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Editorial on the Research Topic

Induction and Maintenance of Long-Term Immunological Memory Following Infection

or Vaccination

The term immunological memory is attributed to the phenomenon of qualitatively and
quantitatively improved and/or enhanced antigen/epitope-specific recognition by various cells of
the adaptive immune systemwith an ensuing improved and/or enhanced effector function. Because
of the terminology used to describe this phenomenon, efforts have been focused on how to fit this
phenomenon into various hypotheses, which all have to involve some form of remembrance of
the previous interaction with a specific antigen/epitope. However, the way linguistics, language
and words influence our thought process is an important area which was beyond the scope of this
special issue.

How the adaptive leukocytes remember previous encounters has been mainly attributed to
internal switching mechanisms involving prolonged cellular longevity, or interaction with antigens
or fragments/epitopes thereof presented by select antigen presenting cells, such as follicular
dendritic cells or long-termmemory B cells. However, much remains to be elucidated regarding the
mechanisms that underlie induction andmaintenance of immunological memory through intrinsic
or extrinsic pathways following infection or vaccination. In addition, there is sufficient evidence
to strongly suggest important differences in induction and maintenance of memory in mucosal
inductive and effector sites compared to systemic sites. In addition, the rules that dictate the fate of
memory TH, CTL, and B cells appear to be differentiated divergently.

In this special issue, we had important contributions in most aspects of B and T cell memory of
both mucosal and systemic origins. The study of the quality of antibodies produced by memory
B cells as defined by their higher avidity against specific antigenic epitopes is of paramount
importance. In this regard, Krueger et al. reported the existence of a recently described plasma cell
population that originated from memory B cells, lived in bone marrow, and secondary lymphoid
organs, rapidly produced higher avidity antibodies than primary plasma cells, but was short-lived.
The same main authors reported another important discovery (Krueger et al.) that involved the
essential role of TLR signaling, and hence innate responses, in the induction of the aforementioned
memory B cell derived secondary plasma cells. The interplay of innate and adaptive responses in the
maintenance of memory B cells has been studied and debated for some time. In 2006, Nemazee’s
team reported that MyD88-deficient mice were still able to respond normally to LPS-derived, as
well as non-TLR-related, but inflammasome-inducing, vaccine adjuvants, such as Alum, hence
suggesting that TLR signaling was not a pre-requisite for B cell responses using such adjuvants (1).
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Currently, vaccine schedules in humans, and even in animal
models, are generally based on what schedule induces high
enough acute responses, and it is not known which vaccination
schedule induces the highest acute and memory responses.
Therefore, the article by Mantile et al. was of high consequence as
it identified a “consolidation phase” in the induction of epitope-
specificmemory B cells, as a window of time during which certain
disrupting stimuli could hamper the generation of memory.
This phenomenon, if confirmed by others, could have significant
consequences on the vaccination schedules.

The issue of memory induction following vaccination is linked
to vaccine adjuvants and delivery systems, and their nature
as replicating, metabolically alive but non-replicating, or non-
living and non-replicating (such as TLR agonists, Alum, etc.)
The commonly unwritten rule is that vaccine adjuvants and
delivery systems must induce pro-inflammatory innate responses
in order to induce acute and memory responses, although this
view has recently been challenged by the introduction of a vaccine
adjuvant that induced strong adaptive B and T cell responses in
the absence of strong innate immune responses (2, 3).

Whether memory cells reside locally in tissues, particularly
in mucosal tissues which are the main portal of pathogen
and antigen entry, or are derived from other peripheral sites,
has been another topic of paramount significance in memory
maintenance. Two original papers in this issue addressed this
very problem elegantly. In an influenza A model of infection,
Suarez-Ramirez et al., showed the significance of the mucosal
homing receptor CD103 (αEβ7) expression that can define
tissue resident memory and primary CD8+ CTL in lungs and
respiratory draining lymph nodes (LN), the mediastinal LN.
Moreover, the check point inhibitor PD-1 and TGFβ also played
differential roles on the primary/naïve and resident antigen-
experienced CTL. As for the role of resident CD4+ memory
TH cells, in a Helicobacter pylori model of infection, Liu et al.
demonstrated the importance of local subserous vs. traditional
remote vaccine administration for induction and maintenance of
memory tissue resident CD4+ TH cells in the stomach, and these
vaccine induced TRM CD4+ cells played amain role in protection
against H. pylori infection upon challenge. Because CD4+ TH
cells, which recognize more diverse epitopes on influenza viruses
than B cells, play a central role in B cell memory responses,
Nelson and Sant devoted their paper on how CD4+ T cell
imprinting and editing impacts overall memory B cell responses
in humans against influenza virus infections.

Much of what we have inferred about the induction and
maintenance of immunological memory in humans has been
from animal and mostly murine studies. Therefore, the review
by Palm and Henry was valuable for shedding light on the
differences and similarities between B cell memory induction
and maintenance following vaccination and infection in humans

and mice. Influenza infections in humans and how to prevent
them through induction of memory B cell responses that can
be neutralize multiple seasonal or pandemic strains, was the
focal point of the review by Auladell et al. with co-authorship
by Dr. Peter Doherty, a Nobel prize winner, who has recently
focused also on influenza vaccines. In this review, the role of
B and follicular T cells in memory induction was examined.

Special attention was also placed on the potential of inducing
memory CTL responses against conserved regions of influenza
viruses in the context of influenza infections and vaccinations,
while bearing in mind that differences in HLA types may hamper
such efforts in vaccine development. In their Perspective Article,
Takamura and Kohlmeier highlighted the differences in TRM

vs. circulating lung CD8+ T cells, in the context of central
and TEM cells, and delineated special niches within lungs that
mainly contain TRM. Understanding how and which exogenous
cytokines influence memory cells is highly valuable and in this
context Kalia and Sarkar pointed out that IL-2 plays a key role
in maintaining effector and memory CD8+ T cells, by triggering
metabolic and transcriptional alterations in such cells.

Overall, this issue addressedmany central questions, butmany
more remain unanswered on the path to understand and employ
various memory stages and processes in vaccine development
and vaccination schedules. Methods of tagging epitope-specific
cells and tracking them throughout the evolution of acute vs.
memory responses from first contact with the epitope until death
with regards to their transcriptional signature at various stages,
and their interactions with the antigen/pathogen as well as with
other cells and cellular products could shed much needed light
on the enigma of long-term immunological memory. Specifically,
tagging epitope-specific IgM+ B cells throughout their lifetime,
and to determine how some acquire many mutations, without
switching to downstream isotypes such as IgG, IgA, or IgE,
leading to secreted IgM with higher affinities, and whether
and when they traffic to the bone marrow, may be a good
start on this long path. Such studies may identify hitherto
unknown ways of considering the concept of immunological
memory (4).
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Interleukin-2 (IL-2) regulates key aspects of CD8T cell biology–signaling through distinct

pathways IL-2 triggers critical metabolic and transcriptional changes that lead to a

spectrum of physiological outcomes such as cell survival, proliferation, and effector

differentiation. In addition to driving effector differentiation, IL-2 signals are also critical for

formation of long-lived CD8T cell memory. This review discusses a model of rheostatic

control of CD8T cell effector and memory differentiation by IL-2, wherein the timing,

duration, dose, and source of IL-2 signals are considered in fine-tuning the balance of

key transcriptional regulators of cell fate.

Keywords: IL-2, CD8T cell memory, terminal effectors, autocrine, transcription factors, metabolism

INTRODUCTION

Interleukin-2 (IL-2)–the first cytokine to be identified and characterized more than three decades
ago—has emerged as a pleiotropic player in a variety of seemingly paradoxical immune functions.
Originally discovered for its immunoenhancing role of promoting T cell expansion during
mitogenic stimulation, IL-2 is also implicated in activation-induced cell death (AICD). Likewise,
IL-2 promotes a variety of effector (cytotoxic CD8, TH1) T cell responses, yet is indispensable for
the development, maintenance and function of regulatory T cells (Treg)—the very cells that serve
to suppress effector T cell responses. Further adding to the intrigue, even amongst the effector
subsets, IL-2 promotes CD8, TH1, and TH2 effector responses, but suppresses inflammatory TH17

responses, and also inhibits the differentiation of follicular helper T (TFH) cells required for B cell
germinal center reactions in secondary lymphoid organs. Collectively, these findings support the
thesis that IL-2 critically regulates the balance of immunostimulatory and immunosuppressive
forces during immune responses to foreign antigens as well as self-antigens during homeostasis.
While our understanding of the molecular, transcriptional, and metabolic regulation of CD4T cell
differentiation into TH1, TH2, TH17, TFH, and Treg subsets by IL-2 is abundant [see previous reviews
(1–5)], the IL-2-dependent gene regulatory networks that drive effector and memory CD8T cell
differentiation remain to be fully defined. In this review we will focus on IL-2 regulation of CD8T
cell responses; alongside a summary of current literature in the context of CD4 and CD8T cells,
we will also discuss how this niche area is poised for significant advances owing to newer tools
such as conditional ablation of IL-2 production and signaling in key subsets of immune cells in the
physiologically relevant setting of immunocompetent hosts.
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BALANCING PRIMARY AND SECONDARY

CD8T CELL IMMUNITY

CD8T Cell Responses to Acute Infections
A typical CD8T cell response to primary infection with acute
viral or intracellular bacterial pathogens is characterized by
three distinct phases—expansion, contraction, and memory.
Upon stimulation with cognate antigen in conjunction with
costimulatory and inflammatory ligands, naïve cells undergo
massive clonal expansion (up to 50,000-fold) and concomitant
effector differentiation to generate large numbers of cytotoxic
T lymphocytes (CTL), which serve to control the pathogen
by migrating to peripheral sites of infection and elaborating
cytotoxicity against infected target cells and producing effector
cytokines such as IFN-γ and TNF-α (6–11). It is now well-
established that the effector CTL pool broadly contains two
distinct subsets—(1) short-lived effector cells (SLECs), which are
fated to rapidly die after pathogen clearance, and (2) memory
precursor effector cells (MPECs) (12–16), which are imprinted
with antigen-independent survival capabilities for mediating
long-term protection against secondary challenge (17–19). Thus,
supporting the concept of memory programming, or imprinting
of cardinal memory properties during primary expansion (20–
23), several studies have now demonstrated that the balance of
MPECs and SLECs can be altered by manipulating the duration
of antigen, IL-2 and other inflammatory cytokine signals (14–
16, 24). In fact, as discussed later, the heterogeneity of the
memory CD8T cell pool is likely programmed by differential
signals accrued during the primary expansion phase. IL-2 signals
(paracrine or autocrine) in particular exert crucial roles in
effector and memory differentiation and function.

Regulation of Effector CD8T Cell

Responses by IL-2
Optimal T cell activation with cognate peptide-MHC-I and
costimulatory ligands result in IL-2 production and induction
of IL-2Rα (CD25) expression, which along with IL-2Rβ (CD122,
also used for IL-15 signaling), and IL-2Rγ (CD132, also referred
to as common γ-chain as it is shared by other cytokines
of the γ-chain family such as IL-4, 7, 9, 21) (5), forms the
high affinity heterotrimeric receptor for robust IL-2 signal
transduction and clonal expansion and effector differentiation
(2). Much of the early work on IL-2 regulation of T cell
responses relied on reductionist in vitro studies where amount
and duration of TCR and IL-2 stimulation can be tightly
controlled. These studies established a critical role for IL-2 as
a T cell growth factor in driving cell cycle progression and
expansion of CD8T cells following TCR stimulation (25). Similar
conclusions were reached following in vivo administration of
IL-2, which engendered enhanced effector and memory pools
of antigen-specific CD8T cells (26–29). While these studies
demonstrate that CD8T cell differentiation events are amenable
to manipulation by IL-2, physiological relevance of IL-2 in
shaping a developing CD8T cell response was uncovered
following the development of Il2 germline-deleted mice. Studies
in IL-2 knockout mice are confounded by Treg deficiency
and associated spontaneous lymphoproliferative disease (30,

31). Hence, irreconcilably disparate outcomes of reduced or
unaltered expansion and effector differentiation were reported
in the context of infections and peptide immunization in IL-
2 knockout mice (32–35). Nonetheless, bypassing pleiotropic
immune effects in straight IL-2 and IL-2Rα (CD25) knockout
mice, subsequent studies engaged the strategy of adoptively
transferring IL-2- or IL-2Rα-deficient TCR transgenic CD8T
cells into wild-type recipients. In these studies, enumeration of
antigen-specific CD8T cells in an otherwise wild-type milieu
using congenic differences without the need for restimulation,
clearly established a requirement for IL-2 signals in driving
optimal primary expansion of antigen-specific CD8T cells in
secondary lymphoid as well as non-lymphoid tissues (36, 37).
IL-2 promotes effector differentiation through STAT-5-mediated
Blimp-1-dependent induction of effector molecules (16, 38–
42). In this regard, proinflammatory cytokine signals such as
IL-12, IFN-γ, and type-1 interferons (IFN-α/β)—commonly
referred to as signal 3 for their role in promoting optimal clonal
expansion of effector CD8T cells—are believed to complement
IL-2, possibly non-redundantly (43, 44). Such collaboration,
particularly between IL-12 and IL-2 has been recently shown to
be important for optimal expression of transcription factors T-
bet and Blimp-1, which synergize to drive a terminal effector
differentiation program in CD8T cells (45).

Regulation of Memory CD8T Cell

Responses by IL-2
In addition to promoting CD8T cell expansion and effector
differentiation, IL-2 signals are also necessary for memory
responses. IL-2Rα upregulation early after TCR stimulation is
critical for formation of memory cells with robust secondary
expansion capability (46, 47). Subsequent correlations of the
duration of IL-2Rα expression with final memory outcome in
a physiologically relevant setting—where the natural course of
CD8T cell response was not disturbed—revealed that rapid
downregulation of IL-2Rα is equally important for memory
development (16). Fate-tracking analyses showed that following
an initial burst of IL-2 signals through IL-2Rα, curtailed
expression of IL-2Rα and diminished IL-2 signaling is associated
with memory fate, whereas prolonged expression of IL-2Rα and
stronger IL-2 signaling drives terminal effector differentiation
(16). Stronger IL-2 stimulation (100 U/ml) during in vitro
priming also drives terminal differentiation compared to weaker
signals (10 U/ml) (41). Similar findings have been reported in
the DC-peptide immunization models as well as during murine
infection with Lymphocytic choriomeningitis virus (LCMV),
Listeriamonocytogenes (LM), Vaccinia virus (VV), andVesicular
stomatitis virus (VSV) (16, 48). Moreover, constitutive activation
of STAT-5 (key signal transducer of common γ-chain cytokines)
also causes terminal differentiation (49). Consistent with the
pro-proliferative role of IL-2, terminally differentiated effector
CD8T cells (SLECs) that express IL-2Rα for longer duration
during an acute infection expand more than their memory-fated
counterparts (MPECs) that downregulate the expression of IL-
2Rα earlier (15, 16, 50–52). Together, these findings support
the notion that metered IL-2 signals are required for optimal
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protective immunity and present a model of rheostatic control
of CD8T cell fates by IL-2 during acute infections.

All memory cells that survive after clearance of a primary
infection are not created equal. Protective CD8T cell immunity,
as we understand it today, consists of collaborative defense
against secondary challenge through concerted actions by a
complex mixture of memory cells with distinct phenotypes,
location, migratory properties, polyfunctionality, antigen-
independent longevity, and potential for mounting rapid and
robust clonal expansion and effector functions upon secondary
challenge (44). As is expected from a spectrum of effector
CTLs—that develop in response to varying doses and durations
of antigen perceived in a variety of immune contexts, such as
dose and duration of cytokines (e.g., IL-2, IFN-I, IL-12, IL-21,
TGFβ, etc.), costimulatory signals, CD4T cell interactions—a
veritable spectrum of memory cells exist in a host after antigen
clearance. At the risk of oversimplifying the CD8T cell memory
complexity, one can arguably categorize memory cells broadly
into two major subsets—lymphoid or central memory (TCM),
and non-lymphoid memory, which is further distinguished
into tissue-resident memory (TRM), and migratory memory.
Defined by their location, central memory cells largely recirculate
through secondary lymphoid organs; tissue-resident memory
(TRM) cells—true to their name—set up permanent residence at
front-lines of pathogen exposure; whereas migratory memory
cells comprise a heterogeneous population that is capable
of recirculation to peripheral tissues, and may be further
distinguished by intravascular staining methodology into the
CX3CR1hi effector memory subset (TEM) which does not enter
extravascular space, and the less differentiated CX3CR1int

memory subset capable of migration into extravascular spaces
(53, 54). TRM cells serve effectively as the first line of defense
against infections by virtue of their key properties of location
at barrier sites and rapid elaboration of effector functions
(cytotoxicity against infected target cells and effector cytokine
production). Consistent with their ability to recirculate through
peripheral tissues, TEM cells retain higher expression of effector
molecules, and are believed to aid TRM cells in protecting against
secondary challenge along with the extravascular migratory
memory cells. In contrast, TCM cells largely downregulate their
effector program after antigen clearance, but are capable of
rapid upregulation of the effector program upon antigenic
rechallenge, also have superior polyfunctionality (ability to
coproduce multiple cytokines such as IL-2, IFN-γ, and TNF-α),
and expand more vigorously to aid the TRM and migratory cells
during secondary challenge.

Developmentally, fate-tracking experiments show that
effector CD8T cells that rapidly downregulate IL-2Rα largely
give rise to central memory and effector memory cells. In
comparison, effector CTLs, with prolonged IL-2Rα expression,
largely give rise to terminal effector and effector memory fates;
and curtailed stimulation of these cells by adoptive transfer
into infection-controlled recipients (removal of antigen, IL-2,
and all other infection-related signals) results in less terminal
differentiation, as evidenced by increased proportions of effector
memory cells compared to short-lived effector cells. These
observations are consistent with a role for increasing IL-2

in driving effector CD8T cells progressively toward terminal
differentiation. It is believed that TRM cells arise from relatively
less differentiated memory precursors, which first seed the
peripheral sites such as skin and small intestines (55, 56). In situ,
the precursors receivemicroenvironment-specific developmental
cues that drive the expression of unique chemokine receptors,
integrins, and transcription factors for TRM cell tissue residency
and local protection (56–61). Within the tissue, the transforming
growth factor β (TGF-β) exerts a critical role in directing the
TRM differentiation program in concert with other tissue-specific
signals (55, 56, 62, 63). While CD8 TRM cells capable of IL-2
production have been recently reported in skin and liver
(64, 65), and IL-2 signals have been shown to be important
for maintenance of allergic TH2-type cells in the lungs (66),
murine studies directed at understanding whether early IL-2
signals are necessary for TRM seeding of tissue sites, whether
prolonged IL-2 signals compromise TRM cells, and how TGF-β
signals and other tissue-specific factors work in conjunction
with IL-2 signals (synergistically or antagonistically) to drive
the differentiation, maintenance, and recall function of TRM

cells within the local sites remains to be fully explored. Likewise,
whether similar rules of progressive terminal differentiation with
increasing IL-2 signals are also active in situations of chronic
antigen stimulation—as occurs during persistent viral infections
and cancers—remains to be defined.

AUTOCRINE AND PARACRINE

PROGRAMMING OF T CELL FATES

During thymic development, T cell-derived IL-2 is critical for
development of Treg cells. (67). During homeostasis, IL-2 is
largely produced by CD25int and CD25lo CD4T cells (activated
by self-peptide and foreign peptide MHC-II complexes on DCs)
(68), the regulatory TR1 subset in peyer’s patches that also
produces IL-10 and IFN-γ (69), and to some extent by NK,
NKT, and CD8T cells [evaluated by mRNA (68)]. Recent studies,
involving IL-2 ablation in defined immune cells, have shown
that T cell-derived IL-2 is critical for maintaining numbers and
regulatory function of Treg cells in most secondary lymphoid
organs, with the exception of mesenteric lymph nodes where DC-
derived IL-2 was also observed to be important (67). During
an immune response, activated CD4T cells produce copious
amounts of IL-2 (2), with other IL-2 producers being CD8T cells
(70), DCs (71), NKT cells (72), and mast cells (73). There is
evidence that IL-2 may be transpresented by CD25 expressing
DCs (74) to deliver high affinity IL-2 signals to CD8T cells
that lack CD25 expression and only express the intermediate
affinity β/γ IL-2 receptor heterodimer—analogously to IL-15
transpresentation—thus, suggesting that IL-2 may be delivered
in a context-specific manner in vivo depending on the nature and
activation status of antigen-presenting DCs.

With highest levels in secondary lymphoid organs, IL-2
is believed to act in an autocrine or paracrine manner to
support effector and memory CD8T cell differentiation. We
have previously shown that memory-fated effector CD8T cells
selectively retain the ability for robust IL-2 production in
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response to antigenic stimulation compared to their terminally
differentiated effector counterparts (8, 15, 16, 44). Likewise,
polyfunctionality—the capacity for potent IL-2 production along
with other effector cytokines such as IFN-γ and TNF-α in
response to antigenic restimulation –is a hallmark property of
lymphoid central memory CD8T cells. Querying the functional
relevance of autocrine IL-2 production by memory-fated CD8T
cells, studies involving ablation of Il2 in a fraction of antigen-
specific CD8T cells during attenuated LM immunization (75)
as well as acute LCMV infection (unpublished observations),
demonstrate that the IL-2 needed for development of robust
memory CD8T cells capable of optimal secondary expansion is
largely autochthonous. Since CD4T cells are the major producers
of IL-2, it was long presumed that IL-2 serves as the mode of
CD4 help for development of protective memory CD8T cells
capable of robust secondary expansion. Thus, largely dismissing
CD4T cell-derived paracrine IL-2 as a mode of help, it is now
proposed that CD4T cells license DCs through the CD40-CD40L
axis to induce memory-fated CD8T cells to produce IL-2 (75).
Autocrine IL-2 production through CD27 signals has also been
shown to sustain survival of antigen-specific CD8T cells in
virus-infected non-lymphoid tissues (76, 77).

We further employed novel conditional IL-2 gene-deleted
mice (78) to investigate whether autocrine IL-2 signals are
specifically required during the programming phase of primary
responses, or during secondary expansion (unpublished
observations). Ablation of Il2 in memory CD8T cell immediately
prior to rechallenge did not result in compromised secondary
expansion, but ablation prior to primary infection resulted in
defective recall responses. These data suggest that autocrine
IL-2 signals during primary CD8T cell expansion are required
to institute a program of optimal secondary expansion. In the
context of CD4 help to CD8T cells, these instructive autocrine
IL-2 signals are believed to in part promote the expression
of a transcriptional corepressor, Nab2 for blocking TRAIL-
mediated apoptosis during secondary expansion (79, 80). Defects
in protective CD8T cell immunity associated with IL-2Rα

ablation are rescued by a strong bolus of exogenous IL-2 during
primary expansion (47), further supporting the idea that IL-2
exerts an early instructive role. Whether secondary expansion
defect associated with lack of autochthonous IL-2 maybe
similarly rescued by excessive paracrine IL-2 signals remains
unknown. Alternatively, it is possible that there are fundamental
differences (quantitative and/or qualitative) between autocrine
and paracrine IL-2 signals. In the case of CD4T cells, autocrine
IL-2 production in response to cognate antigen and CD70 signals
during late stages of influenza A virus infection has been shown
to be critical for upregulation of IL-7Rα (CD127) and survival
into memory phase (81). More recently, TFH and TH1 fates have
been linked to autocrine and paracrine IL-2 signals, respectively,
with different gene expression programs being triggered for
lineage determination in IL-2-producing and non-producing
CD4T cells (82). While CD8T cells that receive differential
strength or duration of IL-2 signals have expectedly unique gene
expression programs, it remains to be defined how autocrine and
paracrine IL-2 signals impact CD8T cell gene regulation and
metabolism.

FINE-TUNING THE REGULATORS OF T

CELL FATES

Transcriptional and Metabolic Regulation

of CD8T Cell Differentiation
IL-2 couples T cell expansion and effector differentiation through
induction of multiple downstream signaling cascades. Expression
of pro-differentiation transcription factors, Blimp-1 (16, 38, 40–
42) and Id-2 (83), is largely mediated through STAT-5 activation
in response to IL-2 stimulation (2) (Figure 1). Reciprocal
suppression by IL-2 of transcriptional factors that promote T
cell memory such as Bcl-6 (41, 84–88) (which also represses
Blimp-1 expression) is believed to further fix the terminal effector
differentiation program (45). IL-2 is believed to regulate the
expression of Bcl-6 through activation of Akt, which serves to
control the activity of Foxo family transcription factors (89),
Activation of Akt also alters the expression of proteins involved
in CD8T cell trafficking such as CD62L, CCR7, and S1P1, so
as to promote their migration to peripheral sites of infection
and inflammation (90–92). In addition to activation of STAT-
5 and Akt, which largely promote effector differentiation, IL-
2 links effector differentiation with clonal expansion through
activation of MAPK signaling and T cell activation, cell cycle
progression and survival programs (89). Sustained expression of
cMYC through IL-2 drives proliferation by upregulating cyclins
and anti-apoptotic molecule B-cell lymphoma 2 (Bcl-2), and by
downregulating p21 (93, 94). In addition to cell cycle regulators,
Myc also controls key metabolic aspects of T cell activation and
proliferation (95). Myc promotes glycolysis and glutaminolysis
through upregulation of key enzymatic and transporter proteins
(96, 97). In this regard, mTOR also serves as a primary hub
to integrate environmental cues from growth factors such as
nutrients and IL-2 to promote glycolysis (94, 98, 99), oxidative
phosphorylation and anabolic processes such as protein, lipid,
and nucleotide biosynthesis necessary to sustain proliferation
(96, 97). How effector and memory CD8T cell fates are defined
in vivo through differential metabolic programming by varying
IL-2 strength or duration remains to be elucidated.

A Model for Rheostatic Control of T Cell

Fates by IL-2
With diverse outcomes of memory and terminal effector
differentiation in CD8T cells that receive short/weak as opposed
to prolonged/strong IL-2 signals (as described earlier), it remains
to be determined whether rheostatic control of transcriptional
and metabolic regulation occurs. It is plausible that curtailed
or weak IL-2 signals drive lower levels of STAT-5, Akt and
mTOR activity, thus resulting in lesser proliferation, effector
differentiation and trafficking to peripheral sites of infection.
In contrast, strong and prolonged IL-2 signals may drive
stronger STAT-5, Akt, mTOR andMAPK activity, thus leading to
augmented proliferation, effector differentiation and migration
to peripheral sites of infection, where the microenvironmental
niches further reinforce the terminal differentiation programs
through induction of receptors for inflammatory cytokines such
as IL-12 (100), and inhibition of IL-7 (101) receptor levels.
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FIGURE 1 | Regulation of key intracellular signaling, transcriptional, and metabolic mediators of terminal effector vs. long-lived polyfunctional memory CD8T cell fates

are presented in the context of differential levels of IL-2 signals.

Notably, a role for Tregs has been implicated in regulating the
amount of IL-2 signals to memory-fated CD8T cells by acting
as IL-2 sinks (102) during CD8T cell expansion. During later
stages in the absence of antigen (when IL-2 is limiting) also,
Tregs continue to curtail T cell stimulation and proliferation to
maintain memory CD8T cell quiescence through CTLA-4 (103)
and IL-10 (104) inhibitory mechanisms and possibly through
IL-2 restriction (105). IL-2 is also bound to the extracellular
matrix through heparan sulfate moieties (106) to presumably
increase local concentrations, thus supporting the notion that
strong and prolonged IL-2 signals can be achieved in vivo.
Effectually, quantal differences in IL-2 signals may lead to
differences in signaling thresholds that ultimately result in
terminal effector gene expression patterns driven by Blimp-1,
T-bet, Id-2, and cMyc, or in memory lineage gene expression
patterns characterized by augmented Bcl-6, Eomesodermin and
Id-3. Indeed, analogous rheostatic control of CD4T cell fates
by differential levels of IL-2 signaling has been reported in the
balance of TH1 and TFH fate determination (107, 108) through
reciprocal regulation of T-bet and Bcl-6 by mTORC1-dependent
control of the glycolysis gene expression program (109).

CONCLUDING REMARKS

Tightly coupled to antigen and costimulation, IL-2 signals follow
close suit in T cell activation. In addition to driving expansion
and effector differentiation, IL-2 regulates long-term memory
outcome as well. Hence, it has been proposed as vaccine adjuvant
(110) to augment the size of the memory pool. However, given
its rheostatic regulation of terminal effector and memory fates
(Figure 1), careful investigation into the dose and duration of
IL-2 in a context specific manner is warranted to fine-tune the
balance of terminal effector and memory lineages. Hence, based
on the clinical need, timely and curtailed IL-2 signals might
be exploited to augment memory outcome during vaccination.
Alternatively—owing to its ability to induce proliferation and
effector differentiation–strong and sustained IL-2 signals might
be employed for immunotherapeutic interventions against
cancers and chronic infections that rely on activation of a large

pool of antigen-specific CD8T cells. In this quest, IL-2 has
gained particular recognition in treating melanomas and renal
cell carcinomas (111) by augmenting the tumor-reactive CD8T
cell pool. In the case of gene-modified T cell immunotherapies
also—for e.g., when patient T cells are bioengineered to express
chimeric antigen receptors or TCRs directed against select
tumor antigens–IL-2 is critical for expansion of CAR T cells
to sufficient numbers for therapeutic benefit (112). Even in
the case of PD-1 checkpoint blockade immunotherapy, IL-2
supplementation has offered combinatorial success with PD-
1 blockade in boosting quantitative and functional aspects of
exhausted CD8T cells for enhanced viral control (113). Needless
to say, the pleiotropic effects of IL-2 have posed significant
hurdles such as off-target side effects of IL-2 administration—
e.g., vascular leak syndrome due to activation of endothelial cells,
or induction of immune regulation by Tregs. To minimize side
effects, novel IL-2 muteins and immune complexes have been
developed to selectively target IL-2 to either effector or regulatory
T cells (5, 111, 114–116). By enhancing IL-2 binding to the β/γ
heterodimer typically expressed on effector CD8T cells, and thus
directing IL-2 away from Tregs—which typically express high
levels of IL-2Rα–these immune complexes and muteins provide
a means to avoid concomitant induction of Treg suppression
observed in case of rIL-2 administration that is counteractive
to the desired outcome of effector differentiation. We envisage
that detailed molecular dissection of the signal transduction and
transcriptional networks downstream of IL-2 signaling vis a vis
biological outcomes in individual immune cell-types will guide
innovative immunomodulatory strategies designed for distinct
clinical mandates. Along this concept, manipulations of the Bcl-
6-Blimp-1 and CD27-CD70 axes are being considered with the
goal of uncoupling effector differentiation effects of IL-2 from
expansion effects (89). Beyond the binary terminal effector or
memory outcomes conceived thus far, it is enticing to speculate
whether rheostatic regulation of MPEC and SLEC differentiation
states by controlling IL-2 signals might be exploited to balance
the immediate therapeutic benefits and long-term protective
outcomes during adoptive T cell therapy and therapeutic cancer
vaccines.
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Long lasting antibody responses and immunological memory are the desired outcomes

of vaccination. In general, multiple vaccine doses result in enhanced immune responses,

a notable exception being booster-induced hyporesponsiveness, which has been

observed with polysaccharide and glycoconjugate vaccines. In this study, we analyzed

the effect of early booster doses of multimeric protein vaccine (1-11)E2 on recall

memory to B epitope 1-11 of β-amyloid. Mice immunized with a single dose of (1-11)E2

stochastically display, when immunized with a recall dose 9 months later, either memory,

i.e., an enhanced response to epitope 1-11, or hyporesponsiveness, i.e., a reduced

response. Memory is the most common outcome, achieved by 80% of mice. We

observed that a booster dose of vaccine (1-11)E2 at day 15 significantly reduced the ratio

between the magnitude of the secondary and primary response, causing an increase of

hyporesponsive mice. This booster-dependent disruption of recall memory only occurred

in a limited time window: a booster dose at day 21 had no significant effect on the ratio

between the secondary and primary response magnitude. Thus, this study identifies a

consolidation phase in immunological memory, that is a time window during which the

formation of memory is vulnerable, and a disrupting stimulus reduces the probability that

memory is achieved.

Keywords: vaccine, boost, antibody, primary response, secondary response

INTRODUCTION

Vaccination affords immunity from diseases by inducing immunological memory and long-lived
antibody responses (1, 2). The identification of switches that regulate immunity is central to efforts
of rational vaccine design (3, 4).

Immunological memory, i.e., the ability to mount an enhanced response to an antigen that has
been previously encountered, is a system-level property of the immune system, that arises from an
increase in the frequency of antigen-specific B and T lymphocytes as well as from the differentiation
of antigen-experienced lymphocytes into qualitatively different cell populations, namely memory
cells, which display faster response to antigen re-exposure and the ability to self-renew (5–7). The
half-life of the antibody titer, which is a critical issue in vaccine development as it is linked to the
duration of protection, displays considerable variation among different vaccines currently in use. In
humans, a longitudinal study of the antibody titer to common viral and vaccine antigens found that
antibody responses against tetanus and diphtheria antigens waned more quickly, with estimated
half-lives of 11 and 19 years, respectively, whereas antiviral antibody responses were remarkably
stable, with estimated half-lives ranging from 50 years for varicella-zoster virus to more than 200
years for other viruses such as measles and mumps (8). The antibody titer in the circulation reflects
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the size of the antibody-secreting cells (ASC) pool, that includes
different populations of ASC, that differ in their proliferative
potential, life-span, and that are prominent in different temporal
phases of the immune response, namely plasmablasts, short-lived
plasma cells, and long-lived plasma cells (9). Of these, long-lived
plasma cells ensure the long-term persistence of antibodies (10).
Thus, the duration of antibody responses is related to the number
and longevity of long-lived plasma cells. Survival vs. death of
plasma cells is one of the key decisions that guide antibody
production; understanding the control system of this decision,
not only is potentially valuable for vaccine development, but also
for treating disorders of antibody production in autoimmunity,
allergy, and immunodeficiency (11).

The control system governing the quality and quantity of
circulating antibody, far from being a single binary switch,
comprises a series of decision points where B cells integrate
many inputs influencing their fate (11); a crucial role is played
by the Germinal Center (GC) reaction, a highly complex process
involving a cascade of several distinct, timed events that are
topographically segregated (12). The role of asymmetric cell
division and stochastic events in this coordinated process of
cellular differentiation and selection is still unresolved. Measures
of the time to develop into a plasmablast, and to divide or
die for thousands of cells suggested that each fate is pursued
autonomously and stochastically and that the allocation of
a proportion of B cell to each fate is a phenomenon of
stochastic competition (13).

In this study, we set out to investigate the effect of the
time delay between the first and the second dose of vaccine on
the antibody titer trajectory during the primary and secondary
response. Antibody titer/time curves reflect the contribution of
antibody secreting cells that reside in different organs, namely the
lymph nodes, the spleen, and the bone marrow, which become
prominent in different time windows. While it is not feasible to
analyze over time the development of different ASC populations
in a single individual, serum can be sampled multiple times;
thus, we took the approach of analyzing a single experimental
parameter, namely the IgG antibody titer against a specific B
epitope, in 50 genetically identical, age, and sex-matched mice
over 1 year post vaccination.Wemonitored the primary response
for 9 months, and then we administered a recall dose and
monitored the secondary response for 3 months, sampling sera
at 11 timepoints that we had previously identified as sufficient
to capture the shape of the titer/time curve. We utilized as
a model vaccine (1-11)E2, a multimeric protein designed to
induce an antibody response against the β-amyloid peptide, a
peptide involved in the pathogenesis of Alzheimer’s Disease (14,
15). (1-11)E2 is an icosahedral protein nanoparticle, displaying
60 copies of peptide 1-11 of β-amyloid, at the N-terminus of
self-assembling protein domain E2 (16). A single injection of
(1-11)E2 induces recall memory to the displayed β-amyloid
epitope in the majority of immunized subjects (16), making this
multimeric protein a suitable antigen for the investigation of
recall memory.

Mice immunized with a single dose of (1-11)E2 stochastically
display, when immunized with a recall dose 9 months later,
either memory, i.e., an enhanced response to epitope 1-11, or

hyporesponsiveness, i.e., a reduced response. Memory is the most
common outcome, achieved by 80% of mice.

When a booster dose of vaccine (1-11)E2 was administered at
day 15, we observed a significant reduction of the ratio between
the magnitude of the secondary and primary response, resulting
in an increase of hyporesponsive mice. This booster-dependent
disruption of recall memory only occurred in a limited time
window: a booster dose at day 21 had no effect on the ratio
between the secondary and primary response magnitude.

Hyporesponsiveness, defined as a lower antibody (Ab) level
after the second immunization than after the first, has been
observed after vaccination with polysaccharide or glycoconjugate
vaccines (17). We report here, for the first time in our
knowledge, that hyporesponsiveness also occurs in the case of a
multimeric protein antigen and can be induced by a booster dose
administered in a specific time window.

Thus, this study identifies a consolidation phase in
immunological memory, that is a time window during which the
formation of memory is vulnerable, and a disrupting stimulus
reduces the probability that memory is achieved.

RESULTS

A Booster Dose Given 15 Days After
Priming Impairs Immunological Memory to
a B Cell Epitope
In this study, we set out to investigate the effect of the timing
of a booster dose on immunological memory to a B cell epitope.
Our model epitope is Aβ(1-11), consisting of the 11 amino
acid N-terminal immunodominant B epitope of β-amyloid.
Immunization against Aβ(1-11) was performed with antigen (1-
11)E2, a recombinant protein comprising epitope 1-11 of β-
amyloid and the E2 domain of the pyruvate dehydrogenase of
Bacillus stearothermophilus, that self-assembles into a multimeric
structure that includes 60 monomers (14).

For this study, we define memory as the ability to display
an enhanced response to an antigen that has been previously
encountered. In particular, in this study, the feature of the
immune response that we analyze is the IgG antibody titer.

Wemonitored for 1 year post-immunization the IgG antibody
titer against Aβ(1-11), in 50 mice undergoing a primary and a
secondary response. The experimental setup and the definition
of primary and secondary response are schematized in Figure 1.
Mice were randomly allocated to four immunization schedules.
The control group received only a single dose (SD), while
treatment groups D7B, D15B, and D21B also received a booster
dose, respectively, at day 7, 15, or 21 after the first dose. All mice
received a recall dose 9 months after the first dose and were then
monitored for 3 more months (Figure 1).

In order to establish whether the different treatment groups
had developed immunological memory to Aβ(1-11), defined as
the ability to display an enhanced recall response, we compared,
within each group, the magnitude of the peak of the primary and
secondary antibody response to Aβ(1-11) (Figure 2A). While
the mice that received a single dose of vaccine and the group
that received a booster dose at day 21 displayed a significantly
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FIGURE 1 | Experimental design. 50 BalbC mice were randomly allocated to

four immunization schedules. The control group received only a single dose

(SD) of vaccine (1-11)E2, while treatment groups D7B, D15B, and D21B also

received a booster dose, respectively, at day 7, 15, or 21 after the first dose.

All mice received a recall dose 9 months after the first dose and were then

monitored for 3 more months. The IgG antibody titer against Aβ(1-11) was

monitored for 1 year post-immunization. The definition of primary and

secondary response is shown: the primary response is defined as the

response initiated by the first dose of vaccine (days 0–274 post immunization),

the secondary response is defined as the response initiated by the recall dose

(days 274–363 post immunization).

enhanced peak response to the recall dose, we observed no
statistically significant difference inmagnitude between the peaks
of the primary and secondary total IgG response in the groups
that received the booster dose at day 7 or 15. Thus, a booster
dose administered within 15 days of the first dose abrogated
immunological memory, defined as the ability to display an
enhanced recall response.

Indeed, the effect of the booster dose given at day 7 on
recall memory appeared less severe than the effect of the
booster dose given at day 15. As shown in Figure 2A, both
in the D7B and in the D15B group there is no statistically
significant difference between the secondary and primary
response peak, however the geometric mean titer of the
secondary response displays a trend toward higher values in the
D7B group (Figure 2A).

Among mice of the same treatment group, we observed a
broad spread of the anti-Aβ(1-11) IgG titers at the peak of
the secondary response (Figure 2B). In order to analyze the
diversity of the fate of the immune response between individuals,
we classified individual titer/time trajectories with respect to
the ratio between the peak of the secondary response and the
peak of the primary response, so as to be able to recognize
“immunological memory,” defined as an enhanced secondary
response, at the level of the individual.

The ratio between the peak of the secondary response and
the peak of the primary response ranged from 0.1 to over 100
(Figure 2C). We defined “memory” a secondary response 2-
fold higher than the primary response, that is a ratio of the
antibody titer of the secondary peak to the primary peak above
2, “equal response” a ratio comprised between 2 and 0.5, and
“hyporesponsiveness” a ratio lower than 0.5.

All treatment groups included some mice that had
developed memory to Aβ(1-11), albeit at different frequencies
(Figures 2C,D). The ratio between the secondary and the
primary peak was significantly lower in the D15B group,

compared to the SD group and the D21B group (Figure 2C). The
number of mice that displayed a memory response to Aβ(1-11)
was minimal in the D15B group (Figure 2D).

In the analysis of the ratio between the secondary peak
and the primary peak in individual mice (Figure 2C), while
the D15B group is statistically different from the SD group
(p = 0.008), the difference between the D7B group and the
SD group is not statistically significant. In the classification of
individual recall responses shown in Figure 2D, the D7B group
appears intermediate between the SD group and the D15B; in
the D7B group the percentages of mice displaying memory
was lower than in the single dose group, but higher than in
the D15B group (Figure 2D), whereas conversely in the D7B
group the percentage of mice displaying hyporesponsiveness
was higher than in the SD group but lower that in the
D15B group.

In summary, only when the booster dose is given at day 15
there is a statistically significant reduction in the ratio between
the magnitude of the secondary and primary response.

Hyporesponsiveness Is Unrelated to the
Primary Response and to Antibody Titer
at Recall
The antibody titers from day 0 to 274, shown in Figure 3,
demonstrate that, differently from the recall response, the
primary response was not reduced in the mice that received
booster doses, compared to the mice that received only a single
dose (Figure 3).

Moreover, we asked whether the ability to exhibit an enhanced
response to the recall dose was related to the antibody titer at the
time of recall.

We observed no significant difference in the anti-Aβ(1-11)
antibody titer at the time of recall between mice that displayed a
memory response to Aβ(1-11) andmice that did not (Figure 4A).
Mice immunized with (1-11)E2 develop an antibody response
both to the Aβ(1-11) peptide and to the scaffold protein domain
E2. The antibody titer against E2 at the time of recall also did
not differ between mice with and without memory to Aβ(1-11)
(Figure 4B). Thus, the different fates in individual responses to
the recall dose were not related to differences in the titer of
circulating antibodies against the immunizing antigen at the time
of recall.

Recall Memory to the E2 Carrier Protein Is
Impaired by a Day 15 Booster
We asked if the booster-related effects on recall memory were
limited to the Aβ(1-11) B cell epitope or extended to other B
epitopes of the immunizing antigen (1-11)E2. Thus, we analyzed
the IgG antibody titer trajectories against the carrier moiety
E2. In accordance to what we observed in the response to
the β-amyloid epitope (1-11), also in the response to the E2
protein the ratio between the peak of the secondary and primary
response is significantly reduced (p = 0.02) in the group that
received a booster dose at day 15, compared to the single
dose group (Figure 5).

Frontiers in Immunology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 50818

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Mantile et al. A Consolidation Phase in Immunological Memory

FIGURE 2 | Effect of booster doses on recall memory. (A) The histograms show the geometric mean titer of IgG against Aβ(1-11) at the peak of the primary response

(open bars) and secondary response (black bars). Error bars represent the standard error of the mean (s.e.m.). Significant P-values calculated with the Wilcoxon rank

sum test are shown. (B) The line graph shows the time course of the IgG titer against Aβ(1-11) in individual mice. Trajectories are color-coded based on the

classification of response patterns as in (B,C). (C) The dot plot shows the ratio between the peak titer of IgG against Aβ(1-11) in the secondary response and the

primary response in individual mice. Each symbol represents one mouse. Significant P-values calculated with the Wilcoxon rank sum test are shown. (D) The

histogram shows the relative frequencies of 3 patterns of response to recall, defined based on the ratio of the peak of the secondary response to the peak of the

primary response as memory (ratio > 2, violet), equal response (0.5 ≤ ratio ≤ 2, grey) hyporesponsiveness (ratio < 0.5, blue).

Both in the single dose group and in the group that
received the day 15 booster, the ratio between the secondary
and primary response peak is highly correlated between the
response to Aβ(1-11) and the response to E2 (Pearson correlation
coefficient is 0.94 in the single dose group, and 0.99 in
the D15B group).

This results demonstrate that the day 15 booster dose impaired
recall memory not only to the Aβ(1-11) epitope, but also to other
B epitopes of the E2 carrier.

DISCUSSION

The most notable finding in this study is that a booster dose of

the multimeric protein antigen (1-11)E2, injected 15 days after

the primary immunization, impaired the antibody response to
a recall dose, administered 9 months later. In particular, the

analysis of the trajectories of the antibody titer against B epitope
Aβ(1-11) in individual mice revealed that a booster dose at day
15 resulted in fewer mice being subsequently able to exhibit
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FIGURE 3 | Effect of booster doses on the primary response. (A–C) The

graphs report the time course of the anti β-amyloid antibody titer, GMT ± SEM,

of the SD group (full circles, N = 20), overlayed to the time course of the D7B

group (open triangles, N = 10, (A), the D15B group (open squares, N = 10,

(B), and the D21B group (open diamonds, N = 10, (C). *p ≤ 0.05, **p ≤ 0.02.

an anamnestic response to the recall dose, and in some mice
displaying hyporesponsiveness. While in the single dose group
only 4/20 mice failed to mount an enhanced secondary response,
in the day 15-boost group this happened in 8/10 mice. On the
other hand, a booster dose given at day 21 after the primary
immunization did not affect the fold ratio between the secondary
and primary response.

It is possible to speculate that in our experiment the
booster dose interfered with a different stage of the GC
reaction, depending on its precise timing. Pre-existing GC
can be populated by new B cell clones following a booster
immunization (18, 19). It has been suggested that B cells
that acquire antigen can enter GCs at all stages of the
response, and that antigen is one of the main limiting

factors (18). The GC response undergoes a temporal switch
in its output; memory B cells and long-lived plasma cells
are produced at separate points in time (20). In particular,
unswitched memory B cells are generated early in the response,
followed by switched memory B cells, and finally by a delayed
appearance of isotype-switched bone marrow long-lived plasma
cells (20). We never observed, in prime-boosted mice, a reduced
primary response compared to single dose mice, indicating
that booster doses did not inhibit ASC development, as
shown in Figure 3.

Neutralizing serum immunoglobulin can inhibit the
secondary response and have differential effects on B cell
populations that mediate early and late memory (21). In our
experiment the antibody titers at the time of the recall dose
were in the same range in mice that then demonstrated an
enhanced secondary response (memory) and in those that
did not; therefore we can rule out that circulating antibodies
inhibited the secondary response.

From our experiment, it is not possible to establish whether an
impaired development of memory cells or a dominant inhibitory
mechanism caused the observed hyporesponsiveness.

Several studies have reported that booster doses of
polysaccharide vaccines can induce unresponsiveness.
Unconjugated meningococcal polysaccharide vaccination
induces antibody hyporesponsiveness, that impairs antibody
responses to subsequent injections of meningococcal
polysaccharide (MPS) or meningococcal conjugate vaccines.
Administering MPS as a probe to assess conjugate vaccine-
induced immunologic memory also can extinguish subsequent
memory anticapsular antibody responses, whereas conjugate
vaccination regenerates memory B cells (22). A mechanism
that has been proposed for the hyporesponsiveness caused
by polysaccharide antigens is that the polysaccharide, a T
independent antigen, may stimulate the existing pool of memory
B cells to differentiate into plasma cells and secrete antibody
without replenishment of thememory B cell pool (22). A study on
the effect of 1, 2, or 3 boosters of pneumococcal polysaccharide
with 16 day intervals, in mice primed with a pneumococcal
conjugate concluded that booster-induced hyporesponsiveness
is caused by abrogation of conjugate-induced GC reaction and
depletion of polysaccharide-specific Antibody-secreting cells,
resulting in no homing of new specific long-lived plasma cells
to the bone marrow (23). At difference with our study, the
pneumococcal polysaccharide booster reduced the antibody titer
of boosted mice, compared to the PBS control; instead, we did
not observe a titer reduction. A difference in the study design is
the age of the mice at the time of priming. The study on the effect
of pneumococcal polysaccharide was performed on neonatal,
7 days old mice, whereas our study was performed on adult, 8
weeks old mice.

For human vaccines currently in use, the minimum interval
to next dose recommended by the Advisory Committee on
Immunization Practices is between 4 weeks and 5 years. The day
15 boost has been widely utilized to vaccinate mice against β-
amyloid with β-amyloid 1–42 (24) recombinant bacteriophages
(25) and recombinant proteins (14). Agent-based simulations
of the response to our model vaccine predicted that a booster
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FIGURE 4 | Pre-existing serum titers at recall. The dot plots show the IgG titer against Aβ (A) and E2 (B) at day 273, the day before the recall dose, in mice that

displayed memory or no memory against Aβ. Each dot represents a mouse of the SD group (circles), D7B group (triangles), D15B group (squares), D21B group

(diamonds). There is no statistically significant difference between memory and no memory mice as regards the antibody titer against Aβ and E2.

FIGURE 5 | Effect of booster doses on recall memory to E2. The dot plot

shows the ratio between the peak titer of IgG against E2 in the secondary

response and the primary response in individual mice. Each symbol represents

one mouse. The same color code of Figure 2 is used: violet (memory), grey

(equal response), blue (hyporesponsiveness). Significant P-values calculated

with the Wilcoxon rank sum test are shown.

dose would be inefficient if given earlier that a few months
after the first dose (26), however, the study did not investigate
booster-induced unresponsiveness to recall.

The results of this study show that there is a consolidation
phase in immunological memory to the Aβ(1-11) epitope; there
is a time window, after immunization with the vaccine (1-11)E2,
during which the fate of the secondary response to the Aβ(1-
11) epitope is vulnerable, and a disrupting stimulus reduces the
probability that memory is achieved.

Interestingly, the results we obtained analyzing the antibody
response to the β-amyloid epitope and the carrier epitopes were
similar, in that a booster injection at day 15 caused a reduced

probability of a subsequent enhanced secondary response to both
the β-amyloid and the E2 carrier protein. In our classification of
responses as memory, equal response and hyporesponsiveness,
some mice fall into a different as regards the response to (1-
11) and the response to E2. A possible explanation for this
discordance lies in the fact that the E2 response reflects the
cumulative behavior of more cells, and therefore more often falls
into the intermediate pattern, i.e., “equal response.” In fact, E2 is
a larger antigen than Aβ(1-11), comprising 257 amino acids vs. 11
amino acids, and the response to E2 reaches a titer 7 times higher
than the response to Aβ(1-11), indicating that more clones are
involved in the response to E2 than in the response to Aβ(1-11).

A word of caution is needed regarding the generalization of
the kinetics that we observed, as it is possible that different types
of antigen, adjuvants, or injection routes, and different dose may
be associated with differences in the kinetics of the response.

This study paves the way to investigating early correlates
of immunological memory development, by analyzing the
molecular and cellular effects of memory-disrupting stimuli.

MATERIALS AND METHODS

Mice
All experiments were performed on female BalbC mice. Mice
were purchased from Charles River Laboratory, Italy. The first
dose of vaccine was injected when the mice were 8 weeks old.

Model Vaccine
The vaccine (1-11)E2 is a multimeric protein. The monomer,
that self-assembles into a 60-mer complex, consists of a fusion
protein that includes the first 11 N-terminal residues of the
β-amyloid peptide, DAEFRHDSGYE, and a bacterial protein
domain, from the E2 subunit of the Acyl-transferase of Bacillus
stearothermophilus (14, 15). The (1-11)E2 protein was produced
in E. coli and purified and stored as previously described (14, 15).
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Each vaccine dose consisted of 130 µg of (1-11)E2 protein
(carrying 6 µg of the β-amyloid epitope 1-11) mixed with 100
µl of Freund’s adjuvant, in a final volume of 200 µl. Complete
Freund’s adjuvant was used in the first injection, and incomplete
Freund’s adjuvant was used in subsequent shots. The vaccine was
injected intraperitoneally.

Immunization and Bleeding Schedules
We have monitored, for a total of 12 months, the time course of
the antibody response in 50 individual BalbC mice, undergoing
4 different dosing schedules. All dosing schedules included a

first dose given when the mice were 2 months old, and a recall
dose given 9 months after the first dose. Twenty mice only
received these 2 doses, while other groups, of 10 mice each, also
received a booster dose, respectively, 1, 2, or 3 weeks after the
first dose.

Blood was collected from the tip of the tail, with heparinized
microhematocrit capillaries, at the following time points after the
first dose: day 14, 35, 42, 88, 130, 172, 273, 288, 302, 323, and 361.
Bloodwas left at room temperature for 30min, then centrifugated
at 6,000 rpm for 30min. The serum was divided into aliquots and
stored at−80◦C.

Antibody Titer Measures
The antibody titer was measured by ELISA assays, performed as
previously described (15).

Each serum was tested against synthetic peptide 1-11 of β-
amyloid. Synthetic peptide 23–29 of β-amyloid was used as a
negative control. The titer of serum was defined as the dilution

yielding an absorbance value equal to 2-fold the background
value obtained against the negative control.

Statistical Analysis
The Wilcoxon rank sum test was performed to determine the
statistical significance of observed differences.
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Secondary plasma cells (PCs) originate from memory B cells and produce increased

levels of antibodies with higher affinity compared to PCs generated during primary

responses. Here we demonstrate that virus-like particles (VLPs) only induce secondary

PCs in the presence of toll-like receptor (TLR) 7 and if they are loaded with RNA.

Furthermore, adoptive transfer experiments demonstrate that RNA and TLR7 signaling

are required for secondary PC generation, both at the level of memory B cell as well as PC

differentiation. TLR7-signaling occurred in a B cell intrinsic manner as TLR7-deficient B

cells in an otherwise TLR7-competent environment failed to differentiate into secondary

PCs. Therefore, RNA inside VLPs is essential for the generation of memory B cells, which

are competent to differentiate to secondary PCs and for the differentiation of secondary

PCs themselves. While we have not tested all other TLR or non-TLR adjuvants with our

VLPs, these data have obvious implications for vaccine design, as RNA packaged into

VLPs is a simple way to enhance induction of memory B cells capable of generating

secondary PCs.

Keywords: memory B cells, secondary plasma cells, virus-like particles, toll-like receptor 7, anti-viral immunity,

adaptive immunity

INTRODUCTION

Antibodies are the critical effector molecules induced by prophylactic vaccination and are
responsible for anti-viral and anti-bacterial protection. PCs are the principle cell type producing
antibodies. A number of different antibody forming cells (AFCs) have been described. At an early
stage of the primary immune response, short-lived AFCs derived frommarginal zone or follicular B
cells are found in extra-follicular foci in secondary lymphoid structures (1). A second wave of PCs
is generated by the germinal center (GC) reaction of which some are also short-lived. However, a
subset of GC derived PCs is long-lived and resides in secondary lymphoid organs as well as bone
marrow (BM) for months and even years (2–4). It has been known for decades that memory B cells
can differentiate to PCs after secondary antigen encounter (5, 6). We have recently described the
particular phenotype of these PCs, which we coined secondary PCs, as they derive from memory
B cells during secondary responses, in a VLP immunization model (7). In contrast to PCs induced
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during primary responses, they produce increased levels of high
affinity antibodies. Unexpectedly, secondary PCs are short-lived
and disappear a few days after their induction (Krueger et al.,
under review1).

The Th cell dependence of PC induction varies with the type
of B cell progenitor. B1 cells, which provide only 1% of splenic
B cells and are usually found in the peritoneal and pleural cavity,
are a major source of natural antibodies produced in a Th cell
independent manner (8). Early extra-follicular PCs, which often
produce IgM, may be induced in the absence of T cell help in
many cases, in particular if Th cell independent antigens are
used for immunization (9). In contrast, GC-derived PCs are
often isotype-switched and their generation requires T cell help
and CD40L (10, 11). As opposed to GC-derived primary PCs,
secondary PCs derived from memory B cells can be induced
in the absence of CD40L (12). Hence, secondary PCs provide
an early wave of antibodies in a relatively Th cell independent
fashion during secondary responses, in a way similar to the short-
lived extra-follicular PCs induced during primary responses.

Most antibody responses are driven by follicular Th cells
(13, 14). However, presence of TLR-ligands, such as RNA, may
overcome the requirement of follicular Th cells and other Th cells
may take over (15–21).

There is a large number of adjuvants that are able to
induce strong and long-lived B cell and antibody responses
(22). Even though TLR-ligands are potent enhancers of B cell
responses (23, 24), there is not an absolute requirement for the
presence of TLR-ligands in order to induce protective B cell
responses. Nevertheless, TLR-ligands play an important role for
the generation of antibody responses during natural infections
and many natural or artificial TLR-ligands are in development
for adjuvants formulation (25–28) often in combination with
classical adjuvants such as Alum (29). Monophosphoryl lipid A
(MPL), a synthetic TLR4-ligand, is part of marketed vaccines
since decades (30–32) and CpGs, a synthetic ligand for TLR9,
have recently been approved for use in combination with
hepatitis B vaccine (33). Furthermore, natural TLR-ligands are
components of many widely used vaccines; in particular RNA,
which is part of almost all live and inactivated viral and bacterial
vaccines (34, 35). Single stranded RNA (ssRNA) is recognized
by TLR7/8 in the endosome and RNA-sensing molecules in
the cytosol and enhances antibody responses in many ways.
B cells recognize RNA associated with the antigen via TLR7/8
and respond with increased production of IgG and in particular
with a shift to the IgG2a subclass (17, 36, 37), enhanced B
cell proliferation and increased BCR hypermutation (38, 39).
This mechanism is dependent on TLR7-signaling in B cells and
independent of RNA sensing in DCs (17). Similar B cell intrinsic
pathways have been described for TLR9 (36, 37) which drives
antibody responses in an IRF5-dependent way (40) and promotes
B cell survival (28). The IgA subclass is particularly interesting
with respect to TLR7-signaling, as systemic IgA responses need
TLR signaling in B cells, while mucosal IgA responses need

1Krueger CC, Thoms F, Keller E, Vogel M, Bachmann MF. Virus-specific

secondary plasma cells produce elevated levels of high-affinity antibodies but are

short lived. Front Immunol. (under review).

TLR signaling in DCs (41, 42). In addition, it has recently
been shown that IgG responses against gram-negative bacteria
require RNA-sensing in DCs followed by activation of TRIF and
further downstream the inflammasome pathway (35, 43). The
requirement for B cell intrinsic TLR signaling varies with time
and is more important early than late during the GC response
(34, 39), a finding that is consistent with the fact that the early
GC response is more important than the late response to drive
long-lived antibody responses (44). Furthermore, recent work
indicated a temporal switch in GC reactions, where memory B
cells are shown to emerge early during the response, whereas long
lived PCs are a late output of the GC (20).

We have previously shown that immunization with VLPs
derived from the RNA bacteriophage Qβ elicits strong and
sustained IgG antibody responses with a prominent role for
packaged E.coli RNA in driving class switch to IgG2a and IgA
antibodies (42, 45–47). During recall responses, MBCs rapidly
and quantitatively differentiate into secondary PCs (7). Here
we show that RNA and TLR7-signaling in B cells synergize
for the regulation of the secondary PC response. Absence of
RNA or TLR7-signaling resulted in complete failure to generate
memory B cells competent of forming secondary PCs. Moreover,
stimulation of memory B cells generated in the presence of RNA,
also failed to result in secondary PC induction in the absence
of TLR7-signaling during recall. Hence, generation of secondary
PCs is regulated by RNA and TLR7-signaling at multiple levels.

MATERIALS AND METHODS

Study Design
The goal of this study was to further characterize secondary
PCs, which were generated by MBCs after Ag challenge. To
achieve this, adoptive transfers in allotypic mice (Ly5.1/Ly5.2,
IgHa/IgHb, TLR7 KO/WT, and TLR7 KO BM chimeras/WT BM
chimeras) were performed. This enabled us to study primary and
secondary immune responses in the same animal. All mice were
kept according to cantonal veterinary guidelines at the central
animal facility (Department of Biomedical Research) of the
University of Bern and controlled laboratory experiments were
performed in accordance with ethical principles and guidelines
of the Cantonal Veterinary Office Bern, Switzerland. Animals
were randomly assigned to the different groups. MBCs were
generated by VLP immunization of mice. The control naïve mice
remained untreated. At the same time, B cells were isolated from
memory and naive mice and transferred into recipients. Upon
immunization with VLPs, serum samples, spleens, and BM were
collected and subjected to ELISA, ELISPOT, and FCM analysis.
The investigators who performed the experiments, assessed,
analyzed, and quantified the results were not blinded and aware
of which group a sample was taken from. Individual groups
consisted of four mice. All experiments were performed in at
least two independent biological replicates. For the ELISA and
ELISPOT in Figures 1D,E and day 6 FCM experiment only
one replicate was performed. Data were collected at previously
determined time points. All data were included in the analysis.
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FIGURE 1 | Memory B cells generated in presence of bacterial RNA generate secondary PCs after challenge with VLPs containing RNA. (A) Congenic mice (Ly5.1 or

IgHa) were immunized with 50 µg Qβ VLPs containing RNA (B,E,F) or polyglutamic acid (PGA) (C–E,G) i.v. Eight weeks after immunization spleens of immunized and

naïve mice were isolated and PNA− B220+ (B,C,E–G) and CD4+ (D) MACS purified cells were transferred into host mice (Ly5.2 or IgHb). Recipient mice were

immunized with 50 µg Qβ-RNA or Qβ-PGA i.v. 1 day after the transfer. Spleens, bone marrow, and serum were taken at several time points after challenge. (B,C) The

anti-Qβ IgG1 and IgG2a antibody titers in the serum were determined by ELISA. Ha and Hb allotype specific detection antibodies were used to discriminate between

donor (IgHa, gray circles) and host (IgHb, black squares) responses. (D) The endpoint titer of anti-Qβ IgG1 and IgG2a antibodies in the serum was determined by

ELISA. Donor-derived responses after memory B cell (black open circles) or memory B cell and memory CD4+ T cell (gray open circles) transfer were detected using

(Continued)
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FIGURE 1 | Ha allotype specific detection antibodies. (E) Quantification of the spot diameter in ELISPOT assays after transfer of memory B cells induced with 50 µg

Qβ-RNA (black circles) or Qβ-PGA (open circles) and challenge with 50 µg Qβ-RNA. A modified ELISA was performed to determine the avidity index of the sera after

transfer of memory B cells generated in presence (F) or absence (G) of bacterial RNA. Mean with SEM. P-values were obtained using an unpaired t-test. *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001. n = 4 mice per group. Data representative of 2 independent experiments, except for D and E, where only one experiment

was performed.

Mice
C57BL/6JRccHsd wildtype mice were purchased from Envigo
(Horst, The Netherlands). The IgHa [B6.Cg-Gpi1<a> Thy1<a>
Igh<a> (Stock No. 001317)] mouse strain was purchased
from the Jackson Laboratory (USA). We thank Prof. Annette
Oxenius for the kind donation of the Ly5.1 (B6.SJL-Ptprc<a>
Pepc<b>/BoyJ) mouse strain, Prof. Dr. Pål Johansen for the kind
donation of the TLR7 KO (B6.129P2-Tlr7tm1Aki) mouse strain
and Prof. Andrew Macpherson for the kind donation of the JH
KO (B6.129P2-Igh-Jtm1Cgn/J) mouse strain.

Generation of BM Chimeras
C57BL/6JRccHsd wildtype mice were lethally irradiated by the
application of 1,300 cGy as a split dose of 2 × 650 cGy with a
4 h interval, using a Gammacell 40 (GC40) research irradiator
(Best Theratronics). Irradiated mice were reconstituted with 25
× 107 donor bone marrow cells, consisting of 80% JH KO and
20% TLR7 KO or 20% C57BL/6JRccHsd WT cells, respectively,
i.v. Antibiotics [Baytril (1.25 ml/l) and Bactrim Nopil (5 ml/l)]
were supplied in the drinking water for 2 weeks. After 6 weeks,
reconstitution of the BM chimeras was analyzed by staining of B
cell (B220) and T cell (CD3) markers using FCM. BM chimeras
were immunized with 50 µg Qβ VLPs formulated in 150 µl
phosphate buffer intravenously 10 weeks after irradiation.

Antigen
The bacteriophage derived Qβ virus-like particles (VLPs) self-
assemble and enclose bacterial RNA during their production
in E. coli. The purification process is described elsewhere
(48). VLPs without RNA were generated by disassembling the
particles in presence of DTT in acidic conditions. This results
in dimer formation, which were purified by size exclusion
chromatography. Afterwards, the dimers were reassembled with
polyglutamic acid (PGA) (17). VLPs containing B type CpGs
(1668) were prepared as described previously (49, 50). Briefly,
RNA inside the VLPs was digested using RNAse A (1.2 mg/ml
for 3 mg/ml VLPs) for 3 h at 37◦C. RNA digestion was confirmed
using a 1% agarose gel stained with peqGreen dye. VLPs were
repackaged by adding 1.125 µg CpG oligonucleotides to 20 µg
RNAse digested VLPs for 3 h at 37 ◦C and repackaging was
confirmed on a 1% agarose gel.

Immunization
To induce primary immune responses and generate memory
B cells against the VLPs, mice were immunized intravenously
(i.v.) with 50 µg Qβ-RNA or Qβ-PGA. To challenge adoptively
transferred MBC or naive cells, recipient mice were immunized
with 50 µg of either Qβ-RNA, Qβ-PGA or Qβ-CpG i.v.
For administration the VLPs were formulated in 150 µl
phosphate buffer.

Adoptive Transfer
MBCs were generated by immunization of congenic donor
mice (Ly5.1, IgHa, TLR7 KO, WT, or BM chimeras). At
least 8 weeks after immunization donor mice were sacrificed
and spleens isolated in RPMI media containing 2% FCS and
antibiotics. A single cell suspension of the spleens was prepared
and red blood cells were lysed using ACK buffer (0.15M
ammonium chloride, 0.01M potassium hydrogen carbonate,
pH 7.2–7.4). The splenocytes were PNA− and B220+ MACS
purified. For PNA negative purification splenocytes were labeled
using PNA-biotin (Vector Labs, B-1075) and PNA+ cells were
depleted by Strepravidin MicroBeads (Milteny Biotec, 130-
048-101) according to the manufacturer’s protocol. Positive
selection using B220 and CD4 MicroBeads (Milteny Biotec,
130-049-501, 130-117-043) was performed according to the
manufacturer’s protocol.

Purified cells from 1/3 of a donor spleen (Ly5.1, IgHa, TLR7
KO, WT, or BM chimeras ∼1–3 × 106 cells of which ∼0.05–
0.1% are specific for the antigen) were adoptively transferred
i.v. into congenic host mice (Ly5.1, Ly5.2, or IgHb). Control
mice received PNA− and B220+ purified splenocytes from naïve
congenic mice. One day after memory B cell transfer host mice
were challenged with 50 µg of either Qβ-RNA, Qβ-PGA or
Qβ-CpG i.v. formulated in 150 µl phosphate buffer.

ELISPOT
Spleens from mice after adoptive transfer were isolated and a
single cell suspension was prepared. To collect BM cells, tibia
and femur were flushed with RPMI media containing 2% FCS
and antibiotics. After red blood cell lysis with ACK buffer, cell
numbers of splenocytes and BM cells were determined using the
Cellometer mini (Nexcelom, USA). 5 × 105 cells were seeded
per well on MAIPS ELISPOT plates (Millipore, MAIPS4510)
previously coated with 10µg/ml Qβ VLPs overnight at 4◦C and
blocked with 2% BSA in PBS for at least 2 h. After performing
a 2-fold dilution series, cells were incubated for 5 h at 37◦C
and 5% CO2. Subsequently cells were washed off and bound
specific antibodies produced by PCs were detected using a goat
anti-mouse IgG antibody (EY laboratories, AT-2306-2) followed
by a donkey anti-goat alkaline phosphatase secondary antibody
(Jackson Immunoresearch, 705-055-147). Spots were visualized
by the AP Conjugate Substrate Kit (BioRad, 1706432) and
counted using an EliSpot Reader (AID, Germany).

ELISA
Serum samples were obtained from blood collected at the
indicated time points during experiments using Microtainer
tubes (BD, 365967). Corning half area 96 well plates were coated
with 1µg/ml Qβ VLPs overnight at 4◦C. Sera were 1:10 pre-
diluted and 1:4 further serial diluted to analyse a total of 7
dilutions per sample. Qβ-specific antibodies were detected using
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mouse anti-mouse IgG for both allotypes. IgHa-specific (biotin
ms anti-ms IgG1[a] (10.9), biotin ms anti-ms IgG2a[a] (8.3)
from BD) and IgHb-specific (biotin ms anti-ms IgG1[b] (B68-
2), biotin ms anti-ms IgG2a[b] (5.7) from BD) antibodies were
detected using horseradish peroxidase (HRP) labeled streptavidin
(Jackson ImmunoResearch, 016-030-084).

Total Qβ-specific antibodies were detected using goat anti-
mouse IgG-HRP (Jackson ImmunoResearch, 115-035-071).

The absorbance readings of the tetramethylbenzidine (TMB)
color reaction at 450 nm for the serum samples were interpreted
as OD50 or endpoint antibody titers. The OD50 antibody titers
are defined as the reciprocal of the dilution that reaches half of
the maximal optical density (ODmax). The endpoint antibody
titers are defined as the reciprocal of the last dilution above the
threshold, which is set above the background level.

Avidity ELISA
Serum samples were obtained from blood collected at the
indicated time points during experiments using Microtainer
tubes (BD, 365967). Corning half area 96 well plates were coated
with 1µg/ml Qβ VLPs overnight at 4◦C. Sera of the different
time points were applied with a 1:10 pre-dilution and 1:4 further
serial diluted. After 1 h incubation, the sera were washed off
and the plates washed 3 times 5min either with 7M urea in
PBST (PBS containing 0.05%Tween20) or PBST only. Qβ specific
antibodies were detected using mouse anti-mouse IgG for both
allotypes. IgHa-specific (biotin ms anti-ms IgG1[a] (10.9), biotin
ms anti-ms IgG2a[a] (8.3) from BD) and IgHb-specific (biotin
ms anti-ms IgG1[b] (B68-2), biotin ms anti-ms IgG2a[b] (5.7)
from BD) antibodies were detected using horseradish peroxidase
(HRP) labeled streptavidin (Jackson ImmunoResearch, 016-030-
084). Total Qβ-specific antibodies were detected using goat anti-
mouse IgG-HRP (Jackson ImmunoResearch, 115-035-071). The
absorbance readings of the tetramethylbenzidine (TMB) color
reaction at 450 nm served as basis for avidity index calculation.
The avidity index (AI) was calculated by AIx = OD (dilution x)
+ urea/OD (dilution x)–urea.

Flow Cytometry (FCM)
For FCM staining spleens of mice after adoptive transfer were
isolated in RPMI supplemented with 2% FCS and antibiotics
and a single cell suspension was prepared. Red blood cells
were lysed using ACK buffer prior to staining. Fc receptors
were blocked using an anti-CD16/32 antibody (2.4G2, BD). To
discriminate Qβ-specific plasma cells (PCs) from Qβ-specific
activated and CS B cells, surface immunoglobulins (Ig) of specific
cells were blocked using unlabelled Qβ VLPs. PCs were further
stained with and characterized as IgM (polyclonal, Jackson
ImmunoResearch), IgD (11-26c (11-26), eBioscience), CD4
(H129.19, BD), CD8 (53-6.7, BD), GR1 (RB6-8C5, BD), CD11b
(M1/70, BD), CD11c (HL3, BD) negative (all antibodies labeled
with PE), and B220-PE-Cy7 (RA3-6B2, BD) low. To detect Qβ

specific PCs by intracellular staining of specific Ig, splenocytes
were permeabilized using FACS lysing solution (BD, 349202)
containing 0.04% Tween20 and stained with Alexa Flour 488
labeled Qβ VLPs. The congenic marker Ly5.1 (antibody labeled
with APC, A20, eBioscience) identified all transfer derived B cells.

Qβ VLPs were labeled with the Alexa Flour 488 protein
labeling kit (Thermo Fisher Scientific, A10235) according to the
manufacturer’s instructions.

Statistics
Statistical analysis was performed using GraphPad Prism
Version 7.01 (GraphPad Software, USA). Statistically significant
differences between two groups were calculated using unpaired
t-tests. Statistical significance was defined as p < 0.05.

RESULTS

RNA Drives the Generation of Memory B

Cells Competent of Forming

Secondary PCs
We have previously demonstrated that vaccination with Qβ

VLPs containing bacterial RNA leads to the formation of
long-lasting humoral memory. Upon immunization, isotype-
switched memory B cells as well as PCs are generated in a
Th cell-dependent manner (7, 12, 44, 45). During secondary
responses, VLP specific memory B cells do not re-enter GCs
but differentiate to short-lived secondary PCs independent of T
cell help (7, 12). The hallmark of secondary PCs is increased
production of high affinity antibodies early after activation
(Krueger et al., under review). To further study the mechanism
of secondary PC generation, adoptive transfers of memory B
cells using congenic mice were performed. Briefly, memory
B cells were generated by immunizing wildtype (WT) donor
mice with Qβ VLPs containing either bacterial RNA (Qβ-RNA)
or polyglutamic acid (Qβ-PGA), a negatively charged polymer
serving as surrogate for RNA to enable VLP-assembly, which,
however, does not stimulate TLRs (Figure 1A). Purified memory
B cells of immunized or naïve donor mice were transferred
into congenic recipient mice expressing a different IgH- or
Ly5- allotype. We did not co-transfer memory CD4+ T cells
after Qβ-RNA priming, as we have previously observed that
their presence has no influence on VLP specific memory B
cell responses (7, 12). Upon cell transfer and challenge with
Qβ-RNA the specific VLP antibody response of transferred
memory B cells and host B cells was assessed within recipient
mice (Figures 1B,C). As observed before, when memory B
cells were induced with Qβ-RNA and challenged with Qβ-
RNA, the on- and offset as well as the magnitude of the
antibody response derived from memory B cells was significantly
faster and higher compared to the host’s primary antibody
response (Figure 1B). Memory B cell derived IgG titers raised
within 4 days and peaked early at day 6 post-immunization.
In contrast, the host’s primary response became detectable on
day 6 and peaked at day 12 after immunization. However, if
memory B cells were generated with Qβ-PGA instead of Qβ

containing RNA, memory B cell derived antibody responses
were not increased but rather similar to the host‘s antibody
response after challenge with Qβ-RNA (Figure 1C; Figure S1A).
Therefore, the memory antibody response resembled the one of
the primary response if VLPs deprived of RNA were used for
memory B cell generation indicating that RNA inside the VLPs
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FIGURE 2 | Presence of bacterial RNA during challenge of memory B cells is essential to generate secondary PCs. Memory B cells were generated by immunizing

Ly5.1 mice (donor) with 50 µg Qβ-RNA. One day after transfer of MACS purified memory B cells, allotypic Ly5.2 hosts were challenged with 50 µg Qβ-RNA or 50 µg

Qβ-PGA, respectively. (A) Representative FCM plots for the gating strategy to identify Qβ-specific PCs in the spleen 5 days after transfer and challenge. B220low cells

not expressing IgM, IgD, CD4, CD8, CD11b, CD11c, or GR1 were analyzed for their intracellular binding of labeled Qβ VLPs. The congenic Ly5 marker was used to

discriminate transfer from host derived PCs. (B,C) FCM analysis of the specific PC compartment at day 4, 5, and 6 after transfer of memory B cells induced with

Qβ-RNA and challenged with Qβ-RNA (black circles) or Qβ-PGA (gray circles). Number of Qβ-specific donor (B) or host (C) derived PCs within the B220low, IgM, IgD,

(Continued)
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FIGURE 2 | CD4, CD8, CD11b, CD11c, and GR1 negative compartment, binding Qβ intracellularly after membrane permeabilisation. Representative images of

ELISPOTs of the spleen at day 5 after Qβ-RNA memory B cell transfer and Qβ-RNA (D) or Qβ-PGA (E) challenge. (F) Numbers of Qβ-specific PCs in spleen and BM

4, 5, and 6 days after memory B cell transfer and challenge with either Qβ-RNA (black circles) or Qβ-PGA (open circles) were determined by ELISPOT. (G)

Quantification of the spot diameter in ELISPOT assays after memory B cell transfer and challenge with either Qβ-RNA (black circles) or Qβ-PGA (open circles). Mean

with SEM. P-values were obtained using an unpaired t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. n = 4 mice per group. Data representative of 2

independent experiments, except for day 6 of B and C, where only one experiment was performed.

was crucial for enhanced antibody responses during secondary
Ag challenges. A similar donor response was seen when Qβ-
PGA memory B cells were transferred in presence or absence
of memory CD4+ T cells (Figure 1D) and challenged with
Qβ-RNA. Consequently, like in Qβ-RNA secondary responses,
co-transfer of memory CD4+ T cells had no influence on
the VLP specific memory B cell response. Of note, memory
B cells generated with VLPs containing RNA also failed to
generate increased IgG levels if the boost was performed with
Qβ devoid of RNA (Figure S2A). Thus, enhanced IgG responses
were only detectable when memory B cells were generated
and boosted with Qβ-RNA (Figures 1B,C; Figures S1A, S2A-C).
The increased IgG response produced by memory B cells
generated in presence of RNA could also be verified in
ELISPOT assays of spleen and BM, where the spot diameter
correlates with the amount of antibodies produced by one
PC (Figure 1E).

We further investigated the antibody response by performing
avidity ELISAs (Figures 1F,G). The avidity index was determined
by a modified ELISA where washes with 7M urea were
performed, which dissociates low avidity antibodies but high
avidity antibodies remain bound. The avidity index of secondary
response antibodies after Qβ-RNA induced memory B cell
transfer and Qβ-RNA re-stimulation was high as of day
4 and stayed significantly higher compared to the primary
response antibodies until day 21 (Figure 1F). A similar, but
less pronounced, observation of the avidity increase was made,
when Qβ-PGA induced memory B cells were transferred and
re-stimulated with Qβ-RNA (Figure 1G). In strong contrast,
primary response antibodies reach comparable avidity only
after 21 days in the absence of memory B cell transfer
(Figure S1B). These data indicate that RNA is required to
generate memory B cells capable of generating secondary PCs
but affinity maturation occurred to a large degree in the absence
of RNA.

Presence of Bacterial RNA During

Challenge of Memory B Cells Is Essential

to Generate Secondary PCs
After induction of memory B cells with Qβ-RNA in Ly5 allotypic
wildtype mice, MACS purified memory B cells were adoptively
transferred into allotypic recipients, which were challenged with
Qβ-RNA or Qβ-PGA 1 day after transfer (Figure 1A). Antigen-
specific PCs were identified as B220low, IgM, IgD, CD4, CD8,
CD11b, CD11c, GR1 negative and by intracellular Qβ binding
after membrane permeabilisation using flow cytometry (FCM).
Donor derived cells (Ly5.1+) were discriminated from host
derived cells (Ly5.2+) using the Ly5 marker (Figure 2A). Donor,
hence memory B cell derived Qβ-specific PCs, were significantly

increased on day 4 and 5 after challenge with Qβ-RNA compared
to Qβ-PGA (Figure 2B). This difference was less prominent
looking at host derived antigen specific PCs generated early
during the primary response (Figure 2C).

The increased PC response generated by transferred memory
B cells boosted with Qβ-RNA in comparison to Qβ-PGA
correlated with PC numbers detectable in spleen and BM
analyzed by ELISPOT (Figures 2D–F). In addition, secondary
PCs generated in presence of Qβ-RNA were capable to produce
more antibodies shown by the increased spot diameter observed
in ELISPOT analysis (Figures 2D,E,G). The peak of the PC
number and spot diameter in spleen and BM after transfer of
Qβ-RNA-primed memory B cells followed by challenge with Qβ-
RNA was around day 4 and 5, thereafter PC numbers rapidly
declined, demonstrating the short-lived nature of the secondary
PCs. In contrast, boosting with Qβ-PGA resulted in slower but
more sustained responses (Figure 2B, day 6). The early PC
population detectable in spleen and BM after naïve cell transfer in
control experiments generating a primary response was smaller
and produced less antibodies (Figures S1C,D).

Thus, bacterial RNA as a TLR7 ligand is not only important
in the generation of memory B cells but also during their
differentiation to secondary PCs with increased ability to secrete
high-affinity antibodies.

RNA Induced TLR7 Signaling Must Be

Present for Induction of Memory B Cells

Competent to Differentiate Into

Secondary PCs
To assess whether TLR7 was involved in the generation of
memory B cells competent to differentiate into secondary
PCs, adoptive transfer experiments using TLR7 KO mice were
performed. Memory B cells were induced in TLR7 KO or
WT mice by Qβ-RNA vaccination. MACS purified memory B
cells were then transferred into Ly5-allotypic WT mice and
challenged with Qβ-RNA, Qβ-PGA, or Qβ-CpG (Figure 3A). As
observed with Qβ-PGA (Figures 1C,G), the total anti-Qβ IgG
titer and avidity was significantly lower at early time-points when
TLR7 deficient memory B cells were transferred (Figures 3B,C).
Therefore, the humoral immune responses observed in the
absence of TLR7 correlated well with the data observed in the
absence of RNA, indicating that memory B cells competent to
differentiate to secondary PCs fail to differentiate in the absence
of TLR7 signaling.

PC numbers and spot sizes in spleen and BM obtained
from ELISPOT assays were consistent with the antibody
responses and corroborated the findings using RNA-free VLPs
(Figures 3D,E). Host mice that received WT memory B cells
exhibited significantly increased PC frequencies in the spleen
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FIGURE 3 | TLR7 must be present during memory B cell induction to generate secondary PCs after challenge with VLPs. (A) Memory B cells were induced in TLR7

KO, WT, or BM chimeras by immunization with 50 µg Qβ-RNA i.v. Eight weeks after immunization spleens were isolated and PNA− B220+ MACS purified cells were

transferred into host mice (Ly5.1). One day after the transfer, recipient mice were challenged with 50 µg Qβ-RNA (B–E) or Qβ-RNA, Qβ-PGA, and Qβ-CpG (F,G) i.v.

Spleens, bone marrow, and serum were taken at several time points after challenge. (B) Qβ-specific total IgG titers after WT (black squares) or TLR7 KO (open circles)

memory B cell transfer were determined by ELISA. (C) The avidity index after WT (black circles) or TLR7 KO (open circles) memory B cell transfer was determined by a

(Continued)

Frontiers in Immunology | www.frontiersin.org 8 April 2019 | Volume 10 | Article 73631

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Krueger et al. TLR7-Signaling in Secondary PC Generation

FIGURE 3 | modified ELISA. (D,E) ELISPOT assays were used to determine the number (D) of Qβ specific PCs and the spot diameter (E) produced by these in

spleen and BM on days 5 and 21 after WT (black circles) or TLR7 KO (open circles) memory B cell transfer. (F,G) ELISPOT assays were used to determine the number

(F) of Qβ specific PCs and the spot diameter (G) in the spleen and BM on day 5 after WT (black shapes) or TLR7 KO (open shapes) memory B cell transfer and

challenge with Qβ-RNA, Qβ-PGA, or Qβ-CpG, respectively. Mean with SEM. P-values were obtained using an unpaired t-test. *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001. n = 4 mice per group. Data representative of 2 (B–E) or 1 (F,G) independent experiments.

5 days after VLP challenge (Figure 3D). This difference was
less prominent in the BM. The spot diameter was significantly
increased in spleen and BM after WT memory B cell transfer
compared to TLR7 KO memory B cell transfer early during the
response. This difference was maintained in the BM but gone
in the spleen by day 21, likely because most secondary PCs had
died by then (Figure 3E). In conclusion, as increased antibody
production and spot size are a hallmark of secondary PCs,
these cells were only generated when WT memory B cells were
transferred, which could receive RNA-mediated TLR7 signals
during their generation and re-stimulation.

To assess whether TLR7 KO memory B cells were competent
to differentiate to secondary PCs, adoptive transfers of WT and
TLR7 KOmemory B cells and challenge with Qβ-RNA, Qβ-PGA,
or Qβ-CpG were performed. Qβ-CpG contained B-type CpG
oligodeoxynucleotides, which trigger myeloid differentiation
primary response 88 (MyD88) signaling in B cells via TLR9.
The memory B cell response toward the three challenge antigens
was determined by ELISPOT at day 5 after challenge. TLR7
KO memory B cells exhibited a reduced capacity to generate
secondary PCs in response to Qβ-RNA and Qβ-CpG challenge,
shown by decreased spot number (Figure 3F) and spot size
(Figure 3G) in the spleen and BM. The spot number and spot
sizes generated were comparable to the ones of WT and TLR7
KO memory B cells challenged in the absence of any TLR
ligand (Qβ-PGA) (Figures 3F,G), which failed to differentiate to
secondary PCs (Figure 2). WT memory B cells on the contrary
differentiated to secondary PCs after reactivation with Qβ-RNA
and Qβ-CpG (Figures 3F,G), indicating that TLR9 stimulation
can compensate for TLR7 when memory B cells were induced
in presence of TLR7 ligands. Consequently, TLR7 signaling is
indispensable during memory B cell priming for imprinting
the ability of secondary PC generation after antigen challenge,
as MyD88 signaling induced by TLR9 stimulation is not able
to compensate for the defect seen after TLR7 KO memory B
cell transfer. Moreover, presence of TLR7 or TLR9 signaling is
sufficient for secondary PC formation after challenge of memory
B cells generated in the presence of TLR7 signaling.

B Cell Intrinsic TLR7 Signaling Is Needed

to Generate Memory B Cells Capable of

Differentiating to Secondary PCs
To test whether TLR7 signaling was intrinsically required in B
cells for secondary PC generation, mixed BM chimeras of JH
knockout (KO) with WT or TLR7 KO BM were generated. TLR7
KO BM chimeras exclusively lack TLR7 in B cells, whereas WT
BM chimera B cells were sufficient for TLR7 in all cells. Two
months after reconstitution, both BM chimeras were immunized
with Qβ-RNA (Figure 4A). MACS purified memory B cells

were transferred into recipient WT mice and challenged with
Qβ-RNA (Figures 3A, 4A). From day 4 after challenge the
anti-Qβ total IgG titer as well as the affinity was significantly
lower when memory B cells from TLR7 deficient BM chimeras
were transferred (Figures 4B,C). The difference was particularly
pronounced before day 9 after challenge, representing the
time span when secondary PCs were dominating the response,
providing the early wave of antibodies. As observed before,
the differences became smaller at later time-points, as the host
response developed (Figures 4B,C).

PC numbers and spot sizes examined in spleen and BM
correlated well with the antibody responses (Figures 4B–E).
After transfer of TLR7 KO BM chimera memory B cells,
PC numbers in the spleen were significantly lower compared
to WT BM chimera memory B cell transfer at day 5 after
challenge. This difference was absent 21 days after challenge,
again indicating that secondary PCs are short-lived (Figure 4D).
Moreover, spot diameters, which correlate with the amount of
antibodies produced by PCs, were smaller in spleen and BM at
day 5 after challenge, when TLR7-deficient BM chimera memory
B cells were transferred compared toWT BM chimera memory B
cells (Figure 4E). Taken together, the data presented here clearly
demonstrate that RNA and TLR7 signaling are required in a
B cell intrinsic fashion for the generation of memory B cells
and their differentiation to secondary PCs, which are capable to
produce vast amounts of high affinity antibodies early during
secondary responses.

DISCUSSION

B cell responses are controlled and regulated at multiple levels. As
a key step, B cell specificity is cross-checked by available cognate
T cell help and the presence of innate stimuli indicative of an
infection. This is exemplified by the primary B cell response
against viruses where specificity alone is driving the initial
response by efficient cross-linking of BCRs by the repetitive viral
surface (51). This results in a Th cell independent IgM response,
which is, however, short-lived. Only the presence of cognate
T cell help results in a GC response and isotype-switching.
In this way, the immune system validates the BCR-signals by
the presence of Th cells specific for the same antigen, which
indicates that the recognized antigen is non-self. Presence of
PAMPs, in particular TLR-ligands, is a second checkpoint, which
implies that the antigen is not only non-self but most likely an
infectious agent. This results in augmented antibody and Th cell
responses. Here we demonstrate that TLR-signals, in particular
TLR7, are also key in secondary B cell responses as they cause the
differentiation of a subset of memory B cells capable to rapidly
differentiate into secondary PCs upon re-exposure to the same
antigen plus TLR7-ligand.
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FIGURE 4 | B cell intrinsic TLR7 signaling is needed to generate memory B cells capable of producing secondary PCs. (A) Mixed BM chimeric mice with 20% WT or

TLR7 KO and 80% JH KO BM were generated. Eight weeks after reconstitution the WT and TLR7 KO chimeras were immunized with 50 µg Qβ-RNA. Memory B cells

from BM chimeric mice were transferred into congenic Ly5.1 recipients after 8 weeks. Recipient mice were challenged with 50 µg Qβ-RNA 24 h after the adoptive

transfer. (B) The anti-Qβ total IgG titer in the serum after WT chimera (black squares) or TLR7 KO chimera (open circles) memory B cell transfer was determined by

ELISA. (C) The avidity index of antibodies from sera generated after WT chimera (black circles) or TLR7 KO chimera (open circles) memory B cell transfer and

challenge was calculated after performing a modified ELISA. ELSIPOT assays of splenocytes and BM cells were performed to determine PC number (D) and spot

diameter (E) 5 and 21 days after WT chimera (black circles) or TLR7 KO chimera (open circles) transfer and challenge. Mean with SEM. P-values were obtained using

an unpaired t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. n = 4 mice per group. Data representative of two independent experiments.

The adaptive immune system is confronted with the choice
between speed and specificity. As clonal selection and, in the case
of B cells, hypermutation need time to develope, high specificity
comes at the cost of time. As many pathogens may be fatal

within a week, highly specific antibody responses would be too
late to provide protection (52). Broadly cross-reactive antibody
responses, on the other hand, always carry the risk of non-desired
recognition of self-antigens. The solution the immune system

Frontiers in Immunology | www.frontiersin.org 10 April 2019 | Volume 10 | Article 73633

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Krueger et al. TLR7-Signaling in Secondary PC Generation

found during primary responses is the early and rapid generation
of poly-reactive IgM antibodies, which are especially potent at
recognizing repetitive surfaces due to their deca-valence. To
balance the potential of IgM antibodies to cross-react, these
responses are, however, short-lived and eventually replaced by
highly specific bivalent IgG antibodies, which are controlled by
cognate T cell help and presence of TLR-ligands.

We demonstrate here that secondary antibody responses
may follow a similar pattern. Pre-existing, TLR7- and Th cell
experienced memory B cells differentiate rapidly to secondary
PCs, which produce large amounts of high affinity IgG
antibodies. This differentiation occurs without direct interaction
with cognate Th cells (12) but needs again the presence of
RNA or CpG oligodeoxynucleotides to engage TLR7/9 signaling
to ensure presence of an infectious agent. However, since
the pathogen may have evolved over time, these high affinity
IgG antibodies may primarily recognize the original pathogen
rather than the current version. For this reason, similar as the
IgM antibodies generated during the primary response, this
early wave of secondary IgG antibodies is replaced by a more
specific second wave of antibodies derived from naïve B cells,
which again will require presence of Th and TLR7-ligands for
optimal specificity.

The present data further underscore the importance of RNA-
sensing in B cells. We and others have previously shown that
TLR signaling in B cells drives primary B cell responses and is,
at least for viral particles, more important than TLR7 signaling
in DCs (16–19). Here we extend these findings to secondary
B cell responses and demonstrate that B cell-intrinsic TLR7-
signaling is essential for imprinting the ability to differentiate
to secondary PCs, as vaccination with VLPs deprived of RNA
induces affinity matured memory B cells which lack the potential
to generate secondary PCs. Moreover, this signaling pathway
is also key for driving the differentiation of these secondary
PCs from memory B cells. Hence, TLR7 signaling in B cells

is essential for the shaping of both primary and secondary B
cell responses. These data have obvious implications for vaccine
design as the major vaccines based on virus-like particles, those
against hepatitis B virus, human papilloma virus and malaria do
not package RNA. Future vaccine platforms may therefore be
based on VLPs incorporating RNA in order to allow formation of
memory B cells capable of differentiating into secondary PCs to

provide the first wave of rapidly produced protective antibodies
during re-infection.
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Antigen-specific CD8+ tissue-resident memory T cells (TRM cells) persist in the lung

following resolution of a respiratory virus infection and provide first-line defense against

reinfection. In contrast to other memory T cell populations, such as central memory

T cells that circulate between lymph and blood, and effector memory T cells (TEM
cells) that circulate between blood and peripheral tissues, TRM cells are best defined

by their permanent residency in the tissues and their independence from circulatory T

cell populations. Consistent with this, we recently demonstrated that CD8+ TRM cells

primarily reside within specific niches in the lung (Repair-Associated Memory Depots;

RAMD) that normally exclude CD8+ TEM cells. However, it has also been reported

that circulating CD8+ TEM cells continuously convert into CD8+ TRM cells in the lung

interstitium, helping to sustain TRM numbers. The relative contributions of these two

mechanisms of CD8+ TRM cells maintenance in the lung has been the source of vigorous

debate. Here we propose a model in which the majority of CD8+ TRM cells are maintained

within RAMD (conventional TRM) whereas a small fraction of TRM are derived from

circulating CD8+ TEM cells and maintained in the interstitium. The numbers of both types

of TRM cells wane over time due to declines in both RAMD availability and the overall

number of TEM in the circulation. This model is consistent withmost published reports and

has important implications for the development of vaccines designed to elicit protective

T cell memory in the lung.

Keywords: tissue-resident memory, CD8+ T cells, memory T cell maintenance, lung, respiratory virus infections

INTRODUCTION

Memory CD8+ T cells in non-lymphoid tissues are optimally positioned tomediate rapid responses
to invading pathogens. They comprise at least two distinct subpopulations: tissue-resident memory
T cells (TRM cells) and effector memory T cells (TEM cells). TRM cells are a non-circulating
population that typically, but not exclusively, expresses a specific array of surface markers (e.g.,
CD69, CD103, and CD49a) and possess gene-expression profiles that are associated with tissue
retention (1). In contrast, TEM cells lack the expression of these molecules and continuously

37

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00733
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00733&domain=pdf&date_stamp=2019-04-05
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:takamura@med.kindai.ac.jp
https://doi.org/10.3389/fimmu.2019.00733
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00733/full
http://loop.frontiersin.org/people/542481/overview
http://loop.frontiersin.org/people/165412/overview


Takamura and Kohlmeier Divers Populations of Lung Memory

circulate between blood and non-lymphoid tissues (2). The vast
majority of memory CD8+ T cells in most non-lymphoid tissues
are TRM and play the predominant role in protective immunity
(3, 4). In contrast, memory CD8+ T cells in the circulation have
minimal, if any, impact on immediate local protection (3, 5).
However, it is possible that the small numbers of CD8+ TEM cells
that transit through the tissues at the time of reinfection may
contribute to protection.

The lung appears to differ from other non-lymphoid tissues in
that it harbors relatively large numbers of both tissue-circulating
TEM and TRM cells in a number of distinct niches (3, 6).
Furthermore, these memory CD8+ T cell subpopulations alter
their phenotypes and functions in response to environmental
factors present in distinct compartments of the lung (7, 8).
Thus, a complete understanding of the phenotypic and functional
features of these memory T cell populations in each of these lung
compartment has been hampered by the challenges of isolating
pure populations for analysis. This has resulted in confusion
in the field. In this perspective, we attempt to resolve these
issues and outline a model that explains the generation and
maintenance of diverse populations of memory CD8+ T cells in
the lung.

MEMORY CD8+ T CELLS IN THE LUNG

The tissues that comprise the barrier surfaces of the body
typically consist of an epithelial layer that overlays a stromal
layer, such as the epidermis and dermis in the skin and
the epithelium and lamina propria in the intestine. These
tissues differ considerably and provide distinct anatomical
and biological niches for the maintenance of memory CD8+

T cells (9). Consistent with other barrier tissues, the lung
airways (epithelium) and the lung interstitium (stroma) host
phenotypically and functionally distinct memory CD8+ T
cell populations.

Memory CD8+ T cells in the lung airways are localized
primarily in the epithelial layers of the bronchiole and are
readily isolated by bronchoalveolar lavage (BAL) (10–12). Since
the lung airways are anatomically separated from blood vessels,
there are few, if any, blood cell contaminants in BAL samples
(unless the blood vessels are damaged by poor technique or
infection). Consequently, it is possible to interpret the data
on T cells isolated by BAL without using intravascular (i.v.)
staining to distinguish contaminating cells from the blood (13).
Such BAL data indicate that large numbers of antigen-specific
memory CD8+ T cells are present in the lung airways for several
months following recovery from a respiratory virus infection
(14, 15). These airway T cells do not return to the circulation
or the lung interstitium under steady-state conditions (12),
suggesting that they are TRM. However, since they have relatively
short lifespans (presumably due to cell-extrinsic factors, such
as their biophysical removal by the barrier function of airway
mucosa) (16), their maintenance depends on continual influx
of memory cells from the interstitium (16, 17). This continual
replenishment of memory pool does not fit with the definition
of TRM and, as such, is a unique feature memory CD8+ T cells

in the lung airways. Upon recruitment to the airways, the cells
receive antigen-independent local environmental cues to acquire
an activation phenotype (e.g., upregulation of CD69) and to
completely downregulate the integrin LFA-1 (CD11a) (7, 16). As
a result, memory CD8+ T cells in the airways lose cell contact-
mediated cytolytic activity (11). Nevertheless, these cells can
confer antigen-specific protection by rapidly secreting interferon
(IFN)-γ in the face of antigenic challenge (18, 19).

Memory CD8+ T cells in the lung interstitium can be purified
by enzymatic digestion of lung tissues after removal of the BAL.
However, cells prepared this way are contaminated with small
numbers of memory CD8+ T cells that had been trapped in
the airways, although a certain fraction of these cells (i.e., cells
that are exposed in the airway environment more than 48 h)
can be distinguished by their reduced expression of CD11a
(16). Interstitial cells prepared by enzymatic digestion are also
contaminated with blood derived T cells from the capillaries.
Therefore, prior i.v. staining is necessary to discriminate cells in
the interstitium from those in the pulmonary capillary bed (13).
It is important to point out two things here. First, data regarding
parenchymal cells that have been isolated without i.v. staining
must be cautiously interpreted given the significant degree of
blood cell contamination. For example, before researchers began
discriminating cells in the lung tissue and the lung vasculature,
lung interstitium had erroneously been considered to be a
“permissive tissue” that was readily accessible to memory CD8+

T cells in the circulation (20–22). However, a more detailed
analysis has revealed that, as with other mucosal tissues, the
migration of circulating memory CD8+ T cells into the lung
interstitium isminimal in uninfected lung interstitium (6, 23, 24).
Second, because memory CD8+ T cells in the lung interstitium
(i.e., negative for i.v.-injected antibody) include both TRM and
small numbers of tissue-circulating TEM, parabiosis approaches
are necessary to distinguish these populations. Using these
approaches, we and others have formally demonstrated that a
large proportion ofmemory CD8+ T cells in the lung interstitium
are TRM cells (Figure 1) (3, 6). It has also become evident
that CD8+ TRM and TEM cell populations are maintained in
distinct compartments of the lung interstitium: the former is
predominantly localized within the site of tissue repair and
regeneration around the bronchiole (we termed these Repair-
Associated Memory Depots: RAMD), while the latter are widely
and sparsely distributed in unaffected areas of the interstitium
(6). Unlike memory CD8+ T cells in the airways, CD8+ TRM

cells in the lung interstitium are a stable population (6). Hence,
memory CD8+ T cells in the lung interstitium comprise a
mixture of stable (TRM) and dynamic (TEM) memory populations
that are maintained independently.

The true phenotypes of memory T cells in the lung
interstitium are best revealed through parabiosis studies in which
a pair of influenza virus infected mice are surgically joined after
memory has been established and rested until leucocytes in
the blood of each mouse are equilibrated. Non-circulating host
CD8+ T cells in the lung predominantly, but not exclusively,
express TRM markers CD69, CD103, and CD49a that facilitate
tissue-retention while partner-derived TEM cells are mostly
negative for these markers (Figure 1) (6). The small fraction of
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FIGURE 1 | Analysis of lung TRM and TEM by parabiosis experiment. Congenically distinct mice (CD45.1+ and CD45.2+) were infected i.n. with influenza virus x31

(300 EID50) and subjected to parabiotic surgery 35 days later. Day 21 after the surgery, mice were injected i.v. with 1 µg anti-CD8β 3min prior to tissue harvest.

Cells in the lung airways were recovered by BAL. Lung tissues were digested by collagenase D, and enriched by centrifugation in 40/80% Percoll gradient. Cells were

stained with influenza NP366−374/D
b tetramer and fluorescent-conjugated antibodies. Data shown are derived from a CD45.2+ parabiont. Plots shown in (A) indicate

the gating strategy of host- and partner-derived antigen-specific CD8+ T cells in the spleen, lung interstitium and airways. Bar graphs show ratio of host and partner

cells among i.v. antibody negative cells in individual mouse. Plots shown in (B) indicate the expression of CD69, CD103, and CD49a on host- and partner-derived

NP366−374/D
b tetramer+ CD8+ T cells in the lung airways and interstitium. Host cells are the mixture of a large proportion of TRM (CD69+ CD49a+ CD103+ and

CD69+ CD49a+ CD103−) and a minor population of TEM (CD69− CD49a− CD103−). The former population may include a small number of circulation-driven TRM
converted from host TEM. The data also show how circulation-driven TRM cells are a relatively small population and are difficult to identify in individual animals.

host CD69− CD103− CD49a− cells likely represent the host-
derived TEM population. It is interesting that a sizable fraction
of host CD69+ CD49a+ cells in both the lung interstitium and
airways lack the expression of another TRM marker, CD103
(Figure 1) (6, 25). The lack of CD103 on some TRM is consistent
with subpopulation of TRM found in the intestinal lamina
propria, brain, and liver (26–28). In this regard, i.n. infection of

CD103 knockout mice with influenza virus resulted in partial,
but not complete, loss of CD8+ TRM in these tissues (29). These
data also indicate that the CD103 marker does not efficiently
discriminate TRM from TEM in the lung. Given the diversity
of memory CD8+ T cell populations in the lung, it is critical
to precisely identify each population to avoid misinterpretation
and confusion.
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GENERATION AND MAINTENANCE OF

CANONICAL TRM CELLS IN THE LUNG

Following initial priming in the draining lymph nodes (LN),
effector CD8+ T cells migrate to the inflamed tissues where they
receive local instructive signals that promote their subsequent
differentiation into TRM (9, 30). Transforming growth factor-
β1 (TGF-β) is a common factor in most non-lymphoid tissues
that drives T cell expression of CD103 and thereby promotes
integrin αEβ7-mediated adhesion to E-cadherin on epithelial
cells. A variety of cells, such as macrophages and stromal cells
in the interstitium, and epithelial cells, are known to produce
the latent form of TGF-β in the lung during early phases of an
influenza virus infection (25, 31). As with the intestine (32–34),
CD103+ dendritic cells (DC) in the lung interstitium may play a
role in the local conversion of TGF-β into the active form through
integrin αvβ8, and promote the establishment of CD103+ CD8+

TRM cells in the lung (35). In the absence of TGF-β signaling,
CD8+ TRM cells in the whole lung (i.e., a mixture of cells in
the airway and interstitium) completely lack the expression of
CD103 (35, 36), although the number of antigen-specific CD8+

T cells in the whole lung is not affected (36). This suggests
that the establishment of CD103− CD8+ TRM cells in the lung
interstitium and airways is not dependent of TGF-β.

Since there is limited space for cells to inhabit in normal
lung tissue, newly created anatomical niches are required for the
establishment and long-term maintenance of CD8+ TRM cells in
the lung (6, 9, 37). Upon respiratory virus infection, infection-
induced cytolysis and disruption of infected cells by antigen-
specific effector CD8+ T cells both contribute to tissue damage.
A broad spectrum of cells including immune cells as well as
basal cells (e.g., distal airway stem cells) accumulate at sites of
damage to mediate the repair process which can be virtually
observed as cytokeratin-expressing cell aggregates (Krt-pods)
(38), thereby providing special niches for the establishment of
CD8+ TRM cells in the lung interstitium (6, 37). Thus, lung CD8+

TRM cells may be specifically committed to protect weak spots
(tissues undergoing repair) in the lung against reinfection (24).
The structural characteristics of these TRM depots (RAMD) differ
from inducible bronchus-associated lymphoid tissue (iBALT) as
most CD8+ TRM cells in the RAMD do not form organized
lymphoid structures (iBALT consists of CD4+ T cell cluster that
surround B cell follicles) (6). This is consistent with the fact
that unlike CD4+ T cells and B cells that act cooperatively,
CD8+ TRM cells can act alone upon recall. Furthermore, our
timed parabiosis approach (joining pairs of mice at various
time points before and after infection) clearly demonstrated
that CD8+ T cells recruited to the lung later than the peak
of T cell response in the lung (around day 10 post influenza
virus infection) failed to from TRM (6). This indicates that lung
TRM niches are occupied at the peak of tissue damage and
are no longer available for latecomer CD8+ T cells including
TEM cells. It is well known that CD8+ TRM cells in the
lung display relatively shorter longevity relative to TRM in
other tissues as TRM cell-mediated heterosubtypic immunity to
influenza virus lost at 4–6 months post-infection (5, 8). The

decline in the size of the RAMDs overtime as tissue repair
proceeds would explain the limited longevity of lung CD8+ TRM

cells as compared to CD8+ TRM cells in other non-lymphoid
tissues (6, 37). Similarly, the elevated proapoptotic activities
of CD8+ TRM cells in the whole lung can be attributed to
the concomitant loss of environmental factors that potentially
support the homeostasis of TRM (8).

It has been established that concurrent CD4+ T cell responses
also contribute to the establishment of CD8+ TRM cells in the
lung (39). In contrast to other mucosa (female reproductive
tract) where CD4+ T cells play an indirect role in promoting
optimal positioning of CD8+ TRM cells by triggering the local
production of inflammatory chemokines (40), CD4+ T cell
help in the lung confers prolonged survival and improved
functionality of CD8+ T cells by transcriptionally modulating
the metabolism to maintain higher spare respiratory capacity
(41), a hallmark of T cell memory (42). CD4+ T cell-derived
IFN-γ also acts directly on CD8+ T cells to downregulate the
expression of T-bet. This leads to memory CD8+ T cell rescue
from T-bet-mediated repression of CD103, thereby promoting
TRM formation (43). Given the differential distribution of CD8+

and CD4+ TRM (RAMD and iBALT, respectively), it seems
likely that the primary involvement of CD4+ T cell help during
CD8+ TRM formation is exerted during the acute phase of
infection (41).

A recent study has shown that cell-intrinsic factors also
contribute to the durability of TRM in the lung. CD8+

TRM cells generated from memory CD8+ T cells that had
previously experienced multiple antigen encounters exhibit
superior longevity compared to these generated from naïve
CD8+ T cells (44). Reciprocal adoptive transfer approaches
using a mixture of memory and naïve T cell receptor (TCR)
transgenic T cells revealed that TRM cells derived from memory
cells preferentially occupy lung TRM niches compared to TRM

cells derived from naïve cells (44). This suggests that there
may be increased frequencies of TRM precursors (KLRG1lo

effector cells) among memory-derived CD8+ T cells, compared
to naïve CD8+ T cells following activation in the draining
LN. It is also possible that memory-derived CD8+ T cells
may be capable of receiving additional instructive signals,
such as 4-1BB signals for up-regulation of pro-survival factors,
when cells are recruited to the RAMD and acquire resultant
longevity (45).

Cognate antigen-driven local reactivation is also indispensable
for the establishment of lung CD8+ TRM cells. The best example
for this is the impact of route of infection/vaccination on the
establishment of CD8+ TRM cells in the lung. Intranasal (i.n.)
infection elicits robust populations of CD8+ TRM cells in the
lung interstitium and airways, whereas non-pulmonary route of
infection do not (5, 6, 19, 23, 24, 35, 46–49). In the case of the
skin and genital tract, forced recruitment of circulating CD8+

T cells to the mucosa using inflammatory stimuli or topical
administration of chemokines is sufficient to establish local TRM,
an approach referred to as “prime and pull” (50, 51). However,
we and others have shown that the exposure of CD8+ T cells
to the lung environment is insufficient to promote subsequent
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differentiation of these into long-lived lung TRM (6, 23, 35).
Instead, local reactivation induced by pulmonary administration
of trace amount of antigen during the process of “prime and pull”
is necessary for converting circulating CD8+ T cells into lung
TRM cells (6, 23). Thus, both cell-intrinsic and extrinsic factors
are necessary for complete conversion of these cells to TRM.
First, pulmonary administration of antigen generates antigen-
bearing target cells that are eliminated by antigen-specific CD8+

T cells, leading to the creation of damage and repair-associated
TRM niches (6). Second, local reactivation provides cell-intrinsic
effects such as prolonged expression of CD69 and CD49a
necessary for retention (6, 23), and upregulation of interferon-
induced transmembrane protein 3 (IFITM3) for survival (52).
Furthermore, TCR signaling may protect TRM cells from a
damage/danger-associated molecular pattern (DAMP)-induced
cell death (53). Interestingly, there is differential expression
of CD103 on distinct epitope-specific CD8+ TRM cells in the
lung, irrespective of their localization, suggesting that difference
in the extent of antigen presentation or subset of antigen
presenting cells (APC) involved may also influence lung TRM

biology (25).
While it is unclear which APC provide local antigen signaling,

the delivery of antigen to pulmonary DC by antibody-targeted
vaccination (conjugate of antigen and antibody specific for
DC) significantly facilitates the establishment of CD103+

CD8+ TRM cells in the lung (35). Furthermore, CD103+

respiratory DC are known to continually carry residual
antigen from the lung to the draining LN, suggesting that
respiratory DC are the primary source of local antigen signaling
(54). Given the unique ability of CD103+ respiratory DC
to provide strong stimulatory signals in the draining LN,
thereby generating effector CD8+ T cells that preferentially
home back to the lung (55), local reactivation by respiratory
DC may promote terminal effector maturation rather
than memory differentiation (56–58). Thus, other APC
subsets, such as pulmonary macrophages, that accumulate
in the RAMD during the early phase of infection may be
necessary to provide the optimal antigen signaling required for
TRM development (59, 60).

CONVERSION FROM TEM TO TRM: A

MINOR PATHWAY OF TRM DEVELOPMENT

IN THE LUNG

Despite the inefficiency of the non-pulmonary route of
infection/immunization in establishing lung CD8+ TRM cells,
several studies have nevertheless reported the deposition of
CD8+ TRM cells in the lung following systemic infections
(3, 61–63). Such blood-borne TRM are derived from effector
cells that have undergone less differentiation (defined as null
to intermediate expression of CX3CR1 and lack of KLRG1
expression and including exKLRG1 cells that have downregulated
this molecule during the contraction phase) (64, 65). Adoptive
transfer of splenic memory clearly revealed the emergence of
a small fraction of CD103+ CD69+ CD8+ T cells in the
whole lung (8). The appearance of CD8+ T cells exhibiting

TRM phenotypes was also evident in our parabiosis experiments
(Figure 1) (6), indicating that some levels of TEM to TRM

conversion occurs in the lung. These cells exhibited a TRM

gene-expression signature and their tissue-residency was also
confirmed by parabiosis (3, 61). Since several cytokines, such as
TGF-β, IL-33, and tumor necrosis factor (TNF)-α, are reported
to drive TEM to TRM conversion (66), the formation of blood-
borne CD8+ TRM cells in the lung likely depends on TNF,
and its effect is prominent in previously infected lung tissues
as compared to naive lung tissues (8). Because partner cells
are also detected in the lung airways after parabiotic surgery
(Figure 1) (6), circulating memory CD8+ T cells can reach
to this tissue at basal levels, and CXCR3 plays a role in this
recruitment (67). Treatment with pertussis toxin (PTx), which
inhibits G protein-coupled chemokine receptors, significantly
reduced the number of whole lung CD8+ TRM cells (including
the dynamic population in the airways), suggesting that not
only migration from the lung interstitium to the airway, but
also the entrance of circulating CD8+ TEM cells into the lung
depends on chemokine signaling (8). Despite their relatively
low numbers, blood-borne lung CD8+ TRM cells confer some
extent of protection against respiratory virus challenge (61–63). It
should be emphasized, however, that this protection is far inferior
to that mediated by bona fide lung CD8+ TRM cells generated
by intranasal infection/immunization (5, 19, 23, 24, 48, 49). It is
well known that the phenotype and function of memory CD8+

T cells in the circulation continues to change over time after
infection, with central memory T cells (TCM cells) emerging
as the predominant subset (64, 68–70). This leads to reduced
numbers of memory CD8+ TEM that can be recruited to the lung
and the eventual loss of a dynamic population of memory CD8+

T cells in the lung (8).

FUTURE PERSPECTIVE

In Figure 2, we suggest a model by which the diverse populations
of memory CD8+ T cells are generated and maintained in the
distinct compartments of the lung. Although the ontogeny of
lung TRM and TEM differs, some levels of conversion from TEM

to TRM occurs within the lung interstitium and also following
recruitment to the airways. Furthermore, although lung airway
memory CD8+ T cells are a non-circulating population, the
maintenance of their numbers depends on the continual influx of
new cells from the lung interstitium. Thus, precise discrimination
of each population is critical for future studies to avoid confusion
in the field (2). Based on the model, it is likely that the limited
longevity of conventional lung CD8+ TRM cells and eventual loss
of blood-borne lung CD8+ TRM cells both contribute the rapid
decay of total CD8+ TRM cells in this tissue (Figure 2). In other
words, such a short-lived nature of lung memory CD8+ T cells
may, in a sense, be programed to avoid unnecessary pathogenesis
in this tissue (71). Hence, multiple combinations of strategies to
extend the longevity of both TRM and TEM should be considered
for the development of vaccines against respiratory infectious
pathogens. Since additional tissue damage is required to create
new TRM niches, strategies that enable the effective establishment
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FIGURE 2 | A comprehensive picture of memory CD8+ T cell populations in the lung. (A) Memory CD8+ T cells in the lung interstitium comprise a major population of

conventional TRM and a smaller population of TEM. Some of the latter also give rise to TRM in response to TNF secreted in the conditioned lung that experience prior

virus infection. Both host and partner cells in the interstitium are likely recruited to the lung airways and undergo phenotypic changes induced by environmental factors

in this tissue. Although lung airway memory CD8+ T cells represent non-circulating population, and thus, are recognized as TRM, continual replacement is required for

their maintenance. The size of the circles indicates the relative sizes of the respective populations in the lung. (B) As TEM cells in the circulation decrease overtime after

infection, input of TEM to the lung interstitium and airways also decrease. Full recovery from the tissue damage, and resultant decrease of the size of RAMDs leads to

reduction in the number of host CD8+ TRM cells in the lung interstitium and airways. Consequently, the animals lost CD8+ T cell-mediated protective immunity in the

lung. (C) Because of the lack of local antigen, bona fide CD8+ TRM cells are not generated in the lung interstitium and airways. Although some TEM cells give rise to

TRM in the lung, the extent is less than infection-experienced lung.

of TRM (including conversion from TEM to TRM) without the
induction of undesirable pathogenesis should be considered in
the future.
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Immunity to influenza is unique among pathogens, in that immune memory is established

both via intermittent lung localized infections with highly variable influenza virus strains

and by intramuscular vaccinations with inactivated protein-based vaccines. Studies in

the past decades have suggested that the B cell responses to influenza infection and

vaccination are highly biased by an individual’s early history of influenza infection. This

reactivity likely reflects both the competitive advantage that memory B cells have in an

immune response and the relatively limited diversity of epitopes in influenza hemagglutinin

that are recognized by B cells. In contrast, CD4T cells recognize a wide array of epitopes,

with specificities that are heavily influenced by the diversity of influenza antigens available,

and amultiplicity of functions that are determined by both priming events and subsequent

confrontations with antigens. Here, we consider the events that prime and remodel

the influenza-specific CD4T cell response in humans that have highly diverse immune

histories and how the CD4 repertoire may be edited in terms of functional potential and

viral epitope specificity. We discuss the consequences that imprinting and remodeling

may have on the potential of different human hosts to rapidly respond with protective

cellular immunity to infection. Finally, these issues are discussed in the context of future

avenues of investigation and vaccine strategies.

Keywords: CD4T cells, vaccine, human immunology, Influenza virus, imprinting

OVERVIEW

Immunological memory to influenza is established by infection and vaccination. Epidemiological
studies suggest that children in North America are typically infected with seasonal influenza
at a rate of 5–15% each year, depending on age and history of vaccination (1–3). In the
U.S., it is now recommended that all children at 6 months of age and older receive yearly
vaccination (4). Currently licensed vaccines include either intranasal inoculation of cold adapted
influenza vaccines (CAIV), such as Flumist R©, or inactivated influenza vaccine (IIV), delivered
via intramuscular injection. Typically, the first vaccinations are with IIV, delivered in infants as
sequential vaccinations separated by 28 days between prime and boost. After 2 years of age, children
can be administered CAIV intranasally, with the goal of boosting cellular and local immunity in
the respiratory tract. Thus, by many different mechanisms, CD4T cells specific for influenza viral
antigens are established early in life. Worldwide, most adults have likely first encountered influenza
by infection, because influenza vaccines were not widely used until the last two decades. In contrast,
most young children in the US could have been exposed to influenza antigens first by vaccination.
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The human host confronts influenza antigens in diverse
forms and at somewhat unpredictable intervals through periodic
infections and yearly vaccinations. How these different types of
encounters with influenza virus and its antigens affect CD4T cell
memory and phenotype is critically important to understand,
because this accumulated memory will influence all subsequent
responses. Despite the importance of this issue, currently our
knowledge is quite limited. The concept of “imprinting” of
influenza immunity has garnered a great deal of interest recently
but this has largely been in the context of the B cell response
(5–8). Here we consider the potential impact of CD4T cell
imprinting and editing of the human CD4T cell repertoire to
influenza and the potential consequences this might have on
protective immunity to infection.

CHARACTERISTICS OF THE CD4T CELL
RESPONSE TO INFECTION AND
VACCINATION

Two aspects of the CD4T cell response to infection are
strikingly different from that of the B cell repertoire. First, the
epitope specificity is tremendously diverse in human CD4T
cells, consisting of perhaps hundreds of different epitopes. This
reactivity is determined in part by the multiple viral proteins
targeted by CD4T cells, stable binding of the antigenic peptide to
MHC class II molecules (9–11) and by the precursor frequency of
the CD4T cells in the host to any given peptide (12). Even mice
that express only one to two MHC class II molecules elicit CD4T
cells specific for 25–80 different peptide epitopes, distributed
across both surface virion proteins such as hemagglutinin (HA)
and neuramindase (NA), and internal virion proteins such as
nucleoprotein (NP) and matrix protein (M1) (13–15). These
antigen specificities have also been observed in humans (16–
22). Due to expression of multiple HLA-class II isoforms and
heterozygosity, humans can express as many as ten different class
II molecules. As a result, they are likely to respond to a much
wider array of peptide epitopes than do typical inbred mice.
This complexity makes it extremely difficult to quantify reactivity
to any particular influenza-derived peptide. Also complicating
estimation of the diversity of the primary response of human
CD4T cells to infection are limitations in sampling tissues
that are at the site of the response. Procedures are currently
being developed to more broadly survey lymph nodes and the
respiratory tract after infection (23–25). We believe that more
efforts of this type are essential to understand the dynamic
features of human immunity to influenza and long-termmemory
in the human host. However, at present, we can only estimate the
breadth of human CD4T cell immunity based on extrapolation
of studies in animal models.

The second important distinction between human influenza-
specific B cells and CD4T cells is the functional complexity of
the elicited response to infection. Accumulated studies to date
have shown that the effector function and fate of CD4T cells after
priming by influenza infection are heterogeneous, and include
follicular helper cells (“Tfh”), that remain in the lymph node
for extended periods of time and facilitate B cell responses,

prototypical Th1 cells that either enter recirculation or home
to the lung to establish tissue resident memory, and cytotoxic
CD4T cells that are primarily detected in the respiratory tract
[reviewed in (26)] (27, 28). Each of these subsets has distinct
transcriptional profiles (29). The elements within the lung
draining lymph node that control commitment to alternate fates
of CD4T cells are not well-understood. Differentiation decisions
during CD4T cell priming have been attributed to the local
microenvironment, particularly cytokines (30, 31), but in the case
of influenza infection, and dominant Th1 biased response, many
other distinct functional subsets of CD4T cells quickly emerge.
Beyond the cytokine milieu, there are other parameters suggested
to shape the CD4T cell response to infection, including the
impact of T cell receptor affinity (32, 33) and the epitope density
that CD4T cells encounter as they enter the antigen draining
lymph node (34, 35).

In contrast to the diversity in specificity and functionality
elicited by CD4T cells in response to infection, vaccination
with licensed vaccines is currently designed to elicit HA-specific
neutralizing antibodies. Early vaccines were produced from
isolated virions that were simply chemically inactivated prior to
administration to humans (36). These early whole inactivated
vaccines were highly immunogenic, likely due to the viral RNA
content, and contained diverse influenza proteins (37). Since the
1960s, vaccine production has been progressively modified to
be less reactogenic in order to increase compliance and safety,
and to be more highly enriched for the HA protein, as our
understanding of the role of neutralizing antibody in sterilizing
protection from influenza has grown. Accordingly, the CD4T
cell responses to influenza vaccines have become focused in
specificity and more limited in inflammatory response (38, 39).
A recently licensed influenza vaccine now contains only pure
HA proteins (Flublok R© Quadrivalent) (40), with the relevant HA
from each circulating strain isolated from transfected insect cells,
thus further focusing the immune response to the HA proteins.
Whether increasingly purified influenza vaccines endow the host
with more or less protection from infection is not known at
this time. This may ultimately limit the specificity of CD4T
cells to highly diverse HA proteins, diminishing cross protection
against diverse influenza strains. Protein vaccines delivered
in the absence of adjuvant to naïve individuals elicit CD4T
cells of limited functional complexity (41–44). Both of these
features may limit the overall protective capacity induced by
influenza vaccines.

IMPRINTING AND EDITING IN THE CD4T
CELL RESPONSE AMONG DIFFERENT
AGE GROUPS AND INDIVIDUALS

By imprinting, we refer to the possibility that certain types
of influenza confrontations, determined by age (e.g., the very
young) or type (e.g., infection), permanently bias subsequent
responses. Editing refers to the possibility that the CD4T cell
repertoire is remodeled with each subsequent encounter with
influenza viruses and vaccines. Knowledge of these issues is
essential in order to both predict and potentially design new
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vaccines that most effectively poise the host for future immunity.
Although imprinting in influenza immunity is most commonly
discussed with regard to the B cell response, we propose here that
imprinting may also have a dramatic impact on the specificity,
phenotype and persistence of the CD4T cell repertoire.

Unlike animal models of infection or vaccination that might
experience primary and perhaps secondary immune responses,
the human immune system is primed and boosted with influenza
antigens numerous times over a lifetime. Figure 1 illustrates
the way these events may vary by the single parameter of age.
The oldest individuals (>65 years of age) were likely exposed
to influenza first through infection, and have had numerous
subsequent exposures to distinct circulatingH1N1,H2N2,H3N2,
and influenza B viruses through infection [reviewed in (36,
47)]. Thus, based on periodic infections with different influenza
viruses, we would expect that this oldest cohort of individuals
would have accumulated a highly diverse CD4T cell repertoire
to distinct virus proteins. However, based on evolving vaccine
recommendations, the immune repertoire of the over 65 cohort
would have been perturbed by yearly vaccination for the past 1–2
decades [reviewed in (36, 48)]. Individuals in the 50–60 year old
demographic may display the same pattern of early-life influenza
virus exposure, but may not have received the yearly influenza
vaccination suggested for older people. Conversely, children 15
years old and younger may have had their first confrontation
with influenza through intramuscular vaccination with vaccines
comprised of proteins from multiple virus strains, and enriched
for HA. Whether and how frequently young children experience
influenza infections is quite difficult to know with certainty,
because many infections cause only mild disease, particularly
among vaccinated individuals.

The simplest prediction of these scenarios is that older
adults would have the largest epitope diversity of CD4T cells,
specific for many influenza virus proteins, with the most diverse
functional potential, generated by each infection, while the
youngest cohort might have a highly enriched HA-specific CD4T
cell repertoire generated largely by vaccination and perhaps
boosted periodically by mild infections.

This simple model discussed above fails to account for several
features of influenza immunity. First, in terms of the circulating
repertoire of memory CD4T cells that accumulates in humans,
the potential requirement for periodic boosting to sustain CD4T
cell specificities is not clear. Also, it is not known if different
functional subsets (e.g., Tfh vs. cytolytic cells) differ in this
regard. Our own studies have shown that humans vaccinated
with an H5N1 vaccine maintain some of the CD4T cells specific
for the unique H5-HA peptides for at least 5 years and that
they can be recalled (49). This argues that if attrition does
occur in humans, due to failure to boost, it is not complete
within this time frame. Also, the impact of competition among
CD4T cell responses that likely occurs during complex immune
responses, such as that induced by infection and vaccination is
not yet well-understood, particularly during sequential, periodic
confrontations (50, 51).

If intermittent boosting is required, some epitope specificities
may become enriched for over time while others may decay.
Current licensed inactivated vaccines typically contain some

NP and M1, derived from the vaccine donor strain (52),
which may be of sufficient quantity to boost pre-existing
immunity generated by infection. Consequently, many humans
may accumulate CD4T cells specific for the most highly
conserved epitopes within these internal virion proteins. The
broad reactivity of these CD4T cells could allow them to
provide cross-reactive immunity against many influenza strains,
particularly if their functional and lung homing potential induced
by the original infection is maintained. Enrichment of these
specificities over time with vaccination could be beneficial
for the human host. If re-stimulation is required, then it is
possible that unique epitopes in HA and NA proteins from
viruses that are no longer in circulation disappear over time.
Thus, the repertoire might be edited by “pruning” of some
epitope specificities.

In support of the idea that adults may accumulate CD4T cells
specific for highly conserved HA-derived epitopes with age is
a study showing that relative to younger subject, older adults
display higher levels of highly conserved H1-reactive CD4T
cells, localized to epitopes mainly in the HA2 domain (53).
In addition to the positive and negative effects of intermittent
boosting of the CD4T cells by conserved epitopes and losses due
to attrition by neglect, it is also possible that there is loss of some
potential epitope specificities due to the competitive advantage
that memory cells have. Our laboratory has found that in
sequential heterosubtypic infections in mice, CD4T cells specific
for NP epitopes that are conserved between the two viruses
expand preferentially over new HA-derived epitope specificities
present in the second virus (54), likely due to their higher
abundance and greater sensitivity to antigen, both enhanced in
memory T cells. Thus, editing of the CD4T cell repertoire can
depend on the sequence of viruses encountered. Also important
to consider is that because of error prone polymerase in influenza
virus, T cell epitopes in influenza proteins can accrue small
mutations, leading to emergence of variants that may stimulate
only a subset of the memory CD4T cells. Documented evidence
for this is more common with CD8T cells because of the greater
availability of MHC-peptide tetramers and well-defined short
peptides of 8–10 amino acids, allowing easily deduced binding
registers to MHC class I proteins. MHC class II molecules,
in contrast, bind peptides of highly variable length (12–25
amino acids), due to a peptide binding pocket that is open
at both ends and often have poorly delineated MHC binding
registers. In animal models, well-defined variant peptides for
CD4T cells behave as altered peptide ligands, inducing modified
functionality (55–59) or modified T cell receptor usage (60).
An additional potential mechanism responsible for CD4T cell
repertoire editing, particularly after infection, are the possible
negative effects of robust IFN-γ production on priming and
expansion of new CD4T cells. Human influenza-specific CD4T
cells in adults produce abundant IFN-γ (17, 18, 53, 61, 62)
perhaps reflecting their original priming by infection. If these
cells are recruited into the response to vaccination, elicitation
of new CD4T cell epitope specificities could be dampened via
a complex network of suppression initiated by IFN-γ (10, 63,
64). It is known that T cell primed by infection can establish
long-term memory in the respiratory tract (27, 65, 66), which
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FIGURE 1 | Human exposure to influenza viral antigens. (A) Shown are the seasonal influenza strains that have circulating since the first H1N1 virus was isolated in

1933 (45–47). At times, there has been only a single strain documented to be circulating, such as H1N1 from 1933 to 1957, after which H2N2 was circulating for

approximately a decade. Influenza B was identified in approximately 1940 and has been co-circulating since, in different lineages (Victoria and Yamagata). Influenza

H3N2 reappeared in 1968 and H1N1 began to recirculate with H3N2 in 1977. The H1N1 “seasonal” virus was replaced in 2009 with the novel pandemic “swine

origin” virus which has dominated with H3N2 and influenza B in the last decade. (B) The human immune system encounters influenza antigens intermittently through

both infection and vaccination, depicted by the colored influenza virions indicated in (A), and in syringes, respectively. Seasonal influenza vaccines, shown in multiple

colors, contain HA derived from each circulating strain, while pandemic vaccine formulations contain a single HA. Persons over 65 years of age, indicated in B, have

had decades of exposure to distinct H1N1, H2N2, H3N2, and Influenza B isolates via infection, but limited exposure to vaccination until later in life, when we expect

they would have already accumulated a diverse CD4T cell repertoire. Persons 15–65 years of age have likely encountered diverse viral strains via infection, and

depending on age, have likely had intermittent vaccinations. In contrast to older age group, the youngest age cohort (<15 years old), may have had their first

encounter with influenza derived antigens, especially HA, in the form of a prime-boost immunization. Thus, we predict that older adults would have a CD4T cell

repertoire with diverse antigen specificity and functional potential that was largely generated by infection, while younger individuals may have CD4 repertoire that is

enriched in HA-specific cells and generated largely by vaccination and perhaps boosted periodically by mild infections. The specificity and function of the circulating

memory populations in adults will depend on the factors discussed in the text.

endows them with the capacity for rapid protective responses
to infection. It is possible that infection also seeds T cells in
the periphery that preferentially return to the lung upon a
secondary infection, based on their dominant Th1 phenotype
and associated chemokine receptors (31) or priming via a
lung draining antigen presenting cells after infection (67). Such
infection-primed CD4T cells may have priority for persistence
as they were generated in the context of a robust inflammatory
response and activation of many cells in the innate compartment.

ESSENTIAL STUDIES TO RESOLVE THE
IMPACT OF CD4T CELL IMPRINTING AND
EDITING IN THE INFLUENZA SPECIFIC
CD4T CELL REPERTOIRE

Resolution of the mechanisms that might underlie imprinting
and editing of the CD4T cell response is exciting to consider.
First, and probably most informative, are longitudinal cohort
studies that track the evolving immune response to infection and
vaccination from early childhood to adulthood, where immune
confrontations could be precisely monitored and documented
(68). The best design would encompass both unvaccinated

subjects, who will likely be primed first by infection and perhaps
sequentially with different virus strains, and vaccinated subjects,
who may have their first encounter with inactivated vaccines.
Also critical in identifying factors that control imprinting will
be improvements in approaches that allow low abundance
human CD4T cells, specific for single or selected epitopes from
vaccines or viruses, to be quantified and characterized in these
longitudinal studies. With refinement of these approaches, the
functional fate and persistence of elicited CD4T cells can be
evaluated. For example, use of selected HLA-peptide tetramers
coupled with either single cell sequencing or multiparameter
flow cytometry would be extremely valuable. Finally, because of
the potential of heterologous immunity—immunity generated by
unrelated pathogens—to play a role in T cell responses (69, 70),
it would be valuable to begin to develop methods to identify
the array of pathogens and vaccines that an individual has been

exposed to that may have shaped their existing T cell repertoire,

an option that is feasible with carefully monitored cohorts. If

immunological imprinting is unique to early childhood infection,

then it is possible that some vaccine-specific responses in
adults are drawn from heterologous infections established in
childhood and then boosted by vaccination. This CD4T cell
repertoire may be distinct in several ways. First, the responses
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to vaccination might contribute to protection or lung pathology,
depending on the effector phenotype elicited by the first infection
(71, 72). Second, the cross- reactive response may have a
narrowed breadth in TcR sequence, which might possess more
limited efficacy and later cross-reactivity to variant influenza
strains (70). With the help of advances in computational
studies and data science, it may be possible to identify
predictable events confronting the immune system that perturb
and ultimately control the repertoire of CD4T cells specific
for influenza.

THE POSSIBILITY OF ELIMINATING THE
“ONE SIZE FITS ALL” VACCINE STRATEGY

Currently, licensed vaccines are largely designed via a
single platform with a limited and focused goal. Inactivated
vaccines introduce HA from each circulating virus strain via
intramuscular injection with the goal of eliciting neutralizing
antibodies to the circulating influenza strains. The intranasal
platform of Flumist, designed to provide more local and
cellular immunity in the respiratory tract (73), has had uneven
performance and appears to be most effective in young children
(74). There have also been many recent initiatives to design
vaccines that provide broadly protective immunity (75–80).
With our increasing appreciation of the complexity and
complementary nature of protective immunity to influenza,
and specifically the multitude of functions that CD4T cells play
(27, 51, 81), there is likely to be increased focus on development
of vaccines that prime or replenish particular specificities and
functionalities. For example, if early-life exposures to influenza
do effectively imprint the specificity and function of CD4T cells,
vaccines that establish the most robust and diverse repertoire of

T cells may be most critical for infants and young children. In
this regard, it is interesting to consider the potential consequence
of widespread influenza vaccination beginning in infants. If
childhood exposure is uniquely capable of imprinting specificity
and functionality the immune system, then these early exposures
to influenza primarily through vaccination might prime a
limited CD4 repertoire. This repertoire could be enriched
in HA reactivity Additionally, these CD4T cells primed at
peripheral sites without innate activators may have less lung
homing potential and polyfunctionality and may instead be
enriched for IL-2 or other Th2 biased responses, which are more
typical of neonates (82). Conversely if adults who have received
primarily inactivated, HA enriched vaccines are deficient in
broadly reactive CD4T cells, and are lacking established tissue
resident memory cells, they may benefit from vaccine platforms
that boost local immunity in the respiratory tract reactive with
highly conserved proteins such as NP and M1. Alternate vaccine
strategies for different individuals will require more sensitive and
accurate approaches to define the components of the influenza
specific immune repertoire that are deficient in the human host.
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Tissue-resident memory T (Trm) cells are enriched at the sites of previous infection

and required for enhanced protective immunity. However, the emergence of Trm cells

and their roles in providing protection are unclear in the field of Helicobacter pylori (H.

pylori) vaccinology. Here, our results suggest that conventional vaccine strategies are

unable to establish a measurable antigen (Ag)-specific memory cell pool in stomach;

in comparison, gastric subserous injection of mice with micro-dose of Alum-based H.

pylori vaccine can induce a pool of local CD4+ Trm cells. Regional recruitment of

Ag-specific CD4+ T cells depends on the engagement of Ag and adjuvant-induced

inflammation. Prior subcutaneous vaccination enhanced this recruitment. A stable

pool of Ag-specific CD4+ T cells can be detected for 240 days. Two weeks of

FTY720 administration in immune mice suggests that these cells do not experience

the recirculation. Immunohistochemistry results show that close to the vaccination site,

abundant CD4+T cells locate on epithelial niches, independent of lymphocyte cluster.

Paradigmatically, Ag-specific CD4+ T cells with a phenotype of CD69+CD103- are

preferential on lymphocytes isolated from epithelium. Upon Helicobacter infection,

CD4+ Trm cells orchestrate a swift recall response with the recruitment of circulating

antigen-specific Th1/Th17 cells to trigger a tissue-wide pathogen clearance. This study

investigates the vaccine-induced gastric CD4+ Trm cells in a mice model, and highlights

the need for designing a vaccine strategy against H. pylori by establishing the protective

CD4+ Trm cells.

Keywords: tissue-resident memory T cells, CD4+ T cells, subunit vaccine, Helicobacter pylori, immunological

memory

INTRODUCTION

In addition to effector memory T (Tem) cells and central memory T (Tcm) cells, tissue-resident
memory T (Trm) cells are the third subset of memory T cells that reside in the non-lymphoid
tissues without entering recirculation (1). Proximity to the entry points of pathogens and their
state of differentiation ensure that Trm cells can rapidly react to local infection (2–5). A study
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reveals that a subset of effector T cells within non-inflamed
tissues manipulate the potential to differentiate into Trm cells
after adaption to local survival cues (6). However, in most
scenarios of immunization/infection, Trm cells emerged after the
resolution of local inflammation (1, 7). Trm cell populations are
well-characterized in terms of Trm cells derived from CD8+ T
cells or generated in response to invasive pathogens, but are less
well-understood in terms of Trm cells derived fromCD4+ T cells
or generated in response to non-invasive pathogenic bacteria (3).

Helicobacter pylori (H. pylori) is a highly successful pathogen
that colonizes the stomach of humans (8). Development of
vaccines is one of the desirable alternative strategies to eliminate
the threat of H. pylori. Previous clinical trials have demonstrated
that many attempts fail to provide sufficient protection againstH.
pylori in human (9, 10). Evidence obtained from mice suggests
a strong ability of this bacterium to alter the detection of
pattern recognition receptors (PRRs) and subvert host immune
system by producingmultiple virulence factors (11).When facing
this pathogen, host immune system is unable to orchestrate a
potent response to purge the infection. Most infected individuals
develop asymptomatic chronic gastritis, which sustains over their
lifetimes if no antibiotic intervention. It is commonly accepted
the need for CD4+ T cells, rather than CD8+ T cells or
antibody-mediated responses, in providing protection (12, 13).
Multiple studies using conventional vaccine strategies show that
vaccination reduces H. pylori colonization in mice (13–18). Yet,
the emergence of gastric Trm cells in these studies remains
enigmatic. Dependence solely on recalling circulating memory
T cells induced by conventional vaccination may result in a
delay and “miss the boat” for optimal protection. Establishing
a CD4+ Trm pool in stomach by vaccination and exploring
the generation, maintenance, and behavior of these cells are
attractive. However, the first-line challenges are how to send these
pathogen-specific CD4+ T cells into the tissue “battlefield” and
make sure that a CD4+ Trm pool can be detected. To address
these gaps in the field, by using intracellular cytokine staining,
we assessed the magnitude of antigen (Ag)-specific CD4+ cells
after various vaccinations and found a measurable pool of Ag-
specific CD4+ Trm cells in mice that vaccinated with micro-
dose of Alum-based H. pylori vaccine in gastric subserosa layer
(GSL). The characteristics and mechanism of protection against
H. pylori were further investigated in these cells. This study
proposes a notion that investigators should take into account a
subset of Trm cells when planning an H. pylori vaccine strategy.

MATERIALS AND METHODS

Vaccine Preparation
Purified CCF protein and GEM particles were prepared and
stored according to previous protocols (19, 20). Briefly, the CCF
protein was expressed by Escherichia coli Rosetta (DE3) cells
with pET-28a-CCF. The protein was first purified by nickel
affinity chromatography (GE Healthcare), followed by anion-
exchange chromatography with DEAE Sepharose FF (Amersham
Pharmacia Biotech AB, Sweden). The purity of CCF was
confirmed by Coomassie blue staining. The GEM particles were
prepared by Lactococcus lactis NZ9000 cells using a hot-acid

water bath. Vaccine with Alum was prepared with an equal
volume of CCF solution and Alum adjuvant. CpG ODN 1826
was obtained from Sangon Biotech Co., Led. (China, Shanghai)
and dissolved in CCF solution before intranasal vaccination.

Animals and Immunizations
Eight-week-old female C57BL/6J mice were obtained from the
Comparative Medicine Center of Yangzhou University and bred
at the China Pharmaceutical University Animal Experimental
Center. All animal experiments were approved by the Animal
Ethical and Experimental Committee of China Pharmaceutical
University. The immunizations were performed according to the
timetables in the figures and the doses of antigen and adjuvants
are indicated in the figure captions or special region of the figure.

Gastric Subserous Layer Vaccination
Mice were anesthetized with 15 mg/kg Xylazine and 100 mg/kg
Ketamine, and placed on a body temperature heating pad. After
shaving the right abdomen, a 1.5 cm incision was made above
the stomach. After laparotomy, the stomach was localized, and
5 µl vaccine preparation (Volume, CCF solution: Alum = 1:1,
containing∼7.5 µg CCF) was injected into the gastric subserous
layer of the greater curvature using a Hamilton syringe with
a 33G needle. Then, suturing with PGA absorbable sutures
was performed using uninterrupted sutures for the peritoneum
and interrupted sutures for the skin incision (Shanghai Pudong
Jinhuan Medical Products Co., Ltd.).

Preparation of Single-Cell Suspensions
From Gastric Tissue
Single-cell suspensions were prepared as a previous study with
modifications (21). Briefly, the whole stomach was isolated, cut
through the lesser curvature, and the contents were removed
before being placed into 15ml RPMI 1640 containing 10mM
HEPES, 10% FBS, 4mM EDTA, and 0.5mM dithiothreitol.
Gastric epithelial lymphocytes were isolated by shaking at 250
rpm and 37◦C for 30min. Tissues were then minced and
incubated with another 15ml RPMI 1640 containing 10mM
HEPES, 10% FBS, 4mM EDTA, and 0.5mM dithiothreitol
for 15min to isolate the remaining lymphocytes. Supernatants
were passed through a 70µm cell strainer. After washing and
centrifugation, cell pellets were resuspended in an appropriate
medium for further analysis or culture.

Preparation of Single-Cell Suspensions
From Lymphoid Organs and Blood
The spleen and mesenteric lymph nodes were isolated and gently
pushed through a 70µm cell strainer. After extensive washing,
cells from the lymph nodes were collected. The cells from the
spleen and blood were suspended in 7ml erythrocyte lysis buffer
(Biolegend) and washed twice with 10ml PBS containing 5% FBS.
Cells were collected for FACS analysis or stimulated in vitro.

Antigen-Specific CD4+ T Cell Analysis
Single-cell suspensions from the stomach were purified with
67/44% Percoll gradients. The cells at the interface were collected
and washed with 7ml RPMI 1640 containing 10% FBS. To detect
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Ag-specific CD4+ T cells, purified single-cell suspensions from
the stomach, MLN, spleen or blood were stimulated with 1× 106
naïve, CFSE-labeled splenocytes that were preloaded with CCF in
RPMI 1640 containing 10% FBS and 5µg/ml BFA for 12 h. After
collection, cells were stained for intracellular cytokines.

FACS Analysis
For IFN-γ and IL-17 intracellular cytokine staining, in vitro
restimulated cells were first stained with anti-CD4 (GK1.5) and
anti-CD90.2 (30-H12) antibodies, then fixed and permeabilized
with Intracellular Staining Fixation/Permeabilization Wash
Buffer (Biolegend, San Diego, CA) and stained intracellularly
with anti-IFN-γ (XMG1.2) and anti-IL-17 (9B10) antibodies. For
cell phenotype detection, single-cell suspensions were stained
with the following antibodies: anti-CD3ε (145-2C11), anti-
CD90.2 (30-H12), anti-CD45 (30-F11), anti-CD4 (GK1.5 or
RM4-4), anti-CD11b (M1/70), anti-CD8α (53-6.7), anti-CD19
(6D5), anti-MHC class II (M5/114.15.2), anti-CD69 (H1.2F3),
anti-CD25 (3C7), anti-CD44 (IM7), anti-CD103 (2E7), anti-
TCRγδ (UC7-13D5), anti-Ly6C (HK1.4), anti-Gr-1 (RB6-8C5),
anti-CD11c (N418), and anti-F4/80 (BM8) purchased from
Biolegend or BD Pharmingen. Multiparameter analyses were
performed on a BD FACS Aria II or a BD FACS Calibur
flow cytometer.

Immunofluorescent Histology
For gastric histology, the longitudinal specimens were fixed
with 4% paraformaldehyde, embedded in paraffin, and stained
with hematoxylin and eosin (HE). For CD4 immunofluorescent
staining, 20 or 10µm frozen sections were cut and dried at room
temperature. After blocking, these sections were stained with an
Alexa Fluor R© 488-anti-CD4 (GK1.5, Biolegend) antibody and/or
purified anti-CD11b (M1/70, Biolegend) or anti-CD8α (53–6.7,
Biolegend) antibody followed by goat anti-rat IgG2a/IgG2bAlexa
Fluor R© 488/594 antibody (Biolegend). The slides were washed
and counterstained with DAPI to visualize cell nuclei, and images
were acquired with a Panoramic 250 Flash III Scanner (3D
Histech). The number of CD4+ cells in each section was counted
in a 0.5µm× 0.5µm area with highest CD4+ cell signaling.

Quantitative RT–PCR
Gastric RNA extraction and reverse transcription were carried
out as described previously (22). PCR amplification was
performed with a conventional TaqMan method. TaqMan gene
primers and probes were designed by Sangon Biotech Co., Led.
(China, Shanghai) based on the following sequence numbers:
CCL5, Mm01302427_m1; CXCL9, Mm00434946_m1; CXCL10,
Mm00445235_m1; GADPHMm99999915_g1.

FTY720 Treatment
For FTY720 treatment, 1 mg/kg FTY720 was injected i.p. daily to
block circulating memory T cell egress from the lymphoid nodes
according to the design of the experiments.

Neutralizing Antibody Experiments
Immune mice were i.p. injected with 100 µg anti-CD4 antibody
(GK1.5, BioXcell), anti-RatIgG1, anti-IFN-γ (XMG1.2, BioXcell)
and anti-IL-17A (17F3, BioXcell) antibody every 2 days to

deplete CD4+ T cells, IFN-γ and IL-17A according to the design
of experiments.

H. pylori Challenge
Helicobacter pylori SS1 was cultured as previously described (22).
Sixty days after the last vaccination, the mice were challenged
with 1 × 109 CFU H. pylori SS1 (determined by turbidimetry)
by gavage in 200 µl of 0.2% sodium bicarbonate solution.

Quantitative Culture of H. pylori
Quantitative culture of H. pylori was performed as previously
described (22). Briefly, half of the stomach was homogenized in
500 µl Brain Heart Infusion (BHI) broth and plated at a series of
dilutions on BHI plates. The bacterial colonization was calculated
at the whole organ level.

Statistics
GraphPad Prism 7.0 software was used for statistical analyses.
The differences between the groups were assessed using the
Kruskal–Wallis test or Mann–Whitney U-test. P < 0.05 was
considered statistically significant.

RESULTS

Ag-specific CD4+ Effector T Cells Are
Present in Stomach After Conventional
Vaccinations, but Fail to Give Rise to a
Formidable CD4+ Memory T Cell Pool
An outstanding question in the field of H. pylori vaccinology
is whether conventional vaccinations can induce an Ag-specific
CD4+ cell population in the stomach. Here, we used a
recombinantH. pylori subunit vaccine, CCF, as a model Ag. CCF
was constructed bymulti-epitopes fromH. pylori urease, and self-
adjuvant regions from Salmonella typhimurium phase I flagellin
FliC and cholera toxin B (20). To detect Ag-specific CD4+ T
cells in stomach, we isolated total purified leukocytes from whole
stomach of immunemice and co-cultured these cells with 1× 106

Ag-preloaded, CFSE-labeled naive splenocytes for 12 h in the
presence of Brefeldin A (BFA). Two crucial effector cytokines,
IFN-γ and IL-17A, for anti-H. pylori immunity were used to
identify Ag-specific T cells. In the preliminary data, we found
that for conventional vaccinations, Ag-specific CD4+ cells that
produced only IFN-γ or IL-17Awere rare, but the combination of
IFN-γ and IL-17A allowed for the detection of more Ag-specific
CD4+ T cells in these groups (Supplementary Figure 1).

Previous studies suggest that specific vaccinations can evoke
a transient state that which allows Teff cell migration into non-
lymphoid tissues at effector stage (6, 23). To detect gastric
Ag-specific CD4+ T cells after conventional vaccinations, we
performed different vaccine administrations on the mice and
compared the gastric Ag-specific CD4+ T cells at Day 7 and
Day 30 (Figures 1A,B). Naïve mice were used as a negative
control to exclude non-specific staining, and mice receiving
gastric subserosa layer (GSL) vaccination were used as a positive
control. Ag-specific CD4+ T cells could be observed on Day
7 in stomach of mice receiving subcutaneous (s.c.), intranasal
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FIGURE 1 | Conventional vaccinations failed to induce a durable Ag-specific CD4+ memory T cell pool in the stomach. (A) C57BL/6J mice were immunized at

Day-14, Day-7, and Day 0 with different vaccine strategies (B). At Day 7 and Day 30 after the last vaccination, mice were sacrificed and the Ag-specific CD4+ T cells

in stomach were measured by intracellular cytokine staining. Purified cells were restimulated with Ag-preloaded, CFSE-labeled, naïve splenocytes for 12 h in the

presence of 5µg/ml BFA. IFN-γ- and/or IL-17A-producing CD90.2+CD4+ cells were identified as Ag-specific CD4+ T cells. At Day 7 (top) and Day 30 (bottom) after

the last vaccination, gastric Ag-specific CD4+ T cells from these immunized mice were analyzed (C). Absolute number and frequencies of gastric Ag-specific CD4+ T

cells among total CD4+ T cells at Day 7 (top) and Day 30 (bottom) were quantified (D). The frequencies of Ag-specific CD4+ T cells from MLN among total CD4+ T

cells at Day 7 (top) and Day 30 (bottom) were quantified (E). In all graphs, dots represent individual data points and columns represent median values. *P < 0.05,

***P < 0.001, ****P < 0.0001, ns = not significant. The Kruskal–Wallis test (vs. naïve) was used. Data were pooled from two individual experiments with n = 5 mice

per group.

(i.n.), intramuscular (i.m.) and oral (p.o.) vaccinations, but

the number was much lower than that in the GSL control

mice (Figures 1C,D). To investigate whether these Ag-specific
CD4+ T cells could form a gastric memory T cell pool, we

compared the number of gastric Ag-specific CD4+ T cells among

different groups on Day 30. Results revealed that few Ag-specific
CD4+ T cells were detected in these groups except for GSL

(Figures 1C,D). Moreover, the expansion of Ag-specific CD4+

T cells was observed on Day 7 in the MLN from mice receiving
i.m. or s.c. administration (Figure 1E). These findings suggest

that conventional vaccine strategies can drive some of Ag-specific

CD4+ T cells presenting in stomach, but these cells fail to give

rise to a formidable memory T cell pool.

Gastric Subserosa Layer Vaccination
Recruits Abundant Ag-specific CD4+ T
Cells Into Stomach
Development of an in situ vaccine strategy might be of utmost
importance to establish a strong CD4+ Trm pool in stomach
(24, 25). GSL injection has been used for local anesthesia and
for the development of gastric ulcer or in situ tumor animal
models. Given that orientation of visible blood vessels is from
lesser curvature to greater curvature, we hypothesized that the
non-vascular zone of greater curvature was a feasible region to
establish a local Ag depot. To verify this, we formulated CCF with
Alum adjuvant, performed the laparotomy to access stomach,
and injected 5 µl vaccine into GSL (Figures 2A,B). Acute
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FIGURE 2 | A vaccine strategy triggered abundant Ag-specific CD4+ T cells infiltration of the stomach. (A) C57BL/6J mice were immunized at Day 0 by GSL and

sacrificed on Day 7. (B) Details for GSL vaccination are as follows: an incision was made above the stomach and 5 µl vaccine formulation (containing ∼7.5 µg Ag)

was injected into the subserosa layer of the stomach. The incisions in peritoneum and skin were sutured. (C) Gastric Ag-specific CD4+ T cells were analyzed in mice

that GSL vaccinated with Ag/Alum, Alum and Ag/PBS. (D) Absolute number of gastric Ag-specific CD4+ T cells at Day 7 were quantified (E) C57BL/6J mice were

immunized with one of six different strategies. (F) Gastric Ag-specific CD4+ T cells in each group were analyzed as described before. Absolute number and

frequencies of gastric Ag-specific CD4+ T cells among total CD4+ T cells at Day 7 were quantified (G). The frequencies of Ag-specific CD4+ T cells from MLN (H)

and spleen (I) among total CD4+ T cells were quantified. In all graphs, dots represent individual data points and columns represent median values. *P < 0.05,

**P < 0.01, ***P < 0.001, ****P < 0.0001, ns = not significant. The Kruskal–Wallis test (vs. naïve) or Mann–Whitney U test (for two groups) was used. Data were

pooled from six individual experiments with n = 5–9 mice per group.

inflammation, which was characterized by mucosal swelling,
was observed in the vaccination site, and abundant Ag-specific
CD4+ T cells could be detected 5–7 days later. To clarify
the requirement for Ag-specific CD4+ cell recruitment in GSL
vaccination, mice were injected with Ag/Alum, Alum alone, or
Ag/PBS solution, respectively. Injection of Alum alone failed
to recruit any Ag-specific CD4+ T cells, but induced regional
tissue swelling (Figures 2C,D). In comparison, GSL injection of

Ag/PBS solution did not recruit Ag-specific CD4+ T cells into
stomach either, and no tissue alteration was observed in the
injection site. We found that Ag/PBS solution could be absorbed
within hours after injection, indicating that a sustained-release
vehicle (i.e., Alum adjuvant) was necessary for Ag-specific T
cell recruitment.

In consideration of the low dosage of vaccine used in GSL
vaccination, we modified the vaccine strategy with an additional
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step to create the following protocol: i) subcutaneous vaccination
to induce a systemic Ag response, followed by ii) a surgical
operation to inject a micro-dose of vaccine into GSL. To test
this strategy for the induction of an Ag-specific T cell response,
we performed six kinds of vaccination programs that included
multiple rounds of subcutaneous vaccination and/or a GSL
vaccination (Figure 2E). As expected, some of gastric Ag-specific
CD4+ T cells were detected in mice receiving subcutaneous
vaccination alone, but abundant these cells were observed in
GSL-vaccinated mice. Performing two rounds of subcutaneous
vaccination significantly boosted the number of Ag-specific
CD4+ T cells recruited by GSL vaccination (Figures 2F,G). We
also examined the percentages of Ag-specific CD4+ T cells in
spleen and MLN. s.c. vaccination did not induce plenty of Ag-
specific CD4+ T cells in MLN, whereas Ag-specific CD4+ T
cells were abundant in mice receiving s.c. vaccination plus GSL
vaccination (Figure 2H). In the different vaccination programs,
the levels of splenic Ag-specific CD4+ T cells were variable
(Figure 2I). We also tested whether GSL injection of mice
with Alum or Ag/PBS solution after s.c. vaccination could
induce plenty of Ag-specific CD4+ T cells into stomach. The
results showed that without regional Ag exposure and adjuvant-
induced inflammation, recruitment of Ag-specific CD4+ T cells
was limited (Supplementary Figure 2). These results indicated
that introduction of a systemic Ag-specific response enhanced
the regional Ag-specific CD4+ T cell recruitment induced by
GSL vaccination.

Taken together, these data indicate that the local Ag encounter,
Ag vehicle phase and systemic immune response all contribute to
the maximum recruitment of Ag-specific CD4+ T cells induced
by GSL vaccination.

Ag-specific CD4+ T Cells Retain in
Stomach Long-Term Without Recirculation
To investigate whether a durable Ag-specific CD4+ Trm pool
was formed after s.c.x2 +GSL vaccination, we counted the
number of Ag-specific CD4+ T cells in stomach over the
following 8 months (Figure 3A). Age-matched naïve mice were
served as negative controls to exclude the influence of age.
In immune mice, the granulation tissue induced by the Alum
adjuvant was stiffened at Day 30 and shrank in the following
months (Figure 3B). No gland atrophy or metaplasia was
observed in themucosa near the vaccination site during Days 30–
60 (Supplementary Figure 3). On the other hand, contraction of
the infiltrating Ag-specific CD4+ T cell population was complete
within 30 days and a stable Ag-specific CD4+ memory T
population could be detected for at least 240 days (Figures 3C,D).

In the next step, to investigate whether these CD4+memory T
cells experienced recirculation via the lymphovascular system, we
treated immune mice with FTY720 daily to inhibit lymphocyte
egress from lymph nodes for 14 days (Figure 4A). Even though
circulating CD4+ T cells were decreased by more than 100-fold
in blood and Ag-specific CD4+ memory T cells vanished from
blood, the number of Ag-specific CD4+ memory T cells was
stable in stomach (Figures 4B,C), suggesting a characteristic of
local retention. Moreover, the absolute number of Ag-specific

CD4+ memory T cells was not altered in MLN, but significantly
decreased in spleen after FTY720 administration (Figures 4B,C).

To verify whether these Ag-specific CD4+ Trm cells were
sensitive to systemic CD4 antibody depletion, we i.p. injected
immune mice with anti-CD4 antibody (Figure 4D). No CD4+
T cells could be detected in blood or spleen, whereas Ag-specific
CD4+ cells in stomach remained numerically unchanged and
measurable, although with lower CD4 expression (Figures 4E,F),
implying their retention in a distinct anatomical location which
was less affected by circulation. Collectively, these data reveal
that infiltrating Ag-specific CD4+ Teff cells can form a long-
lived Trm pool and most of these cells may be separated
from circulation.

Distribution of These CD69+CD103-CD4+

Trm Cells Is Dependent on Epithelial
Architecture of Stomach
We next examined the location of CD4+ T cells induced by
GSL vaccination. Stomach was isolated and cut through lesser
curvature. As shown in Figure 5A, vaccination region was
sniped longitudinally and used for immunohistological staining
of CD4+ T cells. Six groups with different vaccination programs
were involved in this experiment. Mice were sacrificed on 7-
day or 30-day post GSL vaccination. The results indicated
that abundant CD4+ T cells could be observed in the gastric
mucosa near the vaccination site at 7-day post GSL vaccination
(Figures 5B,D). Infiltration of CD4+ T cells was restricted to the
adjacent mucosa, as few CD4+ cells presented in the mucosa of
non-vaccination site. Density of CD4+ T cells was not associated
with Ag exposure and prime. Extremely low density of CD4+
T cells was observed in stomach of naïve and s.c. immunized
mice in the same perspective. Additionally, only some CD4+
T cells appeared around the vaccination site, even though the
surrounding region was enriched with immune cells (Figure 5D).
At 30-day post GSL vaccination, density of CD4+ T cells
on mucosa of vaccination site was decreased (Figures 5C,E).
Notably, at this time point, most CD4+ T cells were located close
to the epithelium, which was confirmed by the distinct epithelial
architecture of stomach (Figures 5E,F). For instance, in the body
mucosa close to the cardia equivalent, CD4+ Trm cells formed
a chain; in the middle of the body mucosa, CD4+ Trm cells
were evenly distributed in the epithelial region of gastric pit; and
in the transition region, both two retention patterns could be
observed. Moreover, 10µm sections of gastric tissue indicated
that these CD4+ T cells were in contacted with the epithelial cells
(Figure 5E, bottom). Parallelly, detection of Ag-specific CD4+
T cells in the epithelium or lamina propria also suggested that
at memory stage, most of Ag-specific CD4+ cells were located
on epithelial regions (Figures 5G,H). These data demonstrate
that CD4+ T cells recruited by GSL vaccination preferentially
infiltrate the adjacent mucosa and survive in the special niches
of the epithelium.

Previous studies suggest that CD4+ Trm cells are maintained
in vagina, intestine and skin, and cluster with macrophages,
dendritic cells (DCs) and CD8+ T cells (24, 26, 27). To examine
whether other immune cells were responsible for CD4+ Trm
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FIGURE 3 | Ag-specific CD4+ Teff cells contracted and sustained in stomach long-term. (A) C57BL/6J mice were s.c. immunized with Ag/Alum at Days-14 and-7,

and treated with GSL vaccination at Day 0. (B) Mice were sacrificed on Day 7, Day 30, and Day 150, and their stomachs were unfolded. Arrows indicated granulation

tissue in the vaccination sites. (C) Mice were sacrificed on the day indicated in the timetable (red arrows), and the gastric Ag-specific CD4+ T cells in each time point

were analyzed as described previously. (D) Absolute number and frequencies of gastric Ag-specific CD4+ T cells among CD4+ T cells at each time points were

quantified. In all graphs, dots represent individual data points and columns represent median values. **P < 0.01, ***P < 0.001. Mann–Whitney U test was used to

compare two groups. Data were pooled from six individual experiments with n = 4–8 mice per group.

cell residence in stomach, we analyzed the types of infiltrated
immune cells at whole organ level on Day 7 and Day 30
(Figure 6A). All cell types except macrophages, i.e., neutrophils,
inflammatory monocytes, mo-DCs, B cells, γδ T cells, CD4+ T
cells and CD8+ T cells, were expanded on Day 7 (Figure 6B).
However, flow cytometric analysis showed that most of the
immune cells seceded from stomach before Day 30, suggesting
that the increased gastric immune cell content induced by
GSL vaccination was not sustainable at the whole organ level.
To visualize the regional relationship between CD4+ T cells
and innate immune cells, an immunolocalization assay was
performed and the images indicated no direct relationship
between the CD4+ and CD11b+ cells during the memory stage,
as the CD11b+ cells preferentially enveloped the vaccination
site (Figure 6C). Next, we measured several chemokines CCL5,

CXCL9 and CXCL10 that are critical for CD4+T cell recruitment
(26). Compared with memory stage, CCL5 and CXCL10 levels
were significantly increased in the vaccination site during
effector stage (Figure 6D). Interestingly, at memory stage, CCL5,
CXCL10, and TGF-β1 levels at the vaccination site were lower
than those of naïve mice (Figure 6E). We reckoned that the
granuloma structure might affect regional homeostasis. In total,
these data demonstrate that a distinct migration and retention
pattern of CD4+ T cells is induced by GSL vaccination.

Next, we isolated intraepithelial T cells from the vaccination
site and analyzed their phenotypes at the memory stage. CD4+
T cells from the vaccination site expressed CD69 and CD44,
but expressed little CD103 and no CD62L; on the contrary,
CD8+ T cells in this region expressed CD103, CD69, and
CD44 (Figure 6F). Parallelly, we measured the expression of
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FIGURE 4 | Gastric Ag-specific CD4+ memory T cells induced by GSL vaccination experienced little recirculation and were located separately from the blood. (A)

C57BL/6J mice were s.c. immunized with Ag/Alum at Days-14 and-7, and treated with GSL vaccination at Day 0. Thirty days later, the mice were i.p. injected with 1

mg/ml of FTY720 or PBS daily for 14 days. (B) Ag-specific CD4+ T cells among CD4+ T cells in the stomach, blood, MLN and spleen and CD4+ T cells among total

leukocytes were analyzed. (C) Absolute number of Ag-specific CD4+ T cells in stomach, MLN, blood and spleen and CD4+ T cells in stomach and blood at the

whole organ level were quantified. (D) 30-day post GSL vaccination, mice were i.p. injected with 100 µg anti-CD4 antibody or anti-RatIgG1 antibody at Days 30, 32

and 34. Mice were sacrificed on Day 36. (E) Ag-specific CD4+ T cells among total CD90.2+ cells in stomach were shown (left), and the absolute number of

Ag-specific CD4+ T cells in stomach was quantified (right). (F) CD4+ T cells among total leukocytes in blood or spleen were shown (left), and the absolute number of

CD4+ T cells in blood or spleen was quantified (right). In all graphs, dots represent individual data points and columns represent mean and SEM. *P < 0.05,

**P < 0.01. Mann–Whitney U test was used to compare two groups. Data were pooled from two individual experiments with n = 3–5 mice per group.

CD69 and CD103 on Ag-specific CD4+ Trm cells. Almost all
these cells displayed a CD69+CD103-phenotype (Figure 6G).
These data indicate that GSL vaccination induces intraepithelial
CD69+CD103- CD4+ Trm cells in stomach.

Vaccine Strategy Involving CD4+ Trm Cells
Provides Rapid and Long-Term Protection
Against Helicobacter Insult
Vaccination programs used in previous studies generally
performed H. pylori challenge on ∼14 days after the last
vaccination (28, 29). At this time point, Teff cells induced
by conventional vaccinations might not completely attenuate
in blood or stomach of immune mice. A previous clinical
study indicated that the protective effects induced by oral
vaccination continued to attenuate in the years that followed
(30). Here, we tested the differences between conventional
vaccinations and vaccine strategies involving GSL vaccination
in terms of rapid and long-term protection. Mice were divided
into nine groups and subjected to different immunization

programs (Figure 7A). H. pylori challenge was performed
60 days later. At Day 63, colonization of H. pylori was
determined by quantitative culture. Substantial reductions of
bacterial colonization could be found in mice that received
GSL vaccination, and s.c.x2+GSL vaccination provided the
optimal protection at this time point (Figure 7B), indicating
that these mice demonstrated rapid antimicrobial responses
and prolonged protection. In comparison, most conventional
vaccine strategies failed to reduce bacterial colonization and
no reduction of H. pylori colonization was observed in mice
receiving Alum alone by GSL vaccination. Furthermore, we
investigated the limit of anti-microbial response involving
CD4+ Trm cells (Figure 7C). Results showed that s.c.x2+GSL
vaccination induced a drastic reduction of H. pylori load at day
0–14 and the bacterial load was sustained at a low degree during
day 14–30 post challenge (Figure 7D). A numerical advantage
of reduction was observed between s.c.x2+GSL vaccination
and GSL vaccination. These results imply that s.c.x2+GSL
vaccination induces rapid and long-term protection against
H. pylori.
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FIGURE 5 | GSL vaccination drove CD4+ T cell infiltration of the mucosa and retention within the epithelium. (A) Stomach was dissected as photo indicated and

anatomical position was shown in the macroscopic perspective. Gastric tissue from mice that were treated with GSL vaccination was cut longitudinally and stained

with Alexa Fluor® 488-anti-CD4 antibody. CD4+ T cells were quantified on immunofluorescent staining of 20µm frozen sections from Day 7 (B) or Day 30 (C) post

GSL vaccination. (D,E) Representative images of immunofluorescent staining (green, CD4; blue, DAPI; V, vaccination site). (F) Schematic plan of CD4+ cell location

(left) and the distribution of CD4+ cell on gastric middle mucosa and transition region (right). The precise positions of CD4+ cells were determined by

immunofluorescent staining of 10µm frozen sections (green, CD4; blue, DAPI; V, vaccination site). **P < 0.01. Mann–Whitney U test was used to compare two

groups. Data were repeated 3–8 times. (G) EL or lamina propria (LP) lymphocytes were pooled from two immune mice at memory stage. Ag-specific CD4+ T cells

were quantified (H). Six mice (n = 6) were used in this experiment. **P < 0.01, unpaired t-test.
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FIGURE 6 | The maintenance and phenotype of CD4+ Trm cells. (A) GSL vaccination was performed at Day 0 and mice were sacrificed on Day 7 and Day 30 to

analyze immune cell infiltration using the indicated gated strategy. (B) Absolute number of innate and adaptive immune cells at the whole organ level was quantified.

*P < 0.05, **P < 0.01. The Kruskal—Wallis test (vs. naïve) was used. Columns represent mean and SD. Data were pooled from two individual experiments with

n = 5–6 mice per group. (C) Immunofluorescent staining of 20µm frozen sections at Day 30 (green, CD4/CD11b; red, CD11b; blue, DAPI; V, vaccination site) post

GSL vaccination. Data were repeated at least three times with similar results. (D) CCL5, CXCL9, and CXCL10 mRNA were measured at Day 2 and Day 30 by

qRT-PCR. GSL-Vs: vaccination site; GSL-Non vs: non-vaccination site. (E) CCL5, CXCL9, CXCL10 and TGF-β1 mRNA were measured at Day 30 by qRT-PCR. (F)

Phenotypes of intraepithelial CD4+ T cells and CD8+ T cells in the vaccination region. (G) Expression of CD69 and CD103 was analyzed on Ag-specific CD4+ Trm

cells. *P < 0.05, **P < 0.01, ***P < 0.001. Mann–Whitney U test was used to compare two groups. Data were pooled from two individual experiments with n = 3–5

mice per group. Columns represent mean and SEM.
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FIGURE 7 | s.cx2+GSL vaccination provided prolonged and rapid protection against Helicobacter insult. (A) C57BL/6J mice were immunized at Day-14, Day-7, and

Day 0 with different vaccine formulation described in the table. Helicobacter challenge was performed on Day 60 and mice were sacrificed on Day 63 to test the

protective effects. (B) H. pylori colonization was determined by the quantitative culture on Day 63. *P < 0.05, ***P < 0.001, ****P < 0.0001, ns, P > 0.05. The

Kruskal–Wallis test (vs. naïve) was used. Data were pooled from two individual experiments with n = 8 mice per group. (C) Mice experienced s.cx2+GSL vaccination

were challenged at Day 60 and H. pylori colonization was determined on Day 63, Day 74, and Day 90 (D). **P < 0.05, ***P < 0.01. Mann–Whitney U test was used to

compare two groups. In all graphs, columns represent median and interquartile. Data were pooled from two individual experiments with n = 6–8 mice per group.

Reactivated CD4+ Trm Cells Trigger a
Rapid Systemic Th1/Th17 Cellular
Response to Support Tissue-Wide
Anti-microbial Response
Next, we investigated the immunological mechanism of
protective response and the role of circulating lymphocytes
in mice receiving s.c.x2+GSL vaccination. Administration of
FTY720 to immune mice impaired the protective effects, and
depletion of CD4+ T cells by an anti-CD4 antibody completely
abrogated protection (Figure 8A), indicating the vital roles of
circulating memory lymphocytes and CD4+ cells in protective
response induced by GSL vaccination. Furthermore, IFN-γ and
IL-17A depletion by neutralizing antibody partly suppressed
the protective response in immune mice, highlighting the roles
of IFN-γ and IL-17A in providing protection (Figure 8C).
Analysis of Ag-specific immune response at day 3 post challenge
suggested that a potent Ag-specific Th1/Th17 cell response in
stomach and the expansion of Ag-specific Th17 cells in spleen
already could be detected (Supplementary Figure 4A). Next, we
compared the Ag-specific Th1/Th17 cell responses in immune
mice treated with or without FTY720 in stomach, blood, spleen,
and MLN at 7-day post challenge. FTY720 administration
significantly dampened the expansion of Ag-specific Th1 and
Th17 cells in stomach and blood (Figures 8D–F). In addition,
after preventing lymphocyte egress from the lymph nodes with
FTY720, the percentages of Ag-specific Th1 cells in spleen and
MLN were increased by 3-fold; however, an increase in the
percentage of Ag-specific Th17 cells was only observed in MLN
(Figures 8D–F). Because of the powerful ability of Th17 cells
to induce an anti-microbial response, reactivated MLN-settled
Ag-specific memory Th17 cells might be a vital source of
gastric Th17 cells that contribute to the recruitment of innate

inflammatory cells and trigger tissue-wide protection. In fact,
at 7-day post challenge, the mucosa near the vaccination site
showed fewer inflammatory cell infiltration as compared with the
distal mucosa (Supplementary Figure 4B), possibly suggesting
a tissue-wide inflammatory cell infiltration was temporally
delayed to the regional infiltration. These data highlight the
alarming function of these intraepithelial CD4+ Trm cells,
and indicate that regionally positioned CD4+ Trm cells can
trigger tissue-wide H. pylori clearance through the recruitment
of circulating Th1/Th17 cells.

DISCUSSION

Stomach is an inhospitable digestive organ that is inhabited
by only ∼200 different species (8). The notorious one is
H. pylori, which is a helical rod-shaped organism that is in
contact with the gastric epithelium and influences the physiology
of gastric stem cell pool by inducing chronic inflammation
(31). Evidence indicates that as long as 50,000 years of co-
evolution with human have conferred multiple capabilities (e.
g., secretion of virulence factors and remodeling of autologous
constituents) on H. pylori to adapt to the milieu of stomach
and escape the host defensive mechanisms (32–35). Likewise,
these capabilities lead to an undesirable outcome for H. pylori
vaccines. Conventional vaccine strategies have been extensively
tested in the field of H. pylori vaccinology (15, 16, 36–38), while
no study identified an Ag-specific cellular response in stomach.
Here, we demonstrated that by using intracellular cytokine
staining, a small population of Ag-specific CD4+ T cells could
be measured during effector stage rather than memory stage of
these immunizations, suggesting conventional vaccine strategies
were less effective to induce a measurable CD4+ Trm pool
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FIGURE 8 | The immunological mechanism of protective response in the mice experienced s.c.x2+GSL vaccination. (A) Mice experienced s.cx2+GSL vaccination.

H. pylori challenge was performed on Day 60. FTY720 administration (1 mg/kg) was performed daily during Days 59–67. Neutralizing antibody (i.p.) injection was

performed on Days 59, 61, 63, and 65. H. pylori colonization were determined on Day 67 after FTY720 and anti-CD4 antibody administration (B) or after anti-IFN-γ

and anti-IL-17A antibodies administration (C). *P < 0.05, ***P < 0.001, ns = not significant. The Kruskal–Wallis test (vs. naïve) was used or The Mann–Whitney U test

was used to compare two groups. Dots represent individual data points and columns represent median and interquartile. Data were pooled from two individual

experiments with n = 6 mice per group. (D) Immune mice were administrated with 1 mg/kg FTY720 daily during Days 59–67 and sacrificed on Day 67 for Ag-specific

CD4+ T cell analysis. The percentages of Ag-specific IFN-γ (E) or IL-17A (F) CD4+ T cells among total CD4+ T cells in stomach, blood, spleen, and MLN were

quantified. **P < 0.01, The Mann–Whitney U test was used to compare two groups. Dots represent individual data points and columns represent mean and SEM.

Data were pooled from two individual experiments with n = 5 mice per group.

for further investigation. Technological barrier for identifying
endogenous Ag-specific CD4+T cells in stomach is obvious. The
inefficiency of lymphocyte isolation from stomach of mice has

already been proved that 98.3% lymphocytes loss in stomach
using flow cytometry for counting (2, 39). A need for purification
to ex vivo culture and extensive steps of intracellular cytokine
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stainingmay lead to the additional cell loss (40). Thus, we decided
to establish a mice model with a measurable CD4+ Trm pool.

Past studies have revealed that almost always Trm cells form
within the tissue after resolution of inflammation or infection
(4, 41). Most H. pylori vaccines, including the only licensed
H. pylori vaccine, are composed of non-infectious H. pylori
Ags that are poorly immunogenic (30). In consideration of the
importance of local inflammation, we employed GSL injection
to deliver a micro-dose of Alum-based H. pylori vaccine into
stomach and subcutaneous vaccination was performed before
GSL vaccination to mount the infiltrating Ag-specific CD4+
T cells. This immunization strategy established a stratified
immune memory involving the local long-lived CD4+ Trm cells
and adjacent lymph node-settled memory T cells. Upon GSL
vaccination, the regional dissemination of Ag-specific CD4+
T cells was dependent on local Ag recognition and adjuvant-
induced inflammation, as either injection with Ag in PBS or
delivering Alum adjuvant alone showed no effect on Ag-specific
CD4+ T cell recruitment.

Our results also provided insights of CD4+ Trm cells
induced by GSL vaccination in terms of migration properties,
location/development, and cell surface phenotype. For migration
properties, the magnitude of CD4+ Trm cells was stable after
FTY720 administration, suggesting they were accord with the
important identification parameter that undergoes little or no
recirculation (1). For location/development, we found that in
GSL immune mice, CD4+ Trm cells showed a distinct pattern
of intraepithelial retention. Three phases of their development
can be described as followed: in acute phase, CD4+ T cells
infiltrated into the mucosa along with the elevated levels of CCL5
and CXCL10 and expansion of various innate immune cells;
during the phase of inflammation resolution, more than 60% of
CD4+T cells, including Ag-specific CD4+T cells, withdrew from
stomach; in memory stage, CD4+Trm cells were distributed
along with the architecture of gastric epithelium and keep
stable in magnitude for long-term. An elegant study indicates
that vaginal CD4+ Trm cells induced by an attenuated herpes
simplex virus 2 sustain in a unique lymphocyte structure, named
memory lymphocyte cluster, which is located in parenchyma
tissue (26). Half of skin CD4+ T cells persist in peri-follicular
clusters that accurately equilibrate with the blood lymphocytes
during steady state, and infection can increase the immune
cell content of these clusters (27). Our data showed that no
lymphocyte clusters were observed in stomach of immune
mice in memory stage. Residential pattern of the CD4+ Trm
cells in our study was different from the prevailing view that
after resolution of infection/inflammation, CD4+ Trm cells are
preferentially localized within parenchymal tissues, while CD8+
Trm cells adhere to epithelial layers (1). Current knowledge
about Trm cells is primarily obtained from invasive pathogens,
which can disseminate into the host organ. Differences on
types of vaccine, tissue architecture and inflammatory signaling
may be responsible for the outcome of CD4+ Trm cell
location/development (1, 25, 42, 43). In addition, the cell
surface phenotypes of Ag-specific CD4+ Trm cells isolated from

GSL immune mice were exclusively CD69+CD103-. A recent
study in the context of Candida albicans infection finds that
non-recirculating skin CD69+CD4+ Th17 cells are sufficient to
trigger sterilizing immunity (44). Also, Ag-specific CD4+ Trm
cells reported by N. Iijima and A. Iwasaki’s study expressed CD69
but little CD103 (26).

Trm cells within peripheral tissues provide strong protection
against pathogenic insult (26, 45, 46). Inducing a potent mucosal
immune memory is favored as H. pylori restrictedly survive in
epithelium of stomach with less invasiveness. During H. pylori
insult, evenly distributed intraepithelial CD4+ Trm cells are
optimally positioned to eliminate the window period and initiate
a protective response immediately. GSL vaccination-induced
CD4+ Trm cells are long-lived and pathogen-specific, therefore
providing prolonged protection that was highly sensitive to H.
pylori insult. As Th1 and Th17 immunity was highlighted in
the anti-microbial response of H. pylori vaccine (28, 29), we
reported that CD4+ Trm cells induced by GSL vaccination
sustained in stomach for long-term and rapidly reactivated to
recruit circulating Th1/Th17 cells to clear gastric H. pylori.
Tissue-autonomous protection was found in the immune mice,
but superior antimicrobial effects were dependent on the
engagement of circulating lymphocytes (Figure 8B). It might be
that protective CD4+ Trm cells induced by GSL vaccination
were restricted to adjacent mucosa at lowmagnitudes and needed
the help of circulating Th1/Th17 cells to trigger tissue-wide
protection (41). This observation is consistent with previous
study that small numbers of Trm cells trigger an antiviral state
through amplifying innate or adaptive immune signals (47).

In the present study, we attempted to introduce a vaccine-
induced CD4+ Trm pool in stomach and evaluated its protective
efficacy. Alum-based vaccine was used for GSL vaccination,
but we found an undesirable granuloma that affected regional
homeostasis. Employing a biocompatible vehicle with the
characteristics to spread in GSL is interested to improve the
outcome of this model. Our further study will use the silk
fibroin to replace Alum adjuvant to extend the CD4+ Trm cell
distribution, increase their magnitudes, and prevent the form of
granuloma. A more attractive but challenging question is how
to design a feasible delivered system that targets stomach. The
laparotomy used in mice is impractical in humans. Combining
endoscopy technology with GSL vaccination is also less feasible
for the translational application. Recently, an impressive study
reports an ingestible self-orienting system for oral delivery of
macromolecules that deliveries insulin through gastric mucosa
(48). This delivered system is applicable for stomach-targeted
vaccination after some adjustment.

Overall, our study developed a mice model with a strategic
CD4+ Trm pool in stomach. CD4+ T cells induced by GSL
vaccination preferentially infiltrated the adjacent mucosa, and
then restrictively sustained in the epithelial region adjacent
to the vaccination site. The underlying mechanism of local
maintenance is currently unknown but may be associated
with the metabolism of free fatty acids and TGF-β signals,
similar to the maintenance requirements for intraepithelial
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CD8+ Trm cells (49). Principally, our results indicate that
pathogen-specific CD4+ Trm cells within the gastric epithelium
can catch the best chance to sound the alarm, orchestrate
the defense response, and provide prolonged protection. The
notion that developing vaccine strategies involves a Trm
population may shed new light on the development of
H. pylori vaccines.
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Cross-protection between serologically distinct strains of influenza A virus (IAV) is

mediated by memory CD8T cells that recognize epitopes from conserved viral proteins.

Early viral control begins with activation of tissue-resident memory CD8T cells (TRM) cells

at the site of viral replication. These CD8T cells do not act in isolation, as protection

against disseminated infection is reinforced by multiple waves of effector cells (TEFF) that

enter the lungs with different kinetics. To define how a protective CTL response evolves,

we compared the functional properties of antiviral CD8T cells in the respiratory tract and

local lymphoid tissues. When analyzed 30 dpi, large numbers of antiviral CD8T cells

in the lungs and mediastinal lymph nodes (MLNs) expressed canonical markers of TRM
cells (CD69 and/or CD103). The check point inhibitor PD-1 was also highly expressed

on NP-specific CD8T cells in the lungs, while the ratios of CD8T cells expressing CD69

and CD103 varied according to antigen specificity. We next used in vitro experiments to

identify conditions that induce a canonical TRM phenotype and found that that naïve and

newly activated CD8T cells maintain CD103 expression during culture with transforming

growth factor-beta (TGFβ), while central memory CD8T cells (TCM) do not express

CD103 under similar conditions. In vivo experiments showed that the distribution of

antiviral CTLs in the MLN changed when immune mice were treated with reagents that

block interactions with PD-L1. Importantly, the lymphoid TRM cells were poised for early

proliferation upon reinfection with a different strain of IAV and defenses in the lungs were

augmented by a transient increase in numbers of TEFF cells at the site of infection. As the

interval between infections increased, lymphoid TRM cells were replaced with TCM cells

which proliferated with delayed kinetics and contributed to an exaggerated inflammatory

response in the lungs.
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INTRODUCTION

The 1918 influenza pandemic caused more deaths in the period
of a single year than any other emerging infectious disease (1).
Intermittent infections with new strains of avian influenza A
virus (IAV) raise concerns that another global pandemic could
begin at any time (2, 3). Efforts to protect public health include
regular vaccination with inactivated viral products. Because the
antibodies do not bind viruses with modified surface proteins,
these vaccines provide little protection against infection with new
strains. Frequent vaccine failures emphasize the need for broadly
protective vaccines that target multiple different serotypes (4).
As models predict that dependence on a single vaccine could
increase the severity of future pandemics (5), preparations
for mass vaccination should encompass different methods of
immunization. Since a local route of vaccine delivery is required
to populate the lungs with antiviral memory CD8T cells (6),
vectored vaccines may be the best method for inducing broad
immunity in the respiratory tract (7).

Cytotoxic T lymphocytes (CTLs) enhance immunity by
destroying host cells that support viral replication (8–10).
Responses to new strains of IAV develop slowly, while naïve
CD8T cells undergo clonal expansion in the local lymph nodes.
Several days pass before effector CD8T cells (TEFF) enter the
lungs and destroy host cells that support viral replication (8–
10). During the delay, replicating virus spreads to the lower
respiratory tract, where T cell-derived cytokines contribute to
defuse alveolar damage (11, 12). We have previously shown
that less damage occurs when viral dissemination is impeded
by tissue-resident memory CD8T cells (TRM) in the airways
(6). The role of TRM cells in immunity was discovered after
MHCI tetramers were used to quantify CTLs in the lungs during
the recovery phase of infection. Investigators found that the
numbers of memory CD8T cells in the circulation did not
change while protective immunity declined (13, 14). Importantly,
some anti-viral CTLs expressed CD69 in the lungs and gradually
disappeared as protective immunity declined. The presence of
these activated CTLs prompted us to explore how long viral
peptides were presented to CD8T cells during the recovery phase
of infection. We found that the mediastinal lymph node (MLN)
contained residual viral peptides until at least 2 months after
intranasal (i.n.) inoculation (15). Importantly, the remaining
peptides induced abortive proliferative responses from naïve
CD8T cells, while TCM cells show no signs of activation (16).
After completing several rounds of cell-division, the responding
cells displayed a partially-activated phenotype as indicated by
increased CD44, CD11a, and CD69 expression.

We used parabiosis experiments to explore how antiviral
memory CD8T cells survey the lungs during recovery from
infection (15, 17). These experiments showed that some CD8T
cells left the circulation during acute viral infection and remained
lodged in the walls of the airways after infectious virus had been
eliminated (15, 18). A majority of the resident cells displayed a
canonical TRM phenotype, exemplified by stable CD69 and/or
CD103 expression. In addition, more than 80% of antiviral CD8T
cells in the MLNs were non-circulating (host-derived) cells that
expressed CD69 and/or CD103 (15, 17), including some cells that

expressed the immune checkpoint inhibitor programmed death-
1 (PD-1). For parabiosis experiments, we used mice that were
housed in specific pathogen free (SPF) facilities. As expected, very
few CD8T cells expressed CD69 or PD-1 before IAV infection.
In contrast, both markers were widely expressed on CD8T cells
in lymph nodes recovered from human cadavers and out-bred
mice that had been exposed to diverse environmental pathogens,
indicating a response to microbial products (19, 20).

Although the contributions of mucosal TRM cells to antiviral
immunity are widely recognized, the functional properties of
lymphoid TRM cells remain poorly defined (21). Here 5-bromo-

2
′

-deoxyuridine (BrdU) has been used to analyze the proliferative
responses of antiviral memory CD8T cells in the lungs and local
lymphoid tissues after heterosubtypic challenge. By altering the
length of time between primary and secondary IAV infection, we
show that defenses in the lungs of immunemice are reinforced by
early proliferation by TRM cells in the lung-draining lymph nodes
and prompt arrival of TEFF cells at the site of viral replication.

Multiple receptors control access to the circulation, including
CD69 and CD103 (αeβ7 integrin) which is expressed on some
subsets of CD8T cells during stimulation with TGFβ. Studies
have shown formation of pulmonary TRM cells requires local
exposure to antigen and/or TGFβ (17, 22, 23), but we have
limited knowledge of the signals that are involved inmaintenance
of these specialized cell populations. For the current study, we
compared the surface antigens on TRM cells that recognize three
different viral epitopes and found that phenotypes of lymphoid
TRM cells varied according to antigen-specificity. TRM cells that
were specific for an epitope encoded in the nucleoprotein (NP)
gene expressed surface markers that were consistent with a
response to persisting viral peptides (i.e., CD69 and/or PD-1,
without CD103). PD-1 was highly expressed on CD8T cells in the
lungs. In contrast, CTLs that were specific for an epitope encoded
in the acid polymerase (PA) gene included larger percentages of
cells that expressed CD103 in combination with CD69, while PD-
1 was largely absent. A two-step culture system has been used
to explore how circulating CD8T cells respond to stimulation
with TGFβ. Our data indicate that responses to this cytokine are
influenced by the timing and quantity (or context) of antigen
exposure in local tissues.

MATERIALS AND METHODS

Mice and Reagents
OTI mice (24) were bred and housed at UCONN Health,
in accordance with institutional guidelines. C57BL/6 mice
were purchased from Charles River. Frozen MHCI molecules
(NP366−374/D

b, PA324−333/D
b) were supplied by the NIH

tetramer facility (Emory University, Vaccine Center at
Yerkes, Atlanta, GA) and (OVA257−264/K

b) MBL International
corporation. Tetramers were made at UCONN Health. Virus
stocks were grown in fertilized chicken eggs (Charles River),
titered and stored as described previously (15). Between 8 and 20
weeks after birth, anesthetized mice were infected intranasally
with 2 × 103 PFU WSN-OVAI (H1N1) (25). For secondary
infections, mice received 5 × 103 PFU X31-OVA (H3N2) (26).
Blocking antibodies to PD-L1 (B7H1) and isotype control
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were purchased from Bio-Xcell (West Lebanon, NH.). Mice
received 250 µg of blocking antibody (100 µl saline) given
twice by i.p. injection. Mice were infected (i.v.) with 5,000
CFU recombinant Listeria monocytogenes expressing chicken
ovalbumin (LM-OVA) (27). Experiments were performed in
accordance with guidelines and protocols approved by the
University of Connecticut Health Center Institutional Animal
Care and Use Committee (IACUC).

Adoptive Cell Transfer and Sample
Preparation for Flow Cytometry
Naïve CD8T cells were isolated from spleens and pLN of
CD45.1+ OTI mice using Mojosort isolation kits (Biolegend).
OTI cells were labeled with CFSE according to directions from
the manufacturer (Molecular Probes). Mice received 3 × 105

OTI cells by I.V. injection. For flow analysis, chopped lung tissue
was digested using 150 U/ml collagenase (Life Technologies,
Rockville, MD, USA) in RPMI containing 1mM MgCl2, 1mM
CaCl2, 5% FBS and incubated at 37◦C for 90min. Non-adherent
cells were enriched on 44/67% Percoll gradients and spun at 400 g
for 20min. Washed lymphocytes were incubated with antibodies
that block Fc-receptors for 15min, then stained with anti-CD8
and MHCI tetramers for 1 h at room temperature. Antigen-
experienced CTLs were identified using high CD44 and CD11a
expression. NP-specific CTLs were phenotyped using Tetramer-
PE, CD103-AF647, CD69-PerCP, and PD-1 FITC. OVA and PA-
specific CTLs were phenotyped using Tetramer-APC, CD103-
FITC, CD69-PerCP, and PD1-PE. BrdU was administered by
i.p. injection 4 h before cell analysis. BrdU incorporation was
measured by intracellular staining, according to instructions
from the manufacturer (BD Biosciences). To visualize cells that
were close to X or Y axis, scales on some contour plots were
adjusted using the bi-exponential function in Flowjo R© software.

Cell Culture
Naïve CD8T cells were stimulated with plate-bound anti-
CD3/CD28 and rIL-2 (20 U/ml) in 24 well plates. Cultures were
supplemented with SB-431542 (10µM) or vehicle (0.1% DMSO)
(28). Other wells were exposed to exogenous TGFβ (10 ng/ml).
Cells were suspended in RPMI containing FBS, L-glutamine,
β-mercapthoethanol, sodium pyruvate, Hepes, and antibiotics.
At 48 h, CTLs were transferred to new wells and stimulated
with activated TGFβ (10 ng/ml) and rIL-2 for an additional 48 h
(no antigen).

Confocal Microscopy
MLNs were fixed in 4% PFA/PBS for 60min at 4◦C and cut into
thick sections (350 microns) using a vibratome. Sections were
pre-incubated with antibodies to block Fc-receptors (15min at
4◦C) and stained with biotin-conjugated antibodies to CD11c
(eBioscience) diluted in 2% FBS/PBS solution. After extensive
washing, sections of fixed MLNs were stained overnight at
4◦C with streptavidin-PE antibody (Life Technologies), Pacific
blue-conjugated anti-CD31, Alexa Flour 488- conjugated anti-
CD45.1 (BioLegend, San Diego, CA, USA), eF660-conjugated
LYVE-1, and B cells were detected with V500-conjugated anti-
B220 (BD Biosciences). After extensive washing, stained tissues

were mounted on slides using Shandon Immu-Mount (Thermo
Electron, Pittsburgh, PA, USA). Images were recorded using
a Zeiss LSM880 confocal microscope with an inverted Axio
Observer. Fluorescence was detected using: an argon laser for
emissions at 458, 488, and 514 nm; a diode laser for emissions at
405 and 440 nm; a diode-pumped solid-state laser for emissions
at 561 nm; and a HeNe laser for emissions at 633 nm. Images
were analyzed using the colocalization function in Imaris suite
software (Bitplane, South Windsor, CT, USA).

Histology
Lungs were fixed in 4% PFA/PBS at 4◦C for 24–48 h. After
washing, lungs were stored in 70% ethanol until processing.
Hematoxylin and eosin (H&E) staining was performed by the
Histology Core at the UCONN Health. Images were takes at 5X
and 20X normal magnification.

Statistical Analysis
Statistical significance was determined using an unpaired two-
tailed Student t-test. Horizontal lines indicate comparisons
between samples, with p values from groups of 5/6 mice. NS, P
> 0.05; ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.

RESULTS

Lymphoid TRM Cells Are Receptive to
Signals That Promote Lodgment in
Peripheral Tissues
To examine the phenotypes of antiviral CD8T cells during
recovery from IAV infection, C57BL/6 mice were infected with
a recombinant virus (WSN-OVAI) encoding the SIINFEKL
peptide (25). Virus-specific CD8T cells were analyzed 30 dpi,
using MHCI tetramers containing peptides encoded by the
nucleoprotein (NP336−374/D

b), acid polymerase (PA224−233/D
b),

and ovalbumin genes (OVA257−264/K
b). The lungs and MLNs

both contained antiviral CD8T cells that expressed canonical
markers of TRM cells (Figure 1A). NP-specific CD8T cells were
the dominant subset at both locations (Figures 1B–E). CD69
was expressed on large percentages of antiviral CD8T cells
identified with all three tetramers. In contrast, the percentages
of virus-specific CD8T cells that expressed CD103 and/or PD-
1 varied according to antigen-specificity (Figure 1A). A majority
of NP-specific CD8T cells lacked CD103, while PD-1 was highly
expressed in lungs. Conversely, only small percentages of PA-
specific CTLs expressed PD-1 and CD103 was highly expressed
in the lungs. The OVA-specific CTLs displayed an intermediate
phenotype. Gates for analyses were set using non-CD8 T cells.

Tonic signaling from the TGFβ receptor reinforces expression
of αeβ7 integrin (CD103) on TRM cells (17, 29). We next
investigated whether naïve and/or circulating memory CD8T
cells express CD103 in vivo. We previously found that TCM cells
develop with delayed kinetics after IAV infection, due to the
influence of persisting viral peptides. To avoid this complication,
C57BL/6 mice were infected with recombinant L. monocytogenes
encoding the chicken ovalbumin gene (LM-OVA) (27). After 32
days, CD8T cells were recovered from the spleens and analyzed
for CD103 expression (Figure 2A). After gating CD62L+ cells,
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FIGURE 1 | The phenotypes of TRM cells vary according to antigen-specificity. Antiviral CTLs were recovered from the lungs and MLN 35 dpi with WSN-OVAI.

Antigen experienced CTLs were identified using high CD11a and CD44 expression. (A) Contour plots show antigen-experienced CTLs analyzed with MHCI tetramers.

The tetramer+ CTLs were analyzed for CD103, CD69, and PD-1 expression. Percentages of cells in each quadrant are means ± SD (n = 5/group). Gates were set

using non-CD8T cells. (B–E) Bar graphs show total numbers of tetramer+ CTLs, plotted using means ± SD (n = 5/group). Shading shows (B,D) ratios of cells

expressing CD103 and/or PD-1, (C,E) ratios of cells expressing CD103 and/or CD69. (F) The numbers of CTLs in each quadrant were compared for the NP and PA

epitopes. P-values were calculated using Student’s t-tests.

naïve and central memory CD8T cells (TCM) were distinguished
using CD44 and CD11a (top row). The overlaid histograms
show that CD103 expression on naïve CD8T cells, but not TCM

cells. Similarly, CD103 was expressed on naïve CD8T cells from
uninfected mice and was absent when the TGFβ receptor was not
expressed (bottom row).

We used a transfer model to create a homogeneous supply
of OVA-specific TCM cells for in vitro experiments. Naïve
CD8T cells were recovered from the peripheral lymph nodes
of OTI mice which express a transgenic receptor that is specific

for SIINFEKL peptide presented in the context of H-2Kb

(OVA257−264/K
b) (24). Enriched OTI cells were transferred to

C57BL/6 mice 48 h before infection (i.v.) with LM-OVA. After
3 months, TCM cells (CD62Lhigh/CD11ahigh) were sorted from
the spleens using CD45.1 expression. A two-step culture system
was used to compare the phenotypes of naïve and TCM cells after
stimulation with TGFβ (Figure 2B). To induce cell proliferation,
purified OTI cells (naïve and TCM) were stimulated with plate-
bound anti-CD3/CD28 and recombinant IL-2 (20 U/ml). After
48 h, live cells were transferred to clean wells and cultured for
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FIGURE 2 | TCM do not upregulate CD103 during culture with TGFβ. (A) C57BL/6 mice were infected systemically (i.v.) with LM-OVA. CD62L-positive CD8T cells in

the spleen were analyzed 32 dpi. The contour plots indicate gates that were used for analyses. Histograms (top row) show CD103 expression on naïve CD8T cells,

while TCM cells do not express CD103 (gray shading). Lower panels show CD103 expression naïve OTI cells from the spleens of uninfected mice (bottom row, dashed

line). Naïve OTI cells do not express CD103 after ablation of the TGFβ receptor (bottom row, gray shading). (B) Naïve OTI cells were transferred to B6 mice 48 h before

infection with LM-OVA. After 3 months, TCM cells were sorted from the spleens using CD45.1 expression. Purified CD8T cells (naïve and TCM) were stimulated with

plate-bound anti-CD3/CD28 and rIL-2 (20 U/ml) for 48 h. Live cells were transferred to new wells (no antigen) and cultured for 48 h with rIL-2 plus/minus TGFβ

(10 ng/ml). (C) Naïve OTI cells were cultured with plate-bound anti-CD3/CD28 and rIL-2. In addition, some wells were supplemented with SB-431542 (10µM) to avoid

stimulation with serum-derived TGFβ. After 48 h, activated OTI cells were analyzed for CD103/CD69 expression (top panels). Additional cells were cultured for an

additional 48 h with rIL-2 and no antigen stimulation (lower panels). (D) Naïve OTI cells were labeled with CFSE-dye and transferred to mice that were previously (30 d)

infected with WSN-OVAI. The MLNs were recovered 5 days after transfer and lymphocytes were cultured for 72 h with rIL-2 plus/minus TGFβ. Three experiments gave

similar results.

an additional 48 h in fresh media, supplemented with rIL-2,
plus/minus TGFβ (10 ng/ml). The naïveOTI cells down regulated
CD103 during antigen stimulation and expression did not return
during extended culture with rIL-2. Importantly, CD103 was
re-expressed when the cultures were supplemented with TGFβ.
Conversely, TCM cells lacked CD103 expression when cultured
under similar conditions.

Respiratory infection promotes formation of mucosal TRM

cells which express CD103 in combination with CD69. CD69
is expressed on CD8T cells soon after antigen stimulation
(or exposure to selected cytokines), and quickly disappears
when the stimulus is removed (30). Here, cultured CTLs were

used to identify conditions that induce the canonical TRM

phenotype of dual CD69 and CD103 expression (Figure 2C).
Naïve OTI cells were stimulated with anti-CD3/CD28 and rIL-
2 as previously described. Fetal bovine serum contains small
quantities of TGFβ. To prevent stimulation with this cytokine,
replicate wells were supplemented with an inhibitor (SB-431542)
that prevents phosphorylation of TGFβ receptor I (ALK5) (31),
or the vehicle (DMSO) control. The first samples were analyzed
48 h after antigen stimulation, when approximately 20% of OTI
cells expressed CD69 in combination with CD103 (top row). The
percentages of CD69+ cells increased when the ALK5 inhibitor
was present, while CD103 was partially down-regulated. Higher
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percentages of CD69+ CD8T cells indicate that the inhibitor
prevented suppression from TGFβ during early T cell activation
(32). Other OTI cells were stimulated with antigen for 48 h
and transferred to new wells containing fresh medium with
rIL-2, for an additional 48 h without antigen (lower panels).
Approximately 20% of OTI cells maintained CD103 expression
during extended culture with rIL-2, while both markers (CD103
and CD69) were down regulated when the cultures contained the
ALK5 inhibitor (SB-431542) (Figure 2C). These data confirmed
CD103 expression on newly activated CD8T cells is reinforced
by stimulation with TGFβ.

We previously used transfer experiments to determine how
long viral peptides were presented to CTLs in the tissues of IAV
infected mice (15). To detect persisting OVA peptides, naïve OTI
cells were labeled with CFSE-dye and transferred to mice that
had previously been infected with WSN-OVAI. The donor cells
were analyzed 5 days after transfer, when reduced intensity of the
CFSE-dye showed that some OTI cells proliferated in vivo. Here,
a similar protocol was used to determine whether CD8T cells
remain receptive to TGFβ after completing several rounds of cell
division in the MLN. C57BL/6 mice were infected with WSN-
OVAI and CFSE-labeled OTI cells (CD11alow/CD44low) were
transferred 30 dpi. After 5 days, lymphocytes were recovered
from the MLNs and cultured for 48 h with rIL-2 (20 U/ml),
plus/minus TGFβ (10 ng/ml). Diluted CFSE-dye showed that
some OTI cells divided in the MLN between 30 and 35 dpi
and maintained CD103 expression during culture with TGFβ
(Figure 2D). Together, these studies show that naïve CD8T cells
respond to “late” antigen stimulation in the MLN and remain
receptive to environmental cues that encourage lodgment in
peripheral tissues. Importantly, TCM did not respond to late
antigen presentation (16), or express CD103 when cultured
with TGFβ.

The Distribution of Lymphoid TRM Cells
Changes During Therapeutic Blockade
of PD-1L
PD-1 is a costimulatory molecule that delivers negative-signals
to T cells during interactions with APCs. Newly activated CTLs
transiently express PD-1 during antigen stimulation, while stable
expression has been linked to chronic antigen exposure and
suboptimal TEFF function (33, 34). During chronic infections,
many CTLs express PD-1 in combination with other inhibitory
receptors and exhibit symptoms of exhaustion (33, 35). Sustained
PD-1 expression is linked to broad functional changes including
reduced motility of activated CTLs during interactions with
APCs (35). Whether PD-1 plays a role in maintenance of
lymphoid TRM cells has not been explored.

Tetramer analyses showed that substantial numbers of anti-
viral CTLs maintained PD-1 expression during recovery from
IAV infection (Figure 1). To explore whether PD-1 plays a
role in maintenance of lymphoid TRM cells, we examined
the distribution of antiviral CTLs in the MLNs of IAV
infected mice during treatment with antibodies that block
interactions with PD-1 ligand (PD-L1) (36).To visualize antiviral

CTLs in the MLN, naïve (CD11alowCD44low) OTI cells were
transferred to B6 mice 48 h before infection with WSN-
OVAI. After 30 days, the recipient mice were treated twice
with antibodies that block interactions with PD-L1, or an
isotype control. MLNs were recovered 5 days after the first
antibody treatment (35 dpi) and analyzed by scanning confocal
microscopy (Figures 3A–G). OTI cells were widely distributed
in the MLNs from both groups of animals. When control
antibodies were used (Figures 3A–D) clusters of OTI cells (1
or 2 per MLN) were found in close proximity with high
endothelial venules (HEVs) (Figure 3B), while additional OTI
cells were adjacent to LYVE+ vessels. Areas of direct cell
contact are shown in white (Figures 3D,G). No clusters of
OTI cells were visible after PD-L1 blockade (Figures 3E–G).
The numbers of CD45.1+ cells in the MLNs decreased during
treatment with antibodies to PD-1L (Figure 3H). We found no
difference in BrdU incorporation during the antibody treatments
(data not shown). Taken together, these data indicate that
small clusters of OTI cells dispersed during PD-L1 blockade,
while some activated CTLs may have been released into the
circulation. A single lobe from the lungs of each mouse was
analyzed by H&E staining to evaluate changes in pathology
during PD-L1 blockade (Figure 4). Infection-induced pathology
was detected in the lungs of all animals and the areas of
lymphocytic infiltration did not substantially change during
treatment with antibodies that block PD-1L. Images were taken
at 5X normal magnification and total areas of lymphocytic
inflammation were measured using ImageJ software (P= 0.7221,
n= 6/group).

TEFF Cells Enter the Lungs With Variable
Kinetics After Heterosubtypic Challenge
Heterosubtypic immunity disappears between 4 and 6 months
after IAV infection (6, 37). To understand how lymphoid TRM

cells respond to secondary infection with a different strain
of IAV, mice were primed with WSN-OVAI (H1N1 serotype)
and later challenged with X31-OVA (H3N2 serotype). Both
viruses encode the SIINFEKL peptide, but express different
surface proteins (25, 26). To explore how the functional
properties of antiviral memory CD8T cells evolve with time,
we adjusted the interval between recurrent infections from
1 to 4 months. For optimal protection, secondary infections
were administered between 30 and 35 dpi. For simplicity, this
time interval is referred to as early recall (ER). To study the
responses of antiviral memory CD8T cells as immunity declined,
additional mice were reinfected between 120 and 160 dpi.
This interval is referred to as late recall (LR). On different
days after secondary infection, groups of 5 mice received a
single dose of BrdU and virus-specific CTLs were analyzed
4 h later (Figure 5). The contour plots show gated populations
of antigen-experienced CD8T cells (CD44-high, CD11a high)
analyzed using tetramers specific for the NP, PA and OVA
epitopes (Figure 5A). Unpaired student’s t-tests were used to
compare the rates of BrdU incorporation in the MLNs (3
dpi) during early and late recall. This experiment showed
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FIGURE 3 | The distribution of lymphoid TRM cells changes during PD-1L blockade. Naïve OTI cells were transferred to B6 mice 48 h before infection with

WSN-OVAI. At 30 and 32 dpi, antibodies that block interactions with PD-L1 (or isotype control) were administered by IV injection (250 µg). After 35 days sections of

fixed MLN were stained with antibodies that are specific for CD45.1 (green); CD31 (yellow); CD11c (blue); B220 (red), and LYVE-1 (magenta). Z-stacks were recorded

at 10X and 20X normal magnification. (A–D) MLNs analyzed after treatment with control antibodies. (E,F) MLNs analyzed after treatment with antibodies that block

interactions with PD-L1. The inset boxes (dashed lines) mark the locations of enlarged images shown in (A-2,C-2). (D,G) The Imaris software colocalization function

was used to detect contacts (white) between OTI cells (green) and LYVE+ vessels (Magenta). (H) Numbers of OTI cells per 10 micron Z-stack (*P = 0.0107).
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FIGURE 4 | Infection-induced pathology is not substantially altered by PD-L1 blockade. C57BL/6 mice were infected with WSN-OVAI and treated twice with (A–C)

antibodies to PD-L1 or (D–F) isotype control. Sections of fixed lung tissue were stained 35 dpi using hematoxylin and eosin. Images were recorded at 20X normal

magnification. Arrows indicate Bronchioles (black) and blood vessels (white).

that anti-viral CTLs proliferated in MLNs with accelerated
kinetics after early recall. The percentages of CD8T cells that
incorporated BrdU were significantly different for all three
tetramers (NP, P = 0.0126; PA, P = 0.0205; and OVA, P
= 0.0002). The bar graphs show total numbers of tetramer+

cells in the lungs and MLNs, with shading to indicate cells
that contained BrdU (Figure 5B). Robust BrdU incorporation
was not detected in the MLN until 4 days after late recall
and TEFF cells accumulated in the lungs with delayed kinetics.
Weak proliferation by PA-specific CTLs contributed to a
change in epitope dominance after reinfection, as reported
previously (38, 39).

Pathology in the lungs was evaluated 4 dpi, using H&E
staining (Figures 6A–D). After early recall, the blood vessels
were surrounded with pronounced mononuclear leukocytic
infiltrates (Figure 6A), while the conducting airways were
largely unobstructed (Figure 6B). Although perivascular and
peribronchial infiltrates were less prominent after late recall
(Figure 6C), the airways were heavily congested with mucus and
mononuclear cells, including lung macrophages (Figure 6D).
Taken together, these data show that lymphoid TRM cells
play an integral role in the response to reinfection and
prompt dissemination of TEFF cells to the lungs. As the
interval between infections increased, lymphoid TRM cells
were replaced with TCM cells which proliferated with delayed
kinetics. We previously found that TCM contributed to an
exaggerated TEFF response in the lungs as the infection
progressed (6, 40), and does not prevent cellular obstruction in
the airways.

DISCUSSION

Coordinated changes in homing receptor expression control
the distribution of pathogen-specific CTLs in peripheral and

lymphoid tissues. Naïve CD8T cells follow gradients of
sphingosine-1-phosphate (S1P) during transit through blood
and lymph (41). Transit through lymphoid tissues is inhibited
when CD8T cells upregulate CD69 during antigen stimulation
and the receptor for S1P (S1PR1) is modulated from the cell
surface (42). A similar mechanism is required for TRM cells
to settle in infected tissues, where CD69 expression can be
induced by local exposure to antigen and/or inflammation (43).
Although the mechanism(s) that reinforce CD69 expression on
TRM cells have not been identified, chronic exposure to TGFβ
prevents re-expression of S1P1 through negative regulation of
Krupple-like factor 2 (KLF2) (23, 44). TGFβ also promotes
retention of TRM cells at barrier surfaces by maintaining CD103
expression, which in turn mediates interactions with a structural
protein (E-cadherin) expressed on epithelial cells (17, 29, 45).
Local concentrations of TGFβ increase during tissue repair and
encourage TRM cells to accumulate near inflamed tissues (46).
Consistently, images of the lungs taken 30 dpi with IAV showed
that the airway epithelium was densely populated with TRM

cells that expressed CD103 (6). Kinetic studies have shown that
pulmonary TRM cells gradually disappear from the lungs as
protective immunity declines, while some replenishment occurs
as small numbers of CTLs arrive from other tissues (15, 47).
The origin of CTLs that enter the lungs during the recovery
phase of infection is unknown, but may include CTLs that are
released from the MLN during a response to persisting viral
peptides (40).

Here, a two-step culture system has been used to define

conditions that induce newly activated CTLs to express a
canonical TRM phenotype. We found that naïve OTI cells

expressed CD69 in combination with CD103 soon after antigen
stimulation. CD103 was eventually down regulated in the
presence of antigen and returned during subsequent culture
with TGFβ. A similar pattern was observed when naïve CD8T
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FIGURE 5 | Early proliferation by lymphoid TRM cells corresponds with increased numbers of anti-viral CTLs in the lungs. C57Bl/6 mice were infected with WSN-OVAI
and challenged with X31-OVA. Secondary infections were administered between 30 and 35 dpi (ER), or 120–160 dpi (LR). On the days indicated, each mouse

received a single dose of BrdU (given by IP injection) and antiviral CTLs were analyzed 4 h later. (A) On day 3 post recall (D3pr), the MLNs were analyzed for

antigen-experienced CTLs using high CD11a and CD44 expression. The contour plots show frequencies of tetramer+ cells. Histograms show BrdU incorporation

within the tetramer gates. Percentages are means ± SD (n = 5/group). (B–E) The bar graphs show total numbers of Tetramer+ CTLs, including BrdU+ cells (hatched

shading). Bars are means ± SD (n = 5/group). The numbers of cells that incorporated BrdU after ER and LR were compared using unpaired T-tests. NS, P > 0.05; *P

< 0.05; **P < 0.01; ****P < 0.0001.
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FIGURE 6 | Sections of fixed lung tissue were stained with H&E 4 dpi. Representative images from 5 mice are shown. (A,B) Lungs after early recall (C,D) Lungs after

late recall. Arrows indicate Bronchioles (black) and blood vessels (white).

cells were exposed to antigen in vivo. A transfer model also
showed that naïve OTI cells completed multiple rounds of
cell division in the MLN during late antigen presentation.
Importantly, the responding CD8T cells expressed CD103
when cultured with TGFβ. We previously showed that TCM

cells do not respond to late antigen presentation in the MLN
30dpi (16). When analyzed in vitro, TCM cells did not express
CD103 during culture with TGFβ, either before or after antigen
stimulation. Together, these experiments show that naïve CD8T
cells respond to suboptimal antigen stimulation in the MLN
and are receptive to factors in the local environment that
promote extended residence in peripheral tissues. Importantly,
CTLs become resistant to TGFβ after committing to the
TCM lineage.

Data from other models show that TRM cells display variable
phenotypes during infection with different pathogens. One
report showed that TCM cells trafficked to the skin during
vaccinia virus infection and converted to CD69+ TRM cells,
without CD103 expression (48). Lymphoid TRM cells displayed
a similar phenotype during recovery from LCMV infection
(19). To analyze CD8T cells responses after IAV infection,
we used mice that were bred in SPF facilities. Consequently,
naïve CD8T cells were the principal source of TRM cells
in this study. Tetramer analysis showed that the percentages
of TRM cells expressing CD103 varied according to antigen
specificity (Figure 1). Whereas, large percentages of PA-specific
TRM cells expressed CD103, this marker was largely absent
from NP-specific TRM cells, while PD-1 was highly expressed
in the lungs. It is important to note that the NP antigen

is more abundant than PA during acute viral infection (49)
and that NP peptides persist in the MLNs for approximately
2 months (15). Since CD8T cells upregulate PD-1 and lose
CD103 during antigen stimulation, many NP-specific TRM

cells displayed a phenotype (PD-1+CD69+CD103-negative) that
was consistent with a response to persisting viral peptides
(15). Some tumors contain intraepithelial lymphocytes (IEL)
that express PD-1 in combination with CD103 (50). Some
PA-specific TRM cells expressed a similar phenotype in the
lungs after IAV infection. Variations between these markers
suggest that the phenotypes of TRM cells are influenced by
the timing and quantity or context of antigen exposure in
local tissues.

We have found that TCM cells respond to secondary IAV
infection with delayed kinetics and contribute to a robust
inflammation in the lungs as the infection progresses (6).
The alveoli are surrounded by delicate membranes, which can
be readily damaged by high concentrations of T cell-derived
cytokines. Our data caution that some poorly designed vaccines
may trigger a robust inflammatory response in the lungs during
respiratory infection, by promoting formation of TCM cells
without TRM in the local tissues (40, 51).
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Persistent and durable immunological memory forms the basis of any successful

vaccination protocol. Generation of pre-existing memory B cell and T cell pools is thus

the key for maintaining protective immunity to seasonal, pandemic and avian influenza

viruses. Long-lived antibody secreting cells (ASCs) are responsible for maintaining

antibody levels in peripheral blood. Generated with CD4+ T help after naïve B cell

precursors encounter their cognate antigen, the linked processes of differentiation

(including Ig class switching) and proliferation also give rise to memory B cells, which

then can change rapidly to ASC status after subsequent influenza encounters. Given

that influenza viruses evolve rapidly as a consequence of antibody-driven mutational

change (antigenic drift), the current influenza vaccines need to be reformulated frequently

and annual vaccination is recommended. Without that process of regular renewal, they

provide little protection against “drifted” (particularly H3N2) variants and are mainly

ineffective when a novel pandemic (2009 A/H1N1 “swine” flu) strain suddenly emerges.

Such limitation of antibody-mediated protection might be circumvented, at least in

part, by adding a novel vaccine component that promotes cross-reactive CD8+ T

cells specific for conserved viral peptides, presented by widely distributed HLA types.

Such “memory” cytotoxic T lymphocytes (CTLs) can rapidly be recalled to CTL effector

status. Here, we review how B cells and follicular T cells are elicited following influenza

vaccination and how they survive into a long-term memory. We describe how CD8+

CTL memory is established following influenza virus infection, and how a robust CTL

recall response can lead to more rapid virus elimination by destroying virus-infected cells,

and recovery. Exploiting long-term, cross-reactive CTL against the continuously evolving

and unpredictable influenza viruses provides a possible mechanism for preventing a

disastrous pandemic comparable to the 1918-1919 H1N1 “Spanish flu,” which killed

more than 50 million people worldwide.

Keywords: T cells, B cells, influenza, immunological memory, vaccine
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INTRODUCTION

Successful vaccination relies on the induction of long-term
immunological memory. Exposure to an infectious virus elicits
acute effector responses that mediate acute pathogen control,
along with the generation and maintenance of T cell and
B cell memory capable of protecting against re-exposure. At
sufficient levels, neutralizing antibody (Ab) can prevent re-
infection while, especially if such protection is partial, the
rapid recall of memory CD8+ cytotoxic T lymphocytes (CTLs)
facilitates enhanced pathogen control. Seasonal influenza results
from the emergence of an occasional, highly infectious variant
selected as a consequence of Ab-driven mutational change in the
viral envelope hemagglutinin (HA) and/or neuraminidase (NA)
proteins. Pandemic influenza A viruses, on the other hand, arise
from gene reassortment of two different influenza A virus (IAV)
subtypes infecting the same cells. As a consequence, the influenza
research and control community face the continuing challenge of
producing new vaccines to control emerging threats.

Most of the existing products utilize inactivated virus, or
isolated viral HA and NA proteins, that stimulate influenza
strain-specific antibody immunity and B cell memory, but do not
prime the much more cross-reactive CD8+ CTL compartment.
The challenge is thus to add a T cell-targeted vaccine component
that promotes CTL memory for the rapid recall of anti-viral CTL
effectors to the respiratory tract for early virus control and/or
induce cross-protective B cells. In this review, we focus on the
nature of optimal memory B cell and T cell generation and ask
how we might use this knowledge to overcome the limitations
of seasonal influenza vaccines by developing feasible strategies
for both inducing and maintaining long-term, cross-reactive
immunological memory.

The Burden of Seasonal Influenza
Seasonal influenza virus is a global health problem. In the
United States, influenza virus infections causes 9.2–35.6 million
cases of illness, 140,000–710,000 hospitalizations and 12,000–
56,000 deaths per year (1). Globally, it is estimated that every year
290,000–650,000 respiratory deaths are due to seasonal influenza
(2). The World Health Organisation (WHO) recommends
annual influenza vaccination for people at high risk of developing
severe disease, and for those in contact with high-risk individuals.
Vulnerable groups include the elderly (>65 years), young
children (6–59 months), Indigenous populations, patients with
chronic medical conditions, pregnant women, and health-care
workers (3). National health authorities in the countries with an
advanced public health system recommend annual vaccination
for everyone 6 months of age and above, both to protect
individuals and to limit the spread of the virus through the
community (4, 5).

Influenza Virus Evolution Poses a
Challenge for Long-Term Humoral
Immunity and Vaccine Effectiveness
Influenza viruses attach to host cells via HA binding to cell
surface sialic acids (6, 7). Protective antibodies (Abs) block virus
attachment by binding to the antigenic sites (8–11) proximate to

the sialic acid receptor binding pocket on the HA head. Such
Abs are the best correlate for influenza immunization and are
measured using the hemagglutination inhibition (HAI) assay,
which detects Abs blocking the capacity of the virus to agglutinate
red blood cells by binding to sialic acids on their surface (12). The
influenza virus RNA polymerase lacks proof-reading function,
with the consequence that there is a constant emergence of
mutants (affecting viral fitness and/or immune recognition)
carrying substitutions that arise randomly across the genome.
Antibody-mediated immune pressure drives the selection of
viruses expressing variant HAs and NAs (13, 14) that, if their
“fitness” is not unduly compromised, have the potential in nature
to cause the process that has long been called antigenic drift (15,
16). Clearly, for a drifted strain to emerge as a clinical problem,
its HA must be sufficiently changed to escape neutralization by
pre-existing antibodies induced broadly in human populations by
past infections and/or vaccinations. The reality that individuals
who were once protected are now at risk from the new variant
strain is the basis for frequently reformulating seasonal influenza
vaccines (17). In contrast, through the process of antigenic shift,
influenza viruses incorporate a completely new HA or NA (18),
which adds a new virus into the epidemiological mix. When it
comes to antibody-mediated selection, the A/H3N2 strains have
consistently shown the greatest antigenic drift for the three types
of influenza viruses that co-circulate globally and cause seasonal
epidemics (A/H1N1, A/H3N2, and influenza B viruses) (16, 19).
In general, more extensive epidemics (with increased morbidity
and mortality) occur when a novel, seasonal A/H3N2 drifted
strain emerges (16, 20, 21).

Multi-component influenza vaccines are designed to elicit
serum antibodies against the HAs of one A/H1N1 strain, one
A/H3N2 strain and one (or two) influenza B viruses (Yamagata or
Victoria) (22). Increased antibody titres induced by vaccination
decrease the risk for infection caused by any strains antigenically
similar to those included in the vaccine (23, 24), although they
confer limited or no protection against other types or subtypes
(including drifted variants) of influenza (25). The global WHO
network closely monitors the circulation of influenza viruses in
humans and other species, including birds, across the northern
and southern hemispheres, whereby information derived from
the antigenic and genetic characterization of these strains, along
with epidemiological data, is used to select the strains to be
incorporated into an upcoming seasonal vaccine (26). This
strategy can fail, at least in part, as vaccine preparation takes at
least 6 months and the product may no longer match all 3 (or
4) circulating viruses by the time it is released (27). Moreover,
pre-existing immunity in humans can be highly variable due to
age and prior exposures via infection and/or vaccination (28–
34). The level of pre-existing human immunity is considered
but often difficult to interpret due to high heterogeneity. First-
infection ferret antisera is used to identify and characterize new
influenza strains, yet repeated exposures to A/H3N2 variants
affect Ab quantity and quality, which makes vaccine-strain
selection even more challenging (35). Both immunological
responses to influenza viruses and influenza vaccine effectiveness
are undoubtedly affected by the combination of antigenic drift
and prior immunity. Influenza virus evolution has been widely
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studied, yet it is still largely unknown how cross-reactive B cell
memory impacts on Ab responses to new strains.

B Cell Memory and Imprinting Against
Prior Strains
The idea that immunological memory could impact negatively on
Ab responses to novel influenza strains first emerged in the early
1950s, when Francis and Davenport observed that the exposure
to a new influenza strain induced higher titres of Abs against
variants encountered in childhood than against the prevailing
strain (36–39). They proposed the colorfully named concept of
“original antigenic sin” (OAS), which states that Abs generated
against the first antigen (Ag) encountered in childhood would be
repeatedly and preferentially induced at every exposure, even if
the epitope remained as a minor secondary antigen. This was
considered to be sinful, i.e., detrimental for protection against
following influenza infections, since the Abs induced poorly
neutralized the most recent strain that had actually triggered
them (40, 41). Molecular level analyses of B cell receptor usage
have since confirmed that memory B cells elicited by a priming
Ag can participate in the immune response toward a structurally
related, boosting Ag (42, 43). While it is clear that somatic
mutation of the immunoglobulin (Ig) variable (V) region takes
place, the extent to which this leads to increased affinity for the
priming vs. boosting variant remains controversial (42). These
molecular analyses are consistent with more recent observations
that Ab boosting is broad, and greatest against more similar
viruses, differing somewhat from the OAS concept that centers
on the initial antigen encountered (44, 45). Efforts to understand
why prior vaccination enhances vaccine effectiveness in some
influenza seasons, yet attenuates it in others, has led to further
refinements to the OAS hypothesis, namely that imprinted B
cell memory responses are not inevitably “sinful” i.e., ineffectual
(31). Hensley et al. propose that Ab become focused on selected
epitopes which are relatively conserved between successive
strains due to a form of competitive dominance by memory B
cells and that while this may result in high Ab titres and clinical
benefit it may, alternatively, compromise protection if the epitope
is altered in future strains. This hypothesis is based on molecular
and serological analyses that document focused HI Ab responses
in selected individuals (29, 30, 46–49).

At the cellular level, it is clear that memory B cells respond
more rapidly than their naïve precursors. Hence, antibody
responses may become focused on epitopes that were present in
earlier strains because memory B cells specific for those epitopes
become rapidly activated at the expense of naïve B cells, which
need a higher threshold to respond (50, 51). Memory B cells
that bear affinity matured antigen receptors may also be better
able to compete with existing Abs for inducing antigen than
naïve B cells (52). Several strategies have the potential to promote
naïve B cell activation and broaden the Ig response. These
include giving repeated vaccine doses (39), increasing the amount
and concentration of antigen (53), and adding adjuvants (54).
Another suggested mechanism that may promote the enhanced
engagement of memory (vs. naïve) B cells is that T regulatory
cells (Tregs) induced by the initial encounter reduce the amount of

antigen presented on dendritic cells, thus diminishing the antigen
availability for naïve B cells, promoting a memory B cell boost at
the expense of naïve B precursors (55).

Current Strategies to Improve Seasonal
Influenza Vaccine Effectiveness
Strategies to increase seasonal influenza vaccine effectiveness
(VE), like high-dose or adjuvanted vaccines, are still under
evaluation. Pooled analysis of multiple studies showed that
high-dose vaccines significantly reduce the risk of laboratory-
confirmed influenza cases in the elderly when the vaccine and
the circulating strains are well-matched, but not when they are
mismatched. The HAI geometric mean titres after vaccinating
with the high-dose vaccine were significantly higher compared
to the standard-dose vaccine for the H3 component. However,
the proportion of participants with seroprotective HAI Ab levels
(HAI titer ≧ 1:40 or 1:32) was the same using both vaccines
(56). Similarly, high-dose vaccines showed significant increases
in VEwith a reduction inmortality among the elderly by 36.4% in
the 2012–2013 season, when H3N2 viruses were predominantly
circulating (57). Nonetheless, seasonal VE on that season was
only of 11% for that particular age group (58), indicating that
a high-dose vaccine, despite increasing VE, did not induce
an epidemiologically significant improve in overall H3N2 VE.
Alternatively, the use of a standard-dose influenza vaccine with
the MF59 adjuvant (Novartis) can reduce laboratory-confirmed
influenza cases as well as hospitalizations due to influenza
in the elderly (59) and seasonal trivalent vaccines formulated
with this adjuvant are now available for those >65 years old
(FluAd, Sequiris).

In addition to MF59, other adjuvants licensed for use with
inactivated or sub-unit-based influenza vaccines include Alum-
containing formulations (AlPO4 or Al[OH]3) and oil-in-water
emulsions, AS03 (GSK) and AF03 (Sanofi Pasteur). The benefits
of using these adjuvants to increase seroprotective antibody
titres are widely reported in a number of clinical studies,
including in individuals who are most susceptible to influenza-
related illness. Compared to non-adjuvanted vaccine responses,
formulation of mono- and multi-valent influenza vaccines with
MF59 induces substantially higher HAI titres and seroconversion
rates in children (60–63) with similar improvements observed
in the young and elderly using AS03 (64). These formulations
are generally well-tolerated and safe, however, incidences of
narcolepsy associated with the use of an AS03-adjuvanted
A/H1N1pdm2009 vaccine (Pandemrix) limits the use of this
adjuvant in the young. Nevertheless, both MF59 and AS03 have
been shown to accelerate the induction of vaccine-mediated
responses as demonstrated by the use of adjuvanted vaccines
in healthy adults (65, 66), children (67) and in the elderly
(68), wherein a single vaccination dose is sufficient to induce
seroprotective levels of antibody within as little as 3 weeks. In this
regard, these adjuvants, along with AF03 or Alum, provide dose-
sparing capabilities for mass vaccination of the wider population;
similar levels of protection attained with unadjuvanted vaccines
can be achieved with using substantially smaller amounts of HA
antigen or less vaccination doses when formulated with adjuvant
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(69–72). Several studies have also demonstrated the ability of
MF59 to induce cross-reactive antibodies against non-vaccine
matched strains in prime-boost regimens. Priming of subjects
with a clade 0 H5N3 vaccine formulated withMF59 followed by a
boost with a clade 1 H5N1 vaccine containing the same adjuvant
results in high titres of cross-neutralizing antibody against H5N1
clade 0, 1 and 2 viruses (73–75). These results thus highlight
the role that adjuvants can play in generating and broadening
the cross-specificity of naïve and pre-existing B cell memory, the
possible underlying mechanisms of which are discussed further
in subsequent sections below.

Influenza vaccines designed to target Abs toward the
conserved epitopes in the HA stem are also under intense study.
While heterosubtypic protection with group 1 HA stem vaccines
(i.e., H1 and H5 viruses) lacking the highly variable HA head
has been demonstrated in animal models (76), studies on group
2 HA stem vaccines (i.e., H3 and H7 viruses) are more limited.
Although promising results are observed when immunizing mice
with conserved HA stem epitopes from the H3 subtype, by
way of cross-clade neutralizing activity (77, 78), immunogenicity
and protection are not maintained when using larger animal
models like ferrets (78). Therefore, further studies are needed to
develop a human B cell-based universal influenza vaccine, with
consideration into the potential for influenza viruses to escape
from HA-stem targeted Abs (79).

Dissecting the B Cell Response
Activation of naïve B cells can elicit short-lived ASCs (also
called plasmablasts), long-lived antibody-secreting plasma cells
(LLPCs), and memory B cells. The fate of B cells is considered to
be highly orchestrated, depending on the mode of stimulation,
the affinity of their B cell receptors (BCR, or surface Ig) for
antigen and their location (80–82). In the periphery, within
secondary lymphoid organs (SLO), naïve B cells are activated
by BCR/Ag binding and, depending on whether T cell help
is provided, they will continue the response in a T cell-
dependent (TD) or T cell-independent (TI) manner. B cell
memory resulting from a TI response expresses and produces
IgM capable of engaging at broadly low affinity with antigens
via multivalent BCR engagement, plus toll-like receptor (TLR),
and/or complement engagement (83). In TD responses, B and T
cell interaction occurs when antigen is captured through the BCR
of specific naïve B cells and presented via cell-surface MHC-II
glycoproteins to CD4+ helper T cells specific for peptides from
the same antigen (84, 85). All B cells activated in this manner
either move into lymph node follicles and generate germinal
centers (GCs) or differentiate into extrafollicular plasmablasts
(86, 87). Through this array of processes, different classes of
memory B cells are generated, which can be distinguished by their
passage through the GC, location and Ig isotype (81).

In the GC, B cells undergo intense proliferation and
broaden their BCR diversity through somatic hypermutation,
a process whereby point mutations, insertions, and deletions
are introduced within Ig V gene hotspots to generate a broad
array of B cell clones with a broad spectrum of affinities for
the immunizing Ag (88). This process results in the generation
of memory B cells with high-affinity surface Igs and surface

Ig+/− plasma cells that maintain serum immunoglobulin levels
against the foreign invader. The GC is also the site where a
large proportion of BCR-defined clones undergo class switch
recombination (CSR), exchanging the Ig isotypes originally
expressed (IgM and IgD) for IgG, IgA, or IgE (88–90). The
sequential generation of long-lived memory B cells in the GC
starts from unswitched memory B cells, followed by class-
switched memory B cells and, finally, by LLPC that travel to the
bonemarrow and other sites (91). The later each B cell population
appears, the higher its affinity for Ag (92). Hence, B cells with
lower affinity BCRs have a greater propensity to enter, and persist
in, the memory pool. Intriguingly, such memory-directed B
cells show enhanced Bach2 transcription factor expression when
compared to their counterparts with higher BCR affinity, and
Bach2 expression inversely correlates with the strength of the
B-T follicular helper (Tfh) cell interaction. This suggests that B
cells with lower affinity receive weaker T cell help and express
higher levels of Bach2, which is clearly a key factor in memory
B cell fate determination (92). In addition, expression levels of
Blimp-1, the key regulator of plasma cell differentiation and CSR,
are regulated by Bach2. Higher Bach2 levels decrease Blimp-1,
promoting B cell differentiation toward an unswitched memory
fate. The aryl hydrocarbon receptor (AhR), a ligand-induced
nuclear transcription factor, is highly induced in B cells upon
BCR engagement. AhR promotes Bach2 expression, which in
turn suppresses Blimp-1 and therefore the B-Tfh cell interaction
becomes weaker and B cell CSR and differentiation into plasma
cells are suppressed (93), indicating that it may be a potential
target in promoting the generation of low-affinity IgM+ B cell
memory upon vaccination. This is of particular relevance for
the design of the next generation influenza vaccines since, as
discussed below, as there is an increasing body of evidence
suggesting that low-affinity IgM+ memory B cells capable of
identifying a broad range of epitopes should be targeted by
influenza vaccination.

Heterogenous Memory B Cell Phenotypes Have

Different Roles in Secondary Responses
The various modes of TD and TI B cell activation generate
memory B cells with varying isotypes and affinities (summarized
in Figure 1), some bearing highly mutated Igs generated via
the GC reaction and others maintaining germline, less specific
and more cross-reactive Abs (52, 81, 94). While it is generally
accepted that memory B cells show an enhanced capacity for
terminal differentiation into ASC, regardless of phenotype and
affinity, there is less consensus regarding their propensity to (re)-
enter GC reactions. Contrary to early thinking, it is now generally
accepted that both IgG+ and IgM+ memory B cells can re-enter
GC reactions, albeit they are more predisposed to differentiate
into ASC during recall responses (52, 95–97). Similarly, whether
or not GCs form during recall responses together with the
character of the memory B cell subsets that participate may
depend on the type and amount of antigen, inflammatory signals
and the availability and quality of cognate Tfh cells (98). There
is evidence that unswitched memory B cells bearing germline
BCRs have a greater propensity to enter the GC reaction (99).
In particular, IgM+ cells with the least mutated V genes were
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FIGURE 1 | Pathways to B cell memory. Naïve B cells become activated by direct recognition of antigens expressed on the surface of the pathogen. Top panel:

Follicular (FO) naïve B cells become activated within the lymph node through a T cell-dependent pathway. CD4+ T cells become activated by recognizing viral

peptides processed by FO dendritic cells and presented on their surface by MHC-II molecules. After becoming activated, both CD4+ T cells and B cells, travel to the

T-B border in the lymph node, where they interact. Three outcomes can follow this interaction. (i) A germinal center (GC) is formed, CD4+ T cells polarize into T

follicular helper (Tfh) cells and FO B cells differentiate into GC B cells. In the GC, B cells undergo rapid proliferation and somatic hypermutation of the Ig V regions in

their B cell receptors (BCR), due to their interaction with Tfh cells through CD40-CD40L, PD1-PD-L1/L2, ICOS-ICOSL among others and the secretion of cytokines

such as IL-4 and IL-21, affinity maturation takes place and those B cells that increase affinity toward their Ag are selected. Some of these B cells will also class-switch.

These interactions result in the generation of IgM+ memory B cells (BMEM), IgG+/A+/E+ BMEM or IgG/A/E secreting long-lived plasma cells (LLPC) in this order in

time. The later these cells are generated, the higher affinity and lesser cross-reactivity they have toward the antigen or antigen variants, respectively. (ii) Not all B cells

enter the GC after interacting with their cognate activated CD4+ T cells in the T-B border, IgM+ BMEM and IgM secreting LLPCs are also generated outside of the GC,

in a GC-independent (GCi) manner. (iii) Short-lived antibody secreting cells (ASC) are generated early after activation to generate a rapid response against the

pathogen. These short-lived ASC will undergo apoptosis and do not contribute to the generation of B cell memory. Bottom panel: Some protein antigens provide

highly repetitive antigenic structures, which induce strong BCR crosslinking. Viral single-stranded RNA (ssRNA) together with other danger signals also activate toll-like

receptors such as TLR7. These strong signals are enough to activate B cells in a T cell-independent (TI) manner and generate short-lived IgM secreting ASC and

IgM+ BMEM. B1b and marginal zone (MZ) B cells are activated in a TI manner and provide a faster response against the pathogen.

more prominent within GCs during the recall response to a
variant viral protein antigen rather than to the original inducing
antigen when sequentially immunizingmice with variant Dengue
envelope proteins with 63% amino acid identity (100). However,
when using HAs from more closely related influenza viruses,
with ∼82% sequence identity, the GC response was dominated
by highly mutated memory B cells, which led to a worsened
antibody response as compared to the primary encounters, even
in the presence of an adjuvant (101). In the elderly, a poor
adaptive capacity of B cells toward the drifted influenza epitopes
has also been demonstrated. This resulted in the expansion
of B cell memory targeting mostly conserved but less potent
epitopes (102). In contrast, memory B cell expansion after H3N2
infection reflected imprinting toward strains encountered early

in life but also adaptation to the infecting virus (103). These
studies suggest that a certain degree of an antigenic difference
is needed to induce a protective secondary antibody response
by stimulating broadly cross-reactive low-affinity IgM+ memory
B cells. High-dose and adjuvanted vaccines may improve VE
when influenza vaccines strains are antigenically-different. The
propensity for IgM+ memory B cells to dominate recall GC
responses may be further determined by pre-existing antibodies
that may outcompete the BCRs from low affinity naïve and IgM+

memory B cells, but not high affinity IgG+ memory B cells, for
antigen (52, 96, 104).

In consideration of the potential for influenza Ab responses
to become focused on epitopes present in successive vaccine
strains to the detriment of recognizing future variants, it seems
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appropriate to think in terms of future vaccines that maintain
plasticity and heterogeneity within the B cell response. For
example, vaccination strategies that recall IgM+ memory B
cells with less-mutated BCR repertoires, while also inducing
naïve populations together with cognate Tfh cell memory to
facilitate memory GC formation (98), may tend to skew the
overall response toward the generation of more cross-reactive
Abs against variant epitopes.

T Cell-Independent B Cell Responses Against

Influenza
In contrast to TD Ags, which are generally proteins that
cannot induce cross-linking of multiple BCRs, TI Ags are
generally multivalent polysaccharides or other molecules that
contain a repetitive array of antigenic epitopes that have that
BCR-polymerization propensity. This paradigm is, however,
challenged by the finding that high doses of a monomeric protein
Ag can also elicit an exclusive TI B cell response (105, 106). In
mouse experiments, both TD and TI B cells give rise to short-
lived plasma cells and memory B cells (107–109) and contribute
not only to resolving primary influenza virus infection, but also
to more effective control of virus replication and symptoms after
secondary challenge (110). The recall capacity of TI memory B
cells is largely a result of Ag driven clonal expansion, however,
like other memory B cells, TI memory B cells are able to respond
more readily to Ag than their naïve counterparts.

The capacity of inactivated whole (vs. split) virion vaccines
to induce superior influenza virus-specific antibody responses
(111–113) may in part be due to the greater induction of TI
B cell responses (114). Notably, when TI B cell responses were
induced Ab affinity and neutralizing activity was enhanced. The
ability of inactivated whole virions to induce TI B cell responses
is linked to the presence of single-stranded RNAs that activate
B cells via a TLR7-dependent mechanism (114), hence TLR7/8
agonists should be considered as potential adjuvants for seasonal
influenza vaccines.

Importance of Location for Influenza-Specific

Memory B Cells
Unlike LLPCs, memory B cells persist as tissue-resident or
circulating among the SLO (115). Memory B cells resulting
from a local infection also localize in the affected organs.
This occurs following influenza virus infection when influenza-
specific memory B cells can be found, not only in lymphoid
organs, but also in the lungs. Moreover, memory B cells
are also differentially distributed among the lymphoid tissues,
indicating that trafficking is influenced by local tissue factors
(116, 117). After influenza re-exposure, lung-resident memory
B cells differentiate into plasmablasts, providing IgG and IgA
in situ that quickly neutralizes the virus (117, 118). In general,
IgA+ memory B cells seem to localize preferentially to the blood
and to tissue sites of pathology, while IgG+ memory B cells
are broadly distributed among tissues that may, or may not, be
directly involved in the disease process (116, 117). B cell memory
and secreted IgA located in the lungs are essential to provide
a quick and effective response against influenza viruses upon
exposure, yet current influenza vaccines fail to strongly boost

IgA responses (119). Antigen reaching the mucosa of the lung is
required to potentially induce stronger IgA responses and for the
generation of lung-resident memory B cells, which establish early
after infection. The varied location of memory B cells according
to their isotype, together with the fact that different environments
drive B cell class-switching to a specific isotype, are of particular
interest for vaccine design, particularly where (as in influenza)
mucosal surfaces are the primary site of infection.

T Follicular Helper Cell Memory: Recent Advances in

Influenza Vaccination
When the GC contracts, the GC Tfh cells exit and develop into
resting memory Tfh cells with a less polarized Tfh phenotype
(120–125). Tfh cells with a resting memory phenotype both
recirculate in blood and can be found in BM, spleen, and
lymph nodes (126–128). Circulating Tfh (cTfh) cells are the most
accessible subset in humans. Of increasing research interest, cTfh
cells are heterogeneous and can be classified into different subsets
based on surface marker expression. Resting cTfh cells express
CCR7, which differentiates them from their GC counterparts.
When cTfh cells become stimulated, they downregulate CCR7
to traffic to the GC (129). Three different subsets of cTfh
cells can be distinguished according to the surface expression
of the chemokine receptors CXCR3 and CCR6, which are
involved in inflammatory-homing and epithelial and mucosal
site-homing, respectively (130, 131). The Tfh1 cells are CXCR3+

CCR6−, express the T-bet transcription factor and secrete the
Th1 cytokine IFNγ. Conversely, the CXCR3−CCR6− Tfh2 set
expresses the transcription factor GATA3 and produces the
Th2 cytokines IL-4, IL-5, and IL-13. Then the Tfh17 cells
CXCR3−CCR6+ cells express the transcription factor RORγT
and secrete the Th17 cytokines IL-17A and IL-22 (132).

An overall consensus on the functional implications of the
different Tfh subsets regarding B cell help is yet to emerge. While
the Tfh1 cells are thought not to be efficient B cell helpers,
the opposite is true for the Tfh2 and Tfh17 populations (132,
133). However, human studies on the cTfh response following
influenza vaccination demonstrate an increase of circulating,
activated cTfh1 cells peaking on day 7 after vaccination that
positively correlates with the generation of protective Ab
responses and the presence of ASCs in blood (115, 134). In the
context of influenza immunization, when culturing human cTfh1
cells isolated at day 7 after priming with either naïve or memory
B cells, the cTfh1 cells stimulate memory B cell differentiation
into plasmablasts, while naïve B cells remain resting. Yet, naïve
B cells cultured with Tfh2 and Tfh17 cells can differentiate into
plasmablasts (134). Because Tfh cells are essential to induce a
proper B cell response and we speculate that naïve B cells are
not being sufficiently stimulated due to epitope masking by
pre-existing Abs and memory B cells, it could be possible that
mainly Tfh1 cells are stimulated after influenza vaccination at the
expense of Tfh2 and Tfh17.

Anti-viral CD8+ T Cell Responses
Seasonal influenza vaccines are designed to elicit an Ab response.
However, the natural influenza virus infection additionally elicits
cellular immunity (CD8+ T cells, CD4+ T cells, MAIT cells,
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NK cells) to eliminate the infection. Because influenza viruses
are under constant selective pressure, the long-term protective
value of any vaccine that targets a specific HA and/or NA will
inevitably be compromised with time, immune CD8+ T cells
are critical for recovery and provide some protection against
severe influenza disease, including that resulting from infection
with a previously unencountered avian strain. This likely reflects
that influenza-specific CD8+ T cells tend to recognize HLA-
bound peptides derived from more conserved, internal virus
proteins. The question is whether vaccines that promote such
CD8+ T cell memory can, when combined with the classical
products that induce virus-specific Ig response, provide better
protection against, in particular, a newly invasive pandemic
strain. An overview comparison between B and T cell responses
after influenza virus drift and shift and how they complement
each other is shown in Table 1.

Adaptive T cell immunity is mediated primarily by T cells,
expressing the CD4 or CD8 co-receptors, respectively. During
influenza virus infection, viral proteins are degraded by the
proteasome and processed into smaller peptide fragments. These
fragments are bound to MHC molecules and carried to the
cell surface for presentation. These peptide/MHC complexes
(pMHC) are recognized by clonally expressed TCRs on CD4+

or CD8+ T cells, leading to their activation and recruitment
into the virus-specific immune response. The CD8+ cytotoxic
T lymphocytes act as sentinels, recognizing and killing virus-
infected targets, an essential step for virus clearance. Following
activation, CD8+ T cells also secrete anti-viral cytokines
(especially IL-2, IFN-γ, and TNF-α) which further recruit innate
and adaptive immune cells into sites of influenza virus-induced
pathology and induce anti-viral responses in infected cells (141,
142). When it comes to CTL killing, the secretion of perforin,
granzymes and FAS ligand can all be involved in the process
of inducing the apoptosis of virus-infected cells (143, 144).
Additionally, the expression of TRAIL on CTLs can lead to the
elimination of influenza virus infected cells, with a resultant
decrease in mortality (145).

T Cell Fate: to Die or Become Memory
Formation of memory CD8+ T cells is essential for the protection
against re-encountered pathogens. Our understanding of key
factors determining the fate of CD8+ T cells during influenza
is still limited but crucial for the development of a CD8+ T
cell activating vaccine. During differentiation from naïve to
effector, to memory status, CD8+ T cells transiently express cell
surface molecules that are considered to be predictive of cellular
fate and function. Surface expression of IL-7R and KLGR1 on
effector CD8+ T cells can, at least in some situations, differentiate
between CD8+ T cells designated as memory precursor effector
cells and short-lived effector cells (146). Compared to the IL-
7RloKLGR1hi set, CD8+ T cells expressing high levels of IL-
7R and low levels of KLGR1 are 10-fold more likely to survive
(147) in mice infected with lymphocytic choriomeningitis virus
(LCMV). However, it should be noted that these profiles may not
be exclusive, as KLRG1+ CD8+ T cells are detectable after LCMV
infection is cleared (148), and the survival value associated with
the IL-7RhiKLGR1lo set for LCMV is less obvious for influenza

virus infection (149). Additionally, the discovery of other early
markers ofmemory formation during Listeria monocytogenes and
vesicular stomatitis virus infection, including expression of ID3
transcription factor (150) and IL-2Rα cytokine receptor, showed
that CD8+ T cell memory generation is certainly multi-factorial
(151, 152). Identifying markers of successful memory formation
is crucial for evaluation of novel influenza vaccine responses
and should be considered in future influenza vaccine studies.
More recently, high-throughput sequencing is facilitating the
emergence of a broader picture for CD8+ T cell differentiation.
Single-cell RNAseq of CD8+ T cells at the acute phase of LCMV
infection indicates that there may be two distinct populations
of antigen-induced CD8+ T cells that share genes either with
“terminal effector” or “memory” cells (153). Compared to naïve
CD8+ T cells, the “terminal effector-like” set can be shown
to have upregulated more than 900 different genes, while the
“memory-like” cells only upregulated 27 genes (153). This
suggests that the differentiation of “terminal effector” CD8+ T
cells mandates the upregulation of hundreds of genes involved in
both clonal expansion and themediation of a spectrum of effector
functions, while the establishment of CD8+ T cell memory
requires only the involvement of a few key genes to maintain
lymphocyte quiescence. Although the exact factors mediating
distinct CD8+ T cell fates during early division following viral
infection are still in the process of elucidation, experiments
with TCR-transgenic mouse models indicate that TCR signaling
strength (154), as reflected in IL-2R, IFN-γR, and mTOR levels
during mitosis and asymmetrical division (155–157) is key to
the generation of anti-viral CD8+ T cell memory. This is an
exciting area of research that should, as it unfolds, give a much
better understanding of both the molecular basis of CTLmemory
formation, and provide key measurement parameters that will
allow us to skew early vaccine responses so that they provide
optimal memory that gives long-lasting protection when recalled
by further pathogen challenge.

Importance of Generating Long-Term T Cell Memory
As mentioned above, memory CD8+ T cells are important
for eliciting long-term, broadly cross-reactive immunity to
influenza viruses, and are thought to mediate the protective
function mainly via the killing of virus-infected targets
(158). Virus-specific CD8+ effector T cells also produce
proinflammatory cytokines, and the breadth of cytokine
production (termed polyfunctionality) often correlates with
efficient protection against pathogens, including influenza
viruses (159). Polyfunctional memory CD8+ T cells (producing
IFN-γ, TNF, IL-2, and MIP-1β) (160) are thought to operate
via augmented cytolytic activity via dual IFN-γ/TNF expression
(161), IL-2-mediated enhancement of CD8+ T cell memory
function (162) and increased IFN-γ secretion on a per cell
basis (163). One example of the protective capacity of these
polyfunctional memory CD8+ T cells is the induction of long-
lasting memory CD8+ T cells against variola (smallpox) virus
induced by the Vaccinia vaccine Ankara (164). When CD8+

T cells were primed with influenza virus nucleoprotein (NP)
expressed by either a recombinant Vaccinia virus or in Listeria
monocytogenes, the more polyfunctional NP-specific CD8+ T
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TABLE 1 | The clinical outcome and the B and T cell memory responses after exposure to influenza viruses are summarized below.

Influenza antigenic site change

Antigenic drift

Genetic changes in Ag sites alter Ab binding

Antigenic shift

None Minimal Major Exchange of surface

Glycoproteins

Clinical outcome Little to no symptoms Unpredictable (135) Dependent of CD8+ T

cell response

• Limited by HLA alleles

(136, 197)

• Prior exposure to

influenza (137–139) T cell

memory pool and quality

of T cell response

(137–139)

⇒ Severe to fatal

outcome with prolonged

hospitalizations (137)

B cell response Robust memory B cell response and

protective Ab production (135)

Dominated by memory B cells against

preserved antigenic sites, yielding a

protective but focused Ab response

that may not protect against future

drift.

Cross-reactive memory B cells

produce an early unadapted Ab

response to limit virus replication

and symptoms, and enter GC

reactions to generate updated

memory and PCs

If enough Ag available, naïve B

cells react and generate updated

B cell memory

Very limited (if any) protection

by memory B cells (31, 140)

Response driven by naïve B

cells

CD8+ T cell response Cross-reactive

Not responsive if B cells neutralize the virus

Cross-reactive but not

neutralizing immunity

Host-specific differences

cells were generated following Vaccinia virus exposure. Mice
vaccinated with the Vaccinia virus showed also a greater level
of protection against a normally lethal IAV challenge compared
to the Listeria monocytogenes vaccine group counterparts (165).
This indicates, that not only the quantity of memory CD8+ T
cells is critical for the protection but also their quality. Insights
into key factors inducing these polyfunctional CD8+ T cells could
improve a T cell-based vaccine therefore vastly.

Memory CD8+ T cells can be divided conceptually into
central and effector T cell memory sets, based on their expression
profiles for the CD62L and CCR7 surface proteins (166) that
are known to affect cell localization and function (167). The
CD62LhiCCR7hi “central memory” CD8+ T cells (TCM) can
be found in the spleen, blood and lymph nodes, and display
superior functions compared to their CD62LloCCR7lo effector
memory CD8+ T cell (TEM) counterparts, mainly in terms of
their proliferative capacity and IL-2 production profiles (168). In
addition, a highly specialized population of tissue-resident (TRM)
memory CD8+ T cells expressing CD103+CD69+ can persist in
sites of pathology subsequent to virus clearance (169). Following
the secondary challenge, CD103+CD69+ TRM set is able to
expand and secrete cytokines, including IFN-γ and TNF, as well
as generate more polyfunctional progeny (69% of cells capable
of secreting three cytokines), when compared to CD103−CD69+

(21%) and CD103−CD69− (16%) parent subsets (160, 169).
In the context of influenza, persistence of influenza-specific

CD8+ TRMs correlates strongly with protection when mice are
challenged with a serologically distinct IAV that shares common
internal proteins (170). The TRM population develops from
precursors lacking KLRG1 (171, 172) and further studies on T
cell receptor (TCR) repertoires suggest that they arise from the
same naïve pool as TCM set (173). TRM generation is largely
regulated by a series of transcription factors (174), such as Runx3
which is crucial for TRM establishment across a range of tissues
(175), and Bach2 which is recognized to restrain the terminal
differentiation of effector T cells and help with formation of long-
term memory T cells (176). The differentiated TRM phenotype
is associated with changes in key transcription factors, including
downregulation of Kruppel-like factor 2 (KLF2), TCF1 (177),
T-bet, and Eomes (178, 179) as well as upregulation of Hobit,
Blimp1 (177) and AhR (180), Nur77 (181), and Notch (182),
required for the maintenance of TRMs. While the previously
named transcription factors are universal hallmarks of TRM

formation, TRM heterogeneity among cells generated at different
tissue sites suggest that microenvironmental cues are important
for site-specific TRM differentiation. Indeed, generation of the
lung TRM set is influenced by transforming growth factor β

(TGF-β) along with the presence of IFN-γ-secreting CD4+ T
cells following influenza virus infection (183, 184). While the
generation of influenza-specific TRMs has recently been shown to
be vital for robust protection, unlike TRMs generated within the
skin or gut (185–187), lung-resident TRMs do not offer long-term
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protection, rather they require a constant supply of circulating
TEMs cells to replenish the niche over time (188) (summarized
in Figure 2). In humans, influenza-specific lung-resident TRM

cells show a high degree of TCR-sharing with other influenza-
specific lung TEM cells, suggesting that both memory cell subsets
originate from the same precursors (160). Our understanding
of the protective role of memory CD8+ T cells in influenza
virus infection also comes from experiments with a C57BL/6
mouse model lacking antibodies, where increased numbers of
influenza-specific memory CD8+ T cells and TRM cells led to
markedly reduced influenza-induced morbidity (189). Similarly,
primary vaccination with a single-cycle, non-replicative H3N2
IAV induced CD8+ T cells capable of protecting against a
heterologous (H1N1) lethal challenge (190), an effect that was
diminished for mice that had been depleted of CD8+ T cells
after vaccination. These studies highlight the potential of long-
term memory CD8+ T cells protecting against severe influenza
virus infections. A potential that is not harnessed in the current
vaccine strategy.

CD8+ T Cells Recognize Highly Conserved

Influenza Epitopes
CD8+ T cells can confer broad cross-protection across different
seasonal, pandemic and avian influenza IAV strains due to their
ability to recognize relatively conserved viral peptides derived
from internal influenza components (NP, M1 and PB1, PB2).

The best defined human CD8+ T cell influenza epitope is the
immunodominant M158−66 peptide bound to the HLA-A∗02:01
molecule (191–193). This peptide is highly conserved within
different influenza A subtypes spanning 100+ years (136),
including the 1918 and 2009 pandemic H1N1 strains as well
as highly pathogenic H5N1 avian viruses (194). Analysis of
immunogenic peptide profiles for the avian H7N9 influenza
virus established that it shared six universal CD8+ T cell epitopes
conserved at ∼100% prevalence in human influenza A viruses
circulating since the catastrophic Spanish 1918 influenza. These
universal human influenza-specific CD8+ T cells epitopes
include HLA-A∗02:01/M158−66, HLA-A∗03:01/NP265−273,
HLA-B∗08:01/NP225−233, HLA-B∗18:01/NP219−226, HLA-
B∗27:05/NP383−391 (although mutants were found in some
H3N2 strains) and HLA-B∗57:01/NP199−207 (136). The
population coverage by the universal HLAs varies greatly
across ethnicities. Fifty-six percent of Caucasians displaying
at least one universal HLA, while such coverage reached only
16% in the Alaskan and Australian Indigenous populations
(136), highlighting the vulnerability of Indigenous populations
toward newly-emerged influenza viruses. Additionally, our
recent studies found broadly cross-reactive CD8+ T cell
responses directed toward the HLA-B37-restricted NP338
epitope across IAVs (195), and excitingly, for the HLA-
A∗02:01-restricted PB1-derived epitope across influenza A, B
and C viruses (196). The latter introduces a new paradigm

FIGURE 2 | CD8+ T cell memory formation. Naïve CD8+ T cells become activated by recognition of viral peptides presented in the context of MHC-I molecules on

the surface of virally-infected APCs. Activated CD8+ T cells divide and differentiate into effector CD8+ T cells, which kill virus-infected cells and secrete cytokines to

induce an anti-viral milieu. After viral clearance, mainly KLRG1lo, ID3+, IL2Rα+, and CD62Lhi CD8+ T cells develop into CD8+ memory T cells, while the remaining

∼90–95% of CD8+ T cells undergo apoptosis. Memory formation can be augmented by innate-like T cells (iNKT and MAIT cells). Memory CD8+ T cells are divided

based on surface marker expression, known to impact their localization. While TCM and TEM can be found in blood and tissues, TRM reside at the site of infection

where they can rapidly respond towards a secondary infection. TCM can be also found in lymph nodes and display higher proliferative capacity and IL-2 production

compared to their TEM counterparts.
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whereby CD8+ T cells can potentially confer a measure of
previously unrecognized cross-reactivity across all human
influenza A, B and C viruses, a key finding for the design of
universal vaccines.

Influenza-induced morbidity and mortality can correlate with
the expression of certainHLAs, includingHLA-A∗24:02, A∗68:01
or B∗39:01 alleles, as shown during the 2009 H1N1 pandemic
(197). Analysis of peptide scores demonstrated that HLA-
A∗24:02 is more likely to bind variable (rather than conserved)
viral regions (197). Similarly, we have previously shown that
some HLA alleles, including HLA-A∗24:02 and A∗68:01, are
less able to elicit robust immune responses toward the highly
conserved NP and M1 peptides (136). Both HLA-A∗24:02
and A∗68:01, in particular, are found at higher frequencies
for Indigenous populations world-wide (136, 197), which may
explain the disproportionate impact of pandemic influenza
viruses on Indigenous peoples during both (otherwise mild)
2009 pH1N1 pandemic and 1918–1919 (H1N1) Spanish “flu
catastrophe” (198–202).

Thus, given the broad potential for cross-protective capacity
mediated by CD8+ T cells, along with more recent evidence
that this effect may indeed be operating in nature to protect
people, this aspect of immunity is of considerable interest in
terms of developing improved influenza vaccines. However,
it is important to note that designing peptide-based T cell
vaccines that only cover the major HLA types would clearly
be disadvantageous for Indigenous populations globally (203).
Further research on CD8+ T cell epitopes found in high risk
populations is therefore of highest importance to protect people
of highest vulnerability.

CD8+ T Cells Can Confer Broad Cross-Protection for

Heterologous IAV Strains
In the context of newly emerging influenza virus infections in
people, correlative studies suggest that established CD8+ T cell
memory confers cross-reactive immunity against severe influenza
disease, as observed during the 2009 pandemic H1N1 (pH1N1)
outbreak (139, 204). The high (∼70%) conservation of CD8+

and CD4+ T cell epitopes contributing to pre-existing memory
may have been a significant factor in the generally mild outcomes
of the 2009 H1N1 pandemic (138). Sridhar et al. showed that
individuals with higher numbers of CD8+ T cells recognizing
conserved influenza epitopes fared better following natural
infection with the 2009 H1N1 virus (139). The importance of
CD8+ T cell-mediated immunity was further highlighted in
2013 following the emergence of the novel avian H7N9 strain
(205, 206), which killed ∼40% of the infected patients. In
H7N9-infected individuals, rapid recovery from hospitalization
was associated with the presence of significantly more IFN-γ-
secreting CD8+ T cells when compared to the situation for those
who died (207) and recovered (206).

Development of CTL-Based Vaccines
Lessons Learned From the Yellow Fever Vaccine
While the initial experience of IAV infection generally occurs
in the first 6 years of life (208), our understanding of both the
primary IAV-specific CD8+ CTL response and the transition

to influenza-specific T cell memory is very limited for humans.
Though one paper by Mbawuike et al. reported on primary
infection in infants as early as 6 to 13 months of age (209), studies
of such influenza exposures in infants are rare, and have not
been performed using contemporary approaches for the analysis
of T cell-mediated immunity. The closest we have for humans
of any age when it comes to the formation of memory CD8+

T cells following first virus encounter is for the live-attenuated
17D yellow fever (YF) vaccine. As might be expected from a
plethora of mouse experiments, recent YF vaccination studies
showed that deuterium-labeled, epitope-specific CD8+ CTLs
expanded initially following vaccination, before undergoing a
contraction phase characteristic of CD8+ T cell memory. These
vaccine-induced YF-specific memory CD8+ T cells persisted in
the blood for at least 2 years after YF vaccination, with an
average deuterium half-life decay rate of 493 days (210). A similar
YF vaccination study in mice demonstrated that, after initial
contraction, the long-lived CD8+ T cell memory pool remained
consistent in size (211), indicating a potential advantage of a
CD8+ T cell that would need fewer revaccinations compared to
the annual recommendation necessary for the seasonal influenza
vaccine. Unfortunately for influenza vaccination, the current IIV
used in humans does not induce any CD8+ T cell responses that
can be targeted for such a longevity analysis (115).

Vaccination Approaches to Induce Memory CD8+ T

Cells
Different influenza vaccination approaches are currently being
investigated in order to induce long-lasting cross-protective
immunity. The only licensed vaccines capable of inducing CD8+

T cell immunity, such as the YF vaccine, use live-attenuated
pathogens. These are not recommended for influenza “high-risk”
groups such as pregnant women, immunosuppressed individuals
and the elderly. Therefore, new vaccination strategies need to be
developed if we are to protect such vulnerable people. Vogt et al.
showed that changing the route of vaccine administration of a
quadrivalent inactivated influenza vaccine from intramuscular
(i.m.) to transcutaneous induces the expansion of vaccine
component-reactive CD8+ T cells. Interestingly, the vaccine
was also able to induce M158−66-specific responses in a HLA-
A∗02:01-positive donor, although this was only observed in one
individual (212). Another approach currently in development is
the Flu-v CD8+ T cell-activating vaccine (213) containing four
21–35 amino acid-long peptides from internal influenza proteins,
which can potentially bind to multiple HLA allelic forms,
including the highly prominent HLA-A∗02:01. This approach
was protective for HLA-A2 transgenic mice and was also capable
of inducing IFN-γ-expressing CD8+ T cells across all the
participants (n = 15) in a phase 1b vaccine trial (213, 214). The
Flu-v product showed that the vaccine reduces both the viral titer
and the symptom score after H3N2 virus challenge in humans
(215). However, due to the unknown HLA-restriction of the
immunogenic epitopes, the HLA coverage of this vaccine is still
to be determined. To circumvent the need for prior knowledge of
HLA-restricted epitopes to be included in a universal T cell-based
vaccine, particularly for less common HLA allelic variants, full-
length influenza proteins have been expressed in Vaccinia virus
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Ankara vaccine vectors. Berthoud et al. showed that a viral vector
encoding for the two internal proteins NP and M1 could induce
some CD8+ T cell responses (216).

Overall, development of an effective, long-lasting, cross-
reactive influenza vaccine relies on an individuals’ capacity to
generate polyfunctional lung-resident CD8+ T cells. However,
difficulties in identifying cross-reactive epitopes caused a
bottleneck in the development of a universal influenza vaccine.
Due to the propensity of IAV to trigger severe outbreaks
with pandemic potential, murine models have thus far been
developed to test the effectiveness of IAV vaccines based on
conserved internal proteins (217–219). While mice immunized
with these vaccines can elicit protective CD8+ T cell responses,
the molecular mechanisms which govern formation of protective
memory responses still require further validation in mice, and
ultimately in humans.

Innate and Bystander T Cell Activation
During Influenza Virus Infection
In addition to the activation and proliferation of CD8+ T cells
in a peptide-MHC dependent manner, T cells can also become
activated via antigen-independent mechanisms, resulting in
proliferation of polyclonal T cells (220). In an influenza mouse
model, adoptive transfer of TCR-transgenic OT-I CD8+ T
cells, which recognizes the ovalbumin peptide, into influenza-
infected mice, showed that these OT-I cells can non-specifically
expand in the lungs of influenza-infected mice. This suggests
that CD8+ T cells can become activated independently of their
TCRs during primary influenza virus infection (221). Similarly,
highly activated CD38+HLA-DR+ CD8+ T cells, numerically
greatly exceeding influenza-specific CD8+ T cell pools, were
found in patients hospitalized with severe H7N9 disease (137),
suggesting bystander activation of at least some CD38+HLA-
DR+ CD8+ T cells. Despite the evidence that bystander CD8+

T cell activation occurs during influenza virus infection, the
importance of these cells in terms of viral clearance and the
induction of long-term memory is poorly understood. To date,
the most solid evidence for the role of bystander activation
has been observed in innate-like T cells. These cells, unlike
conventional CD8+ T cells, recognize non-peptide antigens
presented by orthologous MHC I-like molecules. They rapidly
secrete cytokines following activation and can mediate some
level of protection before adaptive immunity is sufficiently
advanced (222). Recently, we demonstrated that mucosal-
associated invariant T (MAIT) cells become activated during IAV
infections in humans and mice (223, 224). These MAIT cells
recognize riboflavin-derivative antigens produced by microbial
pathogens (225), but can be variously activated by IL-12/IL-18
(224), IL-15, or type I interferons (226). Using a murine model,
we showed that MAIT cells rapidly accumulate and become
activated in the infected lung and contribute to protection
against IAV infection (223). Similarly, invariant Natural Killer
T (iNKT) cells, which recognize lipid antigens presented by
CD1d, can protect against murine IAV (227–229). In addition,
iNKT cells induced by inactivated influenza A virus vaccination
in conjunction with alpha-galactosylceramide, an iNKT cell

antigen, can boost influenza-specific memory CD8+ T cells and
protective immunity in mice (230). The exact contribution of
innate T cells vs. conventional CD8+ T cell-mediated immunity
against influenza viruses is a subject of further investigation.
These new insights help to understand the wider range of
vaccine responses thus offering us opportunities to generate
better strategies to fight against influenza.

CONCLUDING REMARKS

Although current seasonal influenza vaccines can promote
the induction of highly specific, long-term memory B cells
that produce antibodies against the viral HA1 domain, these
antibodies are generally unable to combat newly emerging
influenza viruses, including novel pandemic stains and antibody-
selected “seasonal” variants that have accumulated mutations
in those epitopes surrounding the receptor binding pocket.
Generation of high-affinity neutralizing Abs against conserved
surface epitopes remains a constant challenge to provide long-
lasting and cross-protective B cell memory, and as such, more
work is needed to better understand B cell responses against
natural infection vs. vaccination, in order to design better
B cell- or antibody-based universal vaccines. On the other
hand, an influenza vaccine capable of stimulating CD8+ T cell
responses would generate long-term T cell memory against
conserved epitopes without the need for annual vaccination.
In addition, a role for innate-like T cells in influenza
protection is increasingly emerging, which could potentially
be important both for the development of novel therapeutics
and for boosting (or maintaining) long-term memory. As a
consequence, substantial efforts are being made globally to
exploit both innate and adaptive immune components for the
development of novel influenza vaccines that induce long-
lasting B cell/antibody and/or cross-reactive T cell immune
memory populations.
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The success of vaccines is dependent on the generation and maintenance of

immunological memory. The immune system can remember previously encountered

pathogens, and memory B and T cells are critical in secondary responses to infection.

Studies in mice have helped to understand how different memory B cell populations

are generated following antigen exposure and how affinity for the antigen is determinant

to B cell fate. Additionally, such studies were fundamental in defining memory B cell

niches and how B cells respond following subsequent exposure with the same antigen.

On the other hand, human studies are essential to the development of better, newer

vaccines but sometimes limited by the difficulty to access primary and secondary

lymphoid organs. However, work using human influenza and HIV virus infection and/or

immunization in particular has significantly advanced today’s understanding of memory B

cells. This review will focus on the generation, function, and longevity of B-cell mediated

immunological memory (memory B cells and plasma cells) in response to infection and

vaccination both in mice and in humans.

Keywords: B cell memory, vaccination, mouse vs. human, influenza virus, infection

INTRODUCTION

One of the hallmarks of our immune system is the ability to “remember” past exposure to
pathogens. Such exposure can be from infection or vaccination, and by remembering we are,
ideally, fully protected from infection upon future encounter with the same pathogen (1). Although
humoral immunological memory is mediated in part by serum antibodies secreted by long-lived
plasma cells (LLPCs), these cells are usually not described as memory B cells. Instead, memory B
cells are defined as long-lived and quiescent cells that are poised to quickly respond to antigen upon
recall (2–5).

Both memory B cells and antibody-secreting cells (ASCs) are the product of antigen activation
and, most often, interaction with cognate T helper cells. They can be IgM+ or immunoglobulin
class-switched, and display germline or affinity-matured antigen receptors (B cell receptors; BCRs)
(2, 6–8). Although generation of memory B cells does require ligation of CD40 (9), an early burst
of both memory B cells and ASCs can form independently of GCs, as well as in T-cell independent
responses (10–16). However, T-cell independent memory responses are beyond the scope of this
review and will therefore not be thoroughly discussed here.
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The terminal differentiation of B cells into ASCs is
governed by a gene-regulatory network and modified by
environmental stimuli as reviewed in Nutt et al. (17). ASCs
can be divided into short-lived ASCs, including short-lived
plasma cells and plasmablasts, and LLPCs. Plasmablasts are
considered a transient population and can be either precursors
of plasma cells (short- and/or long-lived; mainly in mice) or
terminally differentiated effector cells activated during ongoing
immune responses (mainly in humans) (18–23). In mice,
within 2–4 d after infection, plasmablasts are found in extra-
follicular zones and differentiate into plasma cells that secrete
large quantities of antibodies. This early humoral response
of lower affinity usually lasts a few days (24). In contrast,
activation and differentiation of B cells within GCs allow
the generation of plasma cells of high affinity that will then
migrate to the bone marrow, where they can survive for
decades and provide long-term humoral protection (25). Such
LLPCs are key to maintaining long-term humoral immunity
after infection or vaccination. They persist in the absence
of antigen for decades after the original exposure (26).
Although they exist in multiple lymphoid organs, the bone
marrow is the home of the majority of plasma cells in mice
(27, 28).

Most of what we know about the generation of plasma cells
and memory B cells comes from mechanistic studies in mice.
Because of massive differences between mice and humans in
terms of life span and cell populations/phenotypes, the biology
of mouse and human B cells differs. It is therefore important to
also look toward in vivo lessons we have learned from humans.

LESSONS FROM MOUSE STUDIES

The Plasma Cell vs. Memory B Cell Fate
Decision
Following antigen activation with a T-dependent antigen, naïve B
cells will interact with cognate T cells at the border between the B-
and T-cell zones in the secondary lymphoid organs (Figure 1a).
Here, the activated B cells will proliferate and make their first
fate decision: whether to differentiate into extrafollicular ASCs
or germinal center (GC)-independent memory B cells, or to
move deeper into the follicle to form a GC (Figure 1b). A
similar choice must then later be made in the light zone (LZ)
of the GC, further discussed below. Although the molecular
mechanisms for this decision have been extensively studied
they have still not been completely elucidated, especially for
memory B cell generation. Several studies have addressed
the possibility of a “master transcription factor” for memory
B cell differentiation, similar to Bcl-6 for GC B cells and
IRF-4/Blimp-1 for plasma cells (29, 30). Although Bach2, or
specifically high expression of Bach2, in LZ GC B cells has been
pointed out as a factor promoting differentiation to memory
B cells, a transcription factor unique to memory B cells is
yet to be found (31–37). As recently reviewed, ZBTB32, KLF2,
ABF-1, and STAT5 have been associated with memory B cell
generation, but further studies are needed to understand their
role (38).

Affinity
There is general consensus in the field that initial affinity for the
antigen influences which differentiation pathway will be chosen
by an antigen-activated B cell. Newly activated B cells with a
relatively high affinity for the antigen will differentiate into short-
lived extra-follicular ASCs (39). This ensures that the first burst of
secreted antibody has enough affinity for the antigen to opsonize
it and form immune complexes that will be directly cleared
by phagocytosis, activate complement, and/or be presented
on follicular dendritic cells (FDCs), thereby driving affinity
maturation in the GC (30, 40). Conversely, antigen-activated
B cells of lower affinity typically develop into GC-independent
memory B cells. These are most often unmutated and unswitched
(IgM+), although class-switched GC-independent memory B
cells have been described (13). The GC-independent memory B
cells provide a means of retaining adaptability potential within
the memory B cell pool, and these cells can either be recruited
later in the same response or recalled upon secondary encounter
with the antigen.

GC Responses
The third fate choice for antigen-activated B cells is to upregulate
Bcl-6 and move deeper into the follicle and start a GC reaction
[excellently reviewed in Victora and Nussenzweig (30), Mesin
et al. (40)]. Briefly, the GC B cells will go through multiple
rounds of division in the dark zone (DZ) of the GC, each time
introducing mutations in their antigen receptor (B cell receptor;
BCR). This process of somatic hypermutation (SHM) leads to
affinity maturation and ensures that B cells will specialize their
binding to a particular antigen. The mutated B cells will then
move to the LZ, where the new BCR will be tested against the
antigen presented on FDCs. The B cells that manage to form a
BCR with high enough affinity will receive survival signals and
either return to the DZ to go through another round of division
and SHM, or exit the GC as a plasma cell or a memory B cell.

Similarly to extrafollicular fate decisions, BCR affinity to the
antigen seems to play a role also in the GC (37, 41, 42). High-
affinity B cells can bind and endocytose more antigen, and
consequently present more antigen-derived peptides on class
II MHC (MHCII). This higher density of peptide:MHCII on
high-affinity B cells gives them an advantage in competing for
access to T-follicular helper (Tfh) cells (43–45). In addition,
each interaction with a Tfh cell is prolonged and intensified due
to a feed-forward loop depending on peptide:MHCII density
and CD40:CD40L ligation (45). This enhanced CD40:CD40L
interaction causes down-regulation of Bcl6 and turning on of
IRF-4 in the GC B cells, allowing them to differentiate into
Bcl6loCD69hi plasma cell precursors before exiting the GC
as plasma cells (46) (Figure 1c). In addition, IL-21 secreted
from Tfh cells is required for plasma cell differentiation (47),
further demonstrating the importance of long and strong B:T
interactions for this fate decision. A fraction of the plasma cells
leaving the GC will home to the bone marrow, where their
survival depends on a number of factors in the plasma cell niche
(Figure 1d). This will be further discussed below.

Memory B cells, on the other hand, are generated from low-
affinity GC B cells in the LZ and will eventually enter the
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FIGURE 1 | The generation of memory B cells and plasma cells in a T-dependent response (based on mouse studies). (a) Antigen-activation brings B- and T cells in

contact at the T-B border in secondary lymphoid organs. (b) After initial proliferation in the outer follicle, the B cells make their first fate choice: (1) differentiation into

extrafollicular (mostly short-lived) plasma cells (higher affinity), (2) differentiation into very early memory B cells (lower affinity), or (3) up-regulation of Bcl-6 and formation

of a germinal center (GC). (c,d) In the GC, a similar selection process takes place in the light zone (LZ). Here, high-affinity LZ GC B cells receive strong T-cell help and

consequently down-regulate Bach2 and Bcl-6 while turning on the plasma cell transcriptional program (Blimp-1, IRF-4, XBP-1; including up-regulation of CXCR4) (c).

The plasma cell precursors will then either enter the circulation as short-lived antibody-secreting cells, or they will upregulate CXCR3, CXCR4, and CXCR5 to allow

migration to the bone marrow plasma cell niche (d). Here survival factors produced by stromal cells and other adjacent cells (including eosinophils and macrophages)

promote their differentiation into long-lived plasma cells, which continue to secrete antibodies for the duration of the lifetime of the host. (e,f) Due to the weaker T-cell

help received by low-affinity LZ GC B cells, these will not be instructed to turn on either the plasma cell or the GC B cell transcriptional program. Instead, up-regulation

of Bach2, CCR6, EBI2, Ephrin-B1, and IL-9R, together with down-regulation of Bcl-6 and S1PR2, promote differentiation to memory B cells (e). To maximize the

likelihood of secondary antigen encounter memory B cells will then position themselves strategically in secondary lymphoid organs, become tissue-resident at the site

of infection, or patrol as recirculating cells (f).

circulation as patrolling cells or take up residence in lymphoid
or target organs (Figures 1e,f). The observation that memory B
cells consistently are of lower affinity and have fewer mutations
than plasma cells indicate that the former are generated before
affinitymaturation has allowed for the production of high-affinity
BCRs. Indeed, an extensive study shows that memory B cells are
formed early in the response whereas LLPCs are a later product
(15). This temporal discrepancy also fits well with the Bach2
dynamics in memory B cells. Bach2 is required for memory B cell
differentiation and only early GC B cells express Bach2, with the
expression starting to decline from day 10 (37). Moreover, these
experiments show that T cell help, in the form of CD40:CD40L
interaction, represses Bach2-expression in GC B cells in a dose-
dependent manner. Thus, B cells with higher affinity typically
have a lower expression of Bach2 and are therefore predisposed
to choose re-entry to the DZ or commitment to the plasma
cell transcriptional program. Conversely, relatively weak T cell

help, as would be the case for lower-affinity B cells, maintains
a relatively high Bach2-expression in LZ B cells, thus favoring
a memory B cell fate (37). It is not clear how Bach2 determines
memory B cell fate, but it is believed to act as a suppressor of
transcription, particularly of Prdm1 (encoding Blimp-1) and of
pro-apoptotic factors such as Bim and Puma (37, 48–51). Thus,
it seems likely that lack of strong signaling, and consequently
lack of instructions to start the plasma cell or GC B cell
transcriptional program forces activated B cells into memory
fate. Interestingly, memory B cells and naïve B cells, which
are both quiescent with persisting differentiation potential, have
similar transcriptional profiles, with the important exception of
memory B cells seemingly being hardwired for quick responses
(31, 33, 34, 36, 52).

Selection of B cells with a relatively low affinity into the
memory compartment early in the response thus ensures that a
certain poly-reactivity is maintained within the memory B cell
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pool. Indeed, preservation of germline, or close to germline,
encoded BCRs in memory B cells provides the memory B cell
pool with clones that are able to respond quickly while still
maintaining a higher degree of flexibility in terms of antigen
binding. This flexibility would be lost should only memory B cells
with high-affinitymutated BCRs persist in thememory pool. This
idea can be illustrated by the observation that around 10% of
memory B cells recognize variant antigen better than wild type
protein, thus allowing for breadth of protection in a way that
LLPCs do not (53). Conversely, by choosing only the highest-
affinity GC B cells for plasma cell fate, the quality of the secreted
antibodies is ensured to be very high.

Immunoglobulin Isotype
Another proposed determinant factor of plasma cell vs. memory
B cell differentiation is immunoglobulin isotype. B cells that have
switched to IgG, IgE, or IgA are more prone to differentiate to
plasma cells than memory B cells (54–58). Interestingly, a recent
study showed that even when B cells are forced to switch to IgG1
independently of AID, thus uncoupling the effects of SHM and
class-switch recombination (CSR), the switched GC B cells were
predominantly differentiating into plasma cells (58). Moreover,
transcriptional analysis of IgM+ and IgG1+ GC B cells in the LZ
revealed altered signaling through Nur77 in the switched B cells,
associated with increased expression of chemokines associated
with exit from the GC into the plasma cell compartment (58).
Together, these studies indicate that intrinsic properties of a non-
IgM BCR, probably in their signaling capacity, influences the
plasma cell vs. memory B cell fate decision.

Marking Memory B Cell Precursors
Studies aiming at defining memory B cell precursors in the GC
have found differential expression of several markers on subsets
of GC B cells in the LZ. One such marker is the chemokine
receptor CCR6, which has been shown to be dispensable for the
initial generation but required for correct positioning of memory
B cells as well as for optimal recall responses (59, 60). These
CCR6+ GC B cells are generally of lower affinity, and have a
phenotype closely resembling that of memory B cells (e.g., up-
regulated EBI2 and S1PR1, and down-regulated S1PR2) (60). A
recent study describes a population of Ephrin-B1highS1RP2low

GC B cells as memory precursor cells in the LZ, positioned close
to the edge of the GC (61). In addition, a study focused on plasma
cell precursors in the GC LZ proposes that a fraction of GC B
cells in the LZ presenting as Bcl6lowCD69low are memory B cell
precursors (46).

Finally, IL-9R is expressed on memory B cells as well as on a
subset of LZ GC B cells concluded to bememory B cell precursors
(62, 63). In addition to Bach2-requirement, optimal memory B
cell generation also needs Tfh-derived IL-9 (63), and signaling
through IL-9R on memory B cells is required for their recall
response (64). Taken together, memory B cell precursors may
be found in the GC LZ and present as CCR6+S1PR2lowEphrin-
B1highBcl6lowCD69lowIL-9R+. However, further studies are
needed to fully elucidate whether this phenotype really
corresponds to a committed memory B cell precursor.

The Memory B-Cell Niche and Recall
Responses
Upon re-exposure to an antigen the memory recall response
will be faster, stronger, and more specific than a naïve response.
Protective memory depends first on circulating antibodies
secreted by LLPCs (Figure 2a). When these are not sufficient for
immediate pathogen neutralization and elimination, memory B
cells are recalled. It is therefore of vital functional importance
that memory B cells are stationed at strategic sites where they
can maximize their chance of encountering antigen (Figure 2b).
The spleen, including the marginal zone, is a major reservoir
for memory B cells in both mice and humans (14, 65–67), as
is the subcapsular sinus (SCS) of lymph nodes (68). Both the
splenic marginal zone and the lymph node SCS are abundant
with CD169+ macrophages, which are specialized in presenting
unprocessed antigen to B cells (69, 70). It has been demonstrated
that both naïve and memory B cells interact with CD169+
macrophages in the SCS, and that upon antigen recall the
memory B cells quickly form SCS proliferative foci (Figure 2c),
or form new GCs (68). This was also seen in human lymph
nodes. Interestingly, the largest output from the SCS proliferative
foci is short-lived plasma cells (ASCs), whereas the new GC
is a site for further affinity maturation and CSR with very
stringent quality controls that limit plasma cell differentiation
(42). Importantly, both the SCS proliferative foci and the GC
also foster memory B cells that may participate in another re-
call response or be recruited later in the same response. In
addition to the spleen and lymph nodes, memory B cells are
found in the bone marrow, Peyers’ patches, gingiva, mucosal
epithelium of tonsils, the lamina propria of the gastro-intestinal
tract, and in the circulation (67, 71–76). It has not been
convincingly demonstrated that the bone marrow, or any other
tissue (apart from the spleen and the lymph nodes) contains
functional memory B cells or if these memory B cells simply
recirculate from the blood to the tissues. These are all anatomical
sites where antigen may breach the barriers or be carried
to via the circulation, and the memory B cells located here
act as sentinels should pre-existing antibodies not provide
adequate protection.

Importantly, memory B cells can also seed sites of infection,
where they are maintained as tissue-resident memory B cells
(77–79). Here they are quickly activated after pathogen invasion
without the need for antigen transportation to draining lymph
nodes, thus shortening the time for plasma cell differentiation
and antibody production on secondary exposure. Interestingly, in
the case of influenza virus infection, broadly reactive memory B
cells are enriched in the lung-resident pool, thus conferring quick
and cross-reactive protection at the site of infection (80).

Upon re-exposure to antigen, memory B cells can quickly
proliferate and differentiate into plasma cells. Alternatively, they
will re-enter GCs for another round of affinity maturation
and CSR. This decision depends on BCR affinity and isotype
in addition to differential expression of CD80 and PD-
L2 (Figures 2d–f). These surface markers denote functionally
differentmemory B cells independent of immunoglobulin isotype
(2, 4, 7, 8, 65). Importantly, the heterogeneity of the memory
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FIGURE 2 | The memory recall response to secondary antigen exposure. (a,b) Pre-existing antibodies secreted by long-lived plasma cells (LLPCs) constitute the first

line of defense (a). If this is not sufficient for immediate neutralization and elimination of the antigen, memory B cells will be engaged. This can happen either directly in

the affected tissue (tissue-resident memory and circulating memory B cells), or when antigen is carried to secondary lymphoid organs (b). (c) Activated B cells in

lymph nodes can form subcapsular sinus proliferative foci (SPF) upon antigen-dependent re-activation. Although it is unclear which memory subset constitute the SPF,

it is known that the main output is plasmablasts, but that this is also the fostering site for new memory B cells as well as cells entering GCs. (d–f) Depending on their

phenotype, different fate decisions will be made by the reactivated memory B cells: new germinal centers (GCs) are typically formed by IgM+, usually unmutated,

CD80−PD-L2− (double-negative) memory B cells of lower affinity (d). In addition, both IgM+ and switched memory B cells that express either CD80 or PD-L2

(single-positive) have retained the capacity to seed GCs (e). However, the bulk of these cells, together with some of the IgM+ double-negative memory B cells, will

differentiate directly into plasmablasts (c,d). Finally, switched, high-affinity memory B cells that are double positive for CD80 and PD-L2 exclusively form new

plasmablasts (f).

B cell compartment allows for a functional breadth of memory
recall responses.

Unswitched (i.e., IgM+) memory B cells are often derived
from GC-independent or very early GC responses. They
frequently do not express CD80 and/or PD-L2, and carry few, if
any, mutations (7, 65). The IgM+ memory B cell pool thus keeps
a breadth of reactivity similar to that of naïve B cells but with
the advantage of being able to rapidly respond to antigen (31, 33,
34, 36, 52). This breadth is particularly important for mounting
rapid recall responses to variant antigens, such as influenza virus.
On the other hand, recalled IgG+memory B cells tend to rapidly
differentiate into plasma cells without re-entering a GC (4).
This is comparable to the fate chosen by switched B cells in
the primary GC response (54–58). However, these observations
may not be exclusively dependent on immunoglobulin isotype.
Indeed, when further dissecting the memory B cell compartment,
it becomes apparent that CD80−PD-L2− IgM+ memory B cells
preferentially enter GCs upon recall, whereas those expressing
CD80 and/or PD-L2 typically generate rapid IgM+ and IgG+

plasma cell responses (4, 7, 8, 74, 81). Similarly, IgG+ memory

B cells single-positive for CD80 or PD-L2 can differentiate
to ASCs while retaining the capacity to seed GCs, whereas
double-positive IgG+ memory B cells only generate ASCs (8).
These findings are further supported by studies demonstrating
that IgG+ and IgA+ memory cells can engage in new GC
reactions (5, 75).

LESSONS FROM HUMAN STUDIES

Human Plasmablasts
In humans, most studies consider plasmablasts as blood short-
lived ASCs generated in acute B cell responses to infection or
vaccination that transiently contribute to the serum antibody.
In a secondary systemic immune response to a protein antigen
such as tetanus toxoid or an inactivated influenza virus vaccine,
antigen-specific IgG-secreting plasmablasts with somatically
mutated VH gene rearrangements are generated from memory
B cells (20, 82). It is also the case following influenza, Ebola, or
Dengue virus infection (22, 83–85). It remains an open debate
whether human plasmablasts are precursors of and how many
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do become LLPCs. Evidence suggests that once the infection is
cleared, the majority of ASCs undergo apoptosis, while a small
proportion may go on to further differentiate into LLPCs (86).
The heterogeneity seen in human ASCs from tonsil, blood, and
bone marrow reveals stages of increasing maturity, and local
profiles of adhesion molecule expression suggest a multi-step
model for plasma cell differentiation (82, 87). In human blood
when plasmablasts appear between days 6 and 8 after vaccination,
they are migratory and attracted by CXCL12 and could migrate
to tissues, such as the bone marrow (88, 89).

Plasmablasts have also been described as a “steady state”
population where the majority express IgA. They express CCR10
and the adhesion molecule β7 integrin and they are attracted
by CXCL12 suggesting that they come from mucosal immune
reactions and can return to mucosal tissue. Approximately
40% of LLPCs in human bone marrow are IgA+, non-
migratory, and express β7 integrin and CCR10, suggesting a
substantial contribution of mucosal plasma cells to bone marrow
resident LLPCs (90). After tetanus vaccination, IgG+CD62L+β7
integrin− dividing, vaccine-specific, and migratory plasmablasts
appear in the blood, as do non-dividing, non-migratory, CD62L−

plasma cells of different specificities (90).
A recent study identified survival factors from the bone

marrow niche that favors maturation of human blood ASCs
to LLPCs in vitro (91). IL-6 and two members of the tumor
necrosis factor (TNF) superfamily: BAFF (B-cell activating factor
of the TNF family; also known as BLyS in humans) and APRIL
(a proliferation-inducing ligand) are known to be important
survival signals (92), as well as is CXCL12 (93). Additional factors
secreted by the bone marrow niche such as fibronectin and
YWHAZ are important for LLPC maturation (91).

LLPCs
Migration to and From the Bone Marrow
Human LLPCs freshly isolated from the bone marrow have high
expression of the chemokine receptors CXCR4 and CXCR6 and
responsiveness in in vitro migration assays to the chemokines
CXCL12 and CXCL16. The chemokine CCL28 has also been
shown to attract human bone marrow plasma cells in vitro
(94). Two interesting populations have been observed in the
blood of tetanus toxoid immunized individuals: a population of
migratory plasmablasts expressing CXCR3 and CXCR4, and a
population resembling mature plasma cells of the bone marrow.
These findings suggest that these cells are likely to be resident
LLPCs mobilized from their survival niches in the bone marrow,
in competition with newly generated plasmablasts (88).

In the Bone Marrow
Mesenchymal stromal cells (MSC) in the human bone
marrow microenvironment provide factors that support
LLPC survival (95–97). Cytokines of the TNF superfamily
(BAFF, APRIL and TNF-α), IL-6 family, CD80/CD86, CD44
binding to hyaluronic acid, and VLA-4 binding to VCAM-
1/fibronectin promote survival of plasma cells. CXCL12
promotes entry of cells to the bone marrow as well as plasma
cell survival (86). BAFF seems to be important for human
plasmablast differentiation whereas APRIL is the key to

long-term survival in the bone marrow (98). An interesting
study demonstrated that extracellular vesicles from bone
marrow-derived MSCs support ex vivo survival of human
ASCs (99).

In humans, the bone marrow contains both CD19+ and
CD19− LLPCs (26). The majority of CD19− LLPCs are actually
found in the bone marrow, compared to the blood, spleen and
tonsils. Interestingly, CD19− LLPCs are enriched in IgG+ cells
and carry fewer VHmutations compared to CD19+ LLPCs. Only
CD19− LLPCs resist to mobilization into the blood following
immunization, and are resistant to depletion by Rituximab. In
addition, CD19− LLPCs were not found in the bone marrow
of 5–7 months old infants while CD19+ LLPCs were present.
This study suggests a multi-layer model of LLPCs in the
human bone marrow with CD19+ LLPCs being a dynamic
component and CD19− a more static component permitting
both adaptation and stability of humoral protection (100). A
more recent study of the same populations but this time in
response to influenza virus vaccination suggests that newly
generated ASCs can acquire a mature plasma cell phenotype
that is accompanied by loss of CD19 expression at an early
stage of differentiation, and that aging is not an obligate
requirement for a CD19− state to be established (101). Finally
both CD19+ and CD19− vaccinia-specific LLPCs were detected
in the BM more than 35 years after the eradication of smallpox,
suggesting that the LLPC pool may be maintained by a process
in which vaccinia-specific B cells differentiate into LLPCs in the
BM (26).

Outside of the Bone Marrow
Compared to the bone marrow niche, fibroblasts from the lymph
nodes and the spleen have been poorly characterized in both
mice and humans. A few studies have shown that stromal cells in
the spleen and lymph nodes might promote plasma cell survival
in vitro (102, 103). Recently, a new subset of fibroblasts (FRCs
for fibroblastic reticular cells) in the lymph nodes have been
described both in mice and humans as the main cell type in
contact with plasma cells to guide them in their migration (104).

Mucosal Plasma Cells
Plasma cells are very abundant in mucosal tissues. They are
located both in the connective tissue (lamina propria) and in
lymphoid organs such as the tonsils in the oral cavity and Peyer’s
patches in the gut. The majority of these plasma cells secrete
IgA antibodies, and humans also have a substantial IgM+ plasma
cell population in the mucosa (105). B cells in the respiratory
tract and IgA responses in the gastrointestinal tract in have
been nicely reviewed in Kato et al. (106) and Bunker and
Bendelac (107), respectively, and are both beyond the scope of
this review.

Human Memory B Cells
A great variety of B cell subsets have been identified
in the tonsil, spleen, and peripheral blood and represent
different stages of development of a naive B cell into a
memory B cell. In the human tonsil, at least five distinct
subpopulations of mature human B cells (Bm1–Bm5) have
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been identified. Concisely, naive B cells belong to the Bm1
and Bm2 subpopulations whereas fully differentiated memory
B cells belong to the Bm5 subset (108–110). Interestingly
IgG transcripts in the tonsil had accumulated twice as many
mutations as the IgM transcripts suggesting that reentry of
selected B cells in the GC to generate higher affinity BCRs is a
possibility (109).

As we previously stated, memory B cells are mainly generated
in the GCs in secondary lymphoid organs. After leaving the
GCs, memory B cells either join the recirculating pool of
lymphocytes, or home to antigen draining sites. Memory B
cell niches outside of the blood have been described and
memory B cells have been found in the bone marrow, the
tonsil and the spleen (111). Additionally a population of tissue
based memory B cells expressing Fc receptor-like 4 (FCRL4)
instead of CD27 has been described (112, 113). In the blood
and bone marrow, human memory B cells can be divided
in three main populations: CD19+CD27+IgM+IgD+ (similar
to marginal zone (MZ) B cells), CD19+CD27+IgM+IgD−

(IgM-ONLY) and class-switched CD19+CD27+IgM− (IgG+

or IgA+) (114, 115). An in-depth flow cytometry analysis
of human bone marrow and blood samples showed that
compared to the blood, the bone marrow was enriched in
both MZ and switched B-cells (116). In the spleen, two
main phenotypically distinct B cell populations exist and
localize to separate areas of the lymphoid tissue. Mantle
zone B cells (IgDhighIgM+CD21+CD23+) are unmutated and
believed to be naive B cells, whereas MZ B cells are
IgD+IgMhighCD21highCD23± and exhibit somatic mutations
(117–119). It has been demonstrated that CD148, as well as
CD27, are markers for memory B cells present in the human
spleen (120). More recently, a population of IgG+ memory B cells
residing in the MZ of the spleen have been found and examined.
IL-21 and BAFF have been demonstrated to be important for the
differentiation of these IgG+ splenic memory B cells into plasma
cells (121).

CD19+CD27+IgM+IgD+ (Also Called Human MZ B

Cells)
The spleen is an important organ in the defense against
encapsulated bacteria. A population of “IgM memory B cells”
controlling Streptococcus pneumoniae is observed in the spleen
(122). Additionally, the human peripheral B-cell compartment
displays a large CD19+CD27+IgM+IgD+ memory B cell
population, resembling the splenic MZ B cells. In fact, by
CDR3 spectratyping and gene-expression profiling, it has been
demonstrated that CD19+CD27+IgM+IgD+ memory B cells are
circulating splenic MZ B cells. These memory B cells have a
mutated BCR, provide a pre-diversified immune repertoire and
are involved in T-independent responses (123). They can develop
in the absence of a spleen, but splenectomy in older individuals
dramatically reduces the number of blood MZ B cells (122, 124).
Finally, when compared to switched memory B cells in children
<2 year of age, CD27+IgM+IgD+ memory B cells in the spleen
and blood do not display any signs of antigen-driven activation
and expansion despite themany antigenic challenges experienced

during childhood, suggesting a developmental diversification
outside of T-dependent and T-independent responses (125).

CD19+CD27+IgM+IgD− (IgM-Only) and

Class-Switched CD19+CD27+IgM
By tracking tetanus toxoid-specific memory B cells
(CD3−CD19+CD20+CD27+) at steady state, it has been
showed that the spleen is the largest reservoir of memory B
cells followed by the tonsil. Bone marrow and blood memory B
cells express surface IgG and IgA at similar frequencies, while
the tonsil contained more IgA memory B cells compared to
other locations. IgG+ memory B cells were enriched in the
spleen and the tonsil compared to the bone marrow and the
blood and IgM+IgD+ memory B cells were reduced in the
tonsil compared to other locations. Interestingly, the absence of
spleen and tonsils does not affect secondary responses to tetanus,
suggesting an organ independent maintenance and reactivation
for human memory B cells (111). Memory B cells that reside in
lymphoid organs and recirculate after re-exposure to antigen are
phenotypically the same and do not represent different stages
of maturity. Additionally, it has been demonstrated that the
human spleen is a major reservoir of long-lived vaccinia-specific
memory B cells (66). Indeed, anti-smallpox IgG+ memory B
cells were specifically enriched in the spleen, confirming that the
spleen is a major reservoir for long-lived memory B cells.

Finally, high-throughput VH sequencing on paired blood
and spleen samples revealed that IgM sequences from clones
shared between the MZ and the memory IgG/IgA (switched)
compartments displayed a mutation and repertoire profile
of IgM-only and not of MZ B cells. Thus the “IgM-only”
subset appears as the only subset showing precursor–product
relationships with CD27+ switched memory B cells, indicating
that they represent GC-derived IgM memory B cells and that
IgM-only and MZ B cells constitute two distinct entities (126).

Human IgG and IgA Responses Induced by
Infection and Vaccination
The route by which an antigen enters the body (systemic vs.
mucosal) and the nature of the antigen are factors that direct
the immune response class-switching patterns. Protein antigens
usually trigger B cells receiving T-cell help while polysaccharide
antigens induce CSR in the absence of T-cell help. Moreover,
BAFF and APRIL have been shown to stimulate CSR to IgG
and IgA in human B cells (127). Polysaccharide B cell responses
to vaccination in humans have been reviewed in Mitchell et al.
(23), while the kinetics of ASC responses to infection have been
reviewed in Carter et al. (128).

IgG
Antibody responses to soluble protein antigens and membrane
proteins primarily induce IgG1, but are accompanied with
lower levels of the other subclasses. Viral infections in general
lead to IgG antibodies of the IgG1 and IgG3 subclasses (129).
On the other hand, antibody responses to bacterial capsular
polysaccharide antigens is almost only restricted to IgG2 (130).
IgG4 antibodies are often formed following repeated or long-
term exposure to antigen in a non-infectious setting (131).
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IgA
Homeostatic IgA responses employ a polyreactive repertoire to
bind to a broad subset of microbiota species and tend to be of low
affinity. In contrast, mucosal pathogens and vaccines elicit high-
affinity, T-cell dependent antibody responses (107, 132). Mucosal
IgA responses through a T-cell dependent reaction that place
in mucosal lymphoid follicles, such as intestinal Peyers’ patches
and mesenteric lymph nodes (together called MALT for Mucosa-
Associated Lymphoid Tissues) (132). Human IgA subtypes show
distinct anatomical expression patterns, with monomeric IgA1
dominating in the serum and dimeric IgA2 in the gut (133).

Very few studies in humans have compared the induction
of IgA and IgG secreting cells following various routes of
immunization. An early study compared oral, intranasal and
systemic influenza virus vaccines in healthy adults. Both systemic
and intranasal immunizations induced mainly IgG+ influenza-
specific B cells in the blood after vaccination while the oral
route induced IgA+ influenza-specific B cells in the blood.
Additionally, oral and intranasal administration of antigen-
induced IgA influenza-specific antibodies in external secretions
(134). These results were confirmed later on by multiple
studies reporting a bursting population of IgG+ antigen-
reactive plasmablasts in the blood after secondary tetanus toxoid
vaccination (88), influenza virus vaccination or infection (20, 83,
135), as well as acute dengue virus infection (22). In addition,
immunization of African green monkeys with a live-attenuated
H5N1 influenza vaccine resulted in more serum IgG neutralizing
antibodies than IgA (136).

A study employing Ad26/Env (HIV) vaccination in rhesus
macaques demonstrated highly coordinated IgG and IgA
responses in both peripheral blood and mucosal compartments
(137). It remains unclear to this day how related IgG and
IgA plasmablasts/plasma cells are and what the relationship
between mucosal and systemic antibody responses looks like.
While a study suggested that mucosal and systemic humoral
immune responses are regulated independently of each other
based on the observation that systemic vaccination does not
seem to impact peripheral IgA+ plasmablast numbers (90, 138),
another study revealed that in celiac disease patients, the same
antigen-reactive B cell clones that give rise to gut plasma
cells also contribute to the serum IgG and IgA antibody pool.
However, serum IgA antibodies had a molecular composition
(IgA1 vs. IgA2 and J chain level) distinct from that of IgA
antibodies secreted in the gut, suggesting the involvement of
different plasma cell populations (139). Finally, analysis of
long-term transcriptional profile between blood IgG and IgA
influenza-reactive plasmablasts as well as influenza-negative
IgA plasmablasts did not reveal any specialization based on
isotype. These data suggest that IgG and IgA vaccine–positive
plasmablasts are largely similar, whereas IgA vaccine–negative
plasmablasts appear to be transcriptionally distinct from antigen-
induced peripheral blood plasmablasts (140).

Lessons From HIV
Significant efforts in the HIV field are focusing on the design of
vaccines that would induce the generation of broadly neutralizing
antibodies (bNAbs). Understanding the immunology behind

the development of antibody potency and breadth following
immunization is crucial in this context, not only to the HIV
community (141). The success of most vaccines relies on
the generation of antibodies to provide protection against
subsequent infection. As discussed earlier in this review, Tfh cells
are critical for the production of high-affinity B cell clones in the
GC and thus the generation of long term memory, i.e., memory
B cells and LLPCs (142).

The feasibility of assessing GCs and Tfh responses from
human lymph nodes has been limited, as GC B cells do not
circulate in the blood, and lymph nodes are rarely sampled (143).
Recently, fine needle aspirates of the draining lymph nodes were
used to longitudinally sample GC B cells and GC Tfh cells in
non-human primates. The lymph node fine needle aspiration
technique has proven effective in terms of how many cells were
recovered from the biopsy as well as in not disrupting the ongoing
GC. The authors found that neutralizing antibodies in non-
human primates correlate with GC B cell magnitude and Tfh
help quality (144). They also found that GCs peak weeks after
the initial immunization. This means that a classic immunization
(one injection of antigen) is not optimal for “feeding” the peak
GC response. Proteins that are not of extreme stability can be
degraded, exposing epitopes that would normally be hidden
or non-existent on a more native protein conformation. Slow
immunogen release could improve the availability of intact
antigen and epitopes of interest for the duration of the GC
response (145).

Germline-targeting strategies aim to activate B cell precursors
with potential interest for bNAbs generation, so that they will
enter the GC, be selected and affinity matured and will generate
memory B cells. Studying HIV-reactive B cell lineages to infer
unmutated ancestral BCRs that represent what a naïve B cell
would express is the key to a B-cell lineage vaccine strategy (146).
A vaccination protocol based on B-cell lineage differs from classic
protocols in the fact that they may prime with one immunogen
and boost with another or with a sequence of several different
immunogens (147–150).

It has been recently demonstrated that only immunogens
above a certain affinity and in multimeric form are capable
of inducing GCs dominated by B cells from a bNAb
precursor starting with low precursor frequency (151). These
B cells successfully competed in GCs, underwent somatic
hypermutation and differentiated into memory B cells. Overall
this study demonstrates that germline-targeting immunogens
can overcome affinity, avidity, and inter-clonal GC competition
challenges with high-affinity multimeric designs.

Lessons From Influenza
Plasmablasts have been extensively studied in humans, especially
in the context of influenza vaccination and infection. Little
is known about B cells that become activated but do not
differentiate into plasmablasts. A subset of antigen-reactive B
cells called ABCs for “Activated B Cells” has been described
and was found to be transcriptionally distinct from the ASC
population and committed to the memory lineage (152). ABCs
and ASCs share hemagglutinin (HA)-reactive clones following
influenza vaccination. Our laboratory also described a post-GC
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population of B cells that phenotypically resemble memory B
cells but that have low expression of CD21 (classical memory
B cells are CD19+CD27+CD21high). We demonstrated that the
CD21low population was comprised of recent GC graduates that
were refractory to GC reentry and seemed to be predisposed
to differentiation into long-lived plasma cells (153). Although
clonally related to memory B cells and plasmablasts, CD21low

B cells form distinct clades within phylogenetic trees based on
the accumulation of variable gene mutations. Another study
demonstrated that HA-reactive CD21low B cells are enriched in
the blood compared to the tissues while there was an enrichment
of CD27+CD21highHA+ B cells in all tissues. Both CD21+ and
CD21low populations were not maintained in the peripheral
blood at 1 year post-vaccination (154).

Additionally, it is of great interest to understand how different
vaccine compositions will affect the generation of memory B cells
and LLPCs. Seasonal influenza vaccines exist as live-attenuated
influenza virus (LAIV), which more closely resembles natural
immunity after infection, or as inactivated vaccines. LAIV have
been used mostly in children but do not induce strong systemic
antibody responses in adults (155). The same was true for
two different avian pandemic LAIV vaccines (H5N1, H7N9),
although these vaccines elicited a long-term immune memory
that was revealed after administration of a matched inactivated
vaccine (156–158). To understand how LAIV vaccines can prime
such a memory response, a detailed analysis of B cell responses
in systemic and local lymphoid tissues in a non-human primate
model was performed (136). Interestingly, the authors found that
the LAIV vaccine induced robust GCs in the mediastinal (lung-
draining) lymph node and that both HA-reactive plasmablasts
and memory B cells were found in the mediastinal lymph nodes
after immunization.

Finally, it is believed that adjuvants can modulate
humoral responses and retain antigen at the site of injection.

Most studies have been done with alum and it remains
unknown how other adjuvants (such as AS03 and MF59)
act on GCs and antigen release (159). In the context of
influenza vaccines, adjuvanted vaccines administered in
patients with impaired immune responses, such as infants
and the elderly, were shown to be beneficial (160–162).
Additionally a study showed that the adjuvant AS03
induced an increased activation of naïve B cells and an
increased adaptability of recalled memory B cells, improving
immunogenicity (163).

CONCLUSION

The generation of memory B cells and long-lived plasma cells is
crucial to the long-term effectiveness of vaccines. Understanding
how to induce these different populations and modulate their
effects both in animal models and human is essential to the
design of better vaccines. Thus, the design of new immunogens,
how to release them, as well as the mechanisms of actions of
various adjuvants are the future of vaccines protecting against
challenging or emerging infectious diseases.
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Most vaccines aim at inducing durable antibody responses and are designed to elicit

strong B cell activation and plasma cell (PC) formation. Here we report characteristics

of a recently described secondary PC population that rapidly originates from memory

B cells (MBCs) upon challenge with virus-like particles (VLPs). Upon secondary antigen

challenge, all VLP-specific MBCs proliferated and terminally differentiated to secondary

PCs or died, as they could not undergo multiple rounds of re-stimulation. Secondary PCs

lived in bonemarrow and secondary lymphoid organs and exhibited increased production

of antibodies with much higher avidity compared to primary PCs, supplying a swift wave

of high avidity antibodies early after antigen recall. Unexpectedly, however, secondary

PCs were functionally short-lived and most of them could not be retrieved in lymphoid

organs and ceased to produce antibodies. Nevertheless, secondary PCs are an early

source of high avidity antibodies and induction of long-lived MBCs with the capacity to

rapidly differentiate to secondary PCs may therefore be an underestimated possibility to

induce durable protection by vaccination.

Keywords: adaptive immunity, anti-viral immunity, memory B cells, secondary plasma cells, virus-like particles

INTRODUCTION

B cells differentiate to antibody secreting plasma cells (PCs) upon activation by their cognate
antigen (Ag) within and outside of B cell follicles. At an early stage of the primary immune response,
antibody–forming cells (AFCs) derived from follicular or marginal zone (MZ) B cells are rather
short-lived and survive for a few days only (1). Meanwhile, follicular B cells form GCs where MBCs
and long-lived PCs are generated in a mostly T cell dependent fashion (2–5).

Activated B-lymphocytes are driven to the PC pathway by up-regulation of the transcription
factors B lymphocyte maturation protein 1 (Blimp-1), Interferon regulating protein 4 (IRF 4),
and X-box-binding protein 1 (XBP 1) (6–8). Differentiation of activated B cells into AFCs needs
a harmonized change in the gene expression of these cells. Shi et al. delineated the transcriptional
profile during this differentiation process (9). PCs are terminally differentiated and arrested in the
G1 phase of the cell cycle being incapable of further growth or proliferation (10, 11). To be able
to secrete large amounts of antibodies, PCs are committed to their protein synthesizing machinery
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and undergo major structural adaptations by increasing the size
of the endoplasmic reticulum and Golgi apparatus (12). To
cope with these changing conditions PCs induce the unfolded
protein response as well as autophagy (13–15). These stress-
regulating processes are necessary for survival as PCs can secrete
the tremendous amount of up to 10’000 antibodies per second
(16). Sizeable amounts of antibodies that are rapidly available
are required to neutralize microorganisms and prevent infection.
Antibodies furthermore play a key role in immunity and promote
the crosstalk between the innate and adaptive immune system.
Besides classical neutralization of toxins and pathogens, they are
able to opsonize microbes and infected cells for phagocytosis,
enabling their elimination, and promote antigen presentation
thereby regulating inflammation (17).

PCs are found in secondary lymphoid organs and the bone
marrow (BM) where they can survive for days, months, or
even years. There is an ongoing debate whether long-term
antibody responses are a result of persisting antigen leading
to re-stimulation and differentiation of memory B cells to PCs
or whether they are derived from intrinsically long-lived PCs.
Several studies are in favor of the first hypothesis that persistent
antigen or infection and polyclonal memory B cell activation
is required (18–22). Nevertheless, evidence is growing that PCs
can persist in the absence of continuous stimulation (23–25). It
was shown that PCs require cell-intrinsic and extrinsic survival
signals such as cytokines and adhesion molecules from nursery
cells like monocytes, eosinophils, and megakaryocytes for long-
term survival in BM niches (26–29). Once they reach the BM
and successfully compete for a niche, PCs have a lifespan varying
from a few months to years and even decades during which
they constantly secrete antibodies (30, 31). In contrast to PCs,
which do not express surface Ig, MBCs respond to secondary Ag
encounter. They exhibit the intrinsic ability to respond with a
proliferative burst faster compared to naïve B cells (32) and were
found to seed new GCs and/or differentiate into PCs (33–37).
Antibody responses generated during secondary responses are
usually of higher affinity for the cognate Ag compared to those
of a primary response.

We have previously shown that immunization with VLPs
derived from the RNA bacteriophage Qβ elicit strong and
sustained IgG antibody responses by activation of MZ and
follicular B cells with the latter forming GCs (38–40). MBCs
and PCs were rapidly generated and detectable as early as 3
days and up to several months after immunization in spleen
and BM (41, 42). Here we show, that MBCs generated against
Qβ proliferated during Ag recall experiments but exclusively
differentiated into secondary PCs and failed to respond to
multiple rounds of Ag stimulation. Secondary PCs exhibited the
unique ability to produce 30 times more antibodies of increased
affinity compared to primary PCs. The secondary PCs were
found in spleen as well as in BM early on day 4 but almost
completely disappeared by day 6 after Ag re-encounter from
both organs. In addition, antibodies produced by secondary
PCs were cleared from the system within weeks indicating
that secondary PCs are functionally short-lived. Inducing MBCs
that differentiate into secondary PCs by vaccination could
represent a novel pathway for efficient and rapid control of

infectious diseases by the induction of an early wave of high
affinity antibodies.

MATERIALS AND METHODS

Study Design
The goal of this study was to further characterize secondary
PCs, which were generated by MBCs after Ag challenge. To
achieve this, adoptive transfers in allotypic mice (Ly5.1/Ly5.2 and
IgHa/IgHb) were performed. This enabled us to study primary
and secondary immune responses in the same animal. All mice
were kept according to Cantonal Veterinary guidelines at the
central animal facility (Department for BioMedical Research) of
the University of Bern and controlled laboratory experiments
were performed in accordance with ethical principles and
guidelines of the Cantonal Veterinary Office Bern, Switzerland.
Animals were randomly assigned to the different groups. MBCs
were generated by VLP immunization of mice. The control naïve
mice remained untreated. At the same time, B cells were isolated
from memory and naive mice and transferred into recipients.
Upon immunization with VLPs, serum samples, spleens, and
BM were collected and subjected to ELISA, ELISPOT, and
FCM analysis. The investigators who performed the experiments,
assessed, analyzed, and quantified the results were not blinded
and aware of which group a sample was taken from. Individual
groups consisted of 4–5 mice. All experiments were performed
in at least 2 independent biological replicates, apart from
intracellular FCM analysis of PCs at day 6 after challenge. Data
were collected at previously determined time points. All data
were included in the analysis.

Mice
C57BL/6JRccHsd wildtype mice were purchased from Envigo
(Horst, The Netherlands). The IgHa (B6.Cg-Gpi1<a> Thy1<a>
Igh<a> (Stock No. 001317)) mouse strain was purchased
from the Jackson Laboratory (USA). We thank Prof. Annette
Oxenius for the kind donation of the Ly5.1 (B6.SJL-Ptprc<a>
Pepc<b>/BoyJ) mouse strain.

Antigen
The bacteriophage derived Qβ virus-like particles (VLPs) self-
assemble and enclose bacterial RNA during their production in
E. coli. Due to their particulate and repetitive structure, the VLPs
are highly immunogenic. The purification process is described
elsewhere (43).

Immunization
To induce primary immune responses and generate MBC against
the VLPs, mice were immunized intravenously (i.v.) with 50 µg
QβVLPs. To challenge adoptively transferredMBC or naive cells,
recipient mice were immunized with 50 µg Qβ VLPs i.v. For
intravenous administration the VLPs were formulated in 150 µl
sterile PBS.

Adoptive Transfer
MBCs were generated by immunization of congenic donor
mice (Ly5.1 or IgHa). At least 8 weeks after immunization
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donor mice were sacrificed and spleens isolated in RPMI media
containing 2% FCS and antibiotics. A single cell suspension of the
spleens was prepared and red blood cells were lysed using ACK
buffer (0.15M ammonium chloride, 0.01M potassium hydrogen
carbonate, pH 7.2–7.4). The splenocytes were PNA− and B220+

MACS purified. For PNA negative purification splenocytes were
labeled using PNA-biotin (Vector Labs, B-1075) and PNA+

cells were depleted by Strepravidin MicroBeads (Milteny Biotec,
130-048-101) according to the manufacturer’s protocol. Positive
selection using B220 MicroBeads (Milteny Biotec, 130-049-501)
was performed according to the manufacturer’s protocol.

Purified cells from 1/3 of a donor spleen (Ly5.1 or IgHa; ∼1–
3 × 106 cells) were adoptively transferred i.v. into congenic host
mice (Ly5.2 or IgHb). Control mice received PNA− and B220+

purified splenocytes from naïve congenic mice. One day after
MBC transfer host mice were challenged with 50 µg Qβ VLPs i.v.

Flow Cytometry (FCM)
For FCM staining tissues (spleen, BM, kidney, lymph nodes
(LN), liver, lung) of mice after adoptive transfer were isolated
in RPMI supplemented with 2% FCS and antibiotics and
single cell suspensions were prepared. Blood was collected in
phosphate buffer containing heparin (1–2 units/ml). Red blood
cells were lysed using ACK buffer prior to staining. Fc receptors
were blocked using an anti-CD16/32 antibody. Qβ specific
class switched (CS) B cells were identified as IgM, IgD, CD4,
CD8, GR1, CD11b, CD11c negative (all antibodies labeled with
phycoerythrin (PE)), and positive for B220 labeled with PE-
Cy7 and Qβ VLP labeled with Alexa Flour 488. To discriminate
Qβ specific PCs from Qβ specific activated and CS B cells,
surface immunoglobulins (Ig) of specific cells were blocked
using unlabeled Qβ VLPs. PCs were further stained with and
characterized as IgM, IgD, CD4, CD8, GR1, CD11b, CD11c
negative (all antibodies labeled with PE) and B220-PE-Cy7 low.
To detect Qβ specific PCs by intracellular staining of specific
Ig, splenocytes were permeabilized using FACS lysing solution
(BD, 349202) containing 0.04% Tween20 and stained with Alexa
Flour 488 labeled QβVLPs. The congenicmarker Ly5.1 (antibody
labeled with APC or PerCP-Cy5.5) identified all transfer derived
B cells. Dead cells were stained by the addition of propidium
iodide solution (PI, Sigma, 10µg/ml) directly before acquisition.
For detection of dead cells after fixation and permeabilisation, the
Fixable Viability Dye eFluor 520 (eBioscience, 65-0867-14) was
used according to the manufacturer’s instructions.

Qβ VLPs were labeled with the Alexa Flour 488 protein
labeling kit (Thermo Fisher Scientific, A10235) or Alexa Flour
647 NHS Ester (Thermo Fisher Scientific, A20006) according to
the manufacturer’s instructions.

Data acquisition was performed on a FACS Canto (BD) and
analyzed using FlowJo V10.1 (Flowjo, LLC, USA). All antibodies
were purchased from BD Biosciences and Biolegend.

ELISPOT
Spleens from mice after adoptive transfer were isolated and a
single cell suspension was prepared. To collect BM cells, tibia
and femur were flushed with RPMI media containing 2% FCS
and antibiotics. After red blood cell lysis with ACK buffer, cell

numbers of splenocytes and BM cells were determined using the
Cellometer mini (Nexcelom, USA). 5× 105 cells were seeded per
well on MAIPS Elispot plates (Millipore, MAIPS4510) previously
coated with 10µg/ml Qβ VLPs overnight at 4◦C and blocked
with 2% BSA in PBS for at least 2 h. After performing a 2-
fold dilution series cells were incubated for 5 h at 37◦C and
5% CO2. Subsequently cells were washed off and bound specific
antibodies produced by PCs were detected using a goat anti-
mouse IgG antibody (EY laboratories, AT-2306-2) followed by
a donkey anti-goat alkaline phosphatase secondary antibody
(Jackson Immunoresearch, 705-055-147). Spots were visualized
by the AP Conjugate Substrate Kit (BioRad, 1706432) and
counted using an EliSpot Reader (AID, Germany). The spot size
was quantified with the EliSpot 7.0 iSpot software of the EliSpot
Reader as the average surface area of the spot.

CFSE Proliferation
To analyse the proliferation of transferred cells, the donor cells
were labeled with CFSE (Biolegend, Cat No. 423801) after MACS
purification and before transfer into congenic hosts, according
to the manufacturer’s protocol. FCM staining was carried out
similarly as described above. In this case, Qβ specific CS B cells
were detected with VLPs labeled with Alexa Flour 647.

Splenocyte Cell Culture
Spleens frommice that had receivedmemory or naïve B cells were
isolated 5 and 6 days after VLP challenge. A single cell suspension
of splenocytes was prepared. After red blood cell lysis with ACK
buffer, cell numbers of splenocytes were determined using the
Cellometer mini (Nexcelom, USA). 10 × 106 cells were seeded
in 1ml RPMI media containing 10% FCS and antibiotics per
well in 24 well plates (Falcon Multiwell, Corning). The cells were
incubated for 72 h at 37◦C and 5% CO2. Cell supernatants were
harvested and the antibody content determined by ELISA.

ELISA
Serum samples were obtained from blood collected at the
indicated time points during experiments using Microtainer
tubes (BD, 365967). Corning half area 96 well-plates were coated
with 50 µl of 1µg/ml Qβ VLPs overnight at 4◦C. Sera were
1:10 pre-diluted and 1:4 further serial diluted to analyse a
total of 7 dilutions per sample. Qβ specific antibodies were
detected using mouse anti-mouse IgG for both allotypes. IgHa-
specific (biotin ms anti-ms IgG1[a] (10.9), biotin ms anti-ms
IgG2a[a] (8.3) from BD) and IgHb-specific (biotin ms anti-ms
IgG1[b] (B68-2), biotin ms anti-ms IgG2a[b] (5.7) from BD)
antibodies were detected using horseradish peroxidase (HRP)
labeled streptavidin (Dako).

Cell supernatants were used undiluted and a 1:2 serial
dilution was performed. An anti-Qβ monoclonal antibody
(purified from hybridoma cells) was used as a standard to
quantify specific antibodies in the supernatants. Qβ specific
antibodies were detected using goat anti-mouse IgG-HRP
(Jackson ImmunoResearch, 115-035-071).

The absorbance readings of the tetramethylbenzidine (TMB)
color reaction at 450 nm for the serum samples were interpreted
as OD50 antibody titers. The OD50 antibody titers are defined
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as the reciprocal of the dilution that reaches half of the OD max.
The anti-Qβ monoclonal antibody standard curve was used to
calculate antibody concentrations in the cell supernatants.

Avidity ELISA
Serum samples were obtained from blood collected at the
indicated time points during experiments using Microtainer
tubes (BD, 365967). Corning half area 96 well-plates were coated
with 50 µl of 1µg/ml Qβ VLPs overnight at 4◦C. Sera of the
different time points were applied with a 1:20 pre-dilution and
1:4 further serial diluted. After 1 h incubation, the sera were
washed off and the plates washed 3 times 5min either with
7M urea in PBST (PBS containing 0.05% tween 20) or PBST
only. Qβ specific antibodies were detected using mouse anti-
mouse IgG for both allotypes. IgHa-specific (biotin ms anti-
ms IgG1[a] (10.9), biotin ms anti-ms IgG2a[a] (8.3) from BD)
and IgHb-specific (biotin ms anti-ms IgG1[b] (B68-2), biotin ms
anti-ms IgG2a[b] (5.7) from BD) antibodies were detected using
horseradish peroxidase (HRP) labeled streptavidin (Dako). The
absorbance readings of the tetramethylbenzidine (TMB) color
reaction at 450 nm served as basis for avidity index calculation.
The avidity index (AI) was calculated by AIx = OD (dilution x)
+ urea / OD (dilution x)–urea.

Antibodies/Reagents

Antibody/reagent Clone Company Conjugate Detection Catalog number

goat anti-ms IgG polyclonal EY laboratories donkey anti-goat alkaline phosphatase (AP) AT-2306-2

donkey anti-goat AP polyclonal Jackson ImmunoResearch AP 705-055-147

anti-ms IgG1[a] 10.9 BD biotin Streptavidin HRP (Dako) 553500

anti-ms IgG2a[a] 8.3 BD biotin Streptavidin HRP (Dako) 553533

anti-ms IgG1[b] B68-2 BD biotin Streptavidin HRP (Dako) 553502

anti-ms IgG2a[b] 5.7 BD biotin Streptavidin HRP (Dako) 553504

goat anti-ms IgG polyclonal Jackson ImmunoResearch HRP 115-035-071

anti-ms CD16/32 2.4G2 BD 553142

anti-ms IgM polyclonal Jackson ImmunoResearch PE 115-116-075

anti-ms IgD 11-26c (11-26) eBioscience PE 12-5993-83

anti-ms CD8a 53-6.7 BD PE 553032

anti-ms CD4 H129.19 BD PE 553653

anti-ms CD11b M1/70 BD PE 553311

anti-ms CD11c HL3 BD PE 553802

anti-ms GR1 RB6-8C5 BD PE 553128

anti-ms B220 RA3-6B2 BD PE-Cy7 552772

anti-ms CD45.1 A20 eBioscience APC 17-0453-82

anti-ms CD45.1 A20 Biolegend PerCP/Cy5.5 110727

anti-ms CD38 90 Biolegend PerCP/Cy5.5 102722

Anti-ms IgG Polyclonal eBioscience Biotin Streptavidin APC/Cy7 13-4013-85

Peanut Agglutinin (PNA) Vector Laboratories Biotin Streptavidin APC/Cy7 B-1075

Streptavidin HRP Dako HRP P0397

Streptavidin APC/Cy7 BD APC/Cy7 554063

Fixable Viability Dye eFluor 520 eBioscience eFluor 520 65-0867-14

Statistics
Statistical analysis was performed using GraphPad Prism
Version 7.01 (GraphPad Software, USA). Statistically significant
differences between two groups were calculated using unpaired
t-tests. Statistically significant differences between more than
2 groups were determined using a one-way ANOVA followed
by Tukey’s or Sidak’s multiple comparisons test. Statistical
significance was defined as p < 0.05. The best fitting line was
calculated by linear regression.

RESULTS

Memory B Cell Derived Secondary PCs
Produce Antibodies of Higher Avidity
We have previously shown that MBCs are generated against
Qβ VLPs in a T cell-dependent manner (35, 38, 39, 44, 45).
During secondary responses, these MBCs do neither extensively
proliferate nor join GC reactions (35). T cell help, however,
is essential for low-level MBC proliferation but dispensable
for differentiation to secondary PCs during secondary immune
responses (44). To reveal insights in the mechanism and kinetics
of secondary PC formation from MBCs after antigenic re-
stimulation, adoptive transfer experiments using congenic mice
were performed (Figure 1A). To this end, MBCs were generated
by immunizing donor mice (Ly5.1 or IgHa) with 50 µg Qβ

VLPs. Eight weeks post immunization, splenocytes from donor
mice were isolated and PNA− and B220+ MBCs were purified
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by MACS, excluding transfer of GC B cells. Splenocytes from
naïve mice were subjected to the same treatment and served as
controls. We have previously shown that the presence of memory
T follicular helper cells does not influence the MBC response (35,
44). Therefore, purified MBCs were transferred alone. Donor-
derived (Ly5.1+) MBCs were shown to preferentially home to
secondary lymphoid organs, namely lymph nodes (LN), and
spleen (Figure S1A) and themajority of Qβ-specific donorMBCs
were found in the spleen (Figure S1B).

To analyse the humoral immune response after memory or
naïve B cell transfer and Qβ VLP challenge, immunoglobulin
heavy chain allotype mice were used as shown in Figure 1A.
MBCs were induced in donor mice (IgHa) and adoptively
transferred into recipient mice (IgHb). The recipient mice were
challenged with QβVLPs 1 day after the transfer and splenocytes,
BM as well as serum were collected at the indicated time points
to determine CS B cells (outlined in Figure 1B), PCs (outlined
in Figure 1C) as well as anti-Qβ antibody titers (Figure 2).
The donor derived secondary response was discriminated from
the host’s primary response using allotype specific detection
antibodies for IgG1 and IgG2a in ELISA, as these are the main
isotypes induced by Qβ immunization (46) (Figure 2). Donor
derived antibodies after MBC transfer started to rise from day
4 after challenge, peaked around day 6 and then declined until
day 20 (Figure 2A). In contrast, host antibody titers only started
rising from day 6 and peaked at day 12. The peak titer of
the host antibodies was lower than from the donor, indicating
that MBC-derived secondary PCs dominated the early response.
In addition, the relatively rapid decline of the donor-derived
antibody titer is a clear indicator that the functional response of
secondary PCs is unexpectedly short-lived.

Whether donor-derived MCBs could undergo a tertiary
response was assessed next. To this end, recipient mice were
challenged a second time with VLPs on day 61. Surprisingly,
only the host-derived but not the donor-derived antibody
response could be boosted, demonstrating that MBCs cannot
participate twice in a humoral response after challenge with
VLPs (Figure 2A). This suggests that essentially all MBCs
generated against VLPs instantly differentiated to secondary PCs
after re-stimulation without supplying a new MBC population.
As expected, transferred naïve donor cells did not respond
to the VLP challenge, as they also did not engage in the
primary response (Figure 2B). Of note, host antibody levels
were elevated after naïve B cell transfer compared to the host
response in presence of MBCs (Figures 2A,B). This indicates
that the presence of MBC derived secondary PCs suppresses the
hosts humoral response after VLP challenge, confirming earlier
observations (35).

In order to analyze the antibody avidity of the secondary
antibody response, a modified ELISA was performed. For this
purpose, low avidity antibodies were dissociated by treatment
with 7M urea. Only high avidity antibodies remain bound under
these conditions (47, 48). Comparing the OD values of urea vs.
PBS treated sera, an avidity index was calculated. The primary
response antibodies of the host started to increase in avidity
between day 6 and 9 after immunization (Figures 2C,D). The
avidity increase proceeded until day 21. In marked contrast,

avidity of antibodies derived from secondary PCs was high
as of day 4 after challenge and did not further increase
(Figure 2C). Thus, secondary PCs are not only superior in
antibody production but also in antibody avidity.

MBCs Do Not Extensively Proliferate
Before Differentiating to Secondary PCs
Upon Cognate Antigen Challenge
To be able to study proliferation of MBCs before differentiation
to PCs, purified B cell populations were labeled with CFSE
prior to adoptive transfer. One day after transferring the MACS
purified and CFSE labeled B cells, congenic recipient mice (Ly5.2)
were challenged with 50 µg Qβ VLPs. Flow cytometric analysis
of the Qβ specific CS B cells (Figure 1B) showed that all MBCs
had proliferated as essentially no CFSE+ Ly5.1+ Qβ-specific cells
could be observed (Figure 3A, right histogram). Nevertheless,
there was a robust number of CFSE+, Ly5.1+, B220+ cells,
which were not specific for Qβ, demonstrating survival of labeled
cells upon adoptive transfer (Figure 3A, left histogram). The
proliferation seen in this subset could be attributed to bystander
proliferation or plasma blasts generated after proliferation and
differentiation of MBCs, which had already downregulated
surface BCR expression but are still B220+. Thus, essentially all
MBCs proliferated but this proliferation was not extensive and
of short duration, as few MBCs accumulated but rather rapidly
differentiated into secondary PCs (see below).

Transferred MBCs Are Detectable in the
Specific B Cell Compartment Only at Early
Time Points Upon VLP Challenge
In order to follow theMBC response upon transfer and challenge,
the specific CS B cells were analyzed in the spleen by flow
cytometry (FCM). VLP-specific CS B cells of donor (Figure 3B)
and host (Figure 3C) origin were visualized as defined in
Figure 1B and viable (Figures S2A,B). An increased number of
Qβ specific donor derived cells was found, when MBCs were
transferred compared to naïve B cell transfer on day 4 and
5 after VLP challenge (Figure 3B). This difference was more
pronounced on day 5 but was already absent on day 6 post
immunization. The host response in the CS B cell compartment
was comparable between memory and naïve B cell transfer on
day 4 and 5 after challenge (Figure 3C). However, the host B cell
response seemed to be slightly impaired at day 6 when MBCs
were present suggesting that MBCs suppress the response of
the naïve host B cells (Figure 3C). This was consistent with the
reduced host antibody titer in the presence of MBCs observed
above (Figures 2A,B).

Secondary PCs Are Rapidly Induced but
Are Functionally Short-Lived
To characterize the secondary PC population ELISPOT assays
of spleen and BM were performed. As suggested by the
antibody responses, secondary PCs occurred very promptly
and reached high numbers 4 days after Ag challenge but the
population rapidly contracted within the next 2 days (Figure 4A).
Similar observations were made in the BM (Figure 4B). Besides
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FIGURE 1 | Adoptive transfer of Qβ VLP specific or naïve B cells and flow cytometric analysis of Qβ specific CS B and plasma cells in the spleen. (A) Congenic mice

(Ly5.1 or IgHa) were immunized with 50 µg Qβ VLPs i.v. Eight weeks after immunization spleens of immunized and naïve mice were isolated and PNA− B220+ MACS

purified cells were transferred into host mice (Ly5.2 or IgHb). Recipient mice were immunized with 50 µg Qβ VLPs i.v. 1 day after the transfer. Spleens, bone marrow,

and serum were taken at several time points after challenge. (B) Representative FCM plots for the gating strategy to identify Qβ specific CS B cells in the spleen 5

days after immunization. B220+ cells not expressing IgM, IgD, CD4, CD8, CD11b, CD11c, or GR1 were analyzed for their binding of labeled Qβ VLPs. The congenic

Ly5 marker was used to discriminate transfer from host derived CS B cells. (C) Representative FCM plots for the gating strategy to identify Qβ specific PCs in the

spleen 5 days after immunization. B220low cells not expressing IgM, IgD, CD4, CD8, CD11b, CD11c, or GR1 were analyzed for their intracellular binding of labeled Qβ

VLPs. The congenic Ly5 marker was used to discriminate transfer from host derived PCs cells.

ELISPOT analysis, PCs were enumerated by FCM, where the
same pattern emerged. Secondary PCs occurred rapidly and
peaked between days 4 and 5 but were largely absent by day 6
(Figure 4C). Thus, secondary PCs are induced within a few days
but appear to be short-lived. As observed above for the CS B
cells, the PC compartment of the host is similar on days 4 and
5, whereas it is slightly decreased on day 6 when MBCs were
transferred (Figure 4D).

Transfer Derived Secondary PCs Show
Enhanced Capacity to Produce Antibodies
in Spleen and BM
As previously described, one hallmark for secondary PCs is their
enhanced capacity to produce antibodies after cognate antigen
challenge (35). An indicator for enhanced antibody production
during MBC responses was the spot size in ELISPOT assays,

as it is correlating with the amount of antibodies produced by
one PC. Representative images of ELISPOTs from splenocytes
after memory or naïve B cell transfer and challenge with VLPs
are shown (Figure 5A). Every spot on the plate represents one
Qβ specific PC and the spot diameter correlates the amount of
antibody that is produced by one PC. Spot diameters of specific
PC populations in spleen and BM were analyzed 4–6 days after
adoptive transfer of memory or naïve B cells that were challenged
with VLPs. The spot diameter from spleen and BM was always
greater when MBCs were transferred. The most significant
difference however was observed on day 5 after Qβ VLP
challenge, representing the peak of the secondary PC response
(Figures 5B,C). This observation was confirmed by FCM on day
5 after MBC transfer and challenge, as the mean fluorescent
intensity (MFI) of intracellular anti-IgG binding was increased
in donor-derived compared to host PCs (Figure 5D). As the
MFI of intracellular Qβ binding correlated with the amount of
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FIGURE 2 | Memory B cell derived secondary PCs produce antibodies of higher avidity. (A) MBC responses were initiated by vaccinating IgHa mice with 50 µg Qβ

VLPs. After 8 weeks, PNA− and B220+ MACS purified B cells from memory (A) or naïve (B) donor mice were transferred into congenic recipients (IgHb). Recipient

mice were challenged with 50 µg Qβ VLPs 24 h and 61 days after the transfer. The anti-Qβ IgG1 and IgG2a antibody titers in the serum were determined by ELISA on

days 0, 2, 4, 6, 9, 12, 15, 21, 42, 61, 65, 68, and 85. Using Ha and Hb allotype specific detection antibodies, donor (IgHa), and host (IgHb) responses were

discriminated. To determine the avidity index of IgGs in the sera after memory (C) or naïve (D) B cell transfer and VLP challenge, a modified ELISA was performed.

Mean with SEM. P values were calculated using an unpaired t test. n = 4 mice per group. Data representative of 2 independent experiments. *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001.

intracellular anti-IgG binding it can serve as a surrogate for the
amount of antibody present inside PCs (Figure 5D). The MFI
of intracellular Qβ binding was significantly increased 4 and
5 days after challenge with Qβ when MBCs were transferred
(Figure 5E). Taken together the results of the spot size and
intracellular staining of spleen and BM-derived PCs indicated
that secondary PCs produced increased amounts of antibodies.

Both spot size and intracellular staining with Qβ-VLPs may
not linearly correlate with antibody production. To estimate
the amount of antibodies produced by secondary vs. primary
PCs more directly, splenocytes were collected and cultured from
mice 5 and 6 days after adoptive transfer and VLP challenge.
Whole splenocytes were seeded into 24 well-plates for 72 h
and frequencies of specific PCs were quantified by FCM at
the beginning of the culture. The amount of anti-Qβ antibody
in cell culture supernatants of splenocytes harvested 5 and 6
days after challenge was ∼30 fold increased when MBCs were
transferred, again demonstrating that secondary PCs produced
elevated antibody levels (Figure 5F). The total amount of anti-
Qβ antibody decreased from day 5 to day 6 after memory transfer
(Figure 5F) further demonstrating their short lived nature.
Nevertheless, the amount of specific antibody per PC stayed

the same (Figure 5G). After naïve transfer, on the contrary, the
amount of antibody per PC increased over time, as the primary
response evolved (Figure 5G). This massively increased protein
production by secondary PCs illustrates the stress these PCs may
be exposed to, probably resulting in the short live span.

DISCUSSION

Long-lived PCs are crucial for sustained immune protection
through secretion of specific antibodies (24). However, PCs do
not always become long-lived during infection or vaccination
because most of the PCs die early during the immune response.
In fact, during primary immunogenicity studies using VLPs, we
observed that the PC population in spleen emerged on day 4,
peaked at day 7 and subsequently declined rapidly, followed
by a phase of more stable PC frequencies (35). Hence, most
PCs formed initially against Qβ are short-lived (41). This short
lifespan may be a result of the irrevocable cell cycle arrest which
PCs usually enter and therefore cannot maintain a cellular pool
by means of proliferation. In contrast, the state of irreversible cell
cycle quiescence must be controlled by mechanisms to enable
long-term PC survival. Moreover, the ephemerality of the early
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FIGURE 3 | MBCs do not extensively proliferate before differentiating to secondary PCs upon cognate antigen challenge. PNA−, B220+ MACS purified cells from Qβ

immune (8 weeks post immunization) or naïve Ly5.1 mice were labeled with CFSE and transferred into congenic hosts. Recipient mice were challenged 24 h later with

50 µg Qβ VLPs i.v. (A) Representative FCM plot to identify Qβ specific CS B cells in the spleen 5 days after challenge. B220+ cells negative for IgM, IgD, CD4, CD8,

CD1b, CD11c, and GR1 were analyzed for their Qβ binding. CFSE dilution was examined to prove proliferation of donor derived cells (Ly5.1+). (B,C) Number of Qβ

specific CS B cells on day 4, 5, and 6 after challenge identified by FCM as B220+, negative for IgM, IgD, CD4, CD8, CD11b, CD11c, GR1, and binding Qβ. Qβ

specific donor (B) derived cells were distinguished from host derived cells (C) using the Ly5 congenic marker. Mean with SEM. P values were obtained using a

one-way ANOVA followed by Tukey’s multiple comparisons test. **p < 0.01. n = 4 mice per group. Data representative of at least 2 independent experiments.
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FIGURE 4 | Transfer of memory B cells leads to an increased number of PCs, which are rapidly induced but short-lived. Congenic Ly5.1 mice were immunized with

Qβ VLPs to generate MBCs. Eight weeks after the immunization PNA−, B220+ MACS purified cells from memory or naïve mice were transferred into congenic hosts.

One day after the transfer, recipient mice were challenged with Qβ VLPs and the anti-Qβ PC response in spleen and BM was elucidated by ELISPOT and FCM.

Number of Qβ specific PCs in spleen (A) and BM (B) on day 4, 5, and 6 after challenge determined by ELISPOT. FCM analysis of Qβ specific PCs within the B220low,

IgM, IgD, CD4, CD8, CD11b, CD11c, and GR1 negative compartment, by intracellular Qβ binding after membrane permeabilisation. Qβ specific donor derived PCs

(C) were distinguished from host derived PCs (D) using the Ly5 congenic marker. Mean with SEM. P values were obtained using a one-way ANOVA followed by

Tukey’s multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001. n = 4 mice per group. Data representative of at least 1–2 independent experiments.

PCs could also be due to ER stress caused by themassive antibody
production. Cell intrinsic constraints like unfolded protein
response (UPR) and autophagy can rescue PCs from cell death
but the cells additionally require sufficient nutrients, external
survival signals and a survival niche (30, 49–52). Long-lived PCs
are found in both the spleen and BM. However, the numbers of
niches is finite, thus restricting the number of PCs with access to
them (1). In fact, most VLP specific PCs reaching the BM do not
survive as the number of PCs rapidly declines initially also in the
BM (45). The constant competition for space and survival signals
of PCs within the BMmay provide an opportunity to manipulate
PC survival for long-term antibody production upon vaccination
as well as for therapies of malignant PC diseases (53). Moreover,
CD28 has been shown to be expressed by human and mouse
PCs (54, 55). Engagement of CD28 with CD80/CD86 derived
from cellular partners in the PC niche was demonstrated to be
important for BM long-lived PC survival, half-life and sustained
antibody responses. Downstream signaling of CD28 induces
BLIMP1 upregulation and is therefore involved in regulating PC

differentiation and maintenance (55, 56). Furthermore, CD28
was shown to regulate glycolysis in long-lived PCs providing
glycolytic end products for oxidative energy production and
biosynthesis (57). Additionally CD28 regulated mitochondrial
metabolism and respiration which favored survival of long-lived
PCs (58, 59). In contrast to long-lived PCs, CD28 exhibited a
higher activation threshold in short-lived PCs and therefore had
no positive impact on their survival (55). Together with limited
access to CD80/CD86molecules derived from BMPC niche cells,
the increased threshold of CD28 activation could be reasons for
the short-lived nature of the secondary PCs. We are currently
assessing a potential role of CD28 in the lifespan of primary and
secondary PCs.

A population of MBCs is maintained after the decline of
immune responses and may be activated upon re-infection to
rapidly differentiate into PCs, which secrete antibodies. However,
it has also been reported thatMBCs can re-enter GCs and interact
with T follicular helper cells shaping the immune response and
generating a new pool of MBCs. In analogy to memory T
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FIGURE 5 | Transfer derived secondary PCs show enhanced capacity to produce antibodies in spleen and BM. PNA−, B220+ MACS purified cells from Qβ immune

(8 weeks post immunization) or naïve Ly5.1 mice were transferred into congenic hosts. One day after the transfer, recipient mice were challenged with 50 µg Qβ VLPs

i.v. Splenocytes and BM cells were analyzed by ELISPOT and FCM on day 4, 5, and 6 after challenge. (A) Representative images of anti-Qβ ELISPOTs on day

5 after challenge in the spleen. Quantification of spot diameter in spleen (B) and BM (C) on day 4, 5, and 6 after challenge. (D) Quantification of mean intracellular Qβ and

(Continued)
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FIGURE 5 | anti-IgG binding of donor and host derived PCs on day 5 after memory transfer and challenge. (E) Quantification of mean intracellular Qβ-VLP binding of

donor and host derived PCs after memory transfer. (F,G) Splenocytes were isolated 5 and 6 days after challenge and cultured for 3 days in vitro. Secreted antibodies

in the cell supernatant were determined by ELISA. (F) Amount of anti-Qβ antibody secreted during the 72 h splenocyte cell culture. (G) Amount of specific antibodies

produced per PC 5 and 6 days after memory or naïve cell transfer and challenge. Mean (B,C,F,G) or geometric mean (D,E) with SEM. P values were obtained using a

one-way ANOVA followed by Tukey’s multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001. n = 4 mice per group (A–C,E–G), n = 3 mice per group (D).

Data representative of 1–2 independent experiments.

cells, these two different effector functions of MBCs define two
distinct cellular compartments: the effector MBCs differentiating
into PCs for rapid antibody production and the central MBCs
playing a role in re-initiating the GC response and maintaining
the MBC pool (60). The secondary PCs described herein are
derived from effector MBCs that were generated by a single
round of immunization using Qβ-VLP. B cell intrinsic toll-like
receptor (TLR) 7 stimulation was shown to be essential for MBC
generation that were capable of differentiating to secondary PCs
(61). Intriguingly, VLP specific MBCs only responded a single
time to Ag re-stimulation, namely by terminal differentiation
into short-lived PCs. These secondary PCs were B220− and no
longer carried their Ig on the surface and therefore could not
be further stimulated with the Ag. Baptista et al. studied PC
differentiation in response to innate stimuli in the absence of
antigen and observed that TLR9 signaling by CpG failed to
differentiate follicular B cells into PCs whereas TLR4 stimulation
by lipopolysaccharide (LPS) induced antibody production, PC
surface markers such as CD138 and canonical transcription
factors like IRF4, BLIMP1 or XBP1 (62). Furthermore, ligation
of BCR and TLR7 was shown to drive PC differentiation
(63, 64). Therefore, the downregulation of BCR and B220
expression and increased antibody production seen in response
to MBC re-stimulation with VLPs containing bacterial RNA
are clear signs of PC differentiation. Nevertheless, we never
found a homogenous CD138+ cell population using VLPs for
vaccination. Consequently, further work needs to be done to
determine the expression of classical PC transcription factors and
surface markers to characterize the phenotype of secondary PCs
in more detail.

The avidity of the antibodies secreted by secondary PCs
was very high at early time points after immunization, a level
which antibodies generated during a primary response only
reached by day 20 upon VLP immunization. This finding is
consistent with the notion that secondary PCs derive fromMBCs
which have undergone avidity maturation in a GC reaction
(45). Thus, secondary PCs provide the host with a rapid wave
of high-avidity antibodies. The great amount of VLP-specific
IgG, which is present early during the recall response, is most
likely responsible for the suppression of the host response. Link
et al. demonstrated that VLPs complexed to specific IgGs were
taken up by macrophages in the subcapsular sinus and did
not efficiently reach B cell follicles and follicular dendritic cells,
leading to antigen deprival for naïve B cell activation (65).

Surprisingly, secondary PCs did not have a long functional
lifespan, neither in spleen nor in BM. In fact, most of them
disappeared from lymphoid organs within 6 days after Ag re-
stimulation. The dominant pool of long-lived PCs induced in
the presence of MBC was derived from primary B cells. The
early death of secondary PCs is probably a consequence of the

enhanced antibody production, which increases cellular stress
levels. Access to niches seems less important, as numbers of
primary and secondary PCs are similar at day 6 after challenge,
and yet only primary PCs become long-lived. The increased
antibody production in secondary PCs more likely accounts
for the short lifespan due to increased ER stress as well as
accelerated demand for nutrients. The fact that secondary
PCs produce at least 30 times more antibody than primary
PCs underscores this point. It has been shown that PCs are
able to adapt their metabolism according to the changing
environment, but secondary PCs may be induced too quickly
to produce very large amounts of antibodies, to be able to
adapt their metabolism sufficiently. In addition, they may not
live long enough to actually find a niche allowing their long-
term survival. In this respect, secondary PCs behave more like
innate cells, which usually respond very rapidly but are short-
lived as well. In terms of surface marker and transcription factor
expression, secondary PCs most likely do not differ extensively
from other PC populations. However, there are substantial
functional differences.

The fact that during viral infection all MBCs differentiate
into functionally short-lived secondary PCs has interesting
biological implications as it keeps the antibody repertoire flexible
and adaptable to the changing world of pathogens, as e.g.,
influenza viruses. Secondary PCs produce an early wave of high
avidity antibodies specific for the strain of pathogen previously
encountered. Under this early protective antibody umbrella,
naïve B cells are activated, initiate a novel GC reaction and
generate high avidity PCs andMBCs for the current version of the
pathogen. This mechanism ensures that the antibody repertoire
is not frozen to the specificity for a single version of a pathogen
but remains adaptable to their evolution. In this respect, the here
presented mechanism ensures that original antigenic sin does not
limit the dynamics and broadness of the antibody repertoire too
extensively (25, 66, 67).

In summary, we demonstrate here that upon challenge with
viral particles MBCs differentiate rapidly into secondary PCs,
providing the host with an early wave of high avidity antibodies.
Thus, induction of effector MBCs, which can provide rapid
and effective protection by differentiating into secondary PCs,
may be a promising alternative that should be considered in
vaccine development.
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