 TapeStation (Agilent
technologies, Santa Clara, CA, USA). Total RNA (2 ng) was
amplified, labeled using a GeneChip R© WT Pico Kit, and
hybridized to an Affymetrix GeneChip R© Mouse Transcriptome
Array 1.0 according to the manufacturer’s instructions
(Affymetrix, Santa Clara, CA, USA). All hybridized microarrays
were scanned by an Affymetrix scanner. Relative hybridization
intensities and background hybridization values were calculated
using the Affymetrix Expression Console R©. These gene array
assay results were uploaded to the gene expression omnibus
repository (accession number is GSE68202) in the National
Center for Biotechnology Information homepage (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112621).

Data Analysis and Filter Criteria
The raw signal intensities of all samples were normalized by
a quantile algorithm with Affymetrix R© Power Tool version
1.15.0 software. To identify upregulated or downregulated genes,
we calculated Z-scores [Z] and ratios (non-log scaled fold-
change) from the normalized signal intensities of each probe for
comparison between control and experiment samples. Then, we
established criteria for regulated genes: upregulated genes had a
Z-score ≥2.0 and ratio ≥1.5-fold, and downregulated genes had
a Z-score ≤ −2.0 and ratio ≤0.66. Gene set enrichment analysis

(47, 48) (GSEA; www.broadinstitute.org/gsea) was performed
to investigate deviations of particular gene sets (e.g., Anti-
inflammatory set, Pro-inflammatory set; set S) according to a
previous report (48, 49). Briefly, after we obtained expression
data sets for each study group, we calculated an enrichment
score (ES) that reflected the degree to which a set “S” was over-
represented at the extremes (top or bottom) of the entire ranked
list “L.” The score was calculated by walking down the list L and
increasing a running-sum statistic when we encountered a gene
in S. The ES is the maximum deviation from zero encountered in
the randomwalk. After the estimation of statistical significance of
ES, we controlled the proportion of false positives by calculating
the false discovery rate (FDR). When the normalized p-value was
<0.05 and the FDR was<0.25, the ES was considered significant.

Statistical Analysis
Data are expressed as the mean ± standard error of mean
(S.E.M.). The area under curve (AUC) of the overall disease
severity was calculated for each mouse to compare the disease
course of WT and KO mice using the non-parametric Mann-
Whitney U-test (50) Here, acute (onset to day 24) and chronic
phases (day 25 and thereafter) were separately analyzed. The
postimmunization date when WT groups reached a peak score
of 2 or higher was identified as the “peak” (51). The incidence,
day of onset, and peak clinical score of EAE were compared using
the unpaired t-test with Welch’s correction. In EAE experiments,
mice that died before the intended day of sacrifice were excluded
from statistical analyses. Cell percentages and histological data
were assessed by the unpaired t-test with Welch’s correction,
two-way ANOVA, or one-way ANOVA. A p-value < 0.05 was
considered statistically significant. Analyses were performed
using Graph Pad Prism 7.0 software (Graph Pad, La Jolla, CA,
USA).

RESULTS

Cx30 Deficiency Induces Modest
Morphological Changes and Cx43
Reduction in Spinal Cord Astrocytes but
No Changes in Myelin Density
In WT littermate mice in the naïve state, Cx30 was expressed
predominantly on astrocytes in the graymatter of the spinal cord,
cerebellum and cerebrum, while Cx30 expression was very low
in white matter astrocytes, including the optic nerve (Figure 1A;
Supplementary Figure 1), which is consistent with our previous
study in humans (22). By contrast, Cx30 was completely absent in
Cx30 KO mice (Figures 1A–C; Supplementary Figure 1). GFAP
immunostaining revealed neithermorphological nor quantitative
changes in GFAP+ astrocytes in the white matter between WT
and Cx30 KOmice, whereas GFAP+ astrocytes in the gray matter
had thicker processes and showed a tendency to be increased in
Cx30 KO mice than in WT mice (p= 0.0575, Figures 1A,D,E).

Because astrocytic Cx30 and Cx43 have similar functions
and partly overlapping permeation profiles (15), we examined
whether Cx43 was upregulated to compensate for the lack of
Cx30 in Cx30 KOmice. GFAP and Cx43 double immunostaining
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FIGURE 1 | Morphology and number of astrocytes, and expressions of Cx30 and Cx43 in WT and Cx30 KO mice. (A) Confocal images showing immunostaining

for Cx30 and GFAP in the anterior part of spinal cord sections from naïve WT (littermate) and Cx30 KO mice. Higher magnification images show co-labeling of GFAP

and Cx30 in single astrocytes, which are highlighted by a yellow circle in the gray matter or a white square in the white matter of each figure. Scale bars, 200µm.

(B,C) Quantification of Cx30+ area percentages in the white (B) and gray (C) matter. (D,E) Quantification of GFAP+ area percentages in the white (D) and gray (E)

matter. (F) Confocal images showing immunostaining for GFAP and Cx43 in spinal cords from naïve WT (littermate) and Cx30 KO mice. Higher magnification images

show co-labeling of GFAP and Cx43 in single astrocytes, which are highlighted by a yellow circle in the gray matter or a white square in the white matter of the figure.

Scale bars, 200µm. (G,H) Quantification of Cx43+ area percentages in the white matter (G) and gray matter (H). Means ± S.E.M. are shown. Statistical differences

were determined by unpaired t-test with Welch’s correction. N.S. = not significant, n indicates number of mice and each scatter dot represents individual mice in each

group.

Frontiers in Immunology | www.frontiersin.org 5 November 2018 | Volume 9 | Article 2588107

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Fang et al. Connexin 30 Attenuates Chronic EAE

revealed that Cx43 was more abundant in the gray matter than
in the white matter of the spinal cord in both WT and Cx30 KO
mice (Figures 1F–H). There was no significant difference in Cx43
immunoreactivity in the spinal cord graymatter betweenWT and
Cx30 KO mice, but Cx43 levels were significantly reduced in the
spinal cord white matter of Cx30 KO mice compared with WT
mice (p = 0.0005; Figures 1F–H). These findings are consistent
with the observation that Cx30 but not Cx43 can compensate for
other Cxs in CNS tissues (52). This suggests that Cx30 deficiency
causes modest enlargement of astrocytic processes in the spinal
gray matter and a partial reduction of Cx43 expression in spinal
white matter astrocytes. However, myelin density did not differ
significantly between Cx30 KO mice and WT littermates in the
naive state by Fluoromyelin staining or MBP immunostaining
(Supplementary Figures 2A–D).

Cx30 Deficiency Increases the Numbers of
Ramified Microglia
Unexpectedly, Cx30 KO mice showed an apparent increase
in the numbers of Iba-1+ microglia in the spinal cord gray
matter, optic nerve, cerebellum, and cerebrum compared with
WT littermate mice (p = 0.0055, p = 0.0274, p = 0.0015,
and p = 0.0012, respectively), but not in the spinal cord
white matter (Figures 2A–E). Morphologically, microglia in
Cx30 KO mice had thin soma and delicate radially-projecting
processes (Figure 2A inset), indicating that these microglia
were in a resting state (ramified phenotype). There were
no significant differences in the microglia circularity index
between Cx30 KO and WT mice in the spinal cord gray
and white matter, optic nerve, cerebrum, and cerebellum
(Figures 2B–E). Flow cytometric analyses demonstrated that
numbers of CD45dimCD11b+ microglia in isolated viable cells
from the brain were significantly increased in Cx30 KO mice
compared with WT littermate mice (p= 0.0025; Figures 2F,G).

To further characterize the microglial phenotype in Cx30
KO mice, gene expression profiles were analyzed by RNA
microarray using microglia isolated from the spinal cords
and brains of naïve WT and Cx30 KO mice. Microglia from
Cx30 KO mice showed similar expression levels of anti-
inflammatory and pro-inflammatory genes to WT microglia
in both the spinal cord and brain (Table 1 and Figure 3A).
GSEA analysis revealed similar gene enrichments in the spinal
cord and brain between naive WT and KO mice (Table 1 and
Figures 3B–E). We also performed GSEA analysis to characterize
the expression profiles of cytokines/chemokines, complement,
alarmin, reactive oxygen species (ROS), MHC, and tumor genes.
Among them, Cx30 KO microglia from the naïve spinal cord
but not brain demonstrated significantly lower expression levels
of cytokines/chemokines, alarmin, MHC, and tumor genes,
indicating a less reactive state to inflammatory insults (Table 1
and Supplementary Figures 3A,C). These findings indicate that
the increase in microglia was widespread in the CNS of naïve
Cx30 KO mice compared with WT mice; these microglial were
not activated but rather in a resting state, with a ramified
morphology and low cytokine/chemokine, alarmin, MHC, and
tumor gene production.

Cx30 Deficiency Attenuates the Clinical
Severity and Demyelination of Chronic but
Not Acute EAE Without Influencing T Cell
Infiltration
Cx30 KO mice did not show any significant differences in
the incidence, onset day, and clinical severity (peak score
and acute phase AUC from Day 9 to 24) of acute EAE
compared with WT mice, in agreement with a previous study
(29) (Figure 4A). By contrast, clinical severity in the chronic
EAE phase (chronic phase AUC from Day 25 to 59) was
significantly attenuated in Cx30 KO mice compared with WT
mice. HE staining showed that the infiltration of inflammatory
cells into the spinal cord was markedly reduced in Cx30
KO mice compared with WT mice in the chronic EAE
phase (Figure 4B). Moreover, the extent of demyelination was
significantly decreased in the chronic but not acute phase of EAE
in Cx30 KO mice compared with WT mice, in both the anterior
and posterior parts of the spinal cord (p = 0.0031 and p = 0.002,
respectively, by Fluoromyelin staining; and p = 0.0328 and p
= 0.0167, respectively, by MBP immunostaining; Figures 4C–E,
Supplementary Figures 2E,F). CD45+ immunocytes and CD3+

T cells were not significantly different between Cx30 KO andWT
mice in either acute or chronic phases, although CD45+ cells
tended to be increased in Cx30 KO mice compared with WT
mice at acute phase (p= 0.0622; Figures 4C,D,F). We performed
CD169 immunostaining to discriminate peripheral blood-borne
macrophages from microglia and other immune cells, and found
that CD169+ macrophages were significantly lower in Cx30 KO
mice compared with WTmice in the chronic phase (p= 0.0336),
but not the acute phase (Figures 5A–C).

Microglia in Cx30 KO Mice Are Widespread
and Highly Activated in the Chronic Phase
of EAE
Intriguingly, Iba-1+ microglial cell numbers were consistently
greater in both the white and gray matter of the spinal cord
in Cx30 KO mice compared with WT mice in the acute and
chronic phases (white matter, p = 0.0106 on Day 13 and p =

0.0274 on Day 59; gray matter, p = 0.0483 on Day 13 and p
= 0.0111 on Day 59; Figures 5D,E,G). The above-mentioned
increased tendency of CD45+ cells in the acute phase in Cx30
KO mice might be explained by the earlier and stronger increase
of Iba-1+ cells compared with WT mice. In the spinal cord
white matter, microglial circularity was significantly greater in
Cx30 KO mice than in WT mice in both the acute (p = 0.045)
and chronic phases (p = 0.0418; Figure 5H). This increase in
Iba-1+ cells in the chronic phase of EAE was also observed
in the optic nerve (p = 0.0067) and cerebellum (p = 0.0312)
of Cx30 KO mice (Supplementary Figures 4A,B,D,E). In the
cerebellum, microglial circularity was significantly greater (p =

0.0121) in Cx30 KO mice than in WT mice but there was
no significant increase of microglial circularity in the optic
nerve (Supplementary Figures 4C,F). These findings suggest
that a widespread increase and activation of Iba-1+ microglia in
inflamed CNS tissues, especially the spinal cord white matter, is a
characteristic feature of Cx30 KO mice.
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FIGURE 2 | Microglial morphology and numbers in CNS tissues of WT and Cx30 KO mice. (A) Representative images of Iba-1 immunostaining of naïve WT (littermate)

and Cx30 KO mouse spinal cord. Scale bars, 200µm. (B–E) Quantification of Iba-1+ cell area fractions and microglia circularity in the white and gray matter of the

anterior spinal cord (B), optic nerve (C), cerebellum (D), and cerebrum (E). (F) Gating strategy used to determine viable mononuclear cells for further analysis. In the

whole brain suspension, a gate was created on the non-debris population. Inside this population, the microglial cells were gated based on CD45/CD11b intensity.

SSC, Side scatter; FSC, Forward scatter. Representative flow cytometric analysis of microglia (CD45dim CD11b+ cells) isolated from WT (littermate) and Cx30 KO

mouse brains. Numbers on plots are percentages of double-positive cells among the gated viable cells. (G) Percentages of CD45dim CD11b+ microglia and CD45+

CD11bdim cells in the total cell population (3 × 104) isolated from naïve WT (littermate) and Cx30 KO mouse brains. Data are from 6 WT mice and 9 Cx30 KO mice.

Means ± S.E.M. are shown. Statistical differences were determined using the unpaired t-test with Welch’s correction. N.S. = not significant. n indicates the number of

mice and each scatter dot represents individual mice in each group.
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TABLE 1 | Summary of GSEA results.

Gene category Naive spinal cord EAE spinal cord Naive brain EAE brain

WT vs. Cx30 KO WT vs. Cx30 KO WT vs. Cx30 KO WT vs. Cx30 KO

Pro-inflammatory 0.392 (WT) 0.007 (WT) 0.571 (Cx30 KO) 0.016 (WT)

Anti-inflammatory 0.083 (WT) 0.092 (WT) 0.234 (WT) 0.450 (WT)

Cytokines/Chemokines <0.001 (WT) <0.001 (WT) 0.773 (WT) 0.252 (Cx30 KO)

Complement 0.997 (Cx30 KO) 0.001 (WT) 0.576 (WT) 0.348 (Cx30 KO)

Alarmin <0.001 (WT) 0.005 (WT) 0.898 (Cx30 KO) 0.061 (WT)

ROS 0.524 (WT) 0.005 (WT) 0.093 (Cx30 KO) 0.363 (Cx30 KO)

MHC <0.001 (WT) 0.008 (WT) 0.173 (WT) <0.001 (Cx30 KO)

Tumor <0.001 (WT) <0.001 (WT) 0.967 (Cx30 KO) 0.001 (Cx30 KO)

Normalized p-values by gene set enrichment analysis between WT (C57BL/6) and Cx30 KO mice are shown. Upregulated groups are indicated in parenthesis for each category.

Microglia in Cx30 KO EAE Mice Have an
Anti-inflammatory Phenotype in the
Chronic Phase of EAE by Gene Expression
Microarrays
To further characterize the activated microglial phenotype
in the chronic phase of EAE in Cx30 KO mice, we used
MOG35−55-induced EAE and isolated microglia from the spinal
cords and brains of Cx30 KO and WT mice at Day 39 after
immunization, when clinical scores and AUC in the chronic
phase were significantly lower in Cx30 KO mice than in WT
mice (p = 0.0023). Microglia isolated from Cx30 KO EAE
spinal cords and brains had lower expression levels of pro-
inflammatory genes, such as IL-1b, Nos2, Tnf, and Ptgs2, but
no significant changes in anti-inflammatory gene levels, except
for an increase in the Mrc1gene (Figure 3F). GSEA analysis
revealed that microglia from Cx30 KO mouse spinal cord and
brain had less pro-inflammatory gene expressions than those
from WT mice in the chronic EAE phase (spinal cord, ES
= 0.721, normalized p = 0.007, FDR = 0.018; brain, pro-
inflammatory genes; ES = 0.643, normalized p = 0.016, FDR =

0.037;Table 1 and Figures 3G–J). Furthermore, gene expressions
of cytokines/chemokines, complements, alarmins, ROS, MHC,
and tumor antigens in spinal cord but not brain microglia
were significantly less in Cx30 KO than in WT mice in the
chronic EAE phase (Table 1 and Supplementary Figures 3B,D).
These findings indicate that the increased numbers of activated
microglia in Cx30 KO mice have a reduced pro-inflammatory
phenotype, especially in the spinal cord, in the chronic EAE
phase.

Cx30 KO Mice Upregulate Arginase-1 and
BDNF but Downregulate NOS2 in the
Chronic Phase of EAE
To confirm the anti-inflammatory nature of the activated
microglia in the CNS tissues of Cx30 KO mice in the chronic
EAE phase, we performed double-staining for Iba-1 and
arginase-1, an anti-inflammatory gene. Colocalization of Iba-1
and arginase-1 was more frequently observed in the optic nerve
and cerebellum of Cx30 KO mice compared with WT littermate
mice (p = 0.012, and p = 0.0041, respectively; determined

by higher mean Pearson’s coefficient values; Figures 6A–D),
although differences in colocalization levels between WT and
Cx30 KO mice did not reach statistical significance in the
spinal cord, possibly because of the infiltration of peripheral
blood-borne macrophages (Figures 6E,F). Furthermore, in
the optic nerve of Cx30 KO mice, BDNF immunoreactivity
was significantly greater compared with WT mice (p =

0.0019; Supplementary Figures 5A,B). By contrast, NOS2
immunoreactivity in the optic nerve, cerebellum, and spinal cord
white matter was significantly lower in Cx30 KO mice than in
WT mice (p = 0.0003, p = 0.0032, and p = 0.0047, respectively;
Supplementary Figures 5C–H). These findings indicate that
microglia in Cx30 KO mice tended to have an anti-inflammatory
phenotype, which is more evident in the CNS areas where
peripheral blood-borne macrophages are rare during chronic
EAE.

Cx30 Deficiency Induces the Earlier and
Stronger Activation of A2 Astrocytes
During EAE
Compared with naïve spinal cord, numbers of GFAP+ astrocytes
in the white and gray matter of the spinal cord increased
significantly in the chronic EAE phase in both WT and Cx30 KO
mice (white matter, p = 0.0159 and p = 0.0003, respectively; and
gray matter, p = 0.0008 and p = 0.0014, respectively, at Day 59)
but not in the acute phase, except for GFAP+ astrocytes in the
gray matter of Cx30 KO mice at Day 16 (p = 0.0154; Figure 7A;
Supplementary Figures 6A–D). However, Cx30 KO mice had
significantly more GFAP+ astrocytes in the spinal cord white
and gray matter (white matter; p = 0.0341 on Day 13 and gray
matter; p = 0.0006 on Day 16) during the acute phase compared
with WT mice, whereas this difference was not evident in the
chronic phase in either the white or gray matter, suggesting the
earlier and stronger activation of astrocytes in Cx30 KO mice
(Figures 7A–C).

In WT mice, Cx30 immunoreactivity was unchanged
throughout the clinical course of EAE in the spinal white matter,
but compared with the naïve state it was increased significantly
in the spinal cord gray matter in the chronic stage (p =

0.0327; Figures 7A,D,E; Supplementary Figures 6E,F). In Cx30
KO mice, Cx30 immunoreactivity was not detected at any stage
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FIGURE 3 | Microarray analysis of microglia isolated from spinal cords and brains of WT (C57BL/6) and Cx30 KO mice. (A) Cluster analysis of gene expression arrays

according to anti-inflammatory and pro-inflammatory genes of naïve brain and spinal cord from WT (C57BL/6) and Cx30 KO mice. Color keys on each column

represent Z scores for each gene. (B–E) Enrichment plots for the anti-inflammatory (B,C) and pro-inflammatory (D,E) genes of naive spinal cords (B,D) and brains

(C,E) from WT (C57BL/6) and Cx30 KO mice. (F) Cluster analysis of gene expression arrays according to anti-inflammatory and pro-inflammatory genes of chronic

EAE brains and spinal cords from WT (C57BL/6) and Cx30 KO mice. Color keys on each column represent Z scores for each gene. (G–J) Enrichment plots for the

anti-inflammatory (G,H) and pro-inflammatory (I,J) genes of chronic EAE spinal cords (G,I) and brains (H,J) from WT (C57BL/6) and Cx30 KO mice. The relative gene

positions are indicated by the straight lines (line plot) under each graph. Lines clustered to the left represent higher ranked genes in the ranked list.

Frontiers in Immunology | www.frontiersin.org 9 November 2018 | Volume 9 | Article 2588111

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Fang et al. Connexin 30 Attenuates Chronic EAE

FIGURE 4 | Improvement of clinical severity and demyelination in the chronic but not acute phase of EAE in Cx30 KO mice. (A) EAE clinical score changes in WT

(littermate) and Cx30 KO mice. The severity of disease was separately analyzed according to acute (Days 9–24) and chronic (Days 25–59) phases by evaluating the

area under the curve (AUC). Data shown are from a single experiment representative of four independent experiments including a total of 42 mice; p-values of the

AUC were determined by the Mann-Whitney U-test. There was no significant difference in incidence, day of onset, or peak clinical score between WT (littermate) and

Cx30 KO mice in the acute EAE phase. Data for the following parameters are shown as the mean ± S.E.M.: day of EAE onset, and peak clinical score of mice that

developed EAE. Statistical differences were determined using the unpaired t-test with Welch’s correction. (B) HE staining of spinal cords in the chronic EAE phase

(Day 59). Scale bars, 200µm in the upper panels and 100µm in the lower panels. (C,D) Confocal images showing immunostaining for Fluoromyelin and CD45 in

spinal cord sections from WT (littermate) and Cx30 KO mice in the acute (Day 13) and chronic (Day 59) EAE phases. Scale bars, 200µm. (E) Quantification of myelin

density in the anterior and posterior parts of spinal cords from WT (littermate) and Cx30 KO mice in the acute (Day 13) and chronic (Day 59) EAE phases. (F)

Quantification of the CD45+ cell area fraction in the anterior spinal cords from WT (littermate) and Cx30 KO EAE mice in the acute (Day 13) and chronic EAE phases

(Day 59). Statistical differences were determined using the unpaired t-test with Welch’s correction. N.S. = not significant. n indicates the number of mice and each

scatter dot represents individual mice in each group.
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FIGURE 5 | Altered immune cell responses in Cx30 KO mice in the chronic EAE phase compared with WT mice. (A,B) Confocal images showing immunostaining of

CD169 in spinal cord sections from WT (littermate) and Cx30 KO EAE mice in the acute (Day 13) and chronic (Day 59) EAE phase. Scale bars, 200µm. Higher

magnification images are CD169 in the spinal cord, which are highlighted by a white rectangular frame in the left panel of lower magnification images. (C)

Quantification of the CD169+ cell area fraction in the anterior spinal cord white matter from WT (littermate) and Cx30 KO EAE mice in the acute (Day 13) and chronic

(Day 59) EAE phases. (D,E) Confocal images showing immunostaining for Iba-1 and CD3 in spinal cord sections from WT (littermate) and Cx30 KO EAE mice in the

acute (Day 13) and chronic (Day 59) EAE phases. Scale bars, 200µm. Higher magnification images show co-labeling of CD3 and Iba-1 in spinal cords, which are

highlighted by a white rectangular frame in the lower magnification images above. (F) Quantification of the CD3+ cell area fraction in the anterior spinal cords from WT

(littermate) and Cx30 KO EAE mice in the acute (Day 13) and chronic (Day 59) EAE phases. (G,H) Quantification of the Iba-1+ cell area fraction (G) and microglial

circularity (H) in the spinal cord white and gray matter from WT (littermate) and Cx30 KO EAE mice in the acute (Day 13) and chronic (Day 59) EAE phase. Means ±

S.E.M. are shown. Statistical differences were determined using the unpaired t-test with Welch’s correction. N.S. = not significant. n indicates the number of mice and

each scatter dot represents individual mice in each group.
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FIGURE 6 | Anti-inflammatory marker expression of microglia in WT and Cx30 KO mice with chronic EAE. (A,C,E) Confocal images showing immunostaining for Iba-1

and arginase-1 in optic nerves (A), cerebellum (C), and spinal cords (E) from WT (littermate) and Cx30 KO mice in the chronic EAE phase (Day 59). Scale bars,

200µm. Each higher magnification image is from the white rectangular frame in the lower magnification image above. Scale bars in higher magnification images,

50µm. (B,D,F) Colocalization analysis of arginase-1 and Iba-1 in optic nerves (B), cerebellum (D), and spinal cord white matter (F) from WT (littermate) and Cx30 KO

mice in the chronic EAE phase, expressed as Pearson’s correlation coefficients. Means ± S.E.M. are shown. Statistical differences were determined using the

unpaired t-test with Welch’s correction. N.S. = not significant. n indicates number of mice and each scatter dot represents individual mice in each group.

of EAE (Figures 7A,D,E). By contrast, Cx43 in the spinal cord
white matter demonstrated a dynamic change during EAE inWT
mice. Cx43 decreased significantly in the acute phase compared

with the naïve state (p = 0.0149 on Day 13 and p = 0.0067
on Day 16) and then recovered to similar levels to the naïve
state (significant increase compared with the peak day levels,
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FIGURE 7 | Astrocytic marker expression in spinal cords from WT and Cx30 KO mice during acute and chronic EAE. (A) Confocal images showing immunostaining

for Cx30 and GFAP in the anterior part of spinal cords from WT (littermate) and Cx30 KO mice in the naïve state and at different stages of EAE. Scale bars, 200µm.

Each higher magnification image is from the white rectangular frame in the lower magnification image above. Scale bars in higher magnification images, 50µm. (B,C)

Quantification of the GFAP+ cell area fraction in the white (B) and gray (C) matter. (D,E) Quantification of the Cx30+ cell area fraction in the white matter (D) and gray

matter (E). (F) Confocal images showing immunostaining for Cx43 and GFAP in the anterior part of spinal cords from WT (littermate) and Cx30 KO mice. Scale bars,

200µm. Each higher magnification image is from the white rectangular frame in the lower magnification image above. Scale bars in higher magnification images,

50µm. (G,H) Quantification of the Cx43+ cell area fraction in the white (G) and gray (H) matter. Means ± S.E.M. are shown. Statistical differences were determined

using two-way ANOVA. N.S. = not significant. n indicates number of mice in each group at different stages and each scatter dot represents the mean value for each

group.

p= 0.0147; Figures 7F,G; Supplementary Figure 6G). A similar
decrease of Cx43 in the acute phase and recovery of Cx43 in the
chronic phase were also observed in Cx30 KO mice (p = 0.0142

at Day 16 and p = 0.0026 at Day 59 compared with Day 16;
Figures 7F,G; Supplementary Figure 6I); however, Cx43 levels
were significantly lower in Cx30 KO mice than in WT mice, in
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the naïve state and in the chronic EAE phase (p= 0.0087 and p=
0.0179, respectively) (Figures 7F,G). Cx43 expression in the gray
matter did not show obvious changes in either WT or Cx30 KO
mice (Figures 7F,H; Supplementary Figures 6H,J).

We examined A1 and A2 astrocyte markers based on
a recent report (53). Immunostaining analyses for S100A10,
a representative A2 astrocyte marker, revealed a successive
increase in the spinal cord white matter during the course
of EAE, which was highest in the chronic EAE stage, in
both WT and Cx30 KO mice compared with the naïve
state (not significant in either mouse strain on Day 13; not
significant and p = 0.0251, respectively, on Day 16; p =

0.0010 and p = 0.0002, respectively, on Day 59; Figures 8A,B;
Supplementary Figures 6K,L). Interestingly, this increase in
S100A10 immunoreactivity was greater in Cx30 KO mice
than in WT mice at all stages of EAE and the difference
increased in the later stages of EAE (p < 0.0001 at Day
59; Figures 8A,B). By contrast, C3, an A1 astrocyte marker,
sharply increased and peaked in the acute phase and then
steadily decreased in the chronic phase compared with the naïve
state in both WT and Cx30 KO mice (p = 0.0174 on Day
13, and p = 0.0174 on Day 16, respectively; Figures 8C,D;
Supplementary Figures 6M,N). These findings suggest that the
stronger activation of A2 astrocytes in Cx30 KOmice plays a role
in inducing neuroprotective microglia, which attenuate EAE in
the chronic phase.

Cx30 Deficiency Causes Less Neuronal
Death in the Chronic Phase of EAE
Finally, because astrocytic Cx30 has close contact with neurons,
we examined changes in neurons and axons in Cx30 KO mice
during EAE. In the native state, the numbers of NeuN+ cells and
SMI-31+ axonal density were not significantly different between
Cx30 and WT littermate mice (Figures 9A–D). Although only
SMI-31+ axonal density decreased significantly in the chronic
EAE phase compared with the naïve state in both WT and
Cx30 KO mice (p < 0.0001, and p = 0.0035, respectively),
Cx30 KO mice had significantly more NeuN+ cells and
SMI-31+ remaining axons compared with WT mice in the
chronic EAE phase (p = 0.0376, and p = 0.0003, respectively;
Figures 9E,F). Because IL-34, expressed on CNS neurons,
induces the differentiation of microglia to a neuroprotective
phenotype (54), we examined its expression by immunostaining,
and detected significantly more IL-34 in the spinal white matter
of Cx30 KO mice than in WT mice in the chronic EAE phase
(Supplementary Figure 7). These findings suggest less neuronal
death and axonal loss in Cx30 KOmice compared with WTmice
in the chronic phase of EAE, leading to more IL-34 production in
Cx30 KO mice.

DISCUSSION

The main new findings in the present study are as follows:
(1) Cx30 deficiency attenuated only chronic EAE clinically
and pathologically without affecting T cell infiltration. (2)
Cx30 deficiency increased the numbers of ramified microglia

in the naïve state and induced earlier and more widespread
activation of microglia in the acute and chronic phases of
EAE. (3) These activated microglia in Cx30 KO mice were
prone to differentiate toward an anti-inflammatory phenotype
with less pro-inflammatory gene expression. (4) In the naïve
state, Cx30 deficiency induced only a modest enlargement
of astrocytic processes in the spinal gray matter and a
partial reduction of Cx43 expression in the spinal white
matter, whereas it caused earlier and stronger activation of
astrocytes in the acute EAE phase, upregulated S100A10, a
representative A2 astrocyte marker, and attenuated the recovery
of Cx43 in the chronic phase. (5) Cx30 deficiency rescued
more neurons and axons in the chronic EAE phase without
influencing the quantity of neurons or axons in the naïve
state.

According to the present study, Cx30 deficiency has no
apparent influence on the clinical and histological severity of
acute EAE, in accordance with a previous report describing that
a single or double KO of Cx30 and/or Cx43 did not affect acute
EAE (29). Collectively, this suggests that Cx30 does not modulate
the peripheral immune system or alter the clinical course of
acute EAE. Surprisingly, chronic EAE and demyelination were
significantly attenuated by Cx30 deficiency. These differences in
results between a previous study (29) and the current studymight
be attributable to a difference in the observation period. Thus,
acute and chronic EAE are differentially regulated, at least in part,
and Cx30 ismainly involved in the chronic phase, whenmicroglia
and astrocytes are postulated to be key players (55, 56).

We demonstrated the attenuation of chronic EAE by Cx30
deficiency without influencing T cell infiltration, which further
underlines the importance of microglia and astrocytes in the
chronic phase of EAE. In naïve Cx30 KO mice, increased
microglia were observed throughout the CNS; however, these
microglia retained a ramified morphology without a significant
increase in circularity. Consistent with this morphology, they
had similar expression levels of pro-inflammatory genes to WT
microglia by RNA microarray. During the chronic EAE phase in
Cx30 KOmice, there were increased numbers andmore activated
microglia in the spinal cord and the brain, which had reduced
pro-inflammatory gene expression compared with WT mice.
Indeed, microglia in Cx30 KO mice had lower expressions of IL-
1b, Nos2, Tnf, and Ptgs2 and a higher expression of Mrc1. IL-1β,
tumor necrosis factor-α, NOS2, and prostaglandin-endoperoxide
synthase-2, also known as cyclooxygenase-2, are well-known pro-
inflammatory molecules involved in neuroinflammation (57–
61). Mannose receptor C-type 1 (Mrc1), downregulated by
IFN-γ (62), and upregulated by IL-4 (63), is expressed at
high levels during the resolution of inflammation where it has
a critical role in the removal of inflammatory glycoproteins
(64). We also immunohistochemically observed the increased
expression of arginase-1 and BDNF and the decreased expression
of NOS2 in the optic nerve, cerebrum, and cerebellum.
Although such changes were not clear in inflamed spinal cord
lesions, the increased infiltration of peripheral blood-borne pro-
inflammatory macrophages, reported to be abundant in chronic
EAE (65) and shown as a significant increase of CD169+ cells in
the chronic EAE phase in the present study, might have obscured
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FIGURE 8 | A1 and A2 astrocyte marker expression in spinal cords from WT and Cx30 KO mice during acute and chronic EAE. (A) Confocal images showing

immunostaining for S100A10 and GFAP in spinal cords from WT (littermate) and Cx30 KO mice. Scale bars, 200µm. Each higher magnification image is from the

white rectangular frame in the lower magnification image above. Scale bars in higher magnification images, 50µm. (B) Quantification of the S100A10+ cell fraction in

the spinal cord white matter. (C) Confocal images showing immunostaining for GFAP and C3 in spinal cords from WT (littermate) and Cx30 KO mice. Scale bars,

200µm. (D) Quantification of the C3+ cell fraction in the spinal cord white matter. Each higher magnification image is from the white rectangular frame in the lower

magnification image above. Scale bars in higher magnification images, 50µm. Means ± S.E.M. are shown. Statistical differences were determined using two-way

ANOVA. N.S. = not significant. n indicates number of mice in each group at different stages and each scatter dot represents the mean value for each group.

the reduced pro-inflammatory nature of Cx30 KO mouse spinal
cord microglia.

Notably, spinal cord but not brain microglia had significantly
lower expressions of cytokines/chemokines, alarmins, and MHC
genes in Cx30 KO than in WT mice, suggesting spinal cord

microglia are less reactive to inflammatory insults than brain
microglia in the naïve state in Cx30 KOmice. In the chronic EAE
phase, cytokines/chemokines, complements, alarmins, ROS, and
MHC gene expressions in microglia were significantly lower in
Cx30 KO than inWTmice in the spinal cord but not in the brain,
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FIGURE 9 | NeuN and SMI-31 immunostaining of spinal cords from WT and Cx30 KO mice with or without EAE. (A,C) Confocal images showing immunostaining for

Cx30 and NeuN in spinal cords from WT (littermate) and Cx30 KO mice in the naive state (A) and chronic EAE phase (Day 59) (C). Scale bars, 200µm.

(B,D) Confocal images showing immunostaining for SMI-31 in spinal cord sections from WT (littermate) and Cx30 KO EAE mice in the naive state (B) and chronic EAE

phase (Day 59) (D). Scale bars, 200µm. (E) Quantification of NeuN+ cell numbers/mm2 of spinal cord in the naive state or chronic EAE phase. (F) Quantification of

SMI-31 density in anterior white matter regions of the spinal cord from WT (littermate) and Cx30 KO EAE mice in the naive state and chronic EAE phase (Day 59).

Means ± S.E.M. are shown. Statistical differences were determined using the unpaired t-test with Welch’s correction. N.S. = not significant. n indicates the number of

mice and each scatter dot represents individual mice in each group.

indicating that spinal cord microglia have a tendency to have
a reduced pro-inflammatory and increased anti-inflammatory
phenotype compared with brain microglia in Cx30 KO mice.

Earlier and stronger activation of astrocytes in EAE was
another characteristic feature of Cx30 KO mice. S100A10,
a neuroprotective A2 astrocyte-related gene product (53),
was increasingly expressed in the spinal cord white matter as
EAE proceeded from the acute to chronic phase. Although
the precise functions of astrocytic S100A10 remain to be

elucidated, it was reported to be required for membrane
repair (66), cell proliferation (67), and inhibition of cell
apoptosis by interaction with Bcl-xL/Bcl-2-associated death
promoter (68). Thus, S100A10 expressed in astrocytes might
be beneficial for tissue repair. These findings collectively
suggest that Cx30-deficient astrocytes may be prone to
differentiate toward an A2 astrocyte phenotype upon activation.
In addition, these Cx30-deficient astrocytes showed less Cx43
immunoreactivity in the astrogliotic scar in the chronic
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EAE phase as well as in the naïve state. The overexpression
of Cx43 might propagate inflammatory mediators through
homotypic Cx43 GJ channels and Cx43 hemichannels
(69–72). Thus, the downregulation of Cx43 on Cx30-
deficient astrocytes may also function in suppressing chronic
neuroinflammation.

Increased numbers of GFAP+ astrocytes were present in
the white matter compared with the gray matter of Cx30
KO mice spinal cords. Furthermore, increased S100A10 and
decreased Cx43 levels were observed in the spinal white matter,
suggesting white matter astrocytes may exhibit earlier and
stronger activation toward an A2 phenotype than gray matter
astrocytes in the Cx30 KO spinal cord. Because increased
microglia numbers were observed in spinal white and gray
matter in Cx30 KO mice while a circularity increase was
detected only in white matter microglia, the activation of
microglia toward an anti-inflammatory phenotype may occur
more strongly in the spinal white matter than in the gray matter.
Collectively, earlier and stronger astroglial activation toward an
A2 phenotype occurred in the spinal white matter, which might
partly explain the induction of anti-inflammatory microglia in
Cx30 KO mice spinal white matter. Such microglial activation
occurred even in the acute EAE phase in Cx30 KO mice;
however, this effect might not be sufficient in the acute phase
when CD3+ T cells mainly induce acute inflammation, while
becoming evident in the chronic phase when glial inflammation
predominates.

Interestingly, Cx30 KO mice had more remaining neurons
and axons than WT mice in the chronic phase of EAE. Cx30
on astrocytes exists in close proximity to neurons (32) and
Cx30 hemichannels release glutamate that exerts excitotoxicity
on neurons (54, 73). Thus, Cx30 deficiency may confer survival
of neurons and axons. Neuronal IL-34 is a potent activator for
microglia toward a neuroprotective phenotype (74). Accordingly,
we hypothesized that the earlier and stronger activation of
astroglia toward an A2 phenotype in Cx30 KO mice in the spinal
white matter induced anti-inflammatory microglia (75, 76).
Increased axonal IL-34 in Cx30 KO mice may also contribute to

the induction of anti-inflammatory microglia in the chronic EAE
phase (74), which might dampen chronic neuroinflammation.

In conclusion, Cx30 on astrocytes plays a significant
role in perpetuating neuroinflammation in chronic EAE by
augmenting pro-inflammatory glial responses. How Cx30
deficiency attenuates inflammatory glial responses should be
investigated in future studies, and might provide valuable
information for new therapeutic strategies for chronic glial
inflammation in MS.
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Investigation of cerebrospinal fluid (CSF) in the diagnostic work-up in suspected multiple

sclerosis (MS) patients has regained attention in the latest version of the diagnostic criteria

due to its good diagnostic accuracy and increasing issues withmisdiagnosis of MS based

on over interpretation of neuroimaging results. The hallmark of MS-specific changes in

CSF is the detection of oligoclonal bands (OCB) which occur in the vast majority of MS

patients. Lack of OCB has a very high negative predictive value indicating a red flag

during the diagnostic work-up, and alternative diagnoses should be considered in such

patients. Additional molecules of CSF can help to support the diagnosis of MS, improve

the differential diagnosis of MS subtypes and predict the course of the disease, thus

selecting the optimal therapy for each patient.

Keywords: CSF (cerebrospinal fluid), biomarker, multiple sclerosis, oligoclonal band (OCB), neurofilament light

(NfL)

INTRODUCTION

Oligoclonal bands (OCB) of the cerebrospinal fluid (CSF) have been important in the diagnosis of
multiple sclerosis (MS) for many years. The further search for biomarkers is of great importance
in order to improve the diagnosis and therapy of MS. This review is divided into 2 parts. The first
part focuses on OCB as diagnostic biomarker for MS and briefly describes other diagnostic markers
such as aquaporin4 (AQP4) and biomarkers that are about to enter clinical routine, such as anti-
myelin oligodendrocyte glycoprotein (MOG). The second part is about CSF molecules, which have
been described in research as potential biomarkers.

PART I: THE CLINICAL LABORATORY

Cerebrospinal Fluid—General Considerations
Whenever investigations are required either to make or rule out a particular disease, it is of utmost
importance to knowwhat one would normally expect from such an investigation, i.e., to have access
to normal or reference values. This goes of course also for clinical chemistry tests performed in
CSF. As a prerequisite for making reference values global and assay-independent, it is important to
standardize the field through the certification of reference methods and materials that can be used
as external calibrators for assay manufacturers. It is also important to establish external quality
control programmes to make sure laboratories are both accurate and precise. Internal stability
of the measurements also has to be monitored using internal control samples each time a test
is performed.
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It is surprising how little progress has been made in the field
of reference values for CSF analytes since the first systematic
assessment of CSF normal values by Meritt and Fremont-Smith
(1). For one of the most basic CSF variables, i.e., total protein and
albumin, normal values based on modern quality standards have
been evaluated and published only recently (2). Most labs adopt
historical reference values without validating their own (3). Even
if normal values have been established in some labs the methods
of evaluation suffer from methodological shortcomings, such as
selection bias, poor definition of normal cohorts, and statistical
errors (2). Because upper reference limits for total CSF protein
are mostly too low it has been estimated that approximately in
15% of normal CSFs total protein values are falsely reported
as pathologically elevated. Similar issues have been found
with CSF glucose measurements and formulas for intrathecal
immunoglobulin synthesis (4, 5). Glucose measurements must
be done in CSF and serum simultaneously and a ratio needs
to be calculated. The glucose ratio cut-off values depend on
serum glucose levels because the transporter systems across the
blood-brain-barrier (BBB) have limited capacities. This fact is
often not considered by CSF labs. For intrathecal synthesis of
immunoglobulins it is well-known that the widespread Reiber-
formula overestimates particularly intrathecal IgM and IgA
synthesis rates (4, 6).

How Is All This Related to the Diagnosis
of MS?
Because the etiology and specific pathogenesis of MS are
unknown, there is no specific test, be it lab-based or otherwise,
available. In diseases with a known cause, e.g., infections, a
specific test detecting the infectious agent or antibodies against
it is most frequently available. Even in entities in which the cause
is not fully elucidated but the pathomechanism is evident, such
as autoimmune encephalitides, a specific test detecting the auto-
antibody can be used to make the diagnosis (7). In MS there is
no such specific test available which is why one needs to rely
on “circumstantial evidence.” The diagnosis is based on typical,
yet not limited to, clinical findings, magnetic resonance imaging
(MRI), and CSF as well as other investigations (8). Doctors
are well-advised to use all these tools in order to optimize the
diagnostic accuracy.

In the past two decades the diagnostic criteria for MS
have been updated 4 times (8–11). Starting with the revision
in 2001 (9) CSF was less and less required to confirm the
diagnosis in the subsequent updates until 2010 (11). As some
authors suspected (12), ignorance of diagnostic tools might

Abbreviations: AQP4, aquaporin 4; C1inh, Complement component 1-inhibitor;

CAM, cell adhesion molecule; CDMS, clinical definite MS; CSF, cerebrospinal

fluid; CHI3L, protein chitinase 3-like; CIS, clinically isolated syndrome; CXCL,

chemokine (c-x-c motif) ligand; GFAP, glial fibrillary acidic protein; HC,

healthy control; IL, interleukin; JCV, John Cunningham virus; MOG, myelin

oligodendrocyte glycoprotein; MS, multiple sclerosis; Nf, neurofilament; NfH, Nf

heavy; NfL, Nf light; NIND, non-inflammatory neurological disease; NMOSD,

neuromyelitis optica spectrum disorders; OCB, oligoclonal bands; OCGB,

oligoclonal immunoglobulin G bands; OCMB, oligoclonal immunoglobulin M

bands; OIND, other inflammatory neurological disease; OND, other neurological

disease; RRMS, relapsing-remitting MS; sCD, soluble cluster of differentiation;

sICAM, soluble intercellular CAM; sVCAM, soluble vascular CAM.

have led to insufficient diagnostic performance, in that the
rate of MS misdiagnosis increased, even though there is no
formal proof that this phenomenon occurred due to the
decrease in CSF examinations (13). Mostly, misdiagnosis was
due to overinterpretation and misinterpretation of MRI findings
(13). Moreover, the true diagnoses were most often migraine,
fibromyalgia, unspecific symptoms, or psychogenic disorders
(14). In these diagnoses, CSF findings are usually normal,
including markers of intrathecal immune-activation such as
quantitative elevation of immunoglobulins (e.g., IgG-index) or
detection of OCB. One must keep in mind that the negative
predictive value of OCB in neurological patients who had
undergone LP was 90% (15), and even in patients with clinically
isolated syndromes (CIS—a clinical syndrome highly suspicious
of a first manifestation of MS) the negative predictive value
of OCB was 88% (16). So, the lack of OCB in CSF must
be considered a red flag in the differential diagnostic work-
up. In this context, it should be remembered that the first
reported case of natalizumab-associated progressive multifocal
leukoencephalopathy occurred in a very likely misdiagnosed
patient, who had no detectable OCB in CSF in two consecutive
occasions (17). In fact, the vast majority of misdiagnosed patients
get actually treated with MS drugs (14).

Oligoclonal Bands in CSF—How Likely Is
It MS?
It is well-known that OCB in CSF are not exclusively found in
MS. OCB are thought to indicate chronic immune-activation in
the CNS and therefore, can be found in a variety of chronic
inflammatory diseases. The positive predictive value (PPV) of
OCB for MS depends on the control or reference population—
an inherent issue with PPV—and on the integration of other CSF
findings, such as cell counts or albumin/protein concentrations.
E.g., in neuroborreliosis, OCB are frequently encountered, in
contrast to MS, however, total protein concentration and CSF
cell counts are substantially higher (18). Several authors found
OCB in CSF highly sensitive and specific for MS (19), which
is likely due to the fact that other diseases with OCB in CSF
occur relatively seldom. However, when inflammatory diseases
are particularly considered, the specificity of OCB for MS drops
substantially from 94 to 61%, as shown in a meta-analysis (20).
This highlights again that the diagnostic tools for MS are not uni-
dimensional.

Apart from MS, there is a long list of diagnoses with CSF
OCBs reported: systemic lupus erythematosus, neurosyphilis,
neurological paraneoplastic disorders, Behcet’s disease
neuroborreliosis, aseptic meningitis, neurosarcoidosis, HIV
infection, cerebral tumors including lymphomas, Sjögren’s
syndrome, herpes encephalitis, Morvan syndrome, Anti-
NMDA and other autoimmune encephalitis, neurotuberculosis,
anticardiolipin syndrome, HTLV myelopathy, prion disease,
schistosomiasis, stiff-person syndrome, cerebral cysticercosis,
GBS, CNS vasculitis (20). One must be careful however, in our
experience running a clinical CSF lab for decades, we rarely
detected OCB in solid cerebral tumors, prion disease, or GBS
for instance.

Frontiers in Immunology | www.frontiersin.org 2 April 2019 | Volume 10 | Article 726123

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Deisenhammer et al. The Cerebrospinal Fluid in Multiple Sclerosis

Some Methodological Considerations
As outlined above, a proper assessment of normal and reference
values should be done in each CSF lab rather than adopting
such values from the literature. Also, validation in case of in-
house developed assays must be done, or at least verification
in case of commercially available, externally validated tests (21).
One of the key CSF tests in query MS including differentials is
the method of isoelectric focusing (IEF) (22). This method has
been developed in the 70ies and has since then undergone several
refinements. Today, IEF followed by IgG specific immunoblot
is the recommended standard for detection of OCB (19). These
guidelines developed some essential rules for CSF IgG detection
as shown in Table 1. Importantly, intrathekal IgG synthesis can
only be assessed if compared to serum. OCB in CSF can only
be considered intrathecally synthesized if the bands selectively
occur in CSF or if there are more bands in CSF than in serum,
referred to as pattern 2 and 3 according to Freedman et al. (19).
Depending on the IgG separation method, serum bands should
be outnumbered by 1–3 bands in CSF (23). Identical bands
in CSF and serum do not reflect pathological immunoglobulin
synthesis in the CNS because the CSF bands have their origin in
the systemic circulation. These findings are referred to as pattern
4 (identical oligoclonal) and 5 (identical monoclonal) according
to Freedman et al. (19).

More recent developments regarding measurements of
intrathecal immune activation include detection of free light
chains (FLC). There are several reports that, particularly, kappa
FLC are equally sensitive and specific for clonal expansion
as detection of OCB in MS (24). The advantages of FLC
measurements are its methodological simplicity and its objective
read-out by instrumental measurements of concentrations
rather than visual inspection of OCB. However, before general
implementation of FLC detection or even replacement of IEF
there is more work needed including independent confirmation
by different labs and validation of specificity using broader ranges
of control groups, particularly other inflammatory diseases.

A comprehensive overview regarding methodological aspects
of CSF investigations in general can be found in recent
publication (23).

TABLE 1 | Guidelines for IgG detection in CSF according to Freedman et al. (19).

CSF immunoglobulins must be separated by IEF

CSF immunoglobulins must not be separated by electrophoresis

CSF must not be concentrated

CSF immunoglobulins should be immunofixed/blotted

CSF and parallel serum must have similar amounts of immunoglobulin on the

same analytical run

IEF is always more sensitive than any quantitative formula for immunoglobulins in

CSF/serum

To use “only” a quantitative formula is not recommended

Non-linear formulations are recommended over linear formulations

A quantitative formula may be more useful in treatment/prognosis than in

diagnosis

Light chain immunofixation can extend the value of IgG immunofixation

Expected CSF Changes in MS
As MS is considered an inflammatory CNS disease with focal
breakdown of the BBB one could expect markers of these events
in CSF to be altered (Figure 1). Markers of these changes are CSF
leukocyte counts as an indicator of inflammation (apart from
elevated immunoglobulin levels), and total protein or albumin
concentrations as an indicator of BBB disruption (23) (Table 2).

In about one half of MS patients CSF leukocyte counts will
be elevated up to 50 cells per uL (22). Higher leukocyte counts
occur in only 1–2% of patients and should give raise to consider
alternative diagnoses, particularly infectious CNS diseases. On
differential cell count lymphocytes dominate by far, accounting
for more than 90% of cells, 90% of which are T-cells and 10%
B-cells, which excludes lymphocyte subtyping as a distinctive
feature of MS (25). The remainder is constituted by monocytes
although other leukocyte types may be encountered such as
plasma cells, macrophages, and very rarely granulocytes. Again,
a substantial deviation from this pattern should be regarded as
red flag regarding the correctness of the diagnosis.

Glucose CSF to serum ratios are normal in MS (26).
Total protein or albumin quotient is normal in the vast

majority of patients (22, 27), which is in line with the very focal
and transient BBB leakage in MS.

The hallmark of typical CSF changes in MS however, is the
increased production of intrathekal immunoglobulins (28). To
demonstrate this, the MS diagnostic guidelines refer to two
different methods: first, quantitatively elevated IgG as shown
by e.g., the IgG index, and second, detection of OCB by IEF
(9). It must be kept in mind that any quantitative formula
is less sensitive than OCB detection with elevated IgG being
found in ∼60% of MS patients compared to 95% being OCB
positive (i.e., diagnostic sensitivity) (19, 29). Even though it is
not an MS specific test, the diagnostic specificity lies between
61 and 93% depending on the reference group (30). The lowest
specificity rates occur if other inflammatory CNS diseases are
exclusively included in the comparator group. In a mixed
reference population, one would expect the diagnostic specificity
to be probably in the middle of these values, which means that
OCB have a very acceptable diagnostic performance comparable
to, e.g., amyloid-beta and tau proteins in Alzheimer’s disease (30).

Apart from a diagnostic role OCB are of prognostic value in
CIS patients with a hazard ratio of 2.18 (95% confidence interval:
1.71–2.77) for the prediction to convert to clinically definite MS
(31). A fact that has been described for conversion to MS after
optic neuritis 20 years ago (32).

Given the inflammatory process, MS patients also have
increased concentrations of a number of cytokines, chemokines,
and interleukins in their CSF, e.g., CXCL13, IL6, IL8, and
IL10 (33).

CSF Findings in Other Inflammatory
Demyelinating Diseases
At first onset some symptoms are similar between MS and other
inflammatory demyelinating diseases, particularly neuromyelitis
optica (NMO) spectrum diseases. These syndromes can be
diagnosed by IgG antibodies against AQP4 or MOG (34). In
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FIGURE 1 | MS causes neuronal damage (demyelination, axon degeneration, synaptic loss) to the brain and spinal cord. Immune cells, pathological antibodies,

adhesion molecules, cytokines, chemokines, and nucleic acids, which reflect inflammations in the CNS, are present in the CSF of the patients and can serve as

biomarkers to support MS diagnosis and therapy.

TABLE 2 | CSF changes in MS.

CSF variable Expected finding

Total protein/albumin

quotient

Normal, rarely slightly elevated

CSF:serum glucose ratio Normal

CSF leukocyte count Mild pleocytosis in 50% of patients Less than

50 cells/uL in 98%

Cytology Dominated by lymphocytes (90%), some

monocytes. Rarely macrophages, plasma cells,

granulocytes

Immunoglobulins

quantitative

IgG concentration by linear or non-linear

formulae elevated in 60–70% of patients, IgA

and IgM synthesis may be found less frequently

Immunoglobulins qualitative Oligoclonal bands in 95% of definitive MS

cases, 85% in CIS

general CSF work-up there is a distinct feature, which is a lack of
CSF OCB in NMO spectrum diseases in 80–90% of patients (35).
Total leukocyte counts in NMO spectrum disorders are similar
to MS with pleocytosis being found in around 50% of patients,
exceeding rarely 100 cells per uL (36). However, on differential

cell counts granulocytes occur somewhat more frequently in
NMO spectrum disorders compared to MS (36).

In MOG-IgG antibody associated syndromes the frequency of
OCB of 13% is similarly low as in NMO spectrum disorders (37).
It seems however, that CSF pleocytosis occurs more frequently,
i.e., in almost two thirds of patients with a relatively high
proportion of neutrophils making up 22% of all leukocytes (37).
Also, an elevated albumin quotient can be found in roughly one
third of patients with MOG IgG antibodies, particularly if spinal
symptoms occur.

Altogether, the main distinctive feature between these
syndromes andMS is the frequency of OCB, whereas general CSF
changes (i.e., cell counts, cytology, protein) differ slightly but do
not provide compelling evidence for or against one of the entities.

PART II: THE RESEARCH LABORATORY

Spectrum of Biomarkers in CSF
MS is an inflammatory disease characterized by damage and
repair processes. The search for biomarkers focuses not only
on cells and molecules of the immune response, but also on
molecules reflecting the heterogeneity of mechanisms involved
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in the disease. Many findings on potential biomarkers have
been published, including antibodies, cytokines, and chemokines
molecules involved in damage and repair processes, proteins of
the complement system as well as nucleic acids, that could help in
MS diagnosis, differential diagnosis, prognosis, and in disease or
therapy monitoring. In Table 3 we listed information on various
biomarkers mentioned in this article. Of these biomarkers,
neurofilament light (NfL) is currently one of the most promising.

CSF and Serum NfL as a Biomarker of
Disease Intensity in MS
Research over the past three decades have revealed that increased
CSF concentration of the axonal injury marker NfL reflects
disease activity and progression in all forms of MS (81). It
has also become clear the concentrations dynamically change
in response to relapses and treatment; MS patients starting
natalizumab, a disease-modifying therapy (DMT) with high
efficacy, experienced a normalization of their CSF NfL levels
down to those seen in healthy controls within 6–12 months
(82), suggesting that NfL can be used to monitor therapeutic
efficacy. Similar observations have been made for fingolimod in
patients with relapsing remitting (RR) MS and for mitoxantrone
or rituximab and natalizumab in progressive MS (81). Recent
ultrasensitive assays have made it possible to measure the
biomarker in blood (serum or plasma; either matrix works
fine), showing excellent correlation with CSF (99). Blood NfL
behaves similar to CSF, also in response to DMTs, making
it a promising blood biomarker for monitoring of treatment
efficacy (100, 101). Ongoing studies are now also exploring it
as a potential biomarker to detect side effects and suboptimal
treatment efficacy. A limitation of CSF and blood NfL is that the
marker is not specific to any diagnosis; it is a general marker
of axonal injury and increases in all neurological disorders that
involve such a process (81).

Areas of Application for CSF Biomarkers
Diagnosis
For a more reliable diagnosis of MS, many studies focus on
changes in CSF composition to find markers that distinguish
between MS and neuronal diseases with similar symptoms.
Recently, antibodies against aquaporin 4 (AQP4) were identified
in CSF of NMO, but not in MS patients (38, 39) (Table 3).
Since these antibodies are not present in every NMO patient,
additional markers are needed. Another newly discovered
biomarker is the anti-MOG antibody found in the CSF of
patients with demyelinating diseases such as optic neuritis
(usually recurrent), myelitis encephalitis, brainstem encephalitis,
and acute disseminated encephalomyelitis (ADEM)-like
presentations. Today, MOG-IgG-associated encephalomyelitis
(MOG-EM) is considered a separate disease entity (34).Other
candidates of potential biomarkers are described in the group
of cytokines [e.g., interleukin (IL)-6] (39), adhesion molecules
[such as soluble intracellular and vascular cell adhesion
molecule (sICAM and sVCAM) (89)], damage and repair
associated molecules [like glial fibrillary acidic protein (GFAP)
and haptoglobin] (39) and complement components [e.g.

Complement component 1-inhibitor (C1inh), C1s, C5 and factor
H] (94) (Table 3). Further studies need to evaluate the benefit of
these molecules in diagnosis.

Prognosis
Prognostic CSF markers may influence the choice of therapy for
MS, for example, when it is possible to distinguish between a very
active disease course and a mild progression. Protein chitinase 3-
like1 (CHI3L1) and NfL are today the most promising prognostic
CSF markers to predict conversion of MS on the one hand
and disability on the other (58). Other markers that have been
shown to have prognostic potential for predicting the conversion
of CIS to clinical definite (CD) MS, from RRMS to secondary
progressive (SP) MS and a worse disease progression include
oligoclonal IgM bands (OCMB) and protein 14-3-3 (39).

Monitoring of Therapy Response and Side Effects
For MS various DMTs are approved by EMA and FDA. Different
CSF markers are described in particular molecules of neuronal
damage, pro- and anti-inflammatory cytokines and chemokines,
as well as damage and repair molecules that are influenced by
DMTs and that may reflect the efficacy of therapy (Table 3).
Treatment with Natalizumab, for which most data on CSF
molecules are available, leads, besides a decrease of NfL, to a
downregulation of CHI3L1, neurofilament heavy (NfH), IL-6, IL-
8, and chemokine (c-x-c motif) ligand CXCL13 (33, 39, 82, 102)
in CSF (Table 3). CXCL13 is also downregulated in CSF of
MS patients treated with steroids, B-cell depletion therapy or
fingolimod (39, 59). CHI3L1 is down-regulated in CSF of MS
patients not only by natalizumab but also by treatment with
fingolimod and mitoxantrone (39, 59). Thus, both molecules
could serve as markers for therapy-response, CXCL13 as marker
of anti-inflammatory drugs and CHI3L1 for monitoring the
decrease in cell damage. Recently, elevated levels of soluble
cluster of differentiation (sCD) 27 and sCD21 have been found in
the CSF of MS patients (95) and, in particular, sCD27 has been
highlighted as a therapeutically responsive (natalizumab and
methylprednisolone) potent and sensitive marker for intrathecal
inflammation in progressive MS (96).

DMTs have been available for MS treatment for over
20 years and new DMTs with higher efficacy have been
continuously developed since then. Depending on the mode
of action of individual drugs, the risk of bacterial, viral,
parasitic and/or fungal infection may increase (103). Existing
latent viral infections can become active and trigger a severe
infection under DMT, as the modulation of the immune
system can lead to a decreased anti-viral immune response.
Best known is the development of progressive multifocal
leukoencephalopathy (PML) in MS patients infected with John
Cunningham Virus (JCV) as a severe side effect of natalizumab
therapy. Natalizumab is associated with the highest risk of
PML (incidence: one in 250) of all approved MS therapies
to our current knowledge (104–106). The frequency of PML
increases with the duration of natalizumab and former JCV-
negative patients may change to JCV-positive ones. Several
cases of PML have also been reported in MS patients treated
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TABLE 3 | Selection of molecular and cellular markers and their potential utility in MS diagnosis, prognosis and monitoring.

Diagnosis Prognosis (risk factor for) Monitoring

CDMS NMOSD CDMS Worse disease

course

Therapy effects Therapy side

effects

References

ANTIBODIES

Anti-AQP4 ↑
4,6,8* (38, 39)

Anti-JCV ↑
a (40, 41)

Anti-MOG ↓
f (42–44)

OCB ↑
4

↓
6 x (31, 32, 35, 39,

45, 46)

OCGB ↑
1 x x ↓

a (39, 47–51)

OCMB ↑
4,3,5 x x (39, 51–57)

CYTOKINES/CHEMOKINES

CXCL13 (SDF-1α) ↑
9 x x ↓

a,b,c,g (33, 39, 51, 58–66)

IL-6 ↑
4,6

↓
a (33, 39, 60, 67, 68)

IL-8 ↓
a (33, 60)

DAMAGE AND REPAIR MOLECULES

14-3-3 ↑
2 x x (39, 69, 70)

CHI3L1 ↑
1,4,7 x x ↓

a,d,g (39, 58, 59, 61,

71–74)

GFAP ↑
1

↑
6 x (39, 59, 61, 64,

75–77)

Haptoglobin ↑
6 (39)

NfH ↑ x ↓
a (39, 58, 59, 78–80)

NfL ↑
1,2 x x ↓

a,c,d,g (39, 58, 59, 61,

64, 75, 77, 79–88)

ADHESION MOLECULES

sICAM-1 ↑
1,2,6 (89–92)

sVCAM-1 ↑
1,2,6 (65, 89, 90, 93)

COMPLEMENT COMPONENTS

C1inh ↑
6,9 (94)

C1s ↑
6,9 (94)

C5 ↑
6,9 (94)

Factor H ↑
6,9 (94)

OTHER MOLECULES

sCD21 ↑
2

↓
a,b (95, 96)

sCD27 ↑
1,2

↓
a,b (95, 96)

NUCLEIC ACIDS

JCV DNA ↑
a,c,e,g (97, 98)

Findings of molecular markers in MS-specific clinical contexts are listed in the table. An arrow pointing upwards indicates an elevation and an arrow pointing downwards a decrease in

the amount of the respective molecule in CSF. NMOSD data were only considered when a difference to MS was described. (1) compared to HC; (2) compared to NIND; (3) compared to

OIND; (4) compared to OND; (5) compared to distinct disease groups or mixtures of control groups; (6) compared to MS; (7) compared to CIS; (8) compared to RRMS (* in remission); (9)

compared to control whose composition was not mentioned; (a) natalizumab; (b) steroids; (c) B-cell depletion therapy; (d) mitoxantrone; (e) dimethylfumarate; (f) DNA plasmid vaccine

BHT-3009; (g) fingolimod.

with fingolimod or dimethylfumarate (104–106). Although
there are no known cases of PML from alemtuzumab,
mitoxantrone, B-cell depletion or teriflunomide in MS patients,
a risk cannot be dismissed because these drugs or closely
related compounds have been associated with PML in other
diseases (105). The detection of JCV infection by anti-JCV
indices can be prevented by B-cell depletion therapies such
as Rituximab (107), since antibody production decreases with
decreasing B-cell numbers. Therefore, careful monitoring of
anti-JCV antibodies and/or JCV DNA in the blood and CSF is

necessary, in particular for natalizumab treatment and suspected
PML (108).

Not only JCV, but also other viral infections, which can
even lead to encephalitis, can occur under DMTs. The risk
of severe viral infections increases with cladribine (mainly
herpes zoster), ocrelizumab and natalizumab (herpes), and
fingolimod (herpes and varicella). Two deaths from herpes and
varicella encephalitis have been reported for fingolimod (106).
For this reason, careful monitoring of MS patients treated
with DMTs is recommended. If virus-induced encephalitis

Frontiers in Immunology | www.frontiersin.org 6 April 2019 | Volume 10 | Article 726127

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Deisenhammer et al. The Cerebrospinal Fluid in Multiple Sclerosis

is suspected, DNA analyses in the CSF may be useful
for diagnosis.

CONCLUSIONS

OCB are important biomarkers that can support MRI diagnostics
and help to avoid false-positive MS diagnoses. Therefore, the
revised McDonalds criteria have increased the importance of
the OCB.

New biomarkers such as AQP4 have now established
themselves in clinical practice, and others such as Anti-MOG and
NfL are about to enter clinical routine.

An important focus in the search for new biomarkers is
the monitoring of therapy efficacy and the prediction of severe
side effects.

Many other CSF molecules such as CHI3L1, IL-6,
or CXCL13 show potential as markers for clinical
practice, but further research is needed to prove
their importance.
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Objective: Rheumatic diseases with involvement of the central nervous system

(RDwCNS) may mimic multiple sclerosis (MS). Inversely, up to 60% of MS-patients

have antinuclear autoantibodies (ANAs) and may be misdiagnosed as RDwCNS. The

detection of antibodies against extractable nuclear antigens (ENA) and oligoclonal bands

(OCB) are established valuable diagnostic tools in the differential diagnosis of RDwCNS

and MS. The MRZ-reaction (MRZR) is defined by three antibody indices (AIs) against

neurotropic viruses and is frequently positive in MS. To investigate the added value

of MRZR combined with testing for antibodies against ENAs and OCB detection to

distinguish RDwCNS from ANA positive MS.

Methods: MRZR was evaluated in RDwCNS (n= 40) and 68 ANA positive MS-patients.

Two stringency levels, MRZR-1 and MRZR-2 (at least one respectively two of three AIs

positive) were applied. Autoantibody testing included ANA plus ENA and anti-dsDNA

antibodies, antiphospholipid antibodies, and anti-neutrophil cytoplasmic antibodies.

Results: Most of the RDwCNS patients (n = 32; 80%) suffered from systemic lupus

erythematosus. Within the RDwCNS group 20% had a positive MRZR-1 and 8.5% a

positive MRZR-2 compared to 80.9 and 60%, respectively within the MS-group (p <

0.0001 for both comparisons). Oligoclonal bands were found in 28.6% of the RDwCNS

patients and 94.3% of the MS-patients (p < 0.0001). Conversely, autoantibodies to

specific nuclear antigens or phospholipids were found more frequently in RDwCNS. A

positive MRZR in conjunction with the absence of ENA autoantibodies distinguished MS

from RDwCNS with high specificity (97.5%).

Conclusions: We suggest combining MRZR, OCBs, and specific autoantibody

diagnostics to differentiate RDwCNS from MS.

Keywords: anti-nuclear antibodies, systemic lupus erythematosus (SLE), multiple sclerosis (MS), intrathecal

polyspecific antiviral immune response, MRZ-reaction (MRZR)
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INTRODUCTION

Multiple sclerosis (MS) is an immune-mediated inflammatory
disease of the central nervous system (CNS). MS and rheumatic

diseases show several commonalities. Between 20 and 60%
of MS-patients have a positive immunofluorescence testing
for anti-nuclear antibodies (ANAs) (1, 2) and in rheumatic
diseases such as systemic lupus erythematosus (SLE) or

anti-neutrophil cytoplasmic-antibodies (ANCA) associated
small vessel vasculitides, neuropsychiatric manifestations
are common and may mimic magnetic resonance imaging

(MRI), and cerebrospinal fluid (CSF) findings of MS (3, 4).
As neuropsychiatric symptoms may be the first clinical

manifestation of rheumatic diseases with involvement of the
central nervous system (RDwCNS) and inflammatory CSF
alterations and MS-like lesions in MRI are frequent, the
differential diagnosis between RDwCNS and ANA-positive MS is
difficult. Moreover, differentiating RDwCNS from ANA-positive
MS is essential for adequate treatment. Also the coexistence
of both a systemic inflammatory rheumatic disease and MS
in the same patient has to be considered since both entities
are of autoimmune origin and occur predominantly in female
patients. One essential diagnostic procedure in these patients
is the analysis of CSF which requires lumbar puncture. The
MRZ-reaction (MRZR) is a polyspecific, intrathecal humoral
immune response directed against three neurotropic viruses:
measles (M), rubella (R), and varicella zoster (Z), assessed using
the three respective antibody indices (AIs) (5). The AI is a
calculated parameter to assess whether the antibodies measured
in the CSF are produced intrathecally or whether they are
originally blood derived. A high AI (≥1.5) is an indicator for
antibody production within the CNS whereas an AI < 1.5 is
indicative for an antibody synthesis in plasma cells that are
not located within the CNS. In MS studies frequently two
thresholds defining a positive AI (≥1.5 and >2.0) are assessed
(6). Furthermore, it is common to distinguish a positive MRZR-1
and a positive MRZR-2. A positive MRZR-1 is defined by at
least one positive AI and a positive MRZR-2 by at least two
positive AIs out of the three calculated AIs. Very likely the
positive MRZR represents a polyspecific B-cell-activation within
the CNS. Also the detection of oligoclonal bands (OCB), a very
sensitive but compared to the MRZR less specific marker for MS,
is an indicator for the involvement B-cells in the pathogenesis
of MS.

A high prevalence of positive MRZR has been described
in patients with relapsing remitting MS and with primary
progressive MS (6), while the significance of positive MRZR
in RDwCNS has not yet been explored in larger cohorts.
Since ANA can be detected also in healthy individuals, a
positive ANA-screening should lead to an analysis of extractable
nuclear antigens (ENA). Certain antibodies to ENA are highly
specific for connective tissue diseases (CTD), whereas the
absence of ENA or exclusive detection of DFS70-autoantibodies
in ANA-positive individuals does not further support the
diagnosis of an underlying CTD (7). Therefore, the MRZR
together with ANA and ENA testing might represent a valuable
diagnostic procedure to separate MS from RDwCNS. This

is the first report on the diagnostic value of the MRZR in
combination with ENA-autoantibody diagnostics to differentiate
RDwCNS-patients from ANA-positive MS in the largest cohort
of RDwCNS-patients published so far.

MATERIALS AND METHODS

Patients participating in this retrospective study were treated
at the University Medical Centre Freiburg and were identified
by an electronic database search. Routine medical diagnostic
workup included lumbar puncture in all patients and the storage
(−80◦C) of paired CSF and serum samples according to local
biobanking protocols. Informed consent was obtained from all
patients. All experiments were carried out in accordance with
the Declaration of Helsinki. This study was approved by the
ethics committee of the University Medical Centre Freiburg (EK-
Fr489/14, EK-Fr507/16). Diagnoses of the rheumatic diseases
were made by board certified rheumatologists according
to current classification criteria (8–11). CNS-involvement of
RDwCNSwas diagnosed based on clinical signs, and the presence
of at least one of the following findings: (A) inflammatory
CSF (intrathecal immunoglobulin synthesis, increased cell-
count, positive CSF specific oligoclonal bands (OCB), or
disturbance in the blood-CSF barrier indicated by an increased
albumin quotient) or (B) inflammation in brain or spinal
MRI compatible with RDwCNS as assessed by board-certified
neuroradiologists. MS-diagnosis was made according to the
2010 revised McDonald criteria (12). Total immunoglobulin
concentrations (IgGtotal) were measured by nephelometry (BN-
ProSpec System, Siemens, Germany). Measles-, rubella-, and
varicella zoster-specific IgG concentrations (IgGspec) were
measured using ELISA (Serion classic ELISA, Germany).
MRZR was calculated from the virus-specific antibody index
(AI) = QIgGspec/QIgGtotal, if QIgG[total]<Qlim, and AI
= QIgG[spec]/Qlim, if QIgG[total]>Qlim (13). The upper
reference range of QIgG, Qlim, was calculated according
to Reiber’s formula (13). Two thresholds for a positive AI
indicating specific intrathecal IgG-production (≥1.5 and >2.0)
were analyzed (6, 14). MRZR-1 and MRZR-2 were positive
when at least one respectively two of the three calculated AIs
were positive. ANA-staining pattern was assessed using indirect
immunofluorescence (IIF) on HEp-2000 R© cells (Immuno
Concepts, Sacramento, CA, USA). Patients with positive IIF were
screened for autoantibodies against ENA using a lineblot assay
including nRNP/Sm, Sm, SS-A, Ro-52, SS-B, Scl-70, PM-Scl,Jo-
1, CENP-B, PCNA, dsDNA, nucleosomes, histones, ribosomal-
P-proteins, AMA-M2, and DFS70 (ANA-Profile3plusDFS70,
Euroimmun, Luebeck, Germany) and an anti-dsDNA-IgG-
ELISA (Euro-Diagnostica, Malmö, Sweden). Anti-phospholipid-
antibodies (Cardiolipin-IgG-ELISA, Euro-Diagnostica, Malmö,
Sweden) and anti-proteinase-3 (Orgentec Diagnostika, Mainz,
Germany) ormyeloperoxidase (Euroimmun, Luebeck, Germany)
was measured using ELISA. Two or more OCB detected by
an isoelectric focusing technique (Hydragel Isofocusing, Sebia,
France) were regarded as positive (15). Statistical analyses were
performed using Fisher’s exact test (two-sided) and Student’s
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TABLE 1 | Patient characteristics, serological findings, and MRZ-reaction.

RDwCNS (n = 40) MS (n = 68) Statistics (p-value)

Gender, female, n (%) 30 (75) 48 (71) n.s.

Mean age years (range, SD) 45.7 (19–79, 19.1) 44.9 (23–73, 12.3) n.s.

CEREBROSPINAL FLUID ANALYSIS RESULTS

Increased total CSF cell count (>5/µl), n (%) 15 (37.5) 20 (29.4) n.s.

Mean cell count/µl in CSF, (range, SD) 31 (1–433, 84) 6 (1–44, 8) p = 0.0176

Cell count >50/µl, n (%) 4 (10) 0 (0) p = 0.0171

Intrathecal synthesis of IgG, IgM, or IgA, n (%) 11 (27.5) 43 (63.2) p = 0.0006

Oligoclonal bands, n (%) 13 (32.5) 61 (89.7) p < 0.0001

SEROLOGICAL FINDINGS

Autoantibody positive, n (%) 38 (95) 68 (100) n.s.

IIF ANA positive, n (%) 33 (82.5) 68 (100) n.s.

Median ANA titer (IQR, range) 800 (400–3200; 200–6400) 400 (200–700; 100–3200) p = 0.0035

Anti-dsDNA, n (%) 22 (55) 3 (3.8) p < 0.0001

Anti-nucleosome/anti-PCNA-antibodies, n (%) 13 (32.5) 0 (0) p < 0.0001

Anti-SS-A/Ro, SS-B/La-antibodies, n (%) 6 (15) 0 (0) p < 0.0001

Anti-centromere, anti-Scl70 antibodies, n (%) 3 (7.5) 0 (0) p = 0.0352

DFS70-antibodies, n (%) 0 (0) 2 (2.9) n.s.

ANCA, n (%) 5 (12.5) 1 (1.5) p = 0.0254

APA, n (%) 12 (30) 2 (2.9) p < 0.0001

MEASLES-RUBELLA-ZOSTER-(MRZ)-REACTION

Mean AI for M (range, SD) 1.2 (0.6–4.9; 0.7) 3.1 (0.5–22.7; 3.3) p = 0.0007

Mean AI for R (range, SD) 1.2 (0.6–5.4; 0.8) 3.3 (0.5–22.7; 4.1) p = 0.0021

Mean AI for Z (range, SD) 1.3 (0.6–4.2; 0.8) 2.3 (0.7–11.9; 2.3) p = 0.008

FREQUENCY OF POSITIVE ANTIBODY INDECES (AIs) FOR MEASLES, RUBELLA, ZOSTER

Applied threshold defining a positive AI ≥1.5 >2.0 ≥1.5 >2.0 ≥1.5 >2.0

Positive AIs (Measles), n (%) 4 (10) 2 (5) 40 (58.8) 31 (45.6) p < 0.0001 p < 0.0001

Positive AIs (Rubella), n (%) 4 (10) 2 (5) 33 (48.5) 27 (39.7) p < 0.0001 p < 0.0001

Positive AIs (Zoster), n (%) 5 (12.5) 3 (7.5) 30 (44.1) 21 (30.9) p = 0.0006 p = 0.0043

FREQUENCY OF PATIENTS WITH 0, 1, 2, 3 POSITIVE ANTIBODY INDECES (AI)

Applied threshold defining a positive AI ≥1.5 >2.0 ≥1.5 >2.0 ≥1.5 >2.0

0 positive AI, n (%) 32 (80) 35 (88) 13 (19.1) 21 (30.9) p < 0.0001 p < 0.0001

1 positive AI, n (%) 3 (7.5) 3 (7.5) 18 (26.5) 22 (32.4) p = 0.0221 p = 0.0039

2 positive AIs, n (%) 3 (7.5) 1 (2.5) 19 (27.9) 16 (23.5) p = 0.0128 p = 0.0048

3 positive AIs, n (%) 2 (5) 1 (2.5) 18 (26.5) 9 (13.2) p = 0.0049 n.s.

AI, antibody index; ANA, antinuclear antibody; ANCA, anti-neutrophil cytoplasmic antibodies; APA, antiphospholipid antibodies; dsDNA, double stranded DNA; IIF, indirect

immunofluorescence; M, measles; MS, multiple sclerosis; n, number of patients; n.s., not significant; RDwCNS, rheumatic diseases with involvement of the central nervous system; R,

rubella; SD, standard deviation; Z, varicella zoster. The bold values are the applied thresholds (>1.5 or >2.0) defining a positive AI for the calculation of the MRZR.

t-test (two-sided) with a p < 0.05 regarded as statistically
significant (Graphpad Prism version 7.01).

RESULTS

ANAs were assessed by IIF in a cohort of 149 MS-patients.
We found 68 MS-patients (45.6%) with positive ANA and
we compared them with 40 RDwCNS-patients. The RDwCNS-
group consisted of 32 patients with SLE (80%), six with ANCA-
associated vasculitis (15%), one with Cogan’s syndrome and
one with Behcet’s disease. All RDwCNS patients fulfilled the
classification criteria for their underlying rheumatic disease
and showed signs of CNS involvement (definition see above).

Except for the patients with Cogan’s syndrome, Behcet’s
disease and one patient with ANCA-associated vasculitis
all had at least one specific autoantibody supporting the
diagnosis of the rheumatic disease. The diagnosis was also
supported by concomitant non-neurological manifestations at
the skin/mucosa (n = 34), joints (n = 26), blood/cytopenia
(n = 15), peripheral nervous system (n = 7), ear-nose-
throat-involvement (n = 5), pericarditis/pleuritis (n = 5),
or lung-involvement (n = 4). Both groups were similar
regarding age and sex (Table 1). In both, the MS- and the
RDwCNS-group, <40% of patients had total CSF cell-counts
above 5/µl. The RDwCNS-group though showed higher mean
CSF cell-count (cells/µl) and higher frequency of patients
with high CSF cell counts (>50 cells/µl) (p < 0.05 for
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both comparisons). The proportion of patients with increased
intrathecal immunoglobulin synthesis (IgG, IgM, or IgA)
and positive OCBs, both used as diagnostic parameters for
MS, was significantly higher in MS-patients (p < 0.001 for
both comparisons). Within the MS-group positive OCBs were
found in 89.7% which was more frequent than a positive
MRZR-1 (80.1%). Nevertheless positive OCBs and intrathecal
immunoglobulin synthesis were also found in approximately 30%
of our RDwCNS-patients. With respect to serological findings
ANA-positive MS-patients had a lower median ANA serum titer
compared to RDwCNS. Correspondingly, specific autoantibodies
directed against nuclear antigens (ENA-analysis) were more
frequent in RDwCNS (see Table 1).

Mean AIs for measles, rubella, and zoster were significantly
higher in MS-patients compared to RDwCNS-patients (Table 1).
Positive AIs, irrespectively of the thresholds used for definition
(>1.5 and >2.0) were found with a higher frequency in ANA-
positive MS compared to RDwCNS for all three specificities.
Within the MS-group AIs were most frequently positive for
measles, followed by rubella and varicella zoster. This AI-
distribution pattern was not found within the RDwCNS-group.
The MRZR-1 (AI positive when ≥1.5) was positive in 80.9% of
ANA-positive MS-patients and 20% of RDwCNS-patients (p <

0.0001), theMRZR-2 was positive in 54.4% compared to 12.5% in
RDwCNS (p < 0.0001) (Figure 1). By using the higher threshold
of >2.0 for a positive AI, the prevalence of a positive MRZR-2
dropped to 2.5% (n = 1) within the RDwCNS-group compared
to 36.8% within the MS-group (p < 0.0001).

Within the ANA-positive MS-group 55 of the 68 patients
(80.9%) had a positive MRZR-1 but only seven MS-patients
(10.3%) had specific autoantibodies. When combining
both biomarkers, a positive MRZR-1 and the absence of
autoantibodies against specific autoantigens, statistical analysis
showed an increased specificity of 97.5% and an only slightly
decreased sensitivity of 75% for the diagnosis of MS.

FIGURE 1 | MRZ reaction in RDwCNS patients compared to MS patients.

Illustrated is the frequency of a positive MRZR-1 and MRZR-2 calculated with

an AI defined positive when ≥1.5 (*) or >2.0 (**). MRZR, MRZ reaction; MS,

multiple sclerosis; RDwCNS, rheumatic disease with CNS involvement.

DISCUSSION

Rheumatic diseases with involvement of the central nervous
system are a diagnostic challenge, especially if CNS-involvement
is the first or only manifestation. Furthermore, RDwCNS has to
be distinguished from rheumatic diseases with co-manifestation
of MS. Not only clinically, but also by using imaging diagnostics
and CSF analyses it is often difficult to distinguish RDwCNS
clearly from MS, especially within the early disease course of
MS and when autoantibodies like ANA are present in MS-
patients (1–3).

Antinuclear antibodies, which are the hallmark of connective
tissue diseases, were found in nearly half of our MS-cohort,
a frequency within the published range between 20 and 60%
(1, 2). Also ANCA, crucial in the diagnostics of ANCA-associated
vasculitides were found to be present in a small proportion of
MS-patients. Since testing for specific autoantibodies (extractable
nuclear antigens, dsDNA, anti-phospholipid-antibodies, anti-
proteinase 3- or anti-myeloperoxidase-antibodies) was positive
in only 10% of the ANA-positive MS-patients, ANA-diagnostics
should always comprise both, indirect immunofluorescence
for screening and immunoblot/ELISA for differentiation of
antibodies against nuclear antigens, to distinguish RDwCNS
from ANA-positive MS. ANA-differentiation should include
DFS70-antibodies. If DFS70-antibodies are detected exclusively
in an ANA-positive patient, the positive ANA-test does not
increase the likelihood for a CTD (7). We found statistically
significant differences between RDwCNS and MS regarding
CSF cell count, the presence of OCBs and the production of
intrathecal immunoglobulins, but none of these parameters was
able to reliably differentiate ANA-positive MS from RDwCNS,
when used exclusively. It has already been shown that a positive
MRZR has a higher specificity than the presence of OCBs
for the diagnosis of MS, while positive OCBs have a high
sensitivity but quite low specificity. In line with these data
we found OCBs more frequent than a positive MRZR-1 in
our MS-group but also in a relatively high frequency in our
RDwCNS-cohort. Even when combining MRI, CSF and clinical
findings it can be difficult to differentiate MS from RDwCNS.
Therefore, only the combination of several diagnostic parameters
established for MS and for RDwCNS, may result in a diagnostic
algorithm with sufficient sensitivity and specificity to distinguish
between both disease entities. MRZR is already established as
a valuable diagnostic tool in MS, but to date it is not used
to differentiate RDwCNS from ANA-positive MS. Therefore,
we aimed to include MRZR in the diagnostic algorithm in
addition to already established diagnostic procedures (e.g.,
OCBs). MRZR was found positive more frequently in MS
than in RDwCNS, despite a high frequency of autoantibodies,
hypergammaglobulinemia and positive OCBs in RDwCNS. This
is in accordance with findings described before in MS-patients
independently of their ANA-status (14, 16, 17). Especially in
combination with the absence of specific autoantibodies to
nuclear antigens or lack of ANCA-reactivity against PR3 or
MPO, MRZR-1 yielded a high specificity and a good sensitivity
for diagnosis of MS. Since DFS70-autoantibodies, which help
to exclude CTDs, were positive in only 2.5% of the MS-group,
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this test was of no further diagnostic value in ANA-positive
MS-patients (7).

Three female patients in our RDwCNS-group had a positive
MRZR-2 reaction (threshold ≥1.5). In one of these the MRZR
remained positive even when a threshold >2.0 was applied,
making it difficult to exclude the coexistence of both SLE and
MS. Unfortunately, CSF diagnostics, electrophysiological tests,
MRI, and the pattern of non-neurological clinical manifestations
were not sufficient to exclude MS in this patient. In conclusion,
we found a positive MRZR in a large proportion of ANA-
positive MS-patients but in very few RDwCNS-patients. MRZR
seems to be less sensitive but more specific than OCBs for
the diagnosis of MS. Especially, when specific autoantibodies
are absent, a positive MRZR yields a high specificity with
good sensitivity. Therefore, we recommend including both, the
MRZR and autoantibody screening for ENA, as parameters
additionally to the established parameters like OCB in the
diagnostic algorithm for differentiation of RDwCNS from ANA-
positive MS.
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Multiple sclerosis (MS) is a neurodegenerative disease characterized by lesions in the

central nervous system (CNS). Inflammation and demyelination are the leading causes

of neuronal death and brain lesions formation. The immune reactivity is believed to be

essential in the neuronal damage in MS. Cytokines play important role in differentiation

of Th cells and recruitment of auto-reactive B and T lymphocytes that leads to neuron

demyelination and death. Several cytokines have been found to be linked with MS

pathogenesis. In the present study, serum level of eight cytokines (IL-1β, IL-2, IL-4,

IL-8, IL-10, IL-13, IFN-γ, and TNF-α) was analyzed in USA and Russian MS to identify

predictors for the disease. Further, the model was extended to classify MS into remitting

and non-remitting by including age, gender, disease duration, Expanded Disability Status

Scale (EDSS) and Multiple Sclerosis Severity Score (MSSS) into the cytokines datasets in

Russian cohorts. The individual serum cytokines data for the USA cohort was generated

by Z score percentile method using R studio, while serum cytokines of the Russian

cohort were analyzed using multiplex immunoassay. Datasets were divided into training

(70%) and testing (30%). These datasets were used as an input into four machine

learning models (support vector machine, decision tree, random forest, and neural

networks) available in R programming language. Random forest model was identified

as the best model for diagnosis of MS as it performed remarkable on all the considered

criteria i.e., Gini, accuracy, specificity, AUC, and sensitivity. RF model also performed

best in predicting remitting and non-remitting MS. The present study suggests that the

concentration of serum cytokines could be used as prognostic markers for the prediction

of MS.

Keywords: multiple sclerosis, cytokines, serum, machine learning, prediction
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INTRODUCTION

Multiple sclerosis (MS) is a chronic disease of the central
nervous system (CNS) caused by chronic inflammation and
autoimmune response. MS can be classified on the basis of
onset of symptoms and their progression into relapsing remitting
(symptoms appearing and disappearing), primary progressive
(progressive symptom elevation), and secondary progressive
(relapse-remitting MS development to progressive MS) multiple
sclerosis. The disease is characterized by demyelinating areas in
the brain and spinal cord which appear as plaques or lesions
in the white and gray matter (1, 2). Blood Brain Barrier (BBB)
was shown to be affected, which explains the presence of
circulating leukocytes into the brainmatter (3). The auto-reactive
T lymphocytes penetrating BBB could target neuroglia leading
to more damage within the brain and thus exposing myelin
antigens. These auto-reactive T cells can cause deterioration of
the myelin sheath, which is essential for signal transmission
within the brain (4). Depending on the varied locations of lesions
in brain, clinical symptoms of MS may vary including vision loss,
numbness, fatigue, movement difficulties, and many more (5).

Neuronal damage and neuroglial activation could cause
the secretion of various cytokines which are involved in
differentiation of Th1, Th2, Th9, and Th17 lymphocytes (6).
Studies have shown changes in various cytokines level in serum
and cerebrospinal fluid (CSF) of MS patients as compared to
controls (7–9). These cytokines are associated with Th1 (IFN-
γ, TNF-α, IL-2) and Th2 (IL-4, IL-5, IL-13, IL-6) type immune
responses. Also, activation of Th17 and Th9, secreting IL-17 and
IL-9, respectively, was shown to play role in the progression of
MS (10). Interestingly, loss of the natural regulatory T cells (Treg)
function was demonstrated as one of the factors leading to MS
(11, 12). It is believed that suppression of the Treg population can
lead to proliferation of auto-reactive T cells in MS (11).

The analysis of body fluids such as blood, saliva, cerebrospinal
fluid, and urine is often used to diagnose various diseases at the
early stage. This analysis can be highly accurate and cost effective
than the conventional diagnostic techniques such as computed
tomography (CT), magnetic resonance imaging (MRI) scans,
and tissue biopsies. The body fluids are commonly analyzed to
determine changes in biomolecules which are either directly or
indirectly associated with the disease progression. Since, blood
cytokines is known to be affected in MS, hence we propose that
changes in cytokine could be used as a prognostic markers for
MS diagnosis.

Machine learning approaches were successfully employed for
prediction of Alzheimer’s disease, diabetes, inflammatory bowel
disease, and diagnosis of glaucoma (13–16). Recently, machine
learning approach was applied into demographic dataset to
predict MS disease course (17). Martins et al. analyzed thirteen
inflammatory cytokines in 833MS patients and 117 controls of
USA population (18). Eight out of thirteen cytokines were found
to differ significantly in MS as compared to controls (18). These
eight cytokines were also analyzed in MS patients and controls of
Russian cohort. In current study, four machine learning models
were applied to predict MS using these eight cytokines (IL-1β,
IL-2, IL-4, IL-8, IL-10, IL-13, IFN-γ, and TNF-α) data of USA

FIGURE 1 | Methodology of the proposed work.

and Russian cohorts. Further, machine learning models were
also used to classify MS into remitting and non-remitting based
on eight cytokine serum level, age, gender, disease duration,
Expanded Disability Status Scale (EDSS) and Multiple Sclerosis
Severity Score (MSSS).

MATERIALS AND METHODS

The research strategy of the proposed model was divided into
the five stages: (1) Dataset selection, (2) Dataset generation,
(3) Training of machine learning models (4) Testing of the
proposed model, and (5) Analysis of the result. The methodology
of proposed work and details of each stage are summarized
in Figure 1.

Dataset Selection
Concentration data of eight cytokines (IL-1β, IL-2, IL-4, IL-8,
IL-10, IL-13, IFN-γ, and TNF-α) in serum of MS patients
and controls was selected from two different studies of USA
and Russian population. Out of the two independent USA
studies, one analyzed the concentration of serum cytokines in
833MS patients and 117 healthy volunteers using multiplex
immunoassay (18) while the other group analyzed the
concentrations of serum cytokines in 26MS patients and
11 controls (19). Data on eight serum cytokines (IL-1β, IL-2,
IL-4, IL-8, IL-10, IL-13, IFN-γ, and TNF-α) in 97MS patients
and 71 controls in Russian cohort was also included into the
analysis. There were 53 females and 18 males average age 28.6
± 8.8 years, in Russian control cohort. The demographic and
clinical features of 97 Russian MS patients are summarized
in Table 1.
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TABLE 1 | Demographic and clinical details of MS patients from Russian cohort.

Characteristic Number or mean ± SD

Age 39.1 ± 13.4

Gender Female 67

Male 30

MS types Relapsing remitting 46

Secondary progressive 31

Primary progressive 20

Disease duration 3.9 ± 2.2

EDSS 2.6 ± 1.5

MSSS 4.9 ± 2.3

Patients on treatment 22

Not on treatment 75

Dataset Generation
Dataset containing USA populations was generated using Z
score percentile based method while Russian cytokine data
was analyzed using multiplex magnetic bead-based antibody
detection assays.

Z Score Percentile Method
Cytokine data from two previously published USA studies was
reported in the mean ± standard deviation (SD)/standard error
of mean (SEM) format. To convert SEM into SD, the SEM was
multiplied by square root of total number (n). One of the major
challenges was to generate the individual cytokines data from
reported values as the data was mostly available as mean ±

SD/SEM. Data was generated by two methods: solving the series
of non-linear equations and Z score percentile based approach.
To choose best method for data analysis, random values of
50 cytokines were taken, and the actual values were compared
with the generated values from Z score method and non-linear
systems equations (data not shown). The data generated by Z
score method was found to be more accurate. Hence, to generate
the raw data from mean ± SD/SEM, Z score percentile method
was used, where the population was presumed to follow the
normal distribution (20). The Z score percentile method was
implemented in R (an open source software licensed under
GNU GPL) to calculate individual data. In this method, 99.7%
of the total population was included and the remaining 0.3%
was considered outliers and was excluded from the analysis
(Supplementary Figure 1).

Cytokine Analysis
Ninety seven MS patients, admitted to the Republican Clinical
Neurological Center, Republic of Tatarstan, Russian Federation
were recruited into the study. MS diagnosis was based upon
clinical presentation and brain MRI results. Serum samples
were collected from each patient and control. Informed
consent was obtained from each subject according to the
clinical and experimental research protocol, approved by the
Biomedicine Ethic Expert Committee of Republican Clinical
Neurological Center, Republic of Tatarstan, Russian Federation
(No.218; 11.15.2012).

TABLE 2 | Tuning parameters of machine learning models.

Model Method Required package Tuning parameter

SVM Ksvm Kernlab Kernel radial basis

DT Rpart rpart Min split = 20, Max depth = 30

RF Rf Random forest mtry = 2, number of tree = 500

NN nn.train Deepnet hidden layer = 5

SVM, Support vector machine; DT, Decision tree; RF, Random forest; NN, Neural network.

Serum cytokines (IL-1β, IL-2, IL-4, IL-8, IL-10, IL-13, IFN-
γ, and TNF-α) were analyzed using Pro Human Cytokine 27-
plex Bio-Plex (Bio-Rad, Hercules, CA, USA) multiplex magnetic
bead-based antibody detection kits following the manufacturer’s
instructions. Serum aliquots (50 µl) were used for the analysis
with a minimum of 50 beads per analyte acquired. Median
fluorescence intensities were measured using a Luminex 200
analyzer. Data collected was analyzed with MasterPlex CT
control software and MasterPlex QT analysis software (Hitachi
Software, San Bruno, CA, USA). Standard curve for each analyte
was generated using standards provided by the manufacturer.

Machine Learning Methods
Four machine learning models, Random Forest (RF) (21),
Decision Tree (DT), Support Vector Machine (SVM) (22), and
Neural Network (NN) (23) were used in the study. The required
packages and tuning parameters to obtain the optimum results
using these models are summarized in Table 2. The models were
trained based on equation which includes factors required to
predict the target 1 (MS vs. control) or classify target 2 (remitting
vs. non-remitting MS).

Target 1.1 ∼ f (IL1β + IL2+ IL4+ IL8+ IL10+ IL13

+ IFNγ + TNFα)

Target 1.2 ∼ f (IL1β + IL2+ IL4+ IL8+ IL10

+IL13+ IFNγ + TNFα + Age+ Gender)

Target 2 ∼ f (IL1β + IL2+ IL4+ IL8+ IL10

+IL13+ IFNγ , +TNFα + Age+ Gender

+EDSS+MSSS+ Disease duration)

Model Evaluation
The performance of models was evaluated using various
parameters such as Gini, AUC, accuracy, specificity, and
sensitivity (24). The following equations were used to calculate
these parameters:

Gini = 2 × AUC − 1

Accuracy =
TP + TN

TP + TN + FN + FP
× 100

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP
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FIGURE 2 | Work flow of the proposed scheme. EDSS, Expanded Disability Status Scale; MSSS, Multiple Sclerosis Severity Score.

TABLE 3 | Performance of machine learning models based on evaluation

parameters.

Model name Gini Accuracy AUC Sensitivity Specificity

SVM 0.862 87.56 0.931 0.5 0.633

DT 0.715 83.73 0.858 0.069 0.541

RF 0.914 90.91 0.957 0.756 0.857

NN 0.566 45.45 0.783 0.456 0.082

SVM, Support vector machine; DT, Decision tree; RF, Random forest; NN, Neural network.

The bold values suggests that Random Forest (RF) was selected as the best predictive

model based on the listed evaluation parameters.

Where,
TN: True negative; TP: True positive; FP: False positive;

FN: False negative. AUC: AUC (Area under Curve) is area
under Receiver Operating Characteristics (ROC) curve which is
calculated to measure the quality of model. Higher AUC value
depicts a good quality model.

Repeated K-Fold Cross Validation
K-fold cross validation was done to test the robustness of
proposed model by increasing the number of runs in model.
In this method, K-folds are repeated n times to trace out the
fluctuations in the model accuracy. If low variation in accuracy
is identified, the model is identified as robust and the predictions
to be reliable. In the present study, the dataset was divided into
six equal portions and 6-fold cross validation was repeated three
times to avoid discrepancies.

RESULTS

The Proposed Predictive Model
The proposed algorithm to predict and classifyMS is summarized
in Figure 2. The model is based on eight cytokines level in serum
for MS and control. Datasets of cytokine levels, age and gender

FIGURE 3 | Prediction accuracy of different models to diagnose MS in

Russian cohort. All MS: MS patients which includes the patients undergoing

and not on treatment when serum samples was collected. Untreated MS: MS

patients which includes the patients which were not on treatment when serum

samples was collected.

were used as input for machine learning model to predict if a
person is having MS or not. Once MS is diagnosed, the model
will be able to classify MS into remitting and non-remitting MS
based on serum cytokines, age, gender, disease duration, EDSS,
and MSSS.

Four machine learning models were employed to predict
MS using dataset including 910MS patients and 199 controls.
The dataset was prepared by random shuffling of USA and
Russian cohorts and then the data was divided into training
(70%) and testing (30%) subsets. The data was divided as
follows: 900 (training dataset) and 209 (testing dataset). The
training dataset consisted of unbalanced data on MS patients
(750) and controls (150) which was further distributed by
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FIGURE 4 | Prediction accuracy of different models to classify MS types in

Russian cohort. All MS: MS patients which includes the patients undergoing

treatment and not on treatment when serum samples was collected.

Untreated MS: MS patients which includes the patients which were not on

treatment when serum samples was collected.

FIGURE 5 | Prediction accuracy of different models of different datasets to

diagnose MS in Russian cohort. Dataset 1: IL1-β + IL-2 + IL-4 + IL-8 + IL-10

+ IL-13 + IFN-γ + TNF-α + Age + Gender. Dataset 2: IL1-β + IL-2 + IL-4 +

IL-6 + IL-8 + IL-10 + IL-13 + IFN-α + IFN-γ + TNF-α + Age + Gender.

dividing patient data into five subsets to create a balance between
the patient and control datasets. All four machine learning
models were trained separately using each balanced dataset.
All five trained models were then tested by using test dataset.
Predictions generated via five trained models were combined
using majority voting ensemble technique. Using SVM, DT, and
RF, fare accuracy of MS prediction was demonstrated (83–91%).
When additional parameters used for the analysis (Gini, AUC,
specificity, and sensitivity) were looked, RF model demonstrated
the best performance as compared to other models. Therefore,
RF was selected as model for the prediction of MS and used for
validation (Table 3).

FIGURE 6 | Prediction accuracy of different models of different datasets to

classify MS types in Russian cohort. Dataset 1: IL1-β + IL-2 + IL-4 + IL-8 +

IL-10 + IL-13 + IFN-γ + TNF-α + Age + Gender + Disease duration + EDSS

+MSSS. Dataset 2: IL1-β + IL-2 + IL-4 + IL-6 + IL-8 + IL-10 + IL-13 + IFN-α

+ IFN-γ + TNF-α + Age + Gender + Disease duration + EDSS + MSSS.

FIGURE 7 | Repeated K-fold validation of the proposed model. Data is mean

of three independent runs.

The prediction of MS was also done with inclusion of age
and gender along with cytokine values in Russian cohort where
datasets were divided into training (70%) and testing (30%).
The accuracy of MS diagnosis for different models was within
the range of 89–99% (Figure 3). RF model demonstrated 70%
accuracy in classifying remitting and non-remitting MS while
the percentage accuracy for DT, NN, and SVM models was 63,
54, and 47, respectively (Figure 4). In the Russian MS cohort,
97 patients, consisting of 22 patients taking medication, were
included. Therefore, to compare the effect of MS treatment on
MS prediction accuracy, 97MS patients were compared with
75MS patients without treatment. Data analysis did not reveal
difference between these two groups (Figures 3, 4). Thus, it was
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FIGURE 8 | ROC curve plot of four models: (A) Decision tree (DT), (B) Neural network (NN), (C) Random forest (RF), (D) Support vector machine (SVM). TPR, True

positive rate; FPR, False positive rate.

concluded that, the MS prediction accuracy is not affected by
inclusion of patients undergoing treatment.

IL-6 and IFN-α were shown to play role in MS pathogenesis
(25, 26). Therefore, we included these cytokines in dataset and
calculated the MS prediction accuracy. We have found that
inclusion of these cytokines did not improve the accuracy of MS
prediction and classification (Figures 5, 6).

Validation of the Proposed Model
To demonstrate that the trained model is not overfitted,
underfitted or biased, repeated 6-fold cross validation was
performed. The accuracy of the proposed model was evaluated
by repeated K-fold cross validation (Figure 7). The Receiver
operating Characteristic (ROC) is the representation of the true
positive rate (sensitivity) and false positive rate (1 specificity)
of the models where for each data point, the sensitivity and

specificity are calculated to plot the graph. The area under
the curve (AUC) can be considered as the criterion for the
measurement of the discriminative ability of the model to
distinguish well-among the patients and controls. Receiver
operating Characteristic (ROC) curve plots for each model
were generated to demonstrate the performance of each model
(Figure 8). It was observed that the RF model is performing well
as compared with other models (Figure 8).

DISCUSSIONS

The pathogenesis of MS is complex and involves multiple factors
which makes prediction and early diagnosis of the disease
challenging. Recently, different computational methods were
applied to develop interactive design and optimisation of the
synthetic biological system to study pathogenesis of diabetes
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(27). This study was designed to develop novel approaches
for diagnosis of the disease; because, early diagnosis of the
disease could significantly increase the success rate of the
current treatment. Artificial intelligence holds a great potential
for early diagnosis and prediction of the treatment outcome.
Several machine learning models have been developed to predict
development of the heart diseases, Parkinson’s disease and breast
cancers (28–30). In this study, RFmodel was identified as the best
to predict MS based on eight cytokine levels in serum. RF model
has also shown good accuracy in classifying MS into remitting
and non-remitting.

MS is a neurological disease highly prevalent in many
European countries, USA, Canada and Australia (31). Clinically,
MS is characterized by neurological dysfunction which often
leads to a disability (32). Despite the advances made in our
understanding of MS pathogenesis, prognostic markers for
prediction of the disease remain largely unknown. Cytokines
were shown to be consistently affected in serum of MS (18).
Also, multiple studies have demonstrated that cytokines play a
crucial role in the pathogenesis of MS (33, 34). For example,
Martins et al have shown that seven cytokines (IL-2, IL-4, IL-10,
IL-13, IL1β, IFN-γ, and TNF-α) were significantly elevated inMS
patients while IL-8 was significantly lower in MS as compared to
controls (18). Interestingly, IL-2, IL-4, IL-10, IL-13, IL1β, IFN-
γ, and TNF-α serum level was found elevated in Russian MS
as compared to controls, which was similar to that found in
USA cohort. These data suggest that the pathogenesis of MS
in Russian and USA could be similar. The only exception was
changes in serum level of IL8, which was lower in USA and
higher in Russian MS as compared to the respective controls. IL-
8 is polypotent cytokine involved in regulation of inflammation,
recruiting neutrophils, basophils, T lymphocytes, NK cells as well
as enhancing the permeability of endothelial barrier (35–38).
Difference in IL-8 serum level in Russian and USA MS cohort
could reflect the dissimilarities in the disease pathogenesis which
could be related to the genetic predisposition, sun exposure,
vitamin D production, smoking, etc.

We suggest that changes in serum cytokine levels could be
used as predictors or diagnostic biomarkers for MS. Data on
serum cytokine level in USA MS cohort was used in our study to
develop the machine learning model. To increase the number of
samples, data from another report on USA MS serum cytokine
levels was included into the analysis (19). The raw data from
these two studies was calculated via Z score percentile method. In
the resulting synthetic data, the real experimental data obtained
by multiplex immunoassay from Russian cohort was included to
have high quality prediction. Four machine learning models were
trained to predict MS where prediction was based on combined
effect of level of eight cytokines in serum. Three models (SVM,
DT, and RF) showed good accuracy forMS prediction. Themodel
performance was further evaluated using additional factors (Gini,
AUC, specificity and sensitivity). RF model has shown the best
performance in each evaluation parameters. This data suggest
that RF analysis of eight cytokine (IL-1β, IL-2, IL-4, IL-8, IL-
10, IL-13, IFN-γ, and TNF-α) levels in serum could be used
to predict MS. RF model has shown the accuracy of 70% to

classify MS into remitting vs. non-remitting where age, gender,
disease duration, EDSS, and MSSS in addition to cytokines levels
were included as classification parameters. This data corroborates
previous report where the accuracy of MS disease course was
60–70% when demographic (age, disease onset, gender, and
smoking history) and clinical factors (expanded disability status
scale, visual disability score, and mental disability score) were
included into the prediction model (17).

IL-6 and IFN-α are the inflammatory cytokines which also
affected in MS (25, 26). Therefore, prediction and classification
of MS algorithm was designed including these cytokines.
Interestingly, adding IL-6 and INF-α did not improve the
accuracy of MS diagnosis and classification. This suggests that
although IL-6 and INF-α contribute into MS pathogenesis, data
on level of eight cytokines (IL-1β, IL-2, IL-4, IL-8, IL-10, IL-13,
IFN-γ, and TNF-α) in serum provides sufficient input data to
diagnose and classify MS.

Analysis of Cerebrospinal fluid (CSF) demonstrated
association between cytokines and MS pathogenesis; however,
data remains inconsistent (39). In our previous report, ten
(IL-2RA, CCL5, CCL11, CXCL1, CXCL10, CXCL12, MIF,
IFN-γ, TRAIL, and SCF) out of forty eight cytokines were
found elevated in MS as compared to non-MS controls (40).
IFN-γ level was only found to be increased in CSF of MS in
this study, while the remaining cytokines (IL-1β, IL-2, IL-4,
IL-8, IL-10, IL-13, IFN-γ, and TNF-α), used in our prediction
model, did not change significantly as compared to controls.
Therefore, we did not include CSF cytokine data into our
prediction model. Additionally, CSF collection painful and
invasive procedure requiring highly trained personnel. Also, CSF
analysis is not always required for MS diagnosis. In contrast, MS
serum samples are often collected for routine clinical analysis,
making them readily available for cytokine detection. Current
approach could also be applied to differentiate MS from other
neuro-inflammatory diseases.

CONCLUSION

Early diagnosis of MS remains a challenge since the disease
develops slowly and clinical symptoms are often identified when
brain tissue is already damaged. In the present study, RF model
was found to have an accuracy of 91%which suggests that it could
be applied to predict MS using serum level of eight cytokines (IL-
1β, IL-2, IL-4, IL-8, IL-10, IL-13, IFN-γ, and TNF-α). Further,
the accuracy of MS classification into remitting vs. non-remitting
was observed to 70% by RF with inclusion of age, gender, diseases
duration, EDSS and MSSS in addition to serum cytokines. This is
the first study where eight cytokine levels in serum was used to
predict MS in two distinct cohorts of patients.
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Background: The causes of fatigue in multiple sclerosis (MS) and other inflammatory

disorders are not well understood. One possible cause that might explain fatigue in

inflammatory disorders appears to be the immunological process itself, triggering neural

activity that is experienced as fatigue.

Objectives: To investigate whether salivary IL-1ß concentration, associated with

systemic inflammation, is related to subjective fatigue in MS.

Methods: 116 MS patients (62 relapsing remitting MS, 54 secondary progressive MS)

and 51 healthy controls participated in this study. Salivary concentration of IL-1ß was

determined using a commercially available enzyme-linked immunosorbent assay (ELISA)

kit. Fatigue was assessed using various fatigue scales.We compared IL-1ß concentration

between groups and performed regression analyses to investigate which variables best

predict fatigue scores.

Results: We found that the IL-1ß concentration best predicts fatigue scores in relapsing

remitting MS patients, even though the IL-1ß concentration did not differ significantly

between relapsing remitting MS patients and healthy controls. Secondary progressive

MS patients showed a somewhat elevated IL-1ß concentration compared to relapsing

remitting MS patients and healthy controls. Furthermore, disease modifying treatment

had a significant effect on the IL-1ß concentration, with treated patients showing a lower

IL-1ß concentration than non-treated patients.

Conclusions: The present study points to a significant relation between the

proinflammatory cytokine IL-1ß and fatigue in relapsing remitting MS patients. It also

suggests a potential effect of disease modifying treatment on the peripheral IL-1ß

concentration.

Keywords: multiple sclerosis, disease course, fatigue, inflammation, proinflammatory cytokines, IL-1ß
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INTRODUCTION

Fatigue arguably presents the most challenging symptom for a
majority of multiple sclerosis (MS) patients (1). Its prevalence
ranges from 65 to 97% and it tends to seriously impair
approximately one-third of all MS patients (1–3). Apart from
having negative effects on a patient’s social and private life, fatigue
imposes significant socioeconomic consequences and is a major
reason for the reduction of working hours and early retirement
(4–6). Despite this serious negative impact on daily life activities,
fatigue is still poorly understood and often under-estimated. That
is why we recently developed a model explaining the origin
and consequences of MS-related fatigue (7). According to our
model, subjective fatigue in MS patients is related to peripheral
inflammation. The feeling of fatigue in MS patients is considered
a form of sickness behavior, resulting from cytokine-mediated
activity changes within brain areas involved in interoception such
as the hypothalamus, the amygdala, the insula and the anterior
cingulate. Looking at proinflammatory cytokines, IL-1ß is one of
the main mediators of sickness behavior. IL-1ß activates afferent
vagal neurons and it has been strongly and consistently linked to
symptoms of sickness behavior including fatigue (8–11).

To date, only few studies have investigated the association
between subjective fatigue in MS patients and systemic
inflammation (12–18). Studies investigating the characteristics of
peripheral T lymphocytes frequently found increased production
capacities for proinflammatory cytokines such as IFN-γ and
TNF-α in fatigued MS patients (14, 15, 17). Other studies
reported a higher serum concentration of proinflammatory
cytokines (IL-6, IL-1ß) in patients with high levels of self-
reported fatigue (13, 16). It has been argued that increased
peripheral inflammatory processes cannot explain fatigue in
progressive MS patients since progressive MS is characterized by
diffuse central nervous system atrophy and new inflammatory
lesions are rare in these disease stages (19). In our view, the
fact that there are no relapses any more does not necessarily
imply that there are no underlying inflammatory processes
in the body periphery (19). Hardly any study investigated
the relation between proinflammatory cytokines and fatigue in
chronic disease stages of MS, or compared the proinflammatory
cytokine concentration of MS patients with relapsing-remitting
(rr) and secondary progressive (sp) MS. Hence, we wanted to
investigate whether there is a difference in the concentration of
proinflammatory cytokines between rrMS and spMS patients and
whether proinflammatory cytokines may predict fatigue scores
in MS patients suffering from different clinical disease courses.
Furthermore, few studies indicate that a disease modifying
therapy alters cytokine production in MS patients (20–23). Thus,
we also aimed to investigate whether disease modifying drugs
have an effect on peripheral markers of inflammation.

Most biomarkers that are present in blood and urine can
also be detected in a sample of saliva. Several inflammatory
markers have been reliably determined from saliva and some
studies reported even higher levels of inflammatory markers in
saliva than in blood (24–27). Riis et al. (26) detected higher levels
of the proinflammatory cytokine IL-1ß in saliva than in blood
serum, and they also found a moderate correlation between these

two measures in healthy adolescent girls. Hence, saliva, a non-
invasive method for measuring salivary concentration of IL-1ß,
may be a promising tool for monitoring patients with systemic
inflammatory diseases.

Because we assume that systemic inflammation contributes
to fatigue in rrMS as well as in spMS patients, we compared
the salivary IL-1ß concentration and investigated which variables
best predict fatigue for rrMS and spMS patients.

MATERIALS AND METHODS

Study Population
From August 2015 till the end of June 2017, inpatients of
the Klinikum Bremen-Ost, Bremen, Germany, the Augusta
Hospital Anholt, Anholt, Germany and patients from theMedian
Clinic Wilhelmshaven, Wilhelmshaven, Germany were asked to
participate in the study. Additionally, MS patients were recruited
fromMS support groups in Bremen and surroundings. A total of
116 patients with rrMS (n = 62) and spMS (n = 54) participated
in this multi-center study. Pregnant patients or individuals with
an MS relapse or using corticosteroids during the last 4 weeks
before assessment, under legal care and/or with a diagnosis of
any other neurodegenerative disease were excluded from the
study. Additionally, 51 healthy controls participated. The study
was approved by the ethical board of the German Society of
Psychology (DGP) and written informed consent was obtained
from participants.

Clinical Investigation
Clinical status of all patients was assessed with the Expanded
Disability Status Scale [EDSS; (28)]. Fatigue was assessed with
two self-reported questionnaires, the Fatigue Severity Scale
[FSS; (29)] and the Fatigue Scale for Motor and Cognitive
Functions [FSMC; (30)]. The FSS consists of nine items assessing
severity and frequency of fatigue, with higher scores representing
stronger fatigue. The FSMC evaluates two main components of
fatigue, namely cognitive and motor fatigue. It is composed of 20
items. The cut-off score between normal and mild pathological
fatigue is 43 for the total scale and 22 for the cognitive and motor
scale.

Depressive mood was investigated using the Beck Depression
Inventory Scale [BDI; (31)]. The items A-O, the psychological
items, were used to calculate the score for mood impairment
whereas items P-U (sleep, tiredness, body weight, loss of sexual
interest, somatic concerns) reflect the somatic score and were
excluded from further analysis (32, 33).

Saliva Collection
Participants were asked not to drink, eat, brush their teeth,
smoke or chew gum at least for 1 h prior to the examination
on the day of saliva collection. Whole unstimulated saliva was
collected using standard techniques according to Navazesh (34).
Participants were asked to swallow first, tilt their head forward
and then letting saliva pool in their mouth for 5min. Each
minute, participants were instructed to gently spit their saliva
into a sterile 100ml container. Saliva samples were immediately
refrigerated and stored at−20◦C.
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Salivary IL-1ß Analysis
The analysis of the saliva samples was performed at the
Department of Biochemistry of the Carl von Ossietzky University
Oldenburg. On the day of the analysis, samples were stored
for approx. 30min at room temperature to defrost. 1000 µl
of each sample was pipetted into a tube and centrifuged for
15min at 1000 × g. IL-1ß levels in salivary supernatants
were determined using a commercially available enzyme-linked
immunosorbent assay (ELISA) kit (Quantikine R© ELISA Human
IL-1β/IL-1F2 Immunoassay, R&D Systems, Inc., Minneapolis,
MN, USA) according to the manufacturer’s instructions for
serum/plasma samples. The minimum detectable dose of human
IL-1β is typically less than 1 pg/ml. Samples were analyzed
in duplicate and the absorbance was measured at 450 nm
(wavelength correction was set at 620 nm). The concentration of
the samples was calculated from the standard curve. The results
are presented in picogram per milliliter (pg/ml).

Statistical Analysis
We first checked whether the IL-1ß scores deviated from a
normal distribution using the Kolmogorov-Smirnov Test. As
they were not normally distributed and since the manufacturer
of the ELISA kit recommends laboratory based cut-off values,
we performed an outlier analysis on the IL-1ß results to exclude
possibly spoiled samples from further analyses. This outlier
analysis was based on a boxplot for the healthy control samples
and determined the 1.5 ∗ interquantile score, considering an
IL-1ß concentration beyond 1,200 pg/ml as an outlier (see
Figure 1).

We subsequently compared IL-1ß concentration between
rrMS patients, spMS patients and healthy controls, controlling
for age, gender, depressive mood (psychological item score of the

FIGURE 1 | Boxplot of the salivary concentration of IL-1ß in the whole sample

to determine the upper cut-off scores for excluding possibly spoiled samples.

The error bars reflect the standard deviation. Stars, circles, and numbers

display IL-1β concentration of study participants. rrMS, relapsing remitting

multiple sclerosis; spMS, secondary progressive multiple sclerosis.

BDI) and disease modifying drugs using an univariate analysis of
covariance (ANCOVA).

In a final step, we performed separate linear forward
regression analyses for the three groups to check which variables
best predict the variance in the fatigue scores of rrMS patients,
spMS patients and healthy controls. The fatigue scores were
defined as dependent variables. IL-1ß concentration, age, gender,
number of completed school years, the psychological BDI score
and status on disease modifying treatment were defined as
independent variables.

RESULTS

After applying the cut-off score of IL-1ß concentration <1.200
pg/ml, the salivary IL-1ß concentration showed a normal
distribution. Applying the cut-off score reduced the groups to
45 rrMS patients (73% of the original sample), 35 spMS patients
(65% of the original sample) and 41 healthy controls (80% of the
original sample). Table 1 presents the characteristics and mean
scores of the groups.

There was no significant difference in gender distribution
between the three groups. As expected, spMS patients were
significantly older than rrMS patients and healthy controls, and
they had a longer disease duration and a higher EDSS score
than rrMS patients. Significantly more rrMS patients received
a disease modifying therapy than spMS patients (76 vs. 31%,
p < 0.001). 70% of MS patients suffered frommoderate cognitive
fatigue and 83% suffered from moderate motor fatigue. 64%
had a FSS score higher or equal than 4 indicating pathological
fatigue. RrMS and spMS patients did not differ significantly
in the cognitive fatigue score of the FSMC and the FSS score.
Only on the motor score of the FSMC, spMS patients scored
significantly higher than rrMS patients. 94% of spMS and
76% of rrMS patients suffered from moderate motor fatigue.
Overall, rrMS and spMS scored significantly higher on all
fatigue scores than healthy controls. RrMS patients and healthy
controls did not differ significantly in age. RrMS patients did
not differ significantly on the psychological items score of the
BDI between spMS and healthy controls. But spMS patients
scored significantly higher on the psychological items of the
BDI than healthy controls. There was no significant difference
in the IL-1ß concentration between rrMS patients and healthy
controls or between rrMS and spMS patients. But, spMS patients
presented a significantly higher IL-1ß concentration than healthy
controls.

The ANCOVA on the IL-1ß concentration, controlling for
age, gender, the psychological symptom BDI score and a disease
modifying therapy, revealed a significant Group effect (F= 4.037,
p = 0.020) and a significant effect of a disease modifying
therapy (F = 5.498, p = 0.021). In absolute terms, spMS patients
showed the highest IL-1ß concentration, but post-hoc Bonferroni
corrected t-tests revealed no significant differences between the
groups. Further, MS patients with a disease modifying therapy
had a significantly lower IL-1ß concentration than MS patients
without disease modifying therapy (222.9 vs. 319.9 pg/ml,
p= 0.008). The difference in IL-1ß concentration between treated
and non-treated patients was larger in the group of spMS patients
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(164.8 vs. 353.4 pg/ml, p = 0.001) than in the group of rrMS
patients (241.7 vs. 246.7 pg/ml, p= 0.9; see Figure 2).

The results of the linear forward regression analyses, separate
for groups, are presented in Table 2. The results revealed that
the cognitive fatigue score of the FSMC of rrMS patients is
best predicted by the IL-1ß concentration. The model explains
a significant percentage of the variance of the cognitive fatigue
score (R2 = 0.108, F = 5.223, p= 0.027). The motor fatigue score
of the rrMS patients can be best predicted by a model including
the psychological BDI score, disease modifying therapy and the

concentration of IL-1ß (R2 = 0.438, F = 10.657, p < 0.001). The
FSS score of rrMS patients can be best predicted by a model
including disease modifying therapy, the IL-1ß concentration,
the psychological BDI score and a patient’s age (R2

= 0.439,
F = 7.828, p < 0.001). In all models, the IL-1ß concentration
positively correlated with the fatigue scores (see Figures 3, 4). For
spMS patients, none of the independent variables significantly
predicted fatigue scores of the Fatigue Scale for Motor and
Cognition. The FFS of spMS patients was best predicted by a
model including age (R2 = 0.147, F = 4.294, p = 0.049). For

TABLE 1 | Group characteristics.

rrMS spMS Healthy controls

Male: 7, female: 38 Male: 6, female: 29 Male: 10, female: 31

DMT: 34 (76%) DMT: 11 (31%)

Mean SD Mean SD Mean SD

Age (years)a,c 44.0 10.9 52.1 10.6 41.8 16.2

Time since diagnosis (months)a 111.0 84.8 228.7 103.5

EDSSa 3.4 2.0 5.8 1.5

Cognitive fatigue score (FSMC)b,c 31.8 9.9 33.8 9.7 18.2 7.8

Motor fatigue score (FSMC)a,b,c 34.1 9.2 38.3 6.1 18.5 7.5

Total fatigue score (FSMC)b,c 65.9 17.2 72.1 14.5 36.7 14.8

Fatigue severity scale scoreb,c 42.0 15.6 41.8 15.9 24.4 11.3

Psychological item score (BDI)c 5.2 4.1 6.5 5.2 3.6 4.2

IL-1beta (pg/ml)c 242.9 126.6 294.1 168.1 222.7 138.0

asignificant difference (p < 0.05) between rrMS and spMS.
bsignificant difference (p < 0.05) between rrMS and healthy controls.
csignificant difference (p < 0.05) between spMS and healthy controls.

BDI, beck depression inventory; DMT, disease modifying therapy; EDSS, expanded disability status scale; FSMC, fatigue scale for motor and cognition; rrMS, relapsing remitting multiple

sclerosis; SD, standard deviation; spMS, secondary progressive multiple sclerosis.

FIGURE 2 | Salivary IL-1ß concentration (pg/ml) of healthy controls and of rrMS and spMS patients with and without a disease modifying therapy. Error bars present

the standard deviation. rrMS, relapsing remitting multiple sclerosis; spMS, secondary progressive multiple sclerosis.
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TABLE 2 | Results of the forward regression analyses with the different fatigue scores described as dependent variables.

Relapsing remitting MS patients

DEPENDENT VARIABLE: COGNITIVE FATIGUE SCORE OF THE FSMC

Model Regression coefficient B SD Beta T p

(Constant) 25.558 3.072 8.320 0.000

IL-1ß concentration 0.026 0.011 0.329 2.285 0.027

DEPENDENT VARIABLE: MOTOR FATIGUE SCORE OF THE FSMC

(Constant) 17.941 3.226 5.561 0.000

Psychological BDI score 0.957 0.266 0.424 3.597 0.001

Disease modifying drugs 8.821 2.484 0.416 3.551 0.001

IL-1ß concentration 0.018 0.009 0.254 2.153 0.037

DEPENDENT VARIABLE: FSS SCORE

(Constant) 31.825 9.598 3.316 0.002

Disease modifying drugs 11.939 4.354 0.334 2.742 0.009

IL-1ß concentration 0.051 0.015 0.415 3.398 0.002

Psychological BDI score 1.018 0.454 0.267 2.242 0.031

Age −0.376 0.178 −0.263 −2.113 0.041

Secondary progressive MS patients

DEPENDENT VARIABLE: FSS SCORE

(Constant) 72.421 14.856 4.875 0.000

Age −0.575 0.278 −0.383 −2.072 0.049

Healthy controls

DEPENDENT VARIABLE: COGNITIVE FATIGUE SCORE OF THE FSMC

(Constant) 13.500 1.162 11.637 0.000

Psychological BDI score 1.288 1.288 0.699 6.111 0.000

DEPENDENT VARIABLE: MOTOR FATIGUE SCORE OF THE FSMC

(Constant) 14.548 1.250 11.642 0.000

Psychological BDI score 1.091 0.227 0.611 4.814 0.000

DEPENDENT VARIABLE: FSS SCORE

(Constant) 28.387 4.415 6.430 0.000

Psychological BDI score 1.227 0.380 0.460 3.227 0.003

Age −0.202 0.099 −0.291 −2.044 0.048

BDI, beck depression inventory; FSMC, fatigue scale for motor and cognition; FSS, fatigue severity scale; MS, multiple sclerosis.

healthy controls, the psychological BDI score was included in the
models best predicting the different fatigue scores of the FSMC
(cognitive fatigue score: R2 = 0.489, F = 37.345, p < 0.001;
motor fatigue score: R2 = 0.373, F = 23.179, p < 0.001). The
FSS of healthy controls was best predicted by a model including
the psychological BDI score and age (R2

= 0.251, F = 6.365,
p= 0.004).

DISCUSSION

The results of the present study demonstrated that MS patients
with a secondary progressive disease course showed a somewhat
increased level of IL-1ß in comparison to healthy controls
and rrMS patients. Moreover, we found a significant effect
of disease modifying treatment on the IL-1ß concentration.
Patients receiving such a therapy showed a significantly lower
IL-1ß concentration than patients not receiving such a therapy.

Furthermore, the IL-1ß concentration was one of the main
predictors of fatigue scores in rrMS patients. It did not predict
fatigue scores of spMS patients and healthy controls.

As far as we know, a comparison of peripheral inflammation
between rrMS and spMS patients has not been performed before.
Many reasons may explain the higher IL-1ß level in the spMS
group compared to rrMS patients and healthy controls, which
are irrelevant for the topic of our investigation. To name just a
few: as expected spMS patients showed a high EDSS score (about
6). This may lead to body immobility, less immune competence
and consequently increased IL-1ß values (35). Also, the higher
age of spMS patients might account for an increased level of
systemic proinflammatory cytokines in this group (36). We also
found that receiving a disease modifying therapy has a significant
effect on the IL-1ß concentration. This finding stands in line
with previous studies demonstrating a potential effect of a disease
modifying therapy on cytokine production (20–23). The fact
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FIGURE 3 | Correlation between the salivary IL-1ß concentration (pg/ml) and

the Fatigue Severity Scale Score in relapsing remitting MS patients

(Beta = 0.382, F = 7.3, p = 0.010). rrMS, relapsing remitting multiple

sclerosis.

that less spMS patients than rrMS patients received a disease
modifying therapy may also be relevant for the higher IL-1ß
concentration in spMS patients as compared to rrMS patients
and healthy controls. Irrespectively of the underlying causes for
the increased IL-1ß concentration in spMS patients, the finding
that spMS patients had a somewhat elevated concentration of
IL-1ß might indicate that even in spMS patients there may
be a link between inflammatory activity and the feeling of
fatigue.

The findings of the regression analyses point to a relationship
between the proinflammatory cytokine IL-1ß and fatigue only in
MS patients suffering from a relapsing remitting disease course.
The salivary concentration of IL-1ß was included in all models
best predicting fatigue scores in rrMS patients. This finding
stands in contrast to two previous studies that did not find a
relation between fatigue and blood levels of IL-1ß in MS patients
(16, 37). This difference might be due to the fact that Akali
and colleagues did not use regression analyses to investigate
the relation between fatigue and the IL-1ß concentration. They
did not control for factors such as depression, MS type or
disease modifying drugs (37). Also Malekzadeh et al. did not
consider depressive symptoms in their statistical analysis (16).
We did control for an effect of depressive symptoms on the IL-1ß
concentration. Furthermore, we included a larger amount of MS
patients than the two previous studies and we divided patients
into rrMS and spMS patients and checked for a relationship
between IL-1ß and fatigue in the separate groups. Our results
suggest that especially in the early disease stages of MS, bodily
inflammation may be one dominant cause for fatigue. However,
the relatively low R2 scores indicate that IL-1ß alone may
explain only a limited part of the variance in experienced fatigue.

FIGURE 4 | Correlation between the salivary IL-1ß concentration (pg/ml) and

the Cognitive Fatigue Score of the Fatigue Scale for Motor and Cognition in

relapsing remitting MS patients (Beta = 0.329, F = 5.2, p = 0.027). FSMC,

Fatigue Scale for Motor and Cognition, rrMS, relapsing remitting multiple

sclerosis.

Other cytokines like TNF-α, IL-6, IL-12, or IL-17 may have an
additional impact on subjective fatigue (7).

Overall, fatigue seems to be a multi-factorial symptom
resulting from different causes. Besides immunological
abnormalities, also structural brain changes may contribute
to fatigue. Several studies found a relation between fatigue and
gray matter atrophy within specific brain areas such as frontal
motor areas and subcortical areas such as the thalamus and
basal ganglia (38). Nevertheless, it is noteworthy that in rrMS
patients IL-1ß best predicted fatigue scores, whereas in healthy
controls the psychological items of the BDI appeared to best
predict the variance of the different fatigue scores. Hence, the
level of IL-1ß seems to play an important role in fatigue in rrMS
patients, whereas—as shown in healthy controls—fatigue might
also be related to depressive symptoms as argued in many prior
investigations (39–41).

The absence of a significant difference in IL-1ß concentration
between rrMS patients and healthy controls raises some
questions. One may argue that the peripheral level of IL-1ß
cannot explain subjective fatigue, because then rrMS patients
should show a higher IL-1ß concentration than healthy controls.
The lack of a significant difference in the IL-1ß concentration
between rrMS patients and healthy controls may be due to
the small group sizes. Furthermore, the majority of rrMS
patients received a disease modifying therapy. We found
that patients receiving such a therapy had a significantly
lower IL-1ß concentration. Hence, the lack of a difference
may also be due to fact that most rrMS patients received
a disease modifying therapy. Nevertheless, several studies
show that chronic neuroinflammation sensitizes the brain to
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produce an exaggerated response to peripheral inflammation
resulting in prolonged sickness behavior and increased cytokine
induction within the central nervous system (42, 43). MS
is a chronic inflammatory disease of the central nervous
system which is characterized by chronic peripheral and
central inflammation. Hence, MS patients in general might be
sensitized to the effects of peripheral proinflammatory cytokines.
Consequently, MS patients might produce an exaggerated
response to peripheral inflammation resulting in exaggerated
fatigue, whereas peripheral inflammation has no effect on healthy
controls. This might explain the finding that even though rrMS
and healthy controls present a similar concentration of salivary
IL-1ß, rrMS present significantly higher fatigue scores.

According to the regression analyses, age seems to have an
influence on the Fatigue Severity Scale Score in healthy controls,
rrMS and spMS patients. Age negatively correlated with the
fatigue scores in all groups. This unexpected finding contradicts
the assumption that increased age is related to higher fatigue
scores.

Additional evidence for a relationship between fatigue and
bodily inflammation in MS patients comes from recent studies
in which we demonstrated the importance of inflammation-
induced vagal nerve activity for the generation of fatigue. In
a previous study (44), we found that fatigue severity predicts
future relapses in MS patients, additionally pointing to a relation
between bodily inflammation and fatigue severity in rrMS
patients. We also showed that fatigue in MS patients is associated
with afferent vagal nerve signaling. A disruption of afferent
interoceptive signaling is related to the absence of fatigue in MS
patients (45, 46). Furthermore, fatigue correlates with autonomic
symptoms (47), especially with those that strongly depend on
vagal nerve signaling such as bladder dysfunctions, orthostatic
intolerance and pupillomotor dysfunctions.

Given that an elevated systemic concentration of IL-1ß causes
fatigue in rrMS patients, anti-inflammatory interventions should
have a positive effect on fatigue in this patient population.
Recent studies did show that aerobic exercise and resistance
training have a combined positive effect on proinflammatory
cytokine concentration and on fatigue in mildly impaired MS
patients (48–53). Moreover, substances with anti-inflammatory
properties such as Alfacalcidol, vitamin A or coenzymeQ10 seem
to have the potential to reduce subjective fatigue in MS patients
(54–57). Other studies showed that blocking IL-1ß signaling via
Anakinra, an IL-1ß receptor antagonist exerts a positive effect on
fatigue in patients suffering from inflammatory diseases such as
rheumatoid arthritis or Sjögren’s syndrome (58, 59).

There is another finding of our study, not directly related to
the question of IL-1ß level and fatigue, that should be mentioned.
As expected, rrMS and spMS patients differed in age, disease
duration and EDSS, but not in their total and cognitive fatigue
level. Consequently, the argument that fatigue results from a
loss of function and a compensatory effort to solve everyday
problems is less likely. Only the motor fatigue score showed
a significant difference between the groups. Motor fatigue is
strongly associated to muscle strength and motor impairment
andmight reflect the impact of motor impairment rather than the
actual feeling of fatigue (60, 61). If the compensatory effort model

of fatigue is correct, then it will concern motor fatigue more than
cognitive fatigue.

One limitation of this study is that salivary IL-1ß
concentration may not only reflect systemic immune responses
but also local immune responses. This might explain the high
number of outliers for the salivary IL-1ß concentration scores.
To exclude an extremely high IL-1ß concentration due to
local inflammation in the mouth, oral examinations need to
be included. Nevertheless, gingival crevicular fluid is not only
the result of local cytokine production but it is also a fluid of
systemic origin indicating systemic inflammation. Moreover,
also other factors that were not assessed in this study such as
obesity, smoking or stress may also increase bodily inflammation
and might have influenced the high concentration of IL-1ß in
spMS patients (62–64). Hence, we cannot draw conclusions on
causality regarding the relation between fatigue and IL-1ß in MS
patients. Future studies on inflammatory markers in MS patients
should also check for a potential effect of the above mentioned
factors on peripheral inflammation.

CONCLUSION

We recently developed a model for MS-related fatigue arguing
that the feeling of fatigue is caused by systemic inflammation,
resulting from inflammation-induced activity changes within
interoceptive brain areas (7). The present study points to
an association between the salivary concentration of the
proinflammatory cytokine IL-1ß and subjective fatigue in rrMS
patients. We also found that a disease modifying therapy
significantly lowered the IL-1ß concentration. Future studies
combining immunological and radiological measures are needed
for a better understanding of the relation between subjective
fatigue scores, peripheral immune markers and structural and
functional changes in the central nervous system.
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Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous

system (CNS). While the etiology of MS is still largely unknown, scientists believe that the

interaction of several endogenous and exogenous factorsmay be involved in this disease.

Epidemiologists have seen an increased prevalence of MS in countries at high latitudes,

where the sunlight is limited and where the populations have vitamin D deficiency and

high melatonin levels. Although the functions and synthesis of vitamin D and melatonin

are contrary to each other, both are involved in the immune system. While melatonin

synthesis is affected by light, vitamin D deficiency may be involved in melatonin secretion.

On the other hand, vitamin D deficiency reduces intestinal calcium absorption leading to

gut stasis and subsequently increasing gut permeability. The latter allows gut microbiota

to transfer more endotoxins such as lipopolysaccharides (LPS) into the blood. LPS

stimulates the production of inflammatory cytokines within the CNS, especially the pineal

gland. This review summarizes the current findings on the correlation between latitude,

sunlight and vitamin D, and details their effects on intestinal calcium absorption, gut

microbiota and neuroinflammatory mediators in MS. We also propose a newmechanistic

pathway for the initiation of MS.

Keywords: multiple sclerosis, latitude, sunlight, vitamin D, melatonin, gut microbiota

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous
system (CNS) affecting over 2.5 million young adults worldwide; this condition develops when
activated immune cells attack the CNS (1). Previous studies using advanced neuroimaging,
neuroimmunological, and neuropathological technologies demonstrated that MS is not a single
disease but rather a spectrum at disease (2). Symptoms of MS may differ greatly between patients
and its progression depends on various factors affecting mainly the nerve processes. The exact
mechanism responsible for this destructive disease is still unknown. Several immunological
pathways have been suggested to be involved in MS owing to the use of the experimental
autoimmune encephalomyelitis (EAE) animal model, the most widely used and best model for
clinical MS (3). In the absence of a firm understanding of the mechanisms underlying MS,
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researchers have suggested a combination of risk factors that are
involved in this disease; however, their specific contribution to
MS pathogenesis is largely unknown. Among others, these risk
factors include age, sex, family history, infections, race, climate,
environment, and smoking (4).

Environmental factors, such as exposure to infectious agents,
sunlight and vitamin D levels have long been considered as
potent risk factors in people under 15 years of age (5). Both
epidemiological and immunological data support the idea that
some chronic bacterial infections may reside within the CNS
and initiate pathological states (6, 7). On the other hand, high
prevalence of MS has been reported in areas with short days
and long night periods that may last 6–8 months per year (8).
Moreover, vitamin D deficiency is commonplace in these regions
of limited sunshine durations.

This survey critically reviews the literature in an attempt to
clarify whether any connection exists between sunlight, vitamin
D, and bacterial infection toward causing MS and suggests a new
mechanism by which MS may be triggered.

LATITUDE, SUNLIGHT, AND VITAMIN D IN

MULTIPLE SCLEROSIS

About 85% of the world population lives at latitudes between
the 40th parallels North and South, as a result, these individual
are routinely exposed to sunlight (8). However, the remainder
of the population (15%) lives at higher latitudes in the northern
half of the USA, Europe, Canada, and Russia or in the
southern hemisphere in New Zealand, Tasmania and Patagonia.
The individuals at these high latitudes receive relatively lower
amounts of sunshine while they have the highest rate of MS.
Indeed, the incidence of MS in these individuals ranges from 110
to 140 cases per 100,000 people, which is two-fold greater than the
rate between the 40th parallels which has about 57 to 78 cases per
100,000 (9). The incidence of MS is also higher in colder climates
(10).

Inadequate exposure to sunlight has been introduced as
the main risk factor for vitamin D deficiency (11). It is well
documented that short days and weak sunlight do not trigger
vitamin D synthesis in the skin at latitudes above 40 degrees
North (10, 12) where the population relies on dietary rather
than light-synthetized vitamin D (13). Two forms of vitamin
D are present: D2 and D3, ergocalciferol, and cholecalciferol,
respectively. Vitamin D2 is produced by some plants in
response to UV radiation whereas vitamin D3 is synthesized
in the skin of humans and animals via the UV irradiation of
7-dehydrocholesterol to provitamin D3, the most biologically
active form (14–16). Importantly, vitamin D is a major regulator
of the immune system (17) and various immunological diseases,
especially MS (18).

Abbreviations: CNS, central nervous system; MS, multiple sclerosis; LPS,

lipopolysaccharides; EAE, experimental autoimmune encephalomyelitis; ipRGCs,

intrinsically photosensitive retinal ganglion cells; RGCs, retinal ganglion cells;

SCN, suprachiasmatic nucleus; BBB, blood brain barrier; SMCs, smooth muscle

cells; TLR4, Toll like receptor 4; LBP, LPS-binding protein.

We have reviewed the literature related to MS prevalence and
vitaminD levels in Sweden, a country that is mostly present above
60◦ North latitude (12), where people experience long nights,
especially during the winter. The prevalence of MS in 2011 was
189/100,000 individuals (19). Ultraviolet radiation in Sweden,
particularly at northern latitudes, is too low to allow the synthesis
of vitamin D during the winter months where the sun is above
the horizon (20, 21). Concerning vitamin D levels in the Swedish
population, several studies clearly reported vitamin D deficiency
(22, 23). These observations are similar to those for New Zealand
in the south hemisphere (24). Geographically, the prevalence of
MS decreases by moving toward the equator (25), which further
implicates sunlight and vitamin D as contributors to this serious
disease (26).

MELATONIN, VITAMIN D, AND MULTIPLE

SCLEROSIS

Melatonin, known as the chemical expression of darkness,
is a sunlight dependent molecule released from pineal gland
in response to darkness (27). Melatonin levels correlate with
neuroimmunological diseases and are inversely related to the
severity of MS and its relapse (28–32). These observations
prompted researchers to investigate melatonin’s effect on
MS using experimental autoimmune encephalomyelitis (EAE)
animal models. When tested, the severity of this condition was
ameliorated using melatonin (33–35). We previously reported,
however, that the action of melatonin in EAE rats may be
age related (36). At the clinical level, MS patients administered
melatonin as a sole treatment for 4 years recovered to 6.0 at the
Expanded Disability Status Scale (EDSS), from an initial 8.0 level
(32).

While several clinical studies investigated vitaminD-mediated
functions in MS, the mechanisms by which vitamin D or
melatonin functions relate toMS are not known. Previous studies
clearly noted a reduction of vitamin D levels in MS patients,
compared to healthy subjects; hence, hypovitaminosis D has been
suggested to be a risk factor for MS (37). However, the evidence
for a role of vitamin D as a treatment for MS is inconclusive
and larger studies are needed (38). As a strategy to ameliorate
the severity of MS, low-dose vitamin D supplementation did not
show a significant effect on the EDSS score or relapse rate of MS
patients (39). Conversely, some studies reported that increased
vitamin D levels reduce the incidence and disease course of MS
(40–42). A recent study showed an inverse correlation between
changes in serum levels of vitamin D and melatonin. Indeed, the
night secretion of melatonin was shown to be reduced after 3
months’ administration of high dose vitamin D in IFN-β treated
MS patients. Moreover, there was a reduction in serum vitamin
D levels when melatonin levels rose at night (43).

VITAMIN D, MELATONIN, AND THE EYE

Both vitamin D and melatonin are individually essential for
cellular physiology; their rhythms are contrary to each other.
Vitamin D is synthesized in the skin when it is exposed to ultra
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violet radiation from the sun whereas melatonin synthesis by the
pineal gland occurs primarily at night.While vitaminD is present
in certain foods, the bulk of it is obtained through exposure
to sunlight. Conversely, the pineal gland produces melatonin
primarily at night (44, 45), but it is also, like vitamin D, consumed
in the diet (46). It is well established that melatonin secretion
from the pineal gland peaks near the middle of the dark phase
and then declines slowly and gradually (47, 48). It is possible that
increasing vitamin D levels during the day may act, in part, as a
signal that suppresses melatonin generation (43).

In themammalian retina, rod and cone photoreceptors, whose
photopigments are rhodopsin and photopsin, are responsible
for the image-forming vision. Newly identified photoreceptors
in the inner retina named “intrinsically photosensitive retinal
ganglion cells (ipRGCs)” are responsible for non-image-forming
vision such as regulation of circadian rhythms and pupil size
(49–52). These retinal ganglion cells (RGCs) are also involved
in melatonin regulation where ipRGCs selectively express
melanopsin, a novel opsin-like protein and a photopigment
whose expression is restricted to <2% of RGCs (53). Melanopsin
regeneration is different from that of rhodopsin (54, 55).
Melanopsin exists in equilibrium in two stable states under
broadband light conditions and exhibits a peak spectral
sensitivity in the blue wavelengths at ∼482 nm. It is important
to note that ipRGSc are involved in non-visual responses to
light, especially blue light (56). The circadian rhythm of pineal
melatonin is regulated by signals coming from suprachiasmatic
nucleus (SCN) of the hypothalamus (57). ipRGC axons project
to the SCN and it is this pathway that ultimately controls pineal
melatonin production (58).

It is now known that exposure to blue light activates
melanopsin and inhibits the SCN to synthesize and release
melatonin (59–61). A recent study indicated that loss of visual
axons and RGCs could be associated with vitamin D deficiency,
consistent with the neuro-steroid effects of vitamin D in the CNS
(62). While RGCs play a critical role in regulating melatonin
production/release, the effect of vitamin D deficiency on RGCs
could relate vitaminD deficiency withmelatonin. This is a subject
worthy of investigation. Immunologically, both hormones play a
critical role in the blood brain barrier (BBB) integrity (63, 64).

VITAMIN D AND INTESTINAL CALCIUM

ABSORPTION

Calcium is an abundant element in the human body and
exhibits key roles in many physiological processes including
blood clotting, hormone secretion, bone mineralization,
nerve impulse transmission, and muscle contraction (65).
While melatonin influences calcium absorption (66), vitamin
D3 is the main hormone controlling intestinal calcium
uptake (67). The importance of vitamin D deficiency in
impairing calcium absorption from the intestine has been
known for decades (68, 69). Several studies have shown,
using vitamin D receptor (VDR) knockout mice, that
vitamin D directly enhances intestinal calcium absorption
(70, 71). In addition, it has been clearly documented that
intestinal calcium absorption is reduced in vitamin D deficient

animals and patients with low circulating vitamin D levels
(72, 73).

Gastrointestinal motility involves a complex tightly
coordinated series of contractions and relaxations of
gastrointestinal smooth muscles, which are essential to maintain
the orderly process of digestion. While most muscle cells use free
calcium present in the cytosol for this process, gastrointestinal
smooth muscle cells (SMCs) use calcium that has been imported
from the extracellular fluid through special channels (74).
Intestinal muscle cells need to increase and then reduce
the concentration of calcium to initiate the contraction and
relaxation of the intestinal muscles, respectively (75). This
calcium variation is one of the main regulatory factors that
affects intestinal motility. This observation led for simultaneous
administration of vitamin D and calcium as a therapeutic
strategy to stimulate normal intestinal motility in humans
(76). In addition to the critical role of vitamin D3 in intestinal
calcium absorption and intestinal motility, it may be involved in
maintaining the integrity of the intestinal barrier and protecting
it against mucosal injury (77).

INTESTINAL CALCIUM ABSORPTION, GUT

MICROBIOTA, AND MULTIPLE SCLEROSIS

The reduction in intestinal calcium absorption leads to
disruptions in intestinal motility and subsequently causes stasis
of aboral movement (gut stasis) and gastroparesis in the long
term (78). Gut stasis is a potentially deadly condition in which
the digestive system slows down or stops completely whereas
gastroparesis is a chronic disorder of delayed gastric emptying
characterized by food remaining in the stomach for a longer time
than normal (79). Gill etal. (80) reported for the first time a role
of intestinal aboral movement in MS patients with intractable
constipation. Two other studies in MS patients complaining
of constipation or fecal incontinence reported that an efficient
therapy for MS patients is gut focused behavioral treatment
(biofeedback), especially for those with non-progressive limited
disability (81, 82). In addition, a similar study inMS patients with
constipation symptoms suggested a positive effect of abdominal
massage on constipation symptoms and alleviation ofMS severity
(83).

Abnormalities of slow intestinal movement such as gut
stasis, gastroparesis, and constipation seems to cause a rise in
intestinal absorption including bacterial toxins. In support of this
hypothesis, several previous studies clearly showed that gut stasis
leads to elevated gut permeability and bacterial translocation (75,
84–87). This ultimately releases toxic mediators which further
increases gut permeability (88–91). Conversely, alterations in the
gut microbiota may to be involved in some neurological and
autoimmune conditions (92), especially MS (93). For instance, it
has been reported that patients in the active or remission phases
of relapsing-remitting MS (RRMS) have gut microbial dysbiosis
(94). Another similar study in children (≤18 years old within
2 years of MS) showed increased levels of gut gram-negative
bacteria that could be associated with neurodegeneration (95).
Moreover, gut bacteria can also affect the integrity of BBB, which
is critical in MS (96).
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TABLE 1 | Clinical and review studies.

Study Main results References

Systematic review Overall incidence rate of MS was 3.6/100,000 person-years (116)

Higher latitude was associated with higher MS incidence

Latitude gradient was attenuated after 1980, increase in ratio of female-to-male in MS incidence in lower

latitudes

Review and meta-regression analysis Universal increase in prevalence and incidence of MS over time (115)

A general increase in incidence of MS in females

Latitude gradient of incidence of MS is apparent for Australia and New Zealand

Medical hypothesis Low incidence of MS near the equator may be due to UV light induced suppressor cells to melanocyte

antigens

(25)

Ecological study Strong association between MS prevalence and annual UVB (114)

Female and male prevalence rates were correlated with annual UVB

The effect of UVB on prevalence rates differed by sex

Review and meta-regression analyses Statistically significant positive association between MS prevalence and latitude globally (10)

The latitude-dependent incidence of MS, possibly due to UV radiation/vitamin D

Case-control study Lower nocturnal serum melatonin levels in MS patients with major depression (MD) compared to patients

without MD

(28)

Negative correlation between Beck Depression Scale (BDS) scores and serum melatonin levels

Case-control study No significant difference between saliva melatonin levels of MS patients vs. healthy subjects; however,

when taking the effect of age, a significant difference was found

(29)

Case-control study Decreased levels of 6-sulphatoxy-melatonin (6-SMT) in MS patients (30)

IFN-β treatment increased 6-SMT in patients with improved fatigue

Case report 4-years of melatonin therapy improved primary progressive MS (32)

Systematic review The evidence for vitamin D as a treatment for MS is inconclusive (38)

Larger studies are warranted to assess the effect of vitamin D on clinical outcomes in patients with MS

Randomized placebo-controlled trial Low-dose vitamin D therapy had no significant effect on the EDSS score or relapse rate of MS patient. (39)

A larger multicenter study of vitamin D in RRMS is warranted to assess the efficacy of this intervention

Prospective cohort study Higher vitamin D levels associated with a reduced hazard of relapse (40)

Each 10 nmol/l increase in vitamin D resulting in up to a 12% reduction in risk of relapse

Raising 25-OH-D levels by 50 nmol/l could cause relapse

Randomized, double blind study Melatonin secretion is negatively correlated with alterations in serum vitamin D in IFN-β treated MS

patients

(43)

Melatonin should be considered as a potential mediator of vitamin D neuro-immunomodulatory effects in

MS patients

TABLE 2 | Experimental studies on EAE.

Main result References

Melatonin therapy reduced the clinical severity of EAE (33)

Melatonin reduced immune cell infiltration into the spinal cord of EAE

Melatonin protects against EAE by controlling peripheral and central T effector/regulatory responses (34)

Melatonin modulates adaptive immunity centrally and peripherally in EAE mice (35)

Melatonin suppresses the expression of IFN-γ, IL-17, IL-6, and CCL20 in the CNS of EAE and inhibits antigen-specific T cell proliferation

A relationship exists between age and the development of EAE (36)

Melatonin in young EAE rats exacerbated disease severity

Vitamin D therapy suppresses the severity of clinical scores and reduces IL-6 and IL-17 (126)

Dietary calcium and vitamin D are both involved in the prevention of symptomatic EAE (121)

Vitamin D could reduce the severity of disease only when accompanied by elevated serum calcium

Exposure to UVB reduced EAE incidence by 74% (122)

Exposure to UVB increased the conversation of skin trans-urocanic acid to cis-urocanic acid

Enhanced skin cis-urocanic acid levels independent of UVB was unable to reduce EAE

Vitamin D therapy prevents blood brain barrier disruption caused by relapse–remitting MS and secondary progressive MS (18)

Women are more susceptible to gastroparesis than men (125)
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FIGURE 1 | Schematic representation correlating various factors such as light, eye, melanopsin, pineal gland, vitamin D, intestinal calcium, and gut microbiota to

neuroinflammation and MS. (A) Adequate exposure to sunlight; (1) Long days and adequate exposure to sunlight suppresses the melatonin secretion and (2) leads to

activation of melanopsin, generated by RGCs. (3) Activated melanopsin by sunlight sends an inhibitory signal to pineal gland to decreases the melatonin secretion.

(Red numbered rectangle). (B) Inadequate exposure to sunlight; (1) Long nights and/or inadequate exposure to sunlight increase the level of melatonin (black arrow),

(2) causes melanopsin inactivation and. (3) Promotion in level of inactivated melanopsin by darkness leads to sending a stimulatory signal to pineal gland to cause a

further increase in melatonin levels. (4) On the other hand, darkness leads to Vitamin D deficiency. (5) Vitamin D deficiency causes injury to RGCs, (6) reducing

melanopsin secretion (dashed black arrow). (7) Vitamin D deficiency also causes disruption in intestinal calcium absorption, which (8) leads to a reduction in smooth

muscles of the intestine and subsequently gut stasis. (9) The latter increases gut permeability and LPS translocation toward the CNS. (10) LPS activates

CD14/TLR4/MD2 complex which (11) increases the proinflammatory mediators in the brain such as TNF-α. (12) CD14 and TLR4 receptors in the pineal gland respond

to LPS by (13) TNF secretion and (14) suppression of melatonin synthesis. (15) Eventually, secreted proinflammatory mediators and activated NF-kB pathway leads to

neuroinflammation and possible demyelination at the long term. (Green numbered rectangle).

GUT MICROBIOTA, CD14, TOLL LIKE

RECEPTOR 4 (TLR4), AND MELATONIN

The intestine of animals and humans contain gut
microbiota which produce endotoxic compounds including

lipopolysaccharides (LPS), a component of gram-negative
bacterial outer membrane (97, 98). The rise in LPS levels in gut
microbiota increases the blood LPS through gut inflammation
(99). LPS is recognized by LPS-binding protein (LBP) in the
serum which brings the LPS to the surface of various cells such
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as macrophages and endothelial cells to form a complex with
CD14, a receptor molecule for LPS. CD14 splits LPS aggregates
into monomeric molecules and facilitates the transfer of LPS
to TLR4/MD2 complex. MD2 is a secreted glycoprotein that
functions as an indispensable extracellular adaptor molecule
for LPS-signaling events. Activation of TLR4/MD2 complex
upon binding to LPS leads to LPS-mediated NFkB activation
and production of pro-inflammatory cytokines such as tumor
necrosis factor-alpha (TNF-α) (100–107).

The role of the pineal gland/melatonin in response to LPS is
controversial. Melatonin was shown to inhibit the LPS-CD14-
TLR4 signaling pathway in bovine mammary epithelial cells
and decreased LPS-induced expression of pro-inflammatory
cytokines such as TNF-α, IL-1β, and IL-6 (108). In contrast,
pineal cells possess both TLR4 and CD14 that bind to
LPS and activate NF-kB pathway by increasing the level of
TNF, which subsequently suppresses melatonin synthesis (109).
Since CD14 is the major cell surface receptor for LPS on
monocytes/macrophages (110), the authors established that
melatonin increased the secretion of IL-1 in vitro and in vivo
(111, 112) and TNF-α and IL-6 in vivo (112, 113). These data
support the hypothesis that LPS produced by gut microbiota
causes neuroinflammation that in turn induces higher levels of
LPS stimulating the pineal gland to activate the NF-kB pathway
and to produce TNF-α while suppressing melatonin synthesis.

UV IRRITATION, VITAMIN D,

GASTROPARESIS

Higher latitude has been associated with higher MS incidence
and lower UV exposure. In support of the role of latitude in
MS susceptibility, a recent study suggested that regional UVB
radiation affects MS prevalence which supports the hypothesis
that exposure to sunlight can influence MS risk (114). The latter
study highlighted the potential role of gender-specific effects
of UVB, a suggestion that is also proposed by meta-regression
analyses (115) and by incidence studies of MS (116). In fact, an
experimental study demonstrated that UVB therapy can suppress
EAE; however, its effect does not proceed via the production of
vitamin D (117). On the other hand, although vitamin D levels
are low in MS patients, evidence that vitamin D prescription can
reduce the incidence of MS has not been obtained yet (118–120).
Importantly, vitamin D could reduce the severity of disease only
when it was accompanied by elevated serum calcium (121).

To investigate the involvement of UV in MS progression,
Irving and colleagues demonstrated that EAE incidence was
reduced by 74% following UVB radiation (122). Since UVB
photons enter the skin to produce vitamin D3 during exposure to
sunlight (123), Irving and colleagues showed that UVB therapy
in EAE caused an increase in the levels of skin cis-urocanic
acid levels, an intermediate in the catabolism of l-histidine.
Moreover, they also observed that enhancement of skin cis-
urocanic acid levels independent of UVB cannot affect the
disease onset or progression (122). On the other hand, it has

been demonstrated that cis-urocanic acid causes a reduction
in the severity of colitis, a chronic inflammatory condition of
the gut (124). In addition, colitis was shown to delay gastric
emptying and leads to colitis-induced gastroparesis in animal
models (124). In accordance, it has been reported that women
are more susceptible to gastroparesis than men (125), while the
incidence of MS is about 3-fold higher in women than in men.
We therefore suggest that gastroparesis could be one of the main
factors involved in triggering MS.

The summarized results and highlights about the clinical and
experimental studies on MS patients and EAE model have been
demonstrated in Table 1 and Table 2, respectively.

CONCLUSION

We suggest a new pathway that lead to neuroinflammation
and MS by including different factors such as latitude, sunlight,
vitamin D, melanopsin, intestinal calcium, pineal gland, gut
stasis, gut endotoxins (LPS), and CD14/TLR4 (Figure 1). While
the prevalence of MS is dramatically higher at latitudes above
40 degrees North and South, populations in these areas receive
limited sunlight that may lead to a longer increase in melatonin
synthesis and release. Since the functions and synthesis of
melatonin and vitamin D are contrary to each other, we
believe that therapy using these hormones would not be an
effective strategy for the treatment of MS patients with low
melatonin levels or vitamin D deficiency. We suggest that a
balance should exist between these two hormones. In dark
periods, melanopsin in the RGCs is inactivate allowing the
pineal gland to synthesize melatonin; however, vitamin D levels
decrease dramatically and patients face vitamin D deficiency
with long term sunlight deprivation. This low level of vitamin
D causes RGC injury which contain melanopsin and also
reduces intestinal calcium absorption, essential for intestinal
smooth muscle contraction. Vitamin D deficiency and reduction
of calcium absorption leads to gut stasis and subsequently
increases the gut permeability allowing gut microbiota to transfer
more endotoxins such as LPS into the blood. Translocated
LPS migrates to the brain and triggers the production of pro-
inflammatory mediators through CD14/TLR4/MD2 complex.
CD14 and TLR4 receptors within the pineal gland respond to
LPS with induced TNF secretion while melatonin synthesis is
suppressed causing neuroinflammation and contributing to the
development of MS in the long term. Further experimental and
clinical studies are needed to unravel the mechanisms of MS
induction.
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Vitamin D3 (VitD) insufficiency is postulated to represent a major modifiable risk factor 
for multiple sclerosis (MS). While low VitD levels strongly correlate with higher MS risk in 
white populations, this is not the case for other ethnic groups, suggesting the existence 
of a genetic component. Moreover, VitD supplementation studies in MS so far have not 
shown a consistent benefit. We sought to determine whether direct manipulation of VitD 
levels modulates central nervous system autoimmune disease in a sex-by-genotype- 
dependent manner. To this end, we used a dietary model of VitD modulation, together 
with the autoimmune animal model of MS, experimental autoimmune encephalomyelitis 
(EAE). To assess the impact of genotype-by-VitD interactions on EAE susceptibility, 
we utilized a chromosome substitution (consomic) mouse model that incorporates the 
genetic diversity of wild-derived PWD/PhJ mice. High VitD was protective in EAE in 
female, but not male C57BL/6J (B6) mice, and had no effect in EAE-resistant PWD/
PhJ (PWD) mice. EAE protection was accompanied by sex- and genotype-specific 
suppression of proinflammatory transcriptional programs in CD4 T effector cells, but 
not CD4 regulatory T  cells. Decreased expression of proinflammatory genes was 
observed with high VitD in female CD4 T effector cells, specifically implicating a key role 
of MHC class II genes, interferon gamma, and Th1 cell-mediated neuroinflammation. 
In consomic strains, effects of VitD on EAE were also sex- and genotype dependent, 
whereby high VitD: (1) was protective, (2) had no effect, and (3) unexpectedly had 
disease-exacerbating effects. Systemic levels of 25(OH)D differed across consomic 
strains, with higher levels associated with EAE protection only in females. Analysis of 
expression of key known VitD metabolism genes between B6 and PWD mice revealed 
that their expression is genetically determined and sex specific and implicated Cyp27b1 
and Vdr as candidate genes responsible for differential EAE responses to VitD modu
lation. Taken together, our results support the observation that the association between 
VitD status and MS susceptibility is genotype dependent and suggest that the outcome 
of VitD status in MS is determined by gene-by-sex interactions.

Keywords: vitamin D, multiple sclerosis, CD4 T cells, genetic variation, experimental autoimmune encephalomyelitis 
(EAE), sex differences, gene–environment interactions, wild-derived inbred strains
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INTRODUCTION

Multiple sclerosis (MS) is a multifactorial autoimmune disease, 
in which an immune-initiated attack on the central nervous 
system (CNS) results in demyelination, axonal loss, and eventual 
neurological dysfunction. Genetics contribute to a significant 
portion of MS risk, with estimates ranging from 20 to 30% (1). 
The primary genetic risk factor lies in the major histocompat-
ibility complex class II locus, with up 200 other minor risk loci 
identified by recent genome-wide association studies (2).

The remainder of MS risk is thought to come from environ-
mental factors or gene-by-environment interactions. A number 
of different environmental risk factors have been associated with 
MS susceptibility. The most prominent of these are Epstein–Barr 
virus (EBV) infection, low sunlight/ultraviolet (UV) radiation 
exposure, vitamin D3 (VitD) deficiency, and cigarette smoking 
(3, 4). In addition, over the past 100  years, MS incidence has 
remained stable in men, but has tripled in women, suggesting 
the existence of sex/gender-specific risk factors and/or behavioral 
changes (3).

Vitamin D3 is one of the best-studied MS risk factors. Early 
epidemiologic studies documented a gradient of increasing MS 
incidence with increasing distance from the equator, which in 
later studies was attributed to decreased exposure to sunlight/
UV radiation (3). This protective effect of sunlight in MS has 
long been thought to be mediated by the immunomodulatory 
effects of VitD. Photoconversion of 7-dehydrocholesterol to 
VitD (cholecalciferol) in the skin is catalyzed by UV-B radiation. 
VitD from the skin and dietary VitD (absorbed in the intestine) 
enters the circulation and is subsequently converted in the liver 
to calcidiol [25(OH)D3], and then in the kidney or in target 
tissues to calcitriol [1,25(OH)2D3], the hormonally active form 
which can bind and activate the nuclear vitamin D receptor 
(VDR) in many different target tissues, including bone, kidneys, 
intestine, and the immune system (5). Calcitriol-mediated 
activation of VDR in different immune cells is thought to gener-
ally result in immunoregulatory transcriptional responses (5). 
With regard to MS, low systemic VitD levels [typically measured 
using the most stable VitD metabolite 25(OH)D3 as a surrogate] 
are associated with increased disease risk (6), relapse rate, and 
disease progression (7, 8). A number of MS susceptibility genes 
are predicted to be regulated by VitD (9, 10), but the underlying 
in vivo mechanisms contributing to the etiopathogenesis of MS 
remain unclear. In addition, recent Mendelian randomization 
studies have shown that genetic variants that are associated  
with reduced circulating 25(OH)D3 levels also predict increased 
risk of MS (11–13). There are ongoing clinical trials to test the 
benefits of dietary VitD supplementation as a preventative or 
therapeutic strategy, but to date no clear beneficial effect has been 
reported (14–17). Importantly, the immunosuppressive effects 
of UV radiation independent of VitD are also well documented 
(18, 19). In fact, the results of recent epidemiological studies  
suggest that VitD and UV radiation can exert independent effects 
on MS risk (20–22), and data from animal models support this 
concept (19, 23–25).

Intriguingly, while low VitD levels are strongly associated with 
MS risk in white populations, a number of studies have shown 

that this is not the case in blacks and Hispanics (6, 26–30). This 
is surprising, since these populations typically have darker skin 
pigmentation and thus lower VitD levels compared with whites 
living at the same latitude (31), and it demonstrates that the 
association between VitD and MS risk is modified by unidenti-
fied genetic factors. This also suggests that any benefits of VitD 
supplementation for MS would be genotype dependent.

Effects of VitD have also been explored in animal models of 
MS. Experimental autoimmune encephalomyelitis (EAE), the 
principal autoimmune model used to study the pathogenesis of 
MS, can be induced by immunization with CNS homogenate or 
specific myelin proteins/peptides, or by transfer of CD4 T cells 
reactive to these antigens (32). As in MS, autoreactive CD4 
T cells enter the CNS to initiate inflammation and pathology, 
culminating in neurologic disability. Treatment of adult animals 
with the hormone calcitriol has long been known to suppress 
EAE in mice (33, 34). More recent mechanistic studies have 
shown that this suppression requires VDR signaling in T cells 
and the expression of interferon gamma (IFNγ) (35, 36), thus 
likely acting directly to inhibit T helper (Th)-1 effector func-
tions. In addition, calcitriol-mediated suppression of EAE is 
associated with induction of regulatory T cells (Tregs) (37), and 
hence it has been proposed that VDR signaling may act as a 
switch between Th1 effector and regulatory CD4 T  cells (38). 
However, the physiologic validity of this approach has been 
called into question, as treatment with calcitriol can cause 
hypercalcemia, which itself can suppress EAE (39, 40), although 
this point remains controversial (38). As a more physiologically 
relevant approach, dietary supplementation with VitD during 
adolescence also inhibited EAE in mice (41, 42) and rats (43, 44). 
Strikingly, this effect was observed only in female, but not male 
mice, and was dependent on the presence of estrogen (41, 42).

The EAE model is an attractive approach to directly test 
hypotheses generated from epidemiologic studies on MS risk 
factors (45). However, one of the common limitations of this 
approach is that the immense genetic diversity of human popu-
lations is not represented among standard inbred laboratory 
strains of mice (46, 47). We and others have attempted to more 
closely model human genetic diversity by incorporating into the 
experimental design wild-derived inbred strains of mice, such 
as PWD/PhJ (PWD), or chromosome substitution (consomic) 
strains that carry individual PWD chromosomes on the com-
mon B6 background (B6.ChrPWD) (48, 49). We have shown that 
compared with B6 mice, a classical inbred laboratory strain, 
wild-derived inbred PWD mice have widely divergent immune 
cell transcriptomes, which result in differential expression of MS 
relevant genes and reduced susceptibility to EAE (50). We have 
also used the B6.ChrPWD consomic model to identify multiple 
EAE susceptibility loci, many of which were sex specific (51).

In this study, we combined the physiologically relevant dietary 
approach to manipulate VitD levels (41–43), with the genetic 
diversity of B6.ChrPWD consomic model, to examine gene-by-sex 
interactions on the effects of VitD in CNS autoimmune disease. 
In agreement with previous reports, we show that the effects 
of VitD supplementation on EAE susceptibility in B6 mice are 
female specific. This was associated with induction of sex- and 
genotype-specific transcriptional responses in effector and 
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Figure 1 | Manipulation of dietary vitamin D3 (VitD) results in robust changes in systemic VitD levels that are sex- and genotype dependent. Female and male  
B6 and PWD mice (N = 4 for each sex/strain combination) were assigned to VitD-high and VitD-low diets at 3 weeks of age. Serum samples were collected at the 
outset (Time = 0), and at 3 and 5 weeks post-treatment. 25(OH)D levels were measured by enzyme-linked immunoassay (see Materials and Methods). An overview 
of kinetic data is shown in (A), followed by comparisons at individual time points in (B–F), segregated by diet. The significance of the observed differences in  
(B–F) was assessed by two-way ANOVA, with Holm–Sidak’s post hoc comparisons: B6 vs. PWD (within sex), and female vs. male (within strain). Symbols  
indicate a significant difference between the indicated groups, as follows: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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regulatory CD4 T cells. Strikingly, the EAE response to VitD sup-
plementation varied widely across B6.ChrPWD consomic strains, 
suggesting that, as in MS, genotype modifies the outcome of VitD 
status in EAE.

RESULTS

Dietary Manipulation of VitD Levels 
Modulates Systemic VitD Levels and  
EAE Severity
To directly manipulate systemic VitD levels in a controlled 
fashion, we adopted a previously described dietary paradigm 
initiated during adolescence, which has been shown to modu-
late EAE in the mouse (41, 42) and rat (43, 44). Briefly, 3-week-
old B6 and PWD mice were randomized to either a VitD-low 
diet or a VitD-high diet, as described in Section “Materials 
and Methods” (see Figure S1 in Supplementary Material for 
a diagrammatic overview of the experimental design). Serum 
samples were collected at 3 and 5 weeks post-dietary interven-
tion, and analyzed for the levels of 25(OH)D, the most abundant 
and stable metabolite of VitD that is typically used as an indica-
tor of VitD status in clinical studies (6). The dietary regimen 
induced rapid and sustained changes that appeared to plateau 
at approximately 3 weeks post-intervention (Figure 1A). PWD 
mice exhibited significantly lower baseline 25(OH)D levels 

compared with B6 (Figure 1B). These differences disappeared 
on the VitD-low diet (Figures  1C,D). Interestingly, on the 
VitD-high diet, female B6 mice reached higher levels of 25(OH)
D compared with B6 males at both time points (Figures 1E,F), 
which were also significantly higher than PWD females at 
5 weeks (Figure 1F).

Having established the dietary paradigm, we tested whether 
the robust differences in systemic VitD levels achieved by 
VitD-high and VitD-low diets impacted clinical progression of 
EAE. Female and male B6 mice were subjected to the dietary 
paradigm above, followed by EAE induction at 5  weeks post-
dietary intervention. Exposure to the VitD-high diet resulted 
in lower EAE severity compared with VitD-low diet in female 
B6 mice (Figure 2A). By contrast, no significant difference in 
EAE clinical course on the two diets was observed in male B6 
mice (Figure  2B). DeLuca and colleagues have observed that 
suppression of EAE in mice by treatment with the bioactive 
VitD metabolite, calcitriol, is associated with and dependent 
on hypercalcemia, questioning the physiological relevance of 
that approach (39, 40). Hence, we tested whether our dietary 
paradigm affected systemic Ca2+ levels and found that EAE 
suppression was not accompanied by significant changes in Ca2+ 
levels (Figure 2C), suggesting that our dietary model influences 
EAE susceptibility independent of Ca2+.

We have previously shown that PWD mice are almost com-
pletely resistant to EAE (50). To test whether this resistance 
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Figure 2 | Strain- and sex-specific suppression of EAE by vitamin D3 (VitD). B6 (A–C) and PWD (D,E) mice were maintained on VitD-high and VitD-low diets  
as in Figure 1, followed by EAE induction after 5 weeks post-dietary intervention. Mice were maintained on the respective diets until the end of the experiment.  
(C) B6 serum Ca2+ levels were measured for the indicated groups, and the significance of the observed differences assessed by two-way ANOVA, followed by 
Holm–Sidak’s post hoc comparisons. The significance of the observed differences in the severity of the clinical disease course was assessed as described in 
Section “Materials and Methods.” p-Values for the effect of diet on overall disease course (representing the interaction term for treatment × time, repeated  
measures two-way ANOVA) are shown. The numbers of animals for each group are provided in Table S1 in Supplementary Material.
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could be affected by VitD status, PWD mice were subjected to 
the dietary regimen as above, followed by EAE induction. VitD 
had no significant effect on EAE, whereby PWD mice remained  
highly resistant to EAE induction on either diet (Figure  2D; 
EAE incidence: VitD-high 0/8, VitD-low 2/15; p = 0.53). Taken 
together, our results demonstrate that high VitD provides female-
specific protection from EAE in susceptible B6 mice, in agreement 
with previous reports (41, 42).

In Vivo Modulation of CD4 T Cell 
Transcriptome by VitD Is Genotype-,  
Sex-, and Cell Type Specific
CD4 T cells are thought to initiate the inflammatory cascade in 
MS. Studies in EAE suggest that these cells are also the most likely 
target of VitD, either by modification of function of CD4 effector 
T cells (Teff) or by induction of regulatory CD4 T cells (Tregs) 
(38). Hence, to understand the molecular mechanisms underlying 
immune modulation by VitD in vivo, we carried out transcrip-
tional profiling of Teff and Tregs isolated from B6 and PWD mice 
exposed to VitD-low or VitD-high diets. Mice were subjected 
to the dietary paradigm as described in Figure  1, followed by 
isolation of splenic Teff and Tregs using fluorescence-activated 
cell sorting (FACS) and transcriptional profiling (see Materials 

and Methods) at 5  weeks post-dietary intervention (Figure S1 
in Supplementary Material). When gene expression data were 
analyzed for effect of genotype, sex, and VitD, it was found that 
genotype accounted for the largest effect size, with modest effects 
of sex and VitD (Figure 3A). This is consistent with our published 
data showing strikingly divergent transcriptomes between B6 and 
PWD immune cells (50). Consistent with these observations, 
when both strains and sexes were pooled and analyzed together 
for effect of VitD, very few differentially expressed (DE) genes 
were detected in either cell type (Figures 3B,C). Considering the 
sex- and strain-specific effects of VitD on EAE (see Figure 2), and 
the profound effect of genotype, we analyzed the effect of VitD in 
each of the four sex/strain combinations (B6 females, B6 males, 
PWD females, and PWD males) separately. Two major findings 
were noted. First, in Teff cells, a prominent effect of VitD on gene 
expression was detected in B6 females, which was absent in B6 
males or PWD mice of either sex (Figure 3B), in concordance with 
the effect of VitD on EAE outcome (see Figure 2). Second, in Tregs, 
VitD exhibited the strongest effect in PWD females (Figure 3C).  
In both cases, high VitD predominantly induced upregulation  
of gene expression compared with low VitD (Figures 3B,C).

Bioinformatic pathway analyses of DE genes (see Materials 
and Methods) revealed divergent and sometimes opposing 
effects of VitD on gene expression, depending on sex and strain 
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Figure 3 | In vivo transcriptional regulation by vitamin D3 (VitD). Female and male B6 and PWD mice (N = 4 for each sex/strain combination) were exposed to 
VitD-low and VitD-high diets as in Figure 1. At 5 weeks post-dietary intervention, transcriptional profiling was performed on Teff and regulatory T cells (Tregs) as 
described in Section “Materials and Methods.” (A) The proportion of variance in gene expression explained by the indicated experimental variables is shown for Teff 
and Tregs. (B,C) The number of genes passing the differential expression threshold (|Fold Change| > 2, ANOVA p < 0.001) as a function of diet is shown for the 
indicated groups, in Teff (B) and Tregs (C). Direction of change is depicted as expression level in VitD-high relative to VitD-low (e.g., “up” indicates higher expression 
in the VitD-high group). (D) Canonical pathway analysis was performed using IPA software (see Materials and Methods). Z-scores indicate predicted direction and 
relative strength of change (VitD-high relative to VitD-low). The top 30 pathways (ranked by Z-score) are shown. (E) Enrichment analysis of the indicated differentially 
expressed (DE) gene sets from Teff within transcripts DE (up or down) in CD4 cells from multiple sclerosis (MS)-CIS patients was performed using IPA (see Materials 
and Methods). p-Values for enrichment are shown as −log(p). Dotted line denotes p = 0.05.
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(Figure  3D). Several canonical pathways relevant to EAE/MS 
pathogenesis (including neuroinflammation, Th1, and a number 
of other proinflammatory pathways) were downregulated by high 
VitD in Teff cells from B6 females, yet upregulated in B6 males 
or PWD males. The gene expression patterns in Teff cells were 

again concordant with EAE outcomes, whereby downregula-
tion of proinflammatory activity by VitD was associated with 
EAE suppression in B6 females. Similarly, upstream regulator 
analysis in B6 female Teff cells predicted significant inhibition 
of several proinflammatory nodes by high VitD, including TNF, 
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Table 1 | Effects of vitamin D3 (VitD) on EAE disease course in B6.ChrPWD 
consomic mice.

N/group Effect of diet on EAE coursea

Strain Female Male Pooled sexes Females Males

All strains 449 448 ns ns ns
B6 52 36 ns 0.006 ↓ ns
PWD 10 13 ns ns ns
Chr1 21 18 ns ns ns
Chr2 6 6 ns ns ns
Chr5 21 24 ns ns ns
Chr6 30 21 ns ns ns
Chr7 11 22 ns ns ns
Chr8 9 10 ns ns 0.006 ↑
Chr9 22 19 ns ns ns
Chr10.2 14 20 0.002 ↑ ns 0.006 ↑
Chr10.3 25 24 ns <0.0001 ↑ ns
Chr11.1 19 21 0.01 ↓ ns <0.0001 ↓
Chr11.2 16 13 0.002 ↑ ns 0.002 ↑
Chr12 29 29 ns ns 0.0001 ↓
Chr14 18 22 <0.0001 ↓ ns <0.0001 ↓
Chr15 20 23 ns 0.03 ↓ ns
Chr17 19 19 ns ns ns
Chr18 26 25 ns ns ns
Chr19 18 22 <0.0001 ↓ <0.0001 ↓ ns
ChrY 27 26 ns ns <0.0001 ↓
ChrX.3 11 12 ns ns ns
mt 25 23 ns <0.0001 ↑ ns

aThe significance of the observed differences in the severity of the EAE clinical disease 
course for each of the B6.ChrPWD consomic strains was analyzed for the effect of VitD 
diet, as described in Section “Materials and Methods.” Data for females and males 
were analyzed together (pooled) and following stratification by sex. ANOVA p-values for 
the effect of diet on overall EAE course are shown where significant; ns, not significant; 
ND, not done. Direction of arrow indicates the direction of change for EAE severity in 
the VitD-high diet group relative to the VitD-low group (i.e., downward arrow indicates 
suppression of EAE by VitD-high diet).
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NFκB, CSF2, and IFNγ as the top four nodes. Comparison of DE 
transcripts within the IFNγ node with two selected MS relevant 
canonical pathways, “Neuroinflammation Signaling Pathway” 
(ranked first) and “Th1 Pathway” (ranked 11th) revealed strong 
functional overlap and several key shared transcripts, including 
several MHC class II genes, and a central role for IFNγ itself 
(Figure S2 in Supplementary Material). The former is consistent 
with the documented regulation of the major MS risk MHC class 
II allele, HLA-DRB1*15:01, by VitD. The latter is consistent with 
the documented critical role of IFNγ in the regulation of EAE 
by VitD (36). Finally, this analysis implicated Mapk14 (Figure S2 
in Supplementary Material), encoding p38α MAP kinase, a gene 
that we have previously identified as a central regulator of differ-
ential sex-specific genetic effects on EAE in the B6.ChrPWD model 
(51), a hypothesis that was validated in our targeted analysis of 
the role of p38α in EAE (52).

To test whether the observed regulation of immune cell 
transcriptomes by VitD had direct connections to mechanisms 
of CNS autoimmunity in humans, we compared the level of 
enrichment of VitD-dependent DE genes in PWD cells within 
the set of transcripts that were reported to be upregulated 
or downregulated in CD4 T  cells isolated from early onset 
MS patients (clinically isolated syndrome; MS-CIS) relative 
to healthy controls (MS-CIS signature genes) (53). VitD-
dependent DE genes in Teff cells from B6 females exhibited 
highly significant enrichment (p  =  1.02e−6) within genes 
downregulated in MS-CIS CD4 cells, while marginal or no 
enrichment was observed for genes that were upregulated in 
MS-CIS (Figure 3E). Marginal to no enrichment was observed 
in either direction for other strain-sex combinations in Teff cells 
(Figure 3E) or for any of the DE gene sets in Tregs. Together 
with the observation that the majority of DE genes in B6 female 
Teff cells are upregulated with high VitD (Figure 3B), these data 
suggest that high VitD normalizes the expression of genes that 
are downregulated in MS-CIS CD4 T  cells, which are likely 
associated with MS pathogenesis. Taken together, our results 
indicate that high VitD suppresses MS-associated proinflam-
matory gene expression programs in CD4 T cells in a sex-, cell 
type-, and genotype-specific manner, in concordance with its 
protective effects on EAE.

Sex and Genotype Dictate the Outcome  
of VitD Modulation in EAE
Since epidemiologic data (6, 26–29) and our findings above 
suggest the possibility that the outcome of VitD status in MS 
and EAE may be dependent on genotype, we deliberately intro
duced the segregation of natural genetic variation into our 
model. To achieve this, we utilized the B6.ChrPWD consomic 
model, in which natural genetic variation exhibits a significant 
impact on EAE susceptibility (51). Twenty B6.ChrPWD consomic 
strains, encompassing 17 autosomes, X and Y, and a conplastic 
strain with the PWD mitochondrial genome were included 
in the study. The mice were exposed to the VitD-high and  
VitD-low dietary paradigm, followed by EAE induction and 
evaluation, as in Figure 2. Surprisingly, in a combined analysis 
of all strains and sexes, no significant effect of dietary modula-
tion of VitD on EAE course was detected (Table 1; Figure 4A). 

Similarly, when this combined analysis was stratified by sex, no 
significant effect of VitD in either sex was detected (Table 1; 
Figure 4A). Given the known variation in EAE susceptibility 
across the B6.ChrPWD consomic/conplastic strains (51), and 
the sex- and strain-specific responses to VitD in EAE and gene 
expression (see above), each strain was analyzed individually 
for the effect of VitD on EAE, either combining both sexes 
or analyzing each sex separately. When analyzing males and 
females together, five strains showed significant effects of VitD. 
Chr11.1PWD and Chr19PWD had lower EAE severity on VitD-
high diet compared with VitD-low, as seen in B6 females, but 
surprisingly, Chr10.2PWD, Chr11.2PWD, and Chr14PWD exhibited 
the opposite effect (Figure  4; Figure S3 in Supplementary 
Material). Stratification by sex revealed that these effects 
were primarily driven by a single sex, either female or male, 
depending on the strain (e.g., Figure 4). Stratification by sex 
also revealed additional significant effects of VitD in females 
(Chr10.3PWD, Chr15PWD, and mtPWD) and in males (Chr8PWD, 
Chr12PWD, and ChrYPWD) (Table  1). Additional analyses of 
EAE quantitative trait variables (Table S1 in Supplementary 
Material) supported the conclusions drawn from disease 
course analyses (Table 1; Figure 4; Figure S4 in Supplementary 
Material).
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Figure 4 | Effects of vitamin D3 (VitD) on EAE disease course in B6.ChrPWD consomic mice. B6.ChrPWD consomic mice were exposed to VitD-high and VitD-low 
diets, as in Figure 2, followed by induction of EAE. Disease course in a pooled analysis of all consomic strains (A), or in three representative consomic strains, 
Chr19PWD (B), Chr11.1PWD (C), and Chr11.2PWD (D), is shown for pooled sexes, or for each sex separately, as indicated. p-Values for the effect of diet on overall EAE 
course (representing the interaction term for treatment × time, repeated measures two-way ANOVA) are shown. Numbers of animals per group are shown in Table 
S1 in Supplementary Material.
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Figure 5 | Effects of genotype and sex on systemic vitamin D3 (VitD) levels as related to EAE outcomes. B6.ChrPWD consomic mice were exposed to  
VitD-high (A) and VitD-low (B) diet, followed by EAE induction, as in Figure 4. Sera were collected at day 30 post-EAE induction. 25(OH)D levels were measured  
by enzyme-linked immunoassay in five males and five females of each strain for each diet type. The significance of the observed differences was assessed by 
two-way ANOVA, followed by Holm–Sidak’s post hoc comparisons, comparing each consomic strain to B6. Symbols indicate a significant difference between B6 
and the indicated groups, as follows: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (C,D) The relationship between serum 25(OH)D levels and EAE severity 
was examined, as described in Section “Materials and Methods.” Linear regression was used to determine the significance of the correlation between the ranked 
25(OH)D response [difference in 25(OH)D between VitD-low and -high diets] and normalized EAE response (difference in cumulative disease score between  
VitD-low and high diets). R2 values and p-values for regression analysis are shown. Selected B6.ChrPWD consomic strains are labeled as specific examples.
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Systemic 25(OH)D Levels Predict EAE 
Outcome in Female B6.ChrPWD Consomic 
Mice
Since circulating VitD levels are genetically controlled in humans 
(54) and in B6 and PWD mice (Figure  1), we determined 
whether B6.ChrPWD consomic/conplastic strains subjected to 
our dietary paradigm exhibited any differences in systemic VitD 

levels. Because the 25(OH)D levels reached on the VitD-high 
diet were dramatically different from those on the VitD-low diet 
(see Figure 1), the data were analyzed separately for each diet, 
to assess the effect of strain and sex. Significant differences in 
25(OH)D levels were observed between several consomic strains 
and B6. On the VitD-high diet, a number of strains presented 
with significantly lower levels of 25(OH)D3 compared with 
B6, but no strains exhibited higher levels (Figure  5A). On the 
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Figure 6 | Tissue-specific differential expression of vitamin D3 metabolic pathway genes in B6 and PWD mice. Gene expression data were obtained from the 
Gene Expression Miner database, as described in Section “Materials and Methods.” Genes showing a significant differential expression (with a greater than 30% 
change in expression) as a function of strain or sex are shown in (A–F). The significance of the observed differences was assessed by two-way ANOVA, with Holm–
Sidak’s post hoc comparisons: B6 vs. PWD (overall effect of strain; indicated above the graphs), and female vs. male (within strain; indicated with brackets). The 
data included 12 C57BL/6J mice (6 females and 6 males), and 11 PWD/PhJ mice (6 females and 5 males). Symbols indicate a significant difference between the 
indicated groups, as follows: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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four major genes in the VitD metabolism pathway: GC, DHCR7, 
CYP2R1, and CYP24A1, which together explain a large pro
portion of the variation in 25(OH)D (54). Subsequent Mendelian 
randomization studies showed that the genetic control of low 
25(OH)D levels by alleles of the four genes is associated with 
increased susceptibility to MS (11–13). To begin to identify poten
tial candidate genes underlying differential responses across 
different B6.ChrPWD consomic strains, we examined the level  
of expression of mouse orthologs of these four key genes (Gc, 
Dhcr7, Cyp2r1, and Cyp24a1) in several relevant tissues (kidney, 
liver, and spleen) in male and female B6 and PWD mice, using 
publically available datasets (see Materials and Methods). We 
included three additional key VitD metabolism genes: Cyp27a1, 
Cyp27b1, and Vdr (55). A number of these genes were DE across 
different tissues. In all three tissues, vitamin D-25 hydroxylase, 
Cyp27a1, exhibited twofold to threefold lower expression in 
PWD compared with B6, with significantly lower expression 
in females compared with males in both strains in the kidney 
(Figures 6A–C). In the kidney, 1-α-hydroxylase, Cyp27b1, exhi
bited a modest significant increase in expression in PWD com-
pared with B6 (Figure  6D), while 1,25(OH)2D3-inactivating 
24-hydroxylase, Cyp24a1, exhibited a significant increase in 
expression in B6 (Figure 6E). Vdr also exhibited higher expres-
sion in PWD compared with B6 in the spleen (Figure  6F).  
These results demonstrate genetic control of tissue-specific 
differential expression of several components of the VitD 
metabolic pathway which may underlie some of the differ-
ences in serum 25(OH)D levels (Figures  1 and 5) and EAE 
responses (Table  1; Figure  4) in B6.ChrPWD mice. Of these 

VitD-low diet, several strains exhibited significantly higher or 
lower levels of 25(OH)D compared with B6 (Figure 5B). Next, 
we tested whether any of these changes in 25(OH)D levels were 
correlated with EAE outcomes, e.g., whether a larger change in 
VitD levels corresponded to a higher degree of disease protection 
by VitD. EAE cumulative disease score (CDS), as the quantitative 
trait variable that most accurately reflects the overall severity of 
the EAE clinical disease course, was used to calculate a norma
lized difference in CDS between VitD-low and -high diets, for 
each strain. Similarly, a relative difference in serum 25(OH)D 
between VitD-low and -high diets was calculated for each strain. 
The relationship between these two parameters was examined 
using linear regression. For female consomic mice, a significant 
positive relationship was observed, suggesting that those strains 
that had higher serum 25(OH)D responses exhibited protective 
effects of VitD (e.g., B6, Chr15, and Chr19), while those with low 
responses had the opposite effects (e.g., Chr10.3), albeit the asso-
ciation was modest (r2 = 0.29) (Figure 5C). Surprisingly, in males, 
the trend was reversed, although it did not reach significance 
(Figure 5D). Taken together, these results suggest that genotype 
controls systemic levels of VitD, which in turn may contribute  
to EAE susceptibility in a sex-specific manner.

Tissue-Specific Differential Expression  
of VitD Metabolic Pathway Genes in B6 
and PWD Mice
Systemic 25(OH)D levels in humans are genetically regulated, 
and recent GWAS studies have identified common variants in 
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genes, two lie within consomic intervals of interest (carried 
by consomic strains exhibiting significant effects in Table  1): 
Cyp27b1 (Chr10.3) and Vdr (Chr15). As such, they represent 
candidate genes controlling differential responsiveness to 
VitD in EAE (see Discussion), and their relevance will be 
assessed in future studies.

DISCUSSION

Genetic and environmental influences on MS risk are well 
documented. However, gene–environment interactions have 
been more elusive, with the exception of HLA alleles and their 
putative interactions with smoking, EBV, and obesity (56). Part 
of the difficulty in identifying such interactions is the inability to 
clearly define over time the presence/absence/level of environ-
mental variables/exposures and possible confounding variables 
(57). The other difficulty inherent to all epidemiologic studies is 
the inability to separate cause and effect from association/cor-
relation. The association of low VitD with MS risk is an example 
of such an association, where cause and effect have been difficult 
to parse out, and therapeutic intervention has not yet provided 
a clear answer (58). Animal models provide an opportunity to 
bridge the gap between observation and causation, as puta-
tive genetic and environmental risk factors can be precisely 
controlled (45). As such, they also provide an opportunity to 
identify gene–environment interactions in a highly controlled 
experimental setting. In this study, we have applied a well-
defined dietary paradigm to intentionally modulate systemic 
VitD levels, while at the same time introducing controlled 
genetic variation. This approach revealed that the effects of VitD 
in a mouse model of MS are regulated by sex and genotype in a 
cell type-specific fashion.

In a seminal prospective case–control study, Ascherio and 
colleagues identified an association between low 25(OH)
D levels and increased risk of MS in a white U.S. population 
(6). Interestingly, in the same study, this association was 
absent in black and Hispanic groups, who in fact had lower 
25(OH)D levels compared with whites. This lack of association 
between 25(OH)D and MS in non-whites was confirmed by 
several groups (22, 26–29), which has led to the suggestion that 
VitD-related testing and treatment in MS should be informed 
by ethnicity (59). In our study, we provide complementary 
experimental evidence that genotype can influence the out-
come of VitD status or supplementation. This may help explain 
the variability in VitD supplementation trials in MS so far, 
and our results also suggest that such studies might benefit  
from a complementary pharmacogenetic approach to identify 
gene variants associated with positive or negative responses  
to VitD.

In this regard, there is evidence that common genetic 
variants in GC (encoding the vitamin D binding-protein; 
DBP) may lead to profound ethnic-specific variations in DBP 
levels, DBP binding avidity, and bioavailablity of VitD and its 
metabolites (31). However, a recent study by Barcellos and 
colleagues found that these variants in GC do not account for 
the lack of association between serum VitD levels and MS in 
blacks and Hispanics (30). This suggests that other unknown 

ethnic-specific genetic determinants can regulate VitD metabolism  
and/or subsequent physiologic responses, such as those under
lying MS susceptibility.

In some B6.ChrPWD consomic strains (e.g., male Chr11.2PWD), 
an unexpected phenotype was observed, whereby higher EAE 
severity was seen on the VitD-high diet compared with VitD-
low diet. However, several previous reports have documented 
similar unexpected EAE-suppressing effects of VitD insuf-
ficiency or deficiency, depending on length and timing of the 
exposure (60, 61). In addition, mice completely deficient in Vdr 
are unexpectedly resistant to EAE (62), suggesting that VitD 
signaling is needed to mount a robust T cell response. Thus, we 
hypothesize that VitD status can serve as a bi-directional rheostat 
regulating autoimmunity, and this balance can be further modi-
fied by genetic background and sex. Interestingly, Chr10.3PWD 
female mice exhibited lower 25(OH)D responses associated 
with increased EAE on the VitD-high diet (Figure 5C; Figure 
S3 in Supplementary Material). It is possible that increased 
kidney Cyp27b1 expression from the PWD allele in the 
Chr10.3 locus (Figure 6D) drives faster 25(OH)D to 1,25(OH)
D metabolism, which could result in different levels or kinetics 
of VDR activation and divergent EAE outcomes. Conversely, 
female Chr15PWD mice exhibit the opposite phenotype with 
regard to VitD status and EAE outcome (Figure 5C), while the 
PWD allele of Vdr (located on Chr15) shows higher expression 
(Figure 6F). Since for Cyp27b1 and Vdr the expression differ-
ences were not sex specific (Figures 6D,F), we postulate that 
other sex-specific factors (e.g., lower expression of Cyp27a1 in 
females; Figures 6A,B) interact with the genetically determined 
differential expression of these VitD pathway genes to give rise 
to different outcomes in EAE.

In a recent study, Jagodic and colleagues used a dietary 
paradigm highly similar to ours to examine genomic effects 
of VitD in the inbred Dark Agouti rat model of EAE (44). 
The conclusions reached by the authors were largely similar 
to ours, whereby supplementation of female rats with high 
levels of VitD induced an anti-inflammatory gene expression 
program in CD4 Teff cells from immunized mice, in con-
cordance with amelioration of EAE. Comparison of the DE 
gene set from this study with our DE gene set did not reveal 
strong gene–gene correlation, suggesting species differences, 
differences in cell isolation protocols, and/or timing of cell 
isolation. Nonetheless, many of the differentially regulated 
pathways showed strong agreement between the two studies 
(e.g., MAPK signaling, NFκB, etc.), suggesting that a similar 
immune-regulatory phenotype may be achieved by VitD in 
both situations.

Despite the strong epidemiological associations, the role of 
VitD in MS remains complex and unclear. Our studies add another 
layer to this complexity: the immunologic response to VitD 
status may differ across individuals due to genetic and sex effects. 
The sex effects have been shown in mouse models to be likely 
due to the influence of estrogen (42). Our future studies will be 
aimed at identifying genetic modifiers of the VitD response in 
CNS autoimmunity. This information will help inform future 
VitD supplementation trials, as well as the use of VitD status as 
a prognostic.
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MATERIALS AND METHODS

Animals and Dietary Treatments
C57BL/6J (B6), PWD/PhJ (PWD), and B6.ChrPWD consomic 
mice were purchased from Jackson Laboratories (Bar Harbor, 
ME, USA), then bred and housed in a single room within the 
vivarium at the Larner College of Medicine at the University 
of Vermont for two to four generations prior to any experi-
mentation. The experimental procedures used in this study 
were approved by the Animal Care and Use Committee of the 
University of Vermont.

To ensure their correct identity and to enhance rigor and 
reproducibility of these studies, B6.ChrPWD consomic mice were 
subjected to genome-wide SNP genotyping using Dartmouse 
genotyping services (Dartmouth College, NH, USA). All mice 
used in this study were of the expected genotypes, with the 
following exceptions. B6.Chr4PWD mice were excluded from the 
study, because they were found to be a mix of various genotypes, 
where much of the Chr4PWD had been replaced with B6 genome. 
Chr17PWD mice were found to carry a homozygous B6-derived 
interval between 30 and 45 Mb on Chr17, encompassing H2.

At weaning (3 weeks of age), littermate mice were randomly 
assigned to one of two diets: VitD-low (0  IU VitD/g; 0.87% 
Ca2+, 0.3% phosphorus, alcohol extracted casein as protein 
source) or VitD-high [identical composition to VitD-low, 
supplemented with 5 IU VitD (cholecalciferol)/g]. The com-
position of the diets was based on the study those described 
by Spach and Hayes (41) and was prepared by Harlan-Teklad  
(WI, USA), designated by the following company product 
numbers: VitD-low, TD.10837; VitD-high, TD.140867.

Induction and Evaluation of EAE
EAE was induced in B6 and B6.ChrPWD consomic mice using 
the 2× MOG35-55/CFA protocol, as previously described (63). 
Mice were injected subcutaneously with 0.1 ml of emulsion con-
taining 0.1 mg of myelin oligodendrocyte glycoprotein peptide 
35–55 (MOG35–55) peptide (Anaspec Inc., MA, USA) in PBS and 
50% complete Freund’s adjuvant (CFA; Sigma, USA) on day 0 
on the lower flanks (50 µl per flank), followed by an identical 
injection on upper flanks on day 7. CFA was supplemented with 
4 mg/ml Mycobacterium tuberculosis H37Ra (Difco, USA). EAE 
was induced in PWD mice using the following modifications 
to the protocol above, as previously described (50). Mice were 
injected subcutaneously with 0.1  ml of emulsion containing 
2.5 mg of MSCH in PBS and 50% CFA on day 0 and day 7. On 
day 0 and day 2, mice also received an i.p. injection of 200 ng 
pertussis toxin (List Laboratories, USA) as an ancillary adjuvant.

Starting on day 10, mice were scored visually, as follows: 
1—partial loss of tail tone, 2—full loss of tail tone, 3—loss of 
tail tone and weakened hind limbs, 4—hind limb paralysis, 5—
hind limb paralysis and incontinence, and 6—quadriplegia or 
death. EAE scoring was performed by a non-biased observer. 
EAE quantitative traits were calculated essentially as previously 
described (64), as follows. The incidence of EAE was recorded 
as positive for any mouse with clinical signs of EAE (clinical 
score ≥1) for two or more consecutive days. CDS was calcu-
lated as the sum of all daily scores over the course of 30 days. 

Days affected was calculated as the number of days an animal 
displayed a clinical score ≥1 for at least two consecutive days. 
Day of onset was the day a clinical score ≥1 was first observed 
(not calculated for animals without clinical signs for at least two 
consecutive days). Severity index was generated by averaging 
the clinical scores for each animal over the number of days 
that it exhibited clinical symptoms (unaffected animals were 
included as 0). Peak score represents the maximum daily score 
(unaffected animals were included as 0).

Cell Sorting and RNA Isolation
B6 and PWD mice were subjected to the dietary paradigms, as 
described in Section “Results.” At 5 weeks post-dietary interven-
tion, mice were euthanized, and spleens were collected. Spleens 
were digested using Spleen Dissociation Medium (STEMCELL 
Technologies, Inc., Canada). B  cells were depleted using the 
EasySep B  cell positive selection kit and EasySep magnet 
(STEMCELL Technologies, Inc., Canada). The remaining cells 
were purified by FACS using fluorophore-conjugated antibod-
ies against cell surface markers as follows: CD4 (Tconv) cells 
(CD19− TCRβ+ CD4+ CD8− CD25−) and Tregs (CD19− TCRβ+ 
CD4+ CD8− CD25+). Dead cells were excluded using the Far 
Red Live-Dead staining kit (Thermo Fisher Scientific, USA). 
Antibodies were purchased from BioLegend, Inc. (San Diego, CA, 
USA); catalog numbers were as follows: CD19, CD4, CD25, CD8, 
CD11b, CD11c, and TCRβ; 115534, 100531, 102016, 101206, 
117319, and 109222, respectively. RNA was isolated using the 
Qiagen RNeasy Mini or Micro Kits. RNA quality was assessed 
using the Agilent Bioanalyzer 2100, and samples were selected for 
downstream analysis based on RNA integrity number (typically 
6–9). RNA quantity was determined using Qubit Fluorometric 
Quantification (Thermo Fisher Scientific, USA). Four biological 
replicates (individual mice) for each strain, sex, and diet combi-
nation were selected.

Transcriptional Profiling
For transcriptional profiling, microarray analysis was performed 
at the UVM Cancer Center Genomics Facility using the Mouse 
Affymetrix Clariom D Genechip and the GeneChip™ WT Pico 
Target Preparation reagent kit (Thermo Fisher Scientific 9026220) 
as described by the manufactures procedures. Briefly, 5 ng of RNA 
was used to synthesize cDNA through a First-Strand and Second-
Strand reverse transcription reaction followed by conversion to 
cRNA through an overnight T7 InvitroTranscription reaction. 
The resulting cRNA was purified and 5.5  μg was converted to 
sense, single-strand cDNA using UDG (10  U/μL) and APE1 
(1,000  U/μL), provided in the GeneChip® WT PLUS Reagent 
Kit. cDNA was end labeled with biotin using TdT (30 U/μL), and 
used as input for the hybridization mix for the GeneChip. Mouse 
Clariom D arrays were incubated in the Affymetrix® GeneChip® 
Hybridization Oven 645 at 45°C/60 RPM for 16–18  h. Arrays  
were stained using the Affymetrix® GeneChip® staining reagents 
and scanned with the 7 G Affymetrix® GeneChip® Scanner 3000.

Statistical Analyses of Microarray Data
Raw intensity CEL files were imported into Expression Console 
software (Affymetrix, USA), and CHP files were generated for 
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gene level analysis. CHP files were imported into Transcriptome 
Analysis Console (TAC) software v4.0.0.25 (Affymetrix, USA), 
and gene level expression analysis was performed using the 
default ANOVA settings (e-Bayesian method), analyzing Tconv 
and Treg data separately. The following comparison variables 
were used: strain (B6, PWD), sex (male, female), diet (VitD-
high, VitD-low), as well as a batch variable (cDNA samples 
were processed and scanned in batches over several different 
days). To detect DE genes as a function of VitD status, pairwise 
comparisons were done between VitD-high and VitD-low 
groups for the following sample groupings: (all mice together, 
B6 females only, B6 males only, PWD females only, and PWD 
males only). All raw microarray data have been deposited into 
the Gene Expression Omnibus database, accession number 
GSE116457.

Bioinformatic Analyses
Pathway analysis was performed using Ingenuity Pathway 
Analysis™ (IPA; Qiagen, Inc., USA) software. The gene 
expression datasets were exported from TAC software and 
uploaded into IPA. A relaxed cutoff filter of |FC|  >  1.5 
and ANOVA p  <  0.05 was used to maximize the number 
of genes in the analysis (recommended by IPA to enhance 
the analysis power and accuracy). The IPA Core Analysis 
function, followed by the Comparison Analysis function was 
used to compare the effect of VitD across the four strain-
sex combinations (B6 females, B6 males, PWD females, and 
PWD male), as follows. The Canonical Pathway function 
was used to identify the top canonical pathways (p  <  0.01, 
Z-score >  |2|) affected by the DE genes between VitD-high 
and VitD-low conditions. The sign and magnitude of the 
Z-scores are indicative of the predicted strength and direc-
tion of the VitD-high effect. The upstream regulator analysis 
function was similarly used to predict Z-scores and p-values 
for putative upstream regulators.

Enrichment analysis of VitD-regulated genes compared 
with genes DE in CD4 T cells in MS as performed as follows. 
The list of transcripts reported to be upregulated in CD4 
T cells from MS-CIS subjects vs. controls (53) was imported 
into IPA. The Core Analysis function was used to determine 
the significance of enrichment of VitD DE genes within the 
MS-CIS list.

Serum 25(OH)D and Ca2+ Measurements
Whole blood was collected at the indicated time points, 
allowed to coagulate for 30 min at room temperature, followed 
by centrifugation and collection of serum. Sera were stored 
at −80°C prior to analysis. 25(OH)D levels were determined 
using a commercially available enzyme-linked immunoassay 
kit (ImmunoDiagnosticSystems, Inc., MD, USA), which detects 
25(OH)D3 and 25(OH)D2. Sera from mice on the high VitD diet 
were diluted 1:10 with PBS + 1% BSA prior to analysis, to main-
tain readings within the range of the standard curve. Kit-supplied 
standards were used with 4-parameter logistic regression to 
determine concentrations in unknown samples.

Serum Ca2+ measurements were performed at the University 
of Vermont Medical Center Clinical Chemistry laboratory.

Statistical Analyses
Statistical analyses not pertaining to microarray data were 
carried out using GraphPad Prism software, version 6. Details 
of the analyses are provided in the figure legends and below.  
All statistical tests were two-sided, and adjustments for mul-
tiple comparisons were made as indicated. All center values 
represent the mean, and error bars represent the SEM. p-Values 
below 0.05 were considered significant. Sample sizes for animal 
experiments were chosen based on previous experience with 
similar analyses. Animals were randomly assigned to dif-
ferent treatment groups (diet), assigning littermates to both 
groups evenly, whenever possible. For some consomic strains, 
sample sizes studied were lower due to inadequate breeding 
performance.

Analyses of EAE clinical scores were performed as follows. 
Clinical disease time course was analyzed for the effect of diet 
(VitD) for each strain, using two-way repeated measures ANOVA. 
The effect of diet was considered significant when a significant 
strain and/or strain ×  time interaction term was observed. The 
latter term is shown in the figures and tables, to indicate overall 
significance of effect of diet on overall EAE course.

The relationship between serum 25(OH)D levels and EAE 
severity was determined as follows. First, a weighted difference 
in EAE severity was calculated, using CDS, as a single quantita-
tive measure of overall disease severity and duration. For each 
strain, the diet-driven change in CDS was calculated by substract-
ing the mean CDS for the VitD-high diet from the mean CDS  
for the VitD-low diet. Since the absolute CDS varied significantly 
across strains independent of VitD, this change was normalized 
by dividing by the overall mean CDS for that strain:

	
Normalized change in EAE CDS CDS CDS

mean 
VitD VitD high=

−− −low

CCDSVitD ow high− +
.

l 	

Because serum 25(OH)D levels varied by strain, to determine 
the relative serum 25(OH)D response to diet, a ranked change 
was calculated for each strain, as follows. 25(OH)D3 levels were 
ranked for across the consomic strains separately for VitD-high 
and VitD-low diets. For each strain, the ranked change in 25(OH)
D as a function of diet was calculated by substracting the ranked 
25(OH)D for the VitD-high diet from the ranked 25(OH)D for 
the VitD-low diet:

	

Ranked change in 25 OH D
ranked 25 OH ranked 25low

( )
= ( ) − (−DVitD OOH DVitD high) .− 	

Subsequently, linear regression was used to determine meas-
ure the association between the ranked 25(OH)D3 response and 
normalized EAE response. R2 and the significance for the slope 
not being equal to zero were calculated as a measure of strength 
of association.

Differential Expression Analyses of VitD-
Related Genes in B6 and PWD Mice
Differential expression data were obtained from the Gene 
Expression Miner database from Jackson Laboratories (http://
cgd.jax.org/gem/strainsurvey26/v1), which contains microarray 
data from a gene expression survey across 26 inbred strains of 
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mice, in 4 tissues: spleen, liver, and left and right kidneys. The data 
set included data on 12 C57BL/6J mice (6 females and 6 males), 
and 11 PWD/PhJ mice (6 females and 5 males). Log2-normalized 
gene expression data were downloaded for the following genes 
of interest: Gc, Dhcr7, Cyp2r1, Cyp24a1, Cyp27a1, Cyp27b1,  
and Vdr. Gc and Cyp2r1 did not show appreciable levels of expres-
sion in any of the tissues, and thus were not analyzed further. 
The rest of the gene expression data were analyzed in Graphpad 
Prism, version 6, as detailed in the figure legends.
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Multiple sclerosis (MS) is a chronic autoimmune inflammatory disorder of the brain and

spinal cord in which focal lymphocytic infiltration leads to the damage of myelin and

axons. As a multi-factorial complex trait, both genetic background and environmental

factors are involved in MS etiology. The disease is more prevalent among women, and

an overall female-to-male sex ratio of around 3 is usually reported. The fact that the

female preponderance is only apparent among patients with disease onset after age 12

points toward a role of puberty in MS. A key marker of female pubertal development

is menarche, however, evidence from previous epidemiological investigations has been

sparse and conflicting: although some studies have linked earlier age at menarche (AAM)

to an increased risk of MS, others have found no association or an inverse association.

Understanding the effect of AAM in MS could increase our knowledge to the disease

etiology, as well as deliver meaningful implication to patients’ care by aiding clinical

diagnosis. Therefore, we reviewed all the currently available epidemiological studies

conducted for AAM and risk of MS in adult human populations. We found evidence

supporting a possible favorable role of late AAM on MS risk, but this should be further

confirmed by well-designed large-scale epidemiological studies and meta-analysis.

Future work may be focused on Mendelian randomization analysis incorporating genetic

markers to provide additional evidence of a putative causal relationship between AAM

and MS. More work should be conducted for non-European populations to increase

generalizability, and among themales to complementary with results from females. Future

work may also be conducted focusing on hormonal reproductive factors other than

menarche, and their effects in MS prognosis, severity, and drug response.

Keywords: puberty, age at menarche, hormone, multiple sclerosis, population-based, epidemiology

INTRODUCTION

Multiple sclerosis (MS) is primarily an autoimmune inflammatory disorder of the central nervous
system (CNS), characterized by the loss of myelin and damage of axons, leading to a variety
of neurological deficits (1). The early course of MS is characterized by episodes of neurological
dysfunction that usually recover. However, as the disease progresses, pathological changes become
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dominated by widespread microglial activation associated with
extensive neurodegeneration and accumulated disability. Based
on data from WHO, it is estimated that more than two million
people (∼2.3–2.5 million) worldwide are living with MS and
the disease is one of the most common causes of neurological
disability (loss of motor and sensory function) among young
adults (2). The incidence of MS varies in different regions of
the globe, but usually grows with latitudes, making northern
Europe a high-risk zone (3, 4). MS strikes women two to
three times more often than men, and the female-to-male sex
ratio keeps rising (5). While women carry higher disease risk,
they usually present less rapid progression to disability (disease
severity).

MS is a complex disease with both genetic and environmental
factors involved in its etiology. To date, over 200 associated
loci have been identified through genome-wide association
studies (GWAS) (6), and a low but steadily increasing number
of environmental risk factors such as cigarette smoking, EB-
virus infection, vitamin D insufficiency (and more) have been

consistently observed to be associated with MS risk (7, 8). It has
also been long documented that hormonal related factors are
crucial in the disease susceptibility and development. Evidence
from animal models (experimental allergic encephalomyelitis,
EAE) has shown that estrogen, progesterone (at pregnancy range)

and testosterone provide anti-inflammatory and neuroprotective
effects on both the induction and effectors phases (9). The fact
that female preponderance is only apparent among patients

with age of disease onset after 12 (female-to-male sex ratio
for pediatric MS before 12: 1.2:1) (10) points toward a role
of puberty in MS predisposition. A key marker of female
pubertal development is menarche, indicating an initiation of
a reproductive life. Despite several lines of evidence from

epidemiological investigations linking earlier age at menarche
(AAM) to an increased risk of MS, other studies have found
no association or an inverse association. Most of the previous
observational studies have been small, or conducted in selected
clinical samples, yielding highly variable estimates. MS is most

commonly diagnosed among women who are 20–50 years old
and of child-bearing age. It is thus not surprising that patients are
usually interested in the topics of pubertal changes, motherhood,
and disease.

In this review, we will summarize the results from
epidemiological studies conducted so far investigating the
relationship between age at menarche and risk of MS in
human adults (we collected all the relevant articles through
an electronic search from PubMed, with key words “puberty,”
“pubertal,” “menarche,” “hormone,” and “multiple sclerosis.”
Only published data were included). We will comment on the
advantages and limitations of these studies. We will conclude
by presenting challenges, current research gaps and potential
future directions for this field. We anticipate that the increased
knowledge regarding the association between age at menarche
and MS risk as presented by our review will provide insights
into the mechanistic developmental processes of MS, as well
as facilitate patient care and women’s health by aiding clinical
consultations.

AGE AT MENARCHE AND RISK OF

MS–RESULTS FROM EARLY

RETROSPECTIVE STUDIES

Female menstruation and the risk of MS was first examined by
Antonovsky et al. (11) using a population-based case-control
study in Israel consisting of 241 patients and 964 controls (of
which, 131 female cases and 523 female controls). They found a
significantly shorter self-reported menstruated period (the length
of menstruation, usually lasts about 3–5 days) among the cases
than controls (P = 0.01 for the Chisq-test), but no differences
were observed for age at menarche or mean length of menstrual
cycle (the length of menstrual cycle, usually 28 days but can be
varied from 21 to 35 days). The study had a population-based
design where the patients were drawn from a nationwide survey
of MS (participation rate: 92%) and controls were randomly
selected from the population registry of census, matched on age
and sex (case-control ratio 1:4). Study participants answered a
questionnaire containing 146 questions covering 11 major areas.
The participants were from an admixed population consisting of
five regions of birth (Eastern Europe, Central-western Europe,
Southern Europe, Asia-Africa, and Israel). The heterogeneous
genetic background was not taken into account in the study,
which might influence the effect of menstruation (11).

The null finding concerning age at menarche was contrasted
by two subsequent small case-control studies carried out in 1989
in European ancestry populations. One was conducted by Berr
et al. in France which included 63 prevalent cases and 63 controls
(46 female case-control pairs). A statistically significant older
mean age at menarche was observed among patients than among
controls (13.5 vs. 12.7, P < 0.002 for the t-test) (12). The other
was conducted by Operskalski et al. in USA which composed of
145 cases and 145 controls (108 female case-control pairs), where
an inverse association was observed; the cases were significantly
younger at menarche than controls (12.3 vs. 12.7, P = 0.01 for
t-test) (13). The conflicting results from these two studies are
perhaps not surprising, as both studies were small.

Nevertheless, findings from two recent studies supported
again the previous non-significant association between age at
menarche and MS as identified by the Antonovsky et al. study.
Kurtzke et al. examined 23MS patients and 127 controls in
UK, and reported age at menarche did not differ significantly
between cases and controls (13.6 vs. 14.0), although the cases
presented a slightly younger AAM. However, this result was
based on extremely underpowered data with only 9 female cases
and 68 female controls from a selected veteran population (14).
Similarly, Gustavsen et al. compared 391 cases and 535 controls
in Norway (all female), and found age at menarche did not differ
significantly between the two groups (13.07 vs. 12.97), although
the cases showed a slightly older AAM (15).

To summarize, these earlier epidemiological studies were
mostly underpowered with limited sample size ranging from 9 to
391 cases, yielding highly variable estimates. All studies used self-
reported prevalent cases and self-administrated questionnaires
for the collection of exposures, introducing a potential recall bias.
Moreover, these studies lacked proper design, asmost of them did
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not explicitly studied AAM, but rather collected this exposure
complementary to other main exposures of interest. Thus, the
numbers of questions in terms of hormonal related factors and
AAM are limited and unspecific; and very little information is
provided on how the questions were formulated. Finally, none
of the aforementioned studies performed a formal statistical
analysis with adequate control for confounding factors, but rather
performed a simple comparison between the cases and controls
using a t-test or a chisq-test, which may yield biased results.
More details are presented in Table 1. Despite all the limitations
and inconclusive findings, these earlier studies provide some
preliminary support for a role of AAM in the risk of MS.

Age at Menarche and Risk of MS–Results

From Well-Designed Epidemiological

Investigations
During the past decade, several well-designed large-scale
epidemiological investigations have been conducted, and
consistent results have been reported where earlier age at
menarche was found to increase the risk of MS. Ramagopalan
et al. identified MS cases and controls through the population-
based longitudinal Canadian Collaborative Project on Genetic
Susceptibility to Multiple Sclerosis, for each index case, the
spouse was taken as control, and self-reported age at puberty was
used. The study collected a total of 4,472 female cases and 658
female controls (the spouse of those male cases or the same-sex
partner of female cases), and assessed the effect of age of puberty
through logistic regressions controlling for age at birth. The
authors found that the average age at menarche for female cases
was 12.4 (standard deviation= 1.29) and for female controls was
12.6 (1.33), the difference was small but statistically significant
(P = 0.00017). Moreover, each 1-year increased age at menarche
was further found to be associated with a decreased risk of
MS (odds ratio = 0.90, 95% confidence interval = 0.84–0.95,
P = 0.00063) (16).

Similarly, Nielsen et al. followed 77,330 women included in
the Danish National Birth Cohort and identified 226MS cases
during an average follow-up period of 11.7 years. Information
on menarcheal age was ascertained at the first interview. The
authors observed a generally younger age at menarche among
the cases than women without MS (13.0 vs. 13.3, P = 0.002).
After adjusting for a number of potential confounders such
as body mass index, socio-occupational status, age at first
pregnancy, parity, smoking and alcohol intake, an 11% reduction
in the risk of MS per 1-year increase in age at menarche was
found (hazard ratio = 0.89, 95%CI = 0.81–0.98). To eliminate
potential bias stemming from using self-reported data, the
author further performed a supplementary analysis based on
data from a subgroup of girls whom had school health records
available (instead of self-reported exposure). In this subgroup a
consistent reduction per 1-year increased AAM regarding MS
risk was observed (OR = 0.89, 95%CI = 0.70–1.13), indicating
that the potential bias due to using self-reported data was
minor (17).

These results observed in European populations were further
corroborated by two case-control studies conducted in Iran.

Rejali et al. recruited 200 incident cases from an MS clinic
and 200 sex and residential area matched controls (non-patients
from the same clinic), and found a significant younger age at
menarche among the cases than controls (12.96 vs. 13.48, P <

0.001). After controlling for the effect of age, marital status,
place of residence, family history of MS, other autoimmune
disease and viral disease in childhood, a significant relationship
between older age at menarche and decreased risk of MS was
observed (OR = 0.78, 95%CI = 0.68–0.90, P = 0.001) (18).
Likewise, similar findings were reported by Salehi et al. examining
399MS cases registered at the Iranian Multiple Sclerosis Society
and 541 randomly selected controls from the same residential
area through standard random digit dialing. The participants
were interviewed and after controlling for age, marital status
and education, each 1-year increase in the age at menarche was
found to reduce MS risk by 10% (OR = 0.90, 95%CI = 0.82–
0.98, P = 0.018) (19). Details of these studies are presented in
Table 2.

In addition to disease status, two studies have also investigated
age at menarche and age at first symptom onset specifically
amongMS patients. Sloka et al. examined 150 relapsing remitting
female MS cases and found that age of first MS symptoms was
postponed by 1.16 years as the age of menarche increased per
each 1-year, using a linear regression (r2 = 0.69, P = 0.04).
The study, however, wasn’t able to account for several important
confounders such as socioeconomic status or seasonal variability,
and the authors argued that the induction mechanisms linking
the two events together, could possibly include sharing of
similar induction mechanisms, one event gives rise to another
or same genetic susceptibility (20). In a recent study conducted
by Bove et al. which included the major genetic risk factor
of MS (HLA-DRB1∗1501), the risk allele carriers showed an
earlier age at onset (as expected), and each 1-year later age
at menarche was also associated with later age at onset after
adjusting for multiple potential confounders (increased by 0.63
years, P=0.033), consistent with previous findings. However,
surprisingly, the MS risk allele carriers were found to have a later
age at menarche than non-carriers (P= 0.036) (21). These results
suggest the complex dynamics underlying genetics, hormonal
factors and disease, as well as the importance of incorporating
genetic markers when studying the complex relationship between
these factors and MS.

The underlying biology on the effect of puberty on MS
risk remains to be elucidated. It may regulate MS risk
through multiple pathways. Firstly, experimental autoimmune
encephalitis, the animal models of MS, has demonstrated a
biphasic dose effect of estrogen on inflammation. At normal
ranges (not pregnancy level), estrogen promotes inflammation.
Thus, hormonal changes such as rise in estrogen levels after
puberty may affect MS onset. In addition, puberty is also
known to involve substantial brain maturational changes such
as white and gray matter volume increment, and therefore
plays a role in neurological modulation. Moreover, puberty
appears to be a key period of exposure to some of the well-
established MS risk factors, such as overweight/high body
mass index, vitamin D deficiency, and Epstein-Barr virus
infection. Last but not least, it is also likely that metabolic
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TABLE 1 | The epidemiological investigations on age at menarche and risk of MS, results from early retrospective studies.

Author Year Population Study Design Sample size Mean age at menarche P-value Limitations

Cases/

controls

Female

subjects

Cases Controls

Antonovsky

et al.

1965 Mixed Case-control

study

Population-

based

241/964 131/523 Data not

reported

Data not

reported

Not significant;

P-value not

reported

1. Data not shown;

2. simple Chisq test;

3. admixed populations;

4. Self-reported definite or

probable case;

5. prevalent case.

Berr et al. 1989 Caucasian Case-control

study

Population-

based

63/63 46/46 13.5 12.7 P < 0.002 1. Small sample size (<100

cases);

2. simple two sample

t-test;

3. prevalent case.

Operskalski

et al.

1989 Caucasian Case-control

study

Population-

based

145/145 108/108 12.3 12.7 0.01 1. Simple two sample

t-test;

2. prevalent case.

Kurtzke et al. 1997 Caucasian Case-control

study

Veteran 23/127 9/68 13.6 14 Not significant;

P-value not

reported

1. Small sample size;

2. simple statistical

analysis;

3. prevalent case.

Gustavsen

et al.

2014 Caucasian Case-control

study

Population-

based

391/535 391/535 13.07 (1.38) 12.97 (1.43) 0.28 1. Simple two sample t-test

2. prevalent case.

TABLE 2 | Age at menarche and risk of MS, results from well-designed epidemiological investigations.

Author Year Population Study Design Cases/

controls*

Mean age at menarche Regression model

Cases Controls P-value Estimate

(95%CI)

P-value Covariates included

Ramagopalan

et al.

2008 Caucasian case-control

study

Population-

based

4,472/658 12.4 (1.29) 12.6 (1.33) 0.00017 0.90

(0.84–0.95)

0.00063 Age

Nielsen et al. 2016 Caucasian cohort study Population-

based

226/77,104 13.0 (1.5) 13.3 (1.4) 0.002 0.89

(0.81–0.98)

Not

reported

BMI,

socio-occupational

status, age at first

pregnancy, parity,

smoking and alcohol

intake.

Rejali et al. 2016 Caucasian

(Iran)

Case-control

study

Hospital-

based

200/200 12.96 (1.43) 13.48 (1.49) 0.0001 0.78

(0.68–0.90)

0.001 Age, marital status,

residential area, family

history of MS, other

autoimmune diseases

and history of viral

diseases in childhood.

Salehi et al. 2018 Caucasian

(Iran)

Case-control

study

Population-

based

399/541 13.14 (1.46) 13.36 (1.67) 0.042 0.90

(0.82–0.98)

0.018 Age, marital status and

education.

*all subjects were females.

factors during puberty such as childhood nutrition, gut
microbiome alterations would lead to earlier menarche and
altered immunologic modulation thereby contributing to MS
risk (22).

Challenges and Future Directions
A powerful way to increase our knowledge on the relationship
between AAM and MS, and to provide stronger evidence
in support for a potentially favored role of late AAM on

MS risk, is through a meta-analysis which combines results
across different studies. Such analysis is currently unavailable,
likely due to the limited number of well-designed and well-
powered epidemiological investigations published so forth on
this topic. For example, only five of the previous studies
have reported both mean age at menarche and its standard
deviations (15–19) and only four epidemiological studies
have reported point estimates and 95% confidence intervals,
three of which are case-control studies conducted in two
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distinct populations (16, 18, 19) and one is a cohort study
(17). The heterogeneity in design and population ancestry
(European or non-European) across those previous studies
makes the aggregation of data difficult; and results based on
data pooled from these few studies could only be considered
as preliminary and suggestive. Meta-analysis or systematic
review are warranted when additional well-designed large
epidemiological investigations have emerged and accumulated in
the future.

In addition, the observational nature of epidemiological
studies could only identify association but can hardly make any
conclusive causal inference, as the validity of results could be
plagued by measurement error, selection bias, confounding, and
reverse causality. In the case of AAM and MS, self-reported age
at menarche might be inaccurate; selected clinical samples might
be unrepresentative to the target population; there are several
important confounders need to be taken into account, not all
can be collected via conventional questionnaires; and given the
long induction period of MS, certain immunological changes
might already have taken place several years before the clinical
diagnosis or symptom onset, information collected during this
period could thus be influenced by the subclinical phase of
disease itself.

Mendelian Randomization (MR) fills the gap by incorporating
genetic variants (single nucleotide polymorphism, SNPs) as
instrumental variables (IV) for assessing a causal effect of a risk
factor on an outcome from observational data (23). A typical
MR uses genetic variants (SNPs) as proxies for risk factors,
rather than self-reported exposure, with the assumption that
SNPs are independent of confounders in the population and
randomly allocated at conception, mirroring a randomization
process (as those in randomized clinical trials). Moreover, SNP
allocation always precedes disease onset therefore eliminates
reverse causality.

Massive investment in large-scale GWASs over the past years
have discovered reliable genetic variants for a wide range of
phenotypes including modifiable environmental exposures (e.g.,
circulating vitamin levels) and complex human behaviors (e.g.,
nicotine dependence), providing an unprecedented opportunity
for genetic epidemiology in particular by utilizing the MR
design. The success of MR approach has been demonstrated
by numerous relevant works. In MS, using this approach,
a causal role of vitamin D insufficiency and obesity has
been strengthened (24–27). In the case of AAM, its genetic
regulation has been highlighted by a recent GWAS involving
370,000 women which identified 389 independent AAM-
associated signals spread over 10 biological pathways (28). A
comprehensive understanding of the hypothetical causal roles
for AAM in MS have therefore become possible. However,
to the best of our knowledge, while MR of reproductive
factors has been carried out extensively in sex-steroid-sensitive
cancers with a successful identification of causal relationship
(28, 29), no MR has been conducted to investigate the
hypothetical causal role for pubertal development in MS to
date, a sex hormone driven autoimmune disease. This is

a potential future direction to be focused on, when data
allows for such analysis, e.g., studies have assembled the ideal
combination of large numbers of MS cases and controls, high-
quality questionnaire data and high-throughput genome-wide
SNPs.

In addition to investigating a putative causal relationship
between AAM and MS, another direction for future research is
to focus on non-European populations and males. As most of
the current studies have been conducted in European ancestry
populations, its generalizability has been restricted. If hormone
influences MS onset, it is possible that puberty timing would
also affect male MS onset through the emergence of high level
sex hormones and its inhibitory effect against autoimmunity.
Studying male puberty timing such as age at voice-breaking
would increase our knowledge to the mechanistic developmental
of MS as well as explain part of the sex disparity. Future work
on other hormonal reproductive factors than AAM, and MS
outcomes such as disease severity, prognosis and drug response
are also warranted.

CONCLUSION

In this review, we have recapitulated all the published
epidemiological studies conducted so far in AAM and MS,
detailing their main findings. We have illustrated the advantages
and limitations of each study. There are promising evidences
in support for a protective effect of late AAM on MS onset.
However, the association between AAM and MS remain to
be elucidated and confirmed through larger epidemiological
investigations and/or meta-analysis. Future work may be
conducted to focus on understanding the causal role of
AAM in MS by incorporating genetic markers, from which
the knowledge gained could answer some of the patients
frequently interested questions in topics of hormone and
disease. In addition, the broad scope of estrogen, p-pills,
as well as the protection against relapses during pregnancy
need further investigation. It is also important to conduct
studies among non-European populations and male patient
subpopulations. We anticipate that our review will inspire
to activities increasing our understanding to the biological
mechanisms underpinning hormonal factors and autoimmune
disease MS, thus deliver meaningful implications to MS
etiology.
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Background: The mechanisms underlying the influence of sex hormones in multiple

sclerosis (MS) are uncertain. Sex steroids interact with cholesterol metabolism and

the serum lipid profile has been associated with the severity of the disease. We

hypothesized that the putative associations between lipoprotein metabolism and MS

could be modulated by sex steroids exposure. The aim of this study was to investigate

whether oral contraceptives (OC) use changes the lipoprotein profile associated with

disability in patients with multiple sclerosis.

Methods: Clinical data was collected from 133 relapsing-remitting multiple sclerosis

(RRMS) women with a mean of 6.5 years of disease duration and prior to the start of

disease-modifying therapies. Patients whowere using OC after disease onset (DO) (OC+,

n= 57) were compared to those who never used OC or discontinued its intake before DO

(OC–, n = 76). In both cohorts of subjects, the associations between the apolipoprotein

E (ApoE) polymorphism, and plasma lipid levels, and the annualized relapse rate (RR),

the Expanded Disability Status Score (EDSS), and the Multiple Sclerosis Severity Score

(MSSS) were evaluated using a hierarchic multiple regression analysis after adjustment

for confounders.

Results: Low density lipoprotein (LDL) levels were associated with higher EDSS

(p = 0.010) and MSSS (p = 0.024) in the whole studied cohort. In E3/E3 phenotype

carriers (73.7%), EDSS and MSSS were lower in OC+ in comparison with OC– subgroup

of patients (p < 0.01). LDL and total cholesterol were associated with EDSS (p = 0.005

and p = 0.043, respectively), and LDL and the triglyceride/high density lipoprotein ratio

with MSSS (p = 0.011 and p = 0.048, respectively) in OC+ patients. In OC– subgroup

of patients, ApoE levels were associated with EDSS (p = 0.012) and MSSS (p = 0.031).

No significant interactions between the lipid variables or OC use and RR were observed.
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Conclusions: Serum lipid profile is associated with protective effects of OC use on

disability of RRMS patients. Lipoprotein metabolism may be involved in the modulatory

effects of sex steroids on the severity of the disease.

Keywords: multiple sclerosis, lipoproteins, cholesterol, apolipoprotein E, oral contraceptives, sex steroids

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory demyelinating and
neurodegenerative disease in which onset and course may be
modulated by gender and sex hormones (1). The mechanisms
underlying sex differences and effects of sex steroids in the
disease are poorly understood. Recent studies have implicated
serum cholesterol metabolism and lipoprotein profile in the
pathophysiology and severity of the disease (2). Nevertheless,
results are mixed, and whether these relations are causal or
secondary to the disease process, treatment regimens or other
confounding factors remain uncertain. Complex interactions
between cholesterol metabolism and sex steroids are well-known
(3) and may modulate the clinical activity of experimental
autoimmune encephalomyelitis (EAE), the animal model for MS
(4, 5). Therefore, we hypothesized that the putative associations
between lipoprotein metabolism and the severity of MS could be
modulated by sex hormone exposure.

Oral contraceptives (OC) use has provided an opportunity
to assess the influence of sex hormones on the risk and course
of MS. Recent data suggested a less severe clinical course (6,
7) and decreased inflammatory brain lesions (8) in relapsing-
remitting (RRMS) women taking OC. Protective effects of estriol,
the estrogen unique to parity (9), and of hormone therapy in
postmenopausal MS women were also reported (10). In healthy
women, OC use induces variable alterations in serum lipids and
apolipoproteins levels modulated by ApoE polymorphism (11,
12). Although ApoE polymorphism is not generally considered
to affect the risk ofMS, its association with the neurodegenerative
process and severity of the disease is still controversial (4, 5).
ApoE is implicated in the immune dysfunction and clinical
activity of EAE (5) and recent studies have suggested that EAE
disease severity is differently modulated by cholesterol and ApoE
metabolism in female and male mice (4, 13). Oestrogens may
regulate the expression of ApoE gene (2) and estrogen treatment
has protective effects in EAE (14). Oestrogens-ApoE interactions
are suggested to be involved in other neurological conditions
with a sex bias and abnormal cholesterol metabolism, such as
Alzheimer disease (15). Based on these data, the aim of the
present study was to investigate whether OC intake in RRMS
patients influence the associations between the serum lipoprotein
profile and the clinical severity of the disease.

MATERIALS AND METHODS

Study Population
The studied population include 133 women with the diagnosis of
RRMS according to the revised McDonald criteria (16) followed
at the MS outpatient clinic of a University Hospital in Lisbon

(Portugal). Most women enrolled in this study belong to a
population of Caucasian origin included in a previous work
published by our group (7). The present study includes all
patients followed in our clinic since 1995 diagnosed with RRMS
with at least 2 years of disease duration and whose lipid data
were available prior to the start of disease-modifying therapies.
No woman was taking lipid-lowering agents. Disease onset (DO)
was defined as the age of appearance of the first symptoms
suggestive of MS. The annualized relapse rate (RR) and the
Expanded Disability Status Scale (EDSS) and Multiple Sclerosis
Severity (MSSS) values were determined at a stable phase of
the disease. MSSS scores were obtained from Figure 3 of the
paper of Roxburg et al. (17). The MSSS is based on EDSS scores
adjusted for disease duration and it is a method to compare
disability progression in groups of patients (7, 17). Women in
menopause or history of gynecological surgical interventions or
a delivery the last 6 months were excluded. Clinical indexed
information included the body mass index (BMI) (Kg/m2), age of
first menstruation (menarche) and history of childbirths (parity),
smoking habit, and OC intake. Patients labeled smokers reported
to smoke regularly at least five cigarettes per day since DO.
Women were classified as OC non-users if they never used OC
or discontinued its intake for at least 1 year before DO (OC–);
and OC users if they maintained pill intake after DO for at least
a continuous period of 1 year (OC+). We were unable to take
the composition of the prescribed pill into account because this
information was lacking for some patients and many changed
the brand of the drug. However, all women who remembered
the formulation of OC used took formulations of 20 or 30 µg of
ethinyl estradiol combined with progestin. No woman reported
to use progestin-only formulations. This study was approved by
the Ethics Committee of the Centro Hospitalar, Lisboa Central
(Lisbon, Portugal). All patients gave written informed consent,
including for publication of results, in accordance with the
Declaration of Helsinki.

Biochemical Analysis
Blood samples were collected in fasting conditions shortly after
clinical data collection and neurological examination. Plasma
or serum samples were stored at −80◦C and biochemical
measurements performed in blind conditions regarding subject
participants. At sampling, patients were in a remission phase
of RRMS and none of them had initiated disease-modifying
therapies, suffered from a relapse or were treated with steroids for
at least 1 month. Serum triglycerides (TG), total cholesterol (TC),
high density lipoprotein (HDL)-cholesterol, apolipoprotein A-1
(ApoA1), and apolipoprotein B (ApoB) were determined with
enzymatic methods and lipoprotein (a) [Lp(a)] by turbidimetric
immunoassay by using a Hitachi 911 autoanalyzer and
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commercial kits (Roche Diagnostic, Mannheim, Germany). Non-
HDL cholesterol levels were calculated by subtracting HDL from
TC. Low density lipoprotein (LDL)-cholesterol was determined
by using the Friedewald equation (18) and oxidized LDL
(oxLDL) by Enzyme-Linked Immunosorbent Assay (Mercodia,
eBioscience). Apolipoprotein E (ApoE) protein levels were
determined by electroimmunodiffusion (Sebia, Emery, France)
and ApoE polymorphism examined by using an isoelectric
focusing (IEF) method as described previously (19). Briefly,
15 µl of delipidated plasma samples was run on agarose
with sorbitol, urea, ampholine (pH 5–7) and pharmalyte
(pH 4–6.5) (Amersham Pharmacia Biotech, Little Chalfont,
UK). After IEF, the proteins were transferred to nitrocellulose
membranes (Immobilon, pore size 0.2µm; Millipore Corporate
Headquarters, Billerica, USA). The membranes were incubated
with polyclonal-goat anti-human ApoE antibody (Daichi Pure
Chemicals, Tokyo, Japan) and IgG peroxidase-conjugate anti-
goat antibody (Sigma-Aldrich Biotechnology, St Louis, USA).
The ApoE isoforms were visualized in a solution containing
3,3’ diaminobenzidine tetrahydrochloride reagent (Sigma). For
common ApoE polymorphism, protein phenotyping is in good
agreement with DNA-based genotyping (20).

Statistical Analysis
Patient demographic and clinical characteristics were described
using mean, median, standard deviation, and interquartile range
for continuous variables. In the text, standard deviation is
presented as mean (standard deviation). For categorical variables
absolute and relative frequencies were calculated. The relation
between severity parameters of clinical disease activity (RR,
MSSS, and EDSS) and ApoE phenotypes was evaluated using
Kruskal-Wallis ranking test. Comparisons of disease severity
between OC+ and OC– subgroups of patients were performed
using a Mann Whitney test. The associations between disease
severity parameters such as MSSS, EDSS, and RR and the lipid
profile were evaluated using a two tailed Spearman Correlation
analysis. The correlation analysis was performed for the total
subset of patients carrying the E3/E3 phenotype and also split for
those in OC+ and OC– subgroups. A hierarchical multiple linear
regression was used assuming the EDSS and MSSS as dependent
variables and characterization variables such as age, disease
onset, oral contraception, disease duration and parity (block
1), and lipid profile parameters that had significant correlation
with EDSS and MSSS in the correlation analysis (block 2), as
independent variables. A enter model was used for the variables
in the block 1 and a stepwisemodel was used for variables in block
2.A significance level of 0.05 was considered in all analysis.

RESULTS

The main demographic and clinical characteristics of the studied
population are summarized in Table 1. Twenty-nine patients
(21.8%) were classified as overweight (25 ≥ BMI < 30) or
obese (BMI ≥ 30). In the OC+ subgroup (n = 57), the mean
duration of OC use was 10 years (6.6) and all but nine women
started intake before DO. In the OC– subgroup, fifty patients
were never prescribed with OC and 26 discontinued the intake

before DO. OC+ patients were younger and had the onset of
the disease at an earlier age than OC– subgroup of patients.
Significant associations were found between EDSS andMSSS and
age (p < 0.001 and p = 0.013), DO (p = 0.004 and p < 0.001),
disease duration (p = 0.004 and p < 0.001), OC use (p = 0.001
and p = 0.002), and parity after DO (p < 0.001 and p = 0.006).
RR was only associated with disease duration (p = 0.006).
Menarche age, duration of OC intake, BMI, and smoker habit
were not associated with RR or disability scores (data not shown).
Concerning the lipid data, HDL and Apo A1 levels were higher
in OC+ patients. In a hierarchic multiple regression analysis
adjusted for age, DO, disease duration, and OC use, LDL was the
only lipid variable associated with EDSS and MSSS (β = 0.008,
95% CI (0.002 to 0.015) p = 0.010 and β = 0.013, 95% CI
(0.002 to 0.025) p = 0.024, respectively). ApoE phenotypes
found in the studied cohort were E3/E3 (n = 98, 73.7%),
E4/E3 (n = 20, 15%), E2/E3 (n = 12, 9%). Analysis of ApoE
polymorphism was missing from one patient and two additional
patients carried the E4/E2 phenotype. No homozygotes for the
E4 and E2 alleles were detected. The observed frequencies of
ApoE alleles were comparable with those reported for the general
populations in Portugal and other countries in South Europe
(21).

No associations between the three common ApoE phenotypes
and EDSS, MSSS, or RR were found. However, in the E3/E3
subset of subjects, EDSS, and MSSS values were lower in OC+ in
comparison to OC– subgroup of patients (p < 0.01) (Figure 1).
These results remain significant after hierarchical multiple linear
regression analysis adjusting for demographic features among
the ApoE genetic groups. RR was not significantly changed
by OC intake (p = 0.457). In consequence, serum lipid and
apolipoprotein levels were investigated in this subset of patients
according to OC use. Overall, there was no statistical difference
in the lipid profile with the exception of higher ApoA1 and
lower ApoE levels in OC+ in comparison to OC– patients [171.3
mg/dl (40.6) vs. 151.5 mg/dl, (27.5); p < 0.01 and 67.3 mg/dl
(29.6) vs. 80.1 mg/dl (28.7); p < 0.05, respectively]. Correlation
between lipoprotein levels and disability scores were analyzed in
E3/E3 subset of patients stratified according to OC use. In OC+
subgroup of patients, LDL was associated with EDSS (p= 0.018)
and ApoB was associated with MSSS (p = 0.043). In contrast, in
the OC– subgroup of patients, ApoE was associated with MSSS
values (p= 0.008); TC and non-HDL were associated with EDSS
(p= 0.025 and p= 0.035, respectively); and TC (p= 0.035), LDL
(p = 0.028), non-HDL (p = 0.005), and ApoB (p = 0.008) with
RR (Table 2).

A hierarchic multiple regression analysis in E3/E3 subjects
split for OC+ and OC– patients and adjusted for age, DO and
disease duration was then performed (Table 3). EDSS was related
to LDL [β = 0.026, 95% CI (0.009 to 0.044); p = 0.005] and
TC [β = −0.018, 95% CI (−0.034 to −0.001); p = 0.043];
model R square = 0.328 (p = 0.015) in OC+ population; and
to ApoE [β = 0.015, 95% CI (0.004 to 0.028); p = 0.012];
model R square = 0.312 (p = 0.001) in the OC– subgroup
of patients. In a similar model, MSSS was related to LDL,
[β = 0.022, 95% CI (0.002 to 0.033); p = 0.011] and to
TG/HDL ratio, [β = 0.389, 95% CI (0.088 to 0.800); p = 0.048];
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TABLE 1 | Patient demographic and clinical characteristics.

Characteristics Total (n = 133) OC+

(n = 57)

OC–

(n = 76)

p-value

Age (years) 35.2 ± 8.4 32.4 ± 6.9 37.3 ± 8.8 0.001

Disease onset (age) 28.6 ± 8.2 25.7 ± 6.7 30.8 ± 8.5 <0.001

Disease duration (years) 6.5 ± 5.3 6.6 ± 5.0 6.4 ± 5.5 0.836

EDSS 2.1 ± 1.3

2.0 [1.0;3.0]$
1.7 ± 1.1

1.5 [1.0;2.0]$
2.4 ± 1.4

2.5 [1.6;3.5]$
<0.001

MSSS 3.5 ± 2.4

3.4 [1.5;5.2]$
2.8 ± 2.0

2.3 [1.3;4.5]$
4.1 ± 2.6

3.9 [2.0;6.0]$
0.003

Relapse rate 0.9 ± 0.6

1.0 [0.5;1.0]$
0.9 ± 0.5

1.0 [0.5;1.0]$
± 0.6

1.0 [0.5;1.0]$
0.317

TC (mg/dl) 201.5 ± 36.5 202.9 ± 34.7 200.5 ± 37.9 0.708

LDL (mg/dl) 126.0 ± 34.1 123.2 ± 33.1 128.1 ± 34.9 0.418

HDL (mg/dl) 57.9 ± 15.2 60.9 ± 17.8 55.7 ± 12.5 0.049

Non HDL (mg/dl) 143.6 ± 37.4 142.0 ± 35.8 144.8 ± 38.9 0.670

Oxidized LDL (u/L) 60.3 ± 24.3 61.0 ± 25.3 59.4 ± 23.9 0.863

TG (mg/dl) 95.3 ± 47.6 102.2 ± 49.5 90.1 ± 45.8 0.149

ApoA1 (mg/dl) 159.1 ± 33.7 173.0 ± 37.6 148.5 ± 26.1 <0.001

ApoB (mg/dl) 90.2 ± 24.7 91.2 ± 22.9 89.5 ± 26.1 0.698

Lp(a) (mg/dl) 29.4 ± 29.5 32.4 ± 29.5 27.5 ± 29.6 0.377

ApoE (mg/l) 77.2 ± 31.8 70.4 ± 29.1 81.9 ± 32.9 0.052

ApoE 3/3 n (%) 98 (73.7) 42 (73.7) 56 (73.7) 0.184

ApoE 4/3 n (%) 20 (15.0) 12 (21.1) 8 (10.5)

ApoE 2/3 n (%) 12 (9.0) 3 (5.3) 9 (11.8)

The continues variables are expressed as mean ± SD; $ median and IQR [].

Categorical variables are expressed as frequency n (%). p represents the significance of the comparison between OC user (OC+) and non-user (OC–) patients (Mann–Whitney test).

EDSS, Expanded Disability Status Scale; MSSS, Multiple Sclerosis Severity Score; TC, total cholesterol; LDL, low density lipoprotein; HDL, high density lipoprotein TG, triglyceride; Apo

A1, apolipoprotein A1; ApoB, apolipoprotein B; Lp(a), lipoprotein (a) ApoE, apolipoprotein E; ApoE phenotypes (3/3, 4/3,2/3). Analysis of ApoE polymorphism was missing from one

patient and two additional patients carried the E4/E2 phenotype (not shown). Bold values mean significant differences.

FIGURE 1 | Association between Apolipoprotein E phenotypes and disability changes stratified according to oral contraceptive use. Dependence of the Expanded

Disability Status Scale (EDSS) (A) and of the Multiple Sclerosis Severity Score (MSSS) (B) with Apo E phenotypes (ApoEPhen) (2/3, 3/3, 4/3) in oral contraceptive

users (n = 57 in white) and non-users (n = 73 in gray) subgroups of patients. The bars represent inter-quartile range (percentiles 25 and 75); OC+, ApoEPhen 2/3-

only 3 patients analyzed. EDSS and MSSS values are lower in OC users in comparison to non-user patients carrying the E3/E3 phenotype (Mann-Whitney test,

p < 0.001 and p = 0.001, respectively).

model R square = 0.333 (p = 0.016) in OC+ patients; and
to ApoE, [β = 0.024, 95% CI (0.003 to 0.046); p = 0.031];
model R square = 0.299 (p = 0.002) in OC– population (see

Supplementary Material). No significant associations between
the lipids variables and RR were observed using this model (not
shown).
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TABLE 2 | Associations between the lipid profile and clinical variables in patients carrying the E3/E3 phenotype stratified according to oral contraceptive use.

Lipid variables OC+ OC–

RR EDSS MSSS RR EDSS MSSS

TC (mg/dl) −0.034

(0.833)

0.211

(0.180)

0.186

(0.239)

0.283

(0.035)

0.299

(0.025)

0.203

(0.134)

LDL (mg/dl) −0.017

(0.917)

0.363

(0.018)

0.255

(0.103)

0.294

(0.028)

0.246

(0.067)

0.128

(0.346)

Non-HDL (mg/dl) −0.045

(0.778)

0.268

(0.086)

0.152

(0.338)

0.366

(0.005)

0.283

(0.035)

0.221

(0.101)

Apo B (mg/dl) 0.103

(0.517)

0.270

(0.084)

0.313

(0.043)

0.357

(0.008)

0.230

(0.094)

0.199

(0.150)

Apo E (mg/l) −0.001

(0.995)

−0.002

(0.993)

0.030

(0.863)

0.154

(0.266)

0.206

(0.136)

0.356

(0.008)

The results show Spearman Correlation significance between subgroups of patients carrying the E3/E3 phenotype. OC+: oral contraceptives user (n = 36); OC– oral contraceptives

non-user (n = 51); RR, annualized relapse Rate; EDSS, Expanded Disability Status Scale; MSSS, Multiple Sclerosis Severity Score; TC, total cholesterol; LDL, low density lipoprotein;

HDL, high density lipoprotein; ApoB, apolipoprotein B; ApoE, apolipoprotein E. No significant associations were found for other lipid variables (not shown). Bold values mean significant

differences.

TABLE 3 | Hierarchical multiple linear regression model to determine the

association between lipid variables and disability changes in patients carrying the

E3/E3 phenotype stratified according to oral contraceptive use.

Factors β coefficient* CI 95%* p-value R square Sig

(ANOVA)

DEPENDENT VARIABLE: EDSS

OC+

TC (mg/dl) −0.018 −0.034 to −0.001 0.043 0.328 0.015

LDL (mg/dl) 0.026 0.009 to 0.044 0.005

OC–

ApoE (mg/l) 0.015 0.004 to 0.028 0.012 0.312 0.001

DEPENDENT VARIABLE: MSSS

OC+

LDL (mg/dl) 0.022 0.002 to 0.033 0.011 0.333 0.016

TG/HDL ratio 0.389 0.088 to 0.800 0.048

OC–

ApoE (mg/l) 0.024 0.003 to 0.46 0.031 0.299 0.002

*Adjusted for age, disease onset, disease duration, and oral contraception (OC) intake.

EDSS, Expanded Disability Status Scale; MSSS, Multiple Sclerosis Severity Score; Oral

contraceptive users (OC+, n = 34) and non-users (OC–, n = 51) subgroups of

patients carrying the E3/E3 phenotype; TC, total cholesterol; LDL, low-density lipoprotein;

ApoE, apolipoprotein E; TG, triglycerides; HDL, high-density lipoprotein. No significant

associations were found for other lipid variables (not shown). Bold values mean significant

differences.

DISCUSSION

The results reported in this study suggest that oral OC use
modifies the serum lipoprotein profile associated with disability
in patients with MS. Recent prospective studies have shown
variably associations between serum lipid and apolipoprotein
levels and the risk of new lesions accumulation and disability
progression in patients with RRMS and/or the first symptoms
suggestive of the disease (clinical isolated syndrome, CIS)
(2). However, most research has included patients under
immunomodulatory therapies and have not assessed possible
influences of OC use. In consequence, in this cohort, lipid
data was analyzed before the introduction of disease-modifying
therapies and comparing women who never used OC or stopped
its intake before disease onset (OC–) to those who were OC users
after disease onset (OC+).

The serum lipoprotein profile is in part genetically regulated
by the common human isoforms of ApoE designated E2, E3,
and E4, which display different modulatory roles in cholesterol
metabolism, immune function, and neuronal homeostasis (3,
5, 11). In agreement with most studies (4, 5), no association
between the ApoE polymorphism and the clinical activity and
severity of MS was found. However, in individuals carrying
the major E3/E3 phenotype, EDSS and MSSS were significant
lower in the OC+ group, when compared to OC– patients.
In line with previous retrospective work (6, 7) and a recent
longitudinal study (22) no influence of OC use on relapse risk
was observed. Future research in a larger population of carriers
of the ε2 and ε4 alleles is needed. In particular, the apparent
lack of effect on disability in E4/E3 patients is of considerable
interest. In fact, experimental and clinical studies have shown that
the neuroprotective and anti-inflammatory effects of estrogen
are attenuated by the ApoE4 isoform (3) and the risk conferred
by this allele for Alzheimer disease is amplified in women (15).
These results lead us to perform an analyse of serum lipid
variables and their associations with clinical parameters restricted
to carriers of the E3/E3 phenotype.

In healthy women, the use of OC formulations containing

combinations of ethinyl estradiol and a progestin induce in

general an increase of serum TG, ApoA1, and ApoB(11, 12).
Higher levels of HDL and/or of its major apolipoprotein, ApoA1,

were suggested to be protective for the genesis of new lesions in
the MS (23, 24). Although ApoA1 levels were higher in OC+

than in OC– patients, no evidence for a protective effect was
observed in agreement with other studies (25–27). In accordance
with most studies (27), no independent association between
lipid parameters and RR were observed after adjustments in
multivariable analysis. In contrast, when all the variables were
analyzed in a hierarchic model, significant associations were
found between disability and TC, LDL, and the TG/HDL ratio
only in the OC+ population. The TG/HDL ratio is a parameter
recently associated with insulin resistance, obesity, metabolic
syndrome, and clinical outcome in stroke (28). Our finding is
consistent with some studies reporting worsening disability in
patients with high TG levels (24, 26).
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In healthy women, OC intake consistently decreases ApoE

levels and changes the distribution of this protein between
lipoprotein fractions containing ApoB (LDL and triglyceride-rich
lipoproteins) and those devoid of ApoB and rich in ApoA1
(HDL). Interestingly, these alterations are not induced in E4
carriers (12). Recently, differences in LDL particle size were
observed between male and female RRMS patients, supporting
gender differences in lipid metabolism (29). These data indicate
that further work is needed to analyse whether OC intake in
these patients modify ApoE distribution among lipid fractions.
Nevertheless, ApoE levels were lower in OC+ than in OC–
patients, and were correlated in these latter subjects with
disability. Previous studies have linked higher plasma ApoE
levels with severity of EAE (5), higher disability in RRMS (26)
and deep gray matter atrophy in CIS patients (25). Several
experimental studies have shown that oestrogens may modulate
the interactions between Apo E gene expression and LDL
metabolism (3, 13). In this context, it is of great interest
that an altered gene expression for ApoE and other proteins
implicated in cholesterol synthesis and transport occurs during
the development and resolution of CNS lesions in EAE and MS
patients (30, 31). In addition, Mailleux et al. (13) have shown that
LDL receptor deficiency reduces EAE disease severity in female,
but not in male rats, through the induction of ApoE release by
macrophages. In line with the reviewed data, the present results
strongly support a role of sex steroids in modulating ApoE and
related cholesterol metabolism in MS patients.

Beyond the relative small dimension of the cohort, absence
of a healthy control population and its cross-sectional design,
this study has several other limitations. Considering the models
statistical assumptions and the nature of the included clinical
variables, the results should be interpreted carefully. Prospective
studies are necessary to substantiate a causal role of the lipid
profile associated with OC behavior in disability progression. It
should be noted that many patients are at present medicated
following a first clinical episode and paraclinical evidence
suggestive of MS (CIS). Therefore, it is increasingly impractical
or unethical to carry out a study on a larger population of
patients with the diagnosis of RRMS without taking disease-
modifying therapies, which may variably interfere with lipid
metabolism (32, 33). Although a healthy control population has
not be analyzed, as discussed above, our results suggest that
OC intake in these patients and healthy women might interact
with similar pathways of lipid metabolism. Further work is
warranted to investigate this interesting issue. We were unable
to include neuroimaging information, analysis of vitamin D,
and inflammatory markers. In particular, vitamin D levels could
affect the serum lipid profile in MS patients (34) and the mutual
metabolic relationships between oestrogens and vitamin D may
be relevant for the pathogenesis of the disease (1). However,
in a previous work, we have found no evidence for significant

alterations of serum 25-hydroxyvitamin D levels associated with
OC use in these patients (7). Information concerning the intake
of vitamin D supplements was not available. Nonetheless, the
population included in this study was analyzed before the intake
of these supplements became a common practice by these

patients. Dietary and physical activities were not controlled
and the impact of different contraceptive formulations could
not be evaluated. Gava et al. (6) did not find any differences
in the protective effects of OC use in the clinical course of
MS depending on the dose of ethinyl estradiol or the type of
progestin. However, the anti-inflammatory effects of oestrogens
are dose-dependent (8) and future randomized, double-blind,
controlled studies are needed to investigate this issue. The
progestin content of these formulations could change the lipid
profile (11, 12) and were suggested to affect the risk for MS
(35). In conclusion, despite these limitations, our results report
new findings, supporting a role of the serum lipid profile in
mediatingmodulatory effects of sex steroids in the severity ofMS.
In addition, they indicate that further work assessing the effects
of specific OC doses and formulations in lipoprotein metabolism
of these patients may provide new therapeutic strategies for the
disease.
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Multiple sclerosis (MS) is the most common neurological immune-mediated disease

leading to disability in young adults. The outcome of the disease is unpredictable, and

over time, neurological disabilities accumulate. Interferon beta-1b was the first drug to be

approved in the 1990s for relapsing-remitting MS to modulate the course of the disease.

Over the past two decades, the treatment landscape has changed tremendously.

Currently, more than a dozen drugs representing 1 substances with different mechanisms

of action have been approved (interferon beta preparations, glatiramer acetate,

fingolimod, siponimod, mitoxantrone, teriflunomide, dimethyl fumarate, cladribine,

alemtuzumab, ocrelizumab, and natalizumab). Ocrelizumab was the first medication to

be approved for primary progressive MS. The objective of this review is to present the

modes of action of these drugs and their effects on the immunopathogenesis of MS.

Each agent’s clinical development and potential side effects are discussed.

Keywords: multiple sclerosis, immunotherapeutics, immunomodulation, immunosuppression, monoclonal

antibodies

INTRODUCTION

Multiple sclerosis (MS) is the most common neuroinflammatory and neurodegenerative disease
in young adults, with more than 2 million patients worldwide (1). Since the first insights into
its pathogenesis were gained from anatomical studies on MS patients in the 19th century by
Robert Carswell (2), Jean-Martin Charcot, and others (3), the understanding of pathophysiological
concepts concerning MS has been broadened exceedingly. However, modification of the disease
course was elusive until the approval of interferon beta-1b (IFN-ß) in 1993 (4). Over the past
two decades, the treatment landscape has changed tremendously. Currently, more than a dozen
drugs are approved for relapsing-remitting multiple sclerosis (RRMS), and one agent for primary
progressive multiple sclerosis (PPMS) (5). These agents represent 10 different substance classes
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with different modes of action. Whereas, some drugs, including
IFN-ß preparations and glatiramer acetate, have no clearly
definedmechanisms of action, many of the other agents are target
specific and the result of rational drug design. Consequently,
much has been learnt about the pathogenesis of MS from the
administration of these agents. Although T cells were thought
to be the principal lymphocyte subset to initiate and perpetuate
disease activity in MS (6), the efficacy of anti-CD20 agents,
demonstrated in clinical trials, challenged that concept and
pushed B cells together with T cells to the front stage of MS
pathogenesis (7, 8).

The initial step in the immune cascade of MS seems to be
the activation of T helper (Th) cells in lymph nodes through
contact with antigens (either myelin antigens or non-self-
antigens sharing similar epitopes to myelin antigens) presented
by antigen-presenting cells (APC), including macrophages
or dendritic cells (9). This results in the activation and
differentiation of myelin-reactive T cells. Activated T cells exit
the lymph nodes and circulate in peripheral blood (10), from
where they can readily migrate into other tissues, including the
central nervous system (CNS). There, these cells can proliferate
and clonally expand if they encounter their cognate antigen. The
level of chemokines and cytokines increases (e.g., interleukin
[IL]-2, IL-1, interferon [IFN]-y, tumor necrosis factor [TNF]-α).
As a consequence, additional T and B cells, as well as monocytes
are recruited into the CNS and enhance the inflammatory
cascade (11).

The monitoring of patients taking new and highly effective
drugs that are associated with severe adverse events (AEs) or
risks becomes increasingly important. Therefore, it is essential
to understand the mode of action of MS drugs and their
effects on the immune system. It supports remaining vigilant for
unexpected novel AEs that in turn help to understand the mode
of action more precisely, and explore the pathophysiology of MS.

This review aims to provide an overview of the approved
MS drugs. The history of these drugs and their mode of action
are presented considering the current understanding of the
pathogenesis of MS.

The review starts with drugs for which the mechanisms of
action are not entirely understood, followed by drugs with well-
defined molecular and cellular targets.

INTERFERON BETA (IFN-ß)

Interferons are part of the cytokine family and are signaling
proteins. They can be divided into three classes: type I (interferon
alpha and beta), type II (interferon gamma), and type III
(interferon delta), with different biological effects (12). IFN-
ß belongs to the class of type I interferons and is produced
by lymphocytes, fibroblasts, macrophages, and endothelial cells
(12). Interferons play an important role in the regulation of the
immune system. The effects modulated by IFN-ß are complex
and have not been elucidated in detail. IFN-ß binds to the
type I IFN receptors INFAR-1 and INFAR-2. Its affinity to
INFAR-2 is higher than to INFAR-1. This binding activates
the JAK/STAT (janus kinases/signal transducer and activator

of transcription proteins) signaling pathway leading to the
expression of cellular genes (e.g., Mx protein, ß2-microglobulin,
2′/5′-olygoadenylate synthetase, and neopterin) (13). Overall, the
activation of signal-transduction pathways by IFN-ß leads to
antiviral, immunomodulatory, and antiproliferative effects (14).

IFN-ß has a wide range of immunomodulatory effects. It
reduces the number of dendritic cells and downregulates antigen
presentation by APCs in the peripheral blood and also within the
CNS (microglial cells and monocytes). The expression of Toll-
like receptors (TLR) 3 and 7, as well as MyD88, on dendritic cells
is upregulated, leading to altered immune responses. It induces
CD4+, CD8+, CD25+, FOXP3+, and FoxA1+ T cells (Treg cells).
IFN-ß decreases inflammatory T cell responses by inhibiting
the stimulation and activation of T cells (e.g., by modulating
costimulatory molecules on dendritic cells and inhibiting the
expression of MHC class II molecules and co-stimulatory factors
such as CD80 and CD28 on APCs) (15, 16). The secretion of
cytokines and chemokines is altered (e.g., increased levels of IL-
10 and IL-4, and decreased levels of IL-12 and TNF α), and the
differentiation of CD4+ T cells shifts from a T helper-1 (Th1) to
Th2 phenotype, resulting in a less pro-inflammatory and more
anti-inflammatory cytokine milieu (17). The number of Th17
cells decreases, leading to a reduction in the release of Il-17
(12), and the apoptosis of auto-reactive T cells is induced (5).
Effects on cytokines and chemokines, matrix metalloproteinases
(MMP), and adhesion molecules (e.g., VLA-4 on T cells) have
been suggested (15, 18–20), thus the migration of leukocytes into
the CNS via the blood-brain-barrier (BBB) is reduced.

Currently, IFN-ß is available as IFN-ß-1a (Avonex R©, Rebif R©,
and Plegridy R©) and IFN-ß-1b (Betaferon R© or Extavia R©). IFN-
ß-1-a differs from IFN-ß-1b in its amino-acid sequence, tertiary
structure, and glycosylation status (21). IFN-ß-1b was the first
drug approved by the US Food and Drug Administration (FDA)
for the treatment of MS in 1993 (22) and was granted market
authorization in 1995 in Europe (23). The preparations differ
with respect to their frequency and route of administration. The
frequency of administration ranges from every other day/thrice
a week (tiw) (Betaferon R© or Extavia R©/Rebif R© subcutaneously
[SC]), to once a week (Avonex R©, intramuscular [IM]), to
biweekly (Plegridy R©, SC). PEGylation led to more stable
preparations and a longer half-life (24).

When tested in patients with MS, IFN-ß-1b significantly
lowered relapse rates in RRMS by approximately one third (25),
with more patients free of relapses after 2 years in the IFN-ß-

1b cohort (26). No significant differences in disease progression
or the relapse rate were confirmed at 6 months in patients with
mild (ExpandedDisability Status Scale [EDSS]≤3.5) ormoderate

(EDSS >3.5) disability (27). In patients with clinically isolated
syndrome (CIS) treated with IFN-ß, the conversion rate to MS
was lower during the study period compared to the control

group (28–30). However, in secondary progressive MS (SPMS),
conflicting results were reported between a European (31) and a
North American study (32), with positive effects on progression
confirmed at 3 months in the European study, which were
explained partly by the younger and clinically more active patient
population in the European study than theNorth American study
(33). A prospective study of 2,570 IFN-ß-treated MS patients
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revealed that an early start within the first years after diagnosis
significantly lowered the risk of EDSS progression and long term
disability (milestone: EDSS 4) (34). A 16-year follow up study of
pivotal trials of IFN-ß-1b revealed different mortality rates for the
study groups in the pivotal studies, with the highest mortality rate
for the cohort initially treated with a placebo (18.3%), followed
by the study group given 50 µg every other day (8.3%), and was
lowest mortality rate was found in the group given the high and
subsequently approved dose of 250 µg (5.4%). Standard long-
term assessments did not show differences between the study
groups except for mortality (35).

Since IFN-ß is immunogenic, allergic reactions might
occur, and importantly, neutralizing antibodies (NAbs) can
be formed in response to treatment. NAbs can lead to the
decreased efficacy of IFN-ß preparations and a worsening
disease outcome might be observed (36). NAbs were more
frequently reported during treatment with IFN-ß-1b than with
IFN-ß-1a. Based on the data from various trials, IFN-ß-1b
seems to be more immunogenic than IFN-ß-1a (4, 37). This
was confirmed by samples from 20,695MS patients from 6
European Countries. IM administered IFN-ß-1a is the least
immunogenic IFN-ß preparation followed by SC administered
IFN-ß-1a preparations, with SC IFN-ß-1b preparations being
the most immunogenic ones (37). The reason for this has not
been elucidated.

The most common AEs include influenza-like symptoms,
injection-site reactions, headache, thyroid disorders including
autoimmunity, depression, allergic reactions, and elevated liver
enzymes with the possibility of severe hepatic injury, which are all
frequently reported. Hematological abnormalities (leukopenia,
lymphopenia) can also be found (4, 5, 23, 26, 27).

Monitoring requirements include blood counts, liver-enzyme
assessments and thyroid testing at regular intervals. NAbs should
be tested when treatment failure is suspected (5). According to
preclinical studies, harm to the fetus cannot be excluded. The data
on IFN-ß during pregnancy in MS patients has so far revealed
no association between treatment and an increased teratogenic
or abortive potential. The data on treatment during the second
and third trimester is limited (38). Table 1 shows data on all
approved injectables.

GLATIRAMER ACETATE

Glatiramer acetate (GA, Copaxone R©, formerly known as
copolymer-1 or Cop-1, and Glatopa R©, a biosimilar) is a mixture
of random synthetic polypeptides composed of 4 amino acids
(glutamate, lysine, alanine, and tyrosine) in a pre-defined
molar ratio. GA initially was developed at the Weizmann
Institute in Israel as a chemical and immunological analog
of the major myelin antigen, myelin basic protein (MBP),
to induce experimental autoimmune encephalomyelitis (EAE).
Surprisingly, GA did not prove to be encephalitogenic, nor did
it induce EAE in susceptible animals, but rather showed high
efficacy in suppressing, and even preventing EAE induced by
MBP and other myelin antigens in a variety of species andmodels
of EAE (39).

GA’s exact mode of action inMS is not completely understood,
but extensive research has shown that GA, initially considered
to be specific for MBP-related T cell immune responses, affects a
variety of immune and non-immune pathways. GA cross-reacts
with MBP on the cellular and humoral levels (39) and probably
functions as an altered peptide ligand that promotes regulatory
T cells instead of stimulating adverse T cell autoreactivity (40).
GA’s immunomodulatory effects probably stem from strong and
indiscriminate binding to MHC class II molecules on APCs,
while competing with MBP (41) and probably other myelin
antigens (42) for these binding sites. This binding effectively
displaces MBP, proteolipid protein (PLP), and MOG-derived
peptides from theirMHC binding sites (43), resulting in altered T
cell responses, as evidenced by the suppression of myelin-reactive
T cells by GA (42, 44, 45) and the generation of regulatory
Th2 cells recognizing both GA and MBP that can cross the
BBB, secrete anti-inflammatory cytokines, and exert bystander
suppression of auto-aggressive inflammatory T cells in the CNS
(46–48). These GA-specific Th2 cells also secrete large amounts
of brain-derived neurotrophic factor (BDNF) that might be
neuroprotective (49). Other effects of GA on T cells include T cell
receptor (TCR) antagonism via the specific engagement of TCR
recognizing MBP through the GA-MHC complex in a manner
that results in functional receptor inactivation (50) and induction
of regulatory CD4+CD25+ T cells through activation of the
transcription factor FoxP3 (51).

GA also modulates macrophages, microglia, and dendritic
cells, and drives them into M2 phenotype and anti-inflammatory
responses (52–54). Incubation of the human monocytic cell line
THP-1 with GA results in down-regulation of the expression of
MHC class II and molecules on the cell surface and reduced
secretion of TNF-α and cathepsin-B (55). These effects may
contribute to the modulation of CNS neuroinflammation (56).

Much attention has recently been drawn to the role of B cells
in the pathogenesis of MS, and to the beneficial effects of anti-B
cell therapy in both RRMS and PPMS (57). Several recent studies
have shown that treatment with GA is associated with reductions
in the number of B cells, plasmablasts, and memory B cells, as
well as a shift from a pro-inflammatory to an anti-inflammatory
B cell phenotype (58). It has been hypothesized that this may
be mediated by the cross-reactivity of B cell receptors for GA
with antigen (possibly myelin basic protein) expressed in the MS
lesion (58).

GA has also been shown to promote repair mechanisms,
remyelination, and neurogenesis in the EAE model by
augmenting the proliferation, migration, and differentiation of
oligodendroglial and neuronal progenitor cells (48, 59).

GA was initially tested on a small number of patients with
advanced MS (n= 4) or acute disseminated encephalomyelitis (n
= 3) in Israel (60) and in 16MS patients in the US (61). No side
effects or clinical deterioration were noted, and several patients
even improved. These encouraging results prompted a pivotal
phase-II clinical trial in 50 RRMS patients who were randomized
to receive either daily SC injections of 20mg GA or matching
placebos. A marked reduction in the rate of relapses was noted in
the GA group, especially in less-disabled patients (62). However,
another 2-center randomized trial in 106 progressive MS patients
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TABLE 1 | Brand name as well as data on efficacy, dose, route of administration, adverse events of approved injectables.

DMT Interferon β-1b Interferon β-1a Interferon β-1a Peg-Interferon β-1a Glatiramer acetate

Brand name Betaferon®/Betaseron®

Extavia®
Avonex® Rebif® Plegridy® Copaxone®

Production process E. coli Chinese hamster ovary Chinese hamster ovary Chinese hamster ovary +

Pegylation

Synthetic polymer

Molecular structure 165 AA recombinant

Non-glycosylated protein

lacking amino acid at position

1, serine substitution for

cysteine at position 17

166 AA recombinant

glycoprotein Identical to

human IFN-β

166 AA recombinant

glycoprotein Identical to

human IFN-β

166 AA recombinant

glycoprotein Identical to

human IFN-β +

Polyethylene glycol

Random copolymer of

glutamate, lysine, alanine,

tyrosine

Route SC IM SC SC SC

Dose 250 µg 30 µg 22/44 µg 125 µg 20/40 mg

Frequency Every other day Weekly Thrice weekly Every 2 weeks Daily/thrice weekly

Study IFNβ MS Study Group 1993 MSCSG 1996 PRISMS 1998 ADVANCE 2014 Cop1 MSSG 1995/GALA

2013

Relapses

Annualized rate

0.84 0.61 (ITT −0.67) 0.91/0.86 0.3 0.59/0.33

Relative RR 34% 32% (ITT −18%) 27/33% 36% 29/34.4%

Absolute RR 0.43 0.29 (ITT −0.15) 0.37/0.42 0.14 0.25/0.17

NNT 2.3 3.5 (ITT—6.7) 2.7/2.4 7 4/5.9

Reduction in disease

Progression

29%* 37% 30% 38% 12%*

NNT 9 8 8 37 33

Reduction in new T2 83% 52% 78% 67% 35/35%

and Gd+ MRI activity 75% 50% 84% 86% 39/45%

Main AE ISR, flu-like symptoms, increased spasticity and fatigue, depression, migraine headache, menstrual

irregularities, leukopenia, LFT abnormalities, Thrombotic microangiopathy (manifest mainly as TTP or HUS)

ISR, IPIR, urticaria

lipoatrophy,

lymphadenopathy

AA, amino acids; HUS, haemolytic-uremic syndrome; IM, intramuscular; IPIR, immediate post injection reactions; ISR, injection site reactions; ITT, intention to treat; LFT, liver function tests;

µg, microgram; MIU, million international units; MRI, magnetic resonance imaging; ND, not determined; SC, subcutaneous; TTP, thrombotic thrombocytopenic purpura; *Non-significant.

Bold values indicate most important outcome parameters and AEs.

failed to demonstrate a beneficial effect on disability progression
resulting from 15mg of GA injected SC twice daily. Nevertheless,
two additional secondary disability endpoints and the primary
endpoint in one center were met (63).

A pivotal phase-III clinical trial with GA was conducted in 11
US centers. In this trial, 251 RRMS patients were randomized to
receive either 20mg of GA or a placebo via daily SC injections
for 2 years. A significant 29% reduction in the annual relapse
rate (ARR) was observed in the GA group compared to the
placebo group (p = 0.007). Significantly more patients on GA
improved on the EDSS score, and significantly fewer patients
worsened (64, 65). Unfortunately, no MRI scans were performed
in this trial, except for at one center where patients on GA
had significantly fewer gadolinium (Gd)-enhancing lesions and
reduced brain volume loss compared to patients taking placebo
(66). To better appreciate GA’s effect on MRI parameters, 239
RRMS patients in Europe and Canada were randomized to daily
GA or placebo treatment and had monthly MRI scans for 9
months. GA reduced the number of Gd-enhancing and new T2-
weighted lesions (67) and the proportion of new Gd-enhancing
lesions evolving into black holes (68). The daily dose of 20mg of
GA had similar efficacy as 40mg GA administered daily (69) or
thrice weekly (70), and both regimens (20mg qd or 40mg tiw)

are approved for use in RRMS. Similarly to the interferons, GA
has not been shown to reduce disability progression in PPMS
(71), but is highly effective in delaying clinically definite MS after
CIS (72). Long-term follow-up of patients with RRMS shows
continuous efficacy with low relapse rates and minimal EDSS
progression after 15 years (73).

In comparative trials with available interferons in RRMS, GA
was as effective as IFN-β-1b (74) or SC IFN-β-1a (75), and
superior to IM IFN-β-1a (76). The latter study also showed that
the combination of GA and IM IFN-β-1a was not superior to
either therapy alone (76).

GA’s good safety profile has been established over many years
of clinical use. Its principal side effects include local-injection-
site reactions (tenderness, pruritus, erythema, or induration).
Regional lymphadenopathy; local lipoatrophy, which may be
permanent; allergic reactions and rare injection site skin necrosis
may also occur. About 16% of patients experience a rare systemic
post injection reaction comprising of various combinations
of the following effects: chest tightness, dyspnea, flushing,
palpitations, diaphoresis, and anxiety beginning immediately
after GA injection and resolving spontaneously within a few
minutes without any sequelae. Unlike IFN-β, treatment with GA
is not associated with leukopenia, liver, or thyroid abnormalities;
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depression; or any additional systemic side effects. It is not
associated with any serious AEs seen with other potent newer
therapies for MS either, such as opportunistic infections,
malignancy, or secondary autoimmunity. Virtually all patients
develop binding antibodies, but not NAbs to GA, which do not
impair its clinical efficacy (77). GA elicits no adverse effects
on fertility, pregnancy, or fetal outcomes (78) and is the only
MS drug that is no longer contraindicated during pregnancy
in Europe.

Although only moderately effective in reducing disease
activity, GA is registered worldwide as a first line platform
therapy for patients with RRMS due to its long-term efficacy
and safety.

FINGOLIMOD

Therapeutic concepts in MS include the down-regulation or
depletion of pro-inflammatory T and B cells, the enhancement
of anti-inflammatory immune responses (79, 80), the prevention
of encephalitogenic lymphocytes from entering into the
CNS, and the retention of auto-reactive lymphocytes within
secondary lymphoid organs (as in the case of fingolimod)
(81, 82). This recognition was based on the understanding
of the interaction between sphingosine-1-phosphate (S1P), a
signaling sphingolipid, and its receptors, S1PR1-5, essential
for lymphocytes to egress from secondary lymphoid organs
into the systemic circulation (83, 84). The search for molecules
targeting the S1P pathway resulted in the discovery of the fungal
metabolite myriocin, which eventually led to the development
of FTY720 (fingolimod), an oral therapy for treating RRMS
(85). FTY720, a functional antagonist of S1PR1-3,4,5 (S1PR1
being the dominant receptor in lymphocytes) (10) binds to the
receptor, leading to internalization of the S1P/S1PR complex via
the β-arrestin-mediated mechanism (86), thereby preventing
lymphocytes’ egress (10). This effect is primarily observed in
the retention of CD4- and CD8-positive naïve lymphocytes
and central memory (CD45RA−) T cells in the lymphoid
organs. However, effector memory T cells (CD45 RA+/−),
which primarily use a chemokine-based signaling mechanism,
are spared (85, 87). Research dedicated to understanding the
effect of fingolimod on lymphocyte subsets additionally identified
CD4+CD25+ regulatory T cell populations as being up-regulated
in-vitro, which could have implications in down-regulating pro-
inflammatory lymphocyte reactivity (88). B lymphocytes are also
sequestered in the spleen due to their unique dependence on the
S1P pathway, although S1P alone is not sufficient for B cells to
exit from the bone marrow (83). S1PRs are expressed at varying
levels on endothelial cells, neurons, and CNS glia, however, their
function and response to S1PR modulator therapies beyond the
immune system are not well-understood (89, 90).

Two landmark, double-blind, randomized trials established
the efficacy of fingolimod compared to a placebo or active
comparator in treating RRMS. The FREEDOMS trial showed
a decrease in the annualized relapse rate (ARR) (0.16 with a
regimen of 1.25mg daily, compared to 0.40 with a placebo),
with a relative reduction of ∼50% (91). Radiographically, a

reduction in both new enhancing and non-enhancing lesions was
reported. The results for FREEDOMS II were comparable (92).
Subsequently, the TRANSFORMS trial compared two doses of
oral fingolimod (0.5mg daily and 1.25mg daily) to weekly IM
IFN-β-1a for 1 year, which showed a decrease in ARR to 0.16
with 0.5mg fingolimod, 0.2 with 1.25mg fingolimod, and 0.33
with IFNβ-1a therapy. Interestingly, this study did not show
any difference in the progression of disability assessed using
the EDSS (which might be partly explained by the trial design
with a short trial duration) (93). The FREEDOMS trial also
showed a reduction in the rate of whole-brain atrophy compared
to the placebo, suggesting a potential neuro-protective effect of
fingolimod (91). However, a recent trial with fingolimod showed
no benefit on disability progression compared to placebo when
tested for a primary composite endpoint, including EDSS, a 25-
foot timed walk test, and a nine-hole peg test in PPMS; although
a decrease in radiographic activity has been observed (86). Based
on the trial results in RRMS, 0.5mg daily fingolimod has been
approved for the treatment of MS. Fingolimod has been tested in
pediatric MS and was associated with a lower rate of relapses and
lower accumulation of MRI lesions compared to patients treated
with IFN-ß-1a (94). Based on these studies, it has been approved
for the treatment of pediatric MS (95)1.

Fingolimod’s most common AEs include bradycardia and less
commonly first/second-degree atrioventricular block, likely due
to effects on S1PRs in atrial myocytes (85). Notably, these are
often asymptomatic, observed during the administration of the
first dose, and they also might recur after an interruption of more
than 2 weeks2 (96). Macular edema has been shown to occur in
<1% of patients during the first 3 months of treatment and often
resolves after treatment is discontinued. Disseminated varicella
zoster infection occurred in one patient in previous clinical
trials. Elevated liver enzymes (>3× upper limit of normal)
were also observed in the FREEDOMS trial, though no cases
indicated hepatotoxicity (92). Increased rates of lower respiratory
tract infections, cutaneous malignancies (not only basal cell
carcinoma, but also squamous cell carcinoma and cutaneous
lymphoproliferative disorders), and opportunistic infections
including cases of progressive multifocal leukoencephalopathy
(PML), varicella-zoster-virus (VZV), and herpes-simplex-virus
(HSV) associated encephalitis as well as cryptococcal infections
have been reported (5, 97). Retrospective reviews of fingolimod’s
effects on pregnancy from clinical development trials and
additional reports from smaller trials have shown few adverse
fetal outcomes. However, the number of adverse outcomes and
elective abortion were in the expected range of the general
population. Data on fingolimod exposure beyond the first
trimester is scarce (38). Since fingolimod exposure causes
teratogenicity in rodents, a teratogenic potential cannot be ruled

1Commissioner O of the. FDA Expands Approval of Gilenya to Treat Multiple

Sclerosis in Pediatric Patients [Internet]. FDA (2018). Available online at: http://

www.fda.gov/news-events/press-announcements/fda-expands-approval-gilenya-

treat-multiple-sclerosis-pediatric-patients (accessed June 13, 2019).
2Fingolimod (Gilenya?): bradycardia and heart block [Internet]. GOV.UK.

Available online at: https://www.gov.uk/drug-safety-update/fingolimod-gilenya-

bradycardia-and-heart-block (accessed May 30, 2019).
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out (85). Similarly, since fingolimod can be detected in breast
milk, it is also contraindicated in lactating women.

Based on potential untoward effects, screening before
initiation of fingolimod treatment comprises baseline laboratory
parameters (including a complete blood count, liver-function
test, and varicella zoster antibody titers), electrocardiogram,
spirometry (in cases of a previous respiratory disease, such as
asthma), and an ophthalmologic examination to evaluate for
macular edema. Patients are monitored closely for at least 6 h
after the first dose (or at re-introduction) in a clinical setting
for bradycardia and other cardiac-rhythm abnormalities. Patients
with pre-existing cardiac abnormalities, such as conduction block
or ischemic heart disease, or those taking medications that
interfere with cardiac rhythm and conduction are advised to have
a cardiology consultation if clinically indicated (92). Slight and
mostly transient hypertension after initial doses of fingolimod
also was observed in the FREEDOMS extension study, however,
if it did not resolve, it remained stable over the treatment
course (91, 98). Increased frequency of basal-cell carcinoma
was reported in patients on long-term fingolimod therapy
(91). Subsequently, periodic monitoring of blood counts is
recommended given lymphopenia’s association with fingolimod.
The cessation of fingolimod treatment has been associated with
cases of severe rebound syndrome leading to severe relapses or
high MRI activity. Discontinuing MS treatments needs to be
monitored and the sequence of the most suitable treatments
needs to be assessed and planned (99).

Recent trials have investigated more receptor-specific agents
targeting S1PRsin the hopes of mitigating side effects. Cardiac
effects, lymphopenia, elevated liver enzymes, and macular edema
still occur with these agents, though a dose-titration strategy
was observed to diminish first dose-associated cardiac effects
(100). Recently, a remarkable future path for SPMS treatment
was revealed in the EXPAND trial, which showed that siponimod
(a selective S1P1/S1P5 binding agent) was the first medication of
utility in preventing disability progression at 3 months in SPMS

(100). It has been approved as Mayzent© by the FDA for CIS,
RRMS and active SPMS3.

Table 2 shows data on all approved oral drugs.

MITOXANTRONE

Mitoxantrone is a synthetic anthracenedione derivate that
initially was developed as a cytotoxic treatment for acute
myeloid leukemia (101). As a type II topoisomerase inhibitor, the
substance has potent anti-inflammatory and, to a lesser extent,
immunomodulatory properties (102). The immunosuppressive
effect is mediated by effects on proliferating B and T lymphocytes:
induction of cell lysis and initiation of programmed cell death
(103, 104). Mitoxantrone also demonstrates immunomodulatory
effects and preferentially decreases the migratory capacity of
monocytes into the CNS and enhances Th2 cytokine production

3Commissioner O of the. Press Announcements - FDA approves new oral

drug to treat multiple sclerosis [Internet]. Available online at: https://www.

fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm634469.htm (accessed

April 7, 2019).

in CD4+T cells (105). In-vitro, mitoxantrone interferes with
antigen-presenting capabilities of dendritic cells (106).

Mitoxantrone was the first drug that the FDA and several
European countries approved to treat worsening relapsing-
remitting, secondary-progressive, and progressive-relapsing MS.
Research evidence was generated from a phase-III clinical trial
in Europe (107) and an earlier phase-II study (108). Both
trials confirmed a significant reduction in the relapse rate and
worsening of disability. Mitoxantrone is given intravenously (IV)
at a dose of 12 mg/m2 at 3-month intervals. Some healthcare
facilities prefer a fixed-dose regimen of mitoxantrone: 20mg IV
monthly together with methylprednisolone (1 g) (108).

Mitoxantrone has myelotoxic effects and reduces leukocyte
counts; thus, its administration is not recommended when
neutrophil numbers are below 1,500 mm3 (109). Reversible
bone-marrow suppression and nausea are common side effects
associated with mitoxantrone infusion (110). Dose adjustment
based on leukocyte nadir is mandatory to minimize risks for
infections, particularly of the urinary tract. Anemia occurred in
15% of patients (grade ≥ 1) (111). Amenorrhea was reported
in up to 26% of mitoxantrone-treated women before the age
of 45 (112, 113). Liver toxicity and alopecia have also been
observed (111).

Severe AEs include therapy-related acute leukemia (TRAL),
cardiotoxicity, and colon cancer (114). Acute promyelocytic
leukemia (APL) is the most commonly seen TRAL after
initiation of mitoxantrone treatment and is characterized by
an aggressive, often fulminant disease course due to a life-
threatening coagulopathy, e.g., CNS hemorrhages (115). A recent
meta-analysis reveals a TRAL risk of ∼0.81%, more than 10-
fold higher than in previously reported meta-analyses (0.07%)
(116). TRAL, in a mitoxantrone setting, has a mortality rate of
∼40% (117).

Cardiotoxicity risk increases with cumulative doses of
mitoxantrone (118). Therefore, the maximum cumulative
dose is restricted to 100–140 mg/m2, however, cardiotoxicity
can develop after doses well below the current maximum
recommended levels (111). Re-evaluation by the European
Medicine Agency (EMA) concluded that the ordinarily
cumulative life-time doses for MS patients should not exceed 72
mg/m2 4. Systolic dysfunction occurs in approximately 12% and
congestive heart failure in around 0.4% of treated patients (117).
The authors of some studies, therefore, even suggest to limit
mitoxantrone treatment to 1 year, or a cumulative dose to <60
mg/m2, to reduce the risk of TRAL and cardiotoxicity (119).

Treatment with mitoxantrone requires monitoring for
possible cardiotoxicity and APL. Cardiac monitoring via regular
echocardiography (measurement of left ventricular ejection
fraction [LVEF]) is required before treatment begins, prior to
each dose, and annually after the discontinuation of therapy
(110). Close monitoring of full blood counts in patients with
MS before and after mitoxantrone administration needs to be
carried out to monitor leukocyte nadir (mostly after 10–14 days)

4novantrone-article-30-referral-annex-iii_en.pdf [Internet]. Available online

at: https://www.ema.europa.eu/en/documents/referral/novantrone-article-30-

referral-annex-iii_en.pdf (accessed April 7, 2019).
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TABLE 2 | Brand name as well as data on efficacy, dose, route of administration, adverse events of approved oral agents.

Fingolimod Teriflunomide Dimethyl Fumarate Cladribine Siponimod+

Brand name Gilenya® Aubagio® Tecfidera® Mavenclad® Mayzent®

Year approved 2010 2012 2013 2017 2019

Target S1P receptors DHODH Nrf2 Purines S1P1,5 receptors

Dose 0.5mg 14mg 240mg 3.5 mg/kg 2 mg

Frequency Daily Daily Twice daily Yearly course x 2 Daily

Study FREEDOMS 2010 TEMSO 2011 DEFINE 2012 CLARITY 2010 EXPAND 2018

Relapses

Annualized rate 0.18 0.37 0.17 0.14

Relative RR 54% 31% 53% 57.6% 55.5%

Absolute RR 0.22 0.17 0.19 0.19

NNT−2y 4.5 5.8 5 5

Disability progression

Relative RR

32% 30% 38% 33% 21%

Absolute RR 0.064 0.071 0.11 0.063 0.055

NNT−2y 15 14 9 16 18

Reduction in new T2 MRI lesions 74% 67% 85% 73% 79%

Reduction in Gd+ MRI lesions 82% 80% 90% 86%

Reduction in Brain Volume Loss 36% 25%* (BPF)

37% (SIENA)

NA 23.4%

NEDA-3 vs. comparator 33/13% 23/14% 23/11% 47/17%

Main AE and AE of interest Bradycardia, AVB, LFT↑, BP↑,

Lymphopenia, macular edema,

infections, opportunistic infections

(PML, cryptococcus), skin

malignancies

Diarrhea, BP↑, LFT↑

alopecia,

PN, Lymphopenia

flushing, GIT symptoms,

LFT↑, UTI,

Lymphopenia,

PML

Infections (herpes),

lymphopenia, headache,

neoplasms?

GIT symptoms

Similar to Fingolimod.

Less early bradycardia

+Not approved by the EMA. AVB, atrio-ventricular block; BP, blood pressure; BPF, brain parenchymal fraction; DHODH, dihydroorotate dehydrogenase; GIT, gastrointestinal tract;

LFT, liver function tests; NEDA, no evidence of disease activity (NEDA-3); Nrf2, nuclear factor (erythroid-derived 2)-like 2; PML, progressive multifocal leukoencephalopathy; PN,

polyneuropathy; S1P, sphingosine-1-phosphate; SIENA, structural image evaluation, using normalization of atrophy; UTI, urinary tract infection; *Non-significant. Bold values indicate

most important outcome parameters and AEs.

and a return to normal levels (∼21 days). Clinical vigilance and
repeated full blood counts are necessary for 5 years after the
termination of treatment (116). Mitoxantrone is contraindicated
during pregnancy (38).

In recent years, the use of mitoxantrone has decreased
due to the risk of severe AEs and the introduction of novel
therapies. The agent should be restricted to selected patients
with highly active relapsing multiple sclerosis associated with
rapidly evolving disability for whom no alternative treatments
are available5. In addition, clinical and laboratory vigilance is
required both during and after mitoxantrone regimens.

TERIFLUNOMIDE

Teriflunomide is the active metabolite of leflunomide, which
has been used in the treatment of rheumatoid arthritis since
1988. Teriflunomide received approval for treating RRMS in
2012 in the US (7 and 14mg daily) and in 2013 in Europe
(14mg daily) (120). Teriflunomide interferes with de-novo

5ml-concentrate-solution-infusion_de.pdf [Internet]. Available online at: https://

www.ema.europa.eu/en/documents/referral/questions-answers-novantrone-

associated-names-mitoxantrone-2-mg/ml-concentrate-solution-infusion_de.pdf

(accessed April 7, 2019).

pyrimidine synthesis and DNA replication of highly proliferating
T and B cells by reversibly inhibiting the mitochondrial
enzyme dihydroorotate dehydrogenase (DHODH). Since resting
T cells use nucleotides from degrading DNA and RNA and
do not need DHODH, the protective immune responses are
maintained, while the proliferation of activated T and B cells
is reduced; thus, the viability of immune-cells is not affected.
In the Teri-DYNAMIC study, a shift to regulatory T cell
subtypes and a reduction in clonal diversity in the CD4+T cell
repertoire were observed (121). An increase in Treg cells in gut
associated lymphoid tissue also characterized protection in the
autoimmune inflammatory model of MS (122). Teriflunomide
crosses the blood-brain barrier (BBB) (121), decreases microglia
proliferation, and induces IL-10 production by microglia in-
vitro (123). Besides the anti-proliferative effect, leflunomide
and potentially teriflunomide, inhibit the production of IL-
17, TNF-alpha, protein tyrosine kinases, the NF-kB pathway,
and the IgG secretion of activated B cells, and interfere
with the kynurenine pathway (120, 124, 125).Teriflunomide
induces apoptosis of EBV-transformed B cells (126). In a virus-
induced animal model of MS, teriflunomide reduced glutamate
levels and excitotoxicity (127). Teriflunomide also promotes
oligodendrocyte differentiation in-vitro, ameliorated axonopathy
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by attenuating CD8+ T cell cytotoxicity and supported the
proliferation of regulatory CD8+ T cells in the CNS of
mice (128, 129). Despite these potent immunomodulatory and
cytostatic effects, protective immune responses against foreign
antigens are maintained. In the TERIVA study, more than
90% of the MS patients treated with teriflunomide achieved
sufficient seroprotection rates when vaccinated against seasonal
influenza (130).

Teriflunomide is administered as an oral drug once
daily, and a steady-state concentration is reached after ∼3
months. After withdrawal, serum levels are maintained
above 0.02µg/mL for 8 months, and in some individuals, up
to 2 years, due to enterohepatic recirculation. Accelerated
elimination can be achieved by administering 8 g of
oral cholestyramine three times daily for 11 days, which
can be reduced to 4 g three times daily in cases of
intolerance. Alternatively, 50 g of activated charcoal
powder every 12 h for 11 days can be used. To confirm
proper elimination, the concentration should be below
0.02µg/mL in two serum samples obtained 14 days
apart (131).

Teriflunomide’s efficacy and safety have been investigated
extensively in one phase-II (132) and four phase-III (TEMSO,
TOWER, TENERE, and TOPIC) clinical trials, all with long-
term follow-up data involving several thousand patients (133–
136). Over 90% of patients in the TEMSO and TOWER
trials had RRMS (133, 134). Patients with a first single
clinical episode were enrolled in the TOPIC trial (136).
In the TENERE trial, teriflunomide was compared to SC
IFN-ß-1a (135), whereas the other three phase-III trials
were placebo-controlled.

In these clinical trials, teriflunomide showed a consistent
effect on disease activity, measured by its impact on relapses,
disability worsening, MRI outcomes, and combined measures
such as no evidence of disease activity (NEDA). Compared to
the placebo, 14mg of teriflunomide daily reduced the ARR by
31–36% in the pivotal trials (133–136). Disability progression,
confirmed after 3 months, was also reduced significantly by
29.8 and 31.5% in the 14mg trial group in TOWER and
TEMSO studies (133, 134). Similar efficacy data have been
observed in real-life settings for up to 28 months (137).
Comparison of the pooled phase-III trial data from 14mg of
teriflunomide and dimethyl-fumarate (DMF) (TEMSO/TOWER
vs. DEFINE/CONFIRM) revealed similar numbers needed to
treat (NNT) to prevent one relapse or worsening disability
(121, 138). However, in a recent registry-based study, the
ARR was ∼49% lower in patients treated with DMF, and
teriflunomide treatment was associated with an increased risk
of first relapse and increased incidence of discontinuation due
to disease breakthrough (139). In another recent registry-based
study with large patient populations, the ARR was similar
between teriflunomide and DMF, and discontinuation rate was
also similar; nevertheless, ARR were lower in patients treated
with fingolimod compared to bothDMF and teriflunomide, while
disability accumulation was the same (140). A recent Italian study
did not observe differences in discontinuation either during the
first 24 months (141). In the TEMSO study, the 14mg daily

dosage reduced the number of Gd-enhancing lesions by 80.4%
and the total lesion volume by 67.4%; the effect of a 7mg daily
dose was less but still significant (133). The treatment (14mg)
of patients with a first clinical episode suggestive of MS, i.e.,
CIS, reduced the risk of conversion to clinically definite MS by
42.6%, however, only 44% of the patients completed the study
due to early termination related to changes in MS diagnostic
criteria (136).

The long-term outcomes in extension studies indicate
that the effect of teriflunomide is maintained (class-III
evidence), however, the dropout rates varied, ranging from
40 to 75% (121). The analysis of pooled TEMSO/TOWER
long-term data (up to 9 and 5.5 years, respectively)
indicated that more than 80% of the 122 patients with
progressive relapsing MS did not experience worsening
disability (121).

The AEs reported more frequently with teriflunomide than
the placebo include hair thinning, ALT increase, nausea,
diarrhea, paraesthesia, limb pain, arthralgia, nasopharyngitis,
polyneuropathy, and menorrhagia. Hair thinning appeared in
10–14% of patients and led to discontinuation in 1.4–2% of
cases in pivotal trials (133, 134, 142). The discontinuation of
treatment was most commonly related to ALT elevation driven
by the trial protocols. In real life, gastrointestinal AE was
the most common cause of discontinuation (143). The pooled
analysis of safety data from the phase-II, TEMSO, TOWER,
TOPIC, extension of phase-II, and TEMSO (up to 12 years),
in addition to the safety data from the TOWER, TOPIC, and
TENERE extensions (up to 7 years), consistently supported the
long-term beneficial AE profile (121, 143, 144). Deaths were
not more common in the active arm compared to placebos in
pivotal trials, and two deaths in the extension phases (pulmonary
tuberculosis and suicide) were potentially related to treatment
(121, 133–136, 143–145). A single case of PML after 3 months
of teriflunomide treatment has been reported, but it most likely
was carried over from preceding natalizumab therapy (146).
During the 2.1 million patient years of leflunomide therapy
since 1991, two cases of PML have been reported during
monotherapy (120).

Teriflunomide is contraindicated during pregnancy and is
classified as category X based on embryo-fetal toxicity and
malformations in rats and rabbits (121). However, results
from animal studies cannot be transferred unrestrictedly to
humans, and among 26 reported live births, by human women
taking the drug no abnormalities were present (147). The
FDA suggests discontinuing teriflunomide in males who wish
to father a child, however, this is not required in Europe.
Accelerated elimination is necessary for women taking the drug
before pregnancy who wish to become pregnant, and serum
concentration must be <0.02µg/mL in two serum samples
obtained 14 days apart.

In summary, extensive and long-term data consistently
indicate that teriflunomide’s efficacy resembles that of injectables,
and that it offers a beneficial AE profile. Its administration
is convenient, however, frequent blood tests (blood count and
liver transaminases) are required during the first 6 months
of treatment.
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DIMETHYL FUMARATE (DMF)

DMF has been used to treat psoriasis since 1959 and was
approved to treat RRMS in 2013 (148). It is administered as a
240mg tablet twice daily.

One of the major mechanisms of DMF and its active
metabolite mono-methyl fumarate (MMF) is an antioxidant
response through activation of the Nrf-2 pathway, which might
result in neuroprotective properties besides influencing NF-κB
related cellular responses (149, 150). Activation of the Nrf-2
pathway leads to an expansion of FoxP3+ regulatory T cells
and CD56bright natural killer cells, as well as to a reduced
level of CD8+ T cells and B cells (151). DMF yields profound
effects on immune responses in-vitro and in-vivo: It inhibits
NF-κB activation and pro-inflammatory cytokine production
by myeloid cells; reduces the generation of encephalitogenic
T cells, partially by inhibiting antigen presentation; generates
a shift from a Th1/Th17 to a Th2 profile; alters cytokine
production by B cells; promotes apoptosis of B and T cells;
and elicits an anti-proliferative effect (149, 152–156). In MS
patients treated with DMF, the T and B cell subpopulations are
reduced, and functional changes are observed in lymphocytes
and APCs. Such reductions affect mostly cytotoxic T cells,
effector/central memory T cells, Th1 cells, Th17 cells, mucosa-
associated lymphoid tissue (MALT) cells follicular T cells with
a Tfh1/17 phenotype, antigen experienced and memory B cells,
and B cells producing TNF. Immunoregulatory CD56bright NK-
cells, naïve T and B cells, Th2 cells, FoxP3+ Tregs, and follicular
T cells with a Tfh2 phenotype are increased (151, 153–155, 157–
162). Such a pro-tolerogenic shift is associated with NEDA inMS
patients (158); higher levels of the NRF2 target gene NAD(P)H
quinone dehydrogenase 1 (NQO1) was also associated with
NEDA status after 1 year of DMF treatment (151). MMF crosses
the BBB, and DMF/MMF alters the function of CNS resident
cells in-vitro, suppresses inflammatory cytokine production by
activated microglia and astrocytes, and increases the number of
oligodendrocyte precursor cells (163–165).

DMF’s clinical efficacy and safety as an MS drug have been
investigated in two randomized placebo-controlled phase-III
trials, DEFINE and CONFIRM (166, 167). An active agent, GA,
was also included as a reference comparator in the CONFIRM
trial. The ARR was reduced by 53% in the DEFINE study and
44% in the CONFIRM study, compared to the placebo (166, 167).
The risk of confirmed disability progression sustained for 12
weeks was also reduced by 38% in the DEFINE study and 21%
in the CONFIRM study (166, 167). The integrated analysis of
the phase-III trials indicated a 32% (29%) risk reduction in 12
(24)-week confirmed disability progression (168). DMF reduced
the number of new or enlarging hyperintense lesions on T2-
weighted images by 71 and 85%, respectively, and reduced the
odds of an increase in the number of Gd-enhancing lesions by
74% and 90% in the CONFIRM and DEFINE study, respectively
(166, 167). Compared to the active comparator GA, DMF twice
daily also significantly reduced T2-weighted hyperintense lesions
in the CONFIRM trial, whereas the other efficacy outcomes
were no different (167). The integrated analysis of CONFIRM
and DEFINE demonstrated a 38.9% relative reduction in clinical

disease activity (relapse and disability progression) over 2 years
compared to placebo treated patients (169).

The phase-III trials, integrated analyses, and follow-up studies
all indicated DMF’s safety and beneficial AE profile. The
frequency of AEs and serious AEs was similar to the placebo
in the DEFINE and CONFIRM trials (serious AEs 17 and 18%
vs. 21 and 22%, respectively) and GA in the CONFIRM study
(17%) (166, 167). The most common AEs were flushing (31–
38%), diarrhea (13–15%), nausea (11–13%), upper abdominal
pain (10%), and vomiting (10%) (166, 167, 170). Increased liver
enzymes were detected in 3–6% of patients treated with DMF
(171). Overall, the incidence of AEs leading to discontinuation
of the study drug was similar across groups. Discontinuations
due to flushing and overall gastrointestinal events occurred more
frequently in patients who received DMF (166, 167). Compared
to the placebo group, at 1 year, the white-cell and lymphocyte
counts decreased by ∼10 and 28%, respectively (166). Grade 2
or 3 lymphopenia occurred in 4–10% of the patients compared
to 1% or less in the placebo group and tends to persist in some
patients (166, 167). Infections were common but the incidence
was not significantly different between the DMF and placebo or
GA groups (50–68%) (171). Although serious and opportunistic
infections were not more common among patients treated with
DMF, five cases of PML were reported by 2018 (172). Additional
14 cases were related to other DMF formulas used in psoriasis,
and 13 out of the 19 cases had grade 3 lymphopenia (173). CD4+

and CD8+ T cell repopulation rates are delayed after switching
to other disease modifying therapies (DMT) from DMF, and
T cell counts may not recover or even continue to decline if
DMF treatment is switched to fingolimod or alemtuzumab (174).
Decrease of CD8+ and memory T cells is more likely compared
to CD4+ and naïve T cells (156).

In addition to pivotal trials, a few studies have investigated
DMF’s efficacy and safety in real-life settings, and these
recapitulated the findings from the pivotal trials. In two
multicenter studies with 1,089 and 735 patients treated for up
to 25 and 33 months, the ARR was reduced by 77 and 63%
respectively (175, 176), whereas in another multicenter study,
the ARR was reduced by 33% (177). NEDA status was achieved
in 47.8% of patients after 1 year (176). In the first year, 11–
19.5% of patients discontinued treatment, and 30% of patients
stopped DMF after 2 years mainly due to poor tolerance (175,
176). Approximately one third of the patients had flushing or
gastrointestinal AEs (176). Lymphocytopenia occurred in 16.5
and 18.7% of the patients, respectively (175, 176). Lower baseline
lymphocyte counts, female gender and older age (>55 years)
were associated with more severe lymphopenia (178). Several
recent studies have highlighted the importance of early AE
management to improve adherence. In a cohort of 400 patients,
34% stopped treatment within a year and 57% within 2 years
(179). The data on treatment with DMF during pregnancy is
limited, thus, no final assessment is possible. Generally, it is
recommended to stop DMF when planning to conceive (5, 38).
Several studies have investigated DMF’s efficacy in relation to
other DMTs. Fingolimod and DMF were evaluated based on the
data from a pivotal study using a matching-adjusted comparison
and revealed no significant differences in the effect on clinical
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parameters between the treatments (180). Similar results were
shown in an Italian study based on real-world data. A propensity
score-matched study revealed a similar NEDA-3 status for
fingolimod (73%) and DMF (70%), however, in patients having
switched from other therapeutics, fingolimod was superior to
DMF (p = 0.007) (181). Another study measuring the indirect
effectiveness of fingolimod vs. DMF vs. teriflunomide based
on phase-III studies suggested that the probability of achieving
NEDA-3 was highest for fingolimod (182). Similarly, a recent
study including 3,728 patients from MSBase showed a superior
effect of fingolimod on relapse rates and comparable results for
disability progression in patients treated with fingolimod, DMF,
and teriflunomide (140).

In the STRATEGY study, the risk of relapse after switching
from natalizumab was 19.6%, and the ARR was lower in patients
with <90 days of a washout period (183). Another study also
indicated that DMF can be an option for patients discontinuing
natalizumab: After 2 years of DMF treatment, 80% of the patients
did not present clinical or MRI evidence of disease activity,
and a post natalizumab rebound was observed in 1 out of 39
patients (184).

In summary, the data indicate DMF’s efficacy and safety in
treating RRMS.Whether its efficacy is higher than teriflunomide’s
and like fingolimod’s is debatable. Sustained lymphopenia after
stopping a DMF regimen might complicate the escalation to
fingolimod and lymphocyte-depleting therapies. Whereas, pre-
treatment with aspirin might mitigate flushing, gastrointestinal
side effects are only slighthly mitigated by dose titration
and are not worsened by pre-treatment with aspirin (185).
Gastrointestinal side effects need early symptomatic treatments
which may increase adherence significantly (186).

CLADRIBINE

Cladribine (2-chloro-2′-deoxyadenosine) is a pro-drug that
requires intracellular phosphorylation to become an active purine
nucleoside analog that interferes with DNA synthesis and repair,
and ultimately leads to cell death. The higher ratio of activity
between certain enzymes that activate (desoxycytidine kinase)
or deactivate (adenosine-monophosphate kinase and nukleoside-
diphosphate kinase) the pro-drug explains the preferential and
long-lasting depletion of peripheral B and T lymphocytes with
a relative sparing of other hematogenic and immune cells. B
and T cells are rapidly depleted. The slight recovery of Tregs
before B and T cells repopulation might partly explain the long-
lasting effects (187). A parenteral formulation of cladribine was
first developed for therapy against hairy-cell leukemia, while the
oral formulation of cladribine was developed later and tested in
RRMS (188, 189).

Oral cladribine was studied in a phase-III trial (CLARITY)
(190), a 96-week, placebo-controlled, double-blind, multicenter
study. Patients with active RRMS (at least one relapse within
12 months prior to study entry) were included in the trial.
Cladribine was administered based on body weight and tested in
three groups: 3.5 mg/kg, 5.25 mg/kg, or a placebo. Compared to
the placebo, the ARR at week 96 was reduced in both treatment

groups by ∼57%. The proportion of patients remaining free of
relapses at week 96 increased from ∼61 to 80%, resulting in an
absolute benefit for approximately 19 out of 100 patients treated.
In addition, the relative reduction in the risk of a 3-month
sustained progression of disability in both cladribine groups,
compared to the placebo group, was 31–33%, and patients treated
with cladribine had a reduction of 77% in mean active T2 lesions
onMRI (190). Furthermore, in patients with a first clinical attack,
cladribine was shown to reduce the risk of a second attack, or
three-month EDSS progression (191, 192).

The subsequent CLARITY EXTENSION study showed that
treatment with cladribine for 2 years followed by 2 years’ placebo
treatment produced durable clinical benefits similar to 4 years of
cladribine treatment, i.e., approximately 75% of patients treated
with cladribine 3.5 mg/kg in CLARITY, remained relapse-free
when given placebo during the extension (193, 194).

In the CLARITY study, at a dosage of 3.5 mg/kg, CD4+ T
cells dropped by 40–45% and CD8+ T cells by 15–30% without
significant recovery prior to the next treatment cycle. CD19+
B cells dropped by ∼70–90%, slowly recovering to 15–25% of
the baseline (195), suggesting a combined T and B cell-mediated
mode of action.

Lymphopenia was dose-dependent (nadir at 4 months), with
grade 3 lymphopenia (500–200 cells/uL) in ∼25% of patients
in the 3.5 mg/kg dose group, and grade 4 (<200 cells/uL)
in <1% (194). The rate of common infections was similar
when comparing placebo- and cladribine-treated patients. The
rate of herpes zoster infections per 100 patient years was
higher in the 3.5 mg/kg group than the placebo group (0.83
vs. 0.20) and associated with lymphopenia, explaining why
patients with grade 4 lymphopenia should receive a prophylactic
anti-herpes infection treatment. Furthermore, the incidence of
severe infections was generally higher among patients with
lymphopenia and who were taking cladribine at a dosage of
3.5 mg/kg compared to the placebo group (194). PML was
not reported during an observational period of >8,500 patient
years in the MS indication, whereas some PML cases have
been observed with parenteral cladribine in lymphoma patients6.
Three cases of tuberculosis were reported during the clinical
trials, of which one case was fatal. Two cases of hepatitis B
occurred, and one of those patients died (166).

Thus, not only clinical follow-up and standard laboratory
tests, but also screening for HIV infection, active tuberculosis,
and hepatitis are mandatory prior to a treatment course
of cladribine. The malignancy rates were higher among
cladribine-treated patients compared to the placebo cohort (33
vs. 4); these malignancies comprised of solid tumors with
no specific patterns typical of tumors commonly seen during
immunosuppression. No cases of leukemia, lymphoma, or
lymphoproliferative disorders were reported (166). However,
this imbalance explained the initial application rejection by the
EMA in 2011, when additional safety data were requested. Such
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data then were obtained from clinical extension studies, meta-
analyses of several other clinical studies with alternative MS
drugs, and comparisons with epidemiological data, leading to
EU approval in 2017, since the malignancy risk is comparable
to other treatment options for MS. However, the EU approved
cladribine only for “the treatment of adult patients with highly
active relapsing MS as defined by clinical or imaging features”7,
and it was approved by the FDA in 20198. Furthermore, due to
potential teratogenic effects, both males and females must use
effective contraception during therapy with cladribine, and for 6
months after a treatment cycle.

Overall, the registered dose of 3.5 mg/kg can be applied orally
in short treatment cycles, which might lead to a high adherence
to therapy, followed by a sustained therapeutic effect, with
efficacy confirmed in highly active patients with the registered
indication7. The downside of cladribine is that lymphopenia can
be severe and frequently reaches grade 3, which is associated
with a higher risk of infections. Data on lymphopenia in patients
with prior immunosuppressive treatment is lacking (due to
exclusion criteria in pivotal trials), thus more data needs to be
collected. Furthermore, the long-term risks of malignancy and
opportunistic infections remains to be established, as well as
algorithms on how to treat patients with ongoing disease activity
after a 2-year course of therapy. Finally, cladribine interferes
with DNA synthesis and repair mechanisms, raising concerns
in young adults of child-bearing age until additional safety data
become available.

ALEMTUZUMAB

Alemtuzumab is a humanized monoclonal IgG1-antibody that
targets CD52, a surface molecule with largely unknown functions
predominantly expressed at high levels on B and T cells
(196, 197). Lower expression levels are found on monocytes,
macrophages, and eosinophils. Mature NK cells, plasma cells,
neutrophils, and, most importantly, hematological stem cells
show little or no expression (198).

Alemtuzumab leads to a rapid and long-lasting depletion
of CD52-positive cells by antibody-dependent, cell-mediated
cytolysis (ADCC) and complement dependent cytolysis (CDC)
(199), followed by a slow repopulation arising from unaffected
hematopoietic precursor cells. Both, quantitative and qualitative
changes in the immune-cell repertoire are observed, which might
contribute to a rebalancing of autoimmune processes. While the
exact mechanisms underlying the reprogramming of the immune
system are only vaguely understood, a specific pattern exists to
repopulate immune-cell subsets in peripheral blood (200, 201).
Monocytes reach baseline levels after 3 months. B cell counts
not only return to baseline numbers after 3 months, but also
show an excess increase to 124–165% of baseline levels at 12

7Commissioner O of the. Press Announcements - FDA approves new oral

treatment for multiple sclerosis [Internet]. Available online at: https://www.

fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm634837.htm (accessed

April 7, 2019).
8WC500234561.pdf [Internet]. Available online at: http://www.ema.europa.eu/

docs/en_GB/document_library/EPAR_-_Product_Information/human/004230/

WC500234561.pdf (cited September 26, 2018).

months. CD8+T lymphocytes are restored after 31 months,
whereas CD4+T lymphocytes need ∼60 months for complete
repopulation. This rapid CD19+ B cell subset repopulation in
the absence of effective T cell regulation might explain some
of the AEs, e.g., secondary autoimmunities (202). Furthermore,
an expansion in CD56bright NK cells also occurs (203). The
effects of NK cells on disease progression are unclear, however,
it is debated whether they will exhibit immunoregulatory
properties (204).

Alemtuzumab’s efficacy and safety have been evaluated in
treatment naive RRMS patients in phase-II (205) and phase-
III trials (206), and in RRMS patients who had an inadequate
response (≥1 relapse after ≥6 months of treatment) to prior
therapy (207). Due to different inclusion criteria, patients in
CARE MS I were younger (mean age was 33.0 vs. 34.7 years),
had a lower mean EDSS (2.0 vs. 2.7) and a shorter mean
disease duration (2.1 vs. 4.5 years). In the phase-III CARE-
MS trials, alemtuzumab demonstrated significantly lower disease
activity over 2 years vs. SC IFN-ß-1a administered three times
per week (206, 207). In both CARE-MS I and II studies,
alemtuzumab significantly reduced the frequency of relapses over
2 years compared to SC IFN-ß-1a (54.9 and 49.4% reduction
in relapses in the respective trials); significantly improved MRI
outcomes including gd-enhancing lesions and new or enlarging
T2 lesions in the alemtuzumab cohort compared to the IFN-ß-1a
cohort, and significantly reduced the rate of brain-volume loss.
Alemtuzumab also significantly reduced the rate of clinical
disease worsening over 36 months in the phase-II CAMMS223
study (205). In CARE-MS II, patients treated with alemtuzumab
were more likely to experience 6-month confirmed disability
improvement than patients receiving SC IFN-ß-1a treatment
(hazard ratio 2.57), whereas this outcome was not significant in
CARE-MS I (206, 207).

AEs include infusion-associated reactions (IARs), serious
infections, and autoimmune-adverse events, including thyroid
disorders and, less frequently, immune thrombocytopenia
(ITP) and nephropathies. Malignancies such as thyroid cancer,
melanoma, and melanoma-in-situ as well as lymphoproliferative
disorders have been reported9.

The IAR rate in the phase-III trials was >90%, mostly mild
to moderate in severity and most frequently within the first 3
days of infusion (206, 207). The IARs, which are attributable
mainly to cytokine-release syndrome, included headaches, rash,
pyrexia, nausea, urticaria, pruritus, flushing, insomnia, fatigue,
chills, chest discomfort, and dyspnea. The IARs decrease with
successive infusions in a single course and in the second course
(206). The clinical trials reported severe IARs ranging from 1 to
3%. Concomitant corticosteroids, antihistamines, and antipyretic
drugs are applied with the infusion to avoid IAR. In addition,
IARs might be reduced by slowing or temporarily stopping
the infusion. Following a safety announcement by the FDA
on the rare but serious risks of stroke and blood vessel wall
tear (208), Azevedo et al. reported five patients that developed

9LEMTRADA R© (alemtuzumab) | Official Healthcare Professional Site [Internet].

Available online at: https://www.lemtradahcp.com/safety-information (accesed

June 2, 2019).
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intracerebral hemorrhage within a few hours after administration
of alemtuzumab (209).

Moreover, in all patients an increase in blood pressure or
labile blood pressure was recognized. Labile hemodynamics
under alemtuzumab treatment and infusion-associated reactions
resulting in an activated immune system involving mast cells,
basophils, complement, activation of platelet derived growth
factor, and the release of interleukin-6 (Il-6), or tumor necrosis
factor α (TNFα) are discussed as possible causes (210).

Infections are mostly mild to moderate and include oral
herpes, herpes zoster, nasopharyngitis, urinary-tract infection,
upper respiratory-tract infection, sinusitis, influenza, bronchitis,
and localized superficial fungal infections. Serious infections
were rare, although slightly elevated with alemtuzumab vs. SC
IFN-ß-1a (205–207). Since herpes-virus infections increased in
clinical trials with alemtuzumab, prophylactic treatment with an
oral anti-herpes agent on the first day of alemtuzumab usage
and for 1 month of each treatment cycle was introduced in
the risk-management plan. Tuberculosis has been reported in
patients treated with alemtuzumab; thus, before the initiation
of therapy, all patients must be evaluated for both, active and
inactive (“latent”) tuberculosis infection and treated according to
local guidelines if required. Moreover, before receiving treatment
with alemtuzumab, patients who have not contracted chickenpox
and who have not been vaccinated against VZV should be
tested for anti-VZV antibodies. Several cases of opportunistic
infections including listeria meningitis, esophageal candidiasis,
pyogenic granuloma, spirochetal gingivitis, nocardiosis, and
cytomegalovirus were reported.

Listeria infections occur generally within 1 month of infusion.
Thus, dietary recommendations require the exclusion of certain
foods, such as unpasteurized milk and raw meat, during and
for 1 month after treatment with alemtuzumab. Antibacterial
treatment may be recommended depending on the different
regulatory authorities.

Autoimmune AEs represent the most important risk
associated with alemtuzumab treatment. These most commonly
affect the thyroid; however, they can include rare cases of ITP
and anti-glomerular basement membrane nephropathy. The
exact pathomechanism leading to secondary autoimmunity
remains to be determined. Currently, it is thought that the
different temporal lymphocyte repopulation plays a role in this
process (211, 212).

In the 5-year follow-up of CAMMS223, thyroid autoimmune
AEs occurred in 39% of patients treated with alemtuzumab 12mg
(213). Onset ranged from 6 to 61 months after the first treatment
course (207). Incidence peaked at year 3 and declined in
subsequent years. Serious ITP events have been observed in∼1%
of patients treated with alemtuzumab in the CARE-MS program,
between 14 and 36 months after first exposure to alemtuzumab.
The first ITP case, during the phase-II CAMMS223 trial,
went unrecognized, and the patient died from intracerebral
hemorrhage. Following this index case, a monitoring program
was implemented to identify and manage ITP systematically,
including education on the signs and symptoms for patients
and physicians and monthly blood monitoring (142). Other
autoimmune cytopenias such as neutropenia, hemolytic anemia,

agranulocytosis, and pancytopenia have been reported in the
CARE-MS trials with a lower incidence than ITP (206, 207).
One patient experienced a recurrence of pancytopenia, which was
associated with a lack of compliance with corticosteroid therapy,
resulting in fatal sepsis 20 months after alemtuzumab treatment
was completed w.

In pilot studies, two patients developed anti-glomerular
basement membrane (anti-GBM) disease that ultimately
required a kidney transplant (214). In phase-II and
phase-III trials, four cases of glomerulonephritis occurred
among 1,486 patients treated with alemtuzumab (0.3%).
The onset ranged from 4 to 39 months after the last
dose of alemtuzumab. Improvements in renal function
were observed in two cases of anti-GBM disease after
treatment with plasmapheresis, cyclophosphamide, and
glucocorticosteroids, and in two cases of membranous
glomerulonephritis after treatment with diuretics and/or
lisinopril (215, 216).

Secondary autoimmunity is of special interest, since thyroid
autoimmunity might affect almost half of the patients (217).
A monitoring program was designed and implemented to
facilitate the early detection of autoimmune events to ensure
timely and adequate management (218): TSH measurements
should be performed at baseline and every 3 months for
48 months following the last course (second or subsequent
course) (219), and the patient should be monitored for any
drug-induced ITP symptoms. Petechiae are uncommon and
are usually observed on the lower limbs of patients with a
platelet count <20 × 109/L (and often <10 × 109/L). Thus,
a platelet count should be performed before the initial course
of alemtuzumab, followed by monthly testing that should be
continued until 48 months after the final course (220). The
signs and symptoms of nephropathy often are non-specific.
Routine creatinine testing should be performed before treatment,
followed by monthly testing during treatment, continuing until
48 months after the last course (second or subsequent course)
(221). Since it is given in cycles, there are no continuous
levels of alemtuzumab in the blood. It is recommended that
contraception should be used for four months after the last
dose (221).

Alemtuzumab’s high efficacy contrasts its considerable risks;
thus, a thorough assessment of the benefits and risks, adherence
to long-term monitoring requirements, and pharmacovigilance
are mandatory. Long-term monthly monitoring for 48 months
after the final alemtuzumab infusion poses a challenge to
patient adherence and requires appropriate education of
both physicians and patients. Due to the recently reported
side effects including immune-mediated conditions and heart
and vessels disorders, the EMA started a review on the
medication and temporarily restricted it to patients with
highly active disease despite treatment with at least two
disease-modifying therapies or in cases when other therapies
cannot be used (222). Nevertheless, it is a highly effective
treatment option with a long-lasting clinical experience. It
should be used in the appropriate patients with the appropriate
monitoring schemes.

Table 3 shows data on all approved monoclonal antibodies.
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TABLE 3 | Brand name as well as data on efficacy, dose, route of administration, adverse events of approved monoclonal antibodies.

Natalizumab Alemtuzumab Ocrelizumab

Brand name Tysabri® Lemtrada® Ocrevus®

Year approved 2004, 2006 2013 2017

Target VLA-4 CD52 CD20

Dose 300mg 12mg 600mg

Route IV IV IV

Frequency Every 4 weeks Annual course Every 6 months

Study AFFIRM 2006 CARE-MS II 2012

(vs. SC IFNβ-1a)

OPERA/ORATORIO

(vs. IM IFNβ-1a/placebo)

Relapses

Annualized rate 0.23 0.26 0.155

Relative RR 68% 50% 46%

Absolute RR 0.5 0.26 0.135

NNT−2y 2 4 7.4

Disability progression RRMS/PPMS

Relative RR 42% 40% 40/24%

Absolute RR 0.12 0.084 0.054/0.115

NNT−2y 8 12 18.5/7

Reduction in new T2 MRI lesions 83% 32% fewer pt. 80/92%

Reduction in Gd+ MRI lesions 92% 61% fewer pt. 94/95%

Reduction in Brain Volume Loss NA 23% 19/17.5%

NEDA-3 vs. comparator 37/7% 32/14% 48/27%

Main AE and AE of interest Infections (PML, Herpes), infusion

reactions, hepatotoxicity

Infusion reactions, cytopenia, autoimmunity,

infections, opportunistic infections, malignancy?

Infusion reactions, Infections

BBB, blood-brain barrier; IAR, infusion associated reactions; IM, intramuscular; IRR, Injection related reactions; IV, intravenous; NEDA, no evidence of disease activity (NEDA-3); NK,

natural killer; SC, subcutaneous; VLA-4, very late antigen-4; PML, progressive multifocal leukoencephalopathy. Bold values indicate most important outcome parameters and AEs.

OCRELIZUMAB

Within the past two decades, the pathogenic role of B cells
has generated enormous interest in MS research. Traditionally,
MS was primarily considered a T cell-mediated inflammatory
disorder, although several findings, including, first and foremost,
the development of oligoclonal bands (OCB) in the cerebrospinal
fluid (CSF), have indicated a role for B cells. Besides being
the source of antibody-producing plasma cells, B cells directly
contribute to the development and progression of MS. Peripheral
and CNS B cells show signs of chronic inflammation, along
with a shift toward antigen-experienced memory B cells (223),
indicative of an antigen-mediated activation of B cells in
MS. Assumedly, as a consequence, MS patients’ B cells show
an increased expression of major histocompatibility complex
(MHC) class II molecules (224), as well as a higher level
of co-stimulatory molecules (225, 226), with the potential to
promote the pro-inflammatory differentiation of responding
T cells (227). Additional roles of B cells in MS pathogenesis
are discussed: antigen presentation, driving T cell activation
and auto-proliferation, unbalanced cytokine production, and
the formation of ectopic lymphoid follicles (TLOs) under the
meninges (228, 229).

Predominantly driven by the assumption that
immunoglobulins reactive to a yet unknown self-antigen of
the CNS are important drivers of MS pathogenesis, the concept

of applying B cell-depleting therapies in MS has evolved.
Monoclonal antibodies against CD20 deplete immature and
mature B cells, but spare plasma cells and hematopoietic stem
cells due to their lack of CD20 expression. Rituximab was the first
anti-CD20 antibody to be tested in MS trials, and resulted in a
rapid decline in the development of new CNS lesions in patients
with RRMS (230, 231). In PPMS, a subgroup of young patients
with ongoing CNS lesion formation experienced a slowing of
disease progression (232). Testing the humanized successor of
rituximab, ocrelizumab confirmed a substantial reduction in
the frequency of clinical relapses and CNS lesion formation
in RRMS (7, 233). Two identical, randomized, double-blind,
double-dummy trials comparing IV ocrelizumab to an active
comparator, SC IFN-ß-1a, demonstrated a substantially reduced
ARR (0.16 vs. 0.29 p < 0.001 in both trials) in patients treated
with ocrelizumab (7). Furthermore, ocrelizumab was superior
to IFN-ß-1a with respect to disability progression confirmed at
12 and 24 weeks. In addition to these highly promising findings
in RRMS, a placebo-controlled, phase-III trial in patients with
PPMS revealed a significantly decelerated accumulation of
disability, particularly in younger patients with MRI findings
suggestive of ongoing inflammatory activity (8). Based on these
phase-III clinical-trial findings, ocrelizumab has been approved
recently for both MS indications: RRMS and PPMS. IARs
have been observed, especially during the first administrations.
Neoplasms (including breast carcinomas) were more often
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reported (2.3%) in the ocrelizumab cohort than in those patients
receiving placebo (0.8%) in the PPMS trials (8). Long term effects
of immunosuppression and B depletion are missing.

The anti-CD20 monoclonal antibodies rituximab and
ocrelizumab differ from each other in certain aspects. Rituximab,
which has not been brought to a phase-III trial mainly for
strategic considerations, is a chimeric antibody and acts
predominantly via CDC. Ocrelizumab is more humanized, and
its B cell-depleting effector mechanism is mediated more by
ADCC. A third anti-CD20 antibody currently tested in phase-III
MS trials is ofatumumab (NCT02792231 and NCT02792218), a
fully human anti-CD20 antibody (234).

Ocrelizumab is administered IV every 24 weeks at a
maintenance dose of 600mg. Within this interval, the vast
majority of patients are continuously depleted of blood B cells.
Very little is known about other bodily systems that might be
more important immunologically, such as secondary lymphoid
organs. In this regard, a recent experimental study revealed that
a fraction of CD20+B cells in the spleen is resistant to systemic
anti-CD20 treatment (235). After cessation of treatment, this
population expanded in parallel to de novo B cell generation
from bone marrow, resulting in an increased frequency of
potentially pathogenic B cells in mice containing a B cell-
stimulating immunization. This may be enormously important,
since in classical autoimmune diseases, such as myasthenia
gravis or AQP4-Ab+ NMO, the stimulating autoantigen may
be present when B cells return after cessation of anti-CD20
treatment. Furthermore, the extinction and recovery of B cells
may differ substantially, both quantitatively and qualitatively,
when lower doses or other administration routes are used (236).
In accordance with this, studies in rheumatoid-arthritis patients
revealed that a single administration of 10mg of ocrelizumab
was sufficient to deplete B cells efficiently from blood, whereas B
cell recovery started much earlier than with higher doses (237).
Along with these lines, investigations have recently suggested
that substantially lower doses of SC ofatumumab are sufficient to
mediate a virtually complete removal of B cells from the blood
(234, 238). Regarding other compartments, such as secondary
lymphoid organs, experimental studies have suggested that a SC
administration targets B cells most efficiently in draining lymph
nodes, whereas the IV application of anti-CD20 exerts a more
thorough effect on the removal of splenic B cells (238). These
differences might have important clinical implications, since they
might substantially impact both the clinical efficacy and safety
of anti-CD20 treatment in MS patients. In pivotal trials, 12
patients developed anti-drug antibodies, and two of these were
positive for neutralizing antibodies. Due to the low number and
low incidence of these antibodies, no final assessment on their
incidence and their impact possible10.

Data on administration of ocrelizumab during pregnancy is
scarce, thus no final assessment is possible (239)10,11. However,

10ocrevus-epar-product-information_en.pdf [Internet]. Available online at:

https://www.ema.europa.eu/en/documents/product-information/ocrevus-

epar-product-information_en.pdf (accessed June 1, 2019).
11OCREVUS safely and effectively, 18.

the FDA (the EMA) requires 6 (12) months contraception after
the last dose of ocrelizumab.

NATALIZUMAB

A hallmark in the pathogenesis of MS is immune dysregulation,
characterized by autoreactive lymphocytes penetrating the BBB,
resulting in an inflammatory cascade that leads to demyelination,
axonal transection, and neurologic deficits (240). The entry of
lymphocytes into the CNS requires transmigration through the
inflamed endothelium, and the prevention of this process should
provide anti-inflammatory therapy in MS (241). Natalizumab
was the first monoclonal antibody approved in 2004 for the
treatment of RRMS. It is a humanized recombinant IgG4
monoclonal antibody that inhibits leukocyte extravasation into
the CNS and intestinal tract by blocking the α4 subunit of
integrin molecules on leukocytes (242). Integrins are cell-
surface glycoproteins that facilitate cell-matrix adhesion and
mediate leukocyte rolling and adhesion to the endothelium
prior to extravasation (243). By inhibiting their interaction
with vascular cell-adhesion molecule (VCAM)-1 expressed on
endothelial cells, natalizumab prevents T lymphocytes from
crossing the BBB, thereby reducing inflammation in the brain-
tissue compartment (244). In 1992, a study by Yednock et al.
concluded that antibodies against the α4-integrin substantially
restricted the accumulation of leukocytes in the CNS and
prevented the development of a model mimicking MS in rats
known as experimental autoimmune encephalomyelitis (EAE)
(245). These findings paved the way for early clinical trials with
natalizumab. Perhaps equally important, natalizumab was later
shown to sequester T cell and B cell subsets out of the CNS
compartment (246–248), providing proof-of-concept evidence
that a reduction in adaptive immune-cell access to the CNS
benefits RRMS patients.

The efficacy of natalizumab for treating RRMS was shown in
two phase-III trials: the AFFIRM and SENTINEL studies (249),
In the AFFIRM study, 942 patients with RRMS were enrolled
in a 2:1 ratio to receive natalizumab 300mg every 4 weeks or
a placebo. The primary outcomes included the clinical-relapse
rate at 1 year and the sustained disability-progression rate at 2
years. The results showed that natalizumab reduced the ARR
by 68% and lowered the risk of sustained disability progression
at 2 years by 42% (249). The SENTINEL study enrolled 1,171
patients who had at least one relapse whilst on IFNβ-1a therapy
in the previous 12 months. They received intramuscular IFNβ-
1a in combination with 300mg of natalizumab or a placebo.
The outcome measures were identical to those of the AFFIRM
study and showed that combination therapy with natalizumab
yielded a 55% reduction in the ARR and a 24% reduction in
the risk of sustained disability progression at 2 years (250). Both
studies also showed significant reductions in the number of
new or enlarging T2 lesions and enhancing lesions on MRI in
patients receiving natalizumab. Natalizumab was studied further
in patients with SPMS in the phase-III ASCEND trial, which did
not meet the primary endpoint of disability progression (251),
although its target α4-integrin is highly expressed in active lesions
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of patients who died in late secondary progressive MS (252).
These results highlight the different disease pathophysiology
that drives progressive forms of MS, which is characterized by
axonal/neurodegeneration, innate immune responses mediated
by CNS resident cells, development of meningeal lymphoid
follicles contributing to expanding number of cortical lesions,
and compartmentalized inflammation (137, 253).

Shortly after natalizumab was approved in 2004, the drug
was withdrawn from the market after three patients developed
PML, a life-threatening CNS-demyelinating disease caused
by infection of oligodendrocytes with the John Cunningham
virus (JCV). Natalizumab associated PML carries an average
mortality rate of 23%, and survivors often develop debilitating
neurological deficits from the disease and its treatment
sequelae (254). In immunocompetent individuals, JCV almost
never causes disease and remains latent in more than half of
the world’s population (255). PML more frequently affects
immunosuppressed individuals, such as patients with acquired
immune deficiency syndrome (AIDS), however, in patients
taking natalizumab who are not systemically immunosuppressed,
the disease is thought to be caused by forced migration of cells
harboring JCV out of the bone marrow and the upregulation

of gene products in B cell maturation that also promote JCV
growth (256). For patients with a suspected PML diagnosis,
natalizumab must be discontinued, and treatment with
plasma exchange or immunoadsorption can help eliminate
remaining circulating natalizumab (257). Patients might
develop paradoxically worsening neurologic deficits due to an
overwhelming inflammatory reaction due to the recovering
immune system, a condition known as immune reconstitution
inflammatory syndrome (IRIS), for which a corticosteroid can be
given to provide modest benefits (258).

In 2006, natalizumab was reintroduced to the market with a
black-box warning about PML risks. Prescribers and patients are
required to enroll in a program that the FDA developed, known
as Tysabri Outreach Unified Commitment to Health (TOUCH),
which informs providers and patients about PML risks. The
risks of developing PML have been identified in post-marketing
analysis and include the presence of anti-JCV antibodies, prior
exposure to immunosuppressants, and more than 2 years of
natalizumab therapy (259, 260). In the absence of anti-JCV
antibodies, the risk for PML is <0.1/1,000, but the risk increases
up to 23/1,000 in patients with all three risk factors (261). Testing
for JCV serology is recommended every 6 months for patients

TABLE 4 | Overview on supposed modes of action of approved therapeutics in MS and its proposed effects on the immune system.

Substance Administration Mode of action Effects on immune System

IFN-ß SC, IM Not elucidated in detail part of the type I interferon

class (activation of JAK/STAT pathways)

pro-inflammatory lymphocyte activation ↓; anti-inflammatory lymphocyte

activation↑; TH1 → TH2 shift; lymphocyte migration into CNS↓; monocyte

activation↓

GA SC Not elucidated in detail variety of immunological and

non-immunological pathways

Competition with myelin antigens for MHC binding

site on APCs

T cell autoreactivity to myelin antigens ↓; generation of GA-reactive TH2

cells; TH1 → TH2 shift; Tregs ↑; number of B cells, plasmablasts and

memory B cells↓; shift from pro-inflammatory to anti-inflammatory B cell

phenotypes

S1P PO functional antagonist of S1PR egress of

lymphocytes from lymph nodes↓; effects on

neuronal and glial cells in CNS

lymphocyte egression ↓; cytotoxicity ↓; regulatory T cells↑

MTX IV type II topoisomerase inhibitor induction of cell lysis

and initiation of programmed cell death on B cells

and T cells

Levels of T cells and B cells↓; effects on innate immune system

(macrophage proliferation) ↓; antigen presentation↓; antibody production↓;

pro-inflammatory cytokine secretion↓

TERI PO Inhibition of DHODH → reduction in de-novo

pyrimidine synthesis and DNA replication of highly

proliferating T cells and B cells↓

Activated T cell and B cell proliferation ↓; Tregs↑; pro-inflammatory

cytokines ↓

DMF PO activation of Nrf-2 pathway inhibition of NF-κB

pathway activation of HCAR2

Nrf2↑; Tregs and CD56bright NK-cells↑; antioxidant proteins ↑; BBB

migration ↓; TH1/TH17→ TH2 shift; pro-inflammatory cytokines ↓;

apoptosis of T and B cells↑; Shift from pro-inflammatory to

anti-inflammatory microglia

CLAD PO Purine nucleoside analog that interferes with DNA

synthesis and repair, preferentially in activated

lymphocytes

Lymphocytes ↓, relative increase in regulatory T cells

ALT IV mAb (IgG1) targeting CD52 predominantly on T cells

and B cells, leading to cells lysis via CDC and ADCC

T cells and B cells ↓; CD56bright NK and Tregs↑; remodeling of

lymphocytes

OCR IV mAb (IgG1) targeting CD20 on immature and mature

B cells leading to cells lysis via ADCC > CDC

B cell depletion; regulatory B cells↑

NTZ IV mAb (IgG4) targeting and inbiting α4 subunit of

integrin molecules on leukocytes;

lymphocyte migration into CNS↓

IFN-ß, interferon beta; GA, glatirameracetate; S1P, sphingosine-1-phosphat receptor modulator (fingolimod, siponimod); MTX, mitoxantrone; TERI, teriflunomide; DMF, dimethylfumarate;

CLAD, cladribine; ALT, alemtuzumab; OCR, ocrelizumab; NTZ, natalizumab; IM, intramuscularly; IV, intravenously; PO, orally; SC, subcutaneously; ADCC, antibody-dependent, cell-

mediated cytolysis; CDC, complement-dependent cytolysis; DHODH, dihydroorotate dehydrogenase; HCAR2, hydroxycarboxylic acid receptor 2; mAb, monoclonal antibody; MBP,

myelin basic protein; MMF, mono-methyl fumarate.
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with negative and indeterminate results, given a seroconversion
rate of 8.5–10.3% per year in natalizumab treated patients (262).
Routine surveillance MRIs also can detect early stages of the
disease (263, 264). Since there are no guidelines for quantifying
the risk of PML, it is up to the clinician and the patient to be
aware of risk factors and consider switching therapies based on
the risks and benefits from continuing the drug.

Anti-idiotypic antibodies against natalizumab are known
to reduce the clinical efficacy, as well as to increase the
likelihood of infusion-related adverse events (265). The presence
of anti-natalizumab antibodies may be transient or persistently
positive, defined as present on at least two occasions 6 weeks apart
(249). In the AFFIRM study, antibodies against natalizumab
were detected in 9% of patients on natalizumab (6% persistently
positive), and in the SENTINEL study, they were present in
12% of patients on natalizumab and IFNβ-1a (6% persistently
positive). It is recommended that patients with ongoing disease
activity or persistent adverse infusion reactions be tested for
antibodies against natalizumab (265, 266). Natalizumab should
not be given during pregnancy. However, available data from
reports do not show a significant increase in abnormalities
compared to other MS patients, and it might be administered
based on the individual case. An individual plan should to be
made for each female patient who wishes to conceive (38).

The risk of reboundMS disease activity exists for patients who
discontinue natalizumab for reasons such as the increased risk
of PML, pregnancy, or the presence of neutralizing antibodies.
After cessation of natalizumab, it takes 3 months for serum
natalizumab concentrations to fall below the threshold of
1µg/mL for α4-integrin desaturation (267), and CSF lymphocyte
counts remain suppressed for up to 6 months (246). Correlating
with these laboratory findings, disease recurrence typically starts
from 2 to 6 months after natalizumab discontinuation and peaks
at 5–8 months (268). Clinical worsening of MS is seen in 20–
30% of patients who stop taking natalizumab, and 50–60% show
worsening MRI lesions with either new gadolinium-enhancing
lesions or new or enlarging T2-hyperintense lesions (268).
Restarting therapy with alternative agents—including GA, IFN-
ß, and fingolimod—cannot completely prevent recurrence of
disease, however, patients who have switched therapies generally
have lower rebound activity (269–275). In addition, shortening
the natalizumabwashout period and tapering cessation have been
shown to reduce the risk of rebound disease further (276–278).

Immunologically, disease reactivation after cessation of
natalizumab has been associated with some degree of immune
reconstitution in the CNS.

Table 4 summarizes proposed modes of action of all approved
MS therapeutics.

CONCLUSION

The widening of the MS treatment landscape over the past
few decades mirrors progress in our understanding of MS
pathophysiology. Although the mode of action is not known
in detail for some of the approved treatments, the known
mechanisms for other agents support our current concepts of the
pathophysiology of earlyMS.Moreover, some treatments, such as
ocrelizumab, have broadened our perspective on pathogenic MS
events (230), highlighting the importance of B cells in treating
MS (279).

As stated, the progress that has been achieved over the past few
decades regarding MS pharmacotherapies is tremendous, and
perhaps unprecedented for any medical subspecialty. In addition
to benefitting patients with RRMS and PPMS, many of the agents
currently approved for MS patients have informed us about
relevant molecular and cellular targets in this disorder. However,
challenges remain, including the potentially serious AEs. Long-
term safety data is needed to detect rare but serious AEs. Based
on these data monitoring must be adapted to decrease the risk
of severe or even life-threatening events (as JCV-Abs for PML in
patients treated with natalizumab or secondary autoimmunities
in alemtuzumab treated patients). Pharmacovigilance and a
better understanding of the host factors that lead to these
adverse events hopefully will reduce their incidence. MS is a
heterogenous disease and the individual disease progression and
prognosis is not predictable. Understanding the mode of action
of the various treatment options is of utmost importance to (I)
foresee side effects, and (II) to define the best possible treatment,
especially for patients that have not responded to treatments.
Further treatments such as autologous haematopoietic-stem-cell
transplantation (aHCST) are assessed in trials (280). aHCST is
not approved but shows promising results. Risks and benefits
for patients must be balanced, and again the appropriate patient
selection is of utmost importance.

Finally, there is no evidence that any of the currently approved
agents benefit patients with non-active MS (281). Currently there
is no agreement when to stop or de-escalate treatment. Re-
activation of disease might be a risk (282, 283). Further studies
are ongoing or needed. The definition of active and non-active
MS needs to be improved by appropriate biomarkers to prevent
patients from being treated with agents that provide no benefit to
them yet expose them to potential AEs.
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Background: Risk of natalizumab-related progressive multifocal leukoencephalopathy

is associated with the presence of anti-JC-virus (JCV) antibodies.

Objective: To investigate the impact of disease-modifying treatments (DMT) on the

longitudinal evolution of anti-JCV antibody index.

Methods: Patients with multiple sclerosis who had serum sampling at intervals of 6

± 3 months over up to 6 years and who either started DMT (interferon-β, glatiramer

acetate or natalizumab) during the observation period with at least one serum sample

available before and after treatment initiation or received no DMT during the observation

period were included. Anti-JCV antibody serological status and index were determined

by 2-step second-generation anti-JCV antibody assay.

Results: A total of 89 patients were followed for a median time of 55.2 months. Of those,

62 (69.7%) started DMT and 27 (30.3%) were without therapy during the observation

period. Variation of longitudinal anti-JCV antibody index ranged from 9 to 15% and

was similar in patients with and without DMT. Applying a mixed model considering the

combined effects of treatment and time as well as individual heterogeneity did not show

a significant change of anti-JCV antibody index by the start of treatment with interferon-β,

glatiramer acetate, or natalizumab.

Conclusion: Evaluated DMTs do not impact longitudinal anti-JCV antibody index

evolution.

Keywords: JC virus, anti-JCV antibody index, natalizumab, interferon beta, glatiramer acetate, multiple sclerosis,

seroconversion, longitudinal

INTRODUCTION

Natalizumab (NTZ) treatment in multiple sclerosis (MS) patients is associated with the risk
of progressive multifocal leukoencephalopathy (PML), an opportunistic infection of the brain
caused by John Cunningham virus (JCV) (1). PML risk is determined by the prior use of
immunosuppressants, duration of NTZ treatment and presence of serum anti-JCV antibodies (2).
In seropositive patients, anti-JCV antibody index (AI) correlates with PML risk (3). In seronegative
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patients, seroconversion might occur with a rate of
approximately 2–6% per year (4, 5). Previous studies evaluating
the impact of DMT on anti-JCV antibodies yielded conflicting
results, some of them claiming an increase of anti-JCV AI by
NTZ treatment (6, 7).

Here, we aimed to investigate the impact of different DMTs
on anti-JCV AI evolution in a cohort of MS patients using—
in contrast to earlier studies—a longitudinal study design with
high frequency sampling over a long observation time and with
several samples available before and after start of the respective
treatment.

METHODS

Patients and Samples
Out of a previously published cohort of MS patients who had
serum sampling over 4–6 years at intervals of 6 ± 3 months
(4), patients fulfilling one of the following (additional) criteria
were included: (A) start with interferon-β (IFN-β) or glatiramer
acetate (GLAT) therapy during the observation period with at
least one serum sample available before and after treatment
initiation (the sample immediately before treatment begin had
to be off any prior treatment) or (B) start with NTZ therapy
during the observation period with at least one serum sample
available before and after treatment initiation, or (C) no DMT
administration within the observation period. In groups A and B,
all serum samples after treatment initiation were obtained while
the patient was still on the same therapy.

Anti-JCV Antibody Assay
Anti-JCV AI (and serological status) were determined at
Unilabs (Copenhagen, Denmark) by a two-step enzyme-
linked immunosorbent assay (STRATIFY JCV DxSelect; Focus
Diagnostics, Cypress; CA, USA) as previously described (3, 8).

An anti-JCV AI >0.40 denoted anti-JCV antibody positivity
and an index <0.20 denoted anti-JCV antibody negativity. For
samples with an index ≥0.20 but ≤0.40 (intermediate response)
further evaluation in the confirmation test was required. In
the confirmation test, patient sample is pre-inhibited with the
coating antigen in solution and, then, the pre-inhibited and non-
inhibited aliquots of patient serum are tested. The results of
the confirmation assay are reported as percentage inhibition,
calculated as 100 × [1-(optical density of pre-inhibited/non-
inhibited sample)]. Samples were scored eventually positive when
inhibition was >45% (3, 8).

Definition of Seroconversion and
Seroreversion
Seroconversion was defined as occurrence of a positive anti-
JCV antibody result at least once during follow-up, if baseline
serostatus was negative. Seroreversion was defined as occurrence
of a negative anti-JCV antibody testing at least once during
the observation period in case of baseline positive serostatus.
Hence, stable anti-JCV antibody status was defined by the same
serological result obtained in all longitudinal samples per patient.

Statistical Analysis
Coefficient of variation (CV) of anti-JCV AI is displayed as
the median of the CVs calculated for each patient by using all
longitudinal anti-JCV AI. To test for statistical difference of the
CV between each treatment group (IFN-β, GLAT, NTZ) and the
no DMT group, a permutation test was applied for the median
difference (10,000 runs).

In order to investigate a possible increase of the anti-JCV
AI after treatment a mixed model was employed (Figure 1).
The variable patient group indicating the specific treatment
(IFN-β, GLAT, NTZ, no DMT) and the variable time denoting
two periods before treatment and four after treatment and
their interaction were included in the regression equation. This
time period was chosen as the dataset within these periods
was almost balanced. The individual heterogeneity was modeled
via the variables age, sex and random effects. Additionally,
due to the time structure the within variance structure was
assumed to follow an autoregressive process of order one.
Furthermore, also an unstructured within-subject covariance
was employed. Since the findings did not change quantitatively,
we present the results of the approach with more degrees
of freedom. Using joint tests the main effects (i.e., patient
group and time) and the interaction effects were investigated. A
power analysis was conducted regarding the combined effects of
time and patient group considering repeated measurements and
unequal sample sizes of employed patient groups (significance
level = 5%, power = 80%, increase of anti-JCV antibody index
after treatment= 0.2 per year).

P values were considered statistically significant at the level of
5%. Statistical analysis was done using Stata/MP 15.0 (StataCorp
LLC, College Station, TX, USA). Permutation test and graphs
were done in R system for statistical computing (9).

Ethics
The study was approved by the ethics committee of Medical
University of Innsbruck (approval number AN2014-0347
344/4.8). Written informed consent was obtained from all
patients.

RESULTS

A total of 89 patients with a mean age of 36.6 years (SD 11.0) and
a female predominance of 76.4% were included into the study,
had median of 9 longitudinally collected serum samples and were
followed for a median time of 55.2 months. Of those, 62 (69.7%)
started DMT and 27 (30.3%) were without therapy during the
observation period. None of the patients who started a DMT
switched therapy and none of the untreated patients started any
DMT during the observation period. Overall, 75 (84.3%) patients
showed stable anti-JCV antibody status during the observation
period.

Longitudinal Evolution of Anti-JCV
Antibody Index in Untreated MS Patients
Twenty-seven patients without DMT were followed for median
53.9 months. Demographic and clinical data are shown in
Table 1. Of those, 25 (92.6%) showed stable anti-JCV antibody
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FIGURE 1 | Study design for identification of treatment effect on anti-JCV antibody index. The illustrated estimation approach shows anti-JCV AI evolution for the no

DMT group that may change (e.g., increase) over time, as well as anti-JCV AI evolution for a treatment group that may change (e.g., increase) due to the same effect

as in the no DMT group plus a possible treatment effect. To correctly estimate the treatment effect, a mixed model is employed that considers any effect that appears

also in the no DMT group independent of the applied treatment. Therefore, several samples before and after start of treatment per patient are required. AI, antibody

index; DMT, disease modifying treatment; JCV, John Cunningham virus.

TABLE 1 | Demographic and clinical characteristics of the study cohort.

No DMT IFN-β GLAT NTZ

Number of patients 27 25 9 28

Sex (female), n (%) 21 (77.8) 20 (80) 7 (77.8) 20 (71.4)

Age (years), mean (SD) 46.5 (10.9) 34.4 (8.5) 28.1 (8.6) 30.9 (7.1)

Disease duration (years), median (IQR) 9.0 (4.0–16.8) 3.6 (1.2–7.2) 4.9 (3.3–8.0) 5.4 (1.6–9.3)

Prior DMT, n (%) 11 (40.7)a 0 6 (66.7)b 27 (96.4)c

Time period between end of prior and begin of current DMT (months),

median (IQR)

8.1 (2.7–89.4)d n.a. 20.7 (13.8–48.2) 1.4 (0.7–2.3)

Number of longitudinal samples per patient, median 9 7 9 11

Observation period (months), median 53.9 49.3 65.1 64.2

aPrior to the observation period, six patients received IFN-β, one GLAT and four patients immunosuppressive therapy (azathioprine and/ or cyclophosphamide).
bFive patients were treated with IFN-β before starting GLAT therapy, one patient had already received GLAT once before.
cA total of 22 patients were on IFN-β and five patients on GLAT before switching to NTZ.
d In this patient group, time period between end of prior DMT and baseline visit is given.

DMT, disease-modifying treatment; GLAT, glatiramer acetate; IFN-β, interferon-β; IQR, interquartile range; n.a., not applicable; NTZ, natalizumab; SD, standard deviation.

status during the observation period. Anti-JCV AI did not
significantly change over time neither including all patients
(Table S1) nor patients with stable anti-JCV antibody status
(Figure 2A, Table S2) or stable positive anti-JCV antibody status
(Table S3). The median CV of anti-JCV AI in patients with stable
anti-JCV antibody status was 14.4% (Table 2).

Longitudinal Evolution of Anti-JCV
Antibody Index Before and After Start of
DMT
Out of 62 patients, whowere followed formedian 55.9months, 25
(40.3%) started treatment with IFN-β, 9 (14.5%) with GLAT and

28 (45.2%) with NTZ. Demographic and clinical data are shown
in Table 1.

Interferon-Beta
All patients starting IFN-β were treatment-naïve before. Twenty
(80%) patients did not change their initial anti-JCV antibody
status during the observation period. Using the mixed model,
there was no statistically significant change of anti-JCV AI
by the start of IFN-β therapy regardless of including all
patients (Table S1), patients with stable anti-JCV antibody
status (Figure 2B, Table S2) or stable positive anti-JCV antibody
status (Table S3). Median CV of anti-JCV AI in patients with
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FIGURE 2 | Longitudinal evolution of anti-JCV antibody index in patients with stable anti-JCV antibody status. (A) Serial anti-JCV antibody indices in patients without

any disease-modifying treatment. (B) Serial anti-JCV antibody indices in patients before and after start of IFN-β therapy. Before, all patients were treatment-naïve.

Afterwards, index values are shown as long as IFN-β was administered. (C) Serial anti-JCV antibody indices in patients before and after start of GLAT therapy. After

treatment begin, index values are shown as long as GLAT was administered. (D) Serial anti-JCV antibody indices in patients before and after start of NTZ therapy. All

but one patient received prior treatment. Afterwards, index values are shown as long as NTZ was applied. For building this graph, only patients with stable anti-JCV

antibody status (i.e., without seroconversion/-reversion) during the observation period were included. Using a mixed model, there was no statistically significant

change of anti-JCV antibody index before and after initiation of the respective treatment. Vertical dashed line indicates start of treatment. Upper horizontal dashed line

indicates an anti-JCV antibody index of 0.4. Index values >0.4 are denoted anti-JCV antibody positive. Lower horizontal dashed line indicates an anti-JCV antibody

index of 0.2. Index values <0.2 are denoted anti-JCV antibody negative. Samples with an index ≥0.20 but ≤0.40 (intermediate response) are classified as anti-JCV

antibody positive or negative based on confirmation test (second step of the enzyme-linked immunosorbent assay), i.e., the displayed index values within this range

might be classified as positive or negative. For further details see (3, 8). DMT, disease-modifying treatment; GLAT, glatiramer acetate; IFN-β, interferon-beta; JCV, John

Cunningham virus; NTZ, natalizumab.

stable anti-JCV antibody status was 9.4% (Table 2) and did
not statistically significantly differ from the no DMT group
(p= 0.127).

Glatiramer Acetate
Three of nine (33.3%) patients starting GLAT were treatment-
naïve before. In the remaining six patients, prior DMT was
stopped median 20.7 months before. In all patients, at least the
sample immediately before start of GLAT therapy was collected
while being off any prior DMT. During the observation period,
none of the patients showed seroconversion or seroreversion. As
determined by the mixedmodel, there was no change of anti-JCV
AI by the start of GLAT therapy including all (and therefore also
serostable) patients (Figure 2C, Tables S1, S2) or patients with
stable positive anti-JCV antibody status only (Table S3). Median
CV of anti-JCV AI was 13.5% (Table 2) and did not significantly
differ from the no DMT group (p= 0.449).

Natalizumab
All but one patient, who switched to NTZ treatment during
the observation period, received prior DMT and stopped it

median 1.4 months before NTZ initiation. Twenty-one (75%)
patients showed stable anti-JCV antibody status during follow-
up. There was no statistically significant change in anti-JCV AI
due to start of NTZ therapy including all patients (Table S1),
patients with stable anti-JCV antibody status (Figure 2D,
Table S2) or stable positive anti-JCV antibody status (Table S3).
Median CV of anti-JCV AI in the serostable group was 14.8%
(Table 2) and was similar as compared to the no DMT group
(p= 0.699).

Patients With Seroconversion or
Seroreversion
Longitudinal evolution of anti-JCV AI in those 14 (15.7%)
patients who showed either seroconversion (n = 6, 42.9%)
or seroreversion (n = 8, 57.1%) is shown in Figure 3.
Five patients started treatment with IFN-β and seven with
NTZ, while two patients where without any DMT during
the observation period. Out of the 12 patients receiving
treatment, seven patients changed anti-JCV antibody status
while on treatment, the remaining five before treatment
initiation.
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TABLE 2 | Variability of longitudinal anti-JCV antibody index in patients with stable anti-JCV antibody status.

No DMT IFN-β GLAT NTZ

ALL PATIENTS WITH STABLE ANTI-JCV ANTIBODY STATUS

CV of anti-JCV antibody index, (%)

median (IQR)a
14.4 (7.2–19.7) 9.4 (7.0–16.3) 13.5 (5.7–18.8) 14.8 (9.8–21.0)

Anti-JCV antibody index, median 1.32 2.67 1.38 1.60

Number of patients 25 20 9 21

Number of longitudinal samples per patient, median 8 7.5 9 10

PATIENTS WITH STABLE NEGATIVE ANTI-JCV ANTIBODY STATUS

CV of anti-JCV antibody index, (%)

median (IQR)a
18.2 (16.6–19.7) 16.5 (13.0–23.9) 10.9 15.4 (14.2–20.6)

Anti-JCV antibody index, median 0.18 0.21 0.22 0.14

Number of patients 4 4 1 8

Number of longitudinal samples per patient, median 11.5 11.5 9 9.5

PATIENTS WITH STABLE POSITIVE ANTI-JCV ANTIBODY STATUS

CV of anti-JCV antibody index, (%)

median (IQR)a
12.1 (6.8–15.5) 7.6 (6.0–13.0) 15.1 (5.6–19.4) 10.9 (8.0–21.0)

Anti-JCV antibody index, median 1.85 2.84 1.48 2.18

Number of patients 21 16 8 13

Number of longitudinal samples per patient, median 8 7.5 8.5 10

aCoefficient of variation (CV) is displayed as the median of the CVs calculated for each patient using all longitudinally determined anti-JCV antibody indices. Only patients with stable

JCV serostatus during the observation period were included.

DMT, disease modifying treatment; GLAT, glatiramer acetate; IFN-β, interferon-β; JCV, John Cunningham virus; IQR, interquartile range; n.a., not applicable; NTZ, natalizumab.

FIGURE 3 | Longitudinal evolution of anti-JCV antibody index in patients with changing anti-JCV antibody status. Serial anti-JCV antibody indices in patients before

and after start of interferon-β or natalizumab therapy, as well as in patients without DMT are shown. For building this graph, only patients with changing anti-JCV

antibody status (i.e., with either seroconversion or seroreversion) during the observation period were included. Patients without DMT appear per definition left of the

vertical dashed line, as in this group no treatment is commenced. Vertical dashed line indicates start of treatment. Upper horizontal dashed line indicates an anti-JCV

antibody index of 0.4. Index values >0.4 are denoted anti-JCV antibody positive. Lower horizontal dashed line indicates an anti-JCV antibody index of 0.2. Index

values <0.2 are denoted anti-JCV antibody negative. Samples with an index ≥0.20 but ≤0.40 (intermediate response) are classified as anti-JCV antibody positive or

negative based on confirmation test (second step of the enzyme-linked immunosorbent assay), i.e., the displayed index values within this range might be classified as

positive or negative. For further details see (3, 8). DMT, disease-modifying treatment; JCV, John Cunningham virus.

DISCUSSION

Here we observed that evolution of anti-JCV AI is not influenced

by the administration of DMT using—for the first time—a

longitudinal study design with samples available before and after

start of therapy.

To date, several studies have investigated the influence of
different variables on serum anti-JCV antibodies. In this context,
it has to be distinguished whether the influence of the variable
of interest (e.g., age) on either anti-JCV antibody status or index
was investigated, and it has to be distinguished whether a cross-
sectional study design (establishing an association between the
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variable of interest and anti-JCV antibody status or index) or
a longitudinal study design (assessing the change over time,
i.e., seroconversion/-reversion or change in anti-JCV AI) was
applied. By cross-sectional design, higher anti-JCV antibody
prevalence (5, 10–17) and indices (4, 6) were observed with
increasing patients’ age, as well as in most studies higher
antibody prevalence in males (5, 10–12, 14, 16, 18). Prior
use of DMTs had no impact on anti-JCV antibody positivity
(11–14, 16, 17) and index (10). By longitudinal design, age
(4) and baseline anti-JCV AI (4, 19) were predictors of later
anti-JCV antibody serostatus change, whereas no influence of
prior and current DMTs on seroconversion rate were observed
(14, 17). One study reported an increase in the annual rate of
seroconversion with NTZ treatment duration, however, these
higher rates were observed at the end of follow-up when the
number of patients were small due to high drop-outs (e.g., only
20 of 85 patients remained in the study at year 5) (18). With
respect to longitudinal anti-JCV AI evolution, two recent studies
observed an increase of anti-JCV AI while on NTZ therapy (6, 7).
Both studies compared anti-JCV AI of two consecutive samples
that were both collected while patients received treatment with
NTZ with a time period of approximately 1 year in between
(6, 7). The first study found that the observed increase of
anti-JCV AI (of ∼0.1 per year) was higher than expected and
explainable by the effect of age (7). However, the effect of
age was estimated by correlation of anti-JCV AI and age at
baseline, and then extrapolated over time. The second study
focused on anti-JCV antibody positive patients and reported
an increase of anti-JCV AI in this subgroup of patients. The
authors argued that the increase of anti-JCV AI would go
beyond an age effect, as there was no statistically significant
correlation of age with anti-JCV AI in the anti-JCV antibody
positive patient group (but in the whole cohort that also includes
seroconverters) (6).

From a methodological point of view, the bivariate (cross-
sectional) correlation between anti-JCV AI and baseline age
cannot be estimated without bias (when no control variables
are included or heterogeneity is not considered). Furthermore,
it seems obvious that samples are needed before and after start of
treatment to reliably assess the impact of treatment on anti-JCV
AI evolution, and/ or to include a control group. Using a control
allows the consideration of treatment-independent effects on
anti-JCV AI evolution (Figure 1). Also, several sampling time
points are required in order to minimize the possibility that a
change in anti-JCV AI is artificially observed when comparing
only two measurements against the background of a certain
variability in anti-JCV AI over time.

Here, we applied a design that encounters the above-
mentioned problems in assessing whether DMTs impact on anti-
JCV AI. Even though the requirement of study design to include
patients with long follow-up (median 5 years) and multiple
consecutive samples (median 9 samples; available before as well
as after start of therapy) resulted in a moderate total number of
patients, especially compared to other previous studies, we still
had a statistical power for our hypothesis (tested with the mixed
model) of 80%. Power calculation was based on the decision to
consider an increase in anti-JCV AI of 0.2 per year as relevant.

This magnitude was based on our observation of the CV of
anti-JCV AI over time, that in case of a statistically significant
finding by the model, this would mean a true change in anti-
JCV AI that goes beyond the “natural” fluctuation. Accordingly,
the maximum increase of anti-JCV AI per year that has been
reported by previous studies (6, 7) is within this variability, as
e.g., a variability of 10% at an anti-JCV AI of 2.0 might result in
an index of 2.2.Whereas reproducibility of the anti-JCV antibody
assay has been shown to be high (6, 8), there has been so far
no analysis of the “natural” long-term variation of anti-JCV
AI over time [besides the longitudinal assessment of e.g., (bi-)
annual anti-JCV antibody prevalence (4) and median anti-JCV
AI (4, 16)].

There are some limitations of our study. First, we used a
subgroup (n = 89) of a previously published cohort (n = 154)
that was based on the availability of samples (before as well as
after treatment initiation). Nevertheless, we are confident that the
presented results are reliable, as the demographic characteristics
(such as age and sex) as well as the clinical variables of interest
(such as rate of seroconversion/ -reversion) are similar compared
to the original cohort. Furthermore, the rate of seroconversion
of ∼3% per year is realistic (4). Higher conversion rates that
were published by some prior studies [mostly between 10 to 15%
per year, determined already within a relatively short observation
period of approximately 1 year (3, 6, 10)] seem in our opinion
somehow unrealistic, owing to the fact that anti-JCV antibody
prevalence in MS patients is at least 50% (11), and applying
these high seroconversion rates (of up to 15%) would implicate
that after several years all patients have converted to anti-JCV
antibody positivity. Secondly, to test our hypothesis we had a
statistical power of 80%. Although this value is considered as
a standard type II error and indeed a high number of samples
were included, the number of patients was moderate. To further
strengthen our findings, a higher statistical power (e.g., 90%) and
thus a higher number of patients is desirable—an aim which has
to be addressed by further studies. Another limitation of our
study is that samples before start of NTZ were not treatment
naïve, but on first-line treatment, in the majority of cases with
IFN-β. This is because samples were collected during routine
clinical visits and usually NTZ is used as second-line treatment.
However, as IFN-β did not show an impact on anti-JCV AI
over time (this group was therapy-naïve before), we hypothesize
that pre-treatment with IFN-β will also have no impact on the
analysis of NTZ samples. It seems indispensable that further
studies should again not only address the impact of NTZ on
longitudinal anti-JCV AI evolution, but also the impact of the
various baseline DMT such as IFN-β so that the above drawn
conclusion, that is starting of NTZ does not influence anti-JCV
AI as assessed in pre-treated patients because the use of these
pre-treatments has no impact on anti-JCV AI as well, can be
confirmed.
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Multiple sclerosis (MS) is a debilitating disease of the central nervous systems (CNS).

Disease-modifying treatments (including immunosuppressive treatments) have shown

positive effects on the disease course, but are associated with systemic consequences

on the immune system and may increase the risk of infections and alter vaccine

efficiency. Therefore, vaccination of MS patients is of major interest. Over the last

years, vaccine hesitancy has steadily grown especially in Western countries, partly

due to fear of sequelae arising from vaccination, especially neurological disorders. The

interaction of vaccination and MS has been discussed for decades. In this review, we

highlight the immunology of vaccination, provide a review of literature and discuss the

clinical consideration of MS, vaccination and immunosuppression. In conclusion, there

is consensus that MS cannot be caused by vaccines, neither by inactivated nor by

live vaccines. However, particular attention should be paid to two aspects: First, in

immunocompromised patients, live vaccinesmay lead to a stronger immune reaction with

signs of the disease against which the patients have been vaccinated, albeit in weakened

form. Second, protection provided by vaccination should be controlled in patients

who have been vaccinated while receiving immunomodulatory or immunosuppressive

treatment. In conclusion, there is evidence that systemic infections can worsen MS, thus

vaccination will lower the risk of relapses by reducing the risk of infections. Therefore,

vaccination should be in general recommended to MS patients.

Keywords: multiple scleorsis (MS), immunology, vaccination, disease modifying therapy (DMT), vaccination

immunology

INTRODUCTION

Over the last years, especially in Western countries, vaccine hesitancy has steadily grown and poses
an increasing health concern (1). The recent upsurge ofmeasles in Europe is an impressive example.
Anti-vaccinationists argue that possible side effects weigh out the benefits (2). Especially sequelaes
such as autism, multiple sclerosis (MS) and various neurological syndromes have been emphasized
by the anti-vaccination lobby (3, 4). This alarming development is even partly supported by health-
care providers including some MS neurologists, who are afraid of iatrogenic deterioration of pre-
existing MS. Indeed, studies linking vaccination and disease onset have been published. Although
these studies were often underpowered and lacked an adequate design in order to provide evidence
of the suspected link, they caught public awareness leading to a drop of public vaccination coverage
rates (5, 6).

224

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.01883
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.01883&domain=pdf&date_stamp=2019-08-07
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Uwe.zettl@med.uni-rostock.de
https://doi.org/10.3389/fimmu.2019.01883
https://www.frontiersin.org/articles/10.3389/fimmu.2019.01883/full
http://loop.frontiersin.org/people/621113/overview
http://loop.frontiersin.org/people/784468/overview
http://loop.frontiersin.org/people/217022/overview
http://loop.frontiersin.org/people/621683/overview
http://loop.frontiersin.org/people/704916/overview
http://loop.frontiersin.org/people/528924/overview


Zrzavy et al. Vaccination in Multiple Sclerosis Friend of Foe?

Epidemiological studies and pharmacovigilance data have
repeatedly demonstrated safety for the vast majority of vaccines.
Lately, a review concluded that there is no significant evidence
for a causal relationship between the onset or deterioration of
MS and vaccination against measles, mumps and rubella (MMR),
influenza, hepatitis A, hepatitis B, human papilloma virus (HPV),
diphtheria, tetanus, acellular pertussis, or meningococcal disease
(7). Some studies have even indicated a decreased risk forMS and
reduced disease activity in preexisting MS (8).

The aim of this review is to summarize data on vaccination
and disease activity of both MS and acute disseminated
encephalomyelitis (ADEM). Moreover, vaccination-induced
effects on the immune system are presented and potential
interactions between MS and immunizations are discussed.

BASIC IMMUNOLOGY OF VACCINATION

Vaccine-induced protection is a complex issue and depends on
a cascade of mechanisms and mediators (Figure 1). Eventually,
protection is accomplished either by antibodies or T cell-
dependent factors or by a combination of both including
neutralizing or antitoxic antibodies, CD8+ T cells, CD4+ T cells
and corresponding cytokines (e.g., interleukin (IL)-2, 3, 4, 5, 9, 13,
17, 21, 22, and 26) (9). Generally, vaccines have to be capable of
activating antigen-presenting cells (APCs) of the innate immune
system, which subsequently present the vaccine epitope(s) to T
cells—the so-called ‘immunogenic potential’ (10). In this context,
dendritic cells play a pivotal role due to their enhanced capability
to stimulate naïve T cells (11).

The nature of vaccine-induced immunity depends on several
parameters, of which the biological properties of the vaccine’s
epitope are of high importance (9). Live vaccines are attenuated
variants of pathogens that still can activate APCs, especially
immature dendritic cells, patrolling through the body. This
immunogenic potential is often lost by subcellular- or subunit-
based vaccines (12), which is why these inactivated vaccine
antigens are usually combined with so-called adjuvants to
increase and modulate the vaccine’s immunogenicity via a longer
lasting and more effective activation of immune cells.

One of the most widely used adjuvants are aluminum salts,
which were originally thought to create a long-lasting depot of the
antigen in order to provide its slow release, but have instead been
shown to act on dendritic cells via PRRs (pattern recognition
receptors) leading to the secretion of pro-inflammatory cytokines
(13). Similarly, novel adjuvants like squalens or monophosphoryl
lipid A (MPLA—a detoxified lipopolysaccharide) aim to enhance
the innate immune response, but never reach the immunogenic
potential of live attenuated vaccines (14). Adjuvants have
been added to vaccines for more than 90 years and over
the last decades, considerable progress has been made in
understanding their mode of action and to improve safety (15).
Besides the above mentioned aluminum salts, squalene and
MPLA, oil emulsions, saponin, Toll-like receptor (TLR) agonists,
enterotoxins, polysaccharides, and glycolipid adjuvants (16) are
used, all of which stimulate the immune system as well.

Aluminum adjuvants have now been used for decades and
lots of experience has been gained on its use, effectiveness, and
safety and they still remain the most frequently used adjuvants.
Their effects on the immune system comprise stimulation
of macrophages and dendritic cells via PRRs, inflammasome
activation, IL-1β release and activation of Th2 lymphocytes
(15, 16). However, besides increased immunogenicity, aluminum
adjuvants also increase reactogenicity and based on data from
animal models and reports on narcolepsy, silicosis, Guillain-
Barré-syndrome (GBS) and macrophagic myofasciitis, they are
also discussed to induce autoimmunity (17). The second most
commonly and long used adjuvants are oil emulsions. They
have a strong reactogenic potential and can cause severe
inflammatory local reactions such as ulceration and granulomas.
Themost well-known oil emulsion is complete Freund’s adjuvant.
However, due to its potent reactogenicity, it is not suitable for
human use. A possible association between oil emulsions and
autoimmunity disorders has been hypothesized from animal
models. Oil emulsions are potent inducers of IL-1β and IL-17
(18, 19). IL-17 plays a major role in autoimmunity and MS
and may trigger the migration of peripheral lymphocytes into
the CNS across the BBB (20, 21). Frequently, a combination
of adjuvants is used to increase immunogenicity of vaccines.
AS03 is an adjuvant emulsion containing squalene, DL-α-
tocopherol, and polysorbate 80. It is e.g., used for the pandemic
swine flu vaccine Pandemrix R© (15) or the FDA-licensed H5N1
monovalent influenza vaccine. In animal studies, autoimmunity
was observed in connection with AS03 (22) and in humans, cases
of narcolepsy have been reported (23). Oil emulsions are often
combined with TLR agonists such as MPLA. Generally, TLR
agonist adjuvants activate the inflammatory transcription factor
NFκB AS04 is a combination ofMPLA and aluminum salts and is
used as adjuvant in vaccines against hepatitis B (Fendrix R©) and
HPV, as well as in the new recombinant vaccine against Herpes
zoster. Most polysaccharide adjuvants activate NFκB to induce
immune processes (e.g., dextran, zymosan) (24). However, delta-
inulin for instance, a polysaccharide adjuvant used for Advax R©,
acts via NFκB-independent mechanisms to enhance humoral and
cellular immune responses. Although the mechanisms are not yet
fully understood, Advax R© has so far not shown inflammatory
side effects and has proven safety in hepatitis B vaccination and
influenza (16).

After activation of the immune cascade and stimulation of
dendritic cells, the latter increase their expression of MHC
molecules and chemokine receptors such as CCR7 leading to
their migration toward the draining lymph nodes in order
to provide co-stimulatory signals for the differentiation of
naïve T cells into immune effector cells (25). The activation
of the immune cascade has various effects on T and B
cells. In short, antigen-recognition by B cells leads to their
activation and migration toward the T-B cell border of the
lymph node, where they can subsequently receive additional
stimuli by activated T helper (TH) cells. These signals include
CD40 interaction, secretion of cytokines by TH1 or TH2 cells,
and finally the transformation of B cells into plasma cells
predominantly secreting low affinity antibodies (26). Later, the
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FIGURE 1 | Immunology of vaccination. Routes of vaccine administration include: Injection of vaccine into muscle tissue (A) leading to attraction, activation, uptake

and processing (B) in APCs (antigen-presenting cells), which then migrate to lymphatic tissue. Similarly, oral or nasal administration (C) leads to activation and

migration of innate immune cells into the lymphatic tissue. APCs activate lymphocytes leading to a T cell immune response and activation of B cells, which receive

additional stimuli by activated T helper cells. The primary immune response is short-lived and associated with the early appearance of low affinity antibodies, which are

later replaced by high affinity antibodies generated via the germinal center reaction. PS, polysaccharide; PC, Plasma cell; PB, plasma blast; BC, B-cell; Bm, memory B

cells; Treg, Regulatory T Cells.

germinal center response contributes via affinity maturation
(somatic hypermutation and affinity-based selection) and isotype
switch to a sustained production of high affinity antibodies by
predominantly plasma cells but also memory B cells. Basically,
in the lymph nodes, numerous B cells with various affinity
compete for the antigens presented by follicular dendritic cells.
These antigens are processed and further presented via MHC
II to follicular TH cells, which provide costimulatory signals
(e.g., CD40, ICOS, and IL-21) leading to survival and further
proliferation of B cells with highest affinity for the antigen (27).

In conclusion, vaccination-induced immune responses,
including employed cell types and mediators, vary depending on
the type of vaccine administration, kind of vaccine and choice
of adjuvant. While antibodies will directly prevent and reduce
infections, CD4+ and CD8+ T cells rather support the organism
eventually reducing, controlling and clearing the pathogens.
Antibodies bind to their antigen, neutralize pathogens, activate
macrophages and neutrophils as well as the complement system,
while CD4+ and CD8+ T cells secrete cytokines, perforins,
and granzymes (9). The choice of adjuvant seems to be critical,

since some may cause problems in autoimmune diseases. Thus,
monitoring side effects regarding autoimmunity is essential.

Vaccination and MS
In the early days of vaccine development, Louis Pasteur
used nerve tissue of infected animals to obtain a rabies
virus vaccine (28). Although saving countless lives it was
recognized that active sensitization with neuronal tissue could
occasionally lead to neuroparalytic autoimmune complications
(29) with self-limiting autoimmune encephalomyelitis that
fulfilled the pathological criteria of MS (29, 30). Advances in
processing techniques and increasing insights in immunology
led to modern vaccines devoid of neuronal tissue. MS is a
chronic disease thought to be caused by immune-mediated
mechanisms. Thus, immune responses caused by vaccinations
will affect the immune system. However, their effects on
immunology per se, but especially those in MS patients, are
scarcely understood.

The same means by which infections can induce
autoimmunity also apply for vaccination-induced immune
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activation. Possible structural similarities between microbial
epitopes and epitopes of the CNS could lead to cross-reaction
of antibodies via molecular mimicry as shown for streptococcal
antibodies in heart tissue (31). Additionally, epitope spreading
is a mechanism leading to a broadening of the immune
response from the dominant epitope to cryptic (intramolecular)
or neighboring molecules (intermolecular) resulting in an
increased antibody repertoire and cellular response (32).
Moreover, bystander activation, a process in which activated
APCs stimulate autoreactive T cells, can occur (33). Bacterial
and viral infections can trigger relapses and MRI activity in
MS; vaccination has been proven to protect from or weaken
infections, thus providing an “indirect” protection against MS
disease activity (34).

Several reports on neurological disorders developing after
immunization have been published including several cases on
encephalomyelitic disorders (impaired consciousness, ataxia and
optic neuritis) as well as demyelinating lesions in a patient with
transverse myelitis after active immunization against influenza
(35–38). Immunization against rubella was associated with
diffuse myelitis and recurrent relapses with optic neuritis,
paraparesis and impaired motor function (39, 40). Transverse
myelitis (41) as well as optic neuritis (42, 43) were reported
in patients vaccinated against measles, mumps and rubella.
Further cases with symptoms suggestive for disseminated
encephalitis were reported after vaccination against diphtheria-
tetanus-poliomyelitis (DTP) (44) and after immunization against
smallpox, rabies or typhus (45). Exacerbations of MS and
demyelinating lesions were reported in MS patients and patients
without a history of neurological conditions after immunization
against hepatitis B (46). Similarly, Tourbah reported on 8
patients with demyelinating lesions and clinical symptoms after
vaccination against hepatitis B (47).

In contrast to these case series, a case-control study (evidence
class II) (48) including more than 440 patients with MS
or optic neuritis and 950 controls without any underlying
neuroimmunological disorder did not reveal an elevated risk
for the development of MS or optic neuritis after immunization
against hepatitis B, tetanus, influenza, measles/mumps/rubella,
measles, or rubella (49). While Hernan came to same results
for immunization against influenza or tetanus in a case-control
study (evidence class II), active immunization against hepatitis
B was reported to pose a higher risk for MS (50). The latter
finding could, however, not be confirmed by Confavreux in a
large case-crossover study. Additionally, no increased risk was
seen for vaccination against tetanus and influenza as well (51).
Similarly, other class II case-control studies did not report on
an increased risk for MS after hepatitis B vaccination (52–
54). An even decreased risk for MS was reported after tetanus
immunization (8). In a large class I study, a patient register
including 789,082 females vaccinated with the quadrivalent HPV
vaccine was analyzed. Thereof, 4,322 patients with MS and 3,300
patients with other demyelinating disorders were studied and
no increased risk for CNS manifestations was seen in this large
cohort (55).

Miller et al. performed a prospective class II, randomized,
double-blind, placebo-controlled study, which included 104MS
patients, who received either standard influenza vaccination
or placebo. For a 6 months follow-up period, the occurrence
of neurological symptoms or influenza was monitored and no
differences were seen for relapse rates (56). A study by Langer-
Gould reported on an increased risk for CNS demyelinating
diseases within the first 30 days after vaccination. It was
concluded that there is no increased risk for MS, but it seems that
the transition from subclinical to overt autoimmunity in patients
with existing disease is shortened (53).

Two major questions arise on the topic of “MS and
vaccination”: (i) Can vaccines cause MS and (ii) can vaccines
provoke or trigger relapses in patients with MS?

(i) Overall, the anecdotal reports associating MS onset and
vaccination had limited reliability, lacked validity and could
not be replicated in larger studies. Therefore, there is
consensus that there is yet no evidence that MS can be caused
by vaccines neither by inactivated nor by live vaccines (57).

(ii) It is more difficult to assess the potency of vaccines to trigger
relapses in MS patients. With respect to live vaccines it
seems to be plausible that they may be able to provoke a
deterioration of the disease, since they fulfill the criteria of
an active infection with a replicative (although attenuated)
organism. There is class IV evidence that at least the yellow
fever (YF) 17D vaccine strain, which is derived from a natural
occurring YF-virus and hasn’t completely lost its neurotoxicity
even after numerous passages, is able to provoke relapses in
MS patients. However, it has to be kept in mind that the
patient cohort had received immunomodulatory treatment
and the sample size of this self-controlled case series study
was rather small (58). The underlying potential immunologic
mechanisms, which are responsible for this elevated relapse
rate, are not understood yet and larger studies are necessary to
confirm this association. Hypotheses may be generated based
on observations after infections with helminths, mycobacteria
and Epstein-Barr virus, or by the immunologic properties of
this particular vaccine strain (59). Immunological analyzes
showed that after immunization against YF, MS patients had
a significantly increased MBP- and MOG-specific response
shown by increased numbers of cells secreting interferon, IL-
1α, IL-1β and tumor necrosis factor compared to unvaccinated
MS patients or MS patients vaccinated against influenza (58).

Still, there is no evidence for other live vaccines such as MMR
to deteriorate MS (57, 60). For inactivated vaccines, there is
already more evidence available that an association between MS
relapses and different kinds of vaccines does not exist (7). Even
for vaccines, which were publicly accused to be associated with
MS disease or relapse rate, like HPV or hepatitis B vaccines, there
is no evidence to support any association between vaccination
and clinical course of MS, as well as for vaccines containing
inactivated neurotropic viruses like TBE (53, 61). It still remains
unclear if inactivated vaccines may accelerate an upcoming
relapse in patients with active MS by non-specific stimulation
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TABLE 1 | Overview of standard vaccination in the general population and MS patients.

Vaccine USA (CDC/ACIP)

(66)

Germany (STIKO)

(67)

Recommendation for

multiple sclerosis

Diphteria Toxoid All individuals All individuals Considered safe

Human papilloma virus recombinant vaccine All individuals 11-12a All individuals 9-14a Probably safe

Measles, mumps and

rubella

live attenuated vaccine All children and at-risk adults Unprotected individuals and children

exposed to kids

Probably safe, CAVE:

Immunosuppression

Meningococcal A,C,W,Y inactivated vaccine At-risk individuals At-risk individuals Probably safe

Meningococcal B recombinant vaccine At-risk individuals At-risk individuals Probably safe

Pertussis Toxoid All individuals All individuals Probably safe

Pneumococcus polysaccharide vaccine All individuals > 65a and individuals

at risk

All individuals > 60a and individuals

at risk

Insufficient data

Tetanus Toxoid All individuals All individuals Considered safe

Varicella live attenuated vaccine Individuals lacking evidence of

immunity

Seronegative individuals at risk Probably safe, CAVE:

Immunosuppression

Zoster recombinant vaccine All individuals > 50a All individuals > 60a and individuals

> 50 at risk

Insufficient data

Zoster live attenuated vaccine All individuals > 60a, recombinant

preferred

Not recommended Insufficient data, CAVE:

Immunosuppression

Hepatitis B recombinant vaccine All children, individuals not at risk but

who want protection from hepatitis B

All children, individuals at risk Considered safe

Hepatitis A inactivated vaccine All children, individuals not at risk but

who want protection from hepatitis A

All children, individuals at risk Considered safe

Poliomyelitis inactivated vaccine All children All children, individuals at risk Considered safe

Haemophilus influenzae

type b

Conjugate vaccine All children, individuals at risk All children, individuals at risk Insufficient data

Tick-borne encephalitis Inactivated vaccine not available Endemic areas and tick exposure Probably safe

Yellow fever live attenuated vaccine endemic areas endemic areas Probably increased risk, CAVE:

Immunosuppression

Rabies inactivated vaccine People at high risk of exposure People at high risk of exposure Considered safe

Influenza inactivated vaccine All individuals > 6 months Individuals >65 years old, those with

chronic diseases, and pregnant

women

Considered safe

Influenza live attenuated vaccine Individuals 2a-49a with restrictions Individuals w/ chronic disease 2-17a,

inac. preferred

Not recommended

of cytokine production. However, data are scanty and most
studies are underpowered leaving an uncertainty about very small
risks (62).

Adjuvants and MS
Besides effects of vaccines on induction and the disease course
of MS, potential immunological effects of adjuvants have to be
considered as well. Most experience on the possible induction of
autoimmunity following administration of adjuvant-containing
vaccines has been gained from animal models. However, results
from experimental studies cannot be transferred to humans
without reservation. First, the dose ratios tested in animal models
are not the same as in humans and second, human immunology
differs from animals. Indeed, oil emulsions, aluminum salts and
squalene have shown severe side effects in animal models, while
they are considered to be safe in humans (17).

An analysis performed by the European Medicines Agency
(EMA) (63) investigated autoimmune disorders following
vaccination against pandemic influenza A/H1N1 between
October 2009 and December 2010 (64). Thirty percent of the 150

million doses of the distributed vaccines contained aluminum
salts and squalene-based adjuvants. Overall, the study did not
suggest a significant difference in the risk for autoimmune
disorders for adjuvant and non-adjuvant vaccinations. ADEM
was reported for 10 people (adjuvant vaccines: 7, non-adjuvant
vaccines: 3), MS for 21 people (adjuvant vaccines: 20, non-
adjuvant vaccines: 1), MS relapses for 24 patients (adjuvant
vaccines: 21, non-adjuvant vaccines: 3), and one case of
relapsing remitting MS was reported for adjuvant-containing
vaccination (64). Statistical analysis revealed only a non-
significantly increased risk for GBS (15). Also, a favorable benefit-
risk profile of the vaccines was demonstrated (15, 65).

In conclusion, following the reports from literature, all of the
EMA/FDA-approved vaccines (with exception for Yellow Fever)
and adjuvants do not show a significantly increased risk for
MS and ADEM. Constant improvement of basic immunological
knowledge and technology will further improve the safety of
adjuvants. Table 1 gives an overview of the recommendations
of standard vaccinations in the general population and in
MS patients.
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Vaccination and ADEM
While there is a lot of literature on vaccination and risk for
MS or MS relapses available, reports on vaccination and ADEM
are scarce. Yet, ADEM has been discussed to be a sequelae
of vaccinations (68) as well as to be preceded by infections.
Several cases of ADEM have been reported to be timely related
to vaccinations against rabies (69), HPV (70, 71), hepatitis A and
B, diphtheria, tetanus and poliovirus (72), measles, rubella and
booster immunization for Japanese encephalitis (73). ADEM has
been reported following vaccination against influenza, including
eight cases after vaccination against H1N1. Also, four ADEM
cases after vaccination against YF can be found in literature
(74, 75). Besides case reports, there have been some observational
studies, albeit all having their limitations. In 26 out of 35
reported cases of ADEM, patients had infections or vaccinations
prior to disease onset (76). Also, Pellegrino et al. concluded a
possible relation between post-vaccination ADEM in children
and adults. Four hundred four cases of ADEM were analyzed
based on the data of the Vaccine Adverse Event Reporting System
(VAERS) database and the EudraVigilance post-authorization
module (EVPM) (77). About 60% of the cases occurred between 2
and 30 days after vaccination, most commonly against influenza
andHPV. A case-control study on vaccination against hepatitis B,
influenza, polio, diphtheria, pertussis, tetanus, measles, mumps,
rubella, Japanese encephalitis, meningitis, hepatitis A, varicella
and rabies did not reveal an increased risk for the onset of ADEM
in the time spans of 0–30 days and 61–180 days after vaccination,
but between 31 and 60 days (78). Based on these reports, the risk
for ADEM after vaccination cannot be completely ruled out.

Effective Vaccination in MS Treatment
Considerations on MS exacerbation and vaccination apply
only for MS patients receiving no immunomodulatory/
immunosuppressive treatment. If any kind of
immunosuppression is used for MS therapy, this choice of
treatment will dominate the decision whether to vaccinate or
not (79). In recent years, consensus statements on vaccinations
during immunosuppressive treatments were published by
various national and international societies and expert panels
(80–84). There is consensus that inactivated vaccines will do
no harm (85) even in immunosuppressed patients. However,
data on the efficacy of vaccinations in combination with the
various available MS medications are missing. Thus, for patients
either receiving more than one immunomodulatory treatment or
having underlying immunomodulating condition, the outcome
is difficult to predict (86). Therefore, the success of vaccination
should be verified by antibody testing if a valid test is available.

Except for a few treatments, which only lead to mild
immunosuppression, live vaccines are contraindicated under
immunosuppressive treatment. In some situations, risks and
benefits of a live vaccine have to be weighed against each
other, e.g., in varicella zoster virus (VZV)-negative MS patients
under fingolimod treatment, varicella vaccination may be
considered, since severe complications from natural varicella
infection may outweigh the risk from this live vaccine. However,
recommendations vary between different institutions even within
the same country (80, 82, 83). A recent case report on a lethal

VZV infection in an immunocompromised patient after VZV live
vaccination drives the discussion on this issue (87).

There is consensus about the timing of vaccination in patients,
who will undergo immunosuppressive treatment: Vaccinations
should be given well in advance to the start of treatment (at least 2
weeks for inactivated and≥ 4 weeks for live vaccines) and should
be distinguished between primo-vaccinations and boosters.
Importantly, the refractory period after immunosuppression has
to be considered as well, which may be up to 1 year depending
on the type of medication (e.g., rituximab or alemtuzumab)
(81). Vaccines will have various effects on the immune system,
which greatly depend on the cell types typically engaged by
the respective vaccines. The impact of immunosuppression
on the various cell types (and possible mitigation of effects)
should be taken into consideration. Protective efficacy is mostly
mediated by antibodies for the following vaccines: cholera,
diphtheria toxoid, hepatitis A and B, haemophilus influenzae
type b, influenza, Japanese encephalitis, meningococcal PS and
conjugates, papillomavirus, pneumococcal PS and conjugates,
polio (Sabin and Salk), rabies, rotavirus, rubella, tetanus toxoid,
typhoid PS, and YF. Effects are solely born by T cells for
tuberculosis (BCG), or by a combination of antibodies and T
cells for measles and intranasal influenza vaccination. Besides
antibody-mediated protection, effects of T cells are discussed for
pertussis (9).

For patients receiving immunosuppressive treatment,
vaccination control should be performed. For diphtheria, TBE
(with caution), hepatitis A, B, haemophilus influenzae type b,
measles, mumps, pneumococcus, polio, rubella, tetanus, rabies
and varicella, standards are available and recommended to
be tested. In general, to increase the validity of vaccination
control, titers should be assessed in paired samples (before
and after immunization) via the same method and at high-
quality standards (81). In general, patients should have
received their recommended standard vaccines according
to their region-specific vaccine guidelines. Before certain

TABLE 2 | Recommended vaccination in MS patients in dependency of treatment.

FDA/EMA

vaccination

FDA/EMA screening Extended

vaccination

GLAT

IFN beta

Cladribin VZV Screen for HBV, HCV

Teriflunomid

Fingolimod VZV HBV, HPV

DMF

Rituximab n.a. n.a. HBV, Pneumococcal

Ocrelizumab Screen for HBV, HCV HBV, Pneumococcal

Natalizumab VZV

Alemtuzumab VZV Screen for HBV, HCV HBV, Influenza, HPV

and Pneumococcal

GLAT, glatiramer acetate; IFN beta, interferon beta; DMF, dimethyl fumarate; HBV,

hepatitis B; HCV, hepatitis C; VZV, varicella-zoster virus; HPV, human papillomavirus; n.a.,

not applicable.
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immunosuppressive treatments are initiated, it is mandatory to
exclude former infections and if necessary, vaccination should
be considered according to the regulatory agencies. Table 2

provides an overview on necessary vaccinations according to
FDA/EMA guidelines (extended vaccination reflects the authors’
suggestion). For many immunotherapies, a prior exclusion
of an ongoing VZV infection is required and vaccination
should be offered to those, who haven’t gained any immunity
yet. Additionally, VZV-seropositive patients undergoing
immunotherapy should be offered vaccination as well to prevent
zoster reactivation and late effects. Recently, a non-live subunit
vaccine has been authorized for VZV-seropositive patients.
It possesses a better risk-benefit profile compared to the live
vaccine and has already been approved by many countries (88).

Additionally, it should be considered to offer patients with
upcoming fingolimod or alemtuzumab treatment the option of
vaccination against HPV, as post-market surveillance showed
increased reports of warts and cervical dysplasia due to these
two MS therapies [EMA; (89)]. Furthermore, pneumococcal
vaccinemight be considered in patients receiving B cell-depleting
therapies, as severe respiratory infections during Phase III studies
were seen (90, 91).

DISCUSSION

Vaccine hesitancy is a major problem nowadays. The usefulness
of active immunization is undisputed and has saved numerous
lives. However, fear of possible, but also often unconfirmed, side
effects has fostered this anti-vaccine sentiment. This has led to a
recent outbreak of measles (2) and curiously some viruses and
disorders, which have been assumed to be eradicated, seem to
become a hot topic for Western health systems again.

Indeed, side effects upon vaccination may occur in rare
cases, however, the benefits for individual people as well as
the whole population will generally outweigh adverse effects.
Vaccine hesitancy results in a twofold problem: (1) The missing
protection for the unvaccinated people themselves but also
(2) a risk for people, who are not able to get vaccinated.
The missing herd immunity poses a major problem for a

group of patients with fragile health. For MS patients receiving
immunosuppressive treatment, an acute infection can have
dangerous sequelae. Thus, if possible, MS patients should
be vaccinated beforehand. The possible benefits outweigh—
dependent on the individual case—the possible risks.

An additional perspective raises the possibility of vaccination
against MS. Indeed, early approaches exploring vaccination
with synthetic peptides in experimental animal models were
successful, but translation into clinical treatment was so far
unsatisfying (92–94).

Interestingly, it was recently shown that an anti-typhus
vaccination (Typhim vaccine) might have the potential to
ameliorate the disease course of MS by targeting prohibitins
on TH17 cells. Tested in an experimental MS model it led to
decreased levels of IL17 and increased numbers of FOXp3+

regulatory T cells (95). Further investigations are needed before
studies should investigate treatment options forMS patients. Still,
it is a good example, how immunology of vaccination might
overlap with and modulate the immunology of MS.

CONCLUSION

Theoretically, an increased immune response against different
types of vaccines, such as live attenuated viruses, inactive
attenuated viruses, or portions of bacteria and viruses, could
trigger increased immune response to self-antigens (45, 58, 96),
but an increased risk for MS itself or increased relapse rates
after vaccination have not been show (with exception for YF)
in case-control studies (7). There is, however, evidence that
infections can trigger relapses in MS (96–104), which is why
vaccination of MS patients should be pursued in order to reduce
the risk of infections. To assure the best vaccination success,
immunization and immunosuppressive treatments have to be
well timed.
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Central nervous system (CNS) degeneration occurs during multiple sclerosis (MS)

following several years of reversible autoimmune demyelination. Progressive CNS

degeneration appears later during the course of relapsing-remittingMS (RRMS), although

it starts insidiously at disease onset. We propose that there is an early subclinical phase

also for primary-progressive (PP) MS. Consensus exists that many different cell types

are involved during disease onset. Furthermore, the response to the initial damage,

which is specific for each individual, would result in distinct pathological pathways

that add complexity to the disease and the mechanisms underlying progressive CNS

degeneration. Progressive MS is classified as either active or not active, as well as

with or without progression. Different forms of progressive MS might reflect distinct

or overlapping pathogenetic pathways. Disease mechanisms should be determined

for each patient at diagnosis and the time of treatment. Until individualized and

time-sensitive treatments that specifically target the molecular mechanisms of the

progressive aspect of the disease are identified, combined therapies directed at

anti-inflammation, regeneration, and neuroprotection are themost effective for preventing

MS progression. This review presents selected therapeutics in support of the overall

idea of a multidimensional therapy applied early in the disease. This approach could limit

damage and increase CNS repair. By targeting several cellular populations (i.e., microglia,

astrocytes, neurons, oligodendrocytes, and lymphocytes) and multiple pathological

processes (e.g., inflammation, demyelination, synaptopathy, and excitatory/inhibitory

imbalance) progressive MS could be attenuated. Early timing for such multidimensional

therapy is proposed as the prerequisite for effectively halting progressive MS.

Keywords: oligodendrocytes, multiple sclerosis, CNS repair, neuroprotection, myelin repair, inflammation,

disability prevention

INTRODUCTION

Each year, multiple sclerosis (MS) affects ∼2.0 million people worldwide, resulting in ∼20,000
deaths from this disease (1). MS is a central nervous system (CNS) degenerative disease
with autoimmune demyelination and progressive CNS degeneration. Accurate disease classification
is necessary for an effective understanding and treatment of MS, with emphasis on the progressive
CNS degeneration component, which so far has eluded definitive characterization (1, 2). In 1996,
MS was classified into various disease types based on the clinical phenotypes only (3). In 2013, the
International Advisory Committee on Clinical Trials of MS proposed descriptors of the disease
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that included clinical relapse rate and imaging findings for
disease activity, combined with disease progression (4). More
recently, Lublin provided new MS phenotypic classification.
Progressive MS includes active and inactive progressive MS with
and without progression (5). Activity is defined by the presence
of clinical relapses and/or new/enlarging lesions detected by
magnetic resonance imaging, whereas progression is defined
by increased disability within a definite period (∼1 year). In
addition, MS forms include relapsing-remitting disease and the
clinically isolated syndrome. These two disease groups can also
be not active and active.

The progressive degenerative component of the disease might
always be present, albeit subclinically at disease onset. The most
important objectives for future research in progressive MS are to
determine the rate of progressive decline at the very beginning of
the disease and to identify factors that can be pharmacologically
targeted. The rate of progressive decline might be determined by
differences in the degree and activation of inflammatory cells, as
well as the CNS sites affected by inflammation.

It is possible that subclinical deterioration is present in
all MS variants, starting at the disease onset. Consistent with
this possibility, we found both remitting and progressive
processes in an animal model of relapsing-remitting MS
(RRMS) (6). We found that RR-experimental autoimmune
encephalomyelitis (RR-EAE) mice had reversible motor
impairment and progressive memory decline during the first 30
days post-immunization (6). We propose that drugs potentially
effective for progressive MS could be tested for their ability to
significantly alter the rate of memory decline in RR-EAE mice.
Should a selective pharmacological approach significantly alter
the rate of memory decline in RR-EAE mice, such drugs could
be tested for progressive MS. Consistent with our report in
the animal model of MS, clinicians have previously reported
patients with subclinical incremental cognitive deterioration, i.e.,
ongoing CNS degenerative function clinically undetectable for a
definite period during the disease (7, 8). Indeed, previous studies
found that clinically silent T2 lesions affect cognition in early
RRMS (9, 10). With regard to progressive MS, clinical studies
have also shown that primary-progressive (PP) MS patients
have an impaired ability to use newly learned information (11),
cognitive decline over time (7), and lesions in clinically silent
CNS regions (12, 13). Notably, mild cognitive impairment is
considered to precede neurodegeneration and dementia (14).

Any treatment that targets early pathogenetic mechanisms
would not be able to work over time, because early disease
mechanisms might evolve along separate pathways, and effective
treatments at later stages would require targeting themechanisms
underlying progression, but these remain to be elucidated.
Until mechanisms explaining disease progression are identified,
therapies applied at the earliest time of disease and directed
toward anti-inflammation, regeneration, and neuroprotection
are the best means to prevent the most debilitating clinical
outcomes of progressive MS and poor quality of life. This review
presents selected therapeutics in support of the overall idea of a
multidimensional therapy applied early in the disease.

Pathological differences between SPMS and PPMS reportedly
indicate separate entities (12, 15). However, whether the

heterogeneous pathological patterns found in a biopsy are
also present at the onset of the disease remain unknown.
Before the onset of either clinically evident PPMS or SPMS,
ongoing subclinical dysfunction might develop via various
pathogenetic mechanisms that eventually manifest as distinct
entities in biopsies of RRMS and PPMS patients. MS is a
multifaceted disease at onset and its complexity increases over
time; that is, the disease advances along multiple pathways
specific for each patient. An important question is whether early
in disease progression, the inflammatory response differs in RR
vs. progressive MS. Anti-inflammatory treatment is not effective
in progressive MS that is already clinically apparent; however,
a selected inflammatory component of the disease might be
present during the very early subclinical phase. We propose that
any pharmacological treatment of SPMS would have to start at
the onset (of what appears as RRMS) for an effective chance
of stopping the onset of clinically evident progressive MS. In
contrast, therapeutic intervention later would have to target the
mechanisms of progressive CNS degeneration.

Factors that have been postulated to directly affect the
progressive decline of axonal function and neurodegeneration
include microglia activation, oxidative stress, and mitochondria
deficits (16). These dynamics are in place early during the
disease and should be targeted at the very onset. In addition,
iron overload reportedly plays a role in neurodegeneration,
but perhaps at a later stage of the disease (17). Calabrese et al.
(18) reported cortical lesions and atrophy associated with
cognitive impairment in RRMS patients. Cortical lesions are
involved in some aspects of cognitive deficits, but future studies
should determine whether cortical lesions could be the cause
of the progressive nature of the CNS decline. Kutzelnigg and
Lassmann (19) reported MS lesions at cerebral cortex sites.
Such lesions, associated with the progressive phase, are both
inflammatory and demyelinating. First, chronic destruction
of myelin caused by activated microglia at these cortical sites
might indeed promote progressive cognitive losses because
myelin debris alters long-term potentiation (LTP) (20). Second,
antibodies against myelin basic protein could also have a role
since they are associated with cognitive decline after strokes
(21). Furthermore, the initial damage could be continuously
amplified since T- or B-cells at these same sites produce soluble
factors that diffuse into the cortical tissue and further destroy
myelin. Another aspect that could be responsible for the
cognitive decline is the newly formed myelin (which is generated
following brain demyelination). However, the effects of brain
demyelination/remyelination on LTP and cognitive functions
require further investigation (22–25).

HOLDING BACK PROGRESSIVE MULTIPLE
SCLEROSIS: AN EARLY CHALLENGE WITH
PROMISE

Treatment of progressive MS would have to start at the very
onset of the disease for all MS patients, because an early
pharmacological approach would have a chance of halting
degenerative processes that are clinically detectable only later
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FIGURE 1 | Holding back progressive multiple sclerosis: an early challenge with promise. Holding back progressive multiple sclerosis (MS) requires therapeutics within

a time-sensitive window during the disease process. Early on, there are many pathogenetic pathways elicited by inflammation, and the response to the initial insult(s) is

specific for each patient with distinct pathogenetic pathways in relapsing-remitting MS and primary-progressive MS. A selective pharmacological targeting requires an

analysis of the mechanisms of the disease at the time of treatment. The figure outlines several early key players that can initiate progressive central nervous system

degeneration via separate mechanisms, which poses additional challenges for any therapeutic agent to be effective later. ROS, reactive oxygen species.

during the disease (Figure 1). Effective treatments for progressive
MS could be derived from approaches targeting inflammation
and apoptosis in other diseases (26). In addition, therapeutics
proven effective in progressive CNS degenerative diseases such
as Parkinson’s and Huntington’s diseases might be tested in
MS (27), because all MS types eventually become progressive
CNS degenerative diseases. Inflammation is the most significant
event the brain experiences following diverse insults (28, 29);
it generates regions that locally damage the CNS area. During
RRMS, several inflamed regions eventually become widespread
CNS areas of degeneration during the final stages of SPMS. In
contrast, during PPMS, the CNS degeneration remains more
localized. Indeed, postmortem analyses of brains from patients
with SPMS show diffuse degeneration, whereas those from
patients with PPMS have more localized degeneration (30),
although this finding could also be explained by disease duration.

THE MANY APPROACHES FOR TREATING
MULTIPLE SCLEROSIS

Targeting Synaptic Transmission
A finely tuned ratio of excitatory to inhibitory synaptic
transmission supports neurogenesis and CNS health (31). In
contrast, an imbalance initiates excitotoxic damage together with
a pattern of CNS degeneration independent of inflammation
(32). Several studies have shown that neurodegeneration can be

caused by a synaptic transmission ratio that has been altered
due to various factors present during CNS degenerative diseases
(32, 33).

Overactivation of N-methyl-D-aspartate (NMDA) and α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors by the excitatory neurotransmitter glutamate causes
neuronal damage; whereas beneficial effects are obtained by
targeting these receptors in animal models of MS. Glutamate
is the major excitatory neurotransmitter. Elevated glutamate
concentrations have been found in MS lesions (34); an excess of
glutamate leads to calcium increases and can be antagonized via
AMPA or NMDA receptor blockers (34), with positive effects on
axons.

EAE mice treated with pharmacological treatments that target
the glutamatergic system have reduced disease activity (32, 35–
38). The weakNMDA receptor antagonist, amantadine, improves
the disease (32, 34), whereas riluzole (both a sodium channel
blocker and a kainate andNMDA receptors antagonist) decreases
inflammation, demyelination, and axonal damage (32, 35, 37).
Clinical trials involving MS patients have shown that amantadine
reduced the relapse rate in RRMS (32, 36), whereas riluzole
reduced lesion evolution and axonal loss, with no positive
effect on the formation of new lesions during PPMS (32,
37). However, riluzole treatment did not significantly reduce
brain atrophy progression in early MS (32, 37). Modulation of
synaptic transmission also presents challenges inMS patients. For
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example, the use of memantine that acts on the glutamatergic
system by blocking NMDA receptors caused neurological
impairment inMS patients, although the impairment is reversible
(32, 39).

Regarding the inhibitory neurotransmitter gamma-
aminobutyric acid (GABA), treatments that target the
GABAergic system delay development of EAE disease and
decrease EAE severity (32, 38). Treatment of MS patients with
gabapentin (a GABA analog) ameliorated acquired nystagmus;
whereas other similar drugs such as Vigabatrin and baclofen
showed no effect in either RRMS or PPMS patients (32, 38).
Overall, studies targeting the glutaminergic system have shown
better results for MS patients than those targeting the GABAergic
system, although modest differences might be missed in this later
group of patients. In summary, in the context of neuroprotection,
targeting LTP regulation might still provide valuable benefits, so
this strategy should be further investigated.

Microglia are targeted to protect the ratio of excitatory to
inhibitory synaptic transmission because these cells can affect
the ratio in several ways. One mechanism involves microglia
acting as a physical barrier to the inhibitory transmission
(40). A second mechanism involves microglia directly pruning
synapses via a complement-mediated mechanism, which has
also been described during development and adult life (41).
Although mitoxantrone induces microglial death when used
in vitro (42), its use, which was approved for rapidly worsening
RRMS and SPMS, was discontinued due to cardiotoxicity.
Nevertheless, microglia could still be pharmacologically exploited
to increase protection and reduce damage during progressive
MS.

An earlier intervention targeting inflammation could also
protect the ratio of excitatory to inhibitory synaptic transmission.
Inflammatory cytokines released during the acute phase of
the disease change the ratio of excitatory to inhibitory
synaptic transmission (43, 44). In contrast, a massive loss
of synapses in diffuse “synaptopathy” characterizes permanent
functional deficits at a later stage of the disease (45, 46).
Among inflammatory cytokines, Interleukin 1 (IL1) alters the
ratio of excitatory to inhibitory synaptic transmission during
inflammatory demyelination (44). Other factors secreted by T-
cells such as nitric oxide (NO) and osteopontin have similar
deleterious effects (47). Notably, osteopontin levels increase
during progressive MS (48). However, whether an earlier
intervention targeting downstream signaling pathways of IL1,
NO, and osteopontin can protect the ratio of excitatory
to inhibitory synaptic transmission and prevent functional
CNS declines would require further testing. Furthermore, a
recent study has shown that IL33 treatment inhibits cognitive
dysfunction associated with experimental cerebral malaria, an
inflammatory disease of the CNS (49). Thus, by learning the
positive and negative effects of various cytokines, rationale
approaches can be used to favor the protective cytokines. In
this context, glibenclamide, an ATP-sensitive potassium channel
blocker, should be tested for progressive MS, because it decreases
the production of proinflammatory mediators (Tumor necrosis
factor [TNF-α], IL-1β, and reactive oxygen species) and the
accumulation of inflammatory cells (50).

Targeting Neurons
Neurons are vulnerable during demyelinating-inflammatory
diseases. First, demyelination changes sodium channel regulation
and nerve conduction with downstream compensatory
mechanisms involving calcium influx and changes in calcium
homeostasis (51, 52). Second, inflammation changes axonal
transport regulation (53, 54). Regarding drugs targeting sodium
channels, those directed to voltage-gated sodium channels
protect axons, reduce inflammation, and decrease disease
severity (55). Amiloride, an inhibitor of sodium entry, has
significant positive effects on neurodegeneration treatment as
measured by magnetic resonance imaging (56); whereas 4-
aminopyridine, a drug directed against potassium (K) channels,
improves mobility (57). Furthermore, blocking potassium
channels reduced axonal and neuronal degeneration in the
Myelin Oligodendrocyte Glycoprotein (MOG35-55)-induced
EAE MS model (58). Potassium channels are present on T-
cells, so blocking two-pore domain weakly inward-rectifying
K channel (TWIK)-related acid-sensitive K+ channel 1
(TASK1) also leads to less T-cell proliferation and reduced
proinflammatory cytokines, which all have beneficial effects on
neurons (59, 60) (Figure 2).

Regarding intracellular transport regulation, earlier
interventions might be effective against neuronal functional
deficits and neurodegeneration. A previous study reported
axonal transport deficits at the onset of optic neuritis in EAE
mice, whereas reduced levels of the axonal motor protein
KIF5A (kinesin heavy chain isoform 5A) were found in MS
patients (53, 54). Unfortunately, the mechanisms underlying
alterations of axonal transport regulation have largely eluded our
understanding, so rational approaches for correcting anomalies
of axonal transport are not available.

In the context of neuroprotection, early targeting of
inflammation also reduces proinflammatory molecules produced
by macrophage/microglia. Such molecules are deleterious for
the mitochondria, which provide energy for neurons (61, 62).
Several potential compounds targeting the mitochondria have
been identified (63) (Figure 2). Impairment of mitochondrial
function and subsequent energy loss is a consequence of both
reactive oxygen and nitrogen species, which are abundant in
MS lesions (64). Indeed, oxidative stress has been identified
to lead to progressive CNS degeneration in Parkinson’s disease
(65), and oxidative stress levels have been directly linked to the
progression of MS (66). Early antioxidant therapy is believed
to limit CNS progressive degeneration (66); several antioxidants
are in preclinical or already phase 1 and 2 clinical trials
for MS patients (Figure 2) (66). Benefits for neuroprotection
are obtained via activation of the Nrf2-antioxidant response
element-signaling pathway, as shown by using fumaric acid esters
(Figure 2) (67). Antioxidant therapies should start at the earliest
possible time to halt pathways underlying CNS progressive
degeneration.

Targeting Oligodendrocytes and Myelin
Improving myelin repair is expected to be neuroprotective
(68, 69). During demyelinating diseases, demyelination in the
spinal cord (70) causes a mobility defect that is remitting,
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FIGURE 2 | The many approaches for multiple sclerosis: what did we get. A wide range of pharmacological targets has been used to treat multiple sclerosis (MS).

Selective drugs for each group are shown. The many targets have addressed the multifaceted aspect of this disease, which include both inflammation and central

nervous system (CNS) cells, including neurons, oligodendrocytes, and astrocytes. Most studies have analyzed the effects of these drugs in clinically apparent

relapsing-remitting MS and primary-progressive MS. Without an identification of the mechanisms in place during this disease, potential benefits could have been

missed in those MS patients with ongoing subclinical CNS progressive degeneration.

due to remyelination and consequential functional recovery.
In contrast, the consequences of demyelination/remyelination
in the brain remain largely unknown, with emphasis on the
consequences on LTP and cognitive functions (22). Nicaise
et al. (71) showed that induced pluripotent stem-derived neural
progenitor cells from PPMS patients had defective myelin
repair. Thus, by increasing myelin repair, devastating progressive
disability should be eased (72). Fingolimod (FTY720), the
first US Food and Drug Administration (FDA)-approved oral
medication for MS, increases neural stem cell survival and
enhances their development into mature oligodendrocytes
(OLGs) (73), with benefits for myelin repair. The water-soluble
B vitamin biotin also has positive effects on myelination;
it is in clinical trials for SPMS (74). In addition, several
compounds have been shown to increase myelin. In this
respect, antihistamines and muscarinic receptor antagonists
are valuable, and selected compounds have been selected
for clinical trials. Within this group, both Clemastine and
GSK239512 led to improvement in functional assessments
and lesions (75–80). Other compounds such as benztropine,
which works as an anticholinergic, antihistamine, and dopamine
reuptake inhibitor, improves myelin levels, but no clinical
trials have been started (72). In addition, LINGO (leucine-
rich repeat and immunoglobulin-like domain-containing protein
1) and semaphorin inhibit myelination (81–87). Antibodies
to these two distinct sites have been developed. Clinical
studies have presented various challenges. However, these
approaches should be explored in more detail. Furthermore, a

variety of compounds exerts positive impacts on myelination.
These include remyelinating-promoting IgM (rHIgM22), a non-
selective G protein-coupled receptor antagonist (Quetiapine),
a dopamine 2 receptor antagonist (Domperidone), thyroid
hormone-like compounds (Liothyronine sodium, a T3 thyroid
hormone), estrogen receptor modulators, agonists for retinoic
acid receptors (RXR-γ), glucocorticoid (clobetasol), kappa opioid
receptor agonists (U-50488), adrenocorticotrophic hormone, and
erythropoietin (72, 88–97).

A new therapeutic area for improving myelin repair should
also target the cytoskeleton of OLGs. In particular, the tau protein
in oligodendrocytes is a key player during myelination (98, 99),
so focusing on oligodendrocyte tau may boost myelin repair and
CNS functions (100, 101), which would limit progressive MS
(Figure 2).

Targeting Microglia
Microglia represent an important pharmacological target
for CNS degeneration. They can exert either protective or
deleterious effects on CNS cells through separate mechanisms.
For example, microglial-mediated innate immunity results in
CNS degeneration during Alzheimer’s disease (41, 102). In
contrast, microglia can protect the CNS through M2-dependent
muscarinic receptor actions. Consistent with this effect, widely
used FDA-approved drugs for MS such as interferon beta and
Glatiramer acetate, exert neuroprotection via an M2-dependent
pathway (102) (Figure 2).
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Targeting Astrocytes
Several drugs targeting astrocytes are now available (Figure 2).
During CNS inflammation, astrocytes release cytokines, which
are deleterious to neurons (103). Fingolimod may support
neuroprotection by blocking astrocyte NO (103). Furthermore,
astrocytes are known to decrease the deleterious effects
of glutamate because they express glutamate transporter-
1, whereas decreased glutamate transporter-1 activity (in
astrocytes) occurs during several CNS degenerative diseases
(104), which lessens the ability of these cells to buffer
glutamate and its toxic effects. At the same time, during
the progressive stage of MS, selected astrocytes express
lactosylceramide (LacCer), which recruits inflammatory
monocytes from the blood (105). Thus, therapeutics that
modulate the expression of the glutamate transporter-
1 and LacCer in astrocytes might inhibit progressive
MS.

Targeting Trophic Support and Growth
Factors
Growth factors, which are essential for the health of CNS
cells, support efficient intracellular transport in neurons and
other CNS cells (106–110). Targeting nerve growth factor
(NGF) has been proposed to induce neuroprotection in
MS (108). Of interest, trophic factors such as NGF also
affect brain inflammation. NGF switches the balance of T-
helper cell type 1 and 2 cytokines within the CNS during
EAE (109). Furthermore, brain-derived neurotrophic factor
(BDNF) has been reported to increase upon Glatiramer acetate
treatment during developmental myelination, with positive
effects on myelination (106). BDNF also protects against
neuropathology in a mouse model of Alzheimer’s disease (110)
(Figure 2).

Targeting Apoptosis
Inflammatory cells release several factors that induce
apoptosis (47). Perforin and granzymes A + B, secreted
largely by CD8+ cells, cause apoptosis; whereas TNF-α,
Interferon-γ, Interleukin-17, and other cytokines secreted
by CD4+ and CD8+ cells enhance glutamate excitotoxicity
(47, 111). Protection from cell death could be obtained
by using pharmacological inhibitors of first apoptosis
signal receptor (FAS) and TNF-dependent apoptosis
(112).

Others
An aberrant immune response is believed to give rise to MS,
both for the remitting and progressive forms (113). Thus,
treatments aimed at recalibrating the dysfunctional immune
response are urgently needed. Autologous Hematopoietic Stem
Cell Transplant (AHSCT) is one such treatment (114). The
change in regulatory T-cell populations achieved following
AHSCT can certainly protect the MS patient if the treatment is
initiated early in the disease. However, since the pathogenesis
of MS disability and the mechanisms by which AHSCT exerts
protection are largely unknown, caution is warranted to avoid
overreaching expectations (114–119). An important therapeutic

approach includes the use of mesenchymal stem cells, which
have potent antioxidant effects and are neuroprotective in
vivo (120). Neuroprotection can also be achieved by targeting
multiple pathways known to regulate immunity, as the combined
use of interferon beta and fumarate has shown (113, 121).
Finally, inhibitors of protease-activated receptors and potassium
voltage-gated channels can protect against granzyme B-induced
neurotoxicity (122).

A GLIMPSE OF HOPE FOR PROGRESSIVE
MULTIPLE SCLEROSIS

Although there is a consensus that by limiting the degree of
inflammation the CNS benefits from a decrease of neuronal
damage, additional approaches directed at neuronal signaling
and in support of myelin repair are required to maximize the
ability of the CNS to limit the damage and to increase repair
(Figure 3). Anti-inflammation is achieved with drugs directed
to cells involved in inflammation and immune responses. Such
drugs inhibit cell proliferation, cell trafficking into the CNS,
and/or can deplete a selected cell population. It is known that
immunomodulation has benefits for neuroprotection. In the
context of progressive MS, recent drugs include ocrelizumab
that depletes B-cells (123–128), whereas Ibudilast suppresses
proinflammatory cytokines, inhibits macrophage migration,
upregulates the anti-inflammatory cytokine IL-10, and increases
neurotrophic factors (129) (Figure 3). It should be taken
into consideration that clinical studies might provide false
negative for the potential benefits of selected therapeutics,
since it is difficult to perfectly time the treatment with the
disease. Perhaps an intervention during the subclinal phase,
as proposed in this review, might provide better outcomes.
For example, Fluoxetine by working as selective serotonin
reuptake inhibitor, increases the amount of serotonin in the
brain, and regulates astrocytes and microglia (130). However,
the study by Mostert et al. (131) reported no benefits. Similarly,
with regard to dietary supplements, biotin positively influences
axonal remyelination and axonal hypoxia (74, 132). However,
positive benefits were reported in some studies but not
in others (133, 134). In addition, Rituximab, an anti-CD20
monoclonal antibody approved for non-Hodgkin lymphoma and
rheumatoid arthritis, impacts the inflammatory aspect of the
disease and RRMS activity, but its effect on PPMS progression
appears to be marginal (135, 136). Finally, Teriflunomide
is of potential interest. Teriflunomide primarily acts as an
inhibitor of dihydroorotate-dehydrogenase (DHODH), a key
mitochondrial enzyme involved in the de novo synthesis of
pyrimidines in rapidly proliferating cells such as T- and B-
lymphocytes, thereby diminishing the inflammatory response to
auto-antigens (137). A comprehensive analysis of selected drugs
presented in Figures 2, 3 are in previous reviews (32, 96, 138,
139).

In summary, while anti-inflammation, neuroprotection, and
myelin repair constitute the combined approach of choice for
progressive MS, early treatment is imperative to limit disability,
and inhibit the mechanisms involved in progressive MS.
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FIGURE 3 | A glimpse of hope for progressive multiple sclerosis patients. This figure shows representative drugs for each group, and how anti-inflammation,

neuroprotection, and myelin repair can be achieved. Anti-inflammation is achieved with drugs that inhibit cell proliferation, cell migration, and/or can deplete a selected

cell population. Immunomodulation achieves several positive objectives that include neuroprotection. Drugs directed to signaling decrease neuroinflammation and

promote neurogenesis. Of interest in the context of progressive multiple sclerosis (MS), recent drugs include ocrelizumab, which depletes B-cells; fluoxetine, which

regulates astrocytes and microglia; and Ibudilast and biotin. Ibudilast suppresses proinflammatory cytokines, inhibits macrophage migration, upregulates the

anti-inflammatory cytokine IL10, and increases neurotrophic factors (129). Biotin promotes axonal remyelination and reduces axonal hypoxia. Drugs enrolled in clinical

studies of secondary-progressive MS and primary-progressive MS are shown in bold.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Although this review offers general guidelines based on the
available data, more research is required to select the drugs
of choice. Overall, one or several targets at the very onset of
the disease offer an effective treatment for progressive MS. We
hypothesize that one or more of these early targets initiate a
subclinical progressive demise of the CNS that later manifests
as SPMS or much earlier as PPMS. An effective treatment
must start at disease onset. In contrast, should it start when
progressive MS becomes apparent, the critical window for
intervention would be lost, and CNS degeneration would not
be halted. Effective treatments for progressive MS must target
disease onset, and they must be tailored to where the disease
originates.

TRENDS AND OUTSTANDING QUESTIONS

I. Progressive MS presents significant therapeutic challenges.
MS is a multifaceted disease; its complexity increases over
time.

II. A combination of drugs directed toward inflammation,
neurons, and oligodendrocytes provides therapeutic options
early during MS for the prevention of progressive MS.

III. Which is the cause of progressive MS?
IV. Does the start of progressive MS occur during inflammation

in the subclinical phase of this disease?
V. Until the mechanisms underlying progressive MS

are identified, progressive MS is an early challenge
that can be treated with agents that promote
neuroprotection and myelin repair, and inhibit
inflammation.

VI. The time of treatment is critically important in limiting
the progression of the multifaceted pathways of this
disease.
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Background: The majority of persons diagnosed with multiple sclerosis (MS) experience

their first MS symptoms in the reproductive age. Teriflunomide (TFL, Aubagio), was

first released in Denmark for relapsing-remitting MS in December 2013. TFL treatment

is contraindicated in women of childbearing potential who are not using reliable

contraception. TFL can be transmitted via semen and a low risk of male-mediated

embryo-fetal toxicity is described.

Objective: To report pregnancy outcomes of TFL-treated women and partners to

TFL-treated men: gestation week.

Methods: Prospective cohort study comparing pregnancy outcomes of TFL-treated

men and women, matched on age at conception, 1:4 with controls from the general

population. Data on TFL-treated patients treated 1st of January 2014–31st of December

2016 for at least 30 consecutive days prior to conception, and with conception occurring

latest 2 years after treatment discontinuation were extracted from The Danish Multiple

Sclerosis Registry and merged with several national reproductive registries. Logistic

regression was used to analyse the association between TFL exposure and any adverse

event.

Results: A total of 31 pregnancies were recorded, 13 women and 18 of partners to

a TFL-treated man. All 18 partners of TFL-treated men completed their pregnancies:

livebirth (18), gestation time >37 weeks (17), gestation time 33–36 weeks (1), normal

birth weight (18), spontaneous and elective abortion (0), congenital malformation

(plagiocephali) (1), normal delivery (14), induced delivery (2), cesarean section (2), Apgar

score ≥7 (18). Among the 13 pregnancies in women exposed to TFL: elective abortion

(11), spontaneous abortion (0), livebirth (2), gestation time >37 weeks (2), normal birth

weight (2), congenital malformations (0), normal delivery (1), induced delivery (1), Apgar

score ≥7 (2). The TFL group was associated with a 22% reduction in the odds of any

adverse event relative to controls, although this association was not significant (OR 0.78;

95% CI 0.16–3.72, p = 0.753).
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Conclusion: Pregnancy outcomes were consistent with those of the general population.

The malformation reported of the partner to a TFL-treated man is comparable to the rate

of plagiocephaly reported in Denmark.

Keywords: teriflunomide, pregnancy-related outcomes, nationwide Danish register study, teriflunomide treated

men and women, pregnancy-related outcomes for mother and child

INTRODUCTION

Multiple sclerosis (MS) is a progressive chronic neurological
disease manifesting in two main phenotypes, relapse-remitting
(RR) and primary progressive course. Approximately 85% of MS
patients have a RR onset with recurring acute relapses over a
period of decades, transitioning at some point to a progressive,
secondary phase with or without relapses (1). MS occurs more
frequently in women than men, and the mean age in recent
years at onset according to the DanishMultiple Sclerosis Registry
(DMSR) is 35.5 years [standard deviation (SD) 10.5] for men
and 34.6 (SD 10.7) for women, which means the majority of the
patients is in their reproductive years at disease onset.

Teriflunomide (TFL) is a once-daily oral immunomodulator,
which was approved for the treatment of RRMS in the European
Union in 2013. TFL is a first-line disease-modifying therapy
(DMT) with prolonged half-life. Over 21 days, 60.1% of the
administered dose is excreted but it may be detectable up
to 2 years after discontinuation. The elimination of TFL
from the circulation can be expedited using an accelerated
elimination procedure (AEP) (2). Based on animal studies, TFL
is contraindicated in women who are planning pregnancy due to
the occurrence of teratogenicity and embryo lethality in rats and
rabbits (3, 4). TFL can be detected in human semen, but the risk
of male-mediated embryo fetal toxicity through TFL-treatment
is considered low (5). In the United States, the Food and Drug
Administration (FDA) advises men to use barrier contraception
to prevent the active substance from transferring to their female
partner and potentially her fetus. This has not been a requirement
in Europe. A recent report (6) presenting post-marketing and
clinical study data on 231 female MS patients with TFL-exposed
pregnancies (with known outcomes in 129) found no evidence
of a teratogenic signal, although three structural abnormalities
were reported. Exposure to TFL among the majority of these
women had been limited to the first trimester since patients were
recommended to undergo an AEP in case of conception.

After discovering the teratogenic link between thalidomide
and malformations in more than 10,000 children worldwide,
registries were founded to facilitate epidemiological research
and surveillance concerning causes of congenital malformation
due to genetic, environmental, or medical exposures. Congenital
malformations, such as spontaneous abortions, pre-mature birth,
physical anomalies, or neurobehavioral outcomes can indicate
adverse pregnancy outcomes linked to teratogenic exposure.

The objective of our study was to investigate pregnancy-
related outcomes in in TFL-treated female MS patients, in
women whose sexual male partners are MS patients treated with
TFL registered in the DMSR, and in the new-born of such.
Furthermore, we want to investigate any association between

TFL exposure during pregnancy and adverse pregnancy-related
events.

MATERIALS AND METHODS

Registries
All Danish citizens have access to universal health care,
which is government-funded through taxation. Most Danish
registries have existed for decades, and they are nationwide and
population-based, and which provide an excellent foundation for
epidemiological research. Persons residing in Denmark have a
unique 10 digit ID-number (Civil Registration Number CPR)
which can be used to identify and merge data from all Danish
registries (7).

The Danish Multiple Sclerosis Registry (DMSR)
The DMSR was established in 1956 and contains data on all
Danes who have been diagnosed by a neurologist as having
MS. Data are collected continuously and provide information
on a number of baseline and clinical variables (8). Since 1996,
a mandatory notification of all MS patients treated with a
DMT has been carried out, thus ensuring a high level of
data completeness. The registry contains baseline and clinical
information on all Danish MS patients with year of onset and
diagnosis, disease course, information on DMT, treatment start,
treatment stop, previous DMTs and current DMT in addition
to first clinical symptom, diagnosis (phenotype), relapses, and
Expanded Disability Status Scale (EDSS) (8).

The Danish Medical Birth Register (DMBR)
The DMBR was established in 1973 and was reconstructed and
updated in 1997. The register monitors the health of pregnant
women and contains data on all births in Denmark. Several
sources feed data into DMBR, such as the Danish National
Patient Registry, the Danish Civil Registration System, and
data on stillbirths and home deliveries. Data on the mother
include height, weight, age, smoking status, and several variables
related to the birth, such as pregnancy and birth complications,
parity, infection, pain relief during labor, cesarean section,
induction of labor etc. In relation to the new-born, it contains a
variety of information including sex, gestational age, congenital
malformations, Apgar score after 5min, height, weight, head
circumference, and birth status (live birth/stillborn) (9).

The Danish National Patient Registry (DNPR)
The DNPR registers every individual episode of a person’s
contact with hospitals and outpatient clinics in Denmark. It
contains multiple information including date of visit, type of
contact, examinations, admission type, tests, surgery, treatment,
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diagnosis, residence, and hospital visited. Diagnoses, surgery,
other treatment, anesthesia, and examinations are provided with
a code that translates to the standard coding system of the
International Coding of Diseases (ICD) (10). TheDNPR provides
data for several other registries in Denmark including the DMBR
and The Register of Legally Induced Abortions. All Danish
regions report data to the DNPR, and data are updated at least
monthly.

The Register of Legally-Induced Abortions (RLIA)
The RLIA was established in 1973 when abortion before the end
of gestation week 12 became legal in Denmark. The data are
mainly from the DNPR, but also includes data from specialized
clinicians who carry out legal abortions. Data from the RLIA
contain a variety of information including age of the woman,
gestational week, prior abortion, type of procedure, legal reason
for abortion, complications and admission date (11).

Data Collection
This study was a cohort study comparing outcomes of TFL-
treated female MS patients and partners to TFL-treated male
patients using prospectively collected nationwide data from the
DMSR. The TFL-treated men and women were matched at age
of conception 1:4 with controls from the general population.
Patients were included from 1st of January 2014 until 31st of
December 2016. Included patients should have a confirmed
MS diagnosis according to the McDonald criteria, treatment
start date with TFL at least 30 consecutive days prior to
conception, and conception occurring at the latest 2 years after
discontinuation of TFL. The data were merged with the Danish
Medical Birth Register, Danish National Patient Registry, and
the Register of Legally-Induced Abortions by a unique personal
identification number.

In Denmark, pre-term birth is defined as birth before gestation
week 37 as described in the literature (12–14). Low birth weight
in relation to gestational age was based on the Danish guidelines
from the Department of Neonatology, Copenhagen University
Hospital (15). Low birthweight for children born after week 37
is defined as a birthweight <2,500 g, and low birthweight for
children born week 33–36 is defined as a birthweight <2,300 g.

Registration of congenital malformations in Denmark is
reported and registered at birth and up to 1 year after birth
to allow for delayed identification, as some anomalies are
undiagnosed until sometimes after birth e.g., congenital heart
disease.

The Apgar score has been used since 1952 and is a quick
way to assess the postnatal condition of the new-born. The
perspective is to assess for asphyxia, as well as, determine the
risk of neurological deficits (16). The assessment is comprised of
five components with a maximum of total 10 points, where 7–10
points is considered “reassuring” of normality.

Controls
The reference cohort was selected randomly from the general
population using the Danish Civil Registration System (7), and
pregnant women were chosen as controls. We sampled four
controls per one TFL-treated man or woman matched by age at

conception. Matching of the control population for the female
partners of TFL-treated men was done by the age of the man
at conception, due to lack of availability of information on the
female partners of TFL-treated men.

Statistical Analysis
Categorical variables were summarized using frequency and
percentage. Continuous variables were summarized using mean
and standard deviation (SD) or median and interquartile range
(IQR) as appropriate. Logistic regression was used to analyse the
association between TFL-treated patients and any adverse event
(defined as congenital malformation, spontaneous abortion, pre-
term birth, or Apgar score <7), relative to the control group.
A Hosmer & Lemeshow test was used to assess the logistic
regression for goodness-of-fit. For all statistical comparisons, p<

0.05 was considered significant. All analysis was conducted using
SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).

RESULTS

A total of 2,450 TFL-treated patients with MS were identified
through the DMSR, of which 31 (18 men and 13 women) met
all inclusion criteria. The women had a mean age of 26.6 years
(SD 4.9) when diagnosed with MS and 28.5 years (SD 4.7) at
conception, while the men had a mean age of 30.7 years (SD 6.7)
at diagnosis and 34.1 years (SD 3.9) at conception (Tables 1, 2).
In the female study group, 7 of 13 (53.8%) were being treated with

TABLE 1 | Baseline characteristics of patients in the study group n = 31 (MS*

patients exposed to TFL** >30 consecutive days when becoming/partner

becoming pregnant and up to 2 years after discontinuation of TFL treatment), and

the reference group (n = 124).

Study group n = 31 Reference group n = 124

Male Female Male Female

N (%) 18 (59%) 13 (41%) 72 (59%) 52 (41%)

YEAR OF BIRTH, n

1965–1984 16 3 64 23

1985–2002 2 10 8 29

AGE AT ONSET IN YEARS, n

0–24 4 6 N/A*** N/A

25–34 11 6 N/A N/A

35–44 3 1 N/A N/A

Mean

(min;max)sd***

29.16

(12;38)6.76

25.23

(16;36)5.18

N/A N/A

AGE AT DIAGNOSIS IN YEARS, n

0–24 2 5 N/A N/A

25–34 9 7 N/A N/A

35–44 7 1 N/A N/A

Mean

(min;max)sd****

30.72

(13;39)6.79

26.61

(19;37)4.91

N/A N/A

*Multiple sclerosis.

**Teriflunomide.

***Not applicable.

****Standard deviation.
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TABLE 2 | Data regarding conception within the study group n = 31 (MS* patients

exposed to TFL** >30 consecutive days when becoming/partner becoming

pregnant and up to 2 years after discontinuation of TFL treatment), and the

reference group (n = 124).

Study group n = 31 Reference group n = 124

Male

(n = 18)

Female

(n = 13)

Male

(n = 72)

Female

(n = 52)

AGE AT CONCEPTION

19–24 0 3 0 12

25–30 3 6 13 24

31–35 10 3 40 12

36–40 3 1 12 4

>40 2 0 8 0

Mean

(min;max)sd***

34.1

(27;42)3.9

28.5

(19;38)4.8

34.1

(27;42)3.9

28.5

(19;38)4.6

DURATION ON TFL AT CONCEPTION IN DAYS

31–90 5 2 N/A**** N/A

91–180 4 3 N/A N/A

181–365 5 1 N/A N/A

>365 3 1 N/A N/A

Mean

(min;max)sd

198

(34;463)148.1

154

(47;380)111.3

N/A N/A

CONCEPTION AFTER TREATMENT STOP IN DAYS

31–90 0 1 N/A N/A

91–180 0 1 N/A N/A

181–365 1 2 N/A N/A

366–730 0 2 N/A N/A

Mean

(min;max)sd***

343 316.5

(35;688)234.8

N/A N/A

*Mulitple sclerosis.
**Teriflunomide.
***Standard deviation.
****Not applicable.

TFL at conception, with an average treatment period of 154 days
(SD 111.3). The remaining six conceived on average 316 days (SD
234.8) after discontinuation. Two TFL treated women decided to
continue their pregnancy to term, one conceived 35 days after
discontinuation of TFL (352 total days on TFL), and the other 95
days after discontinuation of TFL (179 total days on TFL). Only
oneman fathered a child after discontinuing TFL (343 days later),
while the remaining 17men had been treated with TFL an average
of 198 days (SD 148.2 days) at child conception (Table 2).

A total of 31 pregnancies were included in the analysis,
matched to 124 controls. Of the 31 pregnancies comprising
the study group, 13 were women treated with TFL whilst the
remaining 18 were female partners of TFL-treated men. All 18
female partners of TFL-treated men completed their pregnancies
resulting in live births. Of these, 17 had a normal gestation time
(>37 weeks) and one gave birth in week 36. All new-borns
recorded a normal birth weight relative to gestation week, and
no spontaneous or elective abortions were reported. 88.89% (16
out of 18) of the female partners to a TFL-treated man had
vaginal delivery, of which two were induced, and the remaining
two had cesarean section (Table 3). All 18 new-borns had Apgar

TABLE 3 | Characteristics of delivery outcomes; namely still or live birth, abortions

and delivery mode in the study group n = 31 (MS* patients exposed to TFL** >30

consecutive days when becoming/partner becoming pregnant and up to 2 years

after discontinuation of TFL treatment), and the reference group (n = 124).

Study group (n = 31) Reference group (n = 124)

Male

(n = 18)

Female

(n = 13)

Male

(n = 72)

Female

(n = 52)

BIRTHS

Still births 0 0 0 0

Live births 18 2 72 37

ABORTIONS

Elective 0 11 0 12

Spontaneous 0 0 0 3

DELIVERY

Normal birth

singleton

14 1 42 24

Normal birth

multiples

0 0 1 0

Induced 2 1 19 (1 missing) 5

CESAREAN

Acute 2 0 5 6

Elective 0 0 4 2

*Multiple sclerosis.
**Teriflunomide.

score ≥7, and one new-born had a congenital malformation
(plagiocephaly) (Table 4).

Among the 13 pregnant women treated with TFL, 11 (85%)
chose an elective abortion. There were no reports of spontaneous
abortions. Two women chose to continue the pregnancy to term,
both of which resulted in live births. Both pregnancies were
carried to term with normal gestation time >37 weeks, normal
birth weight, one vaginal delivery, and one induced. Both new-
borns had an Apgar score ≥7 with no reports of congenital
malformations (Tables 3, 4).

The study group had two adverse events, namely one
congenital malformation and one pre-term birth (week 36).
The comparison group presented 14 adverse events, namely
three spontaneous abortions, eight pre-term deliveries, and
three congenital malformation (Table 4). Stillbirth has not been
included as an adverse event, as no such event occurred in
either of the groups. The study group was associated with a 22%
reduction in the odds of any adverse event relative to controls,
although this association was not significant (OR 0.78; 95% CI
0.16–3.72, p= 0.753).

DISCUSSION

In this nationwide population-based study, we did not find any
deviations in either women or new-borns among female patients
treated with TFL or in women of male partners treated with TFL
in terms of spontaneous abortions, pre-term delivery (<week
37), low Apgar score (<7), or congenital malformations when
compared to the general population. Elective abortions among
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TABLE 4 | Characteristics of birth-related outcome; namely gestation time, birth

weight in relation to gestation time, Apgar score, and congenital malformations in

the study group n = 31 (MS* patients exposed to TFL** >30 consecutive days

when becoming/partner becoming pregnant and up to 2 years after

discontinuation of TFL treatment), and the reference group (n = 124).

Study group (n = 31) Reference group (n = 124)

Male

(n = 18)

Female

(n = 13)

Male

(n = 72)

Female

(n = 52)

GESTATION TIME

Normal >37

weeks

17 2 67 34

Pre-term birth

<37 weeks

1 0 5 3

BIRTH WEIGHT IN RELATION TO GESTATIONAL WEEK

Normal 18 2 68 37

Low 0 0 3 0

APGAR SCORE

Low <7 0 0 0 0

Normal ≥7 18 2 71 (1 missing) 37

CONGENITAL MALFORMATIONS

Plagiocephaly 1 0 1 0

Cardiac

septum

0 0 1 0

Respiratory

system

0 0 0 1

*Multiple sclerosis.
**Teriflunomide.

women treated with TFL were unsurprisingly higher, although
the two women who continued the pregnancy had healthy live
births. None of the female partners of the TFL-treated men chose
an elective abortion.

Overall, studies investigating the perinatal characteristics and
obstetric complications in mothers with MS compared to the
background population have not found any differences in either
neonatal or obstetric complications (17, 18), although one study
found a slightly higher rate of induced labor and cesarean
delivery among women with MS than in the reference group
(19).

In general, female MS patients who intend to get pregnant are
advised to discontinue their DMT based on the potential risk of
adverse events in relation to DMT exposure during pregnancy.
However, this might result in a worsening of the disease (20).

Teriflunomide is contraindicated in women who are pregnant
and women of childbearing potential who are not using
effective contraception during treatment based on preclinical
findings of embryotoxicty and teratogenicity in rats and rabbits
when treated with clinically relevant doses of TFL. Later
research showed a difference in the affinity of dihydroorotate
dehydrogenase for TFL between rats and humans. Thus, TFL
is a more potent inhibitor of the rat enzyme than the human
enzyme, which may reflect the observed embryotoxicity and
teratogenicity in rats (21–23). In Europe, it is not advised
against fathering children during TFL treatment. Also, although
women are required to use reliable contraception when treated

with TFL, pregnancies in women treated with TFL have been
reported.

In Denmark, the estimated incidence of spontaneous
abortions in the general population is 13.5% (24), and the
incidence of pre-mature new-born (<37 weeks) has been stable
at 6% during the last 5 years based on numbers from the Danish
National Birth Register (25). In this study, there were no cases
of registered spontaneous abortions among the TFL study group,
and one pre-term birth in the TFL-exposed group equivalent to
an incidence rate of 5.5%; corresponding to that of the general
population.

Previous research investigating pregnancy-related outcomes
of mother and new-born in relation to TFL exposure (6, 26)
reported a higher incidence rate for spontaneous abortions in
the TFL-treated patients, respectively, 18.6 and 21%, respectively,
than that reported for the general population in Denmark.
Kieseier et al. reported a mean of gestation week 39 (range 36–
44 weeks) among women treated with TFL equivalent to what is
reported in this study (both >week 37).

Plagiocephaly, the congenital malformation reported in the
TFL-exposed group in this study, is also known as “flat head
syndrome.” It is a condition characterized by an asymmetrical
distortion of the infant’s skull. It is important to differentiate
between craniosynostosis and positional skull deformities, also
known as synostotic and non-synostotic plagiocephaly (27). In
case of skull deformity at birth, a pediatrician should differentiate
whether the cause is synostotic, as synostotic plagiocephaly
worsens over time, causes severe complications, and often
requires surgery. Deformational plagiocephaly (DP), or non-
synostotic plagiocephaly, is normally benign and the most
common cause of plagiocephaly with prevalence of 5–48% in
healthy new-borns (27, 28). It can be caused when the child
passes through the birth canal, or due to gravitational forces,
such as the dramatic increase in DP that was seen in the 1990’s
after implementing the recommendation for infants to sleep in
a supine position to decrease the risk of sudden infant death
syndrome.

Kieser et al. found no structural or functional abnormalities
at birth among new-borns of either TFL treated women
or in women whose male partners were treated with TFL.
It is not mentioned if abnormalities appearing after birth
were considered. Vukusic et al. reported one fetal death
≥20 weeks of gestation, and three structural abnormalities,
but without comparison of the results to any reference
group or general population. Both previous studies conclude
no evidence of teratogenic signals in TFL-treated women
or in females whose male partners were treated with
TFL.

A strength of this study is the use of nationwide population-
based data, although the small sample size is a limitation
in terms of generalizations or absolute recommendations.
The incidence of spontaneous abortion, pre-term delivery, or
congenital malformation in female partners of TFL-treated men
and TFL-treated women is no different than that of the general
Danish population. A possible limitation of this study is the
unknown age of the female partners of the men treated with
TFL.
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CONCLUSION

The post-marketing analyses of this report, based on nationwide
register-based data from the availability of TFL in Denmark until
1st of January 2017 do not indicate teratogenicity due to TFL in
pregnancy or pregnancy-related outcomes. This is in line with
the known outcomes from both clinical trials and post-marketing
studies.

Further analyses of available pregnancy data with TFL are
warranted to better quantify the risk associated with TFL
exposure in pregnancy before concluding against teratogenicity.
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