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Editorial on the Research Topic

Cytokine-Mediated Organ Dysfunction and Tissue Damage Induced by Viruses

Cytokines are small proteins, mostly secreted into the extracellular environment, that bind to
specific cell surface receptors, which mediate cell differentiation, migration, growth, and death.
Gene expression and cellular release of cytokines are strictly regulated to assure proper function
of cells, tissues, and organs. Upon virus infection, a cell starts producing type I interferons (IFN)
and inflammatory cytokines (ICs) to restrict spread and replication of the respective virus. Ideally,
the virus is completely eliminated by the immune system and the antiviral mechanisms are turned
off within a reasonable time frame. However, there are different scenarios where this process does
not work efficiently or does not happen at all, leading to cytokine-mediated organ dysfunction and
tissue damage.

First, if a virus inhibits type I IFN production and signaling but does not prevent expression
of ICs, then this virus spreads further, and more viral components are in the system, which
continuously amplifies ICs production. The lung is one organ that is especially vulnerable to such
a “cytokine storm,” triggered, for example, by infection with respiratory syncytial virus (RSV) or
influenza virus. In a comprehensive review article, Bohmwald et al. describe in detail where and
which cytokines are induced during human RSV infection and their potential contribution to
damage of not only the lung but also the brain. The pathophysiological production of ICs is most
probably also due to the ability of RSV to induce the expression of Toll-like receptor (TLR) 4 in
human airway epithelial cells, which normally do not respond to endotoxin (1).

Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus, increases TLR4 expression as
well as TLR2, IL-1β, and IL-6 expression in human monocyte-derived dendritic cells (2). Sun et al.
confirmed upregulation of TLR4 expression by AFB1 in porcine alveolar macrophages (PAMs) and
mice infected with swine influenza virus (SIV) subtype H1N1. Importantly, they show that AFB1
exacerbates lung damage in mice during SIV infection, caused by a TLR4-dependent increase in
viral replication and TNF levels. Consequently, uptake of AFB1, for example by contaminated food
(3), could aggravate the course of flu.

Experimental evidence suggests that extrarespiratory induction of ICs such as TNF, IL-6, and
IL-8 contributed to deadly infection with the 1918 H1N1 influenza A virus (IAV) strain (4), which
hit mankind during World War I, a period when not sufficient food was available (5). Similarly,
systemic high levels of IL-6 and IL-8 were detected in humans infected with IAV subtype H5N1,
especially in those with fatal outcome, but not in humans infected with IAV subtype H3N2 or
H1N1 (6). Hence, it appears that an IAV which just passed the animal-human barrier is much more
harmful than a human adapted strain. In this respect, Krischuns et al. discovered that infection
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of human alveolar epithelial cells with highly pathogenic avian
influenza virus (HPAIV) strains, but not with human adapted
IAV strains, leads to constitutive phosphorylation of tripartite
motif (TRIM) 28 at S473 and increased production of IFN-β,
IL-6, and IL-8. TRIM28 negatively regulates transcription in a
number of ways (7), and the inability of the non-human adapted
influenza strains to prevent its deactivation could well explain
the dysregulated cytokine expression observed in individuals
infected with the IAV subtype H5N1 or the 1918 pandemic
H1N1 IAV. In conclusion, severe organ damage can occur if a
virus passes from its natural host to another species where it
can or gains the ability to replicate without having an effective
mechanism to block immunity of the other species. such a
scenario is frequently observed in humans when they are infected
with hantavirus (8). Possibly, activation of bystander CD8+ T
cells after hantavirus infection, as shown in an original article
by Raftery et al., could be a reason for the organ damages in
humans. Indeed, viral-activated bystander memory CD8+ T cells
can cause organ damage in a T cell receptor independent manner
(9). In contrast, no apparent disease is observed in rodents, the
natural reservoir hosts of all hantavirus species, which is similar
to humans where a lifelong, persistent infection with human
cytomegalovirus (HCMV) remains normally inconspicuous.
However, there are several situations in which HCMV induces
damage to organs and tissues, and Clement and Humphreys
review the involvement of cytokines therein.

The cellular tropism of human and simian immunodeficiency
virus is limited, but dysfunctions and damages also occur in
the hearts, lungs, kidneys, and brains of infected individuals.
Lehmann et al. provide a model to understand the complexity
of these pathologies based on recent cell biology findings
about systemic distribution of the viral Nef protein and
improved understanding of C-C motif chemokine ligand 2
(CCL2) dependent transendothelial cell migration. The focus
of this Mini Review is on the brain, where non-physiological
induction of CCL2 expression not only drives encephalitis but
also affects signaling and survival of neuronal cells. Indeed,
antiviral and anti-inflammatory cytokine expression have to be
well-coordinated during a viral infection in order to enable
elimination of the pathogen on the one hand, and to avoid tissue
and organ damage on the other hand. This problem is discussed
by Savarin and Bergmann on the basis of a murine model of
encephalomyelitis induced by a neurotropic strain of mouse
hepatitis virus where the interplay of IFN and IL-10 dictates the
extent of viral control and tissue pathology.

Type I IFN is required to restrict coxsackievirus B3 (CVB3)
replication (10), and Liu et al. found that functional TRIM21
is important for high level type I IFN expression in vitro and
in vivo. Additionally, they show that TRIM21 deficiency leads
to higher viral titers, stronger cardiac and pancreatic damages,
and higher levels of ICs including CCL2 in mice infected with
CVB3.Meyer et al. detected increased levels of colony stimulating
factor 1 (CSF-1) in heart biopsies of patients with myocarditis,
and by using nanoparticle-encapsulated siRNA directed against
CSF-1 they could decrease CVB3-induced monocyte infiltration
and heart damage in mice. Beling and Kespohl suggest that
therapeutic targeting the proteasome could help to prevent
immunopathology of the heart, which can be triggered by many
different viruses. Theiler’s murine encephalitis virus (TMEV)
induces myocarditis in mice, but this virus can also induce
demyelination of neurons depending on the mouse strain. A
Hypothesis and Theory article by Omura et al. summarizes
findings about the different nature of these diseases and
provides evidence that TMEV induces cell-type specific innate
immune responses and distinct organ-specific pathology. Thus,
the choice of the right animal model to study virus induced
immunopathology can be challenging. For that, Manickam et al.
provide a thorough review of non-human primate models for
understanding the extent of cytokine-mediated tissue damage
during many different types of virus infection, including dengue
virus, HCMV, hepatitis B and C virus, HIV, influenza virus, and
Zika virus.

Collectively, this Research Topic introduces some of the
complex virus-host interactions that can tip the scales toward
immunopathology. The common themes that emerge from this
collection include the potential for use of cytokines as markers
of disease and the manipulation of certain cellular molecules as
therapeutic options.
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The human respiratory syncytial virus (hRSV) remains one of the leading pathogens

causing acute respiratory tract infections (ARTIs) in children younger than 2 years

old, worldwide. Hospitalizations during the winter season due to hRSV-induced

bronchiolitis and pneumonia increase every year. Despite this, there are no available

vaccines to mitigate the health and economic burden caused by hRSV infection. The

pathology caused by hRSV induces significant damage to the pulmonary epithelium,

due to an excessive inflammatory response at the airways. Cytokines are considered

essential players for the establishment and modulation of the immune and inflammatory

responses, which can either be beneficial or harmful for the host. The deleterious effect

observed upon hRSV infection is mainly due to tissue damage caused by immune

cells recruited to the site of infection. This cellular recruitment takes place due to an

altered profile of cytokines secreted by epithelial cells. As a result of inflammatory

cell recruitment, the amounts of cytokines, such as IL-1, IL-6, IL-10, and CCL5 are

further increased, while IL-10 and IFN-γ are decreased. However, additional studies

are required to elicit the mediators directly associated with hRSV damage entirely. In

addition to the detrimental induction of inflammatory mediators in the respiratory tract

caused by hRSV, reports indicating alterations in the central nervous system (CNS)

have been published. Indeed, elevated levels of IL-6, IL-8 (CXCL8), CCL2, and CCL4

have been reported in cerebrospinal fluid from patients with severe bronchiolitis and

hRSV-associated encephalopathy. In this review article, we provide an in-depth analysis

of the role of cytokines secreted upon hRSV infection and their potentially harmful

contribution to tissue damage of the respiratory tract and the CNS.

Keywords: human respiratory syncytial virus, cytokines, chemokines, tissue damage, inflammation

INTRODUCTION

Prevalence of hRSV Infection Worldwide
The human respiratory syncytial virus (hRSV) is one of the primary viral agents causing
hospitalizations due to acute lower respiratory tract infection (ALRTI) in young children,
immunocompromised and elderly individuals worldwide (1, 2). The epidemic period for hRSV
infections usually takes place during the winter season in areas with temperate climates (3).
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This pathogen causes pulmonary manifestations mainly in the
upper and lower respiratory tract, promoting the development
of bronchiolitis and pneumonia (Figure 1) (4, 5). Some of the
risk factors associated with the development of hRSV-associated
ALRTI are premature birth, low birth weight, maternal smoking,
history of atopy and no history of breastfeeding in infancy,
among others (6). A recent report estimated that -during 2015-
hRSV-associated ALRTI episodes reached a global burden of
33.1 million, resulting in 3.2 millions hospital admissions and
around 60,000 in-hospital deaths in children under the age of 5
(1), although, no global studies of other populations such as the
elderly or patients with underlying medical conditions have been
conducted (7). Reinfections during childhood and adulthood are
very common, and the severity of hRSV infections in healthy
adults is mild. This decrease in severity has been related to higher
neutralizing antibody titers induced by constant challenges with
the virus throughout life (8). Besides children, the elderly have
been described as another high-risk population, probably because
of their senescent immune system (9). In this population, hRSV is
the leading viral pathogen, which causesmorbidity andmortality,
followed by influenza A (10).

Besides the airway pathologies caused by hRSV, neurologic
complications have also been described after infection with this
virus, although less frequently (11–13). The etiology of the
neurological alterations remains unknown. However, it has been
proposed that inflammatory mediators, such as cytokines could
be playing an essential role in the development of neurologic
alterations (14, 15).

The hRSV is a highly contagious virus, as it can live outside of
the host for about 6 h on hard surfaces, and as much as 20min
on the skin (16). Also, people that are infected with this virus
remain contagious up to 8 days starting from the day of infection
(17). Studies have shown that at least a third of the children
experiencing hRSV infection within their first year of life will
get re-infected during their second or third year of life (18).
Patients infected with this virus cannot promote an adequate
immunological response and, therefore, can get infected again
with the same virus in the same cohort (19). In this regard, it
has been described that this virus can impair the assembly of a
proper immunological synapse between the antigen-presenting
cells (APC), such as the dendritic cells, and T cells (Figure 1B)
(20). In this way, hRSV renders T cells unable to respond
correctly, which may lead to a poor adaptive immune response
against the virus and, consequently, the reinfections mentioned
above (Figure 1).

Most studies, aimed to determine the economic burden
associated with hRSV, measure its immediate impact on health-
care resources, such as hospitalizations, ambulatory care, and
emergency department visits, focusing primarily on infant
populations (21–23). It is noteworthy that hRSV has been
associated with long-term illness such as asthma and recurrent
wheezing (24, 25), which could represent a substantial increase
in the economic burden related to this pathogen (26, 27).

Currently, there are no licensed vaccines available for
preventing hRSV infection although several groups are working
in the development of potentially effective vaccines and therapies.
Nowadays, the only drug available on the market designed to

ameliorate this disease is palivizumab, a humanized monoclonal
antibody against the fusion protein (F-protein) of the virus. This
product is used as a prophylactic option, along with ribavirin
as a therapeutic option, although this strategy is only used in
high-risk patients, such as children born after ≤29 weeks of
gestation and preterm infants with chronic pulmonary disease
(28, 29). Because this treatment fails to target most of the
population susceptible to hRSV-caused disease, (i.e., healthy
infants, children, and the elderly), the development of an effective
vaccine is imperative (21, 22, 30). Several studies have concluded
that the cost-effectiveness of palivizumab might not be enough
to recommend the massive use of this antibody (22, 31–33).
However, other studies have concluded that it does reduce
the severity of infection and long-term effects on children,
suggesting that it can diminish the spending of health-care
resources (34, 35).

hRSV: General Characteristics and
Infective Cycle
The hRSV has been recently defined as a member of the
Orthopneumovirus genus from the Pneumoviridae family being
also recently renamed as human Orthopneumovirus and is an
enveloped, negative-sense and single-stranded RNA virus with
a genome of about 15.2 kb, possessing 10 genes that encode
for 11 proteins (36–38). The viral particle displays 3 surface
proteins, the F-protein, the glycoprotein (G) and the small
hydrophobic (SH) protein (Figure 1A). Of all these, the G-
protein is responsible for the attachment with the membrane of
the host cell (39), mainly by binding to the CX3CR1 receptor on
ciliated epithelial cells (40, 41). The fpre F-protein is responsible
for the fusion of the viral membrane with the host cell membrane
and further entry of the viral genetic material into the cytosol,
apparently by its interaction with the surface protein nucleolin,
although other receptors have been described to play a role in
this process (42).

This virus can be transmitted by aerosol particles person-to-
person, or via direct contact of these aerosol particles with the
exposed mucosa, such as conjunctival (43). After infection, the
incubation period can vary between 2 and 8 days in healthy
individuals (44). At the beginning of hRSV infection, the virus
meets the first line of defense of the organism, consisting of
epithelial cells from the nasal and upper respiratory tract (45, 46).

The airway epithelium presents the apical junctional complex
(AJC), which seals the space between the layer of epithelial cells
and acts as a barrier that prevents the entry of pathogens into
the organism (47). It has been described that hRSV infection
induces a dysfunction in the epithelial barrier in a protein kinase
D (PKD)-dependent manner (48). After infection by hRSV,
cells exhibit a disruption of the AJC, which can be prevented
when PKD-inhibitors are added, as described previously (48).
As mentioned above, once hRSV reaches the apical side of
the ciliated epithelial cells, the G and F proteins allow the
attachment and fusion of the virus to the host membrane,
respectively (39, 42).

After the virus has fused with the membrane of the host cells,
it then begins the mechanism of entering the cells. The entry of
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FIGURE 1 | hRSV structure and impact over epithelial cells and respiratory tract. (A) The viral particle is composed of 9 structural proteins: 3 in the surface (F, G, and

SH) and the other 5 inside the particle (L, N, P, M, M2.1, and M2.2). (B) Upon infection, it has been described that epithelial cells upregulates their expression of

several TLRs and secrete mainly pro-inflammatory cytokines. Remarkably, it has also been described that hRSV infection of antigen presenting cells (APC) renders

them unable to properly activate T cells, as this virus is able to inhibit the assembly of an immunological synapse. (C) hRSV infection induces the secretion of several

pro-inflammatory cytokines that will induce the infiltration of many immune cells. These immune cells, along with the hypersecretion of mucus and the shedding of the

infected epithelial cells, will induce the collapse of the lower respiratory tract. Finally, it has been described that hRSV infection can cause CNS pathologies, although

the mechanism underlying this have not been described.

the virus is through an endocytosis-dependent mechanism and
allows the entering of the whole virus, including its lipid envelope
(49). Then, the virus is carried within endocytic vacuoles, and
undergoes a second fusion, this time with the vacuole itself, that
occurs when the F-protein is cleaved by a furin-like convertase,
to render the virus able to infect the cell (49). Then the virus
reaches the cytoplasmic inclusion bodies (IBs) of the cells, where
it can replicate its RNA using the viral RNA-dependent RNA
polymerase (RdRp) complex, which is composed of the large
protein (L) and the phosphoprotein (P) of the virus (50). As
transcription goes on, the viral protein M2-1 is added to the
complex allowing the synthesis of the mRNA (50, 51). The
virus starts the replication of its RNA in the nasal epithelial
cells and then it moves toward the bronchioles, where the
replication becomes more effective (44). The virus spreads via
intercellular extensions between two cells or through the cell to
cell transmission, and in both cases, the infected cell is the one
who passes the virus to the target cell (52).

To study the pathology associated with hRSV and the immune
response during the infection, the use of several animal models
has shown to be extremely important (53, 54). Lately, mice
have been the animal model of choice for most immunology
studies on this virus (53), although it is important to emphasize
that the immune response observed in mice is not necessarily

identical to the one observed in human patients. Some of these
differences in the immune response between mice and humans
are remarkable, for instance, the fact that older mice are more
susceptible to hRSV-infection as compared to younger mice
(55). Some techniques and methods to determine hRSV disease
severity used in murine models are also different from those used
to evaluate these parameters in humans. For instance, recording
the body weight changes as a parameter of disease severity
(more weight loss implies a more severe disease) is frequently
used in the murine model, but it is not used as a parameter
in humans disease (53). Also, obtaining bronchoalveolar lavage
fluid (BALF) samples from mice is a standard procedure to
evaluate inflammatory parameters, and these results can vary
significantly from those observed in humans (53, 56). Although
some differences can be observed, the data relative to cytokines
and chemokines in the lower respiratory tract of mice and
humans varies little, and to our knowledge, no published studies
are describing these molecules in the upper respiratory tract and
central nervous system (CNS) of mice (Table 1).

Further, in this review, we will provide an in-depth analysis
of the current information available regarding the inflammatory
mediators that are induced upon hRSV infection, and which
ones are produced, up-regulated and down-regulated in the
different sections of the respiratory tract and the CNS (Table 1).

Frontiers in Immunology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 45210

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bohmwald et al. Cytokines Induced by hRSV Infection

TABLE 1 | Effect of hRSV infection on the expression profile of cytokines in the

upper and lower respiratory tract and entral nervous system.

Organism Upper

respiratory

tract

Lower

respiratory tract

Central

nervous

system

Human IL-6 (57, 58) IL-6

(14, 15, 59)

TNF-α (57, 58)

IL-4 (60–62)

TNF-α

(63, 64)

IL-6 (60)

IL-12 (65) IL-9 (60, 66)

IL-23 (65) IL-10

(60–62, 67–69)

IL-13 (60–62)

IFN-γ (66)

IL-17 (70, 71)

TSLP (72)

CXCL8

(57, 58, 73)

CXCL8 (74) CCL3

(57, 58, 75)

CCL2 (15)

CCL5 (74) CCL4 (57, 58) CCL4 (15)

CXCL10 (74) CCL2 (57, 58) CXCL8

(15)

CCL5

(57, 58, 75)

Mouse – IL-6 (76) –

IL-1β (77)

TNF-α (77)

IFN-γ (77)

IL-12 (77)

TSLP (78)

– CCL3 (77) –

CCL5 (77)

Additionally, we will discuss the contribution of cytokines to
the immune response and immunopathology observed after
hRSV infection.

CYTOKINES ELICITED BY hRSV
INFECTION

Among the inflammatory mediators that have been described
to play an essential role in the hRSV pathology are cytokines
and chemokines. Cytokines are small secreted molecules that
contribute significantly to the modulation of the immune
response and T cells differentiation (79). Several cell types
can produce and secrete cytokines including immune cells,
epithelial cells, and endothelial cells, amongst others (80, 81).
Depending on the effect that they generate over immune cells,
they can be classified into two groups; pro-inflammatory and
anti-inflammatory (79). Interleukin (IL)-1, tumor necrosis factor
alpha (TNF-α), interferon-gamma (IFN-γ), and IL-6, among

others (79, 82, 83) belong to the pro-inflammatory group, IL-10 is
anti-inflammatory, and IL-12 can be pro- and anti-inflammatory
cytokine (Figure 1C) (84, 85).

Among cytokines, chemokines are a group of proteins
with chemoattractant properties and are characterized by three
to four cysteine residues present in their structure (80, 84).
These proteins can be classified -according to the position of
the cysteines residues in their N-terminal portion- into four
families. The first family is the C-C chemokines present the
cysteine residues continuously. The second family is the C-X-C
chemokines present one amino acid between the two cysteine
residues. The third family is the X-C chemokine only present one
cysteine residue in a conserved position (this family is composed
of only one member; XCL1). Finally, the four family is the C-X-
3-C chemokine, which presents two cysteine residues separated
by three interchangeable amino acids (This family possesses only
one member; CX3CL1) (84, 86). Another relevant characteristic
of chemokines is that they are considered to be promiscuous
proteins, as they can interact with more than one chemokine
receptor and one receptor can bind more than one chemokine
(86). Additionally to their chemoattractant function, chemokines
play an essential role in maintaining the homeostasis during
the development of the brain, heart, and hematopoietic system,
among others (86). Besides, they are also critical players in the
modulation of the immune response during infections, as they
are responsible for the infiltration of immune cells into the site of
injury (84, 86).

CYTOKINES INDUCED BY hRSV
INFECTION IN THE UPPER RESPIRATORY
TRACT

As mentioned above, the hRSV infection starts with the virus
reaching the mucous membranes of the eyes, nose or mouth,
allowing it to enter the organism (87). The first zone of infection
is the upper respiratory tract, where it targets the ciliated
epithelium of the nasopharynx, and then it moves toward the
lungs, blocking the airways as the infection proceeds (Figure 1C)
(88). This inflammation -known as bronchiolitis or pneumonia,
accordingly to the degree of the disease- involves infiltration
of polymorphonuclear cells (PMNs) such as neutrophils and
eosinophils. Moreover, the rounding and shedding of the infected
epithelial cells apparently caused by the NS2 protein, as described
by Liesman et al. (74) inducing the collapse of the alveolar spaces
and, therefore, impaired oxygen exchange (89). Remarkably,
humans are born with at least a third of the alveoli that they
will possess once the lungs are fully developed, with alveolar
walls similar to the ones seen in an adult (90, 91). However,
during childhood, these structures exhibit a lower area/volume
ratio when compared with a fully developed lung, a rate that
is increased until adolescence. Therefore, the useful space for
gas exchange is reduced in early stages of human development.
This phenomenon could explain for the exacerbated pathology
observed in children, compared to teenagers and adults, with
even further complications the younger they are (90, 91).
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Several reports have described the changes in the ciliated
epithelium upon infection with this virus. For instance, Wong
et al. described that, upon infection, total loss of cilia is reported,
mainly associated with microtubule damage (92). These could be
in direct relation with reports indicating that this virus replicates
in the apical cell surface of these cells (93). Remarkably, Smith
et al. described that infection with hRSV could induce ciliary
dyskinesia and ciliary loss of epithelial cells early during the
infection, impairing in this way the clearance of the respiratory
tract (94). Interestingly, Jumat et al. recently described the
morphogenesis of hRSV in epithelial cells, using a primary
culture of nasal epithelial cells as a model. They detected the
presence of the F-protein of hRSV predominantly in cilia, but
not the N-protein, observing this and several other proteins in
the non-cilia locations of the cells, indicating that, probably the
hRSV-F protein may be responsible for the damage to the cilia
(46). Therefore, upon infection, hRSV seems to replicate and
exit from non-cilia locations in the apical side of epithelial cells,
somehow causing loss of ciliary function.

In response to all this damage, the airway epithelium generates
cytokines and chemokines to recruit effector cells to the site of
infection and restrict its propagation (95), causing an exacerbated
immune response where infiltrating immune cells such as PMNs,
T cells and inflammatory mediators cause damage to the tissues
(63, 84). This exaggerated inflammatory response is increased
as the infection progresses, with hRSV inducing a Th2-like
immune response, promoting the inflammation (64). Notably,
it has been described that primary infection with hRSV induces
the transcription of nuclear factor kappa B (NF-κB) mainly
through its M2-1 protein (96). This factor, in turn, produces the
secretion of IL-8/CXCL8, TNF-α, CCL5, and CXCL10, among
others. Accordingly, transcription factor AP-1 is also required
for the expression of IL-8, as described by Dey et al. (97). Both
NF-κB and AP-1 are regulated in their expression by the TGF-
ß activation kinase 1 (TAK1), as deletion or inactivation of
this kinase reduce gene expression of the transcription factors
and decrease their nuclear translocation and DNA-binding
activity (97), suggesting that the virus could be modulating these
pathways. Finally, it has also been reported that STAT1 regulates
the secretion of IL-4 by basophils upon infection with hRSV. In
this line, Moore et al. described that KO mice for STAT1 showed
higher levels of IL-4 in lungs, upon infection; a phenomenon
that was reverted when mice were depleted from basophils.
Remarkably, this increase in the expression of IL-4 correlated
with more marked lung histopathology (98).

In light of all this, Das et al. reported that human nasal
epithelial cells infected with hRSV exhibits increased levels of
IL-6, CXCL8, and CCL5, as compared to non-infected cells (65).
Remarkably, IL-2 levels in nasopharyngeal aspirates do not seem
to correlate with hRSV infection, as Giugno et al. described that
the concentration of this cytokine was heterogeneous among
infected and non-infected children (99). The secretion of these
pro-inflammatory cytokines may be adding to the exacerbated
inflammation described in this disease (Figures 1C, 2).

Since hRSV-infected children are only brought onto health
centers once the disease has reached an advanced development
stage, it is hard to determine the temporality of the secretion

of cytokines and chemokines in humans, during this disease.
In this line, Blanco et al. performed a study in cotton rats
where they measured the transcription levels of several of these
molecules during primary and secondary infection (100). Therein
the authors show an increase in the transcription levels of all
the cytokines measured except for IL-10 during the first day
post-infection. A peak for IL-6, IFN-α, and TNF-α, was detected
during day 1 post-primary infection, decreasing the first two by
day 3, while the latter remained high up until day 10. Likewise,
IL-1β, CCL5, CXCL1, and CXCL10 transcription levels peaked
at day 2, remaining high up until days 5 or 6. The cytokines
that peaked during day 3 were IL-10 and CCL4, recovering
normal levels by day 7. The last molecule to reach its peak was
IFN-γ, at day 4 post-primary infection which correlates with
previous studies indicating that this virus inhibits the expression
of this cytokine. Then, at day 14, the levels of IFN-γ were
returned to normal levels (100). Remarkably, infectious virus
was not detected in the lungs of cotton rats challenged in a
secondary infection; however, changes in the lung structure were
detected even earlier than in primarily infected cotton rats (100).
Despite all this, and as indicated above, these data are all related
to transcript expression level, and it is not a direct measure
of proteins. Therefore, this information must be taken into
account cautiously.

Another work performed by Legg et al. examined the cytokine
response to the hRSV through nasal lavage fluid in infants (101).
In this study when some respiratory symptoms the research team
visited the infant to whom they performed a clinical examination
and nasal lavage, considering this collection of samples days 1 and
2. The same procedure was performed at day 5 and 6 since the
development of the symptoms. They found that IL-4/IFN-γ ratio
was elevated at day 1–2 and 5–6, and during the first two days,
the IL-10/IL-12 ratio reached its peak (101). The results obtained
with IFN-γ in infants correlates with the results obtained in mice
since during the first couple of days the secretion of this cytokine
has a similar pattern, suggesting that the other cytokines should
behave similarly in humans as it does in cotton rats.

Toll-like receptors (TLRs) are pathogen recognition receptors
(PRRs) that are activated upon the recognition of pathogen-
associated molecular patterns (PAMPs) (102). They are expressed
in several cell types such as immune cells and epithelial cells.
Moreover, they are significant players in the early response
against pathogens, as they can regulate the secretion of several
cytokines and chemokines (103, 104). In this line, the role of TLRs
in the innate immune response against hRSV is significant, as
TLR3, TLR4, TLR7, and TLR8 are upregulated upon infection
(Figure 1B) (105–107). TLR4 has been described to interact
with the F-hRSV protein, leading to the activation of NF-κB
and the secretion of the cytokines mentioned above, such as
CXCL8 and TNF-α (108, 109). In humans, mutations in TLR4
impair the activation of this pathway and, in mice this renders
the organism unable to clear the virus, and the persistence of
the virus has been described in TLR4 deficient mice (57, 58).
TLR3, which recognizes viral double-stranded RNA, induces
the secretion of type I IFN and the activation of the NF-κB
pathway (105). Remarkably, TLR3 deficient mice have shown
a Th2-like biased immune response, further exacerbating the
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FIGURE 2 | Lower respiratory tract inflammatory response induced by hRSV infection. Upon hRSV infection in the lower respiratory tract, the epithelial cells secrete

IL-6, IFN-γ, CCL3, CCL5, CXCL8, and TSLP among others inflammatory mediators. This inflammatory immune response promotes the infiltration of immune cells

(such as monocytes, eosinophil, neutrophils and lymphocytes, among other) into the lungs, causing an obstruction of the airways and damage to the tissue.

eosinophils infiltration and mucus secretion (60). TLR7, in turn,
recognizes viral single-stranded RNA and induces the secretion
of T cells-activator and mucus-secreting cytokines such as IL-12
and IL-23 (61).

Mucus secretion is also a significant factor associated with
hRSV infection. The production of this thick layer that works
as another defense mechanism of the organism is performed
by goblet cells (Figures 1C, 2) (62). These cells are activated
by cytokines such as IL-13, IL-17, and IL-23 (67), TLRs such
as TLR3, and TLR7 (60) and immune receptors such as
CXCR2 (68). As described above, TLR3 upregulation, secretion
of IL-13 by infiltrating eosinophils and activation of several
immune receptors are hallmarks of hRSV infection. Therefore,
higher production of mucus usually correlates with more
severe disease. Remarkably, Mukherjee et al. described that
upon blockade of IL-17 through neutralizing antibodies, the
secretion of mucus by hRSV-infected mice was significantly
reduced, leading to a less exacerbated obstruction of the
airways (69).

As it can be seen, the immune response against hRSV
may be redundant at some points, but this redundancy
itself is in part aiding the exacerbated inflammation and
the production of pro-inflammatory cytokines. Although
the organism exhibits several mechanisms to impede
the advance of hRSV throughout the upper respiratory
tract, this virus can avoid and even take advantage of
many of these, eventually reaching the lower respiratory
tract, where it will continue to replicate and progress in
its pathology.

Cytokines Induced by hRSV Infection in the
Lower Respiratory Tract
It has been described that hRSV is a mucosa-restricted virus,
as in natural infections it initially replicates in the epithelium
of the nasopharynx (110). In immunologically naïve infants,
hRSV spreads through a cell to cell transfer and extracellular
binding, producing discontinuous foci of infection in the tracheal
epithelium (110). The lower respiratory tract is essential for the
respiratory system and is composed of trachea, bronchi (primary
and secondary) and alveoli (111). Under normal conditions,
inhaled pathogens are cleared via the mucociliary escalator from
ciliated epithelial cells. This defense mechanism is coordinated
with the actions of the airway lining fluid, rich in antioxidants,
defensins, and lysozyme secreted by Clara cells and submucosal
glands, along with mucous glycoproteins secreted by goblet cells
(Figure 2) (66).

An exacerbated hRSV infection is characterized by several
symptoms including severe chesty cough, wheezing, apnea and
cyanosis and all of these symptoms can be signs of a lower
respiratory tract infection (LRTI) (112). In infants, the leading
pathology caused by LRTI is bronchiolitis, which has been
described to involve an acute inflammation—mainly associated
with exacerbated infiltration of neutrophils- necrosis of epithelial
airway cells and increased production of mucus, among others
(113, 114). Additionally, it has been described that the damage
observed in the respiratory tract is not only induced by the viral
infection itself, but also by the local production of cytokines
(88). In the bronchioles samples from post-mortem patients,
hRSV was detected mainly in the ciliated cells (115). Moreover,
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the majority of inflammation observed was at the submucosa
level (115).

To understand the nature of this inflammation, the majority
of the studies that have been performed in patients are focused
on the analysis of the production of cytokines that coordinate
the infiltration of immune cells. Since it is difficult to obtain
bronchoalveolar lavage fluids (BALFs) samples from patients,
these studies have been performed on ventilated hRSV-infected
infants (116, 117). McNamara et al. collected these samples
from term and pre-term infants to determine the inflammatory
mediator profile in these children. An increase of the transcript
and protein levels of cytokines such as IL-6, TNF-α, CXCL8,
CCL3, CCL4, CCL2, and CCL5 was observed, as compared to
control groups (Figure 2) (116, 117).

It has been reported that cytokines associated with a Th2-like
response, such as IL-4, IL-6, IL-9, IL-10, and IL-13, are elevated
in nasal washes and lungs of children with hRSV-induced
LRTI (Figure 2) (72). Among these, IL-6 is a pro-inflammatory
cytokine which has been described to play an essential role in the
host immune response against hRSV infection (116). McNamara
et al. also showed in pre-term and term infants with hRSV-
induced bronchiolitis that IL-6 levels were elevated at day 1
of intubation, in term infants as compared to pre-term and
control group (116). According to this observation, it is possible
that IL-6 plays a relevant role in the hRSV pathogenesis in the
lung of infected infants. When comparing the concentration of
chemokines on the first day of intubation and the extubating
day, no differences were found between these critical days (57).
During another study performed in children under the age of
2 with clinical manifestations of respiratory obstruction and
distress due to viral infection, different cytokines related to
hRSV-infection were evaluated at three-time points: admission-
hospitalization, discharge and 1 month after release (70). At
the beginning of the study, the children admitted exhibited an
increase in Th2-like cytokines such as IL-4, IL-5, and IL-13 (70).
The increase in these cytokines decayed progressively until 1
month after discharge. In another study in children with signs
of severe LRTI and positive for hRSV infection (71), cytokines
were evaluated at two points: discharge and 1 year after release.
Th2-like cytokines, such as IL-4 and IL-6, decayed 1 year after
the infection. Surprisingly, IL-13 levels remained higher in the
initially infected group when compared with the control group 1
year after the viral infection, although the authors could not rule
out the effects of other diseases or environmental factors (71).
Furthermore, children admitted in hospital with bronchiolitis
due to hRSV-infection exhibited higher concentrations of IL-6 in
nasal swabs as compared with their older siblings (118).

IL-10 has also been described as a key cytokine in the response
against this virus (119–121). The varying levels and the role of
IL-10 during hRSV infection have not been entirely determined,
as IL-10 fluctuates with the age of children (120). Importantly, a
study found that lower levels of IL-10 correlate with the severity
of the hRSV disease in infants (120). Additionally, it has been
described that in infants older than 3 months of age with mild
hRSV infection exhibit high IL-10 levels, which can be related to
a protector effect. Nonetheless, in infants below 3 months of age,

high IL-10 levels were reported in those with severe bronchiolitis,
therefore being considered as a hallmark of disease (121).

Interestingly, it has been reported that infants younger
than 3 months, hospitalized with hRSV-induced bronchiolitis,
presented elevated amounts of Th2-related cytokines in BALF
samples, such as IL-3, IL-4, IL-10, and IL-13 (75). Furthermore,
an increase of pro-inflammatory cytokines such as IL-1β, IL-
6, TNF-α, and also IL-12-p40 -a Th1-like related cytokine-
was also reported (75). Importantly, IL-3 -which is involved in
the infiltration of immune cells that are related to the asthma
development- and IL-12p40 are necessary for the secretion of
IFN-γ. Therefore, the increase of both cytokines correlates with
recurrent episodes of wheezing in hRSV infection (75).

IFN-γ is a cytokine that stimulates viral clearance by
promoting anti-viral immune effector responses. Therefore,
low levels of this cytokine in patients have been associated
with a higher severity index in the bronchiolitis caused by
hRSV (Figure 2) (122). Semple et al. reported that in infants
hospitalized due to hRSV-induced bronchiolitis who needed
oxygenation or ventilated support, IFN-γ levels in BALFwere low
when compared with the infants that never required oxygenation
(122). These low IFN-γ levels correlated with increased severity
of the disease and its reduction is significant in the development
of the bronchiolitis (122). Contrary to these findings, recent
studies performed by Thwaites et al. shows high levels of IFN-
γ in patients from the pediatric intensive care unit (PICU)
with hRSV-infection, along with high levels of IL-1 and IL-10
respect to the healthy controls (123). Also, reduced IFN-γ levels
were detected in children with moderate bronchiolitis; however,
in children with severe bronchiolitis, the levels of IL-17A and
MUC5AC were increased (123). Considering the data mentioned
above, the amount of IFN-γ in patients with hRSV-bronchiolitis
is controversial.

Additionally, Semple et al. also analyzed the production of
IL-9 (122). This cytokine is produced in Th9-like immune
response and has been implicated in the severity of the hRSV
pathology (124). The data obtained showed that IL-9 levels
in BALF were increased in infants with severe bronchiolitis
that required oxygenation. However, no differences were
found when compared with infants that never needed oxygen
supplementation (122). In another study performed in pre-term
and term infants with hRSV bronchiolitis, the expression of the
IL-9 mRNA in BALF was increased in both groups, as compared
to control groups (124). Moreover, no significant differences
were found in the levels of IL-9 transcript among pre-term
and term infants. However, the protein secretion was increased
in term infants when compared to both pre-term and control
groups (124). Furthermore, the primary source of these cytokines
in the lungs of hRSV-infected infants were neutrophils (124).
Remarkably, it has been reported that IL-9 can upregulate genes
involved in the mucus production in goblet cells, which could
explain the elevated amounts of mucus in patients with hRSV-
induced bronchiolitis (124). Additionally, it has been reported
that IL-9 polymorphism has a different effect in the hRSV
disease severity in boy and girls (125). The single nucleotide
polymorphism (SNP) rs2069885 of the IL-9 gene was associated
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with higher susceptibility of severe disease caused by hRSV while
in boys, is associated with a lower susceptibility (125).

Also, it has been described an association of the
polymorphism of the IL-4 and IL-4Rα genes with hRSV
disease severity (73). Hoebee et al. found that the−590T allele
of the IL-4 gene was expressed more frequently in infants
hospitalized by hRSV bronchiolitis compared to the control
group (73). Moreover, the authors found an association of the
hRSV disease severity and the IL-4 locus in children older than
6 months that were hospitalized by hRSV bronchiolitis (73).
Additionally, this study found that 2 polymorphisms of the
IL-4Rα gene, the I50V, and the Q551R. Only the Q551R SNP
show an association with the children older than 6 months who
were hospitalized by a severe hRSV bronchiolitis (73).

Another relevant cytokine reported upon hRSV infection is
the thymic stromal lymphopoietin (TSLP), a cytokine associated
with asthma development (126). Also, a strong association in
Th2-like effector cytokines, such as IL-4 and IL-5, and IL-13
has been reported (127, 128). TSLP is secreted by epithelial
cells associated with barriers (129) and bronchial smooth muscle
cells (130, 131). In infants with hRSV-induced bronchiolitis,
this cytokine was elevated as compared to healthy controls,
suggesting that TSLP could play an essential role in the hRSV
immunopathology (132).

Importantly, the response associated with IL-17 can be
harmful to the patients, as mentioned above. Higher levels of
IL-17 have been reported in patients with mechanic ventilation
due to hRSV-induced bronchiolitis (76, 78). IFN-λ is a cytokine
discovered in the year 2003 (77) and it has been reported to play
a role in the establishment of the adaptive response to hRSV,
with an increase in the secretion of IL-6, CXCL8, and IL-10 in
peripheral blood mononuclear cells (PBMC) (133). Moreover, a
deleterious effect of IFN-λ in hRSV infection has been seen (134),
as a study of acute bronchiolitis-patients reported a significant
increase in the transcription of IFN-λ in patients with increased
respiration rate, a sign of acute bronchiolitis induced by hRSV-
infection (134).

As we described earlier, chemokines are also involved
in the inflammatory response elicited by hRSV-infection.
One of these is CCL3, a small pleiotropic chemoattractant
protein whose function is to attract or activate immune cells
such as eosinophils, monocytes, basophils and lymphocyte
subpopulations (135). This chemokine was increased in lower
respiratory tract secretions from infants under 2 months old
that were hospitalized with hRSV-induced bronchiolitis (135).
Interestingly, this increase was correlated with the detection
of eosinophil degranulation products, which suggests that
CCL3 has an active role in this process during hRSV-induced
bronchiolitis (135). In addition to this, it was also reported
that CCL5 was increased in these infants (135). CCL5 is a
chemoattractant cytokine that principally recruits monocytes,
T cells, and eosinophils, acting via three chemokine receptors:
CCR1, CCR3, and CCR5 (136). Evidence obtained from children
with hRSV infection shows an increase of the CCL5 protein
levels in both upper and lower airway secretions, and levels of
CCL5 in upper airway secretions correlate positively with disease
severity (137, 138). Recently a prospective study of 173 patients

with bronchiolitis caused by hRSV was performed, holding
536 healthy controls whose samples of nasopharyngeal aspirate
were taken (139). Therein, the authors found a single SNP in
CCL5 (rs2107538∗CT), exhibiting an association with hRSV-
bronchiolitis and also with the need for mechanical ventilation
(139). These data suggest that CCL5 contributes to bronchiolitis
leading to airways damage in patients.

Furthermore, McNamara et al. also evaluated this chemokine
in BALF from infants that required ventilation support and found
an increase at the first day of themechanical ventilation, but these
levels decreased over time (117). This phenomenon was also
observed for CXCL8 (117), which is a chemokine that attracts
mainly neutrophils, one of the most frequent immune cells found
in the airways of hRSV-infected infants (140). Subsequently to
these results, another study performed in BALF samples from
intubated infants reported elevated levels of CXCL8 transcript,
which also correlates with the finding of this chemokine in
nasopharyngeal aspirates (NPA) (141). Thus, the NPA samples
might be an excellent alternative to study the implications of the
infection caused by hRSV in the respiratory tract (Figure 2).

CYTOKINES SECRETED BY EPITHELIAL
CELLS IN RESPONSE TO THE hRSV
INFECTION IN VITRO

The majority of the knowledge available about the induction of
pro-inflammatory cytokines and chemokines production upon
hRSV infection has been described in vitro using airway epithelial
cells (AECs) models such as A549, primary human small airway
epithelial cells (SAECs), BEAS-2B and primary normal human
bronchial epithelial cells (NHBE), among others (88, 142, 143).
The data obtained using these models can vary depending on
the cell line. According to this, experiments in the A549 cell line
(human alveolar type II-like epithelial) with the Long strain of
hRSV showed that infection with hRSV induces the secretion of
IL-6, CCL3, and CCL5 at 48 h post-infection as compared to non-
infected cells (144, 145). On the other hand, a study performed in
this cell line but with a different strain and subgroup of hRSV
obtained from clinical isolates showed that the induction of IL-6
and CCL5 could be variable and dependent on the virus strain
used (146).

BEAS-2B is an SV40 transformed human normal bronchial
epithelium cell line that exhibits a limited susceptibility to hRSV-
infection and profile of virus resistance as compared to the A549
cell line (142). Infection of this cell line with the hRSV Long
strain showed an increase in the transcript levels for CXCL8 at
4 h post-infection, which was observed up to 24 h post-infection
(143). Regarding the upregulation of IL-6, it was observed only
at 96 h post-infection (143). However, another study performed
using the hRSV Long strain showed that CXCL8 levels were
not changed upon infection with hRSV, while CCL3 and CCL5
levels were increased (64). Importantly, the authors observed
that the amounts of CCL5 produced by the epithelial cells were
enough to attract eosinophils (64). Furthermore, infected BEAS-
2B cells with the hRSV strain A2 also exhibited an induction in
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the secretion of IL-6 and CXCL8 as compared to non-infected
cells (145).

Currently, primary or normal epithelial cells are the most used
model for hRSV infection as it is thought to be representative of
the effects of hRSV infection in the respiratory tract. Accordingly,
it has been reported that primary AECs obtained from hRSV-
infected infants exhibited higher viral titers as compared to the
BEAS-2B cell line when infected with the same virus (147).
Besides, the amounts of IL-6 and CXCL8 were higher in the
primary AECs as compared to BEAS-2B cells (147). Considering
these data, AECs can be considered as an excellent model for
understanding the effects of hRSV-infection and the production
of cytokines and chemokines as may occur in infants.

Additionally, in a study in vitro using a WT hRSV A2
strain (6340WT) and a recombinant strain that lacks the G-
protein gene (63401G), infection of NHBEs cells induced the
secretion of CCL2, CCL5, and CXCL8 by both viruses (148).
However, only the recombinant virus was able to promote the
secretion of CXCL10 in NHBEs (148). On the other hand,
both F- and G-protein promoted the secretion of CXCL8 and
CXCL10, whereas only G-protein induced the secretion CCL5
(148). In contrast to these findings, infection with the hRSV
Long strain in NHBEs cells did not lead to the secretion of
CCL2 and CCL3, but the levels of CCL5 were increased as
compared to uninfected cells (149). Additionally, it has been
described that hRSV infection in NHBEs cells induced the
expression of TSLP transcript at 12 h post-infection and TSLP
secretion exhibited a peak at 24 h post-infection as compared
to ultraviolet (UV)-hRSV inactivated (150). This phenomenon
was also seen in NHBEs cells obtained from asthmatic patients
and infected with hRSV, as TSLP concentration were high
when compared to healthy patients with hRSV-infection (150).
Moreover, studies using A549 cells co-transfected with the
human TSLP promoter with a reporter, and a dominant-
negative form of RIG-I (DN-RIG-I), showed that hRSV-infection
could induce activation of this pathway to increase TSLP
expression (150).

hRSV INDUCED CYTOKINE PRODUCTION
AND TISSUE DAMAGE IN MICE

It has been described that hRSV-infected BALB/c mice can
exhibit increased levels of IL-6 in BALFs at 12 h post-infection
that remains elevated up until 14 days post-infection (59).
Similar results were observed in lungs parenchyma and sera
of hRSV-infected mice (59). The contribution of IL-6 to the
hRSV immunopathology was evaluated by the depletion of this
cytokine one day before hRSV infection, parameters of disease,
such as weight loss were more severe (59). Furthermore, in
these hRSV-infected mice the lung vascular permeability was
evaluated by measurement of albumin in the airways, which was
increased as compared to the isotype control at 7, 11, and 14
days post-infection (59). Further, in the absence of IL-6, hRSV-
infected mice displayed an increase of lymphocyte recruitment
at 7 days post-infection, while neutrophil infiltration was similar
to the isotype control (59). These results suggest that the early

production of IL-6 is essential to control the severity of the
disease and to limit lung damage.

Furthermore, it has also been described that hRSV infection
promotes an increase of IL-1β, TNF-α, IFN-γ IL-12, IL-6, CCL3,
and CCL5 in BALF samples from mice (151). The elevated levels
of IL-1β and TNF-α on the first day of hRSV infection correlate
with the peak of weight loss, whereas increased levels of IL-
12 were found before the induction of IFN-γ (151). Besides,
histological analyses have shown that hRSV infection produces
changes in the lung that are associated with airway and vascular
cuffing and interstitial pneumonia (144). On the other hand,
an effect of TNF-α alone over the hRSV-infection has not
been demonstrated with knockout mice. However, in a study
in BALB/cJ mice with pretreatment with antibody for TNF-α
before the hRSV-infection, mice showed a significant increase
of weight loss and slow recovery as compared to control mice
(152). Therefore, these observations suggest that TNF-α can
be established as a participant in the hRSV-infection, and in
the absence of this cytokine the mice showed a delay in the
viral clearance.

The role of IFN-γ during hRSV pathogenesis was evaluated
using both an IFN-γ knockout mice model and the blockade
of IFN-γ (153). The data obtained from this study shows that,
both in IFN-γ knockout (IFN-γ−/−) mice and in the anti-IFN-γ
treatedmice, the immune cell infiltration (principally neutrophils
and eosinophils) in BALF samples were higher than in control
mice. However, when the respiratory rate was evaluated [the ratio
between inspiration time and expiration time (Ti/Te)] the anti-
IFN-γ treated hRSV-infected mice shows no difference in the
ratio compared to control mice (153). Besides, in the absence
of IFN-γ also increase the viral load of these mice compared
to control mice. These results suggest that IFN-γ plays a dual
role during hRSV infection, been necessary to control the viral
replication and also prevents the obstruction of the airways (153).

Regarding to the role of chemokines, has been reported that
elevated concentrations of CCL3 and CCL5 at day one post-
infection are consistent with recruitment of monocytes and
lymphocytes into the mice lungs (151, 154). Additionally, it
has been described that CCL5 induction by hRSV infection
contributes to a subsequent allergic pulmonary inflammation
(155). Moreover, in mice, the secretion of CCL5 in the lungs was
correlated with airway hyperreactivity (AHR). This association
was evaluated by antibody neutralization of CCL5, showing that
while viral loads were not affected by this treatment, a significant
decrease for hRSV-induced AHR was observed, down to control
mice levels (156). Furthermore, it was described that CCL5
exhibits a biphasic response during the hRSV infection, with
an initial phase of innate immune response and a second phase
consisting of lymphocyte-mediated responses (157). Besides,
mice sensitized with recombinant vaccinia expressing G-hRSV
protein (rVV-G) showed a significant increase of both mRNA
and protein levels for CCL5 during the first 24 h post-infection
(157). Then, CCL5 is also increased in the second phase of hRSV
infection at 168 h post-infection (157). To understand the role
of CCL5 when viral replication was eliminated, an inhibitory
analog of CCL5, Met-RANTES, was used to treat hRSV-infected
mice. These studies showed that mice treated with Met-RANTES
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exhibited a significant reduction of CD4+ and CD8+ T cell
recruitment into the lungs after infection (157). Along these lines,
blockage of CCL5 reduced both weight loss and eosinophilia,
suggesting that this cytokine plays an essential role during lung
inflammation (157). Accordingly, the induction of CCL5 by
hRSV infection is involved in lung inflammation, although there
is no evidence of a contribution or a direct role in airway damage.

Regarding the contribution of CCL3 to hRSV infection, it
was shown that equivalent to CCL5, CCL3 displays a biphasic
expression both for mRNA and protein, at day 1 and 7 post-
infection (158). Moreover, blockage of CCL3 with a neutralizing
antibody showed no change in the recruitment of NK cells and
did not affect viral loads in the lungs of hRSV-infected mice
after 4 days of infection (158). However, at 7 days post-infection,
the number of CD4+ and CD8+ T cells was reduced in the
lungs of infectedmice (158). Accordingly, hRSV-infected BALB/c
WT mice exhibited an infiltration of about 80% of mononuclear
cells close to vessels and bronchioles, while CCL3−/− hRSV-
infected mice exhibited a decrease of infiltrating cells in the
lungs. Interestingly, in both mice, the viral loads were equivalent
(154). Additionally, in CCL3−/− hRSV-infected mice the mRNA
of CCL5, CCL2, and CXCL2 were decreased as compared to
their wildtype littermates, suggesting that CCL3 is required for
the development of the hRSV-induced immunopathology (154).
Despite these data, there is no direct evidence of the pulmonary
damage caused by CCL3, which be relevant to determine.

Related with the production of TSLP in hRSV-infected mice, it
has been reported that at the peak of the immunopathology, high
amounts of this cytokine are produced (150). The contribution of
TSLP to the hRSV pulmonary immunopathology was analyzed
using TSLP KO mice and results showed that expression of
Gob5, IL-13, and mucus production decreased as compared to
hRSV-infected WTmice (150). Moreover, Stier et al. showed that
knockout mice for the TLSP receptor (TSLPR KO) infected with
hRSV displayed moderate mucous cell metaplasia, as the WT
hRSV-infected mice. However, the accumulation of intraluminal
mucus was lower when compared toWTmice (159). The airways
obstruction of both hRSV-infected WT and TSLPR KO mice,
was evaluated by methacholine challenge. Consistently, hRSV-
infected WT mice displayed an increase in the airway reactivity
(increased amounts of methacholine) as compared to the hRSV-
infected TSLPRKOmice. These later animals showed only minor
symptoms of the disease, which were equivalent to the mock-
treated mice (159). Accordingly, these results suggest that TSLP
activity is relevant for the hRSV immunopathology and that also
contributes to lung damage in murine models (150).

As described above, most of the work in this field suggests
what cytokines are either up- or down-modulated during hRSV
infection. However, little or nothing has been reported about
the direct contribution of these mediators to the airway damage
caused by hRSV. The development of new methodological
approaches is still necessary to achieve a better understanding
of the effects that this virus produces on the respiratory tract by
inducing inflammatory mediators. However, it could be possible
to suggest that, like what is seen for the upper respiratory
tract, hRSV exhibits several redundant mechanisms that induce
damage and inflammation in the lower respiratory tract.

hRSV INFECTION IS ASSOCIATED WITH
ELEVATED LEVELS OF CYTOKINES IN
THE CNS

As described above, hRSV infection induces cytokines that
damage the respiratory tract, but also these cytokines could
affect the CNS. Years ago, a small number of hRSV-infected
patients were reported to exhibit clinical signs associated
with neurological complications, such as seizures (160, 161),
apnea (12), encephalopathy (162) and encephalitis (163, 164).
Nowadays, the cases of neurological abnormalities related to
hRSV infection reported are increasing. However, our knowledge
regarding the mechanisms involved in this phenomenon remains
limited and controversial (Figure 1).

One of the first findings in patients with neurological
manifestations associated with hRSV infection was the detection
of virus-specific antibodies in cerebrospinal fluid (CSF) (165).
Later, after many efforts to find viral genetic material in CSF,
hRSV RNA belonging to the serogroup B was detected in the
CSF of an infant with febrile convulsion and pneumonia (13).
Researchers not only have focused on hRSV detection, but also on
the possible production of cytokines that could be a consequence
of viral infection and that could explain the symptoms affecting
the CNS. Accordingly, an increase of IL-6 in CSF from an hRSV-
infected patient was reported (14). The observation that serum
IL-6 levels in these patients were normal (14) would suggest
that this cytokine is produced locally in the CNS, most likely by
CNS-resident cells, such as microglia and astrocytes. A report
about 3 clinical cases where children infected by hRSV suffered
from seizures, showed that the levels of IL-6 were increased
and that the serogroup of hRSV found in the CFS belonged
to the serogroup A (166). Additionally, the same authors also
found viral RNA in the CSF of a different cohort of hRSV-
infected patients, with increased levels of IL-6, IL-8, CCL2, and
CCL4, suggesting that these inflammatory mediators may play a
critical role during the hRSV-infection in the CNS pathogenesis
(15). Importantly, the increased levels of IL-6 correlate with
the severity of the CNS encephalitis mediated by a cytokine
storm, which can be useful as a molecular marker of neurological
prognosis (167). Based on all the data described above, it is
possible that hRSV spreads from the lungs to the CNS and infects
local cells, initiating an inflammatory immune responsemediated
by cytokines.

As we mentioned above, there is controversy in this field
due to reports in which hRSV-derived genetic material was not
found in CSF samples from patients with severe bronchiolitis
(168). Analyses of blood and CSF samples from 10 patients
with apneas showed that only 7 were positive for hRSV (168).
This study showed that hRSV RNA was detected in PBMC of
two patients, but was not found in their CSF (168). Possible
explanations for this controversy could be due to differences
in the clinical signs of the patients, to the hRSV serogroups
found infecting them and also to technical differences used by
the researchers.

Although there is clinical relevance in the CNS pathologies
caused by hRSV infection, there is little research in this aspect
that could provide conclusive evidence. A study using the mouse

Frontiers in Immunology | www.frontiersin.org 10 March 2019 | Volume 10 | Article 45217

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bohmwald et al. Cytokines Induced by hRSV Infection

model described that hRSV could infect sensory neurons in
the lungs through the interaction of the G-hRSV glycoprotein
with the chemokine receptor CX3CR1 located at the surface
of these cells (169). Experiments with mouse neuronal primary
cultures showed that hRSV infected about 5% of these cells
and this percentage decrease when CX3CR1 was blocked (169).
Nevertheless, in this study, the authors did not evaluate the effect
of hRSV infection in these cells or whether the neurons secreted
inflammatory mediators. To approach these questions, neuronal
N2a cells were infected with hRSV showing that these cells secrete
IL-6 and TNF-α in vitro (170).

While these reports advance the knowledge in this field,
there is still no evidence of neuronal infection by hRSV in
vivo. In this regard, Espinoza et al. described that hRSV could
be detected in several areas of the brain from infected mice,
such as the cortex, ventromedial hypothalamic nucleus, and
hippocampus (171). Interestingly, the finding of the virus in the
hippocampus led to hypothesize that behavioral and learning
processes may be altered. Marble burying (MB) and Morris
Water Maze (MWM) test were performed 30 days after hRSV
infection to test this hypothesis. In both trials, behavioral (MB)
and spatial learning (MWM), performance was altered in hRSV-
infected mice (171). The authors also evaluated the possible
impairment in the functionality of the synaptic plasticity in the
hippocampus. The data shows that the long-term potentiation
(LTP) and the long-term depression (LTD) were altered in hRSV-
infected mice, suggesting damage in the brain of these animals
(171). It is possible to think that impairment in the behavior
and learning is due to the neuronal infection by hRSV, which
alters the normal function of these cells. Besides, it is also possible
that hRSV infection promotes the secretion of several cytokines
in the CNS, either by neurons or other resident cells, which
could contribute to this neurological-associated phenomenon.
However, more research is still necessary in this field to further
advance our knowledge of the effects that this virus has on
our CNS.

CONCLUDING REMARKS

HRSV remains one of the primary viral agents causing
respiratory tract infections worldwide, for which there is no
vaccine available. Once hRSV infection reaches the epithelium
of the respiratory tract, it produces several symptoms such as
wheezing, apnea, cyanosis, and bronchiolitis, related to acute

lower tract infection. Most of the damage seen in patients with
complications associated with hRSV infection is caused by an
exacerbated immune response triggered mainly by the cytokines
secreted by the infected cells of the respiratory tract epithelium.

In human studies, cytokines and chemokines have been
detected in nasopharyngeal aspirates, tracheobronchial aspirates
or bronchoalveolar lavage fluids, in children with mechanic
ventilation due to bronchiolitis associated with hRSV infection.
In these patients -usually children younger than 2 years
of age- the cytokines that predominated were IL-4, IL-5,
IL-6, IL-10, and IL-13. A low concentration of cytokines
associated with a Th1-like response such as IFN-γ is also
seen, which could be considered as a severity index. Also,
chemokines such as CCL3, CCL5, and CXCL8 are increased
in the lower respiratory tract of individuals infected with
hRSV. These components contribute to generating a severe
pathology in the patients, which is associated with an
unbalance between Th1- and Th2-like cytokines, and an
increase in chemokines that attract more inflammatory cells like
granulocytes, which in turn generates a deleterious effect on
the patient. Moreover, the secretion of many of the cytokines
described above has also been seen in mice models, with
associated tissue damage, although further studies are still
required to fully elicit the specific role of each cytokine in
this pathology.

Furthermore, infection by hRSV seems to reach
CNS, which produces high levels of IL-6 in the zone.
This infection might generate problems in the behavior
and learning process of the children, but further
studies are required to elucidate more information in
this regard.
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Aflatoxin B1 (AFB1), which alters immune responses to mammals, is one of the most

commonmycotoxins in feeds and food. Swine influenza virus (SIV) is a major pathogen of

both animals and humans. However, there have been few studies about the relationship

between AFB1 exposure and SIV replication. Here, for the first time, we investigated the

involvement of AFB1 in SIV replication in vitro and in vivo and explored the underlying

mechanism using multiple cell lines and mouse models. In vitro studies demonstrated

that low concentrations of AFB1 (0.01–0.25µg/ml) markedly promoted SIV replication

as revealed by increased viral titers and matrix protein (M) mRNA and nucleoprotein

(NP) levels in MDCK cells, A549 cells and PAMs. In vivo studies showed that 10–40

µg/kg of AFB1 exacerbated SIV infection in mice as illustrated by significantly higher

lung virus titers, viral M mRNA levels, NP levels, lung indexes and more severe lung

damage. Further study showed that AFB1 upregulated TLR4, but not other TLRs, in

SIV-infected PAMs. Moreover, AFB1 activated TLR4 signaling as demonstrated by the

increases of phosphorylated NFκB p65 and TNF-α release in PAMs andmice. In contrast,

TLR4 knockdown or the use of BAY 11-7082, a specific inhibitor of NFκB, blocked

the AFB1-promoted SIV replication and inflammatory responses in PAMs. Furthermore,

a TLR4-specific antagonist, TAK242, and TLR4 knockout both attenuated the AFB1-

promoted SIV replication, inflammation and lung damage in mice. We therefore conclude

that AFB1 exposure aggravates SIV replication, inflammation and lung damage by

activating TLR4-NFκB signaling.

Keywords: aflatoxin B1, swine influenza virus, replication, inflammation, lung damage, TLR4, NFκB, TNF-α

INTRODUCTION

Swine influenza virus (SIV), a single-stranded negative-sense RNA virus, causes severe systemic
effects, resulting in significant economic losses in the animal husbandry industry. SIV also causes
human disease and can even give rise to human pandemics, including the pandemic caused by the
H1N1/2009 virus (1). Increasing evidence indicates that viral infection is associated with several
environmental, nutritional, and immune factors, such as mycotoxin contamination (2, 3), selenium
deficiency (4, 5), and macrophage polarization (6). The involvement of these factors may partly
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explain the differences in morbidity and mortality in infected
animals and humans all over the world.

Aflatoxin B1 (AFB1), which is produced by Aspergillus flavus,
is one of the most common mycotoxins in contaminated food
and plant products from tropical and subtropical areas with
high temperature and humidity (7, 8). It is well known that
AFB1 is harmful to the liver and kidney of mammals and is
regarded as a representative orally ingested carcinogen (9, 10).
However, increasing evidence indicates that AFB1 can also affect
immune responses in mammals (11, 12); these evidences show
that low doses of AFB1 (≤0.025 mg/kg) significantly increase
the secretion of pro-inflammatory cytokines by T cells and
NK cells in rats, but high doses of AFB1 (0.4–0.8 mg/kg)
markedly decrease macrophage migration and the lymphocyte
response to mitogens in pigs. Specifically, some reports propose
that mycotoxins can eventually decrease resistance to infectious
diseases (13), and aflatoxins are thought to feature prominently in
the progression of some viral diseases, such as HIV (3). However,
so far, there have been no studies investigating whether influenza
virus infection in mammals exposed to AFB1 is more severe than
infection in unexposed mammals.

Toll-like receptors (TLRs) compose a main family of pattern
recognition receptors with a critical role in the activation of
the innate immune response (14). To date, there are at least
13 members (TLR1-TLR13) of this family in mammals that
recognize specific components of pathogenic microorganisms.
TLR4 is a unique receptor for pathogen recognition that
was initially found in various cell types, including porcine
alveolar macrophages, and in mice. In the past, many studies
have focused on TLR4 structure and function. On the one
hand, TLR4 activation leads to nuclear factor kappa (NFκB)
translocation and the expression of proinflammatory cytokines,
including tumor necrosis factor (TNF-α), which is responsible
for activating the innate immune system (15). On the other
hand, the overexpression or continuous activation of TLR4 leads
to excessive inflammatory responses and/or tissue injury in the
body (16–19). Interestingly, viruses can evade the host immune
response when TLR4 is inhibited, thereby enhancing viral
replication, and one study has shown that a TLR4 antagonist can
protect mice from lethal influenza infection (20). Nevertheless,
few studies are available regarding the role played by TLR4 in
AFB1−promoted SIV replication.

Thus, given the differences in morbidity and mortality
following SIV infection, we hypothesized that AFB1 promotes
SIV replication. In this study, multiple cell lines and mouse
models were established to assess the involvement of AFB1 in SIV
replication in vitro and in vivo and to elucidate the underlying
mechanism of such involvement.

MATERIALS AND METHODS

Ethics Statement
This research protocol was approved by the Ethics Committee
for Animal Experimentation of Nanjing Agricultural University
(approval number: SYXK-SU-2011-0036). All animal care and
use procedures were conducted in strict accordance with
the Animal Research Committee guidelines of the College

of Veterinary Medicine at Nanjing Agricultural University, and
all efforts were made to minimize animal suffering and to reduce
the number of animals used.

Reagents
AFB1 (1 mg/mL; Sigma-Aldrich, USA), BAY 11-7082 (10mM;
MCE, USA) and TAK-242 (50mM; ApexBio, USA) were
dissolved in dimethyl sulfoxide (DMSO), packaged, and stored
frozen at−20◦C until use. For in vitro studies, the dissolved AFB1
was diluted with serum-free medium, and equal concentrations
of DMSO were used in the vehicle and in the control solution.
For in vivo studies, the dissolved AFB1 was diluted in fresh sterile
endotoxin-free saline daily, and the solution was then injected
intraperitoneally (i.p.) at concentrations of 10, 20, and 40 µg/kg
b.w.; diluted TAK-242 was also prepared daily and then injected
i.p. (3 mg/kg b.w.) 1 h prior to other treatments as previously
described (16, 17, 21).

Cell Culture
Madin-Darby canine kidney (MDCK, NBL-2) cells, human lung
cancer cells (A549) and porcine alveolar macrophages (PAMs,
3D4/21) that were free of any respiratory or systemic diseases
were purchased from the China Institute of Veterinary Drug
Control (Beijing, China). MDCK and A549 cells were grown in
Dulbecco’s modified Eagle’s medium (Gibco, USA) containing
10% fetal calf serum (FCS; Gibco, USA) and 1% penicillin-
streptomycin (Solarbio, China) at 37◦C in 5% CO2. PAMs
were cultured in Roswell Park Memorial Institute-1640 medium
(Gibco, USA) supplemented with 10% FCS, 1% penicillin-
streptomycin and 1% nonessential amino acids (Gibco, USA) at
37◦C in 5% CO2. Cells and serum and culture medium were
tested for mycoplasma using MycoTestTM kit (Seebio, China).
During viral infection, all cell lines were transferred to serum-free
medium supplemented with 1µg/ml tolylsulfonyl phenylalanyl
chloromethyl ketone (TPCK)-treated trypsin (Sigma, USA).

Cell Viability Determination by MTT and

LDH Assays
MDCK cells, A549 cells and PAMs were cultured in 96-well
plates for 24 h and were then exposed to various concentrations
of AFB1 or to 1µg/ml DMSO for an additional 24 h before
being subjected to colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay. Subsequently, the
absorbance was measured at 490 nm with a reference wavelength
of 655 nm, and all experiments were performed in triplicate.

Lactate dehydrogenase (LDH) release was also measured
using commercially available kits to assess cell viability.
Briefly, cells were seeded in 96-well plates and exposed to
various concentrations of AFB1 or to 1µg/ml DMSO. After
24 h of incubation, the supernatant was collected for the
measurement of LDH release according to the manufacturer’s
protocol (Jiancheng, China). The absorbance was measured at
a wavelength of 450 nm, and all samples were measured in
triplicate.
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Apoptosis Assay by DAPI Staining
4′,6-diamidino-2-phenylindole (DAPI) staining was performed
as described previously (22) with a minor modification. Briefly,
PAMs were seeded on coverslips (WHB, China) into 12-well
culture plates and incubated with AFB1 and DMSO for 24 h.
Next, the PAMs were washed three times with PBS and fixed
with 4% paraformaldehyde for 20min at 4◦C. After three washes,
cell nuclei were counterstained with DAPI (Beyotime, China) for
5min in the dark. Finally, the stained PAMs were washed three
times and examined by fluorescence microscopy (Nikon Ti-S,
Japan).

Viral Titration by TCID50
Influenza virus strain A/swine/Guangxi/18/2011 (H1N1) was
kindly provided by Dr. Weiye Chen, Harbin Veterinary Research
Institute, Chinese Academy of Agricultural Sciences (Harbin,
China). The virus was propagated in MDCK cells, and the
supernatant was harvested at 72 h post infection (hpi) to ensure
that enough virus was obtained. The viral titers were determined
by the 50% tissue culture infectious doses (TCID50) in MDCK
cells, A549 cells and PAMs. Briefly, the MDCK cells, A549 cells
and PAMs were seeded in a 96-well plate (Corning, USA) for
24 h, infected with 10-fold serial dilutions of virus in serum-free
medium supplemented with 1µg/ml TPCK-treated trypsin and
then exposed to various concentrations of AFB1. The cytopathic
effect induced by the virus was observed and recorded after 24 hpi
to calculate the virus titers by the method of Reed and Muench.
A biosafety level 2 facility was used for all the experiments with
the H1N1 virus.

Animals and Study Design
Male TLR4 knockout (C57BL/10ScNJNju, TLR4−/−) and wild-
type (C57BL/10JNju, WT) mice, 6–8 weeks old and weighing 18–
20 g, were purchased from Nanjing University (Nanjing, China).
TLR4−/− mice do not express functional TLR4 or TLR4 mRNA
because of the TLR4 lps-del mutation. All mice were housed
in a specific pathogen-free environment (22 ± 2◦C) with a
12 h light/dark cycle. Water and food were available ad libitum
throughout the whole study. All mice were acclimatized for 1
week before the onset of experiments. Body weight changes and
illnesses were monitored daily.

For the first randomized trial, WT mice were randomly
divided into 6 groups (each group included 3 replicates, with 4
mice per replicate): 4 groups were challenged intranasally with
a nonlethal dose of H1N1 virus (1000 TCID50) (23) prior to
treatment with AFB1 on d 1, d 7, and d 14 as described previously
(24, 25), and the other two groups were given equivalent amounts
of PBS intranasally. Among the 4 infected groups, three groups
were given 10, 20, and 40 µg/kg b.w. AFB1 i.p. daily for 15 days,
and the fourth group was given an equivalent amount of PBS i.p.
Likewise, two uninfected groups were injected with equivalent
amounts of PBS or AFB1 (40 µg/kg).

For the second randomized trial, WT mice were randomly
divided into 2 groups (each group included 3 replicates, with 3
mice per replicate): the first group was given 3 mg/kg of TAK242
i.p.1 h prior to the other treatments, and the other group was
given an equivalent amounts of PBS i.p.

For the third randomized trial, TLR4−/− and WT mice were
likewise divided into 2 groups (each group included 3 replicates,
with 3 mice per replicate).

All mice from the second and third randomized trials were
treated with equivalent amounts of H1N1 virus and 40 µg/kg of
AFB1 as described for the first randomized trial.

Histopathological Examination and

Immunohistochemical Staining
At the end of the experiments, mice were euthanized. Lung
and spleen tissues were taken from each mouse. Approximately
75% of the lung tissue was stored at −80◦C for the subsequent
experiments, and the other 25% of the lung tissue was fixed in 4%
formaldehyde for hematoxylin-eosin staining (H&E) according
to standard protocols as described previously (26, 27) with some
modifications. Briefly, lung tissue was fixed in 10-fold volume
of 4% formaldehyde for 48 h. Next, samples were embedded in
paraffin and cut into 4-µm-thick sections. One section from each
tissue sample was stained with H&E.

For immunohistochemical staining, spleen tissues were
incubated with a monoclonal antibody for TLR4 (Abcam,
UK) and then incubated with an appropriate horseradish
peroxidase (HRP)-conjugated secondary antibody. Subsequently,
the HRP conjugates were visualized using a diaminobenzidine
solution. Images were captured with a Pannoramic viewer
(Pannoramic MIDI, 3D HISTECH), and data were analyzed
using DensitoQuant software (QuantCenter, 3DHISTECH). A
histochemistry score (H-score) was calculated according to a
previously reported equation (28, 29).

Fluorescent Quantitative Real-Time PCR

(qRT-PCR) Analysis
Cells and lung and spleen tissues were collected to determine
the relative mRNA expression levels of viral matrix (M) protein,
TLRs, TNF-α and IL-10. Primers for the reference genes
and target genes (Table 1) were designed and synthesized by
Invitrogen based on known sequences. Briefly, total RNA was
first extracted from tissues and cells using an RNAiso Plus
kit (TaKaRa, Japan). First-strand cDNA was synthesized using
a reverse transcription kit (TaKaRa, Japan). Subsequently, the
samples of cDNA were subjected to qRT-PCR (TaKaRa, Japan)
using specific primers with a no-cDNA template as a calibrator.
The relative expression levels of the target genes were calculated
by the 2−11CT method with 18S or GAPDH as an endogenous
reference gene.

Western Blot Analysis
Cells and lung and spleen tissues were collected for western
blotting analysis to assess the relative expression levels of viral
nucleoprotein (NP), phosphorylatedNFκB p65 (pp65) and TLR4.
Briefly, total protein was extracted, and the protein concentration
was measured with a BCA kit (Beyotime, China). The proteins
were denatured, subjected to 10–15% of sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and then transferred to
polyvinylidene difluoride membranes (Bio-Rad, USA). Next, the
membranes were blocked for 2 h at room temperature (RT) in 5%
bovine serum albumin (BSA) in Tris-buffered saline containing
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TABLE 1 | Primers sequences for real-time PCR.

Source Gene Forward (5′-3′) Reverse (3′-5′)

Virus M GGGAAGAACACCGATCTTGA CTCCGTTCCCATTAAGAGCA

Pig TLR1 GAAACTACAAGGGCAGCTGG GGGAAACTGAACACCTCCCT

TLR2 AGACGCTGGAGGTGTTGG AACGAAGCATCTGGGAGT

TLR3 AAAACCAGCAACACGACT TTGGAAAGCCCATAAAGA

TLR4 AGAATGAGGACTGGGTGA TGTAGTGAAGGCAGAGGT

TLR5 GGCTCAACCAAACCAACG GGGTGATGACGAGGAATAG

TLR6 AACTCACCAGAGGTCCAA TCTTCCCTGTCGATTCTC

TLR7 GGCAAGTAGAGGACAT GGTAGACCCTGAACAT

TLR8 CGGCACCAGAAGAACG GGCAGGTCAGGAGCAA

TLR9 GGCCTTCAGCTTCACCTTGG GGTCAGCGGCACAAACTGAG

TLR10 ATGATTCGGCCTGGGTAAAG TTGCCAGGATCAGAGTTTCC

IL-10 CTGCCTCCCACTTTCTCTTG TCAAAGGGGCTCCCTAGTTT

Mouse TNF-α GACTCAGATCATCGTCTC GGAGTAGATGAGGTACAG

GAPDH CCACCCAGAAGACTGTGGAT AAGCAGGGATGATGTTCTGG

TLR4 CACTGTTCTTCTCCTGCCTGAC CCTGGGGAAAAACTCTGGATA

18S TTGACGGAAGGGCACCACCAG GCACCACCACCCACGGAATCG

M, influenza A virus matrix protein; TLR, toll-like receptor; IL-10, interleukin 10; TNF-α,

tumor necrosis factor-α; GAPDH, glyceraldehyde-phosphate dehydrogenase.

0.1% Tween 20 (TBST), incubated overnight at 4◦C with
specific primary antibodies from (anti-NP, ab128193; anti-TLR4,
ab13556; anti-pp65, ab76302 or anti-actin, ab14128; Abcam,UK),
and then incubated for 1 h at RT with appropriate secondary
antibodies (horseradish peroxidase-labeled anti-mouse or anti-
rabbit secondary antibodies; Cell Signaling Technology, USA).
Finally, the bound antibodies were visualized using an enhanced
chemiluminescence kit (Beyotime, China).

Determinations of TNF-α and IL-10 by

ELISA
Whole blood from mice was collected from the retro-orbital
plexus in heparinized tubes by a trained individual and was
allowed to clot at RT. Sera were separated by centrifugation and
stored at −80◦C until analysis. The contents of TNF-α and IL-
10 in sera were measured using ELISA kits (Jiancheng, China)
according to the manufacturer’s instructions.

Short Interfering RNA (siRNA) Transfection
A pig TLR4-specific siRNA sequence, 5′-
GGAUUUAUCCAGAUGUGAATT-3′, and a control siRNA
sequence were obtained from a paper published by our coauthor
(18). qRT-PCR was performed to determine the interfering
efficiency of siTLR4. The siRNA experiment was carried out
as our coauthor described previously (4). Briefly, PAMs were
seeded in 12-well plates and were transfected for 6 h with X-
tremeGENE siRNA transfection reagent (Roche, USA), siTLR4
and negative control siTLR4 diluted in medium according
to the manufacturer’s protocol, when the cells had reached
approximately 70–80% confluence. Next, PAMs were infected
with H1N1 virus and exposed to AFB1 for an additional 24 h for
further experiments.

Statistical Analysis
Statistical analysis was conducted using Prism 6 (GraphPad
Software, La Jolla, CA). Data are presented as the means ± SEM.
Unpaired two-tailed Student’s t-tests were performed to evaluate
statistical significance for two-group comparisons, and ordinary
one-way (nonparametric) ANOVA with Tukey’s posttests and
two-way ANOVA with Dunnett’s posttests were performed to
evaluate statistical significance for multigroup comparisons. A
value of P < 0.05 was considered significant, and P < 0.01 was
considered strongly significant.

RESULTS

The Cytotoxic Effects of Various

Concentrations of AFB1 on MDCK Cells,

A549 Cells and PAMs
To remove the effects of AFB1-induced cytotoxicity on viral
replication, the effects of various concentrations of AFB1 on
cell viability were determined by MTT and LDH assays.
As shown in Figures S1A–C, the viability of MDCK cells,
A549 cells and PAMs decreased significantly when the AFB1
concentrations were greater than 0.5, 0.5, and 0.1µg/ml,
respectively. Correspondingly, LDH assay showed that LDH
release increased markedly in MDCK cells, A549 cells, and
PAMs when the AFB1 concentrations were greater than 0.5, 0.5,
and 0.1µg/ml, respectively (Figures S1D–F). Afterwards, DAPI
staining was performed to determine the extent of apoptosis
and thus to further assess the cytotoxicity of AFB1 on PAMs.
As shown in Figure S1G, apoptosis began to occur when the
AFB1 concentration reached 0.1µg/ml and was identified by the
condensation and fragmentation of nuclei. In addition, given that
AFB1 was dissolved in DMSO, the effects of DMSO on MDCK
cells, A549 cells and PAMswere alsomeasured, and no significant
differences were observed between the DMSO (1µg/ml) group
and either of the control groups (no DMSO and no AFB1).
Taken together, these results suggest that AFB1 at concentrations
between 0.01 and 0.25µg/ml, 0.01 and 0.25µg/ml, and 0.01 and
0.05µg/ml are not toxic to MDCK cells, A549 cells and PAMs,
respectively. Thus, for subsequent experiments, AFB1 was used at
concentrations of 0.01, 0.05, and 0.25µg/ml in both MDCK and
A549 cells and at concentrations of 0.01, 0.025, and 0.05µg/ml in
PAMs.

AFB1 Promotes SIV Replication in MDCK

Cells, A549 Cells and PAMs
To investigate the potential role AFB1 plays in SIV replication,
viral titers, viral M mRNA expression levels and NP expression
levels were measured by TCID50, qRT-PCR and western blotting,
respectively, as described previously (30). All cells were infected
with SIV and then treated with various concentrations of AFB1
for 24 h. As shown in Figure 1, viral titers, M mRNA expression
levels and NP levels were significantly increased in SIV-infected
MDCK (Figures 1A,D,G) and A549 cells (Figures 1B,E,G)
treated with 0.01–0.25µg/ml AFB1 compared with levels in cells
without AFB1 treatment. Correspondingly, viral titers, M mRNA
expression levels and NP levels were also markedly increased
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in SIV-infected PAMs (Figures 1C,F,G) treated with 0.025–
0.05µg/ml AFB1 compared with levels in non-AFB1-treated
PAMs. To confirm that the increase in SIV replication induced by
AFB1 was not due to the presence of DMSO, we compared viral
M mRNA expression of the three cell lines exposed to DMSO to
that of the three cell lines exposed to medium and demonstrated
that viral M mRNA expression in the three DMSO-exposed cell
lines was identical to that in the cell lines exposed to medium
alone (data not shown). Taken together, our results suggest that
AFB1 exposure promotes SIV replication in vitro.

AFB1 Upregulates TLR4-NFκB Signaling

and Promotes Inflammatory Responses in

SIV-Infected PAMs
TLRs are a main family of pattern recognition receptors with a
critical role in the activation of innate immune responses, but it
has been proven that the overexpression or continuous activation
of TLR4 can lead to excessive inflammatory responses or to injury

in the body (16–18). To determine whether the promotion of
SIV replication by AFB1 is associated with TLRs-induced innate
immune responses or injury, the expression levels of TLRs 1-10 in
SIV-infected PAMs were investigated. As shown in (Figure 2A),
the relative expression of TLR4 mRNA was significantly elevated
following exposure to 0.025–0.05µg/ml AFB1 compared with
the expression in the control group. This finding was confirmed
by the marked increases in TLR4 protein levels (Figure 2B).
TLR4 induces NFκB activation (15), and a previous study
indicated that NFκB signaling involves pathogen- or cytokine-
induced immune and inflammatory responses (31). To further
confirm whether TLR4-NFκB was activated, the levels of pp65
were also determined. The results showed that 0.025–0.05µg/ml
AFB1 significantly increased the relative protein levels of pp65
(Figure 2C). The inflammatory response was quantified based on
the expressions of the TNF-α and IL-10 genes, and the results
indicated that 0.025–0.05µg/ml AFB1 significantly increased
the relative TNF-α mRNA level but decreased the relative
IL-10 mRNA level (Figures 2D,E). Taken together, our results

FIGURE 1 | AFB1 promotes swine influenza virus (SIV) replication in multiple cell lines. Cells were infected with SIV (MOI = 1), and then incubated with various

concentrations of AFB1 for 24 h. (A–C) Viral titers. Infectious virus particles were quantified by TCID50. (D–F) Viral M protein mRNA and (G) nucleoprotein (NP) levels

were analyzed by qRT-PCR and western blotting, respectively. Data are presented as the means ± SEM of three independent experiments. Significance compared

with the SIV control group, *P < 0.05 and **P < 0.01.
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demonstrated that AFB1 upregulated TLR4-NFκB signaling and
promoted inflammatory responses in the SIV-infected PAMs.

TLR4 Knockdown and BAY 11-7082

Administration Block the AFB1-Promoted

SIV Replication and Inflammatory

Responses in SIV-Infected PAMs
To further investigate the mechanism of SIV promotion by
AFB1, a TLR4-specific siRNA sequence was used to remove
the effects of TLR4, and a control siRNA sequence was used
as a negative control. The interfering efficiency of siTLR4
was determined by qRT-PCR. As shown in (Figure 3A), TLR4
knockdown significantly decreased TLR4 mRNA expression
by >70% compared with the expression in the blank; no
significant difference in TLR4 mRNA expression was observed
between the blank and siControl groups. In addition, our
results demonstrated that 0.05µg/ml AFB1 significantly elevated
viral titers (Figure 3B), M mRNA expression (Figure 3C) and
NP levels (Figure 3D) in SIV-infected PAMs compared to
the corresponding parameters in control cells without AFB1.
In contrast, TLR4 knockdown significantly reduced AFB1-
promoted SIV replication, as indicated by lower viral titers, M
mRNA expression and NP levels in the TLR4 knockdown group
than in the siControl group; no significant difference in SIV
replication was observed between the TLR4 knockdown and

control groups (Figures 3B–D). These findings indicated that
TLR4 knockdown blocked the promotion of SIV replication
induced by AFB1. Likewise, TLR4 knockdown significantly
reduced pp65 protein and TNF-α mRNA levels compared with
the levels in the siControl group and even compared with
the levels in the control group (Figures 3E,F), suggesting that
TLR4 knockdown drastically counteracted the AFB1-promoted
inflammatory responses in the SIV-infected PAMs.

Furthermore, our previous study indicated that BAY 11-7082
(10µM), a specific inhibitor of NFκB, significantly reduces pp65
in PAMs and does not have cytotoxicity in PAMs (32). In the
present study, BAY 11-7082 was used to further confirm the
mechanism of SIV promotion by AFB1. The results showed
that compared with medium alone, BAY 11-7082 significantly
reduced the elevations in viral titers (Figure 3G), MmRNA levels
(Figure 3H), and TNF-α mRNA levels (Figure 3I) promoted by
AFB1 in SIV-infected PAMs, and no significant differences in the
above parameters were observed between the BAY 11-7082 group
and the control groups. Taken together, the results indicated that
TLR4 knockdown and BAY 11-7082 blocked the AFB1-promoted
SIV replication and inflammatory responses.

AFB1 Promotes SIV Replication and Lung

Damage Induced by SIV in Mice
To further verify the in vitro results, lung tissues were taken from
SIV-infected mice exposed to AFB1 to assess viral replication

FIGURE 2 | AFB1 upregulates TLR4-NFκB signaling and promotes inflammatory responses in SIV-infected PAMs. PAMs were incubated with or without SIV (MOI =

1), and then, the SIV-infected PAMs were incubated with various concentrations of AFB1 for 24 h. (A) Relative TLRs mRNA, (B) TLR4 protein, (C) phosphorylated

NF-κB p65 (pp65), (D) TNF-α mRNA levels and (E) IL-10 mRNA levels. Data are presented as the means ± SEM of three independent experiments. Significance

compared with the SIV control group, *P < 0.05 and **P < 0.01.
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FIGURE 3 | TLR4 knockdown and BAY 11-7082 reduce the AFB1-promoted SIV replication and inflammatory responses. PAMs were infected with SIV (MOI = 1) and

then treated with (AFB1 group) or without (control group) 0.05µg/ml AFB1. A TLR4-specific siRNA sequence was used to remove the effects of TLR4, and a control

siRNA sequence was used as a negative control. (A) The knockdown efficiency of TLR4 siRNA in PAMs. (B) Viral titers and (C) relative viral M mRNA levels, (D) NP, (E)

pp65 and (F) TNF-α mRNA levels. A specific inhibitor of NFκB, BAY 11-7082 (10µM), was added to remove the effects of NFκB, and medium was used as a negative

control. (G) Viral titers, (H) relative viral M mRNA levels, and (I) TNF-α mRNA levels. Data are presented as the means ± SEM of three independent experiments.

Significance compared with the control group, *P < 0.05, **P < 0.01; significance compared with the negative control group, #P < 0.05 and ##P < 0.01.
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as indicated by viral titers (Figure 4A), M mRNA levels
(Figure 4B) and NP levels (Figure 4C). As expected, AFB1 at
doses of 10–40 µg/kg markedly increased viral titers, M mRNA
levels and NP levels in lungs of SIV-infected mice compared
with the levels in lungs of mice without AFB1. To further
assess the impact of AFB1 on viral replication, weight gain
(Figure 4D), the lung index (Figure 4E) and histological damage
(Figures 4F,G) were determined. As expected, SIV-infected mice
exhibited decreased weight gain, but enhanced the lung index
and inflammatory cell infiltration compared with mice from
the blank group, and these changes were aggravated following
exposure to 10–40 µg/kg AFB1. In addition, 40 µg/kg AFB1
had no effects on these parameters in mice from the blank

group (Figures 4D-G). Taken together, our data suggest that
AFB1 promotes SIV replication and SIV-induced lung damage in
mice.

AFB1 Promotes TLR4 Expression and the

Inflammatory Response in SIV-Infected

Mice
To further verify the in vitro results, spleen tissues were
taken from SIV-infected mice exposed to AFB1 to assess TLR4
expressions as indicated by TLR4 protein and mRNA levels.
The immunohistochemical assay demonstrated that AFB1 at
doses of 10–40 µg/kg significantly increased TLR4 expression

FIGURE 4 | AFB1 promotes SIV replication and lung damage in mice. Anesthetized mice were infected intranasally with 1000 TCID50 of SIV or PBS on d 1, d 7, and

d 14; injected intraperitoneally with various concentrations of AFB1 daily; and sacrificed at 15 days post infection (dpi). (A) Viral titers in the lung homogenates were

determined by TCID50 on MDCK cells at 2 and 6 dpi. Data are shown as mean log10 TCID50 per gram of lung for three mice per group. The lung tissues were

harvested at 15 dpi to assess viral replication as measured by (B) viral M mRNA and (C) NP levels. (D) Comparison of weight change expressed as a percentage of

starting weight. (E) The lung index was calculated as the ratio of lung weight and body weight. (F) Representative images taken from nine mice in six groups as

indicated. The areas of hemorrhage are denoted with the blue arrows. (G) Pathological changes in lungs. The mouse lungs were removed at 15 dpi, sectioned and

stained with H&E for histological examination. Representative images from nine mice in each group were obtained at 200 × magnification. Data are presented as the

means ± SEM of nine mice in each group; Different lowercase letters indicate significant differences (P < 0.05). *,#P < 0.05, **,##P < 0.01, ns, not significant.
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FIGURE 5 | AFB1 promotes TLR4 expression and inflammatory responses in mice. Anesthetized mice were infected intranasally with 1000 TCID50 of SIV or PBS at d

1, d 7, and d 14; injected intraperitoneally with various concentrations of AFB1 daily; and sacrificed at 15 dpi. The spleen tissues were harvested at 15 dpi to assess

TLR4 expression as measured by (A) TLR4 protein staining, (B) relative TLR4 mRNA levels and (C) TLR4 protein levels using immunohistochemistry, qRT-PCR and

western blotting, respectively. (D) Serum TNF-α and (E) IL-10 levels. Representative immunohistochemistry images from nine mice in each group were obtained at

400 × magnification. Data are presented as the means ± SEM of three independent experiments. Significance compared with the SIV control group, *P < 0.05 and

**P < 0.01.

(H-score) in the spleens of SIV-infected mice (Figure 5A). As
expected, qRT-PCR and western blot assays supported the above
results, demonstrating that AFB1 at doses of 10–40 µg/kg
markedly increased TLR4 mRNA (Figure 5B) and protein levels
(Figure 5C) in the SIV-infected mice compared with the levels
in mice without AFB1. In addition, the inflammatory response
was quantified by the release of TNF-α and IL-10, and the
results showed that AFB1 at doses of 10 to 40 µg/kg markedly
increased TNF-α release but significantly decreased IL-10 release
in sera (Figures 5D,E). Taken together, our data suggest that
AFB1 promotes TLR4 expression and the inflammatory response
in SIV-infected mice.

TAK242 and TLR4 Knockout Alleviates

AFB1-Promoted SIV Replication,

Inflammation and Lung Damage in

SIV-Infected Mice
To determine the roles TLR4 plays in the promotion of SIV
replication by AFB1 in vivo, the TLR4 inhibitor, TAK242,
was used to treat mice (16). The results showed that TLR4
mRNA (Figure 6A), viral M mRNA (Figure 6B) and NP levels
(Figure 6C) were markedly reduced in the presence of TAK242
compared with the levels in the no-TAK242 group, suggesting
that TLR4 activation is required for the promotion of SIV

replication by AFB1. However, no significant differences in
weight gain (Figure 6D) or the lung index (Figure 6E) were
observed between the TAK242 and control groups. Histological
examination of lungs demonstrated that lung damage was
alleviated after TAK242 administration (Figures 6F–G). In
addition, TAK242 significantly reduced TNF-α content in sera
(Figure 6H). Taken together, our results indicated that TAK242
alleviated AFB1-promoted SIV replication, inflammation and
lung damage in SIV-infected mice.

To further confirm the roles TLR4 plays in the promotion
of SIV replication by AFB1, TLR4−/− mice were used in
this study. The results showed that TLR4−/− mice exhibited
decreased TLR4 mRNA (Figure 6I), viral M mRNA (Figure 6J)
and NP levels (Figure 6K) compared with WT mice, suggesting
that TLR4 activation is indeed required for the promotion of
SIV replication by AFB1. Likewise, no significant differences
in weight gain (Figure 6L) and the lung index (Figure 6M)
were observed between WT and TLR4−/− mice. As expected,
histological examination of lungs from TLR4−/− mice did not
reveal obvious lung damage (Figures 6N–O). In addition, the
TNF-α content in sera of TLR4−/− mice was lower than that
in sera of WT mice (Figure 6P). Taken together, our results
indicated that TLR4 knockout attenuated AFB1-promoted SIV
replication, inflammation and lung damage in SIV-infected
mice.
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FIGURE 6 | TLR4 deficiencies alleviate AFB1-promoted SIV replication, inflammation and lung damage in mice. Anesthetized mice were infected intranasally with

1000 TCID50 of SIV on d 1, d 7, and d 14 and were injected intraperitoneally with 40 µg/kg AFB1 daily. Mice from the TAK242 group were injected with 3 mg/kg

TAK242 daily, and the mice from control group were given PBS. Mice were sacrificed at 15 dpi. (A) Relative TLR4 mRNA levels, (B) viral M mRNA levels, (C) viral NP

levels, (D) body weight and (E) the lung index. (F) Representative images taken from mice in the control and TAK242 groups. The areas of hemorrhage are denoted

with the blue arrows. (G) Pathological changes in lungs and (H) serum TNF-α in mice. TLR4−/− and WT mice were infected intranasally with 1000 TCID50 of SIV on d

1, d 7, and d 14; injected intraperitoneally with 40 µg/kg AFB1 daily; and sacrificed at 15 dpi. (I) Relative TLR4 mRNA levels, (J) viral M mRNA levels, (K) viral NP

levels, (L) body weight, and (M) the lung index. (N) Representative images taken from mice in the TLR4 knockout (TLR4−/−) and wild-type (WT) groups. The areas of

hemorrhage are denoted with the blue arrows. (O) Pathological changes in lungs and (P) serum TNF-α in TLR4−/− and WT mice. Data are presented as the means ±

SEM. Significance compared with control/WT mice, **P < 0.01; ns, not significant.

DISCUSSION

Swine are one of the species most sensitive to AFB1, and the
maximum tolerance level of AFB1 for pigs is approximately
0.385 mg/kg of feed (33). On the contrary, mice are highly
resistant to AFB1 (TD50 > 5,400 mg/kg b.w.) (34). According
to the World Health Organization, in humans, AFB1 at
concentrations of 30 to 50, 50 to 100, and 100 to 1,000
µg/kg b.w. produces mild, moderate and severe toxicity,

respectively. According to the guidelines of the US Food and
Drug Administration and the National Food Safety Standard
(GB2761-2017, China), the maximum allowable dietary AFB1
concentrations for humans and animals are 20 and 300 µg/kg,
respectively. However, it was previously unknown whether
low-dose AFB1 could cause or exacerbate secondary diseases.
Therefore, concentrations of 10, 20, and 40 µg/kg b.w. were
used in this study. Our findings confirmed that 40 µg/kg
AFB1 has no effects on the weight gain and lung function
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of mice, which is consistent with a previous study (34) and
suggests that the promotion of SIV replication by AFB1 is
not due to AFB1 toxicity. In addition, to remove the potential
effects of AFB1-induced cytotoxicity on SIV replication, the
safe concentrations of AFB1 were also determined by MTT
and LDH assays and DAPI staining for further in vitro
experiments.

Since the initial report in 1979 that AFB1 decreases interferon
production by the influenza virus (35), few studies have been
performed to determine its effects on SIV replication. Our
study shows that AFB1 promotes SIV replication in vivo
and in vitro. First, enhanced viral replication was observed
in the MDCK cells, A549 cells and PAMs. Correspondingly,
the in vivo results supported the conclusion of the in vitro
experiments that AFB1 promotes SIV replication in mice. In
addition, SIV-infected mice exposed to AFB1 also exhibited
decreased weight gain but increased the lung index and lung
damage. Our findings are consistent with the outcomes of SIV
infection (36–38), suggesting that SIV infection is aggravated by
AFB1.

Toll-like receptors (TLRs), which exist in porcine alveolar
macrophages and in mice, are associated with the innate immune
response (14, 39). Interestingly, viruses can evade the host
immune response, thereby enhancing viral replication, when
TLR4 is inhibited, but TLR4 antagonists can protect mice
from lethal influenza infection (20). Therefore, the role of
TLRs in the AFB1-induced promotion of viral replication was
examined in our present study. Our data showed that AFB1
upregulated TLR4, but not other TLRs, in the SIV-infected
PAMs. We investigated the underlying mechanism by using
TLR4 knockdown and TLR4−/− mice. The results showed that
TLR4 knockdown and the inhibition of NFκB significantly
reduced the AFB1-promoted SIV replication and inflammatory
responses in PAMs, and TLR4 deficiencies also attenuated the
AFB1-promoted SIV replication, inflammation and lung damage
in mice. This may appear counterintuitive at first because
the TLR4 pathway is often required for protection against
influenza infection (40). Generally, TLR4 plays a critical role
in the activation of innate immune responses to defend the
body against pathogens. However, an increasing number of
studies have shown that the overexpression and/or continuous
activation of TLR4 can lead to excessive inflammatory responses
or tissue damage in the body (16–18, 41). Our results are the
first to suggest that AFB1 promotes SIV replication and SIV-
related lung damage by activating the TLR4-NFκB pathway.
This finding is supported by previous studies demonstrating
that TLR4 antagonists or TLR4 knockout can prevent lethal
influenza infection (20, 42). Therefore, we infer that AFB1
might promote TLR4 overexpression and excessive inflammatory
responses and reduce tolerance (43), thereby promoting SIV
replication.

Previous study indicated that the effects of proinflammatory
cytokines were antagonized by anti-inflammatory cytokines such
as IL-10 (43). In addition, a delicate balance between pro-
and anti-inflammatory cytokine production is essential for the
recovery from and defense against viral infection (44), which

has roles in the maintenance of homeostasis and immunity.
Accordingly, our data suggested that the inflammatory response
was aggravated to defend against SIV infection, and IL-
10 decreased and was not enough for the maintenance of
homeostasis and immunity, thereby reducing the tolerance
and increasing viral replication. On the contrary, excessive
inflammatory responses can induce anti-inflammatory responses
(19), and M2 macrophage polarization (anti-inflammatory
macrophage phenotype) is TLR4 dependent (45). Therefore, it
is likely that AFB1 promotes SIV replication via the TLR4-
dependent induction of M2 macrophage polarization, but this
possibility needs to be further studied.

In conclusion, our data suggest that AFB1 promotes SIV
replication and SIV-induced lung damage by activating TLR4-
NFκB signaling in vitro and in vivo or at least promotes these
processes in a TLR4-dependent manner. This finding suggests
a new risk of AFB1 exposure and reveals the vital role of
TLR4-induced inflammation in the promotion of SIV replication
and lung damage by AFB1, pointing to TLR4 as a potential
therapeutic target for preventing lethal influenza infection.
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Figure S1 | Effects of various concentrations of AFB1 on cells. Cells were

exposed to various concentrations of AFB1 for 24 h, and then subjected to (A–C)

MTT, (D–F) LDH, and (G) DAPI staining assays for the detection of cell viability. A

DMSO group was included to remove the effects of DMSO on cell viability, as the

AFB1 was dissolved in DMSO. Cells without any AFB1 and DMSO were used as

the control group. Cell nuclei were counterstained with DAPI to assess apoptosis,

and the apoptotic cells were identified by the condensation and fragmentation of

nuclei (yellow arrows). Data are presented as the means ± SEM of three

independent experiments. Significance compared with the control group,
∗P < 0.05 and ∗∗P < 0.01.
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Human infection with highly pathogenic avian influenza viruses (HPAIV) is often associated

with severe tissue damage due to hyperinduction of interferons and proinflammatory

cytokines. The reasons for this excessive cytokine expression are still incompletely

understood, which has hampered the development of efficient immunomodulatory

treatment options. The host protein TRIM28 associates to the promoter regions of

over 13,000 genes and is recognized as a genomic corepressor and negative immune

regulator. TRIM28 corepressor activity is regulated by post-translational modifications,

specifically phosphorylation of S473, which modulates binding of TRIM28 to the

heterochromatin-binding protein HP1. Here, we identified TRIM28 as a key immune

regulator leading to increased IFN-β and proinflammatory cytokine levels during infection

with HPAIV. Using influenza A virus strains of the subtype H1N1 as well as HPAIV

of subtypes H7N7, H7N9, and H5N1, we could demonstrate that strain-specific

phosphorylation of TRIM28 S473 is induced by a signaling cascade constituted of

PKR, p38 MAPK, and MSK1 in response to RIG-I independent sensing of viral RNA.

Furthermore, using chemical inhibitors as well as knockout cell lines, our results suggest

that phosphorylation of S473 facilitates a functional switch leading to increased levels

of IFN-β, IL-6, and IL-8. In summary, we have identified TRIM28 as a critical factor

controlling excessive expression of type I IFNs as well as proinflammatory cytokines

during infection with H5N1, H7N7, and H7N9 HPAIV. In addition, our data indicate a

novel mechanism of PKR-mediated IFN-β expression, which could lay the ground for

novel treatment options aiming at rebalancing dysregulated immune responses during

severe HPAIV infection.
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INTRODUCTION

Influenza A viruses (IAV) are the leading cause of annually
recurring respiratory infections affecting millions of people
worldwide. Infection by seasonal viruses is accompanied by
mild to severe symptoms, such as fever, headache and dry
cough but immunocompetent patients usually recover within 2–
3 weeks. In contrast, infections with highly pathogenic avian
influenza viruses (HPAIV), such as H5N1 often cause severe viral
pneumonia as well as multiple organ failure and can lead to
death, as exemplified by the “bird flu” outbreak in Hong Kong in
1997 with an overall mortality rate of 33% (1–3). Uncontrolled
expression of type I and type II interferons (IFNs) and high
levels of proinflammatory cytokines, such as TNF-α, IL-1ß, IL-
6, und IL-8 due to a hyperinduction of the innate immune and
inflammatory responses are the suspected reasons for HPAIV-
induced immunopathology (reviewed in (4)). The underlying
molecular mechanisms and signaling pathways, which are
responsible for the increased and sustained expression of IFNs
and proinflammatory cytokines during HPAIV infection are
still not fully understood. However, a virus-induced imbalance
of stimulatory and inhibitory factors, which normally regulate
the controlled onset and resolution of immune responses, is
hypothesized (5).

The innate immune response to IAV is rapidly initiated by
pathogen recognition receptors (PRRs), such as RIG-I, which
recognize viral RNA in the cytoplasm of infected cells and
activate a signal transduction cascade involving the adaptor
protein MAVS and the transcription factors IRF3/7. Upon
phosphorylation, IRF3/7 dimerize and translocate into the cell
nucleus where they bind to the IFN-α/β promotor and facilitate
gene transcription. Alternatively, membrane associated toll-
like receptors (TLRs) can detect viral glycoproteins or sense
viral RNA in endosomal compartments and signal via the
adaptor protein MyD88 resulting in the activation of IRF3/5/7
and subsequently in IFN-α/β expression (6, 7). Secreted IFN-
α/β bind to the interferon-α/β receptor on neighboring cells
resulting in STAT1/2 phosphorylation by the receptor-associated
Jak/Tyk kinases (8). This mediates the nuclear translocation
of STATs and upregulation of the expression of hundreds
of interferon-stimulated genes (ISGs), among them antiviral
proteins, chemokines and proinflammatory cytokines. This
allows the recruitment and activation of immune cells at the
site of infection. To resolve the ongoing immune reaction
and prevent immunopathology, negative immune regulators,
such as the recently identified death-associated protein kinase
1 (DAPK1) (9) and others interfere with further signal
transduction and cytokine expression.

Here, we have identified the host factor and
transcriptional corepressor Tripartite motif-containing 28
(TRIM28/KAP1/TIF1β) as a critical regulator of IFN-β, IFN-γ
and cytokine expression during infection with HPAIV. TRIM28
belongs to the family of TRIM proteins (10) of which most
members are involved in the regulation of the immune response
to diverse viruses (11, 12). Like most of the TRIM family
members, TRIM28 possesses E3 ubiquitin ligase activity located
in its N-terminal RBCC-domain. Its C-terminus contains a

rather unique arrangement of functional domains including
a heterochromatin protein 1 binding domain (HP1 BD), a
plant homeodomain (PHD) and a bromodomain (Bromo),
which is only shared by the three other TRIM-family members
TRIM24/TIF1α, TRIM33/TIF1γ and TRIM66/TIF1δ. All
four proteins are known for their function as transcriptional
regulators and constitute the TRIM subfamily VI (13–15).

Functionally, TRIM28 is described as a universal genome
regulator involved in embryonic and stem cell development,
cell cycle regulation, apoptosis, cancer, diverse stress responses
and immunity (16–18). Mice lacking TRIM28 die at an early
embryonic stage emphasizing its crucial role during embryonic
development (19). In addition, TRIM28 facilitates silencing of
endogenous retroviruses (20), restricts pro-viral gene activation
and suppresses lytic gene expression of Kaposi’s sarcoma-
associated herpes virus, Murine leukemia virus and human
T-cell lymphotropic virus-1 (21–23). It possesses E3 SUMO
ligase activity and interacts with diverse transcription factors
and other proteins to modulate their activity. These functions
of TRIM28 are suspected to be regulated by post-translational
modification (PTM) including SUMOylation, phosphorylation
and others, which often occur at acceptor sites located in
close proximity to the functional domains in the C-terminus
(24–26). In contrast to the majority of TRIM proteins,
which comprise immune enhancing activities, TRIM28 is
associated with immunosuppression (27). The protein was
reported to downregulate the activity of several immune-related
transcription factors, such as IRF7, IRF5 and IRF1 as well as
STAT3 by varyingmechanisms (28–30). A role of TRIM28 during
IAV replication has not been investigated until today. First
evidence for a possible functional relevance derives from a global
SUMO-screening demonstrating that TRIM28 is deSUMOylated
during IAV infection (31). Nevertheless, this study did not
address whether TRIM28 is involved in the immune response to
IAV infection.

In the present study, we demonstrate that TRIM28 is
phosphorylated at serine 473 (S473), a site known to regulate
TRIM28 corepressor activity, during infection of human lung
epithelial cells with HPAIV. Furthermore, we establish a
link of S473 phosphorylation to elevated IFN-β expression
and provide compelling evidence that TRIM28 is a key
factor in the development of cytokine overexpression during
HPAIV infection. These results could be the starting point
for the development of new immunomodulatory strategies
targeting TRIM28 post-translational modification to control the
expression of type I IFNs as well as proinflammatory cytokines.

MATERIAL AND METHODS

Cells and Viruses
Human alveolar epithelial cells (A549), African green monkey
kidney epithelial cell (Vero), HEK293T, HEK293T-Phoenix and
Madin-Darby canine kidney type II cells (MDCK-II) were
cultivated in Dulbecco’s modified Eagle’s Medium (DMEM)
(Sigma, Germany) supplemented with 10% fetal bovine serum
(Merck, Germany) and 1% Penicillin/Streptomycin (P/S) (Merck,
Germany) at 37◦C and 5% CO2. Human Umbilical Vein
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Endothelial Cells (HUVECs) were isolated from umbilical
cords by dispase treatment and cultured on CellBIND R© dishes
(Corning, USA) in HUVEC-medium [50% EGM2 and 50%
M199 (Biochrom, Germany) supplemented with 10% fetal
calf serum (Sigma, Germany), 30µg/mL gentamycin (Cytogen,
Germany), 15 ng/mL amphotericin B (Biochrom, Germany),
100 IE Heparin (Ratiopharm, Germany), 2mM L-glutamine
(Lonza, Switzerland)] at 5% CO2 and 37◦C. Upon infection
HUVECs were cultured in M199 medium containing 1%
BSA, 30µg/ml gentamicin and 15 ng/ml amphotericin B. All
work with HUVECs was conducted with the formal approval
of the Ethics Committee of North Rhine-Westphalia and
the University of Muenster. A/Thailand/KAN-1/2004 (H5N1)
(KAN-1) was kindly provided by P. Puthavathana (Bangkok,
Thailand). A/FPV/Bratislava/79 (H7N7) (FPV) was obtained
from the virus depository of the Institute of Virology in
Giessen, Germany. A/Hamburg/04/2009 (H1N1pdm) was a kind
gift of the German National Reference Centre for Influenza
(Brunhilde Schweiger, Berlin, Germany). A/Vietnam/1203/2004
(H5N1) (VN) and A/Anhui/1/2013 (H7N9) (Anhui) were kindly
offered by Thorsten Wolff (RKI, Berlin). Recombinant A/Puerto
Rico/8/34 (H1N1) (PR8), A/seal/Mass/1-SC35M/80 (H7N7)
(SC35M) and A/WSN/33 (H1N1) (WSN) were generated using
the pHW2000 reverse genetics system (32). All influenza
viruses were propagated on MDCK-II cells in infection
medium [DMEM supplemented with 1% P/S, 0.25% bovine
serum albumin (BSA, Sigma) and 0.01% MgCl2 and CaCl2
(Roth, Germany)]. Infections were carried out by incubating
cells in infection PBS (PBS supplemented with 1% P/S,
0.25% BSA and 0.01% MgCl2 and CaCl2) at the indicated
multiplicity of infection (MOI) for 30min. Experiments
involving HPAIV were conducted in a biosafety level (BSL)
3 approved laboratory. Recombinant VSV (serotype Indiana)
encoding firefly luciferase (VSV-luc) was generated by replacing
the GFP gene in the previously described VSV-GFP vector by
the firefly luciferase gene according to published procedures
(33). VSV-luc was propagated on Vero cells and titrated by
immunostaining with a rabbit polyclonal anti-VSV serum as
described previously (34).

Plasmids
Guide RNAs (gRNA) targeting TRIM28 and mCherry
were designed with BbsI overhang sequences. The gRNA
oligonucleotides were ordered phosphorylated, annealed
and ligated into BbsI digested pSpCas9(BB)-2A-GFP
plasmid (Addgene #48138) (35). For MyD88 and PKR,
gRNAs were annealed, phosphorylated by PNK and cloned
into BsmBI digested lentiCRISPR v2 vector (Addgene
#52961) (36). Oligonucleotide sequences are included in
Supplementary Table S1. Full-length human TRIM28 was
subcloned from pEGFP-TRIM28 (Addgene #45568) into NotI
and XhoI (NEB, USA) digested pBluescript II SK(+/–) vector. In
pBluescript II SK(+/–), TRIM28 mutants (S473A, S473E) were
obtained by site-directed mutagenesis with non-overlapping
primers. Subsequently, TRIM28 wildtype and the phospho-
mutants were cloned into NotI and EcoRI (NEB, USA) digested

retroviral vector pQCXIP. PCR primer sequences are included in
Supplementary Table S2.

Generation of Knockout Cells
A549 TRIM28 CRISPR-Cas9 knockout (KO) and control
cells (Ctrl) were generated by transient transfection. In brief,
A549 cells were transfected with either pSpCas9(BB)-2A-GFP
harboring a gRNA targeting TRIM28 or a control gRNA
targeting mCherry (plasmids were kindly provided by Nicole
Fischer, Hamburg, Germany). Positively transfected cells were
selected by fluorescence-activated cell sorting (FACS) and
clonal cell lines were analyzed for TRIM28 KO by western
blot. A549 PKR, RIG-I KO, MAVS KO and MyD88 KO
cells were generated by lentiviral transduction as described
elsewhere (9, 37). In brief, lentiviral particles were produced
on HEK293T cells by transfection with the following three
plasmids at a 3:1:3 ratio; (i) pCMV-DR8.91 (ii) pMD2.G
(iii) lenti-CRISPR-vector. Virus particle-containing supernatants
were harvested 48, 56, and 72 h post-transfection (h p.t.) and
used for transduction of target cells. Successfully transduced
cells were selected with 1µg/ml puromycin (Sigma, Germany).
Gene knockout in single cell clones was validated by western
blot.

Retroviral Gene Transfer
The empty retroviral vector pQCXIP or pQCXIP-TRIM28
expressing the different phospho-mutants were transfected into
HEK293T-Phoenix packaging cells (Orbigen, USA). Retrovirus-
containing supernatants were harvested 48 and 60 h p.t.,
supplemented with polybrene (Santa Cruz Biotechnology, USA)
to a final concentration of 4µg/ml and used for transduction
of A549 TRIM28 KO cells. Transduced cells were selected with
1µg/ml puromycin for 5 days to obtain stable cell lines and
TRIM28 expression levels were analyzed by western blot. Stable
TRIM28 mutant-expressing cells were subcloned to obtain single
cell clones with equal expression of TRIM28 as measured by
western blot.

Cell Treatments
Cells were treated with inhibitors for 1 h prior to infection,
RNA transfection or induction of genotoxic stress. After
removal of the inoculum, transfection mix or chemicals,
inhibitors were added to the infection medium. The following
inhibitors were used: ATM (KU-60019, Selleckchem, Germany),
Chk2 (Chk2 inhibitor II, Abcam, Germany), p38 MAPK
(SB202190, Calbiochem, USA), PKR (2-Aminopurine, Sigma,
Germany), MEK (U0126, Taros Chemicals, Germany), MK2 (PF-
3644022, Sigma, Germany),MSK1 (SB747651A, AxonMedchem,
Netherlands) and the ROS-scavenging agent N-Acetyl-L-cysteine
(NAC) (Sigma, Germany). Cells were stimulated by exposure to
1 kJ/m2 UVC-light using a Stratalinker 2400 UV Crosslinker
(BioSurplus, USA), or incubation with H2O2, etoposide (Sigma,
Germany) or IFN-β (R&D Systems, Germany) for the indicated
times and concentrations. For RNA and HMW poly(I:C)
(Invivogen, USA) stimulations, A549 cells were transfected
using Lipofectamine 2000TM (Invitrogen, USA) according to
the manufacturer’s instructions. Therefore, total RNA from
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MDCK-II cells either infected with WSN at an MOI of 5
for 8 h or non-infected cells was isolated using the RNeasy
KitTM according to the manufacturer’s instructions (Qiagen,
Germany).

MTT-Assay
For cytotoxicity measurements, MTT [3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide] (Sigma, Germany) was
added to the cells at a final concentration of 5 mg/ml for 4 h at
37◦C and 5% CO2. As a positive control, 2µM staurosporine
(Sigma, Germany) was added for 10 h. Supernatants were
aspirated and DMSO (Roth, Germany) was added for 5min
before the optical density (OD) was measured at a wavelength
of 562 nm (MicroLumat Plus LB96V, Berthold Technologies,
Germany).

Western Blot and Antibodies
Cells were lysed with ice cold radioimmunoprecipitation assay
(RIPA) buffer (25mM TRIS pH 7.5, 150mM NaCl, 0.1% SDS,
0.5% sodium deoxycholate, 1% Triton X-100) supplemented
with the following protease and phosphatase inhibitors;
10µM leupeptin (Sigma, Germany), 200 nM aprotinin (Roth,
Germany), 5mM benzamidine (Sigma, Germany), 2.5mM
pefabloc (Sigma, Germany), 10mM beta-glycerophosphate
(Sigma, Germany), 1mM sodium orthovanadate (Sigma,
Germany), 10mM sodium fluoride (Roth, Germany) and
2.5mM sodium pyrophosphate (Sigma, Germany). Lysates
were sonicated for 20 s (pulse 50%, amplitude 30%) and
pelleted at 4◦C, 14.000 g for 15min. Protein amounts were
adjusted to 20 µg, mixed with 4× sample buffer (0.25M
TRIS pH 6.8, 40% glycerol, 8% SDS, 10% β-mercaptoethanol,
0.01% bromophenol blue) and separated by SDS-PAGE.
Proteins were transferred to nitrocellulose membranes and
detected by using primary antibodies targeting tubulin (Sigma,
Germany), PB1 (GeneTex, USA), TRIM28, TRIM28 S473-P,
TRIM28 S824-P (Abcam, UK), CREB S133-P, RIG-I, eIF2α
S51-P, ERK1/2, ERK1/2 T202/Y204-P, HSP27, HSP27 S82-
P (Cell signaling Technologies, USA) and anti-mouse or
anti-rabbit IgG secondary antibodies either conjugated to
fluorophores (Licor, Germany) or horseradish peroxidase
(Cell Signaling Technology, USA). Selected bands were
densitometrically quantified using Licor Image studio software
(Licor, Germany).

Immunofluorescence
A549 cells were seeded on glass coverslips and fixed with
4% paraformaldehyde (Sigma, USA). Cells were permeabilized
with 0.1% Triton X-100, and blocked for 30min in 3%
BSA. Slides were incubated overnight at 4◦C with primary
antibodies against IAV nucleoprotein (NP) (GeneTex, USA)
and TRIM28 S473-P. Secondary antibodies anti-rabbit Alexa
Fluor 488 (Invitrogen, USA) and anti-mouse Alexa Fluor 568
(Invitrogen, USA) were incubated for 1 h at room temperature.
Cell nuclei were stained for 20min with DAPI (Thermo Fisher
Scientific, USA). Coverslips were mounted on glass slides in
Mounting Medium S3023 (Dako Omnis, USA) and examined

using a LSM-800 Airyscan confocal microscope (Carl Zeiss,
Germany).

Phosphoproteomic Screen
A549 cells were stably labeled with “light” lysine (12C6,

14N2)
and arginine (12C6,

14N4), “medium” lysine (13C6,
14N2) and

arginine (13C6,
14N2) or “heavy” lysine (

13C6,
15N2) and arginine

(13C6,
15N4). Labeled cells were infected with either PR8, FPV

or KAN-1 at an MOI of 5 for 2, 4, 6, and 8 h. “Light”-
labeled cells were used as non-infected control (0 h), whereas
“medium”- and “heavy”-labeled cells were infected for 2 or 6 h
and 4 or 8 h, respectively. Lysates from non-infected, 2, 4 h
infected cells (Mix 1) and non-infected, 6, 8 h infected cells
(Mix 2) were subjected to tryptic digestion. Phosphopeptides
were purified by cation exchange chromatography and TiO2-
enrichment followed by LC-MS/MS analysis on a Proxeon
Easy-nLC coupled to an LTQ-Orbitrap XL mass spectrometer.
Data analysis was performed using Mascot and MaxQuant
(v1.2.2.9) as previously described (38–40). Phosphorylation
intensities of TRIM28 residues were quantified in relation to the
phosphorylation of TRIM28 in non-infected cells in both lysate
mixtures.

Cytokine Analysis
A549 TRIM28 KO and Ctrl cells were stimulated by transfection
with 200 ng of viral or cellular RNA. The LEGENDplexTM Human
Anti-Virus Response Panel (BioLegend Cat. No. 740350) was
used for the simultaneous determination of the concentrations
of IFN-α, -β, -γ, -λ1 and λ2/3 as well as IL-1β, IL-6,
IL-8, IL-10, IL-12p70, TNF-α, IP-10, and GM-CSF in the
supernatant. Cytokine capturing was performed according to the
manufacturer’s protocol in filter plates. Bead-bound cytokines
were measured on a FACSCalibur Cytometer (Becton Dickinson)
and concentrations were calculated using the LEGENDplexTM

Data Analysis Software (BioLegend, USA).

RNA Isolation and Quantitative Real-Time

PCR (qRT-PCR)
RNA was isolated using peqGOLD TriFastTM according to
the manufacturer’s instructions (VWR, USA). Total RNA was
reverse transcribed with oligo(dT) primers and RevertAid H
Minus Reverse Transcriptase (Thermo Fisher Scientific, USA).
RT-PCR was carried out in duplicates using a LightCycler R©

480 II (Roche, Germany). Primer sequences are provided in
Supplementary Table S3. Commercially available primers were
used for analysis of IFN-βmRNA (Qiagen, Germany). Expression
data were normalized to the housekeeping gene glyceraldehyde
3-phosphate dehydrogenase (GADPH) and analyzed using the
2−11CT method as described elsewhere (41).

IFN-Bioassay
A549 TRIM28 KO and Ctrl cells were stimulated by transfection
of 250 ng of viral or cellular RNA and at 6 h p. t. supernatants
were harvested. The cell-free supernatants were diluted 1:10 and
added to Vero cells for another 16 h. Subsequently, Vero cells
were infected with VSV-luc at an MOI of 5 for 5 h. Supernatants
were aspirated, cells were lysed in passive lysis buffer (Promega,
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USA) and luciferase assay substrate (Promega, USA) was added.
VSV-luc reporter gene expression was determined by measuring
luminescence using a MicroLumat Plus LB96V luminometer
(Berthold Technologies, Germany).

RESULTS

Phosphorylation of TRIM28 Is Induced by

HPAIV Infection
Viruses activate diverse signaling pathways in infected cells.
To elucidate whether human adapted and highly pathogenic
avian-derived IAV strains differentially activate kinase-governed
signaling pathways a quantitative phosphoproteomic screen
was performed (40). Human lung epithelial cells (A549) were
infected with the human IAV strain A/Puerto Rico/8/34 (PR8,
H1N1), the HPAIV strain A/Thailand/KAN-1/2004 (KAN-1,
H5N1), which was isolated from a fatal human case following
direct avian-to-human transmission and the HPAIV avian
isolate A/FPV/Bratislava/79 (FPV, H7N7). This revealed that
the host factor TRIM28 was increasingly phosphorylated at
S473 during infection with KAN-1 and FPV but not with
PR8 (Figure 1A, upper panel). For the neighboring serine 471
(S471), increased phosphorylation was only detected during
FPV infection (Figure 1A, lower panel). These results were
confirmed by western blot analysis using an antibody specific for
phosphorylated TRIM28 S473 (Figure 1B). Based on these data,
we speculated that TRIM28 phosphorylation could be a strain-
dependent mechanism. To support this hypothesis, additional
IAV strains were tested. We observed that TRIM28 S473 was
also phosphorylated upon infection with the mouse-adapted
HPAIV variant A/seal/Mass/1-SC35M/80 (SC35M, H7N7)
and the HPAIV strains A/Vietnam/1203/2004 (VN, H5N1),
A/Anhui/1/2013 (Anhui, H7N9) but not with the human-
adapted 2009 pandemic H1N1 strain A/Hamburg/04/2009
(H1N1pdm) (Figure 1C upper panels). Quantitative western
blot analysis further demonstrated that SC35M, KAN-1, and FPV
induced S473 phosphorylation to different degrees, suggesting
that all three strains have individual capacities to induce S473
phosphorylation (Figures 1B,C, lower panels). Plotting the virus
strains according to the intensity of the induced S473-P signals
indeed suggests that the degree of human adaptation inversely
correlates with the capacity to induce S473 phosphorylation
(Figure 1D). Like H5N1 viruses, H7N7 viruses can cross the
species barrier from birds to humans and may cause severe to
lethal respiratory disease in humans (42–44). As we observed
S473 phosphorylation during infection with the mouse-adapted
HPAIV variant SC35M, we used this strain as a representative
for HPAIV in many experiments. This had the advantage that
we could perform the experiments under BSL2 conditions.
Interestingly, phosphorylation at S473 and S471 could be
detected at 6 h p.i in the phosphoproteomic screen as well as in
western blot analysis, indicating that it is not induced at an early
stage of viral infection like viral entry or nuclear replication but
rather at a later step. S473 phosphorylation was also observed
at a low MOI of 0.1 (Supplementary Figure S1A). In addition,
strain-dependent phosphorylation was also observed in primary

HUVECs (Supplementary Figure S1B). Immunofluorescence
data showed that the occurrence of nuclear S473 phosphorylation
correlates with the cytoplasmic localization of the viral
nucleoprotein (NP) 10 h after infection. In contrast, in cells
infected for 5 h, only background phosphorylation was observed
in the nucleus (Figures 1E,F). In summary, these results
demonstrate that HPAIV of the H5N1, H7N7, and H7N9
subtypes induce phosphorylation of TRIM28 S473 at a late time
point during infection. Furthermore, our data indicate that
the capacity of IAV strains to phosphorylate TRIM28 inversely
correlates with the degree of human adaptation.

HPAIV-Induced Phosphorylation of TRIM28

Is Mediated by a Signaling Pathway not

Related to the DNA Damage Response

(DDR)
Phosphorylation of TRIM28 at positions S473 and serine 824
(S824) is widely described to occur in response to DNA damage
and can be experimentally induced by various genotoxic stresses
including treatment with H2O2, UV-radiation and etoposide
(45–47). During DNA damage, phosphorylation at these sites is
mediated by the kinase ataxia-telangiectasia mutated (ATM) and
the checkpoint kinases 1 und 2 (Chk1/2) (48, 49) (Figure 2A).
Phosphorylation is associated with different biological outcomes.
While S473 is located in close proximity to the HP1 BD,
which mediates the interaction with HP1 and repression
of Krüppel-associated box zinc finger protein (KRAB-ZNF)-
dependent genes, S824 lies next to the C-terminal bromodomain.
Functionally, phosphorylation of S473 has been demonstrated
to ablate binding of TRIM28 to HP1 and TRIM28-mediated
repression of KRAB-ZNF-dependent genes. In contrast, S824
phosphorylation facilitates local chromatin relaxation (48)
and, in combination with TRIM28 deSUMOylation, leads
to the de-repression of DDR-responsive genes (25). Because
infection with IAV has been reported to induce DDR (50,
51), we examined whether infection with SC35M induces
the same phosphorylation pattern on TRIM28 compared to
UV-radiation, H2O2 or etoposide treatment. Remarkably, we
found that the induced phosphorylation patterns during IAV
infection and DNA damage are different. Infection with
SC35M induced phosphorylation of S473 but not S824 while
all three genotoxic agents readily induced phosphorylation
at both sites (Figure 2B). We further investigated whether
ATM and Chk2 are also the responsible kinases for TRIM28
phosphorylation during IAV infection. Treatment of A549
cells with non-toxic concentrations of the inhibitors for ATM
and Chk2 prior to stimulation with H2O2, etoposide or
infection with SC35M clearly demonstrated that these kinases
are not involved in IAV-mediated TRIM28 S473 phosphorylation
(Figure 2C; Supplementary Figures S2A–D). Using NAC to
scavenge reactive oxygen species (ROS) we could also exclude
ROS as cause of TRIM28 S473 phosphorylation during SC35M
infection (Figure 2D). In summary, these results demonstrate
that during IAV infection TRIM28 S473 is not phosphorylated
by the DDR-related kinases ATM and Chk2, which suggests that
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FIGURE 1 | Phosphorylation of TRIM28 during HPAIV infection. (A) SILAC-labeled human A549 cells were infected with FPV (H7N7), KAN-1 (H5N1), and PR8 (H1N1)

for the indicated times at an MOI of 5. Phosphorylated peptides were enriched and analyzed by mass spectrometry. The relative phosphorylation of TRIM28 at serine

473 (S473) and serine 471 (S471) are depicted. Western blot of A549 cells infected with (B) FPV, KAN-1, PR8 and (C) VN (H5N1), Anhui (H7N9), SC35M (H7N7),

H1N1pdm at an MOI of 5 for the indicated time points. Phosphorylation of TRIM28 S473 was detected using a phospho-specific antibody. Detection of total TRIM28

and tubulin served as loading controls. Densitometric quantifications of S473 phosphorylation were normalized to tubulin intensities and are depicted as mean fold

change (±SEM). (D) Schematic representation of mean fold changes of TRIM28 S473 phosphorylation compared to non-infected cells at 6 h p.i. A549 cells were

infected with SC35M (E) at an MOI of 5 for 5 h or (F) at an MOI of 0.5 for 10 h. Nuclei were stained with DAPI. Viral nucleoprotein (NP) and TRIM28 S473

phosphorylation were stained using specific antibodies. Cells were analyzed by confocal laser scanning microscopy.
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FIGURE 2 | Phosphorylation of TRIM28 S473 occurs by non-DDR related kinases during HPAIV infection. (A) Schematic representation of the involved kinases

leading to TRIM28 S473 and S824 phosphorylation during DNA damage response. (B) A549 cells were treated with 250µM H2O2 for 3 h, 100µM etoposide for 6 h,

infected for 10 h with SC35M at an MOI of 20 or treated with 1 kJ/m2 ultraviolet light 30min prior to western blot analysis. TRIM28 phosphorylation was detected

using antibodies specific for TRIM28 phosphorylated at S473 or S824, respectively. Total TRIM28 and tubulin served as loading controls. Infection was validated using

an antibody targeting the viral protein PB1. (C) A549 cells were treated with inhibitors for ATM (KU-60019, 2.5µM), Chk2 (Chk2 Inhibitor II, 10µM) and the solvent

control (DMSO, 10µM) 1 h prior to stimulation with H2O2, etoposide and SC35M infection in the presence of the corresponding inhibitors. (D) A549 cells were treated

with increasing amounts of the reactive oxygen species scavenger NAC (5, 10, 15mM) for 1 h following stimulation with 500µM H2O2 for 2 h and infection with

SC35M for 10 h at an MOI of 20 in the presence of NAC. TRIM28 S473 phosphorylation was monitored by western blot.

TRIM28 has a yet non-described, non-DDR related function in
IAV infected cells.

TRIM28 Is a Negative Regulator of the

Innate Immune Response to IAV
To gain insight into the general function of TRIM28 during
viral infection, TRIM28 KO cells were generated using
CRISPR-Cas9 (Figure 3A). Growth curve analyses demonstrated
no pronounced effect on viral replication of SC35M and
FPV in cells lacking TRIM28 compared to control cells
(Supplementary Figures S3A,B). Because TRIM28 is described
as a negative immune regulator, we analyzed the expression of
IFN-β in these cells. Intriguingly, infection with PR8, SC35M
or FPV resulted in elevated levels of IFN-β compared to
infected control cells (Figure 3B). Elevated levels of IFN-β as
well as the proinflammatory cytokines IL-6 and IL-8 were
also observed during infection of TRIM28 KO cells with
KAN-1 (Figure 3C). In addition, transfection of viral RNA
(vRNA), as a trigger for the innate immune response, also
resulted in higher mRNA levels of IFN-β, IL-6 and IL-8 in
the absence of TRIM28 (Figure 3D). Importantly, we could
also demonstrate that transcriptional upregulation correlated
with significantly increased secretion of IFN-β, IL-6, IL-8 and
IFN-γ in vRNA-treated TRIM28 KO cells at 8 and 24 h p.t.
(Figure 3E; Supplementary Figures S4A,B). Because we did not

observe an effect on SC35M and FPV replication, the biological
function of increased IFN levels was manifested in an IFN-
bioassay using a luciferase-expressing vesicular stomatitis virus
(VSV-luc), which is highly sensitive to the action of IFNs. To
induce an antiviral state, Vero cells were pre-treated with the
supernatants from vRNA-stimulated TRIM28 KO and control
cells. Infection with VSV-luc revealed a pronounced inhibition
of viral replication in Vero cells that have been treated with
the supernatant from stimulated TRIM28 KO cells compared
to Vero cells treated with control cell supernatant, indicating
that the increased IFN levels induced a more potent antiviral
state (Figure 3F). In summary, these results demonstrate that
TRIM28 functions as an important negative regulator of
the expression of IFN-β, IFN-γ, IL-6 and IL-8 during IAV
infection.

Phosphorylation of TRIM28 S473 Occurs in

Response to Viral RNA but Is Independent

of RIG-I
The previous results demonstrated that TRIM28 negatively
regulates the expression of IFN-β, IFN-γ, IL-6 and IL-8 during
IAV infection. However, the role and biological function of
S473 phosphorylation and the source of activation remained
elusive. During IAV infection IFN-β is majorly expressed in
response to sensing of viral RNA by cytosolic RIG-I (52, 53).
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FIGURE 3 | TRIM28 is a negative regulator of the innate immune response during influenza A virus infection. (A) Western blot of A549 TRIM28 KO cells. (B) Infection

of TRIM28 KO cells with PR8, SC35M and FPV at an MOI of 5. Total RNA was isolated at the indicated time points and IFN-β mRNA levels were analyzed by

qRT-PCR. IFN-β levels are depicted as mean n-fold change (±SEM) compared to non-infected cells. **p ≤ 0.002; ***p ≤ 0.0002; two-way ANOVA; Sidak’s multiple

comparisons test. (C) TRIM28 KO cells were infected with KAN-1 (H5N1) at an MOI of 0.01 for 24 h. IFN-β, IL-6 and IL-8 mRNA levels were determined as described

in (B). *p ≤ 0.03; ****p ≤ 0.0001; two-tailed unpaired t-test. (D) TRIM28 KO cells were transfected with 200 ng viral or cellular RNA. Total RNA was isolated 24 h p.t.

and IFN-β, IL-6 and IL-8 mRNA levels were determined by qRT-PCR. Results are shown as mean n-fold change (±SEM) over non-treated cells. **p ≤ 0.0021; ***p ≤

0.0002; two-way ANOVA; Sidak’s multiple comparisons test. (E) TRIM28 KO cells were treated as in (D). Supernatants were analyzed using LEGENDplexTM bead

immunoassay for the indicated cytokines at 24 h p.t. Results of six independent experiments are plotted as well as the mean (±SD). *p ≤ 0.03; ****p ≤ 0.0001;

two-way ANOVA; Tukey’s multiple comparisons test. (F) A549 cells were transfected with 250 ng viral or cellular RNA for 6 h. Supernatants were harvested and

transferred to Vero cells for 16 h. Stimulated Vero cells were infected with a luciferase-encoding vesicular stomatitis virus (VSV-luc) at an MOI of 5 for 5 h. Cells were

harvested and virus replication was determined by luciferase assay. Results of four independent experiments are plotted as well as the mean (±SEM).

Because our results demonstrate that TRIM28 is also involved
in the expression of IFN-β, we speculated that TRIM28 S473
phosphorylation could be induced by a similar mechanism.
Therefore, we analyzed whether transfection of vRNA induces
S473 phosphorylation. We observed that TRIM28 S473 was
markedly phosphorylated following transfection of vRNA or
poly(I:C) (Figure 4A; Supplementary Figure S5A). Importantly,
using RIG-I knockout cells (RIG-I KO) (Figure 4B), we
could demonstrate that S473 phosphorylation during vRNA
transfection (Figure 4C) and SC35M infection (Figures 4D,E)
is retained in the absence of RIG-I. This provides evidence
that S473 phosphorylation occurs independent of the RIG-I
signaling pathway. To support the idea that RIG-I independent

mechanisms contribute to the expression of IFN-β during
infection with HPAIV, we infected wildtype and RIG-I KO
cells with PR8, SC35M as well as FPV and measured the
induction of IFN-β. This revealed that IFN-β expression was
rather low in PR8 infected wildtype cells and seems to primarily
depend on RIG-I as 6.2-fold less IFN-β was induced in the
absence of RIG-I. In contrast, IFN-β was upregulated by
25-fold and 75-fold in SC35M and FPV infected wildtype
cells, respectively. However, lack of RIG-I reduced IFN-β
induction only by 2-fold in SC35M infected cells and 1.5-fold
in FPV infected cells (Figure 4F). This indicates that the
expression of IFN-β during FPV infection is not exclusively
dependent on RIG-I but involves other signaling pathways.
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FIGURE 4 | TRIM28 S473 phosphorylation is induced by viral RNA in a RIG-I independent manner. (A) A549 cells were transfected with 1 µg viral or cellular RNA.

Lysates were harvested 4 h p.t. and TRIM28 S473 and S824 phosphorylation was analyzed by western blot. As a control, cells were treated with 250µM H2O2 for

3 h. (B) Western blot of A549 RIG-I KO cells treated for 24 h with 500 U/ml IFN-β. (C) RIG-I KO cells were transfected with 500 ng viral or cellular RNA. TRIM28 S473

phosphorylation was monitored by western blot. (D) Western blot of TRIM28 S473 phosphorylation in RIG-I KO cells infected with SC35M for 10 h at an MOI of 20.

(E) Densitometric quantifications of S473 phosphorylation in RIG-I KO cells infected as in (D). TRIM28 S473-P levels were normalized to tubulin intensities. Results are

plotted as mean n-fold change (±SEM) over mock-infected cells. n.s. p > 0.03; two-way ANOVA; Tukey’s multiple comparisons test. (F) Infection of RIG-I KO cells

with PR8, SC35M or FPV at an MOI of 5. Total RNA was isolated 8 h p.i. and IFN-β mRNA levels were measured by qRT-PCR. IFN-β levels are depicted as mean

n-fold change (±SEM) over mock-infected cells.

These data suggest that alternative RNA sensing receptors are
responsible for the induction of S473 phosphorylation and
contribute to the high levels of IFN-β during infection with
HPAIV.

Detection of Viral RNA by the Cytoplasmic

RNA Sensor PKR Induces TRIM28 S473

Phosphorylation
To further specify which immune recognition pathway comes
into consideration for S473 phosphorylation and modulation of
IFN-β expression during HPAIV infection, A549 cells lacking the
adaptor proteins MAVS and MyD88 were examined. Infection
with SC35M clearly demonstrated that TRIM28 S473 was still
phosphorylated in cells lacking the RIG-I downstream effector
MAVS, which supported the previous results obtained in RIG-I
KO cells (Figure 5A, lane 7). Of note, RIG-I could not be detected
in this western blot due to low induction by SC35M infection.
However, RIG-I knockout in these cells was demonstrated
following IFN-β treatment in Figure 4B. S473 phosphorylation
was also retained despite lack of MyD88, which rules out the
majority of TLRs as candidate receptors for mediating TRIM28
S473 phosphorylation (Figure 5A, lane 8). Another protein
that is described to have RNA sensing capacity is the double-
stranded RNA sensing protein kinase R (PKR), which also
binds to double-stranded RNAs in the cytosol (54). Interestingly,
inhibition of PKR using 2-Aminopurine (2-AP) impeded S473
phosphorylation in response to viral infection in a concentration
dependent manner (Figure 5B) and following vRNA transfection
(Figure 5D). Furthermore, Figure 5C shows that PKR inhibition
also resulted in decreased levels of IFN-β, IL-6, and IL-8

during infection. As a genetic approach, A549 cells lacking
PKR (PKR KO) were generated. Intriguingly, in these cells S473
phosphorylation after vRNA transfection was strongly reduced
(Figure 5E). Infecting PKR KO cells with PR8, SC35M, and FPV
revealed that the induction of IFN-β is differentially dependent
on PKR. Although all three viruses induce less IFN-β in PKR
KO cells, we observed a clear tendency that IFN-β induction
is more dependent on PKR during infection with SC35M and
FPV compared to PR8 (Figure 5F). This fits to our hypothesis
that IFN-β induction in HPAIV but not PR8 infected cells is
potentiated by a PKR activated signaling cascade. In summary,
these results demonstrate that viral RNA sensing by PKR leads
to TRIM28 S473 phosphorylation during HPAIV infection and
presumably contributes to the high IFN-β levels.

p38 MAPK and MSK1 Phosphorylate

TRIM28 S473 During HPAIV Infection
In order to elucidate the signaling cascade responsible for
TRIM28 S473 phosphorylation during viral infection, we
concentrated further on kinases which are reported to be
involved in the expression of IFN-β and proinflammatory
cytokines during HPAIV infection and are known to be activated
by PKR (55–57). This led us to investigate the stress inducible
mitogen-activated protein kinase (MAPK) p38. Treatment
of A549 cells with the p38 inhibitor SB202190 at specific
and non-toxic concentrations efficiently blocked TRIM28
S473 phosphorylation during SC35M infection (Figure 6A;
Supplementary Figure S6A) demonstrating that p38 plays a
major role in this process. In contrast, treating cells with an
inhibitor of MEK, thus blocking the ERK MAPK pathway, did
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FIGURE 5 | PKR inhibition ablates TRIM28 S473 phosphorylation. (A) A549 RIG-I, MAVS, and MyD88 KO cells were infected with SC35M at an MOI of 20 for 10 h.

TRIM28 S473 phosphorylation was analyzed with a phospho-specific antibody by western blot. Total TRIM28 and tubulin served as loading controls. The viral protein

PB1 was used to verify IAV infection. Expression of MAVS and MyD88 was detected using specific antibodies. (B) A549 cells were treated for 1 h with the PKR

inhibitor 2-AP (0.5, 1, 5 and 10mM). Subsequently, cells were infected with SC35M at an MOI of 20 for 10 h in the presence of 2-AP. (C) A549 cells were pre-treated

with 10mM 2-AP and subsequently infected with SC35M at an MOI of 0.1 for 24 h in the presence of 2-AP. mRNA levels of IFN-β, IL-6 and IL-8 were determined by

qRT-PCR. Results are depicted as mean n-fold change (±SEM) over non-infected cells. *p ≤ 0.03; **p ≤ 0.002; two-tailed unpaired t-test. (D) A549 cells pre-treated

with 10mM 2-AP for 1 h were transfected with 500 ng viral or cellular RNA. Lysates were harvested 4 h p.t. and TRIM28 S473 phosphorylation was analyzed by

western blot. PKR inhibition was controlled by detection of eIF2α S51 phosphorylation. (E) A549 PKR KO cells were transfected with 50, 250, and 500 ng viral RNA or

500 ng cellular RNA. Lysates were harvested 8 h p.t. and TRIM28 S473 phosphorylation was analyzed by western blot. (F) Infection of PKR KO cells with PR8,

SC35M or FPV at an MOI of 5. Total RNA was isolated 8 h p.i. and IFN-β mRNA levels were measured by qRT-PCR. IFN-β levels are depicted as mean n-fold change

(±SEM) over non-infected cells.

not reduce S473 phosphorylation, excluding crosstalk from the
classical MEK1/2-ERK1/2 MAP kinase pathway (Figure 6B;
Supplementary Figure S6B). Well-described downstream
kinases of p38 MAPK are MSK1 and MK2, which are both
reported to be involved in the transcriptional regulation of
cytokine expression (58, 59). Chemical inhibition of MSK1
but not MK2 resulted in the loss of S473 phosphorylation
(Figures 6C,D; Supplementary Figures S6C,D). Importantly,
inhibition of p38 MAPK and MSK1 led to reduced TRIM28 S473
phosphorylation during infection with the HPAIV KAN-1 and
Anhui in primary HUVECs (Supplementary Figures S6F,G).
This led us to conclude that MSK1 is the responsible kinase
for S473 phosphorylation during IAV infection. Induction
of S473 phosphorylation by transfection of vRNA was
similarly abolished by inhibition of p38 and MSK1 but not
by inhibiting MEK and MK2 (Figure 6E). Most importantly,
loss of TRIM28 S473 phosphorylation by inhibition of p38
and MSK1 also resulted in decreased levels of IFN-β, IL-6,
and IL-8 during infection with SC35M (Figure 7A), which was
not caused by an inhibition of viral replication (Figure 7B).
In conclusion, these data provide compelling evidence that
TRIM28 S473 phosphorylation in response to PKR-dependent
sensing of vRNA is mediated by the p38/MSK1-cascade
during infection with HPAIV. Furthermore, these results
strongly indicate that TRIM28 S473 phosphorylation results
in enhanced expression of IFN-β and proinflammatory
cytokines.

Constitutive Phosphorylation of TRIM28

S473 Leads to Increased Induction of

IFN-β, IL-6 and IL-8 During HPAIV Infection
To establish the functional link between TRIM28 S473
phosphorylation and IFN-β expression, we reconstituted
TRIM28 KO cells with either wildtype TRIM28 or the phospho-
mutants S473A and S473E. Infection of TRIM28 KO cells
with VSV-luc resulted in decreased viral replication. Most
importantly, reconstitution of TRIM28 KO cells with the
wildtype protein rescued VSV-luc replication (Figure 8A).
Substitution of S473 with alanine (S473A) eliminates the
phospho-acceptor site, while substitution with glutamic acid
(S473E) mimics constitutive phosphorylation. As our previous
data suggested that S473 phosphorylation regulates TRIM28-
mediated repression of IFN-β, expression of these mutants
should affect VSV-luc replication. Indeed, infection with VSV-
luc demonstrated that reconstitution with TRIM28 S473E
resulted in significantly decreased viral replication compared
to cell expressing wildtype TRIM28 and TRIM28 S473A
(Figure 8B). To proof that expression levels of IFN-β, IL-6, and
IL-8 are also increased in the TRIM28 S473E expressing cells
we infected the reconstituted cells with KAN-1 and performed
qRT-PCR analysis. As seen in Figure 8C, the infected S473E
expressing cells express higher levels of IFN-β, IL-6, and IL-8
compared to cells reconstituted with wildtype TRIM28 and
TRIM28 S473A. Of note, also the non-phosphorylated form of
TRIM28 harboring S473A showed increased levels of IFN-β,

Frontiers in Immunology | www.frontiersin.org 10 September 2018 | Volume 9 | Article 222946

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Krischuns et al. HPAIV Induce TRIM28 Phosphorylation

FIGURE 6 | Inhibition of p38 and MSK1 ablates TRIM28 S473 phosphorylation. A549 cells were pre-treated with inhibitors for (A) p38 (SB202190), (B) MEK (U0126),

(C) MSK1 (SB747651), and (D) MK2 (PF-3644022) at 0.1µM, 0.5µM, 1µM, 5µM and 10µM before infection with SC35M at an MOI of 20 for 10 h and further

incubation with the inhibitors. Lysates were examined with a phospho-specific antibody for TRIM28 S473 phosphorylation. Infection was verified by detection of the

viral PB1 protein. Tubulin and total TRIM28 served as loading controls. MEK and MK2 inhibition was controlled by detection of ERK T202/Y204, and HSP27 S82

phosphorylation, respectively. (E) A549 cells were pre-treated with p38 (SB202190), MEK (U0126), MSK1 (SB747651) and MK2 (PF-3644022) inhibitors at 1µM for

30min. Pre-treated cells were transfected with 500 ng viral or cellular in the presence of the corresponding inhibitors. Lysates were harvested 4 h p.t. and TRIM28

S473 phosphorylation was analyzed by western blot.

FIGURE 7 | Inhibition of p38 and MSK1 downregulates IFN-β, IL-6 and IL-8 expression. (A) A549 cells were pre-treated with inhibitors for p38 (SB202190) and MSK1

(SB747651) and infected with SC35M at an MOI of 0.1 for 24 h in the presence of the inhibitors. IFN-β, IL-6 and IL-8 mRNA levels were determined by qRT-PCR.

Results are depicted as mean n-fold change (±SEM) over non-infected cells. *p ≤ 0.03; **p ≤ 0.0021 one-way ANOVA; Dunnett’s multiple comparisons test.

(B) A549 cells were pre-treated with the MSK1 inhibitor SB747651 for 1 h and subsequently infected with SC35M at an MOI of 0.001. Supernatants were analyzed at

the indicated time points by plaque assay.

IL-6, and IL-8 compared to the cells expressing the wildtype
protein. The reason for this is unknown. We speculate, that other
phosphorylation sites, such as S471 and/or others, compensate
for the lack of S473 phosphorylation. The phosphorylation
dynamics of other phosphorylation sites of TRIM28 are not
well-understood and require further investigation. In summary,
our data demonstrate that S473 phosphorylation is functionally
linked to increased expression of IFN-β, IL-6, and IL-8 and
support our hypothesis, that phosphorylation at S473 modulates
the corepressor activity of TRIM28 during infection with HPAIV.

DISCUSSION

Infection of humans with HPAIV is often associated with
severe tissue damage and multiple organ failure caused
by excessive production of IFNs and proinflammatory
cytokines. The involved pathways as well as the underlying
mechanisms leading to cytokine overexpression are not yet
fully resolved. This knowledge gap impairs the development
of new immunomodulatory treatment options due to the lack
of suitable targets for efficient immunomodulatory therapies.
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FIGURE 8 | Constitutive TRIM28 S473 phosphorylation potentiates the innate immune response. (A) TRIM28 KO cells were stably reconstituted with wildtype

TRIM28 by retroviral transduction. Reconstituted cells were infected with VSV-luc at an MOI of 0.01 for 15 h. Cells were harvested and luciferase activity was

measured. (B) In addition to wildtype TRIM28, phospho-mimetic variants (S473A and S473E) were stably reconstituted in TRIM28 KO cells. VSV-luc infection was

carried out as described in (A). Results are depicted as mean RLU (±SEM) normalized to TRIM28 expression. ****p ≤ 0.0001; one-way ANOVA; Dunnett’s multiple

comparisons test. (C) Stably reconstituted TRIM28 KO cells were infected with KAN-1 at an MOI of 0.01. Total RNA was isolated 24 h p.i. and IFN-β, IL-6 and IL-8

mRNA levels were measured by qRT-PCR. mRNA levels are depicted as mean n-fold change (±SEM) over non-infected cells. n.s. p > 0.03, *p ≤ 0.03; **p ≤ 0.002;

****p ≤ 0.0001; one-way ANOVA; Dunnett’s multiple comparisons test.

FIGURE 9 | Model for TRIM28-mediated upregulation of IFN-β and proinflammatory cytokines during infection with the HPAIV subtypes H5N1, H7N9 and H7N7. Early

during IAV infection, viral RNAs are sensed by RIG-I. This initiates a signaling cascade, which includes the adaptor protein MAVS and results in the dimerization and

nuclear translocation of the transcription factors IRF3/7. During infection with human adapted strains, this leads to non-pathological levels of IFN-β and

proinflammatory cytokines, which usually leads to the clearance of IAV infection (left). In contrast, during infection with the HPAIV of the subtypes H5N1, H7N7 and

H7N9 (right), the expression of IFN-β, IL-6 and IL-8 is potentiated. This is facilitated by PKR-mediated sensing of viral RNA followed by signal transduction via p38 and

MSK1 resulting in phosphorylation of the transcriptional corepressor TRIM28 at serine 473. This leads to the release of TRIM28 corepressor activity and finally results

in elevated expression of IFN-β, IL-6 and IL-8, which is commonly associated with tissue damage und high mortality during HPAIV infections.

Here, we report for the first time, that the cellular corepressor
and negative immune regulator TRIM28 is the direct target of a
signaling cascade involving the kinases PKR/p38/MSK1 during
infection of human alveolar epithelial cells with HPAIV and
contributes to the high expression levels of IFN-β, IL-6 and

IL-8. Based on our results we hypothesize that TRIM28 is a key
determinant for IFN-β overexpression and cytokine-mediated
tissue damage and may represent a potential therapeutic target
for the treatment of HPAIV-induced hypercytokinemia in
humans.
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TRIM28 is widely described as a genomic corepressor and
negative immune regulator of cytokine expression in response
to different immune stimuli. The described mechanisms of
action involve its intrinsic E3 SUMO ligase activity as well
as HP1-BD-mediated corepressor activity, which are assumed
to be fine-tuned by SUMOylation and phosphorylation (24).
The exact contribution of SUMOylation and phosphorylation
to the regulation of TRIM28 activities has remained enigmatic.
However, several reports have established an attractive regulatory
model. While SUMOylation might control the general and
genome wide repressor function of TRIM28, stimulus-dependent
phosphorylation presumably regulates the de-repression of
specific gene subsets (25) to allow stimulus- and stress-specific
host responses. In line with this, Kubota et al. reported that
tyrosine phosphorylation at positions Y449, Y458, and Y517
regulates HP1-binding and the controlled de-repression of genes
required for stress tolerance and repair processes (60) and
Li et al. demonstrated that phosphorylation of S824 regulates
the expression of genes involved in cell cycle control and
apoptosis in response to genotoxic stresses (25). Intriguingly,
the authors of this report observed that the level of TRIM28
SUMOylation was decreased when S824 was mutated to aspartic
acid to mimic constitutive phosphorylation, suggesting PTM
crosstalk (25). Our own data suggest that phosphorylation of
TRIM28 at S473 regulates the de-repression of IFN-β, IL-6 and
IL-8. Nevertheless, we assume that additional sites could be
involved, as we observed phosphorylation of the neighboring
serine 471 in our phosphoproteomic screen (Figure 1A, lower
panel). Supportive evidence for the biological relevance of
phosphorylation of S473 and S471 comes from other proteomic
studies in which these sites have been identified as phospho-
acceptor sites (61, 62). In addition, both sites are also highly
conserved in mice, rats and dogs, suggesting a biological
important function. The p38/MSK1/TRIM28 signaling-axis
was described previously to play a central role in myoblast
differentiation. In these cells, TRIM28 phosphorylation controls
the activity of the central transcriptional activator MyoD and
thereby differentiation of myoblasts into myotubes (63). In
addition, this report convincingly demonstrated that TRIM28
is a bona fide target of MSK1 in an in vitro kinase
assay.

The detailed mechanism of TRIM28-mediated cytokine
amplification during HPAIV infection remained unsolved. Based
on available reports we assume that phosphorylation at S473
attenuates HP1- and chromatin-binding of TRIM28, which
results in the loss of its corepressor function and leads to
the de-repression of the described genes (49). However, other
mechanism cannot be excluded. Because TRIM28 itself does not
possess DNA binding activity, it is likely that cytokine repression
occurs through the interaction with other transcription factors
and chromatin remodeling enzymes. Indeed, TRIM28 was shown
to interact and modulate the activity of diverse immune-related
proteins, including NF-κB (64), STAT1 (28), STAT3 (29), IRF7
(30), and IRF5 (65). Nevertheless, a conjoint conclusion for the
mode of action of TRIM28 is difficult to extract because diverse
cell lines and immune stimuli were employed and the impact
of S473 phosphorylation was not addressed. Thus, it needs to

be investigated whether one of these factors facilitates TRIM28-
mediated cytokine upregulation upon S473 phosphorylation.
Recently, a novel model for TRIM28-mediated control of gene
expression was proposed (66, 67). In this model, TRIM28
is involved in tethering of the 7SK snRNP complex to the
promotor proximal regions of many rapid response genes that
contain paused RNA Polymerase II (Pol II). Thereby, TRIM28
facilitates recruitment of the positive transcription elongation
factor P-TEFb, which releases paused Pol II by phosphorylating
serine 2 in the pol II C-terminal domain (CTD) and allows
rapid elongation of transcription (62, 67, 68). Most intriguingly,
TRIM28 was found to be associated with more than 13,000
promotor proximal regions, giving a rough estimation of how
many genes might be regulated by TRIM28 (69). So far, the
importance of S473 phosphorylation and SUMOylation for the
control of immune-related genes has not yet been addressed in
this model.

Phosphorylation of TRIM28 S473 was induced in a strain-
dependent manner. This suggests that the degree of human
adaptation as well as the reported characteristic to induce
hypercytokinemia and tissue damage in humans might be
determinants for TRIM28 phosphorylation during infection.
To challenge this theory, we included the pandemic 2009
H1N1 virus in our analysis because it is a triple reassortant
virus containing genes derived from humans, swine and birds
and has acquired stepwise human adaptation in pigs prior to
human transmission. In contrast to other pandemic IAV strains,
H1N1pdm demonstrated weak virulence and low mortality rates
(70) and human infections with this virus are not necessarily
associated with hypercytokinemia and tissue damage. Thus, we
expected that this strain would not trigger S473 phosphorylation.
Indeed, we could not detect S473 phosphorylation with
H1N1pdm, supporting our hypothesis (Figure 1C). The reasons
for strain-dependent phosphorylation of TRIM28 on a molecular
level are not known. It is tempting to speculate that it is
mediated by virus intrinsic properties, such as avian specific
protein signatures, differences in the NS1-mediated inhibition of
PKR activation or other factors that underlie human adaptation.
Alternatively, differences in replication speed or nuclear export
of vRNPs, leading to accumulation of cytosolic vRNA cannot be
excluded.

In addition to the novel role of TRIM28, our results suggest
a new mechanism for PKR-mediated cytokine expression. Here,
PKR senses viral RNA at a late time point during infection
with HPAIV and provokes TRIM28 S473 phosphorylation via
p38 and MSK1 with the consequence of excessive production
of IFN-β, IL-6 and IL-8. PKR-mediated regulation of IFN-β
expression in virus infected cells is described to be facilitated
by activation of the translation elongation factor eIF2α as well
as by compromised IFN-β mRNA stability (71, 72). Here we
show, that in HPAIV-infected cells, PKR signals via p38/MSK1
to inactivate TRIM28 and potentiates the expression of IFN-β,
IL-6 and IL-8 in human lung epithelial cells. At this moment,
it remains unknown whether this pathway is also present in
other IAV susceptible cell types, such as macrophages and
dendritic cells, which could have severe immunopathological
consequences as these cells are the main producers of IFNs and
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cytokines. The results from the phosphoproteomic screen as well
as western blot analysis demonstrate that S473 phosphorylation
occurs at a surprisingly late time point during infection.
We assume that PKR activation requires the accumulation
of viral RNA in the cytoplasm, possibly in the form of
exported vRNPs, in order to boost IFN-β and cytokine
expression through S473 phosphorylation. This mechanism of
PKR activation has been previously suggested for Influenza
B viruses (73) but is not described for IAV. Although our
results convincingly show that TRIM28 phosphorylation is
mediated by PKR, we can currently not exclude that other
signaling pathways and receptors, such as TLR3, which signals
independently of the adaptor proteins MyD88 and MAVS, are
also involved.

In summary, we propose a model for the TRIM28-mediated
potentiation of cytokine expression during HPAIV infection.
During infection with human adapted IAV strains, viral RNA
is detected early during infection by RIG-I, which leads
to the expression of non-pathological levels of IFN-β and
proinflammatory cytokines (Figure 9, left side). In contrast,
during infection with HPAIV of the H5N1, H7N7, and H7N9
subtypes cytosolic viral RNA is recognized by PKR, in addition
to the RIG-I-dependent antiviral response. This leads to the
activation of p38 andMSK1 and subsequently to phosphorylation
of TRIM28 at S473 with the consequence of exacerbation of
the ongoing immune response by amplification of IFN-β, IL-6
and IL-8 expression, which may lead to excessive immune cell
recruitment and tissue inflammation (Figure 9, right side). We
therefore propose, that controlling phosphorylation of TRIM28
by therapeutic interventions could prevent uncontrolled cytokine
expression during HPAIV infections in humans.
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Viruses often subvert antiviral immune responses by taking advantage of inhibitory

immune signaling. We investigated if hantaviruses use this strategy. Hantaviruses

cause viral hemorrhagic fever (VHF) which is associated with strong immune activation

resulting in vigorous CD8+ T cell responses. Surprisingly, we observed that hantaviruses

strongly upregulate PD-L1 and PD-L2, the ligands of checkpoint inhibitor programmed

death-1 (PD-1). We detected high amounts of soluble PD-L1 (sPD-L1) and soluble

PD-L2 (sPD-L2) in sera from hantavirus-infected patients. In addition, we observed

hantavirus-induced PD-L1 upregulation in mice with a humanized immune system.

The two major target cells of hantaviruses, endothelial cells and monocyte-derived

dendritic cells, strongly increased PD-L1 and PD-L2 surface expression upon hantavirus

infection in vitro. As an underlying mechanism, we found increased transcript levels

whereas membrane trafficking of PD-L1 was not affected. Further analysis revealed

that hantavirus-associated inflammatory signals and hantaviral nucleocapsid (N) protein

enhance PD-L1 and PD-L2 expression. Cell numbers were strongly reduced when

hantavirus-infected endothelial cells were mixed with T cells in the presence of an

exogenous proliferation signal compared to uninfected cells. This is compatible with the

concept that virus-induced PD-L1 and PD-L2 upregulation contributes to viral immune

escape. Intriguingly, however, we observed hantavirus-induced CD8+ T cell bystander

activation despite strongly upregulated PD-L1 and PD-L2. This result indicates that

hantavirus-induced CD8+ T cell bystander activation bypasses checkpoint inhibition

allowing an early antiviral immune response upon virus infection.

Keywords: bystander activation, hantaviruses, viral immune evasion, PD-L1, PD-L2, PD-1, CD86

INTRODUCTION

The immune response to infection is regulated not only by signaling through antigen receptors
but also by co-receptors (1). The principal stimulatory co-receptor CD28 is constitutively
expressed on T cells and interacts with CD80 and CD86 expressed on activated professional
antigen-presenting cells (APCs) such as dendritic cells (DCs) (2). In contrast, programmed
death-1 (PD-1), a member of the CD28 family, is a key negative regulator of immune
responses (3). PD-1 is expressed on activated T cells whereas the known PD-1 ligands,
PD-L1 and PD-L2, are detected on professional APCs similar to CD80 and CD86 (4). In
addition, PD-L1 is expressed by non-hematopoietic cells such as endothelial cells (5–8). PD-L1
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is further upregulated by proinflammatory cytokines that are
released during virus infections such as type I and type II
interferon (9). These pro-inflammatory cytokines also enhance
PD-L2 expression, which is usually expressed at only low levels
by a restricted number of cell types such as dendritic cells (DCs)
(9).

Viruses have evolved mechanisms to exploit host inhibitory
receptor signaling for subversion of host immune responses
(10). Persisting viruses such as human immunodeficiency virus
type 1 (HIV-1), hepatitis B virus (HBV) and hepatitis C virus
(HCV) drive virus-specific CD8+ T cells into a dysfunctional
or “exhausted” phenotype that is characterized by increased
PD-1 expression (11, 12). In accordance, blockade of PD-1
or its ligands in chronic viral infection can enhance virus-
specific CD8+ T-cell responses and reduce the viral load. The
functional consequences of PD-L1 upregulation during acute
viral infection are less clear (13). For example, CD8+ T cell
responses are impaired and immunopathology is attenuated
by the PD-1 pathway during acute virus infections of the
lower respiratory tract (14). On the other hand, it has been
reported that PD-L1 upregulation on DCs contribute to the
antiviral defense during acute HSV-1 infection (15). Moreover,
during acute Friend retrovirus infection CD8+ T cells expressing
high levels of PD-1 were both cytotoxic and critical for virus
control (16).

Viral hemorrhagic fever (VHF) is a term for a group of
similar but distinct zoonotic human diseases that are caused
by RNA viruses including hantaviruses. Humans are infected
with hantaviruses after inhalation of aerosols that contain virions
derived from the natural host reservoirs, mostly rodents (17).
The hallmarks of VHF are increased vascular permeability
and loss of platelets (18). Hantaviruses are known to replicate
without causing obvious cytopathic effects. As with other VHFs
dysregulated immune responses play a role in hantavirus-
associated diseases (19, 20). Paradigmatic experiments with
lymphocytic choriomeningitis virus (LCMV)-infected mice have
shown that PD-L1 is critical for prevention of immunopathology
and virus-induced dysfunction such as vascular leakage (21, 22).
Thus, it is important to understand how hantavirus replication
modulates PD-L1 and PD-L2. In this study, we investigated how
hantavirus replication affects the key stimulatory and inhibitory
checkpoints of immune responses and explored the functional
consequences thereof.

MATERIALS AND METHODS

Ethics Statement
The analyses of human sera were in accordance with the
ethical standards of the institutional research committee and
with the 1964 Helsinki declaration and its later amendments
or comparable ethical standards. For this retrospective study,
formal consent is not required. Buffy coat preparations were
purchased from German Red Cross (Dresden). Blood samples
were taken with the approval of the ethics committee of the
Charité–Universitätsmedizin Berlin. Written informed consent
was obtained from all donors.

Cells
Vero E6 and RPE-1 cells were cultured in Dulbecco’s MEM
(Gibco) supplemented with 10% hiFCS (BioWhittaker), 2mM
L-glutamine, penicillin and streptomycin (PAA). HUVECs
were generated and cultivated as described (23). Adherent
cells were passaged by first washing with PBS (Biochrom),
addition of trypsin until cells detached and finally addition
of FCS-containing medium to stop trypsin. HEL cells, an
erythroleukemia suspension cell line, were cultured in RPMI
1640 (Gibco) with 10% hiFCS, 2mM L-glutamine, penicillin and
streptomycin (PAA). Huh7.5 cells is a human hepatoma cell line,
which expresses an endogenous RIG-I with a mutation (T55I) in
the first caspase-recruiting domain. This mutated RIG-I acts as
a dominant-negative inhibitor (24). Transduced Huh7.5 clones
overexpressing constitutive active RIG-I have been generated
previously and were cultured as described (25). Huh7.5 cells were
cultured as previously described (26).

Density gradient centrifugation using Ficoll-Paque was used
to isolate PBMCs from buffy coat units (DRK, Dresden). In
short, blood diluted 1:1 with RPMI wash (RPMI 1640, 2% heat-
inactivated FCS and 0.2mM EDTA) was layered onto Ficoll
(PAA) and centrifuged at 800 g, 30min RT. PBMC were isolated
from the interface, washed twice and CD14+ cells isolated using
Blood CD14 isolation kit (Miltenyi Biotec). CD14+ monocytes
were used to generate immature DCs by cultivation in RPMI1640
with 10% hiFCS (Hyclone), 2mM L-glutamine, penicillin and
streptomycin (PAA) and further supplemented with 500 IU/ml
GM-CSF (ImmunoTools) and 200 IU/ml IL-4 (ImmunoTools).
Medium and cytokines were changed every 2–3 days, cells were
used for experiments at day 6.

Cytokines And Pathogen-Associated

Molecular Patterns (PAMPs)
IFN-α, IFN-β, and IFN-γ were provided by ImmunoTools.
Further samples of IFN-β were supplied by R&D Systems.
TLR3 agonist polyinosinic:polycytidylic acid [poly(I:C)] and
polydeoxyadenylic:polydeoxythymidylic acid [poly(dA:dT)],
which indirectly stimulates retinoic acid–inducible gene I
(RIG-I), were obtained from InvivoGen. Poly(I:C) was used at
10µg/ml and poly(dA:dT) at 1µg/ml.

Serum Samples And ELISAs
Samples from patients infected with Puumala virus (PUUV) or
Dobrava-Belgrade virus (DOBV) were collected for diagnostic
purposes and were anonymized and stored before being tested
retrospectively. Routine diagnostic testing included qPCR of
the L segment of hantavirus from RNA isolated from the
sera, positivity indicating the presence of active viral infection
and thus an acute infection. All serum samples were stored
at −80◦C before use. The histone/dsDNA complexes were
determined using Cell Death Detection ELISAPLUS (Roche) for
quantification of neutrophil extracellular traps (NETs) in the
serum as previously described (27). Human sPD-L1 and sPD-L2
levels were determined by using ELISA kits from R&D Systems,
whereas the ELISA for measuring soluble CD86 (sCD86) was
provided by PromoKine.
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Flow Cytometry of Surface Molecules
Cells were harvested and washed twice in ice-cold FACS washing
solution. Cells were then resuspended in 50 µl FACS blocking
solution, containing the primary antibody in appropriate
dilution, and incubated for 1 h. Cells stained with directly-
coupled antibodies were washed and analyzed. For uncoupled
primary antibodies after incubation cells were again washed twice
with FACS wash and secondary antibody, diluted in FACS block
solution, was added. After 45min the cells were washed with
FACS wash solution and resuspended in FACS fixation solution.
For quantifying fluorescence of labeled cells a FACSCalibur R©

(BD Biosciences) was used. Results were evaluated with the
flow cytometry analysis software programs CellQuestPro R© and
FlowJo V10 (BD Biosciences).

Transfection
Transfection was undertaken using plasmid pcDNA3.1 HTNVN
or empty pcDNA3.1 as control (1 µg) using Lipofectamine 3000
transfection reagent according to the manufacturer’s protocol,
including Optimem medium (Thermo Fischer Scientfic).

Antibodies And Staining Reagents
For flow cytometry and functional studies, respectively, the
following antibodies and staining reagents were used: anti-
CD40 (clone 5C3), anti-CD54 (cloneHA58), anti-CD80 (L307.4),
anti-CD83 (clone HB15e), anti-CD107a (H4A3), and anti-B7-
H2 (clone 2D3) were supplied by BD PharMingen; anti-PD-1
(clone J116), anti-PD-L1 (clone MIH1), and anti-PD-L2 (clone
MIH18), anti- B7-H3 (clone H74), anti-B7-H4 (clone MIH35)
were purchased from eBioscience; anti-CD86 (clone IT2.2) was
supplied by ImmunoTools; anti-DC-SIGN (Clone MR-1) was
purchased from Acris; anti-MHC class I (clone w6/32) and II
(clone L243) were produced in-house; HCMV pp65 495-503
loaded NTA HLA-A2 tetramer reagents were obtained from
TCMetrix. Secondary antibodies coupled to fluorochromes were
supplied by Dianova. Blocking monoclonal antibodies directed
against human IL-15 (clone 34559) and anti-human IFNR chain
2 (clone MMHAR-2) were supplied by R&D Systems. Cells
were incubated with blocking antibodies or isotype-matched
control antibodies for 1 h before exposure to virus. Isotype-
matched control antibodies were supplied by BD PharMingen.
For immunohistochemistry human-specific FITC-coupled anti-
MPO (clone 7.17; ImmunoTools) and polyclonal goat anti
human PD-L1 (R&D Systems) were used with bovine anti
goat Fab fragment Alexa 594-coupled (Dianova) as secondary
antibody, all used at 1:300 dilution.

PD-L1 Uptake Protocol
Cells were incubated with PE-coupled anti-PD-L1 antibody for
1 h at 4◦C or 37◦C for 4 h before being washed and analyzed
by flow cytometry. Uptake was calculated by subtracting MFI at
37◦C from MFI at 4◦C. Uptake of HTNV infected cells was then
compared to uninfected cells.

T Cell Assay
CD4+ cells were isolated from PBMCs using CD4-coupled beads
(Miltenyi) and frozen on liquid nitrogen until use. HUVECs

infected with HTNV at a MOI of 1.5 were incubated in flat-
bottom 96-well plates for 4 days before being were mixed with
allogenic CD4+ cells at a ratio of 1:4 and treated with PHA at
5ug/ml for 2 days. Proliferation was measured by MTT dye test
(EZ4U-test).

Viruses
Virus stocks of Hantaan virus (HTNV, strain 76-118) and Tula
virus (TULV, strain Moravia) were propagated on VeroE6 cells
in a biosafety level 3 (BSL3) laboratory as previously described
(28). For virus titration, supernatants from hantavirus-infected
cells were incubated with Vero E6 cells and subsequently focus-
forming units (FFU) were counted in a chemiluminescence
detection assay (29). Virus stocks were regularly tested for
mycoplasma by PCR and stored at −80◦C before use. In order
to infect cells virions were allowed to adsorb to cells for 1 h.
After infection cells were washed three times withmedium before
incubation in a humidified incubator at 37◦C. Uninfected cells
treated with medium instead of virions were used as mock
control. Herpes simplex virus type 1 (HSV-1) strain KOS and
Vesicular stomatitis virus (VSV, strain Indiana) was propagated
and titrated as previously described. Titres were determined by
plaque assay on Vero E6 cells and expressed as PFU per milliliter
(30). UV inactivation was performed for 5min and the remaining
titer was tested and found to be less than 1 FFU/ml.

qPCR
RNA was isolated from cells using RNeasy Plus mini kit
(Quiagen) and reverse transcribed using SuperScript III (Thermo
Fisher Scientific). qPCR was performed on a qTOWER3

(Analytik Jena) using PrimeTime gene expression master
mix and PrimeTime primers (IDT). The input RNA was
normalized using average expression of β-actin and cyclophilin
B housekeeping genes.

Humanized Mouse Model
The generation of mice with a humanized immune system has
been described elsewhere (31). Briefly, NSG mice expressing
HLA-A2, a human MHC class I molecule, were humanized by
reconstitution with HLA-A2+ human CD34+ hematopoietic
stem cells isolated from umbilical cord blood. Engraftment
was evaluated at 11 weeks post inoculation by cytofluorimetric
analysis of PBMCs. Successfully engrafted mice were infected
i.p. with 105 focus-forming units (FFU) of HTNV (strain 76-
118). Infection was successful as determined by qPCR from sera.
Twenty-Two days post infection mice were sacrificed and liver,
kidney, lungs and spleen fixed and mounted in paraffin blocks.
The infection experiments were approved by the governmental
animal-welfare committee of the state Berlin, Germany (G
0013/12).

ImageJ Analysis
Six cell-rich areas of five to twelve cells each were analyzed on
each slide. Cell density was determined blind using DAPI staining
and subsequently the mean intensity of staining of human PD-L1
(Texas Red) was determined.
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Statistical Analysis
Student’s t-test and 1 way ANOVA test with Bonferroni
correction were used to determine statistical significance. P-
values below 0.05 (95% confidence) were considered to be
significant. Prism 6 software (GraphPad) was used for statistical
analysis.

RESULTS

Strong Upregulation of PD-1 Ligands in

Hantavirus-Infected Patients and in an

Animal Model of Hantavirus Infection
Initially we tested if hantaviruses modulate the expression of the
ligands of checkpoint inhibitor PD-1 during clinical infection
of humans. For this purpose, we measured the amount of
soluble PD-L1 (sPD-L1) and soluble PD-L2 (sPD-L2) in sera
from hantavirus-infected patients. The level of both sPD-L1
(Figure 1A) and sPD-L2 (Figure 1B) were strongly upregulated
in sera from hantavirus-infected patients as compared to
normal healthy individuals. Sequential samples from the same
patients indicate that for both PUUV and DOBV sPD-L1
levels decrease with time indicating active regulation and that
acute samples still with active virus replication (hantavirus
RNA positive) have high sPD-L1 levels (Figure 1C). Similarly,
PUUV samples early in convalescence (IgM > IgG) had
significantly raised sPD-L1 compared to samples taken later
(IgG > IgM) (Figure 1D). We also detected elevated levels
of neutrophil extracellular traps (NETs), a marker for recent
hantavirus infection, in these sera (Figure 1E) (27, 32). The
level of sPD-L1 detected in culture supernatants and plasma
of patients is known to correlate with the level of membrane-
bound PD-L1 (33, 34). Taken together, PD-L1 and PD-
L2 are strongly upregulated in hantavirus infected patients.
Using a previously established animal model of hantavirus-
induced immunopathology we analyzed the spleen of hantavirus-
infected mice with a humanized immune system as previously
published (31). We observed enhanced expression of human
PD-L1 in the spleen (Figure 1F) in addition to high levels of
human myeloperoxidase (MPO)-expressing cells, presumably
neutrophils (data not shown). Taken together this data shows that
PD-L1 and PD-L2 are strongly upregulated during hantavirus
infection in vivo.

Hantavirus-Infected Human Dendritic Cells

Upregulate Both Costimulatory Molecules

as Well as PD-L1/PD-L2
Next we investigated the possible source of sPD-L1 and sPD-L2
seen in sera from hantavirus-infected patients. The production
of sPD-L1 by proteolytic cleavage of membrane-bound PD-
L1 is a feature of activated monocyte-derived DCs (35).
This important immunoregulatory cell type is susceptible to
hantavirus infection (36–39). As previously reported, immature
DCs infected with Hantaan virus (HTNV), the most common
cause of human hantavirus infections, upregulated adhesion
molecules and MHC molecules (Figure 2A). In addition, HTNV
increased expression of costimulatory molecules on the surface

of immature DCs (Figure 2B). Intriguingly, HTNV infection
resulted in enhanced expression of both PD-L1 and PD-
L2 whereas PD-1 was barely detectable on the surface of
uninfected and HTNV-infected immature DCs (Figure 3A).
In contrast, HTNV-infected DCs did not upregulate other
members of the B7 family such as B7-H2, B7-H3, and B7-
H4. (Figure 3B) (40). In summary, hantavirus replication in
DCs drives surface expression of both T cell costimulatory
molecules such as CD86 as well as the T cell inhibitory molecules
PD-L1/PD-L2.

Hantavirus Regulates PDL1/PDL2

Expression on the Transcription Level
In further experiments we analyzed the mechanism upregulating
PD-L1 and PD-L2 during hantavirus infection of DCs. PD-
L1 expression can be regulated on the genetic, transcriptional,
post-transcriptional and post-translational level (41). We first
determined the number of PD-L1 and PD-L2 transcripts in
HTNV-infected DCs and DCs exposed to IFN-α by qPCR.
HTNV increased the number of transcripts encoding PD-L1
and PD-L2 (Figure 4A). IFN-α also upregulated PD-L1 and PD-
L2 transcripts. We also tested whether HTNV modulates DCs
trafficking of PD-L1. As shown in Figure 4B HTNV-infected
DCs endocytosed PD-L1 as efficiently as uninfected control cells
excluding altered endocytosis kinetics as a mechanism of PD-L1
upregulation. In conclusion, hantaviruses increase the number of
PD-L1/PD-L2 transcripts but do not modulate endocytosis of the
corresponding proteins.

Hantavirus-Associated Inflammatory

Signals Including Hantaviral N Protein

Drive PD-L1 Expression
Next we examined which hantavirus-associated inflammatory
stimuli modulate PD-L1 expression on immature DCs. IFN-
γ and to a lesser extent IFN-α upregulated cell-surface PD-L1
(Figure 5A). Hantavirus replication triggers pattern recognition
receptors (PRRs) such as toll-like receptor 3 (TLR3) and
retinoic acid–inducible gene I (RIG-I) (30, 42, 43). Strikingly,
TLR3 agonist poly(I:C) strongly increased PD-L1 expression on
immature DCs (Figure 5A). Poly(I:C) similarly induced PD-L2
(data not shown). In contrast, immature DCs treated with RIG-I
activating signals such as UV-inactivated VSV or poly(dA:dT) did
not show increased PD-L1 expression (Figure 5A). The absence
of PD-L1 upregulation after stimulation of the RIG-I pathway
was confirmed by using Huh7.5 cells expressing a constitutive
active RIG-I molecule (RIG-CA) (25). These cells did not express
elevated PD-L1 levels compared to the untreated cells whereas
Huh7.5 cells treated with IFN-γ upregulated PD-L1 compared
to untreated Huh7.5 cells (Figure 5B). We also tested the effect
of hantaviral nucleocapsid (N) protein, which has many diverse
functional activities during the viral life cycle (44). As shown
in Figure 5C expression of N protein in HEL cells, a human
erythroleukemia cell line, resulted in PD-L1 upregulation. In
summary, type I IFN, hantaviral N protein, and TLR3 signaling
induced PD-L1 expression whereas RIG-I signaling had no effect.
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FIGURE 1 | Levels of sPD-L1, sPD-L2, hantavirus-specific IgG and NETs in sera from hantavirus-infected patients. Sera from normal healthy individuals or

convalescent hantavirus-infected patients (after the viremic phase) was tested by ELISA for levels of (A) sPD-L1 and (B) sPD-L2. Error bars represent the mean ± SD

(****p < 0.0001, ***p < 0.001, paired Student’s t-test). (C) Sequential sera samples from patients with PUUV (black) or DOBV (blue) were tested for sPD-L1. Red

samples also tested additionally positive for hantavirus RNA and are therefore acute infections. (D) Levels of sPD-L1 in patients with kidney failure or in convalescence

were further analyzed. Convalescent sera were separated into early convalescent (IgM dominant) or late convalescent (IgG dominant). Error bars represent the mean

± SD (*p < 0.05, paired Student’s t-test). (E) The level of NETs in sera from normal healthy individuals or convalescent hantavirus-infected patients was determined as

previously described (27). Error bars represent the mean ± SD (***p < 0.001, paired Student’s t-test). (F) Spleen sections from uninfected or HTNV-infected

humanized mice were stained for human PD-L1 (red) and nuclei (blue). HTNV-infected spleen sections show large areas of human cells with enhanced PD-L1

expression in comparison to uninfected spleen sections (upper left and right panel; inserts show higher magnification of cells; bars represent 100µm). Slides from

uninfected and HTNV-infected humanized and unreconstituted mice animals (N = 3 each group; 12 total) were analyzed using ImageJ to determine the intensity of

human PD-L1 staining (Lower panel). Error bars represent the mean ± SEM (****p < 0.0001, paired Student’s t-test). The samples from unreconstituted mice were

used to determine the background staining. No significant difference was found in background staining in HTNV-infected or uninfected unreconstituted mice.

Subversion of T Cell Responses by

Hantavirus-Induced Checkpoint Inhibitors
We next analyzed whether PD-L1 and PD-L2 is upregulated on
hantavirus-infected endothelial cells, which play a pivotal role
in hantavirus pathogenesis (45, 46). Upon hantavirus infection
human umbilical vein endothelial cells (HUVECs) upregulated

both PD-L1 and PD-L2 (Figure 6A). PD-L1 expression started

to increase on HTNV-infected cells at 12 h post infection
similar to MHC class I expression (Figure 6B). PD-L1 expression

further increased at later time points post infection (Figure 6B).
We also tested whether hantavirus-induced PD-L1 and PD-L2
modulate T cell responses. For this purpose, HTNV-infected
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FIGURE 2 | Mature DC phenotype after hantavirus infection. Immature DCs

were infected with HTNV at MOI of 1.5 and incubated for 4 days before

staining for (A) maturation markers and (B) costimulatory markers. The results

shown are representative of three independent experiments using three

different donors.

HUVECs were mixed with allogeneic CD4+ cells and stimulated
with PHA. T cells strongly upregulate PD-1 upon stimulation
with PHA (47). As shown in Figure 6C the numbers of
surviving T cells and endothelial cells was strongly reduced in
comparison to control T cells exposed to uninfected HUVECs,
suggesting that T cell proliferation may be reduced. These
results indicate that hantaviruses upregulate both PD-L1 and
PD-L2 on endothelial cells which has a functional effect on T
cells.

Hantavirus-Induced Bystander Activation

Despite Upregulation of Checkpoint

Inhibitors
To test the functional consequences of PD-1 ligand upregulation
we investigated the behavior of T cells when exposed to
infected autologous myeloid cells. We infected PBMCs from
healthy human donors with HTNV and subsequently stained
T cells for expression of the C-type lectin CD69 as an
early marker of T-cell activation (48). Recently, it has been
shown that CD69 regulates the metabolism and migration-
retention ratio of T cells as well as the acquisition of T
cell effector or regulatory phenotypes (49). Surprisingly, we
observed increased percentages of activated cells especially in
the CD8+ T cell population early after infection of PBMCs
with HTNV (Figure 7A). Bystander activation of T cells during
viral infections is common and is initiated by stimulated
professional APCs such as DCs (50). In order to identify
the responding cells, we tested whether heterologous memory
CD8+ T cells are activated in this experimental setting.

FIGURE 3 | Hantavirus-induced upregulation of PD-L1 and PD-L2 on

immature DCs. (A) Immature DCs were infected with HTNV at a MOI of 1.5

and incubated for 4 days before staining for PD-1, PD-L1 or PD-L2.

(B) Immature DCs infected as for (A) were stained for members of the B7

family other than PD-L1/PD-L2. The results shown are representative of three

independent experiments using three different donors. Positive controls are

given in the lower panel (B7-H2 and B7-H3 from HUVEC, B7-H4 from HEK293

cells transfected with a B7-H4 plasmid).

FIGURE 4 | Increase in PD-L1 and PD-L2 transcripts but not cellular uptake in

hantavirus-infected immature DCs. (A) Immature DCs were infected with

HTNV at MOI of 1.5 and incubated for 4 days or exposed to IFN-α for 6 h at

2,000 U/ml before being harvested. Subsequently, RNA was isolated and the

number of indicated transcripts quantified by qPCR according to the

delta-delta-Ct (ddCt) method. (B) Immature DCs infected as for (A) were

incubated with PE-coupled anti-PD-L1 antibody at 4◦C 1h or at 37◦C for 4 h

before being washed and analyzed by flow cytometry. Uptake was calculated

by subtracting MFI at 37◦C from MFI at 4◦C. Uptake of HTNV infected cells

was then compared to uninfected cells. Results are derived from three

independent experiments, error bars represent the mean ± SD.

For this purpose we infected PBMCs derived from HLA-
A2+ human healthy donors that were seropositive for human
cytomegalovirus (HCMV), a member of the human herpesvirus
family. A HLA-A2 tetramer loaded with a immunodominant
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FIGURE 5 | Control of PD-L1 expression by inflammatory stimuli.

(A) Immature DCs were exposed to the following inflammatory stimuli before

staining for PD-L1: type I IFN (IFN-α at 1,000 U/ml), type II IFN (IFN-γ at 1,000

U/ml), poly(dA:dT), UV-inactivated VSV or poly(I:C) for 24 h. The results shown

are representative of three independent experiments using three different

donors. (B) Huh7.5 cells (control), Huh7.5 cells permanently expressing a

constitutively active form of RIG-I (RIG-CA) or Huh7.5 cells stimulated with

IFN-γ at 1,000 U/ml for 24 h were stained for PD-L1 and analyzed by flow

cytometry. Results are derived from three independent experiments, error bars

represent the mean ± SEM (*p < 0.05, paired Student’s t-test). (C) HEL cells

were transfected with HTNV N-expressing plasmids or empty plasmids

(Control). After 2 days cells were stained for PD-L1. Results are given as a

percentage of control and are derived from three independent experiments,

error bars represent the mean ± SD.

peptide derived from pp65 (CMVpp65TET) was used to detect
HCMV-specific CD8+ memory T cells. After HTNV infection
of PBMCs the percentage of CMVpp65TET+ CD8+ T cells
that expressed CD107a (LAMP-1), a marker for degranulation

FIGURE 6 | Upregulation of functional PD-L1 and PD-L2 on HTNV-infected

endothelial cell lines. (A) HUVECs were infected with HTNV at a MOI of 1.5

and incubated for 4 days before staining for PD-L1 or PD-L2. The results

shown are representative of 4 independent experiments using 4 different

donors. (B) Human primary fibroblasts (Fi301) cells were infected at a MOI of

1.5 and incubated for 12, 24 or 48 h before staining for PD-L1 or MHC class I

molecules. Results are derived from three independent experiments (*p <

0.05, **p < 0.01, paired Student’s t-test). (C) HUVECs infected as for (A) were

mixed with allogeneic CD4+ cells at a ratio of 1:4 and treated with PHA at

5µg/ml. After 2 days the number cells was measured by MTT dye test

(EZ4U-test). Results are derived from three independent experiments using

three different donors, error bars represent the mean ± SD.

of activated CD8+ T cells (51), significantly increased in
PBMCs as compared to uninfected PBMCs (Figure 7B).
In contrast, in PBMCs infected with herpes simplex virus
type 1 (HSV-1), another member of the human herpesvirus
family, no significant increase in activated CMVpp65TET+
CD8+ T cells was observed (Figure 7B). In conclusion,
heterologous T cells are activated at an early time point after
hantavirus infection despite increased expression of PD-L1 on
antigen-presenting cells.
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FIGURE 7 | Monocyte-dependent bystander activation of CD8+ T

lymphocytes by hantavirus. PBMCs isolated from blood of healthy human

donors were mock-infected or infected with HTNV. After 3–4 days cells were

analyzed by flow cytometry. (A) HTNV-specific increase in CD69+ cells in the

CD4+ and CD8+ subset of CD3+ cells after 4 days of incubation. Results are

from three independent experiments. Error bars represent the mean ± SEM

(*p < 0.05, paired Student’s t-test). (B) PBMCs from HLA-A2+

HCMV-seropositive healthy human donors were exposed to HTNV or HSV-1

for 4 days before being stained for HCMV-specific CD3+ cells using a pp65

loaded tetramer reagent (CMVpp65TET). Degranulation was determined by

CD107a staining. Results are derived from three independent experiments.

Error bars represent the mean ± SEM (*p < 0.05, paired Student’s t-test).

CD86-Dependency of Hantavirus-Induced

Bystander Activation
We next examined the mechanisms by which hantavirus-infected
DCs cause bystander activation despite checkpoint inhibitors.
First, we tested whether hantavirus-infected DCs express
inflammatory cytokines that can cause bystander activation of
memory CD8+ T cells in the absence of cognate antigen such
as IL-15, IL-18, and IL-21 (52). For this purpose RNA from
immature DCs infected with HTNV or exposed to IFN-α was
isolated and subjected to qPCR. As shown in Figure 8A HTNV
upregulated production of mRNA encoding IL-15, IL-18, and
IL-21 in immature DCs. This finding is in line with cytokine-
drive bystander activation of T cells during hantavirus infection
of PBMCs. In order to further dissect the mechanism we used
antibodies to block IL-15 as this cytokine has been implicated in
hantavirus-induced natural killer (NK) cell activation (53). We
also blocked type I IFN, which also can contribute to bystander
activation of T cells (52). The IL-15 block had no significant
effect whereas the type I IFN block significantly reduced T cell
bystander activation (Figure 8B). In comparison depletion of
CD14+ cells completely abrogated hantavirus-induced bystander
activation (Figure 8B). CD14 serves as marker for monocytes
which are detected in PBMCs at frequencies of 10–20% (54) and
represent the major hantavirus-permissive cell type in PBMCs.
In addition, by blocking the T cell costimulatory molecule B7-2
(CD86) during HTNV infection of PBMCs we could also prevent
bystander activation of CD8+ T cells (Figure 8C). In contrast,
blocking of MHC class I molecules had no effect (Figure 8C).
These result suggested that CD86 expressed by CD14+ cells
plays a major role in hantavirus-induced bystander activation
whereas interaction of T cell receptors (TCRs) with MHC-bound
peptides interactions is not required (Figure 8C). In accordance,
CD14+ cells strongly upregulated CD86 during infection with
HTNV (Figure 8D) and high levels of soluble CD86 were
detected in hantavirus-infected patients (Figure 8E). Taken

together, these results demonstrate that CD14+ monocytes are
inducing hantavirus-driven bystander T cell activation in a
CD86-dependent manner.

DISCUSSION

In this study, we detected high amounts of sPD-L1 and
sPD-L2 in sera of hantavirus-infected patients. Hantaviruses
strongly upregulated PD-L1 and PD-L2 on endothelial cells,
which play a pivotal role in hantavirus-induced pathogenesis.
In line with an inhibitory role of PD-L1/PD-L2 hantavirus-
infected endothelial cells did not induce T cell proliferation.
Hantaviruses also strongly increased expression of PD-L1 and
PD-L2 on monocyte-derived DCs. However, monocyte-derived
inflammatory cells could still activate heterologous CD8+ T cells
in a CD86-dependent fashion. This indicates that hantavirus-
induced CD8+ T cell bystander activation bypasses inhibitory
checkpoints.

Gene expression of PD-L1 and PD-L2 is controlled by
inflammatory signals (9). Hantavirus-induced upregulation of
PD-L1 and PD-L2 could be indirect due to release of IFNs. In
line with this view, endothelial cells and DCs predominantly
produce IFN-β upon infection with pathogenic hantaviruses
(37, 38, 55, 56). PD-L2 is upregulated equally well by IFN-β
and IFN-γ whereas PD-L1 is especially sensitive to IFN-γ (57).
In hantavirus-infected patients vigorous responses of NK cells
and CD8+ T cells resulting in increased levels of IFN-γ are
observed (19, 58–61). In addition to this, we show that hantaviral
N protein in HEL cells resulted in PD-L1 upregulation although
the underlying mechanism is unclear. Thus, IFN-independent
mechanisms may contribute to hantavirus-induced PD-L1/PD-
L2 expression as recently shown for MHC class I molecules (62).
In conclusion, PD-L1/PD-L2 upregulation in hantavirus-infected
patients is due to both IFNs and additional IFN-independent
mechanisms.

Hantavirus infection is detected by pattern recognition
receptors, primarily TLR-3 (42) and RIG-I. (30, 43). We found
that the TLR3 ligand poly(I:C) strongly increased PD-L1 levels
on immature DCs. In accordance, poly(I:C) has been reported
to upregulate PD-L1 on DCs (63, 64) as well as endothelial
cells (65) and airway epithelial cells (66). In contrast, PD-L1
was not upregulated upon stimulating RIG-I. Taken together,
our in vitro observations would fit with hantavirus infection
strongly inducing PD-L1 and PD-L2 by triggering TLR-3,
which transmits downstream signals through the TIR-domain-
containing adapter-inducing IFN-β (TRIF) pathway. Production
of IFN-β by both TLR3 and RIG-I induced signaling would be
expected to further increase expression of PD-1 ligands later in
infection.

Other viruses have also been reported to modulate checkpoint
inhibitors. Similar to hantaviruses the Japanese encephalitis virus
nonlytically infects monocyte-derived DCs thereby inducing
phenotypic maturation and a significant increase in PD-L1
expression (67). Replication competent but not inactivated
KSHV induces PD-L1 expression in human monocytes in a
dose-dependent manner although the precise mechanism has
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FIGURE 8 | Dependency of hantavirus-induced bystander activation on costimulatory CD86 molecules. (A) Immature DCs were infected with HTNV at a MOI of 1.5

and incubated for 4 days or exposed to IFN-α for 6 h at 2,000 U/ml before being harvested. Subsequently, cellular RNA was isolated and the number of indicated

cytokine-encoding transcripts quantified by qPCR according to the delta-delta-Ct (ddCt) method. (B) PBMCs treated with anti-IL15 (20µg/ml) or anti-IFN-α (20µg/ml)

and PBMCs depleted of CD14+ cells were exposed to HTNV at a MOI of 1.5 for 4 days before CD69 expression on CD8+ cells was measured by cytofluorimetric

analysis. Results are derived from three independent experiments, error bars represent the mean ± SEM (*p < 0.05, ***p < 0.001, 1 way ANOVA test with Bonferroni

correction). (C) PBMCs treated with anti-CD86 or anti-MHC (both 10µg/ml) were exposed to HTNV at a MOI of 1.5 for 4 days before CD69 expression on CD8+

CD45RO+ cells was determined by cytofluorimetric analysis. Error bars represent the mean ± SEM (*P < 0.05, Student’s t-test). (D) PBMC infected with MOI 1.5 of

TULV or HTNV were analyzed 3 days post infection for the expression of CD86 on the surface of CD14+ cells. (E) Sera from normal healthy individuals or

convalescent hantavirus-infected patients were tested by ELISA for levels of sCD86. Error bars represent the mean ± SD (****p < 0.0001, paired Student’s t-test).

not been defined (68). Akhmetzyanova et al. observed a type I
IFN-dependent increase in PD-L1 expression after infection of
spleen cells with the murine Friend retrovirus (FV) (69). PD-1
and PD-L1 are also up-regulated in monocytic cells upon HIV-
1 infection (70, 71). In accordance, the HIV-1 Tat protein has
been observed to increase PD-L1 expression on DCs through
TNF-α and TLR4 (72). The HCV core protein up-regulates PD-
L1 expression on Kupffer cells, which binds PD-1 to promote
T cell dysfunction and development of viral persistence (73).
A subset of macrophages upregulated PD-L1 expression via
type I IFN during infection with LCMV (74). In addition,
influenza virus enhances PD-L1 expression of lung macrophages
through type I IFN signaling (75). Taken together, it appears that
PD-L1 upregulation is a relatively common consequence of viral
infection which is driven by type I IFN and viral PRR triggering.

PD-L1 expression on professional APCs facilitates the
induction of regulatory T cells (Tregs) and enhances expression

of the key transcription factor forkhead box p3 (Foxp3) (76, 77).
Tregs not only regulate effector T cell function but also humoral
immunity (78). A recent report has shown that the severity
of hantavirus-associated disease correlates with expression of
Foxp3 (79). This strongly suggests that hantavirus-induced
upregulation of PD-L1 on DCs induces Tregs. In accordance,
other investigators have shown that virus-induced PD-L1
upregulation on monocyte-derived DCs leads to expansion of
Tregs (67).

We observed that hantavirus-infected human endothelial
cells upregulate surface expression of PD-L1 and PD-L2
and inhibit proliferation of PHA-stimulated T cells. Other
investigators detected increased amounts of PD-L1 in hantavirus-
infected cultures of rat endothelial cells (80). In HFRS
patients, hantavirus-induced PD-L1 may be responsible for the
contraction of a newly identified highly cytotoxic T cell subset
that strongly upregulates PD-1 in the late phase of hantavirus
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infection (81). Hantavirus-induced expression of PD-L1 and
PD-L2 may contribute to the recently described protection of
hantavirus-infected endothelial cells from cytotoxic attack by
CD8+ T cells and NK cells (82). In line with this notion, antibody
blockade of PD-L1 and PD-L2 on IFN-γ treated endothelial
cells enhanced cytolytic activity of antigen-specific CD8+ T
lymphocytes (8). Similarly, failure of the inhibitory PD-1/PD-
L1 axis during hantavirus infection of vascular tissue may lead
to unbalanced immunostimulation and immunopathology as
proposed for inflammatory blood vessel diseases (83).

Despite checkpoint inhibition we observed bystander
activation in a subset of T cells. Bystander activation of T
lymphocytes represents a first line of antiviral defense and may
contribute to hantavirus-induced immunopathogenesis. In line
with his view, bystander T cells responding to dengue virus,
another VHF virus, secrete IFN-γ (84). It has been reported
that virus-induced bystander T cell activation bypasses control
checkpoints such as Tregs (85). In accordance, we observed
that hantavirus-induced bystander T cell activation is not
prevented by PD-Ll/PD-L2 upregulation on monocyte-derived
inflammatory DCs. This can be explained by the fact that
bystander CD8+ T cell activation does not result in TCR-
induced PD-1 upregulation. In contrast, TCR signaling induced
by cognate antigen upregulates PD-1 expression on CD8+ T
cells within the first 24 h during infection (86). This may ensure
that virus-specific T cells are excluded from innate responses and
differentiate into effector T cells of the adaptive immunity.

Hantavirus-induced bystander activation was strictly
dependent on CD14+ cells. This may be explained firstly by
the fact that monocyte-derived cells are needed for hantavirus
infection in PBMCs. Secondly, CD86 is expressed almost
exclusively on monocyte-derived cell types and we could show
that CD86 was required for hantavirus-induced bystander
activation. Thus, CD86 on hantavirus-infected DCs may activate
heterologous CD8+ T cells through CD28. The importance
of CD28 for bystander activation of CD8+ T cells has been
previously described (87). It is unlikely that hantaviruses directly
activate T lymphocytes through PRRs. However, previous
reports demonstrated that inflammatory cytokines such as type
I contribute to innate T cell activation (88–90). In accordance,
we observed that blocking of type I IFN reduced bystander
activation of CD8+ T cells upon hantavirus infection.

Many acute viral infections are known to trigger bystander
activation of heterologous CD8+ T cells (91–93). Often CD8+
T cells specific for human herpesviruses contribute to the
heterologous antiviral immune response (92). In line with
this view, we observed activation of HCMV-specific memory
CD8+ T cells in PBMCs from HCMV-seropositive patients after

hantavirus infection. In fact, bystander activation of CD8+ T
cells represent an early line of antiviral defense (94). Bystander
activated CD8+ T lymphocytes control early pathogen load in
virus-infected tissue by a NKG2D-dependent mechanism (95). In
accordance with this concept, cytotoxic CD8+ T cells strongly
expressing NKG2D were detected in the lung of hantavirus-
infected patients (96). NKG2D ligands are upregulated by PRRs
that sense viral replication (97). These include RIG-I, which has
been shown to detect hantaviruses (30). Interestingly, a strong

plasmablast response with reactivity against virus-unrelated
antigens has recently been detected in patients with acute
hantavirus pulmonary syndrome (98).Whether this heterologous
B cell response has a pathogenic or protective role is unclear.

In conclusion, hantavirus-infected patients suffer from
immunopathology in the face of immunosuppressive PD-L1
upregulated by hantaviral N protein and most likely hantavirus-
induced TLR3 signaling. This apparent discrepancy could be
explained by rapid cleavage and removal of PD-L1 from the
surface of hantavirus-infected cells in vivo. In accordance,
we detected large quantities of sPD-L1 in the serum of
patients with hantavirus-associated disease. Moreover, the lack
of opportunistic infections in these patients implies that PD-
L1 does not globally suppress the immune system. Finally, early
activation of heterologous CD8+ T cells during acute virus
infections bypasses or overwhelms the inhibitory PD-1/PD-L1
axis and represents a means of eluding viral immune subversion
at least in the short term (99).
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Human cytomegalovirus (HCMV) is a β-herpesvirus with high sero-prevalence within

the human population. Primary HCMV infection and life-long carriage are typically

asymptomatic. However, HCMV is implicated in exacerbation of chronic conditions

and associated damage in individuals with intact immune systems. Furthermore,

HCMV is a significant cause of morbidity and mortality in the immunologically

immature and immune-compromised where disease is associated with tissue damage.

Infection-induced inflammation, including robust cytokine responses, is a key component

of pathologies associated with many viruses. Despite encoding a large number

of immune-evasion genes, HCMV also triggers the induction of inflammatory

cytokine responses during infection. Thus, understanding how cytokines contribute to

CMV-induced pathologies and the mechanisms through which they are regulated may

inform clinical management of disease. Herein, we discuss our current understanding

based on clinical observation and in vivo modeling of disease of the role that cytokines

play in CMV pathogenesis. Specifically, in the context of the different tissues and organs

in which CMV replicates, we give a broad overview of the beneficial and adverse effects

that cytokines have during infection and describe how cytokine-mediated tissue damage

is regulated. We discuss the implications of findings derived from mice and humans

for therapeutic intervention strategies and our understanding of how host genetics may

influence the outcome of CMV infections.

Keywords: cytokine, cytomegalovirus infection, immunopathologic process, virus, mcmv

INTRODUCTION

Human cytomegalovirus (HCMV) is a ubiquitous beta-herpesvirus that has co-evolved with its host
for millions of years and acquired multiple immune evasion functions that manipulate and hide the
virus from host immunity (1, 2). PrimaryHCMV infection and latency in immune-competent hosts
is usually asymptomatic (3). Thus, HCMV is typically thought to establish lifelong infection without
inducing overt pathology often triggered by other viruses. It is becomingly apparent, however, that
chronic HCMV carriage in ‘healthy individuals’ may exacerbate conditions from general frailty (4)
to cardiovascular disease (5).

HCMV causes morbidity and mortality in immune-compromised patients including transplant
recipients and HIV co-infected individuals. Solid-state organ or human stem cell transplantation
remains challenging as immune suppression can facilitate uncontrolled HCMV reactivation
from host and/or donor tissue, resulting in organ pathology and systemic disease (6). HCMV
co-infection is the leading cause of vision loss in untreated HIV/AIDS individuals (7, 8) and
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remains an issue in patients receiving anti-retroviral therapy
(9). HCMV causes gastrointestinal and neurological diseases
during HIV co-infection (7, 10). Further examples of viral-
induced morbidity include congenital infection where HCMV is
the leading infectious cause of all congenital birth defects (11, 12).
Life-long neurological defects ensue, including microcephaly,
encephalitis, seizures, and blindness, and HCMV is the leading
cause of congenital deafness (6, 12, 13).

The fact that HCMV preferentially causes disease in
immune compromised individuals highlights the importance
of immune control of virus replication. Indeed, many HCMV-
associated disease manifestations correlate with viral replication
and respond to antiviral drug treatment. However, certain
syndromes, particularly chronic diseases, do not typically
correlate with high HCMV load (14), suggesting that direct
cellular destruction by virus is not the sole cause of tissue damage.

Cytokines participate in immune responses to viruses
that activate innate immune responses and orchestrate
the development of adaptive antiviral immunity. However,
uncontrolled cytokine production can cause off-target effects,
participating in various immune-driven pathological processes.
Due to the limitations of what can be investigated in humans, the
murine CMV (MCMV)model has been used for decades to study
mechanisms influencing CMV pathogenesis in vivo, including
how cytokines orchestrate antiviral immunity [summarized in
detail elsewhere (15)]. Herein, we examine evidence from both
clinical studies and experimental models of CMV infection
showing that although cytokines are required to limit viral
replication, they can cause host damage. We discuss these
findings in the context of different tissues where damage during
CMV infection can ensue and describe the mechanisms that
restrict these harmful processes (see Figure 1 for summary).

PRO-INFLAMMATORY CYTOKINES,
SYSTEMIC CYTOMEGALOVIRUS-
INDUCED DISEASE, AND ORGAN
DAMAGE

Cytokine responses during HCMV viremia have been mostly
studied in the transplantation setting where time of virus
exposure is known. Following initial replication, sustained type
1 cytokine signatures are observed that are characterized by
production of IFNγ [in some but not all studies (16)], IL-
18 and IL-6, and is further accompanied by acute phase
protein and chemokine (IP-10) secretion (16, 17). T-cells
are implicated as a significant source of type 1 cytokines
(18, 19). Furthermore, numerous pro-inflammatory chemokines
and cytokines, including IL-6, are secreted directly following
HCMV infection (20). HCMV triggers cytokine production
through the stimulation of pattern recognition receptors (PRRs),
most notably Toll-like receptor 2 (21), the cytoplasmic DNA
sensor STING (22) and IFI16 (23). Mice defective in PRRs
mount reduced cytokine responses to MCMV in vivo (24–26).
Although differences in the relative contributions of PRRs to the
recognition of MCMV and HCMV may exist, these data suggest
that innate immune recognition of viral infection by PRRs

contributes to HCMV-induced cytokine profiles. Furthermore, in
vitro, HCMV stimulation of peripheral blood-derived monocytes
increases expression of TLRs, CD14, and adaptor molecules and
transcription factors downstream of TLRs (27). Thus, active
HCMV replication likely induces systemic pro-inflammatory
cytokine responses both following via direct host recognition
but also, potentially, by priming the host immune response to
respond strongly to unrelated microbial signals.

Given the established role for type 1 cytokines in antiviral
immunity, is such a response to CMV infection a bad thing
for the host? Certainly, substantial evidence from clinical and
experimental studies point toward a protective role for type
1 cytokine responses in cytomegalovirus infections (28–30).
However, studies using MCMV show that T-cell responses,
particularly CD8+ T-cells, known to be induced by type
1 cytokines cause substantial tissue damage if insufficiently
regulated (31, 32). Also, severe inflammatory cytokine responses
or “cytokine storms” occur during MCMV hepatitis (33). Thus,
these processes may drive acute HCMV-associated diseases.
Furthermore, HCMV is implicated in organ rejection (34,
35) and, in cardiac transplants, graft atherosclerosis (36).
Experimental studies using MCMV have recapitulated the
observation that acute infection and viral reactivation can
influence graft longevity (37, 38). MCMV reactivation induces
expression within the graft of IFNα and IL-12 (37), implying that
viral infection may elicit cytokine responses that activate cellular
immunity capable of mediating graft rejection. Furthermore,
HCMV induces IP-10 and fractalkine production during
infection (17, 39), both of which are markers of allograft rejection
(40).

HCMV establishes life-long infection within multiple host
tissues (41) where some genomes are silent but others are
transcriptionally active and express many genes (41–43).
Immunological data highlights the likelihood that frequent
reactivation events occur that re-stimulate the host immune
system (44). Subsequently, HCMV may contribute to cytokine
mediated inflammatory diseases in latently-infected immune
competent individuals via continued gene transcription and
reactivation, stimulating immune recognition and subsequent
cytokine production. For example, HCMV is implicated in
cardiac diseases (45) including atherosclerosis (46) where plaque
formation and instability is an inflammatory-driven processes
initiated by IFNγ (47). HCMV also induces accumulation of
virus-specific cytotoxic CD4+ T-cells expressing CX3CR1 (48).
CX3CR1 binds fractalkine which is expressed by activated
endothelium in response to TNFα and IFNγ produced by
HCMV-specific T-cells (39). Interestingly, the HCMV chemokine
receptor homolog US28 also binds fractalkine (49) and may
contribute to localized inflammation. Thus, HCMV-induced
cytokine and T-cell responses may mediate endothelial damage
that in turn promotes vascular diseases and contributes to
damage in multiple tissues and organs. Whether such processes
underpin other harmful associations of HCMV, such as increased
frailty in elderly individuals (4), is unclear.

Cytokines may also indirectly enhance tissue damage by
promoting CMV reactivation and subsequent replication. IL-6
promotes HCMV reactivation in dendritic cells via ERK-MAPK
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FIGURE 1 | Role for cytokines in CMV-induced organ pathologies. Organ or tissue and associated CMV-induced disease is labeled with inflammatory pathogenic

cytokines highlighted in red and regulatory/suppressive pathways shown in blue.

mediated transcriptional induction of major immediate early
(IE) genes (50, 51). TNFα and IL-1β also induce IE gene
transcription by latent HCMV (52–54) and are implicated in
reactivation of HCMV and/or MCMV in vitro and in vivo
(55–59). An additional role for IFNγ in initiating HCMV
reactivation has been described (56, 58). Data from MCMV
suggest that overt pro-inflammatory cytokine responses may
also impinge on innate antiviral immunity. Inadequate pro-
inflammatory cytokine regulation can promote activation-
induced NK cell death (60, 61) in a process involving IL-6
(60). Thus, inflammatory cytokines may directly and indirectly
promote virus replication, which in turn drives peripheral tissue
damage.

CYTOKINES AND DAMAGE IN IMMUNE
PRIVILEGED SITES

When HCMV accesses immune privileged organs, immune-
mediated pathology can ensue. HCMV-induced retinitis is a
significant problem in AIDS/HIV patients (7–9). Interestingly,
elevated expression of type 1 cytokines including IL-6 and IFNγ

in aqueous and/or vitreous fluids from patients is detectable (62–
64). Systemic CMV infection in immune competent mice induces
significant myeloid cell and T-cell infiltrations into ocular tissue
including the neural retina (65). Although cytokines likely play
a role in mediating these inflammatory processes in immune
competent hosts, this has yet to be investigated.

A role for inflammation in HCMV-induced hearing loss in
infants is suggested by autopsies showing inner ear inflammation
(66, 67). In mice, systemic infection of newborns induces
progressive hearing loss and decreased spiral ganglia neuron
density that is indicative of congenital HCMV infection (68).
In MCMV, hearing loss does not correlate with the presence
of virus in the cochlea but rather associates with persistent
expression of chemokines and pro-inflammatory cytokines
including TNFα, IL-6, and IL-1β (68). Similarly, intracranial
MCMV infection induces hearing loss and chronic inflammatory
cytokine expression (69).

Murine neonatal infection models have also been used
to recapitulate central nervous system pathology triggered
by congenital HCMV infection. After systemic infection,
MCMV induces widespread focal encephalitis accompanied by
mononuclear inflammation and microglial activation (70, 71),
including TNFα expression (72). This is accompanied by STAT1
activation and IFN (type I and II) expression, in addition to
TNFα (73). Interestingly, glucocorticoid treatment of these
mice reduced cytokine expression and associated morphogenic
abnormalities and cellular inflammation without influencing
virus load, suggesting that virus-induced inflammation could
be safely targeted to improve CMV-induced CNS pathogenesis
(73). Indeed, neutralization of TNFα reduced expression
of cytokines and myeloid cell activation and accumulation
in the brain, and corrected cerebellar abnormalities and
developmental gene expression (74). These important studies
provide proof-of-concept that anti-inflammatory approaches
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can be safely utilized to ameliorate CMV pathogenesis
in vivo.

HCMV is implicated in esophagitis in HIV-infected
individuals and associates with elevated TNFα production
(75). Inflammatory bowel diseases are common during HIV
co-infection (7) and HCMV maintains active replication in
the gastrointestinal epithelium of individuals treated with
antiretroviral therapy, where replication disrupts epithelial
integrity in a manner partially dependent upon IL-6 (76). HCMV
also associates with gastrointestinal inflammation in healthy
individuals (77), where the virus may drive local production of
cytokines such as TNFα (78) via induction of pattern recognition
receptor expression and/or downstream, adaptor molecules
(27, 79).

HCMV may also impact on neurological diseases in adults,
with associations with HIV-associated neurological disorder
(HAND) and impaired cognitive performance in HIV-infected
individuals being reported [reviewed in (10)]. The link
between HCMV and multiple sclerosis in immune competent
hosts is controversial, with contradicting findings regarding
the association between HCMV seropositivity and disease
occurrence (80–82). In the murine experimental autoimmune
encephalomyelitis (EAE) experimental model, MCMV worsens
disease in genetically susceptible mice (83) and increases
EAE occurrence in resistant (BALB/c) strains. Here, infection
increases CD4 T-cell-dependent disease that is associated with
IFNγ- and IL-17-expressing T-cells (84), further demonstrating
that CMV can exacerbate tissue damage in the central nervous
system.

Like many herpesviruses, HCMV is implicated as a risk factor
in Alzheimer’s Disease (AD) and cognitive decline (85). PBMCs
from HCMV seropositive AD subjects produce more IFNγ

following polyclonal and viral protein stimulation than non-
AD subjects (86), and IFNγ is detectable only in cerebrospinal
fluid of HCMV seropositive but not seronegative AD patients
(87). Thus, although the role of HCMV in AD development is
controversial, (88) it appears that HCMV-infected AD sufferers
exhibit heightened cytokine responses which in turn could
contribute to disease development and/or progression.

REGULATION OF CYTOKINE-DRIVEN
CMV-INDUCED PATHOGENESIS

Despite its inflammatory potential, HCMV rarely causes
inflammatory conditions in healthy individuals. Furthermore,
infection in immune compromised and immunologically
immature hosts does not always cause overt tissue damage,
suggesting that virus-induced inflammatory cytokine responses
are tightly regulated.

Regulatory T-Cells
The association between inducible regulatory T-cell (iTregs)
expansions and reduced vascular pathology in elderly HCMV-
infected individuals suggests a protective function for Tregs in
HCMV infection (89). In MCMV, Tregs (promoted by IL-33)
restrict liver pathology following systemic MCMV infection (32)

and chronic reactive gliosis triggered by MCMV encephalitis
(90). Although hepatic Tregs are known to be dependent upon
IL-33 (32), whether Treg-mediated control of pathogenic T-cell
responses involves restriction of inflammatory cytokine secretion
is currently unknown.

Cytokines
Inflammatory cytokine responses during acute HCMV infection
are accompanied by secretion of the immune modulatory
cytokine IL-10 (16, 91). HCMV re-programmes human
hematopoietic progenitor cells (HPCs) into immune-suppressive
monocytes that express IL-10 in a process requiring US28
(92). In mice, genetic and pharmacological targeting of IL-
10 demonstrates that IL-10 limits systemic inflammatory
cytokine responses induced by CMV, including IL-6 and TNFα
(61, 93, 94). This alleviates MCMV-induced disease, assessed
using body weight (93, 94), and weight loss in IL-10−/− mice
is alleviated by TNFα neutralization (93). IL-10 also restricts
MCMV-induced hepatic inflammation and preserves liver
function by limiting inflammatory effector cell infiltration,
hepatocyte apoptosis and necrosis (95, 96). Experiments
performed in perforin-deficient mice that are unable to control
MCMV replication reveal that IL-10 restricts liver inflammation
primarily by limiting pathogenic CD8+ T-cell responses (31), a
conclusion supported by data derived from immune competent
Il-10−/− mice (95). Following injection of MCMV into the
brain, IL-10 limits fatal immunopathology characterized by pro-
inflammatory cytokine production and neutrophil infiltration
(97, 98). Although the physiological relevance of some of
these experiments in terms of HCMV pathogenesis is unclear,
these data clearly highlight that IL-10R signaling can suppress
CMV-induced immune pathology.

Importantly, genetic variation within the human IL-10 gene
correlates with altered HCMV disease occurrence following
allogeneic stem cell transplantation (99) and during HIV co-
infection (100). This suggests that host genetic variation may
influence tissue damage caused by HCMV-induced cytokines.
Furthermore, HCMV encodes a functional IL-10 otholog
(UL111A, vIL-10) that is expressed in lytic replication (101)
and an alternate isoform in latency [LAcmvIL-10 (102)]. vIL-
10 suppresses numerous innate and adaptive host immune
responses including pro-inflammatory cytokine secretion (103,
104). Given that cellular IL-10 promotes MCMV carriage (93,
105–107), one may predict that HCMV vIL-10 facilitates virus
persistence. However, using rhesus macaque CMV (rhCMV)
that, like HCMV but not MCMV, expresses UL111A, it has
been demonstrated that vIL-10 restricts acute inflammation at
the initial site of infection, the skin. Interestingly, UL111A had
no obvious impact on virus shedding in these experiments.
This implies that virus persistence may not be influenced by
UL111A in vivo (108) but instead that restriction of tissue
pathology is an important function of viral IL-10 orthologs
and perhaps other immune evasion gene products expressed by
HCMV. Intriguingly, certain clinically-isolated HCMV strains
have disrupted UL111A genes (109, 110). It will be interesting to
investigate whether these HCMV strains preferentially associate
with overt inflammatory responses.
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IL-27 is an IL-12 family member that restricts numerous
infection-induced pathologies (111). IL-27 facilitates MCMV
persistence in the mucosa by suppressing IFNγ+ (107) and/or
cytotoxic (112) CD4+ T-cells. Given that cytotoxic CD4+ T-cells
are implicated in tissue damage (113), IL-27-faciliated shedding
of virions may be a necessary evil to restrict the development of
these cells. Data regarding the function of IL-27 during HCMV
infection is limited. Spector and colleagues identified that IL-
27 limits IFNγ expression by virus-specific T-cells in HIV+ and
HIV− HCMV-infected individuals. This was accompanied by IL-
27-mediated induction of IL-10 secreting CD4+ T-cells (114).
Whether IL-27 also alters the development of HCMV-specific
cytotoxic T-cells is unknown. However, overall these data are
consistent with the idea that IL-27 restricts chronic tissue damage
by limiting HCMV-specific T-cell responses.

Data from HCMV and MCMV highlights that the cytokine
TNF-related apoptosis-inducing ligand (TRAIL) contributes
to control of virus replication (115–117). During persistent
MCMV infection in the salivary glands, however, TRAIL
expression by NK cells restricts pathogenic CD4+ T-cell
responses in this tissue. TRAIL-deficient mice exhibit hallmarks
of Sjogren’s syndrome (SS), an autoimmune disease of the
salivary glands that is characterized by ectopic germinal center-
like structures in the glands, elevated autoantibody production
and impaired saliva secretion (113). Thus, TRAIL can limit
both viral replication and potentially harmful infection-induced
inflammatory responses.

Antiviral Restriction Factors
Interferon induced transmembrane protein 3 (IFITM3)
is an antiviral restriction factor that inhibits endocytosis-
dependent cell entry of numerous viruses (118). IFITM3
polymorphisms associated with reduced function are linked
to increased risk of severe viral pathogenesis, most notably
influenza-induced disease (119–121). Although IFITM3 does
not directly impinge on either MCMV or HCMV replication
(60, 122), Ifitm3−/− mice are dramatically more susceptible
to MCMV-driven pathogenesis (60). Disease, which can be
fatal, consists of extensive weight loss, transient pulmonary
and hepatic mononuclear inflammation, and extensive and
irreversible splenic damage. Blocking the action of IL-6 alleviates
pathogenesis in MCMV-infected Ifitm3−/− mice and also
inhibits activation-induced NK cell death and promotes NK
cell immunity (60). Thus, it is unclear whether IL-6 drives
CMV-induced pathology by promoting tissue damage and/or
by impairing cellular antiviral innate immune responses and
subsequent control of virus replication. Irrespective, these data
again highlight the possible role for genetics in determining host
cytokine responsiveness to HCMV and the subsequent disease
outcome.

Glucocorticoids
Endogenous glucocorticoids are steroid hormones produced in
the adrenal cortex following activation of the hypothalamic-
pituitary-adrenal (HPA) axis. Initial inflammatory cytokine
responses during acute MCMV infection are accompanied by
robust glucocorticoid production (123, 124), the maximal release

of which is dependent upon virus-induced IL-6 (123). The
importance of glucocorticoids in modulating CMV-induced
pathogenesis is highlighted in studies where mice are rendered
globally deficient in glucocorticoids by adrenalectomy and
display increased production of pro-inflammatory cytokines
and susceptibility to TNFα-mediated lethal disease (125).
Furthermore, glucocorticoid receptor signaling in NK cells,
via an axis involving the inhibitory PD-1 receptor, exerts
tissue-specific regulation of IFNγ production. Here, unrestricted
NK cell expression of IFNγ in spleens of mice lacking the
glucocorticoid receptor in NCR1+ cells results in necrotizing
splenitis and destruction of the white pulp (124). Although
pathology in medically important sites of CMV pathogenesis
like the liver were unaffected by this process (124), these
data suggest that neuro-immune pathways may be critical
for control of cytokine-driven pathogenesis during CMV
infection.

CONCLUSIONS

Many associations exist between production of inflammatory
cytokines and CMV-associated pathologies in humans and
in experimental systems. Experimental models like MCMV
have their limitations in terms of variations in virus genetics
(including lacking key immune regulatory genes like vIL-
10) and the imperfect recreation in mice of HCMV-induced
pathologies. However, important predictions regarding roles
that cytokines play in virus-induced tissue damage and how
inflammatory cytokines are regulated can be derived from
these studies. Moving forward, these models will be critical to
examine whether targeting CMV-induced inflammation is an
effective, safe and viable approach to alleviating pathogenesis.
Understanding exactly how cytokines cause tissue damage and
how production of these cytokines is regulated will hopefully
lead to more refined and effective strategies to help alleviate the
pathological consequences of HCMV infection. These studies
may also help identify host genetic variations that influence
cytokine responsiveness and susceptibility to HCMV disease.
Finally, these studies may help form novel hypotheses regarding
the possible influence of genetic variation in virus-encoded
immune evasion genes on HCMV pathogenesis.
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C-C motif chemokine ligand 2 (CCL2) is a chemoattractant for leukocytes including

monocytes, T cells, and natural killer cells and it plays an important role in maintaining

the integrity and function of the brain. However, there is accumulating evidence that

many neurological diseases are attributable to a dysregulation of CCL2 expression.

Acquired immune deficiency syndrome (AIDS) encephalopathy is a severe and frequent

complication in individuals infected with the human immunodeficiency virus (HIV) or the

simian immunodeficiency virus (SIV). The HIV and SIV Nef protein, a progression factor in

AIDS pathology, can be transferred by microvesicles including exosomes and tunneling

nanotubes (TNT) within the host even to uninfected cells, and Nef can induce CCL2

expression. This review focuses on findings which collectively add new insights on how

Nef-induced CCL2 expression contributes to neurotropism and neurovirulence of HIV

and SIV and elucidates why adjuvant targeting of CCL2 could be a therapeutic option

for HIV-infected persons.

Keywords: AIDS, astrocyte, autophagy, chemokine, dementia, inflammation, neuron, virus

INTRODUCTION

Acquired immune deficiency syndrome (AIDS), caused by the human immunodeficiency virus
(HIV) (1, 2), has to date resulted in the deaths of over 32 million people. According to the
2019 UNAIDS Global AIDS Update, 1.7 million people became newly infected with HIV in 2018
resulting in a total number of 37.9 million people living with HIV worldwide. To date, there is no
effective protective vaccine against HIV or even a feasible cure available for HIV-infected patients
(3, 4).

In the mid-1990s combined anti-retroviral therapy (ART) was introduced, which considerably
reduced the mortality of HIV-infected patients. However, since then, the prevalence of
HIV-associated diseases has increased. A major obstacle toward the development of therapies
against these diseases that affect a number of organs such as the heart, lungs, kidneys, and the
brain is due mainly to the fact that the disease pathogenesis is poorly understood (5–8). In
the meantime, there exists at best a consensus that a systemic and persistent activation of the
immune system plays a major role in the disease pathogenesis (9–11). Moreover, it is difficult to
accurately differentiate between age-related neurodegeneration, other neurodegenerative diseases
and HIV-associated neurocognitive disorders (HAND) (12). However, attempts have been made to
identify biomarkers to diagnose neurocognitive impairment in HIV-infected persons and activated
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monocytes/macrophages and C-C motif chemokine ligand 2
(CCL2) appear to be the most promising amongst them (13).

CCL2, also named monocyte chemoattractant protein 1, is a
chemotactic cytokine for monocytes (14) and T cells (15), which
are the main target cells of HIV-1. CCL2 decreases interferon-
alpha expression (16), and promotes HIV/SIV replication by
up-regulation of surface C-X-C motif chemokine receptor 4
expression (17).

CCL2 binds to the C-C motif chemokine receptor 2 (CCR2),
which is expressed by neurons (18), human fetal astrocytes
(19) and brain microvascular endothelial cells (BMECs) (20).
CCL2 also binds to the D6 chemokine decoy receptor, which is
expressed on adult human astrocytes (21).

The CCL2-CCR2 axis has been shown to play a key
role in multiple sclerosis and in experimental autoimmune
encephalomyelitis (22), in addition to exacerbating neuronal
damage after status epilepticus (23), eliciting itch- and pain-like
behavior in allergic contact dermatitis (24), as well as mediating
alcohol-induced neuroinflammation and neurotoxicity (25).

HIV AND SIV ASSOCIATED DEMENTIA,

ENCEPHALITIS AND NEURONAL DAMAGE

Without combined ART, HIV causes dementia which is
characterized by deficiencies in cognition, motor disorders,
and behavior abnormalities (26). Pathological manifestations
of HIV-associated dementia (HAD) appear as meningitis,
encephalitis and vacuolar myelopathy (27). A similar clinical
picture has been observed in the SIV/macaque model (28,
29). Even after the introduction of combined ART, HAND
remain (8), and, in fact SIV-infected macaques treated with
suppressive ART also show ongoing neurodegeneration and
inflammation (30). The reason for this phenomenon is unknown
although several explanations have been proposed, e.g., that
anti-retroviral drugs cannot access the central nervous system
(CNS), are not effective in eliminating viral reservoirs, or
themselves contribute to HAND (31, 32). However, since specific
CNS-targeted ART failed to improve neurocognition in HIV-
infected patients compared to non-CNS-targeted (33), it has
been hypothesized that early events after primary infection
with HIV/SIV are critical for initiating the development of
HAND (8).

Indeed, SIV was detected in the brains of macaques within
a few days after intravenous infection (34, 35). Further, HIV
nucleic acid was detected in the brain of an HIV naïve patient
who died 15 days after intravenous inoculation of indium-111-
labeled white blood cells, which originated from an HIV-infected
individual (36). Additionally, a more recent study showed that
HIV RNA is present in the cerebrospinal fluid (CSF) of humans
as early as 8 days after HIV infection (37). This suggests that
HIV/SIV is capable of exploiting a distinct mechanism to enter
the brain rapidly.

Entry of SIV into the brain and induction of neuropathology
does not appear to depend on a sustained high viral load because
the SIVmac32H(pC8) strain, whose replication is attenuated
in vivo (38, 39), was detected in the brain 3 days after infection

of macaques where it caused persisting neuroinflammation
(40). The attenuated phenotype of SIVmac32H(pC8) is most
probably due to a 12 base-pair deletion in its nef gene, which
results in an in-frame deletion of the amino acids 143–146 of
the translational product (38). Although this Nef variant was
detected at lower levels in vitro compared to other variants
(41), it was definitely detected in the brain of macaques infected
with SIVmac32H(pC8) (42). However, SIV strains containing
nucleotide deletions in the nef long-terminal repeat (nef /LTR)
overlap region, analogous to the HIV strain of the Sydney blood
bank cohort (SBBC), could not be detected in the brains of
macaques despite viral replication in the periphery (43). Of
note, members of the SBBC who had become infected with an
HIV strain containing the nucleotide sequence deletions in the
nef /LTR region that results in a truncated Nef protein of 24
amino acids (44), did not or only slowly progressed to AIDS
including HAD (45).

THE NEF PROTEIN OF HIV/SIV:

IMPORTANCE FOR AIDS PROGRESSION

AND ITS INTERCELLULAR TRANSFER

The importance of Nef for AIDS progression was confirmed
in SIV-infected rhesus monkeys and HIV-transgenic mice (46,
47). Additionally, it was shown that Nef is required for high
viral load in vivo (47). These findings have stimulated a series
of studies aiming to identify the mechanistic background with
the ultimate goal to exploit the knowledge for therapeutic
intervention. Indeed, numerous cellular interaction partners and
pathophysiological functions of Nef have been detected (48, 49),
and several models of how Nef executes its role in HIV/SIV
replication and immunopathogenesis have been proposed (50).
In 2009, Kyei et al. showed that HIV Nef inhibits autophagic
maturation in human macrophages and thereby provided a
convincing explanation of how Nef acts at the molecular
level to enable efficient replication of HIV (51). Inhibition
of autophagy increases the production of proinflammatory
cytokines (52, 53) including CCL2 (54, 55). Thus, Nef also seems
to contribute to chronic inflammation, which occurs in HIV-
infected persons (56).

HIV Nef was found in supernatants of nef -expressing BHK
cells (57), yeast (58), andHEK293 cells (59), which was surprising
at the time of these discoveries because nef does not code for an
N-terminal signal sequence that would direct the protein to the
cell secretory pathway leading to export. Thus, the mechanism
by which Nef is released from infected cells was regarded as
an open question. In the past, on analyzing the supernatants of
BHK cells infected with recombinant vaccinia virus expressing
HIV Nef, it was assumed that Nef could be released by vesicles
(57). Today, it is recognized that not only proteins but also
lipids and RNA can be released from a cell by extracellular
vesicles (60).

In 2003, it was shown that HIV Nef induces an accumulation
of multivesicular bodies (MVBs) and that Nef itself is present
in MVBs (61). MVBs can fuse with the cell plasma membrane,
leading to the release of 40–90 nm diameter vesicles, termed
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exosomes, into the extracellular environment (62). Consequently,
it was tempting to speculate that Nef could be released from cells
by exosomes. However, it was challenging to test this hypothesis
in HIV-infected cells because Nef is incorporated in virions
(63, 64).

The astrocytoma cell line TH4-7-5 is persistently infected
with the HIV isolate TH4-7-5 which has a mutation in the nef
gene (GenBank accession number: L31963.1), resulting in a
myristoylation-deficient Nef (65). However, myristoylation
of Nef is required for optimal HIV replication in vitro
(66). Thus, a myristoylation-deficient Nef and a block
in HIV Rev function most probably effected a very low
production of infectious virus but a high production of Nef
in astrocytoma TH4-7-5 cells (65, 67). We took advantage
of the astrocytoma cell line TH4-7-5 and examined whether
Nef is present in the supernatants of these cells. Application
of a two-step centrifugation protocol, previously shown to
enable the enrichment of microvesicles including exosomes
from cellular supernatants (68), resulted in the detection
of Nef in the pellets of centrifuged supernatants of these
cells (69).

It was later confirmed that Nef is released from HIV-infected
cells (70, 71) by microvesicles and it was even claimed that this
occurs via exosomes (72). However, there is still an ongoing
debate regarding the type of vesicle by which Nef leaves the
cell (73, 74). Further, Nef was detected in microvesicles and
exosomes isolated from the plasma of HIV-infected persons
despite them receiving ART, and it has been shown that exosomes
derived from HAD patients can transfer nef mRNA to cells,
leading to Nef expression and subsequent induction of cellular
genes (75, 76).

Nef was also found in uninfected human peripheral blood
mononuclear cells (PBMCs), which can transfer Nef to human
umbilical cord vein endothelial cells (77). A recent study not
only reported that Nef is released by vesicles from HIV-
infected cells, but also confirmed the result for SIV-infected
cells and has additionally shown that extracellular vesicles
containing Nef circulate in the blood of SIV-infected macaques
(78). Meanwhile, the process of protein and mRNA transfer
by exosomes and other extracellular vesicles even between
different types of cells is well understood (79). In summary,
irrespective of the type of extracellular vesicle from which Nef
is released by HIV/SIV infected cells, Nef is present in the
extracellular environment independently of virions and can
enter uninfected cells where it affects cellular functions and
gene expression.

Additionally, cells can exchange molecules and organelles
directly via tunneling nanotubes (TNTs), which are about 50–
200 nm long thin actin rich membrane conduits, even between
different types of cells (80). Nef can induce TNT formation
(81, 82), and it can also be transferred to B cells via TNTs
from HIV-infected macrophages (83), from macrophages to
T cells (82), from nef -expressing T cells to hepatocytic cells
(84) and also between macrophages (81). Importantly, Nef is
transferred from T cells and monocytes to human coronary
arterial endothelial cells via TNTs, leading to apoptosis and CCL2
expression (85).

NEF-INDUCED CCL2 EXPRESSION AND

THE FUNCTION OF THE

BLOOD-BRAIN-BARRIER

CCL2 increases the blood-brain barrier (BBB) permeability (86,
87), andmuch progress has beenmade in revealing the molecular
mechanism of how leukocytes, governed by CCL2, pass the
BBB (88). Therein, astrocyte and BMEC-derived CCL2 play
complementary roles (89).

A natural repair mechanism to restore damaged brain
tissue after experimentally-induced ischemia starts with the
recruitment of CCR2+Iba1+ monocytes from the periphery,
which then differentiate into brain Iba1+NG2+ cells within the
brain parenchyma (90, 91). Transmigration of CCR2+Iba1+

monocytes through the BBB is enabled by a transient expression
of CCL2 in astrocytes and endothelial cells that lasts for only 2
days (92). Indeed, under normal physiological conditions, the
BBB is impermeable for circulating monocytes (93, 94), and
therefore invasion of a healthy brain by HIV/SIV should not
happen as fast as it has been observed. But a specific HIV/SIV-
triggered mechanism leading to CCL2 expression in BMECs
may enable HIV/SIV to get access to the brain either in the
form of free virions or via infected CCR2+ cells. In this respect,
it was significant to observe that Nef (i) can be transferred
from human PBMC to human endothelial cells (77), (ii) was
detected in endothelial cells of nef -transgenicmice andmacaques
infected with SHIV-nefSF33, and (iii) induces CCL2 expression
in endothelial cells (85).

Invasion of the brain by leukocytes would additionally require
an upregulation of adhesion molecules on both endothelial and
infected cells. Indeed, it has been shown that HIVNef upregulates
the intercellular adhesion molecule 1 (ICAM-1) in vascular
endothelial cells (95). ICAM-1 interacts with the lymphocyte
function-associated antigen 1 (LFA-1), and its subunits, CD11a
and CD18, are upregulated in HIV-infected monocytes (96, 97).
Endothelial-derived CCL2 activates CD11a, leading to a firm
arrest of monocytes on endothelial cells (98, 99), and mediates
the subsequent transendothelial migration (100).

In summary, the findings collectively result in a model in
which Nef-containing PBMCs and extracellular vesicles carrying
Nef attach to and transfer Nef into endothelial cells, leading to
CCL2 production that can cause BBB leakiness and subsequent
entry of HIV/SIV by infected cells into the brain (Figure 1). Of
note, this provides a simple explanation of why SIVwith a deleted
nef gene cannot enter the brain (43).

NEF-INDUCED CCL2 EXPRESSION AND

NEURONAL DYSFUNCTIONS

Once in the brain, HIV/SIV cannot be eliminated by ART.
The virus persists and triggers a chronic inflammation leading
to sustained leukocyte infiltration, astrogliosis and neuronal
degeneration (102, 103). In brain tissues of HIV-infected patients,
HIVDNAwas detected in the cells of themacrophage lineage and
in astrocytes, the most abundant cell type in the brain. However,
it was not found in neurons (104), which is in accordance with
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FIGURE 1 | Contribution of Nef-induced CCL2 expression to HIV/SIV neurotropism. HIV/SIV infected monocytes release microvesicles and exosomes that transfer

Nef into brain endothelial cells (a), where Nef induces a signaling pathway (b) that leads to release of CCL2 at the luminal side of the BBB (c) and upregulation of

ICAM-1 (d). CCL2 binding to CCR2+cells triggers a conformational change of LFA-1 that enables their firm adhesion to brain endothelial cells via LFA-1–ICAM-1

interaction (e). Endothelial CCL2 expression enables transendothelial migration of HIV/SIV-infected CCR2+monocytes into the brain parenchyma (101) (f). There

HIV/SIV infects astrocytes and microglia (g).

the finding that perivascular macrophages and microglia, but
not neurons, can be productively infected with HIV/SIV (105,
106). These findings indicate that an indirect mechanism causes
neuronal dysfunction and damage, and microglia that release
exosomes and microvesicles containing Nef (107) may play an
important role therein. It has long been known that HIV and
SIV antigens are present in astrocytes of primary infected tissues
(106, 108). Recently, a hypothesis was proposed that explains this
finding (109) and challenges the consensus that HIV/SIV can
infect astrocytes (110).

Significantly, Nef is highly expressed in astrocytes (111),
promotes replication of HIV (112), and is also released by
exosomes (113) or any other extracellular vesicle (114). Human
astrocytes infected with recombinant Sindbis virus vector
encoding HIV nef produced elevated CCL2 mRNA levels, which
was independent of the nef variant tested (115). Induction of
CCL2 expression by HIV Nef was confirmed in U-251MG
astroglioma cells transfected stably with nef (116), in primary

rat astrocytes in vivo (117), and in primary murine macrophages
and microglia (118). Animal models have provided evidence that
there is a direct link between Nef-induced CCL2 expression and
neuronal dysfunction and damage. Macrophages expressing HIV
Nef, which were implanted into the rat hippocampus, triggered
immigration of monocytes/macrophages, tumor necrosis factor
expression, and astrogliosis, a hallmark of HIV encephalitis
(HIVE). In addition, the neurotoxicity triggered by Nef was
associated with cognitive deficits (119). Cognitive deficits in
particular spatial and recognition memory were observed in
rat brains in which primary astrocytes were implanted that
expressed HIV Nef. This was associated with Nef-induced CCL2
expression, which resulted in immigration of macrophages in
the hippocampus and loss of hippocampal CA3 neurons in
these animals (117). In transgenic mice, in which HIV Nef was
expressed specifically in macrophages and microglia, CCL2 was
increased in the brain, and the dopamine system was affected,
leading to mania-like behavior, especially in males (118).

Frontiers in Immunology | www.frontiersin.org 4 October 2019 | Volume 10 | Article 244778

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lehmann et al. Nef-induced CCL2 Expression

There are several studies demonstrating that increased CCL2
concentrations correlate with HAD/HAND. Elevated levels of
CCL2 were detected in the CSF of HIV-infected individuals
positively diagnosed with HAD (120, 121). Microglia and
astrocytes of HIV-infected persons suffering from HIVE produce
CCL2 (122), which was confirmed for SIV infected macaques
(123). Additionally, a specific small nucleotide polymorphism in
the CCL2 promoter, which leads to increased CCL2 expression
and infiltration of mononuclear phagocytes into tissues correlates
positively with the risk of HAD (124). Cocaine, known to

exacerbate neurodegeneration in persons infected with HIV,
induces CCL2 expression in microglia and leads to increased
transmigration of monocytes into the brain (125).

It is now also known that CCL2 affects neurons directly in
addition to enhancing the transmigration of infected leukocytes
through the BBB (126). For example, over-induction of CCL2
in astrocytes causes dopaminergic neurodegeneration in 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice (127), and an
inhibition of CCL2 expression protects neurons against amyloid-
beta-induced toxicity (128). Indeed, CCL2 mediates cell death

FIGURE 2 | Contribution of Nef-induced CCL2 expression to HIV/SIV neurovirulence. (A) HIV/SIV-infected microglia and astrocytes infect uninfected microglia and

astrocytes (a), and disseminate Nef via exosomes (b), microvesicles (c) and TNTs (d) to uninfected cells. Nef harboring astrocytes and microglia express CCL2 (e).

CCL2 stimulates CCR2 signaling in neurons leading to their dysfunction (f) and death (g). (B) CCL2 produced by Nef harboring astrocytes and microglia (h) is

transported transcellularly across BMEC (136) to act on CCR2+cells along the luminal side of the BBB (i). CCL2 binds to CCR2 on BMEC and mediates disruption of

endothelial junctions (86, 87) to foster invasion of CCR2+cells into the brain (j).
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in neurons of the hippocampal CA3 region after kainic acid-
induced seizures in mice. Neuronal degeneration was associated
with behavioral impairment, memory decline, and anxiety (129),
all characteristics which have been observed early after infection
of humans with HIV and even in HIV-infected persons receiving
ART (130–132).

CCR2, the receptor of CCL2, is present on neurons (18), and
its absence reduced brain damage as well as BBB permeability
in an experimental stroke model in mice (133). Similar to the
process in an HIV/SIV infection, CCR2 plays a key role in the
accumulation of myeloid cells in the brain and the activation
of hippocampal myeloid cells upon infection with Theiler’s
murine encephalitis virus (TMV). Notably, CCR2 deficient mice
had almost no hippocampal damage during TMV infection
(134). Thus, CCL2 represents a convincing candidate to explain
neuronal dysfunction and damage (135) which occur in HIV/SIV
infected humans and animals (Figure 2). Additionally, CCL2 is
major mediator of pain (137), and chronic pain is a common
burden in people living with HIV/AIDS (138).

SUMMARY

The findings summarized herein not only integrate well into
the “Trojan horse” model that states that a cell infected with
HIV/SIV enters the brain leading to a persistent infection and
consequently HAND (139) but also add to this model the fact
that the transfer of Nef by microvesicles into endothelial cells and
the subsequent induction of CCL2, mimics a pathophysiological
state of the brain to which monocytes are recruited normally.
Nef, in combination with other HIV/SIV proteins and even anti-
retroviral drugs, possibly work together more efficiently to enable
a rapid entry of HIV/SIV-infected cells into the brain (140).
This interplay presumably plays a general role in HIV-associated
diseases (141).

In the brain, HIV/SIV-infected cells such as astrocytes and
microglia distribute Nef to uninfected cells via microvesicles and
TNTs. Thereby, there is a steady increase in the number of Nef-
bearing, non-infected cells which produce CCL2. HIV Tat in
astrocytes seems to contribute to an increase in the levels of

CCL2 in the brain (142, 143). The persistent non-physiological
expression of CCL2 leads to sustained cell infiltration into the
brain and a disturbance of neuronal functions. If a person is
infected with HIV subtype B then Tat could enhance CCR2
activation through its acidic region (144, 145). Moreover,
when present in sufficiently high concentrations in the brain,
Tat could definitely exacerbate neuronal dysfunctions through
its basic region (146). Moreover, besides CCL2, the C-X-
C motif chemokine 10 (CXCL10) has also been identified
as a biomarker for HAND (13), especially in HIV-infected
women (147) and this chemokine can also be induced by
Nef (115).

CONCLUSION

The findings summarized here classify HIV/SIV Nef-induced
CCL2 expression in the complex pathogenesis of HAND, and
once again highlight the special role which the CCL2-CCR2
axis can play in a neurological disease. Consequently, drugs
which have been developed to target this chemokine or its
receptor could also be an option for an adjuvant therapy in
HIV-infected persons.
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The central nervous system (CNS) is vulnerable to several viral infections including

herpes viruses, arboviruses and HIV to name a few. While a rapid and effective immune

response is essential to limit viral spread and mortality, this anti-viral response needs

to be tightly regulated in order to limit immune mediated tissue damage. This balance

between effective virus control with limited pathology is especially important due to

the highly specialized functions and limited regenerative capacity of neurons, which

can be targets of direct virus cytolysis or bystander damage. CNS infection with the

neurotropic strain of mouse hepatitis virus (MHV) induces an acute encephalomyelitis

associated with focal areas of demyelination, which is sustained during viral persistence.

Both innate and adaptive immune cells work in coordination to control virus replication.

While type I interferons are essential to limit virus spread associated with early mortality,

perforin, and interferon-γ promote further virus clearance in astrocytes/microglia and

oligodendrocytes, respectively. Effective control of virus replication is nonetheless

associated with tissue damage, characterized by demyelinating lesions. Interestingly,

the anti-inflammatory cytokine IL-10 limits expansion of tissue lesions during chronic

infection without affecting viral persistence. Thus, effective coordination of pro- and anti-

inflammatory cytokines is essential during MHV induced encephalomyelitis in order to

protect the host against viral infection at a limited cost.

Keywords: central nervous system, viral infection, JHMV, IFNα/β, IFNγ, IL-10, demyelination

INTRODUCTION

The central nervous system (CNS) is susceptible to various neurotropic viral infections
associated with acute inflammation. Depending on the distinct anatomical regions infected,
inflammation is referred to as meningitis (meninges), encephalitis (brain), myelitis (spinal
cord), or meningoencephalitis and encephalomyelitis if multiple sites are afflicted (1). Viral
meningitis is overall more clinically benign, whereas encephalitis is associated with clinical
evidence of neurological dysfunctions, which can range from behavioral changes to seizures
and paralysis. Many encephalitic viruses such as insect borne viruses, enteroviruses, and non-
endogenous retroviruses can rapidly invade the CNS early following peripheral infection. However,
encephalitis caused by members of the herpes viruses, e.g., Herpes Simplex Virus (HSV)-2,
cytomegalovirus (CMV), or the polyomavirus John Cunningham virus (JC virus) are more
commonly caused by immune suppression allowing re-activation of otherwise controlled chronic
or latent peripheral infections and invasion of, or reactivation within the brain, resulting in severe
disability and death (2). For example, premature death of multiple sclerosis patients treated with
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Natalizumab due to JC-virus mediated progressive multifocal
leukoencephalopathy emphasizes the importance of CNS
immune surveillance to prevent viral recrudescence (3, 4).

As many neurotropic viruses predominantly target highly
specialized and/or non-renewable cells controlling cognitive
and vital physiological functions, an efficient anti-viral immune
response is essential to limit viral CNS dissemination to prevent
lethal outcomes. However, the anti-viral immune response needs
to be tightly regulated to minimize bystander tissue damage and
neurological dysfunction, which can be long term sequela even
after virus control (2). Given the limitations in obtaining human
CNS samples, several murine models of viral encephalitis provide
complementary tools to unravel activation, effector function and
regulation of protective immune responses within the CNS;
these include Vesicular stomatitis virus (VSV), Sindbis virus,
West Nile virus, Theiler’s encephalomyelitis virus (TMEV) and
mouse hepatitis virus (MHV). This review primarily focuses
on encephalomyelitis induced by neurotropic MHV, namely the
sublethal glia tropic variant of the John Howard Muller MHV
strain, designated v2.2-1, and the non-lethal dual liver and
neurotropic MHV-A59 strain (5). Both viruses are characterized
by an acute encephalomyelitis which resolves into a persistent
infection characterized by demyelination and sustained detection
of viral RNA in the absence of infectious virus. As demyelination
is immune-mediated and neuronal infection is sparse in the v2.2-
1 model, it provides a useful tool to study the dynamics and
regulation of antiviral host immune responses associated with
ongoing immune-mediated tissue damage balanced by repair
during chronic infection.

MOUSE HEPATITIS VIRUS

Mouse hepatitis viruses (MHV), members of the positive-strand
RNA enveloped Coronaviridae, are natural murine pathogens
that infect the liver, gastrointestinal tract and CNS (6, 7).
Virus tropism and pathogenesis depends upon virus strains and
variants, as well as inoculation route (8). The attenuated MHV-
JHM v2.2-1 referred as v2.2-1 from hereon is a monoclonal
antibody derived variant of the lethal MHV-JHM strain (9),
which has been extensively used to unravel immune correlates of
protection and viral-induced demyelination. Upon intracranial
infection the MHV-A59 strain is more neuronotropic than
v2.2-1, but also infects glia and causes immune mediated
demyelination, although clinical disease severity in immune
competent adult infected mice is less severe (10). Unless
otherwise stated, this review pertains to encephalomyelitis
induced by v2.2-1. Following intracranial administration, v2.2-1
infects the ependymal cells lining the ventricles before spreading
to microglia, astrocytes, and oligodendrocytes (OLG); neurons
are largely spared. Peak virus replication around day (d) 5
post-infection (p.i.) correlates with activation of astrocytes and
microglia, disruption of the blood brain barrier (BBB) and CNS
recruitment of neutrophils, NK cells and predominantly bone
marrow derived monocytes (6, 11). Monocytes and neutrophils
enhance BBB disruption (12) and pave the way for infiltration
of T and B cells. T cell recruitment is associated with signs
of encephalitis observed around d7 p.i. Both CD8 and CD4T

cells are essential for reducing infectious virus below detectable
levels 2 weeks p.i. (6, 13). T cell mediated antiviral function
also correlates with onset of demyelination, which peaks 2–3
weeks after control of infectious virus. While virus replication
is no longer detectable in chronically infected mice, persisting
viral RNA remains present in spinal cords at slowly declining
levels. Deprivation of local humoral immunity constitutes the
only manipulation resulting in reemergence or lack of clearance
of infectious v2.2-1 or A59 virus (14), suggesting virus persists in
a replication competent form controlled by local Ab (15).

Induction of cytokines and chemokines, as well as CNS
recruitment of innate and adaptive immune cells, is highly
regulated during neurotropic MHV infection, emphasizing the
orchestration of specific functions at times critical to efficiently
control infectious various, while restraining subsequent tissue
destruction. This review discusses findings from our colleagues
and own laboratories on the role of signature cytokines associated
with effective, yet dampened anti-viral responses and limited
tissue damage with focus on Interferon (IFN)α/β, IFNγ and
IL-10.

TYPE I IFN: CONDUCTOR OF THE EARLY
ANTI-VIRAL RESPONSE

The induction of innate immune responses, including type I
IFNs, provides the first critical line of immune defense in
stemming viral spread throughout the CNS (16, 17). Although
coronaviruses are known to be poor IFNα/β inducers, the
importance of IFNα/β signaling following both MHV-A59
and v2.2-1 infection, became apparent following infection of
IFNα/β receptor deficient (IFNAR−/−) mice. Uncontrolled
viral replication, extensive viral dissemination throughout the
CNS, and expanded tropism to neurons coincided with rapid
mortality (18, 19). Early viral replication also induces cytokines
and chemokines, some of which are IFNα/β dependent (20).
Together, the early response regulates the adaptive immune
response essential for reducing viral replication.

Since the naïve CNS is devoid of plasmacytoid dendritic cells,
potent peripheral IFNα/β inducers, IFNα/β production relies on
sensing of virus invasion by glial and neuronal cells. Although
glia and neurons are known to express pattern recognition
receptors (PRRs), which recognize diverse pathogen associated
molecular patterns (PAMPs) and endogenous danger signals
(DAMPs), the diversity and magnitude varies not only between
CNS cell type, but also their regional anatomical localization
within the CNS (2, 21–23). While all CNS cell types have been
shown to be capable of producing IFNα/β in vitro, the ability
to induce IFNα/β in vivo depends on the specific virus, its
replication cycle, cellular tropism and respective repertoire of
PRRs and associated signaling factors. The disparities between
CNS cells in their ability to produce and respond to IFNα/β in
vivo have recently been reviewed (20). Our own studies with
v2.2-1 revealed that oligodendrocytes (OLG) are poor inducers
of IFNα/β relative to microglia consistent with low basal levels
and limited diversity of PRRs detecting viral RNAs (24). The
low expression of IFNα/β receptor chains further coincides
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with reduced and delayed expression of interferon sensitive
genes (ISG) encoding factors with anti-viral activity, including
interferon-induced protein with tetratricopeptide repeats 1 and 2
(Ifit1 and Ifit2). Both their reduced ability to establish an antiviral
state and upregulate IFNα/β-induced major histocompatibility
complex (MHC) class I presentation components may enhance
their propensity to become the predominantly infected glia cells
and set the stage for establishment of persistent infection (24, 25).

Cell types, which are not effective initial type I IFN inducers,
may nevertheless be protected after inducing ISG, which also
include PRRs, in response to IFNα/β produced by heterologous
cells. Similar to OLG, lower constitutive PRR, and ISG levels
were found in astrocytes relative to microglia. However, studies
with MHV-A59 revealed delayed but substantial upregulation
of IFNα/β pathway genes within astrocytes following infection
(26). Some PRRs, ISGs and IFNα were even expressed at higher
levels in astrocytes at d5 p.i. compared to microglia, indicating
that astrocytes are critical to the innate antiviral activity through
amplification of the IFNα/β response. The importance of IFNα/β
signaling within astrocytes was confirmed by uncontrolled viral
replication and premature death (1 week p.i.) of mice lacking
IFNAR expression specifically on astrocytes (26). However,
delayed mortality compared to total IFNAR deficiency indicated
that other CNS cells, presumably microglia, contribute early
to limiting virus dissemination. Analysis using the v2.2-1 virus
will determine whether the astrocytic contribution to IFNAR
mediated protection remains similar in a model with sparse
astrocyte infection.

Altogether, these data shed light on the individual in vivo
contribution of glial cells in overall IFNα/β mediated early
protection against MHV CNS infection. More studies using
conditional ablation of IFNAR and selected ISGs in various
encephalitic virus models will be beneficial in unraveling the
importance of autocrine and paracrine protective IFNα/β effects
on subsequent adaptive responses and potential establishment of
cell type specific persistence.

IFNγ AND PERFORIN: WHEN ADAPTIVE
IMMUNITY TAKES THE RELAY

Although innate anti-viral immune responses are critical in
containing initial CNS virus spread, virus-specific T cell effector
functions are essential to eliminate or reduce infectious virus
load during most acute infections (27–29). Importantly, CNS
cells appear to shape the adaptive immune response to avert
direct T cell cytolytic effector mechanisms, especially targeted to
neurons, as recently reviewed by Miller at al. (2). While various
mechanisms, including intrinsic deviation from cellular targets
of lytic granules, T cell inhibitory molecules, as well as anti-
inflammatory factors have been demonstrated to dampen T cell
effector functions, the samemechanisms also favor establishment
of persistent infection.

The requirement for adaptive immune responses to control
neurotropic MHV was evidenced by uncontrolled viral
replication and mortality of v2.2-1 infected immunodeficient
Rag2−/− or SCID mice (30, 31). However, the absence of

adaptive immunity also revealed that virus itself does not cause
demyelination (6, 9, 32), supporting T cell effector function
in mediating pathology. T cell depletion studies subsequently
revealed that v2.2-1 control required both CD4+ and CD8+ T
cells, with CD4+ T cells providing helper function for CD8+

T cells, which are the primary effector T cells within the CNS
(13, 33). Efforts to define prominent anti-viral effector function
further demonstrated that mice deficient in perforin-mediated
cytolysis could not control viral replication in microglia and
astrocytes, while virus control in oligodendrocytes (OLG) was
unaffected (34). In contrast, IFNγ−/− mice exhibited loss of
viral control specifically in OLG (35). The requirement for IFNγ

mediated control in OLG was further confirmed by specifically
abrogating IFNγ receptor signaling in OLG (36). These data thus
demonstrated that T cell mechanisms affecting viral control in
vivo were clearly cell type dependent, although CD8+ T cells
isolated from the infected CNS exerted both potent cytolytic
activity and produced IFNγ ex vivo. The distinct susceptibilities
of glia cells to CD8+ T cell effector functions was further
confirmed by adoptive transfer of virus-specific CD8+ T cells
deficient in either IFNγ or perforin into infected T cell-deficient
mice (13, 31). The overall higher dependency on IFNγ for MHV
control may also reside in the differential dependence of glia
on IFNγ to upregulate MHC class I and antigen processing
components. Whereas, class I surface expression by microglia
coincides with IFNα/β expression, OLG appear to require
IFNγ to upregulate class I (25). This delayed class I expression
coinciding with enhanced expression of the inhibitory receptor
B7-H1 may protect OLG from CD8+ T cell cytolysis (37).

Analysis of the relative contribution of CD8+ vs. CD4+ T cells
to express IFNγ following v2.2-1 infection surprisingly revealed
that CD4+ T cell express higher levels of IFNγ mRNA at the
population levels than CD8+ T cells (38). However, the APC
triggering IFNγ production by CD4+ T cells have not been
identified, but may be meningeal or perivascular DC. CD4+ T
cells can indeed mediate direct anti-viral activity in addition
to enhancing CD8+ T cell migration and survival within the
CNS (39). However, adoptive transfer of perforin- or IFNγ-
deficient CD4+ T cells into infected immunodeficient recipients
revealed that viral control was independent of either anti-viral
function (13, 17). Moreover, sparse MHC class II upregulation
on microglia in the absence of IFNγ, and lack of MHC class II
expression on astrocytes and OLG suggest that CD4+ T cells
contribute to viral control indirectly via a viral antigen cross
presenting APC or via anMHC class II-independentmechanisms
(17). Cell types presenting viral antigen to activate CD4+ T
or CD8+ T cells in the CNS in vivo requires more extensive
investigation not only in the MHV model, but also models of
neuronotropic infection.

Although the anti-viral T cell response is vital to protect
the host following neurotropic infection, it induces tissue
damage characterized by demyelination and modest axonal
damage. A role for cytolytic infection of OLG was discounted
based on the lack of tissue damage in immunodeficient mice,
as well as restored myelin loss by transfer of virus specific
CD4+ or CD8+ T cells (7). Direct T cell-mediated cytolysis
of OLG is also unlikely given the IFNγ dependent control
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of infectious virus and difficulties to detect apoptotic OLG
(30). Delayed virus control in both perforin−/− as well as
IFNγ−/− mice did not alter pathology compared to wt mice,
indicating that these effector molecules did not play a role in
demyelination (34, 35). Similarly, enhanced OLG infection in the
absence of IFNγR signaling in OLG did not result in increased
demyelination even in the presence of intact T cell function (36).
These studies gave the first indication that IFNγ signaling in
OLG, independent of their virus load, does not directly affect
demyelination.

The role of IFNγ in demyelination nevertheless still remains
unresolved. T cell transfer studies with select virus primed T cell
populations further indicate that the source of IFNγ in CD4+

or CD8+ T cells influences pathogenesis. Less demyelination
after transfer of IFNγ−/− CD8+ T cells into RAG−/− mice
correlated with decreased macrophage/microglia activation and
recruitment into white matter areas (40). By contrast, transfer
of IFNγ−/− CD4+ T cells into RAG−/− mice correlated with
increased demyelination and mortality (41). The dichotomy
of enhanced demyelination in RAG−/− recipient of IFNγ−/−

CD4+ T cells, which also exhibit selectively increased OLG
infection, is likely due to increased IFNγ-regulated neutrophil
infiltration and induction of pathogenic Th17 cells (42–44),
which had not been uncovered at the time. Distinct from
the later studies, lack of IFNγ production by CD4+ T cells
partially protected SCID recipients from myelin loss, but led
to premature mortality (17). Decreased demyelination in SCID
recipients of IFNγ−/− CD4+ T cells nevertheless also correlated
with reduced macrophage infiltration andmicroglia activation. A
direct toxic effect of CD4+ T cells on OLG is unlikely due to their
lack of MHC class II expression. Some inconsistencies between
results in RAG−/− vs. SCID recipients remain to be resolved
and may reside in different genetic backgrounds or activation
state of transferred T cells (17, 41). Irrespectively, together
these data indicate that while IFNγ is vital to reduce MHV
virus load, the side effect of extensive macrophages/microglia
activation promotes myelin destruction. On the other hand,
the total absence of IFNγ not only enhanced virus load, but
also maintained neutrophil function and activated Th17 cells
(44), which normally do not play a role during a strongly
Th1 skewed response during neurotropic MHV infection. More
in depth analysis of the role of IFNγ, specifically its cellular
targets, is expected to reveal a better understanding of IFNγ

as a major regulator of inflammation by promoting MHC class
II and iNOS expression and shaping the composition of CNS
inflammatory response by regulating chemokine expression.
Although iNOS upregulation and oxidative damage have been
implicated as factors contributing to CNS tissue damage
during demyelination (45), neither genetic ablation of iNOS
or pharmacological inhibition of NO affected viral control,
demyelination or mortality following infection with v2.2-1 or
the neuro attenuated MHV-OBLV60 (46, 47). By contrast,
compounds reducing reactive oxygen species (ROS) reduced
neuronal loss and demyelination during MHV-A59 induced
optic neuritis (48). The contribution of ROS to pathogenesis thus
requires more in depth analysis.

IL-10: THE GAMEKEEPER OF TISSUE
DAMAGE DURING CHRONIC JHMV
INFECTION

Incomplete control of neurotropic MHV results in persistent
infection characterized by low levels of viral RNA in spinal
cord, sustained detection of cytokine and chemokine expression,
retention of CD4+ and CD8+ T cells and ongoing primary
demyelination balanced by remyelination (6, 7, 11). The inability
to completely eliminate virus suggested an important host
response to dampen myelin loss at the expense of virus
persistence. One checkpoint molecule was the T cell inhibitory
molecule B7-H1, strongly upregulated on OLG. The severity
of tissue destruction within lesions in the absence of B7-H1
coincided with increased mortality, although viral control was
accelerated (37). Another molecule counteracting tissue damage
is the anti-inflammatory cytokine IL-10, known to be a master
regulator of immunity to infection (49) as well as balancing
immune responses and neurodegeneration in the brain (50). IL-
10 is upregulated during acute v2.2-1 infection, at which time
it is mainly produced by CD4+ and to a lesser extent CD8+ T
cells (51). While IL-10 expression by CD8+ T cells wanes during
persistence, it is maintained by CD4+ T cells (52, 53). Both Foxp3
regulatory CD4+ T cells (Tregs) and virus-specific IFNγ+IL-10+

CD4+ T cells (Tr1) are sources of IL-10 throughout the course
of JHMV infection and their role have been recently reviewed by

Perlman et al. (54). V2.2-1 infection of IL-10−/− mice resulted
in faster control of virus replication during acute infection and
reduced initial demyelination; surprisingly however, the severity
of demyelination increased 2 weeks after viral control without
altering viral persistence (55). IL-10 deficiency was also associated
with sustained MHC class II expression on Iba1+ myeloid cells
and increased iNOS levels in lesions. These data suggested a
critical role of IL-10 in limiting tissue damage, despite similar
levels of persisting virus. Increased IL-10 production following
CNS infection using an engineered IL-10 expressing v2.2-1
variant also resulted in decreased demyelination while virus
clearance was slightly delayed (56).

The confirmation of IL-10 as a critical regulator of
demyelination questioned whether Tr1 and Foxp3 Tregs played a
distinct role. As IL-10 induction in Tr1 cells is IL-27-dependent,
mice deficient in IL-27 signaling (IL-27R−/−) infected with
v2.2-1 were analyzed for a role of Tr1 cells (57). Infected IL-
27R−/− displayed drastically reduced Tr1 cells as anticipated,
and significantly reduced IL-10 levels at d7 p.i. consistent with
faster viral control, similar to IL-10−/− mice. However, impaired
IL-27R signaling also correlated with decreased demyelination
distinct from the IL-10−/− infected mice. While these findings
implied that IL-10 mediated suppression of demyelination is
Tr1-independent, it is noted that IL-27R−/− mice have several
other dysregulated immune pathways (58, 59). Switching the
focus on Foxp3 Tregs, transfer of naïve Foxp3 Tregs into wt or
RAG1−/− recipients during acute infection ameliorated tissue
damage without affecting virus control (52, 60). These results
from a gain of function approach were supported by depletion
of CD25+ Tregs prior to infection, which resulted in increased
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demyelination (57). While the effect of Foxp3 Tregs on tissue
damage is manifested during chronic infection, their regulatory
function may already be initiated during acute infection. Indeed,
depletion of Foxp3 Tregs during chronic infection had no effect
on the extent of myelin loss (61). Similarly, IL-10 neutralization
coincident with CNS infection induced increased demyelination
whereas delayed IL-10 inhibition did not affect tissue damage
(56). Lastly, although Foxp3 Treg transfer during acute infection
decreased CNS tissue damage, they were not detected within
the CNS. They rather exerted their functions within CNS
draining cervical lymph nodes (CLN) by dampening dendritic
cell activation and T cell proliferation (60). These data are
consistent with a critical regulatory role of Foxp3 Tregs at the
time of initial T cell activation with remote consequences on
tissue damage.

Irrespective of Treg effects on effector T cells, increased
demyelination in IL-10−/− mice correlated with sustained
microglia activation and impaired glial scar formation (55).
These results supported a local regulatory role of IL-10 acting
directly on CNS resident cells. The downregulation of IL-10Rα

expression on microglia, yet upregulation on lesion associated
astrocytes further highlights the complex dynamics of the CNS
environment in responding to IL-10 (55). The identity of the
Foxp3 Treg population limiting tissue damage also requires
further investigation. A small population of virus-specific Foxp3
Tregs was detected in both CLN and CNS, where they effectively
regulated the pro-inflammatory T cell response at both sites
(62). Whether these virus-specific Foxp3 Tregs also play a role
in directly regulating demyelination remains to be ascertained.
Foxp3 Tregs may also prevent tissue damage during chronic

FIGURE 1 | Balance IFN and IL-10 responses determine viral control and pathology. IFNα/β limits viral spread throughout the CNS following MHV infection. The

collaboration of microglia as early IFNα/β inducers, and astrocytes as amplifiers of IFNα/β, is crucial to protect from viral dissemination and expanded tropism. The

innate response promotes virus-specific T cell recruitment and anti-viral activity critical to eliminate infectious virus below detection limits. CD4+ T cells enhance CD8+

T cell functions and survival and exhibit uncharacterized anti-viral activity. Virus-specific CD8+ T cells eliminate virus using perforin-dependent mechanism in

astrocyte/microglia and IFNγ in OLG. CNS T cell recruitment also correlates with initiation of demyelination. Both CD4+ and CD8+ T cells participate in tissue

destruction by instructing myeloid cells to initiate tissue damage. The adverse effects mediated by the pro-inflammatory anti-viral response are balanced by IL-10, a

master regulator of immunity to infection. While the role of IL-10 during acute infection remains unknown, it limits myelin loss during chronic infection without affecting

viral persistence. Both Foxp3 Tregs and Tr1 cells produce IL-10, which restrain demyelination by regulating microglia activation and astroglial scar formation. A direct

role of Foxp3 Treg on peripheral T cell activation, with remote temporal effects on tissue damage, has been suggested by T cell transfer studies.
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MHV infection by limiting the autoimmune response (63).
Global Foxp3 Treg depletion during acute infection correlated
with increased proliferation of transferred self-reactive T cells
within both CLN and CNS (64). A correlation with potential
expansion of demyelinated lesions was however not evaluated.
The interplay of various IL-10 secreting Tregs acting at specific
sites and on selective target cells at critical time points emphasizes
the complex role of IL-10 in dampening JHMV-induced tissue
damage without affecting viral clearance and persistence.

Pronounced effects of IL-10 on pathogenesis and clinical
outcome rather than viral control in the CNS are also clearly
evident in other viral encephalitis models. In the TMEV-
mediated transient polioencephalitis model using SJL mice, peak
virus load in the hippocampus coincides with peak expression
of IL-10, IL-10ra, and relates genes. IL-10R neutralization
resulted in increased loss of mature neurons and axonal damage,
which correlated with enhanced inflammation, although virus
load was not altered (65). Further, increased accumulation of
Foxp3 Tregs and arginase-1 expressing microglia/macrophages
suggested unsuccessful efforts of the host to compensate for
the abrogated IL-10 signaling. IL-10 signaling also protects
from CNS damage in mice infected with a virulent strain
of the mosquito borne alphavirus Sindbis virus by mitigating
detrimental Th17 cell functions (66). By contrast, using a more
attenuated Sindbis virus, IL-10 deficiency led to longermorbidity,
higher mortality, and delayed viral clearance without affecting
Th17 cells. Morbidity was rather associated with increased Th1
and decreased Th2T cells and delayed humoral immunity (67).
Along with TNF-α and IL-2, IL-10 is also a key factor for
disease remission from fatal encephalitis due to infection with
Oshima strain of Tick born encephalitis virus (68). In a murine
model of Japanese encephalitis virus infection, elevated IL-10
and reduced IFNγ also correlated with better survival (69).
Lastly, IL-10 treatment has been shown to reduce levels of
proinflammatory cytokines and infiltrate inmurine HSV keratitis
without impairing viral clearance (70). In vivo results further
suggest that IL-10 has the ability to regulate microglial cell
production of immune mediators and thereby dampen the pro-
inflammatory response to HSV-1 (71).

CONCLUSION

Animal models of viral CNS infection have been crucial
in revealing mechanisms of viral control, establishment of
persistence and tissue damage. A common theme, not only
applying to neurotropic MHV encephalomyelitis, are the
protective activities of IFNα/β signaling in limiting initial viral
dissemination and predominantly non-cytolytic T cell effector
functions in reducing infectious virus load (1, 2). While some
viruses are cytolytic to their target cells, the immune response
also actively contributes to bystander damage manifested in
glia and neuronal dysfunction or demyelination associated
with axonal damage. The neurotropic MHV model specifically

highlights the critical role of IFNα/β signaling in a single cell
type in stemming overwhelming viral dissemination despite
no evident defects in T cell function (Figure 1). It further
demonstrates that maximal T cell anti-viral activity during
acute infection coincides with maximal anti-inflammatory IL-10
expression, suggesting that an overaggressive adaptive immune
response is already counterbalanced during the viral clearance
phase, and does not necessarily emerge as a result of tissue
damage (Figure 1). Most importantly, the lack of this anti-
inflammatory activity can manifest in exacerbated tissue damage
remote from acute infection. An immune mediated imbalance
early during encephalomyelitis may thus also explain distinct
severities of neurological sequelae following human viral disease.
For example, IL-6 and IFNγ levels in CSF may be associated
with enterovirus (EV)71-induced neuropathology (72). Further,
analysis of serum and CSF samples from patients with acute
encephalitis syndrome, including with Japanese encephalitis
virus supported that higher IL-10 levels in both serum and CSF
correlates with protection (73). Similarly, a distinct study of
encephalitis patients, including a subcohort with HSV-1, revealed
that IL-10 levels were associated with a better coma score on
admission in the overall cohort. Elevated IL-10 levels were also
associated with a lesser degree of BBB permeability (74). IL-
10 signaling also supports BBB integrity following traumatic
CNS injury in rodent models (75). With respect to human virus
induced encephalitis, it is also interesting to note IL-10 gene
polymorphisms as potential susceptibility factors (76). Mutations
in IL-10Ra have also been identified as a risk factor of severe
influenza-associated encephalopathy (77).

The imprinting of the innate immune response on subsequent
adaptive immunity and its effects on bystander cells such as
microglia and infiltrating myeloid cells make it difficult to tease
apart critical checkpoints determining disease progression or
resolution. However, the availability of numerous conditional
knockout mice blocking cytokine responses in distinct cell
types and in a temporal fashion promise to shed more
light on pathways ameliorating pathology while preserving
viral control. Confirmation of similar pathways in multiple
viral encephalomyelitis models will ultimately enhance targeted
treatment options at early stages of disease manifestation.
Accumulating literature in both rodent models and human
encephalitis implicate that manipulation of IL-10 and IFNγ may
have broad implications to treat encephalitis more broadly.
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Suzhou, China

Tripartite motif-containing 21 (TRIM21) is a regulator of tissue inflammation and

pro-inflammatory cytokine production, and has been implicated in negative regulation of

IRF3-dependent type I interferon signaling. However, the antiviral activity of TRIM21 varies

among diverse viruses and its role on regulation of type I interferon remains inconsistent

in different microbial infections. Here, we investigate the potential role for TRIM21 in

controlling Coxsackievirus B3 (CVB3) replication and susceptible organ pathology. We

found that CVB3 infection up-regulated the expression of TRIM21 in hearts of mice

and cardiomyocytes at early phase of infection. Knock-down of TRIM21 resulted in

increased viral replication, while overexpression led to increased phosphorylation and

dimerization of IRF3, increased IFN-β transcription and reduced viral replication in vitro.

We demonstrate that TRIM21 promotes the activation of IRF3 in CVB3-infected cells

via interacting with MAVS and catalyzing the K27-linked polyubiquitination of MAVS,

thereby enhancing type I interferon signaling. The RING domain of ubiquitin ligase

activity and PRY-SPRY domain of TRIM21 are critical for its anti-viral effect. In vivo

overexpression of TRIM21 significantly protected mice against viral myocarditis by

suppressing CVB3 replication and reducing cardiac inflammatory cytokine production.

While TRIM21 deficient mice exhibited a decreased IFN-β production, an increased

cardiac and pancreatic CVB3 replication, and aggravated pancreatic injury as well as

myocarditis during acute infection. Thus, our results demonstrate TRIM21 as a positive

regulator of IFN-β signaling by targeting MAVS during CVB3 infection and suggest it

as a potent host defense against CVB3 infection and viral-induced injury in hearts and

pancreas.

Keywords: TRIM21, coxsackievirus B3 (CVB3), viral myocarditis, IFN-β, IRF3
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INTRODUCTION

Coxsackievirus is a single-Stranded RNA non-enveloped virus

of the Enterovirus genus within Picornaviridae associated with
several human and mammalian diseases, of which B3 type
Coxsackievirus (CVB3) is well-identified as a major causative
agent of viral myocarditis (VMC) (1, 2). CVB3 has been
involved in 25–27% cases of acute myocarditis and dilated
cardiomyopathy in children and young adults (3). VMC has
been identified as an important etiology of heart failure
and dilated cardiomyopathy, which contribute to nearly 50%
of the indication for the heart transplantation (4). CVB3
infection also involves brain and pancreas, resulting in aseptic
meningitis and pancreatitis (5, 6). Early direct virus-induced
cytopathic effect and intense inflammatory injury followed by
host immune responses are the main pathological processes of
VMC and pancreatitis. Although excessive activation of immune
response triggered by virus infection maybe a major factor

contributing to tissue injuries, the virus itself is critical to the
progression of VMC via direct attack on cardiomyocytes (7,
8). Despite considerable effort for decades, the fundamental
mechanism responsible for the pathogenesis of viral myocarditis
has not been well-understood and no effective therapies for
VMC are currently available. During acute phase, CVB3
replication leads to myocardial and pancreatic injury directly
through inducing apoptosis and necrosis of cardiomyocytes
and pancreatic acinar cells. CVB3 RNA can be detected in the
chronic stages in infected animals by 21 days post-infection,
initiating the disease progression to more severe myocardial
fibrosis and DCM (8, 9). In this sense, development of
novel anti-viral compounds and early intervention represents
an alternative way to treat CVB3 myocarditis and related
cardiomyopathy.

The tripartite motif (TRIM) protein family contains over 70

members of TRIM protein family in human and is structurally
characterized by a RING domain, one or two B-boxes, and
a coiled-coil domain (10). TRIM proteins have been reported
to be involved in multiple biological processes including the
regulating innate immunity, carcinogenesis, cell differentiation
and apoptosis, which are mainly dependent on the RING domain
of ubiquitin ligase activity and B-box domain of interacting motif
(11, 12). Recently, a growing body of evidence suggests that
many TRIM proteins play important roles in direct antiviral
activities and in the regulation of antiviral innate immunity.
TRIM5α was found to inhibit HIV-1 replication by directly
interacting with viral proteins (13). TRIM22 has been reported
to exert antiviral activity against several viruses, such as hepatitis
B virus (HBV), encephalomyocarditis virus (ECMV), and human
immunodeficiency virus (HIV-1) (14–16).

TRIM21, initially known as an autoantigen Ro52/SS-A, is
an ubiquitously expressed cytosolic E3 ubiquitin ligase and
plays important roles in immune regulation and microbial
restriction. TRIM21 has been well known as a regulator for
type I interferon (IFN) production, however it may positively or
negatively modulate the antiviral innate signaling according to
the types of viruses. TRIM21 has been reported to be a positive
regulator of IRF3 signaling by preventing its ubiquitination and

degradation, thus enhancing IRF3 mediated antiviral responses
(17).On the other hand, Higgs et al. claimed that TRIM21
catalyzed IRF3 ubiquitination and promoted its degradation
leading to inhibition of interferon-β (IFN-β) production post-
pathogen recognition (18). TRIM21 also serves as a negative
regulator of IFN-β during Japanese encephalitis virus (JEV)
infection in human microglial cells (19).Recently, Xue et al.
report that TRIM21 is upregulated upon RNA virus infection
and promotes K27-linked polyubiquitination of MAVS to
upregulate type-I interferon signaling, thereby inhibiting viral
infection (20). Thus, the antiviral activity of TRIM21 varies
among different viral infection. Up to the present, there is
no report of TRMI21 on CVB3 infection; and almost no
biological function of TRIM21 has been confirmed in animal
models of viral infection. It is of great interest to explore the
possible antiviral function of TRIM21 on CVB3 infection and
its role in the disease progression of CVB3-induced VMC and
pancreatitis.

Here, we investigate the antiviral activity of TRIM21 against
CVB3 replication and its role in CVB3-induced acute vial
myocarditis and pancreatic injury. Our results indicate that
TRIM21 inhibits CVB3 replication via interacting with MAVS
for promoting the K27 polyubiquitination of MAVS, thereby
enhancing IRF3-mediated type I IFN signaling pathway and
protecting mice against CVB3-induced myocarditis as well as
pancreatic acinar cell necrosis.

MATERIALS AND METHODS

Mice and Virus
Six–eight weeks old male BALB/c mice were purchased from the
Shanghai Slac Animal Inc. TRIM21−/− mice were constructed
from Cyagen Biotech (Guangzhou, China).CVB3 (Nancy strain)
was a kind gift from Professor Yingzhen Yang (Key Laboratory
of Viral Heart Diseases, Zhongshan Hospital, Shanghai Medical
College of Fudan University).

Cell Culture
HeLa cells and HEK-293 cells were grown and maintained in
DMEM medium supplemented with 10% FBS (Gibco) and 100
units/ml penicillin and streptomycin in a 5% CO2 incubator at
37◦C.

Virus Titers Assays
The viral titer was determined by TCID50 assay on HeLa cell
monolayers with standard methodology (AdEasy Application
Manual, version 1.4; Qbiogene, Carlsbad, CA, United States).Cell
culture and tissue lysis supernatants were diluted serially using
10-fold dilutions and titered on HeLa cell monolayers by the
TCID50 assay.

Plasmids and Transfection
The Flag-MAVs or HA-K27Ub plasmids were the gifts
from Prof. Hui Zheng (Institute of biological and medical
sciences, Soochow University). Human TRIM21 cDNA was
amplified from RNA of HeLa cells using primers: For: 5′-GCCA
CCATGGATTACAAGGATGACGACCGATAAGGCTTCAGC

Frontiers in Immunology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 247994

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Liu et al. TRIM21 Restricts CVB3 Replication via MAVS

ACGC-3′ and Rev: 5′-AAAGCCATCAATAGTCAG-3′. Mouse
TRIM21 cDNA was amplified from RNA of cardiomyocytes
using primers:5′-ATGGATTACAAGGATGACGATAAGCAC
CCTCTACAACCTCAAAA-3′ and 5′-CCTGGCTCCTGACCA
TCACA-3′. cDNA of truncated forms of TRIM21 lacking N-
terminal RING,B-box C-terminal and PRY-SPRY domain were
amplified using primers: 1RING-For: 5′-CCGGCAGCGCTT
TATGCTGCTC-3′ and 1RING-Rev: 5′-AAAGCCATCAAT
AGTCAG-3′; 1B-box-For: 5′-ATGCGGTGTGCAGTGCAT
GGA-3′ and 1B-box-Rev: 5′-AAAGCCATCAATAGTCAG-3′;
1PRY/SPRY-For: 5′-GCCACCATGGCTTCAGCAGCACGC-3′

and 1PRY/SPRY-Rev: 5′-TCACACATGGCACACACTC-3′.
For the transfection experiment, HeLa cells were seeded into
24-well plates and transient transfection was performed by
Lipofectamine 2000 according to the manufacturer’s instruction.
Cells were cultured for 24 h before infection of CVB3.

Quantitative Real-Time PCR (Q-PCR)
Total RNA was isolated from cells or tissues using RNAiso
reagent (Takara, Cat. No. 9109), and cDNA was prepared using
reverse transcriptase (Takara, Cat. No. DRR063A). Quantitative
real-time RT-PCR (Q-PCR) was performed using SYBR green
real-time PCR kits (TaKaRa, Cat. No. DRR041A)on a Bio-Rad
iCycler using the following primers:

For (5′-3′) Rev (5′-3′)

human-TRIM21 TGGTGTGTGCCC

AGTCT

CATCGTGAGATCCAT

TTCCA

mouse-TRIM21 AGGGTTAGAGGGGC

TGTGTT

GACCATGGCTCCCTC

ATCTA

human-IFN-α GCCTCGCCCTTTG

CTTTACT

CTGTGGGTCTCAGGG

AGATCA

human-IFN-β ATGACCAACAAGTGT

CTCCTCC

GCTCATGGAAAGAGC

TGTAGTG

mouse- IFN-β CCCTATGGAGATG

ACGGAGA

CTGTCTGCTGGTGGA

GTTCA

ISG15 TCCTGGTGAGGAATAAC

AAGG

GTCGTCGTCAGCCA

GAACAG

ISG54 ATGTGCAACCTACTG

GCCTAT

TGAGAGTCGGCCCAT

GTGATA

human-GAPDH CATGAGAAGTATGACA

ACAGCCT

AGTCCTTCCACGATAC

CAAAGT

mouse-GAPDH TGGATTTGGACGCAT

TGGTC

TTTGCACTGGTACGT

GTTGAT

The 2−11CT method was used to normalize the transcription
of the detected gene mRNA to that of the GAPDH mRNA and
calculate the fold induction relative to the control.

Short Interference RNA (siRNA)
Human siRNA oligonucleotides targeting sequences named
as TRIM21 siRNA1 (UCAUUGUCAAGCGUGCUGC) and
TRIM21 siRNA2 (UGGCAUGGAGGCACCUGAAGGUGG)
were ordered from GenePharma.Inc (Shanghai, China). The
siRNA was transfected into HeLa cells using INTERFERin
in vitro siRNA transfection reagent (Polyplus, NewYork,
United States).

Western Blotting
HEK293 cells were transfected with plasmids containing human
or murine TRIM21 (1 µg) using the Lipofectamine Plus reagent
(Invitrogen) for 24 h, and then infected by CVB3 (MOI =

5) for 18 h. Samples were resuspended in sample lysis buffer
(Bio-Rad). Lysates were resolved by SDS-polyacrylamide gel
electrophoresis and transferred to PVDF membranes. The blots
were probed primary antibodies for Flag (1:1,000, CST 8146S),
IRF3 (1:1,000, CST, D8389), pIRF3 (1:1,000, CST, S396), actin
(1:2,000, ABGEN, SG140609AB), GAPDH (1:10,000, Sigma,
G9545), and VP-1 (1:2,000, Dako, M706401). HRP-conjugated
anti-rabbit (1:4,000, CST, 7074) or anti-mouse IgG (Bioworld,
AB54151) was used as a secondary antibody. Proteins were
detected by chemiluminescence (Pierce). The intensities of the
bands in the blots were quantified by densitometry using
the Image Studio Lite program according to the developer’s
instructions.

IP and Immunoblotting
HEK293 cells were transfected with an expression plasmid
encoding full-length of Flag-tagged MAVS. Cell lysates were
collected using radioimmunoprecipitation assay (RIPA) lysis
buffer with protease inhibitors (1mM phenylmethylsulfonyl
fluoride, Roche complete protease inhibitor), followed by
immunoprecipitation with anti-Flag beads. Proteins were eluted
from the beads after washing six times with PBS. The protein
binding to the beads was subjected to Western blot with anti-
TRIM21 (1:2,000 Santa Cruz Biotechnology, SC25351) or anti-
Flag (1:1,000, CST 8146S).

Ubiquitination Assays and Native Page
For analysis of ubiquitination of MAVS in HeLa cells, cells were
co-transfected with TRIM21, HA-K27ub or Flag-MAVS, followed
by infection with CVB3. Cell lysates were immunoprecipitated
with anti-Flag and analyzed by immunoblotting with the anti-
HA antibody. Native page for the detection of IRF3 dimerization
was performed on acrylamide gel without SDS. Cells were lysed
with ice-cold lysis buffer including 50mM of Tris-Hcl at PH
= 7.5, 150mM of NaCl and 0.5% NP-40 containing protease
inhibitor cocktail. After centrifugation at 13,000 g for 15min,
proteins in the supernatant were quantified and diluted with
5x native PAGE sample buffer (312.5mM Tris-HCl, pH = 6.8;
75% glycerol; 0.25% bromophenol blue). The gel was pre-run
for 30min at 40mA on ice with 25mM Tris-HCL (pH = 8.4),
and 192mM glycine with or without 1% of deoxycholate in the
cathode chamber and anode chamber, respectively. The unboiled
total protein was added into the gel for 80min at 25mA on
ice.

Luciferase Reporter Assay
HEK293 cells were co-transfected with 100 ng luciferase
reporter plasmid, 10 ng thymidine kinase promoter-Renilla
luciferase reporter plasmid, and the TRIM21-expression
or control vector plasmid using the Lipofectamine 2000
transfection reagent (Invitrogen,Cat.No.116688-019). 48 hrs
later, cell lysates were prepared and the luciferase activities
were determined by the Dual-Luciferase Reporter Assay System
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(Promega,Cat.No.E10910) according to the manufacturer’s
instructions.

CVB3 Infection
Mice were infected intraperitoneally (i.p.) with 100 µl PBS
containing 1000 TCID50 dose of CVB3. Body weight and
mortality of mice were recorded upon the termination of
experiment. Individual experiments were conducted at least three
times with 7 to 10 mice per group.

Histopathological Analysis
Three hearts and pancreas of each group of mice were collected
7 days post infection. The apical parts of the tissues were fixed
in 10% phosphate-buffered formalin, embedded in paraffin wax,
sectioned at 5µm and stained with hematoxylin–eosin (H&E).
Stained sections were used for image analysis with a Nikon
Eclipse TE2000-S microscope and five images were captured
under high power fields randomly.

Immunohistochemistry
Hearts were fixed with 10% formalin in 0.1M phosphate
buffer, pH 7.4. Sections were deparaffinized and irradiated
at 750W in a microwave oven in 10mM sodium citrate
buffer, pH 6.0. Sections were then treated with 3% hydrogen
peroxide to inhibit endogenous peroxidases. After washing in
TBS with 0.025% Triton X-100, the sections were blocked
with 10% BSA. Following blocking, sections were incubated
with goat polyclonal antibody against TRIM21 (sc-21362;
1:500; Santa Cruz Biotechnology) diluted in TBS-1% BSA
overnight at 4◦C. After washing, sections were incubated
with a biotinylated anti-goat secondary antibody (Jackson
immunoresearch) for 1 h and a peroxidase-labeled streptavidin
for 5min at room temperature. Peroxidase activity was detected
with DAB (Mouse and Rabbit Specific HRP/DAB Detection
IHC Kit, ab64264, Abcam), and sections were counter stained
with hematoxylin. The level of protein accumulation was
estimated as the percentage of the total counterstained area
that was positively stained for the protein of interest, which
was determined using Image Jsoftware (Nikon Eclipse TE2000-S
microscope).

Primary Cardiomyocyte Culture
Neonatal cardiomyocytes were isolated from 1 to 3 days
BALB/c mice. The ventricles obtained from 1 to 3 days BALB/c
mice were removed rapidly into cold Hanks’ balanced salt
solution (Gibco). After washing and mincing, tissues were
digested in 0.05% trypsin (Gibco) for 30min at 4◦C with
rotation before transfer into DMEM (Gibco) containing 20%
FBS (Fetalbovine serum, Gibco) to terminate the digestion.
After washing with HBSS, the tissues were incubated with
Liberase TH (0.1 U/mL, Roche, Germany) at 37◦C for
5min, and the dissociated cells were collected into 20%
FBS DMEM. This procedure was repeated until most of the
cells were released. The isolated cells were incubated with
5% CO2 at 37◦C for 2 h. The unattached cardiomyocytes
were seeded into fibronectin-coated 8-well Live Cell Imaging
Culture Dish (Bestmagsystem Medical Co. Ltd., Suzhou, China)

and experiments were performed when the cardiomyocytes
formed a confluent monolayer and beat in synchrony at
72 h.

Immunofluorescence
Immunofluorescence was performed to assess the cellular
expression and location of TRIM21 and viral RNA expression
according to the manufacturer’s instructions. Freshly cultured
cardiomyocytes were infected with CVB3 (MOI = 5) for 0, 12,
and 24 hrs. Heart tissues of infected mice were embedded in
OCT and made into 5µm cryo section. Cells were fixed with
4% paraformaldehyde for 1 h before blocking (2% BSA) for
1 h. Cells were then incubated with primary antibodies against
TRIM21 (1:200, Santa Cruz Biotechnology) and anti-dsRNA
(1:300, J2 mAb, English and Scientific Consulting) at 4◦C
overnight. Fluorochrome-conjugated secondary antibodies
(1:200, goat anti-rabbit IgG, goat anti-mouse IgG, Southern
Biotech) and DAPI were used for immunofluorescent staining.
Images were captured and analyzed with Nikon A1 confocal
microscope.

Enzyme-Linked Immunosorbent Assay
(ELISA)
Levels of TNF-α, IL-6, IL-10, IFN-γ, MCP-1 were determined
using sensitive mouse, IL-6, IL-10, and IFN-γ kits according
to the manufacturers’ instructions (eBioscience, San Diego,
USA).

In vivo Overexpression of TRIM21
Mice were retro-orbitally injected with 1.0ml reagent
containing 50 µg of mouse TRIM21-expression plasmid
or vector plasmid using in vivo-JetPEITM–Gal transfection
agent according to the manufacturer’s instructions
(Polyplus-transfection Inc., USA). Mice received 2 doses
of TRIM21 plasmids 2 days before and 1 day after
CVB3 infection to sustain in vivo over-expression of
TRIM21.

Statistical Analysis
Data were presented as the mean ± SEM and statistical
analysis was analyzed by GraphPadPrism 5 software.
For two-group comparisons, statistical significance was
determined by Student’s t-test. Survival curves were estimated
from Kaplan-Meier procedure with the Lonrank test to
compare survival among groups. P < 0.05 was considered
to be statistically significant and are indicated as follows:
∗, 0.05 ≥ P > 0.01; ∗∗, 0.01 ≥ P > 0.001; ∗∗∗, P ≤

0.01.

RESULTS

TRIM21 Is Up-Regulated in Hearts of Mice
and in the Murine Cardiomyocytes Upon
CVB3 Infection
To explore the role of TRIM21 in CVB3 infection, first
we investigate whether TRIM21 is induced in heart tissues
of mice by CVB3 infection. After 1000 TCID50 CVB3 i.p.
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FIGURE 1 | TRIM21 is up-regulated in heart tissues of CVB3-induced VMC mice. Male BALB/c mice were intraperitoneally injected with 1000 TCID50 dose of CVB3

and the tissues were collected at the indicated time. (A) Paraffin sections of heart tissues were prepared and subjected to H&E staining (200 × magnifications). (B)

The viral titers were analyzed by TCID50 assay. Data were presented as mean ± SEM of three representative independent experiments. (C) TRIM21 protein level in

heart tissues was evaluated by IHC assay. Five photomicrographs were captured at each time under high power fields (400× magnifications) randomly and one

representative image was shown. (D) TRIM21 mRNA level was analyzed by Q-PCR. Data were presented as mean ± SEM of three representative independent

experiments. The GAPDH expression levels of heart tissues was set 1.0. (E,F) Primary cardiomyocytes of mice were mock infected or infected by CVB3 (MOI = 5) for

24 h. CVB3 dsRNA, endogenous TRIM21 protein and nucleus were stained with anti-dsRNA antibody (green), anti-TRIM21Ab (red) and DAPI dye (blue) and observed

under confocal microscope. Photomicrographs were captured under high power fields (100 × magnifications) (E).TRIM21 mRNA level were analyzed by Q-PCR. Data

were presented as mean ± SEM of three representative independent experiments. The GAPDH expression level of heart tissues was set as 1.0 (F). **p < 0.01;

***p < 0.001.

infection, a massive inflammatory infiltration and cardiomyocye
necrosis were observed in hearts at day 7 p.i. (Figure 1A).
The viral load in myocardium increased and peaked at day
3 p.i., then declined at day 7 p.i. (Figure 1B). Then we
detected the expression kinetics of TRIM21 by Q-PCR and
immunohistochemistry. The protein and mRNA levels of
TRIM21 in hearts of mice were significantly increased and
peaked at day 3 p.i. (Figures 1C,D). To confirm the expression
and localization of TRIM21 in cardiomyocytes, we cultured
primary cardiomyocytes from newborn mice and infected cells
with CVB3. The immunofluorescence assay showed that TRIM21
was localized in cytoplasm and CVB3 infection enhanced its
expression at protein and RNA levels (Figures 1E,F).Therefore,
our result demonstrate that cardiac TRIM21 expression is up-
regulated by CVB3 infection, which may be involved in the
regulation of CVB3 infection and the progression of viral
myocarditis.

TRIM21 Suppresses CVB3 Replication
in vitro
To investigate the role of TRIM21 on CVB3 replication, HeLa
cells were transiently transfected with a plasmid expressing
TRIM21 or vector alone and then infected with CVB3 at
MOI of 5. The efficiency of overexpression of TRIM21 was
confirmed by real-time PCR and Western blot (Figure 2A). The
supernatant was subjected to TCID50 assay to determine the role
of TRIM21 on viral progeny release. As shown in Figure 2B,
TRIM21 overexpression significantly reduced the virus particle
release. Furthermore, the protein level of CVB3 capsid
VP1 was significantly inhibited by TRIM21 overexpression
(Figure 2C).

To further verify the antiviral effect of TRIM21, we
designed and screened two specific siRNA targeting the
open reading frame of TRIM21, which led to a 75–80%
reductions in the overall levels of the TRIM21 mRNA and
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FIGURE 2 | TRIM21 inhibits CVB3 infection in vitro. (A) HeLa cells were transiently transfected with human TRIM21-flag, or mock plasmids and 24 h later cells were

subjected to Q-PCR and Western blot for detecting TRIM21 mRNA and protein levels. (B–D) HeLa cells were transiently transfected with human TRIM21-flag, or

mock plasmids and 24 h later cells were infected with CVB3 at an MOI of 5 for the indicated time. Supernatants were collected and subjected to TCID50 (B).Caspid

protein of virus was analyzed by Western blot (C). (D) HeLa cells were transfected with negative-control siRNA or TRIM21 siRNAs. 24 h later, cells were collected and

subjected to Q-PCR and Western blot for analysis of TRIM21 expression.(E,F) HeLa cells were transfected with negative-control siRNA or TRIM21 siRNA and 24 h

later, cells were infected with CVB3 (MOI = 5) for the indicated times. Supernatants were collected and subjected to TCID50 (E). VP1caspid protein of virus were

analyzed by Western blot (F). *p < 0.05; **p < 0.01.

protein (Figure 2D). Knockdown of TRIM21 increased
CVB3 progeny production (Figure 2E) and viral capsid
protein VP1 expression (Figure 2F) significantly, compared
to the effect of NC siRNA. Collectively, these results
confirm that TRIM21 significantly restricts CVB3 replication
in vitro.

TRIM21 Increases IFN-α/β Activation
Pathway
Type I interferons (IFNs) play an important part in the resistance
to viral infection. TRIM21 is reported to be involved in
modulating host innate type I signaling against viral replication.
Thus, we first examined the IFN-β mRNA production in
HeLa cells overexpressing TRIM21 upon CVB3 infection by
real-time PCR. Cells transfected with an empty vector were
used as a control. In comparison to vector-transfect cells, a
moderate promotion in IFN-β mRNA levels was observed in the
TRIM21-overexpressed cells infected with CVB3. Additionally,
IFN-α mRNA level was increased significantly by TRIM21
overexpression (Figure 3A). To confirm IFN-α/β promoting
role of TRIM21, HeLa cells were co-transfected with TRIM21
vector and IFN-β promoter-luciferase plasmid. As demonstrated
in Figure 3B, overexpression of TRIM21 enhanced the activity
of IFN-β promoter in a dose-dependent manner after CVB3
infection. Furthermore, co-transfection of TRIM21 increased
MAVS-activated and MAD5-activated IFN-β reporter gene
expression. Next, we detected IFN-stimulated genes (ISGs)
expression and found TRIM21 also up-regulated the expression

of ISG15 and ISG54 upon CVB3 infection (Figure 3C). Thus, our
data suggest that TRIM21 up-regulates the activation of IFN-β
signaling pathway.

TRIM21 Positively Regulates IRF3
Activation via K27-Linked
Polyubiquitination of MAVS Upon CVB3
Infection
Since TRIM21 promotes IFN-β activation after CVB3 infection,
we suggest that TRIM21 might positively modulate the up-
stream molecules of type I interferon signaling pathway. RIG-I
and MDA-5 recognition of CVB3 RNA leads to the activation
of IRF3 and transcription factors required for transcription
activation of IFN-α/β. We next explored the effect of TRIM21 on
IRF3 activation upon CVB3 infection. As shown in Figure 3D,
overexpression of TRIM21 significantly enhanced the reporter
activity of IRF3 at basal level and after CVB3 infection. Then,
native page assay was performed and demonstrated that TRIM21
overexpression promoted the dimerization and phosphorylation
of IRF3 (Figures 3E,F). Recently, Xue et al. reported that
TRIM21 catalyzed the K27-linked polyubiquitination of MAVS
to upregulate type-I interferons signaling upon RNA virus
infection. So we examined the interaction between TRIM21
and MAVS. The CO-IP experiments revealed that TRIM21
interacted with MAVS while CVB3 infection reduced MAVS
expression (Figure 3G). Degradation of MAVS by CVB3 pro2A
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FIGURE 3 | Overexpression of TRIM21 activates the virus-induced type I IFN signaling via catalyzing the K27-linked polyubiquitination of MAVS and increases IRF3

phosphorylation. (A) HeLa cells were transfected with TRIM21 expression or vector plasmids. 24 h after transfection, cells were infected with CVB3 (MOI = 5) for the

indicated time. The mRNA levels of endogenous IFN-β and IFN-α were detected by Q-PCR assay. Data were presented as mean ± SEM of three representative

independent experiments. (B) HEK293 cells were co-transfected with the IFN-β promoter reporter plasmids and the indicated amounts of TRIM21 expression plasmid

or 100 ng vector plasmid. 24 h later, the luciferase activity was determined. HEK293 cells were co-transfected with the IFN-β promoter reporter plasmids and TRIM21

expression plasmid or mock vector. 24 h later, cells were infected with CVB3 (MOI = 5) for 12 h and the luciferase activity was determined. HEK293 cells were

co-transfected with the IFN-β promoter reporter plasmids and TRIM21 expression plasmid or mock vector, together with MAVS or MDA5 expression plasmids. 24 h

later, cells were infected with CVB3 (MOI = 5) for 12 h and the luciferase activity was determined. Data were presented as mean ± SEM of three representative

independent experiments. (C) HeLa cells were transfected with TRIM21 expression or vector plasmids for 24 h before infection with CVB3 (MOI = 5). The mRNA

levels of endogenous ISG15 and ISG54 were detected by Q-PCR assay. (D) HEK293 cells were co-transfected with the IRF3 promoter reporter plasmids and TRIM21

expression plasmid or mock vector. 24 h later, cells were infected with CVB3 (MOI = 5) for 12 h and the luciferase activity was determined and data were presented as

mean ± SEM of three representative independent experiments. (E,F) HeLa cells were transfected with TRIM21 expression or vector plasmids for 24 h before infection

with CVB3 (MOI = 5). Cell lysates were subjected to probe withanti-IRF3, anti-pIRF3 and anti-GAPDH antibodies by Western blotting and Native page for the

detection of IRF3 dimerization. (G) HeLa cells were transfected with Flag-MAVS plasmids as indicated, 24 h later cells were infected with CVB3 (MOI = 5). Cellular

lysates were immunoprecipitated with anti-Flag. Immunoprecipitates were analyzed by WB with anti-Flag and anti-TRIM21. (H) HeLa cells were co-transfected with

TRIM21, Flag-MAVS, and HA-K27Ub for 24 h and treated with CVB3 for additional 12 h. Ubiquitination and immunoblotting assays were performed with indicated

antibodies. *p < 0.05; **p < 0.01; ***p < 0.001.

(21) may counteract the effect of CVB3 on TRIM21 up-
regulation and TRIM21-MAVS interaction in vitro. Furthermore,
we observed that TRIM21 catalyzed the formation of K27-
linked polyubiquitin chains on MAVS (Figure 3H, lane 1–2).
Importantly, CVB3 infection enhanced the formation of the
K27-linked polyubiquitinon MAVS by TRIM21 (Figure 3H, lane
3–4).Our data suggest that TRIM21 positively regulates type I
IFN pathway during CVB3 infection via interacting with and
promoting the ubiquitination of MAVS, thereby enhancing IRF3
activation.

The Ring and PRY-SPRY Domains Are
Required to Facilitate the
TRIM21-Mediated Anti-viral Activity
TRIM21 contains three classical motifs including a RING finger
domain, a B-box domain and a B30.2 domain. We constructed
various domain mutants of TRIM21 to define which part was

involved in its antiviral role (Figure 4A). As compared with the
full-length TRIM21, B-Box mutant showed similar anti-CVB3
effects, while RING and PRY-SPRY domain mutants abolished
the antiviral effects as measured by western blot of viral VP-1
protein (Figure 4B). Furthermore, dysfunction of RING domain
and PRY-SPRY domain obstructed the activating role of TRIM21
on the promoter of IFN-β and IRF3, while B-box mutant and
B30.2 mutant had no effect (Figure 4C). Collectively, the RING
domain with E3 ubiquitin ligase and the PRY-SPRY domain were
required for the TRIM21-mediated type I IFN activation and
anti-viral effect.

In vivo Overexpression of TRIM21 Protects
Mice Against CVB3-Induced Myocarditis
We next evaluate the antiviral effect of TRIM21 in vivo according
to an in vivo-JetPEITM strategy (22) and one retroorbital
injection of 50 µg TRIM21- plasmids led to an enhanced protein
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FIGURE 4 | The RING domain and PRY-SPRY domain are essential for its antiviral effect against CVB3. (A) Schematic of domain organization and deletion mutants of

TRIM21. Approximate amino acid positions of domains are shown at the top. Various domains are boxed and discontinuous lines represent deletion of those regions.

(B) HeLa cells were transiently transfected with TRIM21 expression plasmid, or indicated domain deletion mutants and 24 h later cells were infected with CVB3 (MOI

= 5) for 24 h. The expression efficiency of domain deletion mutants and VP-1 production were analyzed by Western blot. (C) HEK293 cells were transfected with the

IFN-β or IRF3 promoter reporter plasmids, together with TRIM21 expression plasmid or the indicated domain deletion mutants. The luciferase activity was determined

after 24 h and data were presented as mean ± SEM of three representative independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001.

expression of cardiac TRIM21 which sustained for 2–3 days
confirmed by IHC analysis (Figure 5A). Therefore, groups of
mice were retro-orbitally injected with 50 µg TRIM21-plasmids
or vector-plasmids using in vivo-Jet PEI reagent 2 days before
and 1 day after CVB3 infection (Figure 5B), and susceptibility
to CVB3myocarditis as well as viral replication were evaluated in
a course of 7 days infection. The survival rate and bodyweight
loss of mice were monitored by day 7 p.i. and a significantly
improved disease condition and reducedmortality were observed
in mice with in vivo TRIM21 overexpression. More than 60%
mice injected with mock plasmids died by day 7 and lost their
28% bodyweight; while TRIM21-overexpressed mice underwent
a gentle decline loss of bodyweight (∼17%) and ∼70% mice
survived by day 7 p.i. (Figures 5C,D). Consistently, histological
analysis revealed that mice with mock plasmids developed
severe myocarditis with diffuse inflammation and necrotic
lesions, whereas TRIM21 treatment attenuated myocarditis with
restricted inflammation and necrosis (Figure 5E). By analyzing
the levels of cardiac inflammatory cytokines we found that
inflammatory cytokines, such as IL-1β, TNF-α, IL-6, IL-10, and
MCP-1, were significantly reduced by TRIM21 overexpression
while IFN-γ level was not affected (Figure 5F).

To test whether differences in CVB3 disease susceptibility
were due to differences in viral titers, CVB3 burden in the

hearts of mice were measured. As shown in Figure 5G, CVB3
titer was significantly reduced in hearts of mice with TRIM21
over-expression at day 3 p.i. Immunofluorescent staining of the
heart sections also confirmed dramatically reduced viral RNA
level in hearts (Figure 5I). In accordance with that, a significantly
up-regulated mRNA expression of IFN-β in heart was confirmed
in TRIM21 overexpressed mice at day 3 p.i.(Figure 5H).

TRIM21 Deficient Mice Exhibits Increased
Cardiac and Pancreatic Viral Burden and
Aggravated Myocarditis as Well as
Pancreatic Necrosis
To further confirm the antiviral effect of TRIM21 in vivo,
we constructed deficient mice by CRISPR-CAS9 strategy
(Figure 6A) and confirmed the deletion of mRNA and protein
level of TRIM21 in tissues of mice (Figures 6B,C). Next, WT
and TRIM21-deficient mice were infected i.p. with CVB3.
Throughout the 7 days infection, TRIM21-deficient mice
exhibited greater signs of sickness at day3 p.i. and lost weight
more promptly by day 7 p.i. (14.8 vs. 5.1%, TRIM21-deficient
vs. WT, p < 0.05, Figure 6D). Histopathology analysis revealed
that TRIM21-deficient mice exhibited a significantly aggravated
coagulative necrosis and acinar cell necrosis in the pancreas
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FIGURE 5 | Overexpression of TRIM21 in vivo significantly reduces viral load and alleviates CVB3-induced viral myocarditis. (A) Male BALB/c mice were retroorbitally

injected 50 µg TRIM21 plasmids using in vivo-jet PEI and were sacrificed daily till day 4. Protein level of cardiac TRIM21was measured by IHC assay. (B) Mice were

(Continued)
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FIGURE 5 | injected retroordibitally with 2 doses of 50 µg PEI-packaged mock or TRIM21 plasmids on day −2 and 1 and subjected to 1000TCID50 CVB3 on day

0(n = 6). The survival rate (C) and body weight change (D) were monitored daily until day 7 p.i. (E) Representative image of HE-staining hearts of CVB3-infected mice

(day 7 p.i.) treated with PEI-TRIM21 or PEI-vector, showing intra-cardiac immune infiltrates (marked with arrows). Scale bar: 100µm. Pathological scores of the heart

of mice are shown. Results are presented as mean ± SEM; *p < 0.05. (F) Protein levels of inflammatory cytokines in the homogenates of heart were measured by

ELISA. Data were presented as mean ± SEM of three representative independent. (G) The cardiac CVB3 titer at day 3 p.i. were determined by TCID50 assay. Data

represent mean values of CVB3 PFU per gram of the heart tissues. Results are presented as mean ± SEM; Data pooled from 3 independent experiments. *p < 0.05;
**p < 0.01. (H) Relative mRNA level of IFN-β (day 3 and 7p.i.) was detected by Q-PCR. Data were normalized to GAPDH expression and presented as mean ± SEM

of three representative independent. (I) Hearts of mice at day 3 and 7 p.i. were OCT-embedded and cyrosections (5µM) were subjected to fluorescent staining.

Composite confocal represented images show dsRNA (red, anti-dsRNA Ab) and nuclear (blue, DAPI).Low magnification (magnification, × 100) and higher

magnification of the boxed areas (magnification, × 200) are shown. The number of red-stained viral-infected cells in the heart sections of mice were numerated. Data

are expressed as mean ± SEM from three repeated experiments (n = 3). ***p < 0.001.

at day3 p.i., and an increased cardiac immune infiltration at
day 7 p.i. (Figure 6E) compared to WT mice. Consistent with
enhanced tissue pathology, the levels of cardiac inflammatory
cytokines were significantly increased in TRIM21 KO mice than
in WT mice (Figure 6F).To test whether differences in CVB3
disease susceptibility were due to differences in viral replication,
CVB3 burden in the hearts and pancreas of mice were measured.
At 3 dpi, the peak of viral replication, TRIM21 deficient
mice exhibited significantly increased viral titers in hearts and
pancreas compared to WT mice (Figure 6G). To confirm the
anti-viral effect of TRIM21 in vivo, the mRNA and protein level
of IFN-β in hearts were measured and were found significantly
decreased in TRIM21 deficiency mice at early infection stage
compared to those in WT mice (Figure 6H). These data confirm
that TRIM21 effectively suppresses CVB3 replication in vivo. We
thus propose a model depicting the role of TRIM21 in CVB3
infection: CVB3 infection up-regulates the expression of TRIM21
in cardiomyocytes, which interacts with MAVS and promotes
IRF3-mediated IFN-I signaling to suppress viral replication in
vivo, thereby decreasing virus-induced inflammatory injury in
both hearts and pancreas of mice (Figure 6I).

DISCUSSION

In this study, we try to explore the role of TRIM21 in the
susceptibility of mice to CVB3 induced myocarditis. TRIM21
expression is significantly up-regulated in hearts of mice on
day 3 post infection, and systemic TRIM21 effectively inhibits
CVB3 replication in vivo. TRIM21 restricts CVB3 replication by
positively regulating IRF3 activation and IFN-β production after
CVB3 infection via interacting with and promoting K27-linked
polyubiquitination of MAVS. Silencing of TRIM21 significantly
enhances CVB3 replication in tissues and alleviates virus-induced
cardiac and pancreatic injury. Treatment with CVB3-infected
mice with TRIM21 significantly reduces CVB3 replication in
hearts and the severity of viral myocarditis.

TRIM21, initially known as an autoantigen Ro52/SS-A, is an
ubiquitously expressed cytosolic E3 ubiquitin ligase and plays
important roles in immune regulation and microbial restriction
(23, 24). It has been reported that TRIM21 is constitutively
and broadly expressed in various organs and cell types, but
with highly divergent levels of expression. Highest expression
is seen in cells of the immune system with particularly high
levels in T cells, macrophages and DCs, where the expression

is further augmented by stimulation with IFNs and TLR
ligation (25). Previous study finds that TRIM21 expression
is substantially increased in human primary lymphocytes and
monocyte-derivedmacrophages in response to interferons (IFNs,
type I and II), suggesting TRIM21 as an interferon-induced
gene (26). It has been reported that SeV, NDV or HCV
infection could significantly induce the expression of TRIM21
through JAK/STAT signaling pathway (27). Thus, although
CVB3 infection does not induce robust production of IFN-
β, a significant induction of TRIM21 protein is observed in
heart tissues upon CVB3 infection. More convincingly, TRIM21
expression is significantly enhanced in primary cardiomyocytes
upon CVB3 infection (Figures 1E,F) which is localized in
cytoplasm of cells.

The host cells activate a series of signaling events that lead
to induction of type I interferons (IFNs), including IFN-β and
IFN-α. Type I IFNs further induce the expression of downstream
proteins, which mediate innate immune responses, such as
suppression of viral replication, clearance of virus-infected cells
(28, 29). The role of TRIM21 in regulating the type I interferon
signaling has been controversial. Sunit K Singh demonstrates
TRIM21 as a negative regulator of IFN-β production mediated
by IRF-3 during JEV infection in human microglial cells (19). In
2015, another study finds that TRIM21 facilitates Nmi-mediated
negative regulation of the innate antiviral response (32). And
Liu Y’s group reports that TRIM21 as an E3 ligase which
induces the Lys48 (K48)-linked ubiquitination and degradation
of DDX41 and negatively regulates the innate immune response
to intracellular dsDNA in myeloid dendritic cells (30). All the
above data indicate that TRIM21 is a negative regulator of
IRF3 (or DD41) activation and IFN-β production. However,
Chen Wang reports that TRIM21 is induced and interacts
with IRF3, preventing IRF3 ubiquitination and degradation thus
playing an anti-viral effect during SeV infection (17). Recently,
Xue et.al have reported (20) that TRIM21 is upregulated upon
RNA virus (SeV, VSV) infection, interacts with MAVS and
catalyzes the K27-linked polyubiquitination of MAVS, thereby
promoting the activation of IRF3 and inhibiting viral infection.
In our study, we confirm the co-immunoprecipitation and
polyubiquitination of TRIM21 with MAVS (Figures 3G,H),
which is in consistency with Xue’s report that TRIM21 interacts
with MAVS and promotes K27-linked polyubiquitination of
MAVS. It also supports our conclusion that the anti-viral effect
of TRIM21 is RING domain dependent (Figure 4C). Finally we
propose amodel depicting the role of TRIM21 in CVB3 infection:
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FIGURE 6 | TRIM21 deficient mice increases CVB3 replication in organs and aggravates pancreatic acinar cell necrosis as well as myocarditis. (A) Schematic diagram

of deficient mice construction by CRISPR-CAS9 strategy. (B,C) Q-PCR and Western blot analysis of TRIM21 expression from tissues and BM cells of wild-type (WT)

and TRIM21-/- mice, GAPDH was used as a loading control. (D-H) WT and TRIM21-deficient mice were infected i.p. with CVB3 (n = 6).The body weight change were

monitored daily until day 7 p.i. (D). Representative image of HE-staining hearts and pancreas of CVB3-infected WT or TRIM21-/-mice (day 7 p.i.), showing

intra-cardiac immune infiltrates or intactpancreatic acini (marked with arrows). Scale bar: 100µm. Pathological scores of the heart and pancreas of mice are shown.

Results are presented as mean ± SEM; Data pooled from 3 independent experiments (E).The mRNA levels of inflammatory cytokines in the homogenates of heart

(day 7 p.i.) were measured by Q-PCR. Data were presented as mean ± SEM of three representative independent (F).Viral loadin pancreas and hearts of mice(day

3p.i.) was assessed by TCID50 assay. Results are presented as mean ± SEM;Data pooled from 3 independent experiments. *p < 0.05; **p < 0.01 (G).The mRNA

and protein level of IFN-β (day 1–3 p.i.) in hearts of mice was detected by Q-PCR and ELISA. Data as mean ± SEM of three representative independent. *p < 0.05;

**p < 0.01 (H). (I) Proposed model depicting the role of TRIM21 in positive regulation of IFN-I production during CVB3 infection. TRIM21 targets and promotes the

activity of MAVS, leading to the increased phosphorylation and translocation of p-IRF3 into the nucleus, leading to enhanced transcription and production of IFNs and

IFN-stimulated genes (ISGs) that limits CVB3 infection.

CVB3 infection up-regulates the expression of TRIM21 in mice,
TRIM21 interacts with MAVS and promotes the activation of
IRF3 resulting in an up-regulation of type I innate signaling

during CVB3 infection (Figure 6I).Although MDA5, MAVS and
RIG-I are cleaved by CVB3 2Apro and 3Cpro (21) indicating
TRIM21, one of ISGs, might be hardly up-regulated during CVB3
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infection and TRIM21-mediated IFN-I response enhancing effect
might be counteracted, there is article suggesting that enhancing
IFNs production might be an alternative prescription in CVB3-
related syndromes (33). And our in vivo over-expression and
deficiency experiment inmice confirm TRIM21 supplementation
as a promising strategy to limit CVB3 infection and related
cardiac and pancreatic pathology.

CVB3 has evolved many strategies to suppress host innate
immunity therefore does not cause robust interferon release and
ISG expression. As shown in Figure 3A, the mRNA expressions
of IFN-α and IFN-β in cells at 24 h after CVB3 infection were
quite low (as similar as the level seen before infection). 48 h after
infection, CVB3 did not induce IFN-α expression while induced
a very modest up-regulation of IFN-β. Only upon transfection
with TRIM21 plasmid, the mRNA expressions of IFN-α/β were
significantly up-regulated at both 24 and 48 h post infection.
The induced up-regulation of ISG15 by CVB3 was also very
moderate, only TRIM21 overexpression significantly promoted
ISG15 expression. It seems that upregulation of IFN-α/β may be
a TRIM21-mediated effect. However, our data demonstrate that
CVB3 infection significantly increases expression of TRIM21 in
hearts of mice (Figures 1 A–D) and in primary cardiomyocytes
(Figures 1E,F). Therefore, the upregulation of IFN-α/β signaling
by TRIM21 is at least partially dependent on CVB3 infection.
And the interaction of TRIM21 with MAVS (Figures 3G,H)
further supports our data that CVB3-induced TRIM21 could
enhance the phosphorylation of IRF3 upon CVB3 infection
leading to elevated IFN-β production.

As a member of tripartite motif (TRIM) family protein,
TRIM21 contains a RNIG motif in the N-terminal domain,
a B-box motif, a coiled-coil domain. And TRIM21 protein
also contains a carboxy-terminal B30.2 (SPRY) domain (31).
Previous study demonstrates that TRIM21 interacts with IRF3
directly via its C-terminal SPRY domain, resulting in the
polyubiquitination and proteasomal degradation of IRF3 and
reduced IFN-β promoter activity (18). Liu Y’s group report
that TRIM21 cannot interact with IRF3 in mDC but interact
with DD41 for promoting the ubiquitination and degradation
of DDX41 therefore negatively regulates IFN-I response to DNA
virus (HSV) (30). In 2015, another study finds that during SeV
and VSV infection, up-regulated TRIM21 interacts with both
Nmi and IFI35 and activates K63-linked ubiquitination on K22
residue of Nmi (SPRY domain dependent) which facilitates the
negative regulatory function of the Nmi-IFI35 complex on innate
antiviral signaling (32). Yang et al. report in their study that upon
RNA virus infection TRIM21 interacts with IRF3, interferes with
the interaction between Pin1 and IRF3, thus preventing IRF3
ubiquitination and degradation via its B30.2 domain (17). Xue
et al. reports that TRIM21 interacts with MAVS and catalyzes
the K27-linked polyubiquitination of MAVS through its RING
domain (20). In our study, we confirmed (Figure 3G) that
TRIM21 interacts with and promotes the K27-ubiquitination of
MAVS, and the anti-viral effect of TRIM21 is RING and PRY-
SPRY domain dependent (Figure 4), which is in consistency with
the recent report (20).

Currently, there is only limited report of antiviral effect of
TRIM21 in mice model. Our study demonstrate the in vivo
effect of TRIM21 on CVB3 replication and tissue pathology.

By using in vivo-Jet PEI-transfection of TRIM21-plasmids
and TRIM21 deficient mice, we demonstrated that the viral
replication and CVB3-induced cardiac immune infiltration,
cardiac proinflammatory cytokines production and injuries were
significantly decreased upon in vivo over-expression of TRIM21
(Figure 5). In accordance with that, cardiac and pancreatic
CVB3 replication as well as virus-induced pancreatic acinar
cell necrosis and myocarditis were significantly aggravated in
TRIM21 deficient mice (Figure 6). Our data identify TRIM21
as a potent viral inhibitory factor during CVB3 infection.
Recently, TRIM21 is also identified as an intracellular Fc
receptor linking cytosolic antibody recognition to the ubiquitin
proteasome system (34–36).So we cannot rule out the antiviral
effect of TRIM21 is partially dependent on antibody-dependent
intracellular neutralization (ADIN) effect of TRIM21 in vivo.
And our preliminary data show that TRIM21 has IgA-mediated
ADIN effect on CVB3 replication in vitro (data not shown).
So in further study we will focus on clarifying whether
TRIM21 exerts IgA-mediated ADIN function on intestinal CVB3
replication considering CVB3 as an oral-fecal disseminating
virus.

Overall, our study identifies cytosolic TRIM21 as a positive
regulator of CVB3-triggered MAVS-mediated type I Interferon
signaling pathway that restricts viral infection. TRIM21
expression is up-regulated by CVB3 infection at early phase
of viral infection. TRIM21 inhibits CVB3 replication in vivo
and in vitro through interacting with MAVS thereby promoting
the activation of IRF3 and Type I Interferon production.
The anti-viral effect of TRIM21 is dependent on RING and
PRY-SPRY domain. We also demonstrate the antiviral effect of
systemic TRIM21 in vivo which leads to the increased resistance
to CVB3-induced myocarditis and pancreatic injury. Our data
help to clarify the biological role of TRIM21 in severe tissue
pathology caused by viral infection and indicating a therapeutic
target potential for TRIM21.
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Myocarditis is an inflammatory disease of the heart muscle most commonly

caused by viral infection and often maintained by autoimmunity. Virus-induced tissue

damage triggers chemokine production and, subsequently, immune cell infiltration

with pro-inflammatory and pro-fibrotic cytokine production follows. In patients, the

overall inflammatory burden determines the disease outcome. Following the aim to

define specific molecules that drive both immunopathology and/or autoimmunity in

inflammatory heart disease, here we report on increased expression of colony stimulating

factor 1 (CSF-1) in patients with myocarditis. CSF-1 controls monocytes originating

from hematopoietic stem cells and subsequent progenitor stages. Both, monocytes

and macrophages are centrally involved in mediating tissue damage and fibrotic

scarring in the heart. CSF-1 influences monocytes via engagement of CSF-1 receptor,

and it is also produced by cells of the mononuclear phagocyte system themselves.

Based on this, we sought to modulate the virus-triggered inflammatory response in

an experimental model of Coxsackievirus B3-induced myocarditis by silencing the

CSF-1 axis in myeloid cells using nanoparticle-encapsulated siRNA. siCSF-1 inverted

virus-mediated immunopathology as reflected by lower troponin T levels, a reduction of

accumulating myeloid cells in heart tissue and improved cardiac function. Importantly,

pathogen control was maintained and the virus was efficiently cleared from heart tissue.

Since viral heart disease triggers heart-directed autoimmunity, in a second approach

we investigated the influence of CSF-1 upon manifestation of heart tissue inflammation

during experimental autoimmune myocarditis (EAM). EAM was induced in Balb/c mice

by immunization with a myocarditogenic myosin-heavy chain-derived peptide dissolved

in complete Freund’s adjuvant. siCSF-1 treatment initiated upon established disease

inhibited monocyte infiltration into heart tissue and this suppressed cardiac injury
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as reflected by diminished cardiac fibrosis and improved cardiac function at later

states. Mechanistically, we found that suppression of CSF-1 production arrested both

differentiation and maturation of monocytes and their precursors in the bone marrow.

In conclusion, during viral and autoimmune myocarditis silencing of the myeloid CSF-1

axis by nanoparticle-encapsulated siRNA is beneficial for preventing inflammatory tissue

damage in the heart and preserving cardiac function without compromising innate

immunity’s critical defense mechanisms.

Keywords: inflammation and immunmodulation, innate immunity, cytokines, monocytes/macrophages, RNA

interference, virus, infection-immunology, myocarditis

INTRODUCTION

Myocarditis and its sequela, dilated cardiomyopathy, are leading
causes of heart failure and sudden death in young adults
(1). While various agents may provoke cardiac inflammation,
viral infections are the most common trigger of myocardial
inflammation in the Western world. Although various viruses
are putative invaders of heart tissue, most of our knowledge on
disease pathology comes from infection with enteroviruses, in
particular CoxsackievirusB3 (CVB3). CVB3 had been reported
among the most prevalent pathogens causing viral myocarditis
in North America and Europe in the past (2, 3). Mouse
models using different strains with divergent susceptibility for
cardiotropic CVB3 elegantly reflect human disease with highly
diverse disease outcome (4, 5). The hereditary susceptibility
involves a certain immune-anchored genetic phenotype leading
either to altered virus control and/or to induction of deleterious
immunopathology (6–8). Severe virus-induced inflammation can
result in a subsequent loss of self-tolerance against cardiac
proteins, which contributes to additive auto-destructive activity
of infiltrating cells and exaggerates heart tissue damage (9, 10).
Cardiac myosin is such a crucial autoantigen in both human
and murine virus-induced myocarditis (9). Administration of
cardiac myosin or its pathogenic epitope in combination with an
adjuvant induces experimental autoimmune myocarditis (EAM)
in mice, a model that mimics certain aspects of myocarditis and
heart failure in humans (11).

Treatment options for patients with myocarditis are sparse
and both conventional immunosuppressive as well as anti-
viral approaches have not yielded the desired results in
clinical trials (12). Recent data suggest that it is not the
presence and/or replicative activity of invading viruses in the
myocardium that determines outcome, but the virus-triggered
abundance of infiltrating leukocytes is an independent risk
factor (13, 14). At the acute state of myocarditis in mice,
the majority of accumulating leukocytes in inflamed heart
tissue are CD11b+ monocytes and macrophages (15, 16).
Consistently, the presence of CD68+ macrophages is a diagnostic
hallmark for human myocarditis (3). Infiltration of immune
cells is cytokine/chemokine-dependent. Consistent with previous
findings (17), we have demonstrated that not CVB3-mediated
cytotoxicity itself, but the overwhelming cytokine response
initiated by viral PAMPs is responsible for disease severity. Lower
pro-inflammatory cytokine/chemokine production during the
early phase of infection paralleled in reduced inflammatory heart

tissue damage and protected mice from cardiac failure (14). As
monocytes and macrophages are key players that secrete pro-
inflammatory and pro-fibrotic cytokines thereby exacerbating
acute and chronic inflammatory injury during myocarditis
(4, 18), effector molecules that modulate their differentiation,
activity, and cytokine secretion might be putative drug targets for
myocarditis. We have previously described the precise targeting
of inflammatory monocytes and their precursors by optimized
lipid nanoparticles which were encapsulated with siRNA directed
against CCR2 or CD115 (19, 20). Injection of mice with these
nanoparticles resulted in rapid blood clearance, accumulation in
spleen and bone marrow, and localization to monocytes (19).

Here, we demonstrate RNA sequencing data obtained from
endomyocardial biopsies of patients with myocarditis indicating
a significantly increased production of Colony Stimulating Factor
1 (CSF-1). The development of monocytes depends on CSF-1
(21) and its receptor CSF-1R/CD115. CSF-1 can be expressed and
produced by various cells including monocytes themselves (22).
Local production of CSF-1 stimulates tissue-residentmacrophage
proliferation and reduces apoptosis, thereby influencing cellular
survival (23). CSF-1R is expressed on monocytes, macrophages,
dendritic cells and their precursors, including “granulocyte-
macrophage progenitors” (GMP), “monocyte-macrophage DC
progenitors” (MDP) and “common monocyte progenitors”
(cMoP) (24, 25). CSF-1 receptor signaling is a well-described
mechanism that leads to monocyte production from progenitors
and stimulates mature monocytes screwing them into a pro-
inflammatory state (26). Based on this, we hypothesized that
disruption of the CSF-1 axis in myeloid cells attenuates heart
muscle inflammation and the resulting organ damage during
myocarditis. Using mouse models of CVB3-induced myocarditis
and experimental autoimmune myocarditis, we have found that
silencing of CSF-1 upon treatment of mice with CSF-1 siRNA
encapsulated nanoparticles substantially mitigated inflammatory
heart muscle damage leading to less fibrosis formation and
improved heart muscle function without the risk of exacerbating
direct viral pathology.

MATERIALS AND METHODS

Study Approval
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The study protocol was approved
by the ethic committee of the Medical Faculty—University of
Heidelberg—project 390/2011 “Central biobank of Department
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Internal Medicine III for research on molecular and genetic
markers in patients with cardiovascular disease.”

RNA-Seq Analysis, Read Processing and
Mapping
Patient enrollment and biomaterial processing for RNA-seq
analysis of heart biopsies was performed as previously described
(27). In detail, biopsy specimens were obtained from the apical
part of the free LV wall during cardiac catheterization using
a standardized protocol. Biopsies of 1- to 2-mm diameter
were immediately washed in ice-cold saline (0.9% NaCl),
transferred and stored in liquid nitrogen until RNA extraction.
After diagnostic workup of the biopsies (histopathology), the
remaining material was used to isolate RNA with an Allprep Kit
(Qiagen). RNA purity and concentration were determined using
the Bioanalyzer 2100 (Agilent Technologies) with a Eukaryote
Total RNA Pico assay for RNA from biopsies. Sequencing
libraries were generated using the TruSeq Stranded Total RNA
Sample Preparation Kit with Ribo-Zero Human/Mouse/Rat from
Illumina, adhering to the standard protocol of the kit. Sequencing
was performed using 2 × 75 bp paired end sequencing on an
Illumina HiSeq2000 instrument. For transcriptome analysis, raw
read files were mapped with STAR v2.4.1c5 using GRCh37/hg19
and the Gencode 19 gene model (http://www.gencodegenes.
org/). Read counts were generated with help of subread’s feature
counts program 6 (subread version 1.4.6.p1), using uniquely
mapped reads only (28). Normalization was performed with help
of rlog-normalization (29). RNA seq data were deposited to the
public repository Gene Expression Omnibus (GEO) - NCBI,
accession number GSE120567. RNA seq data for DCM patients
are partially demonstrated in (30).

Differential Gene Expression- and Gene
Set Enrichment Analysis
Differential gene expression analysis of RNA-seq data was carried
out within the RStudio framework using the edgeR package (31).
Gene set enrichment analysis was performed with KEGG gene
sets.

Histology and Immunohistochemistry
Human endomyocardial biopsy tissue and murine tissue was
stained as described elsewhere (32). For AVM, paraffin embedded
organ tissue sections were stained with hematoxylin/eosin
(HE) or Masson’s trichrome according to standard protocols.
Immunohistochemical stains for CSF-1 (rabbit polyclonal,
abcam), T lymphocytes (CD3 and CD4) and mononuclear
phagocytes (Mac-3) was performed as previously described
(32). For EAM, hearts were excised 30 days after primary
immunization. Hearts were rinsed in PBS, fixed in 10% formaline
for 24 h and embedded in paraffin. Serial 5µm sections were
stained with Masson’s trichrome staining to quantify fibrotic
tissue formation. Severity of EAM was evaluated according to a
6-tier scoring system as previously described (19, 20). All slides
were counterstained with hematoxylin. Sections were mounted
with Pertex mounting media (Medite). Slides were viewed with a
Zeiss Axioskop 40 microscope.

Candidate Identification of CSF-1 siRNA
Lysates of several murine cell lines were tested on CSF1
expression. NIH-3T3 cells showed high CSF1 expression,
are readily to be transfected, and were therefore used in
candidate identification experiments. siRNA loaded lipid-based
nanoparticles were generated by Axolabs GmbH (Kulmbach,
Germany) as previously described (19). siRNA targeting CSF-
1 receptor (CSF-1R, CD115) is described elsewhere (33). To
generate siRNAs that target the CSF-1 transcript, NIH 3T3 cells
were transfected with siRNAs targeting CSF-1 or non-targeting
control siRNA complexed with Lipofectamine2000 Transfection
Reagent at 5 and 50 nM final concentration in quadruplicates.
Values for CSF-1 were normalized to GAPDH and related to the
mean value of three different control siRNAs (100% expression).
Optimal siRNA concentration yieldingmost efficient knockdown
of CSF-1 production was obtained with RNA transfections
starting at 100 nM in 6-fold dilution steps down to 10 fM.
CSF-1 siRNAs that showed the best knockdown in both the
dual concentration screen and the concentration response curve
screen were used for nanoparticle encapsulation and in vivo
experiments.

Induction of Acute Viral Myocarditis (AVM)
and Experimental Autoimmune Myocarditis
(EAM)
For induction of AVM, 5–7 weeks old male A.BY/SnJ mice
were infected intraperitoneally (i.p.) with 5 × 105 PFU
CVB3 (cardiotropic Nancy strain) provided by Klingel (15)
and Rahnefeld et al. (32). Original breeding stocks for
A.BY/SnJ mice were purchased from the Jackson Laboratory.
For EAM, male BALB/c were purchased from Janvier (Saint-
Berthevin, France). Myocarditis was induced by subcutaneous
injection of an emulsion containing 150 µg myosin peptide
SLKLMATLFSTYASAD (PSL GmbH, Heidelberg, Germany)
supplemented with complete Freund’s adjuvant (CFA) (Sigma-
Aldrich, Taufkirchen, Germany) and 5 mg/ml Mycobacterium
tuberculosis H37Ra (Sigma-Aldrich, Taufkirchen, Germany).
Directly after the initial immunization, mice were injected with
500 ng pertussis toxin (Sigma-Aldrich, Taufkirchen, Germany)
i.p. Seven days after the primary immunization, mice received
a second subcutaneous injection of 150 µg myosin peptide
supplemented with CFA and complemented withMycobacterium
tuberculosis. All mice were housed under standard laboratory
conditions with a 12-h light-dark cycle and access to water
and food ad libitum. For AVM, the protocol was approved by
the Committee on the Ethics of Animal Experiments of Berlin
State authorities [G0034/16]. EAM experimental protocols were
approved by the institutional review board of the University
of Heidelberg, Germany, and the responsible government
authority of Baden-Württemberg, Germany (project number
35-9185.81/G-209/12). All mouse studies were carried out in
accordance with the recommendations in the Guide for the Care
and Use of Laboratory Animals of the German animal welfare
act, which is based on the directive of the European parliament
and of the council on the protection of animals used for scientific
purposes. All efforts were made to minimize suffering.
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In vivo Silencing of CSF-1 During AVM and
EAM
The optimal CSF-1–targeted siRNA (siCSF-1) was scaled up for
in vivo studies. For viral myocarditis, mice were intravenously
treated with 0.5 mg/kg nanoparticle encapsulated siLUC or
siCSF-1 immediately prior to CVB3 infection and 2, 4, and 6 days
after infection. For EAM, nanoparticle treatment started 14 days
after the primary immunization with myosin peptide. Animals
received four i.v. injections of 0.5 mg/kg siCSF-1 or siLuciferase
(LUC)-nanoparticles (control siCD115) per week.

Evaluation of Knockdown Efficacy of
siCSF-1
Male BALB/c mice received single injections of 1.5 mg/kg lipid-
based nanoparticle containing either siLUC or siCSF-1 on three
consecutive days. Animals were sacrificed 24 h after the third
injection. Bone marrow cells were isolated and prepared for flow
cytometry-based sorting of monocytes, which were identified
as Lin−(CD90;B220;CD49b;NK1.1;Ly6G,Ter119);F4/80−;
CD11c−; CD11b+. Cell sorting was performed on a FACS
ARIAII (BD Bioscience, Heidelberg, Germany). RNA from
sorted cells was isolated using Trizol (Life Technologies,
Darmstadt, Germany). Knockdown efficacy was evaluated using
quantitative real-time PCR. Gene expression was normalized
to HPRT. The following primers were used: CSF-1: TCCCAT
ATGTCTCCTTCCATAAA (fwd), GGTGGAACTGCCAGT
ATAGAAAG (rev); CD115: CGAGGGAGATCTCAGCTACA
(fwd), GACTGGAGAAGCCACTGTCC (rev). HPRT: GTCAAC
GGGGGACATAAAAG (fwd), TGCATTGTTTTACCAGTG
TCAA (rev). For the AVM model, spleen tissue was isolated
8 days after virus inoculation and tissue homogenization was
performed using a lysis buffer containing 20mM HEPES, 1 %
(v/v) Triton X-100, 4mM EDTA, 1mM EGTA, 5mM TCEP,
50mM NaF, 5mM NaPP, 2mM Na-o-vanadate and Complete R©

protease inhibitor cocktail (Roche). Western blot analysis was
performed following standard procedures. After blocking with
5% milk/PBS-Tween at 4 ◦C overnight, membranes were probed
with the primary antibody α-CD115 (ab32633, Cell Signalling)
and α-actin (Merck Millipore). The bound primary antibodies
were detected using IRDye800CW labeled goat anti-mouse
secondary antibodies in conjunction with an Odyssey CLx
infrared imaging system (Li-Cor Biosciences, Bad Homburg,
Germany).

Echocardiography
Cardiac function and morphology of mice with AVM were
assessed with a VisualSonics Vevo 770 High-Frequency
Imaging System with the use of a high-resolution (RMV-
707B; 15–45 MHz) transducer during anesthesia with 1.5–2%
isoflurane. Temperature and ECG were continuously monitored.
For the EAM model, echocardiography was performed in
conscious animals on a VisualSonics Vevo 2100 30 days after
the first immunization. Standard imaging planes, M-mode,
and functional calculations were obtained. For AVM, the
parasternal long-axis four-chamber view of the left ventricle
(LV) was used to guide calculations of percentage fractional

shortening, ventricular dimensions and volumes. M-mode
echocardiographic images were recorded at the level of
the papillary muscles from the parasternal short-axis view.
An experienced reader blinded to treatment performed all
measurements. Ejection fraction (EF) and fractional shortening
(FS) were calculated based on M-mode measurements.

Flow Cytometry
Flow cytometric analysis was performed 8 days after infection
in AVM and 21 days after the first immunization in EAM.
Single cell suspension of bone marrow, spleen and heart tissue
were prepared as previously described (34). Hearts were flushed
with PBS and homogenized in RPMI 1,640 medium (Biochrom)
containing 10% (v/v) fetal calf serum (FCS) (Biochrom), 1% (v/v)
penicillin/streptomycin (Pan Biotech), 30mM HEPES, 0.1 %
(w/v) collagenase type 2 (Worthington) and 0.015% (w/v) DNase
I (Sigma-Aldrich) at 37◦C at 800 rpm for 30min. Afterwards,
10mM EDTA was added. Cells were washed with PBS and
passed through a 70µm cell strainer as described in reference
(35). For the identification of myeloid cells, cell suspensions
were stained with a cocktail of PE-conjugated anti-mouse
antibodies targeting hematopoietic lineage markers (B220 for B
cells (RA3-6B2, BD Bioscience), CD90.2 for T cells (53-2.1, BD
Bioscience), CD49b for NK cells (DX5, eBioscience), NK-T/NK
Cell Antigen for NK cells (U5A2-13, BD Bioscience) and Ter-119
for erythroid cells (TER-119, BD Bioscience)) and fluorescent-
dye conjugated antibodies against the following cell surface
markers: CD45.2 (104, Brilliant Violet 711TM, BioLegend), CD11b
(M1/70, PE-CF594, BD Bioscience), Ly6G (1A8, PerCP/Cy5.5,
BioLegend), Ly6C (HK1.4, Pacific BlueTM, BioLegend), CD11c
(N418, Brilliant Violet 510TM, BioLegend), I-A[b] (AF6-120.1,
FITC, BD Bioscience) and F4/80 (BM8, APC, BioLegend).
Cells were stained in PBS containing 2% FCS, 2mM EDTA
for 20min at 4◦C. For the identification of lymphoid cells,
cell suspensions were stained with fluorescent-dye conjugated
anti-mouse antibodies against CD45.2 (104, Brilliant Violet
711TM, BioLegend), CD3e (145-2C11, PerCP/Cy5.5, BioLegend),
CD4 (RM4-5, V500, BD Bioscience), CD8a (53-6.7, Pacific
BlueTM, BD Bioscience), B220 (RA3-6B2, FITC, BioLegend)
and CD19 (6D5, APC, BioLegend). The antibody staining
was followed by a cell viability stain (Fixable Viability Dye
eFluor R© 780, eBioscience) according to the manufacturer’s
protocol.

Monocytes were identified as Linlow

(CD90;B220;CD49b;NK1.1;Ly6G,Ter119), F4/80low, CD11clow,
CD11bhigh; or Fixable Viability Dyelow, CD45.2high, CD11bhigh,
(B220, CD90.2, CD49, NK-T/NK Cell Antigen, Ter-119)low,
Ly6Glow, SSClow, F4/80low and CD11clow and further
differentiated according to Ly6C-expression. Inflammatory
monocytes express high levels of Ly6C and patrolling monocytes
express low levels of Ly6C. Macrophages were identified
as Fixable Viability Dyelow, CD45.2high, CD11bhigh, Linlow,
Ly6Glow, SSClow, F4/80high and CD11clow/high. Dendritic
cells were identified as Fixable Viability Dyelow, CD45.2high,
CD11bhigh, Linlow, CD11chigh and MHC IIhigh (compared to
isotype control). Neutrophils were identified as Fixable Viability
Dyelow, CD45.2high, CD11bhigh, Linlow, Ly6Ghigh and SSChigh. B
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cells were gated as Fixable Viability Dyelow, CD45.2high, CD3low,
B220high and CD19high. T cells were gated as Fixable Viability
Dyelow, CD45.2high, B220low, CD3high and either CD4high or
CD8high. For identifying proliferating GMPs mice received two
s.c. injections of 1 mg/kg Bromdesoxyuridin (BrdU) 12 and 24 h
before the animals were sacrificed. BrdU was stained using BrdU
flow kit (BD Biosciences). Proliferating GMPs were identified as
(CD90;B220;CD49b;NK1.1;Ly6G;CD11b;CD11c;IL-7R;Sca-1)low

and (CD117;CD34;CD16/32;BrdU)high.
For the assessment of quantitative data, 123 count eBeads

(eBioscience) were used according to manufacturer’s protocol.
Data were acquired on a FACS Verse (BD Biosciences,
Heidelberg, Germany) or on a LSR II (BD Bioscience) and
analyzed with FlowJo v10.0 software (FLOWJO, Ashland,
United States). Reported cell numbers were normalized to the
weight of total hearts, yielding the number of respective cell
fraction per mg tissue.

Determination of Viral Load in Heart Tissue
Plaque assays were performed in triplicates on sub-confluent
green monkey kidney cell monolayers as described recently
(32). In situ hybridization of CVB3 RNA was performed
using probes generated with the DIGoxigenin (DIG) RNA
labeling kit (Roche) and the pCVB3-R1 plasmid. Plasmid
cDNA was linearized with SmaI (36); all other steps were
conducted as previously described (37). DIG-labeled CVB3
RNA was detected using a horseradish-peroxidase-conjugated

DIG antibody (Roche 1:100). HistoGreen (Linaris) was
used as a substrate. All slides were counterstained with
hematoxylin.

High-Sensitive (hs)-Troponint (TnT)
Blood was sampled by facial vein puncture and collected
in a heparinized capillary. Thereby obtained plasma
was diluted 1:15 in PBS. hs-TnT was determined by
the electrochemiluminescence method (ECLIA; Elecsys
2010 analyzer) according to the method described in
reference (38).

Statistics
Statistical analysis of the data was performed in GraphPad
Prism v6.00/v.700 for Windows (GraphPad Software, La Jolla,
California, United States). Logarithmic data (virus titer, semi-
quantitative RNA quantification) measured on a linear scale
was transformed logarithmically prior to data plotting and
data analysis. Data summary is indicated on plots as mean
± SD unless stated otherwise. Unpaired t-tests were used
for two group comparisons. If samples had unequal variances
(determined by an F-test), an unpaired t-test with Welch’s
correction was used. For multiple group comparison unequal
variance versions of ANOVA (1-way or 2-way ANOVA) were
performed followed by a Sidak-Holm’s multiple comparison
test. The significance threshold for all tests was set at the 0.05
level.

FIGURE 1 | Transcriptome analysis of endomyocardial specimen from patients with dilated cardiomyopathy and myocarditis. RNA-Sequencing data from

endomyocardial biopsies obtained from patients with clinically diagnosed myocarditis or dilated cardiomyopathy as a control were analyzed for relative expression of

different gene sets. (A) RNA-seq analyses revealed differential expression of 1963 genes. Heatmap depicts top 500 differentially expressed genes hierarchically

clustered by using Euclidean distance measures. (B) CSF-1 and CSF-1R expression taken from RNA-seq data. Unpaired t-tests were used; p-values are indicated on

the graph and significant differences (p < 0.05) are marked with blue color.
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RESULTS

Increased Abundance of CSF-1 in Heart
Muscle Tissue During
Myocarditis/Inflammatory Cardiomyopathy
RNA-seq analyses revealed that myocarditis results in a
diverse transcriptional response in the patient’s heart tissue.
We observed 1963 differentially expressed genes in biopsies
taken from patients with acute myocarditis vs. patients
with a non-inflammatory dilated cardiomyopathy (DCM)
(Figure 1A). Gene set enrichment analysis (GSEA) revealed that
a decent amount of differentially expressed genes participates
in inflammatory processes (especially cytokines and cytokine
receptors) and differentiation of hematopoietic cell lineages
(Table 1). Myocarditis leads to a massive infiltration with
immune cells into heart tissue. Monocytes represent the
most prominent leukocyte population both during virus-
mediated and experimental autoimmune myocarditis (16, 32).
Monocyte production and maturation is strongly dependent
on CSF-1 and CSF-1R, and, both effector molecules were
identified in two gene sets mentioned above. Our data
indicate a pronounced up-regulation particularly of CSF-
1 and CSF-1R in endomyocardial specimen from patients
with myocarditis/inflammatory cardiomyopathy (Figure 1B).
Immunohistochemical stain of heart tissue from patients
with myocarditis revealed CSF-1 expressing cells only within
inflammatory foci, with a strong focus on mononuclear
immune cells (Figure 2A). Altogether, these data argued toward
a significant contribution of monocytes/macrophages to the
cardiac CSF-1 expression, which we found in patients with
inflammatory heart disease.

Local production of CSF-1 stimulates tissue-resident
macrophage proliferation and reduces apoptosis (23). In
addition to this function and a direct role of CSF-1 during
monocyte development, it might also influence pro-fibrotic
processes under inflammatory conditions. Since inflammation
and fibrosis are hallmarks of inflammatory heart disease,
we aimed to investigate the pathophysiological influence of
CSF-1 with respect to manifestation of inflammatory heart

tissue injury. First, we determined CSF-1 production in a
mouse model of CVB3-induced myocarditis. We performed
immunohistochemical stains to evaluate CSF-1 abundance
during viral myocarditis. Consistent with our findings in
patients, CSF-1 production was increased within inflammatory
foci at the acute state of myocarditis in mice (Figure 2B). Since
monocytes/macrophages represent the major infiltrating cell
population in acute myocarditis, it is very likely that these
cells are also involved in CSF-1 production. By double labeling
immunohistochemistry we found CSF-1 protein expression in
a part of Mac-3 positive mononuclear phagocytes within the
cardiac inflammatory lesions (Figure 2C).

Nanoparticle-Encapsulated siRNA
Effectively Downregulates CSF-1
Production in Monocytes
CSF-1 can be expressed and produced by various cells including
monocytes themselves (22). siRNA encapsulated in lipid-based
nanoparticles has been shown to effectively downregulate target
genes in monocytes and their lineage progenitors (19, 20).
Furthermore, in vivo knockdown of CSF-1R and monocyte
depletion with nanoparticle-encapsulated siRNA has recently
been demonstrated for ischemic heart disease (33). Thus, in
order to investigate the pathophysiological function of CSF-1
production by monocytes/macrophages on inflammatory tissue
damage during myocarditis, we decided to use a nanoparticle-
encapsulated siRNA approach to target CSF-1 production in
myeloid cells. To identify siRNAs leading to highly efficacious
suppression of CSF-1 production, 24 different siRNAs targeting
CSF-1 were investigated regarding their influence on CSF-1
mRNA levels in vitro (Figure 3A). Six different siRNAs, which
yielded optimal in vitro suppression of CSF-1 mRNA production,
were further investigated for their knockdown efficacy. Next, we
screened the respective CSF-1 directed siRNA regarding to the
concentration-dependent knockdown efficacy (Figure 3B) and
selected the most efficacious siRNA for in vivo nanoparticle
studies. Naive BALB/c mice were intravenously inoculated with

TABLE 1 | Top 10 C2 curated gene sets (KEGG Database) significantly enriched in human biopsies.

Gene set name (KEGG database) Description p-value FDR q-value

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION Cytokine-cytokine receptor interaction 2.11E−20 3.93E−18

SYSTEMIC_LUPUS_ERYTHEMATOSUS Systemic lupus erythematosus 5.61E−19 5.22E−17

CELL_ADHESION_MOLECULES_CAMS Cell adhesion molecules (CAMs) 1.3E−17 8.07E−16

HEMATOPOIETIC_CELL_LINEAGE Hematopoietic cell lineage 2.08E−15 9.67E−14

VIRAL_MYOCARDITIS Viral myocarditis 5.19E−14 1.93E−12

NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION Neuroactive ligand-receptor interaction 2.81E−13 8.71E−12

LEISHMANIA_INFECTION Leishmania infection 4.67E−13 1.24E−11

COMPLEMENT_AND_COAGULATION_CASCADES Complement and coagulation cascades 2.62E−11 6.1E−10

RIBOSOME Ribosome 1.91E−10 3.96E−9

CHEMOKINE_SIGNALING_PATHWAY Chemokine signaling pathway 2.61E−10 4.64E−9

RNA-Sequencing data of endomyocardial biopsies from patients with clinically diagnosed myocarditis or dilated cardiomyopathy as a control were analyzed for relative expression of

different gene sets. Indicated are the names, description and p-values (with FDR-adjustment) of the most relevant gene sets.
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FIGURE 2 | CSF-1 production in cardiac tissue during viral myocarditis. Paraffin-embedded tissue sections from endomyocardial biopsies that had been obtained

from patients with acute myocarditis were stained by immunohistochemistry. (A) Representative micrographs stained with an anti-CSF-1 antibody [left column] or with

a secondary antibody only [right column] are depicted. top: scale bar = 120µm; bottom: scale bar = 60µm. (B) Heart tissue sections were obtained from

CVB3-infected A.BY/SnJ mice on day 8 p.i. Representative micrographs of anti-CSF-1 stained heart tissue are shown [scale bar = 36µm]. (C) In addition, cardiac

sections from mice were double-stained with an antibody directed against Mac-3 (red) [left: scale bar = 36µm; center: scale bar = 12µm] and against CSF-1 (green).

As control, Mac-3 stained tissue sections were counterstained omitting the anti-CSF-1 directed antibody [right: scale bar = 12µm].

1 mg/kg of this nanoparticle-encapsulated siRNA (termed siCSF-
1) on three consecutive days. Expression of CSF-1 was found
to be effectively downregulated in monocytes that were sorted
from spleen of siCSF-1 treated mice and further evaluated
by quantitative PCR analysis (Figure 3C). Since pathogens are
frequently involved in the pathogenesis of myocarditis (5), as
a next step we set up an experimental approach to decipher
the CSF-1 axis using nanoparticle-encapsulated siRNA in a
mouse model of virus-mediated myocarditis. A.BY/SnJ mice
with high hereditary susceptibility for the development of acute
viral myocarditis (AVM) were treated with siCSF-1 or respective
controls directly prior to infection with cardiotropic CVB3
(Nancy). siCSF-1 treatment was repeated every other day until
mice were sacrificed 8 days after infection at the respective peak
of infiltration in heart muscle (Figure 3D) (6–8). Following this
protocol, we monitored the abundance of CSF-1 receptor levels
in spleens of infected mice, which allowed us to conclude on
the efficiency of siCSF-1 treatment during infection. Consistent
with virus-mediated mobilization of monocytes/macrophages

from bone-marrow sources, viral infection resulted in increased
CSF-1R levels in the spleen. In siCSF-1-treated mice, we found
reduced CSF-1R levels being indicative of suppressedmyeloid cell
mobilization upon siCSF-1 injection during AVM (Figure 3E).

siRNA-Mediated Knockdown of CSF-1
Attenuates Virus-Mediated Pathology
Since we found reducedmobilization of monocytes/macrophages
in siCSF-1-treated mice during CVB3 infection, this mouse
model allowed us to delineate the pathophysiological role
of CSF-1 production particularly by monocytes/macrophages
during viral myocarditis. First, we questioned whether siCSF-
1 treatment manipulated the viral load during AVM. The viral
burden as reflected by the amount of infectious viral particles
(Figure 4A) was not substantially influenced by siCSF-1 in heart
tissue at the acute state of infection. Thus, targeting the CSF-
1 axis represents a safe approach regarding to control of virus
dissemination and replication in A.BY/SnJ mice. During virus-
mediated myocarditis, there is a strong spatial-temporal relation
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FIGURE 3 | Suppression of CSF-1 production by siRNA-encapsulated nanoparticles. (A) NIH-3T3 cells were transfected with 24 siRNA candidates directed against

CSF-1. siRNA #7 was most efficient to reduce CSF-1 mRNA expression both at 5 and 50 nM and was selected for further studies. (B) CSF-1-directed siRNA # 7 was

titrated and the respective CSF-1 knockdown efficacy was determined. (C) Knockdown efficacy of nanoparticle-encapsulated CSF-1 candidate siRNA pool 7 after

injection into naive Balb/c mice (n = 3). (D) A.BY/SnJ mice were intravenously treated with nanoparticle encapsulated siRNA targeting either luciferase (n = 7 siLUC,

gray color) or CSF-1 siRNA #7 (n = 8 siCSF-1, green color) directly prior to CVB3 inoculation. siRNA treatment was repeated after 2, 4, and 6 days. (E) The overall

efficacy of siCSF-1 treatment during AVM as indicated by the presence of CSF-1-R)-positive cells was monitored by Western blot analysis of spleen tissue

homogenates (n = 6 mice per group) 8 day after virus inoculation. CSF-1R (high molecular weight band) and the cytoplasmic domain of CSF-1R (around 55 kDa) are

depicted. Fluorescence was quantified by the Image Studio Lite Ver 5.2 software. Signal intensity was normalized to actin and is depicted as relative expression levels

compared to siLUC-treated mice in the bar graph. Unpaired t-tests were used; p-values are indicated on the graph and significant differences (p < 0.05) are marked

with blue color.

between virus-induced cellular injury and the emergence of
inflammatory foci in heart tissue (39). Likewise, viral genome
abundance as detected by CVB3 in situ hybridization was
spatially connected with high-grade inflammation and most
impressive in siLUC-treated mice (Figure 4B). Since CVB3 does
not only target the heart, but also replicates in the pancreas,
we also determined the magnitude of virus-induced pancreas

destruction and found similar tissue injury in both siLUC- and
siCSF-1-treated groups (Figure S1).

Next, CVB3-infected mice that received siCSF-1 or siLUC as a
control were followed for global signs of acute infection. siCSF-1
treatment profoundly attenuated overall virus-induced pathology
as represented by significantly less pronounced body weight
reduction (Figure 4C) and only a minor loss of body temperature
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FIGURE 4 | Depletion of CSF-1 attenuates virus-mediated pathology. Mice with AVM were subjected to CSF-1 siRNA treatment as indicated in Figure 3D.

(A) Infectious virus particles were determined in heart tissue homogenates by plaque assay. Data summary is mean ± SEM. A student‘s t-test was conducted and the

p-value is shown. (B) To localize viral RNA in infected heart tissue, in situ hybridization for the detection of the CVB3 genome was performed and slides were

counterstained with hematoxylin/eosin. Representative micrographs are depicted (scale bar = 60µm). During viral infection, mice were monitored for body weight

(C) and body temperature (D) at the indicated points in time. Dots represent mean ± SEM. Repeated measurements versions of two-way ANOVA were performed

followed by a Sidak- Holm multiple comparison procedure. P values are indicated (blue color indicates p < 0.05; only significant results are depicted on the graph).

(E) To assess injury of cardiomyocytes prior to peak of inflammation, blood was sampled 5 days after infection by facial vein puncture and high sensitive (hs) troponin T

plasma levels were determined. Obtained results were normalized to the results obtained with blood samples from non-infected siLUC-treated mice and are depicted

(Continued)
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FIGURE 4 | as fold changes. Data summary is mean + SD. Repeated measurements two-way ANOVA was performed followed by a Sidak-Holm’s multiple

comparison test and the p value is depicted. (F) After sacrificing mice 8 days after infection, heart tissue sections were stained with hematoxylin/eosin. (G) To quantify

cell infiltration, single cell suspensions of heart tissue obtained from naive mice (uninfected mice that did not receive siRNA treatment; white bars, n = 4) as well as

AVM and siRNA-treated mice (siLUC: gray squares, n = 7; siCSF-1: green squares, n = 8) were stained with CD45 antibodies to quantify total leukocyte count in the

heart. (H) Cardiac function was assessed by echocardiography prior to CVB3 infection in A.BY/SnJ mice (baseline) by an experienced and blinded investigator. Mice

were allocated to respective groups: siLUC and siCSF-1. In all CVB3-infected mice, echocardiography was repeated 8 days after CVB3 infection (siLUC n = 16;

siCSF-1 n = 17 mice). Data were analyzed regarding putative alteration during AVM in the respective treatment groups (day 8 after infection vs. baseline

measurements of the same cohort). Relative changes of stroke volume, heart rate and cardiac output compared to baseline measurements were calculated for each

group and these fold changes are depicted for siLUC and siCSF-1-treated groups. One-sample t-tests were performed to compare baseline measurements and

values obtained 8 days after infection. All p values are depicted, p < 0.05 are in blue color.

during infection in comparison to controls that received siLUC
(Figure 4D). Overall diminution of virus-mediated pathology
under siCSF-1 influence was further corroborated by a significant
reduction of cardiac troponin T serum levels as a heart-
specific sign of tissue damage (Figure 4E). Cardiac troponin
T at an early state of myocarditis might reflect both direct
virus-induced cytotoxicity and tissue destruction by innate
mediators of the immune response. In line with this, analysis
of heart tissue obtained from siCSF-1 treated animals sacrificed
8 days p.i. revealed distinct differences. Histological staining of
heart tissue (Figure 4F) demonstrated a profound myocarditis
in siLUC-treated A.BY/SnJ mice and in contrast to that
only moderate signs of myocarditis after siCSF-1 treatment.
Since viral injury of cardiomyocytes provokes an inflammatory
response that significantly contributes to tissue damage and
functional impairment of the heart (32), next we quantified
infiltration with CD45+ immune cells into hearts from siCSF-
1 and siLUC-treated mice by flow cytometry. We found a
significant reduction of infiltrating leucocytes in siCSF-1 treated
mice (Figure 4G), thus indicating reduced inflammatory organ
damage under suppression of the CSF-1 axis. Following up on
observed systemic and heart-tissue specific responses to siCSF-1
treatment, siCSF-1 effects on cardiac performance were assessed
by echocardiography during the inflammatory peak of viral
myocarditis. In siLUC-treated, infected A.BY/SnJ mice, both the
stroke volume and cardiac output were significantly reduced in
comparison to baselinemeasurements (Figure 4H) andTable S1.
Consistent with its heart-directed effects, siCSF-1 treatment
mitigated these detrimental changes and CVB3 infection in
this group resulted only in minor, non-significant reduction of
cardiac performance (Table S1).

siRNA-Mediated Knockdown of CSF-1
Diminishes Immune Cell Infiltration During
Acute Viral Myocarditis
As a next step, we aimed to determine whether siCSF-1
specifically influenced infiltration with monocytes/macrophages
or whether other immune cells were affected as well.
Immunohistochemistry using antibodies directed against
marker proteins for myeloid (Mac3) and T cells (CD3
and CD4) indicated reduced infiltration of these respective
immune cell populations in siCSF-1-treated mice during
AVM (Figures 5A,B). These findings were corroborated by
the results obtained from a quantitative flow cytometry-based
analysis of the different immune cell populations in infected
mouse hearts. We detected 756 ± 63 CD11b+/lineage− cells

in siLUC- vs. 273.3 ± 30.8 CD11b+/lineage− cells/mg heart
tissue in siCSF-1 treated mice (p < 0.0001) and 198 ± 34 T
cells in siLUC- vs. 95 ± 12 T cells/mg heart tissue in siCSF-1
treated mice (p = 0.02; Figures 5C,E). The vast majority of
infiltrating myeloid cells belonged to the pool of inflammatory
monocytes (Figure 5D). Consistent with the influence of CSF-1
on monocyte recruitment and differentiation, inflammatory
monocytes were highly significantly reduced in infected mouse
hearts upon siCSF-1 treatment. siCSF-1 also led to a significant
reduction of patrolling monocytes, macrophages and dendritic
cells (Figure 5D), which might all originate from inflammatory
monocytes. In correspondence to previous reports (15), the pool
of invading T cells during AVM was majorly comprised of CD4+

T cells. Comparable to siCSF-1-induced effects on myeloid cell
infiltration, we also found a significant reduction of the CD4+ T
cell count in heart tissue upon siCSF-1-treatment (Figure 5E).

siRNA-Mediated Knockdown of CSF-1
Mitigates Inflammatory Heart Tissue
Damage in a Mouse Model of Experimental
Autoimmune Myocarditis
siCSF-1 treatment impressively improved cardiac function upon
mitigating the inflammatory damage response during acute
viral myocarditis. A high inflammatory disease burden at the
acute state might directly translate into the manifestation
of a chronic functional impairment. Long-term sequela of
acute myocarditis involve cardiac remodeling processes with
substantial fibrosis formation and a reduction of systolic cardiac
function (4). Experimental autoimmune myocarditis (EAM)
represents an excellent model that enables researchers to follow
inflammatory disease progression from acute to chronic states
of myocardial dysfunction (40). Therefore, we investigated the
pathophysiological role of CSF-1 also in EAM, and started
siCSF-1 treatment upon manifestation of myosin-heavy chain-
directed autoimmunity 14 days after the first immunization
(Figure 6). This application strategy might also be considered as
a therapeutic regime starting uponmanifestation of acute disease.
Similar to the AVM model, intravenous siCSF-1 nanoparticle
application was repeated every 48 h for a 1-week course. First,
we performed a quantitative flow cytometry-based analysis of
inflammatory monocytes in the injured hearts directly after this
siCSF-1 treatment period. As expected from our results obtained
in AVM, we indeed found a reduced number of inflammatory
Ly6Chigh monocytes in siCSF-1-treated animals compared to the
siLUC-treated controls during EAM (Figure 6B). To investigate
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FIGURE 5 | Influence of CSF-1 on immune cell infiltration into heart tissue during AVM. To further differentiate immune cell infiltration, immunohistochemical stain for

(A) mononuclear phagocytes using antibodies directed against Mac-3 and (B) T-cells using antibodies directed against CD3 and CD4 were performed (scale

(Continued)
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FIGURE 5 | bars = 60µm). Further differentiation by flow cytometry (Figure S2) was performed. (C) Total infiltrating myeloid cells (identified as CD45+, CD11b+,

lymphoid lineage− life single cells) were quantified. (D) Myeloid cells were further differentiated according to the gating strategy depicted in Figure S2A. (E) Equally,

lymphoid cells were further analyzed. Representative flow cytometry dot blots of siLUC- and siCSF-1-treated groups are depicted. Unpaired t-tests were performed

between siLUC- and siCSF-1-treated groups and p-values are shown. Significant differences (p < 0.05) are marked with blue color.

whether CSF-1 promotes monocyte development from bone-
marrow sources during EAM, we next evaluated the influence of
CSF-1 knockdown on granulocyte-monocyte progenitor (GMP)
cell numbers. siRNA-mediated knockdown of CSF-1 led to
markedly increased numbers of GMPs in the bone marrow
during EAM (Figure 6C). However, proliferation rates of GMPs
did not differ significantly between siLUC- and siCSF-1-treated
groups (Figure 6D). To further validate that CSF-1 knockdown
leads to an arrest of progenitor cells in the bone marrow, we
measured myeloid cell numbers in the blood and found reduced
numbers 21 days after EAM induction (Figure 6E).

Based on our finding of reduced infiltration with
inflammatory monocytes upon siCSF-1 treatment, next we
followed mice for a total of 30 days after EAM induction
and determined the formation of fibrotic scars as an integral
hallmark of cardiac remodeling at this chronic disease state
(Figure 7A). Knockdown of CSF-1 production resulted in a
significant reduction of fibrosis formation in the heart muscle
as indicated by quantitative assessment of Masson’s trichrome
stains (Figure 7B). Consistent with this reduction of long-
term, inflammation-mediated tissue damage in the siCSF-1
group, functional investigation of cardiac performance by
echocardiography revealed an improved ejection fraction in
siCSF-1-treated animals compared to siLUC-treated control
animals (Figure 7C). Chronic disease in siLUC-treated mice was
mirrored by a substantial reduction of cardiac contractility. As a
proof of principle, we also tested whether knockdown of CSF-1R
expression could exert similar effects during disease course.
Therefore, upon establishment of autoimmune myocarditis
mice were treated with a nanoparticle-encapsulated siRNA
that specifically targets CSF-1R (33). Formation of cardiac
fibrosis assessed 30 days after EAM induction was found to
be diminished in comparison to siLUC-treated controls, and
was reduced to similar levels as achieved by siCSF-1-treatment
(Figure 7B). Likewise, echocardiographic imaging of siCSF-
1R-treated animals demonstrated significant improvement of
cardiac performance as indicated by higher left ventricular
ejection fraction in comparison to siLUC nanoparticle-treated
animals (Figure 7C). Altogether, our data demonstrate that
silencing the CSF-1 axis hampers monocyte development and
substantially mitigates inflammatory heart tissue damage both in
a mouse model of viral and autoimmune-mediated myocarditis.
Moreover, initiation of CSF-1 knockdown upon manifestation
of inflammatory tissue damage attenuates the manifestation of
debilitating long-term sequela of acute inflammatory injury,
and this parallels in preserved systolic contractility of the heart
muscle (Figure 8).

DISCUSSION

One of the major causes of heart failure particularly in young
patients is myocarditis. Direct viral cytotoxicity stimulates

infiltration and immune response activation leading to pathogen
clearance and resolution of organ damage. Nevertheless, in
immune-genetically predisposed individuals there is also an
adverse scenario where pathogen-induced immune response
activation subsequently induces overwhelming inflammatory
cytokine response and detrimental immunopathology or
autoimmune processes, both leading to cardiac remodeling
and fibrotic scarring. It appears to be a slim line between the
induction of inflammation to fight the virus and exaggerated
immune responses that begin to be deleterious. We here
downregulated an important branch of the innate immunity—
the development of monocytes/macrophages—by siCSF-1
treatment for approximately a week during the acute phase of a
viral infection, yet found no impairment on pathogen control.
In fact, silencing CSF-1 production impressively mitigated
acute inflammatory heart tissue damage and attenuated the
development of a debilitating long-term sequela of acute
inflammatory injury to the heart. This nanoparticle-mediated
immune-modulation improved the course of disease both in
acute viral myocarditis and autoimmune inflammatory heart
disease and importantly, did not adversely influence viral burden
and clearance of infectious particles. As it might be hypothesized
that attenuating inflammatory activity could allow for enhanced
virus-induced cell death, this is not what we observed with
siCSF-1 treatment. Our finding is in line with previous data: out
of 46 studies that intervened the immune response, more than
90% found no adverse effect on viral load (4). In line with this, we
could recently demonstrate that inhibition of cellular proteolysis
in immune cells by the immunoproteasome inhibitor ONX 0914
is highly efficient to reverse high grade AVM and this protective
effect was attributed to maintained immune cell homeostasis,
but not to direct antiviral aspects (14).

A.BY/SnJ mice that were used in this study for AVM are
characterized by a high hereditary susceptibility to CVB3-
induced cardiomyopathy (6, 15, 41). Upon viral infection of
cardiomyocytes, heart tissue injury during the first days is
mainly attributed to direct virus-induced cytotoxicity, while
the activation of local type I interferon responses (T1IFN)
is substantially hampered in this strain (7, 8). This phase of
ongoing viral replication is accompanied and succeeded by
the recruitment of cells of the innate immune response such
as NK cells and monocytes (42). Later on, infiltration with
immune cells of the adaptive immune response such as T and
B cells follows (15). Analysis of the composition of leukocytes
in the heart revealed that 8 days after viral infection a general
reduction in invading immune cells was observed which suggests
that hampering early responders, such as monocytes e.g., by
reduced production of lymphocyte-attracting chemokines might
dampen the infiltration and activation of subsequent populations
as well. Although we found an overall reduction of CD4+ T
cells in the heart in siCSF-1 treated mice, we cannot conclude
on the influence of silencing the CSF-1 axis on CD4+ T cell
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FIGURE 6 | CSF-1 silencing during EAM diminishes infiltration of inflammatory monocytes into injured mouse hearts. (A) EAM was induced by inoculation of myosin

peptide in conjunction with Freud’s adjuvant and mice were boosted after 7 days. Nanoparticle-encapsulated CSF-1 siRNA #7 (Figure 3) was investigated regarding

(Continued)
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FIGURE 6 | to its potential to manipulate EAM in comparison to siLUC (control). Therefore, mice were treated with 0.5 mg/kg siRNA intravenously every other day

starting 14 days after EAM induction, and mice were sacrificed 21 days after the first immunization. (B) Representative dot plots (left) and enumeration (right) of

inflammatory Ly6Chi monocytes in heart tissue of siLUC- and siCSF-1-treated mice (n = 8). (C) Representative dot plots (left) and quantification of

granulocyte-monocyte progenitors (GMPs) (right) found in bone marrow of siLUC- and siCSF-1-treated mice during EAM (n = 12). (D) Representative FACS plots (left)

and quantification (right) of BrdU incorporation in GMPs of the bone marrow in siLUC- and siCSF-1 treated mice (n = 8). (E) Representative FACS density plots (left)

and quantification of monocytes/macrophages (right) in the blood of siLUC- and siCSF-1- treated mice (n = 7). Unpaired t-tests were used. p-values are indicated on

the graph and significant differences (p < 0.05) are marked with blue color.

FIGURE 7 | siRNA-mediated knockdown of CSF-1 during acute EAM attenuates the development of chronic disease states. (A) EAM induction and siRNA treatment

was conducted as shown in A. Mice were sacrificed after 30 days. (B) Representative Masson’s trichrome stains of heart tissue sections obtained 30 days after EAM

induction are depicted (left: scale bar = 150 nm). Fibrosis was scored microscopically (n = 8 for siLUC and siCSF-1 as well as n = 7 for siCSF-1R). (C) Heart function

was evaluated 30 days after the initial immunization by echocardiography. Representative M-mode echocardiographic images are shown during late state EAM.

Calculated left ventricular ejection fraction (EF) (n = 8 for siLUC and siCSF-1 as well as n = 7 for siCSF-1) is shown. One-way-ANOVA was performed. Since ANOVA

was significant, a Sidak-Holm-multiple comparison was performed. p-values of multiple comparison are indicated. Blue color indicates p < 0.05.

differentiation e.g., into regulatory T cells or Th1 and Th17
cells. From our data we cannot conclude on possible additional
effects e.g., of regulatory CD4+ T cells that are known to mitigate
the inflammatory tissue damage in the heart (43, 44). CSF-1
facilitates myeloid cell differentiation, monocyte survival, and
macrophage proliferation. It was recently shown that CSF-1R
also plays a role in splenic monocytopoiesis (33). Monocytes
are also important producers of CSF-1 themselves. Hume and
MacDonald suggested that modulation of the CSF-1 axis may
be beneficial under pathological conditions (45). We here show
that siRNA-mediated knockdown of CSF-1 in monocytes and

its imminent precursors leads to a significant reduction of
inflammatory Ly6Chi monocyte numbers in the inflamed heart.
We speculate that this observation results from arresting the CSF-
1-dependent monocyte/myeloid cell development at precursor
stages. This hypothesis is supported by detection of increased
GMP cell numbers in the bone marrow in siCSF-1-treated
animals during EAM. Although increased cell numbers may also
arise from increased proliferation rates, this situation seems to
be unlikely, since the percentages of proliferating GMPs in the
bone marrow of siCSF-1- and siLUC-treated animals did not
differ. Consistently, the numbers of myeloid cells were reduced
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FIGURE 8 | Graphical synopsis: The CSF-1 axis is induced in patients with acute myocarditis. Based on the preponderant role of CSF-1 for monocyte

differentiation/maturation and the disease-modifying function of monocytes during the course of inflammatory heart disease, we investigated how silencing of CSF-1

in monocytes/macrophages using nanoparticle encapsulated siRNA influences heart tissue damage during the onset of acute viral myocarditis and upon

manifestation of acute inflammation in an autoimmune myocarditis model. Silencing of the myeloid CSF-1 axis was beneficial for preventing inflammatory tissue

damage in the heart and preserving cardiac function at acute and chronic disease states without compromising innate immunity’s critical defense mechanisms.

in the blood stream of siCSF-1-treated animals during EAM.
In agreement with this and the fact that other than in siLUC-
treated mice enhanced monocyte counts were not observed
in the blood in siCSF-1-treated mice during AVM (data not
shown), we found a reduction of CSF-1R abundance in the
spleen during AVM in the siCSF-1 group. The spleen itself is
a source for monocytes with local production and from which
they are recruited to the site of inflammation (34). CSF-1R
is expressed throughout the mononuclear phagocyte system,
which is primarily composed of monocytes and macrophages
(22, 46). A reduction of CSF-1R expression might also be
indicative for reduced numbers of monocytes and macrophages.
These findings further underscore our assumption of a halted
monocyte/macrophage production due to CSF-1 knockdown
during inflammation. Mice that carry a deleterious mutation in
CSF-1 develop characteristic skeletal malformation, caused by
defective osteoclasts. In the context of an inflammatory disease,
such as atherosclerosis however, deletion of CSF-1 results in

dramatically reduced atherosclerotic plaque size (47, 48). After
myocardial infarction an upregulation of CSF-1 is observed in
ischemic areas for more than 5 days after the injury (49). In
this context, CSF-1 also appears to exhibit indirect effects by
regulating chemokine production (49). In the absence of CSF-
1, GM-CSF controls the differentiation of selected macrophage
subsets and may lead to an enhancement of macrophage lineage
numbers (50). Under certain conditions, GM-CSF induces an
inflammatory program marked by increased IL-1, IL-6 and
TNF-α secretion, whereas the presence of CSF-1 suppresses
the production of pro-inflammatory signals (51). Others have
reported that administration of CSF-1 in EAM between days
21 and 29 after disease induction ameliorated cardiac fibrosis
and left ventricular dysfunction by preventing the accumulation
of fibroblasts (52). Notably, no effects were observed in the
above mentioned study when CSF-1 was administered at later
stages. These conflicting results stress the importance of timing
in CSF-1 modulation. The reduced numbers of inflammatory
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monocytes due to silencing myeloid CSF-1 from days 14 to 21
observed in this study may outweigh the beneficial effects of
CSF-1 in the inflamed heart at these early stages. In addition,
macrophages have been shown to release pro-fibrotic cytokines
such as TGF-β, which causes the differentiation of fibroblasts
to myofibroblasts and a massive deposition of extracellular
matrix proteins such as collagens (53). Since we see a reduction
of myeloid cells during myocarditis in response to siCSF-
1 treatment and this includes macrophages, we propose that
thereby achieved reduction of pro-fibrotic signals most likely
contributes to lower scar formation as observed at advanced
states of EAM.

It has been reported that other cell types beyond cells of
the myeloid lineage are capable of CSF-1 expression under
inflammatory conditions, including fibroblasts and endothelial
cells (54, 55). These cells may also influence monocyte
production/proliferation during myocarditis. Nevertheless, at
the acute state of virus-mediated myocarditis, we observed
that Mac-3 positive cells like monocytes/macrophages, which
infiltrate the heart, may represent the main producers of CSF-
1. Many studies using different pathogenic models of bacterial,
viral and fungal infections have highlighted the importance
and requirement of TNF- and NO-producing monocytes as
facilitators of the resolution of an infection (56). Also, during
inflammation bone-marrow derived monocytes can mature
into macrophages (56) and macrophage-depletion results in
increased virus titers in infected mouse hearts (17). Therefore,
it was somewhat surprising at the first glance that depletion
of monocytes upon siCSF-1 treatment actually improved virus-
mediated pathology. We found no experimental evidence that
virus dissemination, control and elimination had been adversely
affected by such immune-modulating intervention. Since virus
titers were not significantly influenced by siCSF-1-treatment, the
impressively reduced inflammatory injury and preserved cardiac
function in this group is not influenced by direct virus-mediated
effects. These data suggest that virus-induced inflammation can
be segregated from pathways that promote and limit virus
infection and CSF-1-induced monocyte maturation. Monocytes
can be directly activated by CVB3 infection resulting in the
production of pro-inflammatory cytokines (57). Thereby, these
cells can contribute to a strong inflammatory response and
eventual tissue damage in themyocardium. Further experimental
evidence for an adverse function of myeloid immune cells
comes from macrophage depletion studies, where myocardial
injury and formation of cardiac fibrosis were substantially
diminished despite and in clear contrast to increased viral
burden during AVM (17). Interestingly and in line with
our findings in siCSF-1 treated A.BY/SnJ mice, macrophage
depletion did not adversely affect clearance of infectious virus
particles (17). We conclude that attenuated innate immune
cell mobilization and hampered CSF-1-driven differentiation of
innate myeloid cells in siCSF-1-treated mice directly suppresses
cytotoxicity induced by cytokine production and/or infiltration
with lymphocytes in viral myocarditis. Although there is a clear
causal relationship between T1IFN-mediated suppression of viral
load in infected cardiac cells and attenuation of inflammation
and chronic tissue damage (8, 32), several publications including

work of our group support the concept that—independent
of direct virus-induced cell injury—particularly monocytes
and macrophages are important players in inflammation and
chronic organ damage in response to Coxsackievirus infection
(4, 14, 58, 59).

Taken together, modulation of the CSF-1 axis in the myeloid
cell lineage with siRNAs at early stages has beneficial acute and
long-term effects in both viral and autoimmune myocarditis.
Our data support the notion that particularly infiltrating myeloid
cells contribute to acute and chronic functional impairment
in inflammatory heart disease. Since pathogen control was not
influenced upon suppression of the CSF-1 axis in myeloid
cells, this study yields important insights for translating the
pathophysiological role of CSF-1 from animal models to putative
novel therapeutic targets for patients with inflammatory heart
disease.
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Viral myocarditis is an inflammation of the heart muscle triggered by direct virus-induced

cytolysis and immune response mechanisms with most severe consequences during

early childhood. Acute and long-term manifestation of damaged heart tissue and

disturbances of cardiac performance involve virus-triggered adverse activation of the

immune response and both immunopathology, as well as, autoimmunity account for

such immune-destructive processes. It is a matter of ongoing debate to what extent

subclinical virus infection contributes to the debilitating sequela of the acute disease. In

this review, we conceptualize the many functions of the proteasome in viral myocarditis

and discuss the adaptation of this multi-catalytic protease complex together with its

implications on the course of disease. Inhibition of proteasome function is already

highly relevant as a strategy in treating various malignancies. However, cardiotoxicity

and immune-related adverse effects have proven significant hurdles, representative of

the target’s wide-ranging functions. Thus, we further discuss the molecular details of

proteasome-mediated activity of the immune response for virus-mediated inflammatory

heart disease. We summarize how the spatiotemporal flexibility of the proteasome might

be tackled for therapeutic purposes aiming to mitigate virus-mediated adverse activation

of the immune response in the heart.

Keywords: virus, myocarditis, proteasome, cytokine, immunopathology, heart failure

INTRODUCTION

Myocarditis and its debilitating sequela, inflammatory cardiomyopathy, are leading causes of heart
failure and sudden cardiac death particularly in infants, children, and young adults (1) with
viral infections being the most common trigger of non-ischemic myocardial inflammation in the
Western world (2). Acute injury of the heart muscle upon viral infection stimulates infiltration of
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immune cells, aiming to support pathogen clearance and
alleviate organ damage. However, this pathogen-induced
immune response can result subsequently in overwhelming
immunopathology or the development of auto-aggressive
immunity against cardiac self-antigens. These processes
comprise fibrotic scarring and cardiac remodeling (3, 4). Both
the high mortality of acute viral myocarditis in childhood and
the putative progression of acute myocarditis to chronic disease
support the need to define precisely the underlying mechanisms.

Most of our knowledge on the pathology of viral myocarditis
comes from infection with enteroviruses, in particular
coxsackievirus B3 (CVB3) in mice. CVB belong to the
picornavirus family and have a non-enveloped, icosahedral
capsid surrounding a positive-strand RNA genome. CVB3 used
to be among the most prevalent pathogens known to cause viral
myocarditis in North America and Europe (3, 5). Infection of
laboratory mouse strains mirrors the variable manifestation of
the disease in man (6, 7) by causing susceptibility for cardiac
pathogenesis to a highly varying degree. A certain genetic
background determines both control of viral pathogens and
the activation of deleterious immune response pathways (6, 8).
Recent observational studies suggest that it is not primarily
the presence and/or replicative activity of invading viruses in
the myocardium that determines outcome. In fact, the virus-
triggered abundance of infiltrating leukocytes is an independent
risk factor for adverse outcome (9). Although it is indisputable
that primary encounter of virus in the heart triggers death of
cardiomyocytes, the pathogenic role of persisting viral genomes
was poorly defined in the past. Recently, experimental mouse
data demonstrated that persisting enteroviral RNAs do not
actively contribute to ongoing myocardial disease after viral
myocarditis (10).

Mice with high susceptibility to severe virus-induced
inflammation are pre-disposed also to a loss of self-tolerance
against cardiac proteins (11). Additionally, viral infection
of cardiomyocytes can trigger auto-destructive activity of
infiltrating cells, as well as, the formation of autoantibodies
directed against antigens of cardiac origin (12, 13) further
exaggerating heart tissue damage. Establishment of autoimmune
myocarditis in mice by priming with cardiac antigens revealed
that the same strains of inbred mice, who develop post-viral
inflammatory heart tissue injury are also prone to autoimmune-
triggered heart pathology. This indicates that the background
genetics and involved immune response pathways for both
diseases might be overlapping (13, 14). Others have reviewed
in detail how type B coxsackievirus interacts with the innate
and adaptive immune system and inflammatory responses
(7, 15). Our primary interest herein is to discuss how cellular
proteolysis by the proteasome affects the innate and adaptive
immune response during CVB3-induced inflammatory damage
of heart tissue, and our focus will broaden to the adaptation of
this multi-catalytic protease in different cells during infection
and inflammation. We will specifically discuss recent findings
regarding the functional importance of a specific proteasome
subtype expressed in hematopoietic cells and its possible
implications for cytokine-mediated pathogenesis and therapeutic
interference during viral myocarditis.

THE PROTEASOME: A DRUGGABLE

MULTI-CATALYTIC PROTEASE

Several avenues of research have implicated the ubiquitin-
proteasome system (UPS) as a major regulator of cell signaling
and transcription. It controls also antigen processing, apoptosis
and cellular proliferation. The ubiquitination machinery tags
degradation-prone proteins in a highly regulated system for
processing by the proteasome. As an integral part of cellular
proteostasis, proteasome-mediated protein degradation is the
primary route for intracellular removal of misfolded, damaged,
or short-lived proteins (16). Proteasomes are multi-subunit
enzymes with a barrel-shaped structure and internal active
sites are accessible through a gated pore (17, 18). Proteasome-
destined cargoes are recognized by regulatory particles (19S
regulator) associated with the proteasome core complex
(20S proteasome). The recognition, de-ubiquitination, and
unfolding of substrates in direct proximity to the gated entry
channel made up of the outer α ring of the 20S proteasome is
required for degradation (19). Peptide hydrolysis is restricted
to three β subunits, β1, β2, and β5, within the interior of
the 2-fold symmetric core 20S proteasome. In addition to
the aforementioned functions of the proteasome, the UPS
is also of particular importance under conditions of cellular
stress, where a rapid elimination of unfolded and potentially
toxic proteins is required to prevent formation of cytotoxic
aggregates (16, 20). Restrained function of the UPS might lead
to accumulation of harmful proteins to toxic levels, causing
disease (21). Cells have several ways to meet such increased
demand for protein turnover. In response to Interferon (IFN)-γ
(22, 23), tumor necrosis factor (TNF)-α (24), doxorubicin
(25), or H2O2 exposure (26), others and we demonstrated
an increased abundance of the immunoproteasome (i-
proteasome), a specific proteasome isoform that contains
alternative catalytic subunits (β1i/low molecular weight
protein (LMP) 2; β2i/multicatalytic endopeptidase complex
(Mecl)-1, β5i/LMP7) (27). I-proteasomes at least partially
replace their constitutively expressed standard proteasome
counterpart in different tissues upon infection (28, 29).
During viral myocarditis, the i-proteasome is upregulated
strongly in heart tissue and its induction involves IFN-γ
(30, 31), as well as, type 1 interferon (T1IFN)-mediated
signaling (8). In the heart, i-proteasome formation results
in increased peptide hydrolysis capacity (8). This adaptation
within the proteolytic core of the 20S proteasome complex
is advantageous since it contributes to maintenance of
protein homeostasis during inflammation (23, 32, 33).
I-proteasome assembly is very similar to the formation
of the standard proteasome [reviewed recently by (34)].
Additional proteasome subtypes like the thymoproteasome
with tissue-specific β5t subunit expression (35) and mixed
proteasomes that contain only one (β5i) or two (β1i and β5i) of
the three inducible catalytic subunits of the i-proteasome
(36) contribute to the variety of proteasome-mediated
proteolysis.

Both facts—the close vicinity of genes encoding β1i/LMP2,
β5i/LMP7, and the transporter associated with antigen
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presentation (TAP) within the major histocompatibility
(MHC) II region, as well as, the regulatory function of IFNγ for
these molecules—were indicative for a specialized function of
the i-proteasome during MHC class I antigen presentation (37).
The finding that β1i/LMP2 and β5i/LMP7 enhance substrate
cleavage after basic and hydrophobic amino acid residues further
strengthened the notion for a specific role of the i-proteasome in
the generation of antigenic peptides (22, 38). In fact, there are
numerous examples for viral, bacterial, and parasitic pathogens
for which in vitro peptide processing studies revealed facilitated
MHC class I epitope liberation by the i-proteasome complex
in comparison to lower epitope abundance upon processing
of model polypeptides with the standard proteasome (39).
This altered prevalence of antigenic peptide generation by the
i-proteasome is attributed to different peptide cleavage site
usage (40), and can elicit to altered CD8+ T cell-mediated
immune surveillance also (41–46). Nevertheless, these findings
appear to be restricted to a defined pool of immunodominant
epitopes with no effect of the i-proteasome on other epitopes
(28, 47, 48).

During the last three decades, the experimental landscape
investigating i-proteasome biology substantially broadened
with the availability of knockout mice lacking either single
immunosubunits (47, 49) or a combinatory deletion of the
three genes encoding β5i/LMP7, β1i/LMP2, and β2i/MECL-
1 (45). Because deletion of a single i-proteasome subunit
might be outweighed by increased formation of standard
proteasome complexes (50), research on the i-proteasome
improved further with the availability of i-proteasome subunit-
selective inhibitors. Kisselev and Groettrup provided a detailed
overview on inhibitors of the respective subunits of the
immunoproteasome (51). Structure-guided optimization of such
inhibitory compounds with subunit selectivity is actually an
ongoing objective. Initially, development of i-proteasome-
selective inhibitors was pursued with regard to the profound
benefit in patients with multiple myeloma (MM) upon the
implementation of non-selective proteasome inhibitors like
bortezomib or carfilzomib (52–55). Despite their high efficacy
for MM cells, targeting the proteasome in other organs
like the heart constitutes a risk for heart failure (56). In
comparison to heart tissue (57), MM cells are unique regarding
the preferential expression of the i-proteasome in these
cancer cells. Therefore, compounds with selective i-proteasome
subunit specificity represent an alternative strategy for more
selective tumor-directed targeting (54, 58). ONX 0914 initially
known as PR957 is a potent i-proteasome-selective inhibitor
that predominantly targets the β5i/LMP7 and to a lower
degree the β1i/LMP2 i-proteasome subunit as well (29, 59).
Beyond the tumor-suppressive potential of ONX 0914 (60,
61), pre-clinical research utilizing this compound and other
i-proteasome-selective inhibitors revealed additional putative
clinical scenarios, where such drugs might improve current
medical treatment. Pioneering work by the Groettrup group
and others highlighted the therapeutic potential of i-proteasome
inhibitors for mitigation of autoimmune-driven inflammatory
tissue damage (50, 59, 62–64). KZR-616—an ortholog of ONX
0914 with high selectivity for the human i-proteasome—passed

successfully phase I trials and is now in phase II trials for patients
with systemic lupus erythematosus. Since i-proteasome activity
controls alloantibody production by B cells and influences
processes resulting in T cell exhaustion, i-proteasome-selective
compounds could be used to prevent allograft rejection upon
organ transplantation as well (65, 66). All these recent reports
shed light onto several previously unappreciated biological
functions of the i-proteasome and support the requirement for a
detailed overview on the pathological function of the proteasome
during virus-induced inflammatory heart tissue injury.

VIRAL ENTRY, REPLICATION, AND

RELEASE: CONTROL MECHANISMS BY

THE PROTEASOME

Viruses subvert cellular processes to favor viral propagation.
Given its central role in a wide range of cellular functions
by maintaining a critical level of essential regulatory proteins,
it is expected that the proteasome is involved in viral
replication, and numerous examples have indeed been reported.
Several viral proteins direct host-cell proteins to proteolytic
degradation by the proteasome (67). Viruses have evolved
e.g., by encoding specific ubiquitin ligase activity to employ
the proteasome for degradation of host proteins that would
impede viral growth. Since this review mainly focuses on
the immunomodulatory function of the proteasome complex
itself during manifestation of virus-mediated inflammatory
damage of heart tissue, the reader is encouraged to refer
to an excellent review recently provided by Honglin Luo
on interactions between ubiquitin/ubiquitin family proteins
and viral growth (68). Here, we will summarize examples of
viruses with known cardiac tropism, where the proteasome
complex is exploited for virus progeny formation and/or
where inhibitors of proteasome activity affect viral replication
(Table 1).

Approximately 20 viruses have been implicated in human
myocarditis and some of them interfere directly with the
UPS. Among them, parvovirus B19 is detected often in
endomyocardial biopsies obtained from patients with clinically
suspectedmyocarditis (9). Parvoviruses followmultiple strategies
for nuclear transport, some of them requiring active proteasomes.
Replication of minute virus of mice—a murine parvovirus—
is disrupted in the presence of proteasome inhibitors (81). In
addition to parvoviruses, members of the herpesviridae family
like human herpesvirus 6 (HHV6) are commonly detected
pathogens in cardiac biopsies (9). HHV6 causes accumulation
of p53 in the cytoplasm (86), and among many mechanisms
regulating p53 activity, the cellular abundance of p53 is controlled
by UPS-dependent turnover (87). In herpes simplex virus (HSV)
infection, proteasome activity directly affects virus progeny
formation. Since inhibitors of the proteasome block HSV entry
at a step occurring after capsid penetration into the cytosol but
prior to capsid arrival at the nuclear periphery, it was concluded
that cellular proteasome activity facilitates virus entry at this early
stage (74). The human cytomegalovirus (HCMV) pp71 protein
stimulates quiescent cells to enter the cell cycle by targeting
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TABLE 1 | Effect of the proteasome on the propagation of viral particles.

Virus Cell type Treatment/condition Effect on viral

replication

Targeted step in life cycle

of virus

References

Adenovirus HeLa cells MG132 Reduced Late gene expression (69)

Mouse adenovirus1 C57BL/6 mice LMP7−/− No effect n.r. (31)

Coxsackie-virus B3 (CVB3) Murine myxoma cell line HL-1 MG132, lactacystin Reduced Post entry (70)

A/J mice MLN353 No effect n.r. (71)

C57BL/6 mice LMP7−/− No effect n.r. (23)

Murine embryonic cardiomyocytes ONX 0914 No effect n.r. (72)

C57BL/6 mice ONX 0914 Increased cardiac titers

A/J mice ONX 0914 No effect on cardiac titers

HeLa cells PA28α/β siRNA Increased n.r. (73)

HeLa cells PA28α/β overexpression Reduced

Murine embryonic cardiomyocytes PA28α/β−/− Increased

C57BL/6 mice PA28α/β−/− No effect on cardiac titers

Herpes simplex virus 1

(HSV-1)

Monkey kidney epithelial cells (Vero

cells)

Hamster ovary cells (CHO-cells)

MG132 epoxomicin

lactacystin

Reduced Virus entry/post penetration

step

(74)

HeLa derivative HEp-2 MG132, MG115,

epoxomicin

Reduced Immediate-early and late

viral proteins

(75)

Human cytomegalo-virus

(HCMV)

Human embryonic lung fibroblasts MG132 Reduced All stages of viral replication (76)

Human embryonic lung fibroblasts MG132 Reduced Immediate early protein

synthesis

(77)

Human immuno-deficiency

virus 1/2 (HIV1/2)

HeLa cells, human T cell line A3.01 MG132, lactacystin Reduced Gag processing and virus

particle release

(78)

Human CD4+ T cells, human

CD4+ cell line OM-10.1

Bortezomib, lactacystin,

MG132

Reduced Infectivity of the virion and

viral latency

(79)

Influenza A virus Canine kidney cells MDCK MG132, bortezomib Reduced Post fusion (80)

Minute virus of mice1 Murine B cells A9 MG132, lactacystin,

epoxomicin

Reduced Post endosomal escape (81)

Polio virus HeLa cells MG132, bortezomib Reduced Post entry (no effect on

translation)

(82)

Vaccinia virus HeLa cells MG132, epoxomicin Reduced Post entry (viral genome

replication; intermediate and

late gene expression)

(83)

HeLa cells MG132, bortezomib Reduced Genome uncoating,

replication, late viral gene

expression, virus assembly

(84)

The table summarizes viruses with known cardiac tropism and the impact of different proteasome inhibitors (bortezomib, MG132, lactacystin, MLN353, MG115, as well as, the

immunoproteasome-selective inhibitor ONX 0914 (59)), of the proteasome activator PA28 (85), as well as, of the i-proteasome (cell culture and mouse studies using LMP7−/− mice or

cell lines obtained from these mice (47) on viral replication. CHO, chinese hamster ovary; MDCK, madin-darby canine kidney; Gag, group-specific antigen; n.r., not reported; MLN353,

Millennium353 (proteasome inhibitor); ONX 0914, immunoproteasome-specific inhibitor; PA28α/β, proteasome activator α/β of 28 kDa.
1Murine pathogens.

proteins of the retinoblastoma (Rb) family for proteasome-
dependent degradation (88) and proteasome inhibitors block
viral DNA replication, as well as, assembly of HCMV (76). The
annual influenza virus (IV) season also calls upon some cases of
IV-induced myocarditis in man. Proteasome inhibitors attenuate
virus progeny formation at a post-fusion step upon influenza
A virus (IAV) infection, and UPS activity is required for RNA
synthesis of the virus (80). A similar function of the proteasome
machinery at a post-entry step during viral replication applies
to DNA replication and expression of intermediate and late
genes of the vaccinia virus (83). Work is still in progress
to unravel the role of the proteasome in the replication of
human immunodeficiency virus (HIV). Thus far, it was shown
that proteasome inhibition interferes with gag polyprotein

processing, release and maturation of HIV-1 and HIV-2
(78, 79).

Although the frequency of adenovirus and coxsackie B virus
detection in human myocarditis has gradually declined in adults
in Western Europe during the last two decades, they are
still a common cause of myocarditis in children or reported
in small regional outbreaks. The adenovirus (Ad) E4 protein
requires active proteasomes to promote late gene expression (69).
Moreover, the Ad E1A protein regulates proteasomal activity,
but is also a substrate for proteasome-mediated degradation (89).
Recently, the Weinberg group established a mouse model of
pediatric Ad-mediatedmyocarditis following intranasal infection
of neonatal C57BL/6 mice with mouse adenovirus 1 (MAV-1)
(90). MAV-1-myocarditis induces IFN-γ-mediated i-proteasome
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formation in infected heart tissue, but the catalytic activity of the
β5i/LMP7 i-proteasome subunit had no effect on viral genome
copy numbers in heart tissue (31). Therefore, it is unlikely
that MAV-1 replication is affected by i-proteasome activity.
In addition to in vivo models for the investigation of viral
heart disease, in vitro studies have substantial advantages to
provide information on the function of the proteasome regarding
virus progeny formation. Most detailed information on the
proteasome during the replicative phase of a human cardiotropic
virus is available for CVB3. The McManus/Luo group was
first to report a substantial suppression of CVB3 replication
in HL-1 cells upon treatment with pan-specific proteasome
inhibitors. This inhibitory effect was independent of the blockade
of viral entry into host cells and rather attributed to reduced
genome replication (70). The Luo group followed proteasome
inhibition also during CVB3-induced myocarditis using A/J
mice, which are known to be highly susceptible for CVB3-
induced pathogenesis. In their study, MLN353 was introduced as
a novel proteasome inhibitor for in vivo application. In contrast
to the robust suppression of viral replication upon MG132
treatment in the HL-1 myxoma cell line (70), MLN353 treatment
of mice did not influence virus titers (71). These somewhat
controversial findings indicate that other essential pathways
for CVB3 control might possibly be adversely influenced by
MLN353, and this could outweigh the suppressive effect of
proteasome inhibitors in cells targeted by virus infection. Our
group investigated the contribution of specific proteasome
subunits on the replication cycle of CVB3 in cellulo under
one-step conditions using both HeLa cells and murine primary
embryonic cardiomyocytes. PR825, as well as, ONX 0914 were
applied at non-toxic concentrations to specifically block the

catalytic activity of either β5 or β5i/LMP7, respectively. The

CVB3 replication cycle involving the adsorption, penetration,
replication of the parent virus, and release of progeny virus

was not altered by the selective inhibition of these proteasome

subunits (72). In addition to diverging peptidase activities of the
six catalytic subunits, proteasome activity can be regulated upon
binding to regulatory particles like the proteasome activator of 28
kDa (PA28). PA28-capped proteasome complexes are equipped
with increased peptide hydrolysis capacity (91), and by as yet
unknown mechanisms PA28 suppresses the CVB3 replication
machinery (73). Altogether, a broad spectrum of various viral
pathogens exploits the proteasome machinery in cells of the host
organism.

INNATE IMMUNITY: HOW THE

PROTEASOME AFFECTS THE FIRST

DEFENSE WAVE

Type I Interferons During Viral Myocarditis:

Control by Proteasome Activity
During viral infection, viral RNAs and replication intermediates
bind to their respective intracellular pattern recognition
receptors, including Toll-like receptors (TLRs) and retinoic
acid-inducible gene I (RIG-I), and, mediated by several
distinct signaling pathways, this increases the production of

T1IFNs [refer to (92) for a detailed review on T1IFNs in
infectious disease]. T1IFNs are an effective first line of defense
against viral infections and as such, a robust T1IFN response
is highly beneficial to counteract early CVB3 infection in
mice (93–95). Results from a pilot trial indicated a putative
beneficial therapeutic influence of T1IFN substitution in patients
with coxsackieviral myocarditis (96, 97). Following activation
of the IFNα/β receptor (IFNAR), a diverse repertoire of
antiviral proteins is expressed including protein kinase R
(PKR), 2,5 oligoadenylate synthetase-like protein 2 (OASL-
2), IFN-induced proteins with tetratricopeptide repeats (IFITs),
as well as, IFN-stimulated genes like ISG15. The latter is
an ubiquitin family protein, which is strongly induced by
T1IFNs and NF-κB signaling in cardiomyocytes (98, 99),
suppresses coxsackieviral replication, mitigates profoundly viral
myocarditis and blocks the progression to its debilitating
sequela (99).

Plasmacytoid dendritic cells (pDCs) are a major source for
T1IFNs during viral myocarditis (100) and unique regarding
their TLR7 or TLR9-dependent activation of IFN regulatory
factor 7 (IRF7)-mediated IFNα/β production (101). Whereas,
molecular accounts on the influence of ubiquitin modifications
on pattern recognition receptor (PRR)-mediated signaling are
available (102), less is known about the role of the different
peptidase activities of the proteasome during the process from
engagement of PRR to T1IFN production. Pan-specific inhibitors
of the proteasome like bortezomib or carfilzomib, which target
both the standard proteasome and i-proteasome, are potent
suppressors of TLR9 activation in murine bone marrow cells, as
well as, human peripheral blood mononuclear cells (PBMCs),
but other TLR-mediated pathways like Toll/interleukin-1
receptor-domain-containing adapter-inducing IFNβ (TRIF)-
mediated IRF3 activation are affected as well (63). Selective
i-proteasome inhibitors assigned specifically the control
of IFNα/β production in pDCs to i-proteasome peptidase
activity (59, 63). Correspondingly, i-proteasome inhibition
in CVB3-infected C57BL/6 (B6) mice substantially reduces
T1IFN production. Thereby, i-proteasome inhibition aggravates
disease parameters like viral load in B6 mice (72). On the
other hand, ISGs in germline LMP7−/− mouse models are
as active as in wild-type controls during viral myocarditis
(23). Indisputably, numerous studies indicate that the effects
of T1IFN on the host response to infection are not limited
to the acute, cell-intrinsic antiviral response described above.
IFNα/β are also involved at various stages in the activation
of adaptive immune cell responses e.g., by evolving antigen
presenting DCs into a mature state (92). Similar to this, in
hosts exhibiting high susceptibility for development of severe
acute and chronic heart pathology like A.BY/SnJ mice, a shifted
and overall significantly impaired T1IFN response (9, 100)
leads to reduced DC activation and lower cross-presentation
(100, 103). Genetic defects of i-proteasome subunits in mice
that lead to impaired i-proteasome formation or proteasome
inhibitor treatment decrease DC activation, thus, influencing
the immune-stimulatory capacity of DCs as reflected by
altered co-stimulatory molecule and C-C chemokine receptor 7
(CCR7) expression, as well as, cytokine production, respectively
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(104, 105). Thereby, i-proteasome-mediated proteolysis
might directly control the antigen presentation capacity
of DCs.

In contrast to the classical antiviral function of T1IFNs,
there is increasing appreciation that IFNα/β can also be
harmful, e.g., by triggering excessive inflammation and tissue
damage (106). Likewise, IFNα/β is a classical disease-trigger of
autoimmunity and auto-inflammation, and a reduced IFNα/β
production as achieved upon administration of i-proteasome-
selective inhibitors attenuates disease manifestation in models of
lupus erythematosus (63). Defects in the DNA three prime repair
exonuclease 1 (Trex1), which result in high cyclic guanosine
monophosphate–adenosine monophosphate synthase (cGAS)
induced IFNα/β production, lead to spontaneous inflammatory
myocarditis in mice and Aicardi-Goutières syndrome in man
(107, 108). Similarly, mutations in different genes encoding
protein subunits of the human proteasome restrain T1IFN
production, and this commences to a syndrome involving
chronic atypical neutrophilic dermatosis with lipodystrophy and
elevated temperature (CANDLE) (109–111).

Effect of the Proteasome for Humoral

Innate Immunity
In addition to the cellular branch of innate immunity that
comprises cell-associated pattern recognition receptors, its
humoral branch includes molecules such as the classic short
pentraxin C-reactive protein (CRP), the long pentraxin PTX3,
and complement recognition molecules (112). During viral
myocarditis, PTX3 is produced mainly by monocytes and
macrophages (113, 114). PTX3 promotes the engulfment
of cellular debris by immune cells (115), and acts as a
safeguard mechanism dampening myocardial injury induced
upon pattern-associated molecular pattern (PAMP)/damage-
associated molecular pattern (DAMP) signaling (112). Although,
the detailed molecular aspects are unresolved, the peptidase
activity of the i-proteasome controls PTX3 expression in TLR4-
activated macrophages during viral myocarditis (114) and
pneumococcal pneumonia (116), a function of the i-proteasome
which cannot be compensated by enhanced formation of
standard proteasome in LMP7−/− mice (114).

The Proteasome Balances Protein

Homeostasis
Myocarditis in CVB3 (Nancy)-infected LMP7−/− mice on a B6
background lacking intact i-proteasomes is not only mirrored
by reduced PTX3 production (114), but it also comprises high-
grade inflammation and increased cell death (23). In cells with
high rate of protein synthesis e.g., in response to cytokine
signaling, a reduction of translational fidelity often occurs,
generating defective ribosomal products (16). Cells in general
and cardiomyocytes in particular that produce higher amounts
of i-proteasomes are equipped with increased proteolytic activity
and can efficiently degrade defective proteins (32, 33, 117).
Thereby, the i-proteasome diminishes tissue damage in mouse
hearts of CVB3-infected wild-type B6 mice (23). Nevertheless,
this finding in B6 mice is in clear contrast to findings made in

A/J mice, which exhibit high susceptibility for virus-mediated
inflammation of heart tissue (118, 119) and generally present
with increased viral burden in the heart. Here, i-proteasome
activity constitutes severe cytokine-mediated inflammatory heart
tissue injury. I-proteasome inhibition blocks chemokine and
cytokine production, and consequently reduces the appearance of
misfolded proteins (72). The use of selective inhibitors targeting
i-proteasome activity does not necessarily reflect the findings
obtained in respective germ-line gene deficient mouse models
(23, 50, 72). As an example, contrary to what was reported
in LMP7−/− B6 mice, inhibition of i-proteasome activity by
ONX 0914 in CVB3-infected wild-type B6 mice disrupts the
T1IFN defense against the invading pathogen, facilitates virus-
mediated tissue damage and exacerbates PAMP/DAMP-signaling
in the heart. Thereby, the production of chemokines, infiltration
with immune cells, as well as, cytokine release increase (72).
Such discrepancies between specific inhibitors for proteasome
subunits and their knockout models might be due to a
compensatory formation of standard proteasomes in LMP7−/−

mice (50, 59), which is not observed at a similar level in ONX
0914-treated mice.

Innate Myeloid Cells: Proteasome Activity

Regulates Chemokine and Cytokine

Production
Neutrophils are the first and most abundant cell population
of the host’s innate immune response with well-known
function in the defense against bacterial and fungal pathogens.
Moreover, neutrophil recruitment in virus infection can be
part of a protective strategy leading to prevention of viral
disease (120). The i-proteasome influences the abundance
of these cells in blood and spleen, but it controls the
activation status of neutrophils as well (72, 121). Nevertheless,
neutrophils have no disease modifying impact on CVB3-induced
myocarditis (72, 122, 123). During myocarditis, particularly
monocytes/macrophages—that emigrate the bone marrow, then
sequester and differentiate in the spleen—infiltrate the infected
mouse heart (23, 99). Chemokines attract these cells to the
injured heart, where they are indispensable for waste removal
and healing (7, 124). On the other hand, many studies have
highlighted the requirement of monocytes/macrophages for
the manifestation of the detrimental consequences of viral
myocarditis—inflammatory injury and formation of fibrotic
scar (72, 125–128). Similar to monocytes, macrophages also
exacerbate inflammatory injury in infected mouse hearts (127).
Monocytes and macrophages secrete pro-inflammatory and pro-
fibrotic cytokines (7, 126). Therefore, molecules involved in
innate immune cell mobilization and differentiation or in the
control of cytokine/chemokine production by these cells present
putative drug targets for future investigation. Resembling their
effects on neutrophils, i-proteasome inhibitors stimulate also
monocyte/macrophage emigration from the bone marrow and
increase the abundance particularly of Ly6Chigh monocytes in
the spleen (72, 121), where they differentiate to macrophages
under inflammatory conditions (129). These findings might be
indicative for a pro-inflammatory function of the i-proteasome.
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In contrast, there is considerable experimental evidence from
various in vitro and in vivo approaches that argues substantially
against this notion and rather advocates i-proteasome-selective
inhibitors as anti-inflammatory drugs e.g., for autoimmunity
or to prevent transplant rejection (50, 59, 62, 65, 66). As
summarized in Figure 1, selective inhibitors of the i-proteasome
suppress the production of pro-inflammatory cytokines such as
TNF-α and IL-6 in TLR4 and TLR7 activated immune cells.
Similar results were obtained in IFNγ and TLR4 activated
mouse macrophages (137), TLR4 stimulated splenocytes (59,
138), TLR4 activated PBMCs from healthy donors and patients
with rheumatoid arthritis (59), as well as, TLR7 engaged
macrophages (72). Consistently, in CVB3 infected A/J mice, the
i-proteasome affects cytokine production also (72). Nevertheless,
it needs to be recalled that under conditions where i-proteasome
activity is needed for pathogen control like during Candida
albicans or CVB3 infection of B6 mice, this influence of i-
proteasome proteolysis on cytokine production seems to be
outweighed by a higher PAMP burden (72, 121). In this
case, the pathogen load is presumably a much stronger
effector of cytokine production than the cellular content of the
i-proteasome.

Influence of Proteasome Peptidase Activity

on TLR Signaling
In A/J mice, CVB3 replicates to about 10-fold increased titers
in the heart in comparison to B6 mice (72). One might
speculate that the overall increase in viral RNA ultimately
stimulates PRR signaling in mouse hearts, thereby facilitating
cytokine/chemokine production. In fact, the inflammatory
response in infected heart tissue is higher in A/J mice if directly
compared to B6 mice. It remains an enigma how i-proteasome
catalyzed proteolysis controls PRR signaling at a molecular
level. In addition, it is unclear why the i-proteasome affects
differently the cardiac phenotype during MAV-1 and CVB3-
induced myocarditis in B6 mice (31, 72). CVB3 as a single-
stranded RNA virus is a bona fide activator of TLR7 and
TLR8 (139) [in mice only TLR7 is active (140)]. Viral DNA
from Ad however triggers the TLR9 pathway. Alternatively,
Ad escaping the endosome reveals viral DNA complexes to
the cytosolic compartment and sensors like cGAS, which
acts by the stimulator of interferon genes (STING)-controlled
immune pathway (141). Thereby induced signaling stimulates
transcription factors like IRF7 (TLR7, TLR9) activator protein
1 (AP-1) (TLR7, TLR9), NF-κB (TLR7, TLR9, STING), and
IRF3 (STING) leading to the induction of target genes that—
in addition to IFNs and other ISGs - also encode pro-
inflammatory cytokines and chemokines (101, 142). Therefore,
we have summarized the current understanding on how the
i-proteasome influences e.g., TLR mediated cellular signaling
in Figure 1.

The NF-κB family of transcription factors, which acts
downstream of TLR7, TLR9, and STING, plays a central role in
regulation of inflammation. In the canonical pathway of NF-κB
activation, the proteasome degrades IκBα, releasing the active
NF-κB dimer (usually p65/p50) and allowing translocation to

the nucleus (Figure 2). The impact of the different proteasome
isoforms on NF-κB signaling is reported controversially
(summarized in Table 2). A defective NF-κB activation as
a response to reduced LMP2 expression in non-obese mice
was attributed to reduced processing of the NF-κB precursor
p105 (143, 145), but two different laboratories rebutted these
findings (146, 150). Other data confirmed the initial findings and
suggested an altered stimulation of canonical NF-κB activation by
the i-proteasome in comparison to the standard proteasome. 20S
i-proteasomes accelerate IκBα degradation (144), p65 nuclear
translocation is lower in IFN-γ activated murine embryonic
fibroblasts from LMP7−/− mice (149), and LPS-activated B cells
from LMP2−/− degrade IκBα less efficiently than controls do
(147). However, different groups revisited these aspects and
novel data reported on contradictory findings arguing that
the i-proteasome plays no obligatory role in the degradation
of IκBα and activation of the canonical NF-κB pathway
(59, 114, 137, 148). Different model systems and heterogeneous
read outs for the activation of canonical NF-κB activation might
attribute to these controversial findings. As illustrated in Table 2,
more recent reports utilized advanced models such as primary
cells obtained from different i-proteasome deficient mouse
strains (LMP7−/−, LMP7−/−/Mecl-1−/−, LMP2−/−), and, more
importantly, applied selective proteasome inhibitors in diverse
immune and non-immune cells. Moreover, the majority of
these reports focused on transcriptional activity of the canonical
NF-κB pathway, whereas earlier reports indicated effects on
signaling primarily at the level of p105 processing and Iκ-Bα

degradation.
Similar to TLR4-stimulated cells, cytokine/chemokine

production in TLR 7 activated cells also involves MyD88
signaling, which in addition to NF-κB activates mitogen-
activated protein kinase kinases (MAPKK) resulting in
phosphorylation of p38, c-Jun N-terminal kinases (JNKs),
and extracellular signal-regulated kinases 1/2 (ERK1/2),
culminating in activation of AP-1 (101, 151). Pan-specific
proteasome inhibition influences this MAPKK pathway in
lipopolysaccharide (LPS)-stimulated DCs (104). Since the pool
of proteasomes in DCs is mostly comprised of the i-proteasome
(136), such findings are indicative for a specific effect of the
i-proteasome. And indeed, data from more recent work showed
that the i-proteasome controls specifically the abundance and/or
activity of certain kinases, phosphatases and/or regulatory
proteins involved in the complex MAPK signaling network,
resulting in increased MAPK phosphorylation upon engagement
of TLR4 and TLR7 (72, 114). A comprehensive system
biology-based approach might be most appropriate to dissect
the involved effectors that rely on functional i-proteasome
activity. If and how i-proteasome activity influences mRNA
transcription of genes that are under the control of IRF3, IRF8,
and IRF7 is still a matter of ongoing investigation. TLR4-
activated DCs from LMP7−/−/Mecl-1−/− mice show unaltered
phosphorylation of IRF3 (105). The pan-specific inhibitor of
the proteasome bortezomib interferes with IRF-3 and IRF-8
activation in response to LPS in human DCs (104), suggesting
a selective effect of proteasome inhibition on the IRF-3
pathway as well.
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FIGURE 1 | Impact of i-proteasome subunits on innate immune signaling in myeloid cells. Among many different pattern recognition receptors, TLRs are sensors of

microbial antigens on monocytes/macrophages and dendritic cells. These membrane-bound receptors are located both on the cellular surface (TLR4—colored in red)

and in endosomes (TLR3—green, TLR7—blue, TLR9—purple) (101). Signaling pathways down-stream of TLR4, TLR7, and TLR9 involve the common adaptor

molecule MyD88 (130, 131). Upon TLR stimulation, the ubiquitin E3 ligase TRAF6 engages with the TLR/MyD88 complex and generates poly-ubiquitin scaffolds (132),

thereby recruiting the TAK1 complex (133). TAK1 then activates the IKK complex, which in turn phosphorylates IκBα. Ubiquitination of IκBα marks it for degradation by

the proteasome. Thereafter, NF-κB translocates into the nucleus. Simultaneously, TAK1 induces MAP kinase signaling (134), which results in the phosphorylation of

ERK1/2, p38, and JNK and thereby activates the transcription factor AP-1. Both NF-κB and AP-1 induce the expression of co-stimulatory molecules (CD80, CD86,

CD40) and migration signals (CCR7) on DCs, the secretion of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-23, IL-1β), chemokines (e.g., Mip2α, MCP-1, IP-10,

RANTES), and of Pentraxin3 by monocytes/macrophages (cytokines partially also by DCs). MyD88-dependent TLR7/9 signaling induces the phosphorylation of IRF7,

which is a key regulator of T1IFN (IFNα, IFNβ) expression in pDCs (135). Signals from TLR3 and TLR4 are transmitted by a MyD88-independent, TRIF-dependent

pathway involving activating kinases (131). Phosphorylation of IRF-3 induces translocation into the nucleus. Results obtained from in vitro studies, in which the impact

of the different peptidase activities of the proteasome isoforms regarding to TLR signaling or the expression of effector molecules were investigated by different

(Continued)
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FIGURE 1 | approaches, are summarized. Colors indicate the type of TLR stimulated to activate innate immune cells of different origin including human PBMCs,

murine splenocytes, bone marrow cells and peritoneal macrophages. Each box illustrates both the model used to alter a specific peptidase activity of the

proteasome—innate myeloid cells isolated from knock out mice or proteasome inhibitors with different specificity studied in innate myeloid cells, as well as, the

observed effect either on the respective signaling pathway or on the production of respective effector molecules. (↓): reduced phosphorylation of a key molecule in the

indicated signaling pathway or lower production of the effector molecule, = no alteration of signaling or production of the effector molecule. AP-1, activator protein 1;

BTZ, bortezomib—a pan-specific proteasome inhibitor included because the i-proteasome is highly abundant in DCs (136), CCR7, C-C chemokine receptor type 7;

DC, dendritic cell; ERK, extracellular signal–regulated kinases; IκBs, inhibitors of κB; IKK, IκB kinase; IP-10, interferon-gamma induced protein 10; IRF3, interferon

regulatory factor 3; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein 1; Mip2α, macrophage

inflammatory protein 2α; MKK, mitogen-activated protein kinase kinase; MyD88, myeloid differentiation primary response 88; NF-κB, nuclear factor-κB; ONX 0914,

immunoproteasome inhibitor (59); RANTES, regulated on activation; normal T cell expressed and secreted; T1IFN, type I interferon; TAK1, transforming growth

factor-β activated kinase 1; TLR, Toll-like receptor; TNF-α, tumor necrosis factor α; TRAF, TNF receptor associated factor; TRIF, TIR-domain-containing adapter

inducing IFNβ. (1) (59) (2) (63) (3) (104) (4) (105) (5) (114) (6) (72) (7) (137) (8) (138) (9) (116).

FIGURE 2 | Regulation of NF-κB signaling by the proteasome. Multiple

inflammatory signals result in the activation of the transcription factor NF-κB

through a variety of adapter proteins and kinases. The most abundant form of

the NF-κB dimer is the p50/p65 heterodimer. (A) The p105 precursor is

processed by the proteasome, thereby liberating the NF-kB p50 subunit for

dimerization with p65. IκB retains the NF-κB heterodimer in the cytoplasm.

(B) Ligand binding to cellular receptors like TLRs activates the IKK complex,

which catalyzes the phosphorylation of IκB, inducing its poly-ubiquitination

and degradation by the proteasome. (C) Activated NF-κB translocates into the

nucleus, where it (D) activates target gene expression. Table 2 summarizes all

reported effects of i-proteasome activity on the different steps in this canonical

NF-κB signaling pathway. NF-kB, nuclear factor kappa B; IκBs, inhibitors of

κB; IKK, IκB kinase.

Natural Killer Cells
Natural killer (NK) cells as lymphoid effectors of the rapidly
acting antiviral immune response are among the first cells to
sense pro-inflammatory cytokines. More than two decades
ago, the importance of NK cells for CVB3 clearance and

disease progression was highlighted in mice (152, 153). More
recently, this pathobiological significance could be extended
by providing firm evidence for a protective role of the NK
cell receptor NKG2D, which upon activation triggers effective
virus clearance in myocarditis (154). Knowledge regarding
the impact of proteasome activity on NK cell function is
incomplete and data are mainly available from tumor models.
Immune surveillance of tumor cells involves a tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL)-mediated
cytotoxic pathway used by NK cells leading to tumor cell lysis.
Proteasome inhibitors like bortezomib can sensitize tumor
cells to TRAIL-mediated lysis (155). If findings in tumor
models might be transferable to viral myocarditis, is unknown.
There is no evidence for a specific influence of the different
proteasome isoforms on NK cell abundance within the inflamed
heart of mice after CVB3 infection (23). Nevertheless, our
current comprehension of the role of proteasome activity
on NK cell function during viral myocarditis remains
incomplete.

INFLUENCE OF THE PROTEASOME ON

ESTABLISHMENT OF ADAPTIVE

IMMUNITY

The migration of NK cells and myeloid cells to the site of
injury in conjunction with a considerable increase in pro-
inflammatory cytokines is followed by a second wave of
infiltration with CD4+ and to a lesser extent B and CD8+

T lymphocytes as well. Similar to innate immunity, virtually
all knowledge about the biological function of the adaptive
immune response with regard to the manifestation of viral
myocarditis is based on the mouse model of CVB3-induced
myocarditis. Experiments with immune-deficient mice revealed
that both humoral and cellular immune responses are required to
control CVB3 infection. Accordingly, mice with severe combined
immunodeficiency, which lack mature B and T cell function,
develop extensive myocarditis with high mortality rates (156).
In this review, we expand upon established knowledge about the
function of the proteasome in adaptive immunity and attempt
to illuminate the implication of the different isoforms in virus
control. For further details on interactions of coxsackievirus and
adaptive immune system, we refer the reader to an excellent
review by (15).
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TABLE 2 | Regulation of NF-κB signaling by the i-proteasome.

Affected part of NF-κB

pathway

Implicated subunit Shown in/by Cell type/stimulus Determined by References

Processing of the NF-κB

p105 precursor

protein—(A)

LMP2 NOD and LMP2−/− mice Splenocytes WB, IVP (143)

LMP2, MECL-1 IBD patients Isolated proteasomes

from colonic mucosa

IVP (144)

LMP2, LMP7 Cells lacking LMP2 and

LMP7

T2 cells (human) WB, IVP (145)

LMP2, LMP7 Cells lacking LMP2 and

LMP7

T2 cells WB (146)

IκBα degradation by the

proteasome—(B)

LMP2 LMP2−/− mice B cells + LPS WB (147)

LMP2 NOD and LMP2−/− mice Splenocytes + TNF-α WB (143)

LMP2, MECL-1 IBD patients Isolated proteasomes

from colonic mucosa

WB (144)

LMP2, LMP7 Cells lacking LMP2 and

LMP7

T2 cells + TNF-α WB (145)

LMP7 ONX 0914 Cardiomyocytes (murine)

+ IFN-γ/TNF-α

WB (114)

LMP2, LMP7 UK-101, LSK01 Lung cells H23 (human) +

TNF-α

WB (148)

LMP7 LMP7−/− mice, ONX

0914

BM macrophages + LPS WB (114)

LMP2, LMP7, MECL-1 LMP7−/− MECL-1−/−

and LMP2−/− mice

Perit. Macrophages +

IFN-γ/TNF-α or LPS,

MEFs +IFN-γ/LPS

WB (137)

NF-κB nuclear

translocation and DNA

binding—(C)

LMP2 NOD and LMP2−/− mice Splenocytes + TNF-α EMSA (143)

LMP2, LMP7 Cells lacking LMP2 and

LMP7

T2 cells + TNF-α EMSA (145)

LMP7 LMP7−/− mice MEFs +IFN-γ/TNF-α IF (149)

LMP7 LMP7−/− mice Cardiomyocytes +

IFN-γ/TNF-α

TransAM® NFκB p50 (23)

LMP7 ONX 0914 Cardiomyocytes (murine)

+ IFN-γ/TNF-α

WB (114)

LMP7 ONX 0914 BM macrophages + LPS TransAM® NFκB p50, WB (114)

LMP2, LMP7 UK-101, LSK01 Lung cells H23 (human) +

TNF-α

WB, IF, EMSA (148)

LMP2, LMP7, MECL-1 LMP7−/− MECL-1−/−

and LMP2−/− mice

MEFs +IFN-γ/TNF-α EMSA, TransAM® NFκB

p65

(137)

NF-κB promoter

activity—(D)

LMP2, LMP7 Cells lacking LMP2 and

LMP7

T2 cells + TNF-α Luciferase assay (145)

LMP2 UK-101 Lung cells H23 + TNF-α Luciferase assay (148)

LMP7 LSK01 Lung cells H23 + TNF-α Luciferase assay (148)

LMP7 ONX 0914 Lung cells A549 +

IFN-γ/TNF-α

Luciferase assay (59)

LMP7 ONX 0914 Macrophages RAW264.7

(murine) + LPS

Luciferase assay (114)

Known effects of the i-proteasome are summarized for each step of the NF-κB signaling pathway. These steps involve: (A) processing of the NF-κB p105 precursor protein, (B) IκBα

degradation by the proteasome, (C) NF-κB nuclear translocation and DNA binding, and (D) NF-κB promoter activity, respectively (Figure 2). Results that indicate a specific role of the

i-proteasome for canonical NF-κB signaling are colored in light blue. Controversial findings arguing against the notion that the i-proteasome has a specific effect on canonical NF-κB

signaling are colored in dark blue. NF-kB: nuclear factor kappa B, IκBs, inhibitors of κB; T2 cells, human lymphoblast cell line defective in LMP2 and LMP7; UK-101, LMP2-specific

inhibitor; LSK-01, LMP7-specific inhibitor; ONX 0914, immunoprotesome-specific inhibitor. WB, Western blotting; IF, immuno-fluorescence; EMSA, electrophoretic mobility shift assay;

IVP, p105 in vitro processing assay, perit. macrophages: peritoneal macrophages; BM macrophages, bone marrow-derived macrophages; MEFs, mouse embryonic fibroblasts; LPS,

lipopolysaccharide.
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Influence of CD8+ T Cells on Viral

Myocarditis and Role of the Proteasome
In contrast to the preponderant significance of B cell and
CD4+ T cell responses for CVB3 clearance (157, 158), the
pathophysiological significance of CD8+ T cells for CVB3
clearance and inflammatory injury is less clear. The protective
function of CD8+ T cells (159) involves the production of
cytokines like IFNγ, yet is clearly separated from the direct
cytolytic effect mediated by perforin, a classic hallmark of virus-
specific CD8+ T cells (160). CD8+ T cells acting by perforin
cause extensive destruction of myocardial tissue (160, 161).
Evidence arguing in favor of a protective function of CD8+ T
cells duringmyocarditis was obtained fromCD8+ T cell-deficient
β2-microglobulin−/− mice, in which injury of cardiac tissue
exacerbates due to insufficient confinement of the initial viral
load in the heart muscle (160). One needs to keep in mind that
constitutive knockout models for perforin and β2-microglobulin
do not only mirror the function of these molecules in CD8+

T cells. Both perforin and β2-microglobulin affect also NK cell
activation and function. Nevertheless, the finding that CD8+ T
cells restrain CVB3 in mice indicates that the virus could induce
detectable CD8+ T cell responses. However, the Whitton group
provided data that coxsackieviruses do not elicit strong CD8+ T
cell responses. Investigation of mice infected with a recombinant
CVB3 encoding known lymphocytic choriomeningitis virus
(LCMV) derived CD8+ T cell epitopes failed to trigger a marked
expansion of CD8+ T effector cells (162, 163). This is mainly
due to the inhibition of antigen presentation by virus-induced
disruption of host protein trafficking in infected cells (164,
165). The virus almost completely blocks antigen presentation
via the MHC class I pathway, thereby evading CD8+ T cell
immunity (163). Our group followed a complementary approach
employing prediction tools for proteasomal cleavage sites, MHC
binding studies and in vitro peptide processing assays with
the proteasome to identify MHC class I epitopes originating
from CVB3 proteins (8, 166). Concordant with the findings by
the Whitton group, expansion of respective CD8+ T effector
cells was weak in mice (8). Similarly, adoptive transfer of
CD8+ T cells isolated from mice with CVB3 myocarditis did
not affect the manifestation of viral myocarditis in recipient
mice (23).

Based on these virus-specific aspects, the role for the i-
proteasome with regard to induction of CD8+ T cell responses
needs to be revisited for viral myocarditis. Following up on robust
i-proteasome formation in hearts of both MAV-1 and CVB3-
infected mice (30, 31), the Weinberg lab and our workgroup
investigated the role of the i-proteasome concerning virus
clearance in myocarditis. The i-proteasome facilitates the release
of peptides harboring hydrophobic or basic C-terminal amino
acids typical for MHC class I epitopes (22, 27). By facilitating
such specific peptide cleavages, the i-proteasome augments the
pool of antigenic peptides (40). Nevertheless, we found uniformly
that the i-proteasome can be adequately compensated by its
standard proteasome counterpart during viral myocarditis (23,
31). Although the i-proteasome provides an increased capacity
to liberate CVB3 epitopes for MHC class I antigen presentation
(40, 166), it cannot compensate for the disruption of MHC class I

presentation by the virus. If detectable at all, CD8+ effector T cell
responses remain weak during CVB3 infection (163).

CD4+ T Cells and Antibody Responses in

CVB3 Myocarditis: Impact of the

Proteasome
Infections with CVB3 trigger a rapid and effective antibody
response. Neutralizing antibodies appear 4 days after CVB3
infection (167) and are essential for controlling virus
dissemination and clearance in the heart (158). CD4+ T
cells activate B cells for production of protective antibodies. In
contrast to MHC class I, MHC class II epitopes are presented
efficiently upon infection with CVB3 and CD4+ T cells mature
quickly into effector and later on into memory T cells (163). The
proteasome is involved in multiple cellular processes needed
for antibody production. As outlined above, it controls the
maturation and activation of DCs (104), but the proteasome
regulates also B cell function (147). The canonical pathway
for MHC class II antigen presentation is located within the
endolysosomal compartment and thereby spatially separated
from the proteasome. However, there is also a non-canonical
cytosolic pathway of MHC class II-restricted antigen processing
involving proteasome-dependent peptide processing. In addition
to DCs exposed to exogenous influenza and vaccinia virus
(168), cancer cells present peptides on MHC class II by
such non-classical antigen-processing pathways (169). It is
unknown whether the cleavage site preference of the different
proteasome isoforms determine a specific CD4+ T cell repertoire
as reported for CD8+ T cells. To dissect the function of the
i-proteasome in CVB3 myocarditis, our group applied the
i-proteasome-specific inhibitor ONX 0914, and alternatively
utilized LMP7−/− mice. We found a strong induction of CVB3-
directed immunoglobulins and neutralizing antibodies in mice
lacking intact i-proteasome function (23). In fact, neutralizing
antibody titers were higher in mice with ONX 0914 treatment,
an observation that might be attributed to maintained survival
of CD4+ T cells during infection in response to i-proteasome
inhibition (72). The latter finding during CVB3 infection was
specific for A/J mice and did not occur in B6 mice. In B6 mice,
i-proteasome inhibition resulted in a reduction of lymphocyte
abundance in blood and spleen at the acute phase of the disease.
In fact, other groups demonstrated also a pro-survival function
of the i-proteasome in T cells during viral infection with IV and
LCMV (147, 170).

The fact that re-infection of B6 mice with CVB3 4 weeks
after primary virus inoculation completely revokes disease
manifestation emphasizes the importance of memory immune
status, as well as, antibody formation during CVB3 infection
(72). Upon encountering CVB3, memory T and B cells initiate
cell division much more rapidly than their naive counterparts
do. These data suggest that the level of MHC/peptide complex
upon initial infection is sufficient to trigger memory T cells (163).
In CVB3-infected B6 mice, displaying impaired i-proteasome
function, adequate immunememory develops unhindered as well
(23, 72). Similarly, protective immunity to MAV-1 is preserved
in LMP7−/− mice (31). Conclusively, the specific peptidase
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activities of the i-proteasome are not essential for establishment
of an adaptive immune response in mouse models of viral
myocarditis.

CVB-specific CD4+ T cells show an effector phenotype with
a Th1 cytokine profile (163). In addition, A/J mice induce
an autoreactive CD4+ T cell repertoire that contains IL-17-
producing cells (11). The availability of i-proteasome selective
inhibitors shed new light onto the role of the i-proteasome
during CD4+ T cell differentiation. Under Th17 skewing
conditions, inhibition of the LMP7 subunit downregulates
RORγt activity leading to reduced Th17 counts, whereby lower
STAT1 phosphorylation reduces IFN-γ production under Th1
skewing conditions indicative for lower Th1 counts (171).
Whether or not these in vitro findings are relevant during viral
myocarditis needs further investigation—a challenging task given
the relatively weak IL-17 signal obtained from CD4+ T cells
during acute myocarditis (11).

FUTURE PERSPECTIVES

Several mechanisms have been proposed for CVB3-mediated
myocarditis in mice, including direct virus-mediated cell damage
and destruction of heart tissue in response to the action of
immune effector cells (7). Being the major cellular mechanism
for protein degradation, the proteasomal system adapts to
augmented protein turnover by increased formation of i-
proteasomes (32, 33). Based on structural information (17, 18,
29), site-specific inhibitors targeting particular subunits of the
major proteasome isoforms have become available [reviewed in
(51)] and our understanding about the pathophysiological role of
the proteasome during CVB3-mediated myocarditis has thereby
improved. In our concluding remarks, we discuss whether
subunit-selective inhibitors might be applicable to suppress
manifestation or progression of virus-induced cardiac injury.

Inactivation of the highly abundant β5 standard proteasome
subunit in murine cardiomyocytes augments apoptosis in
myocardial ischemia/reperfusion injury (172) or due to
doxorubicin treatment. In contrast, even under conditions
with cytokine-induced i-proteasome expression, selective
i-proteasome inhibitors are advantageous in reducing
cardiomyocyte death in comparison to compounds targeting
either the standard or both the standard and the i-proteasome
with similar efficacy (25). During viral myocarditis, i-proteasome
formation and to a minor extent induction of PA28β also
enhance cellular protein turnover reducing the accumulation
of oxidant-damaged proteins (23, 73). The notion of a minor
influence of the i-proteasome regarding the control of pathogens
was supported by elimination of virus despite a reduction of
T1IFN (63, 72) upon i-proteasome inhibitor treatment and
induction of immune memory in CVB3 heart disease (72). This
is consistent with findings for other pathogens as well (48, 59)
and in addition, i-proteasome inhibitors are well tolerated in
other viral infection models (31, 173). In none of these models,
i-proteasome inhibition alters significantly the abundance of
toxic aggregates. Most strikingly, in mice susceptible for CVB3
myocarditis, i-proteasome inhibition is highly beneficial. ONX

0914 treatment improves cardiac function and mortality by
efficient suppression of cardiac and systemic chemokine and
cytokine production (72).

In addition to myocarditis, experimental infection of
susceptible mice with CVB3 results in severe systemic disease
as well, with the pancreas being the primary and most
affected organ (174). Early upon infection, mice become
hypoglycemic, most likely due to pancreatitis and digestive
dysfunction (175). With the release of cytokines, such systemic
pathology alters the vascular tone and impairs diastolic filling
as well. Systemic disease in A/J mice is reminiscent of a
distributive shock in sepsis (118). Importantly, given the high
abundance of i-proteasome in immune cells, i-proteasome
specific inhibitors affect systemic pathology as well and this
has immediate impact on the cardiac output and immune-
mediated damage of heart tissue (72). Other than in the
experimental mouse model, myocarditis in man usually follows
a benign respiratory, gastrointestinal or urogenital infection,
and pancreatitis is reported only occasionally (3). Therefore,
our current understanding of i-proteasome biology during
myocarditis needs further clarification. Additional research
ought to elucidate the contribution of the i-proteasome once
virus-mediated injury of the heart muscle has developed. In
addition, we need detailed knowledge on molecular and cellular
aspects of i-proteasome biology and the underlying mechanisms
that contribute to the protective outcome if the i-proteasome
is blocked prior to the occurrence of viral heart disease. As
the i-proteasome has wide-ranging functions, toxicity and
immune-related adverse effects may represent significant hurdles
regarding the application of i-proteasome inhibitors. A detailed
comprehension of i-proteasome function at an advanced stage
of myocarditis is particularly important, because the resolution
of acute CVB3 myocarditis is followed by the onset of chronic
inflammation, which has been attributed to autoimmunity,
as shown in genetically susceptible mice (176). Whether the
i-proteasome affects also manifestation of autoimmune heart
disease is unknown. Nonetheless, our current understanding of
i-proteasome biology encourages a continued look at this context
to define novel treatment options for viral heart disease.
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Theiler’s murine encephalomyelitis virus (TMEV) induces different diseases in the central

nervous system (CNS) and heart, depending on the mouse strains and time course,

with cytokines playing key roles for viral clearance and immune-mediated pathology

(immunopathology). In SJL/J mice, TMEV infection causes chronic TMEV-induced

demyelinating disease (TMEV-IDD) in the spinal cord about 1 month post-inoculation

(p.i.). Unlike other immunopathology models, both pro- and anti-inflammatory cytokines

can play dual roles in TMEV-IDD. Pro-inflammatory cytokines play beneficial roles

in viral clearance while they are also detrimental in immune-mediated demyelination.

Anti-inflammatory cytokines suppress not only protective anti-viral immune responses

but also detrimental autoreactive immune responses. Conversely, in C3H mice, TMEV

infection induces a non-CNS disease, myocarditis, with three distinctive phases: phase

I, viral pathology with interferon and chemokine responses; phase II, immunopathology

mediated by acquired immune responses; and phase III, cardiac fibrosis. Although the

exact mechanism(s) by which a single virus, TMEV, induces these different diseases

in different organs is unclear, our bioinformatics approaches, especially principal

component analysis (PCA) of transcriptome data, allow us to identify the key factors

contributing to organ-specific immunopathology. The PCA demonstrated that in vitro

infection of a cardiomyocyte cell line reproduced the transcriptome profile of phase

I in TMEV-induced myocarditis; distinct interferon/chemokine-related responses were

induced in vitro in TMEV-infected cardiomyocytes, but not in infected neuronal cells.

In addition, the PCA of the in vivo CNS transcriptome data showed that decreased

lymphatic marker expressions were weakly associated with inflammation in TMEV

infection. Here, dysfunction of lymphatic vessels is shown to potentially contribute to

immunopathology by delaying the clearance of cytokines and immune cells from the

inflammatory site, although this can also confine the virus at these sites, preventing

virus spread via lymphatic vessels. On the other hand, in the heart, dysfunction of

lymphatics was associated with reduced lymphatic muscle contractility provoked by
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pro-inflammatory cytokines. Therefore, TMEV infection may induce different patterns

of cytokine expressions as well as lymphatic vessel dysfunction by rather different

mechanisms between the CNS and heart, which might explain observed patterns of

organ-specific immunopathology.

Keywords: adhesion molecules, animal models, blood-brain barrier, computational analysis, GLYCAM1, LYVE1,

Picornaviridae infection, unsupervised analysis

INTRODUCTION

Theiler’s Murine Encephalomyelitis Virus

(TMEV) Induces Distinct Organ-Specific

Diseases
Theiler’s murine encephalomyelitis virus (TMEV) is a non-
enveloped, single-stranded positive-sense RNA virus that
belongs to the order Picornavirales, family Picornaviridae, genus
Cardiovirus. Historically, Max Theiler discovered the Theiler’s
original (TO) strain of TMEV as an agent that induces acute
polioencephalomyelitis in the central nervous system (CNS)
of mice in 1934 (1–3). Since TMEV infects the gastrointestinal
tract and induces an acute CNS disease similar to poliovirus
(family Picornaviridae, genus Enterovirus), TMEV was originally
classified into the genus Enterovirus and used as an animal model
for poliomyelitis. In 1952, Joan Daniels reported that the Daniels
(DA) strain of TMEV causes myositis in the skeletal muscle
and a chronic inflammatory demyelinating disease in the spinal
cord (4), the latter of which has been called TMEV-induced
demyelinating disease (TMEV-IDD) and used as a viral model
for multiple sclerosis (MS) (5–7), first by Howard Lipton in
1972. In 1996, Gómez et al. demonstrated that TMEV causes
inflammation not only in the skeletal muscle (i.e., myositis)
but also in the heart muscle (i.e., myocarditis) (8). Since 2014,
TMEV-induced myocarditis has been applied as a viral model
for myocarditis (9) (Figure 1). The resistance/susceptibility to
TMEV-induced organ-specific pathology has been known to
differ among mouse strains. The resistance to persistent CNS
infection maps genetically to major histocompatibility complex
(MHC) class I, H-2D region (3). The H-2 background also
appears to influence myositis and myocarditis, although studies
using congenic mice are necessary to determine the precise role
of MHC molecules (8).

In general, viruses infect limited species and induce diseases
in an isolated group of organs. The determination of the
mechanism(s) of such organ-specific tropism/pathogenesis of
virus infections could powerfully inform the development of
treatments and methods of prevention for viral infections:
currently the precise mechanisms of many types of viral
pathogenesis still remain unknown. TMEV is a natural enteric
pathogen of mice (11) and has been isolated from trapped
wild mice (12), while no TMEV-induced disease has been
reported in the wild. TMEV has been shown to infect only
mice, and not other species in vivo (with a few exceptions)
and causes distinct maladies that mimic human diseases (3). In
experimental mice, intracerebral inoculation of TMEV results
in CNS viral infection as well as viremia and induces diseases
in the CNS and the heart (13). On the other hand, peripheral

inoculation, such as intraperitoneal or intravenous injection,
causes myocarditis more efficiently (9), but rarely causes
CNS infection. Thus, TMEV has high neurotropism and high
neurovirulence, but low neuroinvasiveness, despite the fact that
TMEV can use at least three routes to gain access to the CNS:
neural spread, hematogenous spread, and olfactory route (14).
Low neuroinvasiveness of peripherally inoculated TMEV can
be explained by the fact that vascular endothelial cells are not
permissive for TMEV infection in vivo (15). Here, although
TMEV can still invade the CNS hematogenously, using infected
macrophages as Trojan horse (3), this is not an efficient way to
achieve fast and successful viral invasion into the CNS. TMEV
infects only certain cell types in restricted organs in vivo, although
TMEV can infect most cell lines derived from various organs and
different host species, even insect cells (with the exception of T
cells in vitro) (15).

TMEV-Induced CNS Disease
TMEV is divided into two subgroups: the TO and GDVII,
based on its neurovirulence following intracerebral inoculation.
The GDVII subgroup, including GDVII and FA strains, causes
acute fatal polioencephalomyelitis and kills all mice following
intracerebral infection. One plaque forming unit (PFU) of
GDVII virus is enough to kill mice by induction of neuronal
apoptosis and axonal injury without inducing acquired immune
responses (16). The TO subgroup, including DA and BeAn
strains, induces a biphasic disease in susceptible mouse strains
(highly susceptible, SJL/J mice; and intermediate susceptible,
C3H mice), following intracerebral injection (17). During the
acute phase, about 1 week post-inoculation (p.i.), TMEV infects
neurons and induces neuronal apoptosis, neuronophagia, and
inflammation, mainly in the gray matter of the brain, including
the hippocampus and cerebral cortex (polioencephalitis), while
induction of TMEV-specific cellular and humoral immune
responses is accompanied by the clearance of the virus from the
brain. Thereafter, a low level of TMEV can persistently infect
oligodendrocytes andmicroglia/macrophages in the white matter
of the spinal cord of susceptible mice, and recruit anti-viral
immune cells into the infected regions, particularly ventrolateral
funiculus of the thoracic segments, leading to inflammatory
demyelination during the chronic phase, about 1 month p.i. (3).

During the acute phase of TMEV infection, CD4+ and CD8+

T cells and anti-viral antibodies enter the CNS, contributing
to viral clearance from the gray matter without causing overt
immune-mediated tissue damage (immunopathology). During
the chronic phase, however, these same immune effector
components are detected in the white matter, and play key roles
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FIGURE 1 | Organ-specific pathology induced by Theiler’s murine encephalomyelitis virus (TMEV). TMEV induces pathology in two organs: inflammatory

demyelination in the central nervous system (CNS) and inflammation followed with fibrosis in the heart, whose susceptibilities differ among mouse strains (9, 10).

Although TMEV can infect the CNS and the heart during the acute phase, persistent viral infection is observed only in the CNS. CNS disease can be induced only by

intracerebral inoculation. On the other hand, both peripheral and intracerebral routes of viral inoculation result in myocarditis, while peripheral inoculation induces more

severe cardiac disease. (Left) Inflammatory demyelination in the spinal cord of TMEV-induced demyelinating disease (TMEV-IDD). Luxol fast blue stain. CD3

immunohistochemical staining of consecutive sections showed that T cells were present in perivascular cuffing and meningitis (Arrows). Bar: 100µm (Right)

Inflammation and fibrosis in the heart during phase III of TMEV-induced myocarditis. Masson’s trichrome stain. CD3 immunohistochemical staining showed T cell

infiltration (Arrows) in the heart. Bar: 50µm.

in immunopathology (18). Overall, gain-of-function and loss-
of-function approaches to clarify the roles of immune effector
cells, antibodies, and cytokines, have demonstrated that anti-
viral pro-inflammatory effector molecules/cells, including CD4+

T helper (Th)1, cells and CD8+ cytotoxic T lymphocytes (CTLs),
and antibodies play protective roles during the acute phase (7).
For example, in GDVII virus infection, lack of CNS infiltrating
immune cells results in acute fatal polioencephalitis (19), which
has been associated with altered mRNA expression levels of
cytokines, but not chemokines (20), as well as induction of
transforming growth factor (TGF)-β1 protein in the neurons

(21). On the other hand, during the chronic phase, these immune
effector molecules/cells could play detrimental roles causing
immunopathology in a bystander fashion and/or determinant
(epitope) spreading to myelin antigens (22, 23), although the
precise mechanisms of immunopathology remain unknown.
While these immune effector molecules/cells (Th1, CTL, and
antibody) seem to play both protective anti-viral and detrimental
immunopathogenic roles in TMEV-IDD, anti-inflammatory cells
including regulatory T cells (Tregs) can also be beneficial and
detrimental depending on the disease phases in TMEV infection
(24).
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TMEV-Induced Myocarditis
Myocarditis is an inflammatory disease in the heart caused
by microbial infections or autoimmunity and affects about 2
million people in the United States (25, 26). Among viruses, the
picornavirus family, especially coxsackievirus B, is a well-known
pathogen of myocarditis (27). In general, regardless of viral
families or species, viral myocarditis has been proposed to be
divided into three phases (28). In phase I (around 4 days p.i.,
experimentally), the virus infects and replicates in the heart,
damaging cardiomyocytes, while innate immune responses
against the virus are induced. In phase II, anti-viral T-cell and
antibody responses are induced (after 5 or more days p.i.), with
the penetration of these effector components into the heart.
Under pathologic conditions, anti-viral immune responses not
only clear the virus but also damage infected and uninfected
cardiomyocytes by anti-viral CTLs and in a bystander fashion,
respectively. This can be followed by induction of autoimmune
responses to the heart reflecting determinant spreading and/or
molecular mimicry between the virus and heart antigens.
When the tissue damage caused in phase I and/or II is severe,
cardiac remodeling and fibrosis with or without low-grade viral
persistence occur, which can lead to dilated cardiomyopathy
(phase III). Ideally, each patient with myocarditis should be
treated depending on the phase (29): phase I, antiviral; phase
II, immunomodulation; and phase III, standard heart failure
therapy (e.g., immunosuppression may be appropriate for phase
II, but will enhance virus replication in phase I). However,
finding effective therapies has remained challenging because
the phase-specific biomarkers and pathogenesis of myocarditis
have not been conclusively identified (30), while serum
cardiac troponin and creatine kinase, electrocardiogram
and echocardiography, and the endomyocardial biopsy
have been helpful, to some extent, for diagnosing
myocarditis (31, 32).

To clarify the pathogenesis and discover the phase-specific
biomarkers, we established a murine model for viral myocarditis
using TMEV (9, 28, 33), which has unique characteristics not
seen in most other animal models. For example, (1) most animal
models don’t have three phases; (2) fail to reproduce clinical
and immunological findings in human viral myocarditis; and
(3) fail to use a “natural” pathogen of the host, thus the TMEV
model is possibly more relevant to human natural infections.
Generally, peripheral injection (e.g., intraperitoneal) of TMEV
in mice can efficiently cause inflammation in the heart, but
not in the CNS (8, 13), while intracerebral injection of TMEV
also causes myocarditis due to acute viremia. Susceptibilities
to TMEV-induced myocarditis differ among mouse strains:
the highly susceptible C3H strain, the intermediate susceptible
C57BL/6 strain, and the highly resistant SJL/J strain. C3H
mice develop all three phases, while SJL/J mice develop only
phase I and C57BL/6 mice develop phases I and II; the
different genetic susceptibilities to viral myocarditis has also been
demonstrated in humans (34). TMEV-induced myocarditis can
be divided into three phases as in human myocarditis. In phase
I, innate immune molecules [interferon (IFN)-induced genes
[e.g., interferon regulatory factor 7 (Irf7), interferon-induced
protein with tetratricopeptide repeats 1 (Ifit1), and Ifit3] and

chemokine genes [e.g., chemokine (C-X-C motif) ligand 9
(Cxcl9), Cxcl10, and chemokine (C-C motif) ligand 5 (Ccl5)]
that can recruit Th1 and natural killer T (NKT) cells] were
upregulated prior to immune cell infiltration in the heart. In
phase II, T-cell infiltrates were observed with upregulation of pro-
inflammatory IFN-γ pathway genes, followed by upregulation of
cardiac remodeling genes (e.g., Mmp12 and Gpnmb) in phase
III. Among transgenic and knockout (KO) mice infected with
TMEV, NKT KO mice developed more severe myocarditis with
lower ejection fraction in echocardiography than wild-type mice
(10).

Lymphatics and Viral Infections
The afferent lymphatic vessels transport interstitial fluid and
antigens from tissues to lymph nodes and have specialized
capillaries with an open structure; antigen transport to the
draining lymph nodes is required to generate antigen-specific
immune responses (35). Cancer cells and pathogens often
“hijack” this transport system to achieve systemic spread
(36), while dissemination to the blood circulation is first
blocked at regional lymph nodes. In viral infections, while the
mechanisms that limit systemic viral spread have not been
studied extensively, several mechanisms have been proposed
recently. Kastenmüller et al. (37) showed that vaccinia virus
injected subcutaneously in mice was acquired by CD169+

subcapsular sinus macrophages in the regional lymph nodes,
but not in the spleen, 4 hours (h) p.i. Since local depletion
of macrophages by clodronate-loaded liposomes resulted
in viral spreading to the spleen, these results suggest that
systemic viral spread ensues in the absence of effective viral
capture by macrophages. On the other hand, Loo et al. (38)
demonstrated that vaccinia virus infection by scarification,
which did not spread the virus to draining lymph nodes,
induced remodeling of the pre-existing cutaneous lymphatic
vasculature, but not lymphangiogenesis. The remodeling
was coincident with a rapid reduction in fluid transport,
suggesting that lymphatic vessels negatively modulate fluid
transport following viral infection in the skin, to limit the
spread of viral particles into lymph nodes. Lymphatic vessel
remodeling can result in not only compartmentalization of
infectious virus, but also an accumulation of inflammatory
mediators in the skin, which affect anti-viral immunity and
immunopathology.

In the following sections, we will introduce our bioinformatics
analyses of both supervised (such as heat map and k-means
clustering) and unsupervised [particularly principal component
analysis (PCA)] approaches to identify factors that contribute
to organ-specific viral pathology. Previously, using these
computational analyses, we were able to identify and rank key
molecules involved in MS (39), stroke (40), and myocarditis (33).
Here, we focus on two potential candidate factors contributing
to organ-specific viral pathology: (1) innate immune responses
by the major cell type of each organ, i.e., cardiomyocyte in the
heart vs. neuron in the CNS; and (2) lymphatic vessel dysfunction
induced by cytokines in the heart vs. downregulation of neuro-
lymphatic molecules in the CNS.

Frontiers in Immunology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 2870144

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Omura et al. Cytokines/Lymphatics in TMEV Infection

CELL-TYPE SPECIFIC INNATE IMMUNE

RESPONSES IN TMEV INFECTION

TMEV Infects and Damages

Cardiomyocytes in vitro
The TMEV-induced myocarditis model in vivo is complemented
by the in vitro model using a mouse cardiomyocyte cell line,
HL-1, which was established by Dr. William C. Claycomb
(Louisiana State University Health Sciences Center, NewOrleans,
LA) from an AT-1 subcutaneous tumor of a C57BL/6J mouse.
HL-1 cells retain a differentiated cardiomyocyte phenotype and
show contractile activity in vitro (41). To see the effects (innate
immune responses and viral pathology) of direct virus infection
without the involvement of immune cells (phase I mimic), we
infected HL-1 cells, at a multiplicity of infection (MOI) = 1 or
10. TMEV infection induced cytopathic effects (CPE) on HL-
1 cells, which became obvious 12 h p.i. (Figure 2A), while the
cell viability started to decrease 8 h p.i., with most cells dying
36 h p.i. (Figure 2B). CPE was accompanied by the detection
of cardiac troponin in the culture supernatants of HL-1 cells,
which was measured by an enzyme-linked immunosorbent assay
(ELISA) using the Ultra Sensitive Mouse Cardiac Troponin-I
ELISA Kit (Life Diagnostics, West Chester, PA) (Figure 2C) (33).
We also determined virus replication by plaque assays, using
supernatants for cell-free virus and cell lysates for cell-associated
virus (Figure 2D). Cell-free virus titers increased substantially
12 h p.i., which reflected a loss of plasma cell membrane
integrity and showed similar kinetics with supernatant troponin
concentrations. Cell-associated viral titers increased 8 h p.i. and
peaked 12 h p.i., which was associated with the cell viability.
In these assays, we also used a murine neuroblastoma cell line,
Neuro-2a (43), since TMEV is known to infect neurons in vitro
as well as during the acute phase following intracerebral infection
in vivo. TMEV-infected Neuro-2a cells had similar kinetics of
cell viability and viral replication to those of HL-1 cells, while
cardiac troponin was not detectable in Neuro-2a cells regardless
of infection, as expected (Figures 2B–D).

Innate Immunity-Related Genes Are

Upregulated Only in Cardiomyocytes

Infected With TMEV
To characterize gene expression patterns in cardiomyocytes
infected with TMEV, we conducted a supervised analysis using
the 2-way comparison of microarray data between TMEV-
infected and control mock-infected HL-1 cell culture samples
(Supplementary Materials and Methods). We visualized
the numbers of up- or downregulated genes of infected
HL-1 cells compared with controls, using a volcano plot
(Figures 3A–D) (44–46). We identified substantial numbers of
genes whose expressions changed 4 h p.i. (185 upregulated and
413 downregulated genes, >2-fold compared with controls), and
their numbers were increased 8 h p.i. (251 upregulated and 1,211
downregulated genes).

To compare these gene expression patterns among samples,
we generated the heat map for highly up- or downregulated
genes (13), using top 20 of up- or downregulated genes

of HL-1 samples 8 h p.i. (Figure 3E). At 8 h p.i., TMEV
infection upregulated genes associated with innate immunity:
IFN-induced genes, including Ifit1, and Cxcl10 and Ccl5.
TMEV-infected HL-1 samples 4 h p.i. showed a similar
gene expression pattern to that of 8 h p.i. We categorized
the genes up- or downregulated in TMEV-infected HL-1
cells, using the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) v6.8 (Laboratory of Human
Retrovirology and Immunoinformatics, Leidos Biomedical
Research, Inc., Frederick, MD). Among the upregulated genes,
DAVID identified 18 pathways whose P values were <0.05
(Supplementary Table 1), including “chemokine-mediated
signaling pathway,” “cellular response to IFN-α and IFN-β,”
and “positive regulation of T cell migration.” Among the
downregulated genes, DAVID identified 28 pathways, including
“cell division” and “heart morphogenesis.”

To determine the requirement of live virus for the gene
expression changes, we incubated HL-1 cells with ultraviolet
(UV)-irradiated (replication inactive) TMEV (UV-TMEV) (47).
Following 8 h incubation, UV-TMEV upregulated 41 genes,
among which only one gene Mir690 was identified, while none
of the 41 genes significantly upregulated in live TMEV-infected
HL-1 cells (Figure 3C; Supplementary Table 2). UV-TMEV also
downregulated 10 genes whose immunological functions are
unknown, while one gene [slingshot protein phosphatase 2
(Ssh2)] among the 10 genes was also downregulated in live
TMEV-infected HL-1 cells. To identify cell-type specific gene
expression, we conducted microarray analyses using TMEV- and
mock-infected Neuro-2a cells (43). In Neuro-2a cells, TMEV
infection did not upregulate any genes significantly, while two
genes with unknown functions were downregulated (Figure 3D;
Supplementary Table 2). No innate immunity-related genes
were induced in HL-1 cells incubated with UV-TMEV or TMEV-
infected Neuro-2a cells (Figure 3E; Supplementary Table 2).
Thus, induction of innate immunity-related genes by TMEV
requires live virus and is cell-type specific.

To identify sets of genes whose expression patterns were
unique under the experimental conditions, we conducted k-
means clustering (Figure 3F) (33). Among 10 clusters, three
clusters (clusters 3, 4, and 6) showed differentially expressed
patterns, which were visualized by radar chart showing the
different expression patterns of cluster centers in each cluster.
Most upregulated genes in TMEV-infected HL-1 cells 4 and 8 h
p.i., including Ifit1 and Cxcl10, were categorized in clusters 3,
while the downregulated genes only 8 h p.i. or 4 and 8 h p.i. were
categorized in cluster 4 or 6, respectively. Lists of genes in each
cluster were shown in Supplementary Table 3.

PCA of Microarray Data Separates

Between the TMEV-Infected HL-1 and

Control Groups
To compare overall gene expression patterns among samples,
we conducted unsupervised PCA by entering microarray data
from each sample without labeling of grouping (33, 42). In PCA,
each principal component (PC) is determined automatically,
and PC values for each sample data are plotted, for example,
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FIGURE 2 | Cardiomyocyte cell line HL-1 infection with the Daniels (DA) strain of TMEV (33, 42). (A) Confluent HL-1 cell monolayer infected with TMEV at a multiplicity

of infection (MOI) = 10 showed no changes at 4 hours (h) post-inoculation (p.i.). Cytopathic effect (CPE), including the rounding up and detachment of cells from the

culture dish, was observed at 12 h p.i., which developed cell lysis in most cells at 36 h p.i. (B) HL-1 cells and neuroblastoma cell line Neuro-2a were infected with

TMEV at an MOI = 1 or 10. Cell viability was determined with trypan blue dye exclusion assays. Cell viability of both HL-1 and Neuro-2a cells decreased at 12 h p.i.

and most cells died at 36 h p.i. (C) The concentration of cardiac troponin I in cell culture supernatants determined by an enzyme-linked immunosorbent assay (ELISA)

was detectable in TMEV-infected HL-1 cells (open column), but not detectable (N.D.) in mock-infected HL-1 cells (closed column) or infected Neuro-2a cell culture

(data not shown). (D) Viral titers of cell-free (•, N) and cell-associated virus (◦, 1) in HL-1 or Neuro-2a cell culture were determined by plaque assays with baby

hamster kidney (BHK)-21 cells (24). In both HL-1 and Neuro-2a cells, cell-free virus titers increased substantially at 12 h p.i., while cell-associated viral titers increased

at 8 h p.i. and peaked at 12 h p.i.

PC1 as the x-axis and PC2 as the y-axis. When the data of
all HL-1 samples from mock-infection, TMEV-infection, and
UV-TMEV incubation were entered, we found that the samples
were separated into two distinct populations: live TMEV-infected
samples vs. uninfected samples (mock-infection and UV-TMEV)
(Figure 4A). According to the proportion of variance, PC1
explained 46% of the variation among samples (Figure 4B).
Factor loading for PC1 showed that innate immunity-related
genes, including Cxcl10, Ccl5, and Ifit1, contributed to PC1
positively, while a group of genes, including Ssh2 (48), listerin

E3 ubiquitin protein ligase 1 (Ltn1), and MINDY lysine
48 deubiquienase 2 (Mindy2) (49), contributed negatively
(Figure 4C). Thus, both supervised and unsupervised analyses
suggested that innate-immunity-related genes, including Cxcl10,
Ccl5, and Ifit1, could be biomarkers for the differences between
the TMEV-infected and control groups in vitro.

The gene expression changes in TMEV-infected HL-1 cells
appeared to be similar to those found in the heart during
phase I of in vivo TMEV infection. Thus, we conducted PCA
by entering microarray data from TMEV-infected HL-1 cells
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FIGURE 3 | Supervised bioinformatics analysis of transcriptome data from cardiomyocyte HL-1 cells infected with TMEV (33, 42). (A–D) Volcano plots of significantly

up-regulated (upper right) or down-regulated genes (upper left) in TMEV-infected cells by the OriginPro 8.1 (OriginLab Corporation, Northampton, MA), to assess

significance together with log ratio of transcriptome data (Supplementary Materials and Methods) (33). Log ratios of gene expression in the TMEV-infected cell

culture compared with mock-infected cell culture were used as the x-axis and the logarithms of P values to base 10 were used as the y-axis. (A) TMEV-infected HL-1

cells at MOI = 10 at 4 h p.i. (B) TMEV-infected HL-1 cells at MOI = 10 at 8 h p.i. (C) HL-1 cells incubated with ultraviolet (UV)-irradiated TMEV for 8 h. (D)

TMEV-infected Neuro-2a cells s at MOI = 10 at 8 h p.i. (E) Heat map of 20 up- or down-regulated genes in TMEV-infected HL-1 cells at MOI = 10 at 8 h p.i. by R

(Continued)
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FIGURE 3 | version 3.4.3 and the R packages “gplots” and “genefilter.” Red, blue, and white indicate up-regulation, down-regulation, and no change, respectively.

Interferon-inducible genes (Ifit1 and Ifit3) and chemokines (Cxcl10 and Ccl5) were significantly up-regulated. While TMEV-infected HL-1 cells at MOI = 10 for 4 h or at

MOI = 1 for 8 h showed a similar expression pattern in several genes, HL-1 cells incubated with UV-TMEV for 8 h did not up- or downregulated these genes. (F)

Radar chart based on the values of cluster centers from k-means clustering. The number at each vertex is the cluster number (clusters 1 to 10), whereas the numbers

along the axis (−2 to 1) are log ratios compared with mock-infected controls. Up-regulated genes in TMEV-infected HL-1 cells 4 and 8 h p.i., including Cxcl10 and

Ifit1, were categorized mostly in cluster 3, while the downregulated genes only 8 h p.i. or 4 and 8 h p.i. were categorized in cluster 4 or 6, respectively. In

UV-TMEV-incubated HL-1 cells, most genes showed no change; the values of most cluster centers were log ratios = 0. List of genes in each cluster was shown in

Supplementary Table 3.

and those from heart samples of all three phases in TMEV-
infection in vivo (Figure 4D) (33, 42) to see whether the overall
gene expression pattern of TMEV-infected HL-1 cells could be
similar to those of TMEV-induced myocarditis in vivo. PCA
clearly separated in vivo samples from three phases into three
distinct groups by PC1 values; the PC1 values reflected distinct
pathophysiology of three phases of myocarditis. Here, the PC1
values of in vitro TMEV-infected HL-1 cells 4 and 8 h p.i.
were similar to that of heart samples of phase I in TMEV-
induced myocarditis. On the other hand, PC2 values of in
vitro TMEV-infected HL-1 cells were lower than those of in
vivo samples. Thus, PC2 values could reflect the differences
between in vitro and in vivo conditions, rather than phase-specific
pathophysiology.

CYTOKINES AND LYMPHATICS IN TMEV

INFECTION

Cytokines and Lymphatics in

TMEV-Induced Myocarditis
Although several cytokines have been shown to influence
lymphangiogenesis, the pro-lymphangiogenic cytokine, vascular
endothelial growth factor (VEGF)-C or D (50), binds to VEGF
receptor (VEGFR) 3 on lymphatic vessel endothelial cells to
induce lymphangiogenesis during inflammation (“inflammation-
associated lymphangiogenesis,” IAL) (35), where macrophage-
secreted VEGF induces sprouting of lymphatic vessels at the
preexisting lymphatic vessels (51). The VEGF-A/VEGFR2, which
is typically associated with angiogenesis (52), also induces
lymphangiogenesis in a context-dependent manner, such as
corneal lymphangiogenesis (50).

Cardiac lymphatic networks exist in all three layers of the
heart, forming subendocardial, myocardial, and subepicardial
plexuses, while these lymphatics share anatomical and
physiological characteristics with those in other organs (53).
Disturbed cardiac lymphatic drainage can contribute to many
forms of cardiac pathology, such as dilated cardiomyopathy
and heart failure. Myocarditis provokes myocardial edema and
inflammatory infiltration of lymphocytes and macrophages;
both can drive underlying lymphatic pumping disturbances.
Lymphatic contraction is often impaired by inflammatory
mediators, including cytokines, prostaglandins (PGs), and
nitric oxide (54); inflammatory mediators produced during
myocarditis could depress lymphatic pumping and drainage.
In TMEV-induced myocarditis, we previously showed
that pro-inflammatory cytokine interleukin (IL)-1β and
tumor necrosis factor (TNF)-α upregulation was associated

with myocarditis in vivo without induction of lymphatic
markers, including lymphatic vessel endothelial hyaluronan
receptor (LYVE)-1, or VEGFR3 (55). In addition, IL-1β
reduced contractility of cardiac lymphatic muscle cells via
cyclooxygenase (COX)-2/PGE2 signaling with synergistic
cooperation by TNF-α in vitro. These results suggest that a
loss of cardiac lymphatic tonic contractility induced by IL-1β
could exacerbate myocardial edema, leading to accumulation of
inflammatory cytokines/chemokines and immune cells within
the heart, while this may prevent viral spread to the systemic
circulation.

Lymphatics and Virus Infection in the CNS
The CNS has been regarded as an immunologically privileged
site due to several characteristics that isolate it from systemic
immune responses under physiological conditions: lack of MHC
molecules on most resident cells, the presence of the blood-brain
barrier (BBB) with low adhesion molecule expression on blood
vessels, and no conventional lymphatic system (56). Recently,
meningeal lymphatic vessels have been identified in the CNS
that may be used for clearance of not only soluble molecules
(57) but also immune cells (58) from the CNS and drainage
to the deep cervical lymph node. Although there have been
many experimental reports showing the transport of soluble
molecules, the cellular transport from the CNS to cervical
lymph nodes is still controversial. For example, even highly
malignant cancer cells in the CNS do not metastasize to any
peripheral lymph nodes; cellular transport using the lymphatics
from the CNS seems to be regulated with unknown mechanisms.
Although the soluble antigens transported from the CNS to
cervical lymph nodes can be used for antigen presentation, it
is unclear whether this pathway is a major priming site for
presentation of CNS antigens since cervical lymph node swelling
is not seen in CNS microbial infections or CNS inflammatory
diseases.

Using experimental intravenous injection of simian
immunodeficiency virus (SIV) in rhesus macaques, Dave
et al. (59) demonstrated the presence of SIV in the CNS and
cervical lymph nodes with lower levels of virus in plasma,
suggesting SIV spread from the CNS to draining cervical lymph
nodes. Although the exit of SIV from the CNS via lymphatic
vessels should be confirmed by future studies, including the
comparison of viral genotypes between the CNS and lymph
nodes, this study showed the possibility that lymphatics might
be used for virus clearance and/or exit from the CNS to the
periphery.
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FIGURE 4 | Unsupervised principal component analysis (PCA) of transcriptome data of mock-infected, TMEV-infected, and UV-TMEV-incubated HL-1 cells (33, 42).

(A) PCA separated samples into two groups: TMEV-infected samples vs. uninfected samples (mock infection and UV-TMEV), where principal component (PC) 1

reflected live virus infection. (B) The proportion of variance showed that PC1 explained 46% of the variance among the samples. (C) Factor loading for PC1 showed

that chemokines (Cxcl10 and Ccl5) and interferon-inducible genes (Ifit1) were correlated with PC1 positively, while several genes including slingshot protein

phosphatase 2 (Ssh2) and listerin E3 ubiquitin protein ligase 1 (Ltn1) were correlated with PC1 negatively. (D) PCA of transcriptome data of TMEV-infected HL-1 cells

4 and 8 h p.i. and heart samples from phases I (4 days p.i.), II (7 days p.i.), and III (60 days p.i.) in TMEV-induced myocarditis in vivo. PCA showed that phase I

samples and in vitro samples had similar PC1 values, compared with phases II and III samples. PCA was conducted using R version 3.4.3 (13). Microarray data were

converted into tab-delimited text format and calculated using an R program “prcomp”.

Lymphocyte Entry/Exit and Lymphatics in

CNS TMEV Infection
In MS and its animal models, the presence of immune cell
infiltrates, particularly lymphocytes, in the CNS has been
correlated with disease activity and neuropathology. Lymphocyte
entry into the CNS is accompanied by upregulation of adhesion
molecules on lymphocytes and blood vessels as well as a
breakdown of the BBB (60) (Figure 5). Among the adhesion
molecules, the interactions between very late antigen (VLA)-4
(CD49d/CD29) and vascular cell adhesion molecule (VCAM)-
1 (CD106) (63) as well as leukocyte function-associated antigen
(LFA)-1 (CD11a/CD18) and intercellular adhesion molecule
(ICAM)-1 (CD54) (64) have been shown to play a key

role for lymphocyte extravasation into the CNS parenchyma
(63). The BBB is composed of tight junctions of endothelial
cells, the basement membrane, and astrocyte foot processes.
Downregulation of tight junction proteins, including occludin
and claudin, has been associated with BBB breakdown and
disease activities in MS and its animal models (62). On the other
hand, the pathophysiology of lymphocyte exit from the CNS is
unclear, although newly identified CNS lymphatic vessels (58)
might contribute to clearance of lymphocytes (and microbes)
from the CNS, in theory.

In TMEV infection, we determined the extent of which
expressions of the adhesion molecules, BBB and lymphatic
molecules could be associated with CNS disease activity (53,
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FIGURE 5 | Three components of lymphocyte entry into and exit from the CNS (61, 62). To initiate inflammation in the CNS, lymphocytes interact with endothelial cells

of blood vessels via up-regulated adhesion molecules, particularly very late antigen (VLA)-4 and lymphocyte function-associated antigen (LFA)-1 on lymphocytes with

vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 on endothelia, respectively. Downregulation of molecules composed of the

blood-brain barrier (BBB) also help in lymphocyte entry into the CNS parenchyma. While the precise mechanism of lymphocyte exit from the CNS is unknown, one

hypothesis is the presence of vessels similar to peripheral lymphatic vessels, whose markers include prospero homeobox (PROX) 1 and lymphatic vessel endothelial

hyaluronan receptor (LYVE) 1, may help in lymphocyte exit from the CNS to deep cervical lymph nodes. Increased lymphocyte entry together with decreased

lymphocyte exit could lead to enhancement of CNS inflammation.
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FIGURE 6 | Bioinformatics analyses of gene expression of three components associated with spinal cord inflammation in TMEV infection, 4 (prior to cell infiltration), 7

(acute polioencephalomyelitis) and 35 (TMEV-IDD) days p.i. (61). (A) We drew a heat map, using mRNA data of 20 adhesion molecules, 14 BBB molecules, and 12

lymphatic molecules listed in Figure 5 (total 46 genes). Most adhesion molecule genes were upregulated 7 and 35 days p.i., while only a few adhesion molecules

were upregulated 4 days p.i. BBB and lymphatic molecules showed no change or slight downregulation. (B) Radar chart based on the values of cluster centers from

k-means clustering (Supplementary Table 4). The number of each vertex is the cluster number (clusters 1 to 8), whereas the number along the axis (−2 to 8) are log

ratios compared with mock-infected controls. Radar chart showed that the expression patterns of sets of genes were similar between days 7 and 35 p.i. Upregulated

genes were categorized mostly in clusters 1, 3, and 7. (C) PCA of the 46 genes listed in Figure 5 separated controls/day 4 p.i. samples vs. days 7 and 35 p.i.

samples based on PC1 values (proportion of variance was 85.9%), which reflect CNS cell infiltration. (D) Factor loading for PC1 showed that upregulation of adhesion

molecules was associated with CNS inflammation, while downregulation of BBB and lymphatic molecules may play a minor role.
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61). Using the RNA sequencing transcriptome data from the
spinal cord of TMEV-infected mice harvested 4, 7, and 35 days
p.i. (Supplementary Materials and Methods), we compared
mRNA levels of representative 20 lymphocyte and vascular
adhesion molecules, 14 BBB molecules, and 12 lymphatic
molecules among samples (Figure 5). Both 7 and 35 days
p.i., heat map showed that most adhesion molecules were
upregulated, while lymphatic and BBB molecules showed no
change or slight downregulation (Figure 6A). Since samples
7 days p.i. contain gray matter inflammatory lesions due to
acute polioencephalomyelitis and those 35 days p.i. contain
inflammatory demyelination in the white matter, we expected
substantial difference in gene expression patterns between the
two sample groups. Unexpectedly, however, the levels of most
adhesion molecules 7 days p.i. were similar or slightly higher,
compared with 35 days p.i. Only glycosylation-dependent cell
adhesion molecule (GLYCAM) 1 was significantly upregulated
from 7 to 35 days p.i. (65). Thus, GLYCAM1 may have a
role in chronic demyelination. Most genes 4 days p.i. showed
no or few changes, which is consistent with the histological
finding that immune cell infiltrates become obvious 5 days p.i.
in CNS TMEV infection. In radar chart that visualized gene
expression patterns by k-means clustering, clusters 1, 3, and 7
were composed of highly upregulated genes 7 and 35 days p.i.
(cluster 1, LFA-1 and 2, E- and L-selectin; cluster 3, ICAM-
1, and other molecules; and cluster 7, VLA-4, VCAM-1, and
GLYCAM1) (Figure 6B; Supplementary Table 4). Cluster 4 was
composed of downregulated genes 4, 7, and 35 days p.i., including
VEGF-C, LYVE1, and claudin 22.

We also conducted PCA using the same 46 gene expression
data and found that expression patterns of molecules associated
with CNS lymphocyte entry and exit could distinguish samples
without CNS cell infiltration (control and 4 day p.i. samples)
vs. with CNS cell infiltration (7 and 35 days p.i. samples)
by PC1 values (Figure 6C). Factor loading for PC1 showed
that upregulation of adhesion molecules (66) was correlated
with PC1 values that reflect CNS inflammation 7 and 35 days
p.i. (Figure 6D). Downregulation of several BBB molecules,
including claudin 10 (67) and reelin, was weakly correlated
with PC1 values. Downregulation of BBB may play a minor
role in CNS inflammation induced with TMEV, although
downregulation of BBB molecules has been reported not only
in MS and autoimmune model for MS but also in another
experimental CNS viral model induced with mouse hepatitis
virus (68).

Inflammation has been reported to induce lymphangiogenesis
in several organs and tissues. Following intracerebral TMEV
infection in the CNS, however, most lymphatic markers were
not upregulated at any time points, although the constitutive
expression in control uninfected CNS tissues supports the
presence of lymphatic-like structure in the CNS. This is
consistent with our previous findings on the protein levels
of lymphatic biomarkers, in which there was no increase in
lymphatic markers, LYVE1 or prospero homeobox protein
(PROX)1 in the CNS of TMEV-IDD (39). Most lymphatic
molecules were actually downregulated slightly on 7 and 35 days
p.i., while factor loading for PC1 showed that downregulation of

TABLE 1 | Potential factors contributing to TMEV-induced organ-specific

pathology.

CNS Heart

Infection of major cell type

in vitro

+ (Neuro-2a) + (HL-1)

Innate immune response by

major cell type in vitro

– +

Infection in vivo + +

Lymphatics Lymphatic molecule

downregulation?

Cytokine-induced

functional suppression

lymphatic molecules was weakly correlated with PC1 values. This
suggests that dysfunction of lymphatic-like structure might delay
exit of inflammatory cytokines/chemokines and/or cells from
the CNS, enhancing inflammation, only to some extent. On 14
days p.i. when inflammation had subsided in the CNS, the levels
of most lymphatic molecules of the TMEV-infected spinal cord
were similar to those of uninfected control spinal cord (data not
shown); this may reflect that recovery of lymphatic flow from the
CNS contributes to exit of inflammatory cytokines/chemokines
and/or cells from the CNS around 2 weeks p.i.

In TMEV-IDD, the balance between lymphocyte entry and
exit could play a key role in inflammation in the CNS;
upregulation of adhesion molecules rather than downregulation
of BBB molecules could contribute to lymphocyte entry, while
downregulation of lymphatic molecules may play a minor
role in prolonged inflammation. In theory, dysfunction of
the lymphatics results in the persistence of lymphocytes and
cytokines/chemokines in the CNS (69). This would lead to
chronic inflammation and immune-mediated demyelination by
immunopathology, whereas such lymphostasis might confine
TMEV to the CNS, limiting systemic viral spreading. Here, virus-
specific lymphocytes among chronic cellular infiltrates in the
CNS may also minimize virus replication in the CNS.

In summary, in TMEV infection, innate immune cytokines
may play distinctive and diverse roles in lymphatic networks
during inflammatory disease depending on the organs, which
contribute to the levels of inflammation and to virus persistence
(Table 1). Although TMEV can infect major cell types of the
CNS (neurons) and the heart (cardiomyocytes), only infected
cardiomyocytes expressed innate immunity-related molecules.
In addition, lymphatic vessels in infected organs may also be
differentially affected between the CNS and the heart. In the heart
of TMEV-induced acute myocarditis, IL-1β with TNF-α could
functionally alter lymphatics, while downregulation of lymphatic
molecules might contribute to persistent virus infection and
inflammation in the CNS of TMEV-IDD. These potential factors
may contribute to organ-specific viral immunopathology in
TMEV infection.
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Viral infections trigger robust secretion of interferons and other antiviral cytokines by

infected and bystander cells, which in turn can tune the immune response and may lead

to viral clearance or immune suppression. However, aberrant or unrestricted cytokine

responses can damage host tissues, leading to organ dysfunction, and even death.

To understand the cytokine milieu and immune responses in infected host tissues,

non-human primate (NHP) models have emerged as important tools. NHP have been

used for decades to study human infections and have played significant roles in the

development of vaccines, drug therapies and other immune treatment modalities, aided

by an ability to control disease parameters, and unrestricted tissue access. In addition to

the genetic and physiological similarities with humans, NHP have conserved immunologic

properties with over 90% amino acid similarity for most cytokines. For example,

human-like symptomology and acute respiratory syndrome is found in cynomolgus

macaques infected with highly pathogenic avian influenza virus, antibody enhanced

dengue disease is common in neotropical primates, and in NHP models of viral hepatitis

cytokine-induced inflammation induces severe liver damage, fibrosis, and hepatocellular

carcinoma recapitulates human disease. To regulate inflammation, anti-cytokine therapy

studies in NHP are underway and will provide important insights for future human

interventions. This review will provide a comprehensive outline of the cytokine-mediated

exacerbation of disease and tissue damage in NHP models of viral infections and

therapeutic strategies that can aid in prevention/treatment of the disease syndromes.

Keywords: viral infections, cytokines, animal model, tissue damage, non-human primates

INTRODUCTION

Microbial pathogens are constantly evolving to evade the host’s immune system, and even with
several decades of research and modern therapeutics, chronic diseases such as those caused by
human immunodeficiency virus (HIV-1) and hepatitis C virus (HCV) are still globally prevalent.
Viruses use multiple evasive strategies such as avoiding detection by pattern recognition receptors,
T cell receptors and antibodies, mimicking or blocking cytokines, chemokines and other host
proteins, and/or directly depleting immune cell subsets [reviewed in (1)]. Disruption of the
cytokine milieu is also an important and commonly used strategy by viruses (2–4), since cytokines
play important roles in shaping both innate and adaptive immunity. Cytokines are soluble proteins
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secreted by cells during inflammation that act as key mediators
of immune cell recruitment and modulators of the immune
response via a complex network of cellular interactions and
signaling pathways. So far, more than 300 cytokines including
chemokines, interferons (IFN), and lymphokines have been
described (5). While cytokines can be broadly classified based
on the nature of the immune response as pro-inflammatory
cytokines such as interleukin (IL)-1, IL-6, type 1 IFN, tumor
necrosis factor (TNF)-α, and anti-inflammatory cytokines such
as IL-4, IL-10, and transforming growth factor (TGF)-β, they
have pleiotropic functions whereby individual cytokines can have
either pro- or anti-inflammatory properties according to the cell
system involved.

In viral infections, cytokines play central roles in the
development of protective anti-viral responses, but also potential
immunopathology associated with chronic viral diseases.
Viral interactions with host cellular receptors triggers pro-
inflammatory cytokine secretion which are essential for viral
clearance. However, dysregulations in the cytokine type and
quantitative levels can lead to overactivation of immune cells,
which in turn cause tissue damage leading to fatal complications.
For instance, extensive characterization of IFN-α and its direct
antiviral activity since its discovery in 1957 (6), has led to
successful treatment of “non-A, non-B (NANB) hepatitis” even
before the actual identification of HCV as the causative agent
(7). Combination therapy of pegylated IFN-α with ribavirin
was the standard therapeutic regime for chronic HCV-infected
patients until the recent introduction of directly acting antivirals.
However, IFN-α therapy can induce side effects such as fever and
headache to severe life threatening conditions including thyroid,
visual, auditory, renal and cardiac impairments, and pulmonary
interstitial fibrosis (8). The therapeutic use of cytokines for
infectious diseases, autoimmune diseases and malignancies, may
also come at a steep price, since prolonged use of cytokines
present severe side-effects due to the pleiotropic nature of
these molecules (9–14). While, it is necessary to understand
cytokine dysregulations in viral diseases to anticipate potential
tissue injury and deterioration, their pleotropic, rapid, and in
some cases local and long term tissue effects make the study of
cytokines in humans challenging with potential development of
fatal complications. These challenges can be met by the use of
animal models. Animal models have been used since more than
2400 years and currently are employed in all areas of biomedical
research including basic biology, infections, immunology, cancer,
metabolic diseases, and behavioral studies (15). This review is
primarily focused on the virus mediated cytokine dysfunctions in
animal models specifically non-human primates (NHP), which
are already fundamental in the validation of human data.

NEED FOR ANIMAL MODELS IN STUDIES

OF VIRAL IMMUNITY

Much of what is known regarding antiviral immunity and
tissue inflammation comes from studies conducted in animal
models of human diseases. Animal models act as preclinical and
translational gatekeepers since they allow the study of cellular

interactions in vivo and elucidation of disease pathogenesis in
tissues that may be difficult to access in humans. While mouse
models have provided tremendous benefits to immunologists in
understanding immune responses in humans, 65 million years
of divergent evolution has contributed to significant differences
in cytokines and cytokine receptors for the two species.
Studies have shown poor correlation in genomic responses
to acute inflammatory stress between humans and mice (16),
and engagement of different chemokine/cytokine pathways in
response to oxygen and glucose deprivation by human neurons
compared to murine neurons (17). IL-13 seems to induce B cell
class switching for IgE production specifically in humans whereas
mice require IL-4 (18, 19). Similarly, IL-7 receptor deficiency
inhibits development of all T and B lymphocytes in mice (20), but
only T cells in humans (21). Furthermore, a number of pathogens
like influenza, HIV, or dengue are highly tropic to their respective
hosts and do not mimic human pathologies in mice, potentially
restricting the use of mice as models for some infectious diseases
[reviewed in (22)].

NHP are perhaps the most commonly utilized models
to study and understand immune responses against human
infectious agents and for preclinical evaluation of therapeutics
and vaccines (Figure 1). NHP have proven essential for research
breakthroughs in maladies such as cancer, Parkinson’s disease,
heart diseases, and various infectious diseases such as HIV,
Zika, Ebola, influenza, and others (23, 24). Even though
NHP research accounts for <1% of the all the biomedical
laboratories working in animal models (24), the advantages
offered by NHP due to the genetic and physiological homology
to humans are manifold. Indeed, human and NHP cytokines
are relatively conserved with 95% amino acid identity of most
cytokines such as IL-2 and IFN-γ for Old World NHP and
up to 90% amino acid identity for New World NHP (25).
In addition, many cross reactive reagents and monoclonal
antibodies for the detection of cytokines have been evaluated and
validated for NHP species (NIH Non-human Primate Reagents
Resource; http://www.nhpreagents.org) (25–28), making NHP
attractive animal models to study viral pathogenesis and
disease progression.

NHP MODELS COMMONLY USED FOR

VIRAL DISEASES

Great Apes
The great apes used previously as animal models include
chimpanzees (Pan troglodytes), and to a lesser extent
orangutans (Pongo pygmaeus) and gorillas (Gorilla beringei) (29).
Chimpanzees share >98% DNA sequence homology to humans;
and yet surprisingly, have immune systems that respond much
more robustly to infections like HIV and hepatitis B virus
(HBV). HBV and HCV can only pathogenically infect humans
and chimpanzees, thus making chimpanzees, at one time, the
primary animal model for therapeutics and vaccine research
(30–32). However, the use of great apes in biomedical research
has become increasingly restricted for ethical and cost reasons
and therefore other NHP models are being increasingly utilized.
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FIGURE 1 | NHP models for viral infections. Representation of NHP models that are used commonly to study human viral infections with respect to the evolutionary

divergence from humans. GBV-B, GB virus-B; ZIKV, Zika virus; DENV, Dengue virus; WNV, West Nile virus; EBOV, Ebola virus; SIV, Simian Immunodeficiency virus;

SHIV, Simian/Human Immunodeficiency virus; RhCMV, rhesus cytomegalovirus; HEV, Hepatitis E virus; rhLCV, rhesus lymphocryptovirus; SVV, simian varicella virus;

CHIK, chikungunya virus, HIV, Human Imunodeficiency virus; HCV, Hepatitis C virus; and HBV, Hepatitis B virus are some of the most common examples for viral

studies in NHP.

Old World Monkeys
The Old World monkeys are primarily found in the continents
of Africa, Asia, and Europe with rhesus macaques (Macaca
mulatta), cynomolgus macaques (Macaca fascicularis),
sooty mangabeys (Cercocebus atys), African green monkeys
(Chlorocebus aethiops), and baboons (Papio spp.) being
the predominant species used in biomedical research.
Rhesus/cynomolgus macaques are perhaps the most widely
utilized NHP animal models to study human infectious diseases.
Besides HIV (33), macaque models have been used for infectious
diseases such as influenza (34, 35), HBV (36, 37), HCV (38–40),
measles (Morbillivirus) (41–43), cytomegalovirus (CMV) (44–
46), among many others (47). Sooty mangabeys and African
green monkeys are also used to study HIV and African green
monkeys are used as a model for influenza (48). Less commonly
used tree shrews (Tupaia belangeri) have also been explored as a
model for HCV infection (49, 50).

New World Monkeys
New World monkeys or neotropical primates include cotton-
top tamarins (Saguinus Oedipus), commonmarmosets (Callithrix
jacchus), owl monkeys (Aotus lemurimus), and squirrel monkeys
(Saimiri boliviensis), which are commonly located in Central and
South America. Although, the New World monkeys are more
divergent than Old World NHP from humans, they provide a
distinct advantage in biomedical research due to their relatively
smaller size and lower cost compared to other NHP. Marmosets
and tamarins have been used to study many flaviviruses such as

HCV, Dengue, and Zika (51–56). Owl monkeys can be infected
with Hepatitis E Virus (57) and at least some individual animals
might have HIV-1 compatible CD4 alleles (58) making them
potentially useful for HIV research. Squirrel monkeys have been
utilized as animal models for HTLV-1 pathogenesis and vaccine
development (59, 60) and as an experimental model for Nipah
Virus (61).

CYTOKINE DYSREGULATION IN VIRAL

INFECTION MODELS

HIV/Acquired Immunodeficiency Syndrome

(AIDS)
The emergence of HIV (Genus: Lentivirus, Family: Retroviridae)
is the result of the combination of at least four simian
immunodeficiency virus (SIV) transmission events from
chimpanzees or gorillas to humans (62, 63). Therefore, SIV
and simian/human immunodeficiency virus (SHIV) infections
in NHP are commonly used to model HIV pathogenesis
and development of vaccines and therapeutics. Specifically,
rhesus macaques and sooty mangabeys have been critical in
understanding the early phase of the infection (33, 64). Several
studies (discussed below) have shown the principal involvement
of an unusually vigorous immune activation leading to the
progression and establishment of AIDS.

Based on plasma parameters from HIV-infected patients, the
virus-mediated cytokine storm starts early in infection even
before peak viremia is reached (65, 66). It rapidly initiates a
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cascade of events characterized by the production of the early
pro-inflammatory cytokines, IL-15, and IFN-α, quickly followed
by the more sustained TNF-α and monocyte chemoattractant
protein (MCP)-1 during infection. Other pro-inflammatory
cytokines like IL-6, IL-8, IL-18, and IFN-γ are elevated 2 days
post the first wave of proinflammatory cytokines. At the same
time, the secretion of IL-10, an immunoregulatory cytokine
exponentially increases until it peaks at 5 days of infection (65).
While, the IL-10/IL10-R pathway has a major role in preventing
tissue damage observed during HIV infection by inhibiting Th1
responses and the production of anti-viral cytokines (IFN-α,
IFN-γ, IL-2), it also contributes to viral persistence. Furthermore,
the expression of the PD-1/PDL-1 pathway drives the inhibition
of T cell function (67) and indirectly up-regulates expression
of IL-10 (68). Indeed, blockade of PD-1 by anti-PD-1 antibody
in infected rhesus macaques augmented SIV specific IFN-γ
responses in CD8+ T cells in the blood, and could be synergized
with vaccination and anti-retroviral therapies (69, 70). However,
more NHP studies are necessary to establish the importance of
PD-1 blockade particularly in mucosal tissues.

The magnitude of the cytokine storm is broadly associated
with the clinical outcome in infected rhesus macaques and
sooty mangabeys (66, 71). Indeed, the progressive infection in
rhesus macaques is associated with production of IL-15, IL-18,
IFN-γ, granulocyte-colony stimulating factor (G-CSF), MCP-1
and macrophage inflammatory protein (MIP)-1β but not in non-
progressive sootymangabeys (66). Similar cytokine dysregulation
evidenced as elevated IL-12 has also been reported in HIV
seroconverts (72) and South African women who are high risk
population for acquisition of HIV infection (73). Furthermore,
the cytokine storm leads to immune activation with global
damage in mucosal tissues, specifically the gut and gut-associated
lymphoid tissue (GALT) which are the early and major sites of
virus replication (74). Specifically, the virus targets the IL-17/Th-
17 pathway that is essential for preservation of the gut barrier,
maintenance of the gut microbial environment, and prevention
of translocation of microbial products into the circulation that
could otherwise cause immune activation (75, 76). However,
it is shown that cART can partially restore effective CD4+ T
cells (more than 50% compared to non-treated) in the gut and
enhance the Th17 subset which is associated with a better clinical
outcome (77). This further illustrates the importance of NHP to
study gut immunity in HIV infection and evaluate therapeutic
modalities at mucosal tissues (78).

SIV infection in sooty mangabeys leads to a long non-
progressive infection as observed in some HIV-infected
individuals (79). Sooty mangabeys do not develop disease
symptoms due to a low level of immune activation despite
high level of viral replication (80). Instead of an inflammatory
immune response, elevated regulatory T cells (Treg) and
associated cytokines, TGF-β and IL-10 limit the level of immune
activation (80). Similarly in infected African green monkeys,
an anti-inflammatory environment is rapidly established due
to increases in Treg frequency, TGF-β, and IL-10 levels in the
plasma (81). Interestingly, a comparison of acute infection in
African green monkeys and rhesus macaques revealed that a
rapid and elevated IFN-α is triggered in both models but return

to baseline levels after 28 days of infection was observed only in
African green monkeys (82). Further, no changes in the levels
of pro-inflammatory cytokines such as IL-6, IL-18, and TNF-α
were reported in infected African green monkeys compared to
uninfected controls (83). It was also shown that sooty mangabeys
have a unique genome that protects them from developing AIDS
(84). Of importance, these animals possess a different TLR-4
gene compared to NHP that develop AIDS. TLR-4 is a pattern
recognition receptor that senses lipopolysaccharides on bacteria
and initiates pro-inflammatory cytokine induction. HIV can
induce microbial translocation that elicited exacerbated TLR-4
stimulation and lead to chronic immune activation (85, 86).
Therefore the differential cytokine response and an overall lower
immune activation, in part confers immune protection, less
tissue damage and maintenance of gut barrier in non-pathogenic
SIV infection of sooty mangabeys as well as African green
monkeys (87, 88).

Rhesus macaques are not natural hosts of SIV infection and
therefore, some SIV strains can induce strong viral load and the
development of AIDS similar to HIV-infected individual (89).
In a rhesus macaque cohort infected with pathogenic or non-
pathogenic strains of SIV/SHIV, the progressor cohort exhibited
low IFN-γ induced by CD4+ T cells compared to CD8+ T cells
whereas, the non-progressor monkeys did not develop a similar
immunomodulation (90). Furthermore, infection with virulent
SIVmac251 strain directly upregulated the cytokine production
(IFN-α/β, IL-12, IL-18) and led to the activation of natural killer
(NK) cells which are one of the major antiviral innate immune
cells and also act as a bridge to the adaptive system. Interestingly,
the production of antiviral cytokines (IFN-α, IFN-γ, IL-2) was
also associated with viral establishment (91). An over production
of IL-7 in the gut during the early days of acute SIV infection
in rhesus macaques could contribute to the cytokine storm by
inducing elevated chemokine expression triggering immune cell
recruitment (92). Overall, the cytokine storm induces a vicious
cycle by spreading the infection and causing tissue damage due
to an extensive inflammation in SIV progressive NHP models.
To overcome this cytokinemediated disease exacerbation, several
therapeutic formulations that use cytokines including IL-12,
IL-15, and IL-2 or block cytokine receptors are increasingly being
tested in SIV infection models (discussed in later section).

Hepatitis B and C
Hepatitis B and C infections together are the leading causes
of chronic liver disease worldwide (93). HBV (Genus:
Orthohepadnavirus; Family: Hepadnaviridae) and HCV (Genus:
Hepacivirus; Family: Flaviviridae) are hepatotropic viruses and
cause both acute and chronic liver infections, which can progress
to fibrosis and hepatocellular carcinoma. Interestingly, both
viruses have a narrow host range (humans and chimpanzees)
and have similar pathogenesis for progressive liver damage
and persistence of infection. Studies in chimpanzees showed
that HBV and HCV are not directly cytopathic (94–97) but
instead cause liver injury due to chronic immune activation.
Adaptive T cell and NK cell immunity are important in the
control of viral hepatitis, but they can also prove detrimental in
persistent infection. In cases of uncontrolled replication, infected

Frontiers in Immunology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 2862159

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Manickam et al. Cytokine-Induced Damage in NHP Models

hepatocytes secrete cytokines IL-8, CXCL-9, and CXCL-10,
which recruit T cells to the infected liver, all correlating with
histological damage (98–100). Further, innate immune NK
cells are activated and recruited by high levels of IFN-α and
IL-8 in the liver and induction of cytotoxic TRAIL pathway
leads to killing of hepatocytes and liver injury (101). HCV-
mediated liver inflammation is promoted by IL-1β and the TNF
superfamily cytokines such as TNF-α, TNF-β, TWEAK, and
LIGHT through the activation of NF-kB and MLCK-signaling
pathways to reduce hepatocellular tight junction integrity
(102, 103). In HBV infection, TNF-α secretion was associated
with significant fibrosis, and IL-10 and IFN-γ were associated
with necroinflammation (104). Additionally, as a result of viral
overload, induction of interferon stimulated genes and elevated
IL-8 and chemokines such as CCL2, CXCL1, and CXCL5
results in cholestatic HCV, which is associated with metabolic
dysregulation (105, 106).

Due to the narrow host range, chimpanzees were critical for
initially understanding the natural history and pathogenesis of
HCV and HBV (32, 107). However, because of the limited use of
chimpanzees currently, other surrogate animal models are being
employed. Tomodel HBV, cynomolgus macaques have been used
but with an indirect infection approach: ex-vivo baculovirus-
mediated HBV genome transfer in hepatocytes to cross the
species barrier (108). Recently, a new virus called the capuchin
monkey hepatitis B virus (CMHBV) has been discovered in
Brazilian capuchin monkeys, a neotropical primate and has
potential implications in the development of the much needed
animals model for hepatitis B (109). The more commonly used
NHP models for HCV are infections of neotropical primates,
marmosets and tamarins, with the surrogate hepacivirus GBV-
B of the same family Flaviviridae (51, 110, 111). Several studies
showed that activated T cell immune responses and IFN-γ
secretion are important for clearance of GBV-B (112, 113).
However, similar to HCV-infected liver, immune activation
correlated with liver damage in primary infections and re-
infections inmarmosets (114, 115). Activated NK cells expressing
IFN-γ and perforin were accumulated in the liver and in
addition elevated plasma IFN-γ and RANTES were associated
with acute hepatitis in infected animals (114). Further, infected
marmosets developed metabolic dysfunctions associated with
GBV-B infection even after clearance of viremia indicating that
viral hepatitis induces a cascade of events toward hepatic and
systemic inflammation. Particularly, imbalance in levels of pro-
inflammatory adipocytokines such as resistin and plasminogen
activator inhibitor-1 secreted by dysfunctional adipose tissues
contribute to local, systemic, and metabolic malfunctions (116).
Given the importance of liver immune responses in progression
of viral hepatitis, limited access to liver tissues has severely
impeded development of HCV vaccine and HBV therapeutics.

Zika
Infections with Zika virus (ZIKV; Genus: Flavivirus; Family:
Flaviviridae) have recently caused a pandemic due to abortions,
stillbirths, congenital birth defects, and neonate deaths called the
congenital Zika syndrome (CZS) (117). ZIKV induced neuronal
necrosis in the cortical layer of the brain is mediated by a

complex array of cytokines and immune factors (118–120).
While studies in brain tissue are limited, in-situ immunostaining
of infected fetal brain samples showed that the predominant
immune response was characterized by IL-4, IL-10, IL-33, iNOS,
and arginase and therefore was generally skewed toward a
Th2 response (118). IL-33, in particular is directly involved in
pyroptosis, activation of inflammasomes, endoplasmic reticulum
stress potentially leading to cellular damage (119). However,
other cytokine responses indicative of Th1, Th17, Treg, Th9, and
Th22 response were also involved to a lesser extent. Immune cells
including microglia, CD4+ and CD8+ T cells, Treg, NK cells,
M1/ M2 macrophages, and antigen-presenting cells contribute
to the pathogenesis of the ZIKV induced inflammation (118).
Thus, a complex relationship between different immune factors,
cell damage, and direct viral action leads to ZIKVmeningitis and
encephalitis.

While ZIKV induced pathology and pathogenesis studies
in humans are limited to samples obtained from autopsy of
severe fatal cases, NHP have been tremendously helpful in
elucidating pathogenesis and fast tracked development of several
vaccine candidates (121–123). Indeed, fetal neuropathology,
microcephaly, and other CZS symptoms were evidenced in
several NHP models including rhesus, pigtail, and cynomolgus
macaques, common marmosets, and squirrel monkeys infected
during early pregnancy (55, 56, 124–128). Infection studies
in common marmoset dams identified immune pathways in
maternal viral responses. Interestingly, an increase in IFN-
γ and pro-inflammatory cytokines as early as day 2 post-
infection was reported. The pro-inflammatory response was
maintained as elevated induction of type I/II IFN associated
genes and pro-inflammatory cytokines even at day 7 post-
infection and spontaneous abortion after 16–18 days of
infection was reported with extensive viral infection in placenta
and fetal tissues (56, 125). In infected rhesus macaques,
viral persistence in the central nervous system and lymph
nodes correlated with robust and early induction of pro-
inflammatory responses and mTOR signaling pathways as
evidenced by IFN-α induction at day 2, 4, and 6 post-
infection and upregulation of transcript components of IFN-
α and IFN-stimulated genes (ISGs) (OAS2, IFT1/2/3, ISG15,
IRF7, IFI44, MX1, and MX2), pro-inflammatory cytokines and
chemokines (TNF- α, IL-1, IL18, CCR7, CCL2, and CCL20),
immunomodulatory pathways (IL-10, TGF-β, and T regulatory
cells), and inflammasome pathways (NOD2, NLRP3, CXCL10,
BTG2, BST2, OSM) at day 6 post-infection (129). As a result
of these activated pathways, ZIKV persistence could contribute
to the characteristic neuropathology associated with ZIKV.
Further several experiments in NHP are currently underway for
preclinical testing of vaccine candidates and Zika is an excellent
example to illustrate the importance of NHP in developing
vaccines within a short span of time.

Dengue
Dengue virus (DENV; Genus: Flavivirus; Family: Flavivirdae), is
a major vector borne disease in tropical and subtropical countries
affecting approximately 100million people worldwide, which can
progress from the typical Dengue fever to fatal conditions such as
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Dengue hemorrhagic fever (DHF) and Dengue shock syndrome
(DSS). Damage to vascular endothelium and uncontrolled
activation of blood coagulation pathways in DHF can result in
critical hypovolemic shock in DSS. Increased levels of cytokines,
such as IFNs, IL-2, IL-8, TNF-α, and vascular endothelial growth
factor A (VEGF-A) have all been reported to be associated with
vascular leakage (130). Increased T cell activation and cytokine
production in patients during both primary and secondary
Dengue virus infections showed greater clinical severity of illness
associated with cytokine storm characterized by elevated plasma
pro-inflammatory cytokines such as IFN-γ, IL-6, IL-8, IL-10,
CXCL9, CXCL10, CXCL11, MIF, TNF-α, and VEGF (130, 131).

Several NHP species are permissive to Dengue infection
including chimpanzees, rhesus and cynomolgus macaques,
sooty mangabeys, common marmosets, and owl monkeys,
however the DENV induced hemorrhagic disease pattern is less
common in NHP [reviewed in (132)]. In addition to elevated
TGF-α and IFN-γ, increases in MCP-1, which drives immune
cell recruitment, and potential cause of vascular damage was
found elevated in rhesus macaques infected with DENV (133).
A high dose intravenous inoculation of DENV induced classic
dengue hemorrhage in infected rhesus macaques 3–5 days
post-infection, with altered serum biochemical parameters
indicative of coagulopathy (134). Similarly cytokine storm
associated with enhanced dengue disease was detected in DENV
infected marmosets, which showed a significant increase in
plasma TNF-α as early as 3 days post-infection and significantly
increased IFN-γ at 3, 6, and 20 days post-infection (52, 135).
Indeed, antibody enhanced dengue disease in marmosets
lead to CNS injury and was associated with intense TNF-α
immunostaining in brain samples (135). Further, based on
biomarker network analysis, two relevant strong axes during
early stages of dengue fever were identified—a protective axis
composed of TNF-α/lymphocytes/platelets, and a pathological
axis IL-2/IL-6/monocyte/prothrombin time/viremia. Later
time points post-infection showed the interaction of IFN-
γ/platelets/DENV-3/prothrombin time, and the involvement of
type-2 cytokines (IL-4, IL-5) (136). Overall, these studies indicate
that elevated proinflammatory cytokines in dengue-infected
NHP have a pathogenic role associated with disease severity.

Influenza
Influenza A virus (Genus: Influenzavirus A; Family:
Orthomyxoviridae) causes acute and severe respiratory illness in
more than 1 billion people worldwide. The severity of influenza
infection derives from the interplay between the virus and the
host’s ability to control viral infection and spread. In severe
cases the host’s response is hyperactivated and the resulting
inflammatory response produces a cytokine storm (137–139)
that is responsible for tissue injury and potentially death. This
was seen during the 1918 H1N1 pandemic and more recently
via the spread of H5N1. Endothelial cells from the lung have
been implicated as key players in propagating the cytokine
storm, in part from having elevated levels of CCL2, CCL5, and
CXCL10 (140). Further inhibiting S1P1 receptor signaling on
pulmonary endothelial cells, which leads to downregulation
of cytokine/chemokine signaling, has been shown to decrease

the development of cytokine storm following infection with
influenza (140, 141).

One of the major issues in NHP modeling of influenza is the
result of low animal mortality as compared to what happens in
humans. While NHP can be infected with seasonal influenza
strains they do not always display symptoms akin to those
seen in humans (142). Influenza infection in NHP may lead
to a biphasic subclinical fever early during the infection (143,
144), but this seems to be dependent on the mode of infection
and dosage utilized (145, 146). Aerosol delivery using the full
head chamber (145) results in a more lethal outcome, whereas
the facemask leads to less severe symptoms. Infection with
highly pathogenic influenza strains can induce clinical symptoms
such as fever, cough and lethargy, and even showing signs of
acute respiratory distress syndrome (124), bronchointerstitial
pneumonia, peribronchiolar alveolitis, edema, and hemorrhaging
(147–150). Further, in this model and others, increased levels of
IP-10 (CXCL10), MCP-1 (CCL2), and IL-6 have been observed,
which have been characterized as hallmarks of H5N1 human
infection (138, 139, 151–153). Gene expression analyses have also
shown that CXCL10 and CXCL11 are highly upregulated early
during infection with highly pathogenic H1N1 and H5N1 and
associated with elevated tissue damage (151, 152, 154). Using the
full head chamber allows for the macaques to develop fulminant
pneumonia that rapidly progressed to acute respiratory distress
syndrome, which is the result of widespread alveolar epithelial
cell death as well as depletion of alveolar macrophages.

CMV
CMV (Genus: Cytomegalovirus; Family: Herpesviridae)
can infect and persist lifelong in multiple cell types such
as macrophages, neutrophils, fibroblasts, neuronal cells,
hepatocytes and others (155–159). Human CMV (HCMV)
infections are often reported in patients with suppressed
immune system, including the elderly, AIDS patients, cancer
patients, and transplant recipients. After infection, CMV hijacks
cellular machinery, induces significant alterations in gene
expression including IFN signaling genes, followed by a complex
cascade of signaling events (160, 161) leading to upregulation of
transcription factors like NF-κB and altered cytokine production,
and thus successfully evades the host immune surveillance and
disseminates to all organs (162–167). While the pathogenesis
is not completely clear, elevated levels of MCP-1 and MIP-1α
recruiting monocyte and macrophages to the site of infection
could mediate tissue damage with uncontrolled viral replication
in immunocompetent patients (168, 169). In congenital CMV
infections, which cause severe birth defects in newborn babies,
elevated MCP-1 and TNF-α in placenta could lead to adverse
pregnancy outcomes or even death in utero (170, 171). Another
group reported severe CNS abnormalities and brain vasculature
damage in newborn babies due to proinflammatory cytokines
IL-8, IL-6, TNF-α, and IL-1β upregulated by CMV infection of
pericytes (172).

HCMV does not infect animals due to the species specificity
of beta herpesviruses and interestingly the virus has co-evolved
with its host species (173). Therefore, the study of specific
CMV in their respective species of animal models has been
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helpful in elucidating CMV specific immunity. Indeed, simian
CMV seroprevalence was reported in baboons, African green
monkeys, and rhesus macaques as early as 1971 (174) and
currently, rhesus CMV (RhCMV) infections in rhesus macaques
is more commonly used as a NHP model (175). Since the
global prevalence of HCMV ranges from 60 to 100%, animal
models offer a unique advantage of being specific pathogen
free, in this case CMV-free, in order to understand CMV
immunity in comparison to uninfected population. RhCMV
is particularly useful to model congenital infections (176)
and co-infections such as CMV and HIV infections in the
same host (177). Intrauterine inoculation of pregnant dams
and intraamniotic/intracranial inoculations of the fetuses with
RhCMV led to severe neurological defects and CNS lesion
similar to HCMV (45, 176, 178). Further, RhCMV studies
helped identify that the primate CMV encodes and expresses
IL-10 homolog genes in vivo (179). Interestingly, the viral
homolog had evolved functions that are beneficial to viral
replication, primarily through immunosuppressive and anti-
proliferative effects on host immune cells (179). The CMV
IL-10 could also play a role in CMV’s ability to subvert
NK cell reactivity, thus avoiding NK cell lysis (179). Further,
exploration of RhCMV infections in CMV free animals
can identify immunopathogenesis pathways and therapeutic
targets.

IMMUNOTHERAPEUTIC APPROACHES

Recombinant cytokines and anti-cytokine antibodies have
recently gained traction in the pharmaceutical arena as a
novel class of drugs for therapeutic purposes especially in
autoimmune disorders and cancer (180, 181). There are few
cytokine therapies that are already in use for therapy against
viral infections such as IFN-α for HBV and HCV therapy. To
overcome the severe side effects of IFN-α therapy, recently type
III IFNs namely IFN-λ which have similar biological functions as
IFN-α, have been tested preclinically in rhesus macaques (182).
IFN-λ demonstrated antiviral effects similar to IFN-α without
hematologic toxicity and thus could be used as an alternative
therapy in chronic hepatitis patients. IL-12 administration has

been previously studied in chimpanzees and rhesus macaques for
understanding IL-12 mediated pathways and antiviral protection
in SIV infections respectively (183, 184). IL-15 agonist, which
has immunomodulatory functions, activates innate and adaptive
immunity, and has been well characterized in NHP (185–188).
Recently, a novel IL-15 superagonist ALT 803 potentiated T cell
and NK cell responses leading to transient viral suppression
in ART naïve SIV infected rhesus macaques (189). While the
viral suppression was transient, this study illustrates IL-15 as a
potential therapeutic agent particularly in combination therapy
and ALT 803 is already in clinical trials for cancer therapy
(190, 191). Even in DNA vaccine studies, IL-2 administration
augmented vaccine elicited HIV-1, and SIV-1 specific immune
responses in SHIV challenged rhesus macaques (192) thus
showing that cytokine co-administrations can potentiate both
vaccines and therapeutics.

Blocking of cytokine receptors or administration of cytokine
antagonists can also be helpful in control of viral replication.
Antagonists of CCR5 (maraviroc and vicriviroc) and CXCR4
inhibitor (Plerixafor) are relevant as they block HIV entry
in cells and therefore can be used for HIV treatment (193).
In addition to these small molecule CCR5 inhibitors, CCR5
blocking antibodies have also been characterized in preclinical
rhesus macaques model of SIV infection (194–196). Further,
maraviroc prevented cardiac dysfunction and cardiomyopathy
associated with AIDS by blocking CCL5 and its recruitment of
inflammatory macrophages in the heart tissue of SIV infected
rhesus macaques (197).

Cytokine-based therapeutics are increasingly tested for other
non-viral disease models of NHP. IL-13 neutralization for
prevention of IgE mediated allergic responses in airway
inflammation model of cynomolgus macaques (198), IL-6
receptor blocking and anti-TNF agent, infliximab for treatment
of rheumatoid arthritis in cynomolgus macaques and rhesus
macaques, IFN-α treatment effects in rhesus macaques model
of cytokine induced depression (199, 200) are some of the
few examples and could have potential applications in viral
immunity and therapy. While cytokine therapy is advantageous
in controlling viral replication or preventing tissue damage,
systemic administration of cytokine, or cytokine blocking can
result in altered hematopoiesis and immune activation, and

FIGURE 2 | Cytokine responses and sequelae in viral infections.
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severe complications due to the pleiotropic nature of cytokines
in long-term therapy. Even in co-inhibitor receptors/checkpoint
blockade therapy such as anti-PD-1 or CTLA-4 therapy
commonly used for reversion of exhausted T cells in cancer
and chronic diseases, undue immune activation or autoimmune
responses is a primary risk leading to systemic or organ
toxicities associated with uncontrolled inflammatory cytokine
secretion and cytotoxicity by activated immune cells, which
in turn require additional or follow-up immunosuppressive
treatment [reviewed in (201, 202)]. Therefore, development
of site directed biologics or cytokine therapy targeting viral
infected tissues would be more beneficial than systemic
administration.

CONCLUSION

Within the last few years, cytokines have been identified as key
diagnostic, prognostic, and therapeutic agents in human diseases.
Their multifaceted roles in immunity, tissue protection, and
remodeling, maintenance of systemic and metabolic homeostasis
make them important biomarkers for understanding and
treating infectious diseases, cancer, auto-immune diseases,
metabolic dysfunctions and other inflammatory processes.

However, it is very important that their use in conjunction
with other therapeutic and preventative strategies needs to
be tested in pre-clinical models due to their propensity to
cause immunopathology and tissue injury leading to serious
complications in certain conditions (Figure 2). The usage of
NHP models will be helpful for early prevention of tissue injury
and associated autoimmune and metabolic syndromes that arise
in diseases caused by viral and non-viral causes.
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