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Closed-loop neurophysiology has been accelerated by recent software and hardware 
developments and by the emergence of novel tools to control neuronal activity with spatial 
and temporal precision, in which stimuli are delivered in real time based on recordings 
or behavior. Real-time stimulation feedback enables a wide range of innovative studies of 
information processing and plasticity in neuronal networks. This Research Topic e-Book 
comprises 16 Original Research Articles, seven Methods Articles, and seven Reviews, Mini-
Reviews, and Perspectives, all peer-reviewed and published in Frontiers in Neural Circuits. 
The contributions deal with closed loop neurophysiology experiments at a variety of levels 
of neural circuit complexity. Some include modeling and theoretical analyses. New enabling 
technologies and techniques are described. Novel work is presented from experiments in vitro, 
in vivo, and in humans, along with their clinical and technological implications for improving 
the human condition. 
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Feedback and closed-loop circuits exist in just about every part
of the nervous system. It is curious, therefore, that for decades
neuroscientists have been probing the nervous system in an open-
loop manner to understand it. Instead of the linear, reduction-
istic “stimulate → record response” approach, a more modern
approach is taking hold: closed-loop neuroscience. It respects
the inherent “loopiness” of neural circuits, and the fact that
the nervous system is embodied, and embedded in an environ-
ment. Through active sensing, behaving animals can influence
their environment in ways that alter subsequent sensory inputs.
Therefore, loops abound not only in the nervous system itself,
but through its dynamic interactions with the world. By interpos-
ing our own technology in some of these loops, we can achieve
unprecedented control over the system being studied and explore
the functional consequences. This Research Topic, “Closing the
Loop Around Neural Systems,” presents a diverse set of recent
methodological, scientific and theoretical advances from neu-
roscientists and neuroengineers who are pioneering closed-loop
neuroscience.

As shown here, cutting-edge researchers are taking advantage
of real-time or “on-line” processing of large streams of neural
data. This has become feasible thanks to advances in computer
processing power, in electronics such as microprocessors and
field-programmable gate arrays (FPGAs), and in specialized and
open-source software. These advances have enabled a wide variety
of new neuroscience approaches to understanding, modulating,
and interfacing with the nervous system—approaches in which
the variables being monitored can influence the experiment in
progress, just as active sensing can influence an animal’s next
input.

Our call for submissions to this Frontiers in Neural Circuits
Research Topic yielded an overwhelming response, indicating
that closing the loop around neural systems is an exciting and
rapidly expanding field. Perhaps this is because of the diversity
of ways in which “closed-loops” can be interpreted and imple-
mented. This Research Topic presents seven Methods articles,
16 Original Research articles, and seven Reviews, Mini-Reviews,
and Perspectives, for a total of 30 accepted papers published in
Frontiers in Neural Circuits between April 2012 and October
2013. A map showing the locations of all the contributors1 reveals

1See: https://mapsengine.google.com/map/edit?mid=zDBeK_5W8FVs.knb4_
z5h9NpQ

that most are in the USA and Europe, although researchers in
Russia, Japan, and Israel are also represented.

Several articles describe or review new technologies that
increase the options for closed-loop neuroscience. Two papers
by Bareket-Keren and Hanein (2013) and Robinson et al. (2013)
review the latest in carbon nanotube and nanowire multi-
electrode arrays (MEAs) for neural interfacing. Franke et al.
(2012) review high-density MEAs with many electrodes and real-
time spike sorting. Müller et al. (2013) present sophisticated
hardware and software for very fast (sub-millisecond) closed-
loop recording and stimulation of cultured networks using their
CMOS array with 11,011 electrodes. Newman et al. (2013)
created an application programming interface (API) for their
open-source NeuroRighter electrophysiology system that greatly
enhances its ability to carry out closed-loop experiments in which
recorded signals trigger electrical stimulation or other hardware.
Five examples of closed loop experiments in vitro and in vivo are
described.

A number of articles present advances using acute or cul-
tured networks in vitro. Bonifazi et al. (2013) present EU Brain
Bow project efforts in progress, to create and study bi-directional
neural interfaces. Their work includes both patterned dissociated
cultures and their responses to laser ablation, and a whole-brain
in vitro preparation and its response to focal ischemia. The goal is
to develop the closed-loop prostheses of the future. Tessadori et al.
(2012) present their Hybrain2 software for real-time control of
hybrid neural-robotic systems, consisting in this case of a virtual
wheeled robot interfaced to a living hippocampal network on an
MEA. Brewer et al. (2013) reconstructed a hippocampal trisynap-
tic loop in vitro on an MEA with small tunnels for neurites to grow
through. Pimashkin et al. (2013) used an adaptively enhanced
learning protocol to study learning in dissociated hippocampal
networks on MEAs.

Others studied the nervous systems of intact or semi-intact
animals with closed-loop approaches. Nishimura et al. (2013)
restored arm movements in a spinal cord-injured non-human
primate (NHP) with an artificial cortico-spinal connection and
an artificial musculo-spinal connection. This system allows voli-
tional control and boosting of weak, residual muscle activity.
Opris et al. (2012) enhanced performance on a delayed match-to-
sample task in NHPs using cortical microstimulation contingent
on recordings that predict incorrect responses. Dhingra et al.
(2013) studied the role of the vagal mechanosensory feedback
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loop for respiration in a perfused in situ brainstem preparation
of a mouse model for Rett syndrome. To help map the brain’s
feedback loops, Beier et al. (2013) demonstrate in the mouse a
new transsynaptic retrograde tracer, based on the vesicular stom-
atitis virus with a rabies virus coat. Egelhaaf et al. (2012) provide a
comprehensive review of work on insect vision, emphasizing the
importance of active sensing for interpreting optic flow to opti-
mize flying. Ejaz et al. (2013) present closed-loop experiments to
study fly visual circuits in which recorded neural responses con-
trol a fast turntable on which the fly is mounted. Gollisch and
Herz (2012) review how the locust auditory system, salamander
retina, and the monkey visual cortex have been used to efficiently
explore a large parameter space of iso-response curves, via on-line
analysis of incoming data to generate the next stimuli.

The “Model-in-the-loop” paradigm is a powerful approach
to understanding complex neural network dynamics. Brookings
et al. (2012) interfaced an excised crab stomatogastric ganglion
(STG) to a dynamic clamp model neuron to help determine the
relative contributions of intrinsic and network properties of STG
neurons to network function. Hsiao et al. (2013) interfaced a den-
tate gyrus-CA1 model to an acute hippocampal slice preparation
on an MEA, with the goal of developing cognitive prostheses that
could someday replace damaged brain regions.

Theoretical advances are described in several modeling and
simulation papers. Witt et al. (2013) modeled the ability of
closed-loop optogenetic stimulation to control communication
between neural populations by altering their phase relationships.
DiMattina and Zhang (2013) reviewed the use of feedback to
optimize stimuli continuously during an experiment, for real-
time model estimation. Hanuschkin et al. (2013) modeled the
sensory-motor loop by which birds learn to produce stereotyped
songs. Skocik and Kozhevnikov (2013) demonstrate a system
for real-time audio feedback to study birdsong learning. Little
and Sommer (2013) optimized exploration strategies in embod-
ied agents based on information-theoretic analysis. Manoonpong
et al. (2013) demonstrate the value of adaptive forward mod-
els in developing a legged robot locomotion controller. Molkov
et al. (2013) modeled the roles of local (brainstem) and dis-
tal (lungs) feedback in mammalian respiratory circuits. Wallach
(2013) reviews the concept and implementation of a response
clamp, in which closed-loop control of a selected neural response
variable is used to uncover network properties in cultured
networks.

On the clinical side, Afshar et al. (2013) describe and test a new
platform for closed-loop deep brain stimulation (DBS). This is
the beginning of “smart neuromodulators” that tune themselves
to provide optimal benefit to those suffering from, for exam-
ple, epilepsy or Parkinson’s disease. Beverlin and Netoff (2013)
present theoretical analysis of a model neural network, aimed at
closed-loop seizure control with just such a smart DBS device.
Fernandez-Vargas et al. (2013) explored closed-loop optimization
of a flickering light display as part of a visually-evoked potential
(VEP) brain-computer interface that could be used by locked-in
patients to communicate. Walter et al. (2012, 2013) explored tran-
scranial cortical magnetic stimulation (TMS) in a motor task in
3 paralyzed stroke patients wearing a mechatronic hand orthosis.
TMS was triggered by recorded brain states that were processed

in real time for spectral estimation and to deal with stimulation
artifacts.

The diversity of methods, experiments, tools, and analyses in
this Research Topic suggests that many more areas of neuroscience
research would benefit from adopting a closed-loop perspective.

ACKNOWLEDGMENTS
Many thanks to all the authors and to the many reviewers who
helped make this an outstanding set of articles!
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Carbon nanotube (CNT) coatings have been demonstrated over the past several years
as a promising material for neuronal interfacing applications. In particular, in the realm
of neuronal implants, CNTs have major advantages owing to their unique mechanical
and electrical properties. Here we review recent investigations utilizing CNTs in
neuro-interfacing applications. Cell adhesion, neuronal engineering and multi electrode
recordings with CNTs are described. We also highlight prospective advances in this field,
in particular, progress toward flexible, bio-compatible CNT-based technology.
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INTRODUCTION
Extensive investigations over the past 50 years revealed the great
potential of implanted electrodes for recording and stimulat-
ing neuronal signals. Such devices are currently being employed
for the treatment of a wide range of conditions such as deaf-
ness, Parkinson’s disease and chronic pain, to name just a few
(Schwartz, 2004; Clark, 2006; Wichmann and DeLong, 2006;
McCreery, 2008; Plow et al., 2012). Recent studies also suggested
the use of neuro-stimulation in a growing number of additional
disabling conditions, such as schizophrenia and Alzheimer’s dis-
ease (George et al., 2007; Laxton et al., 2010). As high resolution,
multi-site recording and stimulation devices are very attractive
for neural recording and stimulation applications, the concept
of multi electrode array (MEA) has gained increased attention
in this field. A MEA device consists of an array of electrically
conducting microelectrodes (typically 20–200 µm in diameter),
connected to an external circuitry to allow recording or stim-
ulation of neural electrical activity. Extensive effort has indeed
demonstrated the potential of MEAs as an effective tool in various
neurological applications. In particular, micro-fabrication tech-
nologies were employed to form finely shaped metallic [e.g., gold,
platinum, and titanium nitride (TiN)] electrodes. The realization
of such electrodes is readily achieved using a toolbox borrowed
from the micro electro mechanical system (MEMS) field. This
toolbox includes fabrication processes as well as materials with
improved performances.

The scope of the current review is to explore, within the frame-
work of micro fabricated neuro-electrodes, the employment of
carbon nanotubes (CNTs) as a novel material with unique prop-
erties for neuro-applications. To this end, the CNT properties
will be reviewed as well as their processing and fabrication into
devices. The general field of micro fabricated neuro-electrodes
will be introduced briefly and is beyond the scope of this review.
We refer the reader for further reading on micro fabricated

neuro-electrodes to HajjHassan et al. (2008), on the biocompat-
ibility of CNTs to Warheit et al. (2004), Bottini et al. (2006),
Carrero-Sanchez et al. (2006), and Firme and Bandaru (2010),
and on the use of CNTs in biology to Bekyarova et al. (2005),
Tarakanov et al. (2010), and Bottini et al. (2011).

We begin by reviewing the fundamental chemical, physi-
cal and electrical properties of CNTs (Thostenson et al., 2001;
Harris, 2009; Lan et al., 2011). We then examine studies in
which the neuron-CNT interface was explored. Next, the use
of CNTs for neuronal patterning is discussed followed by a
review of the electrical interfacing between CNTs and neurons
and the study of CNT MEAs for neuronal applications. Finally,
we discuss the progress toward flexible, bio-compatible CNT
technology.

BEYOND CONVENTIONAL MICRO-FABRICATION
Despite a rapid recent development, contemporary MEAs for
neuronal applications are still typified by relatively low signal to
noise ratio (SNR), low spatial resolution (leading to poor site
specificity) and limited biocompatibility. Clearly, further devel-
opment is needed to make better electrodes suited for seamless
integration between electronic devices and neuronal systems.
The limited performances of these MEA systems stem primar-
ily from the challenging interface between the biological systems
and the artificial, electronic systems. The design of an interface
between a living tissue and an electronic device must consider
the dramatic structural and chemical differences between these
two systems: Living tissues are soft, whereas electronic devices are
usually rigid. Tissue conducts charges by ionic transport, whereas
electronic devices conduct electrons and holes. Therefore, neural
electrodes should accommodate differences in mechanical prop-
erties, bioactivity, and mechanisms of charge transport. Proper
electrode-neuron interface is critical in ensuring both the viability
of the cells and the effectiveness of the electrical interface.

Frontiers in Neural Circuits www.frontiersin.org January 2013 | Volume 6 | Article 122 |

NEURAL CIRCUITS

10

http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/about
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/Neural_Circuits/10.3389/fncir.2012.00122/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=LilachBareket_Keren&UID=66785
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=YaelHanein&UID=2382
mailto:yaelha@tauex.tau.ac.il
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Bareket-Keren and Hanein CNT MEA for neuronal interfacing

A fundamental limiting feature of many contemporary MEAs
is large electrode dimensions. Smaller electrodes would allow
better spatial resolution and specific cell recording or stimulation.
Also, reduction in electrode size (and therefore the dimensions
of the entire device) is related to decreased tissue injury and
immune response (Szarowski et al., 2003; Biran et al., 2005;
Polikov et al., 2005; McConnell et al., 2009). While manufac-
turing small electrodes is technologically possible; the reduction
in electrode size, needed for improving both stimulation and
recording, is challenging. Small electrodes fail to provide suffi-
cient charge injection owing to their high interface impedance.
Low reversible charge storage capacity (CSC) means that the elec-
trode cannot inject enough current to the tissue at small enough
overpotential to avoid irreversible electrochemical reactions (i.e.,
electrolysis) and the ensuing damage to the electrode and the
tissue (Cogan, 2008). Thus, to reduce electrode size without sac-
rificing the electrode ability to transfer charge, electrodes with
high specific area are desired. High impedance also contributes
to increased overall noise levels in recorded signals, thus reduc-
ing the recording sensitivity. An additional concern is the polarity
of the electrode. For better biocompatibility, polar electrodes are
desired (Merrill et al., 2005). These issues are further discussed
later in the text.

Coupling neural cells intimately to the electrodes is also
important otherwise the efficacy of both recording and stimula-
tion are compromised. Recording is compromised by background
noise of nearby neurons. Also, the conductance of the solution
effects both recording and stimulation (Grattarola and Martinoia,
1993). The most common means to promote neural adhesion is
through the use of cell adhesion proteins (Sorribas et al., 2001;
Heller et al., 2005). Synthetic positively charged polymers, such
as polylysine (Crompton et al., 2007) and poly(ethyleneimine)
(PEI) (Ruardij et al., 2000) are commonly used to promote neural
cell attachment (He and Bellamkonda, 2005; Khan and Newaz,
2010). The temperature sensitive Poly(N-isopropylacrylamide)
(PNIPAm) was used to improve the binding between a retinal
implant and the retina (Tunc et al., 2007). Conducting poly-
mers (CPs), such as poly(ethylenedioxythiophene) (PEDOT), and
polypyrrole (PPy) were used as neural growth substrate and elec-
trode coating and are of particular interest due to their combined
electronic and ionic conductivity (George et al., 2005; Abidian
and Martin, 2008; Asplund et al., 2009; Abidian et al., 2010).
The main disadvantage of CPs is their low stability under con-
tinued stimulation and exposure to ultra-violate (UV) radiation
or heat. Applied voltage results with the insertion or removal of
counter ions, so the CPs undergo swelling, shrinkage or breaking
that gradually degrades their conductance (Yamato et al., 1995;
Marciniak et al., 2004). Additionally, synthetic and CPs are often
fabricated using complex or toxic polymerization schemes that
are not well suited for cell interfacing applications. These residues
are often not easily removed (Wan, 2008).

SURFACE ROUGHNESS AND CARBON NANOTUBES IN NEURONAL
INTERFACING
Recent studies have shown that surface topography is an impor-
tant parameter affecting neuronal anchoring and branching
(Seidlits et al., 2008; Hoffman-Kim et al., 2010; Roach et al.,

2010). In fact, cells preferentially adhere to rough surfaces when
exposed to the same chemistry (Fan et al., 2002). Therefore,
new electrode materials were investigated to realize electrodes
with improved electrical properties, affinity to neuronal cells and
biocompatibility utilizing the electrode morphological properties
rather than their chemical ones.

An ideal material to meet these requirements is CNTs. CNTs
are well suited for neural electrical interfacing applications owing
to their large surface area, superior electrical and mechanical
properties, as well as their ability to support excellent neu-
ronal cell adhesion (Malarkey and Parpura, 2007; Ben-Jacob and
Hanein, 2008; Voge and Stegemann, 2011). Recent studies have
indeed confirmed the great potential of CNT surfaces as a bio-
compatible substrate on which neurons can readily adhere. This
affinity was linked to surface properties including roughness,
polarity, charge, and chemistry (Hu et al., 2004; Gabay et al.,
2005a,b; Malarkey et al., 2009; Sorkin et al., 2009). CNT high
surface area can lead to a significant increase in charge injection
capacity and decreased interfacial impedance (Gabay et al., 2007;
Keefer et al., 2008).

Investigations so far focused on several main themes: The
effect of chemically modified CNTs on the viability of neuronal
cells, process outgrowth and branching (Mattson et al., 2000; Hu
et al., 2004; Matsumoto et al., 2007), electrical interfacing with
neurons (Gheith et al., 2006; Wang et al., 2006; Gabay et al.,
2007; Shein et al., 2009), and the development of neural implants
(Webster et al., 2004; Nunes et al., 2012). CNTs are now widely
investigated as an interfacing material for neuronal applications
(Malarkey and Parpura, 2007; Ben-Jacob and Hanein, 2008;
Pancrazio, 2008; Lee and Parpura, 2009; Voge and Stegemann,
2011). As highlighted above, both surface-chemistry and surface-
topography are critically important parameters determining the
formation of effective electrodes. Many schemes have been devel-
oped addressing these challenges using CNT coatings (pristine
and chemically modified) offering exciting opportunities as will
be further explored below.

CARBON NANOTUBES
We begin our review with a brief overview of the physical prop-
erties of CNTs. CNTs are hollow cylinders formed in the shape
of a rolled graphite sheet. Single walled CNTs (SWCNTs) are the
simplest of these objects with a diameter ranging between 0.4 and
2.5 nm and lengths of up to a few millimeters. Multi walled carbon
nanotubes (MWCNTs) are composed of a set of coaxially orga-
nized SWCNTs and are 2–100 nm in diameter while their length
can vary from one to several hundred micrometers (Harris, 2009).
The arrangement of the carbon atoms in the graphene sheet can
be of different chirality: armchair, chiral, or zigzag. The chiral-
ity, as well as the tube diameter and the number of graphene
walls, determine the CNT conductivity. Generally, SWCNTs can
be metallic or semiconducting with MWCNTs featuring metal-
lic behavior (Charlier et al., 2007). CNTs are also mechanically
stable with very high tensile strengths and chemical inertness
(Ciraci et al., 2004; Hayashi et al., 2007). CNTs are commonly
synthesized from a catalyst by a variety of methods including:
chemical vapor deposition (CVD), electric arc discharge and
laser ablation (Thostenson et al., 2001; Seah et al., 2011). Their
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physical properties make CNTs a durable nanomaterial for bio-
logical applications, especially where a long lasting material is
desired (e.g., scaffolds for support of cellular growth). Although
the surface of CNTs is fundamentally inert, it can be readily func-
tionalized with different polymers or bioactive molecules, such
as peptides and proteins to improve their biocompatibility and
bioactivity (Bekyarova et al., 2005; Yang et al., 2007; Lu et al.,
2009; Bottini et al., 2011).

CARBON NANOTUBES AND NEURONS
The first investigations into the use of CNTs in neuro-interfacing
applications focused on characterizing neuronal adhesion and
proliferation on CNT coated surfaces. Mattson and co-workers
were the first to discuss the use of CNTs as a substrate for
neuronal growth (Mattson et al., 2000). The researchers grew
embryonic rat hippocampal neurons on cover slips covered with
PEI and MWCNTs. They found that pristine MWCNT substrates
allowed neuronal attachment but did not support neurite branch-
ing as elaborate as that of cells cultured on PEI-coated coverslips.
However, when MWCNTs were non-covalently functionalized
(by physiosorption) with 4-hydroxynonenal (4-HNE), a molecule
that promotes neurite outgrowth, large increases in the number of
neurites per cell and in the overall neurite lengths were observed.
This study demonstrated that MWCNTs can serve as a permissive
substrate for neuronal cell adhesion and growth and that modify-
ing MWCNTs with a biologically relevant molecule can be used to
modulate neuronal growth and neurite outgrowth (Mattson et al.,
2000).

The pioneering work of Mattson and co-workers was fol-
lowed by a succession of studies aiming to further elucidate the
observed effects. Hu et al. studied the effect of charge. Longer
neurites and more elaborate branching were observed on pos-
itively charged CNT substrates (Hu et al., 2004). The charge
of a MWCNT substrate was modified by functionalization with
carboxyl groups, poly-m-aminobenzene sulfonic (PABS) acid or
ethylenediamine (EN) to create negatively, zwitterionic or pos-
itively charged nanotubes, respectively. The number of neurites
was counted depending on the nature of the nanotubes and their
functionalization. Xie and co-workers determined that MWCNT
mats functionalized with carboxyl groups are a permissive sub-
strate for rat dorsal root ganglion (DRG) neurons growth, as
confirmed by scanning electron microscopy (SEM) imaging. The
researchers further suggested that the functional groups act as
anchoring seeds enhancing neural cells and neurite adhesion (Xie
et al., 2006).

Covalent modifications of CNTs with neurotrophins, protein
growth factors that promote the survival and differentiation of
neurons, were studied by Matsumoto et al. (2007). MWCNTs
were functionalized with nerve growth factor (NGF) and brain-
derived neurotrophic factor (BDNF). Embryonic chick DRG
neurite outgrowth on modified MWCNTs was similar to that
seen with soluble NGF and BDNF in culturing media, indicating
that the covalently attached factors were still bioactive. Pristine
MWCNTs were also shown to support the growth of neurons
(Gabay et al., 2005a,b; Galvan-Garcia et al., 2007). This effect
is nicely illustrated in Figure 1 which shows the strong affin-
ity between dissociated locust neurons and pristine CNT islands

FIGURE 1 | A false-colored SEM image of fixed locust frontal ganglion

neuronal cells cultured on carbon nanotube islands. The carbon
nanotube islands were grown using the chemical vapor deposition method
directly on a quartz support. For further details see Sorkin et al. (2009).
Width of field of view is 77 µm.

after several days of incubation. Galvan-Garcia and co-workers
reported that MWCNTs in the form of sheets or yarns supported
long-term growth of a variety of cell types ranging from skin
fibroblasts and Schwann cells, to postnatal cortical and cerebellar
neurons. When highly purified, these CNT sheets allowed neu-
rons to extend processes in a similar number and length to those
grown on planar polyornithine substrates (a permissive support).
Thus, these results suggest that the interaction between neurons
and CNTs may be affected by the purity of the CNTs, as well as by
the three-dimensional organization of the CNT substrate.

Although initial investigations focused on MWCNTs, SWCNTs
were also studied as neuronal substrates. Hu and co-workers syn-
thesized a PEI functionalized SWCNT graft copolymer (SWCNT-
PEI) (Hu et al., 2005). Covalent functionalization was used
to turn SWCNTs to be soluble in aqueous media. Next, rat
hippocampal neurons were cultured on coverslips coated with
SWCNT-PEI and the results were compared with those of pris-
tine MWCNT or PEI substrates. Fluorescent microscopy was
used to examine neuronal viability, as indicated by their abil-
ity to accumulate the vital stain, calcein. It was found that
SWCNT functionalization diluted the effect of the PEI’s posi-
tive charge, resulting in neurite outgrowth and branching with
intermediate extent to that of as-prepared CNT films or PEI
alone. These results were consistent with the initial findings of
Mattson and colleagues using fixed cells. Modified MWCNTs
were found to be inferior to PEI as a culturing substrate (Hu
et al., 2005). Gheith and co-workers demonstrated that free-
standing SWCNT-polymer films prepared by the layer-by-layer
(LBL) technique are compatible with neuronal cell culturing.
The films were prepared by layering SWCNT with a negatively
charged polyacrylic acid polymer. The SWCNTs were coated
with amphiphilic poly (N-cetyl-4-vinylpyridinium bromide-
co-N-ethyl-4-vinylpyridinium bromide-co-4-vinylpyridine). The
presence of positively charged groups on the surface of this
polymer promoted cell adhesion. Cell cultures of the neuronal

Frontiers in Neural Circuits www.frontiersin.org January 2013 | Volume 6 | Article 122 | 12

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Bareket-Keren and Hanein CNT MEA for neuronal interfacing

model cell line NG108 effectively grew and proliferated on these
substrates. Moreover, the number of neurites spun from indi-
vidual cells exceeded those developed on traditional cell growth
substrates (Gheith et al., 2005). However, not all CNT function-
alization lead to the design of substrates that enhance neural
cell growth. Liopo and co-workers showed that 4-tertbutylphenyl
or 4-benzoic acid functionalized SWCNTs were less supportive
of NG108 cell attachment and growth than pristine nanotubes
(Liopo et al., 2006).

Carbon nanofibers (CNFs) are a form of carbon material
closely related to MWCNTs and were also tested as a neu-
ronal substrate. CNFs consist of multi-walled graphene struc-
tures stacked on top of each other like a stack of ice cream
cones (Rodriguez, 1993). Nugen-Vu and co-workers directly grew
forest-like vertically aligned CNFs (VACNFs) on a substrate with
a lithographically patterned catalyst. After the CNF film was sub-
merged in a liquid and dried, the CNFs irreversibly stuck together
to form microbundles. A uniform freestanding film was achieved
after coating the CNF with a thin layer of the CP PPy by elec-
trochemical deposition. PC12 cell line grew as monolayers on
the CNF films only after further coating with a collagen film.
Otherwise cells appeared to float on top of the CNF surface
(Nguyen-Vu et al., 2006). In a subsequent study, the neuronal
marker NGF was introduced to the VACNF surface to promote
the formation of well-differentiated cells with mature neurites.
The freestanding VACNFs coated with PPy and NGF were found
to bend toward the cell body and adhere to it. Therefore, it was
suggested that the soft PPy coating contributes to better mechan-
ical contact with cells due to a reduction in the local mechanical
stress (Nguyen-Vu et al., 2007).

CNT CONDUCTIVITY
Since CNTs may vary between being conducting and semi-
conducting, their electrical properties were also studied. Malarkey
and co-workers varied the conductivity of SWCNT-polyethylene
glycol (PEG) graft copolymer coatings by changing the film

thickness, while maintaining a constant surface roughness
(Malarkey et al., 2009). Rat hippocampal neurons were then
seeded. It was shown that thinner, less conducting SWCNT films,
resulted in longer neurite processes, while thicker, more conduc-
tive films, produced larger cell bodies. Smooth, positively charged
PEI substrates resulted in a larger number of growth cones per cell
body. This study demonstrated that differences in conductance,
roughness, and surface charge can modulate neuronal cell growth
and morphology.

CARBON NANOTUBE SURFACE ROUGHNESS
Overall, the origin of the neuron-CNT interaction appears to be
strongly affected by surface roughness. It was suggested that the
roughness of CNTs contributes to anchoring neural cells (Zhang
et al., 2005; Xie et al., 2006; Sorkin et al., 2009). Zhang et al.
(2005) fabricated patterned vertical MWCNT surfaces. CNTs
were then functionalized with poly-L-lysine (PLL). Cell cultures
of the neuronal cell line H19-7 preferentially adhered to the
MWCNT patterns. Neuronal growth cones were found to make
contact with the nanotube surface, and these strong interactions
allowed the neurons to spread along patterns and form interac-
tions with one another. It was established that guided neurite
growth was formed preferably on long vertical MWCNTs com-
pared to short ones. This behavior was attributed by the authors
to a possible increased adsorption of the PLL molecules onto the
long nanotubes. Additional mechanism may be that long nan-
otubes are flexible and undergo deformation to accommodate the
proliferating neurites.

Sorkin and co-workers characterized the arrangement of neu-
rons and glia cells on CNT surfaces (see Figure 2). Three-
dimensional, small, isolated and pristine CNT islands were fab-
ricated and plated with cells. Two biological model systems were
used: cortical neurons from rats, and ganglion cells from locusts.
Neurons were found bound and preferentially anchored to the
rough surfaces. For both model systems, the morphology of
neuronal processes on the small, isolated islands of high density

FIGURE 2 | Rat neuronal cultures on CNT islands. (A) Fluorescent confocal
image of fixed neurons (red) and glia cells (green) cultured on a carbon
nanotube island. Disk diameter is 20 µm. (B,C) HRSEM images of a neuronal
process forming a loop around several CNTs (designated by arrows). The

image in (C) corresponds to the area marked by the dashed box in (B). Clearly
identifiable process segments were manually highlighted. Processes appear
to bind to the carbon nanotube surface in a manner akin to that of tendrils.
Adopted from Sorkin et al. (2009).
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CNTs was found to be conspicuously curled and entangled. In this
study, it was demonstrated that the roughness of the surface must
match the diameter of the neuronal processes in order to allow
them to bind. It was suggested that entanglement, a mechanical
effect, may constitute an additional mechanism by which neurons
anchor themselves to rough surfaces (Sorkin et al., 2009).

Table 1 summarizes the main results described above, empha-
sizing how different CNTs and CNT modifications affect neuronal
adhesion. Overall the general picture that emerges from these
investigations is that MWCNTs, SWCNTs, and CNFs are permis-
sive substrate for neuronal growth and proliferation. Neuronal
interaction with CNTs is affected by CNT surface chemical modi-
fication, conductivity, charge, and roughness. Positive charge had
a positive effect on neurite branching and length. Altering con-
ductivity resulted with morphological changes in neurite length
and cell body size. Surface roughness contributed to anchoring
neurons to the surface. Chemical modifications of the CNT sur-
face with 4-HNE, and PEI had a positive effect on neurite branch-
ing and growth, whereas modification with 4-tertbutylphenyl
and 4-benzoic acid modified substrate diminished neuronal cell
growth.

CARBON NANOTUBES FOR NEURONAL PATTERNING
Patterned CNT films, such as those discussed above, provide a
unique scheme for creating and studying engineered neuronal
networks. Studies using patterned CNTs can provide insight into
the collective activity of neural networks. CNT patterns also
offer a route for developing three-dimensional scaffolds as a step
toward designing circuits for bio-computational purposes and
neuro-prosthetics applications. This approach can also be used
to build advanced neuro-chips for bio-sensing applications (e.g.,
drug and toxin detection) where the structure and stability of the
networks are important.

Zhang and co-workers cultured neurons on micron-scale pat-
terns with different geometries. These patterns were designed
to support an investigation into mechanisms underlying neu-
ronal extension, guidance, and interaction. Straight lines, squares
and circular features were used, as well as different lengths of
the nanotubes. It was found that neurons preferentially adhered
to MWCNT patterns. Growth cones were attached to the nan-
otube surface, allowing the neurons to spread along patterns and
interact with one another (Zhang et al., 2005).

CNT islands were also used extensively by us to engineer
neuronal networks into a system with well-defined geometry
(see Figure 3), so the interplay between geometry and neuronal
activity can be systematically investigated (Gabay et al., 2005a,b;
Sorkin et al., 2006, 2009; Greenbaum et al., 2009; Shein et al.,
2009) (see Figure 2 for a typical example). In one of the first pub-
lications to use MWCNTs for neuronal interfacing applications,
Gabay and co-workers imprinted a pattern of iron nanoparti-
cle catalyst on quartz substrates using a poly (dimethylsiloxane)
(PDMS) stamp and then grew CNTs from the iron catalyst islands.
Rat cortical neurons and glial cells accumulated preferentially
on the MWCNT islands and formed interconnected networks,
bridging across the non-permissive quartz to form connections
between adjacent islands. Using the patch clamp technique, cul-
tured neurons were found to be electro-physiologically active

with normal resting membrane potentials, demonstrating that
the MWCNT did not alter the neuronal integrity (Gabay et al.,
2005a,b).

In a successive work, Sorkin and co-workers examined the
dynamics of neuronal network organization by placing rat
cortical and hippocampal neurons on patterned MWCNT or
poly-D-lysine patterned substrates. Cell clusters were found to
spontaneously anchor to patterned islands with neurites, con-
necting nearby islands through a single non-adherent straight
bundle composed of axons and dendrites. Square, triangular
and circular structures of connectivity were successfully realized.
Monitoring the dynamics of the networks in real time revealed
that the self-assembly process is mainly driven by the ability of
the cells to move while continuously stretching neurite bundles
in between. The patterned networks were stable for as long as
11 weeks (Sorkin et al., 2006). In a subsequent study, Sorkin
and co-workers cultured rat cortical neurons, as well as locust
frontal ganglion neurons on micro-patterned MWCNT islands.
Neuronal processes tended to wrap and entangle with the rough
MWCNT islands. It appears that the similar dimensions of the
CNTs (within the island) and the neurites supports an anchor-
ing mechanism allowing neurons to attach (Sorkin et al., 2009).
Greenbaum and co-workers demonstrated the use of specially
designed CNT substrates to form small networks of locust frontal
ganglion neurons. It was suggested that mechanical tension is cre-
ated along the cell’s processes and pulls the cell’s soma; neuronal
activity was recorded from single cells (Greenbaum et al., 2009).
These effects were further explored (Anava et al., 2009; Hanein
et al., 2011) to show that indeed mechanical effects are ubiquitous
in these developing networks.

CARBON NANOTUBES FOR ELECTRICAL NEURONAL
INTERFACING
As discussed in the “Introduction” section, contemporary elec-
trodes used for neuro-prosthetic applications have relatively high
impedance and poor CSC. In order to better appreciate these
challenges and to evaluate CNTs potential in neuronal electrode
applications, we begin with a brief overview of the electrical
processes taking place at the neuron-electrode interface.

EXTRACELLULAR RECORDING AND STIMULATION OF NEURONAL
ACTIVITY
Signal transmission in neuronal systems is the result of ionic
currents passing through specific ion channels across the cell
membrane. Extracellular recording methods monitor the elec-
trical field associated with this dynamic. The time course of the
extracellular action potential is typically ∼1 ms and the ampli-
tude is in the range of a few tens to a few hundreds of microvolts
(Cogan, 2008; Buzsaki et al., 2012). This amplitude is signifi-
cantly smaller than the corresponding intracellular spike, which
is in the tens of millivolt range. Additionally, extra cellular signals
diminish rapidly as a function of distance from the cell. A reverse
process takes place during stimulation; charges are delivered from
the electrode and induce a buildup of membrane potential. Under
a strong enough field, voltage sensitive ions in the cell mem-
brane trigger the generation of an action potential (Roth, 1994;
Tehovnik, 1996; Basser and Roth, 2000).
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FIGURE 3 | A neuro-glia cortical culture from embryonic rats grown on

a carbon nanotube micro electrode array. Clusters of cells self-organized
during culture development to position themselves on the electrodes.
The distance between electrodes is 200 µm. Image acquired using a 3D
confocal microscope (Shein et al., 2009).

Stimulating neurons and recording extracellular signals can
be achieved using a conducting electrode placed close to the
cell or its processes. The electrode electrochemical properties
are fundamental to its performances as a stimulating or record-
ing electrode. Clearly, an effective interface is a prerequisite for
both stimulation and recording. While neuronal stimulation and
recording are related in nature, these two applications have some-
what different requirements. Foremost, the amount of charge
required for stimulation is orders of magnitude higher than what
is recorded. Recording may often be impossible with electrodes
which are well suited for stimulation. In neuronal recording, the
typically small signals make noise considerations very impor-
tant (Musial et al., 2002). For safe stimulation purpose, however,
delivering the appropriate charge to the tissue without causing
electrode or tissue damage is the main consideration (McCreery
et al., 1988, 1990; Cogan, 2008).

The electrode material and the reactions at the electrode-tissue
interface (the reactions mediating the transition from electron
flow in the electrode to ion flow in the tissue) are the main
parameters determining the safe range for stimulation. The reac-
tions taking place during charge injection can be capacitive or
Faradaic (Figure 4A). Capacitive reactions involve displacement
current and are associated with the charging and discharging
of the electrode-electrolyte double layer due to redistribution
of charged species in the electrolyte. Faradaic reactions, on the
other hand, involve the transfer of electrons across the electrode-
electrolyte interface and require that some species, on the surface
of the electrode or in solution, are oxidized or reduced. These
reactions can lead to irreversible processes that cause electrode or
tissue damage. Therefore, while maximizing the current injected
through an electrode is important, it has to be achieved ideally
by using non-Faradaic electrodes. Capacitive charge delivery is
therefore a critical consideration in the design of electrodes both
for recording and stimulation.

The capacitive and Faradic reactions at the electrode-
electrolyte are modeled by a simple electrical circuit consisting
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FIGURE 4 | Electrode-electrolyte interface and charge injection.

(A) Schematic representation of capacitive (left) and Faradaic (right) charge
injection mechanisms. While capacitive charge injection includes
redistribution of charge in the electrode-electrolyte interface, Faradaic
process includes transfer of electrons. (B) An electrical circuit model for

mechanisms of charge transfer at the electrode-electrolyte interface.
(C) A circuit model for extracellular recording and stimulation from neuronal
tissue using a MEA linked to external amplifiers. The model demonstrates the
electrochemical interface resistance and capacitance of the CNT electrode
and the solution derived shunt capacitance as well as the point of stimulation.

of two elements, a capacitor and a resistive element in paral-
lel. Figures 4B,C illustrate circuit models of electrode-electrolyte
interface and extracellular recording and stimulation of neuronal
tissue, respectively. The capacitive mechanism, which represents
the ability of the electrode to cause charge flow in the elec-
trolyte without electron transfer, is modeled as a simple electrical
capacitor called the double layer capacitor (Bard and Falkner,
2000; Merrill et al., 2005). Faradaic processes are modeled as
a Faradaic impedance (Bard and Falkner, 2000; Merrill et al.,
2005). There are two limiting cases derived from this model:
The ideally polarizable electrode, and the ideally non-polarizable
electrode (Bard and Falkner, 2000; Merrill et al., 2005). The
ideally non-polarizable electrode has a zero Faradaic resistance,
therefore current flows readily in Faradaic reactions and there
is no change in voltage across the interface upon the passage
of current. Thus, the electrode potential remains near equilib-
rium, even upon current flow. The ideally polarizable electrode
has infinite Faradaic impedance element and is modeled by a
pure capacitor. In an ideally polarizable electrode, all the cur-
rent is transferred through capacitive action, thus the electrode
potential is easily perturbed away from the equilibrium poten-
tial. Real electrode interfaces are modeled by the double layer
capacitor in parallel with finite Faradaic impedance, together
in series with the solution resistance. A highly polarizable elec-
trode is one that can accommodate a large amount of injected

charge on the double layer prior to initiating Faradaic reactions.
Thus, for improved biocompatibility, highly polarizable elec-
trodes are desired. An additional important parameter used is
the description of neuronal stimulation electrodes is the reversible
CSC, also known as the reversible charge injection limit (Robblee
and Rose, 1990; Merrill et al., 2005). The CSC of an electrode is
the total amount of charge that may be stored reversibly, including
storage in the double layer capacitance, pseudocapacitance, or any
reversible Faradaic reaction. The material used for the electrode,
the size and shape of the electrode, the electrolyte composition,
and parameters of the electrical stimulation waveform, all influ-
ence the CSC. We refer the reader for a detailed description of the
electrochemical electrode-electrolyte interface of recording and
stimulation neuronal electrodes (Bard and Falkner, 2000; Merrill
et al., 2005; Cogan, 2008).

Overall, increased capacitance results in decreased impedance,
and reduction in noise levels, as well as allowing wider voltage
windows for safe electrical stimulation. Contemporary Faradaic
electrode materials include mainly noble metals such as gold,
platinum, titanium, and iridium, as well as alloys of these met-
als, iridium oxide, stainless steel, and highly doped semicon-
ductors such as silicon. Capacitive electrode materials include
TiN, tantalum-tantalum oxide, and the more recently investigated
CNTs. The capacitive nature of CNT electrodes is therefore yet
another major advantage.
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CARBON NANOTUBES FOR RECORDING AND STIMULATION OF
NEURONAL ACTIVITY
As we discussed above, CNTs have several fundamental properties
which make them ideally suited for neuronal interfacing. They
support neuronal proliferation, they are conducting and they
form extremely high specific area, capacitive electro-chemical
electrodes. Accordingly, many recent studies have employed CNTs
as a coating material for neuro-electrodes.

Direct stimulation of isolated neurons in culture using
SWCNT coated substrate was demonstrated recently by several
groups (Gheith et al., 2006; Liopo et al., 2006; Mazzatenta et al.,
2007). Gheith and co-workers incorporated positively charged
SWCNTs and poly acrylic acid into LBL multilayers with suf-
ficiently high electrical conductivity to electrically stimulate a
model neuronal cells line (NG108). The use of the SWCNT LBL
films as culturing substrates did not perturb the key electrophys-
iological features of the NG108 cells, which confirms previous
observations (Gheith et al., 2006). The electrical coupling of
NG108 cells, as well as rat primary peripheral neurons to unmod-
ified, as well as 4-tertbutylphenyl or 4-benzoic acid modified
SWCNTs deposited onto polyethylene terephthalate (PET) films,
were assessed by Liopo et al. (2006). Neurons showed voltage
activated currents when electrically stimulated through the con-
ducting SWCNT film. The same issue was subsequently addressed
by Mazzatenta and co-workers who used electrophysiological
measurements and computational modeling in order to under-
stand the nature of the electrical coupling between neurons and
pure SWCNTs (Mazzatenta et al., 2007). The authors cultured rat
hippocampal neuronal on glass cover slips coated with pristine
SWCNT films. SEM revealed contacts between neuronal mem-
branes and SWCNTs. Electrical recordings using a patch clamp
indicated that neurons grown on SWCNT substrates displayed
spontaneous electrical activity. Stimulation of cultured neurons
was achieved by applying current through the nanotube substrate.
Finally, a mathematical model describing the electrical coupling
between the SWCNT and the neurons was suggested (Mazzatenta
et al., 2007).

Some studies suggested that CNTs boost neuronal electri-
cal activity (Lovat et al., 2005; Cellot et al., 2009). Lovat and
co-workers functionalized CNTs with pyrrolidine groups. This
functionalization removed impurities and improved the CNT sol-
ubility in organic solvents. Glass cover slips were then coated
with a drop of the solution. Evaporation of the solvent and
heat treatment resulted with defunctionalization, leaving puri-
fied MWCNTs on the glass. Neurons grown on MWCNT films
showed a six-fold increase in the frequency of the spontaneous
postsynaptic currents and spontaneous action potential gener-
ation when compared to those grown on untreated glass. The
authors proposed that the high conductivity of the CNT substrate
might have affected the voltage-dependent membrane processes
resulting in the increased activity (Lovat et al., 2005). Cellot and
co-workers have suggested that CNTs improve electrical commu-
nication between neurons through the formation of tight contacts
with the cell membranes. They used thin CNT films formed by
solution deposition on glass followed by thermal treatment. Rat
hippocampal neurons were seeded onto the films and showed
an increase in synaptic firing (Cellot et al., 2009), enhanced

formation of synapses as well as changes in synaptic dynamics
(Cellot et al., 2011).

Composite CNT coatings enhance recording and stimulation
of neurons in vitro and in vivo by decreasing the impedance
and increasing charge transfer. Keefer and co-workers success-
fully coated electrodes with MWCNTs using different deposition
schemes (Keefer et al., 2008). Commercial tungsten and stain-
less steel sharpened wire electrodes were coated with CNTs,
using covalent attachment of the CNT coating, electrodeposi-
tion of CNT-gold coating or electrodeposition of CNT com-
bined with CP (PPy). The different CNT coatings resulted with
lower impedance and higher charge transfer capacity compared
with bare metal electrodes. In vivo recording quality of CNT-
coated sharp electrodes was tested in the motor cortex of anes-
thetized rats and in the visual cortex of monkeys. Compared
with bare metal electrodes, CNT coated electrodes had reduced
noise and improved detection of spontaneous activity (Keefer
et al., 2008). Baranauskas and co-workers tested PPy-CNT coated
platinum/tungsten microelectrodes. PPy-CNT coating signifi-
cantly reduced the microelectrode impedance and induced a
significant improvement of the SNR, up to four-fold on aver-
age. In vivo signals were recorded from rat cortex (Baranauskas
et al., 2011). Other CPs-CNT composite coatings including PPy-
CNT (Lu et al., 2010; Chen et al., 2011a) and PEDOT-CNT
(Luo et al., 2011) were tested. These coatings similarly resulted
with enhanced electrochemical properties and were found bio-
compatible. The devices were not used in recording or stimula-
tion. The PPy-CNT coatings highly improve the electrochemical
performance of the test electrodes and further investigation into
the durability of these coatings under long-term stimulation and
recording use would be important to reveal their full potential.

Collectively, the studies reviewed above show that CNTs may
provide a superior mean for electrical coupling between devices
and neuron. We shall now discuss the use of CNTs electrodes for
both electrical recordings and stimulation of neurons in the form
of MEAs.

CARBON NANOTUBE MEA FOR NEURONAL RECORDING AND
STIMULATION
A major development in the use of CNT in neuro-applications is
the design and fabrication of CNT MEAs (Gabay et al., 2007).
Such MEAs were made by synthesizing islands of high density
CNTs. Both MWCNTs and SWCNTs structures were used. CNTs
were either deposited as a coating on top of metal electrodes
(Keefer et al., 2008; Gabriel et al., 2009; Fuchsberger et al., 2011)
or directly grown from a catalyst patterned substrate (Wang et al.,
2006; Gabay et al., 2007; Yu et al., 2007).

MWCNT-gold coated indium-tin oxide MEAs were used to
record and stimulate mice cortical cultures by Keefer and co-
workers. The CNT coated electrodes were found to be suited for
recording and improved the effectiveness of stimulation (Keefer
et al., 2008). Pristine CNT coatings were also used. Gabriel
et al. coated standard platinum MEAs with SWCNTs which were
directly deposited onto electrodes by drop coating and dry-
ing. CNT coating resulted with enhanced electrical properties,
decreased impedance and increased capacitance. The researchers
successfully performed extracellular recordings from ganglion
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cells of isolated rabbit retinas (Gabriel et al., 2009). Fuchsberger
and co-workers proposed the deposition of MWCNT layers onto
TiN microelectrode arrays by means of a micro-contact print-
ing technique using PDMS stamps. The coated MEA was applied
for the electrochemical detection of dopamine and electrophys-
iological measurements of rat hippocampal neuronal cultures.
MWCNT coated microelectrodes were found to have recording
properties superior to those of commercial TiN microelectrodes
(Fuchsberger et al., 2011). Drop coating and micro-contact print-
ing methods are quite simple to impalement. However, the film
may have weak adhesion to the surface compared with covalent
or electrochemical techniques, therefore careful validation of the
coating adhesion is important.

CNT MEAs based on top–down fabrication approaches were
also reported. Superior electrical properties of CNT microelec-
trodes were presented by Gabay and co-workers. We fabricated
the CNT MEAs by synthesizing high density MWCNT islands
on a silicon dioxide substrate. The three-dimensional nature of
the CNT electrodes contributes to a very large surface area, and
consequently to high electrode specific capacitance (non-Fradaic
behavior was validated) and low frequency dependence of the
electrode impedance. Spontaneous activity of rat cultured neu-
rons was recorded (Gabay et al., 2005a,b, 2007). Direct electrical
interfacing between pristine CNT microelectrodes and rat cul-
tured neurons was also demonstrated by Shein et al. (2009). Each
electrode recorded the activity from a cluster of several neurons;
this activity was characterized by bursting events (see Figure 5).
The same CNT MEAs were further used to study the electri-
cal activity of neuronal networks (Shein Idelson et al., 2010)
as well as to interface with mice retina (Shoval et al., 2009).

FIGURE 5 | Spontaneous electrical activity of neuronal clusters on CNT

MEA. (A) Voltage traces of spontaneous electrical activity recorded from a
CNT electrode. (B) Raster plot of the spontaneous spiking activity in several
CNT electrodes. Activity patterns are characterized by bursting events;
short time windows (several hundreds of milliseconds) of rapid collective
neuronal firing, which are followed by long intervals (seconds) of sporadic
firing. For further details see Shein et al. (2009).

The retina tests revealed that SNR of CNT electrode improved
over time suggesting a gradual (over 2 days) improvement in
the tissue-electrode coupling. Recent stimulation tests by the
same group revealed a similar improvement in the stimulation
threshold (Eleftheriou et al., 2012).

Wang and co-workers presented a prototype of vertically
aligned MWCNT pillars as microelectrodes on a quartz substrate
(Wang et al., 2006). The nanotubes were functionalized with
PEG to create a hydrophilic surface. The obtained hydrophilic
CNT microelectrodes offer a high charge injection limit with-
out Faradic reactions. In vitro electrical stimulation of embry-
onic rat hippocampal neurons was then achieved and detected
by observing intracellular calcium level change using a cal-
cium indicator (Wang et al., 2006). VACNF MEA was fabricated
and tested for potential electrophysiological applications by Yu
et al. (2007). Extracellular stimulation and recording of both
spontaneous and evoked activity in organotypic hippocampal
slices was reported. de Asis and co-workers systematically com-
pared PPy-coated VACNF MEA with tungsten wire electrodes,
a planar platinum MEA, and an as-grown VACNF MEA for
the recording of evoked signals from acute hippocampal slices
(de Asis et al., 2009). Recently Su and co-workers synthesized
CNTs on a cone-shaped silicon tip by catalytic thermal CVD.
Oxygen plasma treatment was used to modify the CNT sur-
face to change the CNT surface characteristics from hydrophobic
to hydrophilic in order to improve CNT wettability and elec-
trical properties. Electrochemical characterization of the oxygen
plasma-treated three dimensional CNT probes revealed lower
impedance and higher capacitance compared with the bare silicon
tip. Furthermore, the oxygen treated CNT probes were employed
to record signals of a crayfish nerve cord (Su et al., 2010).

The development of CNT MEAs has a few important advan-
tages over silicon probes commonly used in current neuroscience
research and clinical applications. Silicon probes typically consist
of a silicon support, silicon nitride, and silicon dioxide insula-
tion layer. The electrodes are usually coated with iridium, gold
or platinum. The first designs include the Michigan array (Wise
et al., 1970; Wise and Angell, 1975) and the Utah array (Campbell
et al., 1991). The Michigan probe includes several microelectrode
sites patterned on each shank of the structure and the Utah array
is a three-dimensional electrode array which consists of multi-
ple sharpened silicon needles. However, a major shortcoming of
these devices is the electrode material which is metallic and there-
fore Faradaic (compared with the capacitive CNT electrodes) and
has no affinity to neuronal cells compared with the preferred
neuronal adhesion to the rough CNT surfaces.

FLEXIBLE CNT MEA FOR RECORDING AND STIMULATION OF
NEURONAL ACTIVITY
Typical MEMS electrodes, despite their many advantages, are
rigid and therefore are poorly suited for long-term neural in vivo
applications. Accordingly, there is an increased interest in the
development of flexible MEAs. Specifically, the combination of
flexible substrates and CNTs electrodes for neuronal applications
has gained attention.

Lin and co-workers were the first to fabricate and implement
a flexible CNT-based electrode array for neuronal recording. The
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CNT electrode array was grown and patterned on a silicon sub-
strate and was then transferred onto a flexible Parylene-C film.
The four-step process included: CNT growth, polymer binding,
flexible film transfer, and partial isolation. The resulting vertically
aligned CNTs were partially embedded into the polymer film.
Recording the electrophysiological response of a crayfish nerve
cord was performed with two teflon-coated silver-wires used as
a stimulation and a reference electrode. The SNR of the flexible
CNT electrode was 257 (Lin et al., 2009).

Direct growth of CNTs on flexible polyimide substrates by
catalyst-assisted CVD was also demonstrated (Hsu et al., 2010).
The length of the MWCNTs was controlled and increased
approximately linearly with the growth time resulting with
decreased impedance and increased capacitance. UV-ozone expo-
sure improved the interfacial properties between the CNT elec-
trodes and the electrolyte by increasing the surface wettability
(changing it from super hydrophobic to hydrophilic). UV-ozone
treatment yielded a 50-fold impedance reduction. Furthermore,
flexible CNT electrodes were found to exhibit resistive character-
istics, in contrast to the results described above (Nguyen-Vu et al.,
2006) which suggested that capacitive conduction dominates.
Examination of neuronal cell cultures indicated good biocompat-
ibility. Finally, recordings of evoked action potential from lateral
giant neurons in the abdominal ganglia of crayfish were achieved.
SNR was about 150, as good as that of a suction pipette and bet-
ter than gold electrodes (SNR of 122 and 36, respectively). In a
subsequent study, a flexible CNT MEA integrated with a chip
containing 16 recording amplifiers was presented (Chen et al.,
2011b). CNTs were again grown directly on a polyimide flexible
substrate. The CNT microelectrode had ten times lower electrode
impedance and six times higher capacitance, resulting with better
charge injection capacity compared with a gold microelectrode of
the same size. Tests with cultured neurons validated the biocom-
patibility of the device. In vitro spontaneous spikes were recorded

from a caudal photoreceptor from the tail of the crayfish neuron
with SNR of 6.2. The flexible CNT MEA was also applied to record
the electrocorticography (ECoG) of a rat motor cortex.

Our group has recently developed a novel all-CNT flexi-
ble electrode suited for recording and stimulation of neuronal
tissue. Flexible devices were realized by transferring high den-
sity MWCNT films onto a flexible PDMS film (Hanein, 2010).
A deliberate poor adhesion between the CNT film and the sub-
strate allowed the transfer of the CNTs to the PDMS substrate
(Figure 6A). This poor adhesion resulted from direct growth of
the CNTs on SiO2. The technology is simple and the resulting
stimulating electrodes are nearly purely capacitive. The elec-
trodes exhibit a capacitance of 2 mF/cm2 which is similar to
that of TiN and pristine MWCNTs electrodes fabricated on a
rigid silicon substrate with 2 and 10 mF/cm2, respectively (Gabay
et al., 2007). Recent recording and stimulation tests with chick
retina (Figure 6B) validate the device suitability for high-efficacy
neuronal stimulation applications (David-Pur et al., submitted).

Table 2 summarizes the main findings related to CNT-based
neuronal electrical recording and stimulation. The overall picture
that emerges from these data is that CNTs were used for neu-
ronal electrical interfacing in three main schemes: CNT coated
substrates, CNT coated sharpened wire metal electrodes and
CNT MEAs. CNT substrates were used as an in vitro growth
substrate for neurons and the electrical activity was recorded
using intracellular patch clamp technique. Electrical stimulation
through these CNT coated surface was also demonstrated. CNT
coated sharpened wire electrodes were used for both in vitro
and in vivo neuronal extracellular recording and stimulation. The
CNT MEA scheme allows for in vitro patterned neuronal growth
in conjugation with extracellular recording and stimulation. The
final and most recent scheme is the development of flexible
CNT MEAs which represents a major step toward implantable
neuro-prosthetics applications.

FIGURE 6 | (A) A flexible CNT-based MEA. Inset: flexible CNT-based MEA
designed for in vivo applications. (B) Evoked electrical activity recorded from
an embryonic chick retina (day 14) by a CNT electrode (one out of sixteen
50 µm diameter electrodes in the array) using a biphasic anodic first pulse of

20 nC. Retina was flattened on the flexible CNT MEA with retinal ganglion
cells layer facing down. The large signal at t = 0 (marked with arrow) is an
artifact of the stimulation. Spontaneous activity prior to stimulation is marked
with asterisks.
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CONCLUSIONS AND PERSPECTIVES
In this review we explored the different properties that make CNT
uniquely suited for neuronal interfacing. We have also shown
that intensive investigations over the past 10 years have explored
CNTs for neuronal interfacing, from surface properties effecting
cell adhesion and proliferation to the development of CNT-based
MEAs and flexible electrode arrays for in vivo applications. This
intensive research was motivated by the need to find therapies for
neural disorders which require the use of electrical stimulation, as
well as by the need to address basic questions in neuroscience. In
particular, the study of engineered neuronal circuits can greatly
benefit from such CNT-based platforms. Neuronal circuits study
aims at rebuilding damaged neuronal tissues. Natural circuits are
not prone to manipulations and have highly complex structure
and thus are extremely challenging to study. Engineered in vitro
neuronal networks, however, allow monitoring and systematic
investigation and provide unique platform for the study of activ-
ity patterns, morphology-activity relationship as well as network
damage and repair methods. All These applications can greatly
benefit from an efficient neuronal scaffold having the ability to
record and stimulate neuronal electrical activity.

The challenging requirements in the field of neural pros-
thetics, namely, reduction of electrode size while maintaining
efficient electrochemical function, as well as reduction of immune
response to the implanted device (linked to both size and rigidity
of the implanted device), are only poorly fulfilled by commonly
used materials. Thus, the development of an efficient neuro-
prosthetic platform will highly benefit from the realization of
CNT electrodes on a flexible substrate.

The emerging applications of CNTs in the field of neuroscience
must take into account cytotoxicity considerations. The poten-
tial toxicity of CNTs was extensively studied and so far revealed
mixed results (Shvedova et al., 2003, 2009, 2010; Dumortier et al.,
2006; Firme and Bandaru, 2010; Zhao and Liu, 2012). Better
understanding of the interaction between CNTs and the bio-
logical environment is required in order to facilitate efficient
development of both safe and effective CNT-based neural tech-
nologies. Further testing of CNT electrodes corrosion resistance
as well as stress durability is required. Another essential step is
further study of the nature of neuron-CNT electrical interfacing.
Also, comprehensive long-term recording and stimulation stud-
ies in animal models followed by clinical trials and approval by
administrative authorities such as the US food and drug adminis-
tration (FDA) must be accomplished to allow routine use of CNT
MEAs in neuroscience. The vast literature reviewed here, along
with recent studies using CNTs embedded in polymeric support;
show that CNTs, if handled properly, are safe as an implantable
coating.

Several very promising directions in the study of CNT-based
neuro-prosthetic devices currently exist: First is the integra-
tion of drug elution coatings. These coatings will allow the
reduction of inflammation caused by the insertion of the neu-
ronal implant to the tissue and improve survival of neurons
in contact with the device. There is a growing interest in the
study of such coatings (Zhong and Bellamkonda, 2005; Wadhwa
et al., 2006; He et al., 2007), such studies will also benefit
from addressing the development of a coating that will not
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impair the electrical activity of the device. Second, is the research
toward realization of CNT-based flexible MEAs as elaborated in
the text above. Some very recent work done in this area by our
group and others revealed great potential of such devices. Finally,
combining light-sensitive function with the enhanced neuronal
interfacing properties of CNTs will be highly beneficial for the
development of novel retinal implants.

To conclude, CNT enhanced electrochemical properties, their
flexible and simple micro-fabrication preparation procedure, as
well as their bio-compatibility and durability, suggest that CNT
electrodes are a promising platform for high resolution neuronal
applications. The resemblance of CNT surfaces to the nanostruc-
tured features of natural neural tissue makes CNTs a suitable plat-
form for tissue engineering and regeneration (Tran et al., 2010;
Voge and Stegemann, 2011). Also, the high electrical conductivity

of CNTs allows direct electrical interfacing with neurons (Shein-
Idelson et al., 2011). Clearly, CNTs have enormous potential in
the development of neuronal interfaces and further study will
enable the utilization of CNT-based technology to expand the
understanding of the nervous system and for the realization of
therapeutic approaches.
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Brain-machine interfaces (BMIs) that can precisely monitor and control neural activity will
likely require new hardware with improved resolution and specificity. New nanofabricated
electrodes with feature sizes and densities comparable to neural circuits may lead to such
improvements. In this perspective, we review the recent development of vertical nanowire
(NW) electrodes that could provide highly parallel single-cell recording and stimulation for
future BMIs. We compare the advantages of these devices and discuss some of the
technical challenges that must be overcome for this technology to become a platform for
next-generation closed-loop BMIs.
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Today, brain-machines interfaces (BMIs) enable users to manipu-
late prosthetic limbs and computer interfaces by monitoring and
processing their neural activity (Donoghue et al., 2007; Simeral
et al., 2011). BMIs can also be used to treat neurological disorders
such as Parkinson’s disease (Volkmann, 2004), obsessive com-
pulsive disorder (Bourne et al., 2012), and depression (Howland
et al., 2011) by applying voltage or current pulses to specific
regions deep within the brain—a treatment known as deep brain
stimulation (DBS). As remarkable as today’s BMI technology is,
it is in many ways in its infancy. Future technology will seek to
improve the precision with which external devices can be manip-
ulated and the specificity of stimulation to the level of individual
cells. These improvements will help expand the capabilities of
neural prosthetics and extend the range of disorders that can be
treated using DBS (Donoghue et al., 2007). To achieve these goals,
the next generation of BMIs will need improved resolution for
measurement and stimulation, as well as the ability to adjust their
spatial and temporal stimulation patterns based on the current
state of the neural activity (the devices with this latter capability
are often termed “closed-loop” BMIs) (Stanslaski et al., 2012).

Currently, the large size and small number of electrodes in
BMIs limits their stimulation and measurement resolution. State-
of-the-art devices for DBS typically have 4–8 millimeter-sized
electrodes (Stanslaski et al., 2012), whereas BMIs for neural
recording typically use a few dozen electrodes that are 10–100
microns in diameter (Hochberg et al., 2006; Donoghue et al.,

2007; Du et al., 2011) (Figure 1A). This density and feature size is
a far cry from that of the human brain, which contains approxi-
mately one hundred billion neurons, each with diameter as fine as
10 microns (Williams and Herrup, 1988). In fact, a single square
millimeter of brain tissue contains approximately one million
neurons (Williams and Herrup, 1988). To match this number and
density, future BMIs must feature smaller and denser electrode
arrays in order to precisely monitor and control neural circuit
activity. Furthermore, smaller electrodes (<1 micron in diame-
ter) may also enable the recording of intracellular electrical signals
of individual neurons (Figure 1A): compared to extracellular
recording, these intracellular measurements will have improved
signal to noise ratio and enable a clear cell-to-electrode registry
(Figures 1B–D). Importantly, the improved signal to noise ratio
also enables intracellular electrodes to record subthreshold neu-
ral activity (e.g., postsynaptic potentials) that can be used to
determine the strength of synaptic connectivity.

Fortunately devices that match the feature size and density of
neural circuits are routinely fabricated on silicon using contem-
porary nanofabrication techniques (Arden, 2002). This observa-
tion highlights the future role for semiconductor fabrication and
nanotechnology as a platform for high-precision BMIs. Recently,
these nanofabrication techniques have been used to create ver-
tical nanowires (NWs) and nanotubes that can intracellularly
stimulate and record the activity of neurons and other electri-
cally active cells. Here we review this technology, highlight the
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FIGURE 1 | NWs as intracellular electrodes. (A) The electrode diameters
for various methods to record and stimulate neural activity. Electrodes with
diameters less than 1 micron can be used as intracellular probes. Photo credits:
DBS—EPDA.com, Microelectrodes—microsystems.utah.edu. (B) Equivalent
circuit model for a cell on top of an extracellular (left) and intracellular (right)
electrode. The membrane resistance, capacitance, and Nernst potential is
shown as Rm, Cm, and Em, respectively. The voltage recorded extracellularly

(Vex) is proportional to Im, and typically has a magnitude of 0.4 mV for a
neuronal action potential. The voltage recorded intracellularly (Vin), however,
is proportional to Vm, and typically has a magnitude of greater than 10 mV for
a neuronal action potential. (C) Optical microscope image of a rat cortical
neuron grown on top of a vertical NW electrode, scale bar 10 microns.
(D) Scanning electron micrograph of a set of vertical NWs, scale bar 1 micron.
[(C) and (D) adapted from Robinson et al. (2012)].

characteristics that make NW electrodes an attractive platform for
future BMIs, and comment on some of the challenges that face the
development of these next-generation devices.

NWs AS INTRACELLULAR ELECTRODES
The electrical activity of neurons is most directly measured as
the electrical potential across the cellular membrane. As a result,
intracellular electrodes that can directly measure the membrane
potential are widely considered the “gold standard” in neuronal
recording. These high fidelity measurements, however, come at
a cost. To monitor intracellular signals via traditional patch-
clamp methods, glass micropipettes must be carefully aligned to
the cellular membrane using manually controlled micromanip-
ulators. Once the pipette is placed in contact with the cell, an
intracellular electrical connection can be formed either by slowly
driving the pipette through the cellular membrane or by apply-
ing negative pressure to seal the membrane against the pipette

and then rupturing the circumscribed patch using a current pulse
or a rapid impulse of negative pressure (Figure 2A). While this
painstaking process is a commonly performed procedure, it is
not scalable. As a result, today’s BMIs are based on extracellular
recording techniques that sacrifice the high fidelity of intra-
cellular measurements for the sake of scalability. For instance,
contemporary extracellular electrodes have array sizes approach-
ing one hundred electrodes and can simultaneously measure the
activity of dozens of individual neurons (Hochberg et al., 2006;
Donoghue et al., 2007; Du et al., 2011).

While extracellular electrodes succeed in monitoring large
numbers of neurons, there are potential challenges for using
these devices as the basis for closed-loop BMIs. For instance,
a single extracellular electrode records the spiking activity of
many nearby cells. This makes it difficult to identify the activ-
ity that corresponds to each individual neuron. While a variety
of computational techniques can be used to sort the recorded
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FIGURE 2 | Intracellular recording methods. (A) Whole cell patch
pipette configuration measures a voltage (Vpipette) proportional to the
membrane potential (Vm). (B) A vertical glass nanotube (blue) is grown
on top of an FET (pink) that lies within an insulated NW (gray). When
the nanotube penetrates the cellular membrane, the membrane
potential can be measured as a change in the source-drain current
(ISD). (C) A platinum NW (red) is deposited on top of a platinum

electrode (red) that is insulated by silicon nitride (blue). The voltage
recorded at the NW (VNW) is then proportional to the membrane
potential. (D) A silicon NW (gray) insulated by glass (blue) is capped
with a metallic film such as platinum (red). Similarly to (C), VNW is
proportional to Vm, however in this configuration the NW sidewalls are
insulated by glass, improving the amplitude of the measured signal and
proving a surface for cell membrane fusion.

spikes based on their waveforms, this process typically requires
a training period of several minutes, and must be repeated
on a daily basis as the electrical coupling between the cells
and extracellular electrode changes (Donoghue et al., 2007).
Furthermore, typical signal to noise ratios are less than 10:1
(Hochberg et al., 2006; Donoghue et al., 2007; Du et al., 2011),
and therefore slight degradation of the signal amplitude during
chronic implantation leads to a gradual reduction in the num-
ber of individual neurons that can be recorded (Dickey et al.,
2009). Stimulation using extracellular electrodes also lacks pre-
cise cell-to-electrode registry. During voltage or current pulses
from an extracellular electrode, many cells in the vicinity of
the electrode will be activated. This shortcoming ultimately
limits the spatial accuracy of stimuli applied via extracellular
probes.

To improve the cell-to-electrode registration, the size of the
electrodes can be scaled down so that an individual electrode
can interface to at most a single neuron (Figure 1A). This is
the approach taken recently for vertical NW electrodes. Three
recent papers have shown that these electrodes can be made
small enough to penetrate the cellular membrane without com-
promising cell viability, and record or stimulate individual cells
(Duan et al., 2012; Robinson et al., 2012; Xie et al., 2012). Thus
silicon-based intracellular electrodes can provide both precise
cell-to-electrode registration as well as large signal-to-noise ratios
typically reserved for patch clamp recordings. Importantly, these
NW devices can be fabricated using semiconductor nanofabrica-
tion techniques that can be scaled up to produce tens of thousands
of recording sites in a single fabrication run, making this technol-
ogy a potential platform for next generation BMIs requiring an
increased number of electrodes.

Although the three recent demonstrations of vertical NW elec-
trodes employed different fabrication strategies, each reported
successful intracellular electrical measurements. Duan et al. used
electron beam lithography to define nanoscale gold islands on the

gate region of NW field-effect transistors (FETs). They used these
islands as precursors for germanium (Ge) NW vapor-liquid-solid
(VLS) growth (Duan et al., 2012). The Ge NWs were then coated
with SiO2 using atomic layer deposition and the Ge core was
subsequently etched away using Hydrogen Peroxide. This pro-
cess left a nanoscale glass tube leading the gate region of the
NW FET (Figure 2B). The authors showed that when this glass
nanotube penetrated the cellular membrane of a cardiomyocyte,
the intracellular membrane potential could be recorded. In this
configuration the cardiomyocyte membrane potential gates the
NW FET such that the source-drain conductance maps to the
intracellular membrane potential. One advantage of using the
FET conductance to transduce the membrane potential is that
the gain of the NW FET can be used to amplify the measured
signal. An alternative strategy pursued by Robinson et al. used
plasma etching to micromachine solid silicon (Si) NWs out of
highly conductive silicon-on-insulator wafers (Robinson et al.,
2012). The resulting Si NWs were then insulated by a thermally
grown silicon oxide that was subsequently removed from the Si
NW tips. The Si NW tips were coated with an evaporated plat-
inum or gold film (Figure 2D). Unlike NW FETs, this approach
requires amplifying electronics to boost the signal recorded by
the Si NWs. At the same time, however, the Si NW electrodes
can also be used to stimulate electrical activity by injecting cur-
rent into the cell, thereby evoking neuronal action potentials on
demand. Using the stimulation capabilities of the solid Si NWs,
functional circuits can be reconstructed by systematically stimu-
lating individual electrodes and recording the resulting response
at another cell (Robinson et al., 2012). A third fabrication tech-
nique was employed by Xie et al. who used focused ion beams to
deposit 100 nm diameter platinum NWs on top of planar plat-
inum electrodes (Xie et al., 2012) (Figure 2C). The functionality
of these devices were similar to those reported by Robinson et al.
although Xie et al. used their device to monitor mitotic cardiac
cells as opposed to primary neurons.
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For each NW electrode device, care must be taken to secure
a stable intracellular measurement. To improve the stability of
the cell-electrode interface and promote NW penetration, Duan
et al. coated their devices with a phospholipid (Duan et al., 2012).
One drawback to this method is that the phospholipid coating
prevents cells from being cultured directly on top of the elec-
trodes. As a result, to test these devices cells were grown on a
separate PDMS substrate, inverted, and aligned atop the devices
for measurement. Alternatively, Robinson et al. and Xie et al. did
not use a surface treatment to promote penetration and reported
intracellular recordings in cells grown directly on top of the
devices. Both groups reported that, at times, voltage pulses are
required to permeabilize the membrane covering the electrode in
order to achieve intracellular electrical coupling. Xie et al. showed
that over time, the permeabilized membrane recovers; however,
repeated application of voltage pulses can restore the intracellu-
lar electrical coupling. The observed time scale of this recovery is
consistent with the kinetics of cell membrane electroporation for
biomolecule delivery (Saulis et al., 1991).

FUTURE CHALLENGES FOR NW ELECTRODES in vivo
While electrically facilitated membrane permeabilization is ade-
quate for in vitro studies, a long-term in vivo interface will
likely require alternative approaches to stabilize the NW-cell
interface. Potential surface treatments include the phospholipid
coating used by Duan et al. and biomimetic surfaces devel-
oped by Almquist and Melosh (2010). While these methods have
been successful in securing stable interfaces between cells and
nanostructures, future studies should investigate their long term
stability and biocompatibility in vivo.

In addition to stabilizing the cellular interface, future in vivo
devices must also deal with the motion of the brain resulting from
the expanding and contracting vasculature (Enzmann and Pelc,
1992). Improving the flexibility of the NW electrodes may help
them function in living tissue like the brain. Recently Tian et al.
have taken steps in this direction by embedding NW FETs in a
flexible polymer matrix and releasing them from the rigid sub-
strate (Tian et al., 2012). While these devices, which have only
recently been reported, have yet to be used for intracellular mea-
surements, this approach may allow intracellular electrodes to
remain within the cell while the tissue moves. Supporting this
idea are reports that vertical NWs can pin neurons in place and
inhibit them from migrating away from NW electrodes (Xie et al.,
2010). Such effects may help secure intracellular coupling in vivo.
An alternative approach may be to imbed vertical silicon NWs in a
PDMS or other polymeric matrix that can be peeled off the silicon
substrate. Such methods have recently been used to create flexible
photonic crystal cavities based on semiconductor NWs, and may
be adapted to support vertical NW electrodes (Yu et al., 2013).

Another challenge to using NW electrodes in vivo is recording
beyond the layer of dead cells and protective glia that surround
implanted electrodes. Studies have reported the thickness of the
dead cell layers to be approximately 40 microns (Chia and Levene,
2009). Therefore, to access healthy cells, the NWs electrodes must
penetrate through this dead layer. One approach is to make long
electrode shanks tipped with NW electrodes. Alternatively very
high aspect ratio NWs can be fabricated using deep reactive ion

etching and oxide thinning processes (Morton et al., 2008). Such
high aspect ratio NWs will have increased flexibility (Li et al.,
2009), which may help accommodate tissue movement.

Another concern for closed loop BMIs is the potential for
crosstalk between stimulation and recording electrodes that could
interfere with the feedback algorithms. Potential solutions to this
problem fall primarily into two categories: (1) Recording hard-
ware and/or software can be modified to reduce the crosstalk
using techniques such as blanking, spectral filtering, or common
mode rejection (Stanslaski et al., 2012) or (2) Stimulation can
be performed optically using channel-rhodopsin (Erickson et al.,
2008) or near-IR stimulation (Wells et al., 2005). The advantage
of modifying the recording electronics is that there is no need
to genetically modify neuronal populations or to employ optical
sources and components. However, the added electronic elements
needed to reduce crosstalk can increase the size and power con-
sumption of the BMI. Optical stimulation, on the other hand,
typically produces negligible electronic crosstalk, simplifying the
design requirements and lowering the power consumption of the
recording electronics.

Finally, to achieve the thousands to millions of recording
sites that will be desired for future BMIs the number of elec-
trodes must be increased. The NW electrodes described here
have relied on a direct electrical connection to each electrode.
This method, requiring a dedicated wire for each record-
ing/stimulation site, is impractical for devices with large numbers
of electrodes. Fortunately solutions to this “interconnect prob-
lem” have already been solved for semiconductor electronics.
Image sensors, for instance, contain millions of pixels that can
be read using only a few dozen connections. This reduced num-
ber of contacts is achieved by interleaving data from several
pixels and transmitting it over a single wire. This multiplex-
ing process can be implemented on-chip using complemen-
tary metal oxide semiconductor (CMOS) technology (Lei et al.,
2011). Yet another advantage of silicon-based electrodes is that
they can be readily coupled to back-side CMOS electronics
using bonding or other post-processing methods such as those
used for extracellular electrodes (Kim et al., 2009). The com-
bination of NW electrodes and CMOS multiplexing will allow
high-resolution BMIs to be created on a compact monolithic
platform.

CONCLUSIONS
In the future, closed-loop BMIs will see improvements both to the
hardware that interfaces to the neural circuits, and to the software
that drives their activity. Ultimately this hardware may be able to
stimulate and record the activity of thousands to millions of neu-
rons with single-cell resolution. The high resolution combined
with algorithms to identify the state of the neural circuit and pre-
dict its response to stimuli would provide a basis for new classes
of BMIs that can accurately control neural circuits and translate
this recorded activity into accurate manipulation of prosthetic
devices. While there is currently no technology that can achieve
such a high-resolution electrical interface, NW-based electrodes
have made considerable progress toward this goal in vitro. To
take the next step and employ nanotechnology for BMIs, efforts
must be taken to improve the stability of the interface, flexibility
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of the electrodes, and compatibility with layers of dead cells and
glia that accompany surgical implantation of electrodes. With
these improvements, NW electrodes may become the preferred
technology for high-resolution BMIs.
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Understanding plasticity of neural networks is a key to comprehending their development
and function. A powerful technique to study neural plasticity includes recording and control
of pre- and post-synaptic neural activity, e.g., by using simultaneous intracellular recording
and stimulation of several neurons. Intracellular recording is, however, a demanding
technique and has its limitations in that only a small number of neurons can be stimulated
and recorded from at the same time. Extracellular techniques offer the possibility to
simultaneously record from larger numbers of neurons with relative ease, at the expenses
of increased efforts to sort out single neuronal activities from the recorded mixture,
which is a time consuming and error prone step, referred to as spike sorting. In this
mini-review, we describe recent technological developments in two separate fields,
namely CMOS-based high-density microelectrode arrays, which also allow for extracellular
stimulation of neurons, and real-time spike sorting. We argue that these techniques, when
combined, will provide a powerful tool to study plasticity in neural networks consisting of
several thousand neurons in vitro.

Keywords: closed-loop, real-time, spike sorting, multielectrode arrays, neural cultures

INTRODUCTION
The understanding of neural circuits and their activities is to
a major extent based on measurements with extracellular elec-
trodes. This is due to the fact that extracellular recordings are
relatively easy to perform and very well established. In contrast to
single cell measurements with intracellular recording techniques,
extracellular electrodes pick up the action potentials (spikes) of
all neurons in their vicinity. This is a blessing as well as a curse.
An advantage is that in principle several neurons can be mea-
sured simultaneously using a single extracellular electrode, but
the price to pay is the need to assign single spikes to their puta-
tive neuronal sources. This problem is referred to as spike sorting
and it is known to be difficult and error-prone (Lewicki, 1998),
and spike sorting often involves a highly time consuming, manual
component.

Depending on the experiment, time consuming spike sort-
ing can be regarded as a mere inconvenience, and many studies
have focused on the development of spike sorting algorithms
for the offline analysis of the recordings after performing the
experiment (see e.g., Letelier and Weber, 2000; Shoham and
Fellows, 2003; Delescluse and Pouzat, 2006). For real-time closed-
loop experiments and brain machine interfaces (BMI), how-
ever, it is absolutely necessary to obtain spike trains already
during the recording so that time consuming spike sorting is
not only a problem but essentially prohibits performing such
experiments. Therefore, spike sorting is usually avoided in those
experiments by detecting just the presence of action potentials,
e.g., by applying a voltage threshold, which can be relatively

easy and efficiently implemented also in hardware (Guillory and
Normann, 1999). Real-time spike detection allows for studying
closed-loop feedback of neural activity, for example, through the
implementation of visual feedback to an awake monkey (Fetz,
1969), or by applying electrical stimulation to neurons in an
awake animal (Jackson et al., 2006). Electrical stimulation of
neurons that depends on the activity of other neurons (see also
Figure 1) was also successfully used in neural cultures on top of
multi-electrode arrays (MEAs): electrical feedback stimuli have
been used to control the bursting activity of cultured neurons in
Wagenaar et al. (2005) and the connection strengths between neu-
rons in Müller et al. (in review). The closed-loop approach can
also be used to connect a neural network to a robot (Bontorin
et al., 2007; Potter, 2010). For a review of real-time closed-loop
electrophysiology see, e.g., Arsiero et al. (2007). These studies,
however, were all realized without using spike sorting, either by
limiting the number of single neurons that were recorded from
(by trying to detect only one specific neuron per electrode), or by
using multi-unit activities.

Recent developments in measurement techniques and in spike
sorting algorithms make it now possible to overcome some of
the limitations of extracellular recordings. A possible setup using
spike sorting for closed-loop stimulation of specific neurons is
shown in Figure 1. To use the closed loop, e.g., to investigate
spike-timing-dependent plasticity, the real-time spike-sorting-
induced latency may not exceed a few milliseconds. In the
following, we will review the advances in MEA recording tech-
nology with a special focus on high-density MEAs and show
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FIGURE 1 | Principle of real-time closed-loop experiments with spike

sorting. Sketch of a potential real-time closed-loop stimulation on an HDMEA,
combined with spike sorting. The electrical activity of three neurons (colored
triangles) is measured by a high-density array of electrodes (light blue
squares). First, the recorded signal is bandpass-filtered. In a second step, spike
sorting is applied to compute the spike times of the single neurons. Depending

on the sorted spike trains and the stimulation logic, the postsynaptic neuron
(N3) is stimulated (Müller et al., in review). If the stimulation latency (tdelay) is
short enough, the stimulation can be timed with respect to the arrival of the
action potentials of N1 and N2 at their synapses to N3 (tsyn). This can be used
to change the synapse characteristics via spike-timing-dependent plasticity
(Feldman, 2012). Parts of this graph were adopted from Einevoll et al. (2011).

that the high-density of the electrodes provides unprecedented
signal quality that holds the promise to enable clear and reliable
assignment of single spikes to putative neurons (Litke et al., 2004;
Prentice et al., 2011; Jäckel et al., 2012).

MEA RECORDING TECHNOLOGY
Planar MEAs are two-dimensional arrangements of recording
electrodes for in vitro extracellular measurements of cultured
neuronal cells or slice preparations. They allow for recording
of electrical activity simultaneously on many electrodes at high
temporal resolution. Thus, they represent an important tool to
study the dynamics in neuronal networks (e.g., Potter et al., 2006;
Bontorin et al., 2007; Chao et al., 2007; Rolston et al., 2010; Müller
et al., in review).

An important parameter of MEAs is the inter-electrode dis-
tance (IED). For multi-electrode arrangements on shafts of
needles, such as tetrode configurations (Eckhorn and Thomas,
1993; O’Keefe and Recce, 1993), this distance is small enough
(less than 20 µm) that a single action potential can be simul-
taneously detected on several electrodes. The maximal dis-
tance between a neuron and an electrode, at which the action
potentials of the neuron can be still measured, is assumed to
be smaller than 50–70 µm although this greatly depends on
the recording setup and the respective preparation (Buzsáki,
2004; Frey et al., 2009b). For traditional, commercially available
MEAs, however, the IED was usually much larger [100–200 µm
IED and 60–200 metal electrodes on a glass substrate (Stett
et al., 2003)] so that MEA recordings constituted, in princi-
ple, multiple simultaneous single-electrode recordings. In other
words, the distance between the electrodes was too large

to detect activity of the same single neuron on multiple
electrodes.

From the signal processing point of view, this is an unfavorable
recording situation, as recording the same action potential with
more than one electrode was shown to strongly increase spike
sorting performance (Gray et al., 1995). Furthermore, many neu-
rons will lie in between electrodes and not be measured at all. To
ensure that neurons lie close to the electrodes, additional mea-
sures can be taken during the preparation of the cultures, such as
patterning the cells at electrode locations (Shein et al., 2009), but
this adds complexity to the experimental procedure.

Recent advances in microtechnology, especially the realiza-
tion of MEAs in complementary metal–oxide–semiconductor
(CMOS) technology (Berdondini et al., 2009; Lambacher et al.,
2010; Hierlemann et al., 2011), made it possible to greatly increase
the number of electrodes per MEA, for example to 4096 in
Berdondini et al. (2009), 11,011 in Frey et al. (2010) or 16,384
in Lambacher et al. (2010), while decreasing the IED to less than
20 µm, a distance comparable to that of the previously mentioned
electrode ensembles on needles (e.g., tetrodes). Additionally, this
technology provides increased signal quality through on-chip
amplification and digitization circuits. Using on-chip multi-
plexing schemes, high-density MEAs (HDMEA) systems have
been realized, which enable to read out large numbers of elec-
trodes, arranged at high spatial density (Eversmann et al., 2003;
Berdondini et al., 2005; Hutzler et al., 2006; Frey et al., 2009a).

The closely spaced microelectrodes of HDMEAs enable that
virtually every neuron on the array is detected by multiple elec-
trodes. Along with the additional information where the signal
originated from, the high electrode density greatly improves spike
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sorting (Gray et al., 1995; Harris et al., 2000; Einevoll et al.,
2011; Prentice et al., 2011). Figure 2 shows an example of such
a recording.

However, HDMEAs do not only improve recording but also
stimulation capabilities. Localized, reliable stimulation of sin-
gle cells (Hottowy et al., 2012) is a powerful tool for plas-
ticity experiments (Müller et al., in review). Indeed, sub-
cellular sized electrodes have been shown to provide reli-
able stimulation of individual neurons in vitro. This has been

demonstrated using MEAs with particularly high electrode
densities that feature only stimulation capabilities, such as
(Braeken et al., 2010; Lei et al., 2011). Procedures how to
optimally stimulate a given neuron by using multiple elec-
trodes and complex stimulation patterns are currently under
investigation.

HDMEAs featuring recording and stimulation circuitry (Frey
et al., 2010; Eversmann et al., 2011) combine the advantages of
reliable spike sorting and localized single neuron stimulation,

FIGURE 2 | Spike sorting for high-density multi-electrode recordings

of cultured neurons. (A) Example recording of 6 out of 102 electrodes
of a HDMEA (left), where mainly two neurons were recorded from, and
a close up on two spikes (middle) (similar figure as in Frey et al. (2009a),
however, with cultured cortical neurons). Spikes of individual neurons are
recorded by multiple electrodes. Colored traces are identified spikes from
two neurons. Note that on the trace of electrode 4, the two spikes are
hardly distinguishable and that only combining the information of different
channels enables unambiguous spike assignment, see also (Fiscella et al.,
2012). (Right top) Several superimposed spike traces of the two neurons.
The colored traces are the spike-triggered averages (STAs) of the two
neurons on the respective electrodes. The templates of the two neurons

(green and violet) spatially overlap (right bottom) indicating that the same
set of electrodes recorded from both neurons. (B) Spikes (left) and
templates (right) for 10 identified neurons (colored traces). For each
neuron, the electrode was chosen, where its template had the largest
peak-to-peak amplitude (indicated by the colored arrows in the right
panel). Note that some of the spikes are visible on more than one
electrode (three channels marked by asterisks) and that high-amplitude
spikes on one electrode can overlap with spikes on another electrode.
Right: for illustration purposes the identified templates are superimposed
onto a MAP2 staining of the culture they were recorded from Bakkum
et al. (in review). Note that the electrodes have a similar IED than the
distance between neurons.
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which paves the way to truly bidirectional experiments on
single-cell level within the network context.

REAL-TIME SPIKE SORTING ALGORITHMS
The overall spike sorting process consists of a number of non-
trivial processing steps (for a schematic of the spike sorting
process see, e.g., Einevoll et al., 2011). First, spikes need to
be detected in the noisy signals. For multi-electrode-shaft and
HDMEA recordings, a single action potential can be detected on
multiple electrodes. Then, a short piece of data is usually cut out
around the detected events (potentially on multiple electrodes)
and structured into a vector in a high dimensional space. Spike
features are then extracted from this piece using, e.g., principle
component analysis (Lewicki, 1998). This step aims at reducing
the dimension of the vector space in order to keep dimensions
that carry most information about the origin of the spikes and to
remove dimensions that only carry noise. The goal of the feature
space representation and dimensionality reduction is that spikes
from the same neuron, i.e., appear to be similar to each other, are
located closely together while being distant from spikes of other
neurons. The most demanding step, achieved by using a clustering
routine, is to determine how many neurons were recorded from,
and which spike was produced by which neuron. Since most stan-
dard spike sorting procedures (e.g., Harris et al., 2000; Shoham
and Fellows, 2003; Quiroga et al., 2004) need to store all individ-
ual spikes before the clustering step, they are not applicable for
online spike sorting with the notable exceptions of Öhberg et al.
(1996), where a neural network is used for real-time spike sort-
ing, and (Rutishauser and Schuman, 2006), where the clusters are
formed in an online procedure. The output of the spike sorting
consists of the number of neurons, the individual neuronal spike
trains, and the prototypic spike waveforms (called templates) for
every neuron.

Since some data from a certain preparation can already be
recorded and stored prior to a specific experiment, templates
can be pre-computed using an offline spike sorter. This way, fast
and efficient classifiers can be designed based on stored tem-
plates that are able to sort spikes in real-time. It does not come
as a surprise that almost all research efforts in the direction of
real-time spike sorting follow this approach (Friedman, 1968;
Mishelevich, 1970; Roberts and Hartline, 1975; Stein et al., 1979;
Salganicoff et al., 1988; Yang and Shamma, 1988; Gozani and
Miller, 1994; Santhanam et al., 2004; Asai et al., 2005; Takahashi
and Sakurai, 2005; Vollgraf et al., 2005; Biffi et al., 2010; Franke,
2011), although not all of these approaches explicitly make use of
templates to derive spike classifiers.

So far, real-time spike sorting was mainly achieved by deriv-
ing simple hardware-implementable decision rules, based on the
spike templates. One such rule is to check, if the spike voltage
sample at a given time lies between a lower and an upper thresh-
old relative to the peak of the spike waveform (a so called hoop),
as described in Santhanam et al. (2004). Such decision rules are
also used in commercially available recording systems and were
individually applied to single electrodes (Nicolelis et al., 1997;
Wessberg et al., 2000; Taylor et al., 2002; Guenther et al., 2009).

However, there have been only few applications of these
approaches to multielectrode arrays in real-time scenarios, such

as Takahashi and Sakurai (2005), where independent-component
analysis was used to separate individual neuronal activities. The
information of several recording channels must be efficiently
combined for multi-electrode recordings. Extending a spike sort-
ing method that works for single electrodes to multi-electrodes is
not a trivial task and might not be possible for all methods.

As already discussed, HDMEAs impose even higher demands
on the methods due to the large overall number of simulta-
neously recorded neurons and the large number of electrodes
that are available per single neuron. There are a number of
approaches to spike sorting of HDMEA data (Meister et al., 1994;
Litke et al., 2004; Jäckel et al., 2011, 2012; Prentice et al., 2011;
Fiscella et al., 2012) but none of those has been evaluated with
respect to low latency real-time spike sorting so far. There is
also no commercial system with real-time spike sorting available,
and it is currently unclear how effective the application of the
“hoop”-approach (Santhanam et al., 2004) is. Another ICA-based
real-time approach has been described in Takahashi and Sakurai
(2005), but the performance of ICA to separate all neurons of
HDMEA data sets was found to be limited (Jäckel et al., 2012).

LINEAR FILTERS FOR SPIKE SORTING
Linear-filter-based spike sorting approaches rely on linear filters
that preferentially respond to one template that is considered
to represent spikes from a single neuron (Roberts and Hartline,
1975; Stein et al., 1979; Gozani and Miller, 1994; Vollgraf and
Obermayer, 2006; Franke et al., 2010; Franke, 2011). Spikes can
then be detected by thresholding the filter outputs. An alternative
method was suggested in Vollgraf et al. (2005), where a pre-
processing filter was designed to be tuned to the average spike
waveform of all spikes. However, detected spikes have subse-
quently to be clustered in the filter output space, which introduces
a complex problem after the filtering. Filter-based methods hold
the promise to be suitable even for low-latency real-time spike
sorting of MEA: linear filters can be efficiently implemented in
hardware and they scale well with the number of recording elec-
trodes. Firstly, all electrodes can be processed in parallel, and,
secondly, if spikes of one neuron cannot be detected on a given
electrode, this electrode can be ignored for the corresponding
filter (Jäckel et al., 2011).

It was argued that linear-filter-based spike sorting provides
only moderate performance in terms of sorting quality (Wheeler
and Heetderks, 1982; Lewicki, 1994; Guido et al., 2006), but it
was shown more recently that this could be due to the fact that
the candidate filters have been derived in the frequency domain,
which was shown to be non-optimal (Vollgraf and Obermayer,
2006).

REAL-TIME IMPLEMENTATION
Numeric computations behind linear filters are based on
multiply-accumulate (MAC) operations. For every recording
electrode, a set of filter coefficients has to be multiplied with the
most recent samples of the recordings, and all multiplications
over all electrodes are then summed up. Since multiplications
are independent of each other, they can be done in parallel on a
digital signal processor (DSP) as a single processing step. DSPs
are well suited for implementing MAC-based algorithms, but
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filter-based spike sorting algorithms can consist of more com-
plex operations [like buffering the filter outputs, thresholding,
and estimation of the filter with the maximal output (Franke,
2011)], which requires more flexibility than provided by DSPs.
Such more complex operations can, however, be implemented
by using field-programmable gate arrays (FPGAs). The digi-
tal interface of a MEA can be controlled by these fast and
reprogrammable microcontrollers. By integrating data analy-
sis modules, as well as stimulation logics directly on the
FPGA, the complete closed-loop experiment can be realized in
“programmable hardware” (Hafizovic et al., 2007). This obvi-
ates the necessity to route the signal path through a PC,
which would increase latency and jitter. Another advantage of
FPGAs is the relatively large available memory to store filter
coefficients.

OVERLAPPING SPIKES
When two spikes occur nearly at the same time, they can
cause problems for the spike sorting: The overlapping signals
could be detected as a single spike instead of being recog-
nized as two spikes, and the distorted overall waveform can
lead to misclassifications. With multi-electrode recordings, there
can be two different types of spike overlaps: (1) temporal over-
laps include spikes that occur nearly at the same time but on
different electrodes, while (2) spatio-temporal overlaps occur
nearly at the same time and also on the same electrodes. Purely
temporal overlaps do not cause any problems for filter-based
methods, as the filters corresponding to one neuron can be
made “blind” to the electrodes of another neuron and can be
treated separately. Spatio-temporal overlaps (see Figure 2), how-
ever, will distort the filter outputs of both filters. A way to
solve this problem is to remove the corresponding waveform
from the data, once a spike was detected, and to then re-
compute the filter outputs (Gozani and Miller, 1994; Franke,
2011). This approach is not well suited for a challenging real-
time implementation, since it will generate a larger delay for
overlapping spikes than for non-overlapping ones. The real-
ization of an efficient overlap resolution technique for high-
electrode-density data of real-time applications is still an open
issue.

DISCUSSION/OUTLOOK
A number of issues in implementing real-time spike sorting still
remain unsolved. It would be desirable to make the linear filters
as short as possible to achieve the smallest possible delay (the
delay of a causal filter is directly related to its length) (Vollgraf
and Obermayer, 2006). However, it was not investigated yet, how

short the filters for HDMEA recordings can be, while still ensur-
ing a high spike sorting quality. Furthermore, the filters described
in Roberts and Hartline (1975) are, in principle, more powerful
than a simple matched filter (Vollgraf et al., 2005; Franke, 2011),
since they try to suppress spikes from other neurons. This may be
useful to resolve overlapping spikes but comes at a price: the fil-
ters might be less robust to noise, since they are under stronger
constraints. Additionally, spike waveforms of two different neu-
rons may not necessarily be linearly independent, which poses a
problem for this kind of linear filters.

Given the high spatial resolution of HDMEAs, it will be inter-
esting to investigate, how the quality of the results obtained
by using simple spike sorting algorithms compares to that of
more complex ones. Promising algorithms for use with high
electrode density include the aforementioned “hoop”-approach
(Santhanam et al., 2004), or a sorting that is solely based on the
identities of the electrodes, on which a spike was detected.

An important issue for spike sorting is the occurrence of
bursts. Here, a neuron produces potentially many spikes with suc-
cessively decreasing amplitudes and, possibly, varying waveforms
(Fee et al., 1996). For most algorithms, it is not known, how the
spike sorting error rate is affected by bursts. HDMEAs seem to
offer the potential to correctly sort spikes according to their rela-
tive amplitude distribution over many electrodes, which may be a
robust feature also preserved during bursts (Rinberg et al., 1999).

HDMEAs are a valuable tool to study neural networks, and
in combination with real-time spike sorting, hold great promise
for new closed-loop experiments to study, e.g., neural plastic-
ity. We have discussed the potential applicability of spike-sorting
algorithms for this purpose and come to the conclusion that the
combination of hardware-optimized algorithms with HDMEA
recordings may possibly enable high performance spike sorting
of more than hundred neurons with latencies in the range that
is required to stimulate and control synaptic plasticity (Feldman,
2012). This may allow for experiments similar to those reported in
Fetz (1969); Jackson et al. (2006); Bontorin et al. (2007); Rebesco
et al. (2010), however, with the possibility to use sophisticated
feedback stimuli upon occurrence of defined signature signals of
single neurons within a local population.
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We present a system to artificially correlate the spike timing between sets of arbitrary
neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS)
high-density microelectrode array (MEA). The system features a novel reprogrammable
and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded
action potentials and is capable of delivering sub-millisecond closed-loop feedback of
electrical stimulation upon trigger events in real-time. The relative timing between action
potentials of individual neurons as well as the temporal pattern among multiple neurons,
or neuronal assemblies, is considered an important factor governing memory and learning
in the brain. Artificially changing timings between arbitrary sets of spiking neurons with
our system could provide a “knob” to tune information processing in the network.

Keywords: closed-loop, high-density microelectrode array, STDP, acausal stimulation, LTD, sub-millisecond

INTRODUCTION
Different theories describing learning and memory in the brain
have been developed, and converging evidence shows that the pre-
cise activity timing of individual or groups of neurons may play a
paramount role in plasticity of neuronal circuits. The well-known
spike timing dependent plasticity (STDP) rule states that if two
synaptically connected neurons fire within tens of milliseconds
of each other, the connectivity strength of the involved synapses
gets potentiated or depressed depending on the firing order. In
pioneering studies, STDP rules were discovered (Markram et al.,
1997) and further characterized (Bi and Poo, 1998; Song et al.,
2000) by observing the effect of correlated firing of two neurons
either artificially induced by stimulating a pre-and a post-synaptic
neuron with two patch-clamps or by applying trains of paired-
pulse stimuli to one neuron in the network (Bi and Poo, 1999).
Furthermore, computation in a network is likely due not only to
the relative timing of two individual neurons but also to the cor-
related activity of different neurons forming an associated group,
i.e., assembly (Chang et al., 2000; Izhikevich, 2006). In this vein,
different studies reported the existence of precise time-locked
activity patterns of multiple neurons, both in vivo and in vitro
(Abeles and Gerstein, 1988; Bienenstock, 1995; Ikegaya et al.,
2004; Rolston et al., 2007). Having a system to generate feedback
stimulation quickly and accurately to interact with such activity
patterns would expand such studies beyond finding rules govern-
ing the plasticity between two cells toward finding rules governing
the spatio-temporal dynamics of whole networks or assemblies
(Froemke and Dan, 2002; Izhikevich et al., 2004).

In recent years, different systems to artificially control such
feedback stimulation in a closed-loop manner, and thus study
neuronal plasticity, have been developed for both in vivo (Jackson
et al., 2006b; Bontorin et al., 2007; Venkatraman et al., 2009)
and in vitro applications (Bontorin et al., 2007; Hafizovic et al.,
2007; Novellino et al., 2007; Rolston et al., 2010; Zrenner et al.,
2010; Wallach et al., 2011). In turn, activity-dependent feedback

stimulation was shown to modify the functional connectivity
of neuronal networks, both in vivo and in vitro, as done by
reprogramming the motor output of freely behaving primates
(Jackson et al., 2006a), changing the functional connectivity in
rat forelimb sensorimotor cortex (Rebesco et al., 2010), or shap-
ing in vitro neocortical networks into predefined activity states
(Bakkum et al., 2008b). In vivo systems usually record from nee-
dles inserted into a certain location of the brain and subsequently
stimulate the same or another site upon the detection of activ-
ity. These systems usually comprise the implanted needles, a head
stage to amplify the signals, and some means to transmit the
acquired signals to a PC. In the case of closed-loop feedback
stimulation, these systems usually feature a dedicated very-large-
scale-integrated application-specific circuit (VLSI ASIC) (Chen
et al., 2009; Rizk et al., 2009; Lee et al., 2010; Azin et al., 2011),
or use a general-purpose microcontroller to achieve the respec-
tive goals (Mavoori et al., 2005; Zanos et al., 2011). Most in vitro
systems, on the other hand, use a data acquisition card (DAQ) to
sample data for analysis on a PC; feedback stimulation is typically
returned through a DAQ card as well.

In order to accurately control the timing of feedback stimu-
lation loops within the timescales relevant for STDP to occur,
the delays introduced by a system must be understood. A generic
description is given in Figure 1. Different system implemen-
tations will have different sources for and values of delays.
Signal-processing algorithms introduce an inherent delay in the
processing itself. Systems, which rely on general-purpose com-
puters, might introduce latencies and jitter through the presence
of data buffers, interrupts, shared resources, or user interactions,
etc. In Figure 1, the time points t0−3 and tS specify the occur-
rence of important events. At t0 = 0, the trigger neuron emits
an action potential, which is recorded by the acquisition sys-
tem. After entering the signal-processing stages, it is ready to be
detected as a spike event at time t1. From there, the system emits a
stimulation pulse hitting the electrode at time t2. Conventionally,
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A B

FIGURE 1 | Schematic overview of latencies in feedback stimulation

systems. (A) The different components making up a closed-loop feedback
stimulation system are shown. The green circle represents the “trigger
neuron” whose action potential initiates the start of the loop. The green line
represents an axon connecting to synapses of the elicited neuron drawn in
yellow. The black dashed arrow shows the closed-loop feedback stimulation
path. Between data acquisition and stimulation feedback, different
components, over which the feedback-loop can be closed, are possible,

including digital signal-processing hardware, a real-time host PC, or a general
purpose host PC. The time points t0−3 and tS correspond to different events
as listed in (B), such as the occurrence of the spike; its detection after
signal-processing; the stimulation feedback; and the antidromic propagation
of an action potential back into the soma of the elicited neuron. At time tS,
the synapse activates due to pre-synaptic activity of the trigger neuron. The
color of the traces corresponds to the color of the timings of t0−3, S and
schematically shows the timeline of the respective signals.

the loop is considered “closed” at this point. The stimulation
pulse evokes neuronal activity, frequently activating nearby axons
(Bakkum et al., 2008a) whose signals propagate antidromically
toward the soma until eliciting an action potential at time t3. In
the case depicted in Figure 1, where the trigger neuron is synap-
tically connected to the elicited neuron, an additional biological
time, tS, denotes the duration of an action potential propagation
through the axon of the trigger neuron until synaptic activa-
tion of the elicited neuron. In case where t0 − t1 − t2 is faster
than t0 − tS, that is when the signal propagates faster through
the artificial feedback-loop than down the axon toward the bio-
logical synapse, acausal stimulation, and thus the introduction
of long-term depression (LTD) according to the STDP rule, is
possible.

In order to apply closed-loop stimulation feedback pre-
cise and fast enough to study plasticity at the timescales of
STDP or acausal stimulation, and flexible enough to interact
with cell assemblies, we developed a field-programmable gate
array (FPGA)-based system, interfaced with a complementary
metal–oxide–semiconductor high-density microelectrode array
(CMOS-MEA). The CMOS-MEA features a total of 126 read-
out and 42 stimulation channels, which can be connected to an
almost arbitrary subset of 11,011 5× 7 µm2 electrodes, arranged
in a 2× 1.75 mm2 array. The feedback stimulation loop is closed
around the CMOS-MEA using an FPGA that performs signal-
processing, such as spike-detection and feedback generation. The
system functionality was verified using cultured networks of cor-
tical neurons and glia. The minimum programmable latency of
the closed-loop stimulation feedback (t0 − t1 − t2) was 400 µs
with jitter below 50 µs, suitable to induce STDP. This is faster than
many axonal propagation delays (t0 − tS), rendering it possible to

conduct acausal stimulation experiments. An “event engine” was
designed and implemented to trigger feedback stimulation at the
occurrence of activity patterns, such as those described in Ikegaya
et al. (2004) and Rolston et al. (2007). Patterns could be of almost
arbitrary length and could consist of up to 1000’s of individual
elements, only limited by the available resources of the FPGA.
Configurations for the event engine could be (re)loaded within
milliseconds. Unique to this system is the possibility to enable
low-latency, high-throughput, STDP-like experiments as well as
acausal stimulations across many individual neurons, or neu-
ronal assemblies in parallel through the simultaneous application
of many feedback stimulation loops. To infer changes in synap-
tic strengths, correlations between putative mono-synaptically
connected neurons (Fujisawa et al., 2008) can be monitored
using extracellular spikes. In the future, high-throughput STDP
experiments will be possible by adding a patch electrode to the
system in order to monitor changes in intracellular post-synaptic
currents.

METHODS
SYSTEM ARCHITECTURE
The main design goals were to implement (1) multiple feed-
back stimulation loops (2) to match arbitrary spike patterns with
(3) short latencies (<1 ms) and (4) high accuracy (<50 µs) (5)
while still recording from all available 126 channels. A main
component of the presented system is an FPGA, used to hijack
signals traveling between the analog-to-digital converter on the
CMOS device and the host PC. Due to the inherent parallel nature
of FPGAs, signal-processing and feedback generation using data
from additional recording channels can be done without intro-
ducing additional delays or jitter.
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The system consists of three main parts as shown in
Figure 2. The first is a high-density CMOS-MEA device featuring
on chip signal-conditioning, stimulation, and analog-to-digital
conversion (ADC) units (Frey et al., 2010), described in more
detail in the next section. It is plugged into a custom printed
circuit board (PCB) that provides reference voltages and clock
signals. The digital data as provided by the CMOS-MEA are trans-
mitted through a low-voltage differential link to reduce sensitivity
to electromagnetic interferences as caused, for example, by a
nearby incubator. The second part is an FPGA, which reads in the
differential signals and subsequently performs signal-processing,
spike-detection, and feedback stimulation, as well as compression
and framing of the data to be sent via TCP/IP over Ethernet to a
host PC, the third main part. On the host PC, further data analy-
sis can be performed online or offline. It is also used to program
and control the CMOS-MEA device during experimentation with
different settings, like amplifier gain or electrode-to-amplifier
routing, in order to be adopted for use in different experimental
sessions.

CMOS DEVICE
The CMOS-MEA includes 126 readout channels with pro-
grammable amplification (0 dB to 80 dB), on chip ADCs sampling
at 20 kHz, and stimulation capabilities (see below). It features
a sensor area of 2× 1.75 mm2 with a total of 11,011 electrodes,
each with a size of 5× 7 µm2 and a pitch of 18 µm. Beneath
the electrodes resides a sophisticated analog-switching matrix to
connect an almost arbitrary subset of the 11,011 electrodes to
the 126 readout channels. The readout electronics were placed

outside of the sensor array, instead of directly below the elec-
trodes as done in active-pixel sensor devices (APS) (Berdondini
et al., 2009), to provide space for larger circuitry elements that
produce less noise. This scheme also allows for reducing the pitch
of the electrodes below the spatial requirements of the readout
electronics. See Frey et al. (2010) for more details.

FPGA
A reprogrammable Virtex II pro FPGA (Xilinx Inc., San Jose,
USA) was used as an intermediate signal-processing device
between the CMOS-MEA and the host PC to perform real-time
signal-processing, decision-making and feedback generation. The
FPGA acquires digital data coming from the differential link
and forwards it to a PC over Ethernet. The Virtex II pro fea-
tures an embedded PowerPC microprocessor running at 300 MHz
that operates a Linux kernel with a Busybox operating sys-
tem. The TCP/IP stack of the Linux kernel handles the network
communication and data transfer. As the embedded PowerPC
microprocessor is relatively slow, compared to modern CPUs,
this provides a bottleneck for fast data transmission. We mea-
sured the latency between the TCP/IP stack of the FPGA and
the host PC to be 83± 21 ms (mean ± SD, N = 308) at full-
frame data transmission, which is larger than the STDP window
of up to tens of milliseconds. One solution to this problem might
be to stop streaming of the full data readout, while performing
a closed-loop experiment and to only route out the data chan-
nels strictly needed for the closed-loop feedback stimulation. This
would free some of the bandwidth of the Ethernet link and make
it available for faster feedback stimulation. Crucially, however,

FIGURE 2 | Overview of the presented closed-loop system, implemented

with a CMOS-MEA, an FPGA, and a host PC. (A) Micrograph of the
CMOS-MEA highlighting the electrode array, amplification and stimulation
units, and the digital core with an inset showing a close-up of the stimulation
buffer. (B) Photograph of the CMOS-MEA plugged into the custom
printed-circuit board, which is connected through an LVDS link to the Xilinx

Virtex II pro FPGA board from Digilent Inc., Pullman, USA. The host PC running
data acquisition and visualization software is connected to the FPGA through
Ethernet. (C) Schematic diagram of the setup. The diagram shows the
acquisition (upper part) and stimulation path (lower part). The feedback
stimulation loop is closed around the CMOS-MEA and the FPGA. The
components are described in detail in the text.
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we would lose the possibility to simultaneously monitor neural
activity elsewhere in the cultured network by applying such a
paradigm. Another option might be to bypass the Ethernet link
by streaming the data directly to a DAQ card, attached to the host
PC, and to send stimulation information back through a second
link to the FPGA. All these methods are less practical than using
the universal TCP/IP connection, which plugs into almost every
kind of host PC and does not require additional hardware. An
attractive alternative for achieving low latencies was to implement
all needed signal-processing and feedback generation directly on
the FPGA. The next paragraphs highlight the different building
blocks needed to implement such a scheme. Although the FPGA
can be reprogrammed at will, this is time-consuming and error
prone and, therefore, not suitable during an experimental session.
To accommodate reprogramming, a more flexible, module-based
design was developed in VHDL and programmed into the FPGA
logic together with a software interface to quickly reconfigure the
connectivity of the individual modules (see “Event Engine”).

SPIKE-DETECTION
One such signal-processing building block is spike-detection,
which extracts spiking events from the raw voltage traces,
recorded at the electrodes. Spike-detection is implemented as a
threshold crossing. The signals are first digitally band-pass filtered
with a two-tab Butterworth filter (500 Hz–3 kHz) to suppress DC
offset components and higher frequency noise; this will empha-
size the action potential frequency components. The detection
threshold level is user-programmable and typically set around 4.5
times the noise standard deviation. During experimentation, this
value can be determined by software running online on the host
PC. After an identified spike event, we set a programmable refrac-
tory period to 3 ms. After stimulation, detection was disabled for
3 ms as well, to avoid oscillating loops due to feedback stimulation
artifacts being falsely classified as spikes.

EVENT ENGINE
To avoid time-consuming reprogramming of the FPGA fabric,
a more flexible and modular event-based scheme for feedback
generation (Event Engine) was designed and implemented. The
event engine consists of small building blocks, called modules,
each of which implements a specific simple function. Each mod-
ule has one or more event sinks as inputs and one event source
as an output. By connecting the event sources to the appropri-
ate event sinks, different, almost arbitrary pattern matching, and
event handling algorithms can be achieved. Table 1 summarizes
the implemented modules. Figure 3 shows different basic con-
figurations to achieve defined pattern matching. In Figure 3A,
the simplest closed-loop configuration is depicted, where the
source of a spike-detection module gets connected to the sink of
a delay unit and from there to a stimulation function generator.
Whenever the source produces an event (i.e., in this case detects a
spike), the sink triggers a stimulation pulse after a defined time
delay. By means of software, the sources can be connected to
sinks dynamically and rapidly within milliseconds while running
an experiment such that pattern matching can adapt to ongoing
activity in the living culture. One notable property is the lack of
time binning. Each spike gets represented as a single pulse with a

temporal resolution set by the sampling frequency, i.e., 20 kHz. As
a consequence, certain desired operations might not make sense,
as the biological neurons have some inherent variability in when
they spike. For example, the user might want to match a pattern,
where two neurons spike together (see Figure 3E). To achieve this,
a SPREADING module “spreads” the spike pulse in time in order
to compensate for jitter. This way, the subsequent AND mod-
ule can generate an output event whenever the two neurons fire
together within a specified range of time. As discussed in Ikegaya
et al. (2004) and Rolston et al. (2007), 2 ms is suitable for most
recurring patterns. Another module can be used to convert the
spread-out spike pulse back into a single one-shot event, which
then can be used, for example, to trigger the stimulation unit
only once per spread-out pulse. The particular selection of imple-
mented modules (as listed in Table 1) represents a minimal set,
which, if combined in the appropriate way, allows for matching
different kinds of events, such as specific spatio-temporal activ-
ity patterns, time sequences, network bursts, local bursts, etc. In
order to keep the event engine as flexible as possible and adapt-
able to different, possibly unforeseen pattern matching sequences,
the implementation of a minimal set of small building blocks has
been chosen over the approach, where each envisioned pattern
would require a single, but more complex, and less flexible build-
ing block. Thus, available modules can be combined together in
almost infinite different ways, limited only by the available FPGA
memory that keeps track of all source-sink associations.

STIMULATION/FUNCTION GENERATOR
The CMOS-MEA has 42 on-chip integrated stimulation units,
which are driven by two 10bit DACs. On the FPGA is a function
generator implemented to achieve arbitrary stimulation wave-
forms. A defined waveform has to be programmed at the start
of the experiment. We used biphasic, first positive then nega-
tive voltage pulses of 200 µs duration per phase and ±300 or
400 mV amplitude. The stimulation buffers can be chosen to
operate in voltage- or current mode (Livi et al., 2010). Whenever
the event engine outputs an event, the appropriate stimulation
buffer, located on the CMOS-MEA, gets connected, and the
function generator starts its operation. Stimulation artifacts on
the readout channels could result in falsely detected spikes and
cause a reverberation problem for low-latency feedback-loops.
Therefore, spike-detection is blanked during a time period of a
few milliseconds after stimulation onset.

CULTURES
The performance of the closed-loop system was tested with cor-
tical neurons and glia grown over the CMOS-MEA. Animal
handling protocols were approved by the Basel-Stadt Veterinary
office according to Swiss federal laws on animal welfare. Briefly, a
time-pregnant rat was anesthetized using isoflurane, then decap-
itated to gain E18 embryos. Cortices were extracted from the
embryos and dissociated enzymatically in trypsin (Invitrogen)
followed by mechanical trituration. A layer of laminin (Sigma)
over a layer of poly(ethyleneimine) (Sigma) was used to adhere
between 20 and 40 k cells. Plating media consisted of 850 µL
of Neurobasal, supplemented with 10% horse serum (HyClone),
0.5 mM GlutaMAX (Invitrogen), and 2% B27 (Invitrogen). After

Frontiers in Neural Circuits www.frontiersin.org January 2013 | Volume 6 | Article 121 | 41

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Müller et al. Sub-millisecond closed-loop feedback stimulation

Table 1 | A minimal set of modules making up the event engine.

DELAY(t, A) Delays the event A by a defined amount of time t.

AND(A, B) Emits an event, when both of the two input events, A and B occurred simultaneously.

OR(A, B) Emits an event, when either of the two input events A or B occurred.

INH(t, A, B) Emits an event, when an event on A, however, no event on B occurred in a defined time

window, t, in order to create inhibitory feedback-loops.

RAND(p, A) Propagates the event A to the output or drops it after a Bernoulli-distributed pseudo-random

variable with a definable probability, p.

ACCU(n, A, B) Increments (event A) or decrements (event B) an internal accumulator and emits an event

after a definable threshold, n, has been reached, after which it is reset to zero.

SPREAD(t, A) Spreads the event A in time for a defined time, t.

SPREAD−1(A) Converts the onset of a spread-out event A back into a single event.

DETECTION(c) Emits an event, when the specified channel, c, detected a spike.

STIMULATION(c, A) Generates a stimulation pulse on the specified channel, c, whenever input event A happened.

START Single pulse after system start-up, which can be used to start repetitive stimulation protocols.

Configurable parameters are represented in italics (t, p, n, c), and input events are denoted in bold letters (A, B).

A

B

C

D

E

F

G

H

FIGURE 3 | Example configurations of the event engine. Stitching together
the appropriate set of modules allows the event engine to be configured to
match a variety of patterns in order to trigger feedback stimulation. Different
minimal examples are shown. (A) A DELAY element is inserted after a
DETECTION module to trigger STIMULATION after a programmable delay.
This configuration, with the delay set to zero, was used for the experiments
shown in Figures 5, 7. (B) Either an event on channel A OR an event on
channel B triggers stimulation. (C) In a programmable time window before
and after an event on channel A, there may not be any event on channel B in
order to trigger stimulation (trace C). (D) A RAND module propagates or
discards the events, in this case with a probability of ½. (E) Events on
channel A and channel B are fed through SPREAD modules into an AND
module, which outputs events (on trace C), when both inputs are active. The
intermediate trace C is fed into a SPREAD−1 module to trigger stimulation at

the onset of the event. (F) When the event on channel B happens
subsequently to an event on channel A, an event C is generated (G) An ACCU
module is set to increment, when either an event on channel A OR channel
B happened, and to decrement, when a delayed event from channel B

(trace C) arrived. In this example, the ACCU threshold is set to three events.
Once the threshold is reached, the internal counter gets reset to zero. When
the three input events happen shortly after each other, a stimulation event
gets emitted. As shown in the example, the delayed channel B (trace C)
decrements the accumulator and thus delays or prohibits crossing of the
threshold. (H) All modules can be combined together to achieve almost
arbitrarily complex pattern matching. For example, this configuration was
used to match the pattern of Figure 6. The formula describing this pattern is:
STIMULATION(1, SPREAD−1(AND(AND(SPREAD(2 ms, A), SPREAD(2 ms,
B)), SPREAD(2 ms, C)))).
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24 h, the plating media was changed to growth media: 850 µL
of DMEM (Invitrogen), supplemented with 10% horse serum,
0.5 mM GlutaMAX, and 1 mM sodium pyruvate (Invitrogen).
Cultures matured for 3–4 weeks prior to experimentation, and
experiments were conducted inside an incubator to control envi-
ronmental conditions (34.5◦C and 5% CO2). For further details
see Hales et al. (2010).

EVALUATION AND RESULTS
This section begins with data characterizing the suitability of
our setup to perform closed-loop feedback stimulation experi-
ments, using cultures of cortical neurons and glia for validation.
First, the process of identifying neurons to be used in closed-loop
feedback stimulation will be described. Then the system’s loop
speed and jitter performance will be quantified. An example event
engine was run to provide stimulation feedback, triggered by an
activity pattern. Preliminary data and techniques to analyze the
consequences of such stimulation on the functional connectiv-
ity between neurons will be presented and discussed. Finally, an
experimental session to induce LTD through acausal stimulation
will be sketched, and its implications discussed. Data in the figures
demonstrate proof-of-principle experiments from individual cul-
tures, the setup has, however, been successfully applied to many
tens of cultures.

RECORDING/STIMULATION SELECTIVITY
High-density CMOS-MEAs can potentially sample from com-
plete neuronal populations. Due to the high-density (18 µm
pitch) of the CMOS electrode array, every neuron lying on the
2× 1.75 mm2 array can be bidirectionally addressed. On the
other hand, when stimulating one electrode, a defined subset of
neurons is often directly activated in response (Bakkum et al.,
2008a). Figure 4 shows such a scenario. In Figure 4A, one elec-
trode, marked with a black cross, was stimulated multiple times,
and the evoked activity was recorded during a window of 12 ms
after stimulation onset. The median calculated over all voltage
traces filters out noise and spontaneously spiking neurons/traces.
Reliable activity (usually with a jitter on the order of 100 µs or
below) is considered due to an antidromic action potential ini-
tiated at the neuron’s axon (Lipski, 1981). Since only a subset
of 126 out of the 11,011 electrodes can be readout simulta-
neously, the stimulation sequence was repeated multiple times,
each time with a different subset of electrodes, until all elec-
trodes were covered. After recording all sequences, the traces
of the individual recordings were aligned in time. To high-
light the electrodes that recorded elicited action potentials, the
negative peak of the recorded voltage level during 12 ms after
stimulation is color-coded and clipped at −100 µV. The red
circles around the exemplified 11 spots highlight neurons that
fired directly elicited action potentials. Their traces are indi-
vidually shown in Figure 4B, demonstrating that the elicited
action potentials were reliably and precisely fired after a given
time, and only in a few cases (traces 2, 4, 6, 9), activity with
different timing occurred. These could stem from a different
neuron that happened to sit near the same electrode and/or
from action potentials occurring within a coincident network
burst.

200 µm
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FIGURE 4 | Identification of directly evocable action potentials.

(A) Data recorded in response to repeated stimulation of one electrode
(black cross) from the whole 2× 1.75 mm2 sensor area of the CMOS-MEA
(each pixel is one electrode). Recording electrode configurations were
scanned across the array in sets of 126 electrodes at a time. For every
configuration, data were recorded for 12 ms after stimulation onset. The
amplitude of the negative voltage peak within these 12 ms is color-coded
and clipped at −100 µV. Blue indicates the detection of directly evoked
somatic action potentials. (B) Example traces from 11 somas and the
stimulation pulse are shown on the right. Traces from 30 stimulation trials
are overlaid, with the median trace highlighted in black. The stimulation
artifact was blanked prior to recording. Numbers are ordered by increasing
distance from the stimulation site.

As shown, recording and stimulation with the CMOS-MEA
feature high spatial resolution and, therefore, are locally very
confined. However, the facts that one electrode can detect signals
from more than one neuron, and that the stimulation through
one electrode can directly evoke action potentials of more than
one neuron have to be considered when planning closed-loop
feedback stimulation experiments. In this case, the feedback-
loop is not closed between two neurons, but includes two sets of
neurons.

FEEDBACK LATENCIES
According to the rules of STDP, the timing window to induce
long-term potentiation (LTP) at synapses is between less than a
few milliseconds and up to tens of milliseconds post-synaptic acti-
vation before and after pre-synaptic activity. Thus, even though
feedback cycles of 5–10 ms are fast enough to induce LTP, we
aimed at reaching cycle-times below 1 ms to enable the system
to perform acausal stimulations, as explained in the respective
section below.

Figure 5 shows the overlay of 128 traces of the feedback-loop.
Here, the event engine was configured to detect events on only
one channel and stimulate immediately after detection, i.e., with-
out any further delays in order to test the system performance
(cf. Figure 3A). The traces are aligned at the onset-time of the
stimulation pulse, and time zero is set to be at the negative peak
of the spike of the trigger neuron. In red are the traces from the
trigger neuron, and in black, the traces from the elicited neu-
ron. The timing between a trigger neuron spike and the onset
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FIGURE 5 | Feedback stimulation performance. One hundred and
twenty-eight traces from a closed-loop stimulation sequence are aligned at
the stimulation onset-time and overlaid. Traces in red show the trigger spikes
with the median over all trigger traces shown in bold red. The stimulation
artifact is grayed-out for better visual clarity. The traces in black show spikes,

elicited in all but four cases after stimulation. The median over all elicited
traces is shown in bold white. The antidromic propagation delay for the
elicited spikes was around 0.85 ms. The different timings, detection delay,
stimulation delay, and antidromic propagation delay sum up to the full loop
delay of 1.25 ms.

of the stimulation pulse was 200 µs, i.e., 4 sampling periods.
This delay arises as follows: 50 µs (1 sampling period) was used
to buffer the incoming data in the FPGA; 100 µs accounted for
the delay of the two-tab Butterworth filter and the last 50 µs
account for all other delays, such as synchronizing the stimula-
tion pulse with the recording sampling time. Delays for sending
digital data between the CMOS device and the FPGA were on
the order of nanoseconds and thus are negligible. When stimu-
lating with biphasic voltage pulses, the steep negative transition,
which injects negative current (I= C× dV/dt), is the time point,
when a cell is activated (Wagenaar et al., 2004; Bakkum et al.,
2008b). Thus, this time point was taken to measure the latency
between stimulation and an elicited spike. In the case depicted in
Figure 5, this timing is 0.85 ms, and the overall latency between
trigger neuron activity and a spike on the elicited neuron was
1.25 ms.

As can be seen in Figure 5, besides achieving short feedback
cycles, another advantage of using digital hardware (in this case
FPGAs) for feedback generation is that no additional jitter is
introduced, as such a system is fully deterministic. Sources of jitter
in other systems (Hafizovic et al., 2007; Rolston et al., 2010) that
close the feedback-loop around general-purpose or real-time per-
sonal computers are, for example, system interrupts that might
disrupt the data processing, or buffer sizes of the USB, TCP/IP,
or DAQ cards, which have to be set large enough in order to
guarantee full data throughput. Usually these buffers have a size
larger than one sample period. Depending on when an event hap-
pened inside this buffer, the latency could be larger or smaller and
thus introduce jitter. This can be avoided by using digital hard-
ware to hijack the data stream. In our case, the jitter was below

±50 µs and arose from the fact that neural activity is, of course,
not aligned to the sampling period of the CMOS-MEA (50 µs).
The exact time of the threshold crossing relative to the negative
spike peak depends, among other things, on the slope of the spike
waveform. Since the recorded signal was not interpolated between
samples, this was an unavoidable source for jitter.

PATTERN MATCHING
To demonstrate the event engine in operation, feedback
stimulation, triggered by an activity pattern, was performed. For
the dataset presented in Figure 6, the event engine was pro-
grammed according to Figure 3H and classified spontaneous
activity patterns as follows: A neuron recorded on electrode N2
fires an action potential; then an action potential is recorded from
a neuron on electrode N3 after 3 ms; finally an action potential
is recorded on electrode N1 after another 1.5 ms. Each individ-
ual event occurrence was allowed to have a jitter of ±1 ms. After
successful identification of such a pattern, a stimulation pulse
was emitted to elicit action potentials on a different neuron, NE.
The cell cultures under investigations typically expressed bursting
behavior, and this was when almost all of the patterns occurred.
During bursts, the cells usually fired more than once at an ele-
vated frequency, and this explains why the neurons on electrodes
N1–N3 showed additional spikes “outside” of the detected pat-
tern. Nevertheless, the pattern matching event engine identified
22 activity pattern occurrences during 12 min of recording.

CORRELATION ANALYSIS
To assess the connectivity between different neurons and
the efficacy of change, induced by the closed-loop feedback
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FIGURE 6 | Pattern-matching feedback stimulation. Electrode traces were
recorded from neurons sitting on three different electrodes N1–N3 while
performing pattern matching. The pattern was matched 22 times within
12 min, all overlaid and drawn in light-gray color. One arbitrary pattern is
highlighted with black traces. The 12 ms before and 4 ms after stimulation
pulse are shown. The orange, green, and blue colored boxes represent the

spread-out-windows set in the event engine. A yellow box of arbitrary width
is drawn around the elicited activity of neuron NE. Above the traces, negative
peak times are marked with black vertical bars, showing spikes clustered
within the colored boxes. The figure on the right shows electrode locations
and the timings making up the pattern to match as well as the antidromic
propagation delay of 2 ms to the elicited neuron.

stimulation, cross-correlation curves (Perkel et al., 1967) were
computed between spike trains of the trigger neuron and the
elicited neurons. When exceeding a 95% confidence interval
(Brillinger, 1976), correlation is considered significant. Figure 7
shows three descriptive cases, comparing the cross-correlation
curves from 1 h of spontaneous activity before and after closed-
loop feedback stimulation was applied for 1 h. To evaluate sig-
nificance of the change, a similar procedure as in Fujisawa et al.
(2008) was used. Briefly, the two times 1 h of spontaneous activity
recordings were divided into smaller bins of 10 min duration and
were randomly assigned to be before or after the closed-loop stim-
ulation. Cross-correlation from this shuffled data was computed
for both “before” and “after” and the difference was evaluated.
This procedure was repeated 1000 times to generate a surrogate
data set. Points on the x-axis, where the true difference is larger
than 95% of the surrogate data, were assigned to be significant
and are marked with an orange bar in Figure 7. Assessing the
true connectivity of neuronal networks by means of extracellu-
lar measurements is difficult, and using the cross-correlation to
that end is not ideal, as effects like common inputs or firing rate
changes cannot be easily explained. However, in our context of
evaluating the effect of feedback stimulation, we do not necessar-
ily seek to precisely explain the changes in network connectivity,
but to rather demonstrate that a change occurred at all and to
what extent.

ACAUSAL STIMULATION
One motivation for very short feedback cycles is to open the
possibility of acausal stimulation. If the closed-loop stimula-
tion (t0 − t2) is faster than the time it takes the action potential
to travel along the axon and hit the synapses (t0 − tS), acausal
stimulation and, therefore, induction of LTD by means of closed-
loop feedback stimulation is possible. The time that it takes for
an action potential, initiated at the axonal hillock, to propagate

down the axonal arbor to the synapses depends on the propa-
gation velocity of action potentials along axons and the length
of the axons. Action potential conduction velocities in unmyeli-
nated axons were reported around 0.2–0.4 ms−1 (Debanne et al.,
2011). As demonstrated in Figure 5, the closed-loop stimula-
tion (t0 − t2) can be as fast as 0.4 ms, meaning acausal stim-
ulation is possible for trigger neurons (t0) with unmyelinated
axons that synapse to an elicited neuron (t3/S) after a mini-
mum axial length of 80–160 µm. Figure 8 shows such an acausal
stimulation procedure. First, before applying a closed-loop, the
activity between different neurons was measured then evalu-
ated by computing the cross-correlation. In the example in
Figure 8, the firing activity of the second neuron B with respect
to the first neuron A was elevated around a delay of 2.5 ms,
implying neuron A has a functional connection with neuron B.
Integrating the cross-correlation curve, where it exceeds the con-
fidence intervals around 2–3 ms after the reference time zero,
reveals an integral probability of around 40% chance for neu-
ron B to spike 2–3 ms after neuron A had fired. Once two
such neurons could be identified, closed-loop stimulation can
be applied between them with a very short feedback cycle. In
the presented example, the delay from the trigger neuron to the
elicited spike was around 1 ms, smaller than the average delay
between the occurrence of their spontaneous action potentials.
The closed-loop feedback stimulation was applied for 20 min,
and, afterwards, the correlation was measured again. Now, the
correlation no longer exceeded the confidence intervals at around
2–3 ms after the trigger neuron. Note, however, that Bi and
Poo (1998) have shown that LTD can only be induced, if the
spontaneous synaptic efficiency is not strong enough to evoke
a post-synaptic action potential. Otherwise, the post-synaptic
Ca2+ influx dominates, and LTP will occur. For the experi-
ment shown in Figure 8, the elicited neuron spiked only a frac-
tion of the time, and provided an intermediary synapse; in all
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FIGURE 7 | Cross-correlation analysis. Three descriptive cases of changes
in correlated firing between trigger neurons and elicited neurons.
Spontaneous activity was recorded 1 h before and 1 h after the application of
closed-loop feedback stimulation. Periods, where the difference exceeded a
confidence bound (see text), were assigned to be significant and are
indicated with an orange bar. The 95% confidence intervals are indicated

with black dashed lines. Cross-correlation is computed based on trains with
9000–13000 spikes per neuron. (A) Relative probability remained constant,
but the timing between trigger neuron and elicited neuron changed and
became more synchronous. (B) The elicited neuron became more likely to
fire in concert with the trigger neuron. (C) Relative timing within a network
burst changed.
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FIGURE 8 | Schematic of an acausal stimulation sequence.

(A) Spontaneous activity before application of the closed-loop. Shown
spike traces are the median waveform of several spikes aligned at the
negative peak. Top: Spike trace of the trigger neuron, A, in green.
Middle: Example spike trace of a correlated neuron, B, drawn in yellow.
The time delay between the plotted spikes of neuron A and neuron B was
chosen to align with the maximum peak of the cross-correlation curve.
Bottom: Cross-correlation curve of spike-times of neuron B with respect to
neuron A. 95% confidence intervals are drawn with dotted red lines.
Cross-correlations were computed with trains having 2000–3000 spikes.
Significantly elevated correlated activity of neuron B can be detected
around 2.4 ± 0.4 ms after neuron A fired an action potential. (B) Same

situation as in (A) but with a closed-loop feedback stimulation applied. Due
to the low-latency loop, the time delay of the yellow spikes with respect
to the green ones was reduced by about 1.3 ms. For neuron A, the trace
was zeroed at the start of the stimulation pulse. (C) Same as (A)

but after the application of the closed-loop feedback stimulation. The
cross-correlation no longer shows a significant peak for latencies larger
than zero. The time delay between the plotted spikes of neuron A and
neuron B was again chosen to align with the maximum peak of the
cross-correlation. (D) Geometric sketch of the situation. The trigger neuron
A and its axon are shown in green and the elicited neuron B in yellow.
(E) Comparison of the two cross-correlation curves before (black) and after
(red) the acausal stimulation with their 95% confidence intervals.

other cases, evoked excitatory post-synaptic currents (EPSCs)
remained below the threshold. Further experiments are required
before drawing conclusions. Additionally, to explore LTD and
LTP in more depth, and advantageously, across many synapses

simultaneously, extracellular recordings targeted to many trig-
ger neurons, and an elicited neuron on the CMOS-MEA
could be combined with an intracellular patch-clamp, attached
to the elicited neuron and measuring the incoming EPSCs.
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DISCUSSION
With the presented system, capable of applying multiple flexible
feedback-loops simultaneously, many different experiments will
be possible. The dynamic clamp technique proved to be a valu-
able tool for investigating the membrane dynamics involved in
action potential generation (Destexhe and Bal, 2009; Economo
et al., 2010). In such systems, intracellularly applied closed-
loop-controlled voltage feedback enables the manipulation of cell
membrane functions. Similarly, extracellularly applied closed-
loop stimulation feedback, as presented in this work, might
provide a useful tool for investigating cellular and network level
plasticity and enable the manipulation of neuronal network func-
tions. Potential questions include how information processing
and the amount of memory that can be stored in a cultured
network are influenced by adding one or more feedback-loops.
Further experiments might involve more detailed studies of both
LTP and LTD of individual sets of neurons by implementing
causal and acausal feedback-loops between them. Using the pat-
tern matching capabilities of the event engine will allow for
extending plasticity studies to the network level. For example,
investigations of the temporal order and history of spike trains,
similar to those reported by Froemke and Dan (2002) and Ikegaya
et al. (2004), could be performed, however, in parallel on multiple
different neurons and pathways and, in addition, the respective
pathways could be dynamically altered by targeted closed-loop
feedback stimulations. Further rules governing plasticity beyond
the classical STDP could be investigated.

An inherent limitation of extracellular recording systems is
the inability to directly measure EPSCs. Conventional plastic-
ity studies rely on patch-clamp to directly measure the EPSC to
assess synaptic connectivity strength. Since these currents are not
accessible with extracellular measurement techniques, indirect
methods to assess synaptic connectivity have to be employed.
Although cross-correlation seems attractive and is commonly
used to assess connectivity, either between different brain regions
or networks, or even between individual cells, it remains to be
investigated to what extent correlation analysis unveils the direct
synaptic strength between neurons. A combination of patch-
clamp techniques and MEAs would provide a more direct way
to measure the EPSC than through the computation of cross-
correlation curves. By patching the post-synaptic neuron, EPSC
strengths can be directly measured and related to extracellu-
larly recorded pre-synaptic activity. Combining the advantages
of both techniques, i.e., the precise EPSC measurements through
patch-clamp, and the large-scale parallel, extracellular measure-
ments and stimulations through CMOS-MEAs with flexible
feedback-loops programmed by the event engine, would greatly
expand experimental horizons. One could study the plasticity

of hundreds of synapses in parallel. Furthermore, by hooking
up the patch-clamp system to the event engine through dedi-
cated spike-detection and stimulation modules, feedback-loops
could be applied through the patch-clamp between extracel-
lularly recorded and intracellularly stimulated (or vice versa)
neurons.

Although, due to the high-density of electrodes, potentially all
neurons can be read out individually, the recorded signals from
two different neurons, located close to each other, are sometimes
difficult to separate. A spike-sorting step, incorporated prior to
event detection, can help to sort, and separate even neurons
recorded from with the same electrodes. This holds in particu-
lar for using high-density electrode arrays (Franke et al., 2012).
The spike-sorting might enable the identification of neurons with
smaller spiking amplitudes, close to the noise level, and the identi-
fication of more neurons or cell assemblies. However, a drawback
of more sophisticated spike-sorting algorithms is an additional
time delay in the detection phase (t0 − t1). Spike-sorting, together
with intracellular stimulation through patch-clamp as described
above, could eliminate the aforementioned limitations in sec-
tion “Recording/stimulation selectivity”: Trigger spikes can be
assigned to an individual neuron through spike-sorting, and stim-
ulation pulses will only activate action potentials in the patched
neuron.

CONCLUSION
By using an FPGA to perform signal-processing, as well as feed-
back generation, fast, and flexible loop cycles have been real-
ized. Our approach using reconfigurable digital hardware to
perform computationally intensive tasks, such as signal filter-
ing, spike identification, decision-making, and feedback genera-
tion, is a compromise between traditionally employed methods
either using a general-purpose (micro-) processor, which intro-
duces additional latencies, and jitter, and the highly integrated
application-specific circuits (VLSI ASICs), which are much less
flexible in terms of adaptations to new experimental paradigms.
Our achieved closed-loop feedback latencies are lower than many
axonal propagation delays and thus enable acausal stimulation.
Due to the flexible event engine, high-throughput experiments
applying many feedback-loops in parallel are conceivable.
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Single neuron feedback control techniques, such as voltage clamp and dynamic clamp,
have enabled numerous advances in our understanding of ion channels, electrochemical
signaling, and neural dynamics. Although commercially available multichannel recording
and stimulation systems are commonly used for studying neural processing at the net-
work level, they provide little native support for real-time feedback. We developed the
open-source NeuroRighter multichannel electrophysiology hardware and software platform
for closed-loop multichannel control with a focus on accessibility and low cost. NeuroR-
ighter allows 64 channels of stimulation and recording for around US $10,000, along with
the ability to integrate with other software and hardware. Here, we present substantial
enhancements to the NeuroRighter platform, including a redesigned desktop application,
a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data
servers for accessing data streams, and a new application programming interface (API)
for creating closed-loop protocols that can be inserted into NeuroRighter as plugin pro-
grams. This greatly simplifies the design of sophisticated real-time experiments without
sacrificing the power and speed of a compiled programming language. Here we present
a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an
extensive set of case studies that highlight the system’s abilities for conducting closed-loop,
multichannel interfacing experiments.

Keywords: closed-loop, multichannel, real-time, multi-electrode, micro-electrode array, electrophysiology,
open-source, network

1. INTRODUCTION
Multi-electrode neural interfacing systems, such as planar elec-
trode arrays, silicon probes, and microwire arrays are commonly
used to record spatially distributed neural activity in vitro and
in vivo. Advances in nanoscale fabrication techniques have contin-
ued to push channel counts and electrode resolution (Du et al.,
2011; Fiscella et al., 2012; Robinson et al., 2012), allowing for
increasingly detailed measurements of network activity states.
Because multi-electrode neural interfaces provide many parallel
measurements, they can be used to rapidly estimate ensemble
features of network activity (e.g., the population firing rate or
network-level synchronization). This makes them well suited for
real-time applications.

However, most commercial software interfaces for control-
ling multichannel hardware lack flexible support for real-time,
bi-directional communication with neural tissue. Additionally,
commercial software is often hard to integrate into complex multi-
component experimental configurations. As a result, multichannel
hardware has not been incorporated into closed-loop interfacing
schemes to the degree of single-cell recording systems, such as
voltage and dynamic clamp (Cole, 1949; Marmont, 1949; Hamill

et al., 1981; Prinz et al., 2004; Arsiero et al., 2007; Kispersky et al.,
2011). There are some exceptions to this trend (Jackson et al.,
2006b; Azin and Guggenmos, 2011; Zanos et al., 2011). These
systems are typically limited to low channel counts and/or low
recording resolution in order to achieve embedded real-time pro-
cessing at the recording site using a microcontroller or DSP. This
approach has clear advantages for experiments on freely moving
animals, but is limited in terms of input and output bandwidth,
processing power to enable complex experimental protocols, and
ease of programming. Neuroscience research would benefit from a
multichannel acquisition platform that (1) enables bi-directional
interaction with neuronal networks, (2) is practical for everyday
use, (3) is straightforwardly extensible for complex closed-loop
protocols, (4) works with a variety multi-electrode interfaces, (5)
provides large channel counts and high recording resolution, and
(6) is low cost. This type of system would be particularly applicable
to three areas of neuroscience research:

• Feedback Control of Network Variables: Neuronal networks
are complex systems with many recurrently interacting
components. This often results in ambiguity in cause and effect
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relationships between network variables (Rich and Wenner,
2007; Turrigiano, 2011). Feedback control can be used to parse
variables of neural activation that are causally linked (Cole,
1949). Feedback control of network-level variables (e.g., pop-
ulation firing rate, neuronal synchronization, or neurotrans-
mission levels) can potentially clarify their causal relationships
(Wagenaar et al., 2005; Wallach et al., 2011).
• Artificial Embodiment: Dissociated neural cultures, slice prepa-

rations, and anesthetized or paralyzed animals allow stable
electrophysiological access but cannot engage in natural behav-
iors with their environment. By artificially embodying reduced
neuronal preparations using a virtual environment or a robot,
experimental access is maintained while neural tissue is engaged
in complex behaviors (Reger et al., 2000; DeMarse et al., 2001;
Ahrens et al., 2012).
• Clinical Applications: Responsive (Morrell, 2011) or predictive

(Mormann et al., 2007) application of neural therapies have the
potential to improve the efficacy and safety of treatments that
are currently used in open-loop. Examples include brain stim-
ulation and local drug perfusion techniques that are used to
treat movement disorders, clinical depression, chronic pain, and
epilepsy. Additionally, electrical stimuli delivered to one region
of motor cortex in response to spiking activity in another motor
area has been shown to facilitate a functional reorganization of
motor output, indicating a potential role for activity-dependent
stimulation in rehabilitation therapy (Jackson et al., 2006a).

Here, we present substantial improvements to NeuroRighter, an
open-source, multichannel neural interfacing platform which we
designed specifically to enable bi-directional, real-time communi-
cation with neuronal networks (Rolston et al., 2009a, 2010). In the
first half of the paper, we provide a description of NeuroRighter’s
capabilities, including an application programming interface
(API) that facilitates the creation of custom real-time experiment
protocols. In the second half of the paper, we demonstrate these
features with a variety of case studies. Each case-study highlights a
different aspect of NeuroRighter’s abilities in the areas of network-
level feedback control, artificial embodiment, and closed-loop
control of aberrant activity states in freely moving animals.

2. THE NEURORIGHTER MULTICHANNEL
ELECTROPHYSIOLOGY PLATFORM

NeuroRighter is an open-source, low-cost multichannel electro-
physiology system designed for bi-directional neural interfacing
(Rolston et al., 2009a, 2010). A complete system, including all
necessary electronics and a host computer, can be assembled
for less than $10,000 USD. The NeuroRighter software is free.
Extensive documentation on the construction and usage of a Neu-
roRighter system is available online1. NeuroRighter’s source code,
the API reference, and demonstration closed-loop protocol code,
are available from the NeuroRighter code repository2. Questions
on NeuroRighter assembly and usage can be submitted to the

1https://sites.google.com/site/neurorighter/
2http://code.google.com/p/neurorighter/

NeuroRighter-Users forum3. Tutorials on API usage are provided
in sections 1 and 2 of the Supplementary Material.

2.1. HARDWARE
Here we provide a summary of NeuroRighter’s hardware building
blocks. Hardware components can be used with neural interfaces
designed for applications both in vivo and in vitro. Printed circuit
board (PCB) performance specifications are provided in (Rolston
et al., 2009a) and layouts are available online. A complete NeuroR-
ighter system meets or exceeds the performance of commercial
alternatives in terms of noise levels, stimulation channel count,
stimulation recovery times, and flexibility (Rolston et al., 2009a).
NeuroRighter’s PCBs are designed to be modular: electrode inter-
facing and stimulation PCBs have identical footprints and use
vertical headers to route power between boards. This allows inter-
facing PCBs to be stacked on top of one another for increased
channel counts and the use of a single DC power supply (or set of
batteries) for all hardware.

2.1.1. ADC/DAC boards
NeuroRighter uses National Instruments (NI; National Instru-
ments Corp, Austin, TX, USA) data acquisition hardware dri-
ven with NI’s hardware control library, DAQmx. NI PCI-6259,
PCIe-6259, PCIe-6353, and PCIe-6363 16-bit, 1 M sample/sec
data acquisition cards are currently supported. Each card sup-
ports 32 analog inputs (AI), 4 analog outputs (AO), and 48
I/O-configurable digital channels. NI SCB-68 screw-terminal con-
nector boxes are used to interface each data acquisition card
with external hardware. Up to 3 cards can be used in a single
NeuroRighter system to meet channel count requirements.

2.1.2. Multichannel amplifier interfacing boards
NeuroRighter provides two types of PCB to interface the NI
data acquisition cards with multi-electrode amplifier systems. For
in vivo applications, a 16-channel filter module provides 1.6X sig-
nal buffering, anti-aliasing filtering (−3 dB point at 8.8 KHz), DC
offset subtraction (−3 dB point at 1 Hz), and regulated power
to the headstage. Up to four of these modules can be stacked
together in order to meet channel count requirements. For in vitro
applications, a 68 channel conversion board provides power and
signal routing for planar electrode array amplifier systems, e.g.,
Multichannel Systems’ 60 channel amplifiers (Multichannel Sys-
tems, Reutlingen, Germany), which have a manufacturer settable
pass-band. Both boards interface with the SCB-68 connector
boxes using 34-channel ribbon cables, wired as signal/ground
pairs to reduce capacitive crosstalk between adjacent lines during
stimulation.

2.1.3. Electrical micro-stimulation hardware
NeuroRighter includes all-channel (up to 64 electrodes) stimula-
tion capabilities for both in vivo and in vitro systems. This system
is based upon the circuits presented in (Wagenaar and Potter,
2004; Wagenaar et al., 2004) and includes two separate PCBs: (1)
a voltage- or current-controlled signal generation PCB, and (2) a

3http://groups.google.com/group/neurorighter-users
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signal multiplexing and isolation PCB to select different electrodes
for stimulation and isolate recording electrodes from stimulation
cables between stimulus pulses.

(1) Signal generation board. The signal generation PCB is iden-
tical for all applications. This board provides both voltage
controlled or constant current stimulation modes. It stacks
into the amplifier interfacing board(s) and therefore does not
require an additional power source. Aside from stimulus gen-
eration, this PCB can be used to perform electrode impedance
measurements, which are useful for diagnosing the health of
micro-electrodes and their insulated leads, and for electro-
plating (Desai et al., 2010). Only one signal generation PCB is
required for up to 64 electrodes.

(2) Signal multiplexing boards. Stimulus multiplexing and iso-
lation occurs at PCBs that piggyback directly on electrode
pre-amplifiers. These PCBs are located close to the initial
stages of electrode amplification so that the recording ampli-
fier can be isolated from long electrical leads, which reduces
capacitive pickup. Because recording amplifiers (e.g., head-
stages in vivo or multichannel amplifiers in vitro) come in
many shapes and sizes, the design of the multiplexer PCBs
is application dependent. For in vivo applications, we have
designed multiplexer systems that use an 18-pin Omnetics
Nano connector, which interfaces with headstages from Tri-
angle Biosystems (Durham, NC), Tucker-Davis Technologies
(Alachua, FL), and Neurolinc Corporation (New York, NY),
among others (Rolston et al., 2009a). This board employs a
single 1-of-16 multiplexer. For in vitro applications, four sep-
arate multiplexing modules, each of which houses two 1-of-8
multiplexers, plug directly into exposed 0.1′′ pitch sockets
of a 60 channel Multichannel Systems amplifier (Wagenaar
and Potter, 2004). The creation of custom multiplexer boards
or adapters for other systems is straightforward due to the
simplicity of these PCBs (they generally consist of a single
multiplexer integrated circuit).

2.1.4. Generic I/O
NeuroRighter provides 4 analog output channels and 32 bits of
programmable digital I/O for controlling or recording digital sig-
nals from laboratory equipment. An auxiliary set of up to 32
analog input channels and 32 bits of digital I/O can also be
used. Channel counts of generic I/O in a NeuroRighter system
depend on the number of data acquisition cards in the user’s sys-
tem, and the amount of analog input channels reserved for the
electrodes.

NeuroRighter’s hardware serves as an adaptable interface
between multi-electrode sensors and data acquisition cards for
recording and microstimulation. There are many other options
for routing signals to and from the acquisition cards. There-
fore, except for the acquisition cards themselves, the hardware
we present here is not required to make use of NeuroRighter’s
software.

2.2. SOFTWARE
The NeuroRighter software application was written in C#
(pronounced “C-Sharp”). C# is a modern, general purpose,

object-oriented programming language. The software is free and
its source code is maintained on a publicly accessible reposi-
tory4. For standard installations, NeuroRighter is distributed as an
installation package for 32- or 64-bit Windows operating systems
(Microsoft Corp., Redmond, WA). NeuroRighter installations
contain two software components:

1. A stand-alone multichannel recording and stimulation appli-
cation. This includes a graphical user interface (GUI) for
data visualization, hardware configuration, data filtering, spike
detection and sorting, all-channel stimulation, stimulus artifact
rejection, and data recording (section 2.2.1).

2. An application programming interface (API) that allows Neu-
roRighter to be used as a real-time hardware interface and data
server for user-coded protocols (section 2.2.2).

2.2.1. The NeuroRighter application
As a stand-alone application, NeuroRighter can be used for high-
quality multichannel recordings (16-bit resolution, 31 k Sam-
ples/sec/channel) and all-channel stimulation protocols. NeuroR-
ighter’s graphical interface is organized into tabbed pages, each
of which encapsulates a particular group of functions or visu-
alization tools (Figure 1). In the following section, we discuss
the main functional aspects of the stand-alone NeuroRighter
application.

2.2.1.1. Main interface. The main NeuroRighter interface
(Figure 1C) is an access point for all of the application’s func-
tionality. It facilitates user manipulation of hardware settings,
online filter settings, data visualization windows, stimulation tools,
and other features, which are discussed below. Additionally, some
recording settings can be manipulated within the main interface
itself:

Online acquisition settings. Many filter settings can be adjusted
during data collection. This allows the user to fine tune acquisition
settings while gaining visual feedback of the effect on incom-
ing data streams. Bandpass, spike detection, and spike sorting
parameters can be adjusted during a recording.

Data visualization. Data visualization tools in NeuroRighter use
the Microsoft XNA game development framework. This ensures
that online visualization does not consume CPU cycles by offload-
ing plotting routines to a supported graphics card. Visualization
tools are provided for single-unit activity, local field potentials
(LFP), multiunit activity (MUA), electroencephalograph (EEG)
traces, and auxiliary analog input streams. Additionally, overlay
plots are used to display sorted spike waveforms for each channel
(Figure 1C).

File saving. Data streams selected by the user are written to disk
with a unique file extension that designates their type. These
binary files can be read with MATLAB (Mathworks, Natick, MA)
functions included with NeuroRighter installations.

4http://code.google.com/p/neurorighter/
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FIGURE 1 | Portions of NeuroRighter’s graphical user interface. (A) The
hardware settings interface. (B) The spike-detection filter and spike sorting
interface. (C) The main application window. Sorted spike waveforms recorded

from a 59-channel, planar electrode array are shown on the spike visualization
tab of the main GUI. The position of each waveform corresponds to the
position of the recording electrode on which it was detected.

2.2.1.2. Hardware configuration. Correctly specifying mixed
digital and analog signal routing, clock synchronization, and trig-
ger synchronization on a multi-board data acquisition system
can be complicated. NeuroRighter simplifies this process using

a graphical hardware settings interface (Figure 1A). Here, the user
specifies the types of signals carried by the NI acquisition cards
in his or her system, amplifier gain settings, auxiliary input and
output channels, options for electrode impedance measurement,
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signal referencing, and real-time data streaming options. Upon
closing the settings dialog, NeuroRighter performs the required
signal routing and clock synchronization. All NI cards are syn-
chronized to a single clock oscillator using an NI real-time system
integration bus (RTSI, Figure 3).

2.2.1.3. Time-series filtering. Incoming data from the A/D con-
verters are passed through a cascade of digital filters to produce
different neural data streams. First, channel voltages are passed
through several linear filters to extract frequency bands for single-
unit activity ('200–5000 Hz) and LFP ('1–500 Hz). MUA, which
reflects the firing rate of neurons within the vicinity of the record-
ing electrode, is extracted by rectifying and then low pass filtering
the single-unit activity data stream (Supèr and Roelfsema, 2005).

In addition to traditional filtering methods, NeuroRighter pro-
vides several specialized filtering options. Common-mode noise
sources such as AC mains pickup or movement artifacts in freely
moving animals can corrupt neural recordings. NeuroRighter
allows the mean or median of all recording electrodes (with appro-
priate scaling) to be subtracted from individual electrode voltage
streams to combat common-mode interference (Rolston et al.,
2009b). This is an effective method for reducing non-periodic
common-mode interference, such as movement artifacts, where
template subtraction methods are inappropriate. Finally, NeuroR-
ighter includes an implementation of the SALPA filter (Wagenaar
and Potter, 2002), which subtracts locally fit cubic splines from
electrode traces following the application of a stimulus pulse.
This removes the capacitive artifacts from non-saturated record-
ing channels and allows online action potential detection within
2 ms after a stimulus pulse.

Sampling rates for different data streams can be set indepen-
dently. Filter settings (pass-band and filter order) can be modified
during data acquisition (Figure 1C). Raw data, as well as the result
of each filtering stage, yield separate data streams (Table 1).

2.2.1.4. Spike filtering. Spike filtering in NeuroRighter is a
three-step process: (1) detection, (2) validation, and (3) sorting.
NeuroRighter detects spikes using a threshold criterion that com-
pares individual voltage samples to the estimated RMS voltage
on the corresponding electrode. Upon threshold crossing, a peak-
aligned voltage “snippet” is extracted from the raw voltage stream.
Each snippet is validated using a series of ad hoc criteria based
upon waveform slope, width, and peak-to-peak amplitude. Finally,
spikes can be sorted online using an automated Gaussian mixture
modeling algorithm. Details of the spike detection and sorting
algorithms used by NeuroRighter are provided in section 3 in the
Supplementary Material.

The spike detection/sorting configuration is controlled through
a child GUI (Figure 1B). All relevant spike detection, validation,
and sorting parameters are under user control and are manipulated
using the spike detection GUI. Because spike-detection settings are
changed using a secondary GUI, the effects of parameter changes
can be simultaneously monitored on the visualization tabs in the
main interface while data collection occurs. A complete list of
these parameters is shown in Table S1 in the Supplementary Mate-
rial. Spike filters, including trained spike sorters, can be saved and
reused.

2.2.1.5. Stimulation. NeuroRighter provides several options
for delivering complex stimulus patterns to neural tissue either
manually through the NeuroRighter application or using scripted
protocols. Simple, periodic stimulation protocols, consisting of
single or double phase, square, current- or voltage-controlled
pulses on any electrode, can be performed directly from the main
GUI. Stimuli can be triggered“on demand” in response to a mouse
click or by using hardware-timed, periodic sequence of triggers.

Scripted protocols can be used to deliver complex, potentially
non-periodic stimulus patterns and to access general purpose ana-
log and digital output lines. Neurorighter uses a double-buffered
output engine, called StimSrv (Table 2), to produce arbitrary,
hardware-timed stimulation, analog-output, or digital output sig-
nals (Table 1, bottom).StimSrv can be accessed on-the-fly using
NeuroRighter’s API (section 2.2.2) or with user-written scripts.
The schematic in Figure 2A demonstrates how StimSrv delivers
uninterrupted output. First, a block of the NI cards’ memory is
reserved and divided into two sections, each of which comprises
a single output buffer. At a given instant, one buffer is reserved
for sample generation and one is available for writing. When the
all samples in the read buffer are exhausted, the buffers switch
roles, allowing seamless delivery of constantly varying output sig-
nals. This allows the delivery of complex, aperiodic stimulation
patterns and the orchestration of experimental apparatuses using
analog and digital output lines. All output is clock-synchronized
to input data streams, allowing a priori specification of stimu-
lus delivery times, relative to the start of the experiment, with
single-sample precision. Stimulation scripts can be created with
a set of MATLAB functions that are included with NeuroRighter
installations (see section 1 in the Supplementary Material).

Figure 2B demonstrates the use of a scripted stimulation pro-
tocol to deliver spatio-temporal patterns of electrical stimuli. One-
second trials of spatially uniform, and temporally Poisson random
stimulus pulses were delivered to a dissociated cortical network.
Each trial consisted of either a new, random stimulus realization or
a single repeated realization. Each type of stimulus sequence was
interleaved with no delay between adjacent trials. Figure 2Bi shows
stimulus raster plots for 100 trials each stimulus type, with a gray-
scale indicating the stimulus trial. For repeated stimuli, individual
trials cannot be seen since the recording and stimulation subsys-
tems are clock-synchronized and every repeated stimulus sequence
occupies the same set of samples relative to the start of a trial.
Figure 2Bii shows spiking patterns in response to random and
repeated stimuli for 4 units across trials. The delivery of repeated
stimuli to the network results in extremely reproducible spiking
patterns, and non-repeated, random stimuli probe the variability
of population spiking response. This type of stimulus protocol is
commonly used to estimate the mutual information between a
stimulation process and the population spiking response (Strong
et al., 1998; Yu et al., 2010).

2.2.2. NeuroRighter’s application programming interface
NeuroRighter installations include an API that facilitates the cre-
ation of real-time protocols. The API comprises a set of tools for
interacting with NeuroRighter’s input and output streams. Proto-
cols written using the API are externally compiled libraries that
can “plug in” to the NeuroRighter application in order to impart
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Table 1 | Overview of NeuroRighter’s input and output streams.

Input Source Server (DataSrv) Buffer type Max. channel count

Raw electrodes RawElectrodeSrv Circular double[][] 64

SALPA Filter SalpaSrv Circular double[][] 64

Spike-band filter SpikeBandSrv Circular double[][] 64

Spike filter SpikeSrv List <SpikeEvent> 64 or No. units

LFP filter LFPSrv Circular double[][] 64

EEG filter EEGSrv Circular double[][] 64

MUA filter MUASrv Circular double[][] 64

Electrical stimuli ElecStimuliSrv List <SpikeEvent> 64

Auxiliary analog AuxAnalogSrv Circular double[][] 32

Auxiliary digital AuxDigitalSrv List <DigitalEvent> 32 bits

Output Source Server (StimSrv) Buffer type Max. channel count

Electrical stimuli StimOut List <StimulusEvent> 64

Analog output AnalogOut List <AnalogEvent> 4

Digital output DigitalOut List <DigitalEvent> 32 bits

Each stream is accessed using a dedicated server that includes functions for reading from, or writing to, its data buffer.

Table 2 | Packages included with NeuroRighter’s Plugin API.

Package Component Description

Server DataSrv Contains input server objects (Table 1, top)

StimSrv Contains output server objects (Table 1, bottom)

Datatypes MultiChannelBuffer Circular buffer for time series data

SpikeEvent Spike event type (time, channel, waveform, unit)

DigitalEvent Digital event type (time, 32-bit port state)

StimulusEvent Stimulus event type (time, channel, waveform)

AuxEvent Auxiliary voltage event (time, channel, voltage)

NeuroRighterTask NRTask Abstract class for real-time NeuroRighter interfacing

Log Logger Used for debugging real-time protocols

real-time and closed-loop functionality. The software packages
included with the API are shown in Table 2. Each package con-
tains different set of tools for interacting with NeuroRighter’s data
streams. Here we discuss the contents and usage of each of these
tools. Additionally, a detailed API reference is available online5.

2.2.2.1. NeuroRighterTask. User-defined protocols employ the
NeuroRighter application as a real-time data server. These proto-
cols are inherited from a base component called NRTask, which
belongs to the NeuroRighterTask package. Closed-loop protocols
created with the plugin API are derived from NRTask (see section
2 in the Supplementary Material for details). Three functions
included in NRTask can then be accessed to impart real-time
functionality.

1. NRTask.Setup(): This function is called when the base
NRTask component is instantiated. It allows one-time setup
operations to take place, such as the declaration of variables,

5https://potterlab.gatech.edu/main/neurorighter-api-ref/

allocation of internal buffers, file streaming setup, GUI initial-
ization, etc.

2. NRTask.Loop(): This function is executed periodically by
a hardware-timed clock. Execution periods of 1 to 150 ms are
allowed and can be set from the Hardware Settings GUI in the
main application (Figure 1A). To achieve closed-loop func-
tionality, code within the Loop function should access other
components of the API, most importantly components from
the Server and DataTypes packages (Table 2). These packages
provide access to incoming neural data streams and output
buffers and can be used to form a bi-directional interface with
neural tissue. Output can be sent from within the Loop func-
tion using the StimSrv package (Table 2) or through natively
supported communication interfaces such as TCP/IP ports,
serial ports, or USB communication.

3. NRTask.Cleanup(): This function is called a single time
when the protocol is stopped from the NeuroRighter GUI. It
allows the deconstruction of GUIs, the closure of file streams
that may have been created during the execution of the plugin,
and other cleanup routines.
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LISTING 1 | Code structure for two types of real-time plugin implemented with the API. (A) Pseudocode for a StimSrv-based real-time plugin.
(B) Pseudocode for real-time plugin triggered by NewData events.

Listing 1A and 1B provide pseudocode for a two real-time plug-
ins that both respond to a spike produced by a particular detected
unit. A real-time protocol written using the API will follow the
structure of one of these code skeletons, regardless of its complex-
ity. First, the user references the required packages from the API.
Next, the plugin is designated to be a child of NRTask, which
provides the protocol with automatic access to NeuroRighter’s
data servers. Finally, the Setup(), Loop(), and Cleanup()
functions are overridden (Listing 1A), or a NewData event is sub-
scribed to (Listing 1B), to impart real-time functionality. After it
is compiled (either using Visual Studio or Mono6), the plugin can
be executed through NeuroRighter’s GUI. Plugin protocols exe-
cuted through NeuroRighter operate on a high-priority thread
to decrease closed-loop response latency. The diagram shown in
Figure 3 shows the interaction between a plugin created using
the API, the NeuroRighter executable, and hardware. Functional

6http://www.mono-project.com/Main_Page

examples of plugin protocols are provided in section 5 of the
Supplementary Material.

2.2.2.2. Server. Components derived from NRTask have auto-
matic access to NeuroRighter’s input and output servers, which
belong to the Server package. There are two banks of data servers:
(1) DataSrv, which can be used to read NeuroRighter’s input
streams (Table 1, top) and (2) StimSrv, which can be used
to write to output streams (Table 1, bottom). DataSrv and
StimSrv objects encapsulate isolated data servers, each of which
handles a particular data stream. Each server includes methods
for reading the hardware clock, reading from and writing to its
own data buffer, and accessing stream metadata. Because input
and output servers are simultaneously accessible from within
a user-defined NRTask, sending output signals (e.g., stimuli)
contingent on recorded input is straightforward. The user can
select which data streams are sent to DataSrv or available
for writing on StimSrv using the Hardware Settings GUI
(Figure 1A).
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FIGURE 2 | NeuroRighter’s StimSrv subsystem. (A) To deliver complex,
non-periodic stimuli, NeuroRighter uses a double-buffering system. This
allows samples to be generated and written to the NI cards’ analog and
digital outputs simultaneously. At a given instant, one buffer is reserved
for reading (pink) and one from writing (gray). When the all samples in the
read buffer are generated, the buffers switch roles, allowing seamless
delivery of constantly varying stimulus patterns and generic analog and
digital signals. When using StimSrv for closed-loop protocols, the
loop() function is called at the instant of a buffer switch. (B) Example

open-loop stimulus protocol using StimSrv. (i) 100, 1 s Poisson
sequences of electrical stimuli (left) and a single repeated Poisson
sequence (right), were delivered to a dissociated cortical network
(biphasic, voltage controlled, ±0.75V, 800µs period). Stimulus rasters are
shown using a gray-scale to indicate the trial number. For repeated stimuli,
stimulus points are overlaid since stimulus delivery is clock-synchronized
with the acquisition subsystem. (ii) Rastergrams of 4 units are shown
below each stimulus raster, across trials. Example waveforms for each of
the 4 units are shown to the right.

A final important feature of each data server within DataSrv
is a NewData event. A NewData event is fired for a given
stream each time it receives new data for the A/D card or
a digital filter. Functions within a plugin can subscribe to
these events so that feedback processing only occurs when
new data is acquired. This reduces computational overhead
and the latency of the closed-loop response. Plugins that use
NewData events to generate feedback are not required to include
a Loop() function or to use StimSrv to send output sig-
nals. Instead, standard calls to the National Instrument driver

library (DAQmx) can be used to access the NI cards’ directly.
Alternatively, output can be generated using natively supported
external communication protocols (USB, TCP/IP, UDP, serial,
etc.). Listing II. B.2(b) provides pseudocode for a real-time pro-
tocol analogous to Listing II.B.2(a), but using the NewData
event to trigger a response. This type of plugin provides a
lower response latencies but is less capable of producing com-
plex, precisely timed output signals. A functional example of
a NewData-based plugin is provided in section 5.2 in the
Supplementary Material.
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FIGURE 3 | Conceptual schematic of NeuroRighter’s hardware and
software elements. NeuroRighter serves as a high-level interface
between hardware and custom user-written protocols (pink box).
NeuroRighter simplifies hardware level programming by using datatypes
and methods that are specialized for multichannel neural recording and
stimulation. This facilitates the creation of low-latency, closed-loop
protocols. Neural signals and secondary data streams are fed into the NI
cards’ analog and digital inputs where they are digitalized and stored
temporarily in on-board memory. NeuroRighter periodically transfers data

from the acquisition cards’ FIFO memory to RAM using direct memory
access. Data is then pushed to NeuroRighter’s DataSrv server object.
DataSrv serves data to NeuroRighter’s visualization tools, filtering
algorithms, and externally compiled plugins. The plugin API provides
functions for safe interaction with DataSrv so that custom operations can
be performed on incoming data streams. User-written plugins can interact
with any of the computer’s native communication ports, or write data back
to StimSrv in order to control external hardware as a function of recorded
neural signals.

2.2.2.3. Datatypes. NeuroRighter’s input and output servers
operate on high-level data types that encapsulate different forms of
multichannel input and output data. These include multichannel
buffers for continuous data streams (such as raw electrode voltages
or LFP recordings) and discrete event types (such a detected spikes
or stimulation events). Extensive documentation on each of these
data types is provided in the API reference.

2.2.2.4. Log. The Log package provides accesses to a data log-
ging tool that operates within the NeuroRighter executable, but
can be invoked from a user protocol. This tool can be used to write
information to a log file using a separate, low-priority thread. This
is useful in the development of real-time protocols because core
NeuroRighter operations (such as the timing of hardware reads,
writes, and other triggers) are logged to this file as well, providing
context for messages written from the plugin.

3. CASE STUDIES
NeuroRighter’s abilities for orchestrating closed-loop experiments
are best demonstrated through example. Here we present five case
studies in which protocols created with the API were used to mea-
sure NeuroRighter’s closed-loop reaction-time, clamp network
firing levels in dissociated cultured cortical networks, react to
seizures in freely moving animals with multi-electrode electri-
cal stimulation, and control robots serving as artificial embodi-
ments. Experimental methods, and plugin examples are provided
in the section 4 in the Supplementary Material. The plugin code
used in these case studies is available for download on NeuroR-
ighter’s code repository. 7. Additionally, we provide all code used

7http://code.google.com/p/neurorighter/source/browse/NR-ClosedLoop-
Examples/

in the reaction-time case study in section 5 in the Supplementary
Material.

3.1. LOW-LATENCY CONTROL OF REAL-TIME HARDWARE
Rapid response times are critical for maintaining a tight feedback
loop in which features of incoming data streams (e.g., spikes, EEG,
temperature, or animal motion) are used to trigger or adjust the
delivery of stimuli. To benchmark the response speed of protocols
written using the API, we wrote a protocol that generated output
signals in response to recorded action potentials. We picked two
sorted units from a dissociated neural culture to serve as triggers
for hardware activation. When one of these units fired, it triggered
the output of a digital word encoding the identity of the detect
unit. These signals serve as a generic stand-in for a stimulation
pattern or any other hardware control signal that might be used
in a feedback control scheme. Output signals were then recorded
using NeuroRighter’s digital input port. The delay between action
potential detection and signal generation could then be measured
using the same sample clock. A diagram of the experimental pro-
tocol is shown in Figure 4A. We wrote protocols to test three
hardware options for generating the required digital output:

1. StimSrv: Buffered manipulation of the NI cards using Neu-
roRighter’s native stimulation server (Figure 2 and List-
ing II.B.2(a)).

2. NewData: Unbuffered manipulation of the NI cards whenever
new data enters NeuroRighter’s spike server (Listing II.B.2(b)).

3. Arduino: An Arduino ATmega2560-based microcontroller
board8 communicating via serial port (RS-232).

8http://www.arduino.cc/
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FIGURE 4 | Estimated loop times for bi-directional communication using
different hardware configurations. (A) Schematic of experiment used to
test reaction delays for different real-time hardware options. Spikes detected
and sorted from 59-channel planar electrode array were passed to the
real-time plugin. The plugin determined if a spike originated from one of two
units of interest. In the case that a spike was produced by one of the two
units, the plugin triggered the generation of a digital word encoding the
detected unit using either StimSrv, unbuffered digital output triggered by a

NewData event, or an Arduino board. Digital signals were then, recorded
though NeuroRighter’s digital input port. (B) Normalized histogram of time
delays from spikes produced by the two units of interest (action potential
waveforms are shown in pink and gray and occur at 0 ms) to the recorded
digital signals produced by the plugin to encode the units (01000111 or
01010100). Delay histograms are shown for each unit (pink and gray) and the
three different hardware options. N is the number of spikes recorded for each
hardware option.

The response latency, calculated from the time of an action
potential peak to the corresponding change in the digital port
was calculated for each hardware option (Figure 4). Mean
response latencies were 46.9± 3.1 ms for rb StimSrv, 7.1± 1.5 ms
for NewData, and 9.2± 1.3 ms for the Arduino board. Latencies
where measured while NeuroRighter performed bandpass filter-
ing, spike detection, spike sorting, data streaming, and data saving
for 64 electrode inputs, each sampled at 25 kHz. Experiments were
conducted on a desktop computer using an Intel Core i7 proces-
sor (Santa Clara, California, USA.) and running running 64-bit
Windows Vista.

The differences in reaction latency for different hardware
options are a result of both the method used to communi-
cate with the hardware and the how the input sent from Neu-
roRighter is interpreted and transformed into a physical out-
put signal. The differences in response times for NewData and
Arduino are largely attributable to the different communication
protocols and command interpretation by the client device. For
instance the Arduino used a RS-232 serial interface where as
NewData communicates with the NI cards via PCIe. StimSrv’s
long latency in comparison to other options is a result of its
double buffering system, which requires a relatively long time
period between updates to the NI D/A’s output buffer. While
StimSrv is slow in comparison to the NewData and microcon-
troller options, it provides an interface that is easier to use and
allows the uninterrupted delivery of arbitrary complex singal out-
puts. On the other hand, the Arduino and NewData methods
can only respond by generating finite-sample or periodic con-
trol signals. We have found that StimSrv is fast enough for most
of our closed-loop requirements. For this reason, we used StimSrv
to generate physical outputs for the remainder of the case stud-
ies. However, as demonstrated above, the API’s modularity allows
the use of faster hardware options with little change in coding
complexity.

3.2. MULTICHANNEL POPULATION FIRING CLAMP
The population firing rate is a building block of the neural code.
The ability to precisely control population firing in the face of
experimental perturbations can be used to understand its role
in network function. To demonstrate NeuroRighter’s ability to
control the network firing rate, we implemented the feedback
controller presented in Wagenaar et al. (2005) to control the fir-
ing activity in dissociated cortical cultures grown on 59-channel
micro-electrode arrays. This algorithm adjusts the stimulation
amplitude of voltage controlled, biphasic pulses on 10 electrodes
to desynchronize population firing and force the network firing
rate to track target values. The control law is given by

vk [t +1T ] = vk [t ] − αvk [t ]

(
〈fu[t ]〉

f ∗
− 1

)
, (1)

where vk is the stimulation voltage on electrode k, 〈fu[t ]〉 is the
average firing rate across sorted units detected with the 59 elec-
trode array extending over a 2 s window into the past, f ∗ is the
target firing rate, 1T is the update period of the feedback loop
(as defined within NeuroRighter’s Hardware Settings GUI), and α
defines the time constant of the feedback controller as

τFB = 1T/α. (2)

We used 1T = 10 ms and α= 0.002 so that τ FB= 5 s. Elec-
trodes were stimulated at a 10 Hz aggregate frequency (1 Hz per
electrode for 10 electrodes) in a random, repeating sequence.
Additionally, individual electrode voltages were multiplied by a
tuning factor that was inversely proportional to the number of
spikes that occurred within 30 ms following a stimulus pulse on
that electrode, as described in Wagenaar et al. (2005). This factor
equalizes each electrode’s ability to evoke a spiking response, and
is critical for achieving the desynchronizing effect of the controller
on population activity.
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FIGURE 5 | NeuroRighter can be used to clamp population firing rates
in vitro using closed-loop electrical stimulation. (A) Schematic of the
multi-electrode population firing clamp. (B) Step tracking performance is
shown for a range of target firing rates, f ∗ (dotted lines). The average neuronal
firing rate across detected units,〈fu[t ]〉 (colored lines), is shown for each step

in f ∗. Tracking failures are colored gray. (C) Time averaged neuronal firing rate
for the last 2.5 min of each 5 min protocol compared to the reference signal,
f ∗. The dotted line is identity. (D) The mean control voltage across the
stimulating electrodes over the final 2.5 min of each step protocol at different
values of f ∗.

We used the controller to clamp network firing at target rates
for 5 min epochs. These results are shown in Figure 5. The
controller was able to achieve target rates within the range of
f ∗= 1.5–4.5 Hz/Unit. An animation of neural activity before and
during firing-rate clamping is provided in the Supplementary
Material.

The monotonically increasing relationship between the mean
stimulation voltage 〈vk [t ]〉, and target firing rate f ∗ (Figure 5D)
might indicate that knowledge of the stimulation voltage versus
firing rate relationship is sufficient to design an open-loop con-
troller capable of holding network firing rates. To test this, we
clamped firing at f ∗= 3.0 Hz/Unit over 10 min epochs for 15 tri-
als. Five minutes into each 10 min protocol, we stopped updating
stimulation voltages on the ten stimulating electrodes, but contin-
ued multi-electrode stimulation in open-loop mode (Figure 6).
Although the desired mean firing rate was achieved fairly consis-
tently, the open-loop control scheme could not react to the rapid
changes in excitability that are typical of cultured cortical net-
works (Wagenaar et al., 2006b). This variability is reflected in the
large range of control signals required to track the target rate over
the first 5 min of each trial. As a result the RMS error of 〈fu[t ]〉
about f ∗ increased by a factor of 5.1 for open-loop compared to
closed-loop epochs. The variance of firing during open-loop stim-
ulation is comparable to that of spontaneous (non-evoked) firing
behavior that was recorded before the controller was switched on
(Figure 6, top).

FIGURE 6 | Closed-loop stimulation is required to robustly clamp
population firing. (Top) The average neuronal firing rate over 1 min periods
across 15 trials. Half-way through a multichannel population clamp protocol,
real-time voltage updates stop and microstimulation is applied in open-loop.
Error bars are± standard deviation. (Bottom) The mean electrode
stimulation voltage across 10 stimulating electrodes, for each of the 15
trials.

3.3. LONG-TERM POPULATION FIRING CLAMP WITH SYNAPTIC
DECOUPLING

3.3.1. Experiment 1
In vitro neural preparations allow continuous experimental access
to neural tissue over very long time scales (Potter and DeMarse,
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2001), and therefore serve as important models for understand-
ing slowly occurring developmental processes (Turrigiano et al.,
1998; Minerbi et al., 2009; Gal et al., 2010). To demonstrate that
NeuroRighter is capable of stable closed-loop neural interfacing
over long time scales, we used the multi-electrode feedback con-
troller used in section 3.2 for 6 h epochs. This protocol started with
a 1 h recording of spontaneous activity. Then, the controller was
engaged to clamp population firing to f ∗= 3.0 Hz/Unit for 6 h.
Following the clamping protocol, spontaneous network activity
was recorded for an additional hour.

Figure 7A shows the resulting multichannel stimulation signal
(Figure 7Ai), neuronal firing rate in relation to f ∗ (Figure 7Aii),
individual unit firing rates (Figure 7Aiii), and zoomed rastergrams
before, during, and after multi-electrode stimulation was applied
(Figure 7Aiv). The controller achieved the f ∗= 3.0 Hz/Unit track-
ing over the duration of the 6 h protocol. Additionally, network
activity was desynchronized through most of the control epoch,
but occasionally the controller allowed bouts of synchronized
network activity (Wagenaar et al., 2006b).

3.3.2. Experiment 2
Spiking and neurotransmission have a strong reciprocal influ-
ence on one another, making their individual effects on network
development difficult to quantify (Turrigiano, 2011). For instance,
N -methyl-d-aspartate (NMDA)-ergic neurotransmission plays a
large role in sustained network recruitment (Nakanishi and Kukita,
1998). For this reason, long-term changes in the state of in vitro
networks following the application synaptic blockers (e.g., changes
in firing rate, spiking patterns, or synaptic-strength) is difficult to
attribute directly to effects on neurotransmission because of sec-
ondary, confounding effects on network activity levels. However,
the closed-loop population clamp provides a solution to this prob-
lem. A firing rate controller has the potential to compensate for
changes in network excitability induced by the application of a
drug, removing its confounding effect on network activity.

To test this, we used the multichannel population clamp dur-
ing the bath application of d(−)-2-amino-5-phosphonopentanoic
acid (AP5), a competitive antagonist of NMDA receptor. This pro-
tocol proceeded identically to experiment 1 except that at 1-h
following the start of closed-loop stimulation, NeuroRighter trig-
gered the perfusion of 50µm AP5 into the culturing medium
using a syringe pump and a custom, gas-permeable perfusion lid
(Potter and DeMarse, 2001; Figure S5 in the Supplementary Mate-
rial). Four hours after AP5 was applied, NeuroRighter triggered the
pump a second time to perform a series of washes with normal
culturing medium that removed AP5 from the bath.

Time-series results of this protocol are shown in Figure 7B. The
contents of these plots are analogous to Figure 7A but have arrows
to indicate when AP5 was added to, and removed from, the cultur-
ing chamber. The controller was able to successfully compensate
for changes in network excitability caused by the addition of AP5.
Changes in network dynamics were reflected in the control signal,
which became smoother in the presence of the AP5 (Figure 7Bi).

3.3.3. Comparing Experiments 1 and 2
Figure 7C shows the average, pair-wise firing rate correlation func-
tions (Tchumatchenko et al., 2010) for 30 randomly selected units

from experiment 1 (black lines) and experiment 2 (red lines).
Figures 7Ci,iii show the correlation functions of spontaneous
network activity before and after the controller was engaged,
respectively. Figure 7Cii shows correlation functions for epochs
during the clamping phase (which included the AP5 treatment for
experiment 2). The periodicity of this correlation function follows
the 10 Hz aggregate stimulation frequency during the clamping
period.

Intriguingly, although the pair-wise spiking correlations for
experiments 1 and 2 were very similar for epochs of spon-
taneous activity before and during multichannel stimulation
(Figures 7Ci,ii), they were remarkably different once the stim-
ulator was turned off (Figure 7Ciii). When AP5 was not present
during the clamping phase (experiment 1), the firing correlation
between units appeared to be enhanced following multichan-
nel stimulation. In contrast, pair-wise correlations were almost
non-existent following the a population clamp in which AP5 was
present (experiment 2). Because the firing statistics (firing rate
and correlation structure) during the 6-h clamping period were
nearly identical for the both experiments 1 and 2, this effect on
the correlation structure of network activity can not be due to
effects on firing activity, but required blocking NMDAergic trans-
mission. Without the closed-loop controller in place, AP5 would
have affected network activity levels, obfuscating the mechanism
of AP5’s effect.

This case study demonstrates the ability of the closed-loop
controller to quickly adapt to drug-induced changes in net-
work excitability, to decouple network variables that are normally
causally intertwined, and to operate robustly over many hours.
Additionally, this case study demonstrates NeuroRighter’s ability
control peripheral equipment aside from electrical stimulators.

3.4. REAL-TIME SEIZURE INTERVENTION IN FREELY MOVING RATS
Aside from in vitro recording hardware, NeuroRighter can inter-
face with many different types of neural probes, including those
designed to record from and stimulate freely moving animals. To
demonstrate this, we performed electrical micro-stimulation in
response to paroxysmal activity of hippocampal recordings taken
from a rat with induced temporal lobe epilepsy. Many studies have
shown potentially therapeutic effects of electrical stimulation on
epileptic brain tissue, which could serve as an alternative to phar-
macological or surgical treatment methods. For instance, electrical
stimulation triggered by characteristic field potential abnormal-
ities can potentially abrogate seizures and lead to a decreased
frequency of behavioral symptoms (Mormann et al., 2007; Morrell,
2011; Nelson et al., 2011).

We used the plugin API to create a closed-loop protocol that
could detect temporal lobe seizures in freely moving rats and
react with multi-electrode stimulation (Figure 8A). This control
scheme is similar to that of the NeuroPace responsive neurostim-
ulation system (Sun et al., 2008) (NeuroPace Inc., Moutain View,
CA, USA), with the exception that we used multi-micro-electrode
stimulation instead of driving a single macroelectrode.

Rats were rendered epileptic using focal injections of tetanus
toxin into the right-dorsal hippocampus (Hawkins and Mellanby,
1987; see section 4C in the Supplementary Material). LFPs were
recorded from CA1 and CA3 regions of the hippocampus using
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FIGURE 7 | Long-term population clamp. (A) (i) The mean stimulation
voltage (black) and individual electrode stimulation voltages (gray) over the
course of the 6-h clamping protocol. (ii) The neuronal firing rate (black)
compared to the target rate (red line). (iii) Individual unit firing rates, sorted in
order of increasing rate during the 1 h period prior to the start of closed-loop
control. (iv) Zoomed rastergrams showing short time scale network spiking
before, during and after the controller was engaged. (B) Same as (A) except
that AP5 was added 1 h after the start of the closed-loop controller and
removed 4 h later. This is indicated by the arrows at the top of the figure. (C)

Average pair-wise correlation functions between units for experiments with
and without AP5 application (red and black lines, respectively).
Cross-correlations were created from spiking data (i) during spontaneous
activity before the closed-loop controller was engaged, (ii) half-way through
the closed-loop-control period, and (iii) during spontaneous network activity
following closed-loop control. The data used to create the correlation
functions is centered about locations used to create the rastergrams shown
in (Aiv) and (Biv). To create the correlation functions, unit firing rates were
calculated using 10 ms time bins.
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FIGURE 8 | Closed-loop seizure intervention in a freely moving rat.
(A) Schematic of the closed-loop seizure intervention protocol. A
16-channel microwire array, with two rows of 8 electrodes, were used
to record LFP signals in the CA1 and CA3 regions of the hippocampus
of a epileptic rat. Paroxysmal activity in CA1 triggered the application of
multichannel electrical stimulation through the recording electrodes via
a stimulation multiplexing board (green). (B) Implantation sites of the
microwire array. Top view shows the electrode penetration sites (black
dots) in the right-dorsal hippocampus. The red line indicates position of

the coronal view shown below. (C) A 12 s epoch of hippocampal LFPs
during a seizure event. Electrodes 1–8 were located in CA1 and 9-16 in
CA3. The line length measures, averaged across channels, are shown
below the LFP traces. Seizure detection occurs at 0 s. (D) Same as (C)
except with closed-loop stimulation engaged. Electrical stimulation was
applied on electrode 1 along with nine other electrodes (not shown).
Red dots indicate stimulation times for e01 and stimulation artifacts
appear on the LFP trace. e05–e07 and e11 were not used for stimulus
application.

a chronically implanted 16-channel microwire array (Tucker-
Davis Technologies, Alachua, FL; Figure 8B). The microwire array
consisted of two rows of electrodes, with 8 electrodes per row.

Multi-electrode stimulation was triggered in response to detected
seizures while the rat moved around its cage. To accomplish this, a
“line length” measure on each LFP channel, which has been shown
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to be effective for threshold based seizure detection, was calculated
online (Esteller et al., 2001). A line length increment for a single
LFP channel is defined as absolute difference between successive
samples of the LFP,

lk [t ] = |xk [t ] − xk [t − Ts]| (3)

where xk[t ] is the LFP value on the kth channel at time t, and Ts

is the LFP sampling period of 500µs. lk[t ] was passed through a
first order averaging filter,

L
τfilt

k [t + Ts] = lk [t ] + exp

(
−Ts

τfilt

)
· (L

τfilt

k [t ] − lk [t ]) (4)

where τ filt is the filter time constant. For each recording channel,

we calculated L
τfilt

k [t+Ts]using two values of τ filt, 1 and 60 s, which
resulted in short and long time averages that could be compared to
detect rapidly occurring trends in lk[t ]. Specifically, seizures were
defined as events for which the criterion

L1sec
k [t ] > 2 · L60sec

k [t ] (5)

was met on at least 4 of the 16 recordings channels. Upon seizure
detection, 10 randomly chosen electrodes were stimulated sequen-
tially at 45 Hz (aggregate frequency) for 10 s using biphasic, 1 V,
400µs per phase, square waves. Figures 8C,D shows seizure events
without and with closed-loop stimulation engaged. During stim-
ulus application, Lαk [t ] values were frozen to prevent stimulation
artifacts from affecting the line length averages.

There was no easily discernible effect of microstimulation
on seizure duration or intensity during this pilot experiment.
However, this proof of concept demonstrates the API’s utility in
experiments conducted on freely moving animals and to modu-
late aberrant neural activity states. These features are useful for
testing stimulation algorithms that do not just react to a seizure
occurrence, but predict oncoming seizures ahead of time in order
to apply a preventative action, which has proven a difficult goal to
achieve (Mormann et al., 2007).

3.5. SILENT BARRAGE AND ROBOTIC EMBODIMENT
The complexity of neural systems often necessitates intricate
experimental protocols for proper investigation. To meet this
requirement, the plugin API can be used to integrate NeuroRighter
with complicated configurations external hardware and software.
Working in collaboration with the SymbioticA group at the Uni-
versity of Western Australia, we used NeuroRighter for interconti-
nental neural control of a robotic system. This project was part of
an art-science collaboration called Silent Barrage (Zeller-Townson
et al., 2011), in which a dissociated cortical culture in Atlanta,
Georgia, USA, was embodied with a remote array of robotic draw-
ing machines situated in an interactive art gallery9. This system is
an extension of the MEART project (Bakkum et al., 2007).

Figure 9A shows an illustration of the Silent Barrage system.
Using the plugin API, a protocol was written to communicate

9http://silentbarrage.com/

between NeuroRighter and a custom web server running on the
same computer. The web server in turn communicated with a
client computer controlling a robotic body consisting of 32 inde-
pendent robots. Each robot had a rotating actuator capable of
climbing up and down a vertical column (Figure 9C). Columns
were arranged in a grid that reflected the electrode layout of the
MEA (Figures 9A,B). The height of each rotating actuator at a
given moment was determined by the instantaneous firing rate
detected on two adjacent electrodes from the 59-channel MEA.
As the actuators traveled up and down, they periodically marked
their positions on the vertical poles using an ink pen. Over time,
this resulted in a visual record of spatiotemporal activity of the
culture inscribed on each column (Figure 9C).

Silent Barrage was exhibited in the United States (New York),
Spain (Madrid), Brazil (Sao Paolo), Ireland (Dublin), and China
(Beijing). Visitors to the exhibitions were encouraged to mingle
amongst the robotic embodiment and they were observed using
overhead cameras (Figures 9A,B). The resulting video feed was
processed on site to extract features of audience movement (Horn
and Schunck, 1981) and these data were streamed back to Neu-
roRighter’s web server in Atlanta. Audience movement measures
were then used to adjust stimulation patterns delivered through
NeuroRighter’s all-channel stimulator. The relationship between
incoming video data and electrical stimulation varied from exhibit
to exhibit, from simple single-electrode rate coding schemes to
more complex multi-electrode schemes where artificial neural net-
works were used to deliver certain stimulus pattern based upon
learned features of incoming video data. Electrical stimulation
modulated the activity state of the culture’s firing patterns, thus
closing the loop around the dissociated culture, robotic body, and
audience members separated by thousands of kilometers. While
on exhibit in the National Art Museum of China, Silent Barrage
was perhaps the Earth’s largest behaving “organism.”

4. DISCUSSION
Closed-loop electrophysiology systems are powerful tools for neu-
roscience research because they can be used to parse recurrent
systems into independently manipulable components. Voltage
clamp techniques use feedback control to separate membrane
potential from the recurrent influence of voltage-dependent ionic
conductances (Marmont, 1949). Seminal experiments using volt-
age clamp have fostered our understanding of ion channels,
neuronal excitability, and synaptic transmission. More recently,
dynamic clamp has been used to deliver artificial transmembrane
or synaptic conductances into living neurons (Prinz et al., 2004;
Kispersky et al., 2011). Using these approaches, feedback control
transforms dynamic features of individual neurons into controlled
experimental variables. Similarly, closed-loop multichannel sys-
tems like NeuroRighter can transform features of neural net-
works into controlled experimental variables (Arsiero et al., 2007).
NeuroRighter is a powerful tool for controlling network vari-
ables, improving upon currently available systems in terms of cost,
usability, accessibility, extensibility, and hardware standardization
(Wagenaar et al., 2006a; Stirman et al., 2011; Wallach et al., 2011;
Ahrens et al., 2012). We have this demonstrated NeuroRighter’s
power in conducting basic and translational neuroscience research
through a variety of case studies.
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FIGURE 9 |The Silent Barrage robotic embodiment. (A) Illustration of
the Silent Barrage “organism” during its exhibition at the National Art
Museum of China (NAMOC), in Beijing. Spatial patterns of action
potentials recorded from a dissociated cortical culture are used to drive
the robotic body. A video stream of visitors to the exhibition are
interpreted by NeuroRighter’s plugin protocol and used to control
multichannel electrical stimulation though the MEA, closing the loop

around audience members, robotic system, and neural tissue over
thousands of kilometers. (B) Audience members viewing the exhibition
at NAMOC. Simultaneously, NeuroRighter translated the overhead video
feed to stimulation patterns delivered to the culture and then translated
resulting neuronal activity patterns to robotic actuation at the exhibit. (C)
Photograph of an individual robot and the traces it produced during the
NAMOC exhibition.

Altered gene expression, synaptic input, or environmental con-
ditions can induce changes in spiking activity, which in turn
trigger activity-dependent processes. Because of this, it becomes
difficult to distinguish the role these factors play in shaping net-
work dynamics and neural plasticity independent of firing rate.
Closed-loop multichannel feedback systems provide an opportu-
nity to render the population firing rate a controlled experimental
variable and enable study of cellular and network processes as a
function of a defined activity state. We used Neurorighter to clamp
the firing rate of a living neural network to user-defined setpoints
over both short and long timescales (Sections 3.2, 3.3). Further, we
were able to control population firing rate during prolonged appli-
cation of the NMDA receptor antagonist, AP5 (Section 3.3). Our
controller compensated for the loss of NMDA-mediated excitation
and maintained network spiking at the target firing rate. Therefore,
the effects of AP5 could be deduced through comparison with a
control culture that underwent an identical clamping protocol
but with intact synaptic transmission. In most studies that use
long-term drug application, the individual roles of spiking and

excitatory neurotransmission on plasticity are ambiguous (Turri-
giano, 2011). By using a real-time multichannel feedback system,
we have begun to unravel the independent effects of spiking and
NMDAergic transmission on network behavior. This approach
could also be used to more directly study the effects of altered
genetic or environmental factors on network activity.

In addition to better controlled experimental variables, real-
time feedback can be used to improve the relevance of experiments
using reduced neural preparations in studies of behavior. Implicit
to animal behavior is the interplay between motor output and
sensory perception (e.g., head movement affects the visual input
stream and vice-versa). While reduced neural preparations or
immobilized animals provide excellent experimental accessibility,
their major weakness is that they do not preserve a functional
sensory-motor loop. We have demonstrated that Neurorighter
is well-equipped for performing closed-loop experiments that
restore the sensory-motor loop by interfacing living neural net-
works with artificial bodies (Section 3.5). The advantages of this
approach over traditional open-loop techniques are twofold. First,
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neural systems can engage in“motor”behaviors without sacrificing
delicate optical (Ahrens et al., 2012) or electrophysiological (Har-
vey et al., 2009) access due to actual motion. Secondly, the experi-
menter has complete control over the mapping between a recorded
neural signal and its resulting “motor” effect (DeMarse et al., 2001;
Ahrens et al., 2012). For example, Ahrens et al. (2012) recently
examined optomotor adaptation in paralyzed larval zebrafish
by embedding them in a virtual environment. Visual stimuli in
the virtual environment provided a perception of motion, and
induced fictive motor-nerve activity. Recorded motor-nerve activ-
ity was used to drive motion of the virtual environment. Changes
in sensory-motor feedback gain could be achieved by adjusting
the efficacy by which fictive motor patterns propelled the fish
through its virtual world. All the while, full brain activity was
recorded through single-cell resolution imaging, which would be
nearly impossible to achieve in a freely moving animal. This study
highlights how closed-loop interfaces between artificial bodies or
environments and a living neural system allows excellent experi-
mental access during behaviors requiring an intact sensory-motor
loop.

Aside from basic research, closed-loop multichannel electro-
physiology has possible medical applications. Predictive applica-
tion of drugs or electrical stimulation has the potential to increase
the efficacy and safety of treatments for various neurological disor-
ders (Mormann et al., 2007; Rosin et al., 2011) and improve neural
rehabilitation procedures (Jackson et al., 2006a). For example, a
reliable seizure prediction algorithm would open the possibility
for targeted interventions that abort seizures before they occur.
Mormann et al. (2007) provide an extensive comparison of dif-
ferent methods for seizure prediction. Unfortunately, the clinical
applicability of these algorithms remains quite pessimistic and
future studies will require a high-throughput validation system
to test robustness of seizure prediction algorithms under a vari-
ety of circumstances. We have demonstrated that NeuroRighter
can be used for this purpose (Section 3.4). The stimulation algo-
rithm we used is very similar to a method called responsive neu-
rostimulation (NeuroPace Inc., Mountain View, CA, USA) that
recently showed very promising results in a large, double-blind,
pivotal clinical trial (Morrell, 2011). This form of closed-loop
seizure modulation is not truly predictive as it was triggered on
the occurrence of “unequivocal seizure onset” (Litt and Echauz,
2002). However, the API provides a means for easy reconfigu-
ration in order to test alternative, predictive methods to abort
seizures before they begin, using multichannel electrical stimula-
tion or the local application of an anti-convulsive drug. Addition-
ally, a plugin could be reconfigured for closed-loop modulation

of other pathological neuronal activities or to facilitate motor
rehabilitation (Jackson et al., 2006a).

Tools that enable closed-loop interaction with neural tissue
at the network level have great potential to advance experimen-
tal neuroscience. Historically, open-source projects have been
extremely good at adapting equipment and code designed for
a singular purpose to other uses. For this reason, we envision
a large role for open-source software and open-access hardware
communities in the development of technologies for closed-loop
eletrophysiology systems. Rapid improvements in microprocessor
performance, embedded computer systems, on-chip multichan-
nel signal processing, and A/D conversion technology must be
matched by projects that can expose their powerful features for
researchers with little or no background in embedded systems
or computer science. NeuroRighter is one of several open-source
hardware/software projects that are enabling more labs to carry
out sophisticated electrophysiology with less money and more
experimental flexibility10.
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Brain-machine interfaces (BMI) were born to control “actions from thoughts” in order to
recover motor capability of patients with impaired functional connectivity between the
central and peripheral nervous system. The final goal of our studies is the development
of a new proof-of-concept BMI—a neuromorphic chip for brain repair—to reproduce the
functional organization of a damaged part of the central nervous system. To reach this
ambitious goal, we implemented a multidisciplinary “bottom-up” approach in which in vitro
networks are the paradigm for the development of an in silico model to be incorporated
into a neuromorphic device. In this paper we present the overall strategy and focus on the
different building blocks of our studies: (i) the experimental characterization and modeling
of “finite size networks” which represent the smallest and most general self-organized
circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions
in neuronal networks and the whole brain preparation with special attention on the impact
on the functional organization of the circuits; (iii) the first production of a neuromorphic chip
able to implement a real-time model of neuronal networks. A dynamical characterization of
the finite size circuits with single cell resolution is provided. A neural network model based
on Izhikevich neurons was able to replicate the experimental observations. Changes in the
dynamics of the neuronal circuits induced by optical and ischemic lesions are presented
respectively for in vitro neuronal networks and for a whole brain preparation. Finally the
implementation of a neuromorphic chip reproducing the network dynamics in quasi-real
time (10 ns precision) is presented.

Keywords: In vitro modular networks, whole brain, lesioned circuits, in silico neuronal circuit, hardware spiking

neural network

INTRODUCTION
Millions of people worldwide are affected by neurological disor-
ders that disrupt connections between brain and body, causing
paralysis, or impair cognitive capabilities. This number is likely
to increase in coming years, yet current assistive technology
is still limited. Over the last decade Brain-Machine Interfaces
(BMIs) and neuro-prostheses (Nicolelis, 2003; Hochberg et al.,
2006, 2012; Nicolelis and Lebedev, 2009) have been the object
of extensive research and offer the promise of treatment for such
disabilities. These devices could profoundly improve the quality
of life for affected individuals, and could have a more widespread
impact on society.

Neural interfaces have mainly been devoted to restoring motor
function that is lost due to injuries at the level of the spinal cord
(Collinger et al., 2013), or to recover sensorial capacities, e.g., arti-
ficial retinal or cochlear implants (Chader et al., 2009). However,
recent interest has also focused on neural prostheses for restor-
ing cognitive functions. For example, a hippocampal prosthesis

for improving memory function in behaving rats was recently
presented (Berger et al., 2011, 2012), and the same group has also
tested a device in primate prefrontal cortex aimed at restoring
impaired cognitive functions (Hampson et al., 2012; Opris et al.,
2012).

The realization of such prostheses implies that we know
how to interact with neuronal cell assemblies, taking into
account the intrinsic spontaneous activation of neuronal net-
works and understanding how to drive them into a desired
state in order to produce a specific behavior. The long-
term goal of replacing damaged brain areas with artificial
devices requires neural network-like prosthetics or models
that could be fed with recorded electrophysiological patterns
and that could provide a substitute output to recover the
desired functions. While ultimately this approach must be
tested and applied in vivo, important insights could be gained
using in vitro systems of increasing architectural complexity,
which can be more easily and thoroughly accessed, monitored,
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manipulated, and modeled than in vivo systems (at least at
present).

The final goal of the studies presented in this paper is to
develop a test-bed for the development of a new generation
of neuro-prostheses capable of restoring lost communication
between neuronal circuits. These studies constitute the object of
the European project BRAIN BOW (www.brainbowproject.eu).
Healthy and lesioned in vitro neuronal circuits are characterized
in parallel to the development of in silico neuronal networks, with
the goal of establishing bi-directional communication to mimic
or bypass an injured neuronal network. In order to develop an
experimental and computational platform for the prototyping
of neuro-prostheses, we followed a bottom-up approach using
in vitro biological neuronal systems with increasing structural
complexity. Our approach takes advantage of the unique features
of in vitro neuronal cultures, which represent a powerful experi-
mental model to investigate the inherent properties of neuronal
cell assemblies as a complement to artificial computational mod-
els. We use engineered networks of increasing structural complex-
ity, from isolated finite-size networks up to interacting assemblies,
as a model of intercommunicating neuronal circuitries. Moreover,
we scaled our studies up to the isolated whole guinea-pig brain
(IWB), to translate to an in vivo model.

In this paper we present the overall multidisciplinary strat-
egy and preliminary results on the different building blocks of
the project. The structure-function relationship of “finite size
circuits” was characterized with single cell resolution by com-
bining calcium imaging and immunocytochemistry. Similarly to
what previously observed in isolated neuronal clusters (Shein-
Idelson et al., 2010), we found that the frequency of synchronous
network events increased with circuit size. This result was repro-
duced by in silico neural network models based on Izhikevich
neurons with scale-free connectivity. The feasibility of con-
trolled network lesions was explored by optically transecting cell
processes and monitoring the subsequent change in functional
network connectivity. In addition, in a whole brain prepara-
tion, a focal ischemic lesion in the hippocampus was demon-
strated to cause an interruption of the limbic olfactory pathway.
Finally, a neural network hardware model with arbitrary con-
nectivity based on Izhikevich neurons, working at nanosecond
time scale, is presented. These experimental and computational
platforms represent a starting point for restoring functional
closed-loop communication in a neuronal network with lesioned
circuitries.

MATERIALS AND METHODS
EXPERIMENTAL MODELS
The repertoire of activity patterns exhibited by an in vitro neural
network is strongly dependent on the complexity of its geom-
etry (Shein-Idelson et al., 2011). While homogeneous networks
(Figure 1A) tend to display highly stereotyped bursts which
spread to most of the connected cells (Kamioka et al., 1996; Van
Pelt et al., 2004; Chiappalone et al., 2006; Eytan and Marom,
2006), networks composed of smaller sub-networks with sparse
connections (Figure 1C) usually present non-repetitive patterns
of sparse spiking and local bursts (Macis et al., 2007; Shein-
Idelson et al., 2010). The first cellular model proposed in this

FIGURE 1 | From finite size networks up to the whole brain: a

bottom-up approach. (A) Sketch of a homogeneous network composed
of about 1000 neurons (left panel) and the typical raster plot of its
electrophysiological activity, recorded by using 60 electrodes of a Micro
Electrode Array (MEA) chip (right panel). The black box highlights a
sub-region of the homogeneous network, which can be described as a
finite size network (black arrow pointing to panel B). (B) Sketch of a finite
size network used in the framework of this paper, composed of about 100
neurons (left panel), and its raster plot, obtained by calcium imaging
recording (right panel). (C) Scheme of interconnected finite size networks,
each composed of about 100 neurons (left panel), and the raster plot of the
electrophysiological activity recorded by a MEA (right panel). (D) Sketch of
the in-vitro whole brain of a guinea pig composed by interconnected
functional networks (left panel), and raster plot of the spontaneous periodic
events recorded by an array of 16 electrodes (right panel).

work is that of finite size network (Figure 1B), namely an isolated
neuronal circuit consisting of a small number of neurons (dozens
to a few hundreds) that is still able to spontaneously produce
bursts similar to those observed in larger homogeneous networks
(cf. section “Results”). Characterization of activity within these
assemblies could allow their use as building blocks for larger,
more complex structures of interconnecting sub-networks. At
the other end of the complexity spectrum we set the isolated
whole brain of a guinea pig (Figure 1D). This model is used to
investigate the properties of one complex functional neuronal

Frontiers in Neural Circuits www.frontiersin.org March 2013 | Volume 7 | Article 40 | 68

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Bonifazi et al. Large-scale studies for the realization of bi-directional brain-prostheses

assembly (the olfactory tract, see below) embedded in an intact
brain (cf. section “Results”).

Finite size networks: patterning, cell culture, and calcium imaging
The procedure adopted for the preparation of “finite size net-
works” is in accordance with the NIH standards for care and
use of laboratory animals and was approved by the Tel-Aviv
University Animal Care and Use Committee.

Cultures were prepared as described in Herzog et al. (2011).
After the fourth day in vitro, the growth medium was enriched
with 0.5% Pen-Strep (Biological Industries Beit Haemek), 2%
B-27 (Gibco), and 0.75% glutamax (Biological Industries Beit
Haemek). Cells were plated at a density of 750 cells/mm2 on a
23 mm square glass coverslip previously glued on a 35 mm petri
dish. Coverslips were coated with spots of poly-D-lysine (PDL,
Sigma), and petri dishes were homogenously coated with PDL.
The cells attaching homogeneously on the free surface of the
petri dish (i.e., not covered by the glass coverslip) functioned as a
“supporting network” (Kleinfeld et al., 1988). PDL spots were cre-
ated using either manual drop deposition or polydimethylsilox-
ane (PDMS) stencils. For manual drop deposition, an Eppendorf
pipette with a tip of 10 μl capacity was used. The spots were cre-
ated by touching the tip filled with 2 μl PDL on the coverslip
surface and then drying the coverslips at 37◦C for 30 min.

When PDMS stencils were used, the procedure to create PDL
spots was based on a soft lithography process, as described in
Sorkin et al. (2006). Briefly, an SU8-2075 (Micro Chem) mould
on a silicon wafer with a feature thickness of approximately
200 μm was used to shape the PDMS. The feature was composed
of squares of 700 μm × 700 μm separated by at least 1 mm, in
order to obtain isolated neuronal islands. The size of the square
was chosen to fit the field of view of a 10× objective in the cal-
cium imaging setup described in detail below and in Herzog et al.
(2011). Once the PDMS substrate was shaped and dried on the sil-
icon wafer, the PDMS stencils were detached and placed directly
on the glass coverslips. Drops of the PDL solution were dripped
onto the PDMS stencil until the features were completely covered.
After mild vacuum degassing for 15 min, the excess PDL solution
was removed and the sample was dried at 37◦C for 30 min. The
PDMS stencil was removed before cell plating.

Calcium imaging of the patterned neuronal networks grown
on coverslips was performed in buffered-ACSF solution (con-
taining, in mM, 10 HEPES, 4 KCl, 1.5 CaCl2, 0.75 MgCl2, 139
NaCl, 10 D-glucose, adjusted with sucrose to an osmolarity of
325 mOsm, and with NaOH to a pH of 7.4). In order to load the
cells with the calcium-sensitive dye, cultures were incubated for
30 min in 1 ml ACSF supplemented with 1 μl of 10% pluronic
acid F-127 (Biotium 59000) and 1 μl Oregon-Green BAPTA-I
AM (Invitrogen 06807) previously diluted with 7.6 μl anhydrous-
DMSO. Following incubation, cultures were washed with ACSF
and recorded at 37◦C. In order to avoid artifacts due to evapora-
tion and pH change, the ACSF was replaced every 20 min during
the recording session.

Calcium-fluorescence images were acquired with an EMCCD
camera (Andor Ixon-885) mounted on an upright Olympus
microscope (BX51WI) using a 10× water-immersion objective
(Olympus, NA 0.4). Fluorescent excitation was provided via a

120 W mercury lamp (EXFO X-Cite 120PC) coupled to the
microscope optical axis with a dichroic mirror, and equipped
with an emission filter matching the dye spectrum (Chroma
T495LP). Images were acquired at 59 fps in 2× 2 binning mode
using Andor software data-acquisition card (SOLIS) installed on
a personal computer.

Immunocytochemical staining
At the end of calcium-imaging experiments, cultures were washed
twice with PBS, then fixed with 4% PFA (15 min) and left in PBS
for not more than 5 days before staining. For immunocytochem-
ical staining, fixed cultures were washed three times with PBS
(10 min each) and then incubated with 1% Triton ×100 in PBS
for 30 min. Cultures were blocked with 2% BSA, 10% normal
serum and 0.5% Triton× 100 in PBS for 2 h at room tempera-
ture. The cultures were incubated overnight with the first primary
antibody (GAD67, 1:250, Millipore, MAB5406) in blocking solu-
tion at 4◦C. The next day cultures were incubated with the second
primary antibody (MAP2, 1:500, Chemicon, AB5622) overnight
at 4◦C. Cultures were then washed three times with TBS and incu-
bated with the secondary antibodies in 2% BSA, 2 mM CaCl2 in
TBS for 1 h at room temperature. After being washed three times
with TBS the cultures were mounted with aqueous mounting
medium containing DAPI (vector).

In vitro whole brain
Young adult Hartley guinea pigs (150–300 g, Charles River) were
used for IWB recordings. All procedures were approved by the
Italian Department of Health and were conducted in accor-
dance to FELASA guidelines and Italian and European directives
(DL 116/92 and 2010/63/EU). Animals were anesthetized with
sodium thiopental (125 mg/kg, i.p.) and transcardially perfused
with a cold (4◦C), oxygenated (95% O2, 5% CO2) saline solu-
tion composed of 126 mM NaCl, 3 mM KCl, 1.2 mM KH2PO4,
1.3 mM MgSO4, 2.4 mM CaCl2, 26 mM NaHCO3, 15 mM glu-
cose, 2.1 mM HEPES, and 3% dextran (MW 70,000). The pH of
the solution was corrected to 7.1 with 1N HCl. After assessing the
absence of nociceptive and ocular reflexes, the brain was gently
dissected out of the skull, transferred to a recording chamber, and
perfused at 7 ml/min with the above solution (pH = 7.3, 15◦C)
via a peristaltic pump (Minipulse II, Gilson, France) through a
cannula inserted in the basilar artery (Figure 5). Prior to record-
ing, the temperature of the preparation was gradually increased
to 32◦C (0.2◦C/min) (Llinas et al., 1981; Muhlethaler et al., 1993;
De Curtis et al., 1998). In order to induce an ischemic insult in
the hippocampal formation, a silk thread was positioned under
the left rostral and caudal posterior cerebral arteries [r- and
c-PCA, see Librizzi et al. (1999)] and a loose knot was pre-
pared around the vessels. The flow was interrupted by pulling
the thread ends to tighten the knot (Figure 5) (Pastori et al.,
2007).

READ-OUT SYSTEMS
Optical manipulation and recording system for in vitro neural
networks
The optical system combined a laser dissector with a micro-
scope for simultaneous fluorescence and bright field imaging
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during electrophysiological recording of neural network activity,
as previously described (Difato et al., 2011a).

The light source used to perform calcium fluorescence imag-
ing was composed of TTL modulable laser diodes (TECBL-15
G-473-TTL-FC, World Star Tech. Inc., USA) coupled to the
microscope (BX51, Olympus, Italy) through a circle top-hat
engineered diffuser (ED1-C20-MD, Thorlabs, Optoprim, Italy)
to remove laser speckles. A pair of UV doublets (Thorlabs,
Optoprim, Italy) coupled the laser light to the microscope objec-
tive (60×, 0.9 NA water dipping). The laser light was focused
on the back focal plane of the microscope objective to produce
a homogenous wide field illumination on the sample. A light
emitting diode at 590 nm wavelength served as the bright field
illumination source (M590L2, Thorlabs, Optoprim, Italy). The
wavelength of the diode was chosen to avoid interference with
the emission spectra of the fluorochrome (Fluo4-AM, Invitrogen)
used to label the sample. A dichroic mirror separated the light
coming from the sample (green and red portion of light spec-
tra) onto two cameras. Green emission light was deviated on
CCD1 (V887ECSUVB EMCCD, Andor, Lot Oriel, Italy) acquir-
ing the calcium fluctuations due to network activity, and the
red portion of the light spectra was deviated on CCD2 (Pilot
PIA1000-48GM, Basler, Advanced Technologies, Italy) to per-
form bright-field imaging. The CCDs image acquisitions and
light sources were synchronized with a TTL signal coming from
a D/A board (PCI-6529, National Instruments, Italy). The use
of TTL-modulable light sources for fluorescence and bright field
imaging allowed a precisely timed illumination of the sample,
thereby reducing phototoxicity and facilitating long term calcium
imaging of neural networks. Bright-field images were acquired at
1 Hz to detect network topography before and after laser dissec-
tion of network connections. Cells were previously incubated for
10 min with 5 μm Fluo-4 AM (Invitrogen, Italy). To monitor the
neural network activity before and after laser induced network
lesions, calcium imaging was performed at 60 Hz (light expo-
sure of 3 ms each frame, at an average power at the sample of
60 μW).

Cells were kept under the microscope at 35◦C using a
Peltier device (QE1 resistive heating with TC-344B dual
channel heater controller, Warner Instruments, Italy). For
neuronal cultures plated on Petri dishes, pH and humidity were
controlled by aerating a custom-designed polydimethyl-
siloxane (PDMS) sleeve, which integrated the objective
for optical access, with humidified carbogen (95% O2,
5% CO2).

A pulsed, sub-nanosecond UV Nd:YAG laser at 355 nm
(PowerChip nano-Pulse UV laser PNV-001525-040, Teem
Photonics, Italy) served as the source for performing laser micro-
dissection experiments. The diaphragm of the epi-illuminator
was substituted by a narrow-band laser mirror, which reflects
355 nm laser light while passing all other wavelengths com-
ing from the laser diodes used for fluorescence microscopy
(DM6, TLM1-350-45-P, CVI, Italy), thus allowing fluorescence
imaging and laser dissection to be performed simultaneously.
Damage to neural network was inflicted with laser pulse repeti-
tion rate settled at 100 Hz, and an average power at the sample of
about 4 μW.

Electrophysiological system for the in vitro whole brain
Extra- and intracellular recordings were performed simultane-
ously in piriform and medial entorhinal cortex (PC and m-ERC).
To test the viability of the preparation throughout the experiment,
we monitored evoked local field potentials (LFPs) in PC and m-
ERC in response to the electrical stimulation (0.5–3 mA, 0.3 ms)
of the lateral olfactory tract (LOT) using custom-made bipolar
electrodes made of twisted, insulated silver wires. Intracellular
recordings were performed with sharp micropipettes filled
with 3M potassium acetate (input resistance 70–110 M�) and
attached to an electronically controlled micromanipulator (Sutter
Instruments, Novato, CA, USA). Signals were amplified by an
intracellular amplifier (IR-283A Cygnus Technology, PA, USA).
Field potentials were recorded using glass pipette filled with 0.9%
NaCl (resistance 2–5 m�) or microwire arrays (Tucker-Davis
Technologies, Alachua, FL, USA) featuring 16 tungsten planar
recording wires (filament diameter 50 μm, tip angle 45◦), each
separated by 250 μm (impedance 30–40 K�). The extracellular
signals were acquired using a PBX3 preamplifier (Plexon, Dallas,
TX, USA) configured to separately process spikes (150 Hz–8 KHz
bandwidth) and local field potentials (0.7–300 Hz).

Data were digitized at 25 kHz using a PCI-6071E A/D board
(National Instruments, Austin, TX, USA) and stored on the hard
drive of a personal computer. Recordings were performed using
ELPHO software developed by Dr. Vadym Gnatkovsky at the C.
Besta Neurological Institute (Milan, Italy).

COMPUTATIONAL MODEL
In the following sections we will present the computational model
used to mimic the dynamics expressed by finite size networks (cf.
section “Experimental Models”).

Neuron model
The neuron model used for the finite size networks is based on
the Izhikevich equations (Izhikevich, 2003). The dynamics of
this model depend on four parameters that, correctly chosen,
reproduce the spiking behavior and voltage traces of specific
types of cortical neurons. From a mathematical point of view,
the model is described by a two-dimensional system of ordinary
differential equations.

dv

dt
= 0.04v2 + 5v + 140− u+ Isyn + Inoise (1)

du

dt
= a(bv− u) (2)

with the after-spike resetting conditions:

if v ≥ 40 mV→
{

v← c
u← u+ d

(3)

In Equations (1–3), v is the membrane potential of the neuron,
u is a membrane recovery variable which takes into account the
activation of K+ and inactivation of Na+ channels; Isyn describes
the synaptic input from other neurons; Inoise is a current source
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generator introduced to model the spontaneous subthreshold
electrophysiological activity of the neurons. Practically, we intro-
duced a stochastic source of noise (modeled according to
an Ornstein-Uhlenbeck process) to each neuron described as
follows:

dInoise = − Inoise

τI
dt + mI

τI
dt + s1

√
2dt

τI
ξt (4)

In Equation (4) the quantity ξt is a white noise with zero mean
and unitary variance. In this way, Inoise is Gauss-distributed at any
time t and, after a transient of magnitude τI (correlation length),
converges to a process with a mean equals to mI and standard
deviation sI . For the simulation, we set τI = 1 ms, mI = 25 pA,
and sI = 9 pA.

Among the possible firing patterns generated by the neuron
model of Equations (1, 2), we implemented the family of regular
spiking (RS) and the family of fast spiking neurons (FS) in
percentage of 75% and 25%, respectively, in agreement with
the experimental findings (cf. section “Finite Size Network
Dynamics”). Mathematically, the four aforementioned parame-
ters were set as follows:

a =
[

0.02
0.02+ 0.08ri

]
b =

[
0.2
0.25− 0.05ri

]

c =
[−65+ 15r2

i
−65

]
d =

[
8− 6r2

i
2

]
(5)

In Equation (5), the first row is relative to the excitatory, while
the second one to the inhibitory neurons. ri is a random variable
which spans from 0 to 1, and i the neuron index. ri was added in
order to introduce a further variability in the neuron dynamics:
for example, a neuron exhibits classic RS behavior if ri = 0, and
bursting behavior if ri = 1.

Finite size network model
Graph theory was used to represent the network connectivity. All
graphs are defined by nodes which represent the neurons, and
edges which model the morphological connections among the
neurons. The structure of the graph is described by the adja-
cency matrix, a square matrix of size equal to the number of
nodes N with binary entries. If the element aij = 1, a connection
between the node j to i is present, otherwise aij = 0 means no
connection. All the auto-connections are avoided (aii = 0, ∀ i).
Then, the value 1 of the non-zero aij elements has been replaced
to mimic different synaptic strengths. Synaptic weights were cho-
sen randomly from a normal distribution with a mean value and
standard deviation equal to 10 and 3.5, respectively.

To model the synaptic transmission we chose the approach of
the pulse-coupled neural networks: practically, the firing of the
j-th neuron causes an instantaneous change in the membrane
potential of the neuron i-th by means of the weight sij.

Among the possible graphs, following the experimental find-
ings regarding the functional connectivity of such confined neu-
ronal assemblies (cf. section “Finite Size Network Dynamics”),
we implemented neuronal networks with a scale-free (SF)

connectivity (Barabasi and Albert, 1999). Briefly, in SF networks
the degree distribution follows a power law: if m is the num-
ber of edges incident to a node, i.e., the degree, the power law
distribution is given by Dorogovtsev and Mendes (2002):

P(m) = m−γ (6)

where γ is the characteristic exponent. This law suggests that most
nodes have just a few connections and other, named hubs, have
a very high number of links. To build a SF network, we made
use of the algorithm described in Batagelj and Brandes (2005),
particularly efficient in terms of computation when dealing with
large-scale networks. Nodes are added successively. For each node,
m edges are generated. The endpoints are selected from the nodes
whose edges have already been created, with a bias toward high
degree nodes.

In order to mimic the experimental conditions of the confined
assemblies described in section “Finite Size Network Dynamics,”
in section “Simulation Results” we presented the results regarding
the ongoing activity of networks made up of 90, 100, 120, 150,
240, 320, and 520 neurons.

DATA ANALYSIS AND STATISTICS
Analysis of network dynamics based on calcium fluorescence
imaging
Custom software running in MATLAB (Crépel et al., 2007;
Bonifazi et al., 2009) was used for the automatic identification of
the cells loaded with the calcium indicator and for the extraction
of their fluorescence signals as a function of time (time resolu-
tion 59 Hz). To detect the calcium events (i.e., the onset and offset
of neuronal firing) from the fluorescent trace Fij of the neurons
(1 ≤ i ≤ M, M number of neurons; 1 ≤ j ≤ N, N number of
frames) we calculated the first derivative of the fluorescent signal
(�Fij = Fij+1 − Fij) and we integrated �Fij in overlapping sliding
time windows of 1 s (Iij′ = �j′≤n≤j′+59 �Fnj; 1 ≤ j′ ≤ N − 59).
A Gaussian fit centered at zero was used to extract the standard
deviation σi of the noise of the processed signal Iij. Signal tran-
sients exceeding the threshold of 3σi for at least 5 consecutive
points were considered as calcium events. The onset and the offset
of these calcium events were determined using a four-parameter
sigmoidal equation as described in Takano et al. (2012). The esti-
mated onset and offset times were fixed respectively to the 5% and
the 95% of the sigmoidal plateau.

The reconstruction of the functional connectivity of the net-
work was based on pair-wise correlation analysis of the onset time
series extracted from the calcium imaging data, as described in
Bonifazi et al. (2009). Briefly, when the firing onset of cell j pre-
ceded in a repetitive way the firing onset of cell k, a functional
connection directed from j to k was established. In order to reveal
these temporal correlations, the post-stimulus time histogram of
cell k centered on the firing onsets of cell j was calculated within
a maximal time lag of 500 ms. Both the Student’s t-test and the
Kolmogorov-Smirnov test with a level of confidence of 5% were
used to exclude the possibility that the poststimulus time dis-
tribution could be a Gaussian distribution with zero mean or a
uniform distribution, respectively. In this way, we excluded cases
where the activation of two neurons was completely uncorrelated
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(uniform distribution) or synchronous (Gaussian centered at
zero).

The cross correlation between firing onsets time series of indi-
vidual neurons was used to estimate the average correlation and
average time of activation of each neuron relative to all others,
similarly to what described in Bonifazi et al. (2009) and Marissal
et al. (2012). Briefly, the cross correlation between the time series
of neurons a and b was calculated as follows:

CCab(τ) =
∑

0 < t < T
(at + τ− <a>) · (bt − <b>)

σa · σb
(7)

where σa and σb are the standard deviation of the time series,
t is the sampling time, T the duration of the entire movie and
|τ| ≤ 1 s.

The maximum cross-correlation value (CCmax
ab ) and the time

lag of its occurrence (τmax
ab ) were used to calculate, respectively,

the average correlation and average time of activation of neuron i
to the following formulas

〈
CCmax

i

〉 = 1
n

∑
j	=i CCmax

ij and
〈
τmax

i

〉 =
1
n

∑
j	=i τ

max
ij where n is the number of neurons displaying a

positive cross-correlation with neuron I.

Processing of electrophysiological signals from the IWB
Raw data acquired by the ELPHO software were loaded into
MATLAB (Mathworks Inc., Natick, MA, USA) for off-line pro-
cessing. First, raw traces were band-pass filtered to select either
multi-unit activity (MUA, 800 Hz–3 KHz) or local field poten-
tials (LFP, 1–300 Hz). Stimulation artifacts were suppressed using
an off-line MATLAB implementation of the SALPA algorithm
(Wagenaar and Potter, 2002). Highly noisy channels were visually
excluded from the analysis. Then, MUA raw data were spike-
detected by means of the PTSD algorithm (Maccione et al.,
2009) (peak lifetime period = 2 ms; refractory period = 1 ms;
threshold = ±8 times the estimated noise standard deviation).
The result of the spike-detection procedure consists of a series of
point processes (i.e., spike trains), one for each recording channel
(Bologna et al., 2010).

We evaluated the network-wide evoked response by comput-
ing the Peri Stimulus Time Histogram (PSTH; Perkel et al., 1967)
for each recording channel of the array and for the full array
[time bin = 4 ms, time window = (−100 ms, +400 ms) relative
to the stimulus onset]. We also measured the intensity of the
response as the average number of evoked spikes in a 200-ms
time window following each stimulus. The final dataset com-
prised 4 recordings in control brains (duration ∼300 s, 10–20
paired pulses delivered to the LOT at 0.05 Hz, inter-pulse interval
200 ms) and 3 recordings before and after the induction of focal
ischemia (same stimulation protocol).

RESULTS
FINITE SIZE NETWORK DYNAMICS
Spontaneous synchronizations in finite size networks
To build an experimental model for the study of physiological
and impaired communications between neuronal assemblies we
grew finite size neuronal networks, i.e., networks composed of
neuronal assemblies spatially separated by hundreds of microme-
ters and interconnected through long neuritis. As a first step, we

focused on the properties of single modules, i.e., the structural
and dynamical properties of isolated and spatially confined neu-
ronal circuits (Figure 2). Isolated neuronal circuits located within
an 800× 800 μ m spot were obtained by plating the cells on glass
cover slips previously coated with a geometrically defined molec-
ular adhesive layer (PDL). The individual cell populations varied
between a few dozen up to a few hundred neurons. Similar to
homogenous and clustered cultures (Chiappalone et al., 2006;
Shein-Idelson et al., 2010), finite size circuits displayed sponta-
neous synchronized events after 2 weeks in culture (Figure 2,
panel B1) occurring with a frequency linearly correlated with
the number of cells present in the circuit (Pearson correlation
0.88, Figure 2C1). Likewise, depending on the density of the
plating and on the vicinity to the supporting network, finite
size circuits organized into monolayers or in three-dimensional
clusters, with a higher propensity of clustering at increased plat-
ing density or at larger distances from the supporting network
(data not shown). We used calcium imaging of monolayer neu-
ronal circuits (performed with a 10× objective) in combination
with immunocytochemical staining to map the functional and
structural properties of all the neurons in the circuits with single-
cell resolution. GABAergic cells could be specifically identified
(Figure 2A3), allowing us to investigate their specific involvement
in spontaneous synchronization processes, similar to the work of
Bonifazi et al. (2009) in developing hippocampal networks.

A pair-wise analysis based on the cross-correlation between the
firing onsets time series of pairs of neurons (see section “Materials
and Methods”) was used to estimate the average correlation and
average time of activation of each neuron relative to all others
(Bonifazi et al., 2009; Marissal et al., 2012). In all the circuits
analyzed (n = 4) the time correlation graph presented a bimodal
distribution (Figure 2C2), indicating that network events syn-
chronized first the population of neurons plotted on the left side
of the graph (i.e., with a time lag < 0), whereas neurons on the
right (i.e., with a time lag > 0) were activated next. In addi-
tion, the presence of highly correlated early activated GABAergic
neurons was observed (red points within the violet circle in
Figure 2C2). Interestingly, the existence of a characteristic, early-
activated neuronal population within the network synchroniza-
tions has been already documented in developing hippocampal
circuits (Bonifazi et al., 2009) even in absence of GABAergic
transmission (Marissal et al., 2012). Notably, in the presence of
GABAergic transmission it has been shown that early-activated
GABAergic neurons can play the role of hub cells in orchestrating
network dynamics (Bonifazi et al., 2009). The similarity between
these previous observations and the results presented here sug-
gest that cortical circuits share common innate features in their
functional organization.

Effect of laser ablation on functional connectivity
To monitor the synaptic re-organization of lesioned neuronal
circuits with single cell resolution, we reconstructed the func-
tional connectivity of a neuronal subset of a larger neuronal net-
work 20 min before and after laser-induced ablations (see section
“Materials and Methods”).

Two micro-lesions (lesion 1 and lesion 2) were induced next
to the center of the field of view, using an average laser power

Frontiers in Neural Circuits www.frontiersin.org March 2013 | Volume 7 | Article 40 | 72

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Bonifazi et al. Large-scale studies for the realization of bi-directional brain-prostheses

FIGURE 2 | Structure vs. function relations in neocortical finite circuits.

(A) Immunocytochemical staining revealing cellular nuclei (blue, DAPI, A1),
neuronal cells (green, MAPs, A2), GABAergic neurons (red, GAD67, A3). In
panel (A4), the contours of the cells monitored through calcium imaging
(white) are superimposed to the merged immunocytochemical pictures.
(B) Monitoring the dynamics of the neuronal circuit through calcium imaging.
Raster plot (B1 left plot) of the activity of the circuit (shown in panel A)
displaying stereotyped spontaneous network synchronizations (broken
vertical lines). The activity of a representative network synchronization
(marked in orange) is shown with higher temporal resolution on the right
orange plot (bottom scale bar 0.5 s). The cells loaded with the calcium
indicator OGB are shown in the panel (B2) (objective magnification 10×, field

of view 800 × 800 μm). (C1) Frequency of spontaneous synchronizations as a
function of circuits’ population size (blue dots, n = 9). The cell number was
estimated by counting the cellular nuclei stained with DAPI. The result of the
linear fit with least-squares regression (Pearson correlation coefficient 0.88) is
represented by the red line and by the equation. (C2) Time lag—correlation
graph for the circuit shown in (A) plotting for each imaged neuron the average
correlation and average time of activation relative to all other cells (see
section “Materials and Methods”). Red dots indicate GABAergic cells. The
violet circle highlight GABAergic cells reliably activated at the synchronization
build up possibly playing a key role in the orchestration of network synchrony
similarly to what previously documented for the developing hippocampal
circuits (Bonifazi et al., 2009).

at the sample of 4 μW and 5 μW, respectively. The second lesion
was performed at higher power to obtain a more pronounced
alteration of the network. Indeed, this lesion produced a strong
intracellular calcium increase in several cells, and a calcium

“shockwave” started to propagate through the network. After
a few minutes, only directly ablated cells displayed a saturated
calcium fluorescence signal, while the other neurons recovered
a relatively low basal calcium level and presented spontaneous
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activity (cf. Figure A1). The frequency of occurrence of sponta-
neous network synchronizations was not affected by the lesions
(Figure 3, 4th and 5th rows) with no significantly statistical
difference between the inter-burst interval distribution before and
after lesion (student t-test, p > 0.05). However, the number of
cells recruited within the network events in the imaged field (i.e.,
close to the location of the lesion) decreased by 31± 10% (student
t-test, p < 0.05).

Based on the calcium dynamics of the cells imaged in a cir-
cular field of 244 μm diameter (Figure 3), we reconstructed the
functional connectivity of the neuronal population through a
pair-wise analysis of the onset of firing (see section “Materials
and Methods”). Briefly, if the activation of cell i reliably preceded
the activation of cell j (i.e., over several repetitions with sta-
tistical significance, see section “Materials and Methods”), we
inferred a functional connection directed from i to j. Cell pairs
that were synchronously activated or not displaying any activation
order were not included in the directed functional connectivity
reconstruction (see section “Materials and Methods”). Figure 3
(1st row) shows the location of ten neurons with the highest
number of functional INPUT (violet) and OUTPUT (yellow)
connections before and after the lesions. Interestingly, after the
lesions, top rank INPUT and OUTPUT neurons segregated into
spatially distinct regions. Top rank OUTPUT neurons relocated in
the bottom right region while top rank INPUT neurons remained
in the rest of the circuit. In addition, just one out of the ten
neurons for each group belonged to the top rank group before
and after the lesion. The relocation of the functional connec-
tions (drawn for clarity just for the five best ranked neurons) can
additionally be observed in Figure 3 (2nd and 3rd row).

In vitro WHOLE BRAIN
We also characterized the activity of an ex vivo experimental
model (i.e., the isolated brain of a guinea pig, Figure 4) before
and after a lesion induced by a focal ischemia.

Network response to LOT stimulation in the m-ERC
Electrical stimulation of the LOT induced a polysynaptic response
in the m-ERC mediated by the interposed activation of the
hippocampus (Biella and De Curtis, 2000; Gnatkovsky and De
Curtis, 2006) (Figure 4). The intracellular correlate of the LOT-
evoked delayed response in neurons of m-ERC superficial lay-
ers was characterized by an early GABAA receptor- mediated
inhibitory postsynaptic potential (IPSP; latency from LOT stimu-
lation: 51± 1 ms, n = 12), followed by a relatively slow (duration
409 ± 36 ms) NMDA-dependent depolarizing component which
often reached threshold for spike firing. Conversely, pyramidal
cells in deeper layers responded to LOT stimulation with an
early excitatory postsynaptic potential (EPSP) occurring 15±
1 ms after the population spike recorded in the dentate gyrus
(DG, Figure 4). The EPSP often crossed the threshold for action
potential firing and was followed by a relatively slow inhibitory
potential mediated by GABAB receptors (Gnatkovsky and De
Curtis, 2006). The early inhibition of the superficial principal
cells is presumably due to a feed-forward mechanism sustained by
interneurons recorded in layers II/III (i.e., basket and chandelier
cells; Canto et al., 2008). In Figure 4 the firing of an interneuron

FIGURE 3 | Directed functional connectivity before (left) and after

(right) lesion. The number of OUTPUT and INPUT functional
connections has been calculated for all the imaged neurons based on
the temporal correlation between the firing onsets of the neurons (see
section “Materials and Methods”). The ten top ranked cells, i.e., the
cells with the largest number of functional OUTPUT (yellow) and INPUT
connections (pink), are represented in the top row. For graphic clarity,
the connectivity graphs shown in the 2nd and 3rd rows (respectively
INPUT and OUTPUT connections) include only the five top ranked cells.
The data refers to a homogenous neuronal network where functional
hub cells (i.e., neurons with a very large number of functional
connections) were not identified. The fluorescent images show the
cells loaded with the calcium indicator Fluo4 (see section “Materials
and Methods”). The locations of the two lesions (L1 and L2) are
marked by the white arrows. The green rectangle highlights the region
shown in Figure A1. The field of view is a circular region of 244 μm
diameter. The raster plot (representing the firing onsets) and the
fraction of activated cells are shown respectively in the 4th and
5th row.
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FIGURE 4 | The guinea pig isolated whole brain (IWB). (A) Schematic
view of IWB observed from its ventral surface. The circle of Willis with its
principal branching arteries is highlighted in black. The whole brain is
perfused by means of a peristaltic pump that delivers ACSF to the brain
through a polyethylene cannula inserted into the basilar artery. The two
vessels that are occluded to induce the hippocampal ischemia are marked by
red crosses. In the same hemisphere a microelectrode array (MEA) is
positioned in the center of the m-ERC (delimited by dotted line). S,
stimulating electrode; LOT, lateral olfactory tract; PC, piriform cortex; l-ERC,
lateral entorhinal cortex; DG, dentate gyrus; m-ERC, medial entorhinal cortex.
(B) Stereomicroscope photograph of the isolated brain positioned in the
perfusion chamber. (C) Electrical responses to LOT stimulation recorded in
the m-ERC. Left, intracellularly recorded voltage traces from a superficial
pyramidal cell lying at 200–300 μm from pial surface (black trace), a

GABAergic interneuron (400–500 μm, red trace), and a deep pyramidal cell
(600–1000 μm, green trace). Note the correspondence between the early
firing of an action potential in the interneuron and an IPSP (asterisk) recorded
in the superficial pyramidal cell. The bottom trace is an extracellularly
recorded field potential (LFP) characterized by a volume conducted
component propagating from the rostral part of the LOT-activated synaptic
pathway (PC and l-ERC) and subsequently invading the hippocampal structure
(DG and CA1, dark and light gray spots, respectively). The left margin of the
gray area is aligned to the first component of the m-ERC LFP. Right,
simplified scheme of the polysynaptic neuronal circuitry within the m-ERC,
based on the evoked response pattern and delay analysis of the neuronal
response to LOT stimulation. The gray cell represents a putative interneuron
mediating a feedback GABAergic inhibition onto a deep pyramidal cell and a
feed-forward inhibition onto another interneuron.

corresponds to the early IPSP measured in the pyramidal cells in
the same layer.

Spiking responses to paired-pulse LOT stimulation (inter-
pulse interval 200 ms) were recorded by 16-channel MEAs

implanted in the superficial layers of the m-ERC (200–500 μm
from pial surface; Figure 5A). Figure 5B shows the peri-stimulus
raster plots of two selected channels (19 and 24, experiment #1)
in response to each of the two LOT stimulations for a selected

Frontiers in Neural Circuits www.frontiersin.org March 2013 | Volume 7 | Article 40 | 75

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Bonifazi et al. Large-scale studies for the realization of bi-directional brain-prostheses

FIGURE 5 | LOT-evoked m-ERC network activity is abolished after

ischemic lesioning of the hippocampus. (A) Local field potentials (LFP) and
multi-unit activity (MUA) raw traces from two selected electrodes (19 and 24,
experiment #1) recorded in response to an individual paired-pulse stimulus

(ISI 200 ms) delivered to the LOT. The volume-conducted components
originating in DG and CA1 are indicated by the dark gray and light gray dots,
respectively. (B) Peri-stimulus raster plots for the same two representative

(Continued)
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FIGURE 5 | Continued

electrodes. The corresponding PSTHs are superimposed (bin size = 4 ms). (C)

Summary plot of mean number of evoked spikes (mean ± S.E.M.) after 1st
and 2nd pulse for all four experiments. ∗p < 0.05, Mann–Whitney U-test.
(D) LFP and MUA raw traces of one selected electrode recorded in response
to a paired-pulse stimulus either before (black trace) or after (gray trace) an

ischemic lesion of the hippocampus. (E) Peri-stimulus raster plot for the same
representative electrode, before and after the lesion. The corresponding
PSTHs are superimposed (bin size = 4 ms). (F) Summary plot of mean
number of evoked spikes by a paired pulse stimulus delivered to the LOT
(mean± S.E.M.) either before or after the ischemic lesion of the hippocampus
for all analyzed experiments. ∗p < 0.05, Mann–Whitney U-test.

experiment. An earlier phase, which we observed in almost all
active recording channels, was characterized by two relatively
sharp peaks: the first corresponding to the far-field response orig-
inating in the hippocampus and the other corresponding to the
initial phase of the m-ERC response (Figure 4). This was followed
by a late, long-lasting but less reliable component (cf. channels
19 and 24). The histogram in Figure 5C displays the number
of spikes (mean± S.E.M.) evoked by the 1st and the 2nd pulse
for all experiments (control condition) as a measure of response
intensity. In 2 out of 4 experiments (#1, #4) we observed a
stronger activation after the 1st rather than 2nd pulse, whereas in
the other 2 experiments (#2, #3) responses to the 2nd pulse were
slightly stronger than to the 1st pulse (no significant statistical dif-
ference). However, one must consider that first evoked responses
in experiments #1 and #4 were on average more intense, probably
reflecting a relatively high probability of excitatory neurotrans-
mitter release upon the first pulse. This would nearly deplete
the available pool of synaptic glutamatergic vesicles, leading to a
paired-pulse depression of the postsynaptic response.

Cutting the olfactory pathway: hippocampal focal ischemia
Occlusion of the posterior left cerebral arteries abruptly reduced
ACSF perfusion of the hippocampus, resulting in a block of the
propagation of the synaptic activity toward the entorhinal cortex
(Figure 4). About 5 min after the ischemic insult, LOT stimula-
tion failed to evoke any response (Figure 5). Stimulus-triggered
raster plots and the corresponding pre- and post-lesion PSTH
are shown in Figure 5E. The bar graph in Figure 5F summa-
rizes the total number of spikes evoked by a paired-pulse stimulus
before and after the ischemic lesion. A significant reduction of the
response intensity caused by the lesion was observed in all three
analyzed experiments.

SIMULATION RESULTS
In this section, we report the results of simulations in which we
modeled the effects changing the number of neurons in confined
networks. Each simulation lasted 10 min, sampled at 10 kHz.
Networks were simulated in MATLAB (The Mathworks, Natik,
US). Peak trains were stored and then processed by using SpyCode
software (Bologna et al., 2010), conveniently adapted to manage
large-scale networks.

Dynamics of finite size networks
We simulated the ongoing activity of neuronal networks made
up a 90, 100, 120, 150, 240, 320, and 520 neurons. The choice
of these networks sizes followed from the experimental findings
described in section “Finite Size Network Dynamics” (assuming
a neuron/glia ratio equal to 2:1). In addition, 25% of such neu-
rons were considered inhibitory (Isaacson and Scanziani, 2011)

and were modeled as FS neurons (cf. section “Computational
Model”).

Model neurons were connected following a scale-free (SF)
topology. Figure 6A shows the degree distribution of the simu-
lated SF networks. For all SF networks, the degree distribution
was fitted by a power law and the corresponding exponent lay
between −1.04 (network made up of 90 neurons) and −1.34
(networks made up of 520 neurons).

The simulated networks displayed spontaneous synchronized
events (network bursts) independently of their size (Figure 6B).
However, the frequency of occurrence of those synchronized
events varied in a linear manner with respect to the num-
ber of cells present in the circuit (Pearson correlation 0.96,
Figure 6C). To facilitate comparison with Figure 2C1, the x-
axis of Figure 6C reports the total cell number (neurons+ glia),
although the number of neurons effectively simulated is indicated
near the blue dots. The results of the simulation were fit well with
the experimental data, as confirmed by the slope of the linear fit
(0.00015 vs. 0.00016). An interesting finding was that the sim-
ulated networks tended to show a higher proportion of random
spiking activity and less bursting than normally observed in actual
finite-size neuronal networks. This is consistent with other exper-
imental results of interconnected finite-size networks previously
reported in the literature (Macis et al., 2007).

HARDWARE SET-UP FOR A BRAIN PROSTHESIS
The hardware set-up that will be used to interface the bio-
logical component (either the neuronal culture or the in vitro
whole brain) is a Spiking Neural Network (SNN) system. This
SNN implements biologically realistic neural network models,
spanning from the electrophysiological properties of one single
neuron up to network plasticity rules. As already discussed in the
modeling section, the choice of Izhikevich neuron model is rel-
evant because (1) it is biologically realistic, and (2) it operates
in biological real time. By real-time, we mean that computa-
tion results are provided within a firmly controlled delay (10 ns
precision), which is lower than the sampling period (100 μs to
1 ms). Among these modules, the computation-critical task is the
implementation of a SNN model, which represents the prosthesis
itself, and the analysis of biological signals to produce events from
the recorded activity.

The digital Izhikevich neurons and detection system are
implemented as a configurable digital integrated circuit (field-
programmable gate array, FPGA) using the VHDL language. We
implement Regular Spiking (RS) neurons (excitatory) and Fast
Spiking (FS) interneurons (inhibitory) similar to those found in
cell culture (Figures 2, 3 and 6). The hardware models follow
the Izhikevich equations with parameters corresponding to RS
activity (a = 0.02, b = 0.2, c = −65, and d = 8). In Figure 7A1
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FIGURE 6 | Simulation results. (A) Degree distribution of the 7 scale-free
networks. (B) Raster plots showing 300 s of spontaneous activity of
simulated confined networks. Each raster is relative to a different network
size. From top to bottom networks with 100, 120, 150, 240, 520 neurons
can be observed.. IFR profiles was evaluated over simulations lasting 600 s
(bin size = 100 ms). (C) Bursting rate frequency as a function of network

population size. The number of neurons of the simulated networks was
reported near the blue dots. The x-axis reports the total number of cells
(glia + neurons) in order to make easier a comparison with Figure 2C1.
The result of the linear fit with least-squares regression (Pearson
correlation coefficient 0.96) is represented by the red-dotted line and by
the fitting equation.

we describe the choice of the topology (Cassidy and Andreou,
2008) to implement the Izhikevich equations. We implement a
neuron on FPGA board Xilinx Virtex 5 XC5VLX50. This neu-
ron uses really few resources (only 2% of the FPGA) and works
in real-time. In Figure 7A2 we compare the behavior f(I) of bio-
logical RS neurons and one RS neuron implemented into the
FPGA.

Concerning the SNN, our goal was to implement a model
using 80 neurons (FS and RS) with high connectivity capacity
(e.g., 6400 synapses). Network structure is fully configurable, and
synapses are excitatory or inhibitory conductances which provide
current depending on the postsynaptic membrane voltage. Delays
are also implemented to provide good accuracy on timing. The
network is defined into the RAM of the digital board where lie
all characteristics of all neurons and synaptic connections in the
network. A synaptic connection is defined by a synaptic weight

and the address of the neuron linked by this synapse. Added with
complementary functions like loopback stimulation and moni-
toring, this system will be able to perform cross-platform neural
computation.

The detection of neural electrophysiological activity is done by
a reconfigurable acquisition based on wavelet detection circuit for
in vitro biological signals. Our strategy for real-time spike detec-
tion is to implement a pre-processor, which emphasizes spikes
shapes and attenuates out-of-band noise. This pre-processor
provides two outputs corresponding to different wavelet detail
levels. The first one is essentially composed of out-of-band
noise used to determine a threshold level adapted to the sig-
nal amplitude. The second output is compared to the threshold
to discriminate spike events. The pre-processing algorithm is
the Stationary Wavelet Transform (SWT). The detection system
computes in real-time the SWT, the adaptive threshold and the
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FIGURE 7 | Hardware elements for the neuro-prosthesis. (A1) Choice of
the topology. To implement the two equations of Izhikevich model, two
topology of pipeline are chosen (Cassidy and Andreou, 2008). There are five
stages of computing for each equation. The I(stat), I(exc), and I(inh) currents
describe the synaptic contribution. (A2) Hw-based model. Comparison of f(I)
curves between biological Regular Spiking (RS) neuron and digital one. The
biological curves are intracellular recordings of regular-spiking neurons in
ferret visual cortex in vitro. The neuromorphic board gives the same results in
term of frequency of the neuron vs. the stimulation current. (B) Outputs of
the detection system to be implemented in the closed-loop set-up of the
brain prosthesis. First row—(a). Raw electrophysiological signal. Second
row—(b). The same signal with added Gaussian white noise to reduce Signal

to Noise Ratio. This step was added to stress the capability of the system to
detect action potentials in difficult conditions. Third row—(c). Output of the
stationary wavelet decomposition preprocessing module. We used a Haar
mother wavelet with 16 bits fixed point computation. The output signal is the
sixth level detail output of the decomposition tree. Fourth row—(d). Binary
output of the detection module. This output is the result of a threshold
applied to the signal in (c). The threshold is computed from the standard
deviation of the first level detail output of the wavelet decomposition tree.
The emphasized detected spike is a false positive. This shows that the signal
(b) represents the limit of signals that can be reliably processed by our
system. These signals were first recorded then input to the system with a
waveform generator.

comparison. This method proved to be very efficient to extract
action potential of excitable cells from very noisy signals (Raoux
et al., 2012). Figure 7B shows the performance of the method
on a single channel setup. Action potentials are emphasized by
arrows on the signal A. We added significant noise [signal (b)]
and then sent the signal to the detector that provides outputs
(c) and (d).

To summarize, all modules (i.e., Izhikevich neuron, neural net-
work specifications, detection and stimulation modules) will be
implemented into the FPGA. This modular system will be used as
a cross-platform neural computation unit. Microelectrode arrays
will be used to record and electrically stimulate living neural
networks, with a specific emphasis on stimulation localization.
Dedicated integrated electronics will be designed to implement
the communication channels between the living and the artifi-
cial networks. The biological signals (from living to artificial) will
be processed by using on-line spike detection algorithms and a

rate-based decoding (Rieke et al., 1997; Novellino et al., 2007;
Tessadori et al., 2012), while the firing rate of an artificial neuronal
sub-network will be translated into the stimulation frequency for
the biological network (from artificial to living), thus following a
similar rate-based strategy. The system including the artificial and
living neural networks will form a closed loop with a regulated
feedback (cf. next Section).

A BI-DIRECTIONAL NEURO-PROSTHESIS
The knowledge that we gained through the various studies
presented here will contribute to the final realization of a bi-
directional communication between in vitro and in silico models
of interconnected cell assemblies. By studying the dynamics of
in vitro networks (see Figures 2, 3), we will create a compu-
tational model (see Figure 6) exhibiting the same I/O function
of its biological counterpart (Figure 8, panel A). Through this
approach we also plan to further our knowledge about the
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FIGURE 8 | In vitro neuro-prostheses. Sketch illustrating the main approach
of the BRAIN BOW project. First, we will characterize the I/O function of
simple finite-size networks and reproduce it by means of a computational
model (A, left). Second, we will use more complex modular networks and
replace one sub-network module with our computational model of the
finite-size network, in order to replicate the function of the intact system (A,
right). Finally, the same conceptual approach will be adopted to recover the
function of the olfactory-limbic circuit after an ischemic lesion of the

hippocampus (B). The bidirectional interaction with a model reproducing the
function of the damaged area will allow restoring the original I/O pattern. s(t):
stimulus function; ylive(t): response function of a healthy preparation; ysim(t):
response function of the neuronal network model; ydamaged(t): response
function after lesion in the IWB; yhybrid(t): response function of the hybrid
system resulting from the combination of biological and artificial
components. In panel (B), the hippocampal areas targeted by the ischemic
lesion are marked in red.

interplay between structural connectivity and dynamics in neu-
ronal networks. Once we have realized and tested our model,
we will bi-directionally integrate it into a biological network
made up of few interconnected sub-networks in replacement of

one of these that has been previously lesioned (Figure 8A, right
panel).

The same conceptual approach will be applied to the olfactory-
limbic pathway in the IWB (Figure 8, panel B). After a thorough
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characterization of spontaneous activity patterns (e.g., sponta-
neous periodic events, which strikingly resemble the ones shown
by primary cortical cultures; see Figure 1) and LOT-evoked
responses generated in the m-ERC (see Figure 8), we will include
such information into a realistic computational model. We will
then induce an ischemic lesion of the hippocampus and realize
a functional model able to reproduce the same transfer function
of the damaged part in order to restore the original pathway.
Figure 8 summarizes this approach, both for in vitro intercon-
nected finite-size networks and for the guinea pig IWB.

The final step foreseen in the BRAIN BOW project is the hard-
ware implementation of the signal processing algorithms and
computational models to achieve our proof-of-concept neuro-
prosthesis based on a neuromorphic chip. Figure 9 illustrates
the closed-loop architecture that we plan to develop. Raw traces
recorded by means of either planar or implanted MEAs (depend-
ing on the biological sample) will be fed into the artificial element
and pre-processed online to extract multi-unit activity patterns
(MUA). Spatio-temporal spiking patterns will then be translated
by the “decoding” block into signals delivered to the neuronal
network model. After elaboration, output patterns produced by

the model will be finally translated by the “coding” block into a
stimulation delivered to the neural element (Figure 9).

DISCUSSION
This paper presents a bottom-up, multidisciplinary approach
toward the realization of a neural prosthesis capable of replacing
lesioned neuronal circuitries. The final goal of the studies consists
of developing a neuromorphic chip reproducing the function of
a lesioned circuit without replicating its specific architecture or
structural organization.

As a general model of a self-organized neuronal circuit, finite
size neuronal circuits in culture are produced and studied in an
isolated configuration to reveal innate (and therefore most gen-
eral) features of intra-circuit organization (cf. Figure 1). Since
finite size networks can spontaneously interconnect in a “multi-
modular” network organization, they also represent an optimal
experimental model to reveal innate inter-circuit communica-
tion properties (cf. Figure 1), as shown in previous studies (Macis
et al., 2007; Raichman and Ben-Jacob, 2008; Shein-Idelson et al.,
2010, 2011). The structural—functional configuration of the
finite size circuits can be replicated by an in silico neuronal

FIGURE 9 | Schematic representation of the closed-loop system to

be implemented as a proof-of-concept neuro-prosthesis. Different
in vitro neural models with increasing degrees of architectural
complexity (“Neural element”) will be interfaced to a hardware
neuromorphic chip (“Artificial element—Hardware”), implementing both

signal processing (“MUA detection”) and modeling (“Neuronal network
model”) algorithms previously tested in software (“Artificial element—
Software”). The communication between the neuronal network model
and its biological counterpart is accomplished by the “Coding” and
“Decoding” blocks.
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network and then implemented on a neuromorphic prosthetic
chip. The capability of the neuromorphic chip to replace the func-
tion of a lesioned circuit will be tested at increasing levels of
network complexity from an in vitro modular network to an iso-
lated whole brain system (IWB). In the attempt to present the
overall scientific approach of the BRAIN BOW project (cf. section
“Introduction” and “A Bi-Directional Neuro-Prosthesis”), this
paper shows first results from the different level of investigation
grounding the overall strategy.

FINITE SIZE CIRCUITS AND INNATE FUNCTIONAL ORGANIZATION OF
CORTICAL CIRCUITS
As previously shown by Shein-Idelson et al. (2010), cultured
cortical neuronal networks composed of at least a few dozen
neurons are able to produce spontaneous collective dynamics
known as network bursts, characterized by oscillatory activity
in the gamma-theta range, and with the frequency of the bursts
increasing with the number of neurons in the network. We
confirmed these findings here using optical measurements on
monolayer circuits (cf. Figure 2). By combining calcium imaging
with immunocytochemistry, we have found that network events
first recruit a characteristic population of neurons which includes
GABAergic neurons. In particular, the time-lag correlation of the
finite size cortical circuits is similar to what observed in devel-
oping hippocampal circuits (Bonifazi et al., 2009), in which a
scale-free functional connectivity distribution was accompanied
by the existence of GABAergic hub cells able to play a key role in
the orchestration of the spontaneous network events. All together,
these observations suggest that cortical neuronal circuits share a
common innate functional organization which might include the
existence of GABAergic hub cells.

MONITORING EFFECTS OF LESIONED NEURONAL CIRCUITS IN FINITE
SIZE NETWORKS
After characterizing the spontaneous dynamics of the finite size
networks we monitored how a focalized lesion can trigger func-
tional reorganization in the neuronal circuit. We made con-
trolled laser ablations of different intensities on our networks
(e.g., targeting single modules, inter-connections between mod-
ules, single neuritis/cell bodies/cell assembly). After the lesions,
the neuronal circuits continued to produce spontaneous net-
works events with no significant changes in the frequency of
occurrence (Figures 3 and A1). These were presumably gener-
ated out of the imaged field where the lesions were performed.
The number of cells recruited during network events decreased
either because they were directly lesioned by the laser ablation
or because of a change in the local functional organization of
the circuits (see the functional connectivity graphs of Figure 4).
In a previous study by Maeda et al. (1995) the authors made
a lesion in a homogeneous network over a MEA to study the
origin of spontaneous network bursting. More recently, Difato
et al. (2011a) reported controlled sequential ablation of single
connections in a neuronal network, causing modulation of its
activity without irreversibly damaging it. By combining MEA
recording and calcium imaging the authors found changes in
electrophysiological patterns in the network and identified the
contribution of neuronal sub-populations to the network activity

(Difato et al., 2011b). To the best of our knowledge, our study
is the first to make a spatially defined micro-lesion at the single
cell scale and to analyze the neuronal dynamics and connec-
tivity by means of optical-only tools. This methodology, which
can be extended to the use of genetically encoded calcium sen-
sors, allows a more detailed and prolonged monitoring of the
functional reorganization of the circuit over hours or days with
the advantage, when compared to electrophysiological recordings,
that the high spatial resolution (i.e., single cell) can be linked
to morphological/structural cellular properties through post-hoc
immunocytochemical characterizations. This could also facilitate
testing of methods to promote functional circuit repair, such as
pharmacological approaches.

SIMULATION RESULTS (SOFTWARE AND HARDWARE)
Given the similarity between the synchronization dynamics
observed in developing hippocampal networks (Bonifazi et al.,
2009) and in the finite circuits (Figure 2) with early activated
GABAergic cells forecasting synchrony, we hypothesized a com-
mon innate structural-functional organization in neocortical
and paleocortical circuits. Therefore, we used a scale-free topol-
ogy (Barabasi and Albert, 1999) to model a neuronal network
based on Izhikevich neurons (Izhikevich, 2003) (Figure 6). The
proposed model was able to reproduce the empirical depen-
dence between bursting rate and circuit size. However, the
model predicted a richer repertoire of firing patterns (e.g.,
Figure 6B). Indeed, such patterns can be found in biologi-
cal networks (Segev et al., 2002; Macis et al., 2007; Marconi
et al., 2012). Thus our synthetic models (conveniently tuned
and adapted) are able to reproduce the dynamics found in
in vitro networks. Our results also demonstrate that the hard-
ware element of the prosthesis (cf. section “Hardware Set-up
for a Brain Prosthesis” and “A Bi-Directional Neuro-Prosthesis”)
can be constituted by a neuromorphic model (SNN) built on
the same equations as the computational model (Izhikevich,
2003), since it reproduces similar firing rate distributions
(Figure 7). Thus, the computational (software) model serves
as a bridge between the biological networks and the hardware
implementation.

COMPARISON TO PREVIOUS WORK AND PROSPECTIVE RESULTS
In the last decades, great efforts have been made to develop neuro-
prostheses to restore lost sensory or motor functions (Taylor
et al., 2002; Chader et al., 2009; Collinger et al., 2013), but
very few groups have focused on neuro-prostheses targeting
lesions at the level of the CNS and aimed at recovering lost
cognitive capabilities (Berger et al., 2011; Prueckl et al., 2011;
Bamford et al., 2012; Hampson et al., 2012; Opris et al., 2012).
Although our studies are limited to simplified in vitro models
of cell assemblies, their final aim is to provide useful insights
for the design of future cognitive prostheses. We believe that our
approach would help us understand how we can influence/drive
the dynamics of a neuronal assembly by interfacing it to an
artificial network, implemented either in software or hardware.
This is not the first attempt to realize an in vitro closed-loop
system: previous studies have used a robotic actuator or a con-
trol algorithm aimed at clamping network activity to a desired
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level (Demarse et al., 2001; Martinoia et al., 2004; Wagenaar
et al., 2005; Wallach et al., 2011). However, we seek to extend
these approaches by replacing a real biological network with a
simulated network, and hence by implementing bi-directional
communication between biological and simulated networks. This
research project builds on previously published results in the field
of in vitro closed-loop electrophysiology (Arsiero et al., 2007).
It can also be generalized to a more structured experimental
model like the in vitro whole brain of a guinea pig, which lies
between in vivo (as it retains the original tridimensional archi-
tecture) and in vitro (as it is disconnected from any sensory
input/motor output). In contrast to other groups which have
exclusively investigated in vivo brain prostheses (Prueckl et al.,
2011; Bamford et al., 2012; Berger et al., 2012; Hampson et al.,
2012; Opris et al., 2012), we are trying to exploit the unique
advantages of in vitro electrophysiology—accessibility, visibility
and control of physical and chemical conditions—to study neural
information processing in neuronal assemblies, and to under-
stand which parameters are relevant for effectively interfacing
biological and artificial networks. In addition to informing the
design of future in vivo approaches, our approach could also

illuminate how network structure constrains and drives network
dynamics.
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APPENDIX

FIGURE A1 | Subpopulation of a neuronal network before and after

laser induced lesions. The first panel, starting from the left upper
corner, shows a subpopulation of a neuronal network loaded with
Fuo4-AM. White arrows, depicted with L1 and L2, indicate the
positions of the lesions inflicted to the network. The red arrows
indicate the position of the UV laser focus spot. The average power
delivered at the sample, during lesion one, is 4 μW, and during Lesion

2, is 5 μW. We delivered 300 UV light pulse for each lesion, at
pulse-repetition rate of 100 Hz. At 25 s, after Lesion 1, the L2 position
is centered onto the UV focus spot. The last panel shows the same
field of view of the first one, after laser inflicted damages. The cells
directly affected by the UV laser presented saturated calcium signal.
Numbers indicate seconds. The field of view is 150 × 150 μm. Calcium
imaging was acquired at 60 Hz.
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Behaviors, from simple to most complex, require a two-way interaction with the environ-
ment and the contribution of different brain areas depending on the orchestrated activation
of neuronal assemblies. In this work we present a new hybrid neuro-robotic architecture
based on a neural controller bi-directionally connected to a virtual robot implementing a
Braitenberg vehicle aimed at avoiding obstacles. The robot is characterized by proximity
sensors and wheels, allowing it to navigate into a circular arena with obstacles of different
sizes. As neural controller, we used hippocampal cultures dissociated from embryonic rats
and kept alive over Micro Electrode Arrays (MEAs) for 3–8 weeks.The developed software
architecture guarantees a bi-directional exchange of information between the natural and
the artificial part by means of simple linear coding/decoding schemes. We used two differ-
ent kinds of experimental preparation: “random” and “modular” populations. In the second
case, the confinement was assured by a polydimethylsiloxane (PDMS) mask placed over
the surface of the MEA device, thus defining two populations interconnected via specific
microchannels. The main results of our study are: (i) neuronal cultures can be success-
fully interfaced to an artificial agent; (ii) modular networks show a different dynamics with
respect to random culture, both in terms of spontaneous and evoked electrophysiolog-
ical patterns; (iii) the robot performs better if a reinforcement learning paradigm (i.e., a
tetanic stimulation delivered to the network following each collision) is activated, regard-
less of the modularity of the culture; (iv) the robot controlled by the modular network
further enhances its capabilities in avoiding obstacles during the short-term plasticity trial.
The developed paradigm offers a new framework for studying, in simplified model sys-
tems, neuro-artificial bi-directional interfaces for the development of new strategies for
brain-machine interaction.

Keywords: bi-directional, in vitro, hippocampal cultures, confinement, micro electrode array, robot

INTRODUCTION
Algorithms based on classical models of computation cannot
compare with living beings capabilities in terms of dealing with
unexpected situations. Different fields of study, such as develop-
mental biology (West-Eberhard, 2003; Gilbert, 2009), embodied
cognition (Clark, 1997), evolutionary robotics (Bongard, 2011),
seem to indicate as a likely cause for this shortcoming the lack
of a developmental phase in traditional silicon-based technology.
This process is especially evident in the Central Nervous System
(CNS), where morphological changes, both reversible and perma-
nent, occur on a wide range of different time scales. One possible
way to deal with this issue is the realization of hybrid systems,
where biological components could be exploited for their plastic
properties.

In the recent past, several different hybrid model systems have
been developed (DeMarse et al., 2001; Martinoia et al., 2004;
Mussa-Ivaldi et al., 2010; Warwick et al., 2010; Kudoh et al.,
2011), consisting of living neurons coupled to a robotic system.

This solution allows the use of an artificial body whose dynamics
can be easily and completely modeled, as opposed to the case of
even the simplest animals. Furthermore, the exchange of infor-
mation in a hybrid system can be limited to the desired level of
complexity.

Following this “embodied neurophysiology” approach, we built
a closed-loop electrophysiological system by interfacing a virtual
mobile robot with a population of neurons, extracted from rat
embryos and cultured over Micro Electrode Arrays (MEA; Novel-
lino et al., 2007). The proposed paradigm represents an innovative,
simplified, and controllable closed-loop system where it is possi-
ble to investigate the dynamic and adaptive properties of a neural
population interacting with an external environment by means of
an artificial body (i.e., the mobile robot). The main innovations
of this experimental setup are: (i) the flexible software architec-
ture at the base of the closed-loop experiments, here described in
detail; (ii) the introduction of a modular network design. Start-
ing from the observation of the high degree of modularity in the
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brain, different studies point out how such a property is likely
to have a profound impact on neural activity (Hubel et al., 1977;
Sporns et al., 2000; Derdikman et al., 2003; Kumar et al., 2010;
Pan et al., 2010; Boucsein et al., 2011). In this work, we took
advantage of the modular structure of the network to obtain a
better separation between interacting cell assemblies. A significant
improvement to previous works would be the added capability
of inducing plastic changes in a controlled fashion. A step in this
direction is taken in this setup by the use of a tetanic stimulation
to enhance interconnected pathways to improve robot behavior
(Jimbo et al., 1999; Chiappalone et al., 2008), following a collision
with an obstacle. It is worth pointing out that the final objec-
tive of this work is not to achieve the best possible control of the
robot: excluding any biological component would, at this stage,
easily provide better performance and more reliable results. What
is being developed here is groundwork for the integration of elec-
tronic systems and neural networks, with the twofold long-term
objectives of taking advantage of neural plasticity in more com-
plex control systems and performing closed-loops experiment to
gage the computational and learning properties of relatively simple
neural preparations.

MATERIALS AND METHODS
The setup developed for experiments of embodied electrophysi-
ology is characterized by several different software, hardware and
wetware components (Figure 1). The wetware part consists of hip-
pocampal neurons cultured onto a standard 60-electrode MEA.
The front-end electronics are constituted by a MEA1060-Inv-BC
amplification system (Multichannel Systems, MCS, Reutlingen,
Germany) and the computer used is a desktop machine (Dell Pre-
cision T5500, 2.66 GHz, 3.43 GB RAM) equipped with a DAQ E
NI6255 (National Instruments, Austin, TX, USA) data acquisi-
tion board. An ad hoc adaptor was realized to interface the DAQ
board with the amplification system. The software used for the

management and acquisition is HyBrain2, a specifically developed
software based on what is described in a previous work (Mulas
et al., 2010): it allows control of all the parameters of the neuro-
robotics experiments and performs the required data processing,
such as the implementation of the coding, decoding and short-
term plasticity schemes. Information is sent to the culture as a
series of electrical stimulations through a Stimulus Generator 4002
(Multichannel Systems). Three different robots can be used for
the experiments: two physical ones (Khepera II and its successor
Khepera III, from K-Team, Zi les Plains-Praz, Switzerland) and
a virtual implementation within the HyBrain2 architecture. The
relevant elements of the robot are a set of distance sensors and
two independently controlled wheels. Both the physical and the
virtual ones have a circular arena with obstacles to move in. In
all of the experiments, the task the robot is trying to perform is
obstacle avoidance. While both physical robots have been tested
and are properly working within the setup, in the following, only
experiments with the virtual one are reported. The main problems
with the physical robot are the fact that it requires actual tracking
from an image to compute its position (which is both machine-
time consuming and occasionally fails) and the non-idealities of
its sensors: among the other, ambient lighting conditions have an
impact on the performance of the infrared distance sensor and it
has been reputed unwise to add such a factor of unpredictability
at this stage of the development.

NETWORK MODULE
Neuronal preparation: random and modular cultures
Dissociated neuronal cultures were prepared from hippocampi of
18-day-old embryonic rats (pregnant female rats were obtained
from Charles River Laboratories). Culture preparation was per-
formed as previously described (Frega et al., 2012). Briefly, the
hippocampi of 4–5 embryos were dissected out from the brain
and dissociated first by enzymatic digestion in trypsin solution

FIGURE 1 | Block diagram of the neuro-robotic architecture. From left to right: (i) the network module, constituted by a network of living neurons coupled to
a micro electrode array; (ii) a computer which hosts the developed software tool (i.e., HyBrain2) which manages the communication between the biological and
the artificial part; (iii) the robotic module composed by a robot, either real or virtual, with sensors and actuators navigating into a circular arena with obstacles.
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0.125% (30 min at 37˚C) and subsequently by mechanical disso-
ciation with a fine-tipped Pasteur pipette. The resulting tissue was
re-suspended in Neurobasal medium supplemented with 2% B-
27, 1% Glutamax-I, 1% Pen-Strep solution, and 10% Fetal Bovine
Serum (Invitrogen, Carlsbad, CA, USA), at the final concentration
of 60 k cells/ml.

Cells were afterward plated onto standard 60-channel MEAs
previously coated with poly-d-lysine and laminin to promote cell
adhesion (final density around 1200 cells/mm2) and maintained
with 1 ml of nutrient medium (Figures 2A,B). They were then
placed in a humidified incubator having an atmosphere of 5%
CO2 and 95% air at 37˚C. Half of the medium was changed weekly.
Recordings were performed on cultures between 20 and 60 days
in vitro (DIVs).

Considering the multitude of connections that usually forms
in a random culture, a way to better control the network complex-
ity consists of imposing a constraint to the neuronal cells growth
along specific pathways (Chang et al., 2001; Boehler et al., 2012). To
do this, a dual-compartment chamber with two interconnecting
microchannels has been realized in polydimethylsiloxane (PDMS),
a biocompatible, inert, and non-toxic polymer often used to this
extent (Raichman and Ben-Jacob, 2008; Levy et al., 2012). The
realization of the modular structures has been realized by replica
molding using specific master with a previously developed tech-
nique (Berdondini et al., 2006). The obtained structures have been
then placed on MEA substrates, in order to confine the growth of
the neuronal cells that will be plated on it, as shown in Figure 2B.

Micro electrode arrays
Micro electrode arrays (Multichannel Systems, MCS, Reutlingen,
Germany) consist of 60 TiN/SiN planar round electrodes (30 µm
diameter; 200 µm center-to-center inter-electrode distance, see

Figure 2A) arranged in an 8× 8 square grid excluding corners.
In some devices, one recording electrode is replaced by a larger
ground electrode. Each electrode provides information on the
activity of the neural network in its immediate area. A microwire
connects each micro electrode of the MEA to a different channel
of a dedicated amplifying system with a gain of 1100. The ampli-
fied 60-channel data is then conveyed to the data acquisition card
which samples them at 10 kHz per channel and converts them into
digital, 12 bit data (Figures 2C,D).

HYBRAIN2 SOFTWARE
The need for real-time access to data led to the adoption of a
general-purpose acquisition card (NI6255, National Instruments,
Austin, TX, USA) and required the development of a specific soft-
ware: Hybrain2. The core of the program handles incoming data
from the acquisition card and graphically displays them in a panel
such as the one shown in Figure 3A. Spike detection options
can be selected from this panel, such as threshold amplitudes
or update times, as well as software blanking of stimulus arti-
facts. While a rather sophisticated algorithm (i.e., SALPA filtering;
Wagenaar and Potter, 2002) for blanking has been included and
validated, it has not been used in the described experiments, as
it tends to compete for CPU-time with the rest of the system,
leading to occasional resource starvation. In its current version,
Hybrain2 does not make use of raw data other than for displaying.
Instead, incoming data is processed by a spike detection algo-
rithm (Maccione et al., 2009) whose output is a series of time
stamps.

As explained later in more detail, both the coding and decoding
algorithms for the closed-loop control of the robot are rate-based,
therefore spike time stamps are a lossless representation of incom-
ing data. Figure 3B shows the panels used for configuration of

FIGURE 2 | Random and modular neuronal assemblies over micro
electrode arrays. (A) On the left, a random culture grown on a standard MEA
device. On the right, the MEA layout is shown: a squared matrix of 59 micro
electrodes (the missing one is the reference electrode), in which the
inter-electrode distance is 200 µm and the micro electrode diameter is 30 µm.
(B) On the left, a confined culture on a MEA substrate. On the right, the

bi-compartmental system realized in PDMS with two interconnection
microchannels. Compartments height is 700 µm, and width is 1500 µm.
Microchannels height is 100 µm, and width is 50 µm. (C) Spontaneous
electrophysiological activity of a confined culture of hippocampal neurons,
registered from all the micro electrodes. (D) A typical hippocampal burst
waveform recorded from a single channel.
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FIGURE 3 | Hybrain2 panels and robotic module. (A) Raw electrodes data
display panel, including options for data visualization, artifact filtering, and
spike detection. (B) Several panels allow the configuration of coding and
decoding algorithms and saving of data during experiments. (C) The robot

arena panel shows the environment of the arena. In the case of a virtual
robot, this can also be used to draw the arena itself. (D) The physical robot
inside the arena where two obstacles are placed. The dotted red line
represents the trajectory of the robot inside the arena.

the parameters of these algorithms, such as selection of recording
and stimulation electrodes, pulses amplitudes and lengths, and
maximum and minimum allowed wheel speeds for the robot.

A module of the software is dedicated to managing the robot
itself: in Figure 3C, a sample experiment with a virtual robot is
shown. Here, the software is generating the robot environment as
well as controlling all the relevant parameters of the robot itself,
while, in the case of a physical robot (such as that in Figure 3D),
the software provides a simple tracking feature on images pro-
vided by a webcam positioned over the arena and the required
communication with the robot itself. All the data produced dur-
ing experiments, including electrode readings, time stamps, and
robot navigation data can be stored for later analysis both in text
and/or binary format, while common parameters configurations
can be saved and loaded in order to minimize experiment setup
times and human errors.

ROBOTIC MODULE
The robot, either virtual or physical, is basically a two-wheeled
sensor platform: six infrared sensors are mounted on the robot
at different angles, providing information about the distance of

surrounding objects in different directions, whereas the speed pro-
file of each wheel determine the direction and velocity of the robot
itself.

The arena consists of an enclosed space containing several dif-
ferent round obstacles in random positions and the robot. A typical
experiment with the virtual robot is shown in Figure 3C: the robot
is moving in a 400× 400 pixels circular arena, where dark green
pixels represent obstacles or arena walls, whereas light green pixels
are free for the robot to move in. The robot (small pink circle) is
collecting information about its environment through its six sen-
sors: each black line departing from the robot represents the line
of sight of a different sensor; their angles are fixed with respect to
the robot heading (in this case, 30˚, 45˚, and 90˚ on both sides of
the robot direction), while the length of each line is equal to the
distance from the robot center to the closest obstacle in the sensor
direction. This distance defines the reading of the sensor: the out-
put is 0 if the robot is in direct contact with an obstacle, 1 if the
closest obstacle is at the maximum distance possible (the diameter
of the arena, in this case). The three sensor readings on each side
are averaged to provide the neuronal network with a single value
per side.
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In the case shown in Figure 3C, the robot is performing an
obstacle avoidance task, as can be inferred by the red trajectory.
The speed of a wheel is inversely proportional to the average of
the sensor readings on the same-side, therefore the robot turns
away from close obstacles. The ideal behavior of the robot is
that of a Braitenberg vehicle (Braitenberg, 1984) in the case of
no loss of information and no significant delays between sen-
sor data collection and motor command execution. Obtaining
a behavior as close as possible to this one is the goal of the
coding-decoding-short-term plasticity process implemented here.

During experiments, collisions with obstacles or walls are
unavoidable: following such an event, the robot moves back to a
previous position in its path, at a fixed distance from any obstacle.

INTERFACING THE NETWORK AND THE ROBOTIC MODULE
Decoding scheme
Although many different decoding schemes are possible, so far the
only one implemented has been a frequency rate-based algorithm
(Adrian, 1928; Rieke et al., 1997; Martinoia et al., 2004). For this
scheme, only a feature of the recorded signals is useful: the fre-
quency of spikes at each location. A group of electrodes (i.e., a
sub-population of neurons) on the MEA is selected and defined as
the “output area” through the procedure described in the Section
“Experimental protocol.” The number of spikes occurring over
that area in 100 ms, non-overlapping windows constitutes the basis
for calculating the motor signal for the corresponding wheel. In
the current architecture, a linear relation is implemented between
wheel speed and motor signal: if no spikes are detected in a time
window, the corresponding wheel turns at a set minimum speed,
increasing linearly with the number of detected spikes, up to a
defined maximum rate. A low-pass filtering effect is added by
taking into account previous samples, in order to smooth robot
movements.

Dissociated neural networks are especially prone to bursting
(Chiappalone et al., 2006) and this pattern of activity has been
shown to code different information than just the sum of its spikes
(Cozzi et al., 2006). A module for the detection of bursts has been
already added to the Hybrain2 software, but its output is not yet
part of the control loop of the robot.

For each wheel, the speed is therefore defined as:

ωi =

{ fi,t+fi,t−1

2f MAX
i

(
ωMAX

i − ωmin
i

)
+ ωmin

i for fi < f MAX
i

ωMAX
i for fi ≥ f MAX

i

where subscript i denotes wheel side, ω is the wheel speed, and
fi,t is the averaged firing rate over all the electrodes correspond-
ing to the i-th recording area at time sample t. ωMAX, ωmin, and
f MAX are parameters set by the experimenter before the start of
the experiment.

Coding scheme
Likewise, the coding scheme is linear and rate-based: two groups of
electrodes are defined as “input areas” and assigned to the sensors
on the left and right side of the robot body. The details for area
selection are fully explained in the Section “Experimental Proto-
col.” Each sensor provides a reading, normalized to 1 for an object

in direct contact with the robot and 0 for an object at the far end
of the designed arena (while this behavior is nearly ideal for the
virtual robot, it is far from so in the case of the physical robot,
as already mentioned in the Section “Materials and Methods.”
The readings from the sensors on the same-side of the robot are
then averaged and coded back to the corresponding sensory area.
As mentioned before, the coding is linear and frequency based:
a fixed stimulus is delivered at the sensory area at a frequency
directly proportional to the averaged, same-side sensors readings.
The stimulation rate for each input region is determined as:

si =

(
sMAX
i − smin

i

)
ri + smin

i

where si is the stimulation rate of the i-th input area and ri the
normalized average of all the sensor readings on the correspond-
ing side of the robots, whereas sMAX

i smin
i are user-set parameters

fixing the maximum and minimum stimulation rate.

Short-term plasticity protocol
In order to progress toward the desired behavior, it is necessary
to define a learning rule that allows a modification of connectiv-
ity between input and output areas by rewarding “good behavior,”
while discouraging “bad behavior.” The effect of tetanic stimula-
tion in these networks was already demonstrated by our group
and by others in the past, showing that a 20 Hz stimulation should
strengthen the synaptic connections of receiving neurons (Jimbo
et al., 1999; Tateno and Jimbo, 1999; Madhavan et al., 2007; Chi-
appalone et al., 2008; le Feber et al., 2010). In all these papers
the effect of the tetanus on the change of firing rate was studied
in a time frame comparable to that of our experiments (30 min
to 1 h). Additionally, in a previous paper from our group (Chi-
appalone et al., 2008), we were able to demonstrate that a single
tetanic shock to a neuronal network had an immediate effect in
terms of increase in the Post Stimulus Time Histograms (PSTH)
area (i.e., increase in the number of spikes evoked by a stimulus),
a medium-term effect (i.e., few hours after the tetanus delivery),
and a long-term effect (i.e., 1 day after the tetanus delivery).

The above observations have been used to define the learning
rule in the current implementation of the software: following each
robot collision, a 2-s-long, 20 Hz stimulation is delivered to the
same-side input area. The rationale for this choice is that collisions
are usually caused by poor correlation between stimulation in an
input area and detected activity in the corresponding output area,
thus making the network responses to stimulation insufficient to
steer the robot in the correct direction. Our hypothesis is that
tetanic stimulation strengthens all participating connections, thus
correcting the problem, as demonstrated in the studies cited above.
A tetanic stimulation induces short-term plasticity effects which
allow the groups of neurons involved in the obstacle avoidance
tasks to fire at a higher frequency, thus inducing the corresponding
wheel to increase the angular velocity. Since input-output regions
were selected according to connection strength (see Experimental
Protocol below), this should increase responses detected from the
desired electrodes upon delivery of a stimulus from the input elec-
trodes. This bring to a generalized strengthening of connections
in the network and to an improvement in the driving of the robot.
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ON-LINE PROCESSING OF ELECTROPHYSIOLOGICAL SIGNALS
Spike detection
The electrophysiological signals acquired from MEA electrodes
must be preprocessed in order to remove the stimulus artifact and
to isolate spikes from noise. The spike detection algorithm uses
a differential peak-to-peak threshold to follow the variability of
the signal and a set of controls are performed in order to make
the algorithm as reliable as possible (Maccione et al., 2009). The
threshold is proportional to noise SD and is calculated separately
for each individual channel (typically as six or seven times SD)
before the beginning of the actual experiment (i.e., during phase
1 of the protocol described below).

Blanking of stimulus artifact
Stimulus artifacts are detected when the recorded signal exceeds a
defined threshold much higher than the one used for spike detec-
tion. The artifact is then suppressed by canceling the first samples
in the spike train occurring immediately after it, corresponding to
a signal blanking of 4 ms after stimulus delivery.

EXPERIMENTAL PROTOCOL
The typical experimental protocol followed in this work consists
of a five-step procedure:

1. Monitoring of the spontaneous activity of the culture;
2. Test stimulus from a set of electrodes in order to choose the I/O

of the network, necessary for the connection with the robot;
3. 20-min run without short-term plasticity protocol
4. 20-min run with short-term plasticity protocol
5. Evaluation of the robot’s performances on the basis of specific

navigation’s parameters.

During the first step of the experimental session, spontaneous
activity of the network is subject to observation, in order to deter-
mine, empirically, which electrodes are the most likely candidate as
“input” sites (i.e., sites from which stimulation must be delivered).
Typical features to look for in this phase are a sustained mean
firing rate (i.e., sufficient number of spikes per second, usually
higher than 0.1 spikes/s) and patterns of activity not synchronous
with other regions. The best candidates (usually a set of 8–10 sites)
are then selected for the second step of the experiment. From each
of the candidate “input” channel, in turn, a 500-µs, 1.5 V peak-to-
peak, bipolar square wave is delivered every 5 s, until a total of 40
stimuli per channels have been delivered, while spiking activity is
detected from other electrodes.

At the end of this phase, for every stimulation electrode
involved, 59 PSTH are generated (Chiappalone et al., 2007): these
graphs report the average number of spikes detected from each
electrode in the 600 ms following each stimulation and therefore
provide information on the strength of the connections in the
culture. Through a custom-made script developed in the Matlab
environment (The Matworks, Natick, MA, USA), the generated
PSTHs are then compared in order to look for areas that present
a significant degree of specificity, i.e., where responses are not
elicited by stimulation delivered from all the electrodes, but from
some of them. In this way, it is possible to define an output
(recording) area that will respond mostly to stimulation from the

corresponding input area, while remaining silent during stimula-
tion from the opposite input area (cf., see “Input and Output Sites
of a Neuronal Population” of the Results).

During steps 3 and 4, the robot is left free to roam the arena
with the rules described above, with a tetanic stimulus follow-
ing each collision with an obstacle delivered during step 4. If the
starting hypotheses hold true, this will progressively drive the net-
work toward the desired condition of reliable and specific evoked
responses.

Finally, we collect the data on the robot performances. In order
to verify the neural-based behavior of the robot, we compared the
results obtained (i) in a neuron-controlled experiment (a MEA
with living neurons grown on, bi-directionally connected to the
robot), (ii) in a open-loop experiment (a MEA with living neurons
grown on, but without sensory feedback), and (iii) in an “empty”
MEA experiment (a MEA with culturing medium only). In case
(ii), the robot performs in a way imposed by the spontaneous fir-
ing rate of the neural network, usually in a random pattern, while
in the case of the “empty” MEA (iii) the robot basically drives in
a straight line (see the Supplementary Videos and Closed-Loop
Robot Navigation of the Results).

DATABASE OF EXPERIMENTS, DATA ANALYSIS, AND STATISTICS
Experiments on a total of N = 17 different cultures, ranging from
20 to 60 DIV, have been conducted: 11 of those were random
hippocampal cultures, while the other six experiments were con-
ducted on hippocampal cultures, divided into sub-populations by
a confinement mask, as described above. Those six cultures were
also compared for spontaneous activity evaluation with a subset
of six random cultures (age range of the subset: 21–42 DIV).

In order to highlight differences in term of synchronization
between the two populations, a cross-correlation algorithm was
applied to spike trains, a technique already introduced previously
(Frega et al., 2012). Briefly, the cross-correlation function (i.e.,
cross-correlogram) is defined by the incidence of a spike at elec-
trode y after that a spike was fired at electrode x. More specifically,
given two spike trains (i.e., x and y) from two electrodes of a MEA,
we count the number of spikes in the y train within a time frame
around the spikes of the x train of ±T (in the order of tens of
milliseconds), using bins of amplitude ∆τ (usually set at multi-
ple of the sampling frequency). The correct Cxy(τ) is obtained by
means of a normalization procedure, by dividing each element of
the array by the square root of the product between the number
of peaks in the x and the y train. If the obtained Cxy(τ) shows a
distribution that clearly deviated from flat, electrodes x and y are
considered correlated. For each cross-correlogram Cxy(τ) we then
estimated the coefficient Cpeak. Cpeak represents the value of the
cross-correlogram in an area around the maximum detected peak
and it is usually evaluated in order to quantify the correlation level
among two recording channels. The statistical distribution of all
Cpeak values was computed for the two experimental groups dur-
ing spontaneous activity (i.e., random vs. modular cultures). For
each robot run, two different parameters have been computed in
order to evaluate the performance of the robot, namely the average
distance traveled by the robot between hits (measured in pixels)
and the average number of hits per second. The virtual robot is
implemented so that following a collision against an obstacle, it
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is immediately moved to the last location where its center was at
least 20 pixels away from any other object. Since the robot radius
is 5 pixels, the lower limit for the average distance traveled by the
robot during each robot run is that of 15 pixels.

Statistical tests were employed to assess the significant differ-
ence among diverse experimental conditions. The normal distri-
bution of experimental data was assessed using the Kolmogorov-
Smirnov normality test. According to the distribution of the data,
we performed either parametric (e.g., ANOVA, Figure 7) or non-
parametric (e.g., Mann–Whitney U test, Figures 4–6 and 8) tests
and p values < 0.05 were considered significant. Statistical analy-
sis was carried out by using OriginPro (OriginLab Corporation,
Northampton, MA, USA).

RESULTS
NETWORK DYNAMICS: SPONTANEOUS ACTIVITY IN RANDOM AND
MODULAR NETWORKS
Hippocampal cultures grown in vitro over MEAs show a sponta-
neous (i.e., ongoing) activity, similar to that exhibited by in vivo
systems during their development (Ben-Ari, 2001) or during deep
sleep (Corner, 2008). Their electrophysiological behavior is char-
acterized by spontaneous spiking which becomes synchronized
with the maturation of the network, giving rise to phenomena
called “bursts,” network bursts (Pasquale et al., 2010) or network
spikes (Eytan and Marom, 2006). These network bursts are the fin-
gerprints of a steady-state in which the network dynamic found a

balance between excitation and inhibition (on average 70–80%
of neurons are excitatory ones and the remaining 20–30% is
constituted by inhibitory interneurons). Such state can be eas-
ily pharmacologically disrupted by acting on the glutamatergic as
well as on the gabaergic receptors or by adding neuromodulators
(Keefer et al., 2001; Eytan et al., 2004; Frega et al., 2012). Another
possibility to alter such stereotyped behavior is to introduce modu-
larity (i.e., interconnected populations) instead of having a single
uniform and random culture (Raichman and Ben-Jacob, 2008;
Shein Idelson et al., 2010; Kanagasabapathi et al., 2012).

Figure 4 shows the spontaneous activity from a representative
random (Figure 4A, top) and a modular culture (Figure 4A, bot-
tom) during the fourth week of development. While in the random
culture the activity is highly synchronized and packed in the form
of “network bursts” (van Pelt et al., 2004; Pasquale et al., 2010), in
the modular culture we can identify two different temporal pat-
terns of activity with moments of synchronized bursts interleaved
with sparse spiking periods. Synchronized network bursts spread
to the whole culture also in the modular networks, even if, globally,
modular cultures are much less correlated than the random ones
(Figure 4B).

NETWORK DYNAMICS: EVOKED ACTIVITY IN RANDOM AND MODULAR
NETWORKS
It is possible to electrically modulate the activity of the network
by means of electrical stimulation. The typical response of a

FIGURE 4 | Spontaneous activity in random and modular hippocampal
networks. (A) Top. Raster plot of the activity exhibited by a random
hippocampal culture (50 s of activity acquired from a representative culture of
28 DIV). Bottom. Raster plot of the activity exhibited by a modular
hippocampal culture (50 s of activity acquired from a representative culture of

25 DIV). The activity of 59 electrodes is depicted: each small vertical bar
represents a spike, each line an electrode. (B) Box-plot of the cross-correlation
peaks in N =6 random and N =6 modular cultures. Box range: percentile
25–75; box whiskers: percentile 5–95; line: median; square: mean.
Mann–Whitney test for not-normal data, significance level=*p < 0.05.
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FIGURE 5 | Evoked activity in random and modular hippocampal
networks. (A) Top. PSTH map obtained from 59 channels as a consequence
of the stimulation from electrode 13 (black square). Bottom. PSTHs obtained
by stimulating electrode 72 (black square) in the same network. X -axis: time
(0, 400) ms, bin 4 ms; Y -axis: probability of evoking a spike. (B) Top. PSTH map
obtained from 59 channels as a consequence of the stimulation from
electrode 21 (black square) in the top compartment of a confined network.
Bottom. PSTHs obtained by stimulating electrode 28 (black square) in the
bottom compartment of the same confined network. Shaded area indicates
the top compartment. X -axis: time (0, 400) ms, bin 4 ms; Y -axis: probability of

evoking a spike. (C) Box-plot of the latency from the first evoked spikes in the
same (S) or other (O) compartment with respect to stimulating electrodes. No
statistical differences can be noted in a random culture. N =11 random
cultures. (D) Box-plot of the latency from the first evoked spikes in the same
(S) or other (O) compartment with respect to stimulating electrodes. In a
modular network, the latency between the stimulus and the first evoked
spike is statistically lower for the electrodes belonging to the same cluster of
the stimulating electrodes. N =6 modular cultures. Box range: percentile
25–75; Box whiskers: percentile 5–95; line: median; square: mean.
Mann–Whitney test for not-normal data, significance level=*p < 0.05.

network can be evaluated through the Post Stimulus Time His-
togram (PSTH, cf., see Materials and Methods). In Figure 5A
the maps of the PSTH obtained as a consequence of the stimu-
lation from site 13 (top) and site 72 (bottom) are reported in a
non-confined culture. Typically, the PSTH is characterized by an
“early response,” lasting 20–40 ms, and by a late response, lasting
more than 100–200 ms, usually due to the generation of an evoked
burst synchronized over the whole network (Gal et al., 2010). The
integral calculated over the PSTH profile represents the average
number of evoked spikes at a specific site and it is used for quanti-
fying the strength of the connection between a specific stimulation
site and all the recording ones (Chiappalone et al., 2008). This
parameter is at the base of the choice of the input-output con-
nections for our neuro-robotic studies (cf., see Input and Output

Sites of a Neuronal Population). Figure 5B reports the maps of
the PSTH obtained in a modular network. When stimulation is
delivered from site 21 (top compartment, Figure 5B top), mainly
the electrodes of the top compartment respond to the stimulation.
Few activations can be observed also in the bottom compartment,
but with a dominant late response and an almost absent early one.
In the same network, when stimulation comes from one electrode
of the bottom compartment (electrode 28, Figure 5B bottom)
practically only that compartment responds to the stimulus.

To further test the actual confinement of the evoked responses,
we also analyzed the distribution of the mean latencies (i.e., the
distance between the stimulus and the first evoked spike) obtained
for each couple of stimulation-recording electrodes (Mainen and
Sejnowski, 1995; Tateno and Jimbo, 1999): simply by eye, it is
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FIGURE 6 | Input-output selection. (A) Map obtained in a representative
“random” culture for the selection of the output sites, given two inputs
sites (e.g., 26 and 47): red, left recording area; blue, right recording area.
(B) Schematic representation of the input (yellow and light blue) and
respective recording (red and blue) areas for the same experiment
reported in A (“random” culture): note that the selected electrodes are
quite spread over the entire recording area. (C) Map obtained in a
representative “confined” culture for the selection of the output sites,
given two inputs sites (e.g., 27 and 62): red, left recording area; blue, right
recording area. (D) Schematic representation of the input (yellow and light
blue) and respective recording (red and blue) areas for the same
experiment reported in (B) (“confined” culture): note that the selected

recording electrodes are close to the stimulating electrode and they follow
the structure of the underlying network. (E) A box-plot representing the
distances from bisector of the selected recording electrodes in the set of
random and confined cultures used within this study (N =11 random and
N =6 modular cultures). The distribution of the distances in the modular
case is significantly higher than in the random case. Box range: percentile
25–75; box whiskers: percentile 5–95; line: median; square: mean.
Mann–Whitney test for not-normal data, significance level=*p < 0.05. (F)
Pie chart representing the percentage of networks in which at least 50%
of the recording electrodes were selected in the same compartment of
the stimulating electrode. The percentage is higher for the modular
networks (N =11 random and N =6 modular cultures).

clear that the evoked response is (mostly) limited to the com-
partment hosting the stimulation electrode. Figures 5C,D reports
the distribution of the latencies from the electrodes in the same
compartment (i.e., top or bottom) of the stimulating electrode (S)

compared to those from the electrodes in the other compartment
(O). Only in the case of confined networks (Figure 5D) the two
distributions are statistically different, being the latencies evalu-
ated in the electrodes belonging to the same compartment of the
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FIGURE 7 | Closed-loop data samples. (A) The three graphs represent
1100 s of data recorded during a robot run under close-loop control. From
top to bottom, the graphs represent: (i) the average readings of the three
proximity sensors on the left side of the robot, ranging from 1 (obstacle in
contact with the robot) to 0 (obstacle at the distance of the arena
diameter); (ii) mean rates of delivery of stimulation (i.e., Mean Stimulation
Rate, MSR); (iii) mean firing rates by averaging over all the electrodes
belonging to the same recording area (i.e., Firing Rate, FR); (iv) speed of

the robot wheels, expressed in pixels per second, as computed according
to Eq. 1 from firing rates. Data for stimulation and firing rate are point
events at times of delivery (for stimulations) or detection (for spikes), while
sensor data and wheel speeds are sampled at 10 Hz. The graphs reported
above are obtained after low-pass filtering of actual data (sliding Gaussian
window over 100 samples – 10s, with an alpha value of 2.5). (B) Same set
of graphs as (A), displaying information for sensors and wheel of the right
side.

stimulation significantly lower than those of the electrodes in the
other compartment. This proves that dividing the neural network
in two sub-populations has indeed an effect on stimulus response.

INPUT AND OUTPUT SITES OF A NEURONAL POPULATION
The simplest architecture that can be adopted for the proposed
task includes two electrodes to deliver coded sensory information,
one for each set of sensors. While the same could be said for out-
put sites, the point of interest in this work was the response of
the network, therefore a set of 8–10 electrodes is chosen to act as
output sites for each wheel.

The main disadvantage in dealing with dissociated cultures
instead of experimental models with a preserved neural struc-
ture is the lack of predefined architecture. For this reason, before
starting an experiment, a procedure has been performed to define
the stimulation (sensory input) and recording (motor output)
areas of the network. During this procedure (i.e., phase 2 of
our experimental protocol, cf., see Materials and Methods), we
stimulated the cultures by delivering trains of 40 electrical stim-
uli (1.5 V peak-to-peak, biphasic pulses, 500 µs total duration)
from 8 to 10 sites in a serial way. Then, the PSTH area (i.e.,
the number of spikes in the 600 ms following each stimulation)
between each pair of stimulation-recording electrodes is computed
and the related maps, like the one reported in Figures 6A,C, are

produced. The coordinates of each square in that map represent
the PSTH areas at a specific recording site relative to stimula-
tion from the two stimulating sites reported on the axis (Stim[26]
and Stim[47] in Figure 6A, for example). All the possible input-
output combinations are explored and only the pathways produc-
ing “selective” responses are retained. These “selective” pathways
are identified by pool of recording sites with respect to a cou-
ple of stimulating sites for which the responses measured fall
far away from the bisector (i.e., pool of recording site closer to
the axis).

Those specific pathways of sensory-motor activations can be
then conveniently utilized for driving the robot and for imple-
menting simple reactive behaviors (e.g., obstacle avoidance).
Figures 6B,D report the selected inputs (i.e., two electrodes,
one for the left and one for the right area) and output regions,
characterized by eight electrodes each, corresponding with maps
Figures 6B,D, respectively for two representative cultures (i.e.,
random and modular).

The presence of a confinement structure tends to generate
networks showing a higher degree of functional separation (i.e.,
selectivity), as well as a physical one, when compared to totally
random networks: as can be seen in Figure 6E, the average dis-
tance from the bisector of the evoked response pair is significantly
increased in the case of the modular network. The geometry of the
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stimulation-recording pairs is also affected, as they are more likely
to be clustered together on the same half of the culture (Figure 6F).

CLOSED-LOOP ROBOT NAVIGATION
All the parameters relevant to the movement of the robot are
recorded during the experiment. In Figures 7A,B, more than
1000 s of signal recordings are plotted (Figure 7A for the left side
and Figure 7B for the right side). The top panels are showing
sensory information, with the blue trace representing the aver-
age value of proximity sensors on the left side of the robot and

the red one the average value of those on the right. In the sec-
ond graph, a measure of stimulation is shown, expressed as the
mean stimulation rate. The third line of graphs reports the firing
rates, measured in spikes per second; wheel speeds (shown in the
lower graph, expressed in pixels per seconds), closely follow neural
activity.

The results of the behavior described so far can be observed in
Figures 8A–C, where a virtual arena is shown along with the path
drawn by the robot (in red) in a 20-min long robot run, respectively
in an “empty” experiment (Figure 8A), an open-loop experiment

FIGURE 8 | Robot navigation and evaluation of the closed-loop
system. (A) Reconstruction of a 20-min long robot trajectory, in an empty
MEA configuration. The white cross marks the starting position of the
robot and the red path its movement during the observation period, up to
its final position (pink circle, in the upper right corner). Dark green pixels
are either arena walls or obstacles, while light ones are free for the robot
movement. Black dots represent robot impacts with the environment.
Total lack of biological material on the MEA prevents a closing of the
sensory-motor loop. As a consequence, the robot shows a total inability to
navigate its environment. The small changes in robot heading are likely
false positives in the spike detection algorithm on background noise or
stimulation artifacts. As can be inferred from the image, though, their total
impact is almost null and the robot moves almost precisely in a straight
line. (B) Reconstruction of a 20-min long robot trajectory in open-loop.
During this robot run the control loop has been opened by stopping
stimulation to the neural culture. As a result, the robot is, similarly to the

previous case, lacking any capability of navigating its environment.
Changes in robot direction are, in this case, provoked by the spontaneous
activity of the neural network. (C) Reconstruction of a 20-min long robot
trajectory in closed-loop. While the amount of obstacles hit by the robot
shows that control is not perfect, the robot is able to take advantage of
sensory information to extricate itself from all the situations encountered
in a limited amount of time and hits. (D) Performance of the
neuro-controlled robot during an obstacle avoidance task in terms of the
mean distance between two consecutive collisions, calculated in pixels.
The values are obtained in N =5 experiments for the empty and the
open-loop case and in the N =17 experiments reported in the text (light
blue=empty MEA; blue=open-loop MEA; cyan= closed-loop MEA). The
closed-loop experiments give the best results. Statistical analysis was
carried out by using one-way ANOVA (*p < 0.05) for normal distributions
(Kolmogorov–Smirnov test of normality), while for mean comparison both
the Tukey and the Bonferroni tests were used.
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(Figure 8B) and finally a closed-loop experiment (Figure 8C).
While collisions are fairly frequent even in the latter case the behav-
ior of the robot is still much closer to the desired one rather than in
an open-loop configuration, or (obviously) in the absence of a bio-
logical substrate. As can be observed from the graph in Figure 8D,
the average path traveled between hits is significantly higher in the
case of a close-loop.

IMPACT OF MODULARITY AND TETANIC STIMULATION ON ROBOT
NAVIGATION
Despite the improvement in performance of the closed-loop sce-
nario compared to the control cases, robot collisions against
obstacles are still a frequent occurrence in random networks.
Observation of PSTHs reveals that random networks show a very
high degree of connectivity, with evoked responses showing a
strong overlap regardless of the stimulating electrodes position
(Figure 5A). The introduction of a confinement mask shows a
marked separation in the responses obtained from stimulation, as
can be observed from Figure 5B. This, in turn, leads to a reduction
in the amount of “cross talk” between input and output chan-
nels, with a consequent increase in the navigation performance
of the robot. Figures 9A,C compare the improvement in perfor-
mance between the random network structure and the modular
one. Specifically, Figure 9A shows the comparison between per-
formances evaluated as the average distance between consecutive
collisions in different conditions (without and with tetanic stim-
ulation, respectively on the left and right graphs), while Figure 9C
displays the same performances evaluated through a different
parameter, average number of hits per second. The tetanic stimula-
tion leads to a further improvement in the performance, especially
when performed on a network with a modular geometry, as can
be observed in Figures 9B,D: the first couple of graphs show the
increase in performance following the introduction of the tetanic
stimulation routine (in a random network, left, and in a modu-
lar one, right) evaluated as distance between collisions, while the
graphs in Figure 9D show the performance obtained in the same
experiment as average number of hits per second. Examples of
changes in effective connectivity obtained in modular and random
networks can be observed in Figure A1 in the Appendix. Even if
quantification will be necessary, preliminary analyses of changes
in connectivity show that tetanic stimulation does affect the net-
work response, by strengthening the connections on one side and
weakening or not affecting the connections on the opposite side.

While all of the described comparisons yield statistically sig-
nificant results in the case of the average distance parameter, it is
not the case for the average number of collisions: the only con-
dition that causes a large enough change to be significant is the
introduction of a tetanic stimulation on a modular network.

DISCUSSION AND FUTURE DEVELOPMENT
In this paper we successfully interfaced, in a bi-directional way,
a network of neurons coming from the hippocampus of embry-
onic rats with a virtual robot. The robot, which has sensors and
wheels, is forced to move in a static arena with obstacles and its task
consists in avoiding collisions. Looking at the spontaneous electro-
physiological activity of the network, we first select a set of possible
“inputs,” then we evaluate the evoked response of the entire culture

by delivering patterns of electrical stimulation. This procedure
allows us to select the “outputs” of our network. Then, by applying
a linear rate-based decoding strategy, we were able to transform the
spike frequency into velocity and the sensory information collected
by the robot“eyes”into stimulation frequency for our neurons. The
behavior of the robot during the closed-loop experiments resulted
significantly better than that in open-loop (i.e., without any sen-
sory feedback) or the “empty” MEA condition, proving that the
activity driving the robot is actually neural-based (cf. Figure 8). In
general, these results prove that an in vitro network of biological
neurons can control an external agent. While ours is not the first
setup to achieve this goal, in our knowledge, no previous work
reports an extensive set of experiments like the ones we performed
(DeMarse et al., 2001; Martinoia et al., 2004; Novellino et al., 2007;
Bakkum et al., 2008; Kudoh et al., 2011), but, rather they focus on
a single thesis supported by data obtained from a limited number
of analogous preparations. Here, we introduce for the first time
statistical comparisons obtained on a sizable number of differ-
ent preparations with highly different spiking behaviors, such as
those observed on random and modular networks. Furthermore,
bi-modularity of cultures is introduced here for the first time in
the context of closed-loop interfaces and its impact is shown to be
relevant for the performance of the embodied agent.

Early experiments on random networks showed the tendency
of these cultures to evolve toward a degenerate state where mostly
network-wide synchronous activity can be observed. The addition
of a confinement mask and the consequent modularity quali-
tatively changed the behavior of the network, preventing or at
least strongly reducing the appearance of synchronized network
bursts (cf. Figure 4). This change alone was enough to pro-
vide a significant increase in the performance of the robot (cf.
Figures 5, 6, and 9). These results lead to two possible investigation
lines on the same experimental setup: increasing the modularity
of the network might allow more complex behavior to emerge,
while chronic stimulation since the day of plating might be used
in future experiments to define functionally but not physically
distinct sub-populations of neurons within the same culture.

Another point of novelty in our approach has been the sys-
tematic use of tetanic stimulation on hippocampal cultures over
MEA. Previous approaches aiming at demonstrating plasticity in
neuronal assemblies by using stimulation protocols from embed-
ded extracellular electrodes were always applied to cortical cultures
(Jimbo et al., 1999; Madhavan et al., 2007; Chiappalone et al.,
2008; Stegenga et al., 2010). Here we used hippocampal cells and
we proved that tetanic stimulation worked successfully, providing
an increase in performance both in random and modular net-
works (cf. Figure 9). A further analysis on data is being conducted
to determine whether it is possible to define a clear relationship
between spontaneous activity of the network and its impact on
the observed changes in connectivity strength, since the patterns
of induced change proved to be more complex than expected (see
Figure A1 in the Appendix for a preliminary example of effective
connection changes induced by tetanic stimulation). This could
allow the design of a more successful learning scheme. The exact
biological mechanisms linking performance increase and tetanic
stimulation are still unclear and further investigations and tar-
geted experiments are needed. Along this direction, the use of
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FIGURE 9 | Impact of modularity and tetanic stimulation on robot
navigation. (A) Comparison of robot performances in random and modular
networks, in the absence or presence of tetanic stimulation (respectively, left
and right graph), evaluated as average distance (in pixels) between
consecutive hits. (B) Comparison of robot performances between different
conditions of tetanic stimulation, in random (left graph) and modular networks
(right graph), evaluated as average distance between hits. (C) Comparison
between robot performance in random and modular networks, in the absence
or presence of tetanic stimulation (respectively, left and right graph),

evaluated in terms of average number of hits per second. (D) Comparison of
robot performances in different conditions of tetanic stimulation, in random
(left graph) and modular networks (right graph), evaluated in hits per second.
All the values are obtained in the experiments described in text (N =11
experiments for the random condition, N =6 for the modular), with a tetanic
stimulation session following each standard robot run. Box range: percentile
25–75; box whiskers: percentile 5–95; line: median; square: mean. Statistical
analysis was carried out by using Mann–Whitney test for not-normal data,
significance level=*p < 0.05.
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pharmacological manipulation could allow to change the state of
the network and thus to investigate roles of synaptic transmission
and receptors involved in the process of adaptation and learning
depending on specific stimulation protocols.

As expected, the final performance of the robot is worse than
what was possible to achieve without including biological compo-
nents in the closed-loop (data not shown): for the task of obstacle
avoidance, it would be possible to program the robot so that it can
perform the navigation task with no risk of hitting obstacles. How-
ever, our neuro-robotic framework proved to be a valid tool for the
study of mechanisms of neural coding and the computational and
adaptive properties of neuronal assemblies with the final goal to
facilitate progress in understanding neural pathologies, designing
neural prosthetics, and creating fundamentally different types of
artificial or hybrid intelligence.
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Video S1 | Video of a closed-loop robot run. This video of a virtual robot run is
running at 40× real speed. The arena is composed of dark green solid obstacles
and light green “floor” which the robot can move upon. The magenta circle is
the virtual robot itself, the red dots highlight the path followed by the robot
center over time, while black circles represent hits against obstacles. While the
amount of obstacles hit by the robot shows that control is not perfect, the robot
is able to take advantage of sensory information to extricate itself from all the
situations encountered in a limited amount of time and hits.

Video S2 | Video of an “empty MEA” robot run. This video of a virtual robot
run is running at 40× real speed. The arena is composed of dark green solid
obstacles and light green “floor” which the robot can move upon. The magenta
circle is the virtual robot itself; the red dots highlight the path followed by the
robot center over time, while black circles represent hits against obstacles. The
starting direction of the robot in this trial is rotated 90˚ clockwise with respect to
the other two shown videos. Total lack of biological material on the MEA
prevents a closing of the sensory-motor loop. As a consequence, the robot
shows a total inability to navigate its environment. The small changes in robot
heading are likely false positives in the spike detection algorithm on background
noise or stimulation artifacts. As can be inferred from the video, though, their
total impact is almost null and the robot moves almost precisely in a straight
line.

Video S3 | Video of an open-loop robot run. This video of a virtual robot run is
running at 40× real speed. The arena is composed of dark green solid obstacles
and light green “floor” which the robot can move upon. The magenta circle is
the virtual robot itself, the red dots highlight the path followed by the robot
center over time, while black circles represent hits against obstacles. During
this robot run the control loop has been opened by stopping stimulation to the
neural culture. As a result, the robot is, similarly to the previous case, lacking
any capability of navigating its environment. Changes in robot direction are, in
this case, provoked by the spontaneous activity of the neural network.
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APPENDIX

FIGURE A1 | Maps of changes in effective connectivity. (A) Changes in
effective connectivity occurring during a tetanic stimulation experiment. The
large dots, in yellow and light blue, represent electrodes used for delivery
of both tetanic stimulation and sensory information for the left and right
inputs. The smaller dots in blue and red indicate the position of electrodes
used for recording from the two “motor” areas. Change in effective
connectivity is defined as the difference in the area of PSTHs measured
after and before the short-term plasticity experiment, divided by the
average of these two values. Variations greater than 20% are represented
as lines on the maps, with gray and black lines indicating, respectively, a
decrease and an increase in functional connectivity. Only connections
involving either stimulating electrode have been represented for clarity,
with thicker lines highlighting the connections used in the closed-loop
control of the robot (left input-left output and right input-right output areas).
This map, in particular, is displaying the change in connectivity observed on
a random culture during a 30-min short-term plasticity experiment. In this
culture, tetanic stimulation led to a widespread increase of connection
strengths involving the electrode represented in yellow, while those
involving the one in light blue underwent a mixed change, with about half of
them resulting strengthened and half of them weakened. (B) Same map as
(A) obtained from recordings on a modular culture before and after a
30-min short-term plasticity experiment. While tetanic stimulation was
delivered to both the yellow and light blue electrodes (respectively in the
“lower” and “upper” halves of the culture), only one of the sub-populations
was significantly affected, with a diffuse increase in connectivity.
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The mammalian hippocampus functions to encode and retrieve memories by transiently
changing synaptic strengths, yet encoding in individual subregions for transmission
between regions remains poorly understood. Toward the goal of better understanding
the coding in the trisynaptic pathway from the dentate gyrus (DG) to the CA3 and CA1,
we report a novel microfabricated device that divides a micro-electrode array into two
compartments of separate hippocampal network subregions connected by axons that
grow through 3× 10× 400 µm tunnels. Gene expression by qPCR demonstrated selective
enrichment of separate DG, CA3, and CA1 subregions. Reconnection of DG to CA3
altered burst dynamics associated with marked enrichment of GAD67 in DG and GFAP
in CA3. Surprisingly, DG axon spike propagation was preferentially unidirectional to the
CA3 region at 0.5 m/s with little reverse transmission. Therefore, select hippocampal
subregions intrinsically self-wire in anatomically appropriate patterns and maintain their
distinct subregion phenotype without external inputs.

Keywords: multielectrode array, dentate gyrus, GAD67, burst, GFAP

INTRODUCTION
The mammalian hippocampus crucially encodes the formation
of long-term episodic memories and spatial navigation, yet the
staged encoding mechanisms remain elusive. While we know
molecular details of many types of synapses in the major regions
of the hippocampus important to learning and memory at the
single neuron level, we don’t know if these regions self-wire into
the anatomically accurate network or require external electrical
or chemical inputs. Further, brain functional studies are saddled
with a tradeoff between high-spatial resolution (e.g., MRI, fMRI,
EEG, EcoG) vs. high-temporal resolution (e.g., in vivo electrode
arrays, single cell patch clamp). To bridge this gap, our strat-
egy employs in vitro culture in an attempt to recapitulate entire
in vivo brain regions in culture. Today a wide variety of cell types
from various areas of the brain can easily be explanted, cultured
in vitro, and studied in detail. While in vitro technology does pro-
vide exquisite temporal and spatial access it too has significant
shortcomings. A key hurdle toward reconstructing brain areas
in vitro has been the difficulty controlling the structural connec-
tivity among cells to begin to recapitulate the in vivo architecture.
The connections in the hippocampal formation of the brain
uniquely propagate forward excitatory communication from one
region to the next with the CA3 region distinctive for recurrent
collateral excitation. We begin to create a functional tri-synaptic
network of the hippocampal formation from the entorhinal cor-
tex (EC) to the dentate gyrus (DG) to the CA3 to the CA1 (Cajal,

1968; Amaral and Lavenex, 2006). Other aspects of hippocam-
pal anatomy not modeled here are the connections from the EC
through the perforant path to the CA3 in a feed-forward fash-
ion. In addition, the hippocampus receives modulatory inputs
from the amygdala and basal forebrain. Output from the CA1
proceeds through the subiculum and returns to the EC to com-
plete the loop. With smaller numbers of electrodes placed in the
rat brain, others have monitored activity from each hippocampal
region in behaving animals to describe specific patterns of activity
for each region (Rolls and Kesner, 2006; Leutgeb et al., 2007), sug-
gesting staged encoding, but we lack information about the inputs
necessary to evoke these patterns and their network relationships.

To achieve these staged connections, we combine microfab-
rication (MEMS) technology to channel connections between
cultured subregions of the hippocampus on a multi-electrode
array to simultaneously monitor activity (Figure 1). Inspired by
Campenot (1977, 1987), the MEMS device creates compart-
ments in which we separately place cells from each major area
of the hippocampus (EC, DG, CA3, CA1) connected by micro-
scale tunnels through which axons can pass between the wells
to define neuronal communication pathways between each well
(Taylor et al., 2005; Dworak and Wheeler, 2009; Pan et al., 2011;
Kanagasabapathi et al., 2012). Due to the defined geometry of the
hippocampus, the cells can be dissociated from micro-dissected
subregions of DG, CA3, CA1, and EC (Mattson et al., 1989;
Baranes et al., 1996; Zhao et al., 2001; Lein et al., 2004). Cells
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FIGURE 1 | Experimental system for reconstruction of hippocampal

sub-regional circuits on multi-electrode array. (A) Dual culture chamber
on microelectrode array separated by microtunnels. Note ground electrode
on lower left for common culture medium, (B) 51 tunnels of 400 um length
aligned to the 8 columns of electrodes. (C) Fifty-one tunnels of 3× 10 um
cross section were separated by 40 um with alignment over one pair of
dark electrodes shown. (D) Phase contrast imaging of live neurons shows
how the tunnels promoted selective growth of axons from one
compartment into another.

are loaded into the compartments after the device is placed
over an array of extracellular electrodes (microelectrode array or
MEA) to measure neural activity in each subnetwork as well as
communication between the subnetworks through the tunnels
(Morefield et al., 2000; Czarnecki et al., 2012; Downes et al., 2012;
Kanagasabapathi et al., 2012; Dranias et al., 2013).

Here we reconstructed paired components of the tri-synaptic
pathway, with a focus on the DG to CA3 connection to deter-
mine: (1) whether specific subregions of the hippocampus be
reproducibly dissected as evidenced by region-restricted gene
expression? (2) Will these regions maintain and establish their
original identity in a uniform culture environment when removed
from external hormonal gradients and input activity? (3) Given
that CA3 development precedes DG in vivo (Bayer, 1980), is
the natural axonal polarity of DG>CA3 intrinsically controlled
by the neurons or does in vivo recapitulation of connectivity
require external cues? (4) Do the dynamics of neural activ-
ity differentiate between each area in vitro and to what extent
are they similar to activity patterns seen in vivo? We addressed
the above issues by quantitative PCR of region-restricted gene
expression, by evaluation of distinct spike and burst dynamics
in each sub-region compartment and by establishing the polarity

of directional communication between sub-regions, whether
random or anatomically accurate from the DG to the CA3.
Surprisingly, intrinsic capabilities of the DG neurons promote
axon extension toward the CA3 neurons, with limited back prop-
agation.

RESULTS
In order to reconstruct subregions of the rat hippocampus, we
microscopically dissected these regions from postnatal day 4 rats.
At this time, the CA3 and CA1 are well-developed and the dentate
granule and hilar region (DG) have nearly completed neurogen-
esis (Bayer, 1980). Single cell suspensions from each region were
plated into separate compartments of a microfabricated PDMS
device, positioned over a 60 electrode microarray (Figure 1). Cells
were plated at physiological density ratios of 100 for DG to 33 for
CA3 or 41 for CA1. Between the two compartments was a 400 um
barrier perforated by a series of 51 narrow channels that excluded
cell somata, but promoted growth of axons along the length
of the tunnels (Taylor et al., 2005; Dworak and Wheeler, 2009;
Berdichevsky et al., 2010; Pan et al., 2011; Kanagasabapathi et al.,
2012; Wang et al., 2012). For quality control of the dissection
and to determine whether the microdissected DG, CA1, and CA3
regions maintain their in vivo identity in culture, we performed
qPCR on the neurons that developed in the compartments for
3 weeks. We selected several genes based on their demonstrated
enrichment in specific regions of the adult hippocampus (Lein
et al., 2004). When standard, uniform cultures from a single
subregion were assessed from glass slips without tunnel devices,
the adult animal enriched gene expression was replicated with
detection of specific transcripts for each region DG, CA1, and
CA3 cultured in the common culture medium (Figure 2A). But
would the subregion types of expression be maintained across the
microtunnel devices? Figure 2B shows that the same subregion-
enriched gene expression is maintained between compartments
with the same subregion in each compartment as well as in
devices with different subregions on each side (Figures 2C–E).
These results indicate the fidelity of the dissection and culture
process as well as the ability of these hippocampal subregions
to maintain their specific identities in the absence of external
vascular, hormonal, or electrical instruction.

We examined network spike and burst dynamics with the goal
of decoding communication between hippocampal subregions.
We recorded from paired compartments of DG and CA3 neu-
rons as a model of this part of the brain anatomy. As controls, we
recorded activity from networks comprised of either DG on both
sides or CA3 neurons on both sides of tunnel-connected com-
partments or in random single compartment models. Regardless
of configuration, 80% of electrodes were active with an average
spike rate around 12 Hz in the NbAct4 medium (data not shown).
However, burst dynamics differed between hippocampal subre-
gions. The spike rate outside of bursts for DG increased with
anatomically correct tunnel connection to CA3 neurons, while
CA3 neurons showed the opposite trend (Figure 3A). Figure 3B
shows that about 60% of spikes occurred within bursts in DG
networks, regardless of configuration, while only 45% of spikes
occurred in bursts in the CA3 networks apposed in tunnels. The
average duration of each burst (Figure 3C) showed trends that
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FIGURE 2 | Expression of region-enriched genes in sub-compartments

phenocopies selective expression in the adult hippocampus as

measured by qPCR. Specific genes probed for expression after 3 weeks in
(A) the indicated homogeneous random cultures without tunnel devices.
Note enrichment of Trpc6 in the DG cultures, Prkcd in the CA3 cultures, and
Nov in the CA1 cultures. (B) The same hippocampal subregions plated into
each of two compartments of the tunnel device. Note same enrichment
profile in the tunnel device as in the random cultures. (C) Enriched
expression of the DG gene Trpc6 whenever DG neurons are present in
heterologous combinations of hippocampal subregions cultured between
tunnels, normalized to DG cultured on both sides of the tunnels. (D)

Enriched expression of the CA3 gene Prkcd when CA3 neurons are present
in heterologous combinations of hippocampal sub-regions cultured
between tunnels, normalized to CA3 cultured on both sides of the tunnels.
(E) Enriched expression of the CA1 gene Nov when CA1 neurons are
present in heterologous combinations of hippocampal sub-regions cultured
between tunnels, normalized to CA1 cultured on both sides of the tunnels.
Note the similar expression of each region-specific gene to neurons of that
region in combination with heterologous regions, while the other 4
combinations without this region express lower levels of this marker mRNA
(n = 3 separate cultures).

mirrored the extra-burst spike rate, with DG apposed to CA3
showing longer burst durations while CA3 bursts were shorter.
The larger changes in inter-burst interval (Figure 3D) showed a
co-modulation upon anatomical connection with increased inter-
vals for the DG and CA3 apposed configuration. Intraburst spike
rate (Figure 3E) and spikes per burst (Figure 3F) also differed
with configuration.

In vivo, granule cells in DG uni-directionally synapse with
pyramidal cells in CA3 with no back-propagation of connections
from CA3 to DG. In our preparation, cells from DG and CA3 were
plated simultaneously in apposing compartments that would per-
mit connectivity in either direction. If axonal polarity of DG→
CA3 is intrinsically controlled by the neurons (i.e., self-wire) in
the absence of other external cues found in vivo, then polarity

FIGURE 3 | Region-specific burst dynamics. Normal distribution statistics
indicate (A) mean extra-burst spike rate differs (i) in tunnels compared to
corresponding random cultures and (ii) is higher for DG than CA3 apposed
across tunnels. (B) Percent spikes in bursts are generally higher for any DG
culture than any CA3 culture. Log normal distribution statistics apply to
(C–F). (C) Burst duration was longer for DG than CA3 when they were
apposed. For random cultures without tunnel devices, DG burst durations
are much lower than CA3 random cultures. (D) Inter-burst intervals are
lengthened by 50% in DG apposed to CA3 compared to DG self-apposed
across tunnels and 300% compared to DG in random networks. Similarly,
inter-burst times are longer for CA3 apposed to DG than CA3 apposed to
itself or random CA3 cultures. (E) Intra-burst spike rates are shortened by
20% in DG apposed to CA3 compared to DG self-apposed across tunnels
but longer in the reverse direction. (F) Spikes per burst decreased by 14%
in DG apposed to CA3 compared to DG self-apposed across tunnels and
even less in the reverse direction. In all cases n displayed is total degrees of
freedom from burst or non-burst segments from 3 min recordings of
networks of 4 random DG, 4 random CA3, 8 DG(DG), 8 CA3(CA3), 5
DG(CA3), and 5 CA3(DG). Different letters above bars indicate significant
differences (a shared letter indicates a non-significant comparison) by
post-hoc Tukey multiple-comparison analysis after significant ANOVA,
p < 0.05, normal distribution statistics.

of connectivity from DG-CA3 should be maintained in vitro and
could also account for the distinct burst dynamics of DG apposed
to CA3. Previously, we showed that selective axon polarity from
one side to the other, as opposed to bi-directional axon crossing,
could be achieved in cortical neurons across tunnels by plating
and culture of one side of a device followed after 1 week by plat-
ing and culture on the opposite side (Dworak et al., 2010; Pan
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et al., 2011). Here we tested whether intrinsic DG neuron prop-
erties would mimic in vivo conditions and preferentially cross the
tunnels to innervate the CA3 neurons in the other compartment
when both compartments were plated on the same day, with fewer
axons crossing from CA3 to DG (reverse direction). This axon
polarity could be measured in our devices by the direction of the
time delay between spikes detected on the two microelectrodes
embedded in the tunnels as shown in Figure 4Ai where a 0.48 ms
delay from the DG side to the CA3 side over the 0.2 mm distance
indicates a forward conduction velocity of 0.42 m/s. In contrast,
when CA3 was connected to CA3 (or DG-DG), Figure 4Aii shows
a 0.40 ms delay in the opposite direction, implying a reverse speed
of 0.50 m/s that was evident in about half the spikes in these
configurations. Individual tunnels were examined to determine
whether axon conduction velocity was directionally polarized or
whether evidence of multiple spike heights and shapes suggested
several axons in a tunnel. Statistics based on all spike pairs above

FIGURE 4 | Native polarity established from DG to CA3. Delay times of
spikes traveling in axons in tunnels were determined from the difference in
spike times at two tunnel electrodes separated by 200 µm. (Ai) Example of
spike travelling from DG to CA3 with a 480 µs delay indicating a velocity of
0.42 m/s. (ii) Example of spike propagation from the top to the bottom
compartment (arbitrarily designated reverse direction for CA3-CA3). (B)

Statistical analysis of directional propagation indicates 62% of tunnels
spontaneously connect axons with anatomical accuracy from DG-CA3,
while homologous regions across tunnels fail to show polarity (Wilcoxin
non-parametric test).

a high positive threshold indicated 81% unidirectional axon con-
duction from DG to CA3 at a mean velocity of 0.54± 0.02 m/s
(SD., n = 9167 spike pairs). Other positive conduction velocities
were DG:DG 0.47± 0.02 (n = 2615) and CA3:CA3 0.51± 0.01
(n = 1343) m/s, all within the range for the hippocampus in vivo
(Patolsky et al., 2006).

Closer examination on a tunnel by tunnel basis revealed a
more complicated situation. In 3 tunnels on one array, >99% of
the spikes propagated from DG to CA3. In other tunnels, exam-
ination of the waveforms for negative directions from CA3 back
to DG indicated multiple roughly simultaneous spikes, likely the
spikes from two or more axons, whose sum was detected by the
electrode as a shift in the peak within the 2 ms detection window.
We never observed a tunnel with only back propagation, suggest-
ing that these events are rare and supporting the conclusion that
axons from DG neurons preferentially connect to CA3. For all
the DG-CA3 tunnels with measurable spike pairs (n = 26 tun-
nels), more than >60% of the spikes propagated from the DG to
CA3 direction (Figure 4B). This polarity contrasts with the nearly
equal directional distributions of DG-DG and CA3-CA3.

Differences in GABAergic neuron and astroglia content could
also affect burst dynamics. Transfection of networks with a Lenti
virus carrying a GFP reporter driven by the inhibitory neuron
GAD67 promoter was used to evaluate neurons expressing the
GABA synthetic enzyme GAD67. Figure 5 shows higher GAD+
inhibitory neuron density in heterologous sub-region connec-
tions in DG compared to CA3 (Figures 5A,B) and higher GAD+
inhibitory neurons/nucleus in homologous sub-region connec-
tion in DG compared to CA3 (Figures 5C,D). Quantitation of
GAD67 neurons relative to nuclei (Figure 5G) showed a 5-fold
increase in GAD+ neuron density in DG over CA3 for het-
erologous and a 3-fold increase in the homologous configura-
tion. The dissected DG region which includes the hilus contains
a higher percentage of GAD67 expressing neurons than CA3
(Harvey and Boksa, 2011) that could contribute to a stronger
inhibitory drive to enable a higher percentage of spikes in bursts
(Figure 3B) and a longer burst duration (Figure 3C) for DG
than CA3. The same mechanism could also contribute to the
longer inter-burst intervals in DG apposed to CA3 (Figure 3D)
and offer more opportunity for higher extra-burst spike rates.
Some of these GAD67 neurons sent axons across the tun-
nels (not shown), better seen with GAD65 immunoreactivity
(Figure 5I), as a feed-forward inhibitory component (Cabezas
et al., 2012).

By increasing glutamate uptake, higher astroglial density could
also affect burst dynamics (Boehler et al., 2007). A nuclear count
of more than 2-fold above the plating density for CA3 apposed to
DG (Figure 5H) suggested proliferation of astroglia. Figures 5E,F
show that GFAP stain for astroglia are indeed more activated in
the CA3 side than the DG side.

DISCUSSION
Here we reconstructed rat hippocampal sub-regions in pairs
connected by axon-conducting tunnels to demonstrate intrin-
sic retention of in vivo behavior in the absence of external
electrical and hormonal stimuli. The subregions maintained
their physiological distinctions based on qPCR expression of
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FIGURE 5 | DG networks contain 3–5× more GABAergic (GAD67-GFP)

neurons than CA3 networks while CA3 has more astroglia. Some
GAD+ neurons traverse the tunnels. (A–D) Green is GAD67-GFP expression
11 days after infection with Lenti-virus with GAD-67 promoter fused to GFP.
Red is pseudocolored for blue bisbenzamide labeled nuclei. (E,F) GFAP
immunostain in DG or CA3 compartments. (G) Nuclei per somata from
bisbenzamide stain for DNA. Note red vertical striped CA3 apposed to DG
is 50% higher than CA3 by itself. (H) Percent GAD67 labeled neurons per
nuclei. (N = 6 20× fields from each of 2 networks). (I) GAD65
immunolabeled axons traverse tunnels.

subregion-enriched genes, distinct spike dynamics, GABAergic
neurons, astroglia, and preferential wiring direction.

Our observations on spike and burst dynamics are consistent
with a synchronously connected network; neither DG nor CA3
operates as an independent oscillating/bursting center. Isolated
DG neurons in the network burst at a higher rate than CA3
neurons, suggestive of regions preprogrammed to drive faster
bursting DG onto slower bursting CA3, but operating in con-
strained fashion with predominantly forward connectivity from
DG to CA3, but sufficient recurrent GABA-ergic innervation
in DG and astroglia (Boehler et al., 2007) in CA3 to modu-
late the dynamic behavior. Further, the higher extra burst spike
rate, slightly longer burst duration and GABAergic neuron den-
sity in DG provide extra drive from DG to CA3, establishing the
background readiness of CA3 to be receptive to other inputs for
learning or information fusion.

A key hurdle toward reconstructing brain areas in vitro has
been the difficulty controlling the structural connectivity among
cells to reflect, or even begin to adequately recapitulate the in vivo
architecture in an in vitro model. A variety of novel in vitro tech-
nologies address this difficult problem. These technologies have
been targeted toward modifying the surface chemistry to provide
guidance cues that promote preferential attachment and growth
(Boehler et al., 2012), using microfluidics (Morin et al., 2006), or
alternatively, to capitalize on the intrinsic neuronal property to
follow topographical features in their environment such as pil-
lars (Dowell-Mesfin et al., 2004), ridges (Curtis and Wilkinson,
1997), or gradients (Hattori et al., 2010). The tunnel approach
used in this paper confirms the intrinsic ability of ex vivo neurons
to reconnect in an in vivo order (Czarnecki et al., 2012; Downes
et al., 2012; Kanagasabapathi et al., 2012; Dranias et al., 2013).

Our model is a greatly reduced analogue of the in vivo cir-
cuit due to its anatomical incompleteness as a two-dimensional
network. It fails to include modulatory cholinergic, noradren-
ergic, seratonergic, or dopaminergic inputs. It certainly lacks
hormonal fluctuations and efficient removal of waste metabolites.
With extracellular electrodes, we only monitor the net effects of
thousands of synapses as individual action potentials per neuron.

Advantages of this model include direct stimulation and moni-
toring of electrical activity on time scales of milliseconds to weeks,
pharmacologic access and most importantly, the ability to moni-
tor inputs, axon communication, and outputs of the hippocampal
region. The hippocampus is well-known for its different levels
of information processing, but the details of the coding remain
elusive. Our model has the potential to decode the information
from the easily monitored spiking dynamics between hippocam-
pal subregions. This technology will enable determination of the
network integration of stimulation-dependent plasticity and how
subregion-specific information patterns are reliably transmitted
but differentially processed within each hippocampal subregion.

MATERIALS AND METHODS
MICROFABRICATION OF TWO-COMPARTMENT TUNNEL DEVICES
A multilayered mold made of photoresist SU-8 was fabricated on
a silicon wafer. The first layer of the mold was made for the micro-
tunnel structure. Briefly SU-8 2002 (Microchem, Inc.) was spun
on a 4-inch silicon wafer at a nominal thickness of 3 µm, baked,
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exposed with the first mask, baked again, and developed. The sec-
ond thicker layer of the mold was made for the well-structure.
SU-8 2050 was spun on at a nominal thickness of 120 µm and
then baked. The second mask was aligned to marks on the sil-
icon wafer and then the second SU-8 film was exposed, baked
again and developed. This mold was slowly filled with PDMS sil-
icone rubber [polydimethylsiloxane; Sylgard 184 (Dow-Corning,
Midland, Michigan) 10:1 ratio of pre-polymer (base)/cross-linker
(curing agent)]. Once the PDMS spread over the entire wafer, it
was heated for 2 h at 70◦C for curing or in later devices, 10 h at
70◦C. Two wells for culture and another smaller circular well for
a reference electrode were formed on the peeled PDMS with a
punch. Finally, a circular PDMS ring was placed around the entire
device to form a chamber for holding cell culture media.

DISSECTION OF RAT HIPPOCAMPAL SUBREGIONS
The SIUSM LACUC approved these experiments as conforming
to the Laboratory and Animal Use Guidelines of the NIH. To
obtain neurons for electrical and genetic analysis, hippocampal
sub-regions were isolated from anesthetized 4-day-old Sprague–
Dawley rat pups as described (Mattson et al., 1989; Baranes et al.,
1996; Zhao et al., 2001; Lein et al., 2004). The entire hippocam-
pus was dissected away from the overlying neocortex of each
brain hemisphere and removed as an intact structure for fur-
ther sub-region dissection. The boundaries of the DG could be
seen in the dissected hippocampus. Briefly, the CA1 or top por-
tion of Ammon’s horn was isolated at the natural division of
the hippocampal fissure separating CA1 and DG-CA3. Using DG
rostral and ventral ends as anchors, cuts were first made along
the DG-CA1 boundary until the CA1 was separated and isolated.
The CA3 sub-region (bottom remainder of Ammon’s horn) was
then dissected away from the DG following the clearly visible
boundaries.

NEURON CULTURE
Hippocampal sub-region cells were plated at 1000 cells/mm2 for
DG, 330 cells/mm2 for CA3, and 410 cells/mm2 for CA1 on poly-
D lysine coated MEAs or glass cover-slips with attached PDMS
micro-tunnels in NbActiv4™ medium (Brewer et al., 2008)
(BrainBits, Springfield, IL). Poly-D-lysine (Sigma SLBB8061V)
was dissolved at 37◦C for 1 h in sterile water before appli-
cation to the devices at 100 µg/mL and incubation overnight
at room temperature. The PDMS tunnels served to connect
axons from the separated source sub-region to the target sub-
region. Sub-region cultures were plated at a ratio respective
to their anatomical density in vivo (final ratios DG-CA3 3:1,
CA3-CA1 1:1.25) (Braitenberg, 1981). Figure 1 depicts tun-
nel dimensions in relation to MEA dimensions. Briefly, the
dimensions of 51 tunnels were 400 µm long, 10 µm wide, and
3 µm height with spacing 40 µm apart allowing for the cov-
erage of seven electrode pairs in the middle of the MEA.
Twenty-two electrodes were left uncovered in each of the top
(target) and bottom (source) wells of the MEA (well area =
6.28 mm2). Homologous cultures connected with tunnels were
plated at a 1:1 ratio. Homologous random cultures were plated
on 15 mm glass slips (Assistant Brand, Carolina Biologicals).
Source cultures were plated first on the bottom half of the

MEA and incubated for 15–30 min before adding target cultures.
Cultures were incubated at 37◦C, 5% CO2, 9% O2 and satu-
rating humidity (Thermo-Forma, Columbus, OH). Every 4–5
days, one-half of the culture medium was removed and replaced
with the same volume of fresh medium up until the day of
recording.

HIPPOCAMPAL SUB-REGION RNA EXTRACTION AND DETECTION
THROUGH qPCR
RNA was extracted from 3 week old cultures using 20 µL
(device compartments) or 100 µL (random) Trizol (Life
Technologies #15596-026) applied directly to glass cover-slips
or tunnel wells. After addition of 20% volume chloroform
and 5% glycogen (final 250 ug/mL), samples were centrifuged
and precipitated according to the manufacturer. Five hundred
nanograms of RNA was used to create a cDNA pool with the High
Capacity RNA-to-cDNA Kit (Applied Biosystems #4387406) per
instructions. Hundred nanograms of cDNA was used in a
20 µL multiplex Taqman reaction using primers known to
be enriched in specific hippocampal sub-regions (Lein et al.,
2004): Transient receptor potential cation channel 6 enriched
in DG (Trpc6, Applied BioSystems 00677559); Protein kinase C
delta enriched in CA3 (Prkcd, Applied BioSystems #00440891),
family of serine and threonine specific protein kinases acti-
vated by calcium and secondary messenger diacylglycerol;
Nephroblastoma overexpressed gene enriched in CA1 (Nov,
Applied BioSystems #00578390), family of CCN secreted extra-
cellular matrix associated signaling proteins; and polymerase
(RNA) II (DNA directed) polypeptide A (POLR2a, Applied
BioSystems #4448489) as the internal standard reference.
POLR2a was chosen as the internal standard reference over the
more conventional housekeeping gene GAPDH because the
lower level of expression (Alan Brain Atlas) is more appropriate
for other low expression genes. qPCR reactions were run with
a 2× master mix (Applied Biosystems #4369016) in a StepOne
Plus PCR system (Applied Biosystems) at the manufacturer’s
recommended optimized conditions of 10 min at 95◦C for
enzyme activation followed by 40 cycles of (15 s denaturation
at 95◦C and 1 min anneal/extend at 60◦C). Primer expression
was normalized to POLR2A with fold change differences deter-
mined using the 2��Ct method. Graphed results show fold
changes in the hippocampal sub-region gene probe expres-
sion relative to the hippocampal sub-region of known gene
enrichment.

MULTI-ELECTRODE ARRAYS AND RECORDING
MEA’s from Multichannel Systems (MCS, Reutlingen, Germany)
consisted of 60 TiN3 electrodes with diameters of 30 µm and
spacing of 200 µm, one of which served as ground. The sponta-
neous activity on the MEA’s was measured using an MCS 1100×
amplifier at 25 kHz sampling with a hardware filter of 1–3000 Hz
at 37◦C under continuous flow of hydrated, sterile 5% CO2, 9%
O2, balance N2 (custom made, AGA, Springfield, IL). A Teflon
membrane (ALA Scientific, Westbury, NY) was used to reduce
evaporation and chances of contamination. MCRack software
was used to record 3 week old cultures for 3 min of spontaneous
activity.
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SPIKE ACTIVITY ANALYSIS
Offline data analysis was performed using a modification of
SpyCode V2.0 software (Bologna et al., 2010) including custom
MATLAB scripts (The Mathworks, Natick, MA). After filtering
the data with at 300 Hz high pass, spikes were identified as
peak-to-peak amplitudes that exceeded 9 times the minimum
root-mean-square of 200 ms contiguous windows. A dead-time
or refractory period of 1 ms was assumed after each detected
spike. Bursts were defined as 4 or more spikes with no greater
than a 50 ms inter-spike interval.

Delay times of spikes within tunnels were used to determine
directionality. Due to larger amplitudes in tunnels, thresholds
were determined on a per-electrode basis as visually selected
asymptotic minima of the continuous voltage distribution.
Furthermore, the time stamp of any spike event was chosen as
the time of occurrence of the voltage maximum within any such
event. A histogram of delay times between spike pairs was con-
structed within the limits of ±280–600 µs, conforming to the
known range of axonal conduction delays (Patolsky et al., 2006)
and limited in resolution by the 40 µs sampling period. The
histograms showed distinct peaks, each indicating the high pre-
cision in delay time that is consistent with an action potential
propagating on a single axon past a pair of electrodes.

GAD67 GFP REPORTER FOR GABAergic NEURONS
At 7 DIV, a fluorescent GAD67 lenti-virus reporter (System
Biosciences #SR10023VA-1, 10 µg/ml) diluted in 8 µg/ml pro-
tamine sulfate for better adsorption (Sigma# P4020) was added
to DG and CA3 sub-cultures with PDMS micro-tunnels on glass
cover-slips. Cultures were incubated in NbActiv4 medium for two
more weeks before imaging. At 3 weeks, cultures were switched
from NbActiv4 medium to Hibernate Low Fluorescence—
Glucose (BrainBits #112012) and bisbenzamide was added to
stain cell nuclei for 2 min (final concentration 300 ng/ml, diluted
in PBS, Sigma #B2261). Cultures were rinsed two times in
Hibernate LF—glucose before being imaged. Images were taken

through an Olympus 20×/0.45 objective, and recorded with a
Retiga Exi CCD camera (QImaging, Surrey, BC, Canada). Image
Pro+ software was used in digital analysis and display of the
immunostain and nuclear stain. After flattening backgrounds, a
constant density segmentation threshold was set for cell counts.

GFAP OR GAD65 IMMUNOSTAINS FOR ASTROGLIA OR GABAergic
NEURONS
For immunostains, DG and CA3 sub-cultures with PDMS micro-
tunnels were plated as described previously on glass cover-slips
and cultured for 3 weeks, then fixed in 4% paraformaldehyde
for 10 min. Cells were permeabilized and weakly antigenic sites
blocked in 5% normal goat serum and 0.5% Triton X-100 in
PBS. Conjugate mouse anti-GFAP/Alexa Fluor 488 (Molecular
Probes #A21294) was diluted 1:500 in 5% NGS and 0.05 TX-
100. Cells for incubated for 90 min at 22◦C, then rinsed four
times in PBS. Other antibodies were mouse anti-GAD65 1:250
(Sigma #G1166) with secondary Alexafluor 588 conjugated goat
anti-mouse 1:1000 (Molecular Probes #11031). Nuclei of cells
were stained for 2 min with bisbenzamide (final concentration
300 ng/ml, diluted in PBS, Sigma #B2261). Slips were rinsed two
final times, imaged through an Olympus 20×/0.45 objective, and
recorded with a Retiga Exi CCD camera (QImaging, Surrey, BC,
Canada).

STATISTICS
Statistical differences were determined by Student’s t-test with
p < 0.05 considered significant for two-way comparisons of
data normally distributed. Log-normal adjustments were made
when appropriate. Post-hoc Tukey adjustments for multiple-
comparisons are reported after significant ANOVA. Statistical
differences of spike times were determined by the Wilcoxon test
with significance at p < 0.05 (Hollander and Wolfe, 1999).
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Learning in neuronal networks can be investigated using dissociated cultures on multielec-
trode arrays supplied with appropriate closed-loop stimulation. It was shown in previous
studies that weakly respondent neurons on the electrodes can be trained to increase their
evoked spiking rate within a predefined time window after the stimulus. Such neurons can
be associated with weak synaptic connections in nearby culture network. The stimulation
leads to the increase in the connectivity and in the response. However, it was not possible to
perform the learning protocol for the neurons on electrodes with relatively strong synaptic
inputs and responding at higher rates. We proposed an adaptive closed-loop stimulation
protocol capable to achieve learning even for the highly respondent electrodes. It means
that the culture network can reorganize appropriately its synaptic connectivity to generate
a desired response. We introduced an adaptive reinforcement condition accounting for the
response variability in control stimulation. It significantly enhanced the learning protocol
to a large number of responding electrodes independently on its base response level. We
also found that learning effect preserved after 4–6 h after training.

Keywords: multielectrode arrays, hippocampal cultures, closed-loop, learning in vitro, learning in neural networks

INTRODUCTION
Neuronal networks formed in dissociated cultures grown on mul-
tielectrode arrays have been widely used as a biological model to
monitor mechanisms of information encoding, synaptic plasticity,
memory formation, and learning at the network level in vitro (le
Feber et al., 2010; Frega et al., 2012; Maccione et al., 2012). Pla-
nar microelectrode systems permit simultaneous recording and
electrical stimulation in different parts of the cultured neuronal
network (Thomas et al., 1972).

After 2–3 weeks of spontaneous development the cultured neu-
ral networks display spontaneous burst discharges. The discharges
consist of 0.1–1 Hz sequences of population bursts of 50–300 ms
duration. Recent investigations showed that spatio-temporal pat-
terns of spiking activity within the bursts are organized in a
statistically repeatable and reproducible way (Raichman and Ben-
Jacob, 2008; Pimashkin et al., 2011). Such repeatability indicated
the presence of quite stable synaptic connectivity formed in the
cultured network. External electrical stimulation modified the
spiking pattern and, hence, induced long-term changes in the
synaptic architecture of the underlying network. If the stimula-
tion is applied with closed-loop conditions such changes may be
directed to achieve a predefined profile of the evoked response.
The latter can further be associated with navigating robots capa-
ble to implement simple behavioral tasks (Chao et al., 2008; Shahaf
et al., 2008).

Low-frequency electrical stimulation in the form of pulse train
(0.03–0.1 Hz) induced population burst responses over most of
the neurons in the network during 50–300 ms after the stim-
ulus artifact (Maeda et al., 1995; Wagenaar et al., 2004). Such

stimulation did not change functional characteristics of the evoked
response at both short and long-term periods (Chiappalone et al.,
2008). However, spontaneous bursts can change their pattern after
the low-frequency stimulation indicating changes in the network
connectivity (Brewer et al., 2009; Bologna et al., 2010; Ide et al.,
2010; le Feber et al., 2010). Increasing the stimulation frequency
up to 1 Hz or higher led to suppression of the evoked responses
(Jimbo et al., 1993; Shahaf and Marom, 2001; Eytan et al., 2003;
Wagenaar et al., 2005; le Feber et al., 2010). Note, that tetanic
stimulation with 10 Hz induced spike timing-dependent plas-
ticity (STDP) in the culture network (Wagenaar et al., 2006a,b).
Note also, that if signal propagation through synaptic pathways
was blocked by applying 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX) and (2R)-amino-5-phosphonovaleric acid (APV), the
antagonists of N-methyl D-aspartate (NMDA) and α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptors,
then the evoked spikes can be observed only at latencies shorter
than 10 ms (Wagenaar et al., 2004). They represent a direct
response on the excitation of an axon passing both the stim-
ulation and the recording electrode, or on the excitation of a
cell whose axon passes the recording electrode. Blocking Na+
channels by tetrodotoxin (TTX) abolished all spontaneous and
evoked activity in culture network. These results suggested that
in normal conditions the stimulus evoked spikes with the laten-
cies greater than 10 ms represented “network” spikes generated by
signal propagation through the synaptic pathways of the culture
network.

A closed-loop protocol of learning in cultured network of cor-
tical neurons stimulated by low-frequency signal (0.3–1 Hz) was
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proposed by Shahaf and Marom (2001). Each stimulus response
was defined as a number of evoked spikes appeared in 50± 10 ms
post-stimulus interval. For continuous stimulation they intro-
duced the response-to-stimulus ratio (R/S) for the single electrode.
This quantity was defined as a moving average over 10 preceding
responses. It characterized slow changes in the response caused
by plasticity of synaptic pathways between neurons located near
stimulating and recording electrodes. If the R/S value exceeded
a certain threshold (R/S = 0.2 in Shahaf and Marom, 2001) the
stimulation was stopped for 5 min providing the reinforcement.
Then the cycle was repeated several times. Time interval needed to
reach the threshold in each cycle was treated as adaptation time.
The decrease of the adaptation time during the stimulation cycles
was then interpreted as learning. Contrariwise, low-frequency
stimulation in conditions without the reinforcement (e.g., open-
loop conditions) did not induce the learning effect. Changes in
the response was observed only on the trained electrode, whereas
such effect was not found on the other electrodes. le Feber et al.
(2010) found that closed-loop stimulation in cortical cultures
induced significant changes in synaptic connectivity in contrast
to the open-loop conditions. It was also noted that after training
the spontaneous bursts were changed enhancing their correla-
tion and synchrony (Li et al., 2007). This learning protocol was
used in several other studies (Marom and Shahaf, 2002; Stegenga
et al., 2009). It is important to note that only low-active elec-
trodes recording one spike per 10 stimuli (e.g., with R/S = 0.1)
were used for learning. Long-term changes were monitored for
more than 30 cycles of stimulation. Electrodes with higher R/S
(R/S = 0.5) were also examined for learning, but the learning
effect was observed only during first six cycles of stimulation
(Staveren et al., 2005).

In this paper we presented our results of learning experi-
ments in hippocampal cultured networks on multielectrode arrays
with closed-loop stimulation. Using adaptive and activity depen-
dent reinforcement condition we found that the electrodes with
relatively high response activity (R/S > 0.1) can be used for
learning. Thus, the closed-loop stimulation could modify culture
network synaptic pathways with relatively strong connections typ-
ically formed in spontaneous development. We also showed that
the adaptive reinforcement significantly enhances the number of
highly respondent electrodes (typically more than 50%) relative
to the ones with lower response (R/S < 0.1) used in the previous
studies.

MATERIALS AND METHODS
CELL CULTURING
Cell cultures were prepared from the hippocampus of C57BI6 mice
embryos at 18th prenatal day (E18) following standard procedures
(Potter and DeMarse, 2001; Pimashkin et al., 2011). After trypsin
treatment cells were dissociated by trituration and plated on 64-
electrode arrays (Alpha MED Science, Japan), pre-coated with
adhesion promoting molecules of polyethyleneimine (PEI). The
final density of cell culture was about 15,000–20,000 cells/mm2.
Note that in previous studies researchers used cultures with cell
density of about 10,000–50,000 cells/mm2 (Shahaf and Marom,
2001) and 5000 cells/mm2 (le Feber et al., 2010). In both
studies the cultures were plated from cortical cells. In similar

learning experiments with hippocampal cultures the density was
2000 cells/mm2 (Li et al., 2007).

Cells were stored in culture neurobasal medium (Invitrogen
21103-049) with B27 (Invitrogen 17504-044), Glutamine (Invit-
rogen 25030-024) and fetal calf serum (PanEco κ055), under
constant conditions of 37◦C, 100% humidity, and 5% CO2 in
air in an incubator (MCO-18AIC, SANYO). No antibiotics or
antimycotics were used. Glial growth was not suppressed because
glial cells were essential to long-term culture health. One half
of the medium was changed every 2 days. Experiments were
performed when neuronal networks were 3–6 weeks in vitro
that permitted their functional and structural maturation (Eytan
et al., 2003).

ELECTROPHYSIOLOGY
Extracellular potentials were collected through 64 planar platinum
black electrodes simultaneously with the integrated MED64 sys-
tem (Alpha MED Science, Japan). The 8 × 8 (64) microelectrode
arrays with 50 μm × 50 μm size and the 150 μm spacing were
used for recording at sampling rate of 20 kHz/channel (Figure 1A).
Stimuli were generated using a four channels voltage/current
stimulator (STG4004, MultiChannel Systems, Germany). Closed-
loop conditions were performed by custom made software
(Labview®) using real-time signal analysis and conditional
stimulation.

SPIKE DETECTION
Detection of recorded spikes was based on threshold calculation
of median of the signal according to the following formula:

T = Nsσ, σ = median

( |x|
0.6745

)
(1)

where x is the bandpass-filtered (0.3–8 KHz) data signal, σ is an
estimate of the median normalized on the standard deviation of
signal with zero number of spikes (Quiroga et al., 2004), and NS

is a spike detection coefficient determining detection threshold
(Pimashkin et al., 2011). Standard deviation of signal containing
Gaussian noise was equal to median of absolute values of the signal
divided by 0.6745 which was a normalization of the median on the
standard deviation.

Spike detection coefficient NS permitted to take into account
the contribution of different spike amplitudes. NS = 4 was used
for all data accounting spikes with amplitudes more than 20 μV.
Minimal interspike interval was set to 1 ms. Detected spikes were
then plotted in a raster diagram.

STIMULATION PROTOCOL
We used trains of biphasic rectangular voltage pulses (600 mV and
300 μs per phase, with positive phase first) at low-frequency in
the range of 0.05–0.06 Hz. The value of stimulation frequency was
chosen to induce bursting activity in the 20–500 ms post-stimulus
interval (Figure 1B). Note that in previous studies the stimulation
frequencies were significantly higher (0.1 Hz, 0.3 Hz, Shahaf and
Marom, 2001; 0.2–0.33 Hz, le Feber et al., 2010) without any rela-
tion to spontaneous bursting frequency. In our experiments most
of the stimuli with frequencies higher than 0.1 Hz did not evoked
stable bursting activity. However, we found that stimulation at
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FIGURE 1 | (A) Cultured hippocampal cells grown on multielectrode array
with 64 square electrodes with 50 μm size and 150 μm inter-electrode
distance. (B) Post-stimulus response recorded from single electrode.

Stimulation artifact marked by arrow. (C) Post-stimulus time histogram of the
recorded spikes. Each bar represents average spike rate in 10 ms
post-stimulus time interval ± standard deviation.

0.05 Hz and/or 0.06 Hz which is close to characteristic bursting
frequency led to the evoked bursts. Note also, that technically
the lower frequencies were also more preferable for the long-term
stimulation because of the less influence on electrode disruption
due to electrolysis.

Similarly, to previous studies we characterized the response by
the response-to-stimulus ratio (R/S) calculated for each response
and for each electrode. For our purpose, we counted the number
of spikes detected in 40–80 ms post-stimulus interval on each elec-
trode independently and then we defined R/S as the moving aver-
age across 10 preceding responses (Shahaf and Marom, 2001). This
quantity indicated slow changes of the neuronal response over past
170–200 s.

Control stimulation (open-loop)
The control stimulation was performed during 75 min (five
cycles of 10 min – stimulation, 5 min – rest) with 0.05 Hz
stimulation frequency (150 stimuli) and with 0.06 Hz (180 stim-
uli). In more than 50% of the experiments (14 out of 24)
the control stimulation was performed for 31 cycle (465 min
∼7.5 h) to test the learning effect without reinforcement. After
control stimulation the R/S values were calculated for each
electrode.

The stimulation electrode first was chosen at random. If
it evoked bursts recorded by the most of electrodes during

stimulation for 5 min then the electrode was considered as
stimulation electrode. If no bursting response was found, we
tried another one. We considered only stably responding cul-
tures, which during control stimulation did not significantly
increase or decrease the total number of spikes in 20–300 ms
post-stimulus interval for all recording electrodes. Slow changes
of the responses were tested by estimating significant difference
between the responses in the first and the last half of the record-
ings by Mann–Whitney rank-sum test (p < 0.05). If the sets
of responses were not significantly different then the stimula-
tion electrode was retained for further training, otherwise, we
tested another electrode also chosen randomly or took another
culture for the experiments. We also note, that most the cul-
tures, in which the responses increased or decreased during
control stimulation, demonstrated stable responses after several
days. The responses were compared by relative changes of the
mean value and of the standard deviation of the first and the
last 30 stimuli responses in 20–300 ms interval normalized to
the number of the spikes in the first 30 responses. Recording
from each electrode was characterized by two statistical indicators:
mean R/S value, M(R/S), and the R/S standard deviation, σ(R/S).
The electrode for training was randomly chosen among the elec-
trodes having M(R/S) value in the range of 0–8 with standard
deviation in the range 0.1M(R/S) < σ (R/S) < 2 M(R/S) in control
stimulation.
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FIGURE 2 | (A) Average R/S values (M(R/S)) distribution for all
recording electrodes during low-frequency stimulation (14 trials,
n = 10 cultures). The inset shows the magnification of the histogram
in the interval [0,1] of R/S values. (B) R/S values during several cycles
of the control stimulation at selected electrode. Blue dashed lines
illustrate the ends of the stimulation cycle. Red line shows the estimated
R/S threshold value (see Materials and Methods). (C) Distribution of the

R/S values from the selected electrode during control stimulation.
Red line illustrates estimated R/S threshold value (R/SThr% = 15%).
(D) Learning curves calculated for control experiments using different
threshold estimation parameter R/SThr%- 5, 10,15, and 20% (n = 14;
see methods). Due to high variability of the characteristics the error bars
(standard deviations) illustrated only for curves with R/SThr% = 5% and
R/SThr% = 20%.

Training stimulation (closed-loop)
Training stimulation was applied in closed-loop conditions. It
started in one hour after the control stimulation. The training
consisted of cyclic stimulation with continuous evaluation of the
response. If the R/S value of the response to current stimulus
exceeded a definite threshold then the stimulation stopped auto-
matically. It provided the reinforcement for the culture targeting to

achieve a required state. We introduced novel algorithm defining
the R/S threshold for the reinforcement condition taking into
account the responses in control stimulation. Such definition
set different threshold values for different parts of the culture
(e.g., different electrodes) involved in the training experiment. We
took the highest 15% of the R/S values distribution for selected
electrode, which was observed in control stimulation (example
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in Figure 2C). The lower boundary of that fraction of the dis-
tribution was assigned as the R/S threshold value. The threshold
may also be referred as the 85th percentile. The percentage of the
R/S values used for threshold estimation was defined as threshold
estimation parameter R/SThr%.

The training phase of the experiment consisted of sequence of
the stimulation cycles with the same frequency and real-time eval-
uation of the R/S value on the selected electrode. If the R/S value
of the activity from the selected electrode in response to stimu-
lus reached the R/S threshold or if the stimulation time exceeds
10 min, then the stimulation was automatically stopped for 5 min
completing the training cycle. Then the training cycle was repeated
for 30–35 times. Thus the response of the neurons on the selected
electrode altered the stimulation duration in each cycle. Time
interval, from the beginning of the cycle to the moment where
R/S value was found to be greater or equal to the R/S threshold
was defined as adaptation time, TR/S. The TR/S was monitored for
each cycle and the sequence of TR/S values defined learning curve.
Relative change of the TR/S during the experiment was defined as
adaptation time ratio, K(TR/S) and was estimated as mean TR/S

in the last 10 cycles divided to the mean of the TR/S in the first
10 cycles. The decrease of the TR/S during the stimulation cycles
[K(TR/S) < 0.5] was then treated as successful learning for the
neurons on the selected electrode to generate the desired response
on the stimulation. To compare the efficiency of the closed-loop
stimulation parameters K(TR/S) and TR/S were also calculated for
control stimulation (e.g., the open-loop).

We also checked if the learning effect is stable in 4–6 h after the
experiments by performing four cycle training stimulation.

At the longer time intervals (days or weeks) the cultures were
changed significantly due to spontaneous development. In our
experiments we reused some of them in not less than 2 days after
the last training stimulation. When multiple experiments were
performed on a single culture, we selected electrodes from different
regions of the array for each new experiment to avoid possible
influence of the previous stimulation experiments.

Spontaneous activity analysis
To analyze the effect of the stimulations on the state of the culture
network we recorded spontaneous bursting activity during 10 min.
We compared the average inter burst intervals, average number of
spikes per burst and burst durations for the recordings before
and after the stimulation experiments. Individual bursts detection
was based on threshold estimation of basal spike rate activity as
a total number of spikes observed in each 50 ms time bin (see
Pimashkin et al., 2011 for more details). Statistical analysis of the
bursting activity characteristics was performed by Mann–Whitney
rank-sum test (p < 0.05).

RESULTS
OPEN-LOOP STIMULATION
First we analyzed responses of the culture on long-lasting (five
cycles – 75 min and 31 cycles – 465 min) low-frequency stimu-
lation (0.05, 0.06 Hz) of the stimulation electrodes that evoked
population bursting response (see Materials and Methods). The
stimuli were initially delivered through one randomly chosen elec-
trode (Figure 1B). The dynamics of the evoked network response

recorded from all electrodes was characterized by post-stimulus
time histogram (PSTH). For each 10 ms time interval after the
stimulus artifact a total number of the spikes recorded from all
electrodes was calculated (Figure 1C). Maximum of the spike rate
of the response was observed at 50–100 ms after stimulus.

Then, we analyzed the characteristics of the responses in the
control stimulation (Figure 2). In our experiments we found that
31.13% of the electrodes (total 64) had 0 < M(R/S) ≤ 0.1 dur-
ing the control stimulation (14 trials of long recordings, n = 10
cultures). The percentage of electrodes having 0 < M(R/S) ≤ 10
was 58.16% (Figure 2A). Particular electrodes for training stim-
ulation were chosen among the electrodes with 0 < M(R/S) ≤ 8
(see Materials and Methods). Note that in previous studies only
the activity from the electrodes with average R/S values during the
control stimulation M(R/S) equal to 0.1 were chosen for training,
and R/S = 0.2 was set as the R/S threshold (Shahaf and Marom,
2001; Li et al., 2007; Stegenga et al., 2009; le Feber et al., 2010).

Time dynamics of the R/S values for each stimulus response
during the control stimulation is shown in Figure 2B. Ending
moments of the 10 min stimulation cycles are marked by blue
lines. Note that the responses were quite variable. The learning
threshold was defined as the lower value from the highest 15% of
R/S values referred as the 85th percentile of the R/S values (see
Materials and Methods). The example of the R/S values distribu-
tion from the selected electrode and the R/S threshold is shown
in Figure 2C. In other words, the threshold was set to detect
quite rare and high rate responses. Note that for different elec-
trodes the R/S thresholds were in range from 0.2 to 12 in different
experiments.

After the threshold was defined the adaptation time TR/S can be
estimated for each cycle. To confirm that the learning effect can be
induced only in closed-loop conditions, we estimated a learning
curve (TR/S for each cycle) for control stimulation (Figure 2D).
The results show that adaptation time remains relatively stable.
Next we analyzed the influence of the R/S threshold estimation
parameter on the adaptation dynamics by setting different R/SThr%

– 5, 10, 15, and 20% (95th, 90th, 85th, and 80th percentile,
respectively). Note that the lower threshold is set the easier to
reach the threshold by spontaneous fluctuations of the response.
Hence, the adaptation curves for the lower thresholds were located
lower (Figure 2D). However, changing the threshold did change
qualitatively the adaptation dynamics.

CLOSED-LOOP STIMULATION
Next we made the experiments on training stimulation with the
reinforcement (see Materials and Methods). In these conditions
the stimulation were turned off when the learning threshold was
reached at each cycle.

The adaptation dynamics for one experiment is shown in
Figure 3A. The adaptation time for the case of successful learn-
ing (black curve) went down after several cycles of the training
stimulation. We also found that some of the cultures could not be
trained as illustrated by the red curve in Figure 3A. For those cul-
tures the adaptation time was fluctuating with its maximal value
for the whole duration of the stimulation. The training stimulation
was applied for 17 different cultures in 24 experiments. Figure 3B
shows average learning curve for the set of successful experiments.
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FIGURE 3 | (A) Learning curve in one successful experiment (black curve) and
failure of learning in the other experiment (red curve). In the successful case
the adaptation time significantly decreased. (B) Average learning curve (six
experiments, six cultures). Dashed curves illustrates the standard deviation
(C) Average adaptation time during five cycles at the beginning of the training
experiment (1, n = 6), when learning is achieved (2, n = 6) and in 4–6 h after
the end of main experiment (3, n = 3). Error bar corresponds to the standard
deviation, statistical significance was tested by t -test (p < 0.05). (D) The R/S
threshold values for successful (black markers) and failed (colored markers)

learning experiments. The colored markers correspond to
the use of different values of the threshold estimation parameter,
R/SThr% = 5, 10, 15, and 20% of R/S (see methods). In six
experiments the learning was achieved using R/S threshold
parameter 15% (out of 9 and out of 24 experiments in total). (E)

Average adaptation time ratio for control stimulation, failed learning and
successful learning. Error bar corresponds to standard deviation. The
ratios of the successful learning were significantly different to the control
stimulation (t -test, p < 0.05).

In contrast to the open-loop case (control stimulation) the adap-
tation time decreased indicating the learning effect. To quantify
it we used the adaptation time ratio K(TR/S; see Materials and
Methods). If K(TR/S) was lower than 0.6 then the training was
considered as successful. We also analyzed the influence of the
threshold estimation parameter (Figure 3D). Interestingly, that
only the use of R/SThr% = 15%, induced the learning effect (black

squares in Figure 3D). It was found in six of nine experiments for
n= 9 cultures with absolute value of the R/S threshold less than 1.
Similar statistics of about 50% successful experiments were
reported in the previous studies (Shahaf and Marom, 2001;
le Feber et al., 2010).

In the adaptation dynamics the decrease of time TR/S was typ-
ically observed after 10–14 stimulation cycles (see Figures 3A,B).
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In two experiments it was decreased almost immediately after the
second stimulation cycle. In average at the end of the training
experiment the adaptation time became 110.62 ± 81.17. Note,
that the average R/S values for the first and for the last 30 stimuli
were not statistically different. In several experiments after 2–4 h of
stimulation we obtained rather high TR/S values leading to higher
deviations in the averaged values (Figure 3B).

To confirm that learning effect of the closed-loop stimulation
may induced long-term changes (at the time scale of hours) we
performed several experiments after main course of learning. The
training stimulation of four cycles (60 min) was applied in 4–6 h
after end of the main experiments. We found that in three of six
cases the learning effect was preserved as illustrated in Figure 3C.

Next we addressed the question if the pattern of the response
is changed due to the stimulation. We analyzed changes in the
number of spikes recorded in the evoked response. Figure 4A
illustrates these changes in one of the successful experiments. One
can note that after learning the spike intensity of the response
increased, e.g., more responses composed of doublets, triplets and

more spikes were observed. The average increase over all suc-
cessful experiments is illustrated in Figure 4B. We also analyzed
the response from other responding electrodes as illustrated in
Figure 4C. We found that after successful learning the activity of
the whole culture network increased significantly.

Changes in spontaneous activity were monitored by 10 min
recordings (see Materials and Methods). We calculated the average
inter burst interval, average spikes per burst and burst duration
as shown in Figure 4D. For each characteristic we did not find
any significant difference comparing between the four different
phases of the experiment (before the control stimulation, before
and after training stimulation and after 4–6 h after main learning
experiments).

DISCUSSION
We applied low-frequency stimulation to hippocampal culture
network with on-line monitoring of the response-to-stimulus
ratio (R/S) in open-loop and closed-loop conditions. The key
response indicator was defined as average number of post-stimulus

FIGURE 4 | (A) Response statistics of the neurons from training electrode
represented by the number of spikes recorded in 40–80 ms post-stimulus
interval. The responses were taken from 100 stimuli in the beginning of the
control stimulation, beginning and ending of the training stimulation. Number
of evoked spikes in 40–80 ms post-stimulus interval recorded from selected
electrode (B) and from all recording electrodes (C). The responses were taken
from 100 stimuli in the beginning of the control stimulation, beginning and

ending of the training stimulation. The quantities of the spikes were
normalized to ones measured in control stimulation. (D) Spontaneous activity
changes measured before the control stimulation, before and after training
stimulation and after 4–6 h after main learning experiments. The quantities of
the inter-burst intervals, spikes per burst and burst durations were normalized
to ones measured in control conditions (before stimulation). The values were
compared with the Rank-sum test (p < 0.05).
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spikes per 10 stimuli in 40–80 ms time interval. Note that this
interval corresponded to a peak in the post-stimulus histogram.

We found that learning in culture network can be achieved
using an adaptive activity dependent reinforcement condition
defined by the response-to-stimulus ratio (R/S) threshold value
calculated from the statistics of control (e.g., the open-loop)
stimulation. The threshold was estimated from the appearance
of rare and high-rate responses in control stimulation (e.g., the
highest 15% of the R/S values). Such responses may be associ-
ated with signal propagation along spontaneously activated and
relatively strong synaptic pathways in the culture network. In
other words, learning in our experiments means that particu-
lar synaptic pathways relative to particular stimulation electrode
became “strengthen” to satisfy the reinforcement condition. In
contrast to the previous studies in our approach we can use the
electrodes with quite high basal activity in control simulation,
0 < M(R/S) < 0.5. Note, that total number of such electrodes was
quite high, 67 ± 11%, which indicates that the learning proto-
col can be applied to rather large number of electrodes. Statistics
of successful trials was about 50% which is comparable to earlier
studies (Shahaf and Marom, 2001; le Feber et al., 2010).

Note, the R/S threshold, in fact, defines the reinforcement con-
dition which is crucial for successful learning. In particular, we
found that for lower values of the R/S threshold the learning effect
was not achieved at all (Figure 3D). It is explained by the fact that
the high variability of basal responses in culture network led to the
increase of the fraction of random over-threshold responses that
fails the learning effect which is concerned with regular changes in
synaptic pathways in the network.

It is believed that learning effect is associated with structural
and functional plasticity of underlying neuronal networks. In sim-
ple words synaptic connections are modified due to closed-loop
stimulation to achieve an adaptive state defined by the reinforce-
ment condition. In earlier studies low-activity electrodes were
typically used (Shahaf and Marom, 2001; le Feber et al., 2010).
Their activation implied that synaptic connections accompanying
the electrodes were strengthened after the stimulation. Our results

eventually demonstrated that not only weak connections between
stimulating and recording electrodes can be increased but also
well-functioning synaptic pathways can be modified for active
electrodes.

Previous studies (Shahaf and Marom, 2001; Li et al., 2007)
demonstrated that such training was quite selective. Only neurons
on the trained electrodes increased the number of spikes in the
response and hence the R/S value. In our experiments we found
some increase of the responses from all electrodes (Figure 4C)
and increase from the trained (selected) electrode (Figure 4B).
However, the difference of this increase was not significant indi-
cating the absence of the selectivity. We assume that it happened
because of the overall activity (mean R/S) and R/S threshold were
higher than in the previous studies. Setting higher reinforcement
conditions for reaching the threshold in our learning protocol may
require stronger modification of the overall synaptic connectivity
(hence lower selectivity) to achieve learning.

Another important question was for how long time the synap-
tic changes can be preserved in the network after learning. We
checked the response of our six trained cultures after 4–6 h
and found that learning effect preserved in three of six samples
(Figures 3C,E). Thus, the training stimulation in closed-loop
conditions may induce long-term changes in structure and func-
tions of culture network synaptic connectivity. We also found that
spontaneous activity of the trained cultures was relatively stable
and did not change significantly after learning experiments, e.g.,
we did not find statistical difference in the characteristics of the
spontaneously generated bursts (inter-burst intervals, spikes per
burst and burst durations).
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Functional loss of limb control in individuals with spinal cord injury or stroke can be caused
by interruption of corticospinal pathways, although the neural circuits located above and
below the lesion remain functional. An artificial neural connection that bridges the lost
pathway and connects cortical to spinal circuits has potential to ameliorate the functional
loss.We investigated the effects of introducing novel artificial neural connections in a paretic
monkey that had a unilateral spinal cord lesion at the C2 level. The first application bridged
the impaired spinal lesion. This allowed the monkey to drive the spinal stimulation through
volitionally controlled power of high-gamma activity in either the premotor or motor cortex,
and thereby to acquire a force-matching target. The second application created an artificial
recurrent connection from a paretic agonist muscle to a spinal site, allowing muscle-
controlled spinal stimulation to boost on-going activity in the muscle.These results suggest
that artificial neural connections can compensate for interrupted descending pathways and
promote volitional control of upper limb movement after damage of descending pathways
such as spinal cord injury or stroke.

Keywords: brain–computer interface, artificial neural connection, hand, spinal cord injury, local field potential,

muscle, spinal cord, monkey

INTRODUCTION
Functional loss of limb control in individuals with spinal cord
injury or stroke can involve interruption of descending pathways
to spinal networks, although the neural circuits located above and
below the lesion retain their function. An artificial neural con-
nection that bridges the lost pathway has potential to compensate
for the functional loss. Recent studies showed that monkeys could
use cortical activity to control functional electrical stimulation
(FES) in muscles transiently paralyzed by nerve block (Moritz
et al., 2008; Pohlmeyer et al., 2009; Ethier et al., 2012). However,
restoring coordinated movement of paralyzed limbs with periph-
eral FES remains problematic (Popovic et al., 2002). Stimulation
of peripheral nerve or muscle often evokes movement about only
a single joint and recruits the largest, most fatigable motor units
first. Spinal microstimulation offers an alternative method to pro-
duce coordinated movement and more natural recruitment of
motor units (Mushahwar and Horch, 2000; Mushahwar et al.,
2000; Mussa-Ivaldi and Bizzi, 2000; Saigal et al., 2004; Moritz
et al., 2007). In anesthetized animals, current can be delivered to

spinal sites to produce coordinated patterns of muscle contraction
(Zimmermann et al., 2011).

Several studies have demonstrated that multichannel spike
signals recorded with intracortical electrode arrays can be used
to estimate arm movements (Kennedy et al., 2000; Wessberg et al.,
2000; Serruya et al., 2002; Carmena et al., 2003; Choi et al., 2009;
Vargas-Irwin et al., 2010) and muscle activity (Morrow and Miller,
2003; Santucci et al., 2005; Koike et al., 2006; Pohlmeyer et al., 2007;
Schieber and Rivlis, 2007). Although recordings of cell assem-
blies by intracortical electrodes can provide a rich repertoire of
signals, their limitations include signal deterioration due to glial
scarring (Polikov et al., 2005), potential displacement from the
recording site (Leuthardt et al., 2004) and invasive recording tech-
niques. Chronically implanted electrode arrays typically lose the
ability to record cell spikes after several years (Krüger et al., 2010;
Simeral et al., 2011). Reliable spike recording is a challenge for
the long durations required for clinical applications. Movement
parameters can also be decoded from local field potentials (LFPs;
Zhuang et al., 2010; Flint et al., 2012) and the electrocorticogram
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(Schalk et al., 2007; Sanchez et al., 2008; Miller et al., 2009; Chao
et al., 2010; Shin et al., 2012) in motor-related areas, potentially
offering more stable signals that represent the activities of many
neurons near the electrode. Thus, instead of relying on cell spikes
recorded with intracortical electrodes, it is possible to use cortical
field potentials, or muscle activity as a surrogate of cortical cell
activity.

Here we describe a case study in which an awake monkey
with spinal cord injury could volitionally control the paretic
upper limb through artificial neural connections using LFPs in
motor cortex or activity of muscles to trigger stimulation of a
spinal site appropriate to restore goal-directed movement of the
affected arm.

MATERIALS AND METHODS
Experiments were performed with a male Macaca nemestrina
monkey (4 years old, weight 5.5 kg). The experiments were
approved by the Institutional Animal Care and Use Committee
(IACUC) at the University of Washington and all procedures con-
formed to the National Institutes of Health Guide for the Care and
Use of Laboratory Animals.

SURGERIES
All implant surgeries were performed using sterile techniques
while the animal was anesthetized using 1–1.5% sevoflu-
rane. Dexamethasone, cephalexin, and ketoprofen were admin-
istered preoperatively and buprenorphine was given post-
operatively.

Cortical implants
Silver electrode wires (0.1 mm diameter, ∼50 k� at 1 kHz) were
chronically implanted after making small incisions in the dura, in
the digit, wrist and arm areas of primary motor cortex (M1) and
the arm area of the dorsal aspect of premotor cortex (PMd) in the
left hemisphere (contralateral to the spinal lesion, Figure 1A). The
incisions of the dura mater were sutured closed. Small titanium-
steel screws were attached to the skull as anchors. A stainless steel
head-post was mounted on the skull for head fixation. The cortical
electrodes and the head-post chamber were anchored to the screws
with acrylic cement.

Surgery for EMG recording
Initially, electromyographic (EMG) activity was measured with
electrodes surgically implanted in 16 arm and hand muscles, iden-
tified by anatomical features and by movements evoked by trains
of low-intensity stimulation. Bipolar, multistranded stainless steel
wires (Cooner Wire, Chatsworth, CA, USA) were sutured into
each muscle and wires were routed subcutaneously to a connec-
tor on the animal’s back. A jacket worn by the monkey prevented
access to the back connector between recording sessions. After
these electrodes were broken by the monkey, additional wires were
implanted transcutaneously for subsequent EMG recordings.

Surgery for spinal implant and spinal cord lesion
We made two separate unilateral laminectomies on the right side
in the same surgery to prepare to record the activity of spinal neu-
rons during behavior. The laminae and dorsal spinous processes

FIGURE 1 | (A) Electrode locations in the motor areas of the lateral
aspect of the frontal lobe of the left (contralesional) hemisphere.
Electrodes were placed in primary motor cortex (blue dots) and in dorsal
premotor cortex (red dots). (B,C) Somatotopic map shows movements
evoked from each site in frontal lobe before (B) and after (C) spinal cord
injury. The pre-lesion maps were established by ICMS at movement
threshold (20–120 μA). The post-lesion maps were established by
ICMS at 450 μA on post-lesional day 14. The maps show the region

between the central sulcus (CS: diagonal line to the right of each
panel) and the arcuate sulcus (ArcS: curved line to the left). Arrow
indicates site used in session illustrated in Figure 3. (D) Drawing of
the C2 segments showing the extent of the spinal cord lesion (hatched
in black). (E) Electrode location in spinal cord. (a) Electrodes were
targeted at the ventral horn and intermediate zone of the spinal cord. (b)

Higher magnification view of the location of an electrode tip
(black arrow).
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of the C2–C3 and C5–C7 vertebrae were removed. A chamber
was implanted over the rostral laminectomy. Stimulus electrodes
were implanted at the caudal site. After recovery from surgery the
monkey exhibited an upper arm hemiparesis, including inability
to control the digits independently, and the recordings were not
performed. The deficit remained throughout the 3 months during
which these experiments were performed. Post-mortem histology
revealed that a spinal cord lesion was inadvertently created around
C2 to C3 during surgery, perhaps due to a contusion on the spinal
surface or hemorrhage (Figure 1D).

For the stimulus electrode, the dura mater and arachnoid under
C5–C7 vertebrae were removed. Eleven polyurethane-coated,
platinum–iridium wires (diameter 30 μm; impedance 200–600 k�

at 1 kHz) were inserted 2.5–4 mm into the lower-cervical spinal
cord targeting the ventral horn where hand motoneurons are
located (Jenny and Inukai, 1983; Chiken et al., 2001). Penetration
depth was determined by making a sharp bend in the microwire
at the appropriate length. A second bend several mms more prox-
imal provided strain relief and allowed the wires to float on the
cord (Mushahwar et al., 2000). The microwires were bonded with
cyanoacrylate glue to the spinal surface at each penetration point.
The wires were routed into a silicone tube, which was glued with
dental acrylic to bone screws placed in the lateral masses and T1
dorsal process, and routed through the skin to a connector. The
spinal cord was covered with the subcutaneous fascia and gel-
foam. The laminectomy was closed with acrylic cement. The skin
and underlying soft tissue were then sutured closed.

TORQUE-TRACKING TASK
Prior to surgery the monkey had been trained to perform a torque-
tracking task (Maier et al., 1998). The monkey controlled the
one-dimensional position of a cursor on a video monitor with
isometric flexion and extension wrist torques, and acquired tar-
gets displayed on the screen. The monkey was required to maintain
torque within each target for 0.5–1.0 s to receive a juice reward.
Targets remained on the screen until the hold criterion was met,
followed by presentation of the next target, either immediately or
after a variable reward period.

INTRACORTICAL MICROSTIMULATION
A few days after the cortical implant, movements evoked by
intracortical microstimulation (ICMS) through the implanted
electrodes with the monkey awake were documented by visual
observation. Trains of 10 pulses of constant-current, biphasic
square-wave pulses with 0.2-ms durations at 300 Hz evoked move-
ments at thresholds of 20–120 μA (Figure 1B). The ICMS map
was re-established 14 days after the spinal lesion with the monkey
awake. After the spinal cord injury trains of ICMS at 450 μA were
ineffective at most sites (Figure 1C).

SPINAL STIMULATION PROCEDURE
Intraspinal stimuli consisting of constant-current, biphasic
square-wave pulses with 0.2-ms durations were delivered through
the spinal microwires. In general, stimulation (10–700 μA) was
delivered by a single electrode. The output effects evoked from
each spinal site were documented with stimulus-triggered aver-
ages of rectified EMG (St-TA) during task performance. Current

pulses were delivered at a low rate (10–20 Hz) to avoid temporal
summation. Stimulus-evoked facilitation and suppression of EMG
were identified as consistent features in the St-TAs above or below,
respectively, 2 standard deviations (SD) of baseline. Baseline was
defined as the interval from 30 to 0 ms preceding the trigger pulse.
The mean percent increase (MPI) measured the average values
between onset and offset of the feature minus baseline, divided
by baseline. Based on post-stimulus effects in St-TAs, we chose
a single electrode and current for the artificial neural connection
paradigm.

BEHAVIORAL TASK WITH ARTIFICIAL NEURAL CONNECTION
Prior to establishing an artificial neural connection, the monkey
learned to control a computer cursor with brain activity or muscle
activity in separate operant conditioning sessions. Rack-mounted
instrumentation was programmed to compile a running average
(200 ms) of either EMG or rectified, high-gamma (90–160 Hz)
LFP activity to create a continuous signal that controlled the one-
dimensional position of a cursor on a video monitor. Targets that
indicated high- or low-amplitude LFP or EMG were randomly
presented on the screen. Targets remained on the screen until the
monkey held the cursor within each target for 0.5–1.0 s to receive
a juice reward.

After a few sessions of this preliminary task, an artificial con-
nection to the spinal cord was established in subsequent sessions.
Instead of directly controlling cursor position, LFP or EMG activ-
ity triggered spinal stimuli. Cursor position was now driven by
isometric torque produced about the wrist. For each session, either
flexion or extension torque controlled cursor position, depending
on the torque produced by the spinal stimulation used in that
session. The monkey learned to control LFP or EMG activity to
acquire targets displayed on the monitor to receive a juice reward
as described above (Maier et al., 1998). The direction of cursor
movement was matched in all sessions; i.e., increases in LFP or
EMG activity in preliminary sessions moved the cursor in the
same direction as increases in torque during the sessions with an
artificial connection.

ARTIFICIAL CORTICOSPINAL CONNECTION
In several preliminary sessions, the monkey controlled the cursor
with high-frequency gamma (90–160 Hz) LFP activity recorded
in either M1 or PMd. Then an artificial corticospinal connection
(ACSC) was established using the same signal which had been used
in the previous preliminary sessions to trigger trains of spinal
stimulation to bridge the impaired corticospinal connection.
Rack-mounted instrumentation was programmed to compile a
running average of rectified LFP activity in the high-gamma band
and to trigger delivery of intraspinal microstimulation at 300 Hz
to a single electrode whenever the LFP exceeded a threshold deter-
mined by the experimenter. Prior to each session, we determined
the background noise level of the high-gamma band signal and
set the threshold so that no stimulation was delivered when the
monkey was at rest. St-TAs of EMG guided the choice of a single
electrode in the spinal cord, the stimulus current, and the position
of the cursor on the screen for the artificial neural connection. A
few sessions of ACSC were tested within a day, but different pairs
of cortical and spinal sites were chosen.
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ARTIFICIAL MUSCULOSPINAL CONNECTION
In several preliminary sessions, the monkey controlled the cursor
with EMG activity recorded from a single forearm muscle. Even
after the spinal cord lesion, the monkey could produce some mus-
cle activity in the paretic hand. Then, an artificial musculospinal
connection (AMSC) was established using the same EMG to trig-
ger trains of spinal stimulation. Rack-mounted instrumentation
was programmed to compile a running average of muscle activ-
ity and trigger a train of intraspinal microstimulation at 300 Hz
during the time that EMG exceeded a threshold determined by
the experimenter. Prior to each session, we determined the back-
ground noise level of the EMG signal and set the threshold so that
no stimulation was delivered when the monkey was at rest. The
stimulus-evoked EMG was insufficient to cross threshold, so the
monkey could terminate stimulation by terminating his volitional
EMG activity. Sessions of AMSC were tested on different days
than ACSC. A few sessions of AMSC were tested within a day, but
different pairs of muscles and spinal sites were chosen.

HISTOLOGICAL PROCEDURES
At the end of the experiments, the monkey was deeply anesthetized
with an overdose of sodium pentobarbital (50–75 mg/kg, i.v.)
and perfused transcardially with 0.1 M phosphate-buffered saline
(PBS, pH 7.3), followed by 4% paraformaldehyde in 0.1 M PBS
(pH 7.3). The spinal cord was removed immediately and saturated
with fresh PBS containing, successively, 10, 20, and 30% sucrose.
Serial sections 50 μm thick were cut on a freezing microtome.
Sections processed for Nissl staining with 1% cresyl violet were
used to assess the extent of the lesion and the location of electrode
tracks.

STATISTICAL ANALYSIS
To determine the statistical difference of task performance between
"artificial neural connection" and "catch” trials, we used the
unpaired-T test. One-way analysis of variance (ANOVA) with
repeated measures was performed to determine the significant
differences in task performance among the M1, PMd, and M1 and
PMd. Post hoc multiple comparisons were conducted using the
Bonferroni test. Statistical significance level was set at p < 0.05. All
pooled values are reported as mean ± SD.

RESULTS
EXTENT OF SPINAL LESION AND HISTOLOGIC EVIDENCE OF ELECTRODE
LOCATION IN SPINAL CORD
Figure 1D shows the spinal cord section showing the maxi-
mum extent of the lesion located at the C2 level, as evidenced
by gliosis. The dorsolateral region on the side ipsilateral to the
lesion was severely deformed because of mechanical damage and
degeneration of axons. The lesion area covered most of the right
dorsolateral funiculus. The dorsal funiculi were partially damaged
on both sides, but the ventrolateral funiculi were preserved on
both sides. The lesion extended from the caudal part of C1 to
most of C2. Thus, the lesion interrupted most of the corticospinal
and rubrospinal tracts but preserved the reticulospinal tract and
some ascending tracts.

We intended to position the electrode tips in the ventral horn
and intermediate zone where motoneurons and premotoneuronal

interneurons are located. We found two electrode tracks in the
sections. Figure 1E shows one electrode track at the level of C6.
The electrode tip was located in the ventral horn, as shown in
Figures 1E a,b. The second recovered electrode was located in the
medial intermediate zone.

FUNCTIONAL DEFICIT
The monkey’s ability to independently control movement of dig-
its, such as for precision grip, exhibited deficits shortly after the
lesion and did not recover throughout the 3-month experimental
period. Power grip recovered gradually 5–7 weeks after the lesion,
consistent with a previous study (Alstermark et al., 2011).

The cortical somatotopic maps before and after lesion are
shown in Figures 1B,C. Movements could be evoked from only
two of five previously effective sites in M1, and only with higher
currents than before the injury. The PMd was even more affected
since no movements at all could be elicited from two previously
effective sites after the lesion. Thus the extent and excitability of the
upper limb representation in motor cortex decreased substantially
after the spinal lesion, consistent with a previous study (Schmidlin
et al., 2004).

SPINAL STIMULATION
To document the muscle responses evoked by intraspinal stim-
uli we compiled St-TAs of rectified EMG during performance of
the wrist flexion and extension task. Figure 2 shows the St-TAs
for a spinal site located caudal to the lesion. Spinal stimulation
below the lesion evoked facilitation or suppression effects in mul-
tiple muscles, as found for effects evoked from the intact spinal
cord (Moritz et al., 2007). Furthermore, spinal stimulation acti-
vated synergistic muscle groups. For example, stimuli at the site in
Figure 2 strongly facilitated finger extensor muscles [e.g., exten-
sor digitorum 4 and 5 (ED45) and extensor digitorum communis
(EDC)] and suppressed antagonist flexor muscles. Facilitation or
suppression effects were evoked in 45.6% of the 12–16 recorded
muscles from all spinal sites. Based on the responses in St-TAs, we
chose a single electrode and current for the artificial neural con-
nection paradigm. For all electrodes, stimulus effects gradually
deteriorated over 3 months, presumably due to electrode encap-
sulation by the physiological reaction (Mushahwar et al., 2000).
Finally, the whole spinal implant including wire electrodes with
dental acrylic and bone screws sloughed off the vertebrae after
3 months.

ARTIFICIAL CORTICOSPINAL CONNECTION
To bridge the spinal cord lesion, high-gamma LFP activity in
either M1 or PMd was used to trigger trains of spinal stimulation
(Figure 3A). Figure 3B shows a typical example of intraspinal
stimulation controlled by the LFP signal recorded from the digit
area of M1 (site identified by arrow in Figure 1A). During the
period of FES (green bar), the monkey was able to trigger and stop
stimulation volitionally, thereby repeatedly acquiring the targets.
To document that the LFP-controlled intraspinal stimulation was
necessary, the stimulation was briefly turned off during “catch
trials” (white bar in Figure 3B) in five sessions. The monkey
continued to make efforts to acquire the target in the catch tri-
als, as evidenced by the above-chance increases in high-gamma
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FIGURE 2 | Output effects evoked by intraspinal stimulation. (A) Electrical
stimuli were delivered to a single intraspinal electrode while the monkey
performed a two-dimensional wrist task, acquiring targets in wrist flexion and
extension. (B) Muscle responses evoked by a single pulse at 90 μA. The
vertical scale bar at right indicates mean percent increase (MPI) over baseline.

EMGs were recorded from: flexor carpi ulnaris (FCU), flexor digitorum
superficialis (FDS), palmaris longus (PL), flexor carpi radialis (FCR), extensor
carpi ulnaris (ECU), extensor digitorum 4 and 5 (ED45), extensor digitorum
communis (EDC), extensor carpi radialis (ECR), brachioradialis (BR), biceps
brachii (BB), pectoralis (PEC), and deltoid (DEL).

activity, but did not succeed in acquiring the targets. We applied
such LFP-controlled intraspinal stimulation in 12 different ses-
sions (duration of sessions: 8–47 min; range of trial number
within each session: 46–245 trials), using 11 different pairs of
cortical and spinal sites, summarized in Figure 4A. The average
task performance in LFP-controlled intraspinal stimulation trials
was significantly higher than those in catch trials (compare green
and black bars in Figure 4A). Task performance was comparable
with LFP recorded from M1 and PMd (cf. blue and red bars in
Figure 4A). Task performance using LFP from cortical sites from
which movements could and could not be evoked after injury was
similar. We also examined the task performance during the tran-
sition from the operant conditioning of LFP to ACSC. Figure 4B
shows the time course of task performance in the operant condi-
tioning session (before time zero in Figure 4B) and subsequent
ACSC session (after time zero in Figure 4B) using LFP from the
same cortical electrode. The monkey quickly learned after a few
sessions to modulate the power of LFP to acquire targets. Switch-
ing from the operant control sessions to the ACSC session was
very smooth. The task performance in the ACSC session was sus-
tained at nearly the same level as in the operant conditioning
session.

VOLITIONAL BOOSTING OF MUSCLE ACTIVITY BY AN ARTIFICIAL
MUSCULOSPINAL CONNECTION
Although the spinal cord lesion produced a severe deficit in fore-
arm movements, the monkey could still produce weak muscle
activity. To investigate whether an artificial recurrent connection
could boost the activity of a muscle, we used EMG of the paretic
muscles to trigger spinal stimulation at a site that produced a
contraction of the same muscle (Figure 5A). Figure 5B shows
a typical example of the muscle-controlled intraspinal stimula-
tion using EMG of the paretic extensor carpi ulnaris (ECU) wrist

extensor muscle. As shown during the period of FES (green bar),
the monkey was able to sustain the EMG burst and torque to
acquire the target. During the catch trial, the monkey made a
few unsuccessful attempts to produce wrist torque, as seen in the
EMG and torque, but was unable to acquire the target. Thus,
the muscle-controlled intraspinal stimulation effectively boosted
on-going muscle activity of the paretic agonist. We applied sim-
ilar muscle-controlled FES in 10 different sessions (duration of
sessions: 12–33 min; range of trial number within each session:
42–180 trials), using five different pairs of muscle and spinal sites.
The average task performance in muscle-controlled intraspinal
stimulation trials was significantly higher than that in catch trials
(compare green and black bars in Figure 6A). Figure 6B shows the
time course of task performance in the session of operant condi-
tioning of EMG activity and subsequent AMSC session using EMG
from the same muscle. The task performance in AMSC sessions
was sustained at nearly same level as with operant conditioning
session.

DISCUSSION
This case report demonstrates that LFP- or EMG-controlled stim-
ulation in a spinal site could be used to produce volitionally
controlled functional wrist torque in a paretic monkey with a
spinal cord lesion rostral to the stimulation site. The monkey could
volitionally control brain and muscle activities to produce syner-
gistic muscle responses with intraspinal stimulation caudal to the
lesion. These results suggest that muscle- or LFP-controlled FES
could compensate for the interrupted descending pathways and
restore volitional control of functional movement in the upper
limb after spinal cord injury or stroke.

The fact that stimulation in a spinal site caudal to a spinal
cord lesion can evoke synergistic muscle responses suggests that
activity-dependent spinal stimulation may be a promising target
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FIGURE 3 | Brain-controlled intraspinal stimulation below the lesion.

(A) Schematic shows local field potential (LFP) in motor cortex gating trains
of electrical stimulation (300 Hz) to a spinal site below the lesion. The
switch in the recurrent loop was opened for catch trials. (B) Four successful
trials with the artificial corticospinal connection (ACSC, green) and one
catch trial (white). During the catch trial, the monkey made several
unsuccessful attempts to produce wrist torque, as seen in the EMG and
torque. The blue rectangles indicate duration and force range of target. The
pink vertical bars indicate duration of electrical stimulation in the spinal site.
The red line in second trace represents the threshold for spinal stimulation.
From top, raw LFP in motor cortex, rectified and smoothed high-gamma
LFP (90–160 Hz), EMG from four muscles (abbreviations as in Figure 2),
and wrist torque. Arrows indicate times of successful task completion and
reward.

for neuroprosthetics that can restore movements after spinal cord
injury. In contrast to FES of muscles, spinal microwires are subject
to less mechanical fatigue than wires implanted peripherally and
require lower stimulus currents to evoke movements. Intraspinal
stimulation also produces more natural, graded recruitment of
motor units than muscle or nerve stimulation (Mushahwar and
Horch,1998). We found that spinal stimulation caudal to the lesion
evoked facilitation or suppression effects in multiple muscles.
Intraspinal stimulation is known to activate many afferent fibers
of passage (Gaunt et al., 2006), and probably excites motoneu-
rons transsynaptically by activating a sufficient number of their
inputs, such as propriospinal, corticospinal, and/or afferent axons.
Fibers of passage have lower activation thresholds than cell bodies
and are thus recruited at lower stimulus currents (Gustafsson and
Jankowska, 1976). Afferent axons directly excite synergist muscles
and inhibit antagonist muscles via inhibitory spinal interneurons.
Since we used a single signal, derived from either cerebral cortex
or muscle, to control stimulation, the degree of movement con-
trol demonstrated here remains limited. Extending this strategy
to control more natural and complex movements would require
additional input signals and output spinal sites. Compared with
FES in muscle, the activation of functional muscle synergies from
single intraspinal sites could significantly reduce the number of
implanted electrodes as well as the number of independent control
signals required from a neuroprosthetic system.

Task performance with LFP recorded in M1 was comparable
with performance using LFP from PMd or EMG from muscle.
Furthermore, LFP from any cortical site could control spinal
stimulation-evoked wrist movements, regardless of whether stim-
ulation of the cortical site evoked wrist movements or not (cf.
Figure 1C). Previous biofeedback studies have shown that cells in
motor (Fetz and Baker, 1973; Fetz and Finocchio, 1975; Moritz
et al., 2008) or somatosensory (Moritz and Fetz, 2011) cortex with
no discernable relation to muscles can be volitionally modulated
after brief practice sessions. We used a similar operant condition-
ing paradigm with biofeedback for eliciting cortical LFP or EMG
to trigger spinal stimuli. The level of performance in the operant

FIGURE 4 |Task performance in the artificial corticospinal connection

(ACSC). (A) Average task performance with the ACSC and during catch trials.
Error bars represent standard deviation. (B) Time course of task performance.

Before time zero the monkey was required to control the cursor with LFP
activity. After time zero the task involved ACSC, using the same cortical
electrode in digit area of M1.
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FIGURE 5 | Muscle-controlled spinal cord stimulation. (A) Schematic
shows EMG activity gating a train of stimuli to a spinal site below the lesion.
(B) Five successful trials with AMSC (green) and unsuccessful catch trials
(white). During the catch trial, the monkey made several unsuccessful
attempts to produce wrist torque, as seen in the EMG and torque. The blue
rectangles indicate duration and force range of target. The pink bars indicate

duration of electrical stimulation in the spinal site. The red line in top row
represents the threshold for gating spinal stimulation. The upper and
lower traces are the EMG from ECR and wrist torque generated by the
monkey, during stimulation (AMSC, in green) or without stimulation
(Catch, in white). Arrows indicate times of successful task completion and
reward.

FIGURE 6 |Task performance with the artificial musculospinal

connection (AMSC). (A) Average task performance for AMSC and catch
trials. Error bars represent standard deviation. (B) Time course of task

performance in AMSC session. Before time zero the monkey controlled the
cursor with EMG activity. After time zero the monkey controlled wrist torque
via spinal stimulation triggered from the same muscle with the AMSC.
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conditioning task was identical to that with the ACSC and AMSC
artificial neural connections. Thus, an arbitrary cortical or muscle
signal could be brought under volitional control using biofeed-
back, to substantially expand the sources of control signals for
brain–computer interfaces.

Implementation of the artificial connections with a portable
bidirectional neural interface will enable adaptive learning over
much longer times and under more varied conditions (Jackson
et al., 2006b; Nishimura et al., 2010). The autonomous ‘Neurochip’
system can discriminate brain or muscle activity and deliver stimu-
lation during free behavior (Zanos et al., 2011). Such autonomous
low-power circuits could allow subjects to practice continuously
with an artificial connection, without requiring complex decod-
ing algorithms or external devices such as robotic arms. Further
development of such direct control of a paretic extremity may lead
to implantable devices that could help restore volitional move-
ments to individuals with impaired motor control. Furthermore,
recent evidence suggests that continuous activity-dependent stim-
ulation promotes plasticity in motor cortex (Jackson et al., 2006a)
and corticospinal connections (Fetz et al., 2010). Thus, activity-
dependent stimulation during free behavior may produce both
adaptive learning to exploit artificial connections (Nishimura
et al., 2010) as well as Hebbian strengthening of spared path-
ways after neural damage in descending pathway (Fetz et al., 2010).
Furthermore, long-term exposure to artificial neural connections
could induce reorganization of cortical and spinal circuitry and
facilitate functional recovery.

In conclusion, this study demonstrates that artificial neu-
ral connections that bridge impaired pathways can ameliorate
functional loss. Closed-loop control with intraspinal microstimu-
lation driven by brain or muscle activity could control synergistic
muscle activities in upper limb in a monkey with spinal cord
injury. The success of our protocol suggests that neurorehabil-
itative treatment could exploit similar paradigms for restoring
volitional control of the extremity for individuals with spinal cord
injury or stroke.
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Prefrontal cortical (PFC) activity in the primate brain emerging from minicolumnar
microcircuits plays a critical role in cognitive processes dealing with executive control of
behavior. However, the specific operations of columnar laminar processing in prefrontal
cortex (PFC) are not completely understood. Here we show via implementation of unique
microanatomical recording and stimulating arrays, that minicolumns in PFC are involved
in the executive control of behavior in rhesus macaque nonhuman primates (NHPs)
performing a delayed-match-to-sample (DMS) task. PFC neurons demonstrate functional
interactions between pairs of putative pyramidal cells within specified cortical layers via
anatomically oriented minicolumns. Results reveal target-specific, spatially tuned firing
between inter-laminar (layer 2/3 and layer 5) pairs of neurons participating in the gating
of information during the decision making phase of the task with differential correlations
between activity in layer 2/3 and layer 5 in the integration of spatial vs. object-specific
information for correct task performance. Such inter-laminar processing was exploited
by the interfacing of an online model which delivered stimulation to layer 5 locations
in a pattern associated with successful performance thereby closing the columnar loop
externally in a manner that mimicked normal processing in the same task. These
unique technologies demonstrate that PFC neurons encode and process information via
minicolumns which provides a closed loop form of “executive function,” hence disruption
of such inter-laminar processing could form the bases for cognitive dysfunction in primate
brain.

Keywords: prefrontal cortex, inter-laminar correlated firing, nonhuman primates, columnar correlates of target

selection, columnar correlates of task difficulty, spatial vs. object tuning

INTRODUCTION
The prefrontal cortex (PFC) with its privileged position at the top
of sensory-motor processing hierarchy (Alexander et al., 1986;
Fuster, 2001) has been traditionally viewed as the seat of higher
cognitive functions such as working memory and executive con-
trol of behavior (Fuster and Alexander, 1971; Funahashi et al.,
1989; Miller, 2000). According to many theories of cognition,
cortical mechanisms of executive function coordinate and con-
trol “online” cognitive processes underlying memory storage,
behavioral selection and motor planning (Posner and Snyder,
1975; Goldman-Rakic, 1996; Shallice and Burgess, 1996; Miyaki
et al., 2000; Miller and Cohen, 2001; Baddeley, 2002; Graybiel,
2008). Prefrontal neural activity in the primate brain that emerges
from cortical laminar minicolumns is hypothesized to play a
critical role in cognitive processes dealing with working mem-
ory and executive control of behavior (Goldman-Rakic, 1996;
Mountcastle, 1997; Rao et al., 1999; Miller and Cohen, 2001;
Baddeley, 2002; Casanova et al., 2007, 2009).

Cortical minicolumns consist of vertically-oriented “aggre-
gates” of cell bodies that represent the basic anatomic and

physiologic microcircuitry of the cerebral cortex (Mountcastle,
2003) that consist of pyramidal cells and several types of
GABAergic, inhibitory interneurons (i.e., double-bouquet, bas-
ket, and chandelier cells) (Casanova et al., 2002a,b, 2007;
Sokhadze et al., 2012). Minicolumns in PFC are interconnected
to each other through horizontal “long range” projections in
layer 2/3 (Kritzer and Goldman-Rakic, 1995), inter-laminar mini-
loops (Weiler et al., 2008; Takeuchi et al., 2011) and “reverbera-
tory loops” through projections to the subcortical basal ganglia
nuclei and thalamus (Alexander et al., 1986). Such “reverberatory
loops” combine incoming signals from thalamus in layer 4 and
inputs from cortical horizontal projections in layer 2/3, in order
to compare inputs to a threshold criterion triggering an output
response under specific conditions.

The ability to make behavioral selections in humans involves
attention, target/goal choice, planning and monitoring of actions,
and is regarded as a facet of decision making based on sensory
evidence, expected costs, and benefits associated with the out-
come (Opris and Bruce, 2005; Opris et al., 2005a,b; Heekeren
et al., 2008; Pesaran et al., 2008; Resulaj et al., 2009). In order
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to make optimal selections or decisions, many areas in the pri-
mate brain with converging inputs to the supra-granular layers of
the PFC are activated (Kritzer and Goldman-Rakic, 1995; Opris
et al., 2011; Takeuchi et al., 2011), thus raising the question as
to how the PFC processes information required for selection of a
particular behavioral response necessary for achieving functional
objective. It has been shown that neurons in PFC recorded from
rhesus macaque nonhuman primates (NHPs) demonstrate func-
tional interactions between inter-laminar “cell pairs” synaptically
connected via cortical minicolumns (Kritzer and Goldman-Rakic,
1995; Mountcastle, 1997; Buffalo et al., 2011; Opris et al., 2011;
Takeuchi et al., 2011) and that these cells coordinate activity
required to encode spatial location and select the target location
or target features.

In the studies presented here this presumed executive function
of PFC minicolumns was examined via custom designed con-
formal multielectrode arrays (MEAs) implemented to record the
firing of inter-laminar cell pairs oriented in cortical “microstrips”
in NHPs (Opris et al., 2011). The recording pads on the MEAs
matched the dimensions of two interconnected cell layers in PFC
(layer 2/3 and layer 5) which allowed simultaneous monitoring
of columnar oriented cells in each layer in order to characterize
the control of arm movements in a cognitive task requiring work-
ing memory and image-based target selection (Deadwyler et al.,
2007; Hampson et al., 2011). The results reveal target-specific,
spatially tuned firing between columnar oriented pairs of inter-
laminar PFC neurons, during the decision making and/or motor
planning phase of the task (Hampson et al., 2011).

METHODS
All animal procedures were reviewed and approved by the
Institutional Animal Care and Use Committee of Wake Forest
University, in accordance with U.S. Department of Agriculture,
International Association for the Assessment and Accreditation
of Laboratory Animal Care, and National Institutes of Health
guidelines.

VISUAL DELAYED-MATCH-TO-SAMPLE (DMS) TASK
The NHPs utilized as subjects in this study (n = 4) were trained
for at least 2 years to perform a well characterized, custom-
designed visual delayed-match-to-sample (DMS) task (Hampson
et al., 2011; Opris et al., 2011) shown in Figure 1A. Animals
were seated in a primate chair with a platform in front of a
display screen in which position of the arm on the platform
was tracked via a UV-fluorescent reflector affixed to the back of
the wrist, illuminated via a 15 W UV lamp, and detected by an
LCD camera positioned 30 cm above. Hand position and move-
ment was digitized and displayed as a bright yellow cursor on
the screen and horizontal positions of illuminated clip-art targets
were computed from the video image using a Plexon Cineplex
scanner. The DMS task paradigm is shown in Figure 1A. Trials
were initiated by the animal placing the cursor inside a yellow 3”
circle or square randomly illuminated in one of the nine spa-
tial positions on the screen. The presence of either the circle
or square constituted the “Start” signal for the trial and indi-
cated “trial type” with respect to the Match reward contingency
on the same trial (Figure 1A). Placement of the cursor into the

Start signal image produced a trial unique clip-art image ran-
domly displayed in one of eight peripheral screen positions on
each trial for 2, 0 s, which characterized the “Sample Phase” of
the task. Movement of the cursor into the Sample image (Sample
Response) blanked the screen and initiated the Delay phase for
10–60 s, randomly selected on each trial. Timeout of the Delay
interval initiated the onset of the Match phase of the task (Match
phase “onset”) in which 2–7 trial unique clip-art images, includ-
ing the Sample image, were presented on the screen with position
selected randomly on each trial. Placing the cursor into either,
(1) the Sample image (Object trial) or (2) the same location
as the prior Sample Response (Spatial trial), during the Match
phase constituted the correct “Match Response (MR)” which pro-
duced a drop of juice as the reward, delivered via a sipper tube
located near the animal’s mouth, and blanked the screen for 10 s
until the next trial. Placement of the cursor into one of the non-
match (distracter) images on an Object trial, or a different spatial
location on the screen during a Spatial trial, constituted a MR
error that blanked the screen without reward delivery and initi-
ated the 10 s inter-trial interval (ITI). All clip-art images (sample
and distracter) were unique for each trial in sessions of 100–150
trials and were chosen from a 10,000 image selection buffer
which was updated to replace 20% of the images every month.
The four NHPs were trained to overall performance levels of
70–75% correct with respect to the above described DMS task
parameters.

SURGERY
Animals were surgically prepared with cylinders for attach-
ment of a microelectrode manipulator over the specified brain
regions of interest. During surgery animals were anesthetized
with ketamine (10 mg/kg), then intubated and maintained with
isoflurane (1–2% in oxygen 6 l/min). Recording cylinders (Crist
Instruments, Hagerstown, MD) were placed over 20 mm diam-
eter craniotomies for electrode access to stereotaxic coordinates
of the Frontal Cortex (25 mm anterior relative to interaural line
and 12 mm lateral to midline/vertex) in the caudal region of the
Principal Sulcus (Figure 2A), the dorsal limb of Arcuate Sulcus
in area 8 and the dorsal part of premotor area 6 (Hampson
et al., 2011), areas previously shown by PET imaging to become
activated during task performance (Hampson et al., 2009). Two
titanium posts were secured to the skull for head restraint
with titanium steel screws embedded in bone cement. Following
surgery, animals were given 0.025 mg/kg buprenorphine for anal-
gesia and penicillin to prevent infection. Recording cylinders
were disinfected thrice weekly with Betadine during recovery and
daily during recording. Vascular access ports (Norfolk Medical
Products, Skokie, IL) for drug infusions were implanted subcu-
taneously in the mid-scapular region, the end of the catheter
threaded subcutaneously, to a femoral incision, inserted into the
femoral vein, and threaded for a distance calculated to terminate
in the vena cava and flushed daily with 5 ml heparinized saline
needed for IV drug administration.

ELECTROPHYSIOLOGY: RECORDING AND STIMULATION
Electrophysiological procedures and analysis utilized the MAP
Spike Sorter by Plexon, Inc. (Dallas, TX) for 64 channels
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FIGURE 1 | Delayed match to sample task (DMS) in NHPs. (A) Behavioral
paradigm shows the DMS task in which two types of trials (Object of Spatial)
were signaled by presentation of one of the two “Focus” signals into which
the animal placed the cursor to start the trial. On Object trials (yellow ring)
reward was delivered for selection of the same clip-art image to be presented
in the Sample phase, when it appeared later in the Match phase of the trial,
irrespective of position on the screen. On Spatial trials (blue square) reward
was delivered in the Match phase for selection of the image in the “spatial
location on the screen” in which the image was presented in the Sample
phase, irrespective of the clip-art image occupying that position in the Match
phase. The sequence of events on both types of trials: (1) presentation of
“Focus signal” to initiate the trial with cursor placement into the signal, (2)
presentation of the ‘Sample’ clip-art image requiring cursor movement into
the image “Sample Response” (3) initiation of a variable “Delay” interval of
1–60 s with the screen blank, (4) upon timeout of the delay interval the Match
phase is initiated in which the Sample image is presented on the screen at
random locations accompanied by 1–6 other non-match (distracter) images.

On Object trials placement of the cursor into the (Sample) image for = 0.5 s
was the correct Match response (MR) for that trial type. On Spatial trials
placement of the cursor into the same position in which the image appeared
in the Sample phase of the trial was the correct MR. Both correct MRs
produced a juice reward via a sipper tube mounted next to the animal’s
mouth. Placement of the cursor into an inappropriate image or location for =
0.5 s caused the trial to terminate and the screen to blank without reward
delivery. The inter-trial interval (ITI) was 10.0 s, and Object and Spatial trials
were randomly presented 0.6 and 0.4 percent of trials per session,
respectively. (B) DMS performance averaged over all animals (mean %
correct MRs) for Object trials as a function of number of Match phase
distracter images (number of images 2–7) and length of delay interval
(10–60 s) Asterisks: ∗F(1, 486) = 7.98, p < 0.01, ∗∗F(1, 486) = 12.24, p < 0.001,
ANOVA. (C) Behavioral performance averaged over all animals (mean %
correct MRs) for Spatial trials as a function of length of delay interval (1–20 s)
and number of Match phase distracter images (number of images 2–7)
Asterisks: ∗F(1, 486) = 7.98, p < 0.01, ANOVA.

simultaneous recordings. Customized conformal designed
ceramic MEAs were constructed at the University of Kentucky,
Center for Microelectrode Technology—CenMet, Lexington, KY,
and consisted of etched platinum pads (Figure 2B) for recording
multiple single neuron activity (Hampson et al., 2004, 2011).
Single extracellular action potentials (Figure 2B) were isolated
and analyzed with respect to activity on specific recording
pads (mpedance range 0.5–3.0 MOhms) during different events
within DMS trials (Figure 2C). The configuration of the MEA
(Figure 2B) was specially designed to conform to the columnar
anatomy of the PFC such that the top four recording pads
recorded activity from neurons in the supra-granular layer 2/3

(L2/3) while the lower set of four pads, separated vertically by
1350 µm, simultaneously recorded neuron activity in the infra-
granular layer 5 (L5) of the PFC (Figures 2B and C). Recordings
from multiple pads in designated locations on the MEAs were
analyzed by a nonlinear model previously perfected for assessing
and extracting spatiotemporal multineuron firing patterns in
PFC using the same MEAs and to deliver task-contingent elec-
trical stimulation to L5 in the same pattern as recorded during
correct trial performance (Hampson et al., 2012). Stimulation
consisted of 1.0 ms bipolar pulses (50–70 uA) delivered to L5
recording locations following presentation of the Match phase
screen and prior to the completion of the MR (Figure 7).
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FIGURE 2 | Inter-laminar recording in primate prefrontal cortex during

delayed-match-to-sample (DMS) task. (A) Diagram of NHP brain showing
PFC recording locations in cortical areas 46, 8, 6 (white circle). (B) Recording
Array: Diagram of a cortical minicolumn consisting of a “columnar pair” of
L2/3 (blue) and L5 (red) PFC cells. Diagram shows conformal multielectrode
recording array (MEA) positioned for simultaneous inter-laminar columnar
recording from a PFC minicolumn with corresponding L2/3 and L5 cell
waveforms (blue and red) corresponding to the task specific neural firing
shown in (C). (C) Individual trial rasters and average perievent histograms
(PEHs) over 50 trials obtained from the inter-laminar “cell pair” recorded

simultaneously from L2/3 (blue) and L5 (red) in the minicolumn format shown
in (B) over ±2.0 s relative to both the Sample and Match phase onset (0.0 s)
in a single DMS session. The occurrence of behavioral responses (reaction
time plus movement time) in the Match phase on each trial is indicated by
pink dots in the rasters. (B,C): Cross-correlation histograms (CCHs) of L2/3
and L5 cell pair activity in (C) from the same cell pair in (B) for the Sample
and Match phases of the task. The larger “green” CCH peak shows
increased inter-laminar synchronization during target selection in the Match
phase relative to the CCH constructed from the same cell pair during the
Sample phase (black) of the task shown in (C).

ELECTROCHEMICAL RECORDING
Ceramic MEAs similar to those utilized above for electrophysio-
logical recording were also prepared for electrochemical recording
(Burmeister et al., 2004, 2008; Quintero et al., 2007, 2011; Hascup
et al., 2008, 2011; Fuqua et al., 2010). The electrochemistry arrays
consisted of four recording sites (15× 333 µM) in two rows,
separated by 500 µm, with a 7 cm polyimide shaft for depth posi-
tioning. The electrodes were configured to record from Layer 2/3
with the reference in Layer 1. MEAs were dip coated with Nafion®,
a fluoropolymer which excludes the passage of anions, thus ensur-
ing that only cations would reach the platinum recording surface.
The dorsal (“sentinel” or reference) recording sites were coated
with bovine serum albumin (BSA) plus glutaraldehyde; ventral
recording sites were coated with Glutamate oxidase and BSA +
glutaraldehyde. The GluOx coating allowed the ventral pads to
be sensitive to glutamate release through the enzymatic produc-
tion of H2O2. A+0.7V charging potential was applied to the MEA
once per second (using an Ag/AgCl reference electrode) to oxidize
the H2O2 resulting from detection of glutamate at the electrode.
The “relaxation” current from H2O2 oxidation was proportional
to second-by-second changes in glutamate concentration at the
electrode (Quintero et al., 2011).

DATA ANALYSIS
Task performance was determined for each animal (n = 4) as
percent correct trials within and across sessions and related to
simultaneous MEA recordings on individual trials during Match
phase image selection MR in the task (Hampson et al., 2011).
Cell types were identified as regular firing pyramidal cells in
terms of baseline (nonevent) firing rate (Opris et al., 2009) and
significant changes (z > 3.09, p < 0.001) in firing (see below)
on single trials in perievent histograms (PEHs) derived for
intervals of ±2.0 s relative to the time of Match screen pre-
sentation that signaled onset of the Match phase of the task
(Figure 2C). Task-related neural activity was classified accord-
ing to locations on the conformal MEA which were positioned
specifically in L2/3 and L5 (Figure 2B) upon insertion in PFC
prior to the start of the DMS session. To account for neu-
ronal responses in terms of columnar microcircuit organization
neurons recorded on the MEAs were characterized by (1) simul-
taneous cell activity on both sets of vertical separated (1350 µm)
pads (L2/3 cell upper and L5 cell lower), during electrode posi-
tioning (Figure 2B), and (2) whether the same cell pair firing
was modulated similarly during the Match phase of the DMS
task (Hampson et al., 2012). Standard (Z) scores of increased
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firing rates relative to nonevent baseline values were calculated
for individual cells for each DMS task event. Firing rate was
analyzed in 250 ms bins for ±2.0 s relative to time of initiation
(0.0 s) task events. Only neurons with firing rates significantly
elevated from that in pre-event phases (−2.0 to 0.0 s) baseline
period were included for analysis. Differences in cross-correlation
between neuron spikes of L2/3 and L5 cell pairs on the same
vertical sets of MEA pads (Figure 2B) were assessed for the
same temporal intervals using standardized distributions of cor-
relation coefficients assessed under different conditions related
to performance in the Match Phase (Figures 2–5). Mean cross-
correlation histograms (CCHs) were calculated and compared
relative to mean coefficients normalized relative to probability of
firing for the same populations of cell pairs under different exper-
imental conditions (Figures 2B, 3C, 4C, and 5C), all of which
satisfied the 99% confidence requirement (Opris et al., 2011).
CCHs were generated using a shift predictor algorithm built
into NeuroExplorer version 4 (http://www.neuroexplorer.com/),
which computed chance cross-correlation levels by randomiz-
ing the actual spike sequence and calculating cross-correlations
five different times for a given pair of neurons, which was then
subtracted from the true coefficients for CCHs to adjust for

correlated firing due to differences in cell firing rates and fre-
quency of bursting (Opris et al., 2011; Takeuchi et al., 2011).
Population (mean) CCHs, normalized as a function of proba-
bility, were computed by averaging coefficients across multiple
cell pairs and plotting the mean values (±SEM) in 1.0 ms bins
(Figures 2B, 3C, 4C, and 5C).

IDENTIFICATION OF CORTICAL LAYERS AND MINICOLUMNS
The conformal MEA (model W3) probe (Figure 2B) was designed
so that the two sets of recording pads could only record simul-
taneous activity from neurons separated by ∼1350 µm, which
given the orientation of insertion into PFC (Figure 1B) could
only consist of infra-granular layer 5 and supra-granular layer
2/3 cell activity (Hansen and Dragoi, 2011; Opris et al., 2011;
Takeuchi et al., 2011). Misplacement of the probe due to a dif-
ferent angular penetration relative to columnar orientation in
PFC was detectable by the absence of simultaneous cell recordings
on the sets of vertically separated (1350 µm) pads. In addition,
the MEA (Hampson et al., 2004; Opris et al., 2011) employed
here allowed simultaneous recording of two PFC minicolumns
(Figure 2B) since, with proper vertical alignment (<5.0◦), activ-
ity from adjacent minicolumns could be detected, since MEA

FIGURE 3 | Effect of number of images on PFC columnar firing.

(A) Example peri-event histograms comparing neuron firing in PFC layers
L2/3 (blue) and L5 (red) as a function of the number of images presented
(upper: display screens) in the Match phase on Object type trials in the
DMS task. (B) Population peri-event histograms depicting the activity of
prefrontal cells from layers L2/3 (n = 16) and L5 (n = 26) on all types of
trials with different numbers of images (2, 3, 4, 5, 6, and 7) presented
during match phase in the DMS task [L2/3: F(6, 1039) = 8.29, p < 0.001;
L5: F(6, 639) = 8.64; p < 0.001, ANOVA]. (C) Example inter-laminar CCHs

for trials with a few (2 and 3 images) vs. many (6 and 7 images) distracter
images constructed from the same interlaminar L2/3-L5 cell pair shown in
(A). (D) Normalized population CCHs for trials with low (2, 3 red) vs. high
(6, 7 blue) numbers of images in the Match phase consisting of the
average correlation coefficients across individual CCHs from 27 different
inter-laminar cell pairs. Scatter plot showing differential distributions of
individual CCH peak correlation coefficients on trials with low vs. high
numbers of images for the same cell pairs (n = 27) comprising the
population CCH. ∗∗p < 0.001, ∗p < 0.01, ANOVA.
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FIGURE 4 | Effect of DMS delay duration on PFC neuronal activity

and columnar firing. (A) Raster and peri-event histograms comparing
firing of PFC L2/3 and L5 cells in the Match phase as a function of
short (≤20 s) vs. long (>40 s) delays in the DMS task. (B) Population
peri-event histograms depicting the activity of L2/3 and L5 cells during
short (≤20 s) vs. long (>40 s) delays (n = 23 cells in L2/3, p < 0.01

ANOVA and n = 18 cells in L5; p < 0.001 ANOVA). Histograms show
distribution of Match response latencies for short (red) vs. long (blue)
delays. (C) Example inter-laminar CCHs for L2/3 and L5 cell pairs
shown in (B) on trials with short vs. long delays. (D) Population of
inter-laminar CCHs and scatter plot for short vs. long delay trials (see
Figure 3D). ∗∗p < 0.001, ∗p < 0.01, ANOVA.

pads were separated laterally by 40 µm which exceeds the dis-
tances reported (28 µm) from anatomic assessments (Casanova
et al., 2009; Hansen and Dragoi, 2011; Mo et al., 2011; Takeuchi
et al., 2011).

TUNING PLOTS
For each inter-laminar cell pair (L2/3 and L5), firing on the
same trials was plotted with respect to the position of the tar-
get selected in the Match phase (Figure 6B). Directionality was
assigned according to the eight positions on the screen with ref-
erence to placement of the cursor in the center providing angles
corresponding to the location of the match image around the
periphery of the screen, yielding 0◦ (directly lateral), 45, 90, 135,
180, 225, 270, 315, and 360◦ movement directions from center
of screen (Rao et al., 1999; Felsen et al., 2002). Mean firing rate
commencing at Match phase onset until time of occurrence of the
MR (i.e., typically 0.5–1.0 s, Figures 4D and 5D) was calculated

and represented for each inter-laminar cell pair in polar coordi-
nates as tuning plots of the average firing rate, over all trials in
a single session. Directional biases, or “preferences”, for cell pairs
were defined as response locations with the highest mean firing
rates relative to all the other positions responded to during the
session (Figure 6B). A tuning index plot (Meyer et al., 2011) was
employed for comparing the distribution of biases for the same
cells on Object vs. Spatial trials (Figure 6E).

RESULTS
The four subjects NHPs trained to perform the DMS task
(Hampson et al., 2011) were required to select the same video
image presented on-screen in the prior Sample phase from a set
of 2–7 images in the subsequent Match Phase after an interven-
ing Delay of 10–60 s (Figure 1A). The NHPs made hand tracking
movements of a cursor on the screen in the Match phase to
obtain a juice reward for selection of the correct (Sample) image
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FIGURE 5 | Comparison of PFC inter-laminar firing on Object vs. Spatial
trials. (A) Rasters and Peri-event histograms showing firing in the Match
phase of a PFC L2/3-L5 cell pair recorded during Spatial vs. Object type
trials. (B) Population peri-event histograms depicting the activity of PFC
L2/3 (n = 50) and L5 (n = 54) cells on Spatial (blue) vs. Object (red) trials
presented during match phase in the DMS task [F(1, 1039) = 12.89,
p < 0.001, ANOVA]. Histograms show distribution of match response
latencies for Spatial (blue) vs. Object (red) trials. (C). Average inter-laminar
cross-correlation for the same cell pairs (n = 26) recorded on Object vs.
Spatial trials. Scatter plot of shows differential distribution of peak CCH
values for Object vs. Spatial trials for the same cell pairs. (D) Behavioral
performance as a function of the number of images (2–7) on Object vs.

Spatial trials. (E) Electrochemical recording of tonic glutamate
neurotransmitter concentrations in PFC Layer 2/3. Mean (±S.E.M.)
glutamate concentration ([Glutamate]) measured as a percentage increase
over baseline (average 8.69± 0.77 µM) glutamate concentration. Horizontal
axis indicates phase of DMS task: intertrial interval (ITI), Sample phase,
Delay phase (Dly), end of delay phase 5 s prior to Match (PreM), Match
phase and reinforcement (Reinf.). Asterisks: ∗p < 0.01, ∗∗p < 0.001, Object
vs. Spatial trials; #p < 0.01, ##p < 0.001 DMS task phases vs. ITI.
(F) Frequency of phasic glutamate release events measured as transient
increase (<2.0 s duration) of at least 5% in [Glutamate] for the same trials
shown (E). Frequency normalized to number of events per second per
DMS trial (Fuqua et al., 2010).

in different positions which varied on each trial with respect to
image-type and screen position. The key variables in the task
therefore were: (1) number of distracter images (2–7) presented
randomly in different screen positions in the Match phase on
each trial, (2) the duration of the intervenning delay interval
(1.0–60.0 s) and (3) the random placement of the Sample (tar-
get) image in 1 of 7 spatial positions on the screen in the Match
phase (after the delay interval). Previous research with the same

DMS task has indicated the necessity of attention, short-term
memory and response latency, together with influence of type of
choice, as factors that affect cognitive workload in the same task
(Porrino et al., 2005; Deadwyler et al., 2007). Recent analyses of
PFC activity showed that animals execute a “decision process” in
the Match phase of the task (Figure 1A) involving target selec-
tion (Hampson et al., 2011) and that this involved inter-laminar
synchrony in cell activity (Hampson et al., 2012). In the study
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FIGURE 6 | Inter-laminar PFC spatial tuning during DMS task

performance. (A) Illustration of two arm movement tracks from a single
animal for two opposite target locations on the screen during the Match
phase of the DMS task. (B) Tuning Plot Multigram PEHs (multigram) and
spatial tuning plot (diagram in center) for a PFC L2/3 cell on Spatial (blue)
and Object (red) trials. The tuning plot in the middle displays Match phase
mean firing rates (shaded areas in PEHs) along radial axes corresponding to
movement of the cursor into each of the eight screen image positions from
the screen center summed over all trials in a single session. The spatial
(i.e. screen position) “bias” indicated by the highest firing rate for target
selection, for the Object trial tuning vectors was in the “medial left”
position (i.e.,180◦ ), while the bias for Spatial trial tuning vectors was in the

“down” (i.e., 270◦) position. (C) Average firing rate for Spatial biases
(preferred target locations) and Object biases summed across different
(n = 42) inter-laminar (L2/3 and L5) cells. (D) Scatter plot comparing
preferred (i.e., highest) firing rate directions for the same cells in (C) on
Spatial vs. Object trials, indicating a more biased directional firing on Spatial
trials. (E) Histogram comparing the distribution of preferred firing for the
same cells as a function of a tuning index (TI) derived as TI = (PF−NF)/
(PF+NF), on Spatial (blue) and Object (red) trials, where PF represents
preferred location/direction firing rate and NF stands for non-preferred
direction firing rate. The plot in (E) shows that there was a trend for lower
TIs, less bias for one position, on Spatial vs. Object trials by showing more
cells with lower TI values. ∗∗p < 0.001, ANOVA.

presented here PFC columnar inter-laminar pair-wise cell firing
from four NHPs (60 cell pairs: 21 in animal K, 16 in B, 12 in E
and 11 in G) was characterized for all of the above mentioned
task-related parameters shown previously (Porrino et al., 2005;
Deadwyler et al., 2007) to control cognitive processing in this
DMS task.

MULTIELECTRODE ARRAY RECORDINGS FROM CORTICAL LAYERS AND
MINICOLUMNS
Prior reports of neural relationships to executive function and
decision making in a sensorimotor hierarchy (Miller and Cohen,
2001; Opris and Bruce, 2005; Heekeren et al., 2008; Pesaran et al.,

2008; Opris et al., 2012) referred to recordings made in dor-
solateral PFC as shown in Figures 2A and B, which were also
reported to depend on the interaction between neurons in differ-
ent layers in the same area (Goldman-Rakic, 1996; Opris et al.,
2011; Takeuchi et al., 2011). In this study, inter-laminar con-
nectivity was sensed by previously described conformal-designed
MEAs (Hampson et al., 2012) positioned to simultaneously
record neurons located in PFC layer 2/3 and layer 5 in adjacent
“minicolumns” during performance of the DMS task (Figures 2B
and C). The MEA contained two linear sets of four recording
pads separated vertically by 1350 µm to conform to the distance
between PFC cortical cell layer 2/3 (L2/3) and layer 5 (L5) when
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inserted perpendicular to the parallel lamellae (see “Methods”).
The two sets of dual vertical pads in each upper and lower
position on the MEA were separated horizontally by 40 µm in
order to exceed the reported 28 µm width of single cortical mini-
columns (Casanova et al., 2007; Opris et al., 2011). This allowed
simultaneous recording from two adjacent L2/3 and L5 columnar
“cell pairs” constituting neural activity from two separate mini-
columns on a single MEA probe. This pad configuration insured
that only cells in L2/3 and L5 were recorded, since the appear-
ance of cells simultaneously on both sets of vertical pads required
0◦ angular placement relative to both cell layers (Takeuchi et al.,
2011) as shown in Figure 2B. In this study spatiotemporal anal-
yses of 180 prefrontal cortical (PFC) pyramidal cells recorded
in four NHPs revealed a large number (n = 60) of confirmed
L2/3 and L5 cell pairs in this region of PFC (Figure 2A) that dis-
played inter-laminar interactions during the Match phase of the
DMS task.

INTER-LAMINAR PROCESSING IN PFC DURING DMS TASK
The relevance of minicolumnar activity to decision making has
been investigated in several types of cognitive processing tasks
(Goldman-Rakic, 1996; Opris and Bruce, 2005; Heekeren et al.,
2008; Pesaran et al., 2008; Resulaj et al., 2009; Opris et al., 2011,
2012). An example of this inter-laminar interaction during the
target-selection in the Match phase of the DMS task (Figure 1A)
is shown in Figure 2C in raster/PEHs constructed over ±2.0 s
for the Sample and Match phases of the trial for a cell pair
recorded in the PFC with the MEA (Figure 2B). The cell pair
was recorded on appropriate sets of pads as shown in the illustra-
tion of the two cells in L2/3 and L5 next to the MEA (Figure 2B).
Neurons in both layers showed significant increases in mean fir-
ing during Sample (L2/3: Z = 7.30, p < 0.001; L5: Z = 4.16,
p < 0.001) and Match (L2/3: Z = 12.86, p < 0.001; L5: Z = 6.20,
p < 0.001) screen presentations (post events: 0.0–2.0 s) and dur-
ing subsequent movements associated with target selection in
this task (Hampson et al., 2011). A consistent finding employing
this recording configuration was that within neuron pairs signif-
icantly higher mean firing rate in the 0.0+ 2.0 s interval were
observed for L2/3 cells after Match phase onset [F(1, 153) = 20.93,
p < 0.001] as demonstrated in the upper and lower raster/PEHs
in Figure 2C. More precise functional connections between indi-
vidual cells within each minicolumn was determined by cross
(CCHs; Opris et al., 2011; Takeuchi et al., 2011; Hong et al., 2012)
constructed for the same minicolumn cell pairs. This is shown for
the firing displayed in the PEHs in Figure 2C and although there
was significantly correlated firing (Match: Z = 12.23, p < 0.001;
Sample: Z = 10.12, p < 0.001) the differences in peak correlation
shown in the CCHs [F(1, 401) = 9.41, p < 0.001] indicate that the
cell pair firing was more synchronized in the Match than in the
Sample phase of the task.

EFFECTS OF TASK DIFFICULTY ON INTER-LAMINAR PROCESSING
Number of match phase images
As shown in prior reports (Porrino et al., 2005; Deadwyler et al.,
2007; Hampson et al., 2011) a major cognitive factor influencing
target selection in the Match phase of this task was the number of
distracter images (number of images) presented with the Sample

image on a given trial (Figure 1A). Figure 3A shows an exam-
ple of a graded decrease in cell pair firing in both L2/3 and L5
as a function of the number of images presented in the Match
phase. In agreement with prior results (Hampson et al., 2011),
overall mean firing rates of L2/3 (n = 26) and L5 (n = 16) neu-
rons (Figure 3B) were systematically decreased as a function of
the number of images in the Match phase (L2/3: F(6, 1039) = 8.29,
p < 0.001; L5: F(6, 639) = 8.64; p < 0.001, ANOVA). However,
more importantly this decrease was also expressed in terms of cor-
related firing between L2/3-L5 cell pairs as shown in Figures 3C
and D (n = 27) in which Match phase CCHs on trials with few
(2 and 3) images showed significantly higher correlations than
on trials with more (6 and 7) images [F(1, 53) = 7.21; p < 0.01,
ANOVA]. This finding of decreased inter-laminar correlated fir-
ing is consistent with the fact that increasing the number of
distracter images decreases task performance (Figures 1B and C)
due to an increase the in cognitive workload of the task (Hampson
et al., 2011; Kelley and Lavie, 2011).

Duration of delay
Another factor increasing cognitive workload in the DMS task
is memory of the Sample target image across the delay interval
(Figure 1A) and has been shown to be a factor influencing Match
target selection (Deadwyler et al., 2007). Consistent with this rela-
tionship as shown in Figure 4B was the fact that average firing
rates for L2/3 and L5 cell pairs was significantly lower on “long”
(>40 s) vs. “short” (=20 s) delay trials [L2/3: F(1, 919) = 6.67,
p < 0.01, n = 23; L5: F(1, 719) = 10.92; p < 0.001, n = 18,
ANOVA]. Figure 4C shows that Match phase (0.0–2.0 s) CCHs
for both L2/3 and L5 cells were significantly lower on “short”
vs. “long” delay trials [short delay: F(1, 1639) = 10.87, p < 0.001;
long delay: F(1, 1639) = 6.71, p < 0.01] as were the average CCHs
for all L2/3 vs. L5 cell pairs (Figure 4B) under both conditions
[F(1, 45) = 7.27; p < 0.01, ANOVA]. The decrease in interlaminar
correlation as a function of short vs. long delays is shown more
explicitly in the scatterplot in Figure 4D where short delay trials
produced higher correlation coefficients than long delay trials for
the same cell pairs.

EFFECT OF ‘TRIAL TYPE’ (OBJECT vs. SPATIAL) ON INTER-LAMINAR
PROCESSING
PFC minicolumns are a functional neuronal “module”
(Buxhoeveden and Casanova, 2002; Casanova et al., 2003)
with basic associative abilities to integrate horizontal and vertical
anatomic “components” of the cortex (Mountcastle, 1997; Lund
et al., 2003; Tanaka, 2003; Opris et al., 2011). The visual signals
carrying Spatial information ascend from visual cortex on
the dorsal stream to be integrated in PFC minicolumns with
signals from the ventral stream that label the clip art image
visual features such as color, shape, brightness used on Object
trials. To compare firing in PFC layers L2/3 and L5 on Spatial
vs. Object trials we examined image selection ability of cortical
minicolumns during the Match phase of DMS task in the same
cells during both types of trial in the same session. Figures 5A
and B show differences in L2/3 and L5 cells with respect to mean
(±SEM) firing rate changes during the Match phase interval of
Spatial and Object trials trials within the same DMS sessions.
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Mean firing rates during the Match phase (0.0–2.0 s) were
significantly higher for L2/3 vs. L5 cells for both types of trials
[F(1, 1039) = 12.89, p < 0.001, ANOVA], however, Figure 5B
shows that rates were significantly lower on Spatial vs. Object
trials for L2/3 cells [F(1, 499) = 10.96, p < 0.001, n = 50], but
not for L5 [F(1, 539) = 1.12, ns, n = 54; ANOVA]. Figure 5C
shows that these differences in firing rates were also associated
with significant decreases in mean CCHs for the same L2/3-L5
cell pairs on Object vs. Spatial trials [F(1, 51) = 12.20, p < 0.001]
which as indicated in the “Methods” section, were not due to
alterations in firing rate per se (Hong et al., 2012). These results
are consistent with the differences in degree of difficulty between
Object vs. Spatial trials with respect to task performance, as
shown in Figure 5D.

The contribution of different cellular networks for differential
columnar processing on Object vs. Spatial trials was examined
by employing electrochemical recording of glutamate levels in
PFC Layer 2/3. Glutamate neurotransmission have been impli-
cated in learning and memory (Dudkin et al., 2003; Riedel
et al., 2003), therefore we hypothesized that changes in levels
of released glutamate would correlate with differential cognitive
processing (Stephens et al., 2010) of DMS trials. Glutamate-
sensitive electrochemical recording MEAs were tested in three
sessions for each of the four NHPs. The average basal glutamate
concentration across animals and sessions was 8.69± 0.77 µM.
Figure 5E shows the percent change in tonic glutamate concen-
tration (Glutamate) from baseline sorted by individual phases
(events) in the DMS task averaged separately across animals
for Object vs. Spatial trials. While both Object and Spatial tri-
als exhibited significantly increased glutamate concentrations
[F(5, 789) = 11.42, p < 0.001] in the Delay and Match phases of
the task compared to baseline and ITI levels (Fuqua et al., 2010),
glutamate levels were significantly elevated on Object relative to
Spatial trials [F(2, 789) = 32.17, p < 0.001]. Figure 5F depicts the
frequency of phasic (i.e., transient) glutamate increases puta-
tively related to neurotransmitter release events (Stephens et al.,
2010). Although the frequency of glutamate release detected in
the vicinity of the electrode was similar, it was still greater for
Object vs. Spatial trials (Figure 5E) suggesting that the difference
in overall tonic concentration represented activity of a network of
glutamate synapses throughout PFC.

Spatial tuning
Another comparison of Object vs. Spatial trial processing was
provided by examining “tuning plots” (Rao et al., 1999; Felsen
et al., 2002) of PFC L2/3 and L5 cell pairs constructed for
each target location on the screen during Match target selection
(Figure 6A). Figure 6B shows an example of L2/3 cell firing on
both Spatial (blue) and Object (red) trials. This type of compari-
son clearly dissociates the L2/3 cell biases/preferences on Spatial;
tuning vector points to lower target location, 270◦) vs. Object
trials (Figure 6A; tuning vector points to left target location;
180◦). Figure 6C shows average PEHs of preferred firing rates on
Spatial (blue) vs. Object (red) trials for 42 neurons which showed
significant increases [F(1, 1679) = 19.63; p < 0.001, ANOVA] on
Spatial vs. Object trials. Finally, a scatter plot of mean firing rates
(Figure 6D) at biased target locations of the same cells (n = 42)

as in Figure 6C shows a significant difference in preferred firing
on Spatial vs. Object trials (P < 0.001; paired T-test). A “tuning
index” defined as: TI = (PF− NF)/(PF+NF), where PF repre-
sents mean firing rate in the preferred/biased location and NF the
non-preferred (lowest) firing location, was calculated to compare
firing in the Match phase on Object vs. Spatial trials. Figure 6E
shows the comparison of tuning index for Match target selection
on Spatial vs. Object trials, that have comparable magnitudes in
selection abilities on different, prior trial-specific instructions via
the focus signal (Figure 1A), which is consistent with the mul-
tifunctional roles of these same cells in executive control. The
results shown in Figures 6D and E indicate dominance of pre-
ferred location firing on Spatial vs. Object trials which was likely
the result of the influence of the prior trial type instruction in the
Focus phase of the task.

CLOSING THE LOOP WITH INTERLAMINAR REGULATED STIMULATION
The unique properties of conformal MEAs also provide the basis
for applying a system specific model to control firing of cells via
application of electrical stimulation to the same loci in which
columnar firing has been detected and analyzed with respect
to DMS task performance (Hampson et al., 2012). This same
model was implemented here to test whether it could facilitate
performance on trials that show a distinctive difference in per-
formance as a function of the prior instructions as to type of
response to make in the Match phase (i.e., Object vs. Spatial
trials). Figure 7A shows the integration of a multi-input multi-
output (MIMO) nonlinear math model to assess the patterns
of firing in L2/3 and L5 cells recorded in the columnar man-
ner with the MEA shown with adjacent vertical pads (Hampson
et al., 2012; Opris et al., 2012). Figure 7B reflects the type of
input and output firing patterns recorded and analyzed by the
MIMO model and also illustrates how the output pattern of L5
cell firing is duplicated via a multichannel stimulator that is capa-
ble of delivering predetermined patterns of pulses to the same
L5 pads to mimic firing on correct trials. The advantage of the
MIMO model is that the online recording provides the means to
detect when the inappropriate L2/3 firing pattern occurs which
triggers the delivery of the appropriate L5 stimulation pattern
providing the means to override errors and enhance performance
(Hampson et al., 2012). The results of stimulation delivery are
shown in Figures 7C and D, in which the effects on performance
are compared to trials in which stimulation was not delivered,
irrespective of trial type. Figure 7C shows the change in latency
to respond on stimulation trials with respect to the time of
onset of the Match phase, while Figure 7D shows the increase
in correct performance on trials as a function of the number of
distracter images in the Match phase. Finally in agreement with
all prior demonstrations and correlations of columnar specificity
with respect to the influence of trial type on DMS performance,
Figure 7E shows that Spatial trials that received MIMO stimula-
tion showed improved performance relative to Object trials (with
the same number of distracter images and delays 1–20 s). These
results indicate that MIMO derived stimulation facilitated cog-
nitive processing required to retrieve the “rule” for successful
Match phase selection of the appropriate Sample item as shown in
Figure 6.
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FIGURE 7 | Closing interlaminar loops in PFC with MIMO model

generated stimulation. (A) Diagram of the interfacing of MIMO model
with conformal MEAs shown in Figure 2 between L2/3 and L5 during task
performance. Electrical stimulation delivered to MEA pads in L5 via
patterns of pulses (biphasic) recorded and derived from the same L5
locations on successful trials by the MIMO model. (B) Firing of L2/3 and
L5 located columnar neurons as shown in Figure 2 recorded on line and
fed to MIMO model shown in (A). Shaded areas indicate time of Match
Response execution during DMS trial, and the illustrated firing in L5 which

is the same pattern as the delivered stimulation on trials with inappropriate
L2/3 firing. (C) Changes in cummulative response latencies (processing
time) from Match phase onset (“0”) during trials with stimulation delivered
in the manner shown in (A) and (B), (D). Increase in performance across
trials with increasing difficulty as a function of the number of Match phase
distracter images on trials that received MIMO stimulation in the manner
shown in (A,E). Differential effects of MIMO stimulation on Spatial vs.
Object trials showing more enhancement on Spatial trials ranging in delays
of 1–20 s. ∗∗p < 0.001, ANOVA.

DISCUSSION
INTER-LAMNAR PROCESSING IN PREFRONTAL CORTEX vs. CLOSING
THE LOOP
The findings reported here (Figures 2, 3, and 4) are consistent
with the idea that neurons in the supra- and infra-granular layers
form efficient mini-columnar circuits during Match phase tar-
get selection required for effective performance of this DMS task
(Swadlow et al., 2002; Pesaran et al., 2008; Resulaj et al., 2009;
Buffalo et al., 2011; Opris et al., 2011; Takeuchi et al., 2011). The
implementation of the unique MEA (Figure 2B) provided the
basis for the detailed assessment of inter-laminar correlated fir-
ing (Opris et al., 2011) that was validated in multiple recordings
of L2/3 and L5 cell pairs that yielded similar relations following
differential changes in performance-dependent task parameters
across animals and sessions (Figures 3D, 4D, and 5D). The
increase in L2/3 and L5 correlations specific to the decision for

target selection in the Match phase of the task (Figures 2, 3,
and 4) suggests that a key variable in controlling task perfor-
mance was activation of L5 neurons via specific minicolumnar
input from paired neurons in layers 2 and 3 which have been
shown to participate in the integration of “long-range” sensory
inputs from the parietal dorsal visual stream (Opris and Bruce,
2005; Heekeren et al., 2008; Pesaran et al., 2008; Resulaj et al.,
2009). Such integration was definitely reduced by trial difficulty
as indicated by the reduction in firing synchrony between L2/3
and L5 cell pairs relative to trials with less cognitive demand
(Figures 1B, 3C,D, and 4C,D). Prior investigations have shown
that the firing of adjacent minicolumns is not correlated with
respect to L2/3 and L5 activation during the Match phase of
the task (Hampson et al., 2012; Opris et al., 2012). This again
supports the notion that specific columnar processing was the
basis for effective task performance and that such processing with
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respect to correlated firing between columns was independent,
potentially reflecting processing of different forms of task specific
information (Miyaki et al., 2000; Miller and Cohen, 2001; Opris
et al., 2011).

Another feature demonstrating the columnar nature of this
type of multineuron processing was the fact that classified
L2/3–L5 cell pairs also showed the same Match phase spatial
tuning biases (Felsen et al., 2002) during the session (Figure 6),
which indicates the possible presence of previously identified
PFC minicolumnar selection biases (Rao et al., 1999; Resulaj
et al., 2009; Opris et al., 2011) in the cell pairs reported here
(Figures 3, 4, and 5). This columnar processing trend, with the
same tunning bias of L2/3 and L5 cells, reported in 81% of
the cell pairs in Spatial trials was also present in the same per-
centage during Object trials, although the direction of tuning
biases in the same minicolumn varied between these two trial
contingencies.

Figures 5B and C show a very important distinction with
respect to PFC inter-laminar processing which illucidates
markedly why animals were less efficient in performing Spatial
vs. Object types of trials with the same delays (Figure 5D) in
the same behavioral sessions. The reduction in L2/3-L5 cell
pair correlation on Spatial trials shown in Figure 5C, reflects
a difference related to a state controlled by “prior” trial spe-
cific instruction (Figure 1A Focus signal) and suggests a lack
of contextual encoding sufficient to maintain the same level
of interlaminar communication. This is supported also by the
demonstration of the independent influence of trial delay shown
in Figure 4 which clearly had a greater influence on Spatial vs.
Object trials. In addition, the electrochemical measurement of
glutamate concentration in Layer 2/3 (Figures 5E–F) suggests

that different networks, circuits, or even possibly, interlaminar
columns of PFC neurons, differentially support the process-
ing of Spatial vs. Object trials. Thus, Inter-laminar process-
ing likely underlies the putative “executive function” of this
brain region. These unique neural recordings demonstrate that
relations between prefrontal neurons that encode and process
information between cortical layers via minicolumns are likely
relevant factors involved in executive dysfunction in which inter-
laminar disruption could be the basis for the cognitive impair-
ment as shown recently (Hampson et al., 2011, 2012; Opris
et al., 2012). This was verified by the fact that delivery of the
appropriate firing pattern with MIMO model derived electri-
cal stimulation in the same L5 neural firing pattern as during
successful execution of the MR in the task, improved perfor-
mance when more distracter images were present (Figure 7D).
However the fact that MIMO stimulation also facilitated per-
formance by avoiding a different type of error with respect to
retaining and implementing the “rule” for the type of trial (Object
or Spatial) being executed (Figure 7E), suggests that closing PFC
columnar loops activates a process that normally functions to
enhance cognitive decision making in NHPs performing tasks
that require retention of the contexts in which target selections
are made.

ACKNOWLEDGMENTS
We thank Joshua Long, Joseph Noto, Brian Parish, Mack Miller,
and Shahina Kozhisseri for their assistance on this project. This
work was supported by National Institutes of Health Grants
DA06634, DA023573, DA026487 and by Defense Advanced
Research Projects Agency (DARPA) contract N66601-09-C-2080
to Sam A. Deadwyler.

REFERENCES
Alexander, G. E., DeLong, M. E.,

and Strick, P. L. (1986). Parallel
organization of functionally segre-
gated circuits linking basal ganglia
and cortex. Ann. Rev. Neurosci. 9,
357–381.

Baddeley, A. (2002). “Fractionating
the central executive,” in Principles
of Frontal Lobe Function, eds D.
T. Stuss and R. T. Knight (New
York, NY: Oxford University Press),
246–260.

Buffalo, E. A., Fries, P., Landmanc,
R., Buschman, T. J., and Desimone,
R. (2011). Laminar differences in
gamma and alpha coherence in the
ventral stream. Proc. Natl. Acad. Sci.
U.S.A. 108, 11262–11267.

Burmeister, J. J., Coates, T. D., and
Gerhardt, G. A. (2004). Multisite
microelectrode arrays for measure-
ments of multiple neurochemicals.
Conf. Proc. IEEE Eng. Med. Biol. Soc.
7, 5348–5351.

Burmeister, J. J., Pomerleau, F., Huettl,
P., Gash, C. R., Werner, C. E., Bruno,
J. P., et al. (2008). Ceramic-based
multisite microelectrode arrays for

simultaneous measures of choline
and acetylcholine in CNS. Biosens.
Bioelectron. 23, 1382–1389.

Buxhoeveden, D. P., and Casanova, M.
F. (2002). The minicolumn hypoth-
esis in neuroscience. Brain 125,
935–951.

Casanova, M. F., Buxhoeveden, D. P.,
Cohen, M., Switala, A. E., and
Roy, E. L. (2002a). Minicolumnar
pathology in dyslexia. Ann. Neurol.
52, 108–110.

Casanova, M. F., Buxhoeveden, D. P.,
and Brown, C. (2002b). Clinical
and macroscopic correlates of
minicolumnar pathology in autism.
J. Child Neurol. 17, 692–695.

Casanova, M. F., Buxhoeveden, D., and
Gomez, J. (2003). Disruption in
the inhibitory architecture of the
cell minicolumn: implications for
autism. Neuroscientist 9, 496–507.

Casanova, M. F., Switala, A. E., Trippe,
J., and Fitzgerald, M. (2007).
Comparative minicolumnar mor-
phometry of three distinguished
scientists. Autism 11, 557–569.

Casanova, M. F., El-Baz, A.,
Vanbogaert, E., Narahari, P., and

Trippe, J. (2009). Minicolumnar
width: comparison between
supragranular and infragranular
layers. J. Neurosci. Methods 184,
19–24.

Deadwyler, S. A., Porrino, L., Siegel,
J. M., and Hampson, R. E. (2007).
Systemic and nasal delivery of
orexin-A (Hypocretin-1) reduces
the effects of sleep deprivation on
cognitive performance in non-
human primates. J. Neurosci. 27,
14239–14247.

Dudkin, K. N., Chueva, I. V.,
Arinbasarov, M. U., and Bobkova,
N. V. (2003). Organization of work-
ing memory processes in monkeys:
the effects of a dopamine receptor
agonist. Neurosci. Behav. Physiol. 33,
387–398.

Felsen, G., Shen, Y. S., Yao, H., Spor,
G., Li, C., and Dan, Y. (2002).
Dynamic modification of corti-
cal orientation tuning mediated by
recurrent connections. Neuron 36,
945–954.

Funahashi, S., Bruce, C. J., and
Goldman-Rakic, P. S. (1989).
Mnemonic coding of visual space in

the monkey’s dorsolateral prefrontal
cortex. J. Neurophysiol. 61, 331–349.

Fuqua, J. L., Quintero, J. E., Long,
J. L., Noto, J. V., Hampson, R.
E., Gerhardt, G. A., et al. (2010).
Electrical Stimulation of Glutamate
Release in the Hippocampus. 2010
Neuroscience Meeting Planner.
Program No. 610.8. (Washington,
DC: Society for Neuroscience).

Fuster, J. M. (2001). The prefrontal
cortex–an update: time is of the
essence. Neuron 30, 319–333.

Fuster, J. M., and Alexander, G. E.
(1971). Neuron activity related to
short-term memory. Science 173,
652–654.

Goldman-Rakic, P. S. (1996). The pre-
frontal landscape: implications of
functional architecture for under-
standing human mentation and
the central executive. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 351,
1445–1453.

Graybiel, A. M. (2008). Habits, rituals,
and the evaluative brain. Annu. Rev.
Neurosci. 31, 359–387.

Hampson, R. E., Coates, T. D. Jr.,
Gerhardt, G. A., and Deadwyler, S.

Frontiers in Neural Circuits www.frontiersin.org November 2012 | Volume 6 | Article 88 | 139

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Opris et al. Cortical columnar microcircuits and executive control

A. (2004). “Ceramic-based micro-
electrode neuronal recordings in
the rat and monkey,” in Proceedings
of the Annual International
Conference of the IEEE Engineering
in Medicine and Biology Society
(EMBS), (Lexington, KY), 25,
3700–3703.

Hampson, R. E., España, R. A., Rogers,
G. A., Porrino, L. J., and Deadwyler,
S. A. (2009). Mechanisms under-
lying cognitive enhancement and
reversal of cognitive deficits in non-
human primates by the ampakine
CX717. Psychopharmacology (Berl.)
202, 355–369.

Hampson, R. E., Gerhardt, G. A.,
Marmarelis, V., Song, D., Opris,
I., Santos, L. M., et al. (2012).
Facilitation and restoration of cog-
nitive function in primate prefrontal
cortex by a neuroprosthesis that
utilizes minicolumn-specific
neural firing. J. Neural Eng.
9, 056012.

Hampson, R. E., Porrino, L. J., Opris,
I., Stanford, T., and Deadwyler, S.
A. (2011). Effects of cocaine rewards
on neural representations of cog-
nitive demand in nonhuman pri-
mates. Psychopharmacology (Berl.)
213, 105–118.

Hansen, B., and Dragoi, V. (2011).
Adaptation-induced synchroniza-
tion in laminar cortical circuits.
Proc. Natl. Acad. Sci. U.S.A. 108,
10720–10725.

Hascup, K. N., Hascup, E. R.,
Pomerleau, F., Huettl, P., and
Gerhardt, G. A. (2008). Second-
by-second measures of L-glutamate
in the prefrontal cortex and
striatum of freely moving mice.
J. Pharmacol. Exp. Ther. 324,
725–731.

Hascup, K. N., Hascup, E. R., Stephens,
M. L., Glaser, P. E., Yoshitake,
T., Mathe, A. A., et al. (2011).
Resting glutamate levels and rapid
glutamate transients in the pre-
frontal cortex of the Flinders
Sensitive Line rat: a genetic
rodent model of depression.
Neuropsychopharmacology 36,
1769–1777.

Heekeren, H. R., Marrett, S., and
Ungerleider, L. G. (2008). The neu-
ral systems that mediate human per-
ceptual decision making. Nat. Rev.
Neurosci. 9, 467–479.

Hong, S., Ratté, S., Prescott, S.
A., and De Schutter, E. (2012).
Single neuron firing properties
impact correlation-based pop-
ulation coding. J. Neurosci. 32,
1413–1428.

Kelley, T. A., and Lavie, N. (2011).
Working memory load modulates
distractor competition in primary

visual cortex. Cereb. Cortex 21,
659–665.

Kritzer, M. F., and Goldman-Rakic, P.
S. (1995). Intrinsic circuit organi-
zation of the major layers and sub-
layers of the dorsolateral prefrontal
cortex in the rhesus monkey. J.
Comp. Neurol. 359, 131–143.

Lund, J. S., Angelucci, A., and Bressloff,
P. C. (2003). Anatomical substrates
for functional columns in macaque
monkey primary visual cortex.
Cereb. Cortex 13, 15–24.

Meyer, T., Qi, X. L., Stanford, T. R., and
Constantinidis, C. (2011). Stimulus
selectivity in dorsal and ventral pre-
frontal cortex after training in work-
ing memory tasks. J. Neurosci. 31,
6266–6276.

Miller, E. K. (2000). The prefrontal cor-
tex and cognitive control. Nat. Rev.
Neurosci. 1, 59–65.

Miller, E. K., and Cohen, J. D. (2001).
An integrative theory of pre-
frontal cortex function. Annu. Rev.
Neurosci. 24, 167–202.

Miyaki, A., Friedman, N., Emerson,
M., Witzki, A., Howerter, A., and
Wagner, T. (2000). The unity and
diversity of executive functions
and their contributions to com-
plex frontal lobe tasks: a latenet
variable analysis. Cogn. Psychol. 41,
49–100.

Mo, J., Schroeder, C. E., and Ding, M.
(2011). Attentional modulation of
alpha oscillations in macaque infer-
otemporal cortex. J. Neurosci. 31,
878–882.

Mountcastle, V. B. (1997). The colum-
nar organization of the neocortex.
Brain 120(Pt 4), 701–722.

Mountcastle, V. B. (2003).
Introduction. Computation in
cortical columns. Cereb. Cortex 13,
2–4.

Opris, I., Barborica, A., and Ferrera,
V. P. (2005a). Microstimulation of
dorsolateral prefrontal cortex biases
saccade target selection. J. Cogn.
Neurosci. 17, 893–904.

Opris, I., Barborica, A., and Ferrera,
V. P. (2005b). Effects of electrical
microstimulation in monkey frontal
eye field on saccades to remembered
targets. Vis. Res. 45, 3414–3429.

Opris, I., and Bruce, C. J. (2005).
Neural circuitry of judgment and
decision mechanisms. Brain Res.
Rev. 48, 509–526.

Opris, I., Hampson, R. E., and
Deadwyler, S. A. (2009). The
encoding of cocaine vs. natural
rewards in the striatum of non-
human primates: categories with
different activations. Neuroscience
163, 40–54.

Opris, I., Hampson, R. E., Gerhardt, G.
A., Berger, T. W., and Deadwyler, S.

A. (2012). Columnar processing in
primate prefrontal cortex: evidence
for executive control microcircuits.
J. Cogn. Neurosci. 24, 2334–2347.

Opris, I., Hampson, R. E., Stanford, T.
R., Gerhardt, G. A., and Deadwyler,
S. A. (2011). Neural activity in
frontal cortical cell layers: evi-
dence for columnar sensorimotor
processing. J. Cogn. Neurosci. 23,
1507–1521.

Pesaran, B., Nelson, M. J., and
Andersen, R. A. (2008). Free choice
activates a decision circuit between
frontal and parietal cortex. Nature
453, 406–409.

Porrino, L. J., Daunais, J. B., Rogers, G.
A., Hampson, R. E., and Deadwyler,
S. A. (2005). Facilitation of task
performance and removal of the
effects of sleep deprivation by an
ampakine (CX717) in nonhuman
primates. PLoS Biol. 3:e299. doi:
10.1371/journal.pbio.0030299

Posner, M., and Snyder, C. (1975).
“Attention and cognitive control,”
in Information Processing and
Cognition: The Loyola Symposium,
ed R. Solso (Hillsdale, NJ: L.
Erlbaum Assoc.), 55–85.

Rao, S. G., Williams, G. V., and
Goldman-Rakic, P. S. (1999).
Isodirectional tuning of adjacent
interneurons and pyramidal cells
during working memory: evidence
for microcolumnar organiza-
tion in PFC. J. Neurophysiol. 81,
1903–1916.

Resulaj, A., Kiani, R., Wolpert, D. M.,
and Shadlen, M. N. (2009). Changes
of mind in decision-making. Nature
461, 263–266.

Quintero, J. E., Day, B. K., Zhang,
Z., Grondin, R., Stephens, M.
L., Huettl, P., et al. (2007).
Amperometric measures of age-
related changes in glutamate
regulation in the cortex of rhe-
sus monkeys. Exp. Neurol. 208,
238–246.

Quintero, J. E., Pomerleau, F., Huettl,
P., Johnson, K. W., Offord, J.,
and Gerhardt, G. A. (2011).
Methodology for rapid measures of
glutamate release in rat brain slices
using ceramic-based microelectrode
arrays: basic characterization and
drug pharmacology. Brain Res.
1401, 1–9.

Riedel, G., Platt, B., and Micheau, J.
(2003). Glutamate receptor func-
tion in learning and memory. Behav.
Brain Res. 140, 1–47.

Shallice, T., and Burgess, P. (1996).
The domain of supervisory
processes and temporal organi-
zation of behaviour. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 351,
1405–1411.

Sokhadze, E. M., Baruth, J. M., Sears,
L., Sokhadze, G. E., El-Baz, A.
S., and Casanova, M. F. (2012).
Prefrontal neuromodulation using
rTMS improves error monitoring
and correction function in autism.
Appl. Psychophysiol. Biofeedback 37,
91–102.

Stephens, M. L., Pomerleau, F., Huettl,
P., Gerhardt, G. A., and Zhang, Z.
(2010). Real-time glutamate mea-
surements in the putamen of awake
rhesus monkeys using an enzyme-
based human microelectrode array
prototype. J. Neurosci. Methods 185,
264–272.

Swadlow, H. A., Gusev, A. G., and
Bezdudnaya, T. (2002). Activation
of a cortical column by a thalam-
ocortical impulse. J. Neurosci. 22,
7766–7773.

Takeuchi, D., Hirabayashi, T., Tamura,
K., and Miyashita, Y. (2011).
Reversal of interlaminar signal
between sensory and memory
processing in monkey temporal
cortex. Science 331, 1443–1447.

Tanaka, K. (2003). Columns for
complex visual object features
in the inferotemporal cortex:
clustering of cells with similar
but slightly different stimulus
selectivities. Cereb. Cortex 13,
90–99.

Weiler, N., Wood, L., Yu, J., Solla, S.
A., and Shepherd, G. M. (2008).
Top-down laminar organization of
the excitatory network in motor
cortex. Nat. Neurosci. 11, 360–366.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 22 August 2012; paper pending
published: 21 September 2012; accepted:
30 October 2012; published online: 22
November 2012.
Citation: Opris I, Fuqua JL, Huettl PF,
Gerhardt GA, Berger TW, Hampson
RE and Deadwyler SA (2012) Closing
the loop in primate prefrontal cor-
tex: inter-laminar processing. Front.
Neural Circuits 6:88. doi: 10.3389/fncir.
2012.00088
Copyright © 2012 Opris, Fuqua,
Huettl, Gerhardt, Berger, Hampson
and Deadwyler. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are
credited and subject to any copyright
notices concerning any third-party
graphics etc.

Frontiers in Neural Circuits www.frontiersin.org November 2012 | Volume 6 | Article 88 | 140

http://dx.doi.org/10.3389/fncir.2012.00088
http://dx.doi.org/10.3389/fncir.2012.00088
http://dx.doi.org/10.3389/fncir.2012.00088
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


NEURAL CIRCUITS
ORIGINAL RESEARCH ARTICLE

published: 03 April 2013
doi: 10.3389/fncir.2013.00042

Decreased Hering–Breuer input-output entrainment in a
mouse model of Rett syndrome
Rishi R. Dhingra1,2,Yenan Zhu2,3, Frank J. Jacono1,4, David M. Katz 2, Roberto F. Galán2,3 and
Thomas E. Dick 1*
1 Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
2 Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
3 Systems Biology and Bioinformatics Program, Case Western Reserve University, Cleveland, OH, USA
4 Louis Stokes Veterans Affairs Medical Center, Case Western Reserve University, Cleveland, OH, USA

Edited by:
Ahmed El Hady, Max Planck Institute
for Dynamics and Self Organization,
Germany

Reviewed by:
Mathias Dutschmann, Florey
Neuroscience Institutes, Australia
Donald R. McCrimmon,
Northwestern University Feinberg
School of Medicine, USA
Angelina Y. Fong, Macquarie
University, Australia

*Correspondence:
Thomas E. Dick, Division of
Pulmonary, Critical Care and Sleep
Medicine, Department of Medicine,
Case Western Reserve University,
10900 Euclid Avenue, Cleveland, OH
44106, USA.
e-mail: thomas.dick@cwru.edu

Rett syndrome, a severe X-linked neurodevelopmental disorder caused by mutations in the
gene encoding methyl-CpG-binding protein 2 (Mecp2), is associated with a highly irregular
respiratory pattern including severe upper-airway dysfunction. Recent work suggests that
hyperexcitability of the Hering–Breuer reflex (HBR) pathway contributes to respiratory dys-
rhythmia in Mecp2 mutant mice. To assess how enhanced HBR input impacts respiratory
entrainment by sensory afferents in closed-loop in vivo-like conditions, we investigated the
input (vagal stimulus trains) – output (phrenic bursting) entrainment via the HBR in wild-
type and MeCP2-deficient mice. Using the in situ perfused brainstem preparation, which
maintains an intact pontomedullary axis capable of generating an in vivo-like respiratory
rhythm in the absence of the HBR, we mimicked the HBR feedback input by stimulat-
ing the vagus nerve (at threshold current, 0.5 ms pulse duration, 75 Hz pulse frequency,
100 ms train duration) at an inter-burst frequency matching that of the intrinsic oscillation
of the inspiratory motor output of each preparation. Using this approach, we observed
significant input-output entrainment in wild-type mice as measured by the maximum of
the cross-correlation function, the peak of the instantaneous relative phase distribution,
and the mutual information of the instantaneous phases. This entrainment was associ-
ated with a reduction in inspiratory duration during feedback stimulation. In contrast, the
strength of input-output entrainment was significantly weaker in Mecp2−/+mice. However,
Mecp2−/+ mice also had a reduced inspiratory duration during stimulation, indicating that
reflex behavior in the HBR pathway was intact. Together, these observations suggest that
the respiratory network compensates for enhanced sensitivity of HBR inputs by reducing
HBR input-output entrainment.

Keywords: closed-loop, entrainment, vagus, Hering–Breuer reflex, Mecp2

INTRODUCTION
Rett syndrome is caused by loss of MeCP2 function and is associ-
ated with an increase in respiratory pattern irregularity character-
ized by periods of forceful breathing (hyperventilation), breath-
ing pauses, and abnormal cardiorespiratory coupling, as well as
increased mean respiratory frequency (Weese-Mayer et al., 2006;
Katz et al., 2012). MeCP2-deficient mice have a similar irregular
breathing phenotype including increased mean respiratory fre-
quency, increased variability in frequency, and increased frequency
of apneas of both central and obstructive types (Katz et al., 2009;
Voituron et al., 2010). The intrinsic neuronal mechanisms associ-
ated with these breathing alterations include widespread hyperex-
citability in several respiratory areas of the brainstem including the
nucleus tractus solitarius (nTS, Kline et al., 2010; Kron et al., 2012),
Kölliker–Fuse nuclei (KFn, Stettner et al., 2007), locus coeruleus
(Taneja et al., 2009), and ventrolateral medulla (Medrihan et al.,
2008). Accordingly, therapies targeted at reducing neuronal hyper-
excitability are effective in reducing the frequency of central apnea
in mice (Abdala et al., 2010).

At the network level, MeCP2-deficiency leads to exaggerated
post-inspiratory (PI) activity in vagal nerve recordings whose
efferent fibers innervate the upper-airway (Stettner et al., 2007).
The PI motor pattern is controlled by peripheral and pontine dri-
ves (See Figure 1A). Activation of pulmonary stretch receptor
(PSR) inputs, located in the airways and lungs, send feedback
encoding lung volume to the respiratory network via the vagal
nerves to inhibit inspiration and facilitate expiration [the Hering–
Breuer reflex (HBR); Kubin et al., 2006]. Neurons in the nTS, called
pump cells, receive these vagal inputs and relay the information to
medullary PI neurons as well as to the KFn causing robust inhibi-
tion of inspiration and prolongation of expiration (Berger, 1977;
Ezure and Tanaka, 1996; Ezure et al., 1998, 2002). The dorsolateral
pontine drive for the PI motor pattern was identified in studies in
which blockade of NMDAergic transmission in the KFn after tran-
section of the vagal nerves eliminates the inspiratory off-switch
and leads to an apneustic breathing pattern (Fung et al., 1994;
Ling et al., 1994). Moreover, pump cell projections to the dl pons
may gate an excitatory efference copy of central pattern generator
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FIGURE 1 | Closing the Hering–Breuer mechanosensory feedback loop
in the in situ arterially perfused preparation. (A) Schematic of the
closed-loop in vivo respiratory rhythm generating network. rCPG,
respiratory CPG; PSR, pulmonary stretch receptor; nTS, nuclei of the
solitary tract; KFn, Kölliker–Fuse nuclei. (B) To mimic Hering–Breuer reflex
(HBR) feedback, we first estimated the intrinsic oscillation frequency, ω0,
from an epoch of integrated phrenic nerve activity (PNA). Second, we
estimated the minimum threshold to evoke the inspiratory inhibitory HBR
by applying 10 s stimulus trains (20 Hz, 0.5 ms pulse-width) of increasing
stimulus intensities to the contralateral vagus nerve. Once these two
parameters were determined from each experimental preparation, we
generated a fictive feedback input that consisted of a 2-min stimulus of
rhythmic 100 ms trains (75 Hz, 0.5 ms pulse-width) whose inter-burst
frequency matched ω0 with pulse amplitude just above the threshold for
resetting. (C) A representative tracing of fictive feedback input (shaded
bars) and PNA output (trace) from a wild-type mouse. The dashed line
indicates the threshold used for post hoc event detection. (D,E) To analyze

(Continued )

FIGURE 1 | Continued
entrainment between the input and output, onset times for the two signals
were extracted and used to generate the instantaneous phase time series,
ϕoutput(t ) (D) and ϕinput(t ) (E). ϕ(t ) increases linearly from 0 to 2π between
events and represents the movement of each oscillator around its
limit-cycle.

(CPG) output from late-inspiratory neurons of the pre-Bötzinger
complex (Cohen and Shaw, 2004; Dick et al., 2008). Thus in the
absence of vagal afferent activity, the central representation of the
“pattern” is disinhibited in the pons and dl pontine activity can
drive PI activity. Thereby, this circuit motif allows the network
to generate a PI rhythm in the absence of closed-loop feedback
control.

In MeCP2-deficient mice, because both the nTS and the KFn
appear functionally hyperexcitable, it is unclear whether the exces-
sive PI activity and the resultant respiratory pattern dysrhythmia
are due to a peripheral PI mechanism involving the nTS or a
pontine PI mechanism involving the KFn. To disentangle this
issue, we simulate the closed-loop behavior of the network by
re-introducing rhythmic vagal feedback in situ and measuring
the ability of the wild-type versus MeCP2-deficient networks to
entrain to a threshold-amplitude periodic vagal input. Entrain-
ment to rhythmic inputs is a fundamental property of any oscilla-
tor that occurs when the weak external forcing causes the oscillator
to adjust its periods to become phase-locked with the imposed
rhythm. In the entrained regime, the ratio between the intrinsic
oscillation frequency and the imposed forcing takes on rational
values. From the phase approximation model, we know that the
existence of stable coupled dynamics between the oscillator and
the rhythmic forcing depends on (1) the difference in frequency
between the intrinsic oscillation frequency and that of the rhyth-
mic input and (2) the strength of the coupling. In humans and cats,
respiration readily entrains to HBR inputs during mechanical ven-
tilation (Petrillo and Glass, 1984; Graves et al., 1986). In rats, res-
piration can also be entrained directly by rhythmically stimulating
vagal afferent nerve endings (Dutschmann et al., 2009).

In this report, we test the hypothesis that increased respira-
tory pattern irregularity in Mecp2−/+ mice is associated with an
enhancement of respiratory entrainment by HBR inputs. While
the strengthening of the coupling at the level of the nTS in MeCP2-
deficient mice predicts an increase in entrainment between the
CPG and the vagal input, we observed that Mecp2−/+mice display
reduced input-output entrainment consistent with a dysfunctional
pontine PI mechanism that causes respiratory dysrhythmia in
these mice. However, the peripheral HBR pathway is still func-
tional because inspiratory duration decreased during rhythmic
vagal stimulation.

MATERIALS AND METHODS
Experimental protocols were approved by the Case Western
Reserve University Institutional Animal Care and Use Committee
and were performed with strict adherence to all American Associ-
ation for Accreditation of Laboratory Animal Care International
(AAALAC), National Institutes of Health and National Research
Council guidelines.
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Experiments were performed in adult (10–12 week postnatal
age), female Mecp2tm1.1Jae mice maintained on a mixed back-
ground (129Sv, C57BL/6, Balb/c; n= 6 wild-type, n= 5 Mecp2−/+;
Chen et al., 2001; Guy et al., 2001). We utilized heterozygous
female mice because they more closely model the human con-
dition in which the mutation is lethal in males and results in
somatic mosaicism in females due to the stochastic nature of
X-chromosome inactivation. Female Mecp2tm1.1Jae heterozygotes
show respiratory pattern irregularities like their null male litter-
mates albeit at a later developmental time (Schmid et al., 2012).
Further, a recent consortium on developing translational therapies
for Rett syndrome has highlighted the importance of validating
preclinical findings in heterozygous female Mecp2 mutants (Katz
et al., 2012).

To close the vagal mechanosensory feedback loop (Figure 1B),
we stimulated the vagus nerve in the arterially perfused in situ
preparation (in situ preparation), which is devoid of peripheral
feedbacks, but maintains both an intact pontomedullary respi-
ratory CPG and intact peripheral sensory nerve inputs (Paton,
1996). Briefly, mice were deeply anesthetized with isoflurane
(1.5-3%, Piramal Healthcare, Andhra Pradesh, India). Once the
mouse failed to respond to a noxious paw pinch, it was tran-
sected below the diaphragm and transferred into an ice-cold
artificial cerebrospinal fluid (aCSF) bath for precollicular decer-
ebration, cerebellectomy, and dissection of phrenic and vagal
nerves. The preparation was then transferred to a recording cham-
ber. The descending aorta was cannulated and perfused with aCSF
(125 mM NaCl, 3 mM KCl, 1.25 mM KH2PO4, 2.5 mM CaCl2,
1.25 mM MgSO4, 25 mM NaHCO3, 10 mM d-glucose) contain-
ing 1.25% Ficoll (31˚C) using a peristaltic pump (Watson and
Marlow 505S, Cornwall, UK). The perfusate was continuously
bubbled with a gas mixture containing 94% O2/6% CO2. Because
of the small size of the descending aorta, we were not able to
measure perfusion pressure accurately. Adequate perfusion of the
brainstem was maintained with flows between 17 and 20 ml/min.
Within minutes of cannulation, respiratory movements resumed.
If the respiratory activities were initially disorganized, then a single
bolus of NaCN (0.1 ml, 0.03% w/v) was delivered to stimulate the
peripheral chemoreceptors and restore the eupneic-like pattern-
ing of respiratory motor output. Vasopressin was not administered
during these experiments.

NERVE RECORDINGS
Phrenic (PNA) and vagal (VNA) nerve activities were used as an
index of fictive respiratory motor output. The distal end of either
nerve was recorded via suction electrodes, filtered (0.003–3 kHz)
and amplified (5–20 K; Grass P511, West Warwick, RI, USA), digi-
tized (Power 1401,CED,Cambridge,UK),and stored (10 kHz sam-
pling frequency) on a computer using Spike2 acquisition software
(CED, Cambridge, UK).

EXPERIMENTAL PROTOCOL
After the tuned respiratory rhythm stabilized (15–20 min), base-
line activity was recorded for at least 5 min to assess differences
in respiratory patterning between the genotypes and to measure
the intrinsic oscillation frequency of each preparation for deter-
mining the burst frequency of fictive vagal feedback. Next, the

threshold amplitude for evoking the HBR was determined by mea-
suring the threshold for an expiratory prolongation response to a
constant train of vagal stimulation (20 Hz, 10 s train duration,
0.5 ms pulse duration). The threshold amplitude was defined as
the stimulus current necessary to evoke an expiratory prolon-
gation of at least 1.5× the baseline expiratory duration. Hav-
ing determined feedback burst frequency and pulse amplitude
parameters, custom scripts written in MATLAB were used to
generate rhythmic event trains (75 Hz, 100 ms train duration,
0.5 ms pulse duration) whose inter-burst frequency was matched
to the intrinsic PNA burst frequency (∼75–200 breaths/min).
Burst stimulation was used because afferent discharge of slowly
adapting PSRs are characterized by sinusoidal ramps in impulse
frequency in vivo (Widdicombe, 1954; Luck, 1970). As these vagal
PSR fibers are large and myelinated (Düring et al., 1974), the
pulse duration was chosen to preferentially activate myelinated
fibers.

Fictive feedback stimulation trials (2 min duration) were sep-
arated by at least 1 min of baseline activity and were repeated
until the decay of the preparation caused the intrinsic oscillation
frequency to drift by more than 30% from baseline which typi-
cally occurred 1.5–5 h after the resumption of PNA. During fictive
feedback stimulation trials, custom Spike2 scripts transformed the
MATLAB-generated event time series into a TTL output to deliver
the fictive feedback to the preparation. Importantly, the fictive
feedback was not triggered by the PNA. Instead, the rhythmic
feedback was started irrespective of the current phase of the respi-
ratory CPG. Nonetheless, the respiratory CPG quickly entrained
the ongoing respiratory oscillation within a few cycles in wild-type
mice (Figure 4A, left panels).

DATA ANALYSIS
Phrenic nerve activities onset and offset times were derived from
a threshold crossing algorithm and visually inspected for artifacts
(Figures 1C–E). Respiratory period, phase durations, variability,
and apnea index were calculated from the recorded baseline epoch
(n= 6 wild-type; 5 Mecp2−/+). Apneas were defined as respiratory
cycles with duration more than 1.5 times the mean period. The
Wilcoxon signed rank test was used to determine the significance
of HBR-induced reduction in Ti (Figure 3).

To test our hypothesis that increased pattern irregularity in
MeCP2-deficient mice is associated with alterations in the ability
of the CPG to entrain to afferent feedback inputs, we characterized
the input-output entrainment generated by fictive vagal feedback
in Mecp2−/+ mice (n= 11 trials) versus wild-type littermates
(n= 22 trials) using the cross-correlogram and several statisti-
cal measures derived from the instantaneous phase time series
including the relative phase histogram, the instantaneous phase
coherence, the synchronization index, and the mutual information
of the instantaneous phases.

The normalized cross-correlogram, or transfer function, was
computed using standard routines available in the MATLAB Signal
Processing Toolbox. For computation of the cross-correlogram,
the input signal was represented by a square-wave function
with a pulse-width equal to the train duration. Before comput-
ing the cross-correlogram, both input and output signals were
scaled between 0 and 1 and DC-removed. The maximum of
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the cross-correlogram was used as an index of the strength of
input-output coupling.

The instantaneous phase time series was determined from onset
times of the phrenic or input signals, tk. The instantaneous phase,
ϕ(t ), which is assumed to grow linearly in time within each cycle,
was defined according to the following equation:

ϕ(t ) = 2π
t − tk

tk − tk+1
+ 2π, tk < t < tk+1 (1)

where tk is the time of the k-th event, and t k+1 is the time of the
next event.

From the instantaneous phase time series’, the instantaneous
relative phase difference time series, ϕoutput−ϕinput, was com-
puted. Histograms of the instantaneous relative phase were com-
puted using 21 bins over the range 0–2π and scaled by the number
of samples to determine the probability of a given instantaneous
relative phase. The deviation from a uniform distribution was
determined using the Rayleigh test for circular uniformity. The
maximum of the instantaneous relative phase histogram was used
as a measure of input-output coupling.

To define the regions in the instantaneous relative phase time
series that were associated with strong input-output entrainment,
we computed the phase coherence of the relative phases. The
phase coherence is a windowed statistic that measures the squared
magnitude of the mean phase angle:

γ (t ) =

∥∥∥∥∥∥ 1

N

t∑
i=t−w

e i[ϕoutput−ϕinput]

∥∥∥∥∥∥
2

(2)

The phase coherence was computed with a 3s window. The phase
coherence yields a value between 0 and 1. Values near zero are not
phase-locked, whereas values closer to 1 indicate the presence of
phase-locking. To measure the latency to entrainment, the dura-
tion of entrainment and number of phase slips, we used a phase
coherence threshold of 0.9.

The synchronization index, or phase-locking value, also maps
the circular distribution of relative instantaneous phase onto
the unit circle. The magnitude of the synchronization index is
proportional to the degree of input-output entrainment. The
synchronization index is computed via the following equation:

γ(n, m) =

∣∣∣〈e i[nϕoutput−mϕinput]
〉∣∣∣ (3)

for any n:m coupling. In the present study, the input oscillation
frequency was chosen such that only 1:1 coupling was observed.

Mutual information is a measure of statistical dependence in a
pair of time series. We used mutual information of the instanta-
neous phases in combination with surrogate data testing to quan-
tify input-output entrainment and to allow for a statistical deter-
mination of the significance of the observed phase-locking. The
mutual information index is defined according to the following
equation:

I
(
ϕinput, ϕoutput

)
= H

(
ϕinput

)
+H

(
ϕoutput

)
−H

(
ϕinput|ϕoutput

)
(4)

where H (ϕX) is the entropy of time series ϕX computed from the
individual probability histogram, and H (ϕX|ϕY) is the conditional
entropy of time series ϕX and ϕY computed from the joint prob-
ability histogram. The entropy of either distribution is computed
according to:

H (ϕX ) = −

L∑
k=1

P (ϕX (k)) ln P (ϕX (k)) (5)

where L is the number of bins in the histogram and P(ϕX(k)) is
the probability of observing ϕX in bin k. Note that because the
mutual information index is sensitive to the number of bins L, we
consistently used 50 bins in the generation of all histograms to
allow for comparisons across experiments.

To determine the significance of the observed input-output
coupling, a surrogate data testing scheme was needed to rep-
resent the null hypothesis of independent pairs of oscillatory
activity. To generate bootstrapped distributions of the null hypoth-
esis, we randomized the inter-event intervals of both the input
and output before computing the instantaneous phases (500 sur-
rogates/trial). The mutual information of these surrogate time
series’ was then computed to generate the bootstrapped mutual
information histogram. The observed mutual information value
of the coupling was considered significant if it fell above the
99% confidence interval of the bootstrap distribution. This cri-
teria served as the basis for the identification of intermediate
and severe Mecp2−/+ entrainment defects discussed in Figures 4
and 5.

All data were expressed as mean± SEM. Unless stated other-
wise, we applied one-way repeated measures ANOVA to determine
the significance of the results. If significant, we used a Bonferroni
post hoc test to determine specific differences.

RESULTS
Representative traces of PNA from wild-type and Mecp2−/+ base-
line breathing patterns are shown in Figure 2A. The duration
of the respiratory period was not significantly different between
genotypes (Figure 2B), but the variability of the respiratory
period [CV(Ttot)] was greater in Mecp2−/+ than wild-type mice
(Mecp2−/+, 0.23± 0.02 versus wild-type, 0.09± 0.01; p < 0.001;
Figure 2C). The irregularity of the pattern was characterized by
a higher frequency of spontaneous apnea in Mecp2−/+ versus
wild-type mice (Mecp2−/+, 3.7± 0.4 apneas/min versus wild-type,
0± 0 apneas/min; p < 0.001; Figure 2D). The intrinsic respiratory
oscillation in Mecp2−/+ mice had strong vagal efferent activity
(data not shown) consistent with patterns reported previously
(Stettner et al., 2007; Abdala et al., 2010).

During rhythmic vagal nerve stimulation (Figure 3A), inspira-
tory duration (Ti) decreased in both wild-type and Mecp2−/+

mice as indicated by the pair-wise deviation from the line of
identity (wild-type: baseline, 0.20± 0.01 s versus stimulation,
0.13± 0.001 s, p= 5× 10−7; Mecp2−/+: baseline, 0.15± 0.01 s
versus stimulation, 0.10± 0.01 s, p= 5× 10−4; Figure 3B) con-
sistent with the role of this peripheral sensory modality in the
inspiratory off-switching mechanism. Further, the reduction in Ti
induced by vagal stimulation tended to be smaller in Mecp2−/+
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B C D

FIGURE 2 | Mecp2−/+ mice have increased respiratory pattern
variability in situ. (A) Representative traces of

∫
PNA during

baseline recordings show the presence of spontaneous apneas in
Mecp2−/+, but not wild-type mice. (B) Respiratory period does not

differ between wild-type and Mecp2−/+ mice in situ. (C) Mecp2−/+

mice have increased variability in the respiratory period. (D)
Mecp2−/+ mice have an increased frequency of spontaneous apnea.
***p < 0.001.

versus wild-type mice, though this difference was not signif-
icant (Mecp2−/+, −5.0± 1.0% versus wild-type, −7.1± 0.1%,
p= 0.065; Figure 3C).

To test our hypothesis, we analyzed the input-output phase-
locking between rhythmic vagal stimulation and the central res-
piratory oscillation (Figures 4 and 5). To characterize the sig-
nificance of input-output coupling in individual trials, we relied
on the mutual information index applied in conjunction with a
bootstrapping approach wherein surrogate time series were gen-
erated via shuffling the inter-burst intervals (Figures 4D,E and
5A–G; See Materials and Methods). As expected, wild-type mice
had significant input-output entrainment in all trials (19/19 tri-
als). By contrast, entrainment varied in Mecp2−/+ mice: a severe
group (6/11 trials) had a complete loss of input-output coupling;
and an intermediate group (5/11 trials) had weak, but still signifi-
cant input-output phase-locking (Figure 4). To fully characterize
the changes in input-output coupling, we analyzed the relative
phase difference time series (Figures 4A,B), the input-output
cross-correlogram (Figure 4C), and the mutual information of
the instantaneous phases (Figures 4D,E).

Representative traces of the relative phase time series dur-
ing closed-loop stimulation are presented in Figure 4A (top
panels). Entrainment between input and output is observed as
epochs with a slope near 0, whereas sharp spikes in the time
series are indicative of phase slips (Figure 4A). To character-
ize the duration and latency to input-output phase-locking, we

measured the phase coherence, or mean phase angle on the
unit circle, using a sliding windowed algorithm (Figure 4A,
bottom panels). Phase-locked epochs within the trial were indi-
cated by contiguous time regions where the phase coherence was
>0.9 (Figure 4A, shaded regions in top panels, horizontal lines in
bottom panels). Mecp2−/+ mice had a strong tendency toward
greater latency to input-output phase-locking from the begin-
ning of a stimulation trial relative to wild-type mice (Mecp2−/+,
11.3± 3.3 s versus wild-type, 3.7± 1.4 s, p= 0.07). Further, severe
Mecp2−/+ mice had a significantly greater latency to phase-
locking compared to intermediate or wild-type mice (severe,
18.2± 3.9 s versus wild-type, 3.7± 1.4 s, p < 0.001, versus inter-
mediate, 3.0± 2.1 s, p < 0.01, Figure 5A). Wild-type mice had
longer durations of stable entrainment relative to Mecp2−/+ mice
(wild-type, 7.8± 0.8 s versus Mecp2−/+, 4.5± 0.4 s, p < 0.01, ver-
sus severe, 3.7± 0.3 s, p < 0.05, Figure 5B). Compared to the
severe group, intermediate Mecp2−/+ mice had a tendency for
longer durations of entrainment, but this was not significant.
Further, Mecp2−/+ mice also showed a mild tendency for an
increased number of phase slips during stimulation trials rel-
ative to wild-type mice (Mecp2−/+, 37.5± 6.9 slips/trial versus
wild-type, 24.9± 5.4 slips/trial, p= 0.37, Figure 4C). Finally, the
severe Mecp2−/+ group had fewer bouts of input-output phase-
locking (3/6 trials), whereas the intermediate Mecp2−/+ group
consistently showed short bouts of input-output phase-locking
(5/5 trials).
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A

B C

FIGURE 3 | Hering–Breuer feedback stimulation decreases inspiratory
phase duration of the respiratory pattern in wild-type and Mecp2−/+

mice. (A) Representative traces of
∫

PNA (traces) during rhythmic vagal
stimulation. Gray bars indicate the fictive feedback stimulation. (B) Rhythmic

stimulation significantly decreases inspiratory duration in both wild-type and
Mecp2−/+ mice (wild-type, p=4.8×10−7; Mecp2−/+, p=9.8×10−4). (C)
HBR-dependent reduction in inspiratory duration tends to be smaller in
Mecp2−/+ versus wild-type mice (p=0.065).

Representative relative phase histograms are shown in
Figure 4B. A preferred relative phase between the vagal input and
phrenic output was observed in both wild-type and the inter-
mediate Mecp2−/+ group, but not the severe Mecp2−/+ group,
which had a more uniform circular distribution of relative phases
during rhythmic stimulation trials. However, all distributions
had a measurable directionality as indicated by the Rayleigh
test for deviance from circular uniformity indicative of a func-
tional HBR. For the group, the maximum of the relative phase
histogram and the synchronization index – the mean resultant
vector of the relative phase time series – were both greater in
wild-type relative to Mecp2−/+ mice [Max (Rel. Phase Hist.):
wild-type, 0.66± 0.05 versus Mecp2−/+, 0.48± 0.08, p < 0.05,
wild-type versus severe, 0.28± 0.02, p < 0.001, severe versus
intermediate, 0.71± 0.10, p < 0.01, Figure 5D; and synchroniza-
tion index: wild-type, 0.67± 0.04 versus Mecp2−/+, 0.44± 0.09,
p < 0.05, wild-type versus severe, 0.19± 0.03, p < 0.001, severe
versus intermediate, 0.72± 0.08, p < 0.001, Figure 5F].

We also computed the transfer function of the system dur-
ing rhythmic feedback stimulation as a measure of input-output
phase-locking (Figure 4C). Cross-correlograms were periodic
with the successive peaks and troughs decaying monotonically
with increasing lag. While the qualitative structure of the functions

was not changed between wild-type and Mecp2−/+ mice, the peak
of the transfer function decreased in Mecp2−/+mice [Max (Cross-
correlation): Mecp2−/+, 0.23± 0.05 versus wild-type, 0.50± 0.04,
p < 0.001]. Wild-type and intermediate mice also significantly dif-
fered from the severe group [Max (Cross-correlation): wild-type,
0.23± 0.05 versus severe, 0.11± 0.01, p < 0.001, severe versus
intermediate, 0.38± 0.05, p < 0.05, Figure 5E].

Finally, we characterized the joint probability distribution func-
tions of the instantaneous input- and output-phases by computing
their mutual information, which quantifies the general depen-
dence between the phase of the input and the phase of the output.
To determine the significance of the observed entrainment, we per-
formed bootstrap analyses by shuffling the inter-event intervals
and re-computing the mutual information of the instantaneous
phases. Phase-locking, characterized by clear banding in the joint
probability distribution function, was observed in the wild-type
and intermediate Mecp2−/+ group (Figure 4D, left and center
panels respectively), whereas the uniform joint probability distri-
bution function of the severe Mecp2−/+ group (Figure 4D, right
panel) reflected the drifting of the instantaneous phases. Represen-
tative bootstrapped mutual information histograms were roughly
Gaussian, though bounded >0 because of the rarity of obtain-
ing a perfectly uniform joint probability distribution (Figure 4E).
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FIGURE 4 | Representative analyses show reduced phase-locking in
Mecp2−/+ compared to wild-type mice. (A) From the instantaneous phase
time series, ϕoutput and ϕinput, we computed the relative instantaneous phase
difference time series, ϕoutput −ϕinput (top panels). Regions with near zero slope
are indicative of input-output entrainment, which was more frequently
observed in wild-type relative to Mecp2−/+ mice. Phase coherence (bottom
panels) is a windowed measure that captures the strength of input-output
entrainment. A threshold of 0.9 (dashed line in bottom panels) was used to
determine windows with significant input-output phase-locking (shaded

regions in top panels). Mecp2−/+ mice had increased latency to and reduced
duration of entrainment relative to wild-type mice. (B) Representative
histograms of the instantaneous phase difference are shown for a wild-type
(left panel) and Mecp2−/+ mice (middle and right panels). In all cases, even the
severe Mecp2−/+ mice, the distribution was significantly different from a
uniform circular distribution as determined by the Rayleigh test for circular
non-uniformity. (C) Representative cross-correlograms are shown for a
wild-type (left panel), intermediate Mecp2−/+ (middle panel), and severe

(Continued )
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FIGURE 4 | Continued
Mecp2−/+ (right panel) mice. The maximum of the cross-correlogram was
reduced in Mecp2−/+ versus wild-type mice. (D) Representative joint
probability histograms of the instantaneous input- and output-phases depict
the strength of input-output entrainment in the intensity of banding.
Entrainment was strong in wild-type and intermediate Mecp2−/+ preparations,
but was abolished in severe Mecp2−/+ mice. (E) The significance of the
observed input-output entrainment was determined by generating bootstrap

distributions of the mutual information of the instantaneous phases.
Surrogate instantaneous phase time series were generated by shuffling the
input- and output-inter-event intervals before determining the phase. The
observed value of the mutual information is indicated by the arrowheads on
the abscissa. The upper-bound of the 99% confidence interval is indicated by
dashed vertical lines. Wild-type and intermediate Mecp2−/+ mice always
showed significant input-output entrainment, whereas severe Mecp2−/+ mice
did not have significant input-output entrainment.

A B C

D E F G

FIGURE 5 | Mecp2−/+ mice show reductions in input-output
phase-locking across multiple entrainment measures. (A) Severe
Mecp2−/+ mice had significantly increased latency to input-output
entrainment from the start of rhythmic stimulation compared to both
wild-type and intermediate Mecp2−/+ mice. (B) Severe Mecp2−/+ mice
had significantly shorter bouts of input-output phase-locking compared to
wild-type mice. (C) Severe and intermediate Mecp2−/+ mice had a mild
tendency for increased phase slips. (D) Relative to wild-type and
intermediate mice, the maximum of the phase histogram was

significantly less in severe Mecp2−/+ mice. (E) The maximum of the
cross-correlation function was significantly reduced in severe Mecp2−/+

compared to wild-type and intermediate Mecp2−/+ mice. (F) For the
group, severe Mecp2−/+ mice had a significantly lower synchronization
index relative to both wild-type and intermediate Mecp2−/+ mice. (G)
Analysis of the mutual information of the instantaneous phases also
revealed significantly weaker input-output entrainment in severe
Mecp2−/+ compared to wild-type and intermediate Mecp2−/+ mice.
*p < 0.05, **p < 0.01, ***p < 0.001.

The input-output entrainment was considered significant if the
observed mutual information was greater than the 99% confi-
dence interval of the bootstrap distribution. Five of 11 Mecp2−/+

had significant entrainment according to the bootstrap results
and were thereby classified as the intermediate Mecp2−/+ phe-
notype. For the group, the mutual information of the instanta-
neous phases was greater in wild-type relative to Mecp2−/+ mice
(mutual information: wild-type, 0.76± 0.07 versus Mecp2−/+,
0.44± 0.14, p < 0.05). Severe mice also had significantly weaker
entrainment as measured by the mutual information of the instan-
taneous phases compared to both wild-type and intermediate mice
(severe, 0.11± 0.02 versus wild-type, 0.76± 0.07, p < 0.001, versus
intermediate, 0.85± 0.19, p < 0.01, Figure 5G).

DISCUSSION
Imposing rhythmic vagal feedback stimulation in the in situ prepa-
ration decreased Ti and evoked robust bouts of input-output
phase-locking in wild-type mice. Contrary to our hypothesis,

Mecp2−/+ mice had significantly weaker input-output phase-
locking though the decrease in Ti during vagal feedback stim-
ulation suggested that the HBR was still intact. Using mutual
information with bootstrapped surrogate distributions to eval-
uate significant input-output entrainment, Mecp2−/+ mice were
separated into intermediate and severe entrainment phenotypes
consistent with the mosaic expression of MeCP2. Severe Mecp2−/+

mice completely lost input-output entrainment, where as interme-
diate Mecp2−/+ mice had significant input-output entrainment,
but was weaker relative to wild-type mice. Together, our findings
identify a compensatory adaptation of the MeCP2-deficient respi-
ratory network that decouples the respiratory rhythm from vagal
feedback inputs.

TECHNICAL CONSIDERATIONS
In the present study, we assessed the ability of the isolated adult
brainstem respiratory network to entrain to rhythmic vagal stimu-
lation as a model of the in vivo closed-loop condition. As noted in
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the introduction, the presence of stable entrainment depends on
two factors: (1) the frequency difference between the oscillators,
e.g., the weakly coupled oscillator network that comprises the
respiratory rhythm generator, and the periodic input, e.g., the
rhythmic vagal stimulation; and (2) the strength of the coupling
between the oscillator and the input. We controlled for frequency
differences by tuning the fictive vagal feedback frequency to that
of each preparation. Thus, even though the Mecp2−/+ mice used
in this study had a slightly increased period in situ, this did not
prevent stable entrainment because they received a suitably slower
fictive feedback input. Similarly, we controlled for differences in
the strength of coupling stimulating the vagus nerve at the thresh-
old for evoking HBR-like responses. Additionally, for the purpose
of investigating closed-loop control of respiratory behavior, the
utilization of thein situ preparation was critical because it main-
tains an intact pontomedullary axis, spares sensory afferent, and
motoneuronal efferent pathways, and produces an in vivo-like res-
piratory rhythm allowing re-introduction of fictive vagal feedback
without confounding changes in chemosensory and baroreceptor
afferent pathways (Paton, 1996). Further, the absence of anesthesia
was particularly important for investigating the MeCP2-deficient
breathing phenotype as breathing arrhythmias in these mice are
reduced by anesthetics (Viemari et al., 2005; Abdala et al., 2010).

A key caveat of our study is that fictive feedback was delivered
by stimulating whole vagal nerve bundles which contain fibers
from three types of pulmonary receptors: slowly adapting receptor
(SAR) fibers, rapidly adapting receptor fibers, and C-fibers. In rats,
SAR and RAR fibers can be stimulated preferentially because they
are thick and myelinated. Accordingly, a short pulse duration and
a low stimulus current were chosen to activate myelinated rather
than unmyelinated fibers. Moreover, vagal stimulation, unlike lung
inflation, has been shown to activate PI output recorded from
the pharyngeal branch of the vagus (Hayashi and McCrimmon,
1996). However, in this study, the authors observed similar effects
on inspiratory and expiratory phase durations when comparing
vagal stimulation- and lung inflation-induced HBRs suggesting
that functional effects of vagal stimulation and lung inflation on
network output are similar enough to warrant such comparison.
Moreover, these authors went on to use this same paradigm of
vagal stimulation to identify neurons in the ventrolateral medulla
whose activities are modulated in a paucisynaptic fashion to medi-
ate the HBR (Hayashi et al., 1996). Similarly, in the present study
and others, we observe HBR-like responses to vagal stimulation
consistent with those reported for lung inflation (Karczewski et al.,
1980; Budzinska et al., 1981; Siniaia et al., 2000; Dutschmann et al.,
2009). Moreover, the respiratory network readily entrains to rhyth-
mic vagal stimulation in rats (Dutschmann et al., 2009) as well as
our fictive feedback trials in wild-type mice. However, from the
present findings, we can conclude only that the vagal feedback
entrainment behavior is lost in the MeCP2-deficient respiratory
network without further experiments to dissect the mechanistic
basis for the loss of functional connectivity between input and
output.

RELEVANCE TO RESPIRATORY ABNORMALITIES IN RETT SYNDROME
Given previous findings of hyperexcitablity in TS-nTS synapses
and exaggerated HBR-like responses to vagal stimulation, we

hypothesized that entrainment between peripheral feedbacks and
the respiratory rhythm should be enhanced in MeCP2-deficient
mice (Stettner et al., 2007; Kline et al., 2010; Song et al., 2011).
Instead, by using rhythmic vagal stimulation, we observed a reduc-
tion in input-output entrainment suggesting that despite the exag-
gerated HBR responses, observed during vagal stimulation with
continuous trains, vagal feedback appears to be filtered by a com-
pensatory adaptation of the network such that rhythmic inputs
above the threshold for eliciting phase resetting have little consis-
tent effect on the respiratory rhythm. Previous findings support a
role for dysfunctional postnatal maturation of the KFn in the loss
of phase-locking with afferent feedbacks. As mentioned earlier,
the KFn is a key determinant of the PI motor pattern because local
blockade of NMDAergic transmission results in apneusis (Fung
et al., 1994; Ling et al., 1994; Dutschmann and Herbert, 2006).
Moreover, the KFn has reciprocal connectivity with the vl NTS
such that the KFn can gate the influence of peripheral inputs on
the respiratory rhythm (Herbert et al., 1990; Ezure et al., 2002;
Dutschmann and Dick, 2012). Dutschmann et al. (2009) demon-
strated that after postnatal maturation, repeated trials of vagal
stimulation leads to an anticipatory transition to from inspiration
to expiration that precedes the arrival of vagal stimuli. This learn-
ing process also depended on NMDAergic transmission, which has
been shown to mature postnatally with a similar developmental
time course (Kron et al., 2008). In MeCP2-deficient mice, gluta-
mate microinjection in the KFn results in an exaggerated PI apnea
(Stettner et al., 2007). Moreover, the response to constant vagal
stimulation shows a loss of habituation and desensitization (Stet-
tner et al., 2007; Song et al., 2011), which have previously been
shown to depend on the KFn (Siniaia et al., 2000). These data lead
to the speculation that ponto-vagal interactions may be the criti-
cal factor mediating the irregular breathing pattern in Mecp2−/+

mice.
Alternatively, the noise in the respiratory network is likely a crit-

ical factor in preventing stable coupling between the network and
its peripheral feedbacks in MeCP2-deficient mice. From the phase
approximation model, we know that noise reduces the parameter
space associated with stable phase-locked dynamics between an
oscillator and a rhythmic forcing. Thus, if the respiratory rhythm
generator itself is more variable, this would prevent stable entrain-
ment with the dynamics of the periphery. Accordingly, variability
in the respiratory rhythm recorded from MeCP2-deficient mice is
present in the absence of peripheral feedbacks: both in the isolated
CPG in vitro (Viemari et al., 2005), as well as in situ where the net-
work is intact, but functionally isolated from peripheral feedback
(Stettner et al., 2007; Abdala et al., 2010).

PHASE SYNCHRONIZATION MEASURES FOR INVESTIGATING
CLOSED-LOOP RESPIRATORY BEHAVIOR
Over the past decade, several reports have explored the restoration
of rhythmic vagal feedback in reduced preparations. Mellen and
Feldman (2000) first re-introduced phasic lung inflation in the en
bloc preparation which was modified to maintain the lungs and
vagal nerve pathways. Though they established that the medullary
components were sufficient to evoke the HBR mechanism as
evidenced by a reduction in inspiratory duration, their prepa-
ration did not include pontine components that also modulate
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the PI motor pattern. Utilization of the in situ preparation over-
comes this limitation and confirmed that phasic lung inflation
reduces inspiratory duration and increases respiratory frequency
(Harris and St-John, 2005). Importantly, these earlier approaches
utilized closed-loop stimulation wherein lung inflation was trig-
gered by the onset of PNA. Interactions between the respiratory
rhythm and rhythmic HBR feedback inputs are also apparent
when the stimulation is not coupled with the motor output as in
the present study. As mentioned above, Dutschmann et al. (2009)
used this latter approach to demonstrate that the pontine control
of PI activity is subject to postnatal maturation and depends on
NMDAergic transmission in the KFn. However, in this report, only
cycle-triggered averaging was used to demonstrate the presence
of functional input-output entrainment. Our approach extends
this and earlier methodologies by introducing robust measures
of phase synchronization that are necessary to evaluate entrain-
ment. In the present study, the use of surrogate data sets in concert
with mutual information of the instantaneous phases as a test sta-
tistic permitted assessment of significant phase-locking between
the rhythmic input and respiratory motor output in individual
stimulation trials. Additionally, the use of instantaneous relative
phase and phase coherence allowed us to identify bouts of entrain-
ment within individual stimulation trials. Applying our improved
methodology to MeCP2-deficient mice revealed intermediate and
severe decrements in input-output entrainment that were not rec-
ognized previously. In the future, our approach could be extended
with a data-driven modeling approach based on the generic phase
oscillator model by incorporating multiple central field record-
ings within the pontomedullary respiratory column to understand
changes in the directionality of coupling within the respiratory
network during HBR feedback stimulation (Zhu et al., 2013).

On a more general level, the findings of this study raise the
possibility that the respiratory rhythm is tuned to the dynam-
ics of the periphery. In locomotor CPGs, central oscillations are
coupled to the dynamics of the limb at the a frequency between

the intrinsic frequencies of the neural oscillator and of the phys-
ical limb system (Hatsopoulos, 1996; Chiel and Beer, 1997). A
hallmark of this phenomenon, resonance tuning of a CPG, is
that the frequency of the instrinsic oscillation is reduced in the
absence of feedback (Pearson et al., 1983). Mathematically, con-
sidering the most general model of phase-coupled oscillators, this
property is a consequence of the fact that the coupling between
oscillators is both weak and additive with respect to the intrin-
sic oscillation frequency. While researchers have not previously
considered resonance tuning in the context of respiration, the
intrinsic respiratory oscillation frequency is reduced after removal
of PSR (Stella, 1938; Dhingra et al., 2011) or peripheral chemore-
ceptor (Eldridge, 1974; Miller and Tenney, 1975; Hayashi et al.,
1983) afferent inputs in cats and rodents. Further investigation of
whether resonant tuning of respiratory dynamics may be crit-
ical for rhythmogenesis is warranted because the presence of
excitatory feedback changes membrane current dynamics under-
lying phase switching in models of feedback-coupled locomo-
tor CPGs (Spardy et al., 2011). Even though CPGs are defined
by their ability to transform a constant drive into a rhythmic
output without sensory feedback, in the intact animal, output
rhythms are modulated continuously in a closed-loop fashion
by peripheral afferent oscillations that, contrary to the assertions
of the last decades, may be central to the rhythm generating
mechanism.
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Defining the connections among neurons is critical to our understanding of the structure
and function of the nervous system. Recombinant viruses engineered to transmit across
synapses provide a powerful approach for the dissection of neuronal circuitry in vivo. We
recently demonstrated that recombinant vesicular stomatitis virus (VSV) can be endowed
with anterograde or retrograde transsynaptic tracing ability by providing the virus with
different glycoproteins. Here we extend the characterization of the transmission and gene
expression of recombinant VSV (rVSV) with the rabies virus glycoprotein (RABV-G), and
provide examples of its activity relative to the anterograde transsynaptic tracer form of
rVSV. rVSV with RABV-G was found to drive strong expression of transgenes and to spread
rapidly from neuron to neuron in only a retrograde manner. Depending upon how the
RABV-G was delivered, VSV served as a polysynaptic or monosynaptic tracer, or was
able to define projections through axonal uptake and retrograde transport. In animals
co-infected with rVSV in its anterograde form, rVSV with RABV-G could be used to begin
to characterize the similarities and differences in connections to different areas. rVSV
with RABV-G provides a flexible, rapid, and versatile tracing tool that complements the
previously described VSV-based anterograde transsynaptic tracer.

Keywords: vesicular stomatitis virus, transsynaptic infection, rabies, retrograde transneuronal tracing, in vivo,

technology, polysynaptic

INTRODUCTION
Mapping neuronal connectivity in the central nervous system
(CNS) of even simple organisms is a difficult task. Recombinant
viruses engineered to trace synaptic connections and express
transgenes promise to enable higher-throughput mapping of con-
nections among neurons than other methods, e.g., serial recon-
struction from electron micrographs (Bock et al., 2011; Briggman
et al., 2011). The Pseudorabies (PRV) and Rabies viruses (RABV)
have been the best characterized and most utilized circuit tracing
viruses to date (Ugolini et al., 1989; Kelly and Strick, 2000). RABV
was recently modified by Wickersham and colleagues such that
it can travel across only one synapse, allowing for a straightfor-
ward definition of monosynaptic connections (Wickersham et al.,
2007b). This strategy permitted the first unambiguous identifica-
tion of retrogradely connected cells from an initially infected cell
(“starter cell”), without the need for electrophysiology. Moreover,
the starter cell could be defined through the expression of a
specific viral receptor that limited the initial infection.

Recently, we created an anterograde monosynaptic virus that
complements the previously available retrograde viral tracers
(Beier et al., 2011). Vesicular stomatitis virus (VSV), a virus
related to RABV, with its own glycoprotein (G) gene (VSV-G), or
with a G from the unrelated lymphocytic choriomeningitis virus
(LCMV-G), spreads in the anterograde direction across synapses.

VSV can be used as a polysynaptic tracer that spreads across
many synapses, owing to the fact that the normal, replication-
competent form of the virus does not cause serious diseases in
humans (Brandly and Hanson, 1957; Johnson et al., 1966; Brody
et al., 1967). Whether the virus is a monosynaptic or polysynap-
tic tracer is determined by the method of delivery of the G gene
(Figure 1A). Advantages of VSV are that it is well-characterized,
is relatively simple in comparison to PRV, and it rapidly grows
to high titer in tissue culture cells. It is also being developed as a
vaccine vector, often using a G of another virus as the immuno-
gen, as well as being developed as a cytocidal agent that will target
tumor cells in humans (Balachandran and Barber, 2000; Stojdl
et al., 2000, 2003).

Previous studies of the anatomical patterns of transmission,
as well as physiological recordings, have shown that the trans-
mission of VSV and RABV among neurons is via synapses (Kelly
and Strick, 2000; Wickersham et al., 2007b; Beier et al., 2011).
In addition, it has been shown that RABV, as well as lentiviruses
with RABV-G in their envelope, travel retrogradely from an injec-
tion site (Mazarakis et al., 2001; Wickersham et al., 2007a). We
hypothesized that providing a recombinant VSV (rVSV) with the
RABV-G would create a retrograde polysynaptic transsynaptic
tracer without the biosafety concerns inherent to RABV. Our ini-
tial characterization of rVSV with RABV-G showed that indeed
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FIGURE 1 | Synaptic tracing strategies using VSV. (A) Schematic
illustrating the strategies for polysynaptic or monosynaptic retrograde or
anterograde transsynaptic transmission of rVSV encoding GFP. The initially
infected cell is indicated by an asterisk. VSV encoding a glycoprotein (G)
within its genome can spread polysynaptically. The direction of the
spread depends on the identity of the glycoprotein. Infected neurons are
shown in green. In some cases, the initially infected starter cell can be
defined by the expression of an avian receptor, TVA (tagged with a red
fluorescent protein). The TVA-expressing neurons can then be specifically
infected by rVSV�G with the EnvA/RABV-G (A/RG) glycoprotein
(Wickersham et al., 2007b) on the virion surface [rVSV�G(A/RG)]. These
starter cells are then yellow, due to viral GFP and mCherry from
TVA-mCherry expression. For monosynaptic tracing, the G protein is
expressed in trans in the TVA-expressing cell, and thus complements
rVSV�G to allow transmission in a specific direction. (B) Genomic
diagrams of rVSV vectors. All VSVs contain four essential proteins: N, P,

M, and L. Some viruses encode a G gene in their genome, which allows
them to spread polysynaptically. rVSV vectors typically encode a
transgene in the first position, while others carry an additional transgene
in the G position. (C) Morphological characterization of rVSV-infected
neurons in several locations within the mouse brain. (i,ii)

Caudate-putamen (CP) neurons at 4 dpi from an injection of the CP with
rVSV(VSV-G) viruses encoding (i) CFP or (ii) Korange. (iii) Labeled
neurons of the CA1 region of the hippocampus are shown at 5 dpi
following injection into the hippocampus of rVSV(VSV-G) encoding Venus.
(iv,v) Cortical pyramidal neurons are shown following injection into the
CP of rVSV(RABV-G) expressing (iv) GFP at 24 hpi, or (v) mCherry at
48 hpi. Inset in (iv) is a high magnification of the neuron in panel (iv),
highlighting labeling of dendritic spines. (vi) Multiple viruses can be
co-injected into the same animal. Here, individual rVSV�G(VSV-G) viruses
encoding CFP, GFP, Venus, Korange, and mCherry were used to infect
the cortex. Scale bars = 50 µm.

Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 153

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Beier et al. rVSV(RABV-G), a retrograde transsynaptic tracer

it could be taken up as a retrograde tracer (Beier et al., 2011).
To determine if it could transmit among neurons following its
replication in neurons, and to further analyze the transmission
patterns of both the monosynaptic and polysynaptic forms of
rVSV with RABV-G, we made injections into several CNS and
peripheral locations. In addition, we performed co-infections of
rVSV with RABV-G and the anterograde form of rVSV in order
to exploit the differences in the directionality of transmission of
these two viruses in mapping circuits.

RESULTS
VSV CAN ENCODE A VARIETY OF TRANSGENES
Schematics of viruses created and used throughout this study
are shown in Figure 1. We created rVSV vector plasmids car-
rying different transgenes in either the first or fifth genomic
positions (Figure 1B). After rescuing each virus, we tested the
ability of each to express transgenes in different brain regions
through intracranial injections (Figure 1C). All rVSV vectors
drove robust fluorophore expression 1 or 2 days post-infection
(hpi) (Figure 1C) (van den Pol et al., 2009). In fact, by 12
hpi, labeling was sufficiently bright to image fine morphological
details, such as dendritic spines (Figure 1C,iv).

PHYSIOLOGY OF CELLS INFECTED WITH rVSV ENCODING RABV-G
To characterize the physiological properties of cells infected
with rVSV, we tested a replication-competent rVSV encod-
ing GFP, with RABV-G in the genome in place of VSV-G
[hereafter designated rVSV(RABV-G)]. van den Pol et al. reported
that hippocampal neurons infected with replication-incompetent
(G-deleted or “�G”) rVSV were physiologically healthy at
12–14 hpi, but were less so by 1 day post-infection (dpi) (van
den Pol et al., 2009). Given the known toxicity of both VSV
and RABV-G (Coulon et al., 1982), we tested the physiol-
ogy of cortical pyramidal neurons in the motor cortex (M1)
infected with rVSV(RABV-G). Between 12 and 18 hpi, the mem-
brane capacitance, input resistance, resting membrane potential,
and current-to-action potential firing relationship were indistin-
guishable between infected and uninfected neurons (Figure 2).
However, by 2 dpi, electrophysiological properties were so abnor-
mal in the infected cortical pyramidal cells that physiological
measurements could not be made.

VSV EXPRESSES TRANSGENES RAPIDLY IN NEURONS
The speed and strength of the expression of transgenes encoded
by VSV depends upon the gene’s genomic position (van den Pol
et al., 2009; Beier et al., 2011). Genes in the first position are
expressed the most highly, with a decrease in the level of expres-
sion in positions more 3′ within the viral plus strand. When GFP
was inserted into the first position of VSV, GFP fluorescence was
first detectable at approximately 1 hpi in cultured cells (van den
Pol et al., 2009).

In order to quantify the relative expression of a fluorescent
protein in the first genomic position in neurons, rat hippocam-
pal slices were infected with a replication-incompetent rVSV
that expresses mCherry (rVSV�G, Figures 1A,B). This was a
�G virus which had the RABV-G supplied in trans during the
preparation of the virus stock [referred to as rVSV�G(RABV-G)].

Average fluorescence intensity of the infected cells was mea-
sured every hour over the course of 18 h. By 4 hpi at 37◦C,
red fluorescence was clearly visible, and reached maximal levels
by approximately 14 hpi (N = 3, Figure 3). Similar results were
obtained with a virus encoding GFP in the first genomic position
rather than mCherry (i.e., Figure 1B) (N = 3).

rVSV(RABV-G) SPREADS TRANSSYNAPTICALLY IN THE RETROGRADE
DIRECTION
We previously demonstrated that rVSV(RABV-G) could be taken
up retrogradely by neurons (Beier et al., 2011), but these exper-
iments did not distinguish between direct axonal uptake of the
initial inoculum vs. retrograde transsynaptic transmission follow-
ing viral replication. To distinguish between these two mecha-
nisms and to extend the previous analyses, we conducted further
experiments in the mammalian visual system (Figures 4A–G).
As visual cortex area 1 (V1) does not receive direct projec-
tions from retinal ganglion cells (RGCs), but rather receives
secondary input from RGCs via the lateral geniculate nucleus
(LGN), infection of RGCs from injection of V1 would demon-
strate retrograde transmission from cells which supported at
least one round of viral replication. Following a V1 injection
with rVSV(RABV-G), GFP-positive RGCs were observed in the
retina by 3 dpi (N = 3; Figure 4G). Importantly, viral labeling
in the brain was restricted to primary and secondary projec-
tion areas, even at 7 dpi. These included the LGN (Figure 4D)
and the hypothalamus (Figure 4E), two areas known to project
directly to V1 (Kandel, 2000). Selective labeling was observed in
other areas, such as cortical areas surrounding V1 (Figure 4C),
which project directly to V1, and also in the superior collicu-
lus (SC) stratum griseum centrale, which projects to the LGN
(Figure 4F). Labeling was also observed in the nucleus basalis,
which projects to the cortex, as well as many components of
the basal ganglia circuit, which provide input to the thalamus
[such as the caudate-putamen (CP), globus pallidus (GP), and
the subthalamic nucleus (STn)]. The amygdala, which projects
to the hypothalamus, was also labeled. Consistent with a lack of
widespread viral transmission, animals did not exhibit signs of
disease at 7 dpi.

These data show that rVSV(RABV-G) can spread in a ret-
rograde direction from the injection site, but do not address
whether the virus can spread exclusively in the retrograde direc-
tion. Directional transsynaptic specificity can only be definitively
addressed using a unidirectional circuit. We therefore turned to
the primary motor cortex (M1) to CP connection, in which neu-
rons project from the cortex to the CP, but not in the other direc-
tion (Figure 4H) (Beier et al., 2011). Injections of rVSV(RABV-G)
into M1 should not label neurons in the CP if the virus can only
label cells across synapses in the retrograde direction. Indeed,
at 2 dpi, areas directly projecting to the injection site, includ-
ing the contralateral cortex, were labeled (Figure 4I). Only axons
from cortical cells were observed in the CP, with no GFP-labeled
cell bodies present in the CP (Figure 4J), consistent with lack
of anterograde transsynaptic spread. By 3 dpi, a small number
of medium spiny neurons (MSNs) in the CP were observed,
likely via secondary spread from initially infected thalamic or GP
neurons (data not shown).
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FIGURE 2 | Physiological characterization of rVSV-infected and

uninfected layer 5 cortical pyramidal neurons following injection of

rVSV(RABV-G) into the CP. Slices were cut 12 hpi and recordings were
taken over the subsequent 6 h. (A) Example spike trains driven by 100,
200, and 400 pA square current pulses lasting 1 s for infected (left) and
uninfected (right) neurons. (B) A summary plot showing current/action

potential firing frequency relationships are unaffected by infection
(infected cells, N = 7; uninfected cells, N = 6). Horizontal bars denote
averages. Infection does not alter the (C) input resistance, the (D)

capacitance, or (E) resting membrane voltages (infected cells, N = 10,
uninfected cells, N = 9). Horizontal bars denote mean with standard
error of the mean.

PERIPHERAL UPTAKE OF rVSV(RABV-G) AND TRANSMISSION TO
THE CNS
A particular advantage of retrograde viral tracers is the ability to
label CNS neurons projecting to peripheral sites. This has been
a powerful application of both RABV and PRV (Ugolini et al.,
1989; Standish et al., 1994). To test if rVSV(RABV-G) could also
perform this function, we examined the innervation of the dura
surface by neurons of the trigeminal ganglion, a neuronal cir-
cuit thought to be involved in migraine headaches (Penfield and
McNaughton, 1940; Mayberg et al., 1984). These neurons have
axons, but not canonical dendrites, and send projections into the
spinal cord and brainstem. Therefore, the only way trigeminal
neurons could become labeled from viral application to the dura
is through retrograde uptake of the virus.

We applied rVSV(RABV-G) to the intact dura mater and
analyzed the dura, trigeminal ganglion, and CNS for label-
ing (Figure 4K). At the earliest time point examined, 3 dpi, we

observed axons traveling along the dura, but little other evidence
of infection (Figure 4L). No labeled neuronal cell bodies on the
dura were observed, consistent with the lack of neurons on this
surface. In contrast, we did find labeled cell bodies in the trigemi-
nal ganglion (Figure 4M). No infection was seen in the CNS, even
at 4 dpi, consistent with the lack of inputs from the brain into the
trigeminal ganglion (N = 4 animals).

THE KINETICS OF RETROGRADE TRANSSYNAPTIC SPREAD
To further characterize patterns and kinetics of viral transmis-
sion and directional specificity of transsynaptic spread, injections
of rVSV(RABV-G) were made into the CP (Figure 5A). In order
to determine which cells were labeled by direct uptake of virus
in the inoculum, a separate set of animals were injected into the
CP with the replication-incompetent rVSV�G(RABV-G) (N = 3
animals, analyzed 3 dpi). Cells labeled by rVSV�G(RABV-G)
were observed in the CP, GP, substantia nigra (SN), thalamus, and
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FIGURE 3 | Quantification of viral transgene expression over time.

(A) After 7 days in vitro (DIV), hippocampal slice cultures were infected with
rVSV�G(RABV-G) expressing mCherry in the first genomic position. Sample

images of the same visual field are shown over time. (B) Fluorescence was
quantified as a function of time and was normalized to expression at 18 hpi.
The plot indicates averages ±1 SD, N = 3.

layers 3 and 5 of the cortex, consistent with infection at the axon
terminal and retrograde labeling of cell bodies of neurons known
to project directly to the CP (Figure 5C) (Albin et al., 1995). Areas
labeled by CP injection are indicated in Figure 5B.

The patterns of spread for the replication-competent
rVSV(RABV-G) were characterized over the course of 1–5 dpi
(Figures 5D–H). During this interval, progressively more cells
in infected regions were labeled by rVSV(RABV-G), includ-
ing within the CP, nucleus basalis, cortex, and GP (listed in
Figure 5B). In addition, more cortical cells were labeled in
clusters near cortical pyramidal neurons, both ipsilateral and
contralateral to the injected side, including neurogliaform
cells (data not shown). These data are in contrast to those
observed following infection with an anterograde transsynaptic
tracing virus, such as rVSV with its own G gene, rVSV(VSV-G)
(Figure 5B). At 3 dpi following rVSV(VSV-G) injection into the
CP, the cerebral cortex was not labeled, but regions receiving
projections from the CP, such as the STn, GP, and SN, were
labeled (Beier et al., 2011).

In order to investigate other areas for evidence of cell-to-cell
retrograde transsynaptic spread, the nucleus basalis was exam-
ined following infection of the CP with replication-competent
rVSV(RABV-G). The nucleus basalis was labeled by 2 dpi
(Figures 5E–H), consistent with at least a single transsynap-
tic jump, as this area does not directly project to the CP. The
virus appeared to travel transsynaptically at the rate of roughly
1 synapse per day, as evidenced by the lack of labeled neurogli-
aform cells in the cortex, and lack of neurons in the nucleus basalis
at 1 dpi, and label appearing in these cell types/areas at 2 dpi,
as previously observed (Beier et al., 2011). Labeling remained
well-restricted to the expected corticostriatal circuits at 5 dpi,

suggesting that viral spread becomes less efficient after cross-
ing one or two connections, consistent with injections into V1
(Figure 4). While glial cells can be infected and were observed
near the injection site (van den Pol et al., 2002; Chauhan et al.,
2010), infected glial cells away from the injection site generally
were not observed.

POLYSYNAPTIC TRACERS CAN BE COMBINED in vivo
One advantage of having both anterograde and retrograde forms
of the same virus is that they can be used in parallel, or in tandem,
to trace circuitry to and from a single or multiple sites of injec-
tion, with each virus having similar kinetics of spread and gene
expression. In fact, if different fluorophores are used in different
viruses, e.g., rVSV(VSV-G) and rVSV(RABV-G), then the viruses
can be co-injected into the same site and their transmission can be
traced independently (Figure 6A). This is most straightforward if
there are no cells at the injection site that are initially infected
by both viruses. Co-infected cells can be easily detected, as they
would express both fluorescent proteins shortly after injection.

In order to determine whether two viruses would allow simul-
taneous anterograde and retrograde transsynaptic tracing from
a single injection site, a rVSV(VSV-G) expressing Venus and a
rVSV(RABV-G) expressing mCherry were injected individually
(Figures 6B–D) or co-injected (Figures 6E–G) into the motor
cortex, and brains were examined 3 dpi. The pattern of label-
ing from the co-injected brains was equivalent to the patterns
observed when each virus was injected individually: rVSV(VSV-
G) was observed to infect neurons in the cortex, CP, and down-
stream nuclei, whereas the rVSV(RABV-G) was not observed to
infect neurons in the CP, but rather in the thalamus and nucleus
basalis (N = 4). The initial co-infection rate is dependent upon
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FIGURE 4 | rVSV(RABV-G) exhibits polysynaptic retrograde spread

in vivo. (A) Schematics of two parasaggital sections separated by 1.3 mm
are shown. rVSV(RABV-G) injected into V1 (black needle) should yield
infected cells in the labeled areas shown in green, including RGCs in the
retina (panel ii). Areas projecting directly to V1, such as the hypothalamus
(h), LGN, as well as other cortical areas, can be labeled by direct
retrograde uptake of injected virions, whereas RGCs, which project to the
LGN, can only be labeled by secondary viral spread. (B) rVSV(RABV-G) was
injected into V1 (yellow arrowhead), and both the brain and retina
examined 7 dpi. Infection in the brain appeared to be primarily in directly
projecting areas, including the surrounding cortices, the LGN (white arrow),
and hypothalamus (white arrowhead). Higher magnifications of labeled
cells from a V1 injection are shown in panels (C–G). (C) somatosensory
cortex, 7 dpi; (D) LGN, 3 dpi; (E) hypothalamus, 3 dpi; (F) SC, 3 dpi; (G)

RGC, 3 dpi. (H) Schematic of a coronal section showing rVSV(RABV-G)
injected into M1 (black needle). The contralateral cortex (green) should be
labeled by this virus, while at early time points such as 2 dpi, the CP,

which receives projections from the cortex but does not itself send
projections to the cortex, should not (gray). (I) Coronal section showing
GFP-labeled neurons in M1, imaged 4 dpi. The injection site was in M1,
indicated by a yellow arrowhead, with neurons projecting to the injection
site indicated by the white arrowhead. (J) CP neuronal cell bodies were
not labeled, but labeled cortical axon bundles running through the CP were
observed (inset shows axon bundles in the area demarcated by the white
arrowhead). (K–M) rVSV(RABV-G) can trace circuits into the CNS from a
peripheral site. (K) Parasaggital schematic showing a predicted area of
infection following infection of the dura with a retrogradely transported
virus. rVSV(RABV-G) was applied to the intact dura (arrow) and if
retrograde uptake and transport can occur, trigeminal ganglion neurons that
project to the dura (green) should become labeled. (L) Examples of axons
located on the dura, 3 dpi. Infected neuronal cell bodies were not located
on the dura, (M) but instead were observed in the trigeminal ganglion. No
infection of the brain was observed in these animals. Scale bars: (B,I,J) =
1 mm, (L) = 100 µm, (C–G,M) = 50 µm.
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FIGURE 5 | Time course of rVSV(RABV-G) spread from the CP

recapitulates the connectivity of known basal ganglia-thalamo-cortical

circuits. (A) A parasaggital schematic showing the relevant projections into
and from the injection site in the CP. Black needle points to injection site,
green = primary projecting regions, blue = secondary projecting region. CP,
caudate-putamen; GP, globus pallidus; SN, substantia nigra; STh, subthalamic
nucleus; Th, thalamus; NB, nucleus basalis. (B) Assessment of viral spread
from rVSV(RABV-G) and rVSV(VSV-G) injections into the CP. The presence or
absence of labeling is indicated by (+) and (−), respectively. The extent of
labeling is indicated by the number of (+). Some animals were infected with
�G viruses to determine which areas were labeled by direct uptake of the
virions, rather than by replication and transmission. These were sacrificed at

3 dpi. (C) Parasaggital section of a brain infected with VSV[greek
delta]G(RABV-G). The injection site is marked by a red arrow. Several areas
that project directly to the CP were labeled due to direct uptake of the
virions, including the cortex, thalamus, and GP (arrowheads), 3 dpi. (D–H)

Replication-competent rVSV(RABV-G) was injected into the CP (red arrows),
and the time course of labeling was monitored for 5 days [(D) 1 day, (E) 2,
(F) 3, (G) 4, and (H) 5 days]. Insets show high magnifications of areas
indicated by white arrows. Sections from animals at 1 dpi show labeling
consistent with the initial infection [compare to rVSV�G(RABV-G), panel C],
while spread to secondarily connected areas, such as the nucleus basalis,
was observed at 2 dpi (yellow arrows). Viral spread was relatively restricted to
the basal ganglia circuit, even out to 5 dpi. Scale bars = 1 mm.

Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 158

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Beier et al. rVSV(RABV-G), a retrograde transsynaptic tracer

FIGURE 6 | Simultaneous anterograde and retrograde transsynaptic

circuit tracing using rVSV. (A) Connectivity schematics of parasaggital
sections indicating patterns of spread from injection of M1 (injection needles)
with a polysynaptic virus transmitting across synapses in the (i) anterograde
or (ii) retrograde directions. Panel (iii) shows the pattern from co-injection of
two polysynaptic viruses, one anterograde and one retrograde. Green
represents the anterograde virus, red the retrograde virus, and yellow, both.
Note that yellow indicates that the area is predicted to host infection by both
viruses, with potentially some individual cells showing infection with both
viruses. (B) The anterograde transsynaptic virus rVSV(VSV-G), when injected
alone, labeled M1 as well as anterograde projection areas, such as the CP, GP,
and thalamus, whereas (C) the retrograde virus rVSV(RABV-G) labeled M1 as
well as areas projecting to the cortex, including the thalamus. (D) High
magnification of thalamic cells shown in (C) (white arrow). (E,F) Examples
taken from a series of parasaggital sections from the same brain of an animal
injected with both viruses simultaneously into M1. Co-infection of cells in M1

was not observed, (G), and no spurious labeling of anterograde or retrograde
projection regions was observed—i.e., the combination of viruses was equal
to the sum of each virus injected individually. Insets show high magnifications
of thalamic neurons in (E) and (F) labeled by the two viruses (indicated by the
yellow arrows) demonstrating no co-labeling. (G) A high magnification view
of the injection site in the cortex shown in panel (F) (white arrow), showing
independent labeling of neurons by each virus. (H) A schematic of a
parasaggital section depicting the pattern of transmission of an anterograde
(green) and retrograde (red) virus injected into two different areas of the basal
ganglia circuit. This strategy can be used to connect multiple elements in a
circuit. The rVSV(VSV-G) that expressed Venus (labeled cells depicted in
green) was injected into M1, while the rVSV(RABV-G) that expressed
mCherry was injected into the SN, where it labeled direct pathway MSNs in
the CP (yellow). (I) Using these coordinates, largely non-overlapping regions
of the CP were labeled by these viruses, as shown in (J). Scale bars:
(B,C,E,F,I) = 1 mm; (D,G,J) = 50 µm.

the dose of the initial inocula. When injecting 3× 103 focus form-
ing units (ffu) rVSV(VSV-G) and 3× 104 ffu rVSV(RABV-G), no
co-infection was observed at the injection site. Thus, co-infection
of the same brain region, without co-infection of the same cells,

does not alter the spreading behavior of either rVSV(VSV-G) or
rVSV(RABV-G).

One example of how this dual retrograde and anterograde
transsynaptic tracing system can be used is to determine if three
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distinct regions are connected and the directionality of any con-
nections. For example, the anterograde transsynaptic virus can be
injected into one region, the retrograde into another, and a third
region can then be examined for evidence of labeling by either or
both viruses (e.g., Figure 6H). To test this possibility, rVSV(VSV-
G) was injected into the motor cortex, rVSV(RABV-G) was
injected into the substantia nigra pars reticulara (SNr), and ani-
mals were sacrificed at 3 dpi. We observed that cells were singly
labeled, either with Venus [rVSV(VSV-G)] or with mCherry
[rVSV(RABV-G)], and were located largely in different regions
of the CP (Figures 6I,J) (N = 3). These results suggest that the
anterograde connections from the cells infected with rVSV(VSV-
G) in the M1 were with CP MSNs that did not project to the
region of the SNr injected with rVSV(RABV-G) (N = 3 animals).

VSV CAN TRACE MONOSYNAPTICALLY CONNECTED CIRCUITS IN THE
RETROGRADE DIRECTION
In addition to polysynaptic tracing, VSV can be modified to trace
circuits monosynaptically (Beier et al., 2011). With RABV, this
was achieved in vivo by first infecting with an adeno-associated
virus (AAV) expressing TVA, a receptor for an avian retrovirus,
and RABV-G (Wall et al., 2010). This was followed 3 weeks later by
infection with a �G RABV with an EnvA/RABV-G chimeric gly-
coprotein on the virion surface (Wickersham et al., 2007b), which
allowed infection specifically of the cells expressing TVA. A sim-
ilar strategy was used to test rVSV’s ability to monosynaptically
trace retrogradely connected neurons in vivo. Inputs to choline
acetyltransferase (ChAT)-expressing neurons in the striatum were
used for this test. These neurons primarily receive input from the
cortex and the thalamus (Thomas et al., 2000; Bloomfield et al.,
2007) (Figure 7A). In order to mark this population, we crossed
ChAT-Cre mice to Ai9 mice, which express tdTomato in cells

with a Cre expression history (Madisen et al., 2010). Six-week-old
mice from this cross were injected in the CP with two AAV vec-
tors: one expressing a Cre-conditional (“floxed”) TVA-mCherry
fusion protein, and another expressing a floxed RABV-G. Two
weeks later, the mice were injected in the same coordinates with
rVSV�G with the EnvA/RABV-G chimeric glycoprotein on the
virion surface [rVSV�G(A/RG)] (Beier et al., 2011). Cells suc-
cessfully infected with these two AAV vectors could host infection
by a rVSV and should be able to produce rVSV virions with
RABV-G on the surface. Such starter cells should also express
tdTomato and GFP. If rVSV were to be produced, and if it were
to transmit across the synapse retrogradely, cortical and thalamic
neurons should be labeled by GFP.

Mice injected with these AAV and rVSV viruses were sacrificed
5 days after rVSV infection, and brains analyzed for fluorescence.
As expected for starter cells, some neurons in the CP expressed
both tdTomato and GFP (Figure 7B). Outside of the CP, small
numbers of GFP+ neurons that were not mCherry+ were
observed in the cortex (Figures 7C,D) and thalamus (Figure 7E),
consistent with retrograde spread. Control animals not express-
ing Cre, or not injected with AAV encoding RABV-G, did not
label cells in the cortex or thalamus (N = 3 for both controls and
experimental condition).

DISCUSSION
rVSV(RABV-G) IS A RETROGRADE TRACER IN THE CNS
Here, we report on the use of rVSV as a retrograde transsynap-
tic tracer for CNS circuitry. VSV can be modified to encode the
RABV-G protein in the viral genome, allowing the virus to repli-
cate and transmit across multiple synaptically connected cells,
i.e., as a polysynaptic tracer. Alternatively, if the virus has the G
gene deleted from its genome and RABV-G is provided in trans,

FIGURE 7 | Monosynaptic retrograde tracing using rVSV in vivo.

(A) A schematic of a parasaggital section showing the predicted pattern of
monosynaptic retrograde spread from Choline Acetyltransferase
(ChAT)-expressing neurons in the CP to directly connected cells. A
combination of two Cre-dependent adeno-associated viruses (AAVs), one
expressing a TVA-mCherry fusion protein and the other RABV-G, were
injected into the CP of ChAT-Cre/Ai9 animals. This permits expression of the
transgenes encoded in the AAVs in cells with a ChAT expression history.
Two weeks later, rVSV�G(A/RG), a G-deleted virus that only infects
TVA-expressing neurons, was injected into the same region, and the brain

was observed 5 days later. The injection of rVSV into the CP (black needle)
should result in infection of TVA-expressing neurons in the CP. From these
starter cells, monosynaptic spread could occur only to directly connected
inputs such as those in the cortex and thalamus (green). (B,B′ ) Initially
infected cells in the CP were both red (TVA-expressing) and green (rVSV
infected) (arrow). B′ shows the red and blue channels only, blue = DAPI.
(C–E) Examples of rVSV-infected cells in the cortex (C,E) and thalamus
(D) that were infected by monosynaptic transmission from the starter cells,
(arrows indicate cells infected by transmission), N = 3. Scale bars: (B,D) =
50 µm, (C,E) = 500 µm.
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it behaves as a monosynaptic tracer (Beier et al., 2011). Although
it has been known for many years that RABV travels retrogradely
among neurons (Astic et al., 1993; Ugolini, 1995; Kelly and Strick,
2003), and pseudotyping lentiviruses with RABV-G is sufficient
for axonal transport (Mazarakis et al., 2001), the retrograde trans-
mission specificity among neurons had not been clearly shown to
be a property of the G protein itself, as it might have been due
to other viral proteins in addition to, or instead of, the viral G
protein. Since native VSV does not have these retrograde transsy-
naptic properties (van den Pol et al., 2002; Beier et al., 2011),
and the only alteration to the VSV genome was the substitution
of the VSV G gene with the G gene of RABV, it is clear that the
RABV glycoprotein is responsible for retrograde direction of viral
transmission across synapses, at least in the case of rVSV.

VSV AS A VIRAL VECTOR FOR THE CNS: RAPID GENE EXPRESSION AND
GENOME CAPACITY
The early onset of gene expression from VSV relative to RABV
(one hour vs. multiple hours) makes it beneficial in experimen-
tal paradigms in which the experiment needs to be done within
a narrow window of time, such as tissue slices and explants. In
addition, more than one transgene can be encoded in the viral
genome without the need of a 2A or IRES element. The use of the
first position of the genome enhances the expression level of the
transgene inserted at that location, since VSV (and RABV) express
genes in a transcriptional gradient; therefore, the first gene is the
most highly transcribed (Knipe, 2007). This leads to rational pre-
dictions of expression levels so that one can choose the position of
insertion of a transgene, or transgenes, according to this gradient
and the desired level of expression. The size of the viral capsid is
apparently not rigid, allowing for the inclusion of genomes that
are substantially larger than the native genome, unlike the rigid
capacity for some other viral vectors, such as AAV (Duan et al.,
2000; Yan et al., 2000).

SUFFICIENCY OF GLYCOPROTEINS TO CONFER DIRECTIONALITY OF
rVSV SPREAD ENABLES NOVEL APPLICATIONS
The fact that VSV can be made to spread anterogradely (Beier
et al., 2011) or retrogradely across synapses with the change of
a single gene affords several advantages over viral tracers that
heretofore have not shown such flexibility in the directionality of
tracing. In addition to the obvious application of tracing antero-
grade connections, combinations can be made to exploit the
different forms of the virus. One example that employs the simul-
taneous infection with an anterograde and retrograde form of
VSV is demonstrated in Figure 6. This experiment was designed
to address whether the anterograde projections from the cortex
to the CP would label the same brain regions as were labeled by a
retrograde virus injected into the SN. Although a block of super-
infection by the virus may preclude infection of the same cell
with multiple rVSVs, adjacent cells could still become labeled by
different viruses (Whitaker-Dowling et al., 1983). The observed
results could be due to a preferential labeling by the anterograde
transsynaptic virus of indirect pathway MSNs in this experiment,
which then synapse onto the GP, thereby reflecting a viral bias.
Alternatively, it could indicate that the cortical neurons in the
injected region largely do not label the MSNs that project to the

area of the SN injected with the retrograde virus. One further
possibility is that too little virus was used to observe co-labeling
of a given region. However, given the density of infection (i.e.,
Figures 6I,J), the latter possibility seems unlikely. Additionally,
the spread of the polysynaptic rVSV(RABV-G) appears to atten-
uate with increasing numbers of synapses crossed, permitting an
analysis of more restricted viral spread. This is quite fortuitous, as
if spread were to continue, it would lead to widespread infection
and lethality. In addition, reconstruction of connectivity would be
more difficult. This reduced efficiency appears to also hold for the
monosynaptic form of VSV complemented with RABV-G, as the
efficiency of transmission appeared lower than the comparable
experiment with RABV (Watabe-Uchida et al., 2012). This is likely
due to viral attenuation when VSV-G is replaced with RABV-G.

ADVANTAGES OF VSV OVER OTHER VIRAL TRACERS: SAFETY
We were attracted to the use of VSV as a viral tracer due to its long
track record as a safe, replication-competent laboratory agent.
Laboratory workers using VSV have not contracted any diseases,
and natural VSV infections among human populations in Central
America and the southwestern United States (Rodríguez, 2002)
occur without evident pathology (Johnson et al., 1966; Brody
et al., 1967). VSV was thus an attractive candidate for its use as
a polysynaptic tracer for CNS studies, which requires an ability to
replicate through multiple transmission cycles. Both replication-
competent and incompetent forms of VSV are in use under
Biosafety Level 2 containment. Replication-competent RABV is
Biosafety Level 3, due to the fact that infection with replication-
competent RABV is almost always fatal to humans and in mice
when infected intracerebrally (Smith, 1981; Knipe, 2007).

Differences in pathogenicity between VSV and RABV are likely
due to the ability of RABV to evade the innate immune sys-
tem, particularly interferon (Hangartner et al., 2006; Junt et al.,
2007; Lyles and Rupprecht, 2007; Rieder and Conzelmann, 2009;
Iannacone et al., 2010). VSV infection efficiently triggers an inter-
feron response, and it has not evolved a method of escape from
this response, unlike RABV (Brzózka et al., 2006). In fact, VSV
is being pursued as a vaccine for other viruses, including RABV
(Lichty et al., 2004; Publicover et al., 2004; Kapadia et al., 2005;
Schwartz et al., 2007; Iyer et al., 2009; Geisbert and Feldmann,
2011). VSV does not typically spread beyond the initially infected
site in the periphery (Kramer et al., 1983; Vogel and Fertsch,
1987). This likely is the cause of the minor or absent symptoms in
humans and animals infected in nature. Polysynaptic VSV vectors
are thus predicted to be much safer than polysynaptic RABV vec-
tors. We have tested this prediction by injecting a series of mice in
the footpads and hind leg muscles with rVSV(RABV-G), with the
result that no injected animals showed any evidence of morbidity
or mortality (Beier, Goz et al., in preparation).

While safer for laboratory workers than RABV, the main draw-
back to using VSV is its rapid cellular toxicity (van den Pol et al.,
2009; Beier et al., 2011). Toxicity is due to suppression of cellu-
lar transcription and a block in the export of cellular RNAs from
the nucleus to the cytoplasm (Black and Lyles, 1992; Her et al.,
1997; Ahmed and Lyles, 1998; Petersen et al., 2000; von Kobbe
et al., 2000), as well as inhibition of the translation of cellular
mRNAs (Francoeur et al., 1987; Jayakar et al., 2000; Kopecky et al.,
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2001). VSV is much quicker to enact its gene expression pro-
gram than is RABV, such that cells suffer the toxic effects more
quickly than after RABV infection. One aspect of VSV that can
be exploited in the future to ameliorate the speed of toxicity is
the use of VSV mutants and variants. One such mutant is the
M51R, which permitted us to conduct physiological analyses of
pre-and post-synaptic cells (Beier et al., 2011). We are in the
process of examining the transmission properties of this mutant
in vivo, as well as the effects of other mutations or viral variants
on prolonging the health of neurons after infection.

SUMMARY
rVSV vectors can be used to study the connectivity of neuronal
circuitry. In addition to combinations of replication-competent
forms of VSV, the replication-incompetent, monosynaptic forms
of the virus can be easily combined, without the need to change
viruses (Beier et al., 2011). This allows a straightforward way
to study both the projections into, and out from, a genetically
defined cell population. This can be done with the same viral
genome, with the only change needed being the glycoprotein, for
the selection of the direction of transmission. This flexibility of
VSV makes it a powerful, multi-application vector for studying
connectivity in the CNS.

MATERIALS AND METHODS
VIRUS CONSTRUCTION AND PRODUCTION
All rVSV clones were cloned from the rVSV�G backbone
(Chandran et al., 2005). mCherry, Kusabira orange, Venus, and
CFP were cloned into the first (GFP) position using XhoI and
MscI sites, and VSV-G (a gift from Richard Mulligan, Harvard
Medical School, Boston, MA) and RABV-G (a gift from Ed
Callaway, Salk Institute, San Diego, CA) were cloned into the fifth
(G) position using the MluI and NotI restriction sites. Genes for
fluorescent proteins were obtained from Clontech.

Viruses were rescued as previously described (Whelan et al.,
1995). At 95% confluency, eight 10 cm plates of BSR cells were
infected at an MOI of 0.01. Viral supernatants were collected at
24-h time intervals and ultracentrifuged at 21,000 RPM using a
SW28 rotor and resuspended in 0.2% of the original volume. For
titering, concentrated viral stocks were applied in a dilution series
to 100% confluent BSR cells and plates were examined at 12 hpi.
Viral stocks were stored at−80◦C.

For �G viruses, 293T cells were transfected with PEI (Ehrhardt
et al., 2006) at 70% confluency on 10 cm dishes with 5 µg of
pCAG-RABV-G. Twenty-four hours post-infection, the cells were
infected at an MOI of 0.01 with rVSV�G expressing either GFP
or mCherry. Viral supernatants were collected for the subsequent
4 days at 24 h intervals.

Virus preparations are now available from the Salk GT3 viral
core (http://vectorcore.salk.edu/). All plasmids are available from
Addgene (http://www.addgene.org/).

AAV VECTORS
AAV-FLEx-RABV-G and AAV-FLEx-TVA-mCherry plasmids
originated from the Lab of Naoshige Uchida (Watabe-Uchida
et al., 2012), and virus stocks were generous gifts from Brad
Lowell, Harvard Medical School.

INJECTIONS OF MICE
ChAT-Cre (B6;129S6-Chattm1(cre)Lowl/J) and Ai9 (B6.Cg-
Gt(ROSA)26Sor<tm9(CAG-tdTomato)Hze>/J) mice were
obtained from the Jackson Laboratory (Madisen et al., 2010).

Eight-week-old CD-1 mice were injected using pulled cap-
illary microdispensers (Drummond Scientific, Cat. No: 5-000-
2005), using coordinates from The Mouse Brain in Stereotaxic
Coordinates (Franklin and Paxinos, 1997). Injection coordinates
(in mm) used were:

Primary Motor Cortex: A/P +1.34 from bregma, L/M 1.7,
D/V −1 from pial surface
LGN: A/P −2.46 from bregma, L/M 2, D/V−2.75
Superior Colliculus: A/P −3.88 from bregma, L/M 0.5,
D/V −1
CP: A/P +1 from bregma, L/M 1.8, D/V−2.5
Primary Visual Cortex (V1): A/P −3.4 from bregma, L/M 2.5,
D/V −0.8.
SNr: A/P −3.28 from bregma, L/M 1.5, D/V−4.25

For multi-color analysis (Figures 1C,D), 3× 109 ffu/mL rVSV
was injected into various regions. For CP injections, 100 nL of
rVSV(RABV-G) or rVSV(VSV-G) at 3× 107 ffu/mL was injected
at a rate of 100 nL/min. For the replication-incompetent viruses,
100 nL of 1× 107 ffu/mL rVSV�G(RABV-G) or rVSV�G (VSV-
G) was injected. In the motor cortex, 100 nL of 1× 107 ffu/mL
rVSV(RABV-G) was injected, and mice harvested 2 dpi. For
V1 injections, 100 nL of 3× 1010 ffu/mL rVSV(RABV-G) was
injected, and mice were examined 3 or 7 dpi.

For infections of the dura mater, 1 µL of 3× 1010 ffu/mL
rVSV(RABV-G) was applied to the surface of the dura. The virus
was allowed to absorb, and the surface was subsequently covered
in bone wax, and the wound sutured.

For co-injections of virus into the same animal, 100
nL of a combination of 3× 107 ffu/mL rVSV(VSV-G) and
3× 108 ffu/mL rVSV(RABV-G) were co-injected into the
motor cortex, and brains examined 3 dpi. For injections of
the viruses into different regions, 100 nL of 3× 107 ffu/mL
rVSV(VSV-G) was injected into M1, and 100 nL of 3× 108

ffu/mL rVSV(RABV-G) into the SNr, and brains examined 3 dpi.
A lower titer of rVSV(VSV-G) was used, as rVSV(RABV-G) is
attenuated.

All mouse work was conducted in biosafety containment
level 2 conditions and was approved by the Longwood Medical
Area Institutional Animal Care and Use Committee.

SLICE PREPARATION AND PHARMACOLOGY
Recordings were made from cortical pyramidal neurons in
slices taken from postnatal day 12–18 mice, inoculated in
the CP 12–18 h prior with rVSV(RABV-G). Coronal slices
(300 µm thick) were cut in ice-cold external solution con-
taining (in mM): 110 choline, 25 NaHCO3, 1.25 NaH2PO4,
2.5 KCl, 7 MgCl2, 0.5 CaCl2, 25 glucose, 11.6 Na-ascorbate,
and 3.1 Na-pyruvate, bubbled with 95% O2 and 5% CO2.
Slices were then transferred to artificial cerebrospinal fluid
(ACSF) containing (in mM): 127 NaCl, 25 NaHCO3, 1.25
NaH2PO4, 2.5 KCl, 1 MgCl2, 2 CaCl2, and 25 glucose, bub-
bled with 95% O2 and 5% CO2. After an incubation period
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of 30–40 min at 34◦C, slices were stored at room tempera-
ture. All experiments were conducted at room temperature
(25◦C). In all experiments, 50 µM picrotoxin, 10 µM 2,3-Dioxo-
6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline - 7-sulfonamide
(NBQX), and 10 µM 3-((R)-2-Carboxypiperazin-4-yl)-propyl-
1-phosphonic acid (CPP) were present in the ACSF to block
GABAA/C, AMPA, and NMDA receptor-mediated transmission,
respectively. All chemicals were from Sigma or Tocris.

ELECTROPHYSIOLOGY AND IMAGING
Whole-cell recordings were obtained from infected and unin-
fected deep layer cortical pyramidal neurons identified with
video-IR/DIC and GFP fluorescence was detected using epi-
fluorescence illumination. With the deep layers of the cortex,
2-photon laser scanning microscopy (2PLSM) was used to con-
firm the cell types based on morphology. Deep layer pyramidal
neurons had large cell bodies, classic pyramidal shape and den-
dritic spines. Glass electrodes (2–4 M�) were filled with internal
solution containing (in mM): 135 KMeSO4, 5 KCl, 5 HEPES,
4 MgATP, 0.3 NaGTP, 10 Na2HPO4, 1 EGTA, and 0.01 Alexa
Fluor-594 (to image neuronal morphology) adjusted to pH 7.4
with KOH. Current and voltage recordings were made at room
temperature using a AxoPatch 200B or a Multiclamp 700B ampli-
fier. Data was filtered at 5 kHz and digitized at 10 kHz.

DATA ACQUISITION AND ANALYSIS
Imaging and physiology data were acquired and analyzed as
described previously (Carter and Sabatini, 2004). Resting mem-
brane potential was determined by the average of three 5-s sweeps
with no injected current. Passive properties of the cell, membrane
(Rm) and series resistance (Rs) and capacitance (Cm), were mea-
sured while clamping cells at −65 mV and applying voltage steps
from−55 to−75 mV. The current—firing relationship was deter-
mined in current clamp with 1-s periods of injected current from
100 to 500 pA.

HIPPOCAMPAL SLICE CULTURES
The time course of viral gene expression experiments were car-
ried out in organotypic hippocampal slice cultures prepared from
postnatal day 5–7 Sprague-Dawley rats as described previously
(Stoppini et al., 1991). Slices were infected after 7 days in vitro,
and images were acquired on a two-photon microscope.
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Insects such as flies or bees, with their miniature brains, are able to control highly
aerobatic flight maneuvres and to solve spatial vision tasks, such as avoiding collisions
with obstacles, landing on objects, or even localizing a previously learnt inconspicuous
goal on the basis of environmental cues. With regard to solving such spatial tasks,
these insects still outperform man-made autonomous flying systems. To accomplish
their extraordinary performance, flies and bees have been shown by their characteristic
behavioral actions to actively shape the dynamics of the image flow on their eyes (“optic
flow”). The neural processing of information about the spatial layout of the environment is
greatly facilitated by segregating the rotational from the translational optic flow component
through a saccadic flight and gaze strategy. This active vision strategy thus enables
the nervous system to solve apparently complex spatial vision tasks in a particularly
efficient and parsimonious way. The key idea of this review is that biological agents,
such as flies or bees, acquire at least part of their strength as autonomous systems
through active interactions with their environment and not by simply processing passively
gained information about the world. These agent-environment interactions lead to adaptive
behavior in surroundings of a wide range of complexity. Animals with even tiny brains, such
as insects, are capable of performing extraordinarily well in their behavioral contexts by
making optimal use of the closed action–perception loop. Model simulations and robotic
implementations show that the smart biological mechanisms of motion computation and
visually-guided flight control might be helpful to find technical solutions, for example, when
designing micro air vehicles carrying a miniaturized, low-weight on-board processor.

Keywords: spatial behavior, optic flow, saccades, flying insects, obstacle avoidance, navigation behavior

OPTIC FLOW AS AN IMPORTANT SPATIAL CUE FOR FAST
MOVING ANIMALS
Behavior is a phenomenon that takes place in space and is intri-
cately entangled with it. The organism is required to interact with
its surroundings in a way appropriate to the respective situational
context. It should be able to respond appropriately to objects,
for instance, by avoiding collisions with obstacles or by detect-
ing and fixating inanimate objects of interest or other organisms,
such as a predator, prey, or mate. On a larger spatial scale, organ-
isms should be able to navigate from one place to another and to
localize a goal on the basis of environmental spatial cues.

Insects are obviously well able to cope with these behavioral
challenges in a highly virtuosic and efficient way. Think of a
blowfly, for example, landing on the rim of a cup, or two flies
chasing each other; without technical assistance, our visual system
is incapable of resolving the complexity of such flight maneu-
vres, and the speed at which they are executed exceeds by far
the capacities of our own motor system. During their virtuosic
flight maneuvres, blowflies can make up to ten sudden (“sac-
cadic”) turns per second, during which they may reach angular
velocities of up to 4000◦/s. The extraordinary navigational skills
of bees are another awe inspiring example of insect spatial behav-
ior: spatial cues enable bees to localize previously learnt, barely

visible goals, such as a food source or the entrance to their nest,
over large distances even in cluttered environments. All these feats
are accomplished with visual systems of comparatively poor spa-
tial resolution and extremely small brains that consist of no more
than a million neurons, underlining the resource efficiency of the
underlying mechanisms.

We will argue in this review that biological agents, such as fly-
ing insects, are such efficient and adaptive autonomous systems
because they rely, to a large extent, on strategies by which they
shape their sensory input through the specific way they move and
change their gaze direction. In this way, they actively reduce the
complexity of their sensory input and, thus, the computational
load for the underlying brain mechanisms. Therefore, by exploit-
ing the consequences of the action–perception cycle, animals with
even tiny brains, such as insects, are enabled to perform extraor-
dinarily well in solving spatial vision tasks in a wide range of
behavioral contexts. This view somehow contrasts with common
conceptions of how spatial vision is accomplished.

If laypeople are asked for the requirements of spatial vision,
they are likely to reply that most animals, including humans,
are equipped with two eyes which allow them to view the world
from slightly different vantage points, and that the nervous sys-
tem makes use of the resulting disparity information for depth
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vision. However, the spatial range that can be resolved in this way
is critically restricted by the distance between the eyes, the over-
lap of their visual fields and their spatial resolution (Collett and
Harkness, 1982). Hence, stereoscopic vision—if it is available at
all to a particular animal species—is functional only in the near
range. This poses a problem, especially for fast moving animals,
such as many flying insects (as well as for human car drivers),
because, in order to control appropriate reactions, such as avoid-
ing collisions with obstacles, spatial information is required at
much greater distances than may be available through stereo-
scopic mechanisms. Amongst the depth cues that are available
in addition to binocular information, for example, contrast dif-
ferences between near and distant objects (Collett and Harkness,
1982), the retinal image motion induced by self-movements of the
animal (“optic flow”) is particularly relevant (Koenderink, 1986;
Rogers, 1993; Poteser and Kral, 1995; Lappe, 2000; Redlick et al.,
2001; Vaina et al., 2004).

Whenever an animal moves in its environment, the retinal
images are continually displaced. During translatory movements,
these displacements depend on the distance of environmental
objects to the eyes, their angular location relative to the direc-
tion of motion and the velocity of locomotion. Only transla-
tional optic flow is distance dependent and, thus, contains spatial
information, whereas rotational optic flow is useless for spa-
tial vision, because all objects during rotations are displaced at
the same angular velocity irrespective of their distance (Figure 1;
Koenderink, 1986). Hence, the translatory optic flow component
contains information about the relative distance of environmen-
tal objects from the animal: objects nearby pass quickly, while
objects far-off appear virtually stationary. This motion-induced
spatial information is based on behavioral action, because it
is only available during self-motion, but not when the animal
is stationary. Many animals, ranging from insects to humans,
were concluded to exploit optic flow information for depth
cueing.

We will focus in this review on the spatial behavior of insects
that is based on depth information derived from optic flow.
Since optic flow is particularly relevant during fast locomo-
tion in three dimensions, we will mainly cover spatial vision
in flight and address four major issues: (1) Components of
insect behavior that are thought to be involved in solving basic
spatial tasks and how they may depend on motion-based infor-
mation; (2) the processing of motion-dependent spatial infor-
mation and how it is facilitated by active gaze movements;
(3) the representation of behaviorally relevant spatial informa-
tion in the visual system; and (4) the behavioral significance of
neurons extracting information about self-motion of the ani-
mal, as well as the environment, from the image flow gen-
erated on the eyes as a consequence of the action–perception
loop being closed. Obviously, solving any spatial vision task—
especially by flying insects that lack passive stability—requires,
as a precondition, the animal’s flight attitude to be somehow
stabilized by appropriate feedback control systems. This issue,
though very important for spatial orientation behavior and
widely analysed for decades, will be touched on only briefly,
because it has already been thoroughly reviewed (Hengstenberg,
1993; Taylor and Krapp, 2008).

FIGURE 1 | Schematic illustration of the consequences of rotational

(upper diagram) or translational self-motion (bottom diagram) for the

resulting optic flow. Superimposed images were either generated by
rotating a camera around its vertical axis or by translating it forward.
Rotational self-motion leads to image movements (red arrows) of the same
velocity (reflected in the arrow length) irrespective of the distance of
environmental objects from the observer. In contrast, the optic flow elicited
by translational self-motion (blue arrows) depends on the distance between
objects from the observer. Hence, translational optic flow contains spatial
information.

BEHAVIOR INVOLVED IN SPATIAL TASKS AND ITS CONTROL
BY VISUAL MOTION CUES
Many animals, including humans, use optic flow for the con-
trol of spatial behavior. Since spatial information can most easily
be extracted from the retinal image flow during translatory self-
motion, some animals execute translatory movements of their
body and/or head that appear to be dedicated to generate optic
flow suitable for depth cueing. Locusts, mantids, and dragonflies,
for instance, sitting in ambush perform lateral body and head
movements in preparation for a jump or for catching prey, respec-
tively (Collett, 1978; Sobel, 1990; Collett and Paterson, 1991; Kral
and Poteser, 1997; Olberg et al., 2005). Some bird species bob
their heads back and forth, most likely to acquire depth infor-
mation (Davies and Green, 1988; Necker, 2007). Moreover, flying
insects, such as flies and bees (Schilstra and van Hateren, 1999;
Boeddeker et al., 2010; Braun et al., 2010, 2012; Geurten et al.,
2010), but also birds (Eckmeier et al., 2008), perform a saccadic
flight and gaze strategy in which short and rapid head and body
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saccades are separated by largely translatory locomotion. This
strategy facilitates access to spatial information from the resulting
optic flow.

The use of optic flow to gain spatial information has been
shown most convincingly in behavioral experiments in which
animals responded to objects that were camouflaged by cover-
ing them with the same texture as their background. Thus, these
objects could be discriminated only on the basis of optic flow cues

elicited during self-motion. Drosophila, for instance, is well able
to discriminate the distance of different objects on the basis of
slight differences in their retinal velocities (Schuster et al., 2002).
Bees (Srinivasan et al., 1987; Lehrer et al., 1988) and blowflies
(Kimmerle et al., 1996) use relative motion cues mainly at the
edges of objects to discriminate between their height and to land
on them (Figure 2A; Srinivasan et al., 1990; Kimmerle et al., 1996;
Kern et al., 1997). Bees also use motion contrast in discrimination

FIGURE 2 | Object detection by relative motion cues. (A) Relative
number of spontaneous landings of free-flying flies on discs covered
with a random texture of different heights. The floor and walls of the
flight arena were covered with the same texture. Hence, the discs could
only be discriminated by relative motion cues induced on the eyes by
the self-motion of the animal. Flies landed on discs raised at least 1 cm
above the floor significantly more often than on a reference disc on the
floor (data from Kimmerle et al., 1996). (B) Contour plot of the turning
responses of tethered flying flies measured with a yaw torque
compensator (comp) for different combinations of temporal frequencies
of object motion (OM) and translatory background motion (tBM). The
motion stimuli were striped patterns (spatial period 6.3◦ ) presented on
two monitor screens placed at an angle of 90◦ symmetrically in front of
the fly. OM was displayed within a vertical 6.3◦ wide window in front of
the right eye. Object-induced responses are given in a color coded way
with warmer colors indicating larger responses. Flies show strong
turning responses when OM is faster than tBM. The strongest

responses are induced when the background is not stationary, but
moves slowly (data from Kimmerle et al., 1997). (C) Landmark navigation
of honeybees in a cylindrical flight arena with three cylindrical landmarks
(upper left diagram). The landmarks were either homogeneously red or
were covered by the same random pattern as the background. Bees
were trained to find a barely visible feeder placed between the
homogeneous landmarks. The trajectory of one search flight maneuvre is
shown in the top view (bottom left diagram). The feeder (green circle)
and the landmarks (black dots) are indicated. The position of the bee is
indicated by red dots at each 32 ms interval; straight lines represent the
orientation of the long axis of the bee. The duration of search flights
until landing on the feeder was not significantly increased when the
pattern of the landmarks was changed from homogeneous red to the
random dot texture that also covered the background (right diagram).
Red lines indicate median values, the upper and lower margins of the
boxes, the 75th and 25th percentiles; the whiskers indicate the data
range (Data from Dittmar et al., 2010).
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tasks (Lehrer and Campan, 2005) and for navigating back to the
previously learnt location of a barely visible goal (Figure 2C; see
below; Dittmar et al., 2010). Moreover, hawk-moths hovering
in front of a flower use motion cues to control their distance
to the nectar donating blossom (Pfaff and Varjú, 1991; Farina
et al., 1994; Kern and Varjú, 1998). However, motion informa-
tion is also used for spatial tasks that are not related to objects.
Bees, for instance, exploit optic flow information to estimate dis-
tances traveled during navigation flights. The dependence of optic
flow information on the depth structure of the environment is
also relevant in this context: experimental manipulation of the
environment between flights can induce characteristic errors in
distance estimation because estimates of distances traveled in a
given environment cannot be generalized to environments with
different depth structures (Srinivasan et al., 2000; Esch et al.,
2001; review: Wolf, 2011).

What are the mechanisms involved in solving spatial behav-
ioral tasks? Insects play a pivotal role in systems analyses of
these mechanisms, both at the behavioral and the neural level.
Behavioral systems analyses have been mainly performed in
flight simulators on tethered flying flies, because the visual input
can be perfectly controlled by the experimenter while, in most
experimental paradigms, turning responses are recorded. Here,
the visual consequences of locomotion are emulated by motion
stimuli to which the tethered animal is exposed. However, the
degrees of freedom of movement that can be executed by the
animal and monitored by the experimenter in these behav-
ioral paradigms are constrained, thus providing only limited
access to the rich behavioral repertoire of the animal. Apart
from a few exceptions (e.g., Land and Collett, 1974; Collett
and Land, 1975; Wagner, 1982; Zeil, 1986), it has only recently
become possible to investigate spatial behavior systematically
under free-flight conditions with high spatial and temporal res-
olution and to also reconstruct what an animal has seen dur-
ing largely unconstrained behavior (Lindemann et al., 2003). In
the following, we restrict the review to only a few components
of spatial behavior that have been experimentally investigated
in detail.

OBJECT DETECTION AND OBJECT-DIRECTED RESPONSES
It has been known for a long time from experiments in tethered
flight that flies can discriminate objects from their background on
the basis of motion cues and attempt to fixate them in the frontal
visual field (Virsik and Reichardt, 1976; Reichardt and Poggio,
1979; Reichardt et al., 1983; Egelhaaf, 1985a; Egelhaaf and Borst,
1993a; Kimmerle et al., 1997, 2000; Maimon et al., 2008; Aptekar
et al., 2012). In these experiments, the tethered animal could not
move, and only its yaw torque was measured. Relative motion
was generated by specifically controlling object and background
displacements. In real life, this situation usually occurs as a con-
sequence of the action–perception cycle being closed while the
animal moves in a three-dimensional environment and actively
generates relative motion cues on its eyes through its behavior
(see above).

Only three features of the control system mediating object
detection in flies will be mentioned here. (1) The detectabil-
ity of objects depends to a large extent on the dynamical

properties of object and background motion. Object detection
is facilitated if the background moves at a moderate velocity,
such as during translation in an environment where the back-
ground is at a medium distance from the animal (Figure 2B)
(Kimmerle et al., 1997). (2) The visual pathways extract-
ing motion-dependent object information and those process-
ing other types of motion information (e.g., those control-
ling compensatory optomotor responses or translation velocity)
are commonly assumed to segregate at the level of the fly’s
third visual neuropile. The object system appears to be distin-
guished by its dynamical and other properties. In particular,
the object system responds to high-frequency changes of the
retinal position and velocity of the object, whereas strong com-
pensatory optomotor responses are evoked by low-frequency
velocity changes (Egelhaaf, 1987; Aptekar et al., 2012). The
object pathway appears to be kept separate from the other
pathways up to the level of the steering muscles that medi-
ate object-induced turns (Egelhaaf, 1989). (3) Even when the
object moves exactly in the same way in subsequent stimulus
presentations, it may either be fixated by the fly or no fixation
responses may be elicited at all. Such a bimodal distribution
of responses in the behavioral context of object detection—a
full response or no response—suggests a gating mechanism in
the neural pathway mediating motion-induced object fixation
(Kimmerle et al., 2000).

Currently we can only speculate about the functional signifi-
cance under real-life conditions of a control system that induces
turning responses in tethered flight toward an object moving in
front of its background. Potentially, an object may initiate land-
ing behavior under free-flight conditions. This is plausible in
blowflies as well as in bees, because (1) an object is most effec-
tive in eliciting fixation responses when the ventral part of the
visual field is stimulated (Virsik and Reichardt, 1976), and (2)
when detecting and approaching a landing site in free-flight, rel-
ative motion cues are exploited mainly in the ventral visual field
(Wagner, 1982; Lehrer et al., 1988; Kimmerle et al., 1996; Kern
et al., 1997; van Breugel and Dickinson, 2012). Similar object-
detection systems could play an important role in bees during
local navigation when landmarks based on contrast, texture, and
relative motion cues need to be detected to guide the animal to its
goal (see below).

COLLISION AVOIDANCE
In many situations, objects or other structures in the environment
(e.g., extended surfaces, such as walls) are not goals the animal
may aim for, but may interfere with the animal’s trajectory as
obstacles that need to be avoided. Thus, collision avoidance repre-
sents a basic, but highly relevant spatial task. Again, optic flow has
been shown in a variety of animals, including humans, to be one
of the most relevant cues that may signal an impending collision
(e.g., Lappe, 2000; Vaina et al., 2004).

Optic flow has been shown to be relevant in collision avoidance
behavior for both tethered and free-flying flies. There is consen-
sus amongst studies that asymmetries in the optic flow across the
two eyes, for instance, when approaching environmental struc-
tures on one side, are decisive for eliciting collision avoidance
responses: (1) Flies tend to turn away from the eye experiencing
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image expansion (Tammero and Dickinson, 2002a,b; Tammero
et al., 2004; Bender and Dickinson, 2006b; Budick et al., 2007;
Reiser and Dickinson, 2010). (2) The probability of eliciting an
evasive turn has been concluded to be highest if the focus of image
expansion is located in the lateral rather than in the frontal part of
the visual field (Tammero and Dickinson, 2002a; Tammero et al.,
2004; Bender and Dickinson, 2006b). Such optic flow might occur
during flights with a strong sideways component. These results do
not imply that the focus of expansion in the retinal motion pat-
tern during object approach is explicitly extracted by the neuronal
circuits that mediate collision avoidance. Based on experiments
done in free-flight in different types of flight arenas that allow
for more complex behavior than in tethered flight, mechanisms
that rely on asymmetries in the optic flow field across the two
eyes other than explicitly extracting the focus of expansion are
well able to account for relevant aspects of collision avoidance (see
below; Lindemann et al., 2008; Mronz and Lehmann, 2008; Kern
et al., 2012).

INTERACTION BETWEEN OBJECT FIXATION AND COLLISION
AVOIDANCE
Expanding visual flow fields are encountered by flying insects
not only when they encounter an obstacle, but also when flying
straight toward an object that may serve as a landing site or as
a landmark in the context of navigation behavior. As sketched
above, tethered flying Drosophilae turn away from an expand-
ing retinal image. Given the strength of this evasive response, it
is difficult to explain how flies can fly straight in natural sur-
roundings with ample objects surrounding them. This apparent
paradox is partially resolved by the finding that Drosophila, when
flying toward a conspicuous object, tolerates a level of expansion
that would otherwise induce avoidance (Reiser and Dickinson,
2010). This suggests that the gain of the control system mediating
evasive turns is reduced if prominent visual features are attractive
and represent a behavioral goal. Therefore, flies appear to require
a goal to keep an overall flight direction, either toward a salient
object (Heisenberg and Wolf, 1979; Götz, 1987; Maimon et al.,
2008; Reiser and Dickinson, 2010), toward an attractive odorant
(Budick and Dickinson, 2006), when flying upwind (Budick et al.,
2007), or while pursuing a moving target such as a potential mate
(Trischler et al., 2010).

SPATIAL INFORMATION RELEVANT FOR LOCAL NAVIGATION
Whereas collision avoidance and landing are spatial tasks that
must be solved by any flying insect, local navigation is relevant
especially for particular insects, such as bees, some wasps and
ants, which care for their brood and, thus, have to return to their
nest after foraging. Consequently, the full complexity of spatial
navigation has been analysed mainly in bees, wasps, and ants
both in artificial and natural environments. Nonetheless, basic
elements of local navigation could be found also in Drosophila
(Foucaud et al., 2010; Ofstad et al., 2011). Since various aspects
of insect navigation and the underlying mechanisms have been
reviewed recently (Collett and Collett, 2002; Collett et al., 2006;
Zeil et al., 2009; Zeil, 2012), only selected issues will be addressed
here, and spatial information processing during flight will be the
major focus.

Visual landmarks represent crucial spatial cues and are
employed to localize a goal, especially if it is barely visible itself.
Information about the landmark constellation around the goal
is memorized during elaborate learning flights: the animal flies
characteristic sequences of ever increasing arcs while facing the
area around the goal. During these learning flights, the animal
somehow gathers relevant information that is subsequently used
to relocate the goal when returning to it after an excursion. A vari-
ety of visual cues, such as contrast, texture and color, are suitable
to define landmarks and are employed to find the goal (reviews:
Collett and Collett, 2002; Collett et al., 2006; Zeil et al., 2009; Zeil,
2012). Recently, landmarks that are defined by motion cues alone
were shown to be sufficient for bees to locate the goal (Dittmar
et al., 2010). In this study, several landmarks that were cam-
ouflaged by their texture and, thus, could not be discriminated
from the background by stationary cues were placed in particular
locations surrounding the goal (Figure 2C). The mechanisms by
which the landmark constellation is learnt and how the memo-
rized information is eventually used to locate the goal are not yet
fully understood. However, it is clear that optic flow information
generated actively during the bees’ typical learning and searching
flights is essential for the acquisition of a spatial memory of the
goal environment. Moreover, in the vicinity of the landmarks, the
animals were found to adjust their flight movements according to
specific textural properties of the landmarks (Dittmar et al., 2010;
Braun et al., 2012).

Landmarks close to the goal are, for geometrical reasons, most
suitable to define the goal location, because the retinal locations
of close landmarks are displaced more than distant ones during
the translational movements of the animal (Stürzl and Zeil, 2007).
Emerging as a direct consequence of the closed action–perception
cycle, this property “weighs” the relevance of environmental
objects to serve as landmarks for local navigation in the vicinity
of the goal.

SPATIAL INFORMATION BASED ON SACCADIC GAZE AND
FLIGHT STRATEGY
Saccadic gaze changes have a rather uniform time course and are
shorter than 100 ms. Angular velocities of up to several thousand
◦/s can occur during saccades (Figure 3). Since roll movements
of the body that are performed for steering purposes during sac-
cades, and also during sideways translations, are compensated
by counter-directed head movements, the animals’ gaze direc-
tion is kept virtually constant during intersaccades (Schilstra and
van Hateren, 1999; Boeddeker and Hemmi, 2010; Boeddeker
et al., 2010; Braun et al., 2010, 2012; Geurten et al., 2010, 2012).
Saccade dynamics in flies have been shown to be fine-tuned by
mechanosensory feedback from the halteres, the gyroscopic sense
organs of dipteran flies, evolutionarily developed from the hind
wings. Haltere feedback may thus contribute to increasing the
duration of intersaccadic intervals (Sherman, 2003; Bender and
Dickinson, 2006a). Nevertheless, halteres are no prerequisite for
a saccadic gaze strategy, given that bees and wasps show similar
flight dynamics as flies without halteres (Figure 3) (Boeddeker
et al., 2010). By squeezing body and head rotations into the
brief saccades, translational gaze displacements last for more than
80% of the entire flight time (van Hateren and Schilstra, 1999;
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FIGURE 3 | Saccadic flight and gaze strategy of free-flying blowflies and

honeybees. (A) Sample flight trajectory of a blowfly as seen from above. The
position of the fly (black dot) and the orientation of the longitudinal body axis
(red line) are shown every 10 ms. The trajectory was filmed outdoors: the fly
took off from a perch and landed on a leaf of a shrub. (B) Translational flight
speed. (C) Orientation of the fly’s longitudinal body axis (solid red line) and
flight direction (broken black line) in the external coordinate system.
(D) Angular velocity of the fly. The fly changed its gaze and heading direction
through a series of short and fast body turns. Flight direction and body axis

orientation frequently deviate: the body axis already points in the new flight
direction while the fly is continuing to move on its previous course. (A–D)

Data from Boeddeker et al. (2005). (E) Top view of a flight of a honeybee
eventually landing on a feeder. The position of the bee’s head (gray dot) is
shown every 16 ms. The orientation of the head (blue line) and body (red line)
can deviate considerably. (F) Head (blue) and body orientation (red). The
head usually turns with the thorax but at a higher angular speed, starting, and
finishing slightly earlier. (G) Head (blue) and body (red) angular velocity.
(E–G) Data from Boeddeker et al. (2010).

Boeddeker and Hemmi, 2010; Boeddeker et al., 2010; Braun et al.,
2010, 2012; van Breugel and Dickinson, 2012).

It should be noted that flying insects may appear to mean-
der smoothly when their overall flight trajectory is inspected
(Boeddeker et al., 2005; Kern et al., 2012). Having frequently
been an issue of misunderstandings, this smoothness does not

contradict a saccadic flight style. As a consequence of inertial
forces, flying insects, in particular large ones, may move for some
time after a saccadic change in body orientation in their previ-
ous direction. Thus, the saccadic gaze strategy is reflected only
to some extent in the overall flight trajectories. (Figure 3). This
may be different in the much smaller Drosophila where at least
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some rapid large-amplitude turns can be seen in the overall flight
trajectories (Tammero and Dickinson, 2002b).

Blowflies do not fly exactly straight even in straight flight tun-
nels without any obstacles. Rather they perform sequences of
saccades, alternating their direction and the saccade amplitude
depending on the clearance of the animal with respect to the
walls of the flight tunnel (Kern et al., 2012). A saccadic flight
style may be functionally relevant, even if the overall flight course
pursued by the animal is straight. This is because the animal
normally has no prior knowledge about the spatial structure of
the environment. Thus, the uncertainty about whether it can fly
on a straight course or not needs to be resolved on the basis
of optic flow information. Regular changes of flight and gaze
direction might, therefore, be a useful flight strategy, because
it would allow the animal to check (during intersaccadic inter-
vals) the translational optic flow for environmental information
(Kern et al., 2012).

Since the saccadic flight and gaze strategy leads to either pri-
marily rotational or primarily translational optic flow on the
eyes, it can be interpreted as a behavioral adaptation to facili-
tate spatial vision. This is because only translational optic flow
depends on the distance of the animal to environmental objects
and, thus, contains spatial information (see above). A segregation
of optic flow fields into their rotational and translational compo-
nents can, at least in principle, be accomplished computationally
for most realistic situations (Longuet-Higgins and Prazdny, 1980;
Prazdny, 1980; Dahmen et al., 2000). However, such a computa-
tional strategy for the nervous system appears to be a lot more
demanding than preventing the formation of composite rota-
tional and translational optic flow by behavioral means. Thus, a
saccadic gaze and flight strategy can be regarded as an efficient
way to provide the nervous system with input from which spatial
information can be extracted with relatively little computational
effort.

CONTROL OF SACCADES AS THE MAIN ROTATIONAL COMPONENTS OF
FLIGHT BEHAVIOR
The saccadic gaze strategy of insects has been characterized in
various functional contexts: flies exhibit a saccadic flight pat-
tern during spontaneous behavior, for instance, when cruising
around without any obvious goal. This was shown in a wide range
of environments including outdoors conditions (Figure 3A).
Saccade frequencies of up to 10 per second were observed
(Schilstra and van Hateren, 1999; van Hateren and Schilstra,
1999; Tammero and Dickinson, 2002b; Boeddeker et al., 2005,
2010; Braun et al., 2010, 2012; Dittmar et al., 2010; Geurten
et al., 2010). The direction, amplitude and frequency of sac-
cades depend not only on the spatial outline, but also on the
texture of the environment. Thus, saccades are, at least to some
extent, under visual control and serve purposes in spatial behav-
ior, such as in collision avoidance behavior (Frye and Dickinson,
2007; Geurten et al., 2010; Braun et al., 2012; Kern et al.,
2012).

There is consensus that intersaccadic optic flow during col-
lision avoidance behavior plays a decisive role in controlling
the direction and amplitude of saccades. However, which optic
flow parameters may be most relevant is still inconclusive.

Notwithstanding, all proposed mechanisms of evoking saccades
rely on some sort of asymmetry in the optic flow pattern in
front of the two eyes. The asymmetry may be due to the loca-
tion of the expansion focus in front of one eye or to a difference
between the overall optic flow in the visual fields of the two eyes
(Tammero and Dickinson, 2002b; Lindemann et al., 2008; Mronz
and Lehmann, 2008; Kern et al., 2012).

Not all of the visual field has been concluded to be involved in
saccade control, at least for blowflies. The optic flow in the lateral
parts of the visual field does not play a role in determining sac-
cade direction (Kern et al., 2012). This feature might be related
to the way in which blowflies fly: during intersaccades, they pre-
dominantly fly forwards with some sideways component after
saccades that shifts the pole of expansion of the flow field slightly
toward frontolateral locations (Kern et al., 2012). In contrast, in
Drosophila—which are able to hover and fly sideways (Ristroph
et al., 2009)—lateral and even rear parts of the visual field have
also been shown to be involved in saccade control. Therefore, in
Drosophila, a mechanism that also takes lateral retinal areas into
account for saccade control is plausible from a functional point of
view (Tammero and Dickinson, 2002b).

CONTROL OF INTERSACCADIC TRANSLATIONAL MOTION
Whereas saccades are fairly stereotyped across different behav-
ioral contexts, the intersaccadic translational movements may
vary to a much larger extent, depending on the behavioral con-
text as well as the spatial layout of the environment (Braun et al.,
2010, 2012). This aspect has been addressed systematically in
two different behavioral contexts: (1) The dependence of trans-
lation velocity on the spatial layout of the environment, and (2)
the control of translational movements during visual landmark
navigation in the vicinity of an invisible goal.

Insects tend to decelerate when their flight path is obstructed.
Flight speed is thought to be controlled by optic flow gener-
ated during translational flight (David, 1979, 1982; Farina et al.,
1995; Kern and Varjú, 1998; Baird et al., 2005, 2006, 2010; Frye
and Dickinson, 2007; Fry et al., 2009; Dyhr and Higgins, 2010;
Straw et al., 2010; Kern et al., 2012). Flies, bees, and moths
were concluded to keep the optic flow on their eyes at a “pre-
set” total strength by adjusting their flight speed. Accordingly,
they decelerate when the translational optic flow increases, for
instance, while passing a narrow gap or flying in a narrow tunnel
(Figures 4A,B) (Srinivasan et al., 1991, 1996; Verspui and Gray,
2009; Baird et al., 2010; Portelli et al., 2011; Kern et al., 2012).
However, not all parts of the visual field contribute equally to
the input of the velocity controller. Whereas the intersaccadic
optic flow generated in eye regions looking well in front of the
insect has a strong impact on flight speed, the lateral visual field
plays only a minor role (Baird et al., 2010; Portelli et al., 2011;
Kern et al., 2012).

Translational flight maneuvres during the spatial naviga-
tion of bees have a particularly elaborate fine structure and
can be described by a distinct set of prototypical movements
(Figure 4C). The optic flow generated during flight sequences
close to visual landmarks appears to be systematically employed
to localize a virtually invisible goal. Not only the overall veloc-
ity, but also the relative distribution of sideways and forward
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FIGURE 4 | (A) Control of translational velocity in blowflies. Boxplot of the
translational velocity in flight tunnels of different widths, in a flight arena
with two obstacles and in a cubic flight arena (sketched below data).
Translation velocity strongly depends on the geometry of the flight arena.
(B) Boxplot of the retinal image velocities within intersaccadic intervals
experienced in the fronto-ventral visual field (see inset) in the different flight
arenas. In this area of the visual field, the intersaccadic retinal velocities are
kept roughly constant by regulating the translation velocity according to
clearance with respect to environmental structures. The upper and lower
margins of the boxes in (A) and (B) indicate the 75th and 25th percentiles,
and the whiskers the data range (Data from Kern et al., 2012).
(C) Translational and rotational prototypical movements of honeybees during

local landmark navigation (see example in Figure 2C). Homing flight
sequences can be decomposed into nine prototypical movements using
clustering algorithms in order to reduce the behavioral complexity. Each
prototype is depicted as a star plot containing the four velocity components
drawn onto color-coded lines equally dividing the drawing plane (see inset).
For each line, the distance of the dot from the center determines the value
of the corresponding velocity component, and the error bars give the
standard deviation of this value. Percentage values provide the relative
occurrence of each prototype. More than 80% of flight-time corresponds to
a varied set of translational prototypical movements and less than 20% has
significantly non-zero rotational velocity corresponding to the saccades (Data
from Braun et al., 2012).

translational movements depend on the insect’s distance and ori-
entation relative to the landmarks and the goal (Zeil et al., 2009;
Dittmar et al., 2010, 2011; Braun et al., 2012; Zeil, 2012). Bees,
for example, frequently tend to perform translational movements
with a strong sideways component close to landmarks, as if they

wanted to scrutinize them in detail. These sideways movements
are more pronounced if the landmarks are camouflaged by the
same texture as their background and, thus, can be detected only
by relative motion cues in the optic flow fields (Dittmar et al.,
2010; Braun et al., 2012).
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PROCESSING OF OPTIC FLOW IN THE INSECT NERVOUS
SYSTEM
Separating the rotational and translational optic flow compo-
nents behaviorally can be viewed as an efficient strategy to
reduce the computational load for the nervous system when
extracting information about the environment and, especially,
about its spatial layout. Nonetheless, the retinal image flow
resulting from the closed action–perception cycle still has com-
plex spatiotemporal properties, and its processing represents
a demanding challenge for the nervous system. In particular,
there is not much time for gathering environmental informa-
tion between saccades. With up to 10 saccades per second being
generated, intersaccadic intervals may be as short as only a few
ms and rarely longer than 100–200 ms. Time is a critical issue
for at least three reasons: (1) All neural processing is time-
consuming, beginning with the biophysical mechanisms of signal
transduction in the photoreceptors, and ending with transmit-
ter signaling at neuromuscular junctions. (2) Sensory input is
encoded by nerve cells with only limited reliability. Repeated
presentation of the same input may lead to variable neural
responses, which constrain the information which can be trans-
mitted within a given time interval. (3) Neural computations
are not necessarily rigid, but may flexibly adjust to the prevail-
ing stimulus conditions. To be functionally beneficial, the time
constants of such adaptive processes need to match the behav-
iorally relevant timescale of changes of the various visual stimulus
parameters.

These three issues become particularly challenging if informa-
tion is to be processed and represented with sufficient reliability
on the very short timescales that are behaviorally relevant for
fast flying insects. The virtuosity of the spatial behavior of many
insects is proof that their sensory and nervous systems somehow
cope successfully with this challenge. Since insects accomplish all
this with very small brains comprising only a million or less neu-
rons, they seem to be champions of resource efficient information
processing and behavioral control.

So far, we only have vague conceptions of how all this is
accomplished. In the following, we briefly sketch the available
knowledge about the processing of retinal image flow. Particular
focus is placed on how the spatiotemporal properties of image
flow are shaped by the closed action–perception cycle.

SPATIOTEMPORAL VISUAL INPUT OF INSECTS IS SHAPED BY ACTIVE
GAZE STRATEGIES
From what has been sketched above, it may be obvious that the
spatiotemporal characteristics of the input to the visual system
will depend strongly not only on the features of the behav-
ioral surroundings, but also on the specific dynamical charac-
teristics of locomotion. These movements, resulting from the
closed-loop nature of the behavior, may, in turn, depend on the
environmental properties. The statistical properties of a wide
variety of natural scenes have been characterized in many stud-
ies. The scenes analysed were usually stationary, or they resulted
from movements either at constant velocities or with dynamics
that differ a lot from that of unrestrained gaze changes during
natural locomotion (e.g., Eckert and Buchsbaum, 1993; Dong
and Attick, 1995; van Hateren, 1997; Simoncelli and Olshausen,

2001; Betsch et al., 2004; Geisler, 2008). In a recent study, we
simulated the natural dynamics of the saccadic gaze strategy
of insects and registered the resulting image sequences in a
large variety of natural environments (Schwegmann et al., in
preparation).

Given the characteristic temporal structure of behavioral
dynamics, the parameters within these image sequences also
change in a temporally structured way. Two aspects of such
changes may be particularly relevant for extracting behaviorally
relevant environmental information from the retinal image flow:
(1) Relevant image parameters, such as brightness, contrast, and
spatial frequency composition, vary according to image region
and viewing direction, and fluctuate more rapidly during sac-
cadic turns than during intersaccades. (2) During translatory
intersaccadic movements, image parameters resulting from close
structures fluctuate in general much more than those resulting
from distant structures (Figure 5).

The dynamical properties imposed by the saccadic gaze change
and the image statistics of natural environments constrain the
time constants of information processing. Furthermore, the adap-
tive mechanisms that are thought to adjust the sensitivity of
the visual system to the prevailing stimulus conditions have to
operate on a suitable timescale. In particular, to optimize the
encoding of the fluctuations of environmental image features
during the intersaccadic intervals, adaptation in the visual sys-
tem should essentially take place on a timescale shorter than the
duration of these intervals (i.e., within some tens of millisec-
onds) and may be driven by the high-frequency changes of the
respective image parameters. Several physiological components
of motion adaptation have been described at the different lev-
els of the fly visual system (e.g., Maddess and Laughlin, 1985;
Brenner et al., 2000a; Harris et al., 2000; Fairhall et al., 2001;
Kurtz, 2007; Kalb et al., 2008; Liang et al., 2008). To what extent
the time constants of these processes, which have been identified
with experimenter designed motion stimuli, match the dynamics
of parameter changes in the natural visual input, and how these
adaptive processes are controlled, is still not clear.

PERIPHERAL PROCESSING OF MOTION INFORMATION
How is the environmental and, in particular, the spatial infor-
mation extracted from the retinal image flow and represented in
the visual motion pathway? The retinal input is transformed at
the level of photoreceptors in basically two ways: (1) The reti-
nal input is sampled by the array of photoreceptors. Compared
with technical imaging systems, the number of image points
and, thus, the spatial resolution is very low, with only approx-
imately 750 image points per eye in Drosophila (Hardie, 1985),
5000 in the blowfly Calliphora (Beersma et al., 1977) and 5400
in honeybees (Seidl and Kaiser, 1981). The visual angle between
photoreceptors is matched by their acceptance angle resulting in
a blurred retinal image (Götz, 1965; van Hateren, 1993). Despite
the low spatial resolution of the eyes of insects, they are obviously
able to accomplish even intricate spatial vision tasks (see above).
The low number of retinal input channels reduces the computa-
tional load for subsequent information processing tremendously
and, thus, may be one reason why insects are so efficient with
respect to computational expenditure. (2) As a consequence of
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FIGURE 5 | Consequences of flight dynamics for contrast fluctuations in

a small patch (2 × 2◦, corresponding to approximately the aperture of a

local movement detector) of the visual field at the equator and 90◦
relative to the direction of motion in two typical environments: an open

field (left column) and a forest (right column). The movement sequence of
the panoramic camera system corresponds to an initial 45◦ rightward rotation
at a saccade-like angular velocity (1000◦ /s), followed by a translation for 20 cm

at a velocity of 1 ms and then another 45◦ rightward turn. In general, contrast
fluctuations are much larger during saccade-like turns than during
translational phases. If environmental objects are relatively close (as in the
forest environment), translations may also lead to considerable contrast
fluctuations, though on a slower timescale. The data are based on high
dynamic range image sequences, which are rescaled to the printable contrast
range. (Data from Schwegmann et al., in preparation).

the biophysical transduction machinery, the photoreceptors rep-
resent a kind of temporal low-pass filter. Owing to adaptive mech-
anisms, the strength of this temporal blurring depends on the
ambient brightness, with the time-constants of blurring reflect-
ing a trade-off between fast transmission and the reliability of
the retinal output signals given the stochastic nature of the pho-
tons impinging on the photoreceptors (Juusola et al., 1994, 1996;
Juusola, 2003).

The photoreceptor output is fed into the neural network of
the first visual neuropile, the lamina (Figure 6A). Here, those
photoreceptors looking at the same point in visual space con-
verge on common second order neurons (Kirschfeld, 1972),
thereby increasing the reliability of signal transmission, espe-
cially at low-light intensities (Laughlin, 1994). The photoreceptor
signals are further processed in the lamina. (1) They are tem-
porally band-pass filtered, thereby enhancing the representation
of contrast changes in the retinal images (Laughlin, 1994; van
Hateren, 1997). Owing to the special properties of the synapses
between photoreceptors and second order neurons, the signal
time course becomes faster and more transient with increasing
background intensity (Juusola et al., 1995). Given the noisi-
ness of the input signals and the limited dynamic range of
nerve cells, the overall brightness-dependent spatiotemporal fil-
ter properties of the peripheral visual system are thought to

maximize the flow of information about natural moving images
(van Hateren, 1992). It should be noted that these conclusions
are based so far on image sequences resulting from smoothly
superimposed rotational and translational movements, without
taking the different dynamical properties of image changes dur-
ing saccades and intersaccades into account. During translational
intersaccadic movements, the image dynamics can be expected
to depend on the depth structure of the scenery, because the
retinal images of distant objects move at lower velocities than
those of near objects (Figure 5). (2) Recent evidence based on
targeted genetic manipulations of individual cell types in the
peripheral visual system of Drosophila indicate, though there
are differences in details between studies, that the lamina out-
put is segregated into parallel ON and OFF pathways, signal-
ing either brightness increases or decreases (Joesch et al., 2010;
Reiff et al., 2010; Clark et al., 2011). One functional conse-
quence of splitting the visual input into ON and OFF com-
ponents is to facilitate the biophysical implementation of the
mechanism of motion detection at subsequent stages of the
visual system. The core of this mechanism is a multiplication-
like interaction between neighboring retinal input channels (see
below), which gives a positive output for two positive as well
as for two negative inputs (Egelhaaf and Borst, 1992, 1993b;
Eichner et al., 2011).
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FIGURE 6 | Visual system of the blowfly and neural circuits extracting

optic flow information from the retinal image sequences. (A) Schematic
of a horizontal section of the fly’s brain projected onto a photograph of its
head, with the retina and the three main visual neuropiles labeled. (B) Wiring
sketch of some LWCs sensitive to different types of horizontal motion in the
lobula plate of the blowfly. The HSE cells, one type of HS cells, which
respond best to coherent wide-field motion, and the FD1 cells, a special type
of FD cells, which are most sensitive to the motion of objects, are

highlighted. (C) Structure of an FD1 cell with its dendritic tree residing in the
lobula plate. The cell is shown in a whole-mount preparation after it has been
injected with the fluorescent dye Lucifer Yellow. (D) Dependence of the
normalized response amplitude of an HSE and a FD1 cell on the angular
horizontal extent of a moving pattern. The responses are based on computer
simulations of a circuit model [as shown in (B)]; the model responses mimic
the physiologically determined responses (Data from Hennig and Egelhaaf,
2012).

LOCAL MOTION COMPUTATION
A lot is known, especially in flies, about the computations under-
lying motion vision. The available evidence on bees suggests that
motion information is processed in their visual system accord-
ing to similar principles. Local motion detection is assumed to
be accomplished in the second visual neuropile, the medulla

(Figure 6A). Motion-specific responses have been found in the
two most proximal layers of the medulla. Most motion sensitive
medulla neurons that could be functionally characterized have
small receptive fields, as is expected from neurons involved in
local motion detection (review: Strausfeld et al., 2006). As a con-
sequence of the small size of the neurons in this brain area and the
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difficulty of recording their activity, conclusions concerning the
cellular mechanisms underlying motion detection are still tenta-
tive. A lot of progress is currently being made by combining the
sophisticated repertoire of genetic and molecular approaches in
Drosophila with electrophysiological and imaging techniques to
identify the different components of the neural circuits underly-
ing motion detection (Rister et al., 2007; Joesch et al., 2008, 2010;
Katsov and Clandinin, 2008; Borst, 2009; Reiff et al., 2010; Clark
et al., 2011; Schnell et al., 2012).

A large number of features of motion detection can
be accounted for by a computational model, the so-called
correlation-type motion detector. In its simplest form, a local
motion detector is composed of two mirror-symmetrical sub-
units. In each subunit, the signals of adjacent light-sensitive cells
receiving the filtered brightness signals from neighboring points
in visual space are multiplied after one of them has been delayed.
The final detector response is obtained by subtracting the outputs
of two such subunits with opposite preferred directions, thereby
considerably enhancing the direction selectivity of the motion
detection circuit. Each motion detector reacts with a positive sig-
nal to motion in a given direction and with a negative signal to
motion in the opposite direction (reviews: Reichardt, 1961; Borst
and Egelhaaf, 1989; Egelhaaf and Borst, 1993b). Various elabora-
tions of this basic motion detection scheme have been proposed
to account for the responses of insect motion-sensitive neurons
under a wide range of stimulus conditions including even natu-
ral optic flow as experienced under free-flight conditions (see e.g.,
Borst et al., 2003; Lindemann et al., 2005; Brinkworth et al., 2009).

EXTRACTION OF OPTIC FLOW INFORMATION
Since the optic flow as induced during locomotion has a global
structure, it cannot be represented in any specific way by local
mechanisms alone. Rather, local motion measurements from
large parts of the visual field need to be combined. This is accom-
plished in the third visual neuropile, the lobula complex, by
directionally selective wide-field neurons (Figure 6) in all insect
species analysed so far. Independent of the species under investi-
gation, these neurons will here be collectively referred to as LWCs
(lobula complex wide-field cells). LWCs have been investigated in
particular detail in flies, where they reside in the distinct poste-
rior part of the lobula complex; they are, therefore, often termed
lobula plate tangential cells (LPTCs). In bees, the lobula complex
is undivided; however, bees have very similar motion-sensitive
wide-field neurons to those characterized in the lobula plate of
flies (DeVoe et al., 1982; Ibbotson, 1991). Most LWCs spatially
pool the outputs of many retinotopically arranged local motion-
sensitive neurons on their large dendrites and, accordingly, have
large receptive fields. These local motion-sensitive neurons are
thought to correspond to the local motion detectors, as described
above. LWCs are excited by motion in their preferred direction
and are inhibited by motion in the opposite direction (reviews:
Hausen and Egelhaaf, 1989; Krapp, 2000; Borst and Haag, 2002;
Egelhaaf et al., 2002; Egelhaaf, 2006; Taylor and Krapp, 2008;
Borst et al., 2010).

For fly LWCs, the local motion-sensitive elements that synapse
onto their dendrites have been concluded to differ in their pre-
ferred direction of motion. As a consequence, local preferred

directions of LWCs change gradually over their receptive field and
it has been suggested that they coincide with the directions of
the velocity vectors characterizing the flow fields that are induced
during certain types of self-motion (Hausen, 1982; Krapp et al.,
1998, 2001; Petrowitz et al., 2000; Taylor and Krapp, 2008).

Despite the characteristic patterns of preferred directions in
the receptive fields of LWCs, dendritic pooling of motion input is
not sufficient to obtain specific responses during particular types
of self-motion. Network interactions, mediated by both electrical
and chemical synapses, between LWCs within one brain hemi-
sphere and between both halves of the visual system are important
for shaping their specific sensitivities for optic flow (Figure 6B;
reviews: Borst and Haag, 2002; Egelhaaf et al., 2002; Egelhaaf,
2006; Borst et al., 2010). To enhance the specificity of LWCs for
particular global optic flow patterns, interactions between both
visual hemispheres are particularly relevant. The optic flow, for
instance, across both eyes during forward translation is directed
backwards. In contrast, during a pure rotation about the animal’s
vertical axis, optic flow is directed backwards across one eye, but
forwards across the other eye. Thus, translational and rotational
optic flow can, at least in principle, be distinguished if motion
from both eyes is taken into account (Hausen, 1982; Egelhaaf
et al., 1993; Horstmann et al., 2000; Farrow et al., 2003, 2006;
Karmeier et al., 2003; Borst and Weber, 2011; Hennig et al., 2011).
Other LWCs of blowflies, the figure detection (FD) cells, respond
best to the motion of objects rather than to global optic flow pat-
terns. This object sensitivity could be shown for one prominent
element of this group of cells to be a consequence of inhibitory
synaptic interactions with other LWCs (Figures 6B–D) (Egelhaaf,
1985b; Warzecha et al., 1993; Kimmerle and Egelhaaf, 2000a,b;
Hennig et al., 2008, 2011; Hennig and Egelhaaf, 2012; Liang et al.,
2012). FD cells are thought to play a prominent role in detect-
ing stationary objects in the environment, such as landing sites
that are distinguished from their background by motion, and
also other visual cues. Other LWCs found in various fly species
respond to much smaller objects than do FD cells. These cells
were interpreted as being involved in detecting and pursuing
prey and/or mates (Olberg, 1981, 1986; Gilbert and Strausfeld,
1991; Nordström et al., 2006; Nordström and O’Carroll, 2006;
Barnett et al., 2007; Geurten et al., 2007; Trischler et al., 2007) and
it is suggested they owe their exquisite sensitivity for extremely
small targets to a variety of local and global synaptic interactions
(Nordström, 2012).

Although the synaptic interactions between LWCs may
increase their specificity for particular types of optic flow and
stimulus sizes, this specificity is usually far from being perfect,
and most neurons still respond to a wide range of “non-optimal”
stimuli indicating that behaviorally relevant motion information
is encoded by the activity profile of populations of LWCs rather
than by the responses of individual cells.

Despite their specific differences, LWCs have general proper-
ties which may be functionally relevant in the context of spatial
vision.

• Velocity dependence: LWCs do not operate like odometers:
their mean responses increase with increasing velocity, reach
a maximum, and then decrease again. Hence, their response
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does not reflect pattern velocity unambiguously. This ambi-
guity is even more complex, since the location of the velocity
maximum depends on the textural properties of the mov-
ing stimulus pattern. If the spatial frequency of a drifting
sine-wave grating is shifted to lower values, the velocity opti-
mum shifts to higher values. In terms of the correlation model
of motion detection, the location of the temporal frequency
optimum is determined by the time constant of the delay
filters in the local motion detectors (review: Egelhaaf and
Borst, 1993b). The pattern dependence of velocity tuning is
reduced if the stimulus pattern consists of a broad range of
spatial frequencies, as is characteristic of natural scenes (Dror
et al., 2001; Straw et al., 2008). Despite these ambiguities,
flies and bees appear to regulate their intersaccadic transla-
tion velocity during free-flight to keep the retinal velocities in
that part of the operating range of the motion detection sys-
tem in which responses increase monotonically with retinal
velocities (Baird et al., 2010; Portelli et al., 2011; Kern et al.,
2012).
• Time course of motion responses: The representation of image

velocity becomes even more complex if we take time-varying
pattern velocities into account, as are characteristic of behav-
ioral situations. The time course of LWC responses is roughly
proportional to pattern velocity only as long as the velocity
changes are small (Egelhaaf and Reichardt, 1987; Haag and
Borst, 1997, 1998). However, as a consequence of the compu-
tational structure of local motion detectors, LWC responses do
not only depend on pattern velocity, but also on higher-order
temporal derivatives (Egelhaaf and Reichardt, 1987). This is
reflected, for instance, in the response transients to sudden
changes in pattern velocity (Egelhaaf and Borst, 1989; Egelhaaf
and Warzecha, 1998; Warzecha et al., 1998). The rapid sac-
cadic turns characterizing insect free-flight probably lead to the
most transient retinal image displacements that occur under
natural conditions. The retinal peak velocities attained dur-
ing saccades of up to several thousands of degrees per second
are far beyond the velocity optima determined even for tran-
sient conditions (Maddess and Laughlin, 1985; Warzecha et al.,
1999). Nonetheless, saccade direction can be encoded by LWCs
by transient responses with corresponding signs. However, this
is the case only as long as the cell is not excited by transla-
tional optic flow during intersaccades, for example, when the
animal flies close to environmental structures. In this case,
the cell may be depolarized more strongly by the translational
optic flow than by a preferred-direction saccade, even though
the translational velocities are much smaller than the velocities
evoked by the saccades (Kern et al., 2005; van Hateren et al.,
2005).
• Motion adaptation: Motion vision systems operate under a

variety of dynamical conditions. Accordingly, several response
features of LWCs have been shown to depend on stimu-
lus history in a characteristic way. A number of mecha-
nisms are involved in the corresponding changes in the visual
motion pathway. Some of them operate locally and, thus,
presynaptic to the LWCs; they are, to some extent, indepen-
dent of the direction of motion. Other mechanisms orig-
inate after spatial pooling of local motion signals at the

level of LWCs, making them dependent on the direction
of motion (reviews: Clifford and Ibbotson, 2003; Egelhaaf,
2006; Kurtz, 2009). All these processes are usually regarded
as adaptive, although their functional significance is still not
entirely clear. Several non-exclusive possibilities have been
proposed, such as adjusting the dynamic range of motion sen-
sitivity to the prevailing stimulus dynamics (Brenner et al.,
2000a; Fairhall et al., 2001), saving energy by adjusting
the neural response amplitudes without affecting the over-
all information that is conveyed (Heitwerth et al., 2005),
and increasing the sensitivity to changes in stimulus param-
eters resulting from environmental discontinuities (Maddess
and Laughlin, 1985; Liang et al., 2008, 2011; Kurtz et al.,
2009).
• Gain control by dendritic integration of antagonistic motion

input: Dendritic integration of signals from local motion-
sensitive elements by LWCs is a highly non-linear process.
When the signals of an increasing number of input elements
are pooled, saturation non-linearities make the response
largely independent of pattern size. However, the response
saturates at different levels for different velocities. Hence, LWC
responses are almost invariant against changes in pattern size,
while they still depend on velocity. This gain control can be
explained on the basis of the passive membrane properties of
LWCs and the antagonistic nature of their motion input. Even
motion in the preferred direction activates both types of the
two mirror-symmetrical subunits of the motion detector, for
instance, excitatory and inhibitory inputs of LWCs, though to
a different extent, depending on the velocity of motion. As a
consequence, the saturation levels reached by the membrane
potential of an LWC with increasing numbers of activated
input elements are different for different velocities (Hausen,
1982; Egelhaaf, 1985a; Borst et al., 1995; Single et al., 1997).
• Pattern dependence: The responses of the local input elements

of LWCs are temporally modulated even during pattern motion
at a constant velocity owing to their small receptive fields.
These modulations are the consequence of the texture of the
environment. Since the signals of neighboring input elements
are phase-shifted with respect to each other, their pooling by
the dendrites of LWCs reduces mainly those pattern-dependent
response modulations that originate from the high spatial
frequencies of the stimulus pattern. The pattern-dependent
response modulations decrease with the increasing size of the
receptive field (Figure 7) depending, to some extent, on its
aspect ratio (Egelhaaf et al., 1989; Single and Borst, 1998; Dror
et al., 2001; Meyer et al., 2011; O’Carroll et al., 2011; Hennig
and Egelhaaf, 2012; Kurtz, 2012). From the perspective of
velocity coding, the pattern-dependent response modulations
have been viewed as “pattern noise” because they deteriorate
the quality of the neural representation of pattern velocity
(Dror et al., 2001; O’Carroll et al., 2011). Alternatively, these
pattern-dependent modulations may be functionally relevant,
as they reflect the textural properties of the surroundings
(Meyer et al., 2011; Hennig and Egelhaaf, 2012). We will
argue below that the latter interpretation might be relevant
especially during translatory locomotion during intersaccadic
intervals.
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FIGURE 7 | Pattern-dependent response modulations of modeled arrays

of movement detectors. (A) Panoramic high dynamic range image of a
forest scene (rescaled in contrast for printing purposes). (B) Logarithmic
color-coded standard deviation describing the mean pattern-dependent
modulations for one-dimensional receptive fields differing in the elevation of
receptor position and azimuthal receptive field size. Pattern-dependent
modulations decrease with horizontal receptive field extent. Modulation
amplitude depends on the contrast distribution of the input image, as can be

seen when comparing pattern-dependent modulation amplitudes
corresponding to the upper (trees) and lower part (ground) of the input image.
(C) Time-dependent response of an array of movement detectors with an
estimated HSE cell receptive field. Inset: Weight field of the spatial sensitivity
distribution of a HSE cell. The brighter the gray level, the larger the local
sensitivity. The frontal equatorial viewing direction is at 0◦ azimuth and 0◦
elevation. Image motion was performed for 12 s in the preferred direction of
the model cell at an angular velocity of 60◦/s (Data from Meyer et al., 2011).

BEHAVIORAL SIGNIFICANCE OF OPTIC FLOW NEURONS
What is the functional significance of the response character-
istics of the motion sensitive and directionally selective LWCs
described above? Two related and, to some extent, interdependent
views are prevalent in the literature: (1) LWCs are convention-
ally conceived as self-motion sensors and, in particular, rotation
detectors, in other words, neural elements sensing deviations of
the animal from its normal attitude and/or flight course. (2) It is
often implicitly assumed that the motion detection system should
produce responses that come close to a veridical representation
of the retinal velocities. Deviation from this velocity representa-
tion, such as the ambiguities in the responses resulting from the
pattern properties of the stimulus and the fact that the response
first increases with increasing velocity, but then decreases again
beyond some velocity level (see above), are then regarded as defi-
ciencies of an imperfect biological mechanism. However, it is
becoming increasingly obvious from recent research that both
views need to be qualified given the peculiar spatiotemporal char-
acteristics of the retinal image flow resulting from the active
vision strategies of insects. Moreover, constraints imposed by
the timescale of behavior need to be taken into account when
interpreting the functional significance of LWCs.

A ROLE OF LWCs IN MEDIATING COMPENSATORY OPTOMOTOR
TURNING RESPONSES
LWCs are commonly thought to mediate compensatory optomo-
tor turning responses of the entire body as well as the head. The
strongest, though not very specific, evidence is based on the fact

that many characteristics of the behavioral responses correlate
well with the response characteristics of LWCs: they show similar
velocity sensitivity, and the local preferred directions of various
LWCs appear to match with rotational optic flow fields and, thus,
were interpreted as an adaption to detect rotational self-motion of
the animal around different axes (Krapp and Hengstenberg, 1996;
Krapp et al., 1998, 2001; Krapp, 2000; Elyada et al., 2009).

Optomotor following of the entire animal is often analysed
in tethered flight both under open- and closed-loop conditions:
Here, the fly generates turning responses of the head and the body
and follows the moving pattern. This response is usually inter-
preted to reflexively stabilize the retinal images by minimizing
the retinal velocities, for instance, resulting from external and/or
internal disturbances (Hausen and Egelhaaf, 1989; Krapp, 2000;
Borst and Haag, 2002; Egelhaaf, 2006; Taylor and Krapp, 2008;
Borst et al., 2010). However, only rotational optic flow can be
eliminated in this way, and the retinal images cannot be stabilized
entirely during flight, because the animal needs to translate if it
wants to move from one place to another.

A general feature of compensatory optomotor responses is that
they are relatively slow. Their response dynamics differ consid-
erably from the much faster object-induced fixation responses
(Egelhaaf, 1987, 1989; Warzecha and Egelhaaf, 1996; Duistermars
et al., 2007; Rosner et al., 2009). What is the functional signif-
icance of such slow compensatory optomotor responses under
natural behavioral conditions? Since intersaccadic gaze stabiliza-
tion is very fast, it is hardly conceivable that it could be controlled
by optomotor feedback. Optomotor feedback can play a role only
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at a much slower timescale, for instance, to compensate for steady
asymmetries at the level of the sensory input (e.g., dirt on one
eye or internal gain differences) or the motor output (e.g., worn-
out wings). Evidence for this comes from experiments where
asymmetries were introduced to the visual system by occluding
one of the eyes (Kern et al., 2000, in preparation). These behav-
ioral results indicate that LWCs may play a role in mediating
compensatory responses of the animal to slow unintended devi-
ations from course, after their output signals are considerably
low-pass filtered. So far, it is not clear where in the nervous system
downstream of the lobula complex and by what mechanisms this
filtering is accomplished.

In addition to the body, the head of flies and bees also per-
forms compensatory optomotor responses in both tethered and
free-flight. Compensatory head movements are most prominent
during roll rotations of the body as are generated during banked
saccadic turns and during sideways translations (Hengstenberg,
1993; van Hateren and Schilstra, 1999; Boeddeker and Hemmi,
2010; Boeddeker et al., 2010; Geurten et al., 2010). Fast gaze sta-
bilization in flies is mainly achieved by mechanosensory input
from halteres that act as gyroscopes (Sandeman and Markl, 1980).
However, some LWCs have a rather direct impact on head mus-
cles and, thus, on mediating head rotations (Milde et al., 1987,
1995; Gronenberg and Strausfeld, 1990; Gronenberg et al., 1995;
Huston and Krapp, 2008, 2009). Bees, like most other insects,
lack specialized inertial sensors like halteres. Nonetheless, they
also show an optomotor reflex that uses visual motion to stabilize
the head with respect to the visual environment under free-flight
conditions at retinal velocities of up to 300◦/s (Boeddeker and
Hemmi, 2010). Experiments on fruit flies provide a similar pic-
ture: whereas the visual system is tuned to relatively slow rotation,
the haltere-mediated response to mechanical oscillation increases
with rising angular velocity (Hengstenberg, 1993; Sherman and
Dickinson, 2003, 2004).

In conclusion, LWCs are likely to mediate optomotor responses
on a relatively slow timescale, and might thus help compen-
sating rotational optic flow arising from internal asymmetries
of the animal. Given the extremely rapid timescale on which
gaze direction is stabilized during saccadic flight maneuvres and
the response latencies of visually mediated head responses, the
functional role of LWCs for compensatory head rotations under
free-flight conditions is still not entirely clear.

A ROLE OF LWCs IN GATHERING INFORMATION ABOUT THE
ENVIRONMENT DURING INTERSACCADIC INTERVALS
The time that flies and bees keep their gaze straight amounts
to more than 80% of the overall flight-time (Schilstra and
van Hateren, 1999; van Hateren and Schilstra, 1999; Boeddeker
et al., 2005, 2010; Braun et al., 2010, 2012; Geurten et al.,
2010; van Breugel and Dickinson, 2012). Hence, rotations are
squeezed into relatively short and rapid saccadic turns. This
flight and gaze strategy has been interpreted as a way to facil-
itate gathering environmental information that is contained
in the retinal image flow during translatory self-motion (see
above). Therefore, motion-sensitive neurons appear to be predes-
tined to provide environmental information during intersaccadic
intervals.

This suggestion is plausible, because the specificity of most
LWCs for rotational optic flow is not exclusive and they also
respond strongly to translational optic flow (Hausen, 1982;
Horstmann et al., 2000; Karmeier et al., 2003, 2006; Taylor
and Krapp, 2008). Moreover, the most prominent rotations per-
formed by insects in free-flight, the saccadic turns, lead to angular
velocities that are much beyond the monotonic operating range
of the motion detection system (see above); rather the monotonic
operating range roughly matches the intersaccadic translational
velocities in those retinal regions that are probably involved in
controlling the translation velocity of the animal (Kern et al.,
2012).

As has been stressed above, LWCs are not veridical sensors
of velocity and, thus, do not provide unambiguous information
about self-motion. This is particularly obvious for the trans-
latory movements during intersaccadic intervals, because here,
retinal velocities do not only depend on the velocity of loco-
motion, but also on the three-dimensional layout of the envi-
ronment. This dependency is reflected in the responses of HS
cells; a group of three fly LWCs with a main preferred direc-
tion from the front to the back in the visual field of one eye.
These neurons depolarize if environmental structures are suf-
ficiently close, especially during translatory self-motion with a
strong sideways component (Figure 8) (Boeddeker et al., 2005;
Kern et al., 2005; Lindemann et al., 2005; Liang et al., 2012).
Similar results were obtained in further LWCs during translatory
movements in other directions (Karmeier et al., 2006). However,
spatial information is only provided by LWCs if rotational move-
ments are largely eliminated during the intersaccadic intervals,
emphasizing the importance of the active saccadic flight and gaze
strategy in the context of spatial vision (Kern et al., 2006). The
responses to objects nearby are even more augmented by adapta-
tion mechanisms, which depend on stimulus history, and, thus,
on the properties of previous flight sequences (Liang et al., 2008,
2011).

What is the range within which spatial information is encoded
in this way? Under spatially constrained conditions where the
flies flew at translational velocities of only slightly more than 0.5
metres per second, the spatial range within which significant dis-
tance dependent intersaccadic responses are evoked amounts to
approximately two metres (Kern et al., 2005; Liang et al., 2012).
Since a given retinal velocity is determined in a reciprocal way by
distance and velocity of self-motion, respectively, the spatial range
that is represented by LWCs can be expected to increase with
increasing translational velocity. In other words, the behaviorally
relevant spatial range can be assumed to scale with locomotion
velocity. From an ecological point of view, this consequence of
the closed-loop nature of vision is economical and efficient, since
the behaviorally relevant spatial depth range increases during fast
self-motion. A fast moving animal can thus initiate an avoidance
maneuvre earlier and at a greater distance from an obstacle than
when moving slowly.

Recently, we found that the responses of bee LWCs to visual
stimuli as experienced during navigation flights in the vicinity
of an invisible goal also strongly depend on the spatial layout of
the environment. The spatial landmark constellation that guides
the bees to their goal leads to a characteristic time-dependent
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FIGURE 8 | Distance dependence of intersaccadic responses in the HSE

cell, a prominent LWC in the blowfly lobula plate. (A) Sample flight
trajectory of a blowfly in a cubic arena used for the reconstruction of optic
flow. The track of the fly is indicated by the yellow lines; red dots and short
dashes indicate the position of the fly’s head and its orientation, respectively;
green and violet dots indicate the start and end of the trajectory, respectively.
(B) Average intersaccadic responses of HSE cell recordings from three
different flight trajectories plotted versus the corresponding average

weighted nearness. The responses were sorted by increasing nearness and
then attributed to six groups. The vertical and horizontal lines show the
standard deviations of responses and nearness, respectively, across the data
values within one group. The intersaccadic responses were related to the
nearness of the fly to the respective arena walls (nearness = 1/distance),
weighted by the HSE cell’s spatial sensitivity distribution (see inset of
Figure 7C). The intersaccadic responses increase with increasing nearness
to the walls of the flight arena (Data from Liang et al., 2012).

response profile in LWCs during the intersaccadic intervals of
navigation flights (Mertes et al. in preparation).

The responses of LWCs of flies and bees do not only depend on
the retinal velocities, but are also sensitive to pattern properties
(Figure 7; see above). Although the pattern-dependent modula-
tions in the neural responses have been conventionally viewed as
detrimental to the velocity signal, they may reflect functionally
relevant information about the environment (Meyer et al., 2011;
Hennig and Egelhaaf, 2012). This may be the case especially dur-
ing intersaccadic translatory movements: since the retinal velocity
scales with distance, an object nearby will lead to larger inter-
saccadic depolarization than a more distant one. Assuming that
objects nearby are especially functionally relevant, object detec-
tion via optic flow automatically weighs objects according to their
distance and, thus, their functional relevance. In other words,
cluttered spatial scenery is segmented in this way, without much
computational expenditure, into nearby and distant objects.

The amplitude of pattern-induced neural responses depends
to a large extent on the size of the neuron’s receptive field.
Large receptive fields blur pattern-dependent response fluctua-
tions and, thus, improve the quality of velocity signals (Figure 7).
However, they do this at the expense of how well the signals can
be localized. Hence, if motion signals originating from an object
need to be localized by a neuron in the visual field, its receptive
field should be sufficiently small; then, however, velocity coding
is only poor and the signal provides local pattern information
(Meyer et al., 2011). Hence, a neuron that is to encode spatial
information on the basis of optic flow elicited during transla-
tory self-motion should possess a receptive field that matches the
size of the behaviorally relevant objects or textures. Sensitivity to
objects may be further augmented by inhibitory spatial interac-
tions, as is characteristic of blowfly FD cells (Hennig and Egelhaaf,
2012), and also by adaptive mechanisms (Liang et al., 2008,
2011). The enhanced sensitivity to objects in FD cells results from

non-linearities in the synaptic interactions between an inhibitory
neuron and the FD cell, on the one hand (Egelhaaf, 1985c; Hennig
et al., 2008), and from the excitatory receptive field of the FD cell
being smaller than that of its inhibitory input, on the other hand
(Figures 6B–D) (Egelhaaf, 1985b; Egelhaaf et al., 1993; Krapp
et al., 2001). In addition, the larger receptive field of the inhibitory
LWC enhances the pattern-dependent response fluctuations in
the FD cell (Hennig and Egelhaaf, 2012). Thus, the same mech-
anism which accounts for the FD cells being highly sensitive to
objects defined by relative motion cues is also responsible for their
sensitivity to objects which are defined by discontinuities in the
textural properties of the environment.

It became evident in recent studies that the response proper-
ties of fly LWCs are affected by the behavioral state of the animal.
Most prominently, the response amplitudes of LWCs increase if
the animal is behaviorally active during the electrophysiological
recording (Chiappe et al., 2010; Maimon et al., 2010; Rosner et al.,
2010; Jung et al., 2011). This effect can be mimicked to some
extent by application of the octopamine agonist CDM, which
may induce an increase in overall spike rate and a slight shift in
the velocity tuning (Longden and Krapp, 2009, 2010; Jung et al.,
2011; de Haan et al., 2012; Rien et al., 2012). Octopamine has
already been shown much earlier to increase the overall spike rate
of LWCs in honeybees, although changes in velocity tuning have
not been tested (Kloppenburg and Erber, 1995). These changes in
LWC properties related to the behavioral state of the animal are
unlikely to alter the conclusions about how environmental fea-
tures are represented during intersaccadic LWC responses. High
intersaccadic velocities, for instance, occur close to objects or
the walls of the flight arena. A shift in velocity tuning toward
higher velocities would reduce the likelihood of retinal velocities
beyond the monotonic response range of the motion detec-
tion system and, thus, would improve the encoding of distance
information.
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We can conclude that LWCs of flies and bees provide infor-
mation about the spatial layout and the pattern properties of the
environment. This information is linked to the translational self-
motion of the flying animal during intersaccadic intervals. As
a consequence of the action–perception cycle and the distance
dependence of translational optic flow, this spatial information is
confined to the behaviorally relevant range of up to a few metres.
Within this range, the animal has to take action, for instance,
to avoid collisions with obstacles, to select a landing place or
to employ environmental objects as landmarks in order to learn
and/or find the location of a barely visible goal.

CONSTRAINTS SET BY A TIMESCALE OF NATURAL BEHAVIOR
In classical behavioral paradigms using tethered flying insects,
the experimenter-defined motion sequences usually stay constant
on a timescale of several hundreds of milliseconds and even sec-
onds. However, during unrestrained behavior, the retinal motion
patterns continually change. As a consequence of the typical sac-
cadic flight and gaze strategy of insects (see above), optic flow
dynamics during natural locomotion also deviate considerably
from dynamic stimuli (e.g., white-noise velocity fluctuations) that
are often employed in characterizing LWCs. In the context of spa-
tial vision, the intersaccadic intervals are of particular interest.
Although they take up, on the whole, more than 80% of the entire
flight time, they may be as short as 30 ms.

Why is the duration of intersaccadic intervals and, thus, the
timescale on which information about the environment needs
to be processed an issue at all? On the one hand, neurons are
relatively unreliable computing devices and, on the other hand,
the spatial behavior of flying insects takes place on a compara-
tively rapid timescale. The problem of reliability is particularly
daunting, as there is not much redundancy at the output level
of the insect visual system which would allow for the pooling of
information across equivalent neurons.

When the same stimulus is presented repeatedly to a neuron,
the responses may vary a lot between trials. Neuronal activity fluc-
tuates continually even during constant velocity motion (reviews:
Pelli, 1991; de Ruyter van Steveninck and Bialek, 1995; Warzecha
and Egelhaaf, 2001). On the basis of individual response traces, it
is not easily possible to discern stimulus-driven activity changes
from those that are due to sources not associated with the stim-
ulus (“noise”). The origin of various potential noise sources in
the visual motion pathway and the consequences of the unreli-
able nature of neural signals have been analysed in flies (e.g., de
Ruyter van Steveninck and Bialek, 1995; de Ruyter van Steveninck
et al., 1997; Warzecha and Egelhaaf, 1999; Warzecha et al., 2000;
Egelhaaf et al., 2001; Lewen et al., 2001; Borst, 2003; Grewe
et al., 2003, 2007; Nemenman et al., 2008). These aspects, as
well as the impact of neuronal noise on the precision with
which motion information can be encoded, have been contro-
versially discussed (Haag and Borst, 1997, 1998; Warzecha and
Egelhaaf, 1997; Warzecha et al., 1998, 2000, 2003; Brenner et al.,
2000b; Fairhall et al., 2001; Kalb, 2006). One aspect appears to
be especially relevant in the context of computing spatial infor-
mation: given that neuronal responses are noisy, it will take
some time to infer reliably behaviorally relevant environmental
information from neuronal activity. Bayesian analysis of noisy

intersaccadic responses of individual fly LWCs and populations
of LWCs reveals that sufficiently reliable information about trans-
latory self-motion and, thus, about spatial parameters of the
environment can be decoded already on a timescale of little
more than 5 ms and, thus, on a time-scale of even the shortest
intersaccadic intervals (Karmeier et al., 2005). Since the neural
responses in this analysis were integrated over time, the intersac-
cadic responses decoded on this basis do not allow for resolving
temporal response fluctuations that may arise from pattern prop-
erties during an intersaccadic interval. How much the neural
responses fluctuate in a pattern-dependent way on a timescale of
intersaccades needs to be investigated by scrutinizing individual
responses to translations in natural surroundings.

CONCLUSIONS
Despite their small brains with less than a million neurons and a
spatial resolution of their eyes much smaller than any useful tech-
nical camera system, insects such as flies or bees are able to solve
complex spatial tasks, such as avoiding collisions with obstacles,
landing on objects or even finding hardly visible goals on the basis
of spatial landmark information. Insects outperform man-made
autonomous flying systems in these tasks especially if resource
efficiency with respect to computational expenditure and energy
consumption are conceived as a benchmark. Moreover, insects
accomplish this at flight velocities that imply rapid time-varying
retinal image flow. The processing of rapid retinal image flow rep-
resents great challenges for the neuronal machinery, given the
limited reliability of neurons as computing devices. Obviously,
as a consequence of millions of years of evolution, insect ner-
vous systems have become well adapted to successfully cope with
these computational challenges and to solve those computational
tasks that are relevant for the success of the species efficiently and
parsimoniously.

One means to accomplish their extraordinary performance is
that flies and bees actively shape the image flow on their eyes by
their characteristic flight behavior. Neural processing of spatial
and textural information about the environment is greatly facil-
itated by largely segregating the rotational from the translational
optic flow through a saccadic flight and gaze strategy. It is sug-
gested that tuning the neural networks of motion computation to
the specific spatiotemporal properties of the actively shaped optic
flow patterns enables the nervous system to solve apparently com-
plex spatial vision tasks more efficiently and parsimoniously than
might be possible without such an active vision strategy. Only
by taking into account the characteristics of the retinal image
flow that is generated under natural closed-loop conditions did
it become clear that the classical interpretations of the functional
significance of neurons sensitive to optic flow need to be at least
modified and extended: these neurons not only reflect informa-
tion about the animals’ self-motion, but also—through the image
flow generated during intersaccadic translational movements—
about the outside world. Accordingly, these neurons may be
regarded as sensors for environmental information that, as a
consequence of the distance dependence of translational optic
flow, weigh in computationally inexpensive ways environmental
information according to its presumptive significance for spatial
vision.
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Hence, we can conclude from the experimental work on the
spatial behavior of insects and the underlying neural mecha-
nisms, in combination with model simulations, that biologi-
cal systems such as flies or bees derive part of their power as
autonomous systems from scrutinizing their environment during
the execution of sets of carefully selected motor routines, instead
of just passively gathering information about the world. These

animal–environment interactions lead to adaptive behavior in
environments of a wide range of complexity. Model simulations
and robotic implementations reveal that the smart biological
mechanisms of motion computation and flight control might be
helpful when designing micro air vehicles that may carry an on-
board processor of only relatively small size and weight (Floreano
et al., 2009).
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Due to methodological limitations neural function is mostly studied under open-loop
conditions. Normally, however, nervous systems operate in closed-loop where sensory
input is processed to generate behavioral outputs, which again change the sensory input.
Here, we investigate the closed-loop responses of an identified visual interneuron, the
blowfly H1-cell, that is part of a neural circuit involved in optomotor flight and gaze
control. Those behaviors may be triggered by attitude changes during flight in turbulent
air. The fly analyses the resulting retinal image shifts and performs compensatory body
and head rotations to regain its default attitude. We developed a fly robot interface to
study H1-cell responses in a 1 degree-of-freedom image stabilization task. Image shifts,
induced by externally forced rotations, modulate the cell’s spike rate that controls counter
rotations of a mobile robot to minimize relative motion between the robot and its visual
surroundings. A feedback controller closed the loop between neural activity and the rotation
of the robot. Under these conditions we found the following H1-cell response properties:
(i) the peak spike rate decreases when the mean image velocity is increased, (ii) the
relationship between spike rate and image velocity depends on the standard deviation
of the image velocities suggesting adaptive scaling of the cell’s signaling range, and (iii)
the cell’s gain decreases linearly with increasing image accelerations. Our results reveal
a remarkable qualitative similarity between the response dynamics of the H1-cell under
closed-loop conditions with those obtained in previous open-loop experiments. Finally, we
show that the adaptive scaling of the H1-cell’s responses, while maximizing information on
image velocity, decreases the cell’s sensitivity to image accelerations. Understanding such
trade-offs in biological vision systems may advance the design of smart vision sensors for
autonomous robots.

Keywords: brain machine interface, optomotor control, closed-loop system, blowfly, electrophysiology, optic flow,

motion vision

INTRODUCTION
In recent years an increasing interest has emerged to apply bio-
logical principles of signal processing and control design to
autonomous robotics. An enormous body of behavioral and physi-
ological data accumulated over several decades on how the nervous
system, mostly of insects, uses sensory signals for motor control
(e.g., review: Taylor and Krapp, 2007) led to a significant growth in
biomimetic robotics (Floreano et al., 2009; Srinivasan, 2011; Srini-
vasan et al., 2012). The major drive for this development comes
from two directions: engineers are keen to exploit biology for the
design of new robust as well as adaptive sensor and control sys-
tems, while neurobiologists are interested in robotics as a tool to
validate their experimentally derived functional principles (Webb,
2008; Barth et al., 2012)

A prominent example of the joint venture between neurobiol-
ogists and engineers is the application of functional principles
of insect vision to guidance, navigation, and control in aerial
robotics (Srinivasan et al., 2012). Discoveries on how flies and bees
process visual motion information to estimate their self-motion
and control their flight has sparked a number of projects where
the underlying principles were implemented in autonomous small

scale air vehicles (Hyslop and Humbert, 2010; Hyslop et al., 2010).
Although most control systems, both in biology and engineering
operate under closed-loop conditions, many implementations so
far were based on experimental data obtained under open-loop
conditions.

Invertebrate animal models are ideally suited for studying the
response properties of neural control circuits generating move-
ments under both open- and closed-loop conditions. Specifically,
flies display a broad repertoire of visually guided behaviors includ-
ing gaze and flight stabilization reflexes which can readily be
quantified at both the behavioral and the electrophysiological level.
Visuo-motor stabilization behaviors or optomotor reflexes have
been extensively studied at the behavioral level under both open-
and closed-loop conditions (Gotz, 1964, 1968; review: Heisen-
berg and Wolf, 1993). Correspondingly, a great deal is now known
about the open-loop response properties of a population of visual
interneurons in flies, the lobula plate tangential cells (LPTCs;
review: Krapp and Wicklein,2008), which contribute to the control
of optomotor reflexes (review: Hausen, 1993). However, with
only a single exception (Warzecha and Egelhaaf, 1996), studies on
LPTC response properties were all carried out under open-loop
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conditions. The specific involvement of the LPTCs in fly visual
stabilization behavior naturally poses the question as to whether
or not response dynamics observed under closed-loop conditions
are comparable with those measured in open-loop.

Here, we compare the open- and closed-loop response prop-
erties of an identified visual interneuron, the H1-cell, which is
part of a neural circuit that provides optomotor reflexes in the
fly (Haag and Borst, 2001). Specifically, we compare the effect
of dynamically changed image velocities and accelerations on the
instantaneous spike rate of the cell under open- and closed-loop
conditions. We report that the response properties are qualita-
tively similar under both conditions and discuss the implication
of our results in the context of fly optomotor reflexes with respect
to potential applications to bio-inspired control design.

MATERIALS AND METHODS
FLY-ROBOT INTERFACE
The closed-loop fly-robot interface (FRI; Figure 1A) uses the H1-
cell of an immobilized fly, placed in front of two cathode ray
tube (CRT) displays, as a sensor that provides an estimate of the
horizontal angular velocity of a visual pattern (spatial wavelength

λsp= 11◦, contrast≈ 100%). The spike rate of the H1-cell resulting
from pattern motion on the CRT displays was used by closed-
loop feedback controllers to regulate the angular velocity of the
robot (Figure 1B). The robot was positioned on a turntable placed
inside a cylindrical arena lined with a vertically oriented grating
pattern. The dynamic properties of the robot (Arexx Engineering,
ASURO Robot Kit) and the turntable represented the real-world
actuator components of the FRI. Relative motion between the
robot and the visual pattern forced by movement of the turntable
mimicked self-motion of the animal resulting in horizontal pattern
shifts. High-speed cameras mounted on the robot captured the
visual image shifts at 200 fps and presented it on the visual CRT
displays.

ELECTROPHYSIOLOGY RECORDINGS
Experiments were carried out on 2–3 day old female blowflies,
Calliphora vicina. Each animal was immobilized and its symmet-
rical deep pseudo-pupil (Franceschini, 1975) was used to align
the head with respect to the CRT displays. Two small holes were
cut in the right and left part of the animal’s rear head capsule for
placement of the recording and ground electrodes, respectively.

FIGURE 1 |The fly-robot interface (FRI) (A) A fly was placed in front of a

visual display consisting of two high-speed CRT displays. Input to the
two monitors were provided by two high-speed video cameras mounted on a
mobile robot. The robot was positioned on a turntable placed inside a
cylindrical arena lined with vertically oriented grating pattern. Robot and
turntable movements were limited to rotations around the vertical axis. Visual
motion as a result of the rotation of the turntable was captured by the
cameras. Electrophysiology recordings from the H1-cell were used to control

the rotation of the robot. (B) Block diagram of the closed-loop FRI.
Relative motion between the turn-table and the robot, ωp -ωr , caused spiking
in the H1-cell. The responses of the H1-cell (instantaneous spike rate F ), were
used by a controller to compensate for externally generated turntable
movements, by driving the robot in the opposite direction. (C) The F2E
convertor maps F onto the control input E. The piece-wise sigmoid functions,
based on which E was used to update the robot speed V r . (modified from
Ejaz et al., 2012).
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Tungsten electrodes were used to record the extracellular spike
rate of the left H1-cell’s telodendritic output arborisation (Krapp
et al., 2001) in the right lobula plate. An amplitude threshold was
used to digitize the spike times at a resolution of 0.1 ms. The dig-
itized spikes were convolved with a causal half-Gaussian kernel
(σfr = 0.05 ms) to obtain an estimate of the instantaneous spike
rate, F. The instantaneous spike rate, F, is considered to reflect the
visual motion (ωp − ωr) under closed-loop conditions and was
used as an input for the two closed-loop controllers described in
the section below. A video protocol of the fly preparation can be
found in Ejaz et al. (2011a).

CLOSED-LOOP CONTROLLERS
For the controller, a non-linear transformation (F2E converter)
and a feedback gain (Kp) were applied to the instantaneous spike
rate, F, in order to obtain an 8-bit value (Vr), which was used to
modulate the robot’s angular velocity (ωr; Figure 1B). F depends
on pattern motion determined by the difference between the
turntable and the robot angular velocities. The F2E converter
converts F into the control input E, based on piece-wise sigmoid
functions for 0 ≤ F ≤ FS and for FS ≤ F ≤ Fmax where Fs

and Fmax represent the spontaneous and maximum spike rates,
respectively (Figure 1C). ±Emax represents the upper and lower
8-bit values, over which the robot speed is modulated. Using this
controller, the robot speed is updated by:

Vr(t + 1) = Kp · E + Vr(t). (1)

Prior to the closed-loop experiments, both Fs (mean ± SE:
19.67 ± 2.3) and Fmax (mean ± SE: 78 ± 4.27) were determined
in open-loop conditions for each fly, using three trails of 5 s stim-
ulation without and with image motion in the preferred direction
(PD) of the H1-cell, respectively.

As shown below in more detail, we used two different con-
trollers to close the loop between the visual motion (ωp − ωr)
observed by the fly and the instantaneous spiking rate, F, of its
H1-cell. The first one is a static gain controller, which consisted of
a fixed feedback gain Kp and an F2E converter with constant Fmax

(Ejaz et al., 2011a,b). This controller belongs to the class of linear
feedback controllers in which the control effort is proportional to
the error being controlled for. In our case, the updated robot speed
is proportional to the visual motion error (Eq. 1) under closed-
loop conditions. Note, that an equivalent proportional controller
was previously used by Warzecha and Egelhaaf (1996), to generate
a feedback signal based on the differential activity of two H1-cells
under closed-loop conditions. In the second controller, the con-
dition of a fixed feedback gain was relaxed in order to obtain an
adaptive gain controller. In order to achieve an adaptive feedback
gain, every 50 ms, the maximum spike rate, Fmax is updated over
a historical time window of length ΔTws. Continuously updating
Fmax scaled the sigmoid mapping between F and E during motion
in the PD (Fs ≤ F ≤ Fmax; Figure 1C) of the H1-cell, where the
updated value for the robot speed was calculated with Kp = 1
in Eq. 1. This scaling method provided the basis for the adap-
tive feedback gain, and was motivated by a neural coding strategy
proposed by Laughlin (1994).

Once a value for the updated robot speed is estimated using
either controller, it is transmitted to the robot via Bluetooth. As

a result, the robot speeds up or down in order to correct for the
visual motion error.

CLOSED-LOOP EXPERIMENTS
We carried out two closed-loop experiments using the setup
described above.

Constant input with static gain controller
In order to determine the input/output relationship for the H1-
cell, we applied a constant angular velocity for 12.5 s set to

ωp =
⎧⎨
⎩ 0◦/s for 0 ≤ t < 2.5 s,

144◦/s for 2.5 s ≤ t ≤ 15 s,
(2)

and used the static gain controller to close the loop.
We measured the cell’s spike rates (F) and the image velocities

(ωp − ωr) for five flies with four different values of Kp, in a total
of 111 trials (12 trials for Kp = 0.01, 24 trials for Kp = 0.1, 15 trials
for Kp = 0.5, and 60 trials for Kp = 1.0) and discretized them at a
rate of 100 Hz.

Figure 2A shows the spike rate of the H1 cell plotted against
the image velocity. A sigmoid function was fitted (least square fit)
to the data shown in the plot:

F = A

1+ e−β(ωp−ωr)
, (3)

where A is the upper asymptote which captures the peak spike rate
and β is the growth parameter which determines the slope of the
function. We use the fitting parameters A and β to evaluate the
effect of different image velocities on the input–output relation-
ship of the H1 cell. Larger values of A correspond to larger peak
spike rates the cell generates for a given image velocities over the
trial. The value of β specifies the slope of the function. Smaller val-
ues of β correspond to shallower and steeper slopes of the function
converting image velocity into spike rate.

Sinusoidal input with adaptive gain controller
In order to determine the frequency response of the H1-cell, we
applied sinusoidal angular velocities ωp = 72[sin(2Πfit) + 1]
to the closed-loop system, where the input frequency fi cov-
ered a range of 0.03 ≤ fi ≤ 1.0 Hz, and updated the adaptive
gain controller based on estimation time windows, ΔTws =
[0.05, 0.10, 0.15] (N = 5 flies), to close the loop. In previous
work, we showed that the adaptive gain controller has a higher
cut-off frequency as compared to the static gain controller with the
corresponding frequency response gains for the two controllers
being approximately equal (Ejaz et al., 2012). The adaptive gain
controller was therefore chosen primarily because it allowed us
to obtain H1-cell responses over a wider range of frequencies as
compared to the static gain controller.

At each input frequency, fi, the amplitude (power spectral den-
sities) and phase for the H1 input (ωp−ωr), Gi and Pi, and those
for the H1 output (spike rate F), Go and Po, were calculated using
a periodogram. Sequences were pre-multiplied with a Hamming
window equal to the length of the sequence. The obtained gain(

Go
Gi

)
and phase (Po−Pi) are shown in Figures 4C,D, respectively.
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FIGURE 2 | (A) Experimental measurement showing the input–output
relationship for the H1-cell under closed-loop conditions (blue) and its
least-squares sigmoid fit (A = 2.68, β = 0.29) (red), obtained from the fly

robot response with the static gain controller (K p = 0.1) and sinusoidal input
(f i = 0.03 Hz). For further explanation see text. (B) Distribution of the image
velocities observed in closed-loop is approximately Gaussian.

RESULTS
We performed two experiments (described in Materials and Meth-
ods) in order to determine whether the responses of the H1-cell
were different under open- and closed-loop conditions.

EFFECTS OF THE MOMENTS OF THE IMAGE VELOCITY DISTRIBUTION
ON THE H1-CELL INPUT–OUTPUT RELATIONSHIP UNDER OPEN- AND
CLOSED-LOOP CONDITIONS
The input–output relationship of the H1 cell, i.e., the relationship
between the image velocity (input) and the spike rate (output)
was obtained for different gains, Kp, of the static gain controller
using a constant angular velocity (Figure 2A). Here, the spike
rate was normalized by its mean over each trial. The obtained
input–output relationship for the H1-cell can be approximated
by a sigmoid function, as was suggested by Brenner et al. (2000)
for the open-loop experiments, although the variability of the
H1-cell response turned out to be much larger under our closed-
loop conditions. The highly variable responses are possibly due
to the non-stationarity of the image velocity distributions dur-
ing closed-loop experiments. The image velocities previously used
under open-loop conditions by Brenner et al. (2000) and Fairhall
et al. (2001) were generated from a normal distribution with zero
mean and fixed standard deviation for the duration of each trial,
over which the spike rate was measured. In our closed-loop exper-
iments, however, the image velocities observed by the fly depended
on the performance of the FRI in minimizing the retinal slip
speeds (ωp − ωr). During the course of a closed-loop trial, the
performance of the FRI typically varied between perfect image
stabilization and short periods of high image velocities. Therefore,
while the overall image velocities observed by the fly during a trial
are normally distributed (Figure 2B), the standard deviation of
the image velocities, when calculated over a shorter time interval,
are constantly changing during a trial resulting in a highly variable
input–output relationship of the H1-cell (Figure 2A).

To characterize the H1-cell response under closed-loop con-
ditions, we initially measured the first (mean μv) and second
(standard deviation σv) moments of the input, i.e., the image
velocity observed by the fly (Figure 3A). Increasing the feedback
gain Kp monotonically increases both μv and σv. The increase
in σv can be explained by control oscillations particularly pro-
nounced for high feedback gains (Ejaz et al., 2011a). Such control
oscillations are not specific to the FRI, but have also been observed
as yaw torque fluctuations during closed-loop optomotor tasks in
Drosophila (Mayer, 1989; Wolf and Heisenberg, 1990; Warzecha
and Egelhaaf, 1996). The increase in μv can be explained by the
fact that we use a single H1-cell for closed-loop control. Ideally, a
fly would attempt to maintain optomotor equilibrium by balanc-
ing clockwise and counter-clockwise rotations so that the observed
image motion is minimized. The two H1-cells would contribute
sensitivity to motion in opposing directions based on which the
optomotor equilibrium is maintained. However, when a single H1-
cell is used for closed-loop control, the optomotor equilibrium is
un-balanced which in turn leads to an increased value of μv. An
un-balanced optomotor equilibrium does not, however, seem to
have drastic behavioral consequences for the fly. In a behavioral
study, Kern and Egelhaaf (2000) occluded one eye in Lucilia and
measured the turning responses in both freely flying and walking
flies inside a visual arena. The authors concluded that it was hard to
tell from the turning responses that the fly had been limited to the
use of monocular vision and that while the flies exhibited a slight
turning preference toward the stimulated eye (i.e., increased μv),
no such asymmetry could be observed in individual responses. As
a result, while increasing μv decreases the overall performance of
image stabilization under closed-loop, it does not affect the con-
clusions that can be drawn regarding the response properties of
the H1-cell.

After characterizing the input to the H1-cell by its standard
deviation and mean, we investigated the effect of σv on the cell’s
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FIGURE 3 | Effect of the image velocity mean and standard deviation on

the adaptive scaling properties of the H1-cell response function (A)

Mean and standard deviation of the H1 input (slip speed). (B) The fitted
H1-cell response functions adapts to accommodate the increased standard

deviation of the image velocities (C) Normalizing the image velocities in (B) by
their corresponding standard deviations results in response functions with
similar slopes (around σv = 0 deg/s). The respective peak spike rates
(normalized), however, remain unchanged.

response properties. Its input–output relationship has previously
been shown in open-loop measurements to adapt to the standard
deviation, σv, of the input image velocity distribution (Brenner
et al., 2000; Fairhall et al., 2001). Large values of σv cause the
input–output function to expand along the x-axis (image veloc-
ity) leading to a shallower slope, i.e., smaller value for β, for the
response function. In comparison, small values of σv cause com-
pression along the velocity axis resulting in a steeper slope for
the response function and consequently a higher value for β. Our
experiments show that the response function also scales in pro-
portion to the standard deviation of the image velocity under
closed-loop conditions (Figures 3B,C). As reported by Brenner
et al. (2000) for open-loop condition, normalizing the input–
output relationship by the standard deviation removes differences
in cell’s adaptation properties under closed-loop condition as well
(Figure 3C).

Note however, that this normalization does not change the
peak spike rate, A, in our closed-loop experiments (Figure 3C),

suggesting that the peak spike rate of the H1-cell may be controlled
by another moment of the image velocity distribution, possibly its
mean. Further open-loop experiments on the H1-cell have shown
that increasing either the mean (Reisenman et al., 2003) or the
standard deviation (Borst et al., 2005) of the image velocity results
in a decrease of its peak spike rate. In our closed-loop experi-
ments, an approximate 2-fold increase in the standard deviation
(from σv = 16.0 deg/s to σv = 28.5 deg/s) results in a spike rate
deduction of approximately 18% (Figure 3C). Such a decrease is
larger than it would be predicted for an increased standard devia-
tion under open-loop conditions (Borst et al., 2005). This suggests
that the peak spike rate of the H1-cell under closed-loop condi-
tions depends on both the mean and the standard deviation of the
image velocity.

The effects of the moments of the input distribution on the
spike rate of the H1-cell for the open- and closed-loop conditions
are highly similar in that (i) the H1-cell response is adjusted to
the standard deviation of the image velocity and (ii) the H1-cell
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decreases its peak spike rate when mean and standard deviation of
the image velocity distribution are increased.

EFFECTS OF INCREASING IMAGE ACCELERATIONS ON THE GAIN OF THE
H1-CELL RESPONSE UNDER OPEN- AND CLOSED-LOOP CONDITIONS
In the second experiments, we induced sinusoidal angular veloc-
ity perturbations into the closed-loop system, while varying the
length of the spike rate estimation time window ΔTws for the
adaptive gain controller. For each trial, the resulting closed-loop
image velocities (Figure 4A) and H1-cell spike rates were recorded
to investigate the cell’s frequency response.

The gain of the H1-cell decreased linearly with increasing
input frequencies, with a gradient of approximately 8–9 dB/dec
(Figure 4B). The linear decrease in gain with frequency did not,
by and large, depend on the time window ΔTws for the adaptive
controller. The corresponding phase (Figure 4C) of the H1-cell
decreased from approximately 35

◦
at a frequency of fi = 0.03 Hz

to around 0
◦

for fi > 0.03 Hz.
We are tempted to argue here that, under closed-loop condi-

tions, the frequency-dependent decrease of the H1-cell response
gain (Figure 4C) is related to the increase in image acceleration.
For the sinusoidal image velocity perturbations we used in the
second experiment, the increase in the input frequency, fi, leads
to an increase in the image acceleration. Therefore, the gain plot
of the H1-cell (Figure 4B) represents the relationship between
the cell’s spike rate and the image accelerations under closed-loop
conditions and suggests that the response gain of the cell decreases
for increasing image acceleration. Such an approximately linear
decrease in response gain of the cell with increasing accelerations
was also observed under open-loop conditions (Borst et al., 2005).

The effects of increasing the frequency on the moments of
the image velocity distribution are shown in Figures 4D,E. As
the frequency increased, σv increased from around 28◦ to 46◦/s
(Figure 4D) and the peak spike rate decreased (Figure 4E). Actu-
ally, the decrease in the peak spike rate is largely the result of
the increase in σv , as the corresponding mean (μv) of the image
velocities is very close to 0◦/s for the frequency range we examined
(Figure 4D). It should be noted that increasing σv is equivalent to
increasing the image velocity amplitudes and therefore produces
higher image accelerations, which in turn decreases the response
gain of the cell.

DISCUSSION
THE FRI AS A CLOSED-LOOP EXPERIMENTAL SYSTEM
The use of a robotic controller to understand animal behavior
provides real-world physical interactions typically missing from
modeling studies where a low-pass filter is used to describe the
dynamics of the fly flight motor system. As argued by Webb (2006),
this lack of physical interaction would mean that complex motion
dynamics such as slipping due to friction cannot be accounted
for in the computer model. Indeed, recent work by Dickson et al.
(2010) showed that both body-inertia and -damping play a sig-
nificant role in the dynamics of saccadic yaw turns in Drosophila
flight. While the configuration of the fly in such a closed-loop
experimental setup is far removed from conditions during natural
flight, the stimulus velocity distributions observed by the fly in the
FRI are within range of those used in previous measurements of

the H1 cell under open-loop conditions (Warzecha and Egelhaaf,
1996; Brenner et al., 2000; Borst, 2003; Borst et al., 2005).

While H1-cell responses have been studied extensively under
open-loop conditions (e.g., Maddess and Laughlin, 1985; Brenner
et al., 2000; Borst, 2003; Reisenman et al., 2003), this paper presents
the first study of the cell’s response properties for a variety of
image velocity profiles under closed-loop conditions. Our FRI
was used to generate dynamic visual stimuli, i.e., sinusoidal and
constant image velocity perturbations to drive the responses of the
H1-cell.

In a pioneering study, Warzecha and Egelhaaf (1996) obtained
electrophysiology recordings from both the ipsi- and the contra-
lateral H1 LPTC’s while the fly compensated for externally
imposed visual motion under closed-loop conditions. In that
study, however, comparatively small and constant image veloci-
ties (18) were used and thus there was little or no modulation
of the image accelerations presented to the H1-cells. As a result
Warzecha and Egelhaaf (1996) characterized the cell’s closed-loop
responses only for a rather narrow velocity profile, compared to
the dynamic visual stimuli generated by our FRI. While they found
the responses of the cell to decrease as the image velocity increased
which is in agreement with our findings – they did not observe
the dependence of the H1-cell responses on image accelerations
we report here.

A limitation of our experiments was that only the activity of
one H1-cell had been considered for closed-loop control. During
walking and free-flight, a fly receives information about its yaw
rotation from both the ipsi- and the contra-lateral H1-cells. Using
only the activity of a single cell for visual stabilization reduced
the fly’s sensitivity to yaw rotations. Given that the peak spike
rate of the H1-cell has been found to decrease strongly with an
increase of the mean image velocity, in both open- (Reisenman
et al., 2003) and closed-loop (Figure 3B) measurements, one key
function of two H1-cells could be to keep the fly in optomotor
equilibrium by trying to minimize the mean image velocity. Such a
strategy of minimizing the mean image velocity would remove any
restrictions on the peak spike rate of the cell. This in turn would
be advantageous as the fly would remain sensitive to differences in
image velocities as opposed to absolute values, which appears to be
a general feature of biological sensing (Taylor and Krapp, 2007).

Our results with the FRI show that the open- and closed-loop
responses are qualitatively similar, in the sense that the H1-cell
maximizes the information transmitted about the image velocity
distribution by adapting its input–output relationship (Brenner
et al., 2000; Figures 3B,C). We found in addition that higher image
acceleration, as a result of increased standard deviation of the
image velocity distribution, decreases the gain of the H1-cell. It
is important to note that this dependence is not the result of the
dynamic properties of the robot or the turntable. This is because
the decrease in the H1-cell response gain is too large (8–9 dB),
even for small changes in acceleration (between 0.03 and 0.3 Hz),
to be explained by the frequency response of either the robot or
the turntable (Ejaz et al., 2011b, 2012).

In the following we will discuss our findings in more detail with
an emphasis on coding of visual motion information optomotor
control and the translation of closed-loop results into biomimetic
applications.
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FIGURE 4 | H1-cell frequency response. (A) An example time
course data of image velocity observed by the fly for an input
frequency f i = 0.3 Hz. The gain (B) and phase (C) plots over
different input frequencies. (D) The mean (μv) and standard

deviation (σv) of the image velocities. *Values of σv for f i = 0.3 Hz and
f i = 1.0 Hz are significantly different (calculated using Wilcoxon rank-sum
method with α = 0.001). (E) Peak spike rate (*) for different input
frequencies.
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THE DECREASE IN THE RESPONSE GAIN FOR INCREASING IMAGE
ACCELERATION IS A DIRECT CONSEQUENCE OF THE ADAPTIVE
SCALING PROPERTY OF H1
A key finding of our closed-loop experiments we report here, is that
the decrease in sensitivity to image accelerations is a direct result
of the H1-cell’s adaptive scaling property. To the extent of our
knowledge, this relationship has not been explicitly highlighted
previously in open-loop measurements and is discussed below.

Figure 5 shows how the H1 cell decreases its sensitivity to
acceleration by scaling its response range to fit that of a wider
image velocity distribution. Increasing the standard deviation of
the image velocities results in a decrease in the gradient, β, of the
cells input–output function (Figures 5A,B). This decrease in β

directly results in a linear decrease in the peak acceleration sen-
sitivity of the cell (Figures 5C,D). Furthermore, this decrease
in sensitivity to acceleration is linear. The adaptive re-scaling
of the H1-cell responses which maximizes information transfer,

apparently comes at the expense of a reduced sensitivity to image
acceleration. It is tempting to speculate that the trade-off between
maximizing information transmission related to the input image
velocity and the reduced sensitivity to acceleration might reflect
a more general strategy preferred during the evolution of sensory
systems. While in the visual system a decreased sensitivity to accel-
eration might be partly compensated for by signals from other
sensory modalities (e.g., the halteres), a decrease in information
transmission would be detrimental for the neural representation
of visual motion. Given that neurons are required to process infor-
mation under very strict energy constraints (Laughlin et al., 1998;
Laughlin, 2001), inefficiencies in neural coding might come at a
high evolutionary cost. In addition, inefficient coding at the sen-
sory system level will most certainly propagate downstream to
produce inadequate motor outputs. Altogether, a loss of accel-
eration sensitivity as a result of adaptive re-scaling might be a
comparatively small cost to pay.

FIGURE 5 | Effect of σv on the acceleration sensitivity of the H1-cell.

(A) The fitted values of β for the proportional controller with gain K p are
plotted against the standard deviation of the velocity distribution, σv.
Increasing σv linearly decreases β as per the relationship specified by the
regression line. (B) The input–output functions for three different values of β

(normalized by the peak spike rate, F ) show that (C) decreasing beta linearly

decreases the gradient at the point σv = 0 deg/s (D) and this decrease is
linear. This reduction in gradient of the H1-cell input–output function
represents a decrease in sensitivity to changes in the image velocity i.e., a
decrease in sensitivity to image acceleration. The results show that
increasing σv directly decreases the sensitivity of the H1-cell to image
accelerations.
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The dependence of the H1-cell frequency response on image
acceleration is also found to be qualitatively similar for open- and
closed-loop studies. In earlier work, Brenner et al. (2000) showed
that the altering the image velocity or acceleration resulted in a
modulation of the responses of the H1 cell under open-loop con-
ditions. In subsequent studies open-loop studies, the gain of the
H1 cell was proposed to depend on acceleration and other higher-
order time derivatives of image velocity (Borst, 2003; Borst et al.,
2005). Specifically, the responses of the H1 cell decreased as a
result of increasing image accelerations, which is also what we
report under closed-loop conditions (Figure 5).

Our results also show that the acceleration sensitivity of the H1-
cell is highest while there is little or no pattern motion (σv = 0o/s,
Figure 6C). This is clearly advantageous for the fly, as it enables

the H1-cell to respond more quickly to image motion that rapidly
changes from null direction to PD, as Lewen et al. (2001) proposed
earlier.

While maintaining a high sensitivity to acceleration, i.e., high
value of β, might make sense intuitively, it comes with potential
risks. An input–output response function with a high value of β

means that very small changes in angular velocity result in large
changes of spike rate. β therefore partly determines the forward
gain in the motion vision pathway of the system. The potential
risk, however, is that with a high forward gain in combination
with inherent noise in the system may easily drive the responses
of downstream neural circuits into saturation. Additionally, if the
feedback gain (on top of the forward gain of the H1 cell) is too
high and control delays are too long, then the feedback control

FIGURE 6 | H1 and HSE receptive fields and horizontal network

connections. (A) Top row shows monocular and binocular receptive
fields of the H1 and the HSE LPTCs, respectively. The insets show the
dendritic arborization patterns of both cells in the left lobula plate as well as
the HSN LPTC in the right lobula plate. The dendritic input arbourizations and
the telo-dendritic output arborizations of the H1 cell are connected via a thin
axon that transmits visual motion information from the left to the right lobula
plate using action potentials. The HSE and the HSN cells arborize in the

equatorial and the north sections of the lobula plate, respectively
(modified from Krapp et al., 2001). (B) The connectivity in the
network of LPTCs sensitive to horizontal motion. Excitatory and
inhibitory interactions are depicted with open triangles and filled circles,
respectively. The HSE and HSN cells receive excitatory input from the
contralateral H1 and H2 cells and project onto descending neurons which in
turn supply the neck and flight motor systems of the fly (modified from Krapp
et al., 2001).
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system is in danger of becoming instable. In this context, decreas-
ing sensitivity to acceleration by having a lower response gain for
increasing frequencies is possibly advantageous from a control the-
oretic point of view and this argument is discussed in the following
section.

SIMILARITY IN H1-CELL RESPONSES UNDER OPEN- AND CLOSED-LOOP
CONDITIONS AND ITS IMPLICATIONS FOR OPTOMOTOR CONTROL
As a hetero-lateral neuron, the H1 cell helps disambiguate between
rotation- and translation-induced optic flow as it is completely
inhibited during forward translation but excited during yaw rota-
tions. The cell also provides excitatory input to the HSE and HSN
cells (Figure 6), two major output neurons of the visual system
that respond to visual motion with a graded modulation of their
membrane potential (Hausen, 1976, 1982). By connecting to the
contralateral HSE and HSN cells, it makes the response of these
output cells more specific to yaw rotation. Therefore, the response
properties and connectivity of the H1 cell make it an important
neuron in the optomotor pathway of the fly.

It is by no means trivial that the response of the H1-cell to
the moments of the image velocity distribution (mean, stan-
dard deviation, acceleration), are highly similar under open-
and closed-loop conditions. This similarity may reflect the way
in which the sensory-motor control loops are organized in
the fly.

One particular model of the sensory-motor control loop in
the fly proposed by Warzecha and Egelhaaf (1996) and Borst et al.
(2005) does not require sensory feedback to explain the non-linear
response properties of the H1-cell. In this model, the non-linear
properties of the H1-cell and the LPTCs in general, can be pre-
dicted solely based on the properties of the Reichardt (1987)
elementary movement detector (EMD). Warzecha and Egelhaaf
(1996) suggested that the reduced gain of the H1-cell at higher
image velocities is the result of intrinsic response properties of
EMDs. Similarly, Borst et al. (2005) showed that an EMD model
could explain the dependence of the H1-cell responses to the stan-
dard deviation and the autocorrelation time constant of the image
velocities. In both cases, no feedback signals were required to
explain the non-linear response properties of the H1-cell, which
were suggested to be based on the computational structure of
the EMD model. This particular model of control architecture is
closely linked to that proposed by Wehner (1987) who argued that
architecture and response properties of invertebrate sensory sys-
tems reflect a detailed model of the physical world. If the model
is true, no feedback signals are necessary and H1-cell responses
under closed-loop are simply the result of EMD properties, readily
observable under open-loop conditions.

An alternate control architecture involves forward models, in
which a copy of a motor command (efference copy) is used to
subtract those components of the sensory feedback that are due to
the animal’s own action (Chan et al., 1998; Wolpert and Ghahra-
mani, 2000; reviews: Webb, 2004; Krapp and Wicklein, 2008).
Forward models or efference copies have been proposed to explain
the mechanism by which flies adjust their gain parameters when
faced with unexpected visual feedback during an optomotor task
inside a flight simulator (Kirschfeld, 1989). One possible expla-
nation for the similarity of the H1-cell responses under open and

closed-loop conditions could be that in fully restrained animals
an efference copy from the motor system may not be sent to the
LPTCs. Our FRI did not allow us to assess the potential impact
of an efference copy signal. Even though the fly was under closed-
loop conditions, it was immobilized for the purpose of obtaining
electrophysiology recordings which makes it unlikely that the ani-
mal would have generated motor commands similar to those under
free flight conditions. At this point, we can only speculate on which
control architecture, i.e., with or without feedback control at the
level of the LPTCs, best explains the similarity in H1-cell responses
as measured under open- and closed-loop conditions.

Finally, in the context of optomotor control, the frequency
response of the H1-cell (Figures 4C and 5D) imposes certain lim-
itations on fly’s ability to compensate for externally imposed yaw
rotations. For the visual system to contribute to the stabilization
of visual motion, the reduction of gain and cut-off frequency of
the horizontal cells in the lobula plate must be higher than those
of the flight muscles which produce compensatory torque. The
response delay in the motion vision pathway (≈30 ms) for the fly
is long compared to other sensory systems like the ocelli (≈15 ms)
and the halteres (≈10 ms) (Taylor and Krapp, 2007). It would
therefore make sense for the cell’s response not to have a high gain
at high frequencies that would potentially result in instabilities of
the control system as initially proposed by Warzecha and Egelhaaf
(1996). A low gain at high frequencies would be in agreement with
the proposed primary function of LPTCs to mainly compensate
for slow drifts (Collett et al., 1993). In comparison, the halteres
and the ocelli, with their short response delays, would be better
suited to control yaw rotations in the higher dynamic range. The
importance of keeping delays to a minimum within the optomotor
control loop, and in biological control loops, in general (Dickson
et al., 2010), is also evidenced by our finding that the response
phase of the H1-cell stays close to zero over the tested frequency
range.

The surprising qualitative similarity between closed- and
open-loop data suggest that it is reasonable, in instance first
approximation, to base any implementations of fly inspired (opto-
motor) control design on experimental open-loop data. This could
potentially expedite the translation of biological design principles
in technical applications as methodologically more challenging
closed-loop experiments may not always be required to conclu-
sively characterize the dynamics of neuronal responses. It should
be noted, however, that the present study focused only on a 1 DoF
visual stabilization task. Neuronal closed- and open-loop activity
supporting multisensory control of higher dimensional tasks may
as well show very different response dynamics – in particular if
observed in freely or semi-freely moving animals.
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Throughout the nervous system, neurons integrate high-dimensional input streams and
transform them into an output of their own. This integration of incoming signals involves
filtering processes and complex non-linear operations. The shapes of these filters and
non-linearities determine the computational features of single neurons and their functional
roles within larger networks. A detailed characterization of signal integration is thus a
central ingredient to understanding information processing in neural circuits. Conventional
methods for measuring single-neuron response properties, such as reverse correlation,
however, are often limited by the implicit assumption that stimulus integration occurs in
a linear fashion. Here, we review a conceptual and experimental alternative that is based
on exploring the space of those sensory stimuli that result in the same neural output.
As demonstrated by recent results in the auditory and visual system, such iso-response
stimuli can be used to identify the non-linearities relevant for stimulus integration,
disentangle consecutive neural processing steps, and determine their characteristics with
unprecedented precision. Automated closed-loop experiments are crucial for this advance,
allowing rapid search strategies for identifying iso-response stimuli during experiments.
Prime targets for the method are feed-forward neural signaling chains in sensory systems,
but the method has also been successfully applied to feedback systems. Depending on
the specific question, “iso-response” may refer to a predefined firing rate, single-spike
probability, first-spike latency, or other output measures. Examples from different studies
show that substantial progress in understanding neural dynamics and coding can be
achieved once rapid online data analysis and stimulus generation, adaptive sampling, and
computational modeling are tightly integrated into experiments.

Keywords: neural computation, sensory systems, stimulus integration, closed-loop experiment, isoresponse,

neuron models

INTRODUCTION
Mapping high-dimensional input streams into low-dimensional
output spike trains is a core operation of almost every neuron
in the brain. No auditory neuron is sensitive to only one fre-
quency of a time-varying sound signal, no visual neuron responds
to only one wavelength in a light stimulus. Both types of neu-
rons rather integrate inputs over a range of frequencies. Similarly,
strong dimensional reduction also occurs when retinal ganglion
cells integrate signals over space via tens to hundreds of bipolar
cells with smaller receptive fields, when pyramidal cells com-
bine input from 10,000 other cortical neurons, or when cerebellar
Purkinje cells are innervated by 200,000 parallel fibers to cause
well-orchestrated movement patterns. In all these cases, huge
amounts of information are lost—and need to be lost, or rather
discarded, so that those particular stimulus combinations can be
distilled that are indeed important for behavior.

Extracting the specific rule of how a given neuron combines its
inputs is a prerequisite for understanding its computational func-
tion. Consider, for example, the responses of auditory neurons
to a sound pressure wave s(t) with several frequency compo-
nents, s(t) = �i si cos(2πνit). A neuron whose firing rate r is

some function f of the summed amplitudes, r = f (�isi), encodes
the maximal sound amplitude whereas another neuron whose
activity depends on the summed squares of these components,
r = g(�is2

i ), encodes sound energy. In both cases, it is a par-
ticular scalar quantity, �isi or �is2

i , respectively, that matters
for the neuron’s firing rate, whereas the detailed composition of
the vector (s1, s2, s3, . . .) is irrelevant. Similarly, the shapes of
the output non-linearities f and g are of no importance for the
fact that the two neurons encode sound amplitude and energy,
respectively, as long as the cells’ firing thresholds, saturation lev-
els, and input sensitivities are such that behaviorally important
signal ranges can be encoded. Moreover, this simple example
demonstrates that measuring a cell’s input-output relation by
changing the total input strength—as often done in electrophysi-
ological experiments—will provide information about the output
non-linearity, but will typically not reveal which computation is
represented by the cell’s activity.

This observation calls for alternative methods to investigate
the principles and mechanisms of stimulus integration and to
reveal the potential non-linearities involved in this process. Here,
we review recent advances to this end, based on closed-loop
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measurements of iso-response stimuli. Iso-response stimuli are
defined as those combinations of the individual stimulus com-
ponents that yield the same predefined neuronal response. To
efficiently search for sets of such stimulus combinations in neu-
rophysiological experiments, closed-loop experiments with auto-
mated data analysis and appropriate feedback to the applied stim-
ulation provide an essential ingredient. As discussed and exem-
plified below, this iso-response approach has already led to new
fundamental insights into the function of neurons and neural cir-
cuits in different sensory modalities and provides a large potential
for future developments and advances in a wide range of systems.

MODEL FRAMEWORK FOR INVESTIGATING STIMULUS
INTEGRATION
A common methodology for analyzing a neuron’s stimulus-
response relation is based on system identification theory and
applies the framework of cascade models (see e.g., Marmarelis
and Marmarelis, 1978; Korenberg and Hunter, 1986). These mod-
els aim at describing input-output systems in a phenomenological
way by a sequence of mathematical primitives, such as linear fil-
ters and non-linear transformations. The most prominent mem-
ber of the cascade model family is arguably the LN model (Hunter
and Korenberg, 1986; Sakai, 1992; Meister and Berry, 1999;
Chichilnisky, 2001; Paninski, 2003; Schwartz et al., 2006), which
comprises a stage of linear filtering of the stimulus, followed by a
non-linear transformation of the filter output.

The appeal of this model stems from its simple interpreta-
tion; the linear filter describes how different stimulus components
are integrated and thus represents the neuron’s receptive field
structure, whereas the non-linearity captures the output trans-
formation induced by spike generation. In addition, the model
elements can be derived in physiological experiments with rel-
ative ease. The linear filter, for example, can readily be found
through calculating the spike-triggered average (STA) in response
to broad-band stimulation, such as white-noise input (de Boer
and Kuyper, 1968; Bryant and Segundo, 1976; Eggermont et al.,
1983; Chichilnisky, 2001; Paninski, 2003). In using a single linear
filter for the stimulus integration stage, however, the LN model
implicitly assumes that the entire stimulus integration occurs in
a linear fashion. All non-linear effects are relegated to the out-
put non-linearity. The LN model is thus of limited use as soon as
the true processing chain contains non-linear operations before
stimulus integration is complete. A prominent example are com-
plex cells in visual cortex, whose input stage corresponds to the
sum of two squared Gabor filter signals—resulting in the well-
known energy model (Adelson and Bergen, 1985)—so that the
cells’ input-output function corresponds to an LNLN instead of
an LN cascade.

A step forward is made by analyzing the spike-triggered covari-
ance (STC) matrix (Bryant and Segundo, 1976; de Ruyter van
Steveninck and Bialek, 1988; Brenner et al., 2000; Schwartz et al.,
2006; Samengo and Gollisch, 2012), an extension of the STA.
STC analysis allows one to extract multiple linear filters whose
contributions are non-linearly combined. This works well for
assessing whether a neuron can be described as a linear inte-
grator (STC then yields just one filter) or is better described by
non-linear stimulus integration (STC yields multiple filters).

Furthermore, this analysis can thereby identify those stimulus
components (i.e., filters) whose non-linear integration under-
lies a neuron’s response characteristics. Yet, STC analysis by itself
is typically not sufficient for quantitatively assessing the func-
tional form of non-linear stimulus integration, in particular
because several parallel filters have to be considered and non-
linear effects of stimulus integration and of the output stage need
to be separated. We will return to this aspect later and discuss the
complementary nature of STC and iso-response analysis.

Given the above considerations, let us thus consider a model
that goes beyond the LN model by incorporating an explicit sep-
aration between non-linear operations before and after stimulus
integration has taken place (Figure 1A). The input to this model
is provided by two or more stimulus components s1, . . . , sn that
separately undergo some non-linear transformation N1(·). The
linear sum of these terms then serves as input to a second non-
linearity N2(·). This results in a sequence of non-linear, linear, and
again non-linear operations and is thus correspondingly called an
NLN cascade (Marmarelis and Marmarelis, 1978; Korenberg and
Hunter, 1986). In what follows, the NLN cascade model serves
as a canonical framework for studying stimulus integration and
helps us formalize the relevant challenges and strategies. More
complex cascades can be obtained by extending the linear sum to
a linear filter operation or by combining more elementary build-
ing blocks. For example, auditory signal transduction has been
described by an LNLN cascade (Figure 1D; Gollisch and Herz,
2005).

The important feature of the canonical model of Figure 1A is
that it separates non-linear transformations occurring after stim-
ulus integration has taken place (function N2) from non-linear
transformations occurring just before or in the course of stim-
ulus integration (function N1). Thus, it is the function N1 that
determines the nature of stimulus integration and dictates which
scalar measure is distilled out of the combination of stimulus
components si. N2, on the other hand, provides a transformation
that determines how this scalar measure is represented, but does
not affect what is represented in the neuron’s output. Hence, the
benefit of the canonical model of Figure 1A is to provide a frame-
work for separating non-linearities that are relevant for stimulus
integration from those that are irrelevant for this purpose, even
if they strongly influence the neural output, for example in the
form of an all-or-none spike generation threshold or pronounced
response saturation.

THE ISO-RESPONSE METHOD
As seen in the discussion above, a fundamental challenge to
studying neuronal information processing is that non-linearities
relevant for stimulus integration need to be separated from sub-
sequent non-linearities, in particular those at the output stage.
To approach this challenge, an experimental design is needed
that directly reflects these different non-linear processing stages.
Crucial insight is provided by a strategy known from measuring
threshold curves in neurobiology (Evans, 1975) or using equiv-
alence criteria in psychophysics (Jameson and Hurvich, 1972):
instead of estimating the full input-output relation, stimulus
parameters are varied such that the neuron’s response stays at a
constant level (Gollisch et al., 2002; Gollisch and Herz, 2003).
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FIGURE 1 | Model framework for analyzing neuronal stimulus

integration with iso-response measurements. (A) A canonical model for
separating non-linear effects before and after stimulus integration. The model
considers two (or more) separate inputs s1 . . . sn, which each undergo a
non-linearity N1 before summation, and a final output non-linearity N2.
Stimulus integration is governed by the non-linearity N1, whereas N2

provides a transformation of the integrated signal. Assessing the nature of
stimulus integration thus amounts to measuring N1 independently of N2.
(B) Model responses obtained with linear stimulus integration and sigmoidal
output transformation. The response surface is dominated by the sigmoidal
shape of the output non-linearity, but the iso-response curves shown below
the surface plot are straight lines and thus reveal the linear nature of stimulus
integration in this model. (C) Same as (B), but with a quadratic non-linearity

N1 and thus non-linear stimulus integration. While the response surface is
still dominated by a sigmoidal shape, the iso-response curves are now circles
and thus reveal the quadratic non-linearity relevant for stimulus integration.
The non-linearities N2 in (B) and (C) were adjusted such that if s1 or s2 are
presented alone, the input-output relations are identical in the two models.
(D) A cascade model for sound transduction, consisting of two linear filters
L1 and L2 and two non-linear transformations N1 and N2. The green arrow
indicates that the cascade may also include a feedback mechanism,
corresponding to adaptation induced by the neuron’s spiking activity. Panels
(B) and (C) adapted from Gollisch and Herz (2003) with permission, Copyright
(2003), Frankfurt Institute for Advanced Studies. Panel (D) adapted from
Gollisch and Herz (2005) according to the Creative Commons Attribution
License.

The key idea behind this concept is that staying at a constant
response level removes the effect of the output non-linearity in
the canonical model of stimulus integration (Figure 1A). How
different stimulus components have to be combined to reach this
response level thus serves as a direct signature of the nature of
stimulus integration. This is most easily seen when considering a
system with two independent input channels s1 and s2. In the two-
dimensional stimulus space spanned by s1 and s2, iso-response
stimuli are typically located on one-dimensional curves, which
we call iso-response curves. Linear integration, for example, is
characterized by iso-response curves that are straight lines, even if
the overall response function of the neuron is strongly non-linear
because of the output non-linearity (Figure 1B). Deviations from

linearity in the integration process, on the other hand, lead to
differently shaped curves. As a simple example, integration in
the form of a sum of squares yields circular iso-response curves,
defined by the circle equation s2

1 + s2
2 = const (Figure 1C).

In higher dimensional stimulus spaces, the iso-response curves
become iso-response manifolds. Linear integration then corre-
sponds to an iso-response manifold whose shape is a hyperplane.
The iso-response manifolds represent the invariances of a neu-
ron’s input-output relation and therefore provide an important
characterization of the neuron’s computational role, even when
considering only low-dimensional stimulus subspaces. These
still supply a signature of the neuron’s invariances; for exam-
ple, if a neuron has ellipsoids as iso-response manifolds in
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a high-dimensional stimulus space, an investigation of a two-
dimensional planar subspace will display elliptic iso-response
curves. High-dimensional hyperplanes, on the other hand, always
yield simple straight lines in a two-dimensional projection.

The prime advantage of the method lies in the fact that
the iso-response manifolds are independent of the potentially
highly non-linear operation occurring at the final output stage;
the iso-response approach relies solely on comparisons of stim-
uli for which this output stage has identical effects. This focus
on a particular response range also makes the approach exper-
imentally efficient, which is of special importance when data
acquisition time is limited. Furthermore, by their very definition,
iso-response stimuli are “perceived” as identical by the neuron
under investigation. The shape of an iso-response manifold thus
has a direct functional interpretation, whereas it is often difficult
to assign a particular meaning to the specific shape of a neuron’s
traditional stimulus-response curve. Finally, as the full stimulus-
response curve need not be determined within the iso-response
paradigm, strong stimulation can be obviated so that experimen-
tal artifacts caused by activity-dependent cellular fatigue are not
an issue.

Depending on the investigated neuron or on the considered
stimuli, different neuronal output characteristics may be relevant
for information transmission. Accordingly, the iso-response con-
cept is not limited to “iso-firing rate” but can also be implemented
as “iso-first-spike latency” (Bölinger and Gollisch, 2012), “iso-
firing phase,” or other iso-response variants. In fact, every neural
response feature that depends on input stimuli can serve as an iso-
response dimension, including the value of the probability that a
single spike occurred at all (Gollisch and Herz, 2005). Other use-
ful target response measures could be the firing phase relative to
some underlying large-scale rhythm or a specific temporal dis-
charge pattern. This goes along with a freedom of choice regard-
ing the dynamics of the chosen stimulus. Iso-response methods
can be applied with extremely brief, highly non-stationary stim-
uli down to the sub-millisecond range (Gollisch and Herz, 2005)
as well as with longer, stationary stimuli (Gollisch et al., 2002;
Horwitz and Hass, 2012). The first paradigm provides a chance to
disentangle rapid biophysical processes that subserve temporally
precise stimulus integration, whereas the second setting allows
one to focus on the system’s spectral or spatial integration proper-
ties, independently of temporal dynamics. Furthermore, a given
neuron may use different coding schemes for different stimulus
attributes. To cover such multiplexing of information (or rule
it out for the neuron under study), one can apply different iso-
response measures within one experiment (Bölinger and Gollisch,
2012).

HISTORICAL BACKGROUND OF ISO-RESPONSE
MEASUREMENTS
The concept of measuring different stimuli that yield the same
response also underlies the measurements of threshold tuning
curves, which are widely used, for example, to characterize audi-
tory neurons (Tasaki, 1954; Holton and Weiss, 1983; Harris and
Dallos, 1984; Geisler et al., 1990). Here, the predefined response
is typically set to be the minimal notable difference from base-
line activity, and these thresholds are obtained along the axis

of varying sound frequency. The measurements of threshold—
as compared to measuring the response strengths for a given
stimulus amplitude at different sound frequencies—has the
advantage that it avoids overly strong stimulation, which would
trigger non-linear suppression mechanisms, blurring the tuning
characteristics (Eustaquio-Martín and Lopez-Poveda, 2011).

Other early applications of iso-response measurements have
been carried out in the visual system. In the frog retina, thresh-
old intensities of spots in the receptive field center of a recorded
ganglion cell were obtained for different light intensity in the sur-
round (Barlow, 1953). This was used to study whether signals in
the center and surround of the receptive field were combined in
a linear or non-linear fashion. For neurons in primary visual cor-
tex, the combined direction and spatial frequency selectivity was
characterized by measuring responses to different combinations
of motion direction and spatial frequency and then extracting iso-
response curves in the 2D direction–frequency space (Jones et al.,
1987). The purpose of these iso-response curves was to provide
an easy visualization of the data, which were then analyzed to
determine whether motion direction and frequency affected the
response independently of each other or whether an interaction
between these stimulus dimensions became apparent.

These early applications of the iso-response paradigm,
however, did not aim at detailed characterizations of the
non-linearities involved in stimulus integration. This requires
high-precision measurements of iso-response stimuli, despite the
limited recording time in physiological experiments. A key devel-
opment for providing the required efficiency in the assessment of
iso-response stimuli has been the possibility to use closed-loop
experiments, benefiting from the recent colossal advancements in
computer hardware and software.

MEASURING ISO-RESPONSE STIMULI WITH CLOSED-LOOP
EXPERIMENTS
From an experimental viewpoint, the iso-response methodology
suggests a conceptual change in the design of a neurophysiological
experiment—instead of measuring how responses vary for dif-
ferent predefined stimuli, the goal is to manipulate stimuli such
that the recorded cell’s output stays at the same level, or at least
remains within a small predefined range. This challenging task
can only be accomplished efficiently within a closed-loop setting
(Benda et al., 2007) so that information about changes in the neu-
ral output can immediately be fed back to the stimulus generator
(Figure 2A).

In a first, exploratory phase of an iso-response experiment, the
closed-loop setting is highly useful to determine which stimulus
dimensions should be explored at all (e.g., which spatial loca-
tions or spectral components). In the second phase, the actual
iso-response stimuli are determined. To do so, the closed-loop
setup is used to implement a search algorithm. The search for a
particular stimulus that provides a predefined response can, for
example, proceed radially outwards from stimulus origin in dif-
ferent directions (Figure 2B). Alternatively, the search can move
along an iso-response curve (Figure 2C) by starting at some stim-
ulus and then searching in its vicinity for stimuli leading to the
same response. The search for a stimulus that yields a predefined
response is essentially a root-finding problem, for which many
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FIGURE 2 | Closed-loop methods for measuring iso-response stimuli.

(A) Closing the loop by tuning stimulus parameters according to measured
responses. In response to a stimulus with two components s1 and s2 (top),
a recorded neuron (right) responds with spikes that are automatically
detected, for example by a threshold criterion (bottom). The spike response
is then compared to a chosen target criterion (left), which may be the
number of spikes, the timing of the first spike, the probability of spiking, or
any other accessible response feature. According to this comparison, the
values of s1 and s2 are adjusted for the next stimulus presentation in order
to approach the target response. (B) Potential search strategy in radial
directions of the stimulus space. This combines several linear searches,
which can be performed sequentially or interleaved, typically starting near
the origin so that overly strong stimulation is avoided. (C) Potential search
strategy by tracking iso-response curves. Here, previously measured
iso-response stimuli are used as starting conditions for searching nearby
stimuli that yield the same response. This can be done, for example, by
changing the ratio of s1 and s2 while keeping the same radial distance as
for a previously measured iso-response stimulus and then tuning this radial
distance until the desired response is obtained. As compared to the
strategy of pure radial searches in (B), this sequential search can provide
higher recording efficiency, but does not allow interleaving multiple
searches.

algorithms of varying efficiency and complexity exist (Press et al.,
1992). Essentially, however, the search amounts to comparing the
measured response to a target and deciding whether increasing
or decreasing the strength of the stimulus components reduces
the deviation. As it is not always possible to exactly reach the
desired response value, the parameter values for these stimuli are
often determined through interpolation from stimuli that led to
responses within a small region around the set response. To save
precious experimental time, this can also be done offline.

In either phase of the iso-response experiments, precise, flexi-
ble, and fast stimulus control is needed, as well as good control

over the data acquisition, in particular regarding spike detec-
tion and spike sorting (Lewicki, 1998; Quiroga et al., 2004;
Santhanam et al., 2004; Wood et al., 2004; Rutishauser et al.,
2006). The rapid detection of iso-response stimuli through effi-
cient closed-loop approaches can then not only be used to obtain
high-accuracy measurements, but also allows one to measure
and compare different variations of iso-response curves from the
same cells. For example, it may help elucidate the mechanisms
underlying the non-linearities of stimulus integration to repeat
iso-response measurements in the presence of pharmacological
blockers, for different response measures, or using different stim-
ulus components as the inputs s1 and s2. To illustrate the power
and potential of closed-loop methods for iso-response measure-
ments, we will, in the following, summarize some key ideas and
results of recent applications of this method in different sensory
systems.

EXAMPLE I: THE AUDITORY PERIPHERY OF LOCUSTS
We begin with the integration of acoustic stimuli in locust audi-
tory receptor cells. In this model system, three different types of
iso-response experiments have been performed to address several
distinct questions. In a first study, iso-firing rate stimuli were used
to discriminate between rival hypotheses for spectral integration
of sound signals (Gollisch et al., 2002). In a second study, iso-spike
probability experiments revealed temporal integration mecha-
nisms on a sub-millisecond scale (Gollisch and Herz, 2005). In a
third study, iso-firing rate stimuli were used once more, but they
were now designed such that different adaptation mechanisms
could be discerned (Gollisch and Herz, 2004). Together, the three
iso-response studies led to new insights and quantitative results
far beyond the scope of traditional experiments.

Locust auditory receptor neurons are directly attached to the
animal’s eardrum via short dendrites. When the eardrum vibrates
in response to incident sound, mechanosensory ion channels in
the neurons open (Gillespie and Walker, 2001). The transduction
currents cause depolarizations of the neuronal membrane and
thereby trigger spikes, which can be recorded from the receptors’
axons in the auditory nerve (Hill, 1983a). Individual receptor cells
are broadly tuned to sound frequencies above a few kilohertz and
do not phase-lock to the sound’s carrier frequency (Hill, 1983b).

Returning to the example from the introduction, let us con-
sider sound pressure waves s(t) that consist of superimposed pure
tones, s(t) = �i si cos(2πνit). How the cells’ average firing rate r
depends on sound intensity is subject to three rival hypotheses,
in which r is considered to be a non-linear function r = f (J) of
the “effective stimulus intensity” J, which in turn represents a dif-
ferent fundamental measure of sound intensity according to each
hypothesis (Garner, 1947; Tougaard, 1996; Heil and Neubauer,
2001): Amplitude Hypothesis: J is proportional to a weighted
sum of the tone amplitudes, JAH = �iλi si, where the factors
λi represent the relative sensitivities of the eardrum to different
sound frequencies. Thus, J reflects the maximum amplitude of the
eardrum vibration. Energy Hypothesis: J corresponds to the energy
of the eardrum oscillations, JEH = �iλ

2
i s2

i . Pressure Hypothesis:
J corresponds to the temporal mean of the absolute value of
the oscillation, JPH = <|ŝ(t)|>, where ŝ(t) describes the sound
pressure wave after taking the sensitivities λi into account.
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Which of these three hypotheses applies to locust auditory
receptors? Answering this question about the true physical cause
of output activity is complicated by the strongly non-linear
dependence of r on J through the output non-linearity f and
because J cannot be determined directly since the locust audi-
tory system is very delicate so that one cannot reliably measure
sound transduction prior to the receptor cells’ spike genera-
tion. Thus, to investigate stimulus integration independently of
f, the iso-response paradigm was implemented, using super-
positions of two sine-wave stimuli in order to identify those
amplitude combinations that led to the same firing rate. Note
that for each of the three hypotheses, the stimulus-response rela-
tion takes on the form of the canonical model of Figure 1A:
the output non-linearity N2 is always given by the function f,
whereas N1 is either just a linear function (amplitude hypothe-
sis), a squaring relation (energy hypothesis), or a more compli-
cated non-linearity that has to be determined numerically (pres-
sure hypothesis). The iso-response curves can thus distinguish

FIGURE 3 | Iso-response measurements for locust auditory

receptors. (A) Iso-response curve of spectral integration to distinguish
between three rival hypotheses of sound transduction. Stimuli consisted of
superpositions of two pure tones with amplitudes s1 and s2, respectively.
The data points show such combinations that yielded a firing rate of 175 Hz.
These are well fitted by an ellipse, corresponding to the energy hypothesis,
but not by iso-response curves of the other two model hypotheses.
(B) Comparison of iso-response curves from the same cell as in (A) for
different target response levels. The iso-response curves are ellipses that
are scaled versions of each other, confirming the energy hypothesis.
(C) Click stimuli used to probe temporal integration. The clicks can be
presented with short (top) or long (middle) inter-click intervals, and the
second click can have the same or opposite sign as compared to the first
(bottom). (D) Iso-response curves for pairs of clicks at different inter-click
intervals, corresponding to a spike probability of 70%. Short inter-click
intervals yield straight lines, longer inter-click intervals result in circles,
corresponding to linear and quadratic temporal integration, respectively.
(E) Linear filter L1 for a sample receptor cell obtained from iso-response
measurements with different signs of the second click. The filter
corresponds to the first stage of the LNLN model of sound transduction
(Figure 1D). The filter shape can be fitted by an impulse response function
of a damped oscillator (black line) with oscillation frequency f and
(mechanical) decay time constant τdec as indicated in the plot. (F) Linear
filter L2 for the same receptor cell as in (E). The filter shape can be fitted by
an exponential function (black line) with (electrical) integration time
constant τint as indicated in the plot. (G) Sample spike trains recorded from
a locust auditory receptor neuron for presentations of pure tones, showing
the adaptation of the firing rate during the course of stimulation.
(H) Acoustic stimuli used to test for input-driven adaptation. Amplitudes of
a high-frequency tone and a low-frequency tone were tuned with
closed-loop experiments so that they evoked the same steady state firing
rates. Stimuli then consisted of switches between the tones (top) as well
as of repetitions of the same tone as control condition (bottom).
(I) Firing-rate profile for a sample receptor neuron. For the switch from one
tone to another, the firing rate displays a transient increase (black line),
which is absent in the control condition (gray line). This indicates that
besides the strong feedback adaptation driven by the neuron’s spikes, an
additional adaptation component exists before signals are integrated over
sound frequencies. Panels (A) and (B) reprinted from Gollisch et al. (2002)
with permission, Copyright (2002), Journal of Neuroscience, Society for
Neuroscience. Panels (C–F) adapted from Gollisch and Herz (2005)
according to the Creative Commons Attribution License. Panels
(G–I) reprinted from Gollisch and Herz (2004) with permission, Copyright
(2004), Journal of Neuroscience, Society for Neuroscience.

between the three hypotheses independently of the non-linear
relation between the effective stimulus strength and the firing
rate.

As indicated in Figure 3A for an exemplary receptor neu-
ron, the amplitude and pressure hypotheses were rejected by
the measured shapes of iso-response curves, whereas the energy
hypothesis provided a good fit to the data (Gollisch et al., 2002).
To test the generality of this conclusion, a useful extension is to
investigate how iso-response curves for different response lev-
els are related to one another (Figure 3B). For locust auditory
receptor neurons, iso-firing rate curves obtained for the same
neuron at different firing rates turned out to lie on ellipses that
are scaled versions of one another. Again, this finding is in accor-
dance with the energy hypothesis, which predicts that the ratio
of the ellipses’ half-axes should always equal the ratio of the
constants λ1 and λ2. In addition, the energy model also holds
for the initial transient response at stimulus onset as well as
for superpositions of multiple pure tones and even accurately
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predicts receptor responses to broad-band noise stimulation
(Gollisch et al., 2002).

These observations led to the conclusion that sound-intensity
coding in this insect model system is well captured by a cascade
model (Figure 1D), in which the sound wave is first mechan-
ically filtered by the eardrum and the transduction stage then
provides a squaring non-linearity prior to temporal integration
of the electrical signals in the receptor neuron. A non-linear out-
put stage finally describes the firing-rate encoding of the effective
sound intensity JEH, resulting in an LNLN-cascade. The temporal
dynamics of this cascade, in particular of the different filter-
ing stages, however, were beyond the reach of this first set of
experiments with stationary stimuli.

Instead, disentangling the characteristics of temporal integra-
tion in sound encoding requires the application of highly dynamic
stimuli. Accordingly, the iso-response paradigm was extended to
a response measure appropriate for such a dynamic scenario,
namely the probability of occurrence of a single spike following
a brief stimulus (Gollisch and Herz, 2005). Thus, iso-response
curves were measured for double-click stimuli with inter-click
intervals of less than one millisecond. The two click amplitudes
s1 and s2 were again adjusted via a closed-loop search algorithm
during an experiment such that a recorded cell responded to
repeated stimulation with a fixed spike probability.

When the inter-click intervals were sufficiently large
(Figure 3C, middle panel), the iso-response curves were approx-
imately circular (Figure 3D, open squares). This finding further
corroborates the energy hypothesis, as the circular iso-response
curve shows that equal spike probability was obtained for equal
sound energy, s2

1 + s2
2. When very short inter-click intervals were

chosen (Figure 3C, top panel), however, the iso-response curves
were nearly straight lines (Figure 3D, filled circles). Thus, on
short times scales, the sum of the two click amplitudes, s1 + s2,
determines the spike probability. This is readily explained if
one assumes that the two stimulus components are already
mechanically integrated by the oscillation of the eardrum, which
is expected to act as a linear filter for the sound-pressure wave
(Schiolten et al., 1981).

The different shapes of the iso-response curves on different
time scales imply that different integrative steps are relevant dur-
ing the mechanosensory transduction process. This is expected,
as the sound pressure wave is first mechanically filtered by the
eardrum. After conversion into electrical signals, these are inte-
grated by the capacitive properties of the neuron’s cell membrane.
In the LNLN cascade of sound transduction (Figure 1D), the
two temporal integration steps are captured by the linear fil-
ters L1 and L2, respectively. How can the temporal structure
of these two filters, separated by the squaring non-linearity of
mechanosensory transduction, be disentangled? The solution
again lies in properly designed iso-response measurements, here
by comparing the click amplitudes necessary to evoke the same
spike probability when the pressure deflection of the second click
either has the same or the opposite sign of the pressure deflec-
tion of the first click (Figure 3C, bottom panel). The rationale
behind this approach is that the linear integration before the
squaring non-linearity is sensitive to a change in sign, whereas
the integration following the squaring transformation is not.

Using the mathematical description of the LNLN cascade, this
reasoning can be cast into formulas for extracting filter shapes
of L1 and L2 at different time points, which correspond to the
applied inter-click intervals (Gollisch and Herz, 2005).

This approach showed that L1 resembles the filter of a damped
oscillator (Figure 3E). In fact, the measured resonance frequen-
cies of these oscillators corresponded to the receptor cells’ max-
imal spectral sensitivity, which typically lies in the range of
several kilohertz (Gollisch and Herz, 2005). In addition, these
measurements revealed damping time constants of typically few
hundred microseconds, thus providing insight into the mechan-
ical eardrum properties at the different sites where the receptor
cells are attached. By contrast, the second filter L2 rather had
the shape of a leaky integrator with exponential decay charac-
teristics, thus showing the time scales of electrical integration
at the cell membrane (Figure 3F). Typically, the decay of L2

was slower than that of L1. Thus, long inter-click intervals sur-
pass the mechanical integration and rather reveal the quadratic
integration characteristics of electrical signals as evident in the
approximately circular iso-response curves for sufficiently long
inter-click intervals (Figure 3D).

Note that the assessment of the integration dynamics on time
scales as short as few tens of microseconds could be achieved by
measuring the spike probability with comparatively large tem-
poral windows of several milliseconds. This makes the approach
insensitive to variability in spike timing, which mars the temporal
resolution of traditional correlations techniques (Aldworth et al.,
2005; Dimitrov and Gedeon, 2006; Gollisch, 2006). By contrast,
the temporal resolution in these iso-response measurements is
limited only by the accuracy of stimulus delivery, which may eas-
ily reach the microsecond range with appropriate hardware and
software.

On much longer time scales, many neurons exhibit spike-
frequency adaptation (Figure 3G). An initially high firing rate
slowly decreases over time, even though the stimulus stays con-
stant. There is a wide range of different biophysical mechanisms
known to be involved in spike-frequency adaptation. In many
neurons, a major contribution stems from output-driven com-
ponents that are triggered by the spiking activity of the neuron.
Adaptation may, however, also contain components that are
driven by the sensory or synaptic input in a feed-forward way.
The different dependences of adaptation on the sensory input
and neural output will have distinct effects on the coding prop-
erties of a sensory neuron. For a functional characterization of
adaptation, we therefore have to identify the causal relationships
between sensory input, neural activity, and the level of adaptation.

To tackle this problem, one needs to measure input-driven
adaptation, which is triggered by the strength of a stimulus com-
ponent si, independently of output-driven adaptation, which
follows the total response level of the neuron. Applying again the
iso-response approach to auditory receptor neurons, this can be
done by tuning the intensities for different sound frequencies in
such a way that the steady-state firing rate is the same (Gollisch
and Herz, 2004). Consequently, the level of output-driven adapta-
tion must be equal. Switching between these sounds (Figure 3H)
can then reveal input-driven components, because these need
to approach a new equilibrium value after such a switch. This
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process results in transient deflections of the firing rate, which
can be observed in electrophysiological recordings of the spiking
activity (Figure 3I). The careful tuning of the sounds leads to a
high sensitivity of the method that allows one to detect input-
driven adaptation components even when they are far smaller in
effect than simultaneously present output-driven components.

EXAMPLE II: RETINA
The vertebrate retina is a neural network at the back of the eyeball
that constitutes the first stage of visual processing. The processed
visual signals are encoded by retinal ganglion cells into patterns
of spikes for transmission along the optic nerve to various brain
regions. As in many other sensory systems, the network of the
retina features a great deal of convergence; a single ganglion cell
can collect signals from tens to hundreds of excitatory bipolar
cells (Freed and Sterling, 1988), which in turn each collect sig-
nals from many photoreceptors. Inhibitory interactions mediated
by horizontal cells and amacrine cells influence which signals are
transmitted in this processing chain and how they are modified.

The spikes from an individual retinal ganglion cell thus reflect
the processing of this complex upstream circuit. What the cir-
cuit computes follows to a large degree from the nature of the
non-linearities associated with the ganglion cell’s integration over
its collection of inputs (Gollisch and Meister, 2010). That this
integration can occur in a non-linear fashion has been known
for more than fifty years, since ganglion cells were first catego-
rized as linear X cells and non-linear Y cells (Enroth-Cugell and
Robson, 1966). Yet, the classical experiments for identifying non-
linear stimulus integration with reversing spatial gratings only
indicate whether or not a non-linearity is present and do not
directly reveal its functional form. Moreover, it is likely that the
class of non-linearly integrating cells is composed of various types
of ganglion cells, which may express different types of non-linear
characteristics, serving different visual functions.

Based on the iso-response paradigm, the nature of stimu-
lus integration in the receptive field can be analyzed by sub-
dividing the receptive field into two halves (Figure 4A) and
using the values of the visual contrast in each half as inputs,
analogous to the canonical model of Figure 1A. This approach

FIGURE 4 | Iso-response measurements of spatial stimulus integration

by retinal ganglion cells. (A) Stimulus pattern used in the measurements.
After determining the receptive field center of a retinal ganglion cell (dashed
line), different contrast levels s1 and s2 were simultaneously displayed for
500 ms, each in one half of the receptive field. (B) Stimulus space.
Iso-response stimuli were measured in the space spanned by s1 and s2.
Experiments were performed on Off-type ganglion cells, which best respond
to negative contrast. Several sample stimulus patterns are shown at their
respective locations in stimulus space. The origin corresponds to the gray
level of background illumination. (C) Iso-rate and iso-latency curves for a

sample ganglion cell, corresponding to the majority of recorded cells in the
salamander retina. Both iso-response curves have similar shapes that indicate
a threshold-quadratic non-linearity of stimulus integration. (D) Iso-rate and
iso-latency curves for a different ganglion cell from a subpopulation in the
salamander retina. While the iso-latency curve has a similar shape as the
curves in (C), the iso-rate curve shows a notch along the lower-left diagonal,
corresponding to particular sensitivity to homogeneous stimulation of the
receptive field. This follows from a dynamic local gain control mechanism,
mediated by inhibitory interactions. All panels reprinted from Bölinger and
Gollisch (2012), Copyright (2012), with permission from Elsevier.
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has recently been applied to measuring stimulus integration
by Off-type ganglion cells in the salamander retina (Bölinger
and Gollisch, 2012). The contrast combinations (s1, s2) were
flashed briefly onto the receptive field of a ganglion cell, whose
spikes were recorded extracellularly. Closed-loop experiments
were then used to find such combinations that either gave the
same spike count (iso-rate curves) or the same first-spike latency
(iso-latency curves). As the stimulus started from an intermediate
gray illumination, both positive contrast (brightening) as well as
negative contrast (dimming) could be applied, and iso-response
stimuli were therefore measured beyond just one quadrant of
stimulus space (Figure 4B).

The iso-response curves revealed that all measured ganglion
cells in the salamander retina featured non-linear stimulus inte-
gration. For the majority of cells, iso-rate curves and iso-latency
curves had the same general shape, as shown by an example
in Figure 4C. The curves were approximately circular in the
region where both contrast values were negative (correspond-
ing to the preferred contrast for these Off-type cells). In this
region, the curves thus resembled the circular iso-response curves
seen in a simple model (Figure 1C) and in the previous exam-
ple (Figure 3A), suggesting that a sum of squares determines the
response of these ganglion cells. Combinations of negative con-
trast in one half of the receptive field and positive contrast in the
other, however, yielded sections of the iso-response curves that
were nearly parallel to the axes of the plot. This suggests that the
amount of positive contrast had little or no effect on the response
strength, corresponding to a thresholding mechanism that imple-
ments a half-wave rectification. Together, the shape of these
iso-response curves indicates that a threshold-quadratic transfor-
mation is the fundamental non-linearity of stimulus integration
over the receptive field center of these ganglion cells.

Other recorded ganglion cells, however, showed a fundamen-
tally different shape of the iso-rate curves (Figure 4D). Instead of
the circular shape in the region where both contrast values are
negative, the curves show a pronounced notch, indicating that
particularly small contrast levels were required to reach the target
spike count when both receptive field halves were stimulated with
the same negative contrast. Accordingly, the cells were named
“homogeneity detectors,” as they appear particularly suited to
detect large, homogeneous objects, even at low contrast (Bölinger
and Gollisch, 2012).

Both types of ganglion cells, those with threshold-quadratic
non-linearities as well as homogeneity detectors, are strongly
non-linear in their integration characteristics. They would thus
both be classified as Y-type cells according to a conventional inves-
tigation of linear vs. non-linear stimulus integration with revers-
ing grating stimuli (Enroth-Cugell and Robson, 1966; Bölinger
and Gollisch, 2012). The assessment of integration characteristics
with iso-response curves, on the other hand, allowed an analy-
sis of the particular type of non-linearity in a quantitative and
detailed fashion and thus provided a distinction between differ-
ent types of non-linear stimulus integration that had not been
apparent before.

Interestingly, the iso-latency curves of homogeneity detectors
did not display the characteristic notch, but rather showed the cir-
cular region, similar to the majority of measured iso-rate curves.

The comparison between iso-rate and iso-latency curves thus
already provides insights regarding the mechanism responsible
for the characteristics of homogeneity detectors; it suggests that
sensitivity to homogeneous stimuli is obtained through a pro-
cess that acts only after the first spike is initiated and thus has
a dynamic nature. Further investigations showed that this phe-
nomenon is brought about by local inhibitory circuitry, acting
as a local gain control and coming into effect with a slight delay
because of the additional synaptic stage involved in the inhibitory
pathway (Bölinger and Gollisch, 2012).

EXAMPLE III: VISUAL CORTEX
A further recent application of iso-response measurements has
shed light onto the integration of color information by neurons
in primate visual cortex (Horwitz and Hass, 2012). This study
was motivated by the puzzle that neuronal responses in visual
cortex to color stimuli often appeared incongruent with repre-
senting linear sums and differences of cone signals, an expectation
that had been developed on the basis of psychophysical color per-
ception experiments (Hering, 1920; Hurvich and Jameson, 1957).
To resolve this issue and test whether non-linear integration of
cone signals had been a missing ingredient in the models with
which the data had been analyzed, Horwitz and Hass (2012)
measured iso-response surfaces of macaque V1 neurons in a
three-dimensional color stimulus space, defined by the activation
of the three types of cones in the retina (Figure 5). Using drift-
ing chromatic gratings as stimuli, the iso-response stimuli were
defined as those combinations of cone activation that elicited the
same firing rate over the stimulus duration.

The iso-response stimuli define two-dimensional surfaces in
this three-dimensional stimulus space. For some cells, the iso-
response surfaces were simple planes (Figure 5A), indicating
that these cells represent indeed a linear combination of cone
activation strengths. Other cells, however, showed strong devi-
ations from linear integration; for those cells, the iso-response
data points were much better fitted by quadratic models, either
corresponding to a hyperboloid (Figure 5B) or to an ellipsoid
(Figure 5C). Taken together, the data show that iso-response sur-
faces of individual cells are generally well described by either a
linear or a quadratic integration model. This finding demon-
strates that the previous lack of a coherent description of cortical
responses to color stimuli in terms of cone activations resulted
from not taking non-linear integration into account.

Interestingly, the hyperboloid iso-response surface of
Figure 5B is similarly non-convex as the iso-response curve
of homogeneity detectors measured in the retina (Figure 4D).
This shape suggests that the cells are especially sensitive to one
particular stimulus dimension—homogeneous stimulation of the
receptive field in the case of the retinal neuron; a particular cone
activation pattern in the case of the cortical neuron—whereas
responses in other directions appear suppressed; in the case of
the cortical neuron, this means that for certain combinations of
cone activation, the desired response is never reached. One may
thus hypothesize that the hyperboloid shape of the iso-response
surface in cortical neurons is brought about by a similar active
suppression mechanism as mediated by local inhibition in the
case of the retinal homogeneity detectors.
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FIGURE 5 | Iso-response measurements of integration of cone signals

by neurons in macaque primary visual cortex. The panels show
iso-response stimuli (black circles) obtained with drifting chromatic gratings
for three representative sample cells in (A), (B), and (C), respectively.
Stimuli that yielded the same firing rate are plotted in the space spanned by
S-cone activation (S) and by the sum and difference of L-cone and M-cone
activation (L + M and L − M, respectively). For each cell, the data are shown
in the 3D plots for two different viewpoints (left and right column,
respectively). Gray lines indicate directions in stimulus space along which
the predefined response criterion could not be reached. As shown by the
green surface plots, iso-response stimuli are well fitted by a linear plane for
the cell in (A), by a hyperboloid for the cell in (B), and by an ellipsoid for the
cell in (C). Panels (B) and (C) also show best fits of linear planes (black
quadrangles), which do not provide good descriptions of the iso-response
stimuli. Reprinted by permission from Macmillan Publishers Ltd: Nature
Neuroscience (Horwitz and Hass, 2012), copyright (2012).

The iso-response surface in the shape of an ellipsoid
(Figure 5C), on the other hand, indicates that the cell represents
a sum of squares, similar to findings in both the locust auditory
system (Figure 3A) and the salamander retina (Figure 4C) as well
as in the energy model for complex cells in visual cortex (Adelson
and Bergen, 1985). The ubiquity of this type of non-linear stim-
ulus integration may indicate a general-purpose representation,
providing invariance under rotations in stimulus space.

MULTIPLE STAGES OF STIMULUS INTEGRATION
The canonical model of Figure 1A suggests that the iso-response
method is most easily applied to systems with two non-linear

stages, one before stimulus integration has taken place and one
afterwards. Yet, valuable insight can also be obtained for sys-
tems with more successive non-linearities. First, from a functional
point of view it may not be necessary to disentangle all non-
linear stages; rather, it may be of interest to determine the total,
combined non-linear transformation before stimulus integration
takes place and separate it from the total non-linearity afterwards.
This procedure aims at casting the investigated system again into
the form of the canonical NLN cascade of Figure 1A, but will fail
for systems that deviate strongly from this simplified structure.

Second, one may profit from the fact that many neural sys-
tems, in particular sensory systems, are organized in a hierarchical
fashion so that the relevant temporal, spatial, and spectral scales
increase from processing layer to processing layer. This allows one
to choose the stimulus layout—by appropriately defining what is
represented by the two components s1 and s2—in such a way that
the relevant stimulus integration occurs at a certain stage along
the processing chain, dividing the chain into the total non-linear
transformation before and after this stage. By varying the stim-
ulus scale used in the analysis, one can thus distinguish between
successive non-linear stages.

To illustrate this strategy, let us consider a model with three
non-linear stages N1, N2, and N3, separated by successive stages of
stimulus integration, which first only pool over sets of neighbor-
ing inputs and subsequently integrate over these sets (Figure 6A).
To separate these integration stages, we now first choose a
“coarse” stimulus layout, in which the four input channels are
combined into pairs so that “nearby” channels, which are pooled
together already in the first integration stage, receive the same
stimulus intensity s1 or s2, respectively (stimulus pattern inside
the blue box in Figure 6A). For this stimulus layout, s1 and s2

remain separate through both N1 and N2 and are combined
only prior to the output non-linearity N3. This means that the
iso-response curve of s1 and s2 will reflect the concatenation
of N1 and N2, but is not influenced by N3. Now, let us con-
sider a “finer” stimulus layout, in which “nearby” input channels
already receive different stimulus components s1 and s2 (stimu-
lus pattern inside the green box in Figure 6A). For this layout,
s1 and s2 are combined directly after N1 and before N2, which
means that the iso-response curve of s1 and s2 will now only
reflect the non-linearity N1 and be insensitive to both N2 and N3.
Investigating and comparing the shapes of iso-response curves
on a fine and coarse scale thus can be used to derive both non-
linearities N1 and N2. Finally, for completeness, N3 could simply
be obtained by homogeneously stimulating all four input chan-
nels with the same, varying stimulus intensity, thus measuring the
combined effect of all three non-linear stages, and comparing this
to the effect of N1 and N2 alone.

The strategy of comparing iso-response curves measured with
coarse and fine stimulus layouts has been used to track the ori-
gin of the non-linearities in the receptive fields of retinal ganglion
cells that were described in Figure 4 (Bölinger and Gollisch,
2012). Spatial stimulus integration in the retina occurs succes-
sively from photoreceptor cells via biopolar cells to ganglion cells.
These integration stages cover different spatial scales; photorecep-
tor cells integrate light over a distance of about 10 μm (Mariani,
1986; Sherry et al., 1998), whereas bipolar cells have receptive
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FIGURE 6 | Approach for disentangling non-linearities at multiple

stages of stimulus integration in hierarchical models. (A) Cascade
model with three consecutive non-linear stages, N1, N2, and N3, separated
by two integration stages. The model assumes that first nearby stimulus
components are integrated, whose results are then combined in a
subsequent stage. Different stimulation schemes that can be used to
separate the effects of the non-linearities are shown on top. When nearby
input channels are stimulated with the same stimulus component s1 or s2,
respectively (stimulus pattern in blue box), the iso-response curve is
affected by the combination of N1 and N2. When the two stimulus
components s1 and s2 are placed so that they are combined already by the
first integration stage (stimulus pattern in green box), only non-linearity N1

is relevant for the shape of the iso-response curve. (B) Application of the
strategy to separate different integration stages of spatial integration by
retinal ganglion cells. When nearby spatial locations receive the same
contrast (blue data points), the iso-rate curve shows the standard
threshold-quadratic non-linearity as in Figure 4C. When the two contrast
components s1 and s2 are interleaved so that presynaptic bipolar cells
typically already start integrating the two components, but individual
photoreceptors only receive either one of the components (green and
orange data points, corresponding to squares in the stimulus layout with
150 and 60 μm side length, respectively), the iso-rate curves approach
straight lines, showing that the integration stage from photoreceptors to
bipolar cells can be approximated as linear integration. Panel (B) reprinted
from Bölinger and Gollisch (2012), Copyright (2012), with permission from
Elsevier.

fields of roughly 50–100 μm diameter (Wu et al., 2000; Baccus
et al., 2008) and ganglion cells in the range of 200–600 μm.
Thus, analyzing whether the non-linear structures of iso-response
curves persist or change on spatial scales below several tens of
micrometers allows one to test whether the site of the non-
linearity is before or after stimulus integration by bipolar cells.
This concept has been applied by arranging the stimulus com-
ponents in a checkerboard-like fashion with different sizes of
the individual checkerboard fields. Measurements of iso-response
stimuli then showed that, as the scale of the fields fell roughly
below 100 μm, the shapes of iso-response curves approached
straight lines (Figure 6B). This meant that no relevant non-
linearity occurred between photoreceptor cells and bipolar cells;
to good approximation, stimuli were integrated linearly by bipo-
lar cells.

Essentially the same principle was also behind the separation
of different integration stages in locust auditory receptor neurons,
as discussed above, by probing the system with pairs of acous-
tic clicks at different inter-click intervals (Figure 3C; Gollisch
and Herz, 2005). For very short inter-click intervals, iso-response
curves showed linear integration of the two clicks, corresponding

to the linear mechanical integration at the eardrum; for longer
inter-click intervals that surpassed the mechanical integration
time, the quadratic non-linearity of transduction became appar-
ent (Figure 3D).

COMPARISON WITH SPIKE-TRIGGERED COVARIANCE
ANALYSIS
The iso-response method aims at identifying non-linear interac-
tions in consecutive stages of neuronal processing. This relates the
method conceptually to cascade models and reverse-correlation
techniques, such as STA and STC analysis. As already dis-
cussed above, STA analysis fails to capture non-linear integration,
because all stimulus integration is assumed to occur linearly in
the single-filter LN model. STC analysis and related information-
theoretic techniques (Paninski, 2003; Sharpee et al., 2004; Pillow
and Simoncelli, 2006), on the other hand, provide multiple fil-
ters and a corresponding multi-dimensional non-linearity. While
the popularity of STC analysis primarily rests on its ability to
determine the number and shapes of relevant filters, it also,
in principle, allows studying non-linear stimulus integration by
analyzing the features of the multi-dimensional non-linearity.
A primary challenge for this is again the need to separate non-
linearities of stimulus integration from the non-linearity at the
output stage. If no explicit models of the output non-linearity
are available, calculating iso-response curves within the multi-
dimensional stimulus subspace that is spanned by the identified
filters (Rust et al., 2005) appears to be the method of choice for
identifying non-linearities of stimulus integration, even if these
iso-response curves must be computed in an offline fashion.

Note, however, that there are important practical differences
between analyzing non-linear stimulus integration with STC
analysis or with closed-loop iso-response measurements. STC
analysis is based on continuous, stationary stimulation, typically
with white-noise statistics. The closed-loop iso-response method,
on the other hand, can also be applied under non-stationary
presentation of individually analyzed stimulus segments and can
thus be used also for fairly brief stimuli, such as flashed visual
images or short sound bursts. This difference in stimulus statis-
tics can have interesting consequences for the processing features
of the investigated system. For example, high-threshold inhibi-
tion from amacrine cells in the retina (Bölinger and Gollisch,
2012) may be effectively absent in white-noise experiments, but
contribute to ganglion cell processing for flashed or saccade-like
image presentations.

Second, STC analysis can yield a fairly large number of filters,
and the high dimensionality of the associated stimulus subspace
may impede a detailed analysis of the non-linear stage (Rust et al.,
2005). Unless spiking is well described by a Poisson process, the
temporal dynamics of spike generation alone can lead to a col-
lection of several relevant filters (Agüera y Arcas and Fairhall,
2003; Agüera y Arcas et al., 2003). Along the same line, STC
analysis of retinal ganglion cells with purely temporal stimuli
has been shown to yield multiple temporal filter components
(Fairhall et al., 2006). When on top of temporal variations, stim-
uli have further structure, such as spatial dimensions, one obtains
additional filters, including filter combinations that mix temporal
effects with other stimulus dimensions. A detailed analysis of the

Frontiers in Neural Circuits www.frontiersin.org December 2012 | Volume 6 | Article 104 | 209

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Gollisch and Herz The iso-response method

full non-linear stage then easily becomes impractical, in particular
for more than two or three dimensions, both for reasons of graph-
ical display and required amounts of data. As a feasible alternative,
one may aim at analyzing non-linearities in low-dimensional sub-
spaces, for example, spanned by just two selected filters (Rust
et al., 2005). However, all other relevant filters then effectively
act as noise sources, reducing the efficiency of this analysis. The
closed-loop iso-response approach circumvents this problem by
focusing on a chosen, small-dimensional set of stimulus com-
ponents, such as two spectral or spatial stimulus components.
This becomes particularly useful when combined with prior
closed-loop identification of appropriate stimulus components,
for example, by matching the components to the location and size
of a receptive field. The possibility to focus on few purposefully
selected stimulus components as well as on a narrow response
regime is the benefit of the technically more demanding closed-
loop approach. Yet, the selected components remain a choice of
the experimenter under the assumption that these correspond to
meaningful, separate input channels for the neuron under study.

In this view, STC analysis and iso-response measurements are
complementary. While the strength of the STC analysis lies mostly
in determining—with relatively few prior assumptions—the
number and nature of stimulus features that are non-linearly
integrated, the iso-response method assumes certain stimulus
components to be relevant features and aims at determining
their non-linear integration in detail. For systems with little prior
expectation about the relevant input channels, it may well make
sense to base a closed-loop measurement of iso-response stimuli
on the results of a prior STC analysis for guiding the choice of the
applied stimulus components.

NEXT STEPS AND FUTURE CHALLENGES
As shown by the above examples, the iso-response method pro-
vides a powerful concept for studying how neurons integrate
sensory inputs. Using different types of stimuli allows one to
focus on spectral, spatial, temporal, or spatio-temporal integra-
tion. Exploring and comparing different output measures, such
as firing-rate or first-spike latency, provides valuable insight into
potential coding schemes. Furthermore, unlike correlation-based
approaches, the temporal resolution of the iso-response method
is not limited by the precision with which the output signal can
be measured. This is best illustrated by the experiments where
click-stimuli were presented to auditory receptor neurons whose
output was measured in terms of the probability that a single,
isolated spike is generated within a window stretching several mil-
liseconds (Gollisch and Herz, 2005). The temporal filters L1 and
L2 of the corresponding LNLN cascade were determined at a tem-
poral resolution below 20 microseconds, restricted only by the
precision of the acoustic stimulus generator. The stochastic nature
of neural responses did not cause any limitations—in fact, the iso-
spike-probability paradigm is only feasible because of a nonzero
intrinsic noise level so that a single spike is generated in some, but
not all trials. The critical, beneficial role of a neural characteristic
that is usually considered an experimental nuisance was an inter-
esting observation in these studies. In addition, one may think
that the iso-response paradigm applies to conventional feedfor-
ward chains only; but as demonstrated by the study on input-

vs. output-driven adaptation, certain feedback loops can also be
studied with iso-response methods (Gollisch and Herz, 2004). We
are thus confident that the iso-response paradigm will see further
conceptual and methodological extensions in the future.

On the practical side, ongoing advances in soft- and hard-
ware technology will increase the closed-loop interaction speed
and also make it possible to include second-level analyses into
the very design of iso-response experiments. This concern, for
example, automated stopping rules in the search algorithms and
automated selection of search directions, two developments of key
importance for extending the iso-response approach to higher-
dimensional search spaces. Closed-loop experiments have already
been used to determine stimulus ensembles that are optimal from
an information theoretical point of view (Machens et al., 2005).
This is a computationally highly demanding task. With ever-rising
computer power, however, it might be interesting to extend this
concept and search for iso-information stimulus ensembles.

A prominent research area that could also benefit strongly
from the iso-response methodology concerns the computations
carried out by dendrites and dendritic trees. Synaptic integra-
tion along dendrites is often assumed to be linear, although it has
been known for a long time that non-linearities exist and that
they can have substantial consequences for neuronal computa-
tion (Koch et al., 1983; Mel, 1994; Poirazi et al., 2003; Katz et al.,
2009; Abrahamsson et al., 2012). Based on traditional measure-
ment paradigms, however, electrophysiological as well as imaging
experiments can only address the question whether synaptic inte-
gration is linear, sublinear, or perhaps superlinear. Characterizing
these non-linearities using the iso-response method would be
an important step toward understanding dendritic computation.
To investigate the scope and limits of such an approach, one
could first focus on single-cell models of increasing complexity
(Herz et al., 2006) with which one can test the method under
well-defined and easily modifiable control conditions.

As demonstrated by the examples presented in this review,
the iso-response method opens a new vista on neural dynam-
ics and information processing. By focusing on one key
question—“Which input combinations generate the same neu-
ral output?”—the method automatically reveals the invariance
classes of the neuron (or neural substructure) under study. This
feature should prove particularly helpful for studying sensory sys-
tems with complex and poorly understood stimulus spaces, such
as olfaction, as well as for understanding multi-sensory integra-
tion and higher cortical processing. Note in this context that
neural responses in the cortical area MST have been explained
using a LNLN cascade model (Mineault et al., 2012). As shown in
this review, the iso-response method is ideally suited to explore
such models and determine their parameters with high preci-
sion. This suggests that even neural processing levels far from
the sensory periphery can be studied quantitatively using the
iso-response method.

At least conceptually, one could also extend this method
beyond the single-neuron level and study multi-neuronal activ-
ity patterns. As a simple example, one may explore iso-synchrony
stimuli that keep the level of synchronous activity between two or
more neurons constant. Searching for multi-neuronal response
patterns will require some conceptual developments regarding
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the applied search algorithm, that is, how to systematically tune
stimuli toward eliciting a given multi-neuronal spike pattern. On
the technological side, the necessary methods for fast and reli-
able online spike detection and sorting of multiple spike trains
have already begun to become available (Quiroga et al., 2004;
Santhanam et al., 2004; Wood et al., 2004; Rutishauser et al.,
2006), but still need to be further explored for practical applica-
tions of closed-loop experiments.

At a larger scale, network activity could be characterized
by identifying iso-population-response stimuli, using local-field-
potential, MEG, or even fMRI signals. As for single neurons,
one may learn far more by carefully analyzing those stimu-
lus combinations that cause the same large-scale response than
by observing that certain stimuli lead to more activation than
others—without really knowing how to interpret differences in

the activation levels. Within the iso-response framework, the
tricky task of construing activity changes can be circumvented,
and one can directly focus on one of the most important func-
tional characteristics of a specific neuron or neural population:
How are sensory or synaptic inputs integrated over space, fre-
quencies, and time?
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In complex nervous systems patterns of neuronal activity and measures of intrinsic neu-
ronal excitability are often used as criteria for identifying and/or classifying neurons. We
asked how well identification of neurons by conventional measures of intrinsic excitability
compares with a measure of neuronal excitability derived from a neuron’s behavior in a
dynamic clamp constructed two-cell network. We used four cell types from the crab stom-
atogastric ganglion: the pyloric dilator, lateral pyloric, gastric mill, and dorsal gastric neurons.
Each neuron was evaluated for six conventional measures of intrinsic excitability (intrinsic
properties, IPs). Additionally, each neuron was coupled by reciprocal inhibitory synapses
made with the dynamic clamp to a Morris–Lecar model neuron and the resulting network
was assayed for four measures of network activity (network activity properties, NAPs). We
searched for linear combinations of IPs that correlated with each NAP, and combinations
of NAPs that correlated with each IP. In the process we developed a method to correct for
multiple correlations while searching for correlating features. When properly controlled for
multiple correlations, four of the IPs were correlated with NAPs, and all four NAPs were
correlated with IPs. Neurons were classified into cell types by training a linear classifier on
sets of properties, or using k -medoids clustering.The IPs were modestly successful in clas-
sifying the neurons, and the NAPs were more successful. Combining the two measures
did better than either measure alone, but not well enough to classify neurons with perfect
accuracy, thus reiterating that electrophysiological measures of single-cell properties alone
are not sufficient for reliable cell identification.

Keywords: clustering algorithms, multiple correlations, feature selection, stomatogastric ganglion, identified

neurons, dynamic clamp, half-center oscillator, Morris–Lecar model

INTRODUCTION
A major step in elucidating the connectivity of nervous system cir-
cuits is identifying the neurons in the circuit. In the case of small
invertebrate circuits neuronal identification is often straightfor-
ward (Getting and Dekin, 1985; Getting, 1989; Marder and Cal-
abrese, 1996; Marder and Bucher, 2001, 2007; Kristan et al., 2005),
using a combination of neuronal projection patterns, position, fir-
ing patterns, size, and color. This has facilitated the establishment
of the connectivity diagrams of the circuits underlying stereo-
typed behaviors in a variety of animals (Mulloney and Selverston,
1974a,b; Selverston et al., 1976; Getting et al., 1980; Selverston
and Miller, 1980; Getting, 1981; Hume and Getting, 1982; Hume
et al., 1982; Miller and Selverston, 1982a,b; Pearson et al., 1985;
Katz, 1996; Marder and Calabrese, 1996; Perrins and Weiss, 1996;
Schmidt et al., 2001; Sasaki et al., 2007; Calabrese et al., 2011).

In contrast, developing relatively unambiguous connectivity
diagrams for circuits with larger numbers of neurons such as those
found in most vertebrate nervous systems has been historically
more difficult, partially because neuronal identification has been
challenging. This is starting to change with the advent of new
genetic and molecular techniques. Nonetheless, classification of
neurons into types and subtypes is not yet routine in larger net-
works (Jonas et al., 2004; Sugino et al., 2006; Toledo-Rodriguez

and Markram, 2007; Miller et al., 2008; Okaty et al., 2011a,b), and
a variety of electrophysiological measures are often used to classify
neurons in types and subtypes.

The use of electrophysiological measurements alone for iden-
tification can be potentially problematical, as many neurons can
change their activity patterns as a function of neuromodulation
and activation of modulatory pathways (Dickinson et al., 1990;
Meyrand et al., 1991; Weimann et al., 1991; Weimann and Marder,
1994). Moreover, recent work has shown that the same identified
neurons can show large ranges in the values of many conven-
tional measures of intrinsic excitability (intrinsic properties; IPs)
in different animals (Grashow et al., 2010). In this study we com-
pare directly the utility of six IPs with less conventional measures
obtained by introducing a biological neuron into an artificial net-
work with an oscillatory model neuron, and analyzing the resulting
activity (network activity properties, NAPs). IPs are obtained via
open-loop stimulation, whereas the NAPs are obtained in closed
loop: the dynamic clamp injects current into the biological neuron
based on the state of the model neuron, which is in turn affected by
the biological neuron. The NAPs nevertheless constitute a measure
of the biological neuron’s properties, because the model neuron is
standardized, and thus differences in NAPs between experiments
must originate in differences in the neurons themselves.
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Our hypothesis was that a measure of intrinsic excitability that
challenges a biological neuron with a time-varying closed-loop
stimulation might better reveal its essential properties than more
static measures. To this end, we searched for relationships between
IPs and NAPs, and asked if either was effective in predicting the
neuron’s cell type.

Grashow et al. (2010) searched for relationships between IPs
and NAPs, as pairwise correlations. We expected whole sets of
properties to give more information about neuronal identity than
individual properties, therefore we asked the related but distinct
question: can the IPs be reconstructed from NAPs, and vice versa?
Thus for each IP we chose a subset of NAPs and performed a linear
regression to fit the IP with the chosen NAPs. We then searched for
the subset of NAPs that gave the least regression error per degree of
freedom. This search for the most relevant set of properties, known
as “feature selection” (see Materials and Methods), found a small
set of NAPs that correlated highly with each IP; and when applied
conversely, a small set of IPs that correlated highly with each NAP.
We were then confronted with the problem of assessing the signifi-
cance of the correlation that we had discovered. Consequently, one
of the goals of this paper was to develop a statistical procedure to
correctly assess the significance of multiple correlations, especially
those that arise from feature selection.

While Grashow et al. (2010) showed that IPs and NAPs differ
across cell types, here we attempt to deduce neuronal type from
properties. We trained linear classifiers to test if neuronal types
fall into different (linearly separable) regions of property-space.
We used k-medoids clustering to test if neuronal identity could
be blindly discovered, looking only at the properties. One chal-
lenge of this approach is that the result of a clustering algorithm
is the assignment of each cell to an essentially unlabeled cluster
index, making assessment of clustering accuracy an issue. Particu-
larly problematic is determining if differing clustering results from
two different sets of properties are significant or merely statistical
flukes. Therefore another goal was to develop a procedure to assess
the significance of differences in clustering results.

MATERIALS AND METHODS
The majority of the raw data used for these analyses was published
in Grashow et al. (2010), and then supplemented with additional
experiments. All experiments were done on identified neurons of
the stomatogastric ganglion (STG) of the crab Cancer borealis. For
each neuron we measured six traditional IPs, and with dynamic
clamp, four NAPs. Details of the experimental methods are iden-
tical to those previously published (Grashow et al., 2010). Here we
reiterate the essential details.

ELECTROPHYSIOLOGY
Recordings and current injections were performed in discontin-
uous current-clamp mode with sample rates between 1.8 and
2.1 kHz. Input resistance was measured as the slope of the voltage–
current (VI ) curve in response to hyperpolarizing current injec-
tions, (voltage was measured after the neuron reached steady state).
The frequency–current (FI) curve was measured as the response
to depolarizing current injections (typically between 0 and 1 nA).
In the STG cells that we assayed, the FI curve had a characteris-
tic shape that was curved at lower injected currents, but became

approximately linear at higher injected currents. We computed FI
slope by fitting a line to the linear region of the FI curve. This
linear region was determined by fitting a line to the FI curve,
then progressively eliminating the point with the lowest current
injected, until the residual error was small or only three points
remained. The residual error was considered acceptable if the
sum of squared error divided by the degrees of freedom (num-
ber of points minus two) was less than 2.0. Spike frequency at
1 nA was read from the FI curve. Minimum voltage with zero
injected current was taken from a trace where the neuron was
not perturbed (in silent cells, this would be the resting membrane
potential).

CONSTRUCTING THE HYBRID CIRCUIT
Real-time Linux dynamic clamp (Dorval et al., 2001), version 2.6,
was run on an 800-MHz Dell Precision desktop computer. STG
neurons were incorporated into a hybrid network with a sim-
ulated Morris and Lecar (1981) model. The biological neuron
and the Morris–Lecar model neuron were connected with mutu-
ally inhibitory synapses, and artificial hyperpolarization-activated
inward current (I h) was added to the biological neuron. The maxi-
mal conductance of the synapse from the model to the STG cell was
ḡsyn. The maximal conductance of the synapse from the biological
cell to the Morris–Lecar cell was 2 × ḡsyn. The maximal conduc-
tance of the I h current was ḡh. ḡsyn and ḡh were each independently
varied from 10 to 100 nS in 15 nS steps, forming a seven-by-seven
grid from every possible combination.

Identically to the procedures in Grashow et al. (2010), the
Morris–Lecar model contained a non-inactivating Ca2+ conduc-
tance and a non-inactivating K+ conductance, in addition to a leak
conductance. The membrane voltage of the Morris–Lecar neuron
was determined based on the following equations:

C
dV

dt
= −ḡleak (V − Eleak)− ḡCaM (V − ECa)− ḡKN (V − EK)

dN

dt
= τN (N∞ − N )

dM

dt
= τM (M∞ −M )

M∞ = 1

1+ exp
(−(V−V1/2,Ca)

Vslope,Ca

)
N∞ = 1

1+ exp
(−(V−V1/2,K)

Vslope,K

)
τN = τ0Ksech

(
V − V1/2,K

2Vslope,K

)

The values of the fixed parameters are in Table 1. C was the
membrane capacitance of the Morris–Lecar model neuron. ḡCa ,
ḡK, and ḡleak were the maximal conductances for the Ca2+, K+,
and leak conductances, respectively. V 1/2,Ca was the half-activation
voltage of the Ca2+ conductance and V slope,Ca was the slope of the
activation curve for g Ca2+. ECa was the reversal potential for the
Ca2+ current, and τM was the time constant for M, the activation
variable of the Ca2+ conductance. V 1/2,K was the half-activation
of the K+ current, V slope,K was the slope of the activation curve
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Table 1 |Values of parameters for the Morris–Lecar model cell, artificial

hyperpolarization-activated currents, and artificial inhibitory

synapses.

MORRIS–LECAR PARAMETERS

C 10 nF

ḡCa 200 nS

ECa 100 mV

V 1/2,Ca −20 mV

V slope,Ca 15 mV

τM 1 us

ḡK 200 nS

EK −80 mV

V 1/2,K −20 mV

V slope,K 15 mV

τ0K 500 ms

ḡleak 50 nS

E leak −60 mV

I h PARAMETERS

ḡh 10–100 nS

Eh −10 mV

V 1/2 −50 mV

sR 7 mV

cR 0.33 Hz

V kR −110 mV

skR −13 mV

SYNAPSE PARAMETERS

ḡsyn 10–100 nS

Esyn (bio postsynaptic) −70 mV

Esyn (model postsynaptic) −80 mV

τsyn 100 ms

V 1/2 −45 mV

V slope 5 mV

for the K+ conductance and EK was the reversal potential of K+.
τ0K is the scale factor for the time constant for N, the activation
variable of the K+ current. E leak is the reversal potential for the
leak current.

The artificial I h (Buchholtz et al., 1992; Sharp et al., 1996) was
described by the equations:

Ih = ḡhR (Eh − V )

dR

dt
= kR (R∞ − R)

where

R∞(V ) = 1

1+ exp
[(

V − V1/2
)/

sR
]

kR(V ) = cR
{

1+ exp
[
(V − VkR)

/
skR
]}

where ḡh (varied from 10 to 100 nS) was the maximal conductance
of I h; R was the instantaneous activation; R∞ was the steady-
state activation; Eh was the I h reversal potential; V 1/2 was the
half-maximum activation; sR was the step width; cR was the rate
constant; V kR was the half-maximum potential for the rate; and
skR was the step width for the rate.

The artificial inhibitory graded transmission synapse from the
Morris–Lecar model to the biological cell was based on Sharp et al.
(1996) and was described by the following equations:

Isyn = ḡsyn · S ·
(
Esyn − Vpost

)
(1− S∞) τsyn

dS

dt
= (S∞ − S)

where

S∞
(
Vpre

) =
{

tanh
[(

Vpre − V1/2
)/

Vslope
]

if Vpre > V1/2

0 otherwise

}

where ḡsyn(varied from 10 to 100 nS) was the maximal synap-
tic conductance; S was the instantaneous synaptic activation; S∞
was the steady-state synaptic activation. The reversal potential
of the synaptic current, Esyn, had different values in the two
synapses: −80 mV when the biological neuron was postsynaptic,
and−70 mV when the Morris–Lecar model was postsynaptic. V pre

and V post are the presynaptic and postsynaptic potentials, respec-
tively; τsyn was the time constant for synaptic decay; V 1/2 was the
synaptic half-activation voltage and V slope was the synaptic slope
voltage.

ASSAYING HALF-CENTER ACTIVITY
Network activity was classified into one of four categories. If the
biological cell did not fire action potentials and had no oscillation,
the network was “silent.” If the biological cell had no spikes but
did have a slow membrane potential oscillation, the network was
“model dominated.” If the biological cell fired action potentials,
the network was either “half-center” or “bio-dominated.” In half-
center networks, the biological cell had slow membrane potential
oscillations, and the predominant flow of synaptic current was
from the bursting cell (the biological cell, then the model cell in
alternation) to the non-bursting cell greater than 90% of the time.

FINDING CORRELATIONS BETWEEN NAPs AND IPs
For each IP, we searched for subsets of NAPs that were highly cor-
related with it. Conversely for each NAP we searched for subsets of
IPs that were highly correlated with it. Both analyses were required
because the problem is inherently asymmetric: it is possible for
each individual NAP to be well-explained by a linear combination
of IPs, but conversely have no individual IP that is well-explained
by a linear combination of NAPs. We describe the algorithm to
find subsets of NAPs that are highly correlated with an IP; the
converse algorithm is identical, only with the data sets swapped.

We formed matrices M IP and M NAP, whose rows denote iden-
tity and whose columns denote different IPs and NAPs respectively.
We z-scored each matrix column to eliminate the effects of scal-
ing and offset. For each IP (column of M IP) we searched for a
subset of NAPs (columns of M NAP) and linear coefficients that
approximated the column of M IP. For a given subset of NAPs we
formed a reduced matrix RNAP that contained only the columns
corresponding to the properties we chose, then performed lin-
ear regression to find the best linear coefficients. We assessed the
quality of this fit, or “prediction error” as mean square error per
degree of freedom, where the number of degrees of freedom was
the number of rows (STG neurons) minus the number of columns
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of RNAP (properties in the subset). We associated this prediction
error with the subset of NAPs, and found the best subset of NAPs
by minimizing the prediction error with greedy feature selection.

GREEDY FEATURE SELECTION
The greedy algorithm is a heuristic approach to searching a large
space of candidate features. It quickly selects a very good subset
of features, although not necessarily the best. We initialized the
greedy algorithm by creating an empty set of features, and declar-
ing its prediction error to be infinite. We then proceeded iteratively
as follows:

1. Form every subset of features that can be created by adding
either one or two new properties to the current best subset.

2. Compute the prediction error of all the new subsets.
3. If any has a prediction error lower than the current best subset,

select the subset with the lowest prediction error as the new
best, and iterate again; otherwise stop.

At the end of iteration, the output of the greedy algorithm was
the best subset of features and their prediction error.

ASSIGNING p-VALUES TO CORRELATIONS
Given enough properties, we expect to see large correlations
between some of them, even if they are merely random numbers.
This is exacerbated by the greedy algorithm, because it discov-
ers the largest correlations and ignores small ones. To determine
whether the correlations in the data were large enough to be likely
real, we computed the probability that equally large correlations
would be found randomly in uncorrelated data.

Correlations in data are related to ordering. Independently
scrambling the order of rows of M IP and rows of M NAP elim-
inates any correlations between IPs and NAPs, while preserving
their distributions as well as the relationships within the IPs and
within the NAPs. Performing the greedy search for correlations
on these scrambled data returns the prediction errors for corre-
lations between unrelated data. Because there are many ways to
scramble the rows, we did this repeatedly (10,000 scrambled tri-
als) and obtained an empirical estimate of the null distribution for
prediction errors. The p-value of a correlation arising randomly is
the proportion of prediction errors in the null distribution that is
lower than the prediction error from the unscrambled data.

CORRECTING FOR MULTIPLE CORRELATIONS
Because of the need to assign many p-values, we expected that
several might yield apparently “significant” results by chance, thus
p-values needed to be adjusted to compensate for this problem. We
describe a method for evaluating and correcting p-values obtained
from scrambled data, that is conceptually similar to the Holm–
Bonferroni correction (Holm, 1979; Aickin and Gensler, 1996) for
multiple comparisons. A fit to scrambled data is expected to occa-
sionally produce outliers with very low errors, although it is not
clear that these outliers would be concentrated on any particu-
lar IP or NAP. Thus to determine if our best fit is likely due to
chance, we compare our best fit to the best fit for each scrambled
trial, regardless of which property gave the best fit in the different
scrambled trials.

Therefore we started by sorting the prediction errors from the
correlation search into increasing order. Then we proceeded iter-
atively as with the Holm–Bonferroni technique, starting with the
best fit (least prediction error). We sorted the prediction error from
each scrambled trial into increasing order, generating an empiri-
cal estimate of the null distribution of the best fit. The adjusted
p-value for the fit was the proportion of scrambled best fits that had
lower error. If the adjusted p-value did not meet the significance
criterion (p < 0.05) the fit and all higher error fits were not signif-
icant and the iteration stopped. Otherwise the fit was significant,
and the corresponding property was removed from consideration
in future p-values, both in the scrambled and unscrambled data.
For example, if property P_3 was the best fit and was found to be
significant, then P_3 would be removed from each scrambled trial
regardless of whether it was the best fit for that scrambled trial.
Then the iteration would continue with the next best fit. In this
way (similar to Holm–Bonferroni), the best overall fit is compared
to the best of N scrambled fits, the second-best is compared to
N − 1, etc., until one of the fits is not significant. Furthermore, the
data being removed from consideration are data that have already
been shown to have correlations significantly better than chance.

LINEAR CLASSIFICATION
Linear classifiers were constructed of four binary classifiers, one
for each neuronal type. Each binary classifier computed the like-
lihood that a set of properties belonged to a cell corresponding to
the classifier’s type. The likelihood function for binary classifiers
was a logistic function acting on a linear function of z-scored neu-
ronal properties (Bishop, 1996; Taylor et al., 2006). If there are N
properties, then the likelihood L was calculated as

L(−→w ) = P
(
w0 + p1 ∗ w1 + p2 ∗ w2 + . . . + pN ∗ wN

)
,

where pn are the z-scored properties, wn are the weights (w0 is an
offset), and P is the logistic function,

P(x) = 1

1+ exp(−x)
.

The weights for all binary classifiers were trained simulta-
neously using the whole dataset (or a subset if we were using
cross-validation). To minimize the weights, we used a “soft max”
function

S = Lcorrect

LDG + LPD + LGM + LLP
,

where LDG, LPD, LGM, and LLP were the likelihoods computed for
each cell type, and Lcorrect is the likelihood for the correct cell type
for a given cell. When training the classifier, we maximized the
sum of the log-likelihood of S over the whole dataset (or a subset
if we were using cross-validation),

−→w = arg max
∑

k∈{neurons}
log

(
Sk(
−→w )

)

The optimization was performed using an iterative line-search
method (Bishop, 1996), initialized with Fisher’s linear discrimi-
nant (Bishop, 1996). When determining the results of the trained
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classifier, we determined the cell type as the one with the greatest
likelihood.

To determine how well linear classification generalized, we used
leave-two-out cross-validation. Thousand trials were conducted.
In each trial the properties for two randomly chosen neurons were
selected to be test data, and a linear classifier was trained on the
remaining data. After the classifier was trained, the test data were
classified. The cross-validation accuracy was the proportion of test
data that were classified correctly.

FINDING CLUSTERS
We used k-medoids (Hastie et al., 2009) to categorize blindly
STG neurons based on their z-scored properties. We set k= 4 and
measured distance between points using L1 (taxicab) norm. The
k-medoids algorithm was initialized using the same procedure as
k-means++ (Arthur and Vassilvitskii, 2007). Because the initial-
ization is not deterministic, we used 200 trials, using the results of
the trial that had the smallest average distance from each point to
its medoid.

The results of the clustering allow construction of a contin-
gency table called a “confusion matrix.” The rows of the matrix
correspond to STG cell type, the columns to cluster label, and the
entries are the number of cells so categorized [e.g., the gastric mill
(GM), 2 entry corresponds to the number of GM cells grouped
into cluster 2]. Cluster labels were assigned the cell identity that
maximized the proportion of cells correctly identified (proportion
correct). Mutual information (MI) was computed as in Vinh et al.
(2009). Adjusted mutual information (AMI) was computed as

AMI = MI−MI

MImax −MI
,

where MI is the expected value of MI for a random clustering, and
MImax is the maximum possible MI. MImax was computed as in
Vinh et al. (2009). We computed MI as the mean of the distrib-
ution of MI for random clustering, generated using a bootstrap
technique.

GENERATING THE DISTRIBUTION OF MUTUAL INFORMATION VIA
BOOTSTRAP
We modeled the confusion matrix as being generated by binomial
random numbers [e.g., if two out of 13 dorsal gastric (DG) neu-
rons were in cluster 1, the DG,1 entry was modeled as binomial
random with a maximum value of 13 and an expectation value of
2]. From a given confusion matrix, we randomly generated syn-
thetic confusion matrices using the same binomial distributions
for each entry, and computed MI from these synthetic confusion
matrices. We used 10,000 synthetic confusion matrices to generate
an empirical distribution of MI. Because the clustering algorithm
will always place at least one cell in every cluster, any synthetic
confusion matrices with a column of all zeros were discarded and
regenerated. To generate the MI distribution for real data sets,
we used the confusion matrix generated by the results of the k-
medoids algorithm. To generate the MI distribution for clustering
of random data sets, we used a confusion matrix with identical
columns, and rows that summed to the number of cells in our
actual data set (e.g., the sum of the DG row was equal to the
number of DG cells in our data).

COMPUTING P -VALUES FOR DIFFERENCES IN CLUSTERING
We did not seek to compute a rigorous probability that one set of
properties is inherently superior to another with regard to cluster-
ing performance. Instead we asked if the difference in MI between
two clustering results (MIlow and MIhigh) can be plausibly ascribed
merely to fluctuations in the number of cells in each cluster. To
compute p between two clusterings, we used the bootstrap method
to obtain the distribution of MIlow. We then calculated p as the
proportion of synthetic MIlow that is greater than the actual MIhigh.
We called differences with p < 0.05 “significant.”

SOURCE CODE
Source code implementing the statistical methods that we devel-
oped is hosted permanently at http://www.bio.brandeis.edu/
MarderLabCode/

RESULTS
The STG of the crab C. borealis has 26–27 neurons, that can be reli-
ably identified according to their projection patterns (Marder and
Bucher, 2007). Each STG has two pyloric dilator (PD) neurons,
one lateral pyloric (LP) neuron, four GM neurons, and one DG
neuron. The data in this paper come from 55 neurons (PD n= 13;
LP n= 15; GM n= 14; DG n= 13). The PD and LP neurons are
part of the circuit that generates the fast (period ∼1 s) pyloric
rhythm and the GM and DG neurons are part of the circuit that
generates the slow (period 6–10 s) GM rhythm.

Conventional IPs were measured by injecting current steps and
ramps into individual neurons to measure input resistance, spike
threshold voltage, FI slope, spike frequency with 1 nA injected
current, spike height, and minimum voltage with zero injected
current. Figure 1A shows a recording of a DG neuron in response
to a current ramp, showing the voltage at threshold and the spike
height. Figure 1B shows the same cell in response to depolariz-
ing current pulses of different amplitudes. Figure 1C shows the
plot of spike frequency vs. injected current. Spike frequency with
1 nA injected current can be read directly from this plot, while the
linear fit (blue line) allows determination of FI slope. Figure 2
summarizes all of the IPs that went into the analysis, with the new
data points in color, and those from the prior study (Grashow
et al., 2010) in gray. Note that the variance of each measure is
considerable, and there is a great deal of overlap across cell types.

Because of the overlap in these measures even across neurons
with very different characteristic behaviors during ongoing net-
work activity, we reasoned that a set of properties that better
captured the potential dynamics of the neurons in a closed-loop
dynamic network might be more useful in characterizing these
neurons than the conventional, open-loop IPs shown in Figure 1.

Stomatogastric ganglion neurons are part of circuits that are
rhythmically active, so we sought a measure that would place these
neurons into a rhythmically active circuit under experimenter
control. Therefore we used the dynamic clamp to create two-cell
circuits: one cell being the neuron to be evaluated, the second a
standard model neuron used in all experiments. Figure 3 shows
the result of a dynamic clamp experiment in which an isolated DG
neuron was coupled with reciprocal inhibition to a Morris–Lecar
model neuron (Morris and Lecar, 1981; Grashow et al., 2010), and
the strength of the synaptic conductances (ḡsyn) and an imposed
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FIGURE 1 |Traditional IPs for one DG neuron. (A,B) Membrane potential
is shown in the top trace, and injected current in the bottom trace. (A)

Spike threshold voltage is the voltage at the point of maximum curvature
(dashed line) before the first spike in response to a ramp of injected
current. (B) The FI curve was obtained by measuring spike frequency in
response to depolarizing current steps. (C) FI Slope is the slope of the
best-fit line to the linear region of the FI curve. For this DG neuron, the four
rightmost points were used (see Materials and Methods). The spike rate in
response to 1 nA of injected current is (in this case) the last data point.

I h conductance (ḡh) were varied. A schematic of this circuit is
shown in Figure 3A. Figure 3B shows the behavior of the model
neuron and the biological neuron in the uncoupled state, and
Figures 3C,D show different patterns of resulting network activ-
ity. Figure 3E illustrates the case in which the model and biological
neurons are firing in alternating bursts of activity, or half-center
oscillations. We obtained NAPs exclusively by examining networks
with half-center activity, because these were precisely the networks
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FIGURE 2 | Values of IPs, by neuron type. New data points are in color,
and those from the prior study (Grashow et al., 2010) are in gray. (A) Spike
frequency with 1 nA injected current. (B) Input resistance. (C) Spike
threshold voltage. (D) Frequency–current slope. (E) Minimum voltage with
zero injected current. (F) Spike height.

that exhibited rhythmic activity with the complex mix of spiking
and slow membrane potential oscillations that characterizes the
membrane potential trajectories that STG neurons display during
ongoing pyloric and gastric mill rhythms.

Figure 3F shows a map of the network behavior as ḡsyn and ḡh

were varied. The map positions that produced half-center alter-
nating bursts are shown in the red dots. For each of the 55 exper-
iments, we used these maps to calculate the proportion of map
positions that resulted in half-center activity. In the map shown
in Figure 3F, this proportion was 11/49. For each set of parame-
ters that gave half-center activity (map positions with alternating
bursts) we calculated the half-center frequency and the number of
spikes/burst in the biological neuron (Figure 3G). Because each
biological neuron used had a different set of IPs, we expected that
the map produced with each one would be different. The hypothe-
sis was that features of these maps and of their half-center behavior
(size, location, burst frequencies, number of spikes/burst of half-
center activity) would constitute a data set that might more reliably
capture the neurons’ dynamics, and consequently their cellular
identity, than the conventional measures of intrinsic excitability.
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FIGURE 3 | Network activity of the artificial circuit depends on

(ḡsyn, ḡh) parameter values. (A) Schematic for two-cell synthetic circuit. A
model Morris–Lecar neuron is connected to a biological STG neuron
(either DG, GM, LP, or PD) via artificial mutual inhibitory synapses.
Dynamic clamp simulated the synapses, as well as injecting artificial
h-conductance into the STG neuron. (B) Voltage traces from uncoupled
(ḡsyn = 0, ḡh = 0)Morris–Lecar model (top) and DG neuron (bottom). (C–E)

Voltage traces from connected circuit with different (ḡsyn , ḡh) parameter
values. Colors denote network activity classification: green traces denote

networks dominated by the DG neuron, blue denotes networks dominated
by the Morris–Lecar neuron, and red denotes networks exhibiting
half-center oscillations. (C) ḡsyn = 70, ḡh = 55. (D) ḡsyn = 85, ḡh = 10. (E)

ḡsyn = 40, ḡh = 40. (F,G) NAPs are representative of a biological neuron’s
overall response to all of the (ḡsyn , ḡh) parameter values in a map. (F) The
proportion of half-center networks is trivially obtained from the map. Std
ḡh is the SD of ḡh values among half-center networks. (G) Spikes per burst
and half-center frequency are both obtained from individual networks,
then averaged over all half-center networks.

Figure 4 presents the data from all of the half-centers found
in the 55 experiments analyzed. In most of the maps half-center
activity was found in a horizontal swath, indicating that half-center
activity was more sensitive to ḡh than to ḡsyn . The SD of ḡh provides
a measure of the width of the horizontal swath. Figure 4A shows
that although the variance of this measure for each cell type is con-
siderable, the PDs had a larger SD than the other cell types. The
proportion of half-centers in the 55 neurons is shown in Figure 4B.
The mean half-center frequency was higher in the PD neuron set
of networks (Figure 4C), and mean number of spikes/burst was
lowest in the networks made with GM neurons (Figure 4D).

We refer to the four measures – “SD of ḡh,”“proportion of half-
center networks,”“mean half-center frequency,” and “mean spikes
per burst” – as NAPs. There are many conceivable network prop-
erties; however we restricted the analysis to a handful that were
simple to measure and that we reasoned would be related to both
IPs and cell identity.

CORRELATIONS BETWEEN NAPs AND IPs
We first asked if there is any predictive relationship between these
measures of network activity and conventional IPs. For each IP, we
searched for the subset of NAPs that best predicted it (see Materi-
als and Methods). Conversely, we looked for the subset of IPs that
best predicted each NAP.

To assess the significance of any correlations we repeated the
predictive analysis on 10,000 shuffled trials (see Materials and
Methods). In a shuffled trial, we scrambled the cell identity while
preserving the distribution of individual properties. The shuf-
fled trials provided an empirical estimate of the null distribution
for prediction error; and because the null distribution was esti-
mated from trials with multiple correlations, we were able to
correct for multiple correlations and calculate adjusted p-values
(see Materials and Methods).

The results of this analysis are detailed in Table 2. Figure 5
shows selected scatter-plots of several properties vs. the values pre-
dicted by their best-fit linear combination. Three of the six IPs were
significantly predicted by NAPs, and all of the NAPs were signifi-
cantly predicted by IPs. However, the R2 values of the correlations
were low, indicating weak predictive value.

LINEAR CLASSIFIER
We next asked whether we could reliably determine the identity of
the four neuron types using the six measurements of IPs (Figure 2),
using the four measurements of NAPs taken from the dynamic
clamp networks (Figure 4) or by combining the two sets of data
together. Given the large range of these measurements within a
cell type and the overlap of the values across the cell types, it is
clear that no single measure would reliably allow the identification
of the neurons.

To identify neuron types by their properties, the different cell
types must have properties that segregate into different clusters.
To check if this is the case, we attempted to train a linear classifier
to determine neuronal identity based on a given set of z-scored
properties. The classifier was constructed of four binary linear clas-
sifiers, one for each neuronal class. Binary classifiers estimated the
likelihood that a neuron’s properties corresponded to the binary
classifier’s STG type. The likelihood was a number between zero
and one; whichever binary classifier returned the highest likeli-
hood “won,” and the overall classifier then determined that the
properties belonged to a neuron of the corresponding type.

Conceptually, for a set of N properties, a linear classifier
describes four N − 1 dimensional oriented hyperplanes (one for
each binary classifier), with all the neurons of the correct type on
the “plus” side of a hyperplane, and the remaining neurons on
the “minus” side. In practice, the situation may be less straightfor-
ward, with all four hyperplanes being in compromise positions,
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FIGURE 4 | Values of NAPs, by neuron type. (A) Std ḡh. (B) Proportion of
half-center networks. (C) Mean half-center frequency. (D) Mean spikes per
burst.

allowing their pooled information to determine identity. In such a
situation, placement, and orientation of hyperplanes may depend
on outlier points, especially when the number of cells is small but
N is large.

We trained a linear classifier for each set of properties. The clas-
sifier based on IPs identified 85% of cells correctly, the classifier

based on NAPs identified 84% correctly, and the combined prop-
erties classifier identified 100% of cells correctly (Figure 6). How-
ever, these high accuracies were partially due to overfitting outlier
points. When we tested the generalizability of these classifiers with
leave-two-out cross-validation (see Materials and Methods), the
accuracy of each classifier dropped somewhat: IPs classified 64%
correctly, NAPs 68%, and the combined data 78%. Thus only by
combining the two data sets can the cell types be distinguished
on the basis of properties, and even then the boundary between
them is complex and dependent upon the position of outlier
points.

FINDING CLUSTERS
Ideally, one would like to identify neuron types blindly, not merely
verify that they fall into properties of clusters. This approach would
be applicable to a system where cells cannot be unambiguously
identified as they can in the STG. We used the k-medoids algo-
rithm (Hastie et al., 2009) with k= 4 to find clusters of properties.
However, clusters do not directly correspond to any particular cell
type (i.e., after running k-medoids, a cell is labeled “cluster 2”
not “GM”). To address this issue, we computed two measures of
accuracy. We assigned cluster labels to cell identity to maximize
the number of cells that are correctly categorized, and computed
the “proportion correct.” This number is necessarily in the inter-
val between 1/k and 1. We also computed the MI between the
cluster labels and the cell identities. By appropriately scaling the
MI we computed the AMI which has a maximum value of one,
and an expected value of zero for random numbers. In addi-
tion to our real data, we applied the clustering technique to a
synthetic set of properties generated from Gaussian random num-
bers, to illustrate chance results. We used a bootstrap technique
to estimate p-values for significant differences in MI between
clusterings.

Both of the accuracy measures (MI/AMI and proportion
correct) showed the same general trends. No set of prop-
erties was able to correctly identify all cells. When we per-
formed k-medoids clustering on Gaussian random numbers, as
expected we obtained no information (proportion correct= 0.29,
MI= 0.089,AMI=−0.002). Real neuronal properties were able to
obtain significant information: for IPs proportion correct= 0.60,
MI= 0.36, and AMI= 0.21; for NAPs proportion correct= 0.69,
MI= 0.72, and AMI= 0.49; and for both sets joined proportion
correct= 0.84, MI= 0.90, and AMI= 0.62. The results of clus-
tering on the combined properties are depicted in Figure 7A.
All sets of STG properties achieved results significantly better
than random numbers, with p < 0.001. The differences between
sets of properties were also significant (NAPs vs. IPs p= 0.01,
combined properties vs. IPs p < 0.001, combined properties vs.
NAPs p= 0.03). The quantification of accuracy is summarized in
Figure 7B. Together these results show that NAPs encode more
information about cell identity than traditional IPs, but both sets
contain distinct information (Figure 7C).

DISCUSSION
Establishing reasonable and reliable methods for classifying and
characterizing neurons has been a far thornier practical problem
than might have been predicted from first principles. While there
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Table 2 | Correlations between IPs and NAPs.

IP R2 Adjusted

p-value

Best fit with NAP R2 Adjusted

p-value

Best fit with

Spike rate+ 1 nA 0.65 <0.001 Mean spikes per burst,

proportion half-center, std ḡh

Mean spikes

per burst

0.68 <0.001 Spike rate+ 1 nA, min v, spike threshV, FI

slope

Spike threshold

voltage

0.46 <0.001 Mean spikes per burst, mean

half-center frequency,

proportion half-center

Mean

half-center

frequency

0.54 <0.001 Spike thresh V, min v, FI slope, spike

rate+ 1 nA

Minimum

voltage

0.34 0.0017 Mean spikes per burst,

proportion half-center

Std ḡh 0.54 <0.001 Spike height, spike thresh V, min v, spike

rate+ 1 nA, FI slope, input resistance

Spike height 0.20 N.S. Std ḡh , mean spikes per burst Proportion

half-center

0.48 <0.001 Spike thresh V, min v, spike rate+ 1 nA,

spike height, FI slope, input resistance

Input resistance 0.14 N.S. Std ḡh mean spikes per burst

FI slope 0.10 N.S. Mean spikes per burst

Each property (in bold) was fit with one or more properties from the other data set.The optimal set of fitting parameters was determined via greedy feature selection.

We list the resulting R2, adjusted p-value, and optimal fitting properties for each property. p-Values are adjusted for multiple correlations and the feature-selection

process.

are large and uniquely identifiable neurons in small invertebrate
nervous systems and in the spinal cords of fish and frogs, in most
regions of the vertebrate central nervous system and in many brain
areas in invertebrates, cell identification cannot be achieved by size
or location of the neurons alone. The electrophysiological firing
patterns of many neurons change (Dickinson et al.,1990;Weimann
et al., 1991), either as a consequence of neuromodulation, develop-
ment, or disease. Transmitter phenotype (Borodinsky et al., 2004)
and transcription factor expression (William et al., 2003; Wienecke
et al., 2010) are often developmentally or activity regulated, com-
plicating the use of a single chemical marker to identify neurons,
although chemical markers may be sufficient at times (Zagoraiou
et al., 2009). Neuronal projection patterns to distant targets such as
muscles or other brain regions often provide unambiguous identi-
fication, but when multiple cell types are entangled in local circuits,
even projection patterns may not be sufficient. These issues are
further confounded by the large variance measured in a variety
of properties of individual neurons (Getting, 1981; Hume and
Getting, 1982; Swensen and Bean, 2005; Schulz et al., 2006, 2007;
Goaillard et al., 2009; Tobin et al., 2009; Grashow et al., 2010). This
raises the question of whether combining multiple measures can
serve to better cluster or identify neurons, and if so, what kinds of
assays are potentially more useful than conventional measures of
intrinsic excitability.

In this study we used six conventional measures of neuronal IPs
and four measures of how neurons behaved in an artificial network
to determine whether any or all of these measures could correctly
cluster and identify neurons whose identity was already known.
This exercise highlighted a number of difficulties that, to a greater
or lesser degree, will potentially plague investigators wishing to use
electrophysiological measures to identify neurons. It is clear from
the variance in each of the IPs across individual neurons of the
same class and from the overlap of these values across cell types,
that no single measure would reliably serve to identify the neurons

(Figure 2; Grashow et al., 2010). Therefore, our goal was to deter-
mine whether the combined set of electrophysiological measures
would reliably allow us to cluster the neurons into groups that
mapped correctly with their identity.

One might naively think that increasing the number of electro-
physiological measures performed for each neuron would increase
the likelihood of proper identification. This might appear to be
especially the case if each measure probes a different essential fea-
ture of the cell’s performance. For that reason, we chose to embed
each neuron in an artificial network that we reasoned would test its
dynamic behavior differently than the conventional measures of
excitability. Nonetheless, increasing the number of measures made
for each neuron tested comes with a statistical cost, as each addi-
tional increases the likelihood of finding spurious correlations.
Because it is necessary to correct for this before assigning statistical
significance, adding measures that even partially sample the same
biophysical attributes to a neuron may be more counterproductive
than helpful. For some cell types a different set of measured IPs or
NAPs might be more useful than those studied here. Nonetheless,
our point is simply to say that “more is not necessarily better.”
To this end, in choosing the NAPs that we included, we used our
biological intuition to select four that appeared to be relatively
functionally independent of each other, and we discarded many
other potential network measures that might have added relatively
little to the analysis and added a substantial multiple comparison
statistical burden. Obviously, these problems are more acute with
relatively modest-sized data sets, such as that analyzed here, and
become less acute with data sets with n’s in the several thousand
(at which point it is also possible to use additional methods).

Because STG neurons can be recorded from intracellularly
for many hours it was experimentally feasible for us to ask
whether these NAPs would be useful in neuron characterization.
We were surprised that the networks did not provide more infor-
mation than they did, and we do not expect or recommend that
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FIGURE 5 | Sample fits of z-scored neuronal properties. Value of the
property being fit (x ) vs. value predicted by the best regression (y ). The line
y = x corresponds to a perfect fit. (A) Mean spikes per burst was best fit
simultaneously to spike rate 1 nA, minimum voltage, spike threshold
voltage, and FI slope (R2 = 0.68, p < 0.001). (B) Spike rate 1 nA was best fit
simultaneously to mean spikes per burst, proportion of half-center
networks, and std ḡh (R2 = 0.65, p < 0.001). (C) Proportion of half-center
networks was best fit simultaneously to spike threshold voltage, minimum
voltage, spike rate 1 nA, spike height, FI slope, and input resistance
(R2 = 0.48, p < 0.001). (D) FI slope had no significant correlations, but was
best fit with mean spikes per burst (R2 = 0.10, p > 0.05).

an investigator working in systems where recordings cannot be
maintained for many hours attempt the same process, although
other closed-loop measures that are less time-consuming could be
devised.

We assessed significance of correlations with a custom boot-
strapping method that combines shuffled trials and the Holm–
Bonferroni correction for multiple comparisons. It is commonly
assumed that correlations do not need to be corrected because they
are only indicative of interesting relationships, not a rigorous test
in themselves. However, the process of finding correlations may
be too effective – if it can find seemingly strong correlations in
random data, then there may be confusion between correlations
that are indicative of real relationships, and those that are most
likely spurious.

Data-mining commonly produces large spurious correlations.
When we simply applied a Pearson correlation test, every corre-
lation was “significant” and there were several p-values less than
10−10. Using shuffled trials properly accounts for the power of
data-mining and dramatically increased the magnitude of the
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FIGURE 6 | A linear classifier can be trained to correctly identify cell

type. Hundred percentage of neurons were correctly identified when a
linear classifier was trained on combined IPs and NAPs. To visualize the
grouping of neurons by property, we projected the 10-dimensional space of
properties down to two dimensions. Analogously to the results of Principal
Component Analysis, we determined components (combinations of
properties) that pointed along directions of particular interest. These
directions (Dimension 1 and Dimension 2) were chosen to provide maximal
spacing between the different neuronal types.

p-values (many were still highly significant). Building Holm–
Bonferroni into the procedure allowed further correction for
investigating many properties.

Although these two methods (comparing to shuffled trials,
and adjusting p-values with the Holm–Bonferroni method) are
commonly used separately, we are not aware of them being used
together as done here. However, we believe it is necessary to com-
bine them because we had no a priori hypothesis about which
correlations were likely to be most significant. After searching a
data set for correlations we find several with varying strengths,
and want to know which correlations are weak enough that they
could plausibly be drawn from the distribution of expected spu-
rious correlations. To do this it was necessary to keep track of all
the correlations for each shuffled trial, and therefore integrate the
multiple comparisons correction into the shuffled trial structure.

The results of our correlation analysis appear to differ from
Grashow et al. (2010) which analyzed much of the same data.
However it should be borne in mind that the two analyses ask
different questions. Grashow et al. (2010) asked, “What are the
pairwise relationships between these different properties?”, while
here we asked “How well can we reconstruct one set of properties
from the other?” Both are potentially interesting questions, and
have their strengths and weaknesses.

Grashow et al. (2010) tested all possible pairwise correla-
tions (48 total) between larger property sets. Because of this,
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FIGURE 7 | IPs and NAPs partially encode neuronal identity.

(A) k -Medoids clustering was applied to the combined IPs and NAPs of
STG neurons. Filled circles denote correctly classified neurons, Xs
denote errors. The 10-dimensional space is projected down to two
dimensions that best separate the different neuronal types. (B) Adjusted
mutual information (blue) and proportion correct (red) by property type.
p-Values between clustering results are computed by the technique

described in Section “Materials and Methods.” *p < 0.05, ***p < 0.001.
(C) A Venn diagram depicting the information encoded by the two sets of
properties, assuming improved encoding of the combined sets is due to
non-overlapping mutual information. The area of the black circle depicts
perfect encoding of cell identity, while the magenta circle describes the
mutual information expected from a set of randomly generated
properties.

their correction for multiple comparisons was quite large. We
searched for the best linear reconstruction for each property (10
total), thus incurring a smaller penalty for multiple comparisons.
However the approach here may not find all the correlations
that are of potential interest. For instance, if an NAP is highly
correlated with two IPs, and those two IPs are highly corre-
lated with each other, then this approach is unlikely to discover
that the NAP is correlated with both IPs. More likely it would
only discover one of them. This is because adding the second
IP will decrease the degrees of freedom without substantially
improving the fit, leading the combination to be heavily dis-
counted by the feature-selection algorithm. Thus some of the
differences between the two studies result from asking different
questions.

However, some differences between the studies were due to
improvements in methodology. As is often done, Grashow et al.
(2010) computed adjusted p-values by using the Pearson correla-
tion coefficient test for normally distributed data, then applying
the Holm–Bonferroni correction for multiple comparisons. These
data exhibit deviations from normality (e.g., Figure 2F, where
LP exhibits substantial skew, and PD appears to be bimodal) and
thus the Pearson correlation test is not fully appropriate. Further-
more the Holm–Bonferroni correction may be overly conservative
because it does not account for potential relationships between the
different quantities whose correlation is being tested. Here, bas-
ing the significance test on scrambled trials, we avoided making
assumptions about the distribution of the data. By incorporating
the adjustment for multiple correlations into the scrambled trials,
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we directly computed the approximate null distribution for the
nth-best correlation. This enabled us to compute a p-value that is
conservative enough to account for multiple correlations without
being unnecessarily over-conservative.

In general, the methods we used – searching for correlations
and clustering – decrease in effectiveness as the dimensionality
they must work in (the number of properties) increases. Increas-
ing dimensionality increases the probability of finding correla-
tions between random numbers, making corrections for multiple
correlations more severe and therefore decreasing the ability to
detect real correlations. Clustering algorithms suffer from a host
of problems referred to collectively as “the curse of dimension-
ality” (Bishop, 1996; Beyer et al., 1999; Hinneburg et al., 2000;
Houle et al., 2010), which cause them to find the “wrong” clus-
ters. It is especially difficult if extraneous dimensions are added,
because algorithms naturally tend to break up clusters at essentially
meaningless gaps in the extraneous dimensions. We decreased the
number of properties we considered to avoid this problem as much
as possible.

In this analysis the information pertaining to cell identity can
be thought of as a Venn diagram (Figure 7C), with IPs contain-
ing some information, NAPs containing more information, and
some overlap between the two sets. It is possible that because
we used six measures of IPs, thus a higher dimension than the
NAPs, they are merely falling afoul of the curse of dimensional-
ity and thus unfairly penalized when compared to the four NAPs.
However, when the two sets are grouped together the resulting
set of properties has still higher dimensionality and outperforms
either one separately, suggesting that the Venn diagram is appro-
priately representing the data. Looking at the raw MI if we naively
assume that non-overlapping information combines additively, we
see that the NAPs contain roughly twice as much information as
the IPs, and that roughly half the information in the IPs is in the
overlapping region of the Venn diagram (Figure 7C). Thus the
NAPs do capture the neuronal dynamics of each cell type bet-
ter than the conventional measures of IPs, although we cannot
perfectly identify neurons only by their properties. The success
of NAPs suggests that closed-loop dynamic current perturbations
yield greater information about cell identity than static pertur-
bations. However, the properties extracted from this perturbation
must be chosen carefully, because the size of the data sets will never
be large enough to search through the essentially infinite space of
all possible properties.

We used k-medoids, one of the simplest clustering algorithms
(Andreopoulos et al., 2009), but not always the best. The k-
medoids algorithm is nearly the same as the k-means algorithm,

however clusters are represented by one of the members of the
cluster (called the “medoid,” and chosen to minimize distance to
other members of the cluster) rather than the mean of members
of the cluster. k-Medoids is more robust to outliers than k-means
(Andreopoulos et al., 2009; Hastie et al., 2009) and is applicable
in situations when computing mean objects is impossible or unde-
sirable. k-Medoids is slower than k-means with very large data
sets [selecting the medoid is O(N2) while computing the mean is
O(N)]. However, as is common for electrophysiology, the data set
studied here is small and we expect plentiful outliers due to the
variability in neurons and noise inherent in measuring neuronal
properties. In principle, more sophisticated density-based (Sander
et al., 1998), nearest-neighbor-based (Ertöz et al., 2003; Bohm
et al., 2004; Pei et al., 2009; Kriegel et al., 2011), or correlation-
based (Kriegel et al., 2008) methods are capable of determining the
number of clusters, recognizing extraneous dimensions, and find-
ing clusters with complex shapes. When deciding on the methods
we would use for this paper, we conducted pilot tests for a variety
of clustering algorithms on synthetic data sets of a size compara-
ble to our IPs and NAPs. In these pilot tests, we found that the
more sophisticated clustering algorithms were less successful at
identifying cluster membership (i.e., neuronal identity) correctly.
With small data sets, there were inevitably extraneous large density
fluctuations or extraneous correlations, therefore for this study, k-
medoids was superior by virtue of being simpler, but this would
certainly change with a larger data set. These results suggest that
with a large number of neurons and a small number of highly
relevant properties, identifying cells via clustering is likely to be
fruitful.

In this analysis we implemented corrections for multiple com-
parisons and methods to determine the statistical significance
of the resulting correlations. In many studies reporting cor-
relations, corrections for multiple correlations were not made.
Obviously, if the correlations are robust, they will persist after
the appropriate corrections are made. Nonetheless, it is likely
that some reported correlations in the literature would not
have survived a more rigorous statistical analysis. Of course,
it is essential to remember that a weak correlation may point
to a fundamental biological insight, while a strong correla-
tion may not always help illuminate an underlying biological
process.
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This paper describes a modeling-control paradigm to control the hippocampal output
(CA1 response) for the development of hippocampal prostheses. In order to bypass a
damaged hippocampal region (e.g., CA3), downstream hippocampal signal (e.g., CA1
responses) needs to be reinstated based on the upstream hippocampal signal (e.g.,
dentate gyrus responses) via appropriate stimulations to the downstream (CA1) region.
In this approach, we optimize the stimulation signal to CA1 by using a predictive DG-CA1
nonlinear model (i.e., DG-CA1 trajectory model) and an inversion of the CA1 input–output
model (i.e., inverse CA1 plant model). The desired CA1 responses are first predicted by
the DG-CA1 trajectory model and then used to derive the optimal stimulation intensity
through the inverse CA1 plant model. Laguerre-Volterra kernel models for random-interval,
graded-input, contemporaneous-graded-output system are formulated and applied to build
the DG-CA1 trajectory model and the CA1 plant model. The inverse CA1 plant model to
transform desired output to input stimulation is derived from the CA1 plant model. We
validate this paradigm with rat hippocampal slice preparations. Results show that the CA1
responses evoked by the optimal stimulations accurately replicate the CA1 responses
recorded in the hippocampal slice with intact trisynaptic pathway.

Keywords: neural prosthesis, Volterra kernel, inverse control, trajectory model, hippocampus

INTRODUCTION
A neural prosthesis is a prosthetic device that interfaces with the
nervous system to improve or restore impaired neural function
(Berger et al., 1994; Schwartz, 2004; Patil and Turner, 2008). The
neuroprosthetic technology has been advancing rapidly (Bernotas
et al., 1986; Creasey et al., 2004; Mayberg et al., 2005; Hochberg
et al., 2006; Allison et al., 2007; Stacey and Litt, 2008). Neural
prostheses can be categorized according to the directions of the
signal communication between the device and the nervous system
(Turner et al., 2005; Song et al., 2007). The first category of neural
prostheses attempts to decode neural signals and then to activate
an external object. An example would be the neuroprobes decod-
ing motor cortex signals to control a robotic arm (Donoghue,
2002; Nicolelis, 2003; Taylor et al., 2003). The second kind of
neural prostheses encodes external sensory stimuli and intends
to activate the nervous system. Examples are cochlear implants
and artificial retinas (Middlebrooks et al., 2005; Weiland et al.,
2005). The third kind of neural prostheses, which forms a bi-
directional closed-loop system with the nervous system, receives
incoming neural signals from one nervous region and sends its
output to activate another nervous system region (Berger et al.,
2001, 2011). For the neural prosthesis that involves stimulation to
the nervous system, the output system responses could be influ-
enced by the stimulation parameters such as location, intensity,
and frequency. Because the signal transformation in the nervous
system is nonlinear, it is also important to consider the nonlin-
earity between stimulation patterns and the output responses.

Without considering this nonlinear relationship, large deviations
between the device-evoked responses and the desired responses
are expected. In practice, such deviations can be mitigated by tun-
ing the stimulation parameters (Lauer et al., 2000; O’Suilleabhain
et al., 2003; McIntyre et al., 2004; Tellez-Zenteno et al., 2006; Rupp
and Gerner, 2007; Albert et al., 2009; McLachlan et al., 2010).
This optimization procedure is typically performed manually and
empirically, e.g., assuming a static and linear relation between the
stimulation pattern and the desired responses, and then searching
for the optimal ratio between the stimulation intensity and the
outcome responses via a trial-and-error procedure. To formally
solve this important problem, one needs to develop a rigorous
stimulation paradigm that takes the (nonlinear dynamical) rela-
tionship between stimulation signals and system responses into
account (Liu and Oweiss, 2010; Liu et al., 2011).

We are in the process of developing a neural prosthesis to
restore the long-term memory formation function of the hip-
pocampus that is lost in Alzheimer’s disease, stroke, epilepsy, or
other neurological disorders. Our concept of such a prosthetic
device is a biomimetic model of the input–output nonlinear
dynamics of the hippocampus—a model that captures how hip-
pocampal circuitry re-encodes, or transforms, incoming spatio-
temporal patterns of neural activity (i.e., short-term memories)
into outgoing spatio-temporal patterns of neural activity (i.e.,
long-term memories) (Squire, 1992; Berger et al., 2001, 2005;
Burgess et al., 2002). We have shown in rodents, both in vitro
(Chan et al., 2004; Hsiao et al., 2006) and in vivo (Song et al., 2007,
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2009; Berger et al., 2011, 2012), that a nonlinear hippocampal
model is capable of predicting accurately the output signals based
on the ongoing input signals in the hippocampus. In this study,
we extend this concept by developing a rigorous stimulation
paradigm with control theory, and then implementing it rat
hippocampal slices.

The intrinsic circuitry of the hippocampus consists of three
major subregions: dentate gyrus (DG), CA3, and CA1 as shown in
Figure 1A. This trisynaptic circuit can be maintained in a trans-
verse slice preparation (Andersen et al., 1969, 2000; Amaral and
Witter, 1989). The signal transformations in all three regions are
highly nonlinear and dynamical (Berger et al., 1988; Sclabassi

CA3 CA1DG
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DG CA3

CA1

mossy fiber
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FIGURE 1 | (A) A rat hippocampal slice and its major intrinsic pathways.
The input signals from perforant path fibers excite dentate granule cells.
Dentate output, in turn, excites CA3 pyramidal cells through mossy
fibers. Output from CA3 is transmitted to CA1 pyramidal cells through
Schaffer collaterals. This so-called “trisynaptic pathway” is the principal
network involved in hippocampal neuronal information processing. (B) A
block diagram showing the trisynaptic pathway in a hippocampal slice.
(C) A schematic diagram of a hippocampal prosthesis model functionally
replacing the original pathway, where CA3 is damaged, so the signal

transmission cannot be completed. This bi-directional prosthetic device
receives incoming neural signals from one hippocampal region (DG) and
sends its output to stimulate another hippocampal region (CA1). (D) The
proposed modeling-control paradigm to optimize the stimulation patterns.
In this framework, the desired CA1 output is first predicted with the
DG signal by the trajectory model, and then converted to the desired
stimulation patterns through the inverse model. The desired stimulation
patterns then drives the output system (CA1) to the desired output
responses.
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et al., 1988; Bartesaghi et al., 2006). From an engineering per-
spective, the hippocampal circuit can be viewed as a cascade of
input–output transfer functions between the DG, CA3, and CA1
subregions (Figure 1B). In the context of extracellular recording
as in this study, the evoked field potentials in each subsystem are
measured as input–output signals. For example, the CA3 response
(field excitatory postsynaptic potentials amplitude, fEPSP) can be
used as the input signal to CA1, and the CA1 response can be con-
sidered as the final system output. A schematic diagram of such
a hippocampal prosthesis is shown in Figure 1C, where CA3 is
damaged, thus the signal transmission from DG to CA1 cannot
be completed. In the replacement scenario, the prosthesis model
processes the DG signals and generates optimal stimulations to
elicited desired output response in the CA1 region.

The successful implementation of such a device depends on
three sequential components. First, the device must capture
incoming neuronal signals reliably from the input region. Second,
it must mimic the damaged system precisely through a compu-
tational model. Finally, the device should reproduce the desired
responses in the output region through electrical stimulation.
Thus, through bi-directional communication with the brain, the
prosthetic device could essentially bypass the damaged region and
substitute the lost function.

This paper describes the procedure of deriving optimal
stimulation patterns using an inverse control concept (Houk,
1988; Widrow and Walach, 1996; Camacho and Bordons, 2003;
Normann, 2007). The “trajectory model” is a model that pre-
dicts the desired output response based on the input patterns.
This model can be developed using available knowledge or built
directly from experimental input–output data. The stimulation-
response properties of the output system is described as the “plant
model.” The “inverse plant model” describes a system whose
transfer function is the inverse transformation of the plant model
(Widrow and Bilello, 1993; Widrow and Plett, 1997; Karniel
et al., 2001). This inverse transformation can be determined
once the input–output transformation of the plant model is fully
explored. Once these three models (i.e., trajectory, plant, and
inverse plant models) are built, the signals flow like what is shown
in Figure 1D. Signals recorded from the DG (input) system pass
through the trajectory model to predict the desired output. The
inverse plant model is then used to derive the desired stimulation
amplitudes from desired output. Finally, the CA1 (output) region
generates the controlled output responses. Results show that the
strategy described in this paper is able to control CA1 output
activities (shown in Figure 1D as “Controlled CA1 responses”)
to replicate the CA1 activities recorded from the hippocam-
pal slice with intact trisynaptic pathway (shown in Figure 1B as
“Trisynaptic CA1 responses”).

MATERIALS AND METHODS
The proposed modeling-control paradigm was verified using an
in vitro rat hippocampal slice preparation. Section “Experimental
Procedures” provides an explanation of the methodology used to
prepare the hippocampal slices, and the description of our elec-
trophysiology experimental setup. Section “Modeling-Control
Paradigm Implementation and Data Collection” describes the
estimations and validations of the trajectory model, the plant

model and the inverse plant model, and the associated data collec-
tion and analysis procedures. The overall experimental protocol is
described in section “Modeling-Control Framework Experiment
Protocol.”

EXPERIMENTAL PROCEDURES
Acute hippocampal slice preparation
Hippocampal slices from 8 to 10-week-old male Sprague-
Dawley rats (250–300 gm) were prepared. The animals were
first anesthetized with halothane (Halocarbon Laboratory, USA)
and then decapitated. Their skulls were rapidly removed and
the brain was carefully extracted. Hippocampi were sepa-
rated from the cortices in an iced sucrose buffer solution
(Sucrose 206 mM; KCl 2.8 mM; NaH2PO4 1.25 mM; NaHCO3

26 mM; Glucose 10 mM; MgSO4 2 mM; Ascorbic Acid 2 mM).
Hippocampal slices 400 micrometers thick were sliced trans-
versely from the ventral hippocampi using a vibratome (Leica
VT1000S, Germany). The slices were incubated for at least
1 h in 2 mM MgSO4 artificial cerebral spinal fluid (aCSF) at
room temperature, to equilibrate. During each electrophysio-
logical recording session, one slice at a time was transferred to
the planar multielectrode array. The array attached with a cir-
cular plastic chamber and perfused with normal aCSF (NaCl
128 mM; KCl 2.5 mM; NaH2PO4 1.25 mM; NaHCO3 26 mM;
Glucose 10 mM; MgSO4 1 mM; Ascorbic Acid 2 mM; CaCl2
2 mM) maintained at room temperature (24∼26◦C). In the
recording chamber, each slice was held down by a metallic
ring with nylon mesh attached to it. The positioning of the
slice was accomplished by manipulating the ring with a small
brush. All the solutions were bubbled with 95% O2 and 5%
CO2 mixed gas. The protocol described above was approved
by the Department of Animal Resources and Institutional
Animal Care and Use Committee at the University of Southern
California.

Electrophysiological recording setup and procedures
Electrophysiology data were collected through an extracellular
recording technique using an MEA60 system (Multi Channel
Systems, Germany), as seen in Figure 2. This system con-
sisted of pre-amplifiers (1200× gain), a data acquisition device
(MC_Card), and an 8-channel stimulus generator (STG1008),
all operated using software provided by Multi Channel Systems
(MC_Rack V3.2.0 and MC_Stimulus V2.0.6). A conformal
60-channel planar multielectrode array was made specifically
for this study. The geometry of this conformal array was
designed to match the cytoarchitecture of the hippocampus
slices (Figure 2C) and was platinum based. Details in fab-
rication and the arrangement of the array can be found
in Gholmieh et al. (2006) and Taketani and Baurdy (2006).
Collected data were sampled at a frequency of 10 kHz per
channel and were recorded using MC_Rack. The MEA60 sys-
tem was assembled over an inverted microscope (Leica DM-
IRB, Germany). In each experiment, the position of the slice
on the MEA was captured by a digital image capture sys-
tem (Diagnostic Instruments, Spot RT Digital Camera, USA)
with SPOT (V4.6.4.3) software and Adobe Photoshop (Adobe
V7.0, USA).
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FIGURE 2 | A photo of the electrophysiological recording system.

(A) The MEA60 system and (B) the conformal planar MEA (Gholmieh
et al., 2006; Taketani and Baurdy, 2006). (C) A photomicrograph of a
hippocampal slice on the conformal MEA. The set alignment of this array
is according to rat hippocampal cytoarchitecture covering major subregions

of DG, CA3, and CA1. The waveforms represent the trisynaptic response
of the hippocampal slice recorded in each region. The white lines indicate
the amplitude measurement of DG population spike amplitude and CA1
fEPSP amplitude (see section “FARIT-Induced Trisynaptic Data Collection
and Analysis”).

Stimulation and data collection procedures
In this study, biphasic currents with a 100 μs duration in each
phase were applied to all stimulation patterns. Different stimula-
tion trains were programmed in MC_Stimulus and used to study

the nonlinear properties of different regions. There was a 5–7 min
waiting period between each stimulus train. The evoked neural
responses were simultaneously recorded from different regions.
The channels were first selected based on the placement of the

Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 20 | 230

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hsiao et al. Control hippocampal output in vitro

recording electrodes on the cytoarchitecture of the slices (i.e., DG
channels must be in the DG region, CA3 channels must be in
the CA3 region, etc). Among those channels, the channels with
the largest response (dendritic population spike or EPSP) ampli-
tudes are further selected and analyzed. The main purpose of this
procedure is to find the most representative responses for each
region, channels with small responses or inappropriate place-
ments are not analyzed because their recordings may reflect a
non-cell-body placement or a mixture of activities from multiple
regions.

MODELING-CONTROL PARADIGM IMPLEMENTATION AND DATA
COLLECTION
DG-CA1 trajectory model implementation
FARIT-induced trisynaptic data collection and analysis. An
external bipolar electrode of twisted Nichrome wires was used to
elicit the trisynaptic response. Paired-pulse or quadruplet-pulse
electrical stimulation was applied to the perforant pathway of
each slice using the external electrode to generate electrophys-
iological responses throughout the trisynaptic pathway (evoked
field potentials in DG, CA3, and CA1, as seen in Figure 2C).
When the full trisynaptic response was observed, we stimulated
the slice with a series of fixed-amplitude, random inter-impulse-
interval trains (FARITs). Four 300-pulse Poisson distributed
FARITs of a fixed current intensity (biphasic, 150–300 μA) were
delivered to the perforant path (1200 impulses; range of inter-
vals: 2 ms to 5 s; mean frequency: 2 Hz). Response amplitudes
from selected channels in DG and CA1 regions were analyzed to
build the DG-CA1 trajectory model. The neuron response mea-
surement in DG was population spike amplitude, the amplitude
was calculated by averaging the distance between the negative
peak and the first positive peak (measure “a” in Figure 2C) and
the distance between the negative peak and the second posi-
tive peak (measure “b” in Figure 2C) (Houk, 1988). To measure
responses in the CA1 regions, the field potential amplitude was
defined as the negative peak of the waveform (measure “c” in
Figure 2C).

Trajectory model configuration. A single-input, single-output
discrete model was derived from Volterra series as expressed
below (Marmarelis and Orme, 1993; Marmarelis, 2004):

y(n) = k0 +
M∑

m= 0

k1(m)x(n−m)

+
M∑

m1 = 0

M∑
m2= 0

k2(m1, m2)x(n−m1)x(n−m2)+ . . .

(1)

The zeroth order kernel k0 is the value of output y when the
input is absent. First order kernels k1 describe the relationship
between each single input x(n−m) and output y. Second order
kernels k2 describe the relationship between the output y and each
unique pair of input x(n−m1), x(n−m2). The term n represents
time of occurrence of the present impulse in the input–output
sequence and m represents the interval of the impulses prior

to the present impulse within the kernel memory window M,
m = 0 denotes the present input. The input to the system can be
expressed as a series of variable-amplitude, random-interval delta
functions:

x (ti) =
I∑

i= 1

Aiδ (t − ti) (2)

where i is the index number of impulses and I is the total num-
ber of impulses. The time of occurrence of the ith impulse is ti. In
the DG-CA1 trajectory model experiment, DG population spike
amplitude were used as input (Ai) and CA1 fEPSP amplitude were
used as output y(n). Because the input amplitude is varied, in
order to isolate influence from present input, we considered the
zero-lag terms in the original Volterra series (1) independently, as
follows:

y(n) = k0 + k1(0)x(n)+
M∑

m= 1

k1(m)x(n−m)

+ k2(0, 0)x(n)x(n)+
M∑

m1 = 1

k2(m1, 0)x(n−m1)x(n)

+
M∑

m2 = 1

k2(0, m2)x(n)x(n−m2)

+
M∑

m1 = 1

M∑
m2 = 1

k2(m1, m2)x(n−m1)x(n−m2)+ . . .

and can be then rearranged as:

y(n) = k0 + k1(0)x(n)+ k2(0, 0)x(n)2 +
M∑

m= 1

k1(m)x(n−m)

+
M∑

m1 = 1

M∑
m2 = 1

k2(m1, m2)x(n−m1)x(n−m2)

+2
M∑

m= 1

k2(m)x(n)x(n−m)+ . . . (3)

The first three terms on right represent the static input–output
curve. The last three terms describe the nonlinear dynamical
effect of the inputs on the output. In order to reduce the num-
ber of open parameters, an estimation of the kernels is facilitated
by expanding them on the orthonormal Laguerre basis functions
L (Marmarelis, 1993):

Ll(m) = α(m− l)/2(1− α)1/2
l∑

k= 0

(−1)k
(

m
k

)(
l
k

)
αl− k (1− α)k

where α is the Laguerre parameter (0 < α < 1) and affects the
time extent of the basis functions. The convolution of Laguerre
basis functions L and inputs x can be represented as
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vl(ti) =
∑

ti −μ< tj ≤ ti

AjLl(ti − tj)

where Aj is the input spike amplitude in (2), ti is the time of occur-
rence of the current impulse in the input–output sequence and tj

is the time of occurrence of the jth impulse prior to the present
impulse within the kernel memory window μ. The adapted
Laguerre expansion of Volterra kernels with L basis functions can
be rewritten as:

y(ti) = c0 + Aic1(0)+ A2
i c2(0, 0)+

L∑
l= 1

c1(l)vl(ti)

+
L∑

l1= 1

L∑
l2 = 1

c2(l1, l2)vl1(ti)vl2(ti)

+ 2Ai

L∑
l= 1

c2(l)vl(ti)+ . . . (4)

where c0, c1, c2, . . . are the kernel expansion coefficients. Since
the number of basis functions can be made much smaller than
the memory length, the number of open parameters is greatly
reduced by this expansion technique. The kernel expansion coef-
ficients (c0, c1, c2, . . .) can be estimated via the least-squares
method, and can be used to reconstruct the Volterra kernels (ki)
using Laguerre basis functions (L)

k0 = c0, k1 =
L∑

l= 1

clLl, k2 =
L∑

li = 1

L∑
li = 1

cl1,l2 Ll1,l2

CA1 plant model implementation
RARIT-induced monosynaptic data collection and
analysis. After collecting the FARIT data for building DG-
CA1 trajectory model, in the same slice, paired-pulse stimulation
was applied to the stratum radiatum from a pair of stimulation
electrodes in the conformal array in order to elicit the monosy-
naptic CA1 response. The pair of stimulation electrodes was
selected according to their location and their ability to evoke
typical paired-pulse facilitation. In this set of experiments,
the amplitudes of the FARITs were modified to formulate a
random-amplitude, random-interval trains (RARITs, Gaussian
distributed, mean amplitude: 150 μA, which is the mean
CA1 evoked postsynaptic potential amplitude observed in the
FARIT-induced trisynaptic dataset). Once the pair of stimulation
electrodes were determined, four 300-pulse RARITs were deliv-
ered to the slice. A channel from the CA1 region was selected and
fEPSP amplitudes were analyzed for suitability in constructing
the CA1 plant model.

CA1 plant model configuration. The same Laguerre-Volterra
(LV) modeling approach described in section “Trajectory Model
Configuration” was applied to build a CA1 plant model. In this
set of experiments, the amplitudes of the RARITs (from previ-
ous section) were used as measures of the input signal Ai in (2),

and the fEPSP amplitudes of CA1 were used as measures of out-
put. Once the input–output transformation of the CA1 system
was fully explored, the inverse model can be further derived.

Inverse CA1 plant model implementation
Inverse CA1 plant model configuration. The inverse model was
built to transform the output (i.e., desired output of a CA1
region) to the input (i.e., desired input stimulation to a CA1
region). To develop the inverse model based on the LV model,
the original Equation (4) was rearranged to:

[c2(0, 0)]A2
i +

[
c1(0)+ 2

L∑
l= 1

c2(l)vl(ti)

]
Ai

+
⎡
⎣c0 +

L∑
l= 1

c1(l)vl(ti)+
L∑

l1= 1

L∑
l2 = 1

c2(l1, l2)vl1(ti)

× vl2(ti)− y(ti)

⎤
⎦ = 0 (5)

In (5), the desired output y and the coefficients c0, c1, c2, . . . were
obtained during process of model estimation. All the convolution
terms could also be determined using the coefficients and previ-
ous stimulation amplitudes Ai− 1, Ai− 2, . . . . Once all the terms
are determined, (5) became a quadratic equation with unknown
desired input stimulation (A). It can be simplified as:

aA2 + bA+ c = 0 (6)

where

a = c2(0, 0), b = c1(0)+ 2
L∑

l= 1

c2(l)vl(ti),

c = c0 +
L∑

l= 1

c1(l)vl(ti)+
L∑

l1 = 1

L∑
l2= 1

c2(l1, l2)vl1(ti)vl2(ti)− y(ti)

such that the transformation of the inverse model (output to
input) became an operation of solving A in (6). In this study, the
roots of the quadratic equation can all be calculated from

A = −b+√b2 − 4ac

2a
(7)

The validation of this inverse model implementation is shown
in the result (section “Inverse CA1 Plant Model Implementation
and Validation Results”). All the calculated stimulation ampli-
tude were used to recompose to the new stimulation trains, called
desired-amplitude RITs (DARITs) as described below.

DARIT-induced monosynaptic data collection and analysis. In
this set of experiments, the amplitude of the RARITs (as
used in section “RARIT-Induced Monosynaptic Data Collection
and Analysis”) were reformed using the optimal stimulation
amplitudes calculated from the inverse CA1 plant model (from

Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 20 | 232

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hsiao et al. Control hippocampal output in vitro

previous section “Inverse CA1 Plant Model Configuration”),
named DARITs. Four 300-pulse DARITs were delivered to the slice
through the same pair of stimulation electrodes as RARIT experi-
ments. A channel from the CA1 region was selected and the fEPSP
amplitudes were analyzed.

Model validation
In this study, data were evaluated using the Variance Accounted
For (VAF) and the Normalized Mean Square Error (NMSE) as
described below:

VAF = (1− var(Yi − Xi)/var(Yi))

NMSE =
∑

i

(Yi − Xi)
2
/∑

i

Y2

where X is the predicted amplitude of the model, Y is the ampli-
tude analyzed from the recorded data, and var is the variance
of the data. Specific data sets were chosen for comparison and
are presented in the result section. To evaluate the prediction

power of the models, we have used a cross-validation method, i.e.,
independent datasets are used for model estimation and model
prediction. All model goodness-of-fit reported in this paper are
obtained using this method.

MODELING-CONTROL FRAMEWORK EXPERIMENT PROTOCOL
The experiment protocol to verify our modeling-control
paradigm for an in vitro hippocampal prosthesis involves follow-
ing steps:

1. Stimulating the perforant path (DG input) with FARITs, and
analyzing the trisynaptic responses in DG and CA1; applying
DG population spike patterns as input and CA1 fEPSP pat-
terns as output, building a DG-CA1 trajectory model using an
LV kernel modeling approach (Figure 3A).

2. Stimulating the Schaffer collaterals (CA1 input) with RARITs,
and analyzing the monosynaptic responses in CA1; applying
RARITs patterns as input and CA1 fEPSP patterns as output,
building a CA1 plant model using the LV kernel modeling

B

C

A

CA3 CA1DG

FARITs 
stimulation to DG

DG population spike
 patterns

CA1 fEPSP
patterns

(Trisynaptic)

DG-CA1
Trajectory

Model

CA1

RARITs 
stimulation to CA1

CA1 fEPSP
patterns

CA1
Plant

Model

Inverse CA1
Plant

Model

Apply the
predicted desired output 

as the input to Inverse CA1 Plant Model

Apply DG patterns 
from A (Step 1.)

 as the input

Desired output predicted 
by Trajectory Model

Derived optimal 
stimulation patterns 

DG-CA1
Trajectory

Model

Inverse CA1
Plant

Model

Stimulate CA1 with the 
derived optimal 

stimulation patterns (Step 3.)

CA1

CA1 fEPSP 
patterns (Controlled)

FIGURE 3 | A schematic diagram of the modeling-control experimental

protocol. (A) Stimulating the perforant path with FARITs, and analyzing the
trisynaptic responses in DG and CA1, to build a DG-CA1 trajectory model.
(B) Stimulating the Schaffer collaterals with RARITs, and analyzing the
monosynaptic responses in CA1, to build a CA1 plant model. The inverse
CA1 plant model can then be formulated. (C) Applying DG patterns (from A)

as the input to DG-CA1 trajectory model (built in A) to predict desired CA1
output patterns; applying the predicted desired CA1 output as the input to
the inverse CA1 plant model (built in B) to derive the optimal stimulation
patterns; stimulating at the Schaffer collaterals with the derived optimal
stimulation patterns, and then analyzing the responses in CA1. CA1 fEPSP
amplitudes from A and C can then be compared.
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approach, and then formulating an inverse CA1 plant model
(Figure 3B).

3. Applying DG patterns as the input to DG-CA1 trajectory
model to predict desired CA1 output patterns; applying the
predicted desired CA1 output as the input to inverse CA1
plant model, to derive the optimal stimulation patterns; stim-
ulating at the Schaffer collaterals with the derived optimal
stimulation patterns, and then analyzing the responses in CA1
(Figure 3C).

4. Comparing the CA1 fEPSP amplitudes from Step 1 to those in
Step 3.

RESULTS
The diagrams and performance of the DG-CA1 trajectory and
CA1 plant model prediction, and the inverse CA1 plant model
implementation are presented in this section. The presented pro-
tocol was conducted in six experiments. In each experiment, two
sets of data were collected from a hippocampal slice. The first

dataset was composed of the FARIT-induced trisynaptic data and
was used to build the DG-CA1 trajectory model. The second
dataset was composed of the RARIT-induced monosynaptic data
and was used to build the CA1 plant model. The resulting two
built models and their predictions are presented. This section also
include the implementation of the inverse CA1 plant model, and
lastly, the validation of the modeling-control paradigm used for
regulating CA1 nonlinear dynamics.

DG-CA1 TRAJECTORY MODEL AND THE PREDICTION RESULTS
The FARIT-induced hippocampal trisynaptic data were analyzed
for use in building the DG-CA1 trajectory model. The ampli-
tudes of evoked DG population spikes were used as measures
of the input to the system, and the amplitudes of evoked CA1
fEPSPs were used as measures of output of the system. An LV ker-
nel model was applied to study the nonlinearity of this system.
Examples of the first and the second order LV kernels are shown
in Figures 4A,B, respectively.
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FIGURE 4 | (A) The first order and (B) the second order LV kernel of the
DG-CA1 trajectory model. The singular points and lines showing on the edge
of each figure (indicated by arrows) represent the effect of present input.
(C) A segment of comparison between a FARIT-induced trisynaptic CA1

response amplitude and the amplitude predicted by the DG-CA1 trajectory
model. (D) The Q–Q plot of the data distribution between actual trisynaptic
CA1 responses recorded from the slice and the outputs predicted by the
DG-CA1 trajectory model.
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It should be noted that in Figure 4A, the singular point
represents the K1(0) term in (3). The different polarity in
Figure 4A manifests the importance of isolating the zero lag
terms. In Figure 4B, the singular point represents the K2(0,0)
term in (3), and the two lines indicated by arrows represent the∑M

m1=1

∑M
m2=1 k2(m1, m2) term, while one of the input pairs is

the present input (m = 0).
Model estimation was completed using population spike

amplitudes and the intervals of the input–output sequences. From
all datasets, the slice response amplitudes were analyzed and
compared with the predicted amplitudes. The mean VAF was
65.97 ± 17.30%. In Figure 4C, a segment of FARIT-induced
trisynaptic CA1 fEPSP amplitudes is compared to its counter-
part predicted from the DG-CA1 trajectory model. The result is
further confirmed by an overall comparison between the actual
responses and model predicted outputs, as shown in Figure 4D.

The quantile–quantile (Q–Q) plot demonstrates that the actual
trisynaptic CA1 responses recorded from the slice are accurately
predicted by the DG-CA1 trajectory model.

CA1 PLANT MODEL AND THE PREDICTION RESULTS
The RARIT-induced CA1 monosynaptic data were analyzed for
use in building the CA1 plant model. The random amplitudes
of the RARITs were used as measures of input into the system,
and the amplitudes of evoked CA1 fEPSPs were used as measures
of the output of the system. The LV kernel model was applied
to study the nonlinearity of the CA1 system. Examples of the
first and the second order LV kernels are shown in Figures 5A,B,
respectively.

Model estimation was completed using stimulation inten-
sities and intervals of the input–output sequences. The VAF
between slice response and model prediction was 85.56±
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response amplitudes and the amplitudes predicted by the CA1 plant model.
(D) The Q–Q plot of the data distribution between actual monosynaptic CA1
responses recorded from the slice and the outputs predicted by the CA1
plant model.
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13.91%, averaged from six datasets. This shows that the CA1 plant
model can accurately predict CA1 amplitudes based on stimula-
tion amplitudes. A segment of the RARIT-induced monosynaptic
CA1 fEPSP amplitudes is compared to its counterpart predicted
by the CA1 plant model, as shown in Figure 5C. Figure 5D dis-
plays the Q–Q plot of the overall monosynaptic CA1 responses
and CA1 plant model predicted results.

INVERSE CA1 PLANT MODEL IMPLEMENTATION AND VALIDATION
RESULTS
The implementation of the inverse CA1 plant model is accom-
plished using RARIT-induced monosynaptic data. The purpose
for formulating such an inverse model is to transform output
predictions into input stimulations. The output predictions were
acquired from the CA1 plant model, and applied as the y in
(5). The coefficients c0, c1, c2, . . . were obtained during process
of model estimation. Three terms involved the convolution of
Laguerre basis functions and input amplitude were unknown,
which include

L∑
l= 1

c2(l)vl(ti),

L∑
l= 1

c1(l)vl(ti), and
L∑

l1 = 1

L∑
l2 = 1

c2(l1, l2)vl1(ti)vl2(ti).

Based on our experimental design, no stimulation existed before
the stimulation train was sent, so these unknown terms were
equal to zero. Thus, the first stimulation amplitude can be calcu-
lated by (7). After the first stimulation amplitude was calculated,
it was then applied to convolve with the Laguerre basis func-
tion and formulate the unknown terms for calculating the next
stimulation amplitude. The operations for solving the root were
run through all data points in order to process the transforma-
tion from output into input. As a result, the inverse model allows
us to convert the desired output response amplitudes to input
stimulation amplitudes in a dynamic, recursive manner.

The validation of this inverse model was completed by com-
paring the calculated stimulation amplitudes with the RARIT
amplitudes. The scatter plot in Figure 6 shows that the calcu-
lated stimulation amplitudes and the RARIT stimulation ampli-
tudes are identical, showing that: (1) the real roots could all be
calculated; and (2) this inverse model implementation can suc-
cessfully derive optimal stimulations based on desired response
amplitudes.

MODELING-CONTROL RESULTS
Following the protocol in this modeling-control framework
experiment, CA1 desired output is first predicted through DG-
CA1 trajectory model, and then applied into the inverse CA1
plant model to derive the optimal stimulation amplitudes.
These amplitudes were used to formulate DARITs and were
then sent into the slice, and the monosynaptic CA1 responses
were recorded. The proposed modeling-control framework was
intended to evoke CA1 to produce activities similar to the orig-
inal CA1 activities. Thus, DARIT-induced monosynaptic CA1
amplitudes were compared with FARIT-induced trisynaptic CA1
response amplitudes. Two examples are shown in Figure 7.

Each panel illustrates results from one experiment: ampli-
tudes of fEPSPs recorded from the CA1 region are shown as a
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plant model.

function of 50 impulses chosen from among 2400 impulses of the
stimulation trains (1200 administered with FARIT stimulation;
1200 administered with DARIT stimulation). In order to collapse
the x axis to comprise more data points, time intervals between
impulses are not represented in the figures; only “Input Event”
number (sequence of sample impulses) is shown. Data for the
FARIT-induced trisynaptic CA1 responses (CA1-trisynaptic) are
shown in blue diamonds; data for the DARIT-induced monosy-
naptic CA1 responses (CA1-Controlled) are shown in red squares.
As seen in Figure 7, the variation in CA1 fEPSP amplitudes was
also captured in our model controlled paradigm. The accuracy
was evaluated using NMSE of the amplitude, and the average
NMSE was 15.41± 8.35%. A Q–Q plot compared through the
entire data sets is shown in Figure 8.

DISCUSSIONS
One of the essential objectives of a neural prosthetic device is
to recreate the desired neural responses. While it is important
to develop a reliable hardware model to represent the computa-
tional functions of a system, the control between device stimuli
and actual responses is equally important. For example, in the
application of deep brain stimulation (DBS), many efforts have
been made in calibrating the stimulation parameters to achieve
the desired effect (Mayberg et al., 2005; Okun et al., 2005). DBS
devices depend on a trial-and-error process for finding the opti-
mal stimulation pattern. Patients must repeatedly perform an
exercise for a neurologist to adjust the stimulation parameters
such as voltage, amplitude, pulse width, frequency, and electrode
position (Moro et al., 2002; Volkmann et al., 2002; O’Suilleabhain
et al., 2003). Another example is the application of functional
electrical stimulation (FES) (Riener, 1999; Duffell et al., 2008;
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DARIT-induced monosynaptic response (CA1-Controlled in red squares). The NMSE from 6 datasets was 15.41 ± 8.35%.

Donovan-Hall et al., 2011). The basic principle of FES is the
generation of action potentials in the uninjured lower motor
neurons by external electrical stimulation. This device faces prob-
lems such as muscle fatigue, spasticity, and limited force in the
stimulated muscle. Using control strategies is one way to avoid
internal disturbances and improve the time-consuming trial-
and-error adjustment (Matjacic et al., 2003; Braz et al., 2009).
Current neural prostheses face the same problem—the stimula-
tion signals need to be adjusted manually or empirically based
on the output response. In this article, we describe a rigorous
approach to generate the stimulation patterns using a modeling-
control framework. In the hippocampal slice preparation, with
the purpose of restoring the CA1 output responses observed in

the intact trisynaptic (DG to CA3 to CA1) circuitry, a nonlin-
ear trajectory model was built to predict the CA1 desired output
based on DG input. The predicted CA1 output was then con-
verted to optimal stimulation through an inverse plant model
of CA1 (i.e., an inverse transformation of CA1 input–output
properties). Thus, the stimulation was essentially derived based
on the desired output response, and was used to reactivate the
CA1 response. An experimental validation of this modeling-
control paradigm using hippocampal slices is provided. One of
our preliminary studies was to stimulate CA1 region with non-
optimal stimulation parameters, which means the nonlinearity
of CA1 input–output relationship was not take into concern.
The average NMSE from four experiments was 35.23± 18.21%,
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which is much higher than the modeling-control paradigm
results.

In current experimental paradigm, the only open parameters
is the stimulation intensity, since the desired output responses are
single EPSPs, the stimulations are the standard biphasic pulses,
and there is no frequency (multiple impulses will elicit undesired
multiple EPSPs). We are aware of the fact that in other applica-
tions (e.g., DBS), the phase and frequency are equally important
parameters and also could be optimized. Our current modeling-
control paradigm can be extended and used as a platform for
the optimization of those parameters in the future. We under-
stand that the stimulation site is also critical for this kind of
devices, sometimes the misplacement of the electrode lead could
cause poor efficacy or adverse effects (Richardson et al., 2009;
van den Munckhof et al., 2010). Current clinical DBS surgeries
were assisted with preoperative images analysis (MRI or CT),
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FIGURE 8 | A Q–Q plot demonstration of the data comparison between

the trisynaptic CA1 responses and the paradigm controlled CA1

responses.

and intra-operatively guided with computerized stereotactic tech-
niques. The lead could also be switched with limited-adjustability
to compensate the inappropriate placement issue. By applying
the stimulation electrode array in current experimental setup, the
optimal stimulation site and its influence to the model can be
further evaluated.

Our demonstrations also show that implementing a bidirec-
tional neural prosthesis implicitly replaces the damaged system.
In this approach, we do not need to explicitly estimate the trans-
formational property of the CA3 region in the trisynaptic circuit.
As long as we have the trajectory responses of the output sys-
tem and once we identify the nonlinear input–output relationship
of the output system, we are able to drive it to the desired out-
put through its inverse model. One potential issue here would
be “How to know the desired trajectory responses in the intact
system?” In our opinion, there are several solutions/mechanisms
that can mitigate this problem. First, we may develop a “generic
model” from data recorded in normal animals. Previous stud-
ies have shown that there are significant amount of common
features in the functional input–output properties across dif-
ferent animals, despite the animal-to-animal variations. In the
case described in this study, all trajectory models are qualita-
tively similar in terms of the kernel polarity, kernel duration
and kernel shape. Using model derived from other animals is
imperfect, but at least provides a good approximation. Second,
in behaving animal applications, the “imperfect” outputs gener-
ated by the “imperfect model” will be read out by the downstream
brain regions. Neural plasticity, which is ubiquitous in the cen-
tral nervous system, may play a role in adapting the system to the
imperfect outputs or model. Third, more sophisticated computa-
tional methods such as reinforcement learning can potentially be
used to develop self-adaptive or co-adaptive models.

The paradigm introduced in this paper did not include the
error feedback. This was based on the assumption that the error
observed in the output responses is instantaneous and does not
influence the future output. In order to extend the paradigm to a
closed-loop feedback system (Bernotas et al., 1986; Houk, 1988;
Veltink et al., 1992; Abbas and Riener, 2001; Liu et al., 2011),
the output error, that may caused by the interface between elec-
trodes and nervous systems, the variation of the system, or the
internal disturbance, need to be considered. The trajectory model
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developed in this study can be used as a reference model, which
provide the desired output responses to compare with the actual
responses recorded from output system, to calculate the error sig-
nal (Figure 9). In this case, the feedback error will be used as
an external input signal and sent to adjust the properties of the
inverse model. The influence of the previous errors on the current
output may be taken in to account in a dynamic manner. In such

a scheme, the optimal stimulation signals are calculated by the
inverse plant model based on both the input and error signals.
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Dynamic oscillatory coherence is believed to play a central role in flexible communication
between brain circuits. To test this communication-through-coherence hypothesis,
experimental protocols that allow a reliable control of phase-relations between neuronal
populations are needed. In this modeling study, we explore the potential of closed-loop
optogenetic stimulation for the control of functional interactions mediated by oscillatory
coherence. The theory of non-linear oscillators predicts that the efficacy of local
stimulation will depend not only on the stimulation intensity but also on its timing
relative to the ongoing oscillation in the target area. Induced phase-shifts are expected
to be stronger when the stimulation is applied within specific narrow phase intervals.
Conversely, stimulations with the same or even stronger intensity are less effective when
timed randomly. Stimulation should thus be properly phased with respect to ongoing
oscillations (in order to optimally perturb them) and the timing of the stimulation onset
must be determined by a real-time phase analysis of simultaneously recorded local
field potentials (LFPs). Here, we introduce an electrophysiologically calibrated model
of Channelrhodopsin 2 (ChR2)-induced photocurrents, based on fits holding over two
decades of light intensity. Through simulations of a neural population which undergoes
coherent gamma oscillations—either spontaneously or as an effect of continuous
optogenetic driving—we show that precisely-timed photostimulation pulses can be used
to shift the phase of oscillation, even at transduction rates smaller than 25%. We
consider then a canonic circuit with two inter-connected neural populations oscillating
with gamma frequency in a phase-locked manner. We demonstrate that photostimulation
pulses applied locally to a single population can induce, if precisely phased, a lasting
reorganization of the phase-locking pattern and hence modify functional interactions
between the two populations.

Keywords: oscillations, functional connectivity, modeling, closed-loop systems, optogenetic stimulation, phase

response

INTRODUCTION
Neural activity of brain circuits at many scales has often been
reported to display oscillatory components at different frequen-
cies (Eckhorn et al., 1988; Gray et al., 1989; Kreiter and Singer,
1996; Tallon-Baudry et al., 1996; Roelfsema et al., 1997; Varela
et al., 2001; Brovelli et al., 2004; Samonds and Bonds, 2004;
Melloni et al., 2007; Buffalo et al., 2011). In particular, the
communication-through-coherence hypothesis (Fries, 2005) sug-
gests that oscillatory coherence between different neural cir-
cuits could control functional interactions between them with
a high degree of flexibility (Womelsdorf et al., 2007). In par-
ticular, evidence for a role of enhanced inter-areal oscillatory
coherence in attentional modulation is rapidly accumulating
(Fries et al., 2001; Gregoriou et al., 2009; Rotermund et al.,
2009; Bosman et al., 2012; Gregoriou et al., 2012; Grothe et al.,
2012).

The circuit mechanisms underlying the local generation of
oscillations, specifically in the gamma range of frequencies
(30–100 Hz) have been explored in studies in vitro (Whittington
et al., 1995; Bartos et al., 2007) and in silico (Brunel and Hakim,
1999; Whittington et al., 2000; Brunel and Hansel, 2006; Wang,
2010). All of these contributions have highlighted the crucial role
played by the interplay of GABAergic interneurons in creating
time-windows in which excitatory and inhibitory neurons can fire
in a sparsely synchronized manner, before being counteracted by
strong and delayed feedback inhibition. More recently, the func-
tional involvement of local inhibitory networks could be causally
verified in vivo by targeted selective optogenetic stimulation of
Parvalbumine-positive basket cells in a cortical circuit (Cardin
et al., 2006; Sohal et al., 2009).

In an analogous way, optogenetic techniques might be used for
direct tests of the communication-through-coherence hypothesis

Frontiers in Neural Circuits www.frontiersin.org April 2013 | Volume 7 | Article 49 |

NEURAL CIRCUITS

241

http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/about
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/Neural_Circuits/10.3389/fncir.2013.00049/abstract
http://community.frontiersin.org/people/AnnetteWitt/22007
http://community.frontiersin.org/people/AgostinaPalmigiano/17529
http://community.frontiersin.org/people/AndreasNeef/39114
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AhmedEl_Hady&UID=38567
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=FredWolf&UID=1600
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DemianBattaglia&UID=7242
mailto:fred@nld.ds.mpg.de; demian@nld.ds.mpg.de
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Witt et al. Precisely-phased optogenetic stimulation

and other suggested functional roles of brain oscillations, like
their implication in phase coding (Lisman, 2005; Koepsell et al.,
2010; Nadasdy, 2010; Kayser et al., 2012). For such applications,
however, improved optogenetic stimulation protocols are needed
that allow for precise control of the phase relations between dif-
ferent neuronal populations or assemblies, rather than a pure
enhancement of oscillatory power.

Theoretical investigations suggest that, due to non-trivial
phase response properties (Pikovsky et al., 2001) of oscillating
neuronal populations (Akam et al., 2012), stimulation pulses
might have a strong influence on local and long-range phase-
relations, but only if properly timed with respect to the ongoing
oscillatory dynamics (Tiesinga and Sejnowski, 2010; Battaglia
et al., 2012). Application of phase-timed stimuli requires a real-
time estimate of the phase from continuously recorded local field
potential (LFP) data.

Optogenetic stimulation conditional on recorded activity con-
stitutes a closed-loop setup. The advantage of closed-loop stim-
ulation compared to open-loop stimulation is the possibility to
program an artificial feedback with defined rules and constraints
dependent on the target system’s dynamical history. Closed loop
electrical stimulation has been successfully used to clamp network
activity (Wallach et al., 2011), to control the firing rate of neurons
(Miranda-Dominguez et al., 2010), to control bursting activity
(Wagenaar et al., 2005), and to train cultured neuronal networks
(Marom and Shahaf, 2002). Closing the loop between living neu-
rons and robotics has also been used to realize embodiment—by
using representations generated by network activity either to con-
trol a robotic arm (Bakkum et al., 2007) or control autonomous
systems (Bandyopadhyay, 2005)—or to study neuronal plasticity
(Novellino et al., 2007).

In this study, we explore through a modeling approach the
feasibility of closed-loop optogenetic control of the phase of a
local oscillation and of inter-areal phase synchronization. To this
end, we simulated the activity of populations of excitatory and
inhibitory conductance-based neurons with random connectiv-
ity. To investigate the case where a sparse transduction with
Channelrhodopsin 2 (ChR2) is achieved in vitro or in vivo, small
fractions of these neurons were endowed with a newly devel-
oped and data-constrained conductance-based model of a light-
activated channel. This case is of particular interest, since it has
been shown that low transduction rates achieved through either
particle mediated gene transfer or via lipid reagents (Takahashi
et al., 2012) can increase the spatial specificity of light stimula-
tion (Schoenenberger et al., 2008). Our model, however, applies
robustly also to the case of higher ChR2 transduction rates, as the
ones that can be achieved using viral transfection (Adamantidis
et al., 2007; Aravanis et al., 2007), in utero electroporation
(Petreanu et al., 2007) or in T helper type 1 (Thy1) transgenic
mice (Wang et al., 2007).

Demonstrating the reliability of our model, we first simu-
lated phase shifting of LFP oscillations with open-loop opto-
genetic stimulation, quantitatively reproducing and generalizing
experimental results in vitro (Akam et al., 2012). We moved then
to the analysis of a canonical cortical circuit with two interact-
ing areas. Here, we simulated a realistic closed-loop stimulation
protocol which was suited to trigger lasting changes of inter-areal

phase relations and, correspondingly, to affect communication-
through-coherence. Thus, we intend our modeling exploration
to foster the implementation of a new generation of closed-loop
optogenetic experiments in vitro and in vivo aiming at inducing
distributed reorganization of functional interactions at the system
level.

MATERIALS AND METHODS
ChR2 PHOTOCURRENT EXPERIMENTAL CHARACTERIZATION
Human embryonic kidney cells were transfected with a plasmid
encoding a ChR2-YFP fusion protein. The pcDNA 3.1-ChR2-
YFP construct was kindly provided by Ernst Bamberg, (MPI for
Biophysics, Frankfurt, Germany). After two–four days, success-
fully transfected cells were identified by their YFP fluorescence. In
the whole-cell configuration, the membrane voltage was clamped
to −60 mV. Channelrhodopsin’s conductance was changed by
500 ms long light pulses. The conductance change was moni-
tored as a time and light-intensity dependent current change
(Figure 1B). In the case of cultured hippocampal neurons, cell
were transfected at 7 DIV with AAV1/2-CAG-ChR2-YFP virus.
After 1 week, successfully transduced cells could be identified by
their YFP fluorescence.

Whole-field illumination was provided by an extended laser
beam (488 nm). Light intensity was controlled by neutral density
filters (optical density 1 and 2, respectively) and by means of the
software provided for the laser. A comparison of the light-induced
current waveforms for 90% attenuation by software and a neu-
tral density filter with an optical density of 1.0 showed excellent
agreement, indicating that the software produced the intended
attenuation. The laser was switched using a built-in mechanical
shutter with a response time in the μs range, achieved through
the minute spatial extent of the beam.

BIOPHYSICALLY CALIBRATED MODEL OF ChR2 PHOTOCONDUCTANCE
Based on the results of the previously described experiment,
we modeled the evoked photocurrents as the product of acti-
vation and inactivation functions. The current activation could
be described by a single exponential function and the current
inactivation by the sum of two exponential functions (see also
Figure 1B). This light-induced conductance change could be well
described by the functional form:

FChR2(t) = Aact

(
1− e−

t−tON−d
τact

)

·
(

Apersist + A(1)
inacte

− t−tON−d

τ
(1)
inact + A(2)

inacte
− t−tON−d

τ
(2)
inact

)
(1)

Here d represents a latency observed between the times tON of
light onset and the actual start of the conductance rise and Apersist

is set to Apersist = 1− A(1)
inact − A(2)

inact in order to prevent the inac-
tivation conductance factor from becoming negative. Note that
Equation 1 holds true only as long as the light is switched on.
After switching off the light, the response returns to baseline
with a single exponential time course with time constant τOFF.
When individual current responses were fitted, the latency d, the

amplitude Aact, the inactivating fractions A(1)
inact and A(2)

inact, and
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FIGURE 1 | Evoked ChR2 photocurrent: conductance-based model.

(A) Whole cell voltage clamp recording of a cultured neuron, transduced with
Channelrhodopsine 2 (ChR2) and illuminated with LED light (during the time
interval shown by a green horizontal bar). Two current intensity recordings
have been performed, the first in a physiological solution, i.e., with all
channels active (black curve), the second with TTX in the bath, i.e., with
blocked Na-channels (red curve). When the Na channels are still active (black
curve), even the voltage clamp (−70 mV) at the soma cannot prevent the cell
from spiking. (B) Activation kinetics of the photo-induced conductance in
human embryonic kidney cells (HEK-293) that are transfected with ChR2. For
increasing light power density (100% Wmax corresponds approximately to
130 mW/mm2) the activation becomes faster. Peak conductance increases

from 0 to ∼10% of the maximal intensity and decreases for higher light
intensities. Note the different scale of evoked currents in neurons and HEK
cells. (C) Simulated photocurrents generated by the conductance-based model
described by Equation (1), for different light intensities (expressed relatively to
maximum illumination intensity) and for a rectangular shaped light pulse
stimulation with a duration of 3 ms. Model parameters and their dependence
on light intensity (see Table 2) are obtained from fits to photoconductance
recordings analogous to the one shown in panel (B), performed for different
light intensities. For short light pulses as used here, the experiments indicate
that the largest conductances are obtained for light intensities between 10%
and 50% (interpolation of the simulated photocurrent results in an optimal
value of 18% of the maximum light intensity).

the activation time constant τact were found to be dependent on
the light-intensity Wlight when individual current responses were
fitted. However, the time constants related to inactivation were
almost unchanged for different light intensities. Therefore, for
simultaneously fitting current responses evoked by different light
intensities (ranging over two orders of magnitude), two global

(i.e., light-independent) parameters τ
(1)
inact and τ

(2)
inactwere used. In

order to model the dependence on the light intensity of the other

parameters (d, τact, Aact, A(1)
inact, and A(2)

inact) we fitted the following
functions to the recorded data:

d = dA + dBWlight + dC

Wlight
(2)

τact = τ
(0)
act + cacte

−kactWlight (3)

Aact = a0 + amin − 1

1+ (W0.5/Wlight
)2

(4)

A(1)
inact = b0 + b1

b2 +
(
Wlight −Winact

)2
(5)

A(2)
inact = cinacte

−kinactWlight (6)

All the parameters of Equations (2–5) are the result of least-
squared fits. For Equation (6) kinact has been set manually to

assure convergence of the fitting procedure. All fitted parame-
ters of the ChR2 conductance model, together with their standard
deviations, are summarized in Table 1. Light intensity is mea-
sured relatively to the maximum intensity Wmax that can be
achieved in our setup. A precise calibration of the absolute power
density at the maximal intensity was not performed. We have esti-
mated it to be approx. Wmax = 130 mW/mm2 for a continuous
illumination, which is rather high if compared to 5–6 mW/mm2

used by Ishizuka et al. (2006) and Ernst et al. (2008) and the
maximum (around 20 mW/mm2) used in Nikolic et al. (2009).

ChR2-TRANSDUCED NEURONAL POPULATIONS MODEL
A local neuronal population was modeled as a random net-
work of NE = 4000 excitatory and NI = NE/4 = 1000 inhibitory
conductance-based model neurons of the Wang-Buzsáki (WB)
type (Wang and Buzsáki, 1996). The WB model describes a sin-
gle compartment neuron endowed with sodium and potassium
currents. The membrane potential follows the equation:

C
dV

dt
= −IL − INa − IK + Isyn + Inoise + κIChR2 (7)

where C is the capacitance of the neuron, IL = gL(V − VL) is
the leakage current, Isyn reflects recurrent interactions with other
neurons in the network, Inoise models the driving exerted by
background noise and IChR2 is the photocurrent-induced by
external light stimulation. Sodium and potassium currents are
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Table 1 | Parameters of the ChR2 conductance model.

Type of parameter Parameter Value ± SD l.sq fit (unit)

Latency dA 0.27± 0.04 (ms)

dB −0.05± 0.06 (ms/[Wlight])
dC 0.0126± 0.0006 (ms× [Wlight])

Activation τ
(0)
act 0.74± 0.20 (ms)

cact 12.0± 0.4 (ms)

kact 25 ± 2 (1/[Wlight ])

a0 1.00± 0.04

amin 0.4± 0.1

W0.5 0.38± 0.15 ([Wlight])

Inactivation (first
component)

τ
(1)

inact 9.06 (ms)

b0 0.16± 0.01

b1 0.013± 0.004 ([Wlight]2)

b2 0.027± 0.007 ([Wlight]2)

Winact 0.11± 0.01 ([Wlight])

Inactivation (second
component)

τ
(2)

inact 59.6 (ms)

cinact 0.29

kinact 2.4 (1/[Wlight])

Deactivation τoff 10 (ms)

Coupling prefactor gChR2 0.007 (μS)

Parameters to simulate time and light-intensity dependent conductance changes

mediated by channelrhodopsin 2. Errors are sample standard deviations.

Parameters returned from the global fit procedure do not have a measure of

uncertainty. See section Materials and methods for the model description.

voltage-dependent and given by INa = gNam3∞h(V − VNa) and
IK = gK n4(V − VK). The activation of the sodium current was
modeled as instantaneous. We used sodium and potassium cur-
rent voltage-dependent activation and inactivation functions as
given in Wang and Buzsáki (1996).

The synaptic current evoked by a single presynaptic action
potential was given by Ispike(t) = −gαsspike(t)(V − Vα), where
the reversal potential Vα of the synapse is 0 mV for excita-
tory AMPA synapses (α = E) and −80 mV for inhibitory GABA
synapses (α = I). The time-course of the postsynaptic conduc-
tance was described as a difference of exponentials:

sspike(t) ∝
(

e−(t+ dsyn− tspike)/τrise − e−(t+ dsyn− tspike)τdecay

)
(8)

for t > tspike, 0 otherwise, where tspike is the time of the presy-
naptic spike, dsyn is a combined conduction and synaptic delay,
and τrise and τdecay are respectively the rise- and decay time con-
stants. The normalization constant of sspike(t) was chosen such
that its peak value is equal to 1. The peak conductances of all exci-
tatory and inhibitory synapses were set to gE and gI , respectively.
The total recurrent current Isyn(t) was then given by the sum of
the contributions Ispike(t) from all presynaptic spikes fired before
time t.

The background noise input Inoise to each neuron was modeled
as an additional synaptic current-induced by statistically indepen-
dent Poisson trains of excitatory spikes with a common firing rate
νnoise and a peak conductance gnoise.

Excitatory and inhibitory neurons in the populations were
transduced by ChR2 with a same probability, given by the
transduction rate PChR2. The photocurrent prefactor κ was set
to 1 and 0 respectively for transduced and non-transduced
neurons. The induced photocurrent was given by IChR2(t) =
−gChR2FChR2

[
Wlight(t)

]
(V − VChR2). The conductance wave-

form FChR2(t) given by Equation (1)—that depends on the
applied waveform Wlight(t) of the optical stimulation—was mul-
tiplied by a prefactor gChR2, such that the peak photocurrent
evoked by a pulse with optimal light intensity in the used model
neurons (simulated at resting potential) was 2 nA . The reversal
potential was VChR2

∼= 0.
Excitatory neurons established synapses with other excitatory

or inhibitory neurons within the same local circuit with prob-
ability PE, inhibitory neurons with probability PI . In addition,
when considering multiple interconnected local areas, excitatory
neurons within a local circuit established long-range connections
with excitatory or inhibitory neurons in a remote local area with

a probability P(lr)
E .

ADOPTED PARAMETERS AND OSCILLATORY SYNCHRONY
The neuronal population model described in the previous sec-
tion can generate two qualitatively different dynamical regimes,
characterized by different degrees of oscillatory coherence. The
network resides in one or the other regime depending both on the
drive to the network, controlled in this study by varying the back-
ground firing rate νnoise, and on the strength of local inhibitory
interactions, controlled in this study by varying the probability of
inhibitory connection PI .

The single neuron and network parameters used for all simu-
lations are summarized in Table 2. However, we note that qual-
itatively similar dynamical features, in particular the existence
of a smooth transition between a weakly and a strongly syn-
chronous oscillatory regime, would be obtained for a broad range
of parameters, with the frequency of the collective oscillation
primarily determined by the synaptic time constants, τrise and
τdecay, (Brunel and Wang, 2003). We also find that the transi-
tion toward strong synchrony tends to get sharper with increasing
network size [not shown, but see as well (Brunel and Hakim,
1999)].

Synchronization of the population activity was quantified
through the synchronization index χ (Golomb and Hansel,
2000):

χ = σ2
LFP

〈σ2
Vi
〉 (9)

given by the ratio between the variance of the average membrane
potential of all excitatory and inhibitory neurons in the local
population—here briefly defined conventionally as the “LFP”
signal—and the average variance of the membrane potentials
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Table 2 | Parameters of the spiking neuronal network model.

Type of parameter Parameter Value (unit)

Single neuron gL 0.01 (μS)

VL −65 (mV)

C 100 (pF)

gNa 3.5 (μS)

VNa 55 (mV)

gk 0.9 (μS)

Vk −90 (mV)

m∞, h, n See Wang and Buzsáki

(1996)

Population size NE 4000

NI 1000

Excitatory synapses τrise 1 (ms)

τdecay 3 (ms)

gE 0.5 (μS)

Inhibitory synapses τrise 1 (ms)

τdecay 4 (ms)

gI 18 (μS)

Synaptic latencies dsyn (local) 1.5 (ms)

dsyn (long-range) 1.0 (ms)

Connection probabilities PI 0.3

PE 0.12

P(lr)
E 0.06

Background noise vnoise 3 (kHz)

gnoise 0.5 (μS)

Parameters to simulate the activity of transduced neuronal populations (see

section Materials and methods for the model description).

Vi of individual neurons in the population. The synchroniza-
tion index χ is bounded in the unit range, χ = 0 meaning
asynchronous and χ = 1 fully synchronous dynamics.

The dependency of firing rate of excitatory and inhibitory neu-
rons, of the collective oscillation frequency and of the synchrony
level χ was studied by systematically varying the parameters νnoise

in the range between 2 and 6 kHz and PI between 0.2 and 0.6
(the reference values, tabulated in Table 2, being νnoise = 3 kHz
and PI = 0.3). All the quantities were evaluated over simulated
time-series lasting 20 s of real time.

ANALYSIS OF PHASE RESPONSE
Although the simulation generates spike trains for all neurons,
we focus here on alterations of the ongoing collective activity
and, therefore, on the oscillating LFP signal. A single rectangular-
shaped light pulse with a given intensity Wlight and duration
Tlight was applied to the considered network at a specific time
of application tON. For different values of Wlight and Tlight, we
tested the effects of overall 1500 different light onset times tON,
distributed uniformly over a time interval of approximately 50
oscillation periods. Indeed, averaging over multiple periods was
required, because of stochastic fluctuations of the period length.

For each stimulation pulse, the activity of the network was further
simulated over 60 oscillation cycles following the perturbation.

In every simulation run, the initial conditions, the network
topology and the background noise were kept identical, in order
to exclusively study the dependence of the induced perturbation
on the parameters of the light stimulation and its application
time. Pairs of LFP time series were thus generated consisting of
a time series after the application of a photostimulation and a
time series of the corresponding unperturbed neural dynamics.
For every such pair of time series, instantaneous phase values were
extracted using a Hilbert transform (Gabor, 1946), an approach
extensively used for investigating phase dynamics and synchro-
nization of non-linear oscillators (Pikovsky et al., 2001). The
induced phase shift was then measured by averaging the phase
difference �φ between the perturbed and the unperturbed LFPs
over the last 50 recorded oscillation cycles. A transient of 10 oscil-
lation cycles immediately following tON was discarded to ignore
transient effects caused by the applied light pulse. The times
of perturbation application tON were translated into phases and
binned into 30 equally sized phase bins. The observed phase shifts
�φ were averaged over each bin and plotted as a function of the
phase of perturbation application φ(tON) for different light inten-
sities Wlight and perturbation pulse duration Tlight, and also for
networks with different transfection rates PChR2.

The dependency of phase responses on varying values of light
intensity, pulse duration and timing of the perturbation were
investigated for a specific realization of the network random
connectivity. We have repeated our analysis for three different
random realizations of connectivity (with the same homogeneous
probabilities of connection, PI and PE). The corresponding phase
responses to light stimuli were qualitatively and quantitatively
very similar (not shown). In particular, differences between ran-
dom network instances were of the same order of magnitude as
the error bars shown in Figure 4, corresponding to fluctuations
of the phase response over time for a same connectivity realiza-
tion. These similarities are not surprising and match theoretical
expectations, since dynamical effects arising from fluctuations
due to finite-size connectivity are small for the large network size
adopted here (Golomb and Hansel, 2000). Therefore, we can con-
clude that our results hold in general for random networks with
the same (in a probabilistic sense) connectivity features.

ANALYSIS OF PHASE LOCKING CHANGES
If two coupled neuronal populations are simulated with the
parameters given in Table 2, the oscillations of the two LFPs
self-organize in a phase-locked configuration. The temporar-
ily stable relative phase difference, �φ, can have two different
values: �φlocked or 1−�φlocked (phases are measured over the
cyclic unit interval 0 ≤ φ ≤ 1). Both phase-locking values corre-
spond to out-of-phase configurations in which either of the two
populations leads in phase over the other.

In our simulations, only one of the two local neuronal pop-
ulations was transduced with ChR2. We applied light stimula-
tion pulses to this transduced population, with a light intensity
Wlight = 20% (expressed as the percentage of the maximum pos-
sible light intensity of our setup Wmax) and a pulse duration of
Tlight = 3 ms. Similar to the protocol used for the phase response
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analysis of a single population, 1500 different pulse onset times,
tON, were used, which were uniformly distributed over 50 oscil-
lation cycles. Starting from random initial conditions, no pertur-
bation was applied for the first 100 oscillation cycles, to ensure
complete convergence to a stable phase-locked attractor. Without
loss of generality, we considered the configuration in which the
phase of the transduced population leads over that of the not
transduced population (i.e., in which the stable inter-circuit phase
difference is close to �φlocked before the perturbation).

Variations of the phase-difference between the two popula-
tions were measured in two different time-windows. We first
studied the short-term effects of the light stimulation, by aver-
aging the instantaneous Hilbert phase difference over the first 5
oscillation cycles after the perturbation. Binning different onset
times according to the corresponding phase of application of
the perturbation (as done for the estimation of single popula-
tion phase response), we quantified the probability Pshifting(φ),
that a light pulse induces a relative variation of more than 10%
(reduction or increase) of the inter-population phase-difference.
For each application phase bin, Pshifting(φ) was compared with the
probability of observing similarly large spontaneous fluctuations
of �φ in the unperturbed activity of the same network.

We then studied longer term effects of the light stimulation
by averaging the difference of the instantaneous Hilbert phases
over the 50 cycles that follow the ten omitted oscillation cycles
directly after stimulation. The aim of this long-term analysis was
to assess the occurrence of a switching from the phase-locking
pattern with phase-difference close to �φlocked toward the other
phase-locking pattern with phase difference close to 1-�φlocked.
Once again binning onset times according to the corresponding
phase of perturbation application, we quantified the probabil-
ity Pswitching(φ) that the long-term averaged phase difference was
within a tolerance interval of 1−�φlocked ± δ, with δ = 0.05
(i.e., the transduced population switched steadily from the role of
phase leader to phase laggard). For each phase bin, Pswitching(φ)

was compared to the probability of observing a spontaneous
switching of the phase locking (from �φlocked to 1-�φlocked) over
an equivalent time span of 50 cycles, based on time-series of the
unperturbed dynamics of the same network.

The probabilities Pshifting(φ) and Pswitching(φ) were finally plot-
ted as polar histograms with ten equally-spaced bins for the phase
of the onset of the light stimulation φ(tON), in which the corre-
sponding probabilities of spontaneous shifting or switching were
also reported in order to identify phase bins in which the effects
induced by the perturbation pulse were significantly low or high
(Figure 5).

ONLINE PHASE PREDICTION
A closed-loop approach (Figure 6) is necessary to estimate a time
tON which corresponds to a future occurrence of a given tar-
get phase φtarget, leading to the largest possible probability of
switching of the inter-areal locking (Figure 5).

To study the feasibility of such an approach, we modeled its
implementation, considering the same bi-areal network used to
characterize induced switching between phase-locked states (see
previous section and Figure 5). Simulated LFPs were recorded
from both the stimulation target area and a second coupled

area. However, the calculations performed online involved only
the LFP time-series V(t) recorded in the target area. The time-
series Ṽ(t) of the second area were recorded and analyzed
offline to determine phase-locking patterns before and after the
stimulation.

We approximated the “true” Hilbert phase φH(t) associated to
V(t) by a linearly interpolated phase. This approximation could
be simply done by interpolating a variable φL(t)that was lin-
early growing in the unit interval 0 ≤ φL < 1 between any two
times tk and tk+1 delimiting an oscillation cycle. As shown by
Figure 7B, the phase variables φH(t) and φL(t) are related by a
mildly non-linear map, described as a static non-linearity φH =
fLH(φL). However, we systematically ignored this non-linearity in
the following by approximating φH(t) directly by φL(t).

The workflow for the prediction of the perturbation onset time
tON is split up into multiple stages (Figure 6). First of all, it was
necessary, during a testing stage, to detect the presence of suf-
ficiently strong local oscillations and to measure their average
frequency fpeak. It was important to monitor the characteristics
of LFP oscillations (band-passed around fpeak) in the stimulation
target area (monitoring stage) and to extract, based on observa-
tions of past activity, a model able to approximately predict future
phase evolution (prediction stage).

Even in the ideal case of an elevated synchrony index χ and
sustained oscillations, the duration of oscillation periods Ti fluc-
tuated from cycle-to-cycle around their average T̄(cf. Figure 7A).
Let us suppose that the last oscillation period recorded in the
monitoring stage was Tk = tk − tk−1 and that the prediction
stage lasts (less than) s oscillation cycles. Neglecting correlations
between period lengths of consecutive cycles, the time of begin-
ning of the next cycle after the end of the prediction stage could
be estimated via a simple linear extrapolation:

t(0)
k+ s = tk + sT̄ (10)

However, for our network model, the temporal autocorrelation
function of period lengths Ti, i = 1, . . . , k displayed a fast but not
instantaneous decay for increasing lags (measured in oscillation
cycles). These weak, positive correlations between consecutive
cycle durations could be well captured by a first order autore-
gressive process [AR(1)], Ti = T̄ + a(Ti− 1 − T̄)+ εi, with T̄ the
average oscillation period over the monitoring time-window, a
the AR(1) coefficient and i an i.i.d. Gaussian distributed residual
noise term (Brockwell and Davis, 1996). With this AR(1) model,
the beginning of the next cycle was estimated as:

t(1)
k+ s = tk + sT̄ +

(
as+ 1 − a

a− 1

)
· Tk (11)

The AR(1) coefficient was derived as:

a = k

k− 1

∑k− 1
i= 1

(
Ti − T̄

) (
Ti+1 − T̄

)
∑k

i= 1

(
Ti − T̄

)2
(12)

based on the periods Ti, i = 1, . . . , k, measured during the mon-
itoring stage and on their average duration T̄.
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Spectral analysis of LFPs recorded in the stimulation target
area and in a second coupled area was performed during the test-
ing stage. A windowed Fast Fourier Transform (FFT) was applied
to demeaned chunks of the LFP signal, to extract a rough esti-
mate of the instantaneous power spectrum. When the power at
some frequency fpeak in the gamma range exceeded a determined
threshold in both recorded areas, the monitoring stage started.

During the monitoring stage, a computationally efficient low-
order recursive time domain filter (Percival and Walden, 1993)
was applied to clean the oscillating LFP signals. The filtered time-
series was computed online as:

Vfiltered(t) = V(t)+ α1Vfiltered(t − 1)+ α2Vfiltered(t − 2) (13)

Filter coefficients were chosen as α2 = −0.99 and α1 =
4α2 cos(2π(1− fpeak))/(1− α2) (assuming a sampling rate of
1 kHz). The pass frequency was then equal to fpeak and the main
frequency of the activity of recorded areas was maintained. The
LFP time-series V(t) and Ṽ(t) recorded during the monitoring
stage were stored. An analysis of the inter-areal phase-locking
pattern before stimulation was then performed offline, while
the closed-loop experiment was continuing. A monitoring stage
including approximately 20 oscillation cycles was found to be
sufficiently long to achieve accurate model estimation.

The limited amount of fast computations to be performed
during the prediction stage is summarized as follows:

1. Subtract the mean value from the band-passed LFP time series
Vfiltered(t) measured during the monitoring window in the
stimulation target area.

2. Calculate the timings t0, t1, . . . , tk at which the LFP Vfiltered(t)
crosses zero. Their differences Ti = ti − ti− 1, i = 1, . . . , k are
the estimated period lengths of the observed oscillations.

3. Calculate the average period length T̄ from the series of Ti.
4. If the AR(1) approach is used, then compute the a coeffi-

cient based on equation (12) and compute the perturbation

onset time as t(1)
ON = t(1)

k+ s + φtargetT̄, where t(1)
k+ s is given by

Equation (11).
5. If a simpler linear extrapolation is used, compute the pertur-

bation onset time directly as t(0)
ON = t(0)

k+s + φtargetT̄, where t(0)
k+s

is given by Equation (10).

After the application of the perturbation pulse, the LFPs of
both areas were recorded and stored. An analysis of the inter-
areal phase-locking pattern after stimulation was then performed
offline and compared to the phase-locking assessed before stim-
ulation. In case of failed switching, either the same linear model
was used to extrapolate directly the time tON of a further stim-
ulation pulse, or a new testing stage was initiated, verifying that
oscillations were still ongoing or waiting for the next oscillatory
epoch to begin.

The decision between a prediction scheme based on the AR(1)
model and a simpler linear extrapolation scheme depends ulti-
mately on the correlation statistics of the series of period lengths.
It can be shown that the prediction error of the estimated phase
is reduced by the AR(1) prediction scheme compared to lin-
ear extrapolation by a maximal amount of 100%/

√
1− a2 (and

by exactly this amount for Gaussian distributed samples). If the
AR(1) parameter a estimated from the recordings during the
monitoring window is small (as a rule of thumb, a < 0.3), then
the performance improvement is negligible and advantage can be
taken from the faster computation of the simpler linear extrapo-
lation. Unfortunately, this criterion requires the evaluation of a.
Nevertheless, the analysis of Figure 7E indirectly suggests that the
AR(1) coefficient depends non-monotonically on the synchrony
level, and that it increases going from low to intermediate syn-
chrony indices χ, but drops again going toward higher χ. The
choice of a high power threshold during the testing stage guar-
antees a high level of synchrony and, therefore, small values of a
during the monitoring stage. This allows one to adopt the compu-
tationally faster step (5) instead of (4). However, a tradeoff should
be made between the need of a fast prediction and the probability
to detect a number of oscillatory epochs sufficient for meeting the
testing stage criteria.

RESULTS
DATA-CONSTRAINED MODEL OF ChR2-PHOTOCURRENT
In order to assess from in silico experiments the efficacy of opto-
genetic stimulation in inducing changes of local phase or of
inter-areal phase relations, we first derived a realistic and fully
data-constrained model of the evoked ChR2 conductance. To
do so, we first performed an experimental characterization of
photocurrents evoked in living cells in vitro by light stimulation
over a broad range of light intensities spanning two decades of
power (see section Materials and Methods). Then, based on this
systematic set of measurements, we fitted to the whole dataset
a unique conductance-based model that describes the evoked
time-dependent photocurrent, and hence the conductance, as the
product of activation and inactivation factors.

The light-activated ChR2 ion channel mediates a current that
is carried mostly by Na+, K+, and H+ with contributions of Ca2+.
Its reversal potential is typically around 0 mV and therefore it is
depolarizing at neuronal resting potential. We found that upon
illumination onset, a current built up with a nearly exponential
time course with a time constant τact ranging from 10 ms, for very
weak light intensities that barely evoked any current response,
to below 1 ms for high intensities. For a large range of intensi-
ties the current displayed a transient behavior and its amplitude,
after reaching a peak, decayed over tens of milliseconds to reach
a plateau. This inactivation behavior was biphasic and its time
constants were not dependent on light intensity, unlike the acti-
vation time constant. Finally, when the light was switched off, the
current decayed back to baseline with a time course that was well
described by a single exponential with a 10 ms time constant.

Figure 1A depicts inward currents induced by a light pulse
of moderate intensity (approximately 3 mW/mm2 for 10 ms) in
a cultured hippocampal neuron transduced with ChR2. Even
such a weak light pulse was able to elicit an action current, as
the axon escaped the voltage-clamp (Figure 1A, black line). The
ChR2 photocurrent could be isolated, by blocking Na-channels
with tetrodotoxin (Figure 1A, red line).

To achieve an improved characterization of the photocurrent
time-course, we systematically analyzed recordings over (non-
spiking) transfected kidney cells (Figure 1B) using a very large
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range of light power densities for the characterization of ChR2
activation and inactivation kinetics. We found that the peak and
steady state photocurrent do not increase monotonically with
light power density. A maximal peak current is achieved around
10–20% of the maximum power density (see section Discussion).
For applications, where such power densities can be attained, for
instance with a laser or a strongly focused LED, a careful tuning
of the applied light intensity could thus potentially reduce the
minimum transduction rate needed to efficiently drive the local
oscillations in a target area.

As detailed in section Materials and Methods, it was possible to
capture the time-course of the evoked ChR2 current with a single
conductance-based model with light-dependent parameters. The
simulated photocurrents generated by the model in response to a
single square pulse of light lasting 3 ms are shown in Figure 1C
for various light intensities (corresponding to the typical short
pulse length used in the simulations of next sections). As evident
from Figure 1C, our data-constrained model was able to cap-
ture the non-monotonic dependence of peak photocurrent on the
light intensity, leading to the largest peak photocurrent for a light
intensity of approximately 18% the largest deliverable intensity
Wmax.

SPIKING NETWORK MODELS OF TRANSDUCED OSCILLATING AREAS
To study the response to light stimulation of systems involving
transfected neuronal areas, we simulated the activity of simple
canonic circuits composed of just one local area or of two local
areas mutually coupled with equal strength. Each area was mod-
eled as a large network of randomly interconnected excitatory and
inhibitory neurons. As shown in Figure 2A, a fraction of these
excitatory and inhibitory model neurons were equipped with
ChR2 photoconductances, inducing depolarization in response to
simulated light stimulation.

For most of the analyses reported in this study, we adopted
within each local area strong and delayed inhibition and a suffi-
ciently strong background drive (see Table 2). With such a choice
of parameters, local circuits underwent—through an “ING”-
type (i.e., “interneuron-generated”) mechanism (Whittington
et al., 2000; Brunel and Wang, 2003; Brunel and Hansel, 2006;
Tiesinga and Sejnowski, 2009) a marked and persistent oscil-
latory activity, well visible in the traces of a LFP-like signal.
The collective frequency of oscillation was in the gamma range.
Since driving was provided by background Poisson noise, the
spiking activity of individual neurons was very irregular and
characterized by a weaker firing rate (cf. Figure 2B). Weak
pairwise correlations between spike trains coexisted thus with
stronger pairwise correlations between membrane potential fluc-
tuations (Yu and Ferster, 2010; Battaglia and Hansel, 2011). While
inhibitory connections were confined within each local area,
excitatory neurons could additionally establish long-range con-
nections between distant local areas (Figure 5A). In this case,
the gamma oscillations generated by each local circuit were
set into one of many possible multistable phase-locked states
(Figure 5B).

The dynamical features of the simulated neural activity,
including in particular its degree of oscillatory synchrony,
depended sensibly on the noisy drive to the network and on the
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FIGURE 2 | Model of a ChR2-transduced population. (A) Graphic cartoon
of a randomly-connected network of inhibitory and excitatory spiking
neurons. In order to model the effects of local ChR2 transduction a variable
fraction of the neurons is endowed with a ChR2 photoconductance. (B)

Sample activity from the local circuit model of panel (A). Due to strong and
delayed recurrent mutual inhibition, the network undergoes a collective
oscillatory activity with a frequency in the gamma range. Even when
oscillations at the population level are very regular (see an example
“LFP”—i.e., average membrane potential—time series), individual neurons
spike very irregularly with a much lower firing rate (see raster plot of the
activity of 100 excitatory neurons).

strength of local inhibition. For increased drive intensity and/or
stronger inhibitory interactions, a smooth transition occurred
toward a dynamic regime characterized by elevated collective
synchronization (Figure 3A). In this synchronous regime, the fre-
quencies of the network oscillation were in the gamma range,
varying between 40 and 70 Hz (Figure 3B), while the average fir-
ing rate of individual excitatory neurons varied between 1 and
3 Hz (Figure 3C) and of inhibitory neurons between 2 and 7 Hz
(Figure 3D).

Starting from a very wide range of parameters including the
probability of inhibitory connections and the strength of the
external driving force (Figure 3), oscillatory synchrony can be
robustly boosted by enhancing the external drive to the net-
work. Qualitatively reproducing existing experimental findings
(Adesnik and Scanziani, 2010; Akam et al., 2012), our simulations
showed that slowly ramping or constant low-intensity optoge-
netic stimulation can be used to “switch on” a markedly oscil-
latory behavior. As shown by Figure 3E a network with poorly
synchronous activity can be optogenetically driven toward higher
oscillatory synchrony, as evident not only from LFP spectrograms
but also visually from LFP traces.

In the following, we will mainly consider model networks
tuned to generate strong LFP gamma oscillations. However, such
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FIGURE 3 | Driving the network toward coherent oscillations. The
dynamical regime of a neuronal population depends on the strength of
local inhibition (parameterized by the probability pI of inhibitory
connections) and on the strength of an external driving force
(parameterized by the rate νnoise of background inputs). Shown are the
synchronization index (A) which has values in the unit interval (0
corresponds to asynchronous and 1 to perfectly synchronous dynamics);
the oscillation frequency of collective activity (B); and the average
firing rates of excitatory (C) and inhibitory (D) neurons. All four quantities

are presented in their dependence on the probability of inhibitory
connections, PI , and the rate of background noise input, νnoise. (E)

Constant or slowly ramping optogenetic stimulation increases the
external drive to a neuronal population. This results in intensified
collective oscillations and enhanced synchronization at the population
level. From top to bottom: LFP time-series (purple) observed during a
slowly ramping photostimulation (green); the associated spectrogram
(graph at the bottom) indicates the development of highly coherent
gamma oscillations as an effect of continuous photostimulation.

a choice is not an arbitrary restriction. Indeed, high synchrony
regimes—either spontaneously emergent or induced artificially
by continuous photostimulation—are particularly suited for
analyses of phase shifting and locking.

SHIFTING THE PHASE OF AN ONGOING LOCAL OSCILLATION
It is well known that the effect of a perturbation to an oscillat-
ing system depends on the phase at which the perturbation is
applied (Pikovsky et al., 2001). To explore the phase dependency
of light stimulation, we applied simulated stimulation pulses
with different durations Tlight to local populations with different
transduction rates PChR2 (Figure 4). Light intensity was always
set to the optimum value of Wlight = 18% Wmax, which led to
maximum evoked peak photocurrents.

For all the explored conditions, we always found strongest
effects on the phase of an ongoing oscillation when the pertur-
bation was applied at a phase half-way between the trough and
the peak of the collective population oscillation (Figure 4B). In
this case the phase of the perturbed oscillation was advanced
with respect to the unperturbed case (Figures 4C,D). Short pulses
lasting 1 or 3 ms led only to phase advance effects. As shown
in Figure 4C, phase advances of the order of one quarter of a
cycle could be achieved using such short pulses, over a very wide
range of transduction rates, going from very high (100%) down
to moderate (25%). Noticeable phase advance effects (although
reduced to just one tenth of a cycle) could even be detected for
transduction rates as low as 5%.

As displayed by Figure 4D, longer stimulation durations also
led to phase lagging effects. These effects occurred in different

ranges of perturbation application phases than for phase advanc-
ing effects. However, phase lagging effects were always weaker
than phase advancing effects. For instance, for a transduction rate
of 25%, pulses lasting 10 ms could induce phase advances of over
a quarter of cycle, but only phase laggings of less than one tenth
of cycle.

The positive peaks of the phase response curves (PRCs) plotted
in Figures 4C,D were aligned across all conditions. The strongest
phase shifting effects were always observed when the perturba-
tion was applied in proximity of the phase φ = 0.17. We also
mention that for the short stimulation duration used, the evoked
photocurrent was dominated by the fast activation time-course.
Inactivation played no role in determining the response. As a mat-
ter of fact, the effect of the fast initial rise of the photocurrent was
to evoke a spike in the transduced neurons, as in panel 1A, and
additional synchronous spikes evoked in a subpopulation of cells
were the dynamic cause of the induced phase shift, as in Battaglia
et al. (2012).

PERTURBING PHASE RELATIONS BETWEEN DIFFERENT OSCILLATING
POPULATIONS
After the controlled shifting of the phase of a local oscillation, we
explored whether precisely phased stimulation could be used to
manipulate phase relations between different local oscillating cir-
cuits. To do so, we considered a canonic circuit of two coupled
oscillating areas, interconnected by long-range random excitatory
projections (Figure 5A). In general, when driven into a syn-
chronous regime, motifs of a few local areas mutually connected
with equal strength can give rise to different phase-locked states.
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FIGURE 4 | Phase shifts induced by photostimulation. (A) Examples of
phase shifts induced by a single light pulse. Top: the phase (blue curve) of
the oscillation of the transduced population is shifted by light perturbation
(illustrated as a lightning symbol with green background) and, afterwards
(magenta curve), remains advanced with respect to the unperturbed
oscillation (gray curve). Bottom: such a phase shift cannot be seen when
the timing of the light perturbation corresponds to other differently chosen
oscillation phases. (B) Waveform of the oscillating LFP in dependence on
the Hilbert phase. Shown are 500 oscillation cycles (gray) of a LFP and
their average waveform (blue). By our conventions, the phase ranges in
the unit interval. The maximum of the LFP is obtained for (Hilbert) phase

values close to 0.3 while the minimum occurs for phase values close to
0.6. (C,D) phase shifts caused by light pulses applied at different (Hilbert)
phases of the ongoing LFP oscillation. An optimal light intensity of 18%
Wmax is used. (C) Dependence of the phase shift on the transduction rate
PChR2 of the population (for a stimulus duration Tlight = 3 ms). (D)

Dependence of the phase shift on the stimulus duration Tlight (for a fixed
transduction rate of PChR2 = 25%). Bold characters in the legend denote
the “reference” phase shift, i.e., PChR2 = 25% and Tlight = 3 ms of
stimulus duration (green curves). In panels (C) and (D), error bars are
standard deviation of the phase shifts obtained for different perturbations
applied in a same time-bin.

These states are associated to different patterns of inter-areal
phase relations, which are maintained in a relatively stable man-
ner over long time intervals (Battaglia et al., 2007, 2012).

The specific bi-areal network of Figure 5A generated two
multi-stable phase-locked states. In the unperturbed system,
background noise caused spontaneous switching between these
two states (i.e., from one configuration of inter-areal phase rela-
tions to another). The result of these stochastic fluctuations was a
clearly bimodal distribution of the instantaneous phase difference
between the two areas (Figure 5B). The actual phase relations
in the phase-locked modes depend ultimately on the PRC of
the coupled populations. As discussed in Battaglia et al. (2007,
2012), the PRCs associated to our network model are such that
they lead to out-of-phase locking for sufficiently strong inhibi-
tion (unless long-range synaptic delays are tuned ad-hoc within
narrow intervals associated to in- or anti-phase configurations).
Out-of-phase locking is found also in more general systems of
pulse-coupled neurons (or neuronal masses) under certain con-
ditions on synaptic delays (Woodman and Canavier, 2011; Wang
et al., 2012).

In out-of-phase locked modes, it is always possible to iden-
tify one area (leader) whose oscillations lead in phase over the
oscillations of the other area (laggard). This leads to anisotropic
directed functional influences between local circuits (Battaglia
et al., 2012), in agreement with the communication-through-
coherence hypothesis (Fries, 2005), despite the fact that inter-
areal connections are reciprocal and of equal strength in both

directions. Switching between alternative phase-locking con-
figurations would thus correspond to changes in the domi-
nant direction of inter-areal functional influences. Spontaneous
switching was a relatively rare event in the high synchrony
regime explored here (the average waiting time for sponta-
neous switching was over 60 periods). Nevertheless, optogenetic
stimulation could be used to actively trigger switching events
(Figure 5C).

Inter-areal phase relations after the application of a single
perturbation pulse were compared to the average locked phase
difference before the pulse itself. We studied how both transient
short-term and persistent long-term effects depend on the phase
of perturbation onset. Figure 5D shows the probability that the
average inter-areal phase difference for the five cycles directly fol-
lowing the perturbation has increased or reduced by at least 10%
relative to the average phase difference prior to the perturbation.
For a wide range of phases of stimulation onset, such proba-
bility was larger than 50% and remarkably larger than the level
accounted for by spontaneous fluctuations of the inter-areal phase
difference.

The dependency on the perturbation phase was more pro-
nounced for long-term effects. Figure 5E shows the probability of
a switch in phase locking, i.e., that the average inter-areal phase
difference over a long time window beginning ten cycles after
the perturbation has changed its sign (note, indeed, that the two
phase-locked configurations of the simulated bi-areal motif are
characterized by average phase-differences of �φ = ±�φlocked,
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FIGURE 5 | Local photostimulation can reorganize long-range

phase-locking patterns. (A) Cartoon of two local populations (each of
them with an individual background color: orange and violet) coupled by
long-range excitatory connections. (B) Both populations oscillate in a
non-regular way but with the same main frequency. A histogram of the
instantaneous phase difference is shown for a pair of very long LFP time
series (over 50,000 oscillation cycles). This distribution is clearly bimodal,
indicating the existence of two favorite modes of approximate out-of-phase
locking (with the orange population leading in phase over the violet, or the
other way around). (C) LFP traces of two phase-locked populations. The
application of a light pulse stimulation (denoted by a green background and
a lightning symbol) can induce switching to another phase-locked mode.
This is shown by the qualitative changes between the crosscorrelogram
(XC, computed over 500 ms) of the two LFPs before (left) and after (right)
light stimulation. Note the changed sign of the lag of the highest XC peak,

which corresponds to an inversion of the direction of functional
connectivity. (D) Probability of changing the average inter-population phase
difference of more than 10% during five oscillation cycles after light
stimulation (PChR2 = 25%, Tlight = 3 ms). This probability is presented by a
polar histogram in dependence on the phase of the onset of the light
stimulation (with respect to the leader population). The red circle indicates
the probability of similarly large spontaneous phase shifts (i.e., without
photostimulation). (E) Phase difference averaged over 50 cycles starting 10
cycles after the light pulse. A switching is considered as successful if the
sign of this average phase difference has changed (see panel B). The
probability of successful phase switching is given by a polar histogram, as
in panel (D). The red circle indicates the probability of spontaneous
switching in the case of non-stimulated activity. Ignoring transient effects,
switching can be induced with high probability only if the perturbation is
applied within a specific narrow phase range.

cf. Figure 5B). In contrast to short-term shifting, the probability
of actual switching was concentrated in a narrow phase interval
centered on the peak of the single-area PRC, as expected from
theory (Battaglia et al., 2012). The switching probability for other
phase bins dropped quickly to the level of spontaneous switching.

Our simulations show that the peak probability of
optogenetically-induced switching could rise above 60% even
for small transduction rates of 25%. However, this happened
only if the phase of the perturbation onset was precisely selected.
Indeed, the comparison of Figures 5D,E shows that many of the
short-term shifting effects observed for randomly phased pertur-
bations did not develop into lasting changes in phase-locking. To
conclude, we would like to mention that a similar pulse-induced
reorganization of inter-areal phase relations could be achieved
even when the perturbation was applied to the laggard rather than
to the leader area [not shown, but see (Battaglia et al., 2012)].

CLOSING THE LOOP
As discussed in the last section, the controlled switching of inter-
areal phase-locking—and, hence, of functional connectivity—
required perturbations optimally phased with respect to ongoing

oscillations. To increase the probability to induce switching, the
timing of perturbation must thus be determined based on phase
information extracted from recordings of the recent popula-
tion activity. We suggest here a possible closed-loop protocol for
the online prediction of the timing of stimulation achieving an
optimal switching rate. The workflow of the proposed idealized
experiment is outlined by a schematic time bar (Figure 6A) and
a corresponding flow chart (Figure 6B). The potential perfor-
mance of such protocol was studied by simulating the induction
of switching in the bi-areal network of Figure 5A.

In contrast to this well behaved in silico model, oscillatory
coherence in vivo or in vitro recordings is usually transient and
confined to specific epochs. There is nevertheless experimental
evidence that epochs of phase synchronization at fast gamma fre-
quencies can persist over several hundreds of ms in vivo (Varela
et al., 2001; Pesaran et al., 2002; Gregoriou et al., 2009; Bosman
et al., 2012; Grothe et al., 2012). Detecting the onset of one of such
oscillatory epochs was precisely the aim of the testing stage, in
which LFPs in both areas of the bi-areal motif were recorded and
their spectral characteristics extracted in real-time to verify that
LFP power and inter-areal coherence with respect to a common

Frontiers in Neural Circuits www.frontiersin.org April 2013 | Volume 7 | Article 49 | 251

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Witt et al. Precisely-phased optogenetic stimulation

YES

LFP
recording

Testing

Phase
extraction

LFP
recording
Monitoring

Optimal pulse
time prediction

LFP
recording
After ON

Phase
extraction

Switching
occurred? Stop

NO

A

Monitoring Prediction ON!Testing

B

ON!

LLLLLFLFLFFLLLLFLLFFLLLLLLL PPPPPPPPPPPPPP
rerererrrerererrrerererecococococococococococcocccc rddddrddrdrdrdrdrddrdrddddddininninininininnnggggggggggggg

TeTeTeTeTeTeTeTeeTeTeeTeeestststststststtstststtstss inininininininiinngggggggggggggggggggggg

Start

Testing
criteria met?

YES

NO

Check for
oscillation

FIGURE 6 | Closed loop strategy for precisely phased

photostimulation. (A) Schematic illustration of the proposed experimental
protocol. During the testing stage (light blue) the LFP is recorded and
tested for sufficiently strong power in the gamma-range. If the gamma
band power is high enough, then a bandpass-filter is tailored to its peak
frequency (light gray arrow). In the monitoring stage (red), phases are
extracted from the band-passed LFP. Based on these observations, during
the prediction stage (yellow), lasting only a very few oscillation periods, a
linear model of phase evolution is extrapolated to predict the time at which
the target phase of the oscillation will occur next. A light pulse is then
delivered at this predicted time (green background with lightning symbol).
(B) The workflow of the closed loop experiment is presented as a flow
chart, with the left swim lane presenting computation and decision steps
and the right swim lane showing recording and stimulation of the
transfected neuronal population. Curved green arrows highlight the
closed-loop nature of the workflow, i.e., the light pulse stimulation delivered
at a time depending on the phase evolution of LFP oscillations during the
monitoring window.

frequency (band) rose above a minimum threshold (see section
Materials and Methods).

The monitoring stage was entered immediately after the detec-
tion of an epoch of reliable inter-areal coherence. During this
monitoring stage, LFP signals were recorded, filtered in real
time through a low-order band-pass filter with a pass frequency
optimized during the testing window and, finally, stored.

A fast online analysis of the phase dynamics of the stored LFP
of only the target area was then performed during the follow-
ing prediction stage. Its aim was to predict the timing of one of
the next occurrences of the target phase, solely from the phase
information acquired during the monitoring stage. To keep the
prediction window as short as possible, we propose to use com-
putationally cheap and consequently linear techniques for phase
extrapolation. Indeed, the “real” phase values (given by Hilbert
Transform of the LFP signal, see section Materials and Methods)
and a simple linear descriptor of the phase are strongly corre-
lated (Figure 7B) and non-linear effects can be neglected in a
first-order approximation.

The phase-locking between LFPs recorded after the stimula-
tion application was finally compared with the locking existing
before the stimulation to verify the successful induction of state
switching.

Figure 7 analyzes the simulated performance of the proposed
protocol, when applied to in silico recordings from the bi-areal
network motif of Figure 5. Figure 7C shows how the predicted
onset phases of light stimulation concentrate around the actual
target phase given by the peak PRC value of φtarget = 0.18.
The scattering of predicted phases is computed by hypothesiz-
ing prediction stages with different possible (short) durations.
This estimate was done with two prediction schemes which both
have fast implementations: a simple linear extrapolation based on
the average period length and a first-order autoregressive model
[AR(1)] (see section Materials and Methods), accounting for cor-
relations between the durations of successive oscillation cycles, at
least approximately. For increasing lengths of the prediction win-
dow, the median and the average value of the predicted Hilbert
phase remained very close to the target (Figure 7C). However, the
distribution of extrapolated phase values broadened, as indicated
by their increasing dispersion. Nevertheless, for a prediction win-
dow lasting three oscillation cycles—a sufficiently long time to
perform the fast computation required for linear extrapolation
(see section Discussion)—the interquartile range of predicted
phase values was still contained in the width of the reference PRC.
Consequently, we still expect an enhanced effectiveness of light
stimulation pulses applied at the inferred time tON, compared to
randomly timed pulses.

The error made in predicting a target phase depends neces-
sarily on the quality of the recorded oscillation. The dynamical
regime of the simulations in Figures 5 and 7C was strongly syn-
chronous. As previously discussed, the degree of synchrony of
the collective response depends on the external driving force to
the network and on the strength of local inhibition (Figure 3A).
We performed phase prediction based on recordings of simu-
lated dynamics with different degrees of synchrony. As shown in
Figure 7D, stronger synchrony was associated to smaller predic-
tion errors. Interestingly, prediction errors remained moderate
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FIGURE 7 | Online prediction of the phase of stimulation onset. (A) The
period length of LFP oscillations fluctuates from cycle to cycle and has a
broad-range uni-modal distribution (here shown for period lengths as
estimated from the Hilbert phases). (B) Hilbert phase versus linear phase for
a sample LFP time series. To speed-up the computation of tON in the
prediction stage, the Hilbert phase can be approximated by a linear phase,
since, as here shown, they are strongly correlated and the mild static
non-linearity fLH linking them can be neglected. (C) Distribution of the phase
of tON predicted by two different methods and for different lengths of the
prediction window (measured in oscillation cycles). Shown are histograms
and box plots (box giving median and interquartile range, white circle the
mean value and whiskers the 5-th and 95-th percentiles) of the predicted
phase of light stimulation φ(tON) for two prediction methods—pure linear
extrapolation based on the average period length (green) and first order
autoregressive [AR(1)] models (orange)—applied to period lengths recorded

during the monitoring stage. Both the median and the mean of predicted
Hilbert phase are in good agreement with the exact target phase (leading
with highest probability to a phase shift) with a dispersion not larger than the
width of the positive part of the reference phase-shift response curve
(reproduced from Figures 4C,D on the top of the panel). (D) The prediction
error (i.e., the standard deviation of the inferred phase φ(tON) of
photostimulation onset) depends on the synchronization level of the neuronal
population activity (cf. Figure 3A). The prediction error based on linear
extrapolation (measured in units of average oscillation period lengths) is
shown for different probabilities of local inhibitory connection pI and
background noise rates νnoise. Larger synchronization leads to better
prediction. (E) The ratio of the prediction error based on the AR(1) model and
the prediction error based on linear extrapolation in dependence on the same
parameters. For intermediate synchrony levels, the prediction error can be
consistently reduced by the use of an AR(1) model.

even when considering regimes “at the edge of synchrony.”
Furthermore adopting a more elaborate AR(1) approach yielded
the strongest performance improvement with respect to simpler
linear extrapolation precisely for these intermediate synchrony
values (Figure 7E).

In contrast, prediction errors associated to weak synchronous
dynamics were larger and even the AR(1) approach failed to
improve over linear extrapolation in these cases. However, in
these regimes, the dynamics rarely displayed long-lasting oscil-
latory epochs and the probability of spontaneous switching was
comparable to the one of induced switching, thus invalidating
our analysis protocol. In these cases, therefore, continuous photo-
stimulation should be used to enhance the degree of coherence of
the coupled populations activity (analogously to Figure 3E).

DISCUSSION
FROM POWER BOOSTING TO RELIABLE PHASE CONTROL
Optogenetic stimulation has been successfully applied to boost
the power of fast neural oscillations in vivo and in vitro. In
Cardin et al. (2006), pulsed optogenetic stimulation in vivo was
used to highlight the existence of a resonance at gamma range
frequencies of local inhibitory cortical microcircuits. Adesnik
and Scanziani (Adesnik and Scanziani, 2010) and Akam et al.

(2012) experimented with ramped light stimulation to induce
long-lasting oscillatory episodes in slices.

Beyond controlling oscillation power, the experiments by
Akam et al. (2012) are closely related to the first part of our
model study. They used 5 ms-long light stimulation pulses to shift
local oscillation phases and quantify the phase response curves
(PRCs) of oscillations in hippocampal slices, analogously to the
simulated experiment of Figure 4. The hippocampal PRC mea-
sured by Akam et al. (2012) was distinctly biphasic, leading to
phase advancement or phase delaying, depending on the phase
of application of the stimulation. Such biphasic PRC shape is
in qualitative and approximately in quantitative agreement with
the PRCs extracted from our local population model for stimu-
lation pulses of comparable lengths (cf. Figure 4D, orange curve
for 5 ms-long pulses and red curve for 10 ms-long pulses).

Interestingly, however, the PRCs extracted from our model
for shorter stimulation durations lacked phase-delaying regions
and displayed only a narrow phase range leading to consistent
phase advancement. Furthermore, they were characterized by a
relatively broad range of application phases for which light stim-
ulation was completely ineffective. These features of the PRC
shapes are robustly obtained if the circuit mechanism for the
generation of oscillations dominantly relies on delayed mutual
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interactions within interneuronal networks (Battaglia et al., 2007,
2012). One can actually use very different neuronal models to
obtain oscillatory and phase-locking behaviors that qualitatively
match those observed. For instance, spatially structured networks
of integrate-and-fire neurons (Battaglia and Hansel, 2011) have
dynamical regimes that tightly correspond to those of homo-
geneous networks of the conductance-based neurons (Battaglia
et al., 2007) that we adopt here. We predict therefore that sim-
ilarly looking PRCs could be obtained in the case of Kainate-
induced in vitro oscillations in slices, in which excitatory neurons
are entrained by a coherently oscillating interneuronal popula-
tion but are not actively involved in the generation of the local
rhythm (Fisahn et al., 2004; Bartos et al., 2007; Andersson et al.,
2012).

Narrow phase ranges associated to large PRC values reduce
the probability of inducing stable phase shifting by applying
stimulation at arbitrary times. However such narrow intervals
become a desirable resource when optogenetic stimulation is pre-
cisely phased conditional to ongoing oscillations, as executable
in perspective with a closed-loop setup. Indeed, PRC shapes
like the reference PRC discussed in Figure 3 (green curve for
PChR2 = 25%, and Tlight = 3 ms light-pulses) could allow an
“all-or-none” control of phase shifting, in which strong effects
are obtained only if the stimulation is applied within a spe-
cific target range of phases, but in which undesired switch-
ing triggered by noise or by a misapplied input is largely
suppressed.

A SIMPLE ChR2 MODEL CAPTURES NON MONOTONIC
PHOTORESPONSE
The light-activated cation channel ChR2 activates more rapidly
and supports larger peak current amplitudes for increasing light
intensities. Therefore, we speculated that brief, high intensity light
pulses would provide the optimal stimulation for our purposes.
To our knowledge there were no studies that systematically docu-
mented ChR2 current responses for stimuli with light intensities
above 20 mW/mm2 (Ishizuka et al., 2006; Ernst et al., 2008; Lin
et al., 2009). At this intensity the activation rate is still light sensi-
tive and we aimed to increase it even more using light intensities
as high as approximately 130 mW/mm2. While the activation rate
did indeed decrease further, the fact that the peak current ampli-
tude decreased for intensities above approximately 20 mW/mm2

came to us as a surprise (Figures 1B,C). This behavior has not
been reported before, to the best of our knowledge, though the
measurements published in Lin et al. (2009) hint at a decreasing
peak amplitude for the highest intensity applied there, which was
approximately 19.8 mW/mm2.

Such phenomenon might be reminiscent of the photoreactive
P480b intermediate state, which can be converted by blue light to
the early P500 intermediate state. This transition was proposed as
a shortcut of the photocycle from a spectroscopic study of ChR2
channels (Ritter et al., 2008). Since previously published models
of ChR2 currents (Nikolic et al., 2006, 2009) could not account
for this non-monotonic light response, it was necessary to deploy
a novel model. Our simple conductance-based model correctly
captures the existence of an optimal light intensity for photostim-
ulation, without need to incorporate elaborate details about the

ChR2 molecular structure and dynamics. Note that the applica-
tion of our model is not limited to brief light pulses, but can also
predict light-induced conductance in response to ramps of light
(cf. Figure 3E).

Our model is also accurately data-constrained. To calibrate
model parameters, light induced changes of ChR2 conductance
were measured in voltage clamp. If the voltage can be clamped
throughout a cell, any changes in the whole-cell current can
be attributed to ChR2 conductances. In differentiated neurons,
however, this perfect voltage control cannot be attained. This is
obvious from the recording in Figure 1A (black trace), where
the activation of ChR2 depolarized the axon sufficiently to
activate voltage-dependent sodium channels, which created an
unclamped spike. Even when sodium channels are blocked, the
conditions are not optimal for a precise biophysical characteriza-
tion. Using essentially passive and electrotonically compact cells,
such as HEK-293 cells (Nikolic et al., 2009), provided optimal
recording conditions (Figure 1B). The smaller amplitude of the
photocurrents in these cells reflected differences in cell surface
and expression levels, while the biophysical properties of ChR2
were most likely identical to those expressed in neurons.

TECHNICAL FEASIBILITY
As discussed above, the extraction of PRCs describing the col-
lective response of a transduced neuronal population to light
stimulation was already achieved in vitro (Akam et al., 2012).
Our modeling study suggests that a similar approach could be
successfully applied in vivo, since phase-shifting effects can be
robustly obtained with high and low transduction rates, covering
the wide range achievable with different experimental techniques
(Adamantidis et al., 2007; Petreanu et al., 2007; Wang et al.,
2007; Takahashi et al., 2012). The success rate will depend on
a suitably tuned light intensity and on the ability to select the
phase of the stimulation onset conditional on ongoing oscillation
dynamics. Another factor that might enhance the controllability
of phases is the use of faster variants of Chr2, such as ChETA
(Gunaydin et al., 2010) and the E123T/T159C (Berndt et al.,
2011) mutants.

A closed-loop approach is required for determining the opti-
mal timing of pulse stimulations. Figure 7C shows that if the
time required for the prediction stage is of the order of a
few oscillation cycles, then the discrepancy between the tar-
get and the actual perturbation phase is comparable to the
width of the peak of the PRC. Consequently the resulting
phase shifting should remain close to the optimum. The pre-
diction strategy that we propose (Figure 6) is based uniquely
on a small number of linear computations, which are par-
ticularly suited for ultrafast (millisecond scale) implementa-
tion on reconfigurable hardware chips (Zhuo and Prasanna,
2008; Sadrozinski and Wu, 2011) or on GPU architectures
(Owens et al., 2008; Volkov and Demmel, 2008) on which
FFT algorithms can be efficiently implemented (Bhattacharyya
et al., 2010). As a matter of fact, hardware implementations
of period extraction (Waskito et al., 2010) and autoregres-
sive modeling of biologic signals (Marinkovic et al., 2005;
Kim and Rosen, 2010) have already proven to be order(s)
of magnitude faster than on conventional CPUs. Taking into
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account these high levels of performance and the approx-
imations we propose to implement, a length of the pre-
diction window of ∼50 ms that corresponds to approxi-
mately three cycles of a 40–70 Hz rhythm appears completely
realistic.

Our simulated oscillations constitute an idealized model
for neuronal rhythms measured in vivo or in vitro. In our
model, especially when the synchronization index is very
high, cycle-to-cycle period length fluctuations are positively
correlated with weak to intermediate correlation strength.
In real neuronal oscillations, however, adaptation or other
phenomena might introduce more complex correlation pat-
terns between the lengths of different periods. Nevertheless,
such correlations might still be captured by AR(1) mod-
eling, as hinted to by the better performance of AR(1) in
dynamic regimes at the “edge of synchrony” (Figure 7E),
in which period length fluctuations are more strongly
correlated.

Under specific experimental conditions, long-lasting oscil-
latory epochs might be a rare event. It would then become
difficult to meet the conditions for the applicability of our pro-
tocol (i.e., the testing stage of Figure 6 might never be passed).
In this case, continuous optogenetic stimulation could be used
to stabilize and boost oscillations, as simulated in Figure 3E.
Then, similarly to the approach of Akam et al. (2012), pre-
cisely timed “kicks,” superposed on this continuous light stim-
ulation, could be used to perturb the instantaneous phase. In
this sense, optogenetic stimulation is more promising than elec-
tric micro-stimulation. First, it allows combining continuous and
pulsed stimulation within a single setup. Second, it can con-
trol with high selectivity the degree of synchronization, not only
by providing an unspecific drive to the entire network, but also
enhancing the drive to specific neuronal subpopulations, like for
instance FS-PV cells which provide the phasic inhibition cru-
cial for rhythm generation (Cardin et al., 2006; Sohal et al.,
2009).

Finally, we are optimistic that the network models of trans-
duced neural populations that were pioneered by Talathi et al.
(2011) and further developed in this study are powerful tools,
which will be increasingly adopted to conduct, optimize and
accelerate the design and the calibration of closed-loop optoge-
netic experimental protocols.

PROBING PHASE-CODING AND
COMMUNICATION-THROUGH-COHERENCE
Reliable optogenetic manipulation of the phase dynamics of
oscillating neuronal populations would open the way to an
interventional exploration of phase coding schemes. In the
phase coding framework, it is argued that the phase of spikes
relative to a “reference clock”—paced either by a stimulus-
locked (De Charms and Merzenich, 1996; Arabzadeh et al.,
2006) or an internally-generated oscillation (O’Keefe and
Recce, 1993; Siegel et al., 2009)—carry information, which
is independent from and multiplexed with the one conveyed
by rate fluctuations (Montemurro et al., 2008). Anticipating
or delaying the ticks of such a “reference clock,” as the

one putatively framed by slow cortical oscillations (Kayser
et al., 2012), should perturb the decoding of phase-based
representations.

Beyond the control of the phase of a local oscillation,
inter-areal phase correlations could be disrupted transiently by
unspecific optogenetic stimulation (Figure 5D). Furthermore,
precisely-phased perturbations determined within a closed-loop
system could induce persistent switching between alternative
phase-locked dynamic patterns (Tiesinga and Sejnowski, 2010;
Battaglia et al., 2012). In this sense, the realization of an exper-
iment inspired by the idealized analysis of Figure 4, would pro-
vide a direct testing of the communication-through-coherence
hypothesis (Fries, 2005). More specifically, it would allow exper-
imental testing of whether different sets of inter-areal phase
relations lead to different inter-areal functional interactions
and to an altered balance between bottom-up and top-down
information flows, as predicted by theory (Battaglia et al.,
2012).

A reorganization of phase relations between distant neu-
ronal populations might have perceptual or behavioral conse-
quences. Selective alteration of inter-population phase relations,
for instance between areas FEF and V4 (Gregoriou et al., 2009)
or areas V1 and V4 (Grothe et al., 2012), might be used to sup-
press or boost attentional effects or even to emulate reorienting
of attention. Furthermore, our theoretical investigations suggest
that stimulation applied locally to a single area might induce dis-
tributed reorganization of phase relations between other more
distant areas (Battaglia et al., 2012). Closed-loop optogenetic
stimulation might then in perspective be used to trigger system-
level switching between global brain states (Deco et al., 2009;
Freyer et al., 2011).
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In this paper, we review several lines of recent work aimed at developing practical
methods for adaptive on-line stimulus generation for sensory neurophysiology.We consider
various experimental paradigms where on-line stimulus optimization is utilized, including
the classical optimal stimulus paradigm where the goal of experiments is to identify
a stimulus which maximizes neural responses, the iso-response paradigm which finds
sets of stimuli giving rise to constant responses, and the system identification paradigm
where the experimental goal is to estimate and possibly compare sensory processing
models. We discuss various theoretical and practical aspects of adaptive firing rate
optimization, including optimization with stimulus space constraints, firing rate adaptation,
and possible network constraints on the optimal stimulus. We consider the problem of
system identification, and show how accurate estimation of non-linear models can be highly
dependent on the stimulus set used to probe the network. We suggest that optimizing
stimuli for accurate model estimation may make it possible to successfully identify non-
linear models which are otherwise intractable, and summarize several recent studies of
this type. Finally, we present a two-stage stimulus design procedure which combines the
dual goals of model estimation and model comparison and may be especially useful for
system identification experiments where the appropriate model is unknown beforehand.
We propose that fast, on-line stimulus optimization enabled by increasing computer power
can make it practical to move sensory neuroscience away from a descriptive paradigm and
toward a new paradigm of real-time model estimation and comparison.

Keywords: sensory coding, optimal stimulus, adaptive data collection, neural network, parameter estimation

INTRODUCTION
One classical approach in sensory neurophysiology has been to
describe sensory neurons in terms of the stimuli that are most
effective to drive these neurons. The stimulus that elicits the
highest response is often referred to as the optimal stimulus
(Albrecht et al., 1980; Stork et al., 1982; DiMattina and Zhang,
2008). Although the optimal stimulus provides a simple and
intuitive means of characterizing a sensory neuron, positively
identifying the optimal stimulus may be technically difficult for
high-dimensional stimuli, and simply knowing the optimal stim-
ulus without adequately exploring responses to other stimuli may
provide limited information about sensory function (Olshausen
and Field, 2005). Due to these practical and conceptual limita-
tions of characterizing neurons by the optimal stimulus, many
researchers have recently taken engineering-inspired approaches
to studying neural coding, for example, by characterizing neu-
rons in terms of the mutual information between sensory stimuli
and a neuron’s responses (Machens, 2002; Sharpee et al., 2004;
Machens et al., 2005; Chase and Young, 2008), by characterizing
iso-response surfaces in stimulus parameter spaces (Bölinger and
Gollisch, 2012; Horwitz and Hass, 2012), or by fitting predic-
tive mathematical models of neural responses to neurophysiology
data (Wu et al., 2006). However, just like the classical opti-
mal stimulus paradigm, these engineering-inspired methods also

give rise to non-trivial high-dimensional stimulus optimization
problems.

With recent advances in desktop computing power, it has
become practical to perform stimulus optimization adaptively in
real-time during the course of an experiment (Benda et al., 2007;
Newman et al., 2013). In this review, we consider several recent
lines of work on adaptive on-line stimulus optimization, focusing
on single-unit recording in vivo for systems-level sensory neu-
roscience. Other kinds of closed-loop neuroscience experiments
like dynamic patch clamping or closed-loop seizure interventions
are considered elsewhere (Prinz et al., 2004; Newman et al., 2013).
We first discuss the concept of the optimal stimulus and con-
sider how its properties may be constrained by the underlying
functional model describing a neuron’s stimulus–response rela-
tion. We then discuss how adaptive stimulus optimization has
been utilized experimentally to find complex high-dimensional
stimuli which optimize a neuron’s firing rate, including promis-
ing recent studies using evolutionary algorithms. We also discuss
a different kind of study where stimuli are “optimized” to elicit a
desired constant firing rate so that iso-response contours of the
stimulus–response function may be obtained, as well as stud-
ies seeking maximally informative stimulus ensembles. Finally,
we discuss how adaptive stimulus optimization can be utilized
for effective estimation of the parameters of sensory processing
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models, as well as for effective model comparison. In conclusion,
we suggest that adaptive stimulus optimization cannot only make
the classical optimal stimulus paradigm more tractable, but can
potentially move sensory neuroscience toward a fundamentally
new experimental paradigm of real-time model estimation and
comparison.

THE OPTIMAL STIMULUS
DEFINING THE OPTIMAL STIMULUS
In order for a sensory neuron to be useful to an organism,
there must be a consistent functional relationship between the
parameters of sensory stimuli and neural responses. Although
this relationship may be highly complex and non-linear, for any
set of stimuli defined by parameters x = (x1, . . . ,xn)T we may
think abstractly of the expected neural responses being described
by some function r = f (x). For simplicity and definiteness, in
this section we will focus our discussion of the optimal stimu-
lus on the most common case where r is a scalar quantity which
represents the firing rate of a single neuron, and will assume
that the expected firing rate is entirely a function of the stim-
ulus parameters, ignoring variables such as spiking history and
stimulus-specific adaptation by assuming that they are kept con-
stant (Ulanovsky et al., 2003; Bartlett and Wang, 2005; Asari and
Zador, 2009).

Given this formulation, the problem of finding the optimal
stimulus x0 is simply the problem of maximizing the function
f (x). Perhaps the simplest and most intuitive notion of the opti-
mal stimulus is that of a firing rate peak in stimulus parameter
space centered at x0, as illustrated in Figure 1A. Here f is max-
imized at x0, and for any stimulus perturbation Δx we have
f (x0 + Δx) < f (x0). However, for high-dimensional stimulus
spaces like image pixel space (Simoncelli et al., 2004) or auditory
frequency space (Yu and Young, 2000; Barbour and Wang, 2003a)
this intuitive notion of the optimal stimulus as a response peak is
hardly the only possibility. In the example shown in Figure 1B,
the neuron is tuned along one direction in the stimulus space,
but is untuned along an orthogonal direction. In this case, there

is not a single optimal stimulus x0 as in Figure 1A, but rather a
continuum of optimal stimuli lying along a ridge containing x0

(Figure 1B, thick green line). Another theoretical possibility is the
saddle-shaped response surface in Figure 1C, where depending on
the dimension chosen for exploration, the same stimulus x0 can
be either a firing rate peak or a valley.

For high-dimensional stimulus spaces, a full factorial explo-
ration is impossible since the number of stimuli needed grows
exponentially with the dimension, a problem referred to collo-
quially as the curse of dimensionality (Bellman, 1961). In many
experiments, stimulus spaces are explored in a restricted subset of
dimensions. The behaviors of neuron in the unexplored stimu-
lus dimensions may have various possibilities including the ones
considered above. One cannot assume that the stimulus–response
relationship must always be a single peak as in Figure 1A. Indeed,
one of the challenges of sensory neurophysiology is that with-
out prior knowledge about the neuron under study, there are no
constraints whatsoever on the possibilities for the optimal stim-
ulus, which must be found in a process of trial-and-error with
no way to conclusively prove global optimality (Olshausen and
Field, 2005). We now briefly discuss a recent theoretical study
describing possible constraints on the optimal stimulus which
arise from general anatomical properties of underlying functional
circuitry.

CONSTRAINTS FROM UNDERLYING FUNCTIONAL CIRCUITRY
Ultimately, the stimulus–response relationship function f (x) is
generated by the underlying neural circuitry connecting the sen-
sory periphery to the neuron under study, but in general this cir-
cuitry is highly complex (Felleman and Van Essen, 1991; Shepherd,
2003) and not generally known to the experimenter. Nevertheless,
recent theoretical work suggests that very basic anatomical proper-
ties of the neural circuitry may be able to provide experimentally
useful constraints on the possibilities for the optimal stimulus
(DiMattina and Zhang, 2008).

Consider the simple hypothetical sensory network shown in
Figure 2A (left panel) which receives synaptic inputs from two

FIGURE 1 | Hypothetical stimulus–response relationships for a sensory

neuron. The red circle represents the boundary of the set of permissible
stimuli. (A) Stimulus x0 is a firing rate peak which corresponds to the intuitive
notion of the optimal stimulus where any perturbation away from x0 results
in a decrease in the firing rate. (B) This neuron is tuned to one stimulus

dimension but is insensitive to the second dimension. Instead of a single
optimal stimulus x0 there is a continuum of optimal stimuli (green line).
(C) A neuron whose stimulus–response function around the point x0 is
saddle-shaped. Along one stimulus dimension x0 is a firing rate maximum,
and along the other stimulus dimension x0 is a minimum.
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FIGURE 2 | How the optimal stimulus properties of sensory neurons

may be constrained by network architecture. Panels (A,B) adapted
with permission from DiMattina and Zhang (2008). (A) A simple neural
network (left) and its responses to inputs x1, x2 (right). The optimal
stimulus for this network must lie on the boundary of any closed set of

stimuli (right panel, thick red line). (B) The functional network connecting
a single neuron (α or β) to the sensory periphery may have fewer units
in successive processing layers (convergent), even if the overall
number of neurons in successive processing layers is increasing
(divergent).

peripheral sensory receptors (filled black circles) which linearly
transduce stimulus the variables x1, x2 and pass their outputs
to a pair of interneurons, which in turn converge onto the out-
put neuron from which responses r are measured. Since there are
physical limits on the intensities of stimuli which can be generated
by laboratory equipment, we may reasonably assume that the col-
lection X of permissible stimuli is some closed subset of the real
plane consisting of an interior and boundary (rightmost panel,
thick red line). We may also reasonably assume that each neuron’s
input–output property is a described by an increasing gain func-
tion g(u). With these reasonable assumptions, it is simple to show
that that the gradient of the function f (x) implemented by this cir-
cuit cannot vanish, and thus an optimal stimulus which is a firing
rate peak as in Figure 1A is impossible. Therefore, it follows that
optimal stimulus must lie on the boundary of X (Figure 2A, right
panel), with the exact location depending on the synaptic weights
and other parameters of the network.

In general, it can be shown that for hierarchical neural networks
which can be arranged into layers that if the gain functions are
increasing, the number of neurons in successive layers is decreas-
ing or constant, and weight matrices connecting successive layers
are non-degenerate, then it is impossible for the optimal stimu-
lus for any neuron in this network to be a firing rate peak like
that illustrated in Figure 1A (DiMattina and Zhang, 2008). It
is important to note that this result requires that the stimuli be
defined in the space of activities of the input units to the neu-
ral network, such as image pixel luminances which are the inputs
to the network. One interesting corollary of this result is that if
the space X of permissible stimuli is bounded by a maximum
power constraint

∑n
i=1 x2

i ≤ E, the optimum firing rate will
be obtained for a stimulus x ∈ X having the greatest power or
contrast, since this stimulus will lie on the boundary. Indeed, for
many sensory neurons in the visual, auditory, and somatosen-
sory modalities, increasing the stimulus contrast monotonically
increases the firing rate response (Albrecht and Hamilton, 1982;
Cheng et al., 1994; Oram et al., 2002; Barbour and Wang, 2003b;
Ray et al., 2008), which is interesting considering that convergent

networks satisfying the conditions of the theorem can model the
functional properties of many sensory neurons (Riesenhuber and
Poggio, 1999, 2000; Lau et al., 2002; Prenger et al., 2004; Cadieu
et al., 2007).

At first, this result may seem to be of limited applicability since
it is well known that the numbers of neurons in successive pro-
cessing stages can be widely divergent (Felleman and Van Essen,
1991). However, the theorem applies only to the functional net-
work which connects a given neuron to the sensory periphery.
For instance, in the example shown in Figure 2B, the functional
network connecting neuron a to the input layer is a convergent
network with the number of units decreasing from layer to layer
(blue), whereas the full network is divergent with the number of
units increasing from layer to layer. Similarly, it is important to
note that the neural network to which we apply the theorem may
not be a literal description of the actual neural circuit, but simply
a mathematical description of the functional relationship between
the stimulus parameters and the neural response. For instance, a
standard functional model of the ventral visual stream postulates
a feedforward architecture similar to the models of complex cells
postulated by Hubel and Wiesel (Riesenhuber and Poggio, 1999,
2000), and the theorem can be applied to neurons in these models.
Similarly, divisive normalization models postulated for visual and
auditory neurons (Heeger, 1992b; Koelling and Nykamp, 2012)
can be re-written in a form to which the theorem applies and
shown to have a non-vanishing gradient (Koelling and Nykamp,
2012).

ADAPTIVE OPTIMIZATION OF FIRING RATE
Despite the conceptual difficulties with the notion of an optimal
stimulus, it provides sensory neuroscience with an intuitive
first-pass description of neural function when an appropriate
quantitative model is unknown. In this section, we discuss adaptive
stimulus optimization methods which have been utilized exper-
imentally for optimizing the firing rate of sensory neurons in
high-dimensional stimulus spaces where a full factorial explo-
ration would be intractable. Mathematically, the optimization
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problem may be specified as that of finding

x∗ = arg max
x∈X

f (x), (1)

where x∗ is the optimal stimulus, f is the (unknown)
stimulus–response function, and X is the set of allowable stim-
uli. Methods to optimize firing rate fall into two general categories:
those that ascend the local gradient of the stimulus–response func-
tion, and those which utilize genetic or evolutionary approaches.
We discuss each of these approaches and their relative merits, along
with issues of adaptation and constrained stimulus spaces.

LOCAL HILL-CLIMBING
Due to the inherent variability in neural responses (Tolhurst et al.,
1983; Rieke et al., 1997), optimizing the firing rate of sensory neu-
rons is a difficult stochastic optimization problem (Spall, 2003).
Early work on adaptive stimulus optimization was performed by
Harth and Tzanakou (1974), who applied a method of stochas-
tic gradient ascent known as ALOPEX, or “Algorithm of Pattern
Extraction” to neurons in the frog visual tectum (Tzanakou et al.,
1979). This method works by computing correlations between
random perturbations of the current stimulus and changes in
firing rate and using these correlations to iteratively update the
current stimulus to increase the expected firing rate, eventually
converging to the optimal stimulus. More recently, related meth-
ods have been employed to optimize the responses of neurons in
the primary visual (Foldiak, 2001) and auditory (O’Connor et al.,
2005) cortices, providing independent verification of previously
described receptive field properties like orientation selectivity
(Hubel and Wiesel, 1962) or inhibitory sidebands (Shamma et al.,
1993). Variations of ALOPEX have also been utilized to quickly
find the best frequency for auditory nerve fibers, an essential first
step in many auditory neurophysiology experiments (Anderson
and Micheli-Tzanakou, 2002).

In addition to these correlation-based approaches, numerous
other computational methods have been utilized for firing rate
optimization. One approach is to iteratively make local linear
or quadratic approximations to the neural responses around a
reference stimulus (Bandyopadhyay et al., 2007a; Koelling and
Nykamp, 2008, 2012), which can then be used to determine
a good search directions in the stimulus space. This approach
has been utilized by Young and colleagues in order to deter-
mine that the optimal stimulus for neurons in the dorsal cochlear
nucleus is a spectral edge centered at the neuron’s best frequency
(Bandyopadhyay et al., 2007b), consistent with suggestions from
previous studies (Reiss and Young, 2005). An alternative optimiza-
tion method which does not require estimating the local response
function gradient is the Nelder–Mead simplex search (Nelder and
Mead, 1965), which has been used to optimize the responses of
neurons in cat auditory cortex to four-tone complexes (Nelken
et al., 1994).

GENETIC ALGORITHMS
One limitation of the stimulus optimization methods above is
that they are local searches which iteratively update the location
of a single point (or simplex of points). Therefore, it is certainly
possible for optimization runs to end up stuck at local firing rate

maxima. Furthermore points of vanishing gradient do not neces-
sarily indicate maxima (Koelling and Nykamp, 2012), as we can see
from the examples in Figure 1. Furthermore, local search meth-
ods only identify a single optimal stimulus, and do not sample the
stimulus space richly enough to fully describe neural coding. One
possible alternative adaptive optimization method used in previ-
ous neurophysiological studies which can potentially surmount
both of these problems is a genetic algorithm (Goldberg, 1989). A
genetic algorithm works by populating the stimulus space widely
with many stimuli (analogous to “organisms”), which survive to
the next generation with a probability proportional to the firing
rate they elicit (analogous to their“fitness”). The parameters of the
surviving stimuli are combined at random in a factorial manner
(“crossing-over”) and mutated in order to produce a new gener-
ation of different stimuli based on the properties of the current
generation. Over several iterations of this algorithm, a lineage of
stimuli will evolve which maximizes the firing rate of the neuron
under study, and since the sampling of the stimulus space is non-
local, genetic algorithms are more likely to avoid the problem of
local maxima than hill-climbing methods.

Genetic algorithms were applied to neurophysiology stud-
ies by Winter and colleagues, who optimized the parameters of
amplitude-modulated tones defined in a four-dimensional space
in order to study neural coding in the inferior colliculus (Bleeck
et al., 2003). The optimal stimuli found by this method were in
agreement with tuning functions found by traditional methods,
thereby validating the procedure. More recently, a very power-
ful demonstration of genetic algorithms as a tool for adaptive
optimization was given by Connor and colleagues studying the
representation of two-dimensional shape in V4 (Carlson et al.,
2011) and three-dimensional shape in the inferotemporal cor-
tex (Yamane et al., 2008; Hung et al., 2012). The parameter space
needed to define three-dimensional shapes is immense and impos-
sible to explore factorially, with most of the stimuli in this space
being ineffective. Nevertheless, a genetic algorithm was success-
ful at finding shape stimuli having features which were effective
at driving neurons, with the optimization results being consistent
over multiple runs. Furthermore, because the genetic algorithm
cross-over step generates stimuli which factorially combine dif-
ferent stimulus dimensions, it did a sufficiently thorough job
of sampling the stimulus space to permit the investigators to fit
predictive models which accurately described the tuning of the
neurons to arbitrary shape stimuli (Yamane et al., 2008).

As reviewed above, the different methods developed for auto-
matically optimizing firing rate responses of sensory neurons
differ greatly, both in their general search strategy (i.e., gradient
ascent versus genetic algorithms) as well as their exact methods
for implementing that strategy (Nelken et al., 1994; Foldiak, 2001;
Koelling and Nykamp, 2012). Furthermore, it is important to note
that while genetic algorithms are a commonly chosen alternative
to gradient ascent in the existing literature (Bleeck et al., 2003;
Yamane et al., 2008; Chambers et al., 2012; Hung et al., 2012), a
wide variety of alternative optimization methods could in prin-
ciple be applied as well, such as simulated annealing (Kirkpatrick
et al., 1983), and particle swarm optimization (Kennedy and Eber-
hart, 1995). However, without direct comparisons of algorithms
on benchmark problems using numerical simulation, it is hard to
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directly and fairly compare these various methods. As automated
stimulus optimization becomes more widely used in physiological
experiments, systematic comparison of optimization methods on
benchmark problems is certainly an interesting avenue for future
research in computational neuroscience.

STIMULUS SPACE CONSTRAINTS
Quite often, one may wish to optimize neuronal responses in a
constrained stimulus space for constraints which are more com-
plex than simple upper and lower bounds on stimulus dimensions.
For many neurons one can always increase the firing rate simply by
increasing the stimulus energy or contrast (Albrecht and Hamil-
ton,1982; Cheng et al., 1994; Oram et al., 2002), so it is of interest to
optimize the stimulus with the constraint of fixed stimulus energy.
In Eq. 1, the optimal stimulus is defined over the set of all allow-
able stimuli, X, which depends on the constraints in the stimulus
space. When each component of the stimulus x = (x1,. . ., xn)T is
constrained between an upper bound and a lower bound (e.g., the
luminance of image pixels has a limited range of possible values),
the set X is a hypercube:

X = {
x : ai ≤ xi ≤ bi, i = 1, . . . , n

}
. (2)

With a quadratic energy constraint, the allowable stimulus set X
should become a hyper-sphere:

X =
{

x :
n∑

i=1

x2
i = E

}
. (3)

For example, Lewi et al. (2009) derived a fast procedure for opti-
mization for effective model estimation under stimulus power
constraints. Optimizing the stimulus in Eq. 1 subject to an energy
constraint is an optimization problem for which there are many
numerical methods for solutions (Douglas et al., 2000; Nocedal
and Wright, 2006).

In special cases where there is prior information about the func-
tional form of f (x), the constrained optimization problem may
permit numerically elegant solutions for finding optimal stim-
uli subject to non-linear constraints, as well as finding invariant
transformations of a stimulus which leave responses unchanged.
A recent study (Berkes and Wiskott, 2006, 2007) considered the
problem of optimizing the responses of any neuron whose func-
tional properties are given by an inhomogeneous quadratic form

f (x) = xTAx + bTx + c, subject to an energy constraint
xTx = E. This study presented a very efficient algorithm for com-
puting the optimal stimulus x∗ which requires only a bounded
one-dimensional search for a Lagrange multiplier, followed by
analytical calculation of the optimal stimulus. In addition, they
demonstrated a procedure for finding approximate invariant
transformations in the constrained stimulus space, which for com-
plex cells amount to shifts in the phase of a Gabor patch. As
quadratic models have become popular tools for characterizing
non-linear sensory neurons (Heeger, 1992a; Yu and Young, 2000;
Simoncelli et al., 2004; Berkes and Wiskott, 2005; Bandyopad-
hyay et al., 2007a), their algorithm offers a useful tool for sensory
neuroscience.

NEURAL RESPONSE ADAPTATION
It is well known that when the same stimulus is presented repeat-
edly to sensory neurons, they exhibit firing rate adaptation,
becoming less sensitive to that stimulus over time (Ulanovsky
et al., 2003; Asari and Zador, 2009). Similarly, responses to sensory
stimuli can often non-stationary and are affected by context pro-
vided by preceding stimuli (Bartlett and Wang, 2005). Adaptation
potentially presents a difficulty for stimulus optimization meth-
ods, since toward the end of the optimization run as the algorithm
converges on a (locally) optimal stimulus, a series of very similar
stimuli may be presented repeatedly, thereby leading to firing rate
adaptation. This phenomena has been observed in studies in the
published literature (Yamane et al., 2008) and presents a potential
obstacle to studies of adaptive stimulus optimization (Koelling
and Nykamp, 2012). Given the suppression of neural responses
to stimuli which occur with high probability (Ulanovsky et al.,
2003), one way of dealing with adaptation may be to intersperse
random stimuli with those generated by the optimization run, so
as to reduce adaptation effects. However, this may be an inefficient
method for dealing with adaptation, since it increases the num-
ber of stimuli needed in an experiment (Koelling and Nykamp,
2012).

Apart from these technical considerations, the problem of
firing rate adaptation illustrates a fundamental conceptual limita-
tion of phenomenological sensory neurophysiology. In particular,
it demonstrates that the act of probing a sensory neuron with
stimuli can potentially changes the response properties of the
neuron itself, possibly including its optimal stimulus. Therefore,
it may not be conceptually correct to characterize the stimulus
optimization problem as it is written in Eq. 1, but rather to char-
acterize it as a far more complicated optimization problem where
the function f (x, h(t)) to be optimized is constantly changing,
dependent on both the stimulus x and response history h(t).
In this case, the optimal stimulus for a given neuron may only
be well-defined with respect to a given history of stimuli and
responses.

One solution to this problem would be to have a mathemati-
cal model of the neuron’s stimulus–response function which takes
adaptation into account. Indeed, recent work has demonstrated
that bilinear models of sensory neurons incorporating adaptation
parameters can greatly improve predictions when compared stan-
dard linear receptive field models (Ahrens et al., 2008a). Other
work has shown that the failure of spectrotemporal receptive field
(STRF) models to account fully for neural responses to natural
stimuli may be accounted for by rapid synaptic depression (David
et al., 2009), further underscoring the importance of including
adaptation parameters in neural models. We discuss the issues of
neuronal adaptation and stimulus-response history further when
we discuss the estimation of neural models using active data
collection.

On the whole however, the problem of adaptation does not
seem to pose a fatal limitation to adapting firing rate optimization,
as it has been applied successfully in many recent studies (Foldiak,
2001; O’Connor et al., 2005). Furthermore, there are many neu-
rons in the brain for which adaptation effects are small and thus do
not pose a concern (Ingham and McAlpine, 2004). These meth-
ods are potentially of great importance for investigating neural
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coding of complex stimuli defined in high-dimensional spaces
(Yamane et al., 2008), and it is of great interest to better understand
how adaptation affects stimulus optimization and receptive field
characterization.

ISO-RESPONSE SURFACES AND MODEL COMPARISON
In high-dimensional stimulus spaces, the same response from a
sensory neuron can be elicited by a continuum of equally effective
optimal stimuli rather than a single optimal stimulus (Figure 1).
Therefore, in some experiments it may be of interest to find sets of
equivalent stimuli known as iso-response surfaces which yield the
same response. One possible way of formalizing an optimization
problem for this class of experiments is to formulate it as finding
stimuli

x∗ = arg min
x∈X

d(f (x), c), (4)

which d(· , ·) is some metric measure (e.g., squared error) quan-
tifying the discrepancy between the desired response c and the
neuronal response f (x). Multiple optimization runs from dif-
ferent starting locations and for different values of the desired
constant response c permit the experimenter to determine families
of iso-rate surfaces for the neuron under study. The geometri-
cal shapes of the iso-rate surfaces can help to determine how
stimulus variables x1,. . .,xn are integrated, and thus provide a
useful tool for comparison of hypothetical models. For instance,
linear integration of stimulus energy would yield iso-response sur-
faces which are hyperplanes of the form

∑n
i=1 xi = c, whereas

non-linear integration would yield non-planar iso-response sur-
faces. Figure 3 illustrates iso-response surfaces for two different
hypothetical sensory processing models.

The iso-response surface method was used by Gollisch et al.
(2002) to test several competing hypotheses about how spectral
energy is integrated in locust auditory receptors. The iso-response
contours to combinations of two or three pure tone stimuli
with fixed frequencies and variable amplitudes were of ellipti-
cal shape, consistent with an energy-integrator model of spectral
integration. Further work extended the iso-response method to
incorporate temporal integration, yielding a complete cascade
model of auditory transduction (Gollisch and Herz, 2005).

A more recent study applied this technique to study the integra-
tion of visual contrast over space in salamander retinal ganglion
cells, revealing a threshold-quadratic non-linearity in the recep-
tive field center as well as a subset of ganglion cells most sensitive
to spatially homogeneous stimuli (Bölinger and Gollisch, 2012).
The iso-response surface method has also been applied fruitfully
in mammalian sensory systems as well. A recent study by Horwitz
and Hass (2012) utilized this procedure to study integration of
color signals from the three retinal cone types in single neurons
in the primary visual cortex. It was found that half of the neurons
had planar iso-response surfaces, consistent with linear integra-
tion of cone signals. However, the other half showed a variety of
non-linear iso-response surfaces, including cup-shaped surfaces
indicating sensitivity to only narrow regions of color space.

Although the iso-response surface method has been applied
successfully in stimulus spaces of low dimensionality (two
or three dimensions), tracing out level hyper-surfaces in
higher-dimensional spaces may pose a formidable computational

challenge (Han et al., 2003; Willett and Nowak, 2007). In future
research, dimensionality reduction procedures might be useful for
extending the iso-response surface method to high-dimensional
stimulus spaces like pixel space or auditory frequency space (Yu
and Young, 2000), as well as for high-dimensional spaces defin-
ing complex naturalistic stimuli like 3D shapes or species-specific
communication sounds (DiMattina and Wang, 2006; Yamane
et al., 2008).

MAXIMALLY INFORMATIVE STIMULUS ENSEMBLES
It has been proposed that one of the major goals of sensory coding
is to efficiently represent the natural environment (Barlow, 1961;
Simoncelli, 2003). In this spirit, another class of closed-loop stim-
ulus optimization methods has been developed to find the optimal
ensemble of sensory stimuli for maximizing the mutual infor-
mation between stimuli and neural responses (Machens, 2002).
This method differs from efforts to find the optimal stimulus or
efforts to find iso-response surfaces because the goal is not to find
an individual stimulus x∗ which optimizes the desired criterion
(i.e., Eq. 1), but rather to find the optimal distribution p∗(x)
which optimizes the mutual information I(y; x), where y denotes
the observed neural response (typically the firing rate of a single
neuron). Mathematically, we write

p∗(x) = arg max
p(x)∈ P

I(y; x) =
∫

X

∫
Y

p(y | x)p(x) ln
p(y | x)

p(y)
dxdy ,

(5)
where P is the space of probability densities on the stimulus space
X, and p(y | x) and p(y) are determined experimentally by observ-
ing neural responses to stimuli. In practice, one starts with an
assumption of a uniform distribution with finite support and
then applies the Blahut–Arimoto algorithm (Blahut, 1972; Ari-
moto, 1972) to iteratively update the sampling weights (Machens,
2002). This method has been applied experimentally to char-
acterize grasshopper auditory receptor neurons, demonstrating
optimality for processing behaviorally relevant species-specific
communication sounds (Machens et al., 2005; Benda et al., 2007).

ADAPTIVE OPTIMIZATION FOR SENSORY MODEL
ESTIMATION
An ideal gold standard for sensory neuroscience is to obtain a
complete and accurate functional stimulus–response model of the
neuron under study. In theory, once such a model is attained, one
can then numerically or analytically calculate from this model the
neuron’s optimal stimulus, its iso-response surfaces, and its maxi-
mally informative stimulus ensembles. That is, if one identifies the
system, one gets“for free”other information one may be interested
in. However, despite its conceptual appeal, the problem of system
identification is of great practical difficulty. This is because one
needs to specify an accurate yet experimentally tractable model
whose parameters can be estimated from data obtained during
the available observation time. Unfortunately, research in com-
putational neuroscience has shown that tractable (e.g., linear and
quadratic) models are not accurate, whereas more biologically
accurate models (deep, multiple layer neural networks incorporat-
ing dynamics, recurrence, etc.) often pose intractable parameter
estimation problems.
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FIGURE 3 | Examples of iso-responses surfaces for two hypothetical

sensory processing models. (A) Iso-response contours (left) of a sensory
neuron which linearly integrates stimulus variables x1, x2 ≥ 0. The response r
of this neuron is a summation of the outputs of two neurons in the lower

layer with a threshold-linear gain function (right). Colors in the contour plot
represent neural firing rates from low to high. (B) Iso-responses contours
(right) of a sensory neuron which non-linearly integrates stimulus variables
x1, x2 ≥ 0 with a threshold-quadratic gain function (right).

It is well known from the fields of statistics and machine
learning that one can more quickly and accurately estimate the
parameters of a function using adaptive data collection, where new
observations are generated in an iterative, adaptive manner which
optimize the expected utility of the responses given the goal of
estimating the model parameters (Lindley, 1956; Bernardo, 1979;
MacKay, 1992). Mathematically, the optimization problem is to
find at each iteration

x∗n+1 = arg max
x∈X

U (E)
n (x), (6)

where U (E)
n (x) is the estimation utility function based on the data

of the first n stimulus–response pairs. There are many choices
for this function, including expected squared error (Müller and
Parmigiani, 1995), expected prediction error (Sugiyama, 2006),
and mutual information between stimuli and model param-
eters (Paninski, 2005). The generic name for this strategy is
optimal experimental design or OED (Federov, 1972; Atkinson
and Donev, 1992; Cohn et al., 1996), and it is often stud-
ied in a Bayesian framework (MacKay, 1992; Chaloner and
Verdinelli, 1995). Recent theoretical and experimental work has
shown that such methods can potentially be fruitfully applied
in neuroscientific experiments (Paninski, 2005; Paninski et al.,
2007; Lewi et al., 2009, 2011; DiMattina and Zhang, 2011).
Not only can optimal experimental design make the estimation

of high-dimensional models practical (Lewi et al., 2009), but
can also make it tractable to estimate highly non-linear models
which cannot be readily identified from random “white noise”
data of the kind typically used in system identification experi-
ments (DiMattina and Zhang, 2010, 2011). We first discuss the
application of such methods in psychology and cognitive sci-
ence, and then discuss recent theoretical and experimental work
on applications of OED methods to sensory neurophysiology
experiments

ADAPTIVE STIMULUS OPTIMIZATION IN PSYCHOLOGY AND
COGNITIVE SCIENCE
Psychophysics has long utilized adaptive data collection, with the
classic example being the staircase method for threshold esti-
mation (Cornsweet, 1962). More recently, an adaptive Bayesian
approach to threshold estimation (QUEST) which chooses new
stimuli for each trial at the current Bayesian estimate of the
threshold was developed (Watson and Pelli, 1983), and sub-
sequent work extended this approach to permit simultaneous
estimation of both the threshold and slope of the psychometric
function (Snoeren and Puts, 1997). Another line of work applied
an information-theoretic approach to estimating the slope and
threshold parameters, where stimuli were chosen at each trial to
maximize the expected information gained about the slope and
threshold parameters (Kontsevich and Tyler, 1999). More sophis-
ticated methods of this kind have been utilized for psychometric
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functions defined on two-dimensional stimuli (Kujala and Lukka,
2006), with these procedures being applied for estimating contrast
sensitivity functions (Lesmes et al., 2010) and color sensitivity of
human observers (Kujala and Lukka, 2006). In addition to finding
widespread application in sensory psychophysics, adaptive meth-
ods have also been used more broadly in the cognitive sciences
(Wixted and Ebbesen, 1991; Rubin and Wenzel, 1996; Nosof-
sky and Zaki, 2002; Opfer and Siegler, 2007; Kujala et al., 2010;
McCullough et al., 2010).

GENERALIZED LINEAR MODELS AND BIOPHYSICAL MODELS
More recently, investigators in computational neuroscience
have demonstrated that adaptive information-theoretic sampling
where stimuli are chosen to maximize the expected informa-
tion gain between a stimulus and the model parameters can be
a highly effective means of estimating the parameters of sen-
sory processing models (Paninski, 2005; Paninski et al., 2007).
A fast information-theoretic algorithm has been developed for
the generalized linear model which applies a static non-linearity
to the output (Lewi et al., 2009). The generalized linear model
has been utilized in numerous studies (Simoncelli et al., 2004)
and enjoys a likelihood function with no local maxima (Panin-
ski, 2004). Their algorithm relied on a Gaussian approximation
to the posterior density, permitting fast recursive updates, with
the calculations for finding the optimal stimulus growing only as
the square of the stimulus space dimensionality. Numerical sim-
ulations demonstrated that their procedure was asymptotically
efficient, with the empirically computed variance of the poste-
rior density converging to the minimum theoretically possible
variance.

One issue which potentially affects studies of stimulus opti-
mization is neuronal adaptation due to the stimulus history
(Ulanovsky et al., 2003; Asari and Zador, 2009). In sensory neu-
rons, this may be manifested as the system actually changing its
underlying parameters which we seek to estimate as the experi-
ment progresses. However, the procedure developed by Lewi et al.
(2009) was demonstrated to be robust to parameter drift in numer-
ical simulations, suggesting the ability to compensate for changes
to the system brought about by adaptation effects. Furthermore,
their model also permits the estimation of a spike-history filter,
allowing neuronal response history to influence predictions to new
stimuli.

A further study by this group applied this algorithm to fit-
ting generalized linear models to avian auditory neurons probed
with conspecific song samples, and it was found that accurate esti-
mation could be obtained using vastly fewer samples when they
were chosen adaptively using the algorithm then when they were
chosen non-adaptively (Lewi et al., 2011). Although this proce-
dure has yet to be applied in real on-line experiments, it provides
experimenters working on a variety of systems with a powerful
tool for quickly characterizing neurons whose responses are well
described by generalized linear models (Chichilnisky, 2001) or
related models (Pillow et al., 2008).

More recently, this group has also applied optimal experimental
design to the cellular neuroscience problem of accurately estimat-
ing voltages from dendritic trees using measurements suffering
from low signal-to-noise ratio (Huggins and Paninski, 2012).

Using simulated compartmental models, these authors demon-
strated that by adaptively choosing observation locations which
minimize the expected squared error of the voltage measurement,
a substantial improvement in accuracy was obtained compared to
random sampling. This procedure is potentially of great exper-
imental usefulness because techniques like two-photon imaging
permit spatially complete observations of dendrites, but with low
signal-to-noise ratios (Djurisic et al., 2008; Canepari et al., 2010).

MULTIPLE LAYER NEURAL NETWORKS
Since many sensory neurons are non-linear (Young et al., 2005; Wu
et al., 2006), it is of interest to characterize neurons using various
non-linear models, including quadratic and bilinear models (Yu
and Young, 2000; Berkes and Wiskott, 2006; Ahrens et al., 2008a,b),
neural networks (Lau et al., 2002; Prenger et al., 2004; Cadieu et al.,
2007) and basis function networks (Poggio and Girosi, 1990). A
generalized linear model is also a non-linear model because it
employs a static non-linearity at the output stage. Although a
generalized linear model allows limited non-linearities, it enjoys
tractable and consistent estimation procedures without problems
of local minima (Paninski, 2004). Identifying more complex non-
linear models like hierarchical neural networks from physiological
data tends to be harder due to problems like local minima and
plateaus in the error surface (Amari et al., 2006; Cousseau et al.,
2008; Wei and Amari, 2008; Wei et al., 2008).

For studies aimed at estimating generalized linear models, the
use of a fixed white-noise stimulus set is often quite effective and is
theoretically well-justified (Chichilnisky, 2001; Paninski, 2004; Wu
et al., 2006). However, recent theoretical work suggests that using
fixed stimulus sets like white noise may be deeply problematic for
efforts to identify non-linear hierarchical network models due to
continuous parameter confounding (DiMattina and Zhang, 2010).
This problem is illustrated for a very simple non-linear neural net-
work model shown in Figure 4A. In this example, the goal is to
recover the parameters (w,v) of the network by performing max-
imum likelihood (ML) estimation given noisy stimulus–response
observations. When the input stimuli x only drive the hidden unit
over a region of its gain function which can be well approximated
by a power function (Figure 4B, top), the estimates obtained
by ML for different datasets lie scattered along the continuum
vwα = C, as one would expect for a power law gain function
g(u)=Auα (Figure 4C, top). (Here the constant C = vTwα

T, where
wT and vT are the true values of the input and output weights.)
In contrast, when the input stimuli x drive the hidden unit over a
full range of its gain so that the power law approximation is poor
(Figure 4B, bottom), the true parameters are accurately recovered
for different datasets (Figure 4C, bottom).

A hypothetical experiment which suffers from this problem is
illustrated in Figure 5. We see that when the network in Figure 5A
is probed with random stimuli (Figure 5B, right), the hidden unit
is driven over a limited range of its gain function which may be
well approximated by an exponential, so that the sigmoidal gain
(Figure 5C, black curve) may de facto be replaced by a new expo-
nential gain function g(u) = Aeαu (Figure 5C, red curve). With
this new gain, it follows that a continuum of different values of
the output weight v and bias w0 lying on the curve veαw0 = C
will yield models whose responses to the training data are
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FIGURE 4 | Example of continuous parameter confounding in a simple

non-linear neural network model. Adapted with permission from DiMattina
and Zhang (2010). (A) A simple three layer neural network whose input and
output weight parameters (w,v ) we wish to estimate from noisy
stimulus–response data. Noise is drawn from a Poisson distribution. (B) Top:
The input stimuli x ∈ [−0.5, 0.5] only drive the hidden unit over a limited
region of its gain function (black curve) which may be well approximated by a

power law function (red dashed line). Bottom: The input stimuli x ∈ [−2,2]
drive the hidden unit over a larger region of its gain function which is poorly
approximated by a power law function. (C) Top: When trained with sets of
stimuli like that in the top of Figure 4B, the estimates (black dots) lie scattered
along the curve predicted by the power law confounding theory. Bottom:
When trained with sets of stimuli like those in the bottom panel of Figure 4B,
the true parameter values (red triangle) are more reliably recovered.

indistinguishable and therefore multiple estimates of these param-
eters from different random training sets will lie scattered along
this curve (Figure 5D). (Here the constant C = vTeαw0T where
V T and w0T are the true values of the output weight and hidden
unit bias.)

Adaptive stimulus optimization methods like information-
theoretic sampling (Paninski, 2005) can in principle overcome
this problem of continuous parameter confounding, as we see
in Figure 5D where the correct network parameters are reliably
recovered when optimally designed stimuli (Figure 5B, left) are
used. This simple example suggests that adaptive stimulus opti-
mization may make it tractable to reliably recover the parameters
of complex hierarchical networks needed to model non-linear
neurons, whereas it is much harder to recover these networks using
standard stimulus sets like white noise.

Many previous studies in the statistics and machine learn-
ing literature have demonstrated that faster convergence and
smaller generalization error may be obtained when neural net-
works are trained adaptively using optimally designed stimuli
(Lindley, 1956; MacKay, 1992; Cohn et al., 1994). Recently,
we have developed a practical method for implementing the
information-theoretic stimulus optimization approach derived for
generalized linear models (Lewi et al., 2009) for arbitrary non-
linear models like hierarchical neural networks. Although this
method employs numerous approximations, it has been shown
in simulated experiments to be effective at recovering non-linear

neural networks having multiple hidden units, and is fast enough
to utilize in real experiments (Tam et al., 2011; Dekel, 2012;
Tam, 2012).

ADAPTIVE OPTIMIZATION FOR SENSORY MODEL
COMPARISON
Quite often the appropriate model for describing a sensory neu-
ron or perceptual quantity is unknown. Therefore, an important
experimental goal may be to discriminate between two or more
competing models. Mathematically, the optimization problem is
to iteratively find stimuli

x∗n+ 1 = arg max
x

U (C)
n (x), (7)

which optimize a model comparison utility function Un
(C)(x),

one choice of which may be the expected reduction in model space
entropy (Cavagnaro et al., 2010; DiMattina and Zhang, 2011). This
equation may be regarded as the optimal comparison counterpart
of the equation for optimal estimation (Eq. 6). We now briefly dis-
cuss recent studies making use of adaptive stimulus optimization
for model selection.

PSYCHOPHYSICAL MODEL COMPARISON
Although standard model comparison methods like the Bayesian
Information Criterion (BIC; Schwarz, 1978) or predictive
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FIGURE 5 | Stimuli which are adaptively optimized for accurate

parameter estimation can be more effective than random stimuli for

recovering non-linear models. Adapted with permission from DiMattina and
Zhang (2011). (A) A simple center-surround neural network consisting of a
narrowly integrating excitatory output unit (E-unit) which receives inhibitory
input from a broadly integrating interneuron (I-unit). (B) Examples of optimally
designed (left) and random (right) stimuli. Note that the optimally designed
stimuli exhibit complex correlated structure. (C) Random stimuli (green dots)
only drive the E-unit over a limited range of its gain function (black curve)

which may be well approximated by an exponential function (red
dashed line). This is due to inhibition from the I-unit, as can be seen
by setting v I = 0 (crosses). By contrast, optimally designed stimuli
(blue dots) drive the gain function over its full range. (D) Estimates
attained from training with random stimuli (green dots) exhibit continuous
parameter confounding between the output weight and bias, as predicted by
the exponential theory (black curve). In contrast, estimates attained from
optimally designed stimuli accurately recover the true parameters (red
triangle).

cross-validation may be applied post hoc (Vladusich et al., 2006;
Wu et al., 2006), numerous studies suggest that performing exper-
iments using stimuli optimized for model comparison may be far
more effective (Atkinson and Fedorov, 1975a,b). One method for
model comparison developed recently for psychophysical experi-
ments is known as MAximum Differentiation (MAD) competition
(Wang and Simoncelli, 2008). Given two perceptual models

which relate stimulus parameters to a perceptual quantity, this
method generates a pair of stimuli which maximizes/minimizes
the response of one model while holding the other model’s
response fixed. Next, this procedure is repeated with the role of
the two models reversed. Testing human subjects on the two pairs
of synthesized stimuli can determine which model is “better” in
the sense of telling us which model’s max/min pairs are simpler to
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discriminate. This procedure has been fruitfully applied to com-
paring image quality assessment models which aim to predict
human perception of image quality (Wang and Bovik, 2006)

An information-theoretic method for model comparison was
recently derived by Cavagnaro et al. (2010). Given a set of mod-
els with the i-th model having prior probability P0(i), stimuli are
chosen to maximize the mutual information between the stim-
ulus and the model index i by minimizing the expected model
space entropy in a manner directly analogous to information-
theoretic model estimation (Paninski, 2005), except that in this
case the unknown variable is a discrete model index i rather
than a continuous parameter value θ. This method was applied
to competing models of memory retention from the cognitive
science literature (Rubin et al., 1999) and was shown to permit
much more accurate discrimination than standard non-adaptive
methods.

NEURAL MODEL COMPARISON
In general, the correct parameters of competing sensory process-
ing models are not known beforehand. Therefore, it is of interest
to consider how to conduct experiments which estimate and
discriminate competing models. Typically, investigators in neu-
rophysiology and neuroimaging have applied model-comparison
techniques post hoc (David and Gallant, 2005; Vladusich et al.,
2006; Penny, 2012), particularly in the system identification litera-
ture (Prenger et al., 2004; David and Gallant, 2005; Wu et al., 2006;
Sharpee et al., 2008; Rabinowitz et al., 2012; Schinkel-Bielefeld
et al., 2012). However, a fundamental limitation with post hoc
analysis is that it is not possible to generate and test critical stimuli
which are optimized for model comparison, as this is only pos-
sible while the system is under observation. This limitation can
only be overcome by fitting multiple models to a sensory neuron
during the course of an experiment and then using the fitted mod-
els to generate and present critical stimuli which are optimized to
best discriminate the models. Although previous work has pre-
sented stimuli on-line to test or verify a single model (deCharms
et al., 1998; Touryan et al., 2002), very little work in single-unit in
vivo sensory neurophysiology has presented stimuli optimized for
model comparison in real-time (Tam et al., 2011).

A recent study considered a two-stage approach for combining
the goals of model estimation and comparison in neurophysiology
experiments, illustrated schematically in Figure 6A (DiMattina
and Zhang, 2011). In the first stage, stimuli are adaptively opti-
mized for parameter estimation, with the optimal stimulus for
each model being presented in turn. In the second stage, stim-
uli are generated adaptively in order to optimally discriminate
competing models making use of an information-theoretic crite-
rion (Cavagnaro et al., 2010) or a likelihood-based criterion. In
the special case of two models f1 (x, θ1), f2 (x, θ2) and Gaussian
response noise, it can be shown that under a likelihood criterion
the best stimulus for model discrimination is the stimulus which
maximizes the quantity

[
f1 (x, θ1) − f2 (x, θ2)

]2
, and furthermore

this stimulus will maximally increase the BIC in favor of the best
model (DiMattina and Zhang, 2011).

Figure 6 illustrates a numerical experiment making use of this
two-stage procedure for the problem of discriminating an additive
and multiplicative model of neural responses (Figure 6B), where

the additive model is assumed to be the true model. After the
estimation phase, the BIC does not have a strong preference for
either model, only being correct about half the time (Figure 6C).
However, after presenting 500 stimuli optimized for discriminat-
ing the additive and multiplicative model and applying the BIC
to all available data, the correct (additive) model is preferred for
24 of 25 Monte Carlo trials (red curve). As a control, presenting
additional stimuli optimized for model estimation only improves
final model selection moderately (blue curve), while presenting
random stimuli does not at all improve model selection perfor-
mance (green curve). This procedure has now been applied in
neurophysiology experiments to generate critical stimuli to dis-
tinguish between two competing models of spectral processing by
single neurons in the primate inferior colliculus (Tam et al., 2011;
Tam, 2012).

DISCUSSION
With increasing computer power, it is becoming practical for neu-
roscience experiments to utilize adaptive stimulus optimization
where stimuli are generated in real-time during the course of
the experiment (Benda et al., 2007; Newman et al., 2013). Vari-
ous experiments have utilized adaptive stimulus optimization in
order to break the “curse of dimensionality” and find the optimal
stimulus for a sensory neuron in spaces which are too large for
factorial exploration (O’Connor et al., 2005; Yamane et al., 2008).
However, simply characterizing the optimal stimulus for a sen-
sory neuron provides at best only a partial description of neural
coding (Olshausen and Field, 2005). Therefore, in addition to
helping to find the optimal stimulus, adaptive stimulus optimiza-
tion makes it possible to pursue engineering-inspired approaches
to sensory neurophysiology which may yield greater functional
insights, for instance finding stimulus ensembles maximizing
information between stimuli (Machens, 2002; Machens et al.,
2005) and neural responses or fitting and comparing multiple
non-linear models to neural responses (Lewi et al., 2009; DiMat-
tina and Zhang,2011). Table 1 summarizes the various closed-loop
stimulus optimization paradigms discussed in this review, and
Figure 7 schematically illustrates the closed-loop experimental
approach.

The vast majority of the work to date has applied closed-
loop methods to studying scalar firing rate responses measured
from single neurons. However, as closed-loop approaches are con-
tinuing to develop, and as new techniques like optical imaging
(Ohki et al., 2005; Bock et al., 2011) are making it increasingly
feasible to observe large numbers of neurons simultaneously, it is
of great interest for future investigations to apply these methods
to neural populations and to measurements beyond scalar firing
rate. Here we briefly discuss some possible directions for future
research.

While the notion of the optimal stimulus is well-defined for
single neurons, it is not well-defined for neural populations.
However, an alternative approach to stimulus optimization for
a population of neurons is to find the stimulus at which the pop-
ulation is best at discriminating nearby stimuli, as opposed to
the stimulus yielding the highest firing rate response. Indeed,
it has been suggested by a number of investigators that high-
slope regions of tuning curves, where nearby stimuli are best
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FIGURE 6 | Stimuli which are adaptively optimized for model

comparison can lead to more accurate model selection. Adapted with
permission from DiMattina and Zhang (2011). (A) A hypothetical two phase
procedure for estimating and comparing multiple competing models. During
the estimation (E) phase, stimuli are optimized in turn for estimating each
model. During the comparison (C) phase, stimuli are optimized for comparing
all of the models. (B) Two candidate models were fit to data generated by a
true additive model whose input weights (w1 and w2) were 12 × 12 Gabor

patches shown at the right. The two competing models differ only in their
method of integrating subunit activities (additive versus multiplicative). (C) At
the end of the estimation phase (“Start”), the BIC does not consistently
prefer either model. Presenting additional stimuli optimized for model
discrimination yields almost perfect model selection (red curve), while
presenting additional random stimuli (green curve), or stimuli optimized for
model estimation (blue curve) either does not improve or only somewhat
improves model selection.

discriminated, are much more important in sensory coding than
tuning curve peaks (Seung and Sompolinsky, 1993; Harper and
McAlpine, 2004; Butts and Goldman, 2006; Bonnasse-Gahot
and Nadal, 2008). Under reasonable assumptions of independent
Poisson responses, the one-dimensional stimulus x at which a
neural population can best discriminate nearby stimuli x + δx is
the stimulus which maximizes the Fisher information IF (x) =∑N

i= 1

[
f ′i (x)

]2
/ fi (x), where fi(x) is the tuning curve of the

i-th neuron (Dayan et al., 2001). It is relatively straightforward to
extend this Fisher information formalism to higher dimensional
stimulus spaces (Zhang and Sejnowski, 1999; Johnson et al., 2001;
Bethge et al., 2002). Local approximation of the Fisher informa-
tion matrix has been used in previous work aimed at stimulus
optimization in a single neuron (Bandyopadhyay et al., 2007b),

and this technique could readily generalize to find the stimulus
which is best discriminated from nearby stimuli by a population
code.

Extension of the definition of iso-response surfaces (Gollisch
et al., 2002) to multiple neurons is relatively straightforward.
In particular, if we can view each neuron as implementing a
function f (x) on the stimulus space, then the region of stim-
ulus space which simultaneously satisfies multiple constraints
f1 (x) = c1, · · · , fN (x) = cN should simply be the (possibly
empty) intersection of the regions of stimulus space satisfying
each individual constraint. It would be interesting to extend the
maximally informative ensemble approach (Machens, 2002) to
multiple neurons as well. One potential difficulty is that the num-
ber of possible responses which one needs to measure to compute

Table 1 | Summary of various closed-loop stimulus optimization approaches utilized in sensory systems neuroscience.

Optimization goal Equation Example references

Firing rate optimization 1 Nelken et al. (1994); O’Connor et al. (2005), Yamane et al. (2008); Koelling and Nykamp (2012)

Iso-response surfaces 4 Gollisch et al. (2002); Bölinger and Gollisch (2012), Horwitz and Hass (2012)

Maximally informative stimulus ensembles 5 Machens (2002); Machens et al. (2005)

On-line model estimation 6 Lewi et al. (2009, 2011), DiMattina and Zhang (2011)

On-line model comparison 7 Cavagnaro et al. (2010); DiMattina and Zhang (2011)
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FIGURE 7 | A schematic summary of closed-loop approaches in sensory neurophysiology. Neural responses to previous stimuli are used in order to
choose new stimuli, by maximizing an objective function for accomplishing a desired experimental goal (see alsoTable 1).

the probability distribution p(y|x) increases exponentially with
the number of neurons in the population. Indeed, this exponen-
tial increase in the number of symbols with the dimensionality
of the response space is a well-known problem with applications
of information-theoretic methods in neuroscience (Rieke et al.,
1997). It would be desirable to develop more efficient computa-
tional techniques for studying neuronal populations in the future
(Yarrow et al., 2012).

In addition to considering neural populations, another direc-
tion for extending the closed-loop paradigm is to consider neural
responses more sophisticated than firing rates, for instance
the temporal patterns of neural responses (Optican and Rich-
mond, 1987; Victor and Purpura, 1996), first spike latency
(VanRullen et al., 2005; Gollisch and Meister, 2008), or syn-
chronous responses in neural populations (Brette, 2012). Since
a temporal pattern is a vector but not a scalar, one needs to
extract a scalar quantity from a temporal pattern in order to
define the optimal stimulus. For example, synchrony can be
defined as a scalar quantity (Steinmetz et al., 2000) and can in
principle be optimized over a stimulus space in the same man-
ner as firing rate. The iso-response paradigm (Gollisch et al.,
2002) would generalize quite well to both spike pattern and
synchrony measures. In this case of spike pattern, the goal
would be to find the equivalence class of all stimuli which
could elicit a desired pattern of spiking, and theoretical efforts
have demonstrated that it is possible to design stimuli to pro-
duce a desired spike pattern (Ahmadian et al., 2011). Similarly,

for iso-synchrony curves one could find equivalence classes of
stimuli yielding the same degree of synchrony in the popu-
lation by utilizing algorithms similar to those developed for
firing rate.

One of the most powerful applications of the closed-loop
paradigm is the ability to move sensory neurophysiology toward
a model-based paradigm, where experiments are performed with
the goal of identifying and comparing multiple competing non-
linear models (Paninski, 2005; Lewi et al., 2009; DiMattina and
Zhang, 2011; Tam et al., 2011). One advantage of model iden-
tification is that successful identification gives the experimenter
a variety of biologically important information about the neu-
ron or neuronal population “for free.” That is, once one has
determined an accurate model for a sensory neuron, the opti-
mal stimulus for maximizing firing rate, the iso-response surfaces,
or the stimulus ensemble maximizing information transmission
can be predicted from this model, and these predictions can
be tested experimentally. However, the model-based approach is
not without its difficulties, as many sensory neurons are poorly
described by tractable linear and quadratic models and may be
better described by more complex models like basis functions and
neural networks. Recent work has demonstrated that in principle,
adaptive stimulus optimization methods long utilized in machine
learning and psychophysics can be applied in sensory neurophysi-
ology for purposes of model estimation and comparison (Paninski,
2005; Lewi et al., 2009; DiMattina and Zhang, 2011). In particular,
our recent study has presented a practical two-stage experimental

Frontiers in Neural Circuits www.frontiersin.org June 2013 | Volume 7 | Article 101 | 270

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


“fncir-07-00101” — 2013/6/5 — 10:46 — page 14 — #14

DiMattina and Zhang Adaptive stimulus optimization

method for generating stimuli which are optimal for estimat-
ing the parameters of multiple non-linear models and then
generating stimuli on-line in order to critically compare the
predictions of different models (DiMattina and Zhang, 2011).
This method is presently being applied in ongoing auditory
neurophysiology studies (Tam et al., 2011; Dekel, 2012; Tam,

2012), and may be applicable to a broad variety of sensory
systems.
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Mirror neurons are neurons whose responses to the observation of a motor act
resemble responses measured during production of that act. Computationally, mirror
neurons have been viewed as evidence for the existence of internal inverse models.
Such models, rooted within control theory, map-desired sensory targets onto the motor
commands required to generate those targets. To jointly explore both the formation of
mirrored responses and their functional contribution to inverse models, we develop a
correlation-based theory of interactions between a sensory and a motor area. We show
that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor
loop during motor explorations and stabilized by heterosynaptic competition, naturally
gives rise to mirror neurons as well as control theoretic inverse models encoded in the
synaptic weights from sensory to motor neurons. Crucially, we find that the correlational
structure or stereotypy of the neural code underlying motor explorations determines the
nature of the learned inverse model: random motor codes lead to causal inverses that
map sensory activity patterns to their motor causes; such inverses are maximally useful,
by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped
motor codes lead to less useful predictive inverses that map sensory activity to future
motor actions. Our theory generalizes previous work on inverse models by showing that
such models can be learned in a simple Hebbian framework without the need for error
signals or backpropagation, and it makes new conceptual connections between the causal
nature of inverse models, the statistical structure of motor variability, and the time-lag
between sensory and motor responses of mirror neurons. Applied to bird song learning,
our theory can account for puzzling aspects of the song system, including necessity of
sensorimotor gating and selectivity of auditory responses to bird’s own song (BOS) stimuli.

Keywords: mirror neurons, inverse problem, linear models, songbird, sensory motor learning

INTRODUCTION
Complex vertebrate motor behaviors are generated by dedicated
cortical circuits. The organization of these circuits and the plastic-
ity rules that lead to their development and that guarantee their
maintenance are functionally related to neural activity in single
units and across larger populations (Gallese et al., 1996; Rizzolatti
et al., 1996; Rizzolatti and Craighero, 2004; Harvey et al., 2012).
For example, neural activity often strongly co-varies with motor
behavior, allowing for estimation of detailed limb movement
parameters from mere single-neuron recordings (Georgopoulos
et al., 1986; Schwartz et al., 1988) and facilitating neural pros-
thesis (Santhanam et al., 2006; Ethier et al., 2012). However, in
other cases, the amount of firing variability in single neurons can
be dramatically dissociated from behavioral variability. For exam-
ple, in songbirds, two distinct premotor areas are responsible for
the generation of different aspects of the same vocal behavior.
On the one hand, the cortical area HVC is involved in generating
stereotyped adult song; lesions of HVC lead to degradation of typ-
ical adult song toward more unstructured subsong typical of very

young birds (Nottebohm et al., 1976; Aronov et al., 2008). On the
other hand, its counterpart, the lateral magnocellular nucleus of
the anterior nidopallium (LMAN) in very young birds is involved
in subsong production and in adults it is involved in the produc-
tion of very subtle song variability that is barely noticeable to the
human ear (Aronov et al., 2008). Lesions of LMAN in juveniles
abolish song learning (Bottjer et al., 1984), and lesions in adults
reduce the already small variability of adult undirected songs (the
songs not direct toward another bird), manifest for example by
reduced fluctuations of sound pitch (Kao et al., 2005; Stepanek
and Doupe, 2010).

These lesion studies ascribing differential roles of HVC and
LMAN to song production, are paralleled by findings from elec-
trophysiology. In HVC of singing birds, single principal neurons
fire highly stereotyped spiking patterns associated with a given
song syllable, with precision of individual action potentials in
the sub millisecond range (Hahnloser et al., 2002; Kozhevnikov
and Fee, 2007). By contrast, in LMAN of birds singing undi-
rected songs, neurons fire very variable spike patterns, patterns
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that fluctuate on a trial-to-trial basis between loosely timed
high-frequency bursts of action potentials and no spiking at all
(Olveczky et al., 2005; Kao et al., 2008). Thus, stereotyped adult
song is subserved by precise firing in HVC whereas subtle vari-
ability of adult song is subserved by large firing variability in
LMAN, Figure 1. The diverse neural codes in LMAN and HVC
are integrated in a dedicated nucleus that mediates both differ-
ential influences from these stereotypy and variability generators.
Both HVC and LMAN project to the robust nucleus of the arco-
pallium (RA), which is the cortical output nucleus that directly
innervates syringeal and respiratory motor neurons.

Whether stereotyped or variable, internal motor patterns
responsible for generating behavior cannot be fully understood
without considering the sensory input reaching the motor system.

FIGURE 1 | Spiking activity in single neurons of singing zebra finches,

illustrating (A) a variable premotor code in LMAN and (B) a

stereotyped code in HVC. (A) Spike raster plot of LMAN projection neuron
aligned to 41 renditions of the stereotyped song motif. Three exemplary
sound oscillograms of the motif are shown on top. The neuron produces
single spikes and spike bursts at different times in each rendition of the
motif. The motif-averaged firing rate is shown at the bottom. (B) Spike
raster plot of HVC projection neuron aligned to 22 renditions of the
stereotyped song motif (in a different bird), three exemplary motif
oscillograms are shown on top. In each rendition of the motif the neuron
produces a brief burst of spikes at precisely the same time.

Indeed, the very development of motor systems as well as the
formation of motor plans are profoundly shaped by sensory
inputs. For example, the development of the mirror neuron sys-
tem depends on sensorimotor experience (Catmur, 2012) and,
the successful development of birdsong depends on intact HVC
and LMAN activity during sensory exposure (Basham et al., 1996;
Roberts et al., 2012).

We have learned much about the integration of sensory
inputs into motor systems from single neuron studies examining
responses during motor production and during matched sensory
states. Among the key findings are mirror neurons that fire sim-
ilarly when an animal executes a motor act and when it sees or
hears another animal perform that same act. For example, mir-
ror neurons in F5 of monkey premotor cortex fire both when the
monkey touches an object and sees another subject touch that
object (Rizzolatti et al., 1996; Rizzolatti and Craighero, 2004).
Mirror neurons also exist in HVC of songbirds; these neurons
fire at a precise time in the song, both when the bird sings the
song and when it hears a similar song produced by another bird
(Prather et al., 2008).

Mirror neurons establish a link between the observation of
an act in another and self-generation of that same act. Such
a remarkable correspondence between sensory and motor roles
in single neurons has led to numerous suggestions about the
function of mirror neurons in communication, imitation learn-
ing, cultural learning, and language development (Rizzolatti and
Craighero, 2004; Oztop et al., 2012). Most importantly, mir-
rored responses have been proposed to be causally related to
streams of motor and sensory activity (Oztop et al., 2006, 2012).
A recent proposal is to tie properties of the mirror neuron system
to correlative learning rules (Cooper et al., 2012). Accordingly,
sensory responses in mirror neurons could develop from the con-
tingency of motor-related firing and its sensory consequences
feeding back to motor areas. Here we develop this idea and pro-
pose a simple mathematical theory of mirror neuron formation
from correlational learning rules. To examine the critical role of
motor variability, we study, based on earlier work (Hahnloser and
Ganguli, 2013), mirror neuron formation for both motor codes
with strongly correlated firing patterns among neurons, as in
HVC, as well as for motor codes with uncorrelated firing patterns
among neurons, as in LMAN.

We are particularly interested in relating mirror neuron prop-
erties to their computational role in control theoretic inverse
models. Mirror neurons have previously been recognized as direct
evidence of inverse models, which are models that transform
desired sensory states into motor commands that can achieve
those states and may be used for action generation (Oztop et al.,
2012). From the control-theoretic perspective, internal inverse
models give rise to mirrored responses because of the precise
correspondence between a desired sensory target, the motor
commands for producing that target, and the resulting sensory
feedback. We pursue this idea and elucidate the conditions under
which inverse models can arise from correlational learning during
sensory feedback-dependent motor explorations.

We assume inverse models form in a context without prior
knowledge of structure of either the motor apparatus or the
delayed sensory feedback. We design an eligibility-weighted
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correlational learning rule that allows for the formation of both
inverse models and mirror neurons. In the rule we propose,
synaptic strengthening depends on contiguous co-activation
of pre-and postsynaptic neurons, whereas synaptic weakening
depends on heterosynaptic competition between sensory affer-
ents innervating the same motor neuron. We argue that from
a synaptic perspective, this rule is considerably simpler and
more plausible than previously proposed rules and computa-
tional approaches toward systems-level inverse models based
on error backpropagation (Jordan and Rumelhart, 1992). Our
rule is most closely related to direct inverse model approaches
(Miller, 1987; Slotine, 1987), in which, however, the possibility
of unknown feedback delays has not been adequately addressed.
Most importantly, we find that whether the formed mirror neu-
ron system and inverse model is suitable for action imitation
depends on the correlational structure of the neural code asso-
ciated with motor production. Whereas a variable (explorative)
motor code leads to causal inverse models and is suitable for
mirror-neuron dependent action imitation, a stereotyped (repet-
itive) motor code leads to predictive inverse models and is not
suitable for action imitation. Thus, our work provides an inter-
esting link between the correlational structure of motor behavior,
its underlying neural code, and fine-grained temporal properties
of mirror neuron responses and their suitability for flexible action
imitation.

Furthermore, these conceptual connections suggest a set of
natural experiments designed to probe for the existence, and char-
acterize the causal nature of, inverse models by measuring the fine
grained temporal properties of the sensory and motor responses
of mirror neurons. As we discuss below, when applied to the
bird song system, these experiments make a specific, testable pre-
diction about the existence and temporal properties of mirror
neurons in the variable motor circuit LMAN, as well as explain
the origin of previously observed temporal properties of mirror
neurons in the stereotyped motor circuit HVC.

RESULTS
A LINEAR FRAMEWORK
We develop our theory in a simple linear framework in which the
sensory response a(t) in a sensory brain area at time t is a vector
of firing rates that is linearly related to the motor cause m(t − τ)

at an earlier time t − τ , where m(t − τ) is a vector of firing rates
in a motor area such as HVC or LMAN. The time delay of sen-
sory feedback τ = τm + τa is the sum of the time τm needed to
translate motor activity into behavioral (vocal) output and the
time τa it takes for a vocalization to elicit a sensory response. We
assume a linear motor-sensory mapping modeled by the matrix
Q, allowing us to specify the form of delayed sensory feedback as
a(t) = Qm(t − τ), Figure 2.

Note that for simplicity we assume linearity of the motor-
sensory mapping Q. However, the simple linearity assumption
inherent in Q need not be inconsistent with the existence of non-
linearities between motor neuron activity and behavioral output
(for example, song) and also with non-linearities between behav-
ioral output and sensory responses. While it is the case that each
of these transformations is highly non-linear, the dimensional-
ity of motor behavior patterns realizable by muscle activity, or

FIGURE 2 | Delayed feedback and inverse model, illustrated by vocal

production in birds. In our model of delayed sensory feedback the
auditory response a(t) in a sensory area at time t depends linearly on
motor activity m(t − τ) in a motor brain area at an earlier time t − τ

according to a(t) = Qm(t − τ), where Q is the unknown motor-sensory
mapping and τ the unknown delay of auditory feedback. An inverse V is a
mapping from sensory neurons back onto motor neurons that inverts the
action of Q: V = Q−1.

recorded by early sensory responses, is much smaller than the
dimensionality of sensory or motor activity patterns deep within
the cortex, by virtue of the fact that cortical motor and sen-
sory neurons largely outnumber the few muscles and sensory
receptors involved in the composite motor to sensory feedback
loop. So for example, within the bird song system, it is thus
probable that the low dimensional, composite non-linear trans-
formation from cortical motor patterns, to muscle activity in the
syrinx, to song, to cochlear response, back to cortical sensory
feedback, could be well-approximated by a direct high dimen-
sional linear map from the cortical motor area back to the cortical
sensory area. This is in exact analogy to the theory of support vec-
tor regression approaches from machine learning, in which low
dimensional non-linear maps can be well-approximated by high
dimensional linear maps (Smola and Schölkopf, 2004). Thus, for
our purposes, all we assume is that there exists at least one high
dimensional linear map from cortical motor patterns to cortical
sensory feedback patterns that approximates the composite feed-
back pathway implemented through the non-linear processes of
motor generation and perception.

Now, an inverse model in this context is a mapping V = Q−1

expressed in the synaptic weights V from sensory onto motor
neurons. Such a mapping allows sensory neurons to postdict the
possible motor cause ma of a sensory target (vector) a (either
driven externally, recalled from memory, or resulting from a plan-
ning strategy) according to ma = Va. Such a postdiction ability of
inverse models can be used in feedforward motor control in which
the appropriate stream of motor commands ma(t) can be com-
puted for a given desired sensory target sequence a(t) according
to ma(t) = Va(t).

Frontiers in Neural Circuits www.frontiersin.org June 2013 | Volume 7 | Article 106 | 276

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hanuschkin et al. Inverse models and mirroring offsets

The goals of our theory are to outline a biologically plausible,
local mechanism for learning of the synaptic mapping V and to
characterize the associated emergence of mirror neurons in this
process.

ELIGIBILITY-WEIGHTED HEBBIAN LEARNING
We designed a simple learning rule in which potentiation of
sensory-to-motor synaptic connections V arises from correlated
firing in pairs of sensory and motor neurons. Because sensory
feedback is delayed, synapses must be able to detect correlated
firing within some non-zero time window, which we achieve by
introducing an eligibility trace e(s) that establishes a link between
activity at time t in a motor neuron and activity in a sensory neu-
ron at a later time t + s (see also Figures 3A,C). The eligibility
trace modulates the change in synaptic strength associated with
correlated pre- and postsynaptic firing—it is a biophysical pro-
cess that resides on the postsynaptic side of V synapses and is
triggered by activity (i.e., spikes) in the postsynaptic (motor) neu-
ron. Intuitively, we imagine that the spiking of a motor neuron,
elicited for example from an internal source of motor variation
that generates exploratory motor behavior, triggers the eligibility
trace that in turn makes all synapses from sensory neurons onto

that motor neuron eligible for future modification. Thus, if the
delayed sensory feedback arrives to the sensory area within the
window of eligibility, sensory to motor synapses can potentially
learn to postdict the motor cause by correlating the current sen-
sory feedback with past motor activity that might have generated
it. We further assume that the eligibility is monotonically decay-
ing in time, implying that sensory inputs preferentially connect
onto motor neurons that were recently and reliably activated
rather than motor neurons that were activated a long time ago.
Necessarily, the decay of the eligibility trace must be slow enough
to be able to attribute significant eligibility to sensory inputs with
motor-to-sensory delays τ , which we subsume in the condition
e(τ) � 0.

The full correlational learning rule describing changes in
synaptic strength Vij from auditory neuron j onto motor neuron
i reads:

δVij =
∫ ∞

0
ds
[
e(s)mi(t − s)aj(t)

]− m̂i(t)aj(t), (1)

where m̂i(t) =∑k Vikak(t) is the (silently) postdicted motor
activity, corresponding to the summed auditory input to neuron

FIGURE 3 | Cross-correlation functions for variable and stereotyped

motor codes. (A) In a variable motor code m(t) (shaded area). Activity
bursts m1 (black) and m2 (blue) of width t0 in two example motor neurons
occur at diverse time lags relative to each other across renditions of the
song motif. Auditory tuning in the shown sensory neuron is such that it
responds a1 to bursts m1 after a time lag τ . Repeated co-activation
m1 → a1 and non-zero eligibility e(τ) (red bar) at time lag τ leads to
increased synaptic weight V11 (red arrow) and to a causal inverse. Lack of
correlation between m2 and a1, as well as heterosynaptic competition,
prevents V21 from similarly increasing (blue thin arrow). (B) The
cross-correlation function Cij (t) for variable codes is flat except the

auto-correlation peak at zero time lag (motor activity is uncorrelated among
neuron pairs). Note: based on square activity pulses in motor neurons in
(A) the true cross-correlation shape is triangular (blue dotted line) which we
approximate by a square pulse of width t0 � 10 ms. The auto-correlation
peak height is C0. (C) In a stereotyped motor code m(t) (shaded area),
bursts m1 (black) and m2 (blue) occur at a fixed time lag relative to each
other across renditions of the song motif (traveling pulse of activity).
Repeated co-activation m2 → a1 at higher eligibility (red bar) than the
eligibility of m1 → a1 leads to strengthening of synapse V21 (red arrow)
and to a predictive inverse. (D) The cross-correlation function Cij (t) for
stereotyped codes peaks also at non-zero time lags.
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i at time t. The subtractive term m̂iaj provides an equal time
heterosynaptic depression (Lynch et al., 1977; Chistiakova and
Volgushev, 2009) among all sensory afferent synapses onto a
motor neuron. The strength of this depression depends on the
amount of presynaptic activity but does not depend directly on
postsynaptic activation. The utility of such depression is not
only to stabilize activity but also to force synaptic connections
towards inverse mappings as we will see. Note that we assume V
synapses are “silently” correlating pre- and postsynaptic activity
in Equation 1, i.e., V synapses do not contribute either to post-
synaptic depolarization or to postsynaptic hyperpolarization. In
other words, while the inverse model is being learned, the motor
activity mi(t) is entirely driven by some other source than the
afferent auditory input. Thus, from the perspective of extracel-
lular physiology, it would appear that sensory feedback arriving
to the motor area through the inverse model, is gated out of
the motor area while that motor area is engaged in internally
generated motor explorations.

In the following we examine the outcome of this learning
rule in response to various forms of motor codes, with the goal
of computing the synaptic weight matrix V at a steady-state of
the learning rule, d

dt 〈V〉 = 0, where 〈〉 denotes averaging over
time (e.g., over different renditions of the song). To simplify
the calculations, we assume motor codes with narrow spike-
train cross-correlation functions, i.e., the width t0 of spike-train
cross-correlation functions is much smaller than the character-
istic decay time of the eligibility trace. Although such functions
have not been extensively studied due to the difficulty of simul-
taneously recording from several neurons during singing, narrow
cross-correlation is plausible for RA and HVC neurons because
pseudo simultaneous recordings can be constructed from serial
recordings thanks to high firing stereotypy in these cells, yield-
ing cross-correlation widths on the order of 10 ms (Leonardo
and Fee, 2005). Note that in LMAN, because of high firing vari-
ability, similar estimation of cross-correlation width is virtually
impossible.

We model motor codes with diverse inherent levels of ran-
domness. We model stereotyped motor codes by assuming that
spike-train cross correlations extend over large time lags, in agree-
ment with a traveling pulse of activity (Hahnloser et al., 2002;
Harvey et al., 2012). We model variable motor codes by assum-
ing that cross-correlations vanish except in a peak at zero time lag
(white noise assumption), Figure 3B.

A VARIABLE NEURAL CODE YIELDS CAUSAL INVERSES
If motor activity is uncorrelated among different neuron pairs,
the resulting sensory to motor map V = e(τ)t0Q−1 equals the
inverse of Q weighted by the eligibility at time lag τ (Equation A5,
for the derivation see Appendix A3). Hence, V is a causal inverse
that maps sensory representations onto their motor causes (in
Figure 3A, auditory neurons map onto those motor neurons
whose firing correlates most strongly with their own).

For example, during singing the motor cause m1(t − τ) (say a
neuron that generates a 4 kHz tone) will frequently be followed
by auditory response a1(t) (a 4 kHz detector neuron), leading
to strengthening of synapse V11. By contrast, due to high vari-
ability of the motor code, associations between m2(t − τ) (say

a neuron that generates a 3 kHz tone) and a1(t) are much less
frequent (because the bird randomizes the production of 3 and
4 kHz tones). Hence, synapse V21 from the 4 kHz detector onto
the 3 kHz generator will lose to synapse V11 due to heterosynaptic
competition (Figure 3A).

A STEREOTYPED NEURAL CODE YIELDS PREDICTIVE INVERSES
If the motor code is stereotyped and different motor neuron
pairs are correlated at even very large time lags (extending over
the full range of the eligibility trace and possibly beyond), then
V � e(0)t0Hτ Q−1 is approximately a concatenation of the inverse
of Q and a shifter matrix Hτ that maps motor activity at one
time onto motor activity at a time lag τ later, i.e., V is a pre-
dictive inverse of Q (Equation A10). Under a predictive inverse
V, a sensory neuron maps onto those motor neurons that were
most recently active (and reliably follow in activation other motor
neurons that give rise to the sensory neuron’s response).

For example, during singing, the motor cause m1(t − τ) of a
4 kHz tone will frequently occur before the cause m2(t) of a 3 kHz
tone (because the bird produces stereotyped downsweep sylla-
bles). Hence, the 4 kHz auditory detector response a1(t) will find
much higher eligibility in motor neuron 2, leading to strengthen-
ing of V21 at the expense of V11, i.e., the 4 kHz detector neuron
connects onto the 3 kHz generator neuron (Figure 3C).

LACK OF RESPONSE TO PERTURBED AUDITORY FEEDBACK AND
SELECTIVITY FOR THE BOS
During Hebbian learning of V in Equation 1 we required that
synapses V are not able to drive spike responses in motor neurons
during singing (V synapses learn silently). The main intuitive rea-
son for the necessity of silent learning is that the learning goal of
the inverse model synapses are to silently correlate the motor and
sensory streams, without perturbing the motor stream that would
result if sensory feedback were to pass through and drive spikes
in the motor area. If the inverse model synapses allowed sensory
feedback to significantly drive motor spikes, then the incoming
sensory signals would serve to drive motor activity resulting in
cyclic motor output with cycle time approximately equal to τ ,
i.e., birds would unavoidably produce repetitive motor output
(stuttering).

Interestingly, there is much evidence for the gating out of sen-
sory information in song motor nuclei. Principal motor neurons
in LMAN and HVC do not respond to playback of white noise
stimuli during singing (Leonardo, 2004; Kozhevnikov and Fee,
2007) and during states of high arousal (Cardin and Schmidt,
2003), though there are reports of distorted feedback responses
in HVC interneurons in Bengalese finches (Sakata and Brainard,
2008). Lack of feedback sensitivity in principal motor neurons is
usually ascribed to a form of gating caused by specific thalamic
or neuromodulatory mechanisms (Dave et al., 1998; Schmidt and
Konishi, 1998; Shea and Margoliash, 2003; Cardin and Schmidt,
2004; Coleman et al., 2007; Hahnloser et al., 2008), see also the
Discussion.

By contrast, LMAN (Doupe and Konishi, 1991; Doupe, 1997;
Solis and Doupe, 1999; Roy and Mooney, 2007) and HVC neu-
rons (Katz and Gurney, 1981; Margoliash, 1983, 1986; Williams
and Nottebohm, 1985) respond to auditory stimulation while
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birds are anesthetized or asleep, which we model as gating on
of V synapses, i.e., we assume that auditory responses in motor
neurons are driven via the learned inverse models.

The puzzling observation of the gating out of sensory inputs
to motor areas during motor exploration, is naturally accounted
for in our theory by necessity of correlating the current presy-
naptic sensory stream with past postsynaptic motor streams,
to learn an unbiased inverse model (of unperturbed motor
stream).

Also, interestingly, in both HVC and LMAN sensory responses
are strongest for bird’s own song (BOS) stimuli compared to
other stimuli including the tutor song or the BOS played back
in reverse time (McCasland and Konishi, 1981; Margoliash, 1986;
Lewicki, 1996; Solis and Doupe, 1999). Such selectivity follows
naturally from our model assumptions: for both stereotyped and
variable motor codes, the mappings, whether causal or predic-
tive, can only invert sensory responses that lie in the image of
Q and cannot invert the full space of responses orthogonal to
the image of Q. Such a restriction arises because only sensations
that could arise through combinations of previously experienced
sensory feedback during singing can actually be inverted into
appropriate motor commands. In other words, the inverse model
synapses map prior sensory feedback generated by the bird’s own
previous song into appropriate motor commands, but necessar-
ily fails to map sensory activity patterns that are very different
from the BOS into coherent motor patterns. Thus, assuming
HVC and LMAN can be thought of as downstream of the out-
put of an inverse model, our Hebbian learning rule generating
inverse models can naturally account for the preference of sensory
responses in HVC and LMAN for BOS; sounds very different from
BOS are not appropriately inverted, and therefore presumably
do not lead to coherent activation of motor patterns via sensory
inputs propagating through the inverse model synapses.

INVERSE MODELS AND SENSORIMOTOR MIRRORING
The Hebbian learning rule in Section Eligibility-Weighted
Hebbian Learning determines the wiring of sensory afferents
into motor areas based on sensorimotor experience. How could
one experimentally test for the existence of such wiring with-
out painstaking, detailed inspection of anatomical connections
and characterization of the sensorimotor mapping Q? Here we
outline the design of experiments to probe for the existence
of either causal or predictive inverse models. We propose to
record from single neurons both in sensory and motor states and
to compare motor activity and sensory-evoked responses using
cross-correlation functions: as we will show, the time lag of peak
cross correlation provides evidence for either predictive or causal
inverses.

In such mirroring experiments that we propose, a single neu-
ron is first recorded during singing and then during playback
of the just recorded songs while the bird is asleep in the dark
(during which the auditory gate is open and motor neurons
become responsive to auditory stimuli, presumably through an
inverse model from an upstream sensory area). In our model,
sensory responses ma

i (t) = m̂i(t) =∑k Vij aj(t) during playback
are driven via synaptic weights V (assumed to be at a steady-
state of Equation 1, d

dt 〈V〉 = 0). Computing the cross-correlation

functions Corr(s) of the sensory response ma
i (t) with motor activ-

ity mi(t) (as a function of time lag s) yields that (see Figure 4):

1. For variable neural codes we have that ma
i (t) = e(τ)t0mi

(t − τ) and the cross-correlation function Corr(s) is 0 except
at time lags s ∈ [τ − t0

2 , τ + t0
2

]
thus the peak correlation is

near the sensorimotor time lag τ . In other words, for causal
inverses the cross-correlation function between motor activity
and sensory-evoked response peaks near time lag τ . That is,
causal inverses are associated with large mirroring offsets equal
to the loop delay τ . The reason is that the auditory response
ma

1(t) ∝ m1(t − τ) to song playback lags the song generating
motor activity by a time lag τ . Intuitively, in a causal inverse
model, if a motor neuron’s activity is time locked to a partic-
ular song feature, it must fire before that feature in the motor
production state, but after that feature in the sensory response
state. This yields a temporal lag, or mirroring offset between
the two (song-aligned) spike trains of a neuron recorded
during motor production and during sensory exposure.

2. For stereotyped neural codes we have that ma
i (t) � e(0)t0mi(t)

and the cross-correlation function Corr(s) as a function of
the time lag s is proportional to the eligibility trace e(s).
Thus, assuming a monotonic decay of eligibility, Corr(s)
peaks at time lag s = 0. In other words, for predictive inverses
the cross-correlation function peaks near zero time lag
and predictive inverses are associated with close to zero
mirroring offsets. The reason is that the auditory response
ma

1(t) ∝ m1(t) to song playback shows no lag with respect to
the song generating motor activity. Intuitively, in a predictive
inverse model, sensory feedback from a past motor action
maps to concurrent motor activity in a stereotyped motor
stream, which necessarily occurs after the motor activity that
caused the sensory feedback. Thus, the past song elicits the
firing of a motor neuron that generates future song. This
implies that for any neuron there is no lag between its sensory
and motor responses; the motor and sensory-evoked spikes
of a motor neuron downstream of a predictive inverse model
occur at the same time relative to song.

For derivations and model assumptions see Appendices A2–A4.
In particular, here we assumed no synaptic delay between audi-
tory and motor neuron, though this assumption can be relaxed.
In summary, for both stereotyped and variable motor codes, sen-
sory responses mirror motor activity. The amount of randomness
in the motor code dictates the time lag of peak cross-correlation
between motor activity and sensory-evoked responses, which we
refer to as the mirroring offset. The mirroring offset thus serves
as an important experimental observable that provides a window
into fundamental differences in the types of inverse models that
are computed by Hebbian learning, Figure 4.

Note that variable motor codes are associated with weaker mir-
roring than stereotyped codes, i.e., the cross-correlation functions
for variable codes exhibit lower peak amplitudes than cross-
correlation functions associated with stereotyped codes: In our
model, the ratio of peak cross correlation is given by the eligibility
at time lag τ divided by the eligibility at time lag zero (Equation
A12 derived in the Appendices A3, A4). Thus, the steeper the
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FIGURE 4 | The mirroring offset is determined in recordings of neural

activity across (A) singing and (B) auditory stimulation by song

playback; the offset (red) is large for causal inverses (middle column) and

close to zero for predictive inverses (right column). (A) During singing, a
motor-neuron burst m1 drives a song feature (green notes) after a time
delay τm. (B) Playback of that song feature leads to auditory response a1 after
a time delay τa. And, auditory response a1 leads to motor neuron response
ma

1 in case of a causal inverse (middle column) and to motor neuron response
ma

2 in case of a predictive inverse (right column) after an additional time lag τs

(spike propagation time from auditory to motor area) that is assumed to be 0

for simplicity. Thus, after alignment of motor activity and sensory response
with song (green arrows), in the case of a causal inverse, the mirroring offset
�t defined as the time lag between motor activity and playback response
(red bar with extension set by red dashed lines) is equal to the sensory
feedback delay τ = τm + τa, whereas in the case of a predictive inverse the
mirroring offset �t is close to 0. The reason for the 0 offset associated with a
predictive inverse is that the auditory burst a1 driving the playback response
ma

2 is selective to the sound feature that during singing was generated by the
much earlier burst m1 in a different neuron (black burst in (A), right panel), but
not the feature generated by m2 (blue burst in (A), right panel).

eligibility trace, the weaker the mirrored response in case of vari-
able motor codes. By contrast, the shape of the eligibility trace is
expected to have almost no influence in case of stereotyped codes.

Note that the auditory response ma
i (t) =∑k Vik ak(t) in a

motor neuron to song playback is mathematically identical
to the (silently) postdicted motor activity m̂i(t) =∑k Vik ak(t)
defined after Equation 1, and used in learning the inverse model.
Nevertheless, we use different symbols for these quantities to
disentangle their meaning, i.e., the former being a superthresh-
old sensory response elicited in a quiet non-singing state of the
bird, the latter being a subthreshold subtractive term that sta-
bilizes synaptic learning during singing. The biophysical under-
pinnings of these two terms might largely be identical, with the
silent nature of the posticted activity arising from some form of
response gating (see also the Discussion).

GRADIENT DESCENT
We note that the learning rule in Equation 1 corresponds to
gradient descent on the following error function:

E(t) = 1

2

∑
i

∫ ∞
0

[
mi(t − s)−

∑
k

Vikak(t)

]2

e(s)ds (2)

For a derivation, see Appendix A1. Thus, synaptic weights V con-
verge such as to yield optimal postdiction m̂i(t) =∑k Vik ak(t)

of motor activity from sensory feedback. The origin of our
eligibility-weighted Hebbian learning rule with heterosynaptic
competition, from gradient descent of an energy function, confers
a degree of robustness to the learning, as well as suggests general-
izations to situations in which the synaptic transformation from
sensory to motor areas is non-linear.

PROBABILISTIC MODELS
More realistic neuron models are non-linear and contain spikes
that are potentially probabilistic and certainly binary events. Also,
more realistically, we may want to explicitly model intrinsic noise
in motor and sensory-related responses rather than deal with
motor variability only through their effects on cross correlations.
As a first step to dealing with such realism, we have derived two
probabilistic neuron models in which inverse models and mir-
roring can be studied in similar manners as in the linear model,
outlined in the following.

In one of these models we calculate the influence of prob-
abilistic (binary) responses on the strength of mirroring. We
consider a random motor area that at any time can only be
in one of two possible states M = 1 and M = 0 with prior
probability p(M = 1) = 1

2 . Assume analogously that the sen-
sory area is such that a particular sensory feature is either
detected (S = 1) or not detected (S = 0). We then model the
relationship between motor activity and sensory consequence in
terms of conditional dependencies between these two random

Frontiers in Neural Circuits www.frontiersin.org June 2013 | Volume 7 | Article 106 | 280

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hanuschkin et al. Inverse models and mirroring offsets

variables. We assess the strength of mirroring in this model in
terms of the cross-correlation coefficient between the two ran-
dom variables (as derived in Appendix A5) and find the following
result:

(A) For perfect auditory tuning (sensory neurons exhibit no
noise to repeated sensory stimulation) the cross-correlation
coefficient is given by the difference between the proba-
bilities that the detected sensory feature is driven by the
motor area vs. not driven by it. In other words, mirrored
responses are proportional to the strength with which a
single motor neuron contributes toward generation of the
detected feature.

(B) In case of equal intrinsic noise in motor and sensory systems
we find that the correlation coefficient is positive and pro-
portional to the squared difference between the probabilities
that the detected sensory feature is driven by the motor area
vs. not driven by it.

Thus, the simple probabilistic model shows that the strength of
mirroring may also be strongly reduced by the amount of intrinsic
noise present in sensory and motor systems.

DISCUSSION
We have presented a simple model for the development of
mirror neuron systems that is mathematically tractable, allow-
ing us to relate mirror neuron properties such as the correl-
ative strengths and the time lag of peak mirrored responses
to the stereotypy (the correlation structure) of motor-related
firing. Mirroring properties depend on the variability of the
neural motor code which may be dissociated from apparent
variability of the motor behavior as is the case in LMAN neu-
rons that fire highly variable spike patterns despite high song
stereotypy in adults. Our conclusions are valid for arbitrary
sensory systems, provided they are able to signal sensory feed-
back from motor actions with sufficient sensitivity matched to
the behavioral richness generated by the motor system (and of
course provided that sensory afferents are subject to correla-
tive Hebbian learning). In our derivation we have assumed that
cross-correlation functions among motor neuron pairs are nar-
row, which was a simplifying assumption that allowed us to
derive simple analytical forms of the sensory-to-motor mapping
V and of mirroring properties. Approximate inverses should also
result for motor codes with more complex time dependence,
because by construction, the learning rule we considered corre-
sponds to a gradient-descent rule that achieves minimal inversion
error.

Although inverse models are attractive as models for vocal
learning (Guenther et al., 2006; Hahnloser and Ganguli, 2013),
they have previously been judged to be inappropriate for vocal
learning in songbirds because of mainly two reasons: (1) young
birds require many song repetitions with auditory feedback (Doya
and Sejnowski, 2000), and (2) the learning schemes proposed
either used a biologically implausible algorithm (Jordan and
Rumelhart, 1992) or assumed the preexistence of an approxi-
mate inverse model (Kawato, 1990). Here we suggested a res-
olution to both of these issues and shown that in contrary to

previous beliefs, inverse models constitute a potentially plausible
framework for vocal learning in birds, too: the many song
explorations used by young birds could be required to actu-
ally learn the high dimensional inverse model; and, the cor-
relational learning we proposed is quite plausible and simple
(but non-trivial nevertheless). This suggests potentially open-
ing up the hypothesis space for learning rules operating within
cortico-basal ganglia circuits, in both mammalian and bird song
systems, to include models spanning the range from pure rein-
forcement learning (RL) to pure inverse model learning. Of
particular interest would be intermediate learning rules that
synergistically incorporate both dopamine-dependent plasticity
thought to underlie RL as well, as Hebbian based plasticity shown
here to mediate inverse model learning, in order to implement
sophisticated model-based RL strategies. For example, a simple
proposal would be that dopamine delivered to striatal synapses
from the ventral tegmental area (VTA) might not be released
purely nonspecifically, but instead might be delivered by an
inverse model that can partially map errors in sensory coordi-
nates to errors in motor coordinates, thereby guiding learning
in ways more sophisticated than pure RL (O’Reilly and Frank,
2006).

The key to learning causal inverse models is motor variabil-
ity. In motor areas such as HVC that fire stereotyped patterns,
auditory afferents cannot disentangle cause-and-effect, leading to
preferential formation of predictive inverses rather than causal
ones. Predictive inverses have limited usefulness for action imita-
tion from action observation, because under a predictive inverse,
observation of a particular motor gesture will lead to imitation of
the subsequent gesture in the imitator’s motor repertoire, which
may not be part of the actions to be imitated. For example, if
a bird repeatedly sings ABCD during formation of the inverse
and wants to later imitate repetitions of ABDB, then its predictive
inverse will constrain it to produce repetitions of BCDA because
perception of A maps to production of B, perception of B maps to
production of C, etc.

Small temporal delays between motor activity and activity
evoked by playback of BOS or BOS-resembling sounds have been
reported previously. Prather et al. (2008) showed there is a small
mirroring offsets of just a few milliseconds in HVCX neurons of
awake swamp sparrows and report similar (not quantified) results
in Bengalese finches. Furthermore, Dave and Margoliash (2000)
observed a small time lag of auditory-evoked activity also in RA
neurons of sleeping zebra finches. Both these experimental find-
ings reflect a predictive inverse. While predictive inverses have
limited usefulness for action imitation they might provide stabil-
ity in sequential vocalization. Indeed Sakata and Brainard report
that perturbation of auditory feedback can change song syntax in
Bengalese finches (Sakata and Brainard, 2006, 2008; Hanuschkin
et al., 2011). By contrast, a causal inverse revealing itself by a large
mirroring offset is maximally useful for song imitation. Indeed,
preliminary results indicated a large non-zero mirroring offsets
in LMAN (Giret et al., 2012).

An important element of our theory is the eligibility trace. To
endow Hebbian learning with such a trace is necessary in real-
istic situations in which effects (sensory feedback) follow their
cause (motor command) with some non-zero time lag arising

Frontiers in Neural Circuits www.frontiersin.org June 2013 | Volume 7 | Article 106 | 281

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hanuschkin et al. Inverse models and mirroring offsets

from signal propagation delays, from twitch times of muscles,
and from sensory and synaptic receptor latencies. In humans
such a lag could span up to several hundreds of milliseconds,
whereas in birds it may be as short as several tens of millisec-
onds. Eligibility traces also appear in RL theories (Seung, 2003;
Fiete et al., 2007) and seem to be a general prerequisite for learn-
ing in the context of delayed feedback or delayed reward. We can
imagine that neurons and synapses may hold decaying eligibility
traces in terms of dedicated molecules such as calcium. Action
potential generation is associated with rapid calcium entry that
decays over the time course from several hundreds of millisec-
onds to a few seconds (McGeown et al., 1996; Wallace et al., 2008).
The monotonic decay of intracellular calcium is well-suited to
modeling a monotonically decaying eligibility trace. However,
a monotonic decay of eligibility harbors both advantages and
disadvantages. The disadvantage, as discussed, is the problem
associated with stereotyped motor generators that can only hold
predictive inverse models; to make inverse models causal, motor
variability is required. Another way to guarantee causal inverse
models—even under stereotyped motor explorations—would be
to consider eligibility traces that do not monotonically decay
but that peak at precisely the time delay inherent in closed sen-
sorimotor feedback loops. The main caveat of such eligibility
traces is that it may be questionable whether different muscles
recruited for the same behavior must necessarily be associated
with the same sensorimotor delay—and it is presently unclear
how such variable delays could be matched to variable eligibil-
ity traces across synapses in a way that would ensure the learning
of a causal inverse model. Moreover, phenomena such as speech
co-articulation make it unlikely that there exists a constant sen-
sorimotor delay across a large range of premotor neurons. The
advantage, on the other hand, of a decaying eligibility trace is that
sensorimotor contingencies and inverses can be learned regardless
of sensorimotor latencies, providing robustness of sensorimotor
learning.

Convergence of the sensory to motor synaptic weights toward
inverses depends on details of the heterosynaptic competitive

term. Heterosynaptic competitive terms have a certain appeal
because of the useful normalization they provide (Fiete et al.,
2010). In the context of this work, such terms imply locally avail-
able information at a single synapse about sensory inputs to
other synapses. Though this information need not be provided
instantaneously, we can only speculate about possible mecha-
nisms for sharing such information among different synapses
onto the same postsynaptic neuron. One possibility is that some
form of intracellular signaling conveys this information. Another
possibility to be explored is whether there exists an entire class
of such competitive terms with a similar effect. For example,
provided that motor and sensory codes are sufficiently sparse,
it is conceivable that very simple subtractive terms might suf-
fice for inverse formation. Whether other (even simpler) com-
petitive terms result in approximate inverses needs to be fur-
ther explored. We would like to point out preliminary evidence
that inverses can be learned with Hebbian rules that include
no heterosynaptic competitive terms (Senn and Pawelzik, pers.
communication).

Our Hebbian learning theory has been analyzed so far in linear
circuits, but we have indicated ways to overcome linearity by pin-
pointing extensions of our work to include nonlinear mappings
and probabilistic neuron models. Further work will be required
to test whether our correlative learning approach is suitable also
for inverse model learning employing detailed biophysical models
of the avian syrinx.
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APPENDICES
A1. GRADIENT DESCENT DERIVATION OF ELIGIBILITY-WEIGHTED

HEBBIAN LEARNING
We can derive the learning rule in Equation 1 by gradient (steep-
est) descent on an error function E. The differential change δV in
synaptic weight is proportional to the gradient and we can write:

δV = − dE

dV
. (A1)

The error function Ei(t) for neuron i we define as the square dif-
ference between motor activity mi(t − s) and postdicted motor
activity m̂i(t) =∑k Vik ak(t), weighted by the eligibility associ-
ated with the time lag s.

Ei(t) = 1

2

∫ ∞
0

ds

[
mi(t − s)−

∑
k

Vik ak(t)

]2

e(s)

The total error is simply the sum of errors over all neurons
E =∑i Ei.

By taking the gradient with respect to the i, j th weight only we
find

dEi

dVij
= −

∫ ∞
0

ds

[
mi(t − s)−

∑
k

Vik ak(t)

]
e(s)aj(t)

= −
∫ ∞

0
ds

[
e(s)mi(t − s) aj(t)+

∑
k

Vikak(t) aj(t)e(s)

]
.

Assume a normalized eligibility trace
(∫∞

0 e(s)ds = 1
)
:

dEi

dVij
= −

∫ ∞
0

ds e(s)mi(t − s) aj(t)+
∑

k

Vik ak(t) aj(t).

⇒ δVij =
∫ ∞

0
ds e(s)mi(t − s) aj(t)−

∑
k

Vik ak(t) aj(t) (A2)

A1.1. Extension to non-linear network
Note that our linear approach can be extended by introducing
a nonlinear function f in the auditory to motor mapping in
Equation 2:

E = 1

2

∑
i

∫ ∞
0

ds

[
mi(t − s)− f

(∑
k

Vik ak(t)

)]2

e(s)

⇒ δVij =
∫ ∞

0
ds
[
mi(t − s)− fi

]
f
′
i ak(t)e(s),

=
∫ ∞

0
ds mi(t − s)f

′
i (t) ak(t)e(s)− fi(t)f

′
i(t) ak(t)

Where fi = f
(∑

k Vik ak(t)
)

and f
′
i = df

(∑
k Vik ak(t)

)
/dVij.

A1.2. Probabilistic derivation of Hebbian learning rule
We derive a version of the Hebbian learning rule in Equation 1
that is based on the following probabilistic Boltzmann neuron

model. For simplicity, we do not include the time dependence in
the derivation (τ = 0). The auditory feedback response a given a
motor activation m is given by the conditional probability

PQ(a|m) = eaT Qm

ZQ(m)
,

parameterized by the matrix Q, which is the motor-sensory
mapping (as before) and where

ZQ(m) =
∑

a

eaT Qm

is the partition function. The posterior probability of m is
given by

PQ(m|a) = PQ(a|m)P(m)

P(a)
.

In a sensory state, auditory responses in motor neurons are driven
via synapses V according to the probabilistic model:

PV(m|a) = emT Va

ZV(a)

with partition function

ZV(a) =
∑

m

emT Va.

The error function in Equation 2 is replaced by the Kullbach-
Leibler (KL) divergence between PQ(m|a) and PV(m|a):

DKL
(
PQ(m|a), PV(m|a)

) =∑
m

PQ(m|a)ln

(
PQ(m|a)

PV(m|a)

)

=
∑

m

PQ(m|a)
[
ln
(
PQ(m|a)

)
− ln (PV(m|a))

]
=
∑

m

PQ(m|a)
[
ln
(
PQ(m|a)

)

+ ln (ZV(a))−mTVa
]

(A3)

Before taking the derivative of DKL we compute the derivative of
the partition function:

∂

∂Vij
ZV(a) =

∑
m

emT Va ∂

∂Vij
mTVa =

∑
m

emT Vami aj

= ZV(a)aj

∑
m

PV(m|a)mi

= ZV(a)aj〈mi|a〉m,

based on which it follows that

∂

∂Vij
ln(ZV(a)) = 1

ZV (a)

∂

∂Vij
ZV(a) = aj〈mi|a〉m.
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Using this relationship and Equation A3 we can calculate the
derivative of the KL-divergence with respect to Vij:

∂

∂Vij
DKL

(
PQ(m|a), PV(m|a)

)

= ∂

∂Vij

∑
m

PQ(m|a)
[

ln
(
PQ(m|a)

)+ ln (ZV(a))−mTVa
]

=
∑

m

PQ(m|a)

(
∂

∂Vij

(
ln
(
ZV(a)

))−mi aj

)

=
∑

m

PQ(a|m)P(m)

P(a)

(
∂

∂Vij

(
ln
(
ZV(a)

))−mi aj

)

⇒
〈
− ∂

∂Vij
DKL

(
PQ(m|a),PV(m|a)

)〉
a

=
∑
a,m

PQ(a|m)P(m)

(
mi aj − ∂

∂Vij

(
ln
(
ZV(a)

)))

Thus, the gradient decent leads to

⇒ δVij = mi aj − ∂

∂Vij

(
ln
(
ZV(a)

)) = [mi − 〈mi|a〉m
]

aj

This is the probabilistic analog of Equation A2, in which the silent
postdictive motor activity m̂i is replaced by the conditional expec-
tation 〈mi|a〉m of activity in motor neuron i given the sensory
response a.

A2. CORRELATION OF MOTOR ACTIVITY DETERMINES AVERAGE
SYNAPTIC CHANGE

The average synaptic change under learning rule Equation A2
satisfies

〈
δVij
〉 = ∫ ∞

0

〈
mi(t − s)aj(t)

〉
e(s)ds−

〈∑
k

Vik ak(t)aj(t)

〉

=
∫ ∞

0

〈∑
k

mi
(
t′
)

Qjk mk
(
t′ + s− τ

)
e(s)

〉
ds

−
〈∑

kml

Vik Qkl Qjm mm(t − τ) ml(t − τ)

〉
,

where we have substituted t′ = t − s. We can write this
equation as

〈δV〉 =
[∫ ∞

0
e(s)C(s− τ)ds− VQC(0)

]
QT, (A4)

where Cij(s) = 〈mi (t) mj(t + s)
〉

is the cross-correlation matrix of
motor activity at time lag s. In the following we assume with-
out loss of generality that the delay τs of synaptic transmission
between auditory and motor neurons is negligibly small.

A3. VARIABLE MOTOR CODE
A3.1. V is a causal inverse
We assume a motor code with a narrow correlation function that
is non-zero only for small t0.

C(s) =
{

1C0 for |s| < t0/2
0 otherwise

Where 1 is the unity matrix and C0 is a positive constant. The
steady state solution 〈δV〉 = 0 of Equation A4 leads to

∫ ∞
0

e(s)C(s− τ)ds− VQC(0) = 0.

Assuming that the eligibility trace is constant over short time
intervals of duration t0 (over which the correlation function is
non-zero) yields

⇒ e (τ) t01C0 − VQ1C0 = 0

⇐⇒ VQ = e(τ)t01

This implies that the auditory to motor mapping V is propor-
tional to the inverse of Q weighted by the eligibility at time
lag τ :

V = e(τ)t0Q−1 (A5)

Thus, V is a causal inverse, at least when restricted to the
image of Q.

A3.2. Variable motor codes are associated with large mirroring
offsets

We simulate a mirroring experiment in which we cross correlate
in a given neuron the motor activity mi(t) and the activity ma

i (t)
that results from observation of the motor act (achieved in birds
by song playback though a loudspeaker).

The auditory response in motor neuron i is given by

ma
i (t) =

∑
j

Vijaj(t)

=
∑

j

(VQ)ij mj(t − τ)

= e(τ)t0

∑
j

δi,j mj(t − τ).

= e(τ)t0 mi(t − τ),

Where δi,j is the Kronecker-Delta, (δi,j = 1 for i = j and δi,j = 0
otherwise). Note that relative to song (either produced by the bird
or played through the loudspeaker) the playback-evoked activity
ma

i (t) is shifted with respect to the motor activity mi(t − τ) by
a time shift τ (as illustrated in Figure 4). The cross correlation
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Corr(s) between sensory-evoked and motor generated activity is
defined as,

Corr(s) = 1

T ′

∫ T
′

0
mi(t)ma

i (t + s)dt = 〈mi(t)ma
i (t + s)

〉
(A6)

Where T ′ is the duration of the motor behavior (e.g., the song
motif or song). Inserting the expression for the motor activity
evoked by the auditory response into Equation A6 yields,

Corr(s) = 〈mi(t)e(τ)t0 mi(t − τ + s)〉

=
{

e(τ)t0C0 for |s− τ | < t0/2
0 otherwise

(A7)

Thus, the cross correlation is nonzero in a small time cen-
tered around τ . The peak cross-correlation value is given by the
eligibility trace at time lag τ .

CorrPeak = t0C0e(τ)

Note that our calculations are valid in principle for mean-
subtracted mi(t). In case of non-mean subtracted mi we should
replace the cross correlation in Equation A6 by the cross covari-
ance to obtain the same findings. However, in practice, mean sub-
traction is not necessary because the peak location (the mirroring
offset) is independent of the mean.

A4. STEREOTYPED MOTOR CODES
A4.1. V is a predictive inverse
We describe the motor activity by a traveling pulse mi(t) =
η
(

i
ω
− t
)

with speed ω, where

η(t) =
{

1 for |t| < t0/2
0 otherwise

and t0 = 1/ω. The cross-correlation matrix for such a travel-
ing pulse is a triangular pulse of height t0/T and width 2t0

which we approximate by a square pulse of width t0, Cij(s) �
t0
T η
(

i− j
ω
+ s
)

in the following (illustrated in Figure 3D). To facil-

itate comparison of inverses associated with stereotyped and
variable motor codes, we assume their peak correlations are
identical, i.e.,

C0 = t0

T
.

At a steady state 〈δV〉 = 0, Equation A4 yields

∫ ∞
0

e (s)C(s− τ)ds− VQC(0) = 0.

Assuming again that the eligibility trace is constant over short
time intervals of width t0, we find

⇒ e

(
τ − i− j

ω

)
t0 = VQ.

Given sensory input aj(t) and the inverse map V, the auditory-
evoked activity ma

j (t) is proportional to the eligibility trace:

ma
i (t) =

∑
j

Vij aj(t)

=
∑

j

(VQ)ij mj(t − τ)

= e

(
t− i

ω

)
t0, (A8)

defined for t ≥ i
ω

.
By approximating the eligibility trace only by its maximum

value e
(

t − i
ω

)
= e(0)η

(
t − i

ω

)
we have that approximately

ma
i (t) � e(0)t0 mi(t), (A9)

and so the playback-evoked activity ma
i (t) is roughly identical to

motor activity mi(t) (as illustrated in Figure 4).
To compute the matrix V we use the same approximation for

the eligibility trace to obtain

1

t0
(VQ)ij � e(0)η(i− j− τ) = e(0)Hτ

ij,

where we have set ω = 1, and where H is a shifter matrix (also
called cyclic permutation or circulant matrix), e.g., for n = 4:

H =

⎛
⎜⎜⎝

0 1
0 0

0 0
1 0

0 0
1 0

0 1
0 0

⎞
⎟⎟⎠.

With this approximation we find that the synaptic mapping

V � e(0)t0Hτ Q−1 (A10)

is the inverse of the motor map shifted in time by τ , i.e., V maps
sensory activity evoked by motor activity at time t onto motor
activity at time t + τ . In other words, the sensory lag is compen-
sated and sensory-evoked motor activity at time t predicts motor
activity at time t. Hence, V is a predictive inverse.

A4.2. Stereotyped motor codes are associated with small mirroring
offsets

Based on the sensory-evoked activity ma
i (t) derived in Equation

A8 we find for the cross-correlation function Corr (s) between
motor activity mi(t) and sensory-evoked activity ma

i (t):

Corr (s) = 1

T

∫ T

0
mi(t)ma

i (t + s)dt

= t0

T

∫ T

0
η

(
i

ω
− t

)
e

(
t − i

ω
+ s

)
dt

= t2
0

T
e(s) = t0C0e(s). (A11)
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Thus, the cross-correlation function is proportional to the eligi-
bility trace. If the eligibility trace is monotonically decaying we
find that the peak of Corr(s) occurs at s = 0 and is given by

CorrPeak = t0C0e(s).

In other words, stereotyped neural codes are associated with zero
mirroring offsets.

The ratio of peak cross correlation for variable (A6) and
stereotyped (A10) motor codes is given by

r = e(τ)

e(0)
, (A12)

implying that the more stereotyped a neural code, the stronger is
the observed mirroring effect.

A5. MIRRORED RESPONSE STRENGTH IN A PROBABILISTIC MODEL
In the following we define a probabilistic model of a motor neu-
ron that allows us to compute the mirroring strength, i.e., the
correlation between motor activity and sensory-evoked activity.
We assume a minimal model in which a neuron has only two
states R = 1 (active) and R = 0 (inactive). In addition, we assume
two behavioral states B = 1 (behavioral feature present), and
B = 0 (behavioral feature absent). During motor production, the
degeneracy of the motor code quantified by the conditional prob-
ability of neural activity given that the feature of interest is present
during the behavior (e.g., the finger is extended or the song pitch
is high) is

PM(R = 1|B = 1) = p1

and the probability that the neuron is active while the behavioral
feature is absent (intrinsic noise) is

PM(R = 1|B = 0) = p2.

Hence, the average motor response [for prior P(B = 1) = 1/2] is
given by

〈R〉motor =
∑

i

1× PM(R = 1|B = i)P(B = i) = 1

2

(
p1 + p2

) = p.

In the sensory state (during observation of the behavior), the reli-
ability of a response quantified by the conditional probability of
triggering a sensory response given presence of the behavioral
feature in the stimulus is given by,

PS(R = 1|B = 1) = q1

and the probability of a sensory response without the behavioral
feature (intrinsic noise) is:

PS(R = 1|B = 0) = q2.

The parameters p1, p2, q1, and q2 can be freely chosen in this min-
imal model, for example q2 = p2 if intrinsic noise in sensory and
motor states are assumed to be equal.

The average response in the sensory state is given by

〈R〉sensory =
1

2

(
q1 + q2

) = q.

The correlation between sensory and motor responses in this
cell is

〈
RmotorRsensory

〉 =∑
i

1× PM(R = 1|B = i)PS(R = 1|B = i)

× P(B = i) = 1

2

(
p1q1 + p2q2

)
.

And, the correlation coefficient between motor- and sensory-
evoked response is

CorrCoeff =
〈
RmotorRsensory

〉− 〈Rmotor
〉〈

Rsensory
〉

√〈
RsensoryRsensory

〉〈
RmotorRmotor

〉

=
1
2

(
p1q1 + p2q2

)− pq√
p(1− p)q(1− q)

.

We can discuss the following special cases:

• perfect sensory tuning (q1 = 1, q2 = 0, no instrinsic noise in
sensory state):

CorrCoeff = p1 − p2

2
√

p(1− p)

• same tuning and same intrinsic noise in motor and in sensory
states (q1 = p1, q2 = p2):

CorrCoeff =
(
p1 − p2

)2
4p
(
1− p

)
In summary, the strength of mirrored responses scales linearly
or quadratically with the contrastive probability that neural
responses are locked to the behavioral feature vs. spontaneously
driven.
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Studies of behavioral and neural responses to distorted auditory feedback (DAF) can help
shed light on the neural mechanisms of animal vocalizations. We describe an apparatus
for generating real-time acoustic feedback. The system can very rapidly detect acoustic
features in a song and output acoustic signals if the detected features match the desired
acoustic template. The system uses spectrogram-based detection of acoustic elements.
It is low-cost and can be programmed for a variety of behavioral experiments requiring
acoustic feedback or neural stimulation. We use the system to study the effects of acoustic
feedback on birds’ vocalizations and demonstrate that such an acoustic feedback can cause
both immediate and long-term changes to birds’ songs.
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INTRODUCTION
Distorted auditory feedback (DAF) is used for assessing the effects
of auditory input on vocal production. Presenting DAF and
assessing its effects on the song and on the neural activity have
been used in songbirds to study the mechanisms of song pro-
duction and learning (Leonardo and Konishi, 1999; Sakata and
Brainard, 2006; Andalman and Fee, 2009; Keller and Hahnloser,
2009; Tschida and Mooney, 2012). Human speech is sensitive to
certain types of DAF (Lee, 1950; Houde and Jordan, 1998), and
DAF is used to study speech mechanisms. It is often desirable to
have real-time DAF, i.e., to rapidly (in a few milliseconds or faster)
detect the occurrence of specific acoustic elements in vocalization
and present an auditory stimulus once the target acoustic element
is detected.

In this paper, we describe an automated system for real-time
DAF and demonstrate its use to study both the immediate and
the long-term effects of DAF on the song of Bengalese finches.
The system uses open-source software and, therefore, is extremely
flexible and customizable by the user. It has a significantly lower
cost than commercial systems.

Songbirds use auditory feedback to learn to sing when they
are young and to maintain their songs in adulthood (Konishi,
1965; Brainard and Doupe, 2000). Long-term exposure to DAF
has been shown to cause song degradation in songbirds (Okanoya
and Yamaguchi, 1997; Woolley and Rubel, 1997; Leonardo and
Konishi, 1999). Some bird species’ songs exhibit immediate
sensitivity to acoustic input. For these birds, DAF can have
an immediate effect on the timing and acoustic structure of
the song (Sakata and Brainard, 2006). Analyzing the effects of
DAF can yield new understanding of the neural organization

of the song and the mechanisms of song learning (Brainard
and Doupe, 2000). To study the questions about the effects
of time-localized DAF on birdsong, it is important to be able
to deliver DAF with high temporal precision in relation to
vocalization. To do this, it is necessary to rapidly and reliably
detect the specific acoustic elements of the bird’s song and,
after detection of the acoustic element, generate an acoustic
output.

It is a challenging technical task for an acoustic feedback
system to be real-time. Real-time performance is most easily
achieved with analog systems (Cynx and Von Rad, 2001), but dig-
ital systems offer significant advantages in terms of convenience
and flexibility. However, the advantages of a digital system are
accompanied by the difficulties of making a digital system have
small and constant processing delays. The system has to per-
form analog-to-digital conversion, fast analysis of the recently
acquired data and digital-to-analog conversion, and these oper-
ations have to take place with reliable timing and concurrently
with saving the acquired data. Custom-made DAF systems have
been developed and used in behavioral studies (Leonardo and
Konishi, 1999; Kao et al., 2005), but their real-time processing
characteristics have not been reported. Oftentimes, custom-made
systems have significant and not well-controlled delays, espe-
cially for systems based on PC’s running Windows. Commercial
systems for real-time acoustic processing are available but
are expensive.

We developed a real-time DAF system based on a PC run-
ning Linux and the Real-Time eXperiment Interface (RTXI)
software (Lin et al., 2010) and a National Instruments A/D
card. The system is low-cost (the cost is only the cost of the
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hardware, the software is free). The system is capable of A/D
bandwidth of over 30 kHz with real-time processing of acoustic
signals.

METHODS
A PC with an Intel i7 six-core processor (2.66 GHz) and 4 GB
or RAM running Ubuntu Linux 2.6.29.4-rtai with RTXI ver-
sion 1.1.2 and a National Instruments PCIe-6251 A/D card is
used. The A/D card receives audio input from a microphone
(AudioTechnika PRO-44, used with Behringer Shark DSP110
microphone amplifier). The output is sent to a speaker ampli-
fier (SLA-1, Applied Research and Technology); the output of the
amplifier is connected to a speaker.

The Data Recorder software within RTXI is custom modified.
The simplified diagram of signal processing is shown in Figure 1.
The system has two modes of operation—a non-triggered (idle)
mode and a triggered (active) mode. At the core of the modified
software is the circular buffer that takes data points one-by-one
from the data acquisition engine once they become available.
In the non-triggered mode [Figure 1 (top)], the system contin-
uously (every 1 ms) computes the rms of the last 10 ms of the
input signal. If the signal rms exceeds the threshold, the system
is switched into triggered mode.

FIGURE 1 | Block diagram of the acoustic feedback system. When not
triggered (top), the system computes the rms of the input signal. When
the rms exceeds the threshold, the system is triggered. When triggered
(bottom), the system computes the spectrogram of the most recent 20 ms
of signal and computes the correlation coefficient of this spectrogram with
the spectrogram of the template sound (e.g., song syllable). The template
sound is detected when the correlation coefficient exceeds a threshold
value; in this case, acoustic feedback can be generated. Both the input and
the acoustic output are saved to the computer hard drive.

In triggered mode, the system does real-time processing of
auditory data. In Figure 1 (bottom), we show the processing done
for recognizing the song syllable of a Bengalese finch. The FFT
of the past 256 data points (∼8.4 ms) is computed every 1 ms
and stored in an FFT circular buffer. Every 1 ms, the spectro-
gram of the most recent 40 ms of the input signal is obtained
from the FFT circular buffer. A correlation coefficient between
the input signal spectrogram and the spectrogram of the template
is computed. If the correlation coefficient exceeds the threshold,
the system detects the occurrence of the target song syllable, and
acoustic feedback can be generated, or further processing can be
done. While generating acoustic feedback, the system keeps going
through all of the above steps, but is disallowed from register-
ing another detection to prevent it from triggering on its own
output.

The presence of the data circular buffer allows very fast
access to chunks of the most recent data for processing with-
out affecting the timing of the data acquisition process. The
FFT circular buffer also allows extremely fast computations of
the spectrograms of the sound (computing the spectrogram is a
computationally-intensive task). This enables the system to rec-
ognize complex vocal elements based on their spectrogram (e.g.,
frequency sweeps) without compromising the timing. While trig-
gered, every 1 s, the system computes the rms of the previous
200 ms of the input signal to check if the acoustic input is still
present. If the rms is below a threshold (no signal), the system
goes into the idle mode. While triggered, the system continually
saves all the data acquired in a separate array and saves the data
to the hard drive once it is switched back to idle mode. A more
detailed description of this system, along with the source code, is
available at http://www.phys.psu.edu/∼akozhevn/ac_feedback/.

RESULTS
We tested the performance of our DAF system in several tasks
which are often needed in behavioral experiments using acoustic
feedback. We also used the system to assess the effects of acoustic
feedback on the song of Bengalese finch. All animal procedures
were carried out in accordance with the locally approved IACUC
protocol.

DELAY BETWEEN INPUT AND OUTPUT TEST
A simple task is generating acoustic feedback when the input level
exceeds a certain threshold. Although this task may be too simple
for most behavioral experiments, the delay in the system between
detecting the crossing of the threshold and producing the output
is a useful figure for indicating how fast the system can be when
it is solely converting A/D and D/A and saving data without any
complex data processing.

The system was programmed so that, once the input exceeded
a fixed threshold, the acquired input signal was sent to the D/A
output with no extra processing. A square wave with the ampli-
tude exceeding the threshold was applied to the input; the delay
between the input and the output was measured with the digi-
tal oscilloscope. The measured delay between the output and the
input was 27± 9 µs (mean± SD, min= 9 µs, max= 43 µs). The
sample rate was 30.3 kHz, so the observed delays corresponded
to a delay of 1 data point between the input and the output.
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The observed variations of the delay are due to the difference in
timing between the external input signal and the timing of the
A/D events. In all cases, however, the delay between the input and
the output does not exceed 1 datapoint. Therefore, the system has
real-time capability.

DETECTION OF SPECIFIC VOCAL ELEMENTS IN THE BIRD’S SONG
A typical task in experiments using acoustic feedback is detec-
tion of a certain “template” sound. The template can be either
a sound of a certain frequency or a more complex combina-
tion of frequencies, frequency sweeps, etc. Once the template is
detected, the acoustic feedback can be played back to the ani-
mal. This task is computationally intensive because one needs to
compute the characteristics of the recently acquired input sig-
nal, then compare these with the characteristics of the template
and, if the input is sufficiently similar to the template, decide
that the detection has occurred and generate acoustic output.
The computation has to be done fast enough to enable real-
time performance and not interfere with the data acquisition
process.

Common techniques that have been used for detecting acous-
tic elements are spectrogram-based techniques (Leonardo and
Fee, 2005) and feature-based techniques (Tchernichovski et al.,
2000). In a spectrogram-based approach, the spectrogram of
the recently acquired signal is computed and compared to the
template spectrogram. A common way to accomplish this is to
compute the correlation coefficient between the two spectro-
grams. Detection of the template sound occurs if the correlation
coefficient exceeds a threshold value.

We tested the performance of the system for detection of spe-
cific syllables in the song of a Bengalese finch. The Bengalese
finch song consists of a sequence of syllables separated by silences
(inter-syllable gaps) (Figure 2). The acoustic structure of the song
syllables is fairly stable; the main source of variability from one
song to another is the sequence of syllables in each song (Honda
and Okanoya, 1999).

To detect a specific song syllable, the system continuously com-
putes the correlation coefficient of the spectrogram of the most
recent 20 ms segment of the acquired signal with the spectrogram
of a 20-ms syllable template (see Methods, Figure 1). The target
syllable is detected by the system when the correlation coefficient
exceeds the threshold value of 0.8. The value of the threshold was
chosen by examining the target syllable detections by the DAF sys-
tem in a set of about 20 songs and comparing the detected syllable
occurrences with the actual occurrences of the target syllables
determined by visual examination of the song spectrograms. If
the threshold is set too high, the probability of missing the tar-
get syllable increases. Setting the threshold too low increases the
probability of false positive detections. After the syllable detec-
tion, acoustic feedback (either white noise or the song syllable)
can be played back to the bird.

Typical performance of the system on the real-time syllable
recognition task is shown in Figure 2. The top spectrogram shows
“detection only” mode—the system detects the target syllable in
real time, but no playback is generated. The bottom spectro-
gram shows detection and playback generation—after detecting
the target syllable, the system plays back another song syllable

FIGURE 2 | Top: spectrogram of the song of a Bengalese finch and the
times of occurrence of one of the song syllables. The system was
programmed to only detect the occurrences of the target syllable in real
time, no acoustic feedback was generated. The detection times are shown
as vertical red lines. Bottom: the system is detecting the target syllables
(vertical red lines) and is generating acoustic feedback after detection. The
acoustic feedback waveform is shown below. The feedback signal is one of
the birdsong syllables; the acoustic feedback pickup by the microphone is
visible on the spectrogram. The zoomed-in spectrogram of the template is
shown on the right.

to the bird. The vertical red lines indicate the detection times of
the target syllable. The zoomed-in spectrogram of the template
is shown on the right. The template contains part of the inter-
syllable interval and the first 20 ms of the target syllable, so the end
of the template (detection time) is approximately in the middle of
the 40-ms long syllable.

Performance of the system was checked by comparing the
results of automatic detections of the system with the manual
identification of the target song syllables carried out by off-line
examination of the spectrograms. Out of 659 target syllables, 610
were correctly detected and 49 were missed. There were zero false
positives. Thus, the system shows robust performance with the
real-time syllable recognition task: over 92% of the target syllables
were correctly identified.

This demonstrates that the system is capable of real-time
detection of target syllables in the song. Note that the sylla-
bles occurring after the target syllables in Figure 2 are frequency
sweeps that overlap with the template’s frequencies. The system
discriminates them from the target syllables because they have a
different frequency profile. Such discrimination is an advantage
of the spectrogram-based detection; this would not be possible if
only instantaneous frequencies were detected.

Additionally, we tested the system on the detection of sylla-
bles in the song of a zebra finch—another bird species. We used
our dataset of zebra finch songs with known syllable sequences
obtained in a previous study (Kozhevnikov and Fee, 2007). Zebra
finch songs were played back through the speaker, and the results
of the real-time detection by our DAF system were compared to
the known occurrences of the target syllable.

A small subset of songs (10 songs) was used as a test set: the
threshold value for the syllable detection was adjusted to opti-
mize the percentage of correctly detected syllables in this small
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test set. After this, the threshold kept was fixed, and the per-
formance of the system was tested on the whole dataset (about
100 songs). Out of 756 target syllables in the dataset, 728 were
correctly detected, 28 were missed; there were 4 false positives.
The system correctly detected over 96% of the target syllables
in the dataset; the probability of a false positive detection was
less than 1%.

EFFECTS OF AUDITORY FEEDBACK ON THE TIMING OF THE BIRDSONG
Auditory feedback has been shown to have immediate effects on
some animal vocalizations. For Bengalese finches, DAF has been
shown to affect the timing of song syllables. DAF played after
the song syllable increases the time interval between that sylla-
ble and the next syllable in the song (Sakata and Brainard, 2006).
We tested whether our feedback system is effective in causing
real-time changes to the Bengalese finch song. The system was
programmed to detect one of the song syllables and, once the
syllable was detected, to play back the same song syllable with
a probability of 0.05. This ensured that the feedback was suffi-
ciently sparse so almost in all cases there was only one playback
during each song. The feedback and control trials were randomly
interleaved. This simplified the analysis of the syllable timing
and eliminated any confounding effects from playbacks being too
close to one another. The delay between the syllable sung by the
bird and the syllable playback was 40 ms.

The playback causes some pickup on the input channel, which
can cause difficulties in precise determination of the timing of
the syllable that is occurring during the playback. Therefore, the
time interval between the target syllable and the following sylla-
ble (which is partially overlapped with playback) was computed as
one half of the difference between the detection time of the target
syllable and the detection time of the second syllable after the tar-
get syllable. The same procedure was performed in control trials
to ensure consistency in data analysis. Since the distributions of
time intervals may not be Gaussian, we use a non-parametric sta-
tistical test—two-way Kolmogorov–Smirnov test—to assess the
statistical significance of DAF effects on the song timing.

Figure 3 shows the distributions of the time intervals between
the target syllable and the following syllable when the feedback
is present (blue histogram) and when there is no feedback (red
histogram). The widths of the distributions are due to the nat-
ural variability of the song timing. In the presence of feedback,
the time intervals between the syllables become longer. Without
DAF, the mean interval is 74.8 ms (N = 637 syllables); in the pres-
ence of DAF, the mean interval is 75.7 ms (N = 97 syllables).
Although the change of the mean duration is small compared
to the widths of the distributions, the effect is highly statisti-
cally significant (p = 0.001, two-way Kolmogorov–Smirnov test).
The observed lengthening of the time interval between the song
syllables is consistent with previous observations (Sakata and
Brainard, 2006). Thus, our acoustic feedback has an immedi-
ate effect on the song: DAF immediately and reversibly affects
song timing.

LONG-TERM EFFECTS OF DAF ON ACOUSTIC STRUCTURE OF THE SONG
DAF has been shown to cause long-term changes to animal vocal-
izations. For songbirds, prolonged repeated presentation of DAF

FIGURE 3 | DAF increases the duration of the time interval between

Bengalese finch song syllables. Shown above are the histograms of the
time intervals between two subsequent syllables in the song in the
presence of DAF (blue) and without DAF (red). The means are:
�tmean = 74.8 ms (control, N = 637 syllables) and �tmean = 75.7 ms
(feedback, N = 97 syllables), the difference is statistically significant
(p = 0.001, two-way Kolmogorov–Smirnov test).

can cause gradual change of the song (Leonardo and Konishi,
1999; Warren et al., 2011). We tested out system on the task of
causing long-term changes of the frequency of one of the song
syllables.

The system is programmed to detect the fundamental fre-
quency of one of the song syllables. After the target song syllable
is detected, the temporal profile of the pitch (defined as the largest
peak in the FFT of the latest 256 points) was computed. The low-
est value in the pitch profile in the time window between 3 and
12 ms after the detection time was taken to be the pitch of the syl-
lable. The feedback (white noise) is conditional on the detected
pitch of the song syllable. For example, the feedback can be gener-
ated if the detected syllable pitch is smaller than a threshold value.
Continuous exposure to such feedback has been shown to cause
the bird to gradually shift the mean pitch of the syllable so that
the feedback is generated less often—the bird adapts its song to
avoid hearing DAF (Warren et al., 2011).

We tested whether such conditional DAF could shift the mean
syllable pitch in both directions. Figure 4 shows the long-term
effects of DAF which is conditional on the syllable pitch. During
days 1–6, the feedback was played back if the pitch was less than
3530 Hz; during days 7–12, the feedback was played back if the
pitch was greater than 3530 Hz; during days 13–18, the feedback
was played back if the pitch was less than 3510 Hz.

Our feedback is effective in causing gradual changes in the syl-
lable pitch. Playing back DAF when the frequency is lower than
the threshold value causes an upward drift of the mean pitch (days
1–6 and 13–18). Presenting feedback when the pitch is higher
than the threshold causes a downward drift in pitch (days 7–12).
This shows that the system is suitable for studies of long-term
effects of DAF on animal vocalizations.
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FIGURE 4 | Prolonged exposure of the bird to DAF causes gradual

changes in the song. The mean pitch of one of the target song syllable was
manipulated by feedback conditional on pitch. Each datapoint is the pitch of
the target syllable averaged over all the renditions of the target syllable sung
by the bird on a given day. The number of renditions varies from day to day
(mean = 208, min = 126, max = 288). Error bars are s.e.m. Dashed lines are
the values of the threshold. Arrows indicate the direction in which the syllable
frequency was expected to change in response to DAF. Larger error bars on
day 12 are mostly due to the smallest number of target syllable renditions
(n = 126) sung on that day.

DISCUSSION
The described real-time acoustic feedback system is a versatile
tool for studies of the effects of auditory feedback on ongoing
animal vocalization. The advantage of the system is the flexibil-
ity of the processing than can be realized. The circular buffer
allows real-time acquisition of arbitrary-length segments of the
most recent data without affecting the timing of data acquisi-
tion. In addition, having a separate FFT buffer facilitates real-time
spectral processing of acquired signals. This feature enables a very
quick creation of the spectrograms of long (tens or even hun-
dreds of milliseconds) segments of signals at a high rate (the
spectrogram is updated every 1 ms).

This capability is very useful for the detection of complex vocal
signals. Often, it is not just a certain frequency that needs to be
detected, but rather a certain spectrogram pattern, like multiple
frequencies or the frequency sweeps frequently seen in birdsong
syllables. Since the same frequency can occur in many syllables,
it is the whole pattern of the spectrogram that allows real-time
detection of the syllable. Our system is very well-suited for rapid
spectrogram-based detection of acoustic elements.

The performance of the system will vary depending on the
type of animal vocalization and the nature of the acoustic element
being detected for two main reasons. First, there is always a nat-
ural variability in the acoustic structure of a vocal element, and
the degree of this variability may be different for different vocal
elements; this will affect the reliability of detection. For example,
a birdsong syllable can possess a more or less stereotyped spec-
trogram; the detection will be easier for a more stereotypical song
syllable. Second, a given vocal element can be more or less similar
in its acoustic structure to other vocal elements; reliable detec-
tion of a target vocal element will be easier if it is spectrally more

dissimilar to other vocal elements. To achieve optimum perfor-
mance, adjustments to the threshold or detection algorithm may
be needed; thus, it is important to have a highly customizable
system.

It is worth mentioning that, when the song syllables are
detected, data processing is not a time-limiting step, and signif-
icantly more complex processing can be done without decreasing
the A/D rate. We tested the system with longer templates (60 and
100 ms); they did not affect performance. We also tested the
simultaneous detection of two templates, so that, every 1 ms, the
system computed the correlation coefficient of the sound spectro-
gram with two template spectrograms, and that also did not affect
the A/D rate. For a template 60 ms long, the computation of the
correlation coefficient takes 16 µs; this time scales linearly with
the length of the template. The computation of the FFT (to fill the
column in the spectrogram buffer) takes 7–8 µs. FFT and corre-
lation coefficient computations are the slowest signal processing
steps; all other steps combined take less than 1 µs. Thus—If the
spectrogram update rate is kept at 1 ms—the system should be
capable of simultaneously detecting of over 10 different song syl-
lables. Therefore, fairly complex real-time analysis and detection
of multiple vocal elements can be done without compromising
the speed of the system.

The system is usually used with 1 output channel and 2 input
channels (one input channel for acoustic input and one channel
for recording the actual output of the A/D card). It is possible to
increase the number of input channels. This way, one could use
the data recording capability of the system to collect physiological
data (e.g., EEG or neural) during acoustic feedback experiments.
However, the process limiting the speed of the system appears to
be reading the data from the A/D card and sending the data to
the D/A. Thus, increasing the number of channels will slow the
system down and decrease the A/D rate. We tested the perfor-
mance of the system with 3 input channels and 1 output channel.
To achieve stable operation, the A/D rate had to be decreased to
20 kHz. Despite this decrease, this is an acceptable rate for many
experiments where acoustic and electrophysiological data have to
be collected.

Finally, the real-time processing capabilities of the system
could be used for neural feedback experiments. The spectrogram-
based signal processing capability can be useful for the detection
of neural oscillations. The output can be used for targeted micros-
timulation. The described auditory feedback system is a flexible
low-cost tool for behavioral neuroscience research.
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Discovering the structure underlying observed data is a recurring problem in machine
learning with important applications in neuroscience. It is also a primary function of the
brain. When data can be actively collected in the context of a closed action-perception
loop, behavior becomes a critical determinant of learning efficiency. Psychologists studying
exploration and curiosity in humans and animals have long argued that learning itself is a
primary motivator of behavior. However, the theoretical basis of learning-driven behavior
is not well understood. Previous computational studies of behavior have largely focused
on the control problem of maximizing acquisition of rewards and have treated learning the
structure of data as a secondary objective. Here, we study exploration in the absence of
external reward feedback. Instead, we take the quality of an agent’s learned internal model
to be the primary objective. In a simple probabilistic framework, we derive a Bayesian
estimate for the amount of information about the environment an agent can expect to
receive by taking an action, a measure we term the predicted information gain (PIG). We
develop exploration strategies that approximately maximize PIG. One strategy based on
value-iteration consistently learns faster than previously developed reward-free exploration
strategies across a diverse range of environments. Psychologists believe the evolutionary
advantage of learning-driven exploration lies in the generalized utility of an accurate internal
model. Consistent with this hypothesis, we demonstrate that agents which learn more
efficiently during exploration are later better able to accomplish a range of goal-directed
tasks. We will conclude by discussing how our work elucidates the explorative behaviors
of animals and humans, its relationship to other computational models of behavior, and
its potential application to experimental design, such as in closed-loop neurophysiology
studies.

Keywords: knowledge acquisition, information theory, control theory, machine learning, behavioral psychology,

computational neuroscience

1. INTRODUCTION
Computational models of exploratory behavior have largely
focused on the role of exploration in the acquisition of exter-
nal rewards (Thrun, 1992; Kaelbling et al., 1996; Sutton and
Barto, 1998; Kawato and Samejima, 2007). In contrast, a con-
sensus has emerged in behavioral psychology that learning repre-
sents the primary drive underlying explorative behaviors (Archer
and Birke, 1983; Loewenstein, 1994; Silvia, 2005; Pisula, 2009).
The computational principles underlying learning-driven explo-
ration, however, have received much less attention. To address
this gap, we introduce here a mathematical framework for study-
ing how behavior affects learning and develop a novel model of
learning-driven exploration.

Machine learning techniques for extracting the structure
underlying sensory signals have often focused on passive learning
systems that can not directly affect the sensory input. Exploration,
in contrast, requires actively pursuing useful information and
can only occur in the context of a closed action-perception loop.
Learning in closed action-perception loops differs from passive
learning both in terms of “what” is being learned as well as
“how” it is learned (Gordon et al., 2011). In particular, in closed
action-perception loops:

1. Sensorimotor contingencies must be learned.
2. Actions must be coordinated to direct the acquisition of data.

Sensorimotor contingencies refer to the causal role actions play
on the sensory inputs we receive, such as the way visual inputs
change as we shift our gaze or move our head. They must
be taken into account to properly attribute changes in sensory
signals to their causes. This tight interaction between actions
and sensation is reflected in the neuroanatomy where sensory-
motor integration has been reported at all levels of the brain
(Guillery, 2005; Guillery and Sherman, 2011). We often take
our implicit understanding of sensorimotor contingencies for
granted, but in fact they must be learned during the course of
development (the exception being contingencies for which we
are hard-wired by evolution). This is eloquently expressed in
the explorative behaviors of young infants (e.g., grasping and
manipulating objects during proprioceptive exploration and then
bringing them into visual view during intermodal exploration)
(Rochat, 1989; O’Regan and Noë, 2001; Noë, 2004).

Not only are actions part of “what” we learn during explo-
ration, they are also part of “how” we learn. To discover what is
inside an unfamiliar box, a curious child must open it. To learn
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about the world, scientists perform experiments. Directing the
acquisition of data is particularly important for embodied agents
whose actuators and sensors are physically confined. Since the
most informative data may not always be accessible to a phys-
ical sensor, embodiment may constrain an exploring agent and
require that it coordinates its actions to retrieve useful data.

In the model we propose here, an agent moving between dis-
crete states in a world has to learn how its actions influence
its state transitions. The underlying transition dynamics is gov-
erned by a Controllable Markov Chain (CMC). Within this sim-
ple framework, various utility functions for guiding exploratory
behaviors will be studied, as well as several methods for coordi-
nating actions over time. The different exploratory strategies are
compared in their rate of learning and how well they enable agents
to perform goal-directed tasks.

2. METHODS
2.1. MATHEMATICAL FRAMEWORK FOR EMBODIED ACTIVE LEARNING
CMCs are a simple extension of Markov chains that incorporate a
control variable for switching between different transition distri-
butions in each state, e.g., (Gimbert, 2007). Formally, a CMC is a
3-tuple (S ,A ,�) where:

• S is a finite set of states (here representing, the possible
locations of an agent in its world) N = |S |.
• A is a finite set of control values, or actions, an agent can

choose from M = |A |.
• � is a 3-dimensional CMC kernel describing the transition

probabilities between states for each action (for example, the
probability an agent moves from an originating state s to a
resultant state s′ when it chooses action a):

p(s′|a, s;�) = �ass′

�as· ∈ ΔN − 1 (1)

Here, ΔN−1 denotes the standard (N − 1)-simplex and is used to
constrain � to describing legitimate probability distributions:

ΔN− 1 := {(x0, x1, . . . , xN − 1) ∈ R

N |
N − 1∑
i= 0

xi = 1 and xi ≥ 0 ∀i}

CMCs provides a simple mathematical framework for modeling
exploration in embodied action-perception loops. At each time
step, an exploring agent is allowed to select any action a ∈ A .
This action, along with the agent’s current state, then determines
which transition distribution its next state is drawn from. For this
study, we will make the simplifying assumption that the states can
be directly observed by the agent, i.e., the system is not hidden.
Since we are interested in the role behavior plays in learning about
the world, we consider the exploration task of the agent to be the
formation of an accurate estimate, or internal model �̂, of the true
CMC kernel that describes its world �.

This framework captures the two important roles actions play
in embodied learning. First, transitions depend on actions, and
actions are thus a constituent part of “what” is being learned.
Second, an agent’s immediate ability to interact with and observe
the world is limited by its current state. This restriction models

the embodiment of the agent, and actions are “how” an agent
can overcome this constraint on accessing information. Our pri-
mary question will be how action policies can optimize the speed
and efficiency of learning in embodied action-perception loops as
modeled by CMCs.

2.2. INFORMATION-THEORETIC ASSESSMENT OF LEARNING
Following Pfaffelhuber (1972), we define missing information IM

as a measure of the inaccuracy of an agent’s internal model. To
compute IM, we first calculate the Kullback–Leibler (KL) diver-
gence of the internal model from the world for each transition
distribution:

DKL(�as·‖�̂as·) :=
N∑

s′ = 1

�ass′ log2

(
�ass′

�̂ass′

)
(2)

The KL-divergence is an information-theoretic measure of the
difference between two distributions. Specifically, Equation (2)
gives the expected number of bits that would be lost if observa-
tions (following the true distribution) were communicated using
an encoding scheme optimized for the estimated distribution
(Cover and Thomas, 1991). It is large when the two distri-
butions differ greatly and zero when they are identical. Next,
missing information is defined as the unweighted sum of the
KL-divergences:

IM(�‖�̂) :=
∑

s∈S , a∈A

DKL(�as·||�̂as·) (3)

We will use missing information to assess learning under differ-
ent explorative strategies. Steeper decreases in missing informa-
tion over time represent faster learning and thus more efficient
exploration. The definition of missing information and those of
several other relevant terms that will be introduced later in this
manuscript have been compiled into Table 1 for easy reference.

2.3. BAYESIAN INFERENCE LEARNING
As an agent acts in its world, it observes the state transitions
and can use these observations to update its internal model �̂.
Taking a Bayesian approach, we assume the agent models its
world � as a random variable Θ with an initial prior distribu-
tion f over the space of possible CMC structures, W = ΔNM

N−1.
There is no standard nomenclature for tensor random variables
and we will therefore use a bold upright theta Θ to denote the
random variable and a regular upright theta Θ to denote an arbi-
trary realization of this random variable. Thus, f (Θ) describes
the exploring agent’s initial belief that Θ accurately describes its
world, i.e., that Θ = �. By Bayes’ theorem, an agent can calculate
a posterior belief on the structure of its world from its prior and
any data it has collected, �d:

f (Θ|�d) = p(�d|Θ)f (Θ)

p(�d)
(4)

Bayes’ theorem decomposes the posterior distribution of the
CMC kernel into the likelihood function of the data, p(�d|Θ),
and the prior, f (Θ). The normalization factor is calculated by
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Table 1 | Table of measures.

Name used here, abbreviation (Equation) Name used in (References) Mathematical expression

Missing information, IM (3) Missing information (Pfaffelhuber, 1972)
∑

s, a DKL(�as·||�̂as·)

Information gain, IG (6) IM(�‖�̂)− IM(�‖�̂a, s→s∗ )

Predicted information gain, PIG (7) Information gain (Nelson, 2005)
∑

s∗ �̂ass∗DKL(�̂
a, s→s∗
as· ‖�̂as·)

Posterior expected information gain, PEIG (17) KL-divergence (Storck et al., 1995) DKL(�̂current
as· ‖�̂past

as· )

Predicted mode change, PMC (11) Probability gain (Nelson, 2005)
∑

s∗ �̂ass∗
[
maxs′ �̂

a, s→s∗
ass′ −maxs′ �̂ass′

]
Predicted L1 change, PLC (12) Impact (Nelson, 2005)

∑
s∗ �̂ass∗

[
1
N
∑

s′
∣∣∣�̂a, s→s∗

ass′ − �̂ass′
∣∣∣]

integrating the numerator over W :

p(�d) =
∫
W

p(�d|Θ)f (Θ)dΘ

We now formulate a Bayesian estimate by directly calculating
the posterior belief in transitioning to state s′ from state s under
action a:

�̂ass′ := p(s′|a, s, �d) =
∫
W

p(s′,Θ|a, s, �d)dΘ

=
∫
W

p(s′|a, s;Θ)f (Θ|�d)dΘ

=
∫
W

Θass′ f (Θ|�d)dΘ = E
Θ|�d[Θass′ ] (5)

For discrete priors the above integrals would be replaced with
summations. Equation (5) demonstrates that the Bayesian
estimate is simply the expectation of the random variable given
the data. While other estimates are possible for inferring world
structure, such as Maximum Likelihood, the Bayesian estimate
is often employed to avoid over-fitting (Manning et al., 2008).
Moreover, as the following theorem demonstrates, the Bayesian
estimate is optimal under our minimum missing information
objective function.

Theorem 1. Consider a CMC random variable Θ modeling the
ground truth environment � and drawn from a prior distribution
f . Given a history of observations �d, the expected missing informa-
tion between Θ and an agent’s internal model � is minimized by
the Bayesian estimate � = �̂. That is:

�̂ := EΘ|�d[Θ] = arg min
�

EΘ|�d [IM(Θ‖�)]

Proof. See Appendix A1

The exact analytical form for the Bayesian estimate will
depend on the prior distribution. We emphasize that the utility
of the Bayesian estimate rests on the accuracy of its prior. In
the discussion, we will address issues deriving from uncertain or
inaccurate prior beliefs, but for now will provide the agents with
priors that match the generative process by which we create new
worlds for the agents to explore.

2.4. THREE TEST ENVIRONMENTS FOR STUDYING EXPLORATION
In the course of exploration, the data an agent accumulates will
depend on both its behavioral strategy as well as the structure
of its world. We reasoned that studying diverse environments,
i.e., CMCs that differ greatly in structure, would allow us to
investigate how world structure effects the relative performance
of different exploratory strategies and to identify action poli-
cies that produce efficient learning under broad conditions. We
thus constructed and considered three classes of CMCs that dif-
fer greatly in structure: Dense Worlds, Mazes, and 1-2-3 Worlds.
Dense Worlds are randomly generated from a uniform distribu-
tion over all CMCs with N = 10 states and M = 4 actions (see
Figure A1 in Appendix). They therefore represent very unstruc-
tured worlds. Mazes, in contrast, are highly structured and model
moving between rooms of a 6-by-6 maze (see Figure 1). The
state space in mazes consist of the N = 36 rooms. The M = 4
actions correspond to the noisy translations in the four cardinal
directions. To make the task of learning in mazes harder, 30 trans-
porters are randomly distributed amongst the walls which lead to
a randomly chosen absorbing state (concentric rings in Figure 1).
While perhaps not typically abundant in mazes, absorbing states,
such as at the bottom of a gravity well, are common in real
world dynamics. Finally, 1-2-3 Worlds differ greatly from both
Dense Worlds and Mazes in that their transitions are drawn
from a discrete distribution rather than a continuous one (see
Figure A2 in Appendix). Since our work is heavily rooted in the
Bayesian approach, the consideration of worlds with a different
priors was an important addition to understanding the depen-
dency of an exploration strategy on these priors. 1-2-3 Worlds
consist of N = 10 states and M = 3 actions. In a given state,
action a = 1 moves the agent deterministically to a single tar-
get state, a = 2 moves the agent with probability 0.5 to one of
two target states, and a = 3 moves the agent with probability
0.333 to one of three potential target states. The Appendix con-
tains detailed information on the generative distributions used to
create examples from each class of environments and also pro-
vides the analytical form for the Bayesian estimate in each world
(see Appendix A2).

3. RESULTS
3.1. ASSESSING THE INFORMATION-THEORETIC VALUE OF PLANNED

ACTIONS
The central question to be addressed in this manuscript is
how behavior affects the learning process in embodied action-
perception loops. The fast reduction of missing information
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FIGURE 1 | Example maze. The 36 states correspond to rooms in a maze.
The four actions correspond to noisy translations in the cardinal directions.
Two transition distributions are depicted, each by a set of four arrows
emanating from their originating states. Flat-headed arrows represent
translations into walls, resulting in staying in the same room. Dashed
arrows represent translation into a portal (blue lines) leading to the
absorbing state (blue target). The shading of an arrow indicates the
probability of the transition (darker color represents higher probability).

is taken to be the agent’s objective during learning-driven
exploration (Equation 3). As discussed in section 2.3, the
Bayesian estimate minimizes the expected missing informa-
tion and thus solves the inference problem. The control prob-
lem of choosing actions to learn quickly nevertheless remains
to be solved. We now show that Bayesian inference can also
be used to predict how much missing information will be
removed by an action. We call the decrease in missing infor-
mation between two internal models the information gain
(IG). Letting �̂ be a current model derived from data �d and
�̂a, s→s∗ be an updated model after observing a transition
from s to s∗ under action a, the information gain for this
observation is:

IG(a, s, s∗) := IM(�‖�̂)− IM(�‖�̂a, s→s∗ )

=
∑

s′
�ass′ log2

�̂
a, s→s∗
ass′

�̂ass′
(6)

An exploring agent cannot compute IG directly because it
depends on the true CMC kernel �. It also cannot know the out-
come s∗ of an action until it has taken it. We therefore again take
the Bayesian approach introduced in section 2.3 and consider the
agent to treat � and s∗ as random variables. Then, by calculating
the expected value of IG, we show in Theorem 2 that an agent can
compute an estimate of information gain from its prior belief on
� and the data it has collected. We term this estimate the predicted
information gain (PIG).

Theorem 2. If an agent is in state s and has previously collected
data �d, then the expected information gain for taking action a is
given by:

PIG(a, s) := Es∗,Θ|�d[IG(a, s, s∗)]
=
∑

s∗
�̂ass∗DKL(�̂

a, s→s∗
as· ‖�̂as·) (7)

Proof. See Appendix A3

PIG has an intuitive interpretation. In a sense the agent imag-
ines the possible outcomes s∗ of taking action a in state s. It
then determines how each of these results would hypotheti-
cally change its internal model �̂a, s→s∗ . It compares these new
hypothetical models to its current model by computing the KL-
divergence between them. The larger this difference the more
information the agent would likely gain if it indeed transitioned
to state s∗. Finally, it averages these hypothetical gains according
to the likelihood of observing s∗ under its current model.

For each class of environments, Figure 2 compares the aver-
age PIG with the average realized information gain as successive
observation are used to update a Bayesian estimate. In accordance
with Theorem 2, in all three environments PIG accurately predicts
the average information gain. Thus, theoretically and empirically,
PIG represents an accurate estimate of the improvement an agent
can expect in its internal model if it takes a planned action in a
particular state.

Interestingly, the expression on the RHS of Equation (7) has
been previously studied in the field of Psychology where it was
introduced ad hoc to describe human behavior during hypothe-
sis testing (Klayman and Ha, 1987; Oaksford and Chater, 1994;
Nelson, 2005). To our knowledge, its equality to the predicted
gain in information (Theorem 2) is novel. In a later section, we
will compare PIG to other measures proposed in the field of
Psychology.

3.2. CONTROL LEARNERS: UNEMBODIED AND RANDOM ACTION
Before introducing and assessing the performance of different
explorative strategies, we first develop positive and negative con-
trols. A naive strategy would be to select actions uniformly
randomly. Such random policies are often employed to encourage
exploration in reinforcement learning models. We will use a ran-
dom action strategy as a negative control exhibiting the baseline
learning rate of an undirected explorer.

An unembodied agent that achieves an upper bound on
expected performance serves as a positive control. Unlike an
embodied agent, the unembodied control is allowed, at every
time step, to relocate itself to any state it wishes. For such an
agent, optimization of learning decomposes into an independent
sampling problem (Pfaffelhuber, 1972). Since the PIG for each
transition distribution decreases monotonically over successive
observations (Figure 2), learning by an unembodied agent can
be optimized by always sampling from the state and action pair
with the highest PIG. Thus, learning can be optimized in a greedy
fashion:

(a, s)Unemb. := arg max
(a, s)

PIG(a, s) (8)
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Comparing the learning performances of the random action
and unembodied control (red and black curves, respectively in
Figure 3) we find a notable difference among the three classes of
environments. The performance margin between these two con-
trols is significant in Mazes and 1-2-3 Worlds (p < 0.001), but
not in Dense Worlds (p > 0.01). Despite using a naive strategy,
the random actor is essentially reaching maximum performance
in Dense Worlds, suggesting that exploration of this environment
is fairly easy. In contrast, in Mazes and 1-2-3 Worlds, a directed
exploration strategy may be necessary to reach learning speeds
closer to the unembodied upper bound.

3.3. EXPLORATION STRATEGIES BASED ON PIG
PIG represents a utility function that can be used to guide
exploration. Since greedy maximization of PIG is optimal for
the unembodied agent, one might expect a similar strategy to
be promising for an embodied agent. Unlike the unembodied

control, however, the embodied agent [PIG(greedy)] would only
be able to select its action, not its state:

aPIG(greedy) := arg max
a

PIG(a, s) (9)

The performance comparison between PIG(greedy) (Equation 9)
and the positive control (Equation 8) is of particular inter-
est because they differ only in that one is embodied while
the other is not. As shown in Figure 4 the performance dif-
ference is largest in Maze worlds, moderate though significant
in 1-2-3 Worlds and smallest in Dense Worlds (p < 0.001 for
Mazes and 1-2-3 Worlds, p > 0.001 for Dense Worlds). To quan-
tify the embodiment constraint faced in a world, we define an
embodiment index as the relative difference between the areas
under the learning curves for PIG(greedy) and the unembod-
ied control. The average embodiment indices for Dense Worlds,
Mazes, and 1-2-3 Worlds are 0.02, 2.59, and 1.27, respectively.

FIGURE 2 | Accuracy of predicted information gain. The average
predicted information gain is plotted against the average realized
information gain. Averages are taken over 200 CMCs, N ×M
transition distributions, and 50 trials. Error bars depict standard

deviations (only plotted above the mean for 1-2-3 Worlds).
The arrow indicates the direction of increasing numbers of
observations (top-right = none, bottom-left = 19). The unity lines
are drawn in gray.

FIGURE 3 | Learning curves for control strategies. The average missing information is plotted over exploration time for the unembodied positive control and
random action baseline control. Standard errors are plotted as dotted lines above and below learning curves (n = 200).
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FIGURE 4 | Coordinating exploration using predicted information

gain. The average missing information is plotted over exploration
time for greedy and value-iterated (VI) maximization of PIG. The

standard control strategies and the VI+ positive control are also
depicted. Standard errors are plotted as dotted lines above and
below learning curves (n = 200). EC, embodiment constraint.

We also find that, whereas PIG(greedy) yielded no improvement
over random action in Dense Worlds and Mazes (p > 0.001),
it significantly improved learning in 1-2-3 Worlds (p < 0.001),
suggesting that this utility function was most beneficial in
1-2-3 Worlds.

Greedy maximization of PIG only accounts for the immedi-
ately available information gains and fails to account for the effect
an action can have on future utility. In particular, when the poten-
tial for information gain is concentrated at remote states in the
environment, it may be necessary to coordinate actions over time.
Forward estimation of total future PIG is intractable. We there-
fore employ a back-propagation approach previously developed
in the field of economics called value-iteration (VI) (Bellman,
1957). The estimation starts at a distant time point (initialized as
τ = 0) in the future with initial values equal to the PIG for each
state-action pair:

Q0(a, s) := PIG(a, s)

Then propagating backwards in time, we maintain a running total
of estimated future value:

Qτ − 1(a, s) := PIG(a, s)+ γ
∑

s′ ∈S

�̂ass′ · Vτ (s′) (10)

where Vτ (s) := max
a

Qτ (a, s)

Here, γ is a discount factor, set to 0.95. Such discount factors
are commonly employed in value-iteration algorithms to favor
more immediate gains over gains further in the future (Bellman,
1957). As discussed later, discounting may also help, in part, to
account for the decreasing return on information from successive
observations (see Figure 2).

Ideally, the true transition dynamics � would be used in
Equation (10), but since the agent must learn these dynamics, it
employs its internal model �̂ instead. Applying the VI algorithm
to PIG, we construct a behavioral policy PIG(VI) that coordi-
nates actions over several time steps toward the approximate

maximization of expected information gain:

aPIG(VI) := arg max
a

Q−10(a, s);

As shown in Figure 4, the use of VI to coordinate actions yielded
the greatest gains in Mazes, with moderate gains also seen in 1-2-
3 Worlds. Along with the embodiment indices introduced above,
these results support the hypothesis that worlds with high embod-
iment constraints require agents to coordinate their actions over
several time steps to achieve efficient exploration.

Bellman showed that VI accurately estimates future gains when
the true transition dynamics � is known and when the utility
function is stationary (Bellman, 1957). Neither of these are true
in our case, and PIG(VI) is therefore only an approximation of
future gains. Nevertheless, as we will show, its utility is validated
by its superior performance when compared to other previously
introduced exploration strategies.

While a learning agent cannot use the true dynamics for VI,
we can ascertain how much this impairs its exploration by con-
sidering a second positive-control PIG(VI+) which is given the
true dynamics for coordinating its actions. That is, this control
uses � instead of �̂ in Equation (10) above. The performance
of PIG(VI+) only differs from PIG(VI) in Mazes, and this dif-
ference is relatively small compared to the gains made over the
random or greedy behaviors (Figure 4). Altogether these results
suggest that PIG(VI) may be an effective strategy employable
by embodied agents for coordinating explorative actions toward
learning.

3.4. STRUCTURAL FEATURES OF THE THREE WORLDS
In the course of exploration, the data an agent accumulates will
depend on both its behavioral strategy as well as the dynami-
cal structure of its world. To elucidate this interaction, we next
consider how structural differences in the three classes of environ-
ments correlate with an agents ability to explore. In particular, we
consider three structural features of the worlds: their tendency to
draw agents into a biased distribution over states, the amount of
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control a single action provides an agent over its future states, and
the average distance between any two states.

3.4.1. State bias
To assess how strongly a world biases the state distribution of its
agents we quantify the unevenness of the equilibrium distribu-
tion under a random action policy. The equilibrium distribution
� quantifies the likelihood that an agent will be in a particular
state at a distant time-point in the future. To quantify the bias
of this distribution, we define a structure index (SI) as the rela-
tive difference between its entropy H(�) and the entropy of the
uniform distribution H(U):

SI(�) := H(U)−H(�)

H(U)

where:

H(s) := −
∑

s∈S

p(s) log2(p(s))

In Figure 5A, the structure indices for 200 worlds in each class of
environment are plotted against the embodiment index (defined
in section 3.3). As depicted, the embodiment index corre-
lates strongly with the structure index suggesting that state bias
represents a significant challenge embodied agents face during
exploration.

3.4.2. Controllability
To measure the capacity for an agent to control its state trajectory
we computed a control index as the mutual information between
a random action a0 and an agent’s state t time steps in the future
st averaged uniformly over possible starting states s0:

CI(t) =
∑

s0 ∈S

1

N
MI[A0, St |s0]

=
∑

s0 ∈S

1

N

⎛
⎝ ∑

a0 ∈A , st ∈S

p(a0, st |s0) log2

(
p(st |a0, s0)

p(st |s0)

)⎞⎠

As shown in Figure 5B, an action in a Maze or 1-2-3 Worlds
has significantly more impact on future states than an action in
Dense Worlds. Controllability is required for effective coordina-
tion of actions, such as under PIG(VI). In Mazes, where actions
can significantly affect states far into the future, agents yielded
the largest gains from coordinated actions. 1-2-3 Worlds also
revealed high controllability, but only over the more immediate
future. Interestingly, 1-2-3 Worlds also showed moderate gains
from coordinating actions.

3.4.3. Mean path length
To assess the size of each CMC, we calculated the average mini-
mum expected path length between every two states. To do this,
we first determined the action policy that would minimize the
expected path length to any target state. We then calculated the
expected number of time-steps it would take an agent to navi-
gate to that target state while employing this optimal policy. The
average value of this expected path length taken across start and

FIGURE 5 | Quantifying the structure of the worlds. (A) The
embodiment index, defined in section 3.3, is plotted against the structure
index for each of 200 Dense Worlds, Mazes, and 1-2-3 Worlds. (B) For the
same CMCs, the average controllability is plotted as a function of the
number of time steps the state lies in the future. The error bars depict
standard deviations. (C) Again for the same CMCs, the learning
performance gap in between PIG(VI) and PIG(VI+) is plotted against the
mean path length between any two states.
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target states was used as a measure of the extent of the CMC (see
Appendix A4 for details). We had previously found that the three
classes of CMCs differed in the relative performance between
the PIG(VI) explorer and the PIG(VI+) control. Since these two
strategies differ only in that the former uses the agent’s internal
model to coordinate its actions while the latter is allowed to use
the true world dynamics, we wondered if the performance gap
between the two (the area between their two learning curves)
could be related to the path length to a potential source of infor-
mation. Indeed, comparing this performance gap to the mean
path length for each world, we found a strong correlation, as
shown in Figure 5C. This suggests that coordination of actions
may be more dependent on internal model accuracy for spatially
extended worlds. Finally, it is interesting to note that the Mean
Path Length is typically larger in mazes than 10 time steps, the
planning horizon used in Value Iteration. Ten was chosen simply
as a round number and it may be surprising that it works as well
as it does in such spatially extended worlds. We believe two factors
may contribute to this. First, it is likely that states of high informa-
tional value will be close together. Coordinating actions toward
a nearby state of high value will therefore likely bring the agent
closer to other states of potentially higher value. Second, and we
suspect more importantly, since the mean path length is an aver-
age, a VI planner can direct its action toward a high information
state under the possibility that it might reach that state within
10 time steps even if the expected path length to that location is
significantly longer.

3.5. COMPARISON TO PREVIOUS EXPLORATIVE STRATEGIES
Models of exploration have been previously developed in the
field of reinforcement learning (RL). Usually, these models focus
on the role of exploration in reward acquisition rather than its
direct role in learning world structure. Still, several of the prin-
ciples developed in the RL field can be implemented in our
framework. In this section, we compare these various meth-
ods to PIG(VI) under our learning objective. Since no rewards

are available, we consider only RL strategies that can be imple-
mented without rewards. Random action is perhaps the most
common exploration strategy in RL. As we have already seen,
random action is only efficient for exploring Dense Worlds.
The following directed exploration strategies have also been
developed in the RL literature (learning curves are plotted
in Figure 6):

Least Taken Action (LTA): Under LTA, an agent will always
choose the action that it has performed least often in the
current state (Sato et al., 1988; Barto and Singh, 1990; Si
et al., 2007). Like random action, LTA yields uniform sampling
of actions in each state. Across worlds, LTA fails to signifi-
cantly improve on the learning rates seen under random action
(p > 0.001 for all three environments).
Counter-Based Exploration (CB): Whereas LTA actively sam-
ples actions uniformly, CB attempts to induce a uniform
sampling across states. To do this, it maintains a count of the
occurrences of each state, and chooses its action to minimize
the expected count of the resultant state (Thrun, 1992). CB
performs even worse than random action in Dense Worlds and
1-2-3 Worlds (p < 0.001). It does outperform random actions
in Mazes but falls far short of the performance seen by PIG(VI)
(p < 0.001).
Q-learning on Surprise [PEIG(Q)]: Storck et al. (1995) devel-
oped Surprise as a measure to quantify past changes in
an agent’s internal model which they used to guide explo-
ration under a Q-learning algorithm (Sutton and Barto, 1998).
Interestingly, it can be shown that Surprise as employed by
Storck et al. is equivalent to the posterior expected informa-
tion gain (PEIG), a posterior analog to our PIG utility function
(see Appendix A5 and Table 1). Q-learning is a model-free
approach to maximizing long-term gains of a utility func-
tion (Sutton and Barto, 1998). Implementing this strategy, we
found that like CB, PEIG(Q) generally performed worse than
random action.

FIGURE 6 | Comparison to previous exploration strategies. The average
missing information is plotted over time for PIG(VI) agents along with three
exploration strategies from the literature: least taken action (LTA) (Sato
et al., 1988; Barto and Singh, 1990; Si et al., 2007), counter-based (CB)

(Thrun, 1992), and Q-Learning on posterior expected information gain
[PEIG(Q)] (Storck et al., 1995). The standard control strategies are also
shown. Standard errors are plotted as dotted lines above and below
learning curves (n = 200).
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The results in Figure 6 show that PIG(VI) outperforms the
previous explorative strategies at learning in structured worlds.
We note that all of these strategies were originally developed to
encourage exploration for the sake of improving reward acquisi-
tion, and their poor performance at our learning objective does
not conflict with their previously demonstrated utility under the
reinforcement learning framework.

3.6. COMPARISON TO UTILITY FUNCTIONS FROM PSYCHOLOGY
Independent findings in Psychology have suggested that the max-
imization of PIG can be used to predict human behavior during
hypothesis testing (Oaksford and Chater, 1994). Inspired by these
results, we investigated two other measures also developed in this
context. Like PIG, both are measures of the difference between the
current and hypothetical future internal models:

Predicted mode change (PMC) predicts the height difference
between the modes of the current and future internal models
(Baron, 2005; Nelson, 2005):

PMC(a, s) =
∑

s∗
�̂ass∗

[
max

s′
�̂

a, s→s∗
ass′ −max

s′
�̂ass′

]
(11)

Predicted L1 change (PLC) predicts the average L1 distance
between the current and future internal models (Klayman and
Ha, 1987):

PLC(a, s) =
∑

s∗
�̂ass∗

[
1

N

∑
s′

∣∣∣�̂a, s→s∗
ass′ − �̂ass′

∣∣∣
]

(12)

We tested agents that approximately maximize PMC or PLC using
VI. As Figure 7 reveals, PIG(VI) proved again to be the best
performer overall. In particular, PIG(VI) significantly outper-
forms PMC(VI) in all three environments, and PLC(VI) in 1-2-3
Worlds (p < 0.001). Nevertheless, PMC and PLC achieved sig-
nificant improvements over the baseline control in Mazes and
1-2-3 Worlds, highlighting the benefit of coordinated actions

across different utility functions. Interestingly, when performance
was measured by an L1 distance instead of missing informa-
tion, PIG(VI) still outperformed PMC(VI) and PLC(VI) in 1-2-3
Worlds (data not shown).

3.7. GENERALIZED UTILITY OF EXPLORATION
In considering the causes underlying a behavior such as explo-
ration, psychologists often distinguish between the proximate
(or behavioral) causes and the ultimate (or evolutionary) causes
(Mayr, 1961; Pisula, 2009). Proximate causes are those factors that
act directly on the individual in the control of behavior, while ulti-
mate causes are those factors that contribute to the survival value
of a behavior upon which natural selection can act. Thus far we
have focused on efficient learning as the major objective because
it has been identified by psychologists as the primary proximate
cause of exploration (Archer and Birke, 1983; Loewenstein, 1994).
We now, however, return to the question of the ultimate cause of
exploration, which must lie in improved survival or reproductive
fitness. The evolutionary advantage of learning-driven explo-
ration is thought to lie in the general usefulness of possessing an
accurate internal model of the world (Kaplan and Kaplan, 1983;
Renner, 1988, 1990; Pisula, 2003, 2008). Unlike many models
of reward-driven exploration, which focus on learning to opti-
mize reward acquisition in a single context, an accurate internal
model derived from learning-driven exploration may hold gen-
eral utility applicable across a wide range of contexts. To compare
the general utility of internal models gained through the various
exploration methods, we assessed the ability of our agents to apply
their internal models toward solving an array of goal-directed
tasks. We note that these studies were performed without any
changes to the exploration strategies employed by the agent. In
essence, we interrupt an agent’s exploration at several benchmark
time points. We then ask the agent how it would solve, given its
internal model, a particular task before allowing it to continue on
in its exploration. The agent does not actually perform the task.
It is simply asked to solve the task using it internal model. The
solution that it provides is then compared by us to the optimal

FIGURE 7 | Comparison between utility functions. The average missing information is plotted over time for agents that employ VI to maximize long-term
gains in the three objective function, PIG, PMC, or PLC. The standard control strategies are also shown (n = 200).
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solution. We considered two types of tasks, navigation and reward
acquisition:

Navigation: Given a starting state, the agent has to quickly
navigate to a target state.
Reward Acquisition: Given a starting state, the agent has to
gather as much reward as possible over 100 time steps. Reward
values are drawn from a normal distribution and randomly
assigned to every state in the CMC. The agent is given the
reward value of each state.

After various lengths of exploration, the agent’s internal model
is assessed for general utility. For each task, we derive the behav-
ioral policy that optimizes performance under the internal model.
As a positive control, we also derive an objective optimal policy
that maximizes performance given the true CMC kernel. The dif-
ference in realized performance between the agent’s policy and
the control is used as a measure of navigational or reward loss.
For detailed methods, please see Appendix A6.

Figure 8 depicts the average rank in the navigational and
reward tasks for the different explorative strategies. In all envi-
ronments, for both navigation and reward acquisition, PIG(VI)
always grouped with the top performers (p > 0.001), excepting
positive controls. PIG(VI) was the only strategy to do so. Thus,
the explorative strategy that optimized learning under the miss-
ing information objective function also prepared the agent for
accomplishing arbitrary goal-directed tasks.

Our test for generalized utility differs from the standard rein-
forcement learning paradigm in that it tests an agent across
multiple tasks. The agent therefore cannot simply learn habit-
ual sensorimotor responses specific to a single task. Though
most reinforcement learning studies consider only a stationary,
unchanging reward structure, we wanted to compare PIG(VI)

to reward-driven explorers. BOSS is a state-of-the-art model-
based reinforcement learning algorithm (Asmuth et al., 2009).
To implement reward-driven exploration we trained a BOSS
reinforcement-learner to navigate to internally chosen target-
states. After reaching its target, the BOSS agent would randomly
select a new target, updating its model reward structure accord-
ingly. We then assessed the internal model formed by a BOSS
explorer under the same navigational and reward acquisition
tasks. As can be seen in Figure 8, BOSS (black cross) was not as
good as PIG(VI) at either class of objectives despite being trained
specifically on the navigation task.

4. DISCUSSION
In this manuscript we introduced a parsimonious mathematical
framework for studying learning-driven exploration by embod-
ied agents based on information theory, Bayesian inference,
and CMCs. We compared agents that utilized different explo-
ration strategies toward optimizing learning. To understand how
learning performance depends on the structure of the world,
three classes of environments were considered that challenge the
learning agent in different ways. We found that fast learning
could be achieved in all environments by an exploration strat-
egy that coordinated actions toward long-term maximization
of PIG.

4.1. CAVEATS
The optimality of the Bayesian estimate (Theorem 1) and the esti-
mation of information gain (Theorem 2) both require an accurate
prior over the transition kernels. For biological agents, such pri-
ors could have been learned from earlier exploration of related
environments, or may represent hardwired beliefs optimized by
evolutionary pressures. Alternatively, an agent could attempt to
simultaneously learn a prior while exploring its environment.

FIGURE 8 | Demonstration of generalized utility. For each world
(n = 200), explorative strategies are ranked for average performance on the
navigational tasks (averaged across N start states and N target states)
and the reward tasks (averaged across N start states and 10 randomly
generated reward distributions). The average ranks are plotted with
standard deviations. PIG(VI) is depicted as a filled green circle. Strategies
lying outside the pair of horizontal green lines differ significantly from
PIG(VI) in navigational performance. Strategies lying outside the pair of

vertical green lines differ significantly from PIG(VI) in reward performance
(p < 0.0001). The different utility functions and heuristics are distinguished
by color: PIG(green), PEIG (magenta), PMC (dark-blue), PLC (cyan),
LTA (orange), and CB (yellow). The different coordination methods are
distinguished by symbol: Greedy (squares), VI (circles), VI+ (diamonds),
Heuristic Strategies (asterisks). The two standard controls are depicted
as points as follows: Unembodied (black), Random (red). The BOSS
reinforcement learner is depicted by a black cross.
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Indeed a simple maximum-likelihood estimation of the con-
centration parameter for Dense Worlds and Mazes is sufficient
for an agent to achieve efficient exploration (data not shown).
Nevertheless, biological agents may not always have access to an
accurate prior for an environment. For such cases, future work is
required to understand exploration under false priors and how
they could yield sub-optimal but perhaps biologically realistic
exploratory behaviors.

Another potential limitation of our approach occurs from the
fact that the VI algorithm is only optimal if the utility function
is stationary (i.e., unchanging) (Bellman, 1957). Any utility func-
tion, including PIG, that attempts to capture learning progress
will necessarily change over time. This caveat may be partially
alleviated by the fact that PIG changes only for the sampled dis-
tributions. Furthermore, PIG decreases in a monotonic fashion
(see Figure 2) which can potentially be captured by the discount
factor of VI. Interesting future work may lie in accounting for
the effect of such monotonic decreases in estimates of future
information gains either through direct estimation or through
better approximation by a different choice of discounting mech-
anism. The problem of accounting for diminishing returns on
utility has been previously approached in the field of optimal
foraging theory. Modeling the foraging behaviors of animals,
optimal foraging theory considers an animals decision of when
it should leave its present feeding area, or patch, in which it
has been consuming the available food and expend energy to
seek out a new, undiminished patch (MacArthur and Pianka,
1966). Charnov’s Marginal Value Theorem, a pivotal finding
in the field, suggests that the decision to transition should be
made once the expected utility of the current patch decreases
to the average expected utility across all patches accounting for
transition costs (Charnov, 1976). Extending this work to our
information-theoretic approach in CMCs may provide the nec-
essary insights to address the challenge of diminishing returns on
information gain.

Finally, the VI algorithm scales linearly with the size of the
state space, and the calculation of PIG can scale linearly with
the square of the size of the state space. This means that for
larger and larger CMCs, these approaches will become more
computationally expensive to perform. For large worlds, clever
methods for approximating these approaches or for sparsifying
their representation may be necessary. An explicit model of mem-
ory may also be necessary to fully capture the limitation on
computational complexity biological organisms face. A wealth of
literature from Reinforcement Learning and related fields may
offer insights in approaching these challenge which we reserve for
future work.

4.2. RELATED WORK IN REINFORCEMENT LEARNING
CMCs are closely related to Markov Decision Processes (MDPs)
commonly studied in Reinforcement Learning. MDPs differ from
CMCs in that they explicitly include a stationary reward func-
tion associated with each transition (Sutton and Barto, 1998;
Gimbert, 2007). RL research of exploration usually focusses on
its role in balancing exploitative behaviors during reward maxi-
mization. Several approaches for inducing exploratory behavior
in RL agents have been developed. One very common approach

is the use of heuristic strategies such as random action, least
taken action, and counter-based algorithms. While such strate-
gies may be useful in gathering unchanging external rewards, our
results show that they are inefficient for learning the dynamics of
structured worlds.

Other RL approaches involve reward-driven exploration. In
the absence of external rewards, exploration could still be induced
under reward-driven strategies by having the agent work through
a series of internally chosen reward problems. This is essen-
tially how the described BOSS agent operates. It was never-
theless insufficient to reach the performance accomplished by
PIG(VI).

In addition, several RL studies have investigated intrinsically
motivated learning. For example, Singh et al. (2010) have demon-
strated that RL guided by saliency, an intrinsic motivation derived
from changes in stimulus intensity, can promote the learning of
reusable skills. As described in section 3.5, Storck et al. introduced
the combination of Q-learning and PEIG as an intrinsic motivator
of learning (Storck et al., 1995). In their study, PEIG(Q) out-
performed random action only over long time scales. At shorter
time scales, random action performed better. Interestingly, we
found exactly the same trend, initially slow learning with even-
tual catching-up, when we applied PEIG(Q) to exploration in our
test environments (Figure 6).

4.3. BETWEEN LEARNING-DRIVEN AND REWARD-DRIVEN
EXPLORATION

While curiosity, as an intrinsic value for learning, is believed
to be the primary drive of explorative behaviors, other factors,
including external rewards, may play a role either in motivating
exploration directly or in shaping the development of curios-
ity (Archer and Birke, 1983; Loewenstein, 1994; Silvia, 2005;
Pisula, 2009). In this manuscript, we wished to focus on a pure
learning-based exploration strategy and therefore chose to take
an unweighted sum of missing information as a parsimonious
objective function (Equation 3). Two points, however, should
be noted in considering the relationship of this work to previ-
ous work in the literature. First, our objective function considers
only the learning of the transition dynamics governing a CMC
as this fully describes such a world. When we incorporate addi-
tional features into our framework, such as rewards in MDPs,
those features too could be learned and assessed under our
missing information objective function. Toward this goal, inter-
esting insights may come from comparing our work with the
multi-armed bandits literature. Multi-armed bandits are a spe-
cial class of single state MDPs (Gittins, 1979). By considering
only a single state, multi-armed bandits remove the embodi-
ment constraint of multi-state CMCs and MDPs. Thus, CMCs
and multi-armed bandits represent complimentary special cases
of MDPs. That is, a CMC is an MDP without reward structure,
while a multi-armed bandit is an MDP without transition ker-
nels. Recent research has attempted to decouple the exploration
and exploitation components of optimal control in multi-armed
bandits (Abbeel and Ng, 2005; Bubeck et al., 2009). These stud-
ies aim at minimizing, through exploration, a construct termed
regret, the expected reward forgone by a recommended strat-
egy. Regret is similar to the navigational and reward acquisition
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loss values we calculated for ranking our explorers under goal-
directed tasks. Importantly, while our work considered a wide
array of goal-directed tasks, these multi-armed bandit approaches
typically consider only learning a single fixed reward structure.
Understanding these difference will be important if one wishes
to shift attention from the unbiased information-theoretic view
we take to a directed task-dependent view. Identifying a means,
perhaps through information theory, of quantifying uncertainty
in which strategy will optimize a task, will be an important
extension bridging these two approaches. The idea of directed
information brings us to our second consideration in relating
our work to previous literature. Psychologists have found that
curiosity, or interest, can vary greatly both between and within
individuals (Silvia, 2001, 2006). While one should be careful
to not conflate the valuation of an extrinsic reward with the
emotion of interest, it is possible such valuations could act to
influence the development of interests. By transitioning away
from our non-selective measure of missing information toward
a weighted objective function that values certain information
over others, we may begin to bridge the learning-driven and
reward-driven approaches to exploration. One interesting pro-
posal, put forth by Vergassola et al. suggests that information
regarding a reward often falls off with distance as an organism
moves away from the source of the reward (Vergassola et al.,
2007). Accordingly, a greedy local maximization of informa-
tion regarding the reward may simultaneously bring the indi-
vidual closer to the desired reward. The resultant “infotaxis”
strategy is closely related to our PIG(greedy) strategy but is
applied only to a single question of where a particular reward is
located.

4.4. RELATED WORK IN PSYCHOLOGY
In the Psychology literature, PIG, as well as PMC and PLC,
were directly introduced as measures of the expected difference
between a current and future belief (Baron, 2005; Klayman and
Ha, 1987; Oaksford and Chater, 1994; Nelson, 2005). Here, we
showed that PIG equals the expected change in missing informa-
tion (Theorem 2). Analogous theorems do not hold for PMC or
PLC. For example, PLC is not equivalent to the expected change
in L1 distance with respect to the true world. This might explain
why PIG(VI) outperformed PLC(VI) even under an L1 measure
of learning.

We applied PIG, PMC, and PLC to the problem of learning
a full model of the world. In contrast, the mentioned psy-
chology studies focussed specifically on hypothesis testing and
did not consider sequences of actions or embodied action-
perception loops. These studies revealed that human behavior
during hypothesis testing can be modeled as maximizing PIG,
suggesting that PIG may have biological significance (Oaksford
and Chater, 1994; Nelson, 2005). However, those results could
not distinguish between the different utility functions (PIG, PMC,
and PLC) (Nelson, 2005). Our finding that 1-2-3 Worlds give rise
to large differences between the three utility functions may help
identify new behavioral tasks for disambiguating the role of these
measures in human behavior.

To model bottom–up visual saliency and predict gaze atten-
tion, Itti and Baldi recently developed an information-theoretic

measure closely related to PEIG (Itti and Baldi, 2006, 2009; Baldi
and Itti, 2010). In this model, a Bayesian learner maintains a prob-
abilistic belief structure over the low-level features of a video.
Attention is believed to be attracted to locations in the visual
scene that exhibit high Surprise. Several potential extensions of
this work are suggested by our results. First, it may be useful to
model the active nature of data acquisition during visual scene
analysis. In Itti and Baldi’s model, all features are updated for
all location of the visual scene regardless of current gaze loca-
tion or gaze trajectory. Differences in acuity between the fovea
and periphery, however, suggest that gaze location will have a sig-
nificant effect on which low-level features can be transmitted by
the retina (Wässle and Boycott, 1991). Second, our comparison
between PIG and PEIG (Figure 6) suggests that predicting future
changes may be more efficient than focusing attention only on
those locations where change has occurred in the past. A model
that anticipates Surprise, as PIG anticipates information gain,
may be better able to explain some aspects of human attention.
For example, if a moving object disappears behind an obstruc-
tion, viewers may anticipate the reemergence of the object and
attend that location. Incorporating these insights into new mod-
els of visual saliency and attention could be an interesting course
of future research.

4.5. INFORMATION-THEORETIC MODELS OF BEHAVIOR
Recently information-theoretic concepts have become more pop-
ular in computational models of behavior. These approaches
can be grouped under three guiding principles. The first prin-
ciple uses information theory to quantify the complexity of a
behavioral policy, with high complexity considered undesirable.
Tishby and Polani for example, considered RL maximization of
rewards under such complexity constraints (Tishby and Polani,
2011).

The second principle is to maximize a measure called pre-
dictive information which quantifies the amount of information
a known (or past) variable contains regarding an unknown (or
future) variable (Tishby et al., 1999; Ay et al., 2008; Still, 2009).
Predictive information has also been referred to as excess entropy
(Crutchfield and Feldman, 2003) and should not be confused
with PIG. When the controls of a simulated robot were adjusted
such that the predictive information between successive sensory
inputs was maximized, Ay et al. found that the robot began to
exhibit complex and interesting explorative behaviors (Ay et al.,
2008). This objective selects for behaviors that cause the sensory
inputs to change often but to remain predictable from previ-
ous inputs, and we therefore describe the resulting exploration
as stimulation-driven. Such exploration generally benefits from a
good internal model but on its own, does not drive fast learning.
It is therefore more suitable later in exploration, after a learning-
driven strategy, such as PIG(VI), has had a chance to form an
accurate model. PIG, in contrast, is most useful in the early stages
when the internal model is still deficient. These complimentary
properties of predictive information and PIG lead us to hypothe-
size that a simple additive combination of the two objectives may
naturally lead to a smooth transitioning from learning-driven
exploration to stimulation-driven exploration, a transition that
may indeed be present in human behavior (see section 4.6).
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Epsilon machines introduced by Crutchfield and Young (1989)
and the information bottleneck approach introduced by Tishby
et al. (1999) combine these first two principles of maximizing
predictive information and constraining complexity. In particu-
lar maximizing the information between a compressed internal
variable and the future state progression subject to a constraint
on the complexity of generating the internal variable from sen-
sory inputs. Recently, Still extended the information bottleneck
method to incorporate actions (Still, 2009).

Finally, the third information-theoretic principle of behavior
is to minimize of free-energy, an information-theoretic bound
on surprise. Friston put forth this Free-Energy (FE) hypothesis
as a unified variational principle for governing both the infer-
ence of an internal model and the control of actions (Friston,
2009). Under this principle, agents should act to minimize
the number of states they visit. This stands in stark contrast
to both learning-driven and stimulation-driven exploration. A
learning-driven explorer will seek out novel states where missing
information is high, while a stimulation-driven explorer actively
seek to maintain high variation in its sensory inputs. Still, reduced
state entropy may be valuable in dangerous environments where
few states permit survival. The balance between cautionary and
exploratory behaviors would be an interesting topic for future
research.

4.6. TOWARD A GENERAL THEORY OF EXPLORATION
With the work of Berlyne (1966), psychologists began to dis-
sect the different motivations that drive exploration. A distinc-
tion between play (or diversive exploration) and investigation
(or specific exploration) grew out of two competing theories of
exploration. As reviewed by Hutt (1970), “curiosity”-theory pro-
posed that exploration is a consummatory response to curiosity-
inducing stimuli (Berlyne, 1950; Montgomery, 1953). In contrast,
“boredom”-theory held that exploration was an instrumental
response for stimulus change (Myers and Miller, 1954; Glanzer,
1958). Hutt suggested that the two theories may be capturing
distinct behavioral modes, with “curiosity”-theory underlying
investigatory exploration and “boredom”-theory underlying play.
In children, exploration often occurs in two stages, inspection
to understand what is perceived, followed by play to main-
tain changing stimulation (Hutt and Bhavnani, 1972). These
distinctions nicely correspond to the differences between our
approach and the predictive information approach of Ay et al.
(2008) and Still (2009). In particular, we hypothesize that our
approach corresponds to curiosity-driven investigation, while
predictive information a la Ay et al. and Still may correspond
with play. Furthermore, the proposed method of additively
combining these two principles (section 4.4), may naturally
capture the transition between investigation and play seen in
children.

For curiosity-driven exploration, there are many varied theo-
ries (Loewenstein, 1994). Early theories viewed curiosity as a drive
to maintain a specific level of arousal. These were followed by
theories interpreting curiosity as a response to intermediate lev-
els of incongruence between expectations and perceptions, and
later by theories interpreting curiosity as a motivation to master

one’s environment. Loewenstein developed an Information Gap
Theory and suggested that curiosity is an aversive reaction
to missing information (Loewenstein, 1994). More recently,
Silvia proposed that curiosity comprises two traits, complex-
ity and comprehensibility (Silvia, 2005). For Silvia complexity
is broadly defined, and includes novelty, ambiguity, obscurity,
mystery, etc. Comprehensibility appraises whether something
can be understood. It is interesting how well these two traits
match information-theoretic concepts, complexity being cap-
tured by entropy, and comprehensibility by information gain
(Pfaffelhuber, 1972). Indeed, PIG might be able to explain the
dual aspects of curiosity-driven exploration proposed by Silvia.
PIG is bounded by entropy and thus high values require high
complexity. At the same time, PIG equals the expected decrease
in missing information and thus may be equivalent to expected
comprehensibility.

All told, our results add to a bigger picture of exploration in
which the theories for its different aspects fit together like pieces
of a puzzle. This invites future work for integrating these pieces
into a more comprehensive theory of exploration and ultimately
of autonomous behavior.

4.7. APPLICATION TOWARD EXPERIMENTAL DESIGN
In many ways, scientific research itself epitomizes learning-
driven exploration. Like our modeled agents, researchers design
experiments to maximize their expected gain in information.
Recently, there has been growing interest in automated experi-
mental design. While not every experimental paradigm will fit
neatly into our CMC framework, our explorative principles may
have direct application to closed-loop neurophysiology. Suppose,
for example, we are interested in how ongoing activity within
a population of neurons affects their receptive fields. To study
this, we would want to measure the neurons’ responses to dif-
ferent stimuli and determine how those responses are affected
by the activity of the neurons just prior to stimulus presenta-
tion. Specific sequences of priming stimuli may be necessary to
drive the neurons into a particular activation state of ongoing
activity in which their responses to a probe stimulus could be
measured. It may be difficult for a researcher to determine before
hand which sequences of stimuli are interesting, but PIG(VI)
might offer an automated way of choosing appropriate stim-
uli on the fly. The ongoing activity of a population of neurons
can be treated as the states of the system, and the choice of
stimuli as the actions. A closed-loop electrophysiology system
controlled by PIG(VI) could investigate not only how the neurons
responded to presented stimuli but also how to use the stimuli to
prime the neurons into interesting states of ongoing activity for
probing.
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APPENDIX A
A1 PROOF OF THEOREM 1
Claim. Consider a CMC random variable Θ modeling the ground
truth environment � and drawn from a prior distribution f .
Given a history of observations �d, the expected missing information
between Θ and an agent’s internal model � is minimized by the
Bayesian estimate � = �̂. That is:

�̂ := E
Θ|�d[Θ] = arg min

�

E
Θ|�d [IM(Θ‖�)]

Proof. Minimizing missing information is equivalent to indepen-
dently minimizing the KL-divergence of each transition kernel.

arg min
�as·

EΘ|�d [DKL (Θas·‖�as·)]

= arg min
�as·

EΘ|�d

[∑
s′

Θass′ log2

(
Θass′

�ass′

)]

= arg min
�as·

E
Θ|�d

[∑
s′

Θass′ log2 Θass′ −Θass′ log2 �ass′

]

= arg min
�as·

− EΘ|�d

[∑
s′

Θass′ log2 �ass′

]

= arg min
�as·

−
∑

s′
EΘ|�d [Θass′] log2 �ass′

= arg min
�as·

H
[

EΘ|�d [Θas·] ;�as·
]

Here H denotes cross-entropy (Cover and Thomas, 1991). Finally,
by Gibb’s inequality (Cover and Thomas, 1991):

arg min
�as·

H
[

E
Θ|�d [Θas·] ;�as·

]
= E

Θ|�d [Θas·] = �̂as·

A2 GENERATIVE DISTRIBUTIONS AND BAYESIAN ESTIMATES FOR
THE 3 CLASSES OF ENVIRONMENTS

(1) Dense Worlds correspond to complete directed probability
graphs with N = 10 states and M = 4 actions. An example
is depicted in Figure A1. Each transition distribution is
independently drawn from a Dirichlet distribution over the
standard (N − 1)-simplex:

f (Θas·) = Dir(α) = 1

Z(α)
·
∏

s′
Θass′

αs′−1

The normalizing constant Z brings the area under the
distribution to 1:

FIGURE A1 | Example Dense World. Dense Worlds consist of 4
actions (separately depicted) and 10 states (depicted as nodes of the
graphs). The transition probabilities associated with taking a particular
action are depicted as arrows pointing from the current state to each
of the possible resultant states. Arrow color depicts the likelihood of
each transition.

Z(α) :=
∫

ΔN− 1

∏
s′

Θass′
αs′−1dΘas· =

∏
s′ �(αs′)

�(
∑

s′ αs′)

where �(x) :=
∞∫

0

tx− 1e−t dt

The mean of a Dirichlet distribution takes on a simple form:

∫
ΔN − 1

Θas·
∏

s′ Θass′αs′−1

Z(α)
dΘas· = α∑

s′ α
′
s

We will assume a symmetric prior setting αs′ equal to α for
all s′. The vector form of the Dirichlet distribution will nev-
ertheless still be useful in deriving the Bayesian estimate. The
parameter α determines how much probability weight is cen-
tered at the midpoint of the simplex and is known as the
concentration factor. For Dense Worlds, we use a concentra-
tion parameter α = 1 which results in a uniform distribution
over the simplex.
To derive an analytic form for the Bayesian estimate of Dense
Worlds, we define the matrix F such that Fass′ is a count
of the number of times a, s→ s′ has occurred in the data.
Since each layer �̂as· of the CMC kernel is independently
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distributed, its posterior distribution can be computed as
follows:

f (Θ|F) =
∏

s′ Θ
Fass′
ass′ ·

∏
s′ Θass′α−1/Z(α)

p(F)

=
∏

s′ Θ
Fass′ + α−1
ass′

Z(α)p(F)
= Dir(F + α)

Thus, the posterior distribution is also Dirichlet and the
Bayesian estimate �̂ is simply the mean of the distribution:

�̂ass′ = Fass′ + α∑
s∗ Fass∗ + α

= Fass′ + 1∑
s∗ Fass∗ + 1

(13)

In this form, we find that the Bayesian estimate for Dense
Worlds is simply the relative frequencies of the observed data
with the addition of fictitious counts of size α to each bin.
The incorporation of this fictitious observation is referred
to as Laplace smoothing and is often performed to avoid
over-fitting (Manning et al., 2008). The derivation of Laplace
smoothing from Bayesian inference over a Dirichlet prior is a
well known result (MacKay and Peto, 1995).

(2) Mazes consist of N = 36 states corresponding to rooms in a
randomly generated 6 by 6 maze and M = 4 actions corre-
sponding to noisy translations, each biased toward one of the
four cardinal directions. An example is depicted in Figure 1.
Walking into a wall causes the agent to remain in its cur-
rent location. Thirty transporters are randomly distributed
amongst the walls which lead to a randomly chosen absorb-
ing state (concentric rings in Figure 1). States that are not one
step away from the originating state (either directly, through
a portal, or against a wall) are assumed to have zero prob-
ability of resulting from any action. Transition probabilities
for states that are one step away are drawn from a Dirichlet
distribution with concentration parameter α = 0.25, and the
highest probability is assigned to the state corresponding to
the preferred direction of the action. The small concentration
parameter distributes more probability weight in the corners
of the simplex resulting in less entropic transitions.
Letting Ns denote the number of states one-step away from
state s, the Bayesian estimate for maze transitions is given by:

�̂a, s, s′ = Fass′ + α

Ns · α+∑
s∗ Fass∗

(14)

As with Dense Worlds, the Bayesian estimate (Equation 14)
for mazes is a Laplace smoothed histogram.

(3) 1-2-3 Worlds consists of N = 20 states and M = 3 actions. In
a given state, action a = 1 moves the agent deterministically
to a single target state, a = 2 brings the agent with probability
0.5 to one of two possible target states, and a = 3 brings the
agent with probability 0.333 to one of three potential target
states. The target states are randomly and independently
selected for each transition distribution. An absorbing state

FIGURE A2 | Example 1-2-3 World. 1-2-3 Worlds consist of 3 actions
(separately depicted) and 20 states (depicted as nodes of the graphs).
The transition probabilities associated with taking a particular action are
depicted as arrows pointing from the current state to each of the possible
resultant states. Arrow color depicts the likelihood of each transition.
The absorbing state is depicted in gray.

is form by universally increasing the likelihood that state 1
is chosen as a target. Explicitly, letting �a be the set of all
admissible transition distributions for action a:

�a :=
{

Θ ∈ R

N |
∑

s′
Θs′ = 1 and Θs′ ∈

{
0,

1

a

}
∀s′

}

the transition distributions are drawn from the following
distribution:

p(Θas·) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Θas· /∈ �a

1− 0.75a(N − 1
a− 1

) else if Θas1 = 1
a

1− (1− 0.75a)(N − 1
a

) otherwise

(15)

Bayesian inference in 1-2-3 Worlds differs greatly from Mazes
and Dense Worlds because of its discrete prior. If a, s→ s′
has been previously observed, then the Bayesian estimate for
�̂ass′ is given by:

�̂ass′ = 1

a
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If a, s→ s′ has not been observed but a, s→ 1 has, then the
Bayesian estimate is given by:

�̂ass′ =
1− |S ∗|a

N − T

Here T is the number of target states that have already been
observed. Finally, if neither a, s→ s′ nor a, s→ 1 have been
observed, then the Bayesian estimate is:

�̂ass′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
a ·

1− 0.75a

1+
((a− 1

T

)− 1
)
· 0.75a

if s′ = 1

1−
(

T
a + �̂as1

)
N − T − 1

otherwise

A3 PROOF OF THEOREM 2
Claim. If an agent is in state s and has previously collected data �d,
then the expected information gain for taking action a is given by:

PIG(a, s) : = Es∗,Θ|�d[IG(a, s, s∗)]
=
∑

s∗
�̂ass∗DKL(�̂

a, s→s∗
as· ‖�̂as·) (16)

Proof.

Es∗,Θ|�d[IG(a, s, s∗)] = Es∗,Θ|�d

[∑
s′

Θass′ log2

(
�̂

a, s→s∗
ass′

�̂ass′

)]

= Es∗|�d

[∑
s′

EΘ|�d, s∗ [Θass′] log2

(
�̂

a, s→s∗
ass′

�̂ass′

)]

= Es∗|�d

[∑
s′

�̂
a, s→s∗
ass′ log2

(
�̂

a, s→s∗
ass′

�̂ass′

)]

= Es∗|�d
[

DKL(�̂
a, s→s∗
as· ‖�̂as·)

]
=
∑

s∗
p(s∗|a, s, �d)DKL(�̂

a, s→s∗
as· ‖�̂as·) by (5)

=
∑

s∗
�̂ass∗DKL(�̂

a, s→s∗
as· ‖�̂as·)

A4 DERIVATION OF MEAN PATH LENGTH
To optimize navigation to a target state s∗, we consider modified
transition probabilities:

pnavigation(s′|a, s) =
⎧⎨
⎩

�ass′ if s �= s∗
1 if s = s′ = s∗
0 otherwise

A navigational utility function is then defined as:

Unavigation(s) =
{−1 if s �= s∗

0 otherwise

An optimal policy π is derived through value-iteration as follows:

Q0(a, s) := Unavigation(s)

Qτ−1(a, s) := Unavigation(s)+
∑

s′ ∈S

pnavigation(s′|a, s) · Vτ (s′)

where Vτ (s) := max
a

Qτ (a, s)

Value-iteration is continued until V converges, and the optimal
policy is then defined as:

π(s) = arg max
a

Qconvergence(a, s)

The expected path length to target s∗ is then calculated as:

E[steps to s∗] =
∑

s

− 1

N
Vconvergence(s)

The mean path length is then taken to be the average of the
expected path length over the N possible target states.

A5 DERIVATION OF PEIG
Claim. Surprise, as employed by Storck et al. (1995), is equal to
the posterior expected information gain. That is, if an agent is in
state s and has previously collected data �d, then the expected infor-
mation gain for taking action a and observing resultant state s∗ is
given by:

Surprise(a, s, s′) : = DKL(�̂
�d∪s∗
as· ‖�̂�das·) = E

Θ|�d∪s∗ [IG(a, s, s∗)]
(17)

Proof.

E
Θ|�d∪s∗ [IG(a, s, s∗)] = E

Θ|�d∪s∗

[∑
s′

Θass′ log2

(
�̂
�d∪s∗
ass′

�̂
�d
ass′

)]

=
∑

s′
E

Θ|�d∪s∗ [Θass′] log2

(
�̂
�d∪s∗
ass′

�̂
�d
ass′

)

=
∑

s′
�̂
�d∪s∗
ass′ log2

(
�̂

a, s→s∗
ass′

�̂
�d
ass′

)

= DKL(�̂
�d∪s∗
as· ‖�̂�das·)
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A6 METHODS FOR ASSESSING PERFORMANCE IN GOAL-DIRECTED
TASKS

To assess the general utility of an agent’s internal model, the
agent is first allowed to explore for a fixed number of times steps.
After exploring, the agent is asked, for each goal-directed task,
to choose a fixed policy that optimizes performance under its
learned model:

Navigation: To optimize navigation to a target state s∗ under
internal model �̂, we took an approach analogous to our
method for calculating the mean path length of a world
(see Appendix A4). We first consider modified transition
probabilities:

pnavigation(s′|a, s; �̂) =
⎧⎨
⎩

�̂ass′ if s �= s∗
1 if s = s′ = s∗
0 otherwise

A navigational utility function is then defined as:

Unavigation(s) =
{−1 if s �= s∗

0 otherwise

An optimal policy π�̂ is derived through value-iteration as
follows:

Q0(a, s) := Unavigation(s)

Qτ−1(a, s) := Unavigation(s)+
∑

s′ ∈S

pnavigation(s′|a, s; �̂) · Vτ (s′)

where Vτ (s) := max
a

Qτ (a, s)

This process is iterated a number a times, τconvergence > 1000,
sufficient to allow Q to converge to within a small fixed margin.
An optimal policy is then defined as:

π�̂(s) = arg max
a

Q−τconvergence(a, s)

The realized performance of π�̂ is assessed as the expected num-
ber of time steps, capped at 20, it would take an agent employing
π�̂ to reach the target state. A true optimal policy is calcu-
lated as above except using � instead of �̂. For each world and
each exploration strategy, navigation is assessed after t ∈ {25,
50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700,
800, 900, 1000, 1500, 2000, 2500, and 3000} exploration time
steps and compared to the true optimal strategy. Performance
difference from true optimal is calculated is averaged over the
tested exploration lengths, all starting states, and all target
states. The different explorative strategies are then ranked in
performance.
Reward Acquisition: Policies in reward acquisition tasks
are derived as above for navigational tasks except as
follows:

preward(s′|a, s; �̂) = �̂ass′

Ureward(s) ∼ Uniform([−1, 1])
π�̂(s) = arg max

a
Q−100(a, s)

Realized performance is assessed as the expected total rewards
accumulated by an agent employing π�̂ over 100 time
steps.
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Living creatures, like walking animals, have found fascinating solutions for the problem of
locomotion control. Their movements show the impression of elegance including versatile,
energy-efficient, and adaptable locomotion. During the last few decades, roboticists have
tried to imitate such natural properties with artificial legged locomotion systems by
using different approaches including machine learning algorithms, classical engineering
control techniques, and biologically-inspired control mechanisms. However, their levels
of performance are still far from the natural ones. By contrast, animal locomotion
mechanisms seem to largely depend not only on central mechanisms (central pattern
generators, CPGs) and sensory feedback (afferent-based control) but also on internal
forward models (efference copies). They are used to a different degree in different
animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory
feedback while internal models are used for sensory prediction and state estimations.
According to this concept, we present here adaptive neural locomotion control consisting
of a CPG mechanism with neuromodulation and local leg control mechanisms based
on sensory feedback and adaptive neural forward models with efference copies. This
neural closed-loop controller enables a walking machine to perform a multitude of different
walking patterns including insect-like leg movements and gaits as well as energy-efficient
locomotion. In addition, the forward models allow the machine to autonomously adapt
its locomotion to deal with a change of terrain, losing of ground contact during stance
phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to
promote cockroach-like climbing behavior. Thus, the results presented here show that
the employed embodied neural closed-loop system can be a powerful way for developing
robust and adaptable machines.

Keywords: efference copy, central pattern generators, sensory feedback, recurrent neural networks, local leg

control, walking gait, autonomous robots

1. INTRODUCTION
Walking animals, like locusts, stick insects, and cockroaches,
can traverse diverse terrains in an energy-efficient way. During
traversing, their locomotion can also adapt to deal with terrain
changes. Furthermore, their movements are elegant and versatile.
These capabilities are the result of the coupling of biomechan-
ics (Dickinson et al., 2000) and neural control. For instance, the
appropriate biomechanical structures of body and legs of a cock-
roach (Ritzmann et al., 2004) allows it to walk naturally, deal with
minor disturbances during traversing rough terrain, and even
climb over relatively high obstacles as compared to its size. While
biomechanics allows for such capabilities, neural control, on the
other hand, combines information from different sensor modal-
ities and provides coordinated outputs to many motor joints
(Büschges, 2005; Grillner, 2006; Cruse et al., 2009; Mulloney
and Smarandache, 2010; Fuchs et al., 2011). This process is fast
and adaptive which leads to the generation of locomotion and
adaptation.

During the last few decades, roboticists have tried to imitate
such natural properties with artificial legged locomotion systems.
Several of them have paid attention on the biomechanical design
of such systems to have animal-like properties (Cham et al., 2002;
Iida and Pfeifer, 2004; Lewinger et al., 2005; Kingsley et al., 2006;
Schneider et al., 2012). Others have focused on sensorimotor
coordination and control for locomotion and adaptation by using
different approaches including machine learning algorithms (Lee
et al., 2006; Erden and Leblebicioglu, 2008), classical engineering
control techniques (Brooks, 1986; Shkolnik and Tedrake, 2007),
and biologically inspired control mechanisms (Beer et al., 1997;
Kuo, 2002; Lewis and Bekey, 2002; Dürr et al., 2003; Ekeberg et al.,
2004; Cruse et al., 2007; Kimura et al., 2007; Spenneberg and
Kirchner, 2007; Amrollah and Henaff, 2010; Daun-Gruhn and
Büschges, 2011; Harischandra et al., 2011; Lewinger and Quinn,
2011; von Twickel et al., 2012). With increasing machine com-
plexity, integrating more behaviors, and obtaining adaptability,
the control problems become more challenging.
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Artificial neural networks (ANNs) appear appropriate for such
control problems due to their intrinsically distributed archi-
tecture, their capability to integrate new behaviors, as well as
synaptic learning (Beer et al., 1997; Dürr et al., 2003; Ekeberg
et al., 2004; Cruse et al., 2007; Kimura et al., 2007; Amrollah
and Henaff, 2010; Daun-Gruhn and Büschges, 2011; Lewinger
and Quinn, 2011; Harischandra et al., 2011; von Twickel et al.,
2012). In addition they have a number of excellent properties
as follows. They are able to build a controller as a composition
of different neural modules to produce desired motor behav-
iors (von Twickel et al., 2012). And, they are conceptually close
to biological systems compared to other solutions. In particular
recurrent neural networks (RNNs) exhibit dynamical behavior
(oscillatory, hysteresis, chaotic patterns, etc.) for generating basic
rhythmic locomotion behavior (Beer et al., 1997; Kimura et al.,
2007; Amrollah and Henaff, 2010; Daun-Gruhn and Büschges,
2011; von Twickel et al., 2012). Considering this, here we exploit
the features of ANNs to develop locomotion control for walking
machines. This is based on a modular structure consisting of dif-
ferent neural modules having main functions that follow three key
mechanisms found in animal locomotion (Holst and Mittelstaedt,
1950; Meyrand et al., 1991; Cruse et al., 1998; Katz, 1998; Bläsing
and Cruse, 2004; Cruse et al., 2009; Harris-Warrick, 2011): (1)
central mechanisms [i.e., central pattern generators (CPGs)] for
generating basic rhythmic motions, (2) sensory feedback (i.e.,
afferent-based control) for shaping the motions, and (3) internal
forward models (i.e., efferent-based control) for sensory pre-
diction and walking state estimations. While these three key
mechanisms are essential for locomotion control as found in bio-
logical legged systems, only individual instances of them had been
successfully applied to artificial ones (Beer et al., 1997; Ishiguro
et al., 2003; Cruse et al., 2007; Kimura et al., 2007; Spenneberg and
Kirchner, 2007; Amrollah and Henaff, 2010; Schroeder-Schetelig
et al., 2010; Harischandra et al., 2011; Lewinger and Quinn, 2011;
Owaki et al., 2012; von Twickel et al., 2012), thereby providing
partial solutions. A few studies have applied all these mechanisms
to animal-like legged robots to achieve complex behavior and
adaptability (Lewis and Bekey, 2002). However, the mechanisms
have been often used for active two-legged walking (Lewis and
Simo, 2001).

Taking all these mechanisms into account for the design of
our adaptive neural locomotion control leads to robust walk-
ing behavior in many situations. Furthermore, the controller
can generate a multitude of walking patterns (e.g., 20 patterns),
insect-like leg movements, and energy-efficient and adaptable
locomotion for a biomechanical six-legged walking machine, like
the AMOS II1 robot used here. It also allows AMOS II to cope with
leg damage and even promote cockroach-like climbing behavior.
Besides the complex behavior generation, the rationales behind
this study are also: (1) to give a better understanding of how a
CPG mechanism with neuromodulation, sensory feedback, and
adaptive internal forward models with efference copies can be
combined in artificial legged locomotion systems and (2) to
emphasize that the generated behaviors require the coupling of
biomechanics (i.e., physical structure) and neural mechanisms

1Advanced MObility Sensor-driven walking device II.

with sensory feedback embedded in an embodied neural-closed
loop system. The work presented here extends our previous works
(Manoonpong et al., 2007, 2008b; Steingrube et al., 2010) by
modifying a chaotic CPG (Steingrube et al., 2010) into a CPG
with neuromodulaiton leading to more gaits and smoother and
faster switching between them compared with the chaotic CPG.
It also introduces for the first time local leg feedback and adap-
tive forward models as well as their combination with the CPG in
robust walking behaviors.

The following section describes the technical specification of
the six-legged walking machine AMOS II used for the exper-
iments, followed by adaptive neural locomotion control. The
controller is developed to generate versatile and adaptable loco-
motion of walking machines. The experimental results are shown
in section 3. Discussion is given in section 4.

2. MATERIALS AND METHODS
All the experiments of this work were carried out with the phys-
ical six-legged walking machine AMOS II. Thus, the first section
describes its biomechanical setup, followed by details of the adap-
tive neural locomotion controller and its components which
are the main contribution of this work. Here, some results are
described alongside the introduced components from which they
mainly derive because this provides a better understanding of
their functionalities.

2.1. THE WALKING MACHINE PLATFORM AMOS II (BIOMECHANICS)
In order to explore and test the performance of the proposed
adaptive neural locomotion control in a physical system, the six-
legged walking machine AMOS II is employed (Figure 1A). It is
an improved version of our previous six-legged walking machine
AMOS (Steingrube et al., 2010).

AMOS II has six identical legs. Each leg has three joints
(Figure 1B): the thoraco-coxal (TC-) joint enables forward (+)
and backward (−) movements, the coxa-trochanteral (CTr-) joint
enables elevation (+) and depression (−) of the leg, and the
femur-tibia (FTi-) joint enables extension (+) and flexion (−) of
the tibia (Figures 1C,D). The morphology of these multi-jointed
legs is modeled on the basis of a cockroach leg (Zill et al., 2004)
but the tarsus segments are ignored. Each tibia contains a spring
compliant element to substitute part of the function of the tar-
sus; i.e., absorbing the impact force during touchdown on the
ground. In addition, a passive coupling is installed at each joint
(Figure 1B) in order to yield passive compliance and to protect
the motor shaft. The maximum and minimum ranges of the joint
movements of the legs are shown in Figures 1C,D. In a normal
walking condition (e.g., walking on flat terrain), we set the default
joint movements so that its body is very close to the ground (i.e.,
low center of mass) and its body falls to the ground before taking
the next step during normal walking. However, for walking over
rough terrains, these ranges will be automatically shifted such
that AMOS II lifts its body up for better locomotion. This walk-
ing strategy is inspired by insect walking, like that of a cockroach
(Alexander, 1982; Ritzmann et al., 2004, 2012) and it also ensures
stability when confronting leg damage.

The body of AMOS II consists of two segments: a front seg-
ment where two front legs are installed and a central body
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FIGURE 1 | The biologically-inspired six-legged walking machine

AMOS II. (A) AMOS II with its sensors. (B) Examples of components at the
left front leg (L1). (C) The location of all motor joints on AMOS II and the
maximum and minimum angles of the TC-joints of the right front (R1), left
middle (L2), and right hind (R3) legs (top view). The remaining legs on the
opposite side have the same ranges; i.e., the range of L1 = R1, the range of

R2 = L2, and the range of L3 = R3. (D) The maximum and minimum angles of
the CTr- and FTi-joints of L1 (front view). The remaining legs perform the same
joint angle ranges. Abbreviations are: TR1, CR1, FR1 = TC-, CTr-, and FTi-joints
of the right front leg (R1); TR2, CR2, FR2 = right middle leg (R2); TR3, CR3,
FR3 = right hind leg (R3); TL1, CL1, FL1 = left front leg (L1); TL2, CL2, FL2 =
left middle leg (L2); TL3, CL3, FL3 = left hind leg (L3); BJ = a backbone joint.

segment where the two middle and the two hind legs are attached.
They are connected by one active backbone joint (BJ) inspired by
the invertebrate morphology of the American cockroach’s trunk
(Figure A1). This BJ can rotate around the lateral or transverse
axis in a range between −45◦ (minimum downward position)
and +45◦ (maximum upward position). It stays at zero degree
during walking and it leans upwards and bends downwards while
climbing. In total, AMOS II has 19 active joints (three at each leg,
one BJ). They are driven by digital servomotors (HSR-5990 TG)
delivering a stall torque of 2.9 Nm at 5 V. In addition, the body
joint torque is tripled by using a gear to achieve a more powerful
body joint motion. Besides the motors, AMOS II has 21 sensors:
two ultrasonic sensors (US) at the front body part, six foot contact
(FC) sensors in its legs, six infrared reflex (IR) sensors at the front

of its legs, one current sensor (CS) and one inclinometer (IM)
sensor inside the body, and three light dependent (LD) sensors,
one USB camera (CM) and one laser scanner (LS) on the front
body part (Figure 1). These sensors are used to generate stimulus
induced behavior (like, photo tropism and obstacle avoidance) as
well as versatile, energy-efficient, and adaptable locomotion. The
USB camera is used for terrain classification and the LS is used
to measure obstacle height in order to distinguish between a wall
and a surmountable obstacle.

We use a Multi-Servo IO Board (MBoard) installed inside the
body to digitize all sensory input signals except the CM and LS
signals. We also use it to generate a pulse-width-modulated signal
to control the position of the servomotor. For experiments here,
the MBoard is connected to a personal computer (PC) where the
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CM and LS are directly connected and a neural locomotion con-
troller is implemented. The communication between a PC and
the MBoard is accomplished via an RS232 interface at 57.6 kb/s.
Electrical power supply for all servomotors, the MBoard, and
all sensors is given by lithium polymer batteries with a voltage
regulator producing a stable 5 V supply.

2.2. ADAPTIVE NEURAL LOCOMOTION CONTROL
The adaptive neural locomotion control (Figure 2) has been
developed based on a modular structure. It consists of two
main components: CPG-based control and local leg control.
The CPG-based control basically coordinates all leg joints of
AMOS II, thereby generating insect-like leg movements and a
multitude of different behavioral patterns. The patterns include
forward/backward walking, turning left and right, and insect-like
gaits. These gaits allow for energy-efficient locomotion on differ-
ent terrains. All these patterns can be autonomously controlled
by exteroceptive sensors, like a camera, a LS, and US. While the
CPG-based control provides versatile autonomous behaviors, the
local leg control using proprioceptive sensory feedback (like FC
sensors) adapts the movement of an individual leg of AMOS II

to deal with a change of terrain, losing of ground contact during
stance phase, or stepping on or hitting an obstacle during swing
phase.

Here, the CPG-based control of the entire system has four
components: (1) a CPG mechanism with neuromodulation for
generating different periodic signals, (2) neural CPG postpro-
cessing for shaping the CPG signals to obtain smooth leg move-
ments, (3) neural motor control consisting of two additional
different networks [phase switching network (PSN) and veloc-
ity regulating networks (VRNs)] for controlling walking direction
(forward/backward and turning), and (4) motor neurons with
delay lines for sending final motor commands to all leg joints of
AMOS II.

For the local leg control, it has only two components for
each leg: (1) an adaptive neural forward model transforming
the motor signal (efference copy) generated by the CPG into an
expected sensory signal for estimating the walking state and (2)
elevation and searching control for adapting leg motion (e.g.,
extension/flexion and elevation/depression).

All neurons of the control network (Figures 2, A2) are mod-
eled as discrete-time non-spiking neurons. They are updated

FIGURE 2 | Adaptive neural locomotion control. The controller generates
insect-like, energy-efficient, and adaptable locomotion of AMOS II. This
adaptive neural closed-loop controller consists of one CPG-based control unit

and six local leg control units (R1-, R2-, R3-, L1-, L2-, and L3-control) (see text
for functional description and Figure A2 for the complete circuit).
Abbreviations are referred to Figure 1.
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with a frequency of approximately 27 Hz. The activity ai of each
neuron develops according to:

ai(t) =
n∑

j= 1

Wijoj(t − 1)+ Bi, i = 1, . . . , n, (1)

where n denotes the number of units, Bi an internal bias term or
a stationary input to neuron i, Wij the synaptic strength of the
connection from neuron j to neuron i. The output oi of all neu-
rons of the network is calculated by using the hyperbolic tangent
(tanh) transfer function, i.e., oi = tanh(ai),∈ [−1, 1], except for
the CPG postprocessing neurons using a step function, the motor
neurons using piecewise linear transfer functions, and neurons in
searching and elevation control using a linear transfer function.

2.3. CPG-BASED CONTROL
The structure of this control unit is based on our previous sensor-
driven CPG-based controller (Steingrube et al., 2010) in which
a chaotic CPG is used as a main component. While the chaotic
CPG can produce different periodic output signals including a

chaotic one, only a few number of gaits (e.g., five different gaits)
and a chaotic motion have been realized for hexapod locomotion
(Steingrube et al., 2010). Furthermore, switching between these
gaits cannot be immediately achieved but requires a few steps
and the transition is non-smooth. This is because the system has
to switch to a chaotic state first before obtaining a new periodic
pattern.

Thus to overcome this drawback, in this study we modify the
chaotic CPG to a simpler CPG mechanism with neuromodula-
tion. It is inspired by biological findings (Meyrand et al., 1991;
Katz, 1998; Harris-Warrick, 2011) (see the section 4 for more
details). It provides a large number of periodic output patterns
including a chaotic one, resulting in a large number of walking
patterns (i.e., more than five stable gaits). It also allows fast and
smooth switching between patterns. The circuit consists of two
neurons i ∈ {1, 2}, fully connected (Figure 3A). The discrete-time
dynamics of the activity states ai and the output states oi of the
circuit follows Equation (1) and a tanh transfer function, respec-
tively. Their initial states are set to a small positive value, e.g., 0.1.
An extrinsic modulatory input MI is introduced and projected
to the synaptic connections of the neurons (Figure 3A), thereby

FIGURE 3 | CPG mechanism with neuromodulation. (A) Wiring
diagram of the CPG circuit. The extrinsic modulatory input MI alters
the synaptic weights of the CPG, thereby modulating the CPG outputs.
The synaptic weights are set as W11,22 = 1.4, W12m = 0.18+MI,
W21m = −0.18 −MI. (B) The resulting eigenfrequency of the outputs of
the CPG (black solid line, left scale) and the walking speed of AMOS II
(blue dashed line, right scale) with respect to MI. Here MI is increased
by 0.01. If MI is smaller than 0.0 the network dynamics exhibits only
fixed point attractors; i.e., oscillations are switched off. Recall that the

CPG network is updated with a frequency of approximately 27 Hz (i.e.,
one time step is ≈0.037 s). (C) Examples of the asymmetrical periodic
outputs of the CPG (top) where MI is set to 0.02, 0.08, and 0.16. The
signals differ in phase by π/2 and are shaped by neural CPG
postprocessing such that smooth ascending and descending signals are
obtained for motor control (bottom). This kind of asymmetrical periodic
signals is appropriate for walking found in insects where swing
(ascending slope) and stance (descending slope) phases differ in
duration, being intrinsically asymmetry (Wilson, 1966).
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modulating the outputs of the CPG (Figures 3B,C). MI will be
controlled by a sensory signal (see the section 3). According to
this, the synaptic weights are described as:

W11,22 = Wd0, (2)

W12m = Wd1 +MI, (3)

W21m = −(Wd1 +MI), (4)

where W11,22 are fixed synapses and W12m,21m are modulated
synapses. Wd0 and Wd1 are the default synaptic weights, which
are used to create basic periodic signals. They need to be
selected in accordance with the dynamics of the system that
generates periodic or quasi-periodic attractors (Pasemann et al.,
2003).

We empirically adjust and set the parameters to Wd0 = 1.4 and
Wd1 = 0.18. This parameter setup with MI = 0.0 results in a very
low frequency of the periodic outputs. Increasing MI will increase
the frequency of the outputs (see black solid line in Figure 3B).
The investigation of AMOS II walking on a flat floor using this
CPG shows that its walking speed is proportional to the value of
MI; i.e., increasing MI leads to the increasing of walking speed
(see blue dashed line in Figure 3B). However, the walking speed
will decrease if MI is grater than 0.19. This is because the output
frequency is too high such that the motors of AMOS II cannot

follow the driving frequency properly 2. Interestingly, together
with neural motor control and a delay line mechanism embed-
ded in the motor neuron module (described below), AMOS II
shows different walking patterns at the different values of MI
(e.g., 20 patterns) where some of these patterns show similar gaits
but differ in stepping frequency in the swing and stance phases.
Figure 4 shows examples of six different patterns or gaits: slow
wave gait (MI = 0.02), fast wave gait (MI = 0.04), tetrapod gait
(MI = 0.06), caterpillar gait (MI = 0.09), intermixed gait (MI =
0.12), and fast tripod gait (MI = 0.19). Some of them are sim-
ilar to insect gaits (Wilson, 1966) and allow for energy-efficient
locomotion on particular terrains (see the section 3). Here we
use visual information to trigger the most energy-efficient gait
while AMOS II traverses different terrains. Visual information
is obtained from a terrain classification system consisting of the
USB camera of AMOS II (Figure 1A) and an online feature-
based terrain classification algorithm. The camera acquires ter-
rain images while the classification algorithm (i.e., image pro-
cessing) extracts local features of the images using Scale Invariant
Feature Transform (SIFT) (Lowe, 2004), encodes the features

2Note that this limitation is not because of the CPG but due to the hardware.
Applying the CPG to different robots (e.g., light weight robots with fast actua-
tor speed), one might be able to obtain more than 20 different walking speeds
on flat terrain.

FIGURE 4 | Examples of six different gaits generated by the CPG.

They are observed from the motor signals of the CTr-joints (Figure 1).
White areas indicate ground contact or stance phase and gray areas
refer to no ground contact during swing phase. As frequency

increases, some legs step in pairs (dashed enclosures). We encourage
readers to see also Figure 3 and Video S2 for, e.g., 20 walking
patterns with respect to MI = 0.0, 0.01, . . . , 0.19. Note that one time
step is ≈0.037 s.
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using the Bag of Words (BoW) technique (Zhang et al., 2010), and
then classifies the words using Support Vector Machines (SVMs)
with a radial basis function kernel (Cortes and Vapnik, 1995). The
output of the algorithm provides terrain information used to set
MI of the CPG, thereby triggering the corresponding pre-mapped
energy-efficient gait (see the section 3).

Fast and smooth switching between gaits in a comparison to
our previous chaotic CPG can be seen at Video S1. In princi-
ple, for the AMOS II system, a transition state from one stable
gait to another stable gait using the CPG with neuromodula-
tion requires about 2 s while it needs about 5 s when using the
chaotic CPG. This fast switching between gaits is required for
situations like escaping from an attack or danger (i.e., fast chang-
ing from a slow wave gait to a fast tripod gait). Note that the
change of the modulation value occurs instantaneously where
the CPG with neuromodulation immediately switches from one
frequency to a new frequency. However, the system requires a
longer time for a new gait to emerge because of delay lines
(described below) transmitting the CPG signals to the motor
neurons.

The outputs of the CPG are passed to motor neurons through
two hierarchical subcomponents or modules: neural CPG post-
processing and neural motor control. The neural CPG post-
processing (Figure 2), which directly receives the CPG outputs,
consists of postprocessing neurons with a threshold value of 0.85
and integrator units (Figure A2). Specifically, the neurons are
for signal shaping while the integrator units are for obtaining
continuous signals with asymmetry of ascending and descend-
ing slopes (Figure 3C). At first the CPG outputs get transformed
by the neurons which produce the step function outputs with
high (+1) or low (−1) value. Time intervals of the high and low
outputs are counted. The high and low outputs are converted to
continuous signals with ascending and descending slopes, respec-
tively. The conversion is done by dividing the integrated high
and low outputs by the time intervals part. Since the counting
of the time intervals is subsequent, each slope is calculated using
the time intervals of the previous period. Finally, the integra-
tor outputs are scaled to the range between −1.0 and 1.0. For
different frequencies of the CPG, the time intervals are differ-
ent, thereby generating different ascending and descending slopes
(Figure 3C).

Note that the CPG with the neural CPG postprocessing pre-
sented here has certain advantages over a classical solution (e.g.,
constructing CPG signals directly by hand or using a simple wave-
generator). This is because the CPG, derived from a RNN with
two neurons, in principle exhibits various dynamical behaviors
(e.g., periodic patterns, chaotic patterns, and hysteresis effects)
which can be exploited for locomotion control (Manoonpong
et al., 2008a; Steingrube et al., 2010). While the network can
generate various output patterns, the neural CPG postprocessing
is used to only translate these output signals into smooth con-
tinuous signals (e.g., saw-tooth signals) for motor control and
does not change the network dynamics. In fact, the CPG and its
postprocessing are independent; therefore, one could also apply
different postprocessing mechanisms to shape or transform the
CPG outputs into other periodic forms if required. In this neural
approach, we can simply change the gaits (flexibility) and obtain

various patterns including chaotic motions3 (versatility) by only
changing the network parameters (i.e., synaptic weights and bias
terms). Furthermore, one could also apply learning mechanisms
(with an additional neuron) to the CPG such that the CPG can
be entrained by sensory feedback in order to adapt to the feed-
back pattern and memorize it (Nachstedt et al., 2012). This will
lead to the adaptivity of the gaits. Implementing this adaptivity
on the AMOS II system is one of our major plans for future work.
All these features (flexibility, versatility, and adaptivity) would be
difficult to be achieved by a classical solution.

The neural motor control, which receives the postprocessed
CPG outputs, consists of two different neural networks: one PSN
and two VRNs. All neuron outputs of these networks are given
by a hyperbolic tangent (tanh) transfer function. The PSN is
a generic feedforward network (see Figure A2 for the network
structure). This network is designed by hand and consists of 4
hierarchical layers with 12 neurons. The synaptic weights and bias
terms of the network are determined in a way that they do not
change the periodic form of input signals (i.e., the postprocessed
CPG outputs) and keep the amplitude of the signals as high as
possible. Thus, all synaptic weights and bias terms were set to 0.5,
which will convert the signals in the linear domain of the trans-
fer function, except the synaptic weights and bias terms of the
output neurons. They were set to 3.0 and −1.35, respectively, in
order to amplify the signals and to shift the offset of the final out-
put signals such that they have their center at zero. The complete
network and parameters (i.e., all synaptic weights and bias terms)
are shown in Figure A2. As a result, the network can switch the
phase of the CPG outputs to lead or lag behind each other by π/2
in phase with respect to a given input for walking sideways [see
Steingrube et al. (2010) and Manoonpong et al. (2008b) for more
details]. It also provides additional fine tuning of the phase of the
CPG outputs to achieve a proper phase shift between the CTr- and
FTi-joints leading to insect-like leg movements (Figure 5).

The two VRNs are also simple feed-forward networks (see
Figure A2 for the network structure). The network is derived
from a multiplication of two values in the range x, y ∈ [−1, 1].
It was constructed by four hidden neurons, which are connected
with an output neuron. The network was trained by using the
backpropagation algorithm (Rumelhart et al., 1986). The result-
ing network parameters (synaptic weights and bias terms) are
shown in Figure A2. It approximately works as a multiplication
operator. Each VRN controls the three ipsilateral TC-joints on
one side. Since the VRNs function qualitatively like a multipli-
cation function (Manoonpong et al., 2007), they have capability
to increase or decrease the amplitude of the TC-joint signals and
even reverse them with respect to their control inputs. Controlling
the TC-joint signals in this way results in various walking direc-
tions, like forward/backward, turning left/right, turning in differ-
ent radians, or curve walking in forward and backward directions
[see Manoonpong et al. (2008b) for walking experiments].

3This CPG will show chaotic dynamics if its synaptic weights are set to W11 =
−5.5, W22 = 0.0, W12m = 1.475, W21m = −1.65 with additional bias terms
(B1 = −5.725, B2 = 0.25) projecting to the neurons C1 and C2, respectively.
The chaotic patterns prove behaviorally useful for self-untrapping from a hole
in the ground (Steingrube et al., 2010).
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FIGURE 5 | Angles of the TC-, CTr-, and FTi-joints of all legs during

forward and backward walking. For turning right, all left legs show similar
pattern as forward walking while all right legs show similar patterns as
backward walking, and vice versa for turning left. All joint angles are in
degrees (Figures 1C,D). Gray and white areas indicate the swing and stance
phases, respectively. Here MI of the CPG is set to 0.02, thereby generating
low frequency periodic signals (Figure 3C) and resulting in a slow wave gait

(Figure 4). For this gait, the legs swing one by one from hind to front. Note
that due to the non-linear neurons of the PSN and VRNs, they further shape
the postprocessed CPG signals (Figure 3C) such that the legs decelerate at
the beginning of stance phase to avoid large impact force and afterwards
they slightly accelerate to produce the propelling force (see, e.g., the TC joint
movements). Abbreviations are referred to Figure 1. One time step is
≈0.037 s.

Using exteroceptive sensors, like US (Figure 1), together with
a neural sensory preprocessing network (see the network N2,3

in Figure A2) where the network processes the US and provides
a final resulting turning signal to the VRNs, allows AMOS II
to autonomously avoid obstacles and to escape from a corner
and even a deadlock situation (Video S3). Currently the network
(Figure A2) has fixed synaptic weights resulting in a hard-wired
anticipatory behavior with a fixed turning angle in front of
the obstacles for avoiding them. Instead one could also apply a
learning mechanism [e.g., Hebbian learning and synaptic scal-
ing (Tetzlaff et al., 2011)] to adapt the synaptic weights of the
network. This would enable AMOS II to learn to anticipate an
obstacle and perform different turning behaviors depending on
environmental complexity.

Note that the PSN and VRNs have been developed using a
neural approach since this allows for adaptation and the use of
standard (neural) learning (e.g., backpropagation) to modify the
networks’ properties and it is also close to biological systems. For
example, there is strong evidence for a phase shifting property
found in inter-segmental neurons in the connective elements of a
cockroach (Pearson and Iles, 1973). Phase relationships between
these neurons can change as would be required for emulating
the functionality of our PSN. Studies by Akay et al. (2007) show
that in stick insect locomotion motorneuron pools are able to
not only drive protractor (swing) and retractor (stance) muscle
activities but also reverse their activities leading to the change of
locomotion directions (e.g., from walking forward to backward
and vice versa). The functionality of these motorneuron pools
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is directly reproduced by our VRN which controls and reverses
motor signals. In addition, another specific functionality of the
VRN, namely that of regulating the magnitude of the motor sig-
nals allowing for different moving speeds, has been already found
in another study (Gabriel and Büschges, 2007). This study sug-
gests that in stick insects there are neurons that receive synaptic
input, which modifies their activity according to the walking
speed of the animal. This input seems specific to only these neu-
rons and it arises via local pre-motor inter-neurons, which could,
thus, represent the VRN interneurons as suggested by our net-
work. In addition to this, the PSN and VRNs are generic and
transferable. As suggested by their names, the PSN and VRN serve
a general purpose (e.g., “phase switching”) largely regardless of
the robot’s specific embodiment. Due to modularity, the PSN and
VRN are typically independent of each other in their functioning
and do not influence or become influenced by other components.
Thus, they can be combined to form controllers of different types
of robots (Manoonpong et al., 2007, 2008b; Steingrube et al.,
2010; Chadil et al., 2011) where they do not require fine tuning
for the specific system in which they are employed.

Finally, the outputs of the PSN and VRNs are sent to the motor
neurons through delay lines (Figure A2). The ipsilateral lag is
determined by a delay τ (i.e., 16 time steps or ≈0.6 s) and the
phase shift between both left and right sides is given by a delay τL

(i.e., 48 time steps or ≈2 s). These delays are independent of the
CPG signals. This setup leads to biologically motivated leg coor-
dination since the legs on each side perform phase shifted waves
of the same frequency (Wilson, 1966). The frequency of the waves
is defined by MI of the CPG. The connections to the motor neu-
rons are similar to our previous work (Steingrube et al., 2010)
except the ones to the FTi-motor neurons. They are modified
here (Figure A2) to be more similar to insect-like leg movements
(Ekeberg et al., 2004; Cruse et al., 2009). Figure 5 illustrates all
leg movements during forward and backward walking. During
forward walking, in the swing phase the FTi-joints of the front
and middle legs extend while the ones of the hind legs flex. In
the stance phase, the FTi-joints of the front legs gradually flex to
pull the body forward while the ones of the hind legs gradually
extend to also push it forward. For the middle legs, the FTi-joints
combine both actions of the FTi-joints of the front and hind legs.
They flex rapidly and early during the stance phase in order to
pull the body since in this period the legs are at an anterior posi-
tion [i.e., positive TC-joint angles (Figure 1C)]. Afterwards, they
stay flexed and then gradually extend in order to push the body
since in this period the legs are at a posterior position [i.e., neg-
ative TC-joint angles (Figure 1C)]. These biologically-inspired
leg movements (Ekeberg et al., 2004; Cruse et al., 2009) provide
more propelling force, resulting in an increased walking speed
of AMOS II by ≈15% compared with the fixed FTi-joint ver-
sion (Steingrube et al., 2010). These movements are reversed for
backward walking. We encourage readers to also see the video
showing the leg movements of AMOS II at Video S4. Since the
generated leg movements are independent of other influences,
similar movements exist in all gaits. It is important to note that
the leg movements shown here, however, are still not completely
similar to insect leg movements. This can be further improved
by applying additional components, i.e., muscle models (Xiong

et al., 2012), to obtain a smoother foot path and to come closer to
insect-like leg movements.

2.4. LOCAL LEG CONTROL
While the CPG-based control in principle can generate a multi-
tude of different behavioral patterns and insect-like locomotion
(i.e., leg movements and gaits) without sensory feedback, it can-
not adapt an individual leg to deal with a change of terrain, losing
of ground contact during stance phase, or stepping on or hit-
ting an obstacle during swing phase. This adaptable locomotion is
necessary for traversing rough terrain or climbing over obstacles.
To address this issue, we introduce here local leg control consist-
ing of two components: (1) an adaptive neural forward model and
(2) elevation and searching control. These two components are
applied to each leg of AMOS II (see Figures 2, A2).

The adaptive neural forward model serves to estimate the
walking state. To do so, it transforms a motor signal (i.e., here the
CTr-motor signal4, efference copy) into an expected sensory sig-
nal to be able to compare it to the actual incoming one (i.e., here
the FC signal of the leg). The forward model consists of only two
neurons (Figure 6A). The neuron F transforms the motor signal
while the neuron P performs postprocessing. We construct the
neuron F as a hysteresis element (Pasemann, 1993) using a sin-
gle recurrent neuron with synaptic plasticity (described below in
details) and the postprocessing neuron P as a standard one (see
Equation 1) with a tanh transfer function. Note that this postpro-
cessing neuron P with its large fixed presynaptic weight (i.e., 10.0)
basically sharpens a transformed motor signal to perfectly match
to a FC signal.

Due to a delay in the relation between FC signal and the CTr-
motor signal, a simple thresholding method cannot be applied
for signal transformation. Therefore, we use the single recurrent
neuron instead since this is a simple neural mechanism providing
dynamical properties (e.g., hysteresis effect) that can smooth the
motor signal and at the same time provide a delay in the input–
output relation required to transform the motor signal into the
expected sensory signal. The activation function of this neuron is
given by:

aF(t) = WR(t)oF(t − 1)+WI(t)I(t)+ B(t), (5)

where I is the input of the neuron which is here the CTr-motor
signal coming from the CPG-based control. oF is the output of the
neuron given by the tanh transfer function, i.e., oF = tanh(aF),∈
[−1, 1]. WR, WI , and B are the recurrent weight, the presynap-
tic weight, and the bias term of the neuron, respectively. These
parameters need to be adjusted to obtain a proper hysteresis
loop for the signal transformation. Therefore, we employ a gra-
dient descent learning rule to adapt them. In principle, the rule
attempts to minimize the error E between the target output T and
the actual output oF of the neuron through gradient descent. The
error is measured as:

E(t) = 1

2
(T(t)− oF(t))2. (6)

4We use the CTr-motor signal instead of the TC- and FTi-motor signals since
its pattern is close to the FC signal.
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FIGURE 6 | Adaptive neural forward model. (A) The model structure
consisting of recurrent and non-recurrent neurons. (B) Changes of the
parameters of the model of the right front leg (R1). (C) The hysteresis effect
between the input and output signals of the forward model of R1 where the
converged parameters are used (see B). In this situation, the input varies
between −1.0 and 1.0. Consequently, the output will gradually show high
activation (≈ +1.0) when the input increases to value above −0.55. The
output will show low activation (≈ −1.0) when the input decreases below
−0.715. (D) The CTr-motor signal of R1 which is the input of the neuron F .
Its high activation drives the leg to swing (i.e., swing phase) while its low

activation drives the leg in touching the ground (i.e., stance phase). (E) The
output of the postprocessing neuron P is used to compare to the foot
contact signal for estimating the walking state. (F) The output of the neuron
F or the transformed motor signal. (G) The foot contact signal of R1. It is
filtered and mapped onto the interval [−1,+1] where +1 is the leg has no
ground contact and vice versa. Dashed lines are provided for comparison.
Note that the parameter changes of the forward models of the other legs
show similar patterns. Their convergence was achieved after about eight to
twenty walking steps. The parameters converged at slightly different values,
resulting in slightly different hysteresis loops. One time step is ≈0.037 s.

In this study, we use the filtered FC sensor signal, linearly
mapped onto the interval [−1, 1], as the target output. According
to the learning rule, the parameters (WR, WI , and B) are updated
every time step (≈0.037 s) in proportion to the gradient and given
as follows:

�WR = −μ
∂E

∂WR
= μ(T(t)− oF(t))(1− oF(t)2)oF(t − 1), (7)

�WI = −μ
∂E

∂WI
= μ(T(t)− oF(t))(1− oF(t)2)I(t), (8)

�B = −μ
∂E

∂B
= μ(T(t)− oF(t))(1− oF(t)2), (9)

where μ is the learning rate which is set to a small positive value,
e.g., 0.01. For the training process, we initialize the neural activity
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and output states of the forward model to 0.0 and WR, WI , and B
to 1.0. Due to this simple neural system, the process can perform
online. We implemented six forward models on AMOS II where
each of them works on one leg. Afterwards, we let AMOS II walk
in a normal condition (i.e., walking on floor with a certain gait).
The training process will stop as soon as the difference between
the filtered FC signal and the postprocessed neural output oP is
smaller than a threshold, e.g., 0.05, over a certain period of times
(e.g., 500 time steps). We performed the training process only
once and only for the normal walking condition. This walking
condition is used as a reference to compare it to other walking
conditions in any terrain.

Figure 6B illustrates the parameter changes of the forward
model of, e.g., the right front leg (R1, Figure 1A) during train-
ing. The training process was set to start after 500 time steps
(or around four walking steps) and the parameters (WR, WI ,
and B) converged after around 1300 steps (or around seven
walking steps). The resulting parameters lead to a proper hystere-
sis loop (Figure 6C). Utilizing this hysteresis property together
with the neural postprocessing, the CTr-motor signal is finally
transformed into the expected FC signal (Figures 6D–G). In this
example, AMOS II walked with a slow wave gait (i.e., MI = 0.02).
It is important to note that the models of all legs that adapted to
this gait can be directly applied to other gaits.

After training, the output of each trained forward model (i.e.,
the expected FC signal, Figure 6E) is used to compare it to the
actual incoming FC signal of the leg (Figure 6G). The difference
� (Figure 6A) between them determines the walking state where
a positive value (+�) means losing ground contact during the
stance phase and a negative one (−�) means stepping on or hit-
ting obstacles during the swing phase. Thus, we use the positive
value for searching control (Figure 7A). The value is accumulated
through a recurrent neuron S with a linear transfer function and
always reset to 0.0 at the beginning of swing phase. The output of
this neuron oS with significant change (e.g., oS > 0.15) controls
vertical shifting of the CTr- and FTi-joints. Consequently, these
joints are shifted when the positive difference occurs; thereby, the
respective leg searches for a foothold. This searching control only
occurs in the stance phase. On the other hand, we use the neg-
ative value for elevation control (Figure 7B). The value is also
accumulated through a recurrent neuron E with a linear transfer
function. The output of this neuron with significant change5 (e.g.,
oE < −15) shifts the CTr- and FTi-joint movements upwards. At
the same time, the TC-joint movement is shortly inhibited. As
a consequence, the leg is elevated, thereby avoiding an obstacle
or freeing itself from the obstacle. This elevation control only
occurs in the swing phase. Note that the IR sensors installed
at the legs (Figure 1B) can be also used for elevation control.
This allows the legs to avoid hitting a large obstacle in the front
(Video S5).

To illustrate the functionality of the searching control and
clearly observe leg motion, we activated one leg [e.g., right middle

5Here, we use a high threshold value for controlling the elevation since a
minor disturbance can be handled by passive mechanisms (spring and pas-
sive couplings) installed at the leg. Using a small threshold value might lead to
an unnecessary elevation of the leg resulting in unstable motion.

leg (R2)] and fixed the other legs to a certain position. Afterwards,
we changed ground level during stance phase. Changing it causes
different positive errors (+�) due to mismatch between the
expected FC signal and the actual incoming one. The error is
accumulated through the recurrent neuron S. If the accumulated
error (Figure 7C) is higher than the threshold, the searching con-
troller then controls the CTr- and FTi-joints to depress the leg
and at the same time extend the tibia, respectively. This results
in searching for a foothold. Note that the TC-joint motion is not
influenced. All joint angles of the leg in this experiment are shown
in (Figures 7D–F). We encourage readers to also see the video of
this experiment at Video S6.

To illustrate the functionality of the elevation control and
clearly observe leg motion, we also activated only one leg [e.g.,
right middle leg (R2)] and fixed the other legs to a certain posi-
tion. In addition, we inhibited the searching control such that the
leg could not search for a foothold. This is to better see and under-
stand the changes of the joint angles. To force elevation of the
leg, we made the foot touch an obstacle during the swing phase.
This causes negative errors (−�) that are accumulated through
the recurrent neuron E. If the accumulated error (Figure 7G) is
higher than the threshold, the elevation controller then inhibits
the TC-joint for the forward motion of the leg and at the same
time drives the CTr- and FTi-joints to elevate the leg and fully
extend the tibia, respectively. This results in the elevation of the
leg, thereby freeing it from the obstacle during the swing phase.
After the leg frees from the obstacle, the TC-, CTr-, and FTi-joints
immediately return to their unaltered positions. Since the process
occurs in a very short time, the gait does not break down (see the
section 3). All joint angles of the leg in this experiment are shown
in (Figures 7H–J). We encourage readers to also see the video of
this experiment at Video S5.

3. RESULTS
In the previous sections, we showed the individual functionali-
ties and performances of the CPG-based control and the local
leg control in part. Here, we present experiments carried out
to assess the ability of their combination (i.e., adaptive neural
locomotion control, Figure 2). The first experiment investigated
energy-efficient gaits for different terrains. To do so, we catego-
rized terrains into four different groups: hard terrain (e.g., floor,
pavement), loose terrain (e.g., fine gravel), rough terrain (e.g.,
gravel), and vegetated terrain (e.g., grass).

For each of these terrain groups, we let AMOS II walk from
slow to fast gaits by manually increasing MI of the CPG. During
locomotion, the local leg control autonomously adapted the legs
for a foothold. Thus, in this experiment, the CPG-based con-
trol and the local leg control function as open-loop control and
closed-loop control, respectively. We calculate the electric energy
consumption of each walking pattern as:

E = IVt, (10)

where I is average electric current in amperes used by the motors
during walking 1 m. It is measured using the Zap 25 CS installed
inside AMOS II. V is voltage (here 5 V). t is time in seconds
for the travel distance (here 1 m). Figure 8 shows the energy
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FIGURE 7 | Searching and elevation control. (A,B) The neural structures of
searching and elevation control. (C) Neural output oS of the searching control,
i.e., an accumulated positive error. (D–F) The real-time data of the TC-, CTr-,
and FTi-joint angles of the right middle leg (R2) showing foothold searching.
The drawing above (C) shows different generated ground levels (1.5, 2.5, and
3.5 cm below normal ground level) activating foothold searching. (G) Neural

output oE of the elevation control, i.e., an accumulated negative error. (H–J)

The real-time data of the TC-, CTr-, and FTi-joint angles of R2 showing normal
leg motion and elevation. In these experiments, the leg is driven by low
frequency CPG signals (i.e., MI of the CPG is set to 0.02). The drawing above
(G) shows a generated ground height (≈2.5 cm above normal ground level)
activating leg elevation. One time step is ≈0.037 s.

consumptions measured in these four terrain groups where the
measurement of each group was repeated five times.

Figures 8A,B suggest using the MI values of 0.04 and 0.06
which generate a fast wave gait and a tetrapod gait on loose and

rough terrains, respectively. Figures 8C,D suggest using the MI
value of 0.19 which produces a fast tripod gait on hard and vege-
tated terrains. Note that AMOS II started to slip when the value of
MI was higher than 0.19 for hard and vegetated terrains and it got
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FIGURE 8 | Electric energy consumptions for different terrain groups and gaits. (A) Loose terrain. (B) Rough terrain. (C) Hard terrain. (D) Vegetated terrain.
Each measurement was repeated five times. Dashed line of each plot indicates the MI value for energy-efficient locomotion.

stuck most of the time when the MI values were higher than 0.16
and 0.10 for rough and loose terrains, respectively. This experi-
mental result reveals that each terrain group requires a specific
gait which leads to the lowest energy consumption. This allows
mapping the four terrain groups to the energy-efficient gaits.

The second experiment employed the investigated energy-
efficient gaits together with the visual terrain classification system
(described in section 2.3) to allow AMOS II to autonomously
perform energy-efficient locomotion while traversing the differ-
ent terrains. The output of the visual terrain classification system
provides terrain information. This information was used as the
preprocessed sensory input to set MI of the CPG, thereby trig-
gering the corresponding pre-mapped energy-efficient gait. This
way, the experiment reflects a complete neural closed-loop system
(Figure 2). The experimental result is shown in Figure 9.

It can be seen that at the beginning AMOS II walked with a
fast wave gait (photo 1) since it detected fine gravel (loose ter-
rain) using its visual system. Afterwards, it changed from the wave
gait to a tetrapod gait (photo 2) since it detected gravel (rough
terrain). Finally, it used a fast tripod gait (photo 3) on the floor
(hard terrain). During traversing the different terrains, AMOS II
adapted its legs individually to deal with a change of terrain.
That is, it depressed its leg and extended its tibia to search for
a foothold when losing a ground contact during the stance phase.
Losing ground contact information is detected by a significant

change of the positive accumulated error oS, see black line in
Figure 9C). However, during the swing phase no leg elevation was
observed (i.e., no significant change of the negative accumulated
error oE, see red line in Figure 9C) since only minor perturba-
tion occurred, where the perturbation was handled by the passive
components of the leg. We encourage readers to see the video of
this experiment at Video S7. Another test in an outdoor environ-
ment where AMOS II walked from gravel to grass can be seen
at Figure A4. In addition to energy-efficient and adaptable loco-
motion emphasized in this experiment, the basic leg movements
of AMOS II and the used gait follows insect locomotion. Thus,
this experiment is an example of the demonstration of insect-like,
energy-efficient, and adaptable locomotion of walking machines,
like AMOS II.

The third experiment focused on both, leg elevation and
foothold searching, of AMOS II to deal with small obstacles. In
this scenario, we let AMOS II walk with a certain pattern [e.g., a
slow wave gait (MI = 0.02)] and placed small obstacles (≈2.5 cm
height) on its path. The experimental result is shown in Figure 10.
It can be seen that, while walking forward, the foot of the right
front leg (R1) of AMOS II hit an obstacle during the swing phase
(photo 1), thereby preventing the leg from completing the phase.
This leads to a significant change of the negative accumulated
error oE (Figure 10A). As a consequence, AMOS II elevated the
leg to free it from the obstacle (photo 2). Afterwards, it placed the
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FIGURE 9 | Real-time data of energy-efficient and adaptable locomotion

on three different terrains. (A) The output of the online terrain classification
system which is a preprocessed visual sensory signal. (B) The modulatory input
MI of the CPG which is directly controlled by the sensory signal. It was set to
0.04 (fast wave gait), then 0.06 (tetrapod gait), and finally 0.19 (fast tripod gait).
(C) The positive (oS ) and negative (oE ) accumulated errors (Figures 7A,B).
They control leg adaptation to deal with different terrains. (D–F) The TC-, CTr-,
and FTi-joint angles of the right middle leg (R2) during walking from fine gravel

(loose terrain) to gravel (rough terrain) to floor (hard terrain). They represent
the leg movement including adaptation. (G) Gait diagram showing the
different energy-efficient gaits of AMOS II while traversing the terrains. Black
boxes indicate swing phase while white areas between them indicate stance
phase. Abbreviations are referred to Figure 1. Above pictures show snap
shots from the camera on AMOS II used for the terrain classification while
walking. Below pictures show snap shots of locomotion of AMOS II during
the experiment. Note that one time step is ≈0.037 s.
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FIGURE 10 | Real-time data of adaptable locomotion on terrain with

small obstacles. (A,B) The negative (oE ) and positive (oS ) accumulated
errors (Figures 7B,A). They control leg adaptation to deal with stepping
on or hitting obstacles during the swing phase and losing a ground
contact during the stance phase. (C–E) The TC-, CTr-, and FTi-joint
angles of the right front leg (R1) during walking on the floor with small
obstacles (≈2.5 cm height). They represent the leg movement including

adaptation. (F) Gait diagram showing a slow wave gait (MI = 0.02) of
AMOS II in this experiment. Black boxes indicate swing phase while
white areas between them indicate stance phase. Abbreviations are
referred to Figure 1. Below pictures show snap shots of locomotion of
AMOS II during the experiment. Blue and red areas indicate elevation
and searching actions, respectively. Note that one time step is
≈0.037 s.

leg on top of the obstacle without getting stuck (photo 3). Due to
the difference of the ground level, this causes a significant change
of the positive accumulated error oS (Figure 10B). AMOS II then
lowered the leg more downward to ensure ground contact. After
a few steps, the leg again lost a ground contact during the stance
phase (photo 4), resulting in searching for a foothold (photo 5).
Finally, AMOS II successfully walked away from the obstacles.
This experiment reveals that using this leg adaptation mechanism

AMOS II can effectively locomote on terrain with small obstacles
without getting stuck. We encourage readers to also see the video
of this experiment at Video S8.

The fourth experiment was to show that the adaptive neu-
ral locomotion control not only generates insect-like, energy-
efficient, and adaptable locomotion of AMOS II (as shown above)
but also allows it with the help of its BJ to climb over a large obsta-
cle. To do so, we placed AMOS II on rough terrain (i.e., soil with
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stones) with an 11 cm high obstacle at front. The task of AMOS II
was to move forward and climb over the obstacle. For this exper-
iment, the CPG-based control generated a basic walking pattern
[e.g., a slow wave gait (MI = 0.02)] while the local leg control
adapted the legs individually for foothold searching and elevation,
thereby enabling effective locomotion and supporting the body of
AMOS II during climbing. Note that the slow wave gait was used
in this experiment because it is the most effective gait for climb-
ing which allows AMOS II to negotiate the highest climbable
obstacle (13 cm height which equals 75% of its leg length) [see
Goldschmidt et al. (2012) for details]. In addition to the loco-
motion control, reactive BJ control was also applied to control
the BJ for climbing [see Goldschmidt et al. (2012) for details].
The controller produces an abstraction of body flexion observed
in cockroach climbing. It controls the BJ to lean upwards to
surmount obstacles and to bend downwards for stable climbing.

This downward motion appears in cockroach climbing while the
upward motion does not exist. Instead of leaning the body flex-
ion joint upwards as AMOS II does, a cockroach extends its front
and middle legs to raise its reaching height to surmount obsta-
cles, thereby rearing its entire body to a taller pose. Here, we used
the US at the front body part of AMOS II (Figure 1A) for obsta-
cle detection and BJ control. Figure 11 presents the experimental
result.

At the first period (0–500 time steps), the local leg control
was deactivated. Due to the rough terrain, the feet could not per-
fectly touch the ground during the stance phase; thus, AMOS II
could not move forward (photo 1). After 500 time steps, the
local leg control was activated. It allows for foothold search-
ing, thereby adapting locomotion to the terrain. As a result,
AMOS II moved forward. As AMOS II approached the obsta-
cle, the US detection activated the BJ control such that the BJ

FIGURE 11 | Real-time data of walking and climbing over a large

obstacle in an outdoor environment. (A) The preprocessed ultrasonic
sensor (US) signal for reactive backbone joint control. (B) The backbone
joint (BJ) angle during walking and climbing. The BJ stayed at zero angle
during walking. It leant upwards and then bent downwards during
climbing. (C–E) The TC-, CTr-, and FTi-joint angles of the left hind leg (L3)

during walking and climbing. The joint adaptation was controlled by the
negative (oE ) and positive (oS ) accumulated errors (Figures 7B,A). The
changes of the errors have similar patterns as shown in Figure 9C. Here
AMOS II used a slow wave gait (MI = 0.02, Figure 10F). Below pictures
show snap shots of the locomotion of AMOS II during the experiment.
Note that one time step is ≈0.037 s.
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leant upwards (photo 2). Due to a time-out period after lean-
ing upwards, the BJ moved downwards to ensure stability while
climbing (photo 3). During climbing, a hind leg [e.g., left hind
leg (L3), photo 4] lowered downwards, showing leg extension,
to support the body. Finally, AMOS II successfully locomoted on
rough terrain and surmounted the 11 cm high obstacle (photo 5).
We encourage readers to also see the video of this experiment at
Video S9. Besides this experimental result, it is important to note
that both adaptive locomotion and reactive BJ controllers have
a distributed implementation, but they are indirectly coupled by
sensory feedback and the physical components of AMOS II. This
way, the combined neural control network driven by the sensor
signals synchronizes leg and BJ movements for stable walking and
climbing.

The final experiment was to illustrate that the adaptive neu-
ral locomotion controller can adapt the remaining legs to deal
with a leg damage situation. In this experiment we let AMOS II
walk with a slow wave gait (MI = 0.02) and then disconnected
the power connector of the motor of a leg joint such that the
joint became inactive (i.e., uncontrollable). This is to simulate leg
damage. After damage, we placed AMOS II on top of an object to
observe the adaptation of the remaining legs that allows AMOS II
to be able to continue moving forward. Figure 12 present the
experimental result.

As shown in Figure 12, AMOS II walked in a normal walking
condition at the beginning (photo 1). During walking, we dis-
connected the motor power connector of the FTi-joint of the left
middle leg (photo 2) such that the joint became inactive. Then we

FIGURE 12 | Real-time data of adaptable locomotion during leg damage.

(A) The filtered foot contact (FC) signal of the left middle leg (L2) where +1 is
the leg has no ground contact and −1 is the leg touches the ground. (B–D)

The TC-, CTr-, and FTi-joint angles of L2. (E,F) The CTr- and FTi-joint angles of
the right middle leg (R2). The joint adaptation was controlled by the negative
(oE ) and positive (oS ) accumulated errors (Figures 7B,A). The changes of the

errors have similar patterns as shown in Figure 9C. Here AMOS II used a
slow wave gait (MI = 0.02, Figure 10F). Below pictures show snap shots of
the locomotion of AMOS II during the experiment. Dashed line indicates the
time that the motor power connector of the FTi-joint of L2 was disconnected.
Red area indicates the time that AMOS II was on a 3.5 cm high object. Note
that one time step is ≈0.037 s.
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also tilted the tibia upward; thereby, the foot could not touch the
ground properly. This results in the leg adaptation to search for a
foothold (photo 3). Afterwards, we placed AMOS II on top of a
3.5 cm high object (photo 4). Since AMOS II was on the object,
its legs lost a ground contact. AMOS II adapted its legs to search
for a foothold (see, e.g., the FTi- and CTr-joint signals of the right
middle leg in Figures 12E,F). As a result, it successfully climbed
down from the object and continued walking forward (photo 5).
The ability of leg adaptation was mainly achieved by the local
leg control mechanisms. These mechanisms even allow AMOS II
to climb down from the object with a 7 cm height. Without
them, AMOS II got stuck on the object. We encourage readers
to see the video of this experiment at Video S10. This experimen-
tal result reveals that the developed adaptive neural locomotion
controller can not only generate versatile locomotion behaviors
including climbing (shown in the other experiments) but also give
robustness to the system by allowing it to cope with damage.

4. DISCUSSION
Here, we briefly discuss some remaining issues concerning the six-
legged walking machine AMOS II and its controller, because most
of the relevant discussion points have been treated in the above
sections.

AMOS II was used as an experimental platform and represents
an embodied neural closed-loop system with many degrees of
freedom. It was designed with a morphology analogous to a cock-
roach. It was constructed in a straightforward way as a biomecha-
tronic system consisting of several sensors and actuators. Due to
extra rubber coupling elements and springs integrated into the
joints and tibiae of AMOS II, this yields passive compliance allow-
ing AMOS II to deal with minor disturbances during locomotion
over rough terrain (as described in the second experiment). The
joint compliance also enables AMOS II to passively flex its legs
to avoid damages when the environment changes (Video S11).
Besides the physical components of AMOS II that follow biome-
chanics of walking animals, another special trait of AMOS II is
that we configured the ranges of the joint movements of AMOS II
such that it has a very low center of mass (i.e., low ground clear-
ance) and its body falls to the ground before taking the next
step during normal walking. When negotiating a large obstacle,
AMOS II uses its BJ together with additional reactive BJ control
(Goldschmidt et al., 2012) to climb over it while its leg movements
automatically adapt accordingly (Video S12).

In fact, the advantage of low ground clearance is evident in
case of leg damage. In this situation, a robot with high ground
clearance will tip over or fall down a lot (Figure A5A) leading
to unstable locomotion and remaining legs need to carry more
load. Thus, the motors need to produce high torque to carry
the load resulting in high power consumption (Figure A5B).
Furthermore the legs might have difficulty to swing during swing
phase (Figures A5C,D); thereby, the robot will not move forwards
properly (Figure A5G and Video S10). In contrast, with low
ground clearance the robot will not much fall down (Figure A5A)
since its body is already close to the ground and the remain-
ing legs need not to carry much more load leading to lower
power consumption compared to the high ground clearance case
(Figure A5B), and they are able to swing during swing phase

(Figures A5E,F). As a result, the robot can still move better in
a straight way (Figure A5H and Video S10). However, the draw-
back of having low ground clearance is that the robot could get
stuck often when walking on non-flat terrains. Accordingly, dur-
ing walking over rough terrains AMOS II will lift its body up to
obtain higher ground clearance such that it does not get stuck.
Lifting the body up is automatically done by shifting the cen-
ter of the CTr-joint angles downwards (more depression) and
the center of the FTi-joint angles upwards (more extension) and
this is the default joint movements for rough terrains. By con-
trast, most walking machines (Lee et al., 2006; Spenneberg and
Kirchner, 2007; Lewinger and Quinn, 2009) always perform loco-
motion with high ground clearance (Video S12). Although such
a high ground clearance walking strategy could simplify it for the
controller to deal with different terrains, it might lead to instabil-
ity of the systems (as described above); unless, additional control
mechanisms are applied (Spenneberg et al., 2004). In fact, the
biologically-inspired locomotion strategy of AMOS II arises not
only from biomechanics but is a combination of its biomechanics
and adaptive neural locomotion control. While the biomechan-
ics allows for leg and body movements as well as provides some
degree of disturbance rejection, the adaptive neural locomotion
controller generates versatile motions and adaptation.

The controller consists of two main parts: CPG-based control
and local leg control. The CPG-based control is the improved
version of our original chaotic CPG-based controller [compare
Figure A2 in Steingrube et al. (2010) with Figure A2 of this
paper]. Two main components of the controller have been modi-
fied here while the other parts remain unchanged. We replaced the
chaotic CPG by a simpler CPG mechanism with neuromodula-
tion. As a consequence, by exploiting neural dynamics of the new
CPG mechanism, we can generate a multitude of walking patterns
(e.g., 20 patterns). Some of these patterns are comparable to insect
gaits (Wilson, 1966) and allow for energy-efficient locomotion on
different terrains, like, fine gravel (loose terrain), gravel (rough
terrain), and grass (vegetated terrain). The CPG also provides
fast switching between the patterns compared with the chaotic
CPG. For motor connections, we modified the connections to the
FTi-motor neurons such that the FTi-joints are activated during
walking while in the previous work these joints are inhibited; i.e.,
they stay in a flexed position. The introduced FTi-joint move-
ments are inspired by insect leg movements (Ekeberg et al., 2004;
Cruse et al., 2009). During the stance phase of forward walking,
the FTi-joints of the front legs flex inward, of the hind legs extend
outward, and of the middle legs combine these two movements by
first flexion and then extension. As a consequence, the front, hind,
and middle legs pull, push, and pull and push the body forward,
respectively. This results in faster walking speed compared with
the fixed FTi-joint version. This CPG-based control coordinating
all joints can be considered as open-loop control since in prin-
ciple it does not require any sensory feedback for the locomotion
generation (i.e., multiple patterns and insect-like leg movements).
However, the loop can be simply closed by using, e.g., extero-
ceptive sensory feedback to generate stimulus induced behavior
(like, photo tropism and obstacle avoidance) as well as to select an
energy-efficient gait with respect to the terrain in an autonomous
manner.
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In contrast to the CPG-based control, the local leg control
introduced here for the first time employs proprioceptive sensory
feedback (i.e., here only FC sensors) for adaptable locomotion.
Thus it can be considered as closed-loop control. It has two
components applied independently to each leg of AMOS II: an
adaptive forward model with efference copy and searching and
elevation control. The forward model is constructed by using a
simple hysteresis neuron with recurrent connection. It can learn
online to transform the CTr-motor signal (efference copy) into
the expected FC signal. While the forward model is minimal and
sufficient here, one could combine several of them to obtain dif-
ferent forward models for different purposes, e.g., sensory noise
cancelation and slope detection (Manoonpong and Wörgötter,
2009) or use them for designing non-linear filters (Manoonpong
et al., 2010). Due to our controller being modular, if desired, one
could replace this simple hysteresis neuron by more complex neu-
ral networks [e.g., reservoir computing networks (Dasgupta et al.,
2012)] for transforming motor commands into complex expected
sensory signals.

Our forward model presented here can be considered as an
adaptive predictor that can learn to predict the sensory con-
sequences (expected sensory feedback) from motor commands
(efference copy) (Kawato, 1999). The expected sensory feedback
(or transformed motor command) is then used to compare it with
the actual FC signal for the walking state estimation. The sensory
prediction error enables AMOS II to determine whether its leg
loses ground contact during the stance phase or hits or steps on
any obstacles during the swing phase. Afterwards, this informa-
tion is used to adapt the leg accordingly through the searching
and elevation control. The adaptive leg motions (i.e., searching
and elevation motions) follow the observed locomotion in certain
insects, like locusts (Pearson and Franklin, 1984), cockroaches
(Tryba and Ritzmann, 2000), and stick insects (Fischer et al.,
2001), during walking on rough terrain. As a result, employing
closed-loop local leg control mechanisms with the forward mod-
els allows AMOS II to not only successfully traverse rough terrains
and climb over large obstacles, but to also cope with leg damage.

Besides special features described above, our adaptive neural
locomotion controller also combines three key aspects found in
animal locomotor control: central mechanism (CPGs) (Meyrand
et al., 1991; Katz, 1998; Harris-Warrick, 2011), sensory feedback
(afferent-based control) (Cruse et al., 2009), and internal forward
models with efference copies (efferent-based control) (Holst and
Mittelstaedt, 1950; Cruse et al., 1998; Bläsing and Cruse, 2004).
In particular, our CPG-based control or central mechanism for
versatile locomotion generation relies on a CPG mechanism with
neuronmodulation that is inspired by the function of neural CPG
circuits found in lobsters (Selverston et al., 1993; Pulver and
Marder, 2002) and the mollusc Tritonia diomedea (Katz et al.,
1994). These biological findings suggest that extrinsic and intrin-
sic neuromodulatory inputs to the CPG circuits can alter the
cellular changes and synaptic properties of neurons in the cir-
cuits. Thereby, these inputs modify the output of the CPG leading
to behavioral flexibility and different locomotion modes. This
process can be achieved on the fly resulting in the adaptation
of behavior to environmental changes in an ongoing fashion.
Our local leg control mechanisms based on sensory feedback

(afferent-based control) and adaptive neural forward models with
efference copies (efferent-based control) for state estimation and
adaptable locomotion follows the evidence of forward model
predictions with sensory feedback in the stick insects Aretaon
asperrimus. It shows that during climbing over very large gaps the
stick insects perform an immediate change in the stepping pattern
of the legs when losing ground contact at the end of the swing
phase (Bläsing and Cruse, 2004). This would reflect an expecta-
tion of regular ground contacts. Other results supporting the idea
of forward model predictions (Cruse et al., 1998) indicate that,
during the swing phase of the stick insects, reactions to obstacles
depend on an internal state.

While these three key aspects are essential for locomotion
control, some works have taken these aspects into account for
developing locomotion control in simulation (Kuo, 2002; Dürr
et al., 2003). Only a few have successfully applied it to a real
system but with small numbers of inputs and outputs and behav-
ioral restrictions (Lewis and Simo, 2001; Lewis and Bekey, 2002),
thereby, reducing the sensor-motor coordination problem sub-
stantially. Most studies use a combination of several CPGs and
sensory feedback to generate different walking behaviors (Beer
et al., 1997; Harischandra et al., 2011) including reflexes (Kimura
et al., 2007; Spenneberg and Kirchner, 2007; Lewinger and Quinn,
2011; von Twickel et al., 2012). The reflexes driven by only sensory
feedback results in searching and elevation actions when losing
ground contact and hitting an obstacle, respectively. However,
due to the lack of forward model predictions (internal state) this
control approach has difficulties to generate reactions for walk-
ing machines to avoid an obstacle when stepping on it during
swing phase as the stick insects do. Another interesting approach,
like “Walknet” (Cruse et al., 2007), has no central control unit.
Instead, it uses a decentralized control architecture with local
coordination rules highly depending on different types of propri-
oceptive sensory feedback, e.g., FC, joint angle, and joint angular
velocity signals, to determine an internal state and generate basic
locomotion and adaptation. However, this mechanism malfunc-
tions when losing the sensory information, thereby it is less
robust.

In contrast to this, our adaptive neural locomotion controller
based on a modular structure is robust and has fault tolerance
capabilities. Damage to a part of the system can result in a loss
of some of the abilities of the system, but, the whole system
can still function partially (see the leg damage experiment in
Figure 12). Its modules (Figures 2, A2) generally have a simpler
structure as compared to the network as a whole. Thus, their func-
tions and dynamics are analyzable by observing the input/output
relationship of an individual module (Manoonpong et al., 2007,
2008b). Its individual modules have been used in earlier studies
and successfully provided partial solutions to different walking
machines (Manoonpong et al., 2007, 2008b). Furthermore, the
controller, using a single CPG, sensory feedback, and forward
model predictions providing an internal state, can generate a
multitude of walking patterns (e.g., 20 walking patterns), insect-
like leg movements, energy-efficient locomotion, and adaptable
locomotion (like searching and elevation actions including reac-
tions when stepping on an obstacle during swing phase). It
can also handle leg damage and even generate cockroach-like
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climbing behavior (Video S12) when additional reactive BJ con-
trol is applied (Goldschmidt et al., 2012). The controller can
also be simply transferred to another six-legged walking machine
having a different morphology but leg lengths with similar pro-
portion to AMOS II. In this case, the internal network structure
and parameters of its CPG-based control (Figure 2, left) remain
unchanged. We set MI of the CPG to 0.15; thereby, the controller
generates a tripod gait with a walking frequency of approximately
0.8 Hz for the machine (Video S13). Only the maximum and
minimum ranges of the joint movements of the legs and the neu-
ral parameters of the adaptive forward models (Figure 2, right)
are different. The neural parameters are adapted to the new sys-
tem by using the online learning mechanism (Equations 8–9).
In principle, applying the controller to other different walking
machines might be necessary to also adjust generated walking fre-
quency (i.e., operating range of MI of the CPG). The capability of
the controller which combines the key aspects of the biological
locomotion systems to achieve a very rich behavioral repertoire
in an autonomous fashion, to the best of our knowledge, has not
been achieved in other walking machine systems so far.

Taken together this work suggests how a CPG mechanism with
neuromodulation, sensory feedback, and internal forward models
with efference copies can be used for controlling complex robots.
It further confirms that this combination plays an important role
for locomotion in biological as well as artificial systems. The
results presented here show that the employed embodied neural
closed-loop system can be an option for developing robust and
adaptable machines, thereby bringing the goal of approaching liv-
ing creatures in their levels of performance a little bit closer. As
the controller is modular, it is flexible and offers the future pos-
sibility of integrating joint angle and joint CS signals as feedback
together with additional entrainment and reflexive mechanisms
(Takemura et al., 2005; Cruse et al., 2009; Nachstedt et al., 2012)
to avoid leg slipping which currently occurs when the legs work
partially against each other. The controller can also be extended
to multiple CPGs (Ren et al., 2012) in order to be able to adjust
the frequency of each leg individually for some situations like
gap crossing (Bläsing, 2006) or damage compensation (Ren et al.,
2012). It even can be combined with other neural modules like
short term motor memory (Dasgupta et al., 2012) and muscle
models (Xiong et al., 2012). This will enable the robotic system
to be capable of navigating in complex environments with a cer-
tain degree of memory-guided behaviors and at the same time
performing more natural movements with active compliances.
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Video S1 | Comparison of gait switching using a CPG with

neuromodulation and a chaotic CPG. Using a CPG with neuromodulation,
AMOS II shows fast and smooth switching between gaits, while the switching
is slower and less smooth when using our previous chaotic CPG.
(http://manoonpong.com/Frontiers/SupplementaryVideo1.wmv)

Video S2 | Examples of 20 different walking patterns. AMOS II walks with
different patterns from slow to fast speed with respect to
MI = 0.0, 0.01, . . . , 0.19.
(http://manoonpong.com/Frontiers/SupplementaryVideo2.wmv)

Video S3 | Turning behavior. AMOS II autonomously turns to avoid obstacles
and escape from a corner and even a deadlock situation. It detects obstacles
and a corner by using its ultrasonic sensors installed at front.
(http://manoonpong.com/Frontiers/SupplementaryVideo3.wmv)

Video S4 | Insect-like leg movements. To clearly observe the insect-liked leg
movements of AMOS II, we place it on a box and let it perform forward and
backward walking.
(http://manoonpong.com/Frontiers/SupplementaryVideo4.wmv)

Video S5 | Leg elevation. To clearly observe the leg elevation of AMOS II, we
place it on a box and make the foot touch an obstacle during the swing phase.
Due to mismatch between the expected foot contact signal, generated by the
adaptive forward model, and the actual one, AMOS II can immediately elevate
its leg (here right middle leg) to free the leg from the obstacle. In addition, we
show that using an IR sensor at the leg also allows AMOS II to elevate its leg in
order to avoid hitting the obstacle. The first part of this video corresponds to
the result shown in Figures 7G–J of the manuscript.
(http://manoonpong.com/Frontiers/SupplementaryVideo5.wmv)

Video S6 | Searching for a foothold. To clearly observe searching for a
foothold of AMOS II, we place it on a box and change the ground level during
the stance phase. Due to mismatch between the expected foot contact signal,
generated by the adaptive forward model, and the actual one, AMOS II can
immediately lowers its leg (here right middle leg) to search for a foothold. This
video corresponds to the result shown in Figures 7C–F of the manuscript.
(http://manoonpong.com/Frontiers/SupplementaryVideo6.wmv)

Video S7 | Energy-efficient and adaptable locomotion on different terrains.

First test shows that AMOS II walks with a fast wave gait since it detects fine
gravel (loose terrain) using its visual system. Afterward, it changes from the
wave gait to a tetrapod gait since it detects gravel (rough terrain). Finally, it uses
a fast tripod gait on the floor (hard terrain). Another test in an outdoor
environment shows that AMOS II walks with a tetrapod gait since it detects
gravel (rough terrain). Afterward, it changes from the tetrapod gait to a tripod
gait since it detects grass (vegetated terrain). Note that during traversing the
different terrains, AMOS II adapts its legs individually to the terrains. The first
part of this video corresponds to the result shown in Figure 9 of the
manuscript and the second part of this video corresponds to the result shown
in Figure A4. (http://manoonpong.com/Frontiers/SupplementaryVideo7.wmv)

Video S8 | Adaptable locomotion on terrain with small obstacles. First test
shows that AMOS II can free its right front leg after the leg hits an obstacle
during the swing phase. Due to the difference of the ground level, AMOS II also
adapts its legs by lowering them more downward to ensure ground contact
during the stance phase. Other tests also show this kind of adaptable
locomotion of AMOS II. The first part of this video corresponds to the result
shown in Figure 10 of the manuscript.
(http://manoonpong.com/Frontiers/SupplementaryVideo8.wmv)

Video S9 | Climbing over a large obstacle in an outdoor environment.

AMOS II walks on rough terrain and then climbs over an 11 cm high obstacle.
This video corresponds to the results shown in Figure 11 of the manuscript.
(http://manoonpong.com/Frontiers/SupplementaryVideo9.wmv)

Video S10 | Adaptable locomotion during leg damage. While AMOS II is
walking, we disconnect the motor power connector of the FTi-joint of its left
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middle leg to simulate leg damage. Local leg control allows AMOS II to adapt
its legs to deal with the leg damage. As a result, it could still move forward
without problem. This first part of the video corresponds to the results shown
in Figure 12 of the manuscript. Another test is shown in the second part of the
video. The third part of the video shows that AMOS II fails to cope with leg
damage if local leg control is not activated. The last part of the video shows
walking behaviors with low and high ground clearance during leg damage.
(http://manoonpong.com/Frontiers/SupplementaryVideo10.wmv)

Video S11 | Passive compliances of the joints and legs of AMOS II. The joint
compliance enables AMOS II to passively flex its legs to avoid damages when
the environment changes. In addition, its leg compliance allows it to absorb
external (ground reaction) forces.
(http://manoonpong.com/Frontiers/SupplementaryVideo11.wmv)

Video S12 | Walking and climbing like a cockroach. AMOS II keeps its body
very close to the ground during walking. While climbing, it uses its active
backbone joint and leg adaptation. The video also compares its locomotion with

cockroaches and other walking machines [four legs (Quadruped robot of the
Stanford AI Lab, http://ai.stanford.edu), six legs (BILL-Ant-a robot of Case
Biorobotics Lab, http://biorobots.cwru.edu/), eight legs (Scorpion robot of DFKI
Bremen - Robotics Innovation Center, http://robotik.dfki-bremen.de/)]. Note that
cockroach videos are referred to (Ritzmann et al., 2004; Abbott, 2007; Lewinger
and Quinn, 2009) while the walking machine videos are referred to (Lee et al.,
2006; Spenneberg and Kirchner, 2007; Lewinger and Quinn, 2009).
(http://manoonpong.com/Frontiers/SupplementaryVideo12.wmv)

Video S13 | Testing the adaptive neural locomotion controller on another

six-legged walking machine. We transfer the adaptive neural locomotion
controller to another walking machine. We set MI of the CPG to 0.15; thereby,
the controller generates a tripod gait with a walking frequency of approximately
0.8 Hz for the machine. As a result, the controller allows the machine to perform
foothold searching when its leg loses ground contact, to adapt its locomotion to
deal with irregular terrain or different ground levels, and to climb over a 7 cm
high obstacle. For climbing, additional reactive active backbone joint control is
also applied. (http://manoonpong.com/Frontiers/SupplementaryVideo13.wmv)
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APPENDIX
THE WALKING MACHINE PLATFORM AMOS II (BIOMECHANICS)
The most important specification of AMOS II is presented
in the main text of the manuscript. Therefore, we only pro-
vide here a clear picture of the active backbone joint (BJ) of
AMOS II including its angle range (see Figure A1, left). Its min-
imum downward position (−45◦) is comparable to the one
observed in a cockroach (see Figure A1, right). Due to the
mechanical design of the BJ, it allows the joint to also lean
upwards to a maximum position of 45◦. The leaning upward
and downward motions are used for climbing over a large obsta-
cle having a height up to 13 cm or 75% of the leg length of
AMOS II.

COMPLETE NEURAL CIRCUIT
Figure A2 shows the complete neural circuit of the adaptive loco-
motion controller. The controller generates versatile locomotion
behavior of AMOS II by means of CPG-based control and local
leg control (see main text for details). In total the controller
has six neural modules where the modules I–IV belong to the
CPG-based control and the modules V, VI belong to the local
leg control.

Module I (CPG with neuromodulation): MI = modula-
tory input; C1,2 = output neurons of the CPG. We use
a hyperbolic tangent (tanh) transfer function for the CPG
neurons.

Module II (neural CPG postprocessing): CP1,2 = postpro-
cessing neurons with a step function; Int1,2 = integrator units.

Module III (neural motor control): I1,...,4 = neural control
parameters for generating different walking directions and stop-
ping motion; H1,...,14 = interneurons of the phase switching
network (PSN); H15,...,28 = interneurons of the velocity regu-
lating networks (VRNs). We use a tanh transfer function for
the interneurons. Parameters are A = 1.7246, B = −2.48285, and
C = −1.7246.

Module IV (motor neurons): M1,...,5 = premotor neurons;
TR1, CR1, FR1 = TC-, CTr- and FTi-motor neurons of the right
front leg (R1); TR2, CR2, FR2 = right middle leg (R2); TR3, CR3,
FR3 = right hind leg (R3); TL1, CL1, FL1 = left front leg (L1);
TL2, CL2, FL2 = left middle leg (L2); TL3, CL3, FL3 = left hind
leg (L3); BJ = a backbone motor neuron which is controlled by
reactive BJ control [not shown here but see Goldschmidt et al.
(2012)]; τ= ipsilateral lag (i.e., 16 time steps or≈0.6 s); τL = the
phase shift between both left and right sides (i.e., 48 time steps or
≈2 s). We use piecewise linear transfer functions for the premotor
and motor neurons.

Module V (adaptive neural forward models): F1,...,6 = adap-
tive hysteresis neurons for motor signal transformation; WI , WR,
B = learning parameters; P1,...,6 = postprocessing neurons; � =
an error between the expected foot contact (FC) signal and the
actual one. We use a tanh transfer function for the hysteresis and
postprocessing neurons.

Module VI (searching and elevation control): PD1,...,6 = pre-
processing neurons which provide only a positive error (+�);
ND1,...,6 = preprocessing neurons which provide only a negative
error (−�); E1,...,6 = S1,...,6 = recurrent neurons (i.e., accumu-
lators). We use piecewise linear transfer functions for the pre-
processing neurons and use a linear transfer function for the
recurrent neurons.

Note that in all modules, all numbers are synaptic weights and
the ones marked with subscript “B” refer to fixed bias terms.

Different exteroceptive and proprioceptive sensors are used
here as inputs to the adaptive controller to generate stimulus
induced behavior, energy-efficient gait, and adaptable locomo-
tion. The sensors are: left and right ultrasonic sensors (US), six FC
sensors (FC1,...,6), one USB camera (CM), six infrared reflex (IR)
sensors (IR1,...,6), one current sensor (CS), and left and right light
dependent sensors (LD). All raw sensory signals are preprocessed
using neural preprocessing except the visual signal which is done
by using an online feature-based terrain classification algorithm.

FIGURE A1 | The six-legged walking machine AMOS II inspired by

the morphology of a cockroach. Left: Climbing position of AMOS II
with a body flexion joint. Right: Climbing position of a cockroach. It can

bend its front body downwards to keep the legs close to the surface of
an object for an optimum climbing position and even to prevent unstable
actions (modified from Ritzmann et al., 2004).
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FIGURE A3 | 20 different walking patterns of AMOS II. The patterns are observed from the motor signals of the CTr-joints. White areas indicate ground
contact or stance phase and gray areas refer to no ground contact during swing phase. As frequency increases, some legs steps in pairs (dashed enclosures).
One time step is ≈0.037 s.
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FIGURE A4 | Real-time data for energy-efficient and adaptable

locomotion on two different terrains in an outdoor environment. (A) The
output of the online terrain classification which is a preprocessed visual
sensory signal. (B) The modulatory input MI of the CPG which is directly
controlled by the sensory signal. It was set to 0.06 (tetrapod gait) and then
0.19 (fast tripod gait). (C) The positive (oS ) and negative (oE ) accumulated
errors of the expected foot contact signal and the actual one (cf.
Figures 7A,B of the manuscript). They control leg adaptation to deal with
different terrains. (D–F) The TC-, CTr-, and FTi-joint angles of the right middle

leg (R2) during walking from gravel (rough terrain) to grass (vegetated terrain).
They represent the leg movement including adaptation. (G) Gait diagram
showing the different energy-efficient gaits of AMOS II while traversing the
terrains. Black boxes indicate swing phase while white areas between them
indicate stance phase. Abbreviations are referred to Figure 1 of the
manuscript. Above pictures show snap shots from the camera on AMOS II
used for the terrain classification while walking. Below pictures show snap
shots of locomotion of AMOS II during the experiment. Note that one time
step is ≈0.037 s.
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FIGURE A5 | Real-time data for walking with high and low ground

clearance during leg damage. (A) The inclination angle of AMOS II
obtained from an inclinometer sensor installed inside the body. Negative
value means that AMOS II tilts to its left. (B) Power consumption. (C,D)

The foot contact signals of R1 and L2 for the high ground clearance case.

(E,F) The foot contact signals of R1 and L2 for the low ground clearance
case. They are filtered and mapped onto the interval [−1,+1] where +1 is
the leg has no ground contact and vice versa. (G,H) Snap shots of the
locomotion of AMOS II during the test with high and low ground
clearance, respectively.
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This algorithm is briefly described in the main text of the
manuscript.

We use a hysteresis neuron (N1) with a tanh transfer func-
tion for preprocessing the CS signal. The hysteresis principle
(Pasemann, 1993) leads to a non-linear transition of two out-
put states (low and high activations). Thus, hysteresis neuron can
effectively filter sensory noise (Manoonpong et al., 2008b). The
preprocessed CS signal which provides an energy level is used to
inhibit all joint movements, thereby stopping robot motion, when
the system has low power.

We use four neurons (N2,...,5) with a tanh transfer function to
form the neural preprocessing network of the left and right LD
signals and the left and right US signals. The network is devel-
oped based on a minimal recurrent controller (MRC) structure
(Pasemann et al., 2003) which allows balancing positive (LD) and
negative (US) tropisms. The network outputs (i.e., outputs of
N2,3) provide orienting control signals which are transmitted to
I3,4 of the neural motor control module. As a result, AMOS II
can effectively perform an appropriate turning angle to avoid
obstacles or corners as well as turn toward a light source.

We simply use neurons (N6,...,17) with a tanh transfer function
for preprocessing the FC1,...,6 and IR1,...,6 signals. This is because
the sensor signals contain small noise which can be eliminated by
the non-linearity of the neuron. The preprocessed sensor signals
are used for local leg control (described in the main text of the
manuscript). All neural preprocessing parameters, e.g., synaptic
strengths and bias terms (see Figure A2) were obtained by exper-
iments [see Manoonpong et al. (2008a,b) for more details of the
neural preprocessing parameters].

ADDITIONAL EXPERIMENTAL RESULTS
Here we present three more experimental results that comple-
ment those shown in the main text of the manuscript.

Figure A3 shows 20 walking patterns with different speeds of
AMOS II. These patterns are mainly controlled by the CPG-based
controller. Setting the modulatory input MI of the CPG to 0.0,
each leg steps in a wave on each side of the body with over-
lap. Increasing MI, stepping frequency increases and some legs
steps in pairs (see dashed enclosures). This results in a variety
of patterns (or gaits) including insect-like gaits and intermixed
gaits. For example, one observes wave gaits with different fre-
quencies (MI = 0.01–0.04), tetrapod gaits with different frequen-
cies (MI = 0.05–0.06), caterpillar gaits with different frequencies
(MI = 0.07–0.10), and tripod gaits with different frequencies
(MI = 0.15–0.19). Legs are labeled from front to back as num-
bers 1–3 and the left and right sides are L and R, respectively. Note
that increasing MI higher than 0.19, we found only two different
gaits comparable to tripod gait (e.g., MI = 0.19) and caterpillar
gait (e.g., MI = 0.10).

Figure A4 shows autonomous selection of energy-efficient
gaits while traversing from gravel to grass in an outdoor environ-
ment. It can be seen that at the beginning AMOS II walked with a
tetrapod gait (photos 1,2) since it detected gravel (rough terrain)
using its visual system. Afterward, it changed from the tetrapod
gait to a tripod gait (photo 3) since it detected grass (vegetated ter-
rain). During traversing the different terrains, AMOS II adapted
its legs individually to deal with a change of terrain. That is, it
depressed its leg and extended its tibia to search for a foothold

when losing a ground contact during the stance phase where
this information is detected by a significant change of the posi-
tive accumulated error oS, see black line in Figure A4C. However,
during the swing phase no leg elevation was observed since only
minor perturbation occurred (i.e., no significant change of the
negative accumulated error oE, see red line in Figure A4C). We
encourage readers to see the video of this experiment at Video S7.

Figure A5 shows walking behaviors with high and low ground
clearance when legs are damaged. In this test, AMOS II was driven
by only the CPG-based control described in the section 2.3 of
the manuscript. We let AMOS II walk with a slow wave gait
(MI = 0.02) and then disconnected the motor power connectors
of the CTr- and FTi-joints of the right (R3) and left (L3) hind
legs and the left front leg (L1). The joints became inactive (i.e.,
uncontrollable). This is to simulate leg damage. It can be seen
that AMOS II with high ground clearance had large body incli-
nation (≈ −18◦, Figure A5A) leading to unstable locomotion
and remaining legs need to carry more load. Thus, the motors
need to produce high torque to carry the load resulting in high
power consumption (Figure A5B). Furthermore the legs could
not swing properly during swing phase (Figures A5C,D). In this
case, the left middle leg (L2) always stayed on the ground; thereby,
the robot turned to the left (Figure A5G and Video S10). In con-
trast, with low ground clearance the AMOS II fell down a little
bit (Figure A5A) since its body was already close to the ground
and remaining legs need not to carry more load leading to lower
power consumption compared to the high ground clearance case
(Figure A5B). The remanning legs (R1, R2, and L2) were able to
swing during swing phase (Figures A5E,F). As a result, it could
still move more straightforward compared to the high ground
clearance case (Figure A5H and Video S10).
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The medullary respiratory network generates respiratory rhythm via sequential phase
switching, which in turn is controlled by multiple feedbacks including those from the
pons and nucleus tractus solitarii; the latter mediates pulmonary afferent feedback to the
medullary circuits. It is hypothesized that both pontine and pulmonary feedback pathways
operate via activation of medullary respiratory neurons that are critically involved in phase
switching. Moreover, the pontine and pulmonary control loops interact, so that pulmonary
afferents control the gain of pontine influence of the respiratory pattern. We used an
established computational model of the respiratory network (Smith et al., 2007) and
extended it by incorporating pontine circuits and pulmonary feedback. In the extended
model, the pontine neurons receive phasic excitatory activation from, and provide
feedback to, medullary respiratory neurons responsible for the onset and termination
of inspiration. The model was used to study the effects of: (1) “vagotomy” (removal of
pulmonary feedback), (2) suppression of pontine activity attenuating pontine feedback,
and (3) these perturbations applied together on the respiratory pattern and durations of
inspiration (TI ) and expiration (TE ). In our model: (a) the simulated vagotomy resulted in
increases of both TI and TE , (b) the suppression of pontine-medullary interactions led to
the prolongation of TI at relatively constant, but variable TE , and (c) these perturbations
applied together resulted in “apneusis,” characterized by a significantly prolonged TI .
The results of modeling were compared with, and provided a reasonable explanation
for, multiple experimental data. The characteristic changes in TI and TE demonstrated
with the model may represent characteristic changes in the balance between the pontine
and pulmonary feedback control mechanisms that may reflect specific cardio-respiratory
disorders and diseases.

Keywords: respiratory central pattern generator, brainstem, ventrolateral respiratory column, pre-Bötzinger

complex, pontine-medullary interactions, pulmonary feedback, control of breathing, apneusis

INTRODUCTION
The respiratory rhythm and motor pattern controlling breath-
ing in mammals are generated by a respiratory central pattern
generator (CPG) located in the lower brainstem (Cohen, 1979;
Bianchi et al., 1995; Richter, 1996; Richter and Spyer, 2001).
The pre-Bötzinger complex (pre-BötC), located within the ven-
trolateral respiratory column (VRC) in the medulla, contains
mostly inspiratory neurons (Smith et al., 1991; Rekling and
Feldman, 1998; Koshiya and Smith, 1999). The pre-BötC, inter-
acting with the adjacent Bötzinger complex (BötC), containing
mostly expiratory neurons (Cohen, 1979; Ezure, 1990; Jiang and
Lipski, 1990; Bianchi et al., 1995; Tian et al., 1999; Ezure et al.,
2003), represents a core of the respiratory CPG (Bianchi et al.,
1995; Tian et al., 1999; Rybak et al., 2004, 2007, 2008, 2012;
Smith et al., 2007, 2009; Rubin et al., 2009; Molkov et al., 2010,
2011). This core circuitry generates primary respiratory oscilla-
tions defined by the intrinsic biophysical properties of respiratory
neurons, the architecture of network interactions within and
between the pre-BötC and BötC, and the inputs and drives from

other brainstem compartments, including the pons, retrotrape-
zoid nucleus (RTN), raphé, and nucleus tractus solitarii (NTS).
It has been suggested (Rybak et al., 2007, 2008; Smith et al.,
2007) that these external inputs and drives may have a specific
spatial mapping onto respiratory neural populations within the
pre-BötC/BötC core network, so that changes in these inputs or
drives can alter the balance in excitation between key popula-
tions within the core network, thereby affecting their interactions
and producing specific changes in the respiratory motor patterns
observed under different conditions.

Most CPGs controlling rhythmic motor behaviors in inverte-
brates and vertebrates operate under control of multiple afferent
feedbacks and often provide feedback to the sources of their
descending and afferent inputs hence allowing feedback regula-
tion of the descending and afferent control signals (Dubuc and
Grillner, 1989; Ezure and Tanaka, 1997; Blitz and Nusbaum, 2008;
Buchanan and Einum, 2008), and this regulation often operates
via presynaptic inhibition (Nushbaum et al., 1997; Ménard et al.,
2002; Côté and Gossard, 2003; Blitz and Nusbaum, 2008).

Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 16 |

NEURAL CIRCUITS

342

http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/about
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/Neural_Circuits/10.3389/fncir.2013.00016/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=YaroslavMolkov&UID=50886
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BartholomewBacak&UID=73887
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ThomasDick&UID=8289
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=IlyaRybak&UID=52047
mailto:ilya.rybak@drexelmed.edu
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Molkov et al. Feedback control of breathing

As in other CPGs, afferent feedbacks are involved in the con-
trol of the mammalian respiratory CPG and the generation and
shaping of the breathing pattern. Many peripheral mechano- and
chemo-sensory afferents, including those from the lungs, tracheo-
bronchial tree and carotid bifurcation, provide feedback signals
involving in the homeodynamic control of breathing, cardiovas-
cular function, and different types of motor behaviors coordi-
nated with breathing, such as coughing (see Loewy and Spyer,
1990, for review). The NTS is the major integrative site of these
afferent inputs. The present study focuses on the mechanorecep-
tor feedback mediated by pulmonary stretch receptors (PSRs).
These mechanoreceptors respond to mechanical deformations of
the lungs, trachea, and bronchi, and produce a burst of action
potentials during each breath, thereby providing the central ner-
vous system with feedback regarding rate and depth of breathing
(see Kubin et al., 2006, for review). Activation of PSRs elicits reflex
effects including inspiratory inhibition or expiratory facilitation
(representing the so-called Hering-Breuer reflex), enhancement
of early inspiratory effort, bronchodilatation, and tachycardia.
PSR axons travel within the vagus nerve, and form excitatory
synapses in NTS pump cells (Averill et al., 1984; Backman et al.,
1984; Berger and Dick, 1987; Bajic et al., 1989; Anders et al.,
1993; Kubin et al., 2006). Pharmacological microinjection and
lesion studies (McCrimmon et al., 1987; Ezure et al., 1991,
1998; Ezure and Tanaka, 1996, 2004; Kubin et al., 2006) suggest
that NTS pump cells mediate the Hering-Breuer reflex (lung-
inflation induced termination of inspiration). Through pump
cells, PSR-originating information alters the activity of CPG neu-
rons in manners consistent with their proposed roles in rhythm
generation.

The other feedback loop, important for the respiratory CPG
operation, involves multiple pontine-medullary interactions. The
pons (Kölliker-Fuse nucleus, parabrachial nucleus, A5 area,
etc.) contains neurons expressing inspiratory (I)-, inspiratory-
expiratory (IE)-, or expiratory (E)-modulated activity, especially
in vagotomized animals (Bertrand and Hugelin, 1971; Feldman
et al., 1976; Cohen, 1979; Bianchi and St. John, 1982; St. John,
1987, 1998; Shaw et al., 1989; Dick et al., 1994, 2008; Jodkowski
et al., 1994; Song et al., 2006; Segers et al., 2008; Dutschmann
and Dick, 2012). This modulation is probably based on recip-
rocal connections between medullary and pontine respiratory
regions which were described in a series of morphological studies
(Cohen, 1979; Bianchi and St. John, 1982; Nunez-Abades et al.,
1993; Gaytan et al., 1997; Zheng et al., 1998; Ezure and Tanaka,
2006; Segers et al., 2008). The principal source of pontine influ-
ence on the medulla is thought to be the Kölliker-Fuse region in
the dorsolateral pons, although other areas, including those from
the ventrolateral pons, are also involved (Bianchi and St. John,
1982; Chamberlin and Saper, 1994, 1998; Dick et al., 1994; Fung
and St. John, 1994a,b,c; Jodkowski et al., 1994, 1997; Morrison
et al., 1994; St. John, 1998; Rybak et al., 2004; Dutschmann and
Herbert, 2006; Mörschel and Dutschmann, 2009; Dutschmann
and Dick, 2012). Pontine activity contributes to the regulation of
phase duration as demonstrated by stimulation and lesion stud-
ies (Cohen et al., 1993; Jodkowski et al., 1994, 1997; Okazaki et al.,
2002; Cohen and Shaw, 2004; Rybak et al., 2004; Dutschmann and
Herbert, 2006; Mörschel and Dutschmann, 2009; Dutschmann

and Dick, 2012). Stimulation of the Kölliker-Fuse or medial
parabrachial nuclei induced a premature termination of inspira-
tion (I-E transition) and extended expiratory phase. These effects
were similar to the effects of vagal stimulation (Cohen, 1979;
Hayashi et al., 1996). Also, the effects of both vagal and pon-
tine stimulation appear to be mediated by the same medullary
circuits that control onset and termination of inspiration (Haji
et al., 1999; Okazaki et al., 2002; Rybak et al., 2004; Mörschel
and Dutschmann, 2009; Dutschmann and Dick, 2012). Finally,
the respiratory pattern in vagotomized animals with an intact
pons is similar to that in animals without the pons and vagi
intact. The above observations support the idea that the pontine
nuclei mediate a function similar to that of the Hering-Breuer
reflex.

Bilateral injections of NMDA antagonists (MK-801 and AP-5)
into the rostral pons reversibly increase the duration of inspi-
ration in vagotomized rats, and this increase is dose-dependent
(Fung et al., 1994). This suggests that the rostral pons con-
tains neurons with NMDA-receptors participating in the inspi-
ratory off-switch mechanism. Morrison et al. (1994) showed that
lesions of the parabrachial nuclei in the decerebrate, vagotomized,
unanesthetized rat produced a significant (4-fold) increase in
the duration of inspiration and a doubling of the duration of
expiration, supporting a role for this pontine area in the reg-
ulation of the timing of the phases of respiration. This abnor-
mal breathing pattern is known as apneusis. Administration
of MK-801 into the rostral dorsolateral pons was shown to
induce apneusis in vagotomized ground squirrels (Harris and
Milsom, 2003). Systemic injection of MK-801 increases the inspi-
ratory duration or results in an apneustic-like breathing in
vagotomized and artificially ventilated rats (Foutz et al., 1989;
Monteau et al., 1990; Connelly et al., 1992; Pierrefiche et al.,
1992, 1998; Fung et al., 1994; Ling et al., 1994; Borday et al.,
1998). Similarly, Jodkowski et al. (1994) showed that electri-
cal and chemical lesions in the ventrolateral pons produced
apneustic breathing in vagotomized rats. At the same time,
apneustic breathing is not usually developed if the vagi remained
intact and can be reversed by vagal stimulation, suggesting that
NMDA receptors are not involved in the pulmonary (vagal)
feedback mechanism.

Feldman et al. (1976) recorded cells in the rostral pons that
exhibited respiratory modulation only when lung inflation, via
a cycle-triggered pump, was stopped. The emergence of this
respiratory-modulated activity suggests that afferent vagal input
may have an inhibitory effect on the respiratory modulated cells
in the pons (see also Feldman and Gautier, 1976; Cohen and
Feldman, 1977). In the same work, it was noticed that this activity
had no apparent influence on the tonic discharge of pontine neu-
rons, suggesting that this inhibition might be presynaptic. Dick
et al. (2008) recorded several hundred cells in the dorsolateral
pons of decerebrate cats, artificially ventilated by a cycle-triggered
pump before and after vagotomy. In their experiments, vagotomy
led to either an emergence or facilitation of respiratory modu-
lation in the pons. Sustained electrical stimulation of the vagus
nerve elicited the classic Hering-Breuer reflex. Systemic or local
blockade of NMDA receptors can result in an apneustic breathing
pattern (Foutz et al., 1989; Connelly et al., 1992; Pierrefiche et al.,
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1992, 1998; Fung et al., 1994; Ling et al., 1994; Borday et al., 1998)
similar to that demonstrated by pontine lesions or transections.

The specifics of feedback control in the brainstem respiratory
CPG is that the latter operates under control of two control loops
(pulmonary and pontine ones), which both regulate key neu-
ral interactions within the CPG, thereby affecting the respiratory
rate, respiratory phase durations and breathing pattern, and, at
the same time, interact with each other so that each of them may
dominate in the control of breathing depending on the conditions
and/or the state of the system. Such feedback interactions and a

state-dependent feedback control of the CPG may have broader
implication in other CPGs in vertebrates and/or invertebrates.

Specifically, our study focuses on the following major feedback
loops involved in the control of breathing (Figure 1A): (1) the
peripheral, pulmonary (vagal) loop that controls the medullary
rhythm-generating kernel via afferent inputs from PSRs medi-
ated by the NTS circuits, and (2) the pontine control loop, that
provides pontine control of the respiratory rhythm and pattern.
Our central hypothesis is that both the peripheral afferent and
pontine-medullary loops control the respiratory frequency and

FIGURE 1 | The medullary respiratory network with pulmonary and

pontine feedbacks. (A) A general schematic diagram representing the
respiratory network with two interacting feedback. See text for details.
(B) The detailing model schematic showing interactions between different
populations of respiratory neurons within major brainstem compartments
involved in the control of breathing (pons, BötC, pre-BötC, and rVRG) and
the organization of pulmonary and pontine feedbacks. Each neural
population (shown as a sphere) consists of 50 single-compartment
neurons described in the Hodgkin-Huxley style. The model includes 3
sources of tonic excitatory drive located in the pons, RTN, and raphé—all
shown as green triangles. These drives, project to multiple neural

populations in the model (green arrows; the particular connections to
target populations are not shown for simplicity, but are specified in
Table A3 in the Appendix). See text for details. Abbreviations: AP-5,
amino-5-phosphonovaleric acid, NMDA receptor antagonist; BötC,
Bötzinger complex; e, excitatory; E, expiratory or expiration; i, inhibitory;
I, inspiratory or inspiration; IE, inspiratory-expiratory; KF, Kölliker-Fuse
nucleus; MK801, dizocilpine maleate, NMDA receptor antagonist; NTS,
Nucleus Tractus Solitarii; P, pump cells; PBN, ParaBrachial Nucleus; PN,
Phrenic Nerve; pre-BötC, pre-Bötzinger Complex; PSRs, pulmonary stretch
receptors; RTN, retrotrapezoid nucleus; r, rostral; VRC, ventral respiratory
column; VRG, ventral respiratory group.

Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 16 | 344

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Molkov et al. Feedback control of breathing

phase durations via key medullary circuits responsible for the
respiratory phase transitions (onset of inspiration, E-I, and inspi-
ratory off-switch, I-E, see Figure 1A). In addition, these loops
interact changing, balancing, and adjusting their control gain via
interaction between NTS and VRC and pontine circuits. To inves-
tigate the involvement and potential roles of these feedback loops
and their interactions with the medullary respiratory circuits
we simulated the effects of suppression/elimination of each and
both these feedbacks on the respiratory pattern and respiratory
phase durations. The results of simulations were compared with
the related experimental data and showed good qualitative cor-
respondence hence providing important insights into feedback
control of breathing.

METHODS
SIMULATION PACKAGE
All simulations in this study were performed using a neural sim-
ulation package NSM-3.0 developed at Drexel by Drs. Markin,
Shevtsova, and Rybak and ported to the high-performance com-
puter cluster systems running OpenMPI by Dr. Molkov. This
simulation environment has been specifically developed and used
for multiscale modeling and computational analysis of cross-
level integration of: (a) the intrinsic biophysical properties of
single respiratory neurons (at the level of ionic channel kinet-
ics, dynamics of ion concentrations, synaptic processes, etc.);
(b) population properties (synaptic interactions between neu-
rons within and between populations with random distributions
of neuronal parameters); (c) network properties (connectivity
strength and type of synaptic interactions, with user-defined or
random distribution of connections), (d) morpho-physiological
structure (organization of interacting modules/compartments)
(see Rybak et al., 2003, 2004, 2007, 2012; Smith et al., 2007; Baekey
et al., 2010; Molkov et al., 2010, 2011). NSM-3.0 has special
tools for simulation of various in vivo and in vitro experimen-
tal approaches, including suppression of specific ionic channels
or synaptic transmission systems, various lesions/transections,
application of various pharmacological, electrical and other stim-
uli to particular neurons or neural populations, etc.

MODELING BASIS: NEURONAL PARAMETERS AND IONIC CHANNEL
KINETICS
The model presented in this paper continues a previously pub-
lished series of models of neural control of respiration (Rybak
et al., 2004, 2007; Smith et al., 2007; Baekey et al., 2010;
Molkov et al., 2010, 2011) and, specifically, represents an exten-
sion of Smith et al. (2007) model. Following that model, each
neuron type in the present model was represented by a popu-
lation of 20–50 neurons. Each neuron was modeled as a single-
compartment neuron described in the Hodgkin-Huxley (HH)
style. These neuron models incorporated the currently available
data on ionic channels in the medullary neurons and their char-
acteristics. Specifically, the kinetic and voltage-gated and charac-
teristics of fast (Na) and persistent (NaP) sodium channels in the
respiratory brainstem were based on the studies of the isolated
pre-BötC neurons in rats (Rybak et al., 2003). The kinetics and
steady-state characteristics of activation and inactivation of high-
voltage activated (CaL) calcium channels were based on the earlier

studies performed in vitro (Elsen and Ramirez, 1998) and in vivo
(Pierrefiche et al., 1999). Temporal characteristics of intracellular
calcium kinetics in respiratory neurons were drawn from studies
of Frermann et al. (1999). Other descriptions of channel kinet-
ics were derived from previous models (Rybak et al., 2007; Smith
et al., 2007).

Heterogeneity of neurons within each population was set
by a random distribution of some neuronal parameters and
initial conditions to produce physiological variations of base-
line membrane potential levels, calcium concentrations, and
channel conductances. A full description of the model and
its parameters can be found in the Appendix. All simulations
were performed using the simulation package NSM 3.0 (see
above). Differential equations were solved using the exponen-
tial Euler integration method with a step of 0.1 ms. We utilized
the high-performance computational capabilities of the Biowulf
Linux cluster at the National Institutes of Health, Bethesda, MD
(http://biowulf.nih.gov).

MODEL ARCHITECTURE AND OPERATION IN NORMAL
CONDITIONS
The main objective of this study was to investigate the mech-
anisms underlying control of the mammalian breathing pat-
tern that is generated in the respiratory CPG circuits in the
medulla and modulated by two major feedback loops, one
involving interactions of medullary respiratory circuits with the
lungs, and the other resulting from interactions of these cir-
cuits with the pontine circuits contributing to control of breath-
ing (Figure 1A). We used an explicit computational modeling
approach and focused on investigating the anticipated changes
in the motor output (activity of the phrenic nerve, PN), specif-
ically the changes in the duration of the inspiratory and expira-
tory phases under conditions of removal or suppression of the
above feedback interactions (Figure 1A). The full schematic of
our model is shown in Figure 1B. While developing this model,
we used as a basis and extended the well-known large-scale
computational model of the brainstem respiratory network devel-
oped by Smith et al. (2007). This basic model focused on the
interactions among respiratory neuron populations within the
medullary VRC. Similar to that model, the medullary respira-
tory populations in the present model (see Figure 1B) include
(right-to-left): a ramp-inspiratory (ramp-I) population of pre-
motor bulbospinal inspiratory neurons and an inhibitory early-
inspiratory [early-I(2)] population—both in the rostral ventral
respiratory group (rVRG); a pre-inspiratory/inspiratory (pre-I/I)
and an inhibitory early-inspiratory [early-I(1)] populations of
the pre-BötC; and an inhibitory augmenting-expiratory (aug-E)
and inhibitory (post-I) and excitatory (post-Ie) post-inspiratory
populations in the BötC. As suggested in the previous model-
ing studies (Rybak et al., 2004, 2007; Smith et al., 2007), these
populations interact within and between the pre-BötC and BötC
compartments and form a core circuitry of the respiratory CPG.
In addition, multiple inputs and drives from other brainstem
components, including the pons, RTN, NTS, and raphé affect
interactions within this core circuitry and regulate its dynamic
behavior and the motor output expressed in the activity of
phrenic nerve (PN).
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Respiratory oscillations in the basic and present models
emerge within the BötC/pre-BötC core due to the dynamic
interactions among: (1) the excitatory neural population, located
in the pre-BötC and active during inspiration (pre-I/I); (2)
the inhibitory population in the pre-BötC providing inspira-
tory inhibition within the network [early-I(1)]; and (3) the
inhibitory populations in the BötC generating expiratory inhi-
bition (post-I and aug-E). A full description of these interac-
tions leading to the generation of the respiratory pattern can be
found in previous publications (Rybak et al., 2004, 2007; Smith
et al., 2007). Specifically, during expiration the activity of the
inhibitory post-I neurons in BötC decreases because of their
intrinsic adaptation properties (defined by the high-threshold
calcium and calcium-dependent potassium currents) and aug-
menting inhibition from the aug-E neurons (Figures 1B and
2A,B). At some moment, the pre-I/I neurons of pre-BötC release
from the deceasing post-I inhibition and start firing (Figure 2)
providing excitation to the inhibitory early-I(1) population of
pre-BötC and the premotor excitatory ramp-I populations of
rVRG (Figure 1B). The early-I(1) population inhibits all post-
inspiratory and expiratory activity in the BötC leading to the

disinhibition of all inspiratory populations including the ramp-
I hence completing the onset of inspiration (E-I transition).
During inspiration early-I(1) inhibition of BötC expiratory neu-
rons decreases due to intrinsic adaptation properties defined by
the high-threshold calcium and calcium-dependent potassium
currents (Figure 2). This decrease of inspiratory inhibition leads
to the onset of expiration and termination of inspiration (inspi-
ratory off-switch) (Figure 2). In the rVRG, the premotor ramp-I
neurons receive excitation from the pre-I/I neurons and drive
phrenic motoneurons and PN activity. The early-I(2) popula-
tion shapes augmenting pattern of ramp-I neurons and PN.
The PN projects to the diaphragm (Figure 1B) hence control-
ling changes in the lung volume (inflation/deflation) providing
breathing.

The architecture of network interactions within the medullary
VRC column (i.e., within and between the BötC, pre-BötC and
rVRG compartments) in the present model is the same as in the
preceding model of Smith et al. (2007). The extension of the basic
model in the present study includes: (1) a more detailed simu-
lation of the pontine compartment (in the Smith et al. model,
the pontine compartment did not have neuron populations but

FIGURE 2 | Performance of the core medullary network under normal

conditions (with both feedbacks intact). (A) The activity of main neural
populations of the core respiratory network under normal conditions.
The shown population activities include (top–down): post-inspiratory
(post-I) and augmenting expiratory (aug-E) (both in BötC); pre-inspiratory/
inspiratory (pre-I/I) and early-inspiratory [early-I(1)] (both in pre-BötC);

early-inspiratory [early-I(2)] and ramp-inspiratory (ramp-I) (both in rVRG).
The activity of each population is represented by the histogram of neuronal
firing in the population (spikes/s; bin = 30 ms). (B) Traces of membrane
potentials of the corresponding single neurons (randomly selected from
each population). Vertical dashed line indicate the inspiratory (I) and
expiratory (E) phases.
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simply provided tonic drive to medullary respiratory popula-
tions), (2) incorporation of suggested interactions between the
pontine and medullary populations that form the pontine con-
trol loop in the model (Figures 1A,B), and (3) incorporation of
the pulmonary (vagal) control loop that included models of the
lungs and pump cells in the NTS (Figures 1A,B).

PONTINE FEEDBACK LOOP
As shown in multiple studies in cats and rats, many pontine
neurons (including those in the Kölliker-Fuse and parabrachial
nuclei) exhibit respiratory modulated activity, specifically with
I-, IE-, E-, or EI-related activity (Bertrand and Hugelin, 1971;
Feldman et al., 1976; Cohen, 1979; Bianchi and St. John, 1982;
St. John, 1987, 1998; Shaw et al., 1989; Dick et al., 1994, 2008;
Jodkowski et al., 1994; Song et al., 2006; Segers et al., 2008;
Dutschmann and Dick, 2012). These neurons may have respi-
ratory modulated activity summarized with background tonic
firing or may express a pure phasic respiratory activity (especially
in rats, e.g., see Ezure and Tanaka, 2006; Song et al., 2006). These
pontine respiratory-modulated activities are probably based on
specific axonal projections and synaptic inputs from the corre-
sponding medullary respiratory neurons (Cohen, 1979; Bianchi
and St. John, 1982; Nunez-Abades et al., 1993; Gaytan et al.,
1997; Zheng et al., 1998; Ezure and Tanaka, 2006; Segers et al.,
2008). In turn, pontine neurons (including those in the Kölliker-
Fuse and parabrachial nuclei) project back to the medullary
respiratory neurons contributing to the control of the respira-
tory phase durations and phase switching (Okazaki et al., 2002;
Cohen and Shaw, 2004; Rybak et al., 2004; Dutschmann and
Herbert, 2006; Mörschel and Dutschmann, 2009; Dutschmann
and Dick, 2012). These mutual interactions between pontine and
medullary respiratory neurons form what we refer to as a pontine
(or pontine-medullary) control loop.

To simulate the pontine feedback loop, we incorporated
in the pontine compartment of the model the following
populations (see Figure 1B): the excitatory populations of neu-
rons with inspiratory-modulated (I), inspiratory-expiratory-
modulated (IEe) and expiratory-modulated (E) activities, and the
inhibitory population of neurons with an inspiratory-expiratory-
modulated (IEi) activity. As described above, pontine neurons
with such types of modulated activity were found in both rat
and cat. However, the existing experimental data on intrapontine
and pontine-medullary interactions are insufficient and do not
provide exact information on the specific connections between
these neuron types; they only suggest general ideas and princi-
ples for organization of these interactions, such as the possible
reciprocal interconnections between the pontine and medullary
neurons with similar respiratory-related patterns (see references
in the previous paragraph) and the existence of pontine pro-
jections to key medullary neurons involved in the respiratory
phase switching (such as post-I, see references above). Therefore
in the model, respiratory modulation of neuronal activity in
pontine populations was provided by excitatory inputs from the
medullary respiratory neurons with the corresponding phases of
activity within the respiratory cycle. Specifically, the inspiratory
modulation activity in the pontine I population was provided by
excitatory inputs from the medullary ramp-I population, the IE

modulation in the pontine IEe and IEi populations resulted from
excitatory inputs from the medullary ramp-I and post-Ie popula-
tions, and the expiratory-modulation in the pontine E population
was provided by inputs from the medullary post-Ie population.
In addition, to simulate the presence of neurons with respira-
tory modulated phasic and tonic activities, each of the above four
population was split into two equal subpopulations with neurons
having the same properties and neuronal connections, but dif-
fered by tonic drive, which was received only by tonically active
subpopulations (not shown in Figure 1B).

In turn, the pontine feedback in the model included (see
Figure 1B): (1) excitatory inputs from the pontine I neurons
(from both tonic and phasic subpopulations) to the medullary
pre-I/I and ramp-I populations; (2) excitatory inputs from the
pontine IEe neurons (both tonic and phasic subpopulations)
to the medullary post-I population; (3) inhibitory inputs from
the pontine IEi neurons (again both subpopulations) to the
medullary early-I(1) population; and (4) excitatory inputs from
the pontine E neurons (both subpopulations) to the medullary
post-I, post-Ie, and aug-E populations. These neuronal connec-
tions from pons to medulla (especially pontine inputs to the
medullary post-I and pre-I/I populations) allowed the pontine
feedback to control operation of the respiratory network in the
BötC/pre-BötC core and specifically to control the durations of
the respiratory phases and phase switching. Specifically, the con-
nection weights in the model were tuned so that (a) the durations
of inspiration (TI) and expiration (TE) in the model without
vagal feedback would be within the corresponding physiologi-
cal ranges for the vagotomized rat in vivo (TI = 0.2–0.55 s and
TE = 0.8–1.7 s, e.g., see Monteau et al., 1990; Connelly et al.,
1992) and (b) after full suppression or removal of the pons, the
value of TI would dramatically increase (3–4 times or more) to be
consistent with apneusis (Jodkowski et al., 1994; Morrison et al.,
1994; Fung and St. John, 1995; St. John, 1998).

PULMONARY (VAGAL) FEEDBACK LOOP
The busting activity of phrenic motoneurons produces rhythmic
inflation/deflation of the lungs, which in turn causes rhythmic
activation of PSRs projecting back to the medullary respiratory
network within the vagus nerve and hence providing pulmonary
(vagal) feedback. The activity of pulmonary afferents in the
medulla is relayed by the NTS pump (P) cells. To simulate pul-
monary feedback loop, we incorporated simplified models of the
lungs and PSRs, so that changes in the lung volume were driven
by the activity of PN (see Figures 1A,B). The resultant lung infla-
tion activates PSRs that projected back activating the excitatory
(Pe) and inhibitory (Pi) pump cells populations in the NTS.
The latter finally projected to the VRC and pons (Figure 1B).
Hence in the model, both Pe and Pi populations were involved
in the Hering-Breuer reflex preventing over-inflation of the lungs.
Specifically (Figure 1B), the Pe population excited the post-I pop-
ulation, which was based on the previous experimental data that
both lung inflation and electrical stimulation of the vagus nerve
produced an additional activation of decrementing expiratory
neurons (Hayashi et al., 1996). Following the previous model
(Rybak et al., 2004) we suggested that vagal feedback inhibits
the early-I(1) population (in this model, via the Pi population).
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Both these interactions produced a premature termination of
inspiration with switching to expiration and a prolongation of
expiration.

INTERACTIONS BETWEEN THE LOOPS
As mentioned in the section “Introduction,” the respiratory-
modulated activity in the pons is usually much stronger in the
absence of lung inflation and in vagotomized animals (e.g., see
Feldman et al., 1976; Dick et al., 2008). One explanation for these
effects is that the respiratory-modulated activity in the pons is
suppressed by vagal afferents via NTS neurons projecting to the
pons. There is indirect evidence that this suppression is based on
presynaptic inhibition (Feldman and Gautier, 1976; Dick et al.,
2008). Therefore in our model, this presynaptic inhibition is
provided by the Pi population of NTS and affects all excitatory
synaptic inputs from medullary to pontine neural populations
(Figure 1B). Therefore, this presynaptic inhibition suppresses the
respiratory modulation in the activities of pontine neurons and
reduces the influence of pontine feedback on the medullary respi-
ratory network operation and the respiratory pattern generated.
Because of the lack of specific data, the synaptic weighs of con-
nections from both pump cell populations (Pe and Pi) were set so
that (a) significantly reduce the respiratory nodulation in all types
of pontine neurons and (b) keep the durations of inspiration
and expiration in simulations with vagal feedback intact within
their physiological ranges for the rat in vivo (TI = 0.17–0.3 s and
TE = 0.3–0.5 s, e.g., see Connelly et al., 1992).

SIMULATION OF VAGOTOMY (PULMONARY FEEDBACK REMOVAL)
Under normal conditions the “intact” model generated the res-
piratory pattern with the duration of inspiration TI = 0.189±
0.046 s and the duration of expiration TE = 0.388± 0.064 s
(Figures 2, 3A, 4A, and 5A). “Vagotomy” was simulated by break-
ing the pulmonary feedback, specifically by a removal of afferent
inputs from PSRs to the pump cells in the NTS (Figure 1A). The
resultant changes in the activity of different neural populations
and in the output respiratory pattern in the model after sim-
ulated vagotomy are shown in Figures 3B and 4B. As a result
of vagotomy the pump cells (Pi and Pe populations) become
silent (only the activity of Pi is shown in Figures 3B and 4B; the
activity of Pe population is similar, i.e., it also becomes silent).
This eliminates the excitatory effect of lung inflation (PSR) on
the post-I population (and post-Ie, pre-I/I, and ramp-I), medi-
ated by Pe, and its inhibitory effect on the aug-E population,
provided by Pi (Figure 1B). This also eliminates the pulmonary
(vagal) control of respiratory phase switching and phase dura-
tions. However, this breaking of the pulmonary feedback also
removes the presynaptic inhibition of all medullary inputs to pon-
tine neural populations (provided in the intact case by the NTS’s
Pi population) hence increasing respiratory-modulated activi-
ties in the pontine neurons involved in the feedback control of
the respiratory network operation (Figures 1A,B). This therefore
increases the gain of pontine feedback and its role in the con-
trol of respiratory phase switching and phase durations. Figure 3
shows that the vagotomy resulted in increases in the respiratory-
modulated activity of pontine populations, a prolongation of
inspiration (TI = 0.277± 0.108 s), and a dramatic increase in

the expiratory phase duration (TE = 0.938± 0.065 s). Figure 4
shows that the applied vagotomy produced a significant increase
of inspiratory (I), inspiratory-expiratory (IE), and expiratory (E)
modulation in the activity of the corresponding pontine neurons
with tonic activity and releases the corresponding firing in pon-
tine neurons with phasic I, IE, and E activities not active in the
intact case.

SIMULATION OF PONTINE FEEDBACK SUPPRESSION WITH AND
WITHOUT PULMONARY FEEDBACK
A complete removal of the pons (i.e., a removal of pontine feed-
back) in the model with an intact pulmonary feedback produced a
prolongation of inspiration (TI = 0.337± 0.052 s) and a slightly
reduced in average (in comparison to the intact model) but highly
variable expiratory duration (TE = 0.353± 0.159 s) character-
ized by occasional deletions of aug-E bursts (see Figures 5B and
6A). To compare our simulations with the existing experimental
data on the effects of pontine suppression by local injections of
MK801, a blocker of NMDA receptors, that might not completely
suppress the excitatory synaptic transmission in the pontine neu-
rons and their activity, we also simulated a partial suppression
of excitatory synaptic weights in the pontine compartment (e.g.,
by 25% see Figure 6A). Such partial suppression produced a visi-
ble prolongation of inspiration (TI = 0.262± 0.028 s with TE =
0.297± 0.028 s at 25% suppression, Figure 6A).

In contrast to pontine suppression with the intact pulmonary
feedback, the same procedures after vagotomy led to a dramatic
increase in the average duration of inspiration (making the inspi-
ratory duration highly variable) at relatively constant duration of
expiration (Figures 5C and 6A). This prolongation of inspiration
after vagotomy increased with the degree of pontine suppression
(reducing the weights of excitatory synaptic inputs to pontine
neurons) (Figure 6A) and accompanied by a suppression or full
elimination of post-I activity and reduced amplitude of integrated
PN (Figure 5C). Both these features are typical for apneusis (see
Cohen, 1979; Wang et al., 1993; Jodkowski et al., 1994; Morrison
et al., 1994; Fung and St. John, 1995; St. John, 1998). The
durations of inspiration and expiration after vagotomy at dif-
ferent degrees of pontine suppression were the following: TI =
0.437± 0.143 s with TE = 0.433± 0.030 s at 25% suppression;
TI = 0.885± 0.339 s with TE = 0.417± 0.004 s at 75% suppres-
sion; and TI = 571 ± 0.310 s with TE = 0.431± 0.003 s at 100%
suppression.

The results of our simulations reflecting changes in TI and
TE following different combinations of vagotomy with pontine
suppression at different degrees are shown together in Figure 6A.
Our general conclusions made from these simulations are the fol-
lowing. (1) A suppression of pontine activity with the intact pul-
monary feedback leads to a moderate prolongation of inspiration,
slight shortening of expiration, and an increase in variability of TE

(with 100% pontine suppression). (2) The simulated vagotomy
(with the intact pontine-medullary interactions) causes a mod-
erate prolongation of inspiration with an increase in variability
of TI and a strong prolongation of expiration. (3) Combination
of both perturbations does not produce visible effects on TE, but
leads to a significant prolongation of inspiration (increasing with
the degree of pontine suppression), increasing of TI variability,
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FIGURE 3 | Simulated vagotomy (removal of the pulmonary feedback).

Activity of major VRC (post-I, aug-E, early-I(1), pre-I/I, early-I(1), early-I(2),
and ramp-I), NTS (Pi) and pontine (I, IEe, and E) neural populations, lung

inflation and PN activity before (A) and after (B) simulated vagotomy.
Vertical dashed line indicate the inspiratory (I) and expiratory (E) phases.
See text for details.

and other typical characteristics of apneusis (suppressed post-I
activity and reduced PN amplitude).

COMPARISON WITH EXPERIMENTAL DATA
To test our model, we performed simulation with 25%, 75%,
and 100% suppression of the pontine control loop before and
after simulated vagotomy (removal of the pulmonary feedback).

The resultant changes in TI and TE are shown in Figure 6A. To
compare these simulation results with the related experimental
data, we built similar diagrams from the early study of Connelly
et al. (1992), which examined spontaneously breathing in Wistar
rats during the administration of NMDA blocker MK-801 before
and after vagotomy (Figure 6B). In this study, the experiments on
Wistar rats (in contrast to the Sprague-Dawley strain) did not end
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FIGURE 4 | Respiratory modulation in the activity of pontine neurones

before (A) and after (B) simulated vagotomy. The changes of phrenic
activity (PN) and the lung inflation are shown at the top. Below these graphs,

membrane potentials traces of representative single neurons from the Pi and
pontine populations (tonic and phasic subpopulations) are shown. See text for
details.

with apneusis, due to (in our opinion) an insufficient suppression
of the pontine feedback by the performed MK-801 injections.
Nevertheless, the effects of vagotomy and MK-801 administra-
tion on TI and TE before and after vagotomy reported in Connelly
et al. study are qualitatively similar to our simulations with 25%
suppression of pontine feedback (see Figures 6A,B). Specifically,
the 25% pontine suppression in our simulations and the admin-
istration of MK-801 in Connelly et al. experiments result in an
increase of TI and slight reduction of TE before vagotomy and
in a significant prolongation of inspiration after vagotomy. In
addition, vagotomy alone without other perturbations in both
cases results in an increase of TI and significant prolongation
of TE (see Figures 6A,B). Moreover, the changes in the respi-
ratory frequency and the shape and amplitude of integrated
phrenic activity after vagotomy and/or pontine suppression in
our model are similar to that in the experimental studies with
MK-801 administration (Figure 7). The other comparison of our
simulations was made with the experimental study of Monteau
et al. (1990) performed in anaesthetized vagotomized rats by

using MK-801 administration, which results are summarized in
Figure 6C. This study did demonstrate that MK-801 application
after vagotomy produced switching from a normal breathing pat-
tern to the typical apneusis. The relationships between TI and
TE in our simulation after vagotomy and their changes follow-
ing 100% pontine suppression (apneusis) are similar to these in
the Monteau et al. study (see Figures 6A,C).

DISCUSSION
The results of our simulations promote the concept that both
pulmonary and pontine feedback loops contribute to the con-
trol of the respiratory pattern and, specifically, the durations of
inspiration (TI) and expiration (TE). Furthermore, our model-
ing results are consistent with the previous suggestion of specific
interactions between these feedback loops, in particular that the
PSR afferents involved in the pulmonary control of TI and TE

attenuate the gain of the pontine control of these phase dura-
tions (via the presynaptic inhibition of excitatory inputs from
medullary to pontine populations) (Feldman and Gautier, 1976;
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FIGURE 5 | The effects of pontine suppression before and after

simulated vagotomy. Activity of major medullary [post-I, aug-E, early-I(1),
pre-I/I, early-I(1), early-I(2), and ramp-I], NTS (Pi) and pontine (I, IEe, and E)
neural populations, lung inflation and PN activity under control conditions

(A) and following the 100% suppression of pontine activity before (B) and
after (C) simulated vagotomy. The activity pattern shown in (C) represents
typical apneusis. Vertical dashed line indicate the inspiratory (I) and expiratory
(E) phases. See text for details.

Feldman et al., 1976; Cohen and Feldman, 1977; Cohen, 1979;
Mörschel and Dutschmann, 2009). Nevertheless, according to our
simulations, pontine activity still plays a role in the control of
inspiration and expiration even when the pulmonary feedback is
intact, although the gain of this pontine control is significantly
reduced by the presynaptic inhibition. This presynaptic inhibition
is expected to suppress the respiratory modulation in the activity
of pontine neurons expressing either tonic or phasic firing pat-
terns (Feldman and Gautier, 1976; Feldman et al., 1976; Cohen
and Feldman, 1977; Cohen, 1979; St. John, 1987, 1998; Shaw
et al., 1989; Dick et al., 1994, 2008; Song et al., 2006; Segers et al.,
2008), which is reproduced by our model (Figure 4). Also, the
model offers a plausible mechanistic explanation for the previous
experimental findings that injection of NMDA antagonists in the
dorsolateral pons (specifically in the Kölliker-Fuse area) leads to

a prolongation of inspiration and to apneusis in the case of a lack
of pulmonary feedback (Foutz et al., 1989; Connelly et al., 1992;
Pierrefiche et al., 1992, 1998; Fung et al., 1994; Ling et al., 1994;
Bianchi et al., 1995; Borday et al., 1998; St. John, 1998).

In contrast to previous suggestions and models (Okazaki et al.,
2002; Cohen and Shaw, 2004; Rybak et al., 2004; Dutschmann and
Herbert, 2006; Mörschel and Dutschmann, 2009; Dutschmann
and Dick, 2012), the mechanisms of action of the two feed-
backs considered in the current model are not exactly symmetric.
Excitatory inputs from both these feedbacks (from PSRs via the
NTS’s Pe cells, and from the pontine I, IEe, and E popula-
tions) activate the ramp-I, pre-I/I, post-Ie, and post-I medullary
populations (see Figure 1B). The majority of these excitatory
connections are the ones activating the inhibitory post-I popu-
lation that controls the inspiratory off-switching, i.e., the timing
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FIGURE 6 | Changes in the durations of inspiration (TI ) and expiration

(TE ) following pontine suppression and/or vagotomy. (A) Changes in TI

and TE following the simulated pontine suppression at different degrees
(25%, 75%, and 100%) before and after (vag. +) vagotomy. (B) Changes in
TI and TE in the study of Connelly et al. (1992): diagrams are built for
spontaneously breathing Wistar rats under control conditions and after
administration of NMDA blocker MK-801 before and after vagotomy. (C)

Changes in TI and TE in the study of Monteau et al. (1990) performed in
anaesthetized vagotomized rats using MK-801 administration.

of inspiratory phase termination and TI , and those activating the
excitatory pre-I/I population which, in a balance with the inputs
to post-I, control the onset of inspiration (and TE). However the
effect of these excitatory inputs from the two feedbacks on the
medullary circuitry is not identical and depends on the particular
synaptic weights and the activity pattern of the inhibitory NTS’s
Pi cells providing presynaptic inhibition of medullary inputs to

the pontine neurons (Figure 1B). The organization of inhibitory
inputs of these feedbacks to the medullary populations in the
model is different. While the pulmonary feedback inhibits the
aug-E population (via PSRs and Pi cells) causing a complex effect
on the respiratory pattern, the pontine IEi population inhibits
the early-I(1) population hence promoting expiration, which is
clearly seen after vagotomy (Figure 1B).

It is important to mention that the current model of the
medullary core respiratory circuits in the VRC (including the
BötC, pre-BötC, and rVRG) used in our model was derived
from the model of Smith et al. (2007) without significant
changes. Starting with that first publication, this basic model
(with necessary additions) was able to reproduce multiple exper-
imental results, including the characteristic changes of the res-
piratory pattern following a series of pontine and medullary
transections and effect of riluzole (persistent sodium current
blocker) on the intact and sequentially reduced in situ prepara-
tion (Rybak et al., 2007; Smith et al., 2007), the emergence of
the additional late-expiratory oscillations in the RTN/parafacial
respiratory group (RTN/pFRG) during hypercapnia and inter-
actions between the BötC/pre-BötC and RTN/pFRG oscilla-
tors (Abdala et al., 2009; Molkov et al., 2010), the effects of
baroreceptor stimulation and the respiratory-sympathetic cou-
pling including this following the intermittent hypoxia (Baekey
et al., 2010; Molkov et al., 2011; Rybak et al., 2012), etc.
The extended model described here was also able to repro-
duce the above behaviors, including the biologically plausible
changes of membrane potentials and firing patterns of differ-
ent respiratory neurons (Figure 2B). The ability of the extended
model to reproduce the experimentally observed effects of the
two feedback loops provides an additional support for the
model of the core respiratory circuits used in all these previ-
ous models.

The exact mechanisms of pontine control of breathing are not
well-understood and the pontine-medullary connections incor-
porated in the model are currently speculative. However, the
general importance of the pons in the control of the respi-
ratory pattern is well-recognized (see Dutschmann and Dick,
2012, for review). Studies utilizing the classic neurophysiological
approaches of lesioning, stimulating and recording neurons have
established that the lateral pons influences not only phase dura-
tion, phrenic amplitude, and response to afferent stimulation, but
also the dynamic changes in respiratory pattern associated with
persistent stimuli. For instance, blocking neural activity in the
dorsolateral pons not only prolongs inspiration but also blocks
the adaptation to vagal stimulation (Siniaia et al., 2000), and the
shortening of expiration associated with repeated lung inflation
(Dutschmann et al., 2009). Thus, the pons is not only intimately
involved in the initial response to various stimuli, but also in
the complex processes of accommodation and habituation. In
the cardiovascular control system, parabrachial stimulation atten-
uates the NTS response to carotid sinus nerve stimulation by
inhibition of NTS neurons receiving these inputs (Felder and
Mifflin, 1988).

With normally operating pontine-medullary interactions,
the simulated vagotomy results in a prolongation of inspi-
ration and significant increase of the expiratory duration
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FIGURE 7 | Changes in the breathing pattern (phrenic activity, PN)

following MK-801 application (pontine suppression in the model)

before and after vagotomy. (A) Changes in integrated phrenic nerve
activity (Int. Diaph.) from spontaneously breathing Wistar rats
before (top traces) and after (bottom traces) NMDA channel blockade,

before (left diagrams) and after (right diagrams) vagotomy (from Connelly
et al., 1992) (B) Changes in integrated phrenic nerve activity (PN) in our
simulations before (top traces) and after (bottom traces) simulated pontine
suppression, before (left diagrams) and after (right diagrams) simulated
vagotomy.

(Figures 3B and 6A). However, despite these changes, the breath-
ing pattern after vagotomy remains similar to that in eupnea
(Figure 3). This maintenance of the eupneic breathing pattern
occurs because the control performed by the pulmonary loop is
now partly mimicked by the pontine loop, whose gain is increas-
ing after vagotomy, as the latter removes the presynaptic inhibi-
tion of medullary inputs to pontine neurons (Figure 1B). Our
model suggests that the pulmonary feedback yet performs the
major function in the control of respiratory phase transitions and
phase durations, and that a removal of this control loop places the
full responsibility for this control on the pontine feedback loop.

The complementary role of the pontine and pulmonary feed-
backs in control of phase duration (especially TI) in our model is
consistent with the classical interpretation of their function in res-
piratory control (see Dutschmann and Dick, 2012, for review). In
particular, a premature termination of inspiration and switching
to expiration can be elicited by stimulation of either the rostral
pons or the pulmonary afferents (Bertrand and Hugelin, 1971;
Cohen, 1979; Oku and Dick, 1992; Wang et al., 1993; St. John,
1998; Haji et al., 1999; Okazaki et al., 2002; Rybak et al., 2004;

Dutschmann and Herbert, 2006). This observation was explained
by their common excitatory input on the post-inspiratory neu-
rons in the medullary VRC which are critically involved in
this phase transition (Okazaki et al., 2002; Rybak et al., 2004;
Dutschmann and Herbert, 2006; Mörschel and Dutschmann,
2009).

Alternatively, our results suggest that the pontine-medullary
feedback does not simply function as an “internal pulmonary
feedback,” performing a redundant function and compensating
for the potential loss of vagal input. The specific increase in
the variability of TE with the suppression pontine activity and
the significant prolongation of TE after vagotomy (Figure 6A)
indicate that the pontine and pulmonary feedbacks differ in the
control of TE. Indeed, our modeling results show that these
control loops may complement each other in differential con-
trol of phase duration and breathing pattern variability. For
example, an increase of TE variability with pontine suppres-
sion, as seen in Figures 5B and 6A, may be the case during
various breathing disorders, such as sleep apnea or ventilator
weaning (Tobin et al., 2012). In this connection, the stability of
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TE can be critically important and is primarily being controlled
by the pons. Moreover, the Kölliker-Fuse area of the dorsolateral
pons was explicitly identified to contribute to breathing disor-
ders in a mouse model for a neurodevelopmental disease called
Rett-syndrome (Stettner et al., 2007; Abdala et al., 2010).

Consistent with the many earlier and recent experimental data
from cats and rats (Lumsden, 1923; Cohen, 1979; Wang et al.,
1993; Jodkowski et al., 1994; Morrison et al., 1994; St. John, 1998),
our simulations show that a strong pontine suppression (e.g.,
75%) or its removal after vagotomy leads to apneusis, charac-
terized by a significant increase of inspiratory duration and its
variability (Figures 5C and 6A). The other specific characteristics
of apneusis are a lack of post-inspiratory activity and a reduc-
tion of phrenic amplitude during inspiration (Cohen, 1979; Wang
et al., 1993; Jodkowski et al., 1994; Morrison et al., 1994; Fung

and St. John, 1995; St. John, 1998), which were reproduced in our
simulations (Figure 5C).

Our understanding of interactions between individual
components of complex systems is often insufficient to explain
emergent properties of these systems. The present study elucidates
the important role of two major feedback loops and interactions
between them in regulation of the respiratory rate and breathing
pattern allowing the brainstem respiratory network to maintain
system’s homeostasis and adjust breathing to various metabolic
and physiologic demands.
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APPENDIX
SINGLE NEURON MODEL
All neurons were modeled in the Hodgkin-Huxley style as single-
compartment models:

C · dV

dt
= −INa − INaP − IK − ICaL − IK, Ca − IL − ISynE − ISynI ,

(A1)

where V is the membrane potential, C is the membrane
capacitance, and t is time. The terms in the right part of
this equation represent ionic currents: INa—fast sodium (with
maximal conductance ḡNa); INaP—persistent (slow inactivating)
sodium (with maximal conductance ḡNaP); IK —delayed rec-
tifier potassium (with maximal conductance ḡK ); ICaL—high-
voltage activated calcium (with maximal conductance ḡCaL);
IK, Ca—calcium-dependent potassium (with maximal conduc-
tance ḡK, Ca), IL—leakage (with constant conductance gL); ISynE

(with conductance gSynE) and ISynI (with conductance gSynI )—
excitatory and inhibitory synaptic currents, respectively.

Currents are described as follows:

INa = ḡNa ·m3
Na · hNa · (V − ENa);

INaP = ḡNaP ·mNaP · hNaP · (V − ENa);
IK = ḡK ·m4

K · (V − EK);
ICaL = ḡCaL ·mCaL · hCaL · (V − ECa);

IK,Ca = ḡK,Ca ·m2
K, Ca · (V − EK); (A2)

IL = gL · (V − EL);
ISynE = gSynE · (V − ESynE);
ISynI = gSynI · (V − ESynI),

where ENa, EK , ECa, EL, ESynE, and ESynI are the reversal potentials
for the corresponding channels.

Variables mi and hi with indexes indicating ionic currents
represent, respectively, the activation and inactivation variables
of the corresponding ionic channels. Kinetics of activation and
inactivation variables is described as follows:

τmi(V) · d

dt
mi = m∞i(V)−mi;

τhi(V) · d

dt
hi = h∞i(V)− hi. (A3)

The expressions for steady state activation and inactivation vari-
ables and time constants are shown in Table A1. The value
of maximal conductances for all neuron types are shown in
Table A2.

The kinetics of intracellular calcium concentration Ca is
described as follows (Rybak et al., 1997):

d

dt
Ca = −kCa · ICaL · (1− PB)+ (Ca0 − Ca)/τCa, (A4)

where the first term constitutes influx (with the coefficient kCa)
and buffering (with the probability PB), and the second term

Table A1 | Steady state activation and inactivation variables and time

constants for different ionic channels.

Ionic

channels

m∞(V ), V in mV;
τm(V ), ms;
h∞(V ), V in mV;
τh(V ), ms

Fast
sodium Na

m∞Na = 1/(1+ exp(−(V + 43.8)/6));
τmNa = τmNa max/ cosh((V + 43.8)/14), τmNa max = 0.252;
h∞Na = 1/(1+ exp((V + 67.5)/10.8));
τhNa = τhNa max/ cosh ((V+ 67.5)/12.8), τhNa max = 8.456

Persistent
sodium
NaP

m∞NaP = 1/(1+ exp(−(V + 47.1)/3.1));
τmNaP = τmNaP max/ cosh((V + 47.1)/6.2), τmNaP max = 1;
h∞NaP = 1/(1+ exp((V + 60)/9));
τhNaP = τhNaP max/ cosh (V+ 60)/9), τhNaP max = 5000

Delayed
rectifier
potassium
K

α∞K = 0.01 · (V + 44)/(1− exp(−(V + 44)/5));
β∞K = 0.17 · exp(−(V + 49)/40));
m∞K = α∞K /(α∞K + β∞K ).

τmK = τmK max/(α∞K + β∞K ), τmK max = 1

High-
voltage
activated
calcium
CaL

m∞CaL = 1/(1+ exp(−(V + 27.4)/5.7));
τmCaL = 0.5;
h∞CaL = (1+ exp((V + 52.4)/5.2));
τhCaL = 18

Calcium-
dependent
potassium
K(Ca2+ )

α∞K ,Ca = 1.25 · 108 · [Ca]2i , β∞K ,Ca = 2.5;
m∞K ,Ca = α∞K ,Ca/(α∞K ,Ca + β∞K ,Ca).

τmK ,Ca = τmK ,Ca max · 1000/(α∞K ,Ca + β∞K ,Ca),

τmK max = 0.7− 1.0

Table A2 | Maximal conductances of ionic channels in different

neuron types.

Neuron type ḡNa, nS ḡNaP , nS ḡK , nS ḡCaL , nS ḡK, Ca, nS gL, nS

pre-I 170 5.0 180 2.5

post-I, post-Ie 400 250 0.1 6.0 6.0

aug-E 400 250 0.1 3.0 6.0

early-I(1) 400 250 0.1 3.5 6.0

early-I(2) 400 250 0.1 11.0 6.0

All others 400 250 6.0

describes pump kinetics with resting level of calcium concentra-
tion Ca0 and time constant τCa.

PB = B/(Ca+ B+ K), (A5)

where B is the total buffer concentration and K is the rate
parameter.

The calcium reversal potential is considered a variable and is a
function of Ca:

ECa = 13.27 · ln(4/Ca) (at rest Ca = Cao

= 5 × 10−5 mM and ECa = 150 mV). (A6)
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The excitatory (gSynE) and inhibitory synaptic (gSynI) conduc-
tances are equal to zero at rest and may be activated (opened) by
the excitatory or inhibitory inputs respectively:

gSynEi(t) = ḡE · Fpresyn
i ·

∑
j

S{wji} ·
∑

tk j < t

exp
(− (t − tk j

)
/τSynE

)

+ḡEd ·
∑

m

S{wdmi} · dmi;

gSynIi(t) = ḡI ·
∑

j

S
{−wji

} · ∑
tk j < t

exp
(− (t − tk j

)
/τSynI

)

+ḡId ·
∑

m

S{−wdmi} · dmi, (A7)

where the function S{x} = x, if x ≥ 0, and 0 if x < 0. In Equations
(A7), each of the excitatory and inhibitory synaptic conduc-
tances has two terms. The first term describes the integrated
effect of inputs from other neurons in the network (excitatory
or inhibitory). The second term describes the integrated effect of
inputs from external drives dmi. Each spike arriving to neuron i
from neuron j at time tkj increases the excitatory synaptic con-
ductance by ḡE · wji if the synaptic weight wji > 0, or increases the
inhibitory synaptic conductance by−ḡI · wji if the synaptic weight
wji < 0. ḡE and ḡI are the parameters defining an increase in the
excitatory or inhibitory synaptic conductance, respectively, pro-
duced by one arriving spike at |wji| = 1. τSynE and τSynE are the
decay time constants for the excitatory and inhibitory conduc-
tances respectively. In the second terms of Equation (A7), ḡEd and
ḡId are the parameters defining the increase in the excitatory or
inhibitory synaptic conductance, respectively, produced by exter-
nal input drive dmi = 1 with a synaptic weight of |wdmi| = 1. All
drives were set to 1.

Presynaptic inhibition is simulated as an attenuator of exci-
tatory synapses by means of a factor Fpresyn ≤ 1. This factor is
calculated according to the following equation:

F
presyn
i =

⎛
⎝1+

∑
j

S
{
−w

p
ji

}
·
∑

tk j < t

exp
(− (t − tk j

)
/τSynI

)⎞⎠
−1

,

(A8)
where w

p
ji ≤ 0 is the weight of presynaptic inhibitory connection

that synapse i receives from neuron j. If a synapse i does not
receive any presynaptic inhibition, then w

p
ji = 0 for and hence for

this synapse F
presyn
i = 1.

The relative weights of synaptic connections (wji, w
p
ji , and

wdmi) are shown in Table A3.
The following neuronal and synaptic parameters were used:

C = 36 pF; ENa = 55 mV; EK = −94 mV;ESynE = −10 mV;
ESynI = ECl = −75 mV;

gE = gI = gEd = gId = 1.0 nS; τSynE = 5 ms; τSynI = 15 ms;
Ca0 = 5× 10−5 mM; kCa = 2× 10−5 mM/C; τCa = 250 ms,

B = 0.030 mM;K = 0.001 mM.

Table A3 | Weights of synaptic connections in the network.

Target

population

(location)

Excitatory drive (weight of synaptic input from

this drive) or source population (from single

neuron)

ramp-I (rVRG) drive(Pons) (0.7);
post-I (−1.0); aug-E(−0.15); pre-I /I (0.06); early-I(2)
(−0.2);
pontine I (0.2); Pe (0.115)

early-I(2)
(rVRG)

drive(Pons) (2);
post-I (−0.5);
Pi (−0.15)

pre-I/I
(pre-BötC)

drive(Pons) (0.03); drive(Raphe) (0.3); drive(RTN) (0.2);
post-I (−0.1625); aug-E (−0.0275); pre-I /I (0.03);
pontine I (0.2); Pe (0.025)

early-I(1)
(pre-BötC)

drive(Pons) (0.75); drive(RTN) (2.03);
post-I (−0.4); aug-E (−0.2); pre-I /I (0.04);
pontine IEi (−0.15)

aug-E (BötC) drive(Pons) (0.6); drive(RTN) (1.25);
post-I (−0.09); early-I(1) (−0.135);
Pi (−0.075)

post-I and
post-Ie (BötC)

drive(Pons) (0.5);
aug-E (−0.025); early-I(1) (−0.15);
pontine IEe (0.35); pontine E (0.075); Pe (0.275)

pontine I
(Pons)

drive(Pons) (0.25) (only to tonic subpopulation);
ramp-I (0.025);
Pi (−0.5p)

pontine IEe
and IEi (Pons)

drive(Pons) (0.2) (only to tonic subpopulations);
ramp-I (0.03); post-Ie (0.05);
Pi (−0.5p)

pontine E
(Pons)

drive(Pons) (0.3) (only to tonic subpopulations);
post-Ie (0.05);
Pi (−5.0p)

Pe and Pi
(NTS)

PSRs (1.0)

Phrenic Nerve
(PN)

ramp-I (0.065)

Lungs PN (1.2)

PSRs Lungs (3.0)

Values in brackets represent relative weights of synaptic inputs from the

corresponding source populations;
ppresynaptic inhibition.

MODELING NEURAL POPULATIONS
Each functional type of neuron in the model was represented by
a population of 50 neurons. Connections between the popula-
tions were established so that, if a population A was assigned to
receive an excitatory or inhibitory input from a population B or
external drive D, then each neuron of population A received the
corresponding excitatory or inhibitory synaptic input from each
neuron of population B or from drive D, respectively. The pon-
tine I, IEi, IEe, and E population represent an exception: only
half of each population (the tonic subpopulation) receives tonic
drive (see in the section “Pontine Feedback Loop”). To provide
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heterogeneity of neurons within neural populations, the value of
EL was randomly assigned from normal distributions using aver-
age value± SD. Leakage reversal potential for all neurons (except
for the pre-I ones) was EL = −60± 1.2 mV; for pre-I neurons
EL = −68± 1.36 mV.

MODELING OF LUNGS, PN, AND PSR
The phrenic motoneuron population and phrenic nerve (PN)
were not modeled. Integrated activity of the ramp-I population

were considered as PN motor output. An increase in lung vol-
ume (lung inflation) V was modeled as a low-pass filter of PN
activity:

τV · dV

dt
= −V + wPN→V · PN, (A9)

where τV = 100 ms is a lung time constant. The PSR output was
considered proportional to the lung inflation V.
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The voltage clamp method, pioneered by Hodgkin, Huxley, and Katz, laid the foundations to
neurophysiological research. Its core rationale is the use of closed-loop control as a tool for
system characterization. A recently introduced method, the response clamp, extends the
voltage clamp rationale to the functional, phenomenological level. The method consists
of on-line estimation of a response variable of interest (e.g., the probability of response
or its latency) and a simple feedback control mechanism designed to tightly converge this
variable toward a desired trajectory. In the present contribution I offer a perspective on
this novel method and its applications in the broader context of system identification and
characterization. First, I demonstrate how internal state variables are exposed using the
method, and how the use of several controllers may allow for a detailed, multi-variable
characterization of the system. Second, I discuss three different categories of applications
of the method: (1) exploration of intrinsically generated dynamics, (2) exploration of
extrinsically generated dynamics, and (3) generation of input–output trajectories. The
relation of these categories to similar uses in the voltage clamp and other techniques is
also discussed. Finally, I discuss the method’s limitations, as well as its possible synthesis
with existing complementary approaches.

Keywords: response clamp, control, closed-loop, physiology, psychophysics

MOTIVATION
A paramount goal of any neurophysiological study is to iden-
tify and characterize the function of neural systems. What kind
of methodology can one employ in order to achieve this goal?
A compelling option is to use the framework of control the-
ory and signal processing, which engineers utilize to characterize
artificial systems. The first step in this methodology is to define
the system’s input and output variables. Then, a set of signals is
selected (e.g., step, pulse, or harmonic functions) and is applied to
the system’s input, while the output signal corresponding to each
input is observed. Finally, the system is characterized in terms of
its input–output relations, namely the conversion laws that dictate
what kind of output arises in response to any given input (includ-
ing novel, untested stimuli). Another realization of this approach
is to use noise as input and to deduce the input–output relations
using reverse correlations. This “open-loop” methodology is very
efficient when simple systems are involved: a linear time-invariant
(LTI) system (e.g., a classical resistor-capacitor circuit) may be
fully characterized-based solely on its response to a single step
function; simple non-linear elements, such as analog transistors
in their “linear” regime, may also be studied using “small signal”
(i.e., harmonic) analysis.

The application of such tools to biological systems, however, is
severely limited. First, these systems are invariably composed of
non-linear elements which exhibit sharp threshold phenomena,
i.e., small changes in their input may cause abrupt and significant
changes in their output. Second, biological systems are stochastic,
with a response variance which is often comparable in magni-
tude to the response mean (Arieli et al., 1996). Finally, time and

activity-dependent processes continuously change the properties
of the system; such changes are referred to as inactivation, adapta-
tion, habituation, learning, etc. Therefore, the history of activity
impacts on the system’s internal variables, which in turn affect
future activity—and so forth. This internal feedback results in
dynamic instabilities that are manifested in complex trajectories
of the system’s output.

This challenge was confronted by Hodgkin et al. (1952) in
their analysis of the mechanisms underlying the generation of
action-potentials. There, too, the dynamics of non-linear and
history-dependent internal variables (in this case, membrane
conductances) result in a complex voltage trajectory. The break-
through in that study came with the development of a closed-loop
technique called the voltage clamp, in which the system’s output is
stabilized by applying feedback control. Once the voltage is con-
trolled, the dynamics of the membrane conductances were signif-
icantly simplified and could be measured by analyzing the control
signal (i.e., the feedback current). This enabled comprehensive
study and quantitative modeling of the system.

The essence of the clamp rationale, therefore, is to use control
as a tool for system characterization; it inverts the experimental
approach, determining the output of the system and observing
the input signal required in order to obtain this desired out-
put. One might expect this inverted system to simply reflect the
behavior of the open-loop (i.e., current clamp) scenario, yet this
is seldom the case in the non-linear, time-variant systems ubiq-
uitous in physiology. The voltage clamp and other methods that
emanated from it were extremely instrumental in elucidating the
mechanisms of excitability. They did not, however, directly target
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the functionality of neural systems beyond the molecular level as
the object of control.

The rationale of the voltage clamp technique was generalized
to the study of neural systems at the functional, phenomenologi-
cal level in a recently introduced method called the response clamp
(Wallach et al., 2011). The current contribution aims at offering
a comprehensive perspective of this method, its possible appli-
cations and extensions, as well as of its limitations. Note that,
while termed a Review, this article does not attempt to provide an
expansive outlook on the field of closed-loop methodology (for
such a review of closed-loop physiology, for instance, see Arsiero
et al., 2007).

THE RESPONSE CLAMP EXPOSES FUNCTIONAL STATE
VARIABLES OF NEURAL SYSTEMS
The response clamp method utilizes a simple control proce-
dure which allows robust manipulation of the system’s response
dynamics. First, a selected response feature is either directly
measured or estimated from the system’s activity. Then, a
Proportional-Integral-Derivative (PID) controller (Levine et al.,
1996) adjusts a stimulation parameter related to that feature
in close-loop, so that the system’s behavior converges to some
desired pattern. The procedure eliminates the feedback from
the system’s response dynamics to its internal state dynamics.
Moreover, these internal (and otherwise hidden) state dynamics
are exposed to continuous measurement by analysis of the control
signal. To demonstrate this let us use the example of clamping the
response probability, which served in previously published studies
(Marom and Wallach, 2011; Wallach and Marom, 2012).

Many excitable systems are characterized by an “all-or-none”
response to external perturbation. While the responses them-
selves, once evoked, are stereotypical and uniform, the probability
of evoking these responses is graded and depends on various
stimulation parameters, as well as on the present state of the
system. Some qualitative understanding of this dependence is
required in order to establish control over the response proba-
bility; the easiest case is when the probability is monotonically
related to some stimulus feature (e.g., intensity or contrast relative
to the background). The most abundant form of such monotonic
relationships in physiology and psychophysics is the sigmoidal
curve, which exhibits threshold and saturation phenomena; sev-
eral mathematical functions were used to model such sigmoidal
relations, e.g., the error function, the hyperbolic tangent and the
logistic curve. Let us consider the latter, which is characterized by
a threshold parameter θ and a dynamic range parameter σ,

P(x; t) = 1

1+ e−
(x(t)− θ(t))

σ(t)

, (1)

where P is the response probability and x is the stimulation inten-
sity (Figure 1). Note that small values of σ signify a steep sigmoid
and therefore high sensitivity to changes in stimulation intensity
[the maximal slope being (4σ)−1].

Due to the monotonic nature of this relationship, the response
probability may be controlled by continuously adjusting the stim-
ulation intensity using a negative feedback loop; the PID algo-
rithm of the response clamp is a simple and efficient way to realize

FIGURE 1 | Sigmoidal input–output relations. The response probability’s
dependence on stimulation intensity follows a sigmoidal function with two
parameters (state variables): the threshold θ and the dynamic range σ

(see Equation 1). When two response clamps are used, one controller may
clamp to 0.75 and the other to 0.25, thus yielding measurements of two
distinct loci on the response curve (denoted x75 and x25, respectively).
The mean of these measurements is the threshold, while their difference is
proportional to the dynamic range.

this loop. If we choose 50% as our target response probability,
it is readily apparent that the stimulation sequence produced by
the controller must satisfy at all times x(t) = θ(t), i.e., the control
signal in fact reflects the instantaneous threshold, a key functional
state variable of the system. In practice this measurement contains
some degree of inherent noise, since the system is stochastic and
the response probability must be estimated using a finite number
of samples.

Thus, using one response clamp controller, one locus on the
input–output curve is tracked, providing a single-parameter char-
acterization of these relations. A more detailed characterization
is possible using multiple controllers, each clamping to a differ-
ent value. The controllers take turns in stimulating the system
(i.e., they are “time-multiplexed,”) each using only the responses
to its own stimuli in the control algorithm. This configura-
tion provides non-simultaneous, mutually independent measure-
ments of the system [see Wallach and Marom (2012) for details].
Thus, a multiple clamp set-up consisting of n controllers tracks
n points in the input–output curve. Producing the state variables
of interest from this set of measurements might require some
“coordinate transform,”

�S = f
(�X) , (2)

where �X is the vector of measurements (i.e., the set of n control
signals), f is some function and �S is a vector of m state variables
of interest (m ≤ n). If, for example, the transform is linear, then

�S = T · �X, (3)

where T is some m× n matrix.
In the example of the sigmoid relations presented in

Equation (1), for instance, using two controllers enables track-
ing both the threshold and the dynamic range variables: the two
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controllers are used alternatingly, one clamps to 25% while the
other to 75% response probability. Thus, the overall response
is clamped to a constant 50% of the total stimulation and two
distinct loci on the response curve, denoted x25 and x75, are mea-
sured (see Figure 1). The two state variables θ(t) and σ(t) are
produced using the linear mapping1

θ(t) = x75(t)+ x25(t)

2
σ(t) = x75(t)− x25(t)

ln 9
. (4)

Figure 2A demonstrates typical recordings obtained using the
double clamp procedure on isolated neurons in vitro. The state
variables θ(t) and σ(t) (in this case they are both expressed in
mV), obtained using Equation (4), are presented in Figures 2B,C.

The use of multiple clamps, therefore, allows for a detailed,
multiple-variable characterization of the system. This comes at
the price of decreasing the temporal resolution of the mea-
surements, since the total stimulation rate must be distributed
between a number of controllers. Finally, multiple clamps may
also be used to study structured or modular systems, e.g., the

1This is a two-dimensional case of Equation (3), where �X =
(

x75

x25

)
,

�S =
(

θ

σ

)
and T =

(
0.5 0.5

(ln 9)−1 − (ln 9)−1

)

dynamics of coupling between interrelated systems or the inte-
gration of different inputs within the same system.

APPLICATIONS OF THE RESPONSE CLAMP
The possible applications of the method may be classified into
three categories: (1) exploration of intrinsically generated dynam-
ics (2) exploration of extrinsically generated dynamics, and (3)
generation of input–output trajectories.

EXPLORING INTRINSICALLY GENERATED DYNAMICS
Let us return once more to our main source of inspiration, the
voltage clamp technique. The studies pioneering this method, and
many that followed, applied it on isolated systems (e.g., the giant
squid axon) to observe the internal dynamics of ionic conduc-
tances at different voltage levels. Later, current fluctuations in
microscopic, voltage-clamped membrane patches were analyzed
to study the same issue at the molecular level, a technique termed
“patch clamp” (Neher et al., 1978). In both cases, therefore, the
voltage clamp was used to study the dynamics of the state vari-
ables with relations to changes in the clamped variable itself. Let
us call such dynamics “intrinsic,” as they are not related to some
event occurring outside of the clamped system.

Similarly, the response clamp may be used to study the intrin-
sic dynamics of a system’s state variables at the functional level.
Such was the application of the response clamp in behavioral
psychophysics (Marom and Wallach, 2011), where the subjects’

FIGURE 2 | Neuronal threshold and range dynamics. (A) Measurement of
x75 (yellow) and x25 (purple) during 1 h of double clamping an isolated neuron
in vitro (see Methods in Wallach et al., 2011). The two measurements are
highly correlated. The neuronal threshold θ (B) and the dynamic range
σ (C), were computed using Equation (4) (blue line in both). (D) When the
measurements are displayed in the threshold/range state plane, the
significant correlations between them is evident. Fitting with a linear relation

[Equation 5, black line in panel (D), R2 = 0.52] enables the estimation of the
dynamic range based on the instantaneous threshold [black line in panel (C)].
(E) Examples to the instantaneous I/O relations (Equation 6) at three different
points in time [marked with colored arrowheads in panels (B) and (C)]. The
curve becomes stretched as the threshold increases. Note that as the
threshold approaches the minimal value θ0, the curve approaches a
step-function, i.e., the neuron becomes a deterministic element.
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response fluctuations in the clamped and unclamped scenarios
were compared. The results suggest that these fluctuations are
markedly restrained in closed-loop conditions, namely when the
subject’s actions have some (unconscious) effect on future stim-
uli. This led the authors to postulate that the well-documented
trial-to-trial variability does not reflect, as previously suggested,
an intrinsic “noise” process; rather, it stems from the unnatural
open-loop experimental paradigm. The response clamp may be
used in a similar manner to investigate the relations between psy-
chophysical dynamics and brain activity (Monto et al., 2008), or
to study the factors driving threshold fluctuations at the cellular,
synaptic or network levels.

To further demonstrate how closed-loop analyses provide new
insights into functional properties of a system, let us apply the
double response probability clamp experiment discussed above to
study intrinsic response dynamics of isolated neurons (Gal et al.,
2010). By plotting the two derived state variables, θ and σ, against
each other (Figure 2D), it becomes evident that the long term
fluctuations of the dynamic range are highly correlated with those
of the threshold. The relations between these two variables may
thus be approximated using a linear expression, namely,

σ(t) = α (θ(t)− θ0) . (5)

Equation (5) may be used to produce a smoothed estimate of σ

based on the values of θ (black line in Figure 2C). The instanta-
neous input–output relations are therefore simplified in this case
to a single state variable expression,

P(x, θ(t)) = 1

1+ e−
(
x− θ(t)

)
/αθ(t)

, (6)

where x = x − θ0 and θ = θ− θ0 are the relative stimulation
amplitude and threshold, respectively. Figure 2E visualizes such
instantaneous I/O relations in three different instants during the
recording (marked with arrowheads in Figures 2B,C). This result
is, in fact, quite expected, as scaling of sensitivity to changes
with stimulation magnitude is a ubiquitous phenomenon in both
physiology (Abbott et al., 1997) and psychophysics (e.g., the
Weber–Fechner law, see Carterette and Friedman, 1974). Note
that the offset parameter θ0 has a biophysical significance: it is
the threshold value at which the dynamic range becomes zero,
i.e., the neuron becomes deterministic (the I/O relations become
a step function). θ0, therefore, is the minimal stimulation ampli-
tude required to generate a spike at the maximal excitable state of
the neuron, constituting an example to how analyses of intrin-
sic fluctuations of the system’s state variables (reflected in the
response clamps’ control signals) yield novel findings as to the
functional properties of the system.

EXPLORING EXTRINSICALLY GENERATED DYNAMICS
While much can be learned by studying isolated systems, neural
systems are invariably embedded in networks and environments,
where they interact with many external factors; any neuron, for
instance, is affected by the activity of its peers via synaptic inputs
converging onto it. The voltage clamp proved very beneficial in
investigating the mechanisms of this communication by provid-
ing measurements of the post synaptic currents (Hagiwara and

Tasaki, 1958): the membrane potential is held constant at some
desired value, and changes in the feedback current due to an
external event (e.g., an action potential generated in a neighbor-
ing cell) are measured. Using this application of the clamp, one
may isolate individual input components (i.e., by clamping to a
specific reversal potential) and separate them from the dynam-
ics of the system itself (by preventing the generation of action
potentials).

Similarly, the response clamp may be used to study changes in
the functional behavior of systems due to interactions with their
external environment. In a recently published paper (Wallach
and Marom, 2012), the long-term effects of network events
(brief episodes of synchronous, network-wide activity, also called
“bursts” or “population spikes”) on neuronal threshold were ana-
lyzed. Since the measurements are inherently noisy the effect of a
single event was usually too small to observe and event-triggered
averaging was applied. Using this procedure it was shown that
network synchronous events induce a long lasting, bi-phasic
deflection of the neuronal threshold. The results demonstrate
interrelations between the dynamics at the two levels: the mag-
nitude of the network event is reflected in the amplitude of the
neuronal threshold deflection, while the relaxation of the thresh-
old back to baseline is correlated with the recovery dynamics of
network excitability.

These results demonstrate how the response clamp could be
applied to the study of such extrinsically generated dynamics. Any
measurable external influence on the clamped system (either sub-
ject to experimental control or autonomous) may be analyzed in a
similar manner; the effects of various chemical compounds (such
as neuromodulators or toxins) on overall cellular excitability, for
instance, may be thus quantified. Similarly, the method may be
implemented to study the interactions between different inputs
to the same system: the response to one source may be clamped,
and changes in the control signal due to activation of the second
source may be recorded.

GENERATING INPUT−OUTPUT TRAJECTORIES
Like many other closed-loop stimulation techniques (e.g.,
Wagenaar et al., 2005; Arsiero et al., 2007; Rolston et al., 2010),
the response clamp offers the capability to control the activity
patterns of neural systems. This capability may, in and by itself,
be useful in different experimental scenarios. In such cases, the
control signal is not used for analysis; rather, the effect of the pro-
duced dynamics on other (non-clamped) variables is explored.
The most notable derivative of the voltage clamp technique in
this context is the dynamic clamp (Sharp et al., 1993), in which
the current injected in a closed-loop effectively adds or removes
conductance components to the cell; the contribution of these
conductances to the overall system behavior, and not the injected
current, is the subject of analysis in this method.

In the response clamp, it is this “overall system behavior” that
is manipulated. For instance, let us assume that an isolated system
is repetitively stimulated at rate fin, and the response probability
to this stimulation is clamped to some value p. The activity rate of
this system, fout, is therefore also clamped, since

fout = fin · p. (7)

Frontiers in Neural Circuits www.frontiersin.org January 2013 | Volume 7 | Article 5 | 363

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Wallach The response clamp

Thus, by maintaining fin constant and varying p, one may pre-
cisely produce desired activity patterns (see Figure 5 in Wallach
et al., 2011). This may be useful if the clamped system serves as
an input stage for downstream systems. Interestingly, Toettcher
et al. (2011) recently suggested a similar approach (also using
a PID-based algorithm) to control the dynamics of intracellular
signaling pathways, thus generating a well-controlled, repeatable
input to downstream components in the pathway.

Yet one may use this tool to do more than just control
the output dynamics: by controlling both the clamped response
and the input, regions of the input–output space may be effi-
ciently covered. For instance, by jointly altering fin and p (in
opposite directions), one may observe the system’s behavior at
different input levels, while maintaining the output level (fout)
constant. Exploring various input–output combinations may elu-
cidate the contributions of input-dependent effects (i.e., direct
effects of stimulation) and activity-dependent effects to the over-
all behavior.

LIMITATIONS OF THE RESPONSE CLAMP AND
COMPARISON WITH OTHER APPROACHES
COVERAGE OF THE TIME-SCALE SPECTRUM
The voltage clamp served as a source of inspiration and as a ref-
erence methodology for the development of the response clamp
and its applications. However, a different range of time-scales is
accessible in each of these two techniques. In voltage clamp, the
controller (the feedback amplifier) is both extremely fast (i.e., its
time-constant is much shorter than that of the clamped mem-
brane) and powerful (i.e., the feedback gain is high) so that the
clamp process is, for all practical purposes, instantaneous. Thus,
the voltage clamp enables the investigation of even the fastest pro-
cesses in the membrane (e.g., fast activation of sodium channels).
Application of the voltage clamp to the study of extremely slow
processes, however, is limited in several respects. First, voltage
clamp is presently performed using physically invasive intracellu-
lar electrodes, a procedure which sets a practical upper bound to
the duration of recordings. This technical limitation may be theo-
retically circumvented if a non-invasive realization of the method
is invented (e.g., by harnessing optical techniques for both voltage
measurements and current injection). However, voltage clamp
is “invasive” in a different, more fundamental sense: as long as
the cell is clamped, its natural behavior (i.e., emitting action-
potentials) is completely shut-down. Thus, even if a non-invasive
voltage clamp did exist, the results obtained using this tech-
nique would have little to do with natural long term dynamics
of excitability.

The response clamp provides access to a range of time-scales
which is complementary to those covered by the voltage clamp.
On one hand, access to the very fast time-scales may be limited
due to stimulation constraints (e.g., maximal possible stimulation
intensity or rate) and to the time-scale of the control algo-
rithm (determined by the various control parameters). On the
other hand, the straightforward realization of the method using
non-invasive means of stimulation and recording (e.g., extra-
cellular electrodes), and the fact that the cell’s natural spiking
behavior remains intact, extends the experimental access into
extremely long-term processes. By determining the time-scale of

the clamped dynamics, the response clamp provides an experi-
mental tool to separate processes of different time-scales govern-
ing the behavior.

APPLICABILITY TO CONTROLLABLE SYSTEMS
A prerequisite to any application of the response clamp is to
establish reliable control of the response feature of interest by
manipulation of some input parameter. In the systems studied so
far, establishing this control was particularly straightforward since
the input–output relations were monotonically non-decreasing
(e.g., the sigmoidal curve in Equation 1). In systems where these
relations are of a more complex nature (e.g., bell shaped or multi-
modal), a more elaborate control algorithm is required (Astrom
and Wittenmark, 1994). Moreover, in some systems the relevant
input feature (the so called “receptive field”) may be unknown.
In such cases, some algorithm that finds this relevant input fea-
ture within the space of all possible inputs must be instated, in
order for the clamp to be applicable. Such a combined solution is
discussed in the next section.

REVERSE CORRELATION AND WHITE-NOISE ANALYSES
The response clamp demonstrates how closed-loop control may
be used as a tool for system characterization. An important open-
loop alternative which was already mentioned above is the reverse
correlation approach. In this method the input–output relations
of a system are exposed by computing various weighted statis-
tics of the input variable, with the assigned weights derived from
the output variable. The most common of these techniques is
the Spike-Triggered Average (STA) and its extensions, which were
used extensively in order to estimate the receptive fields of vari-
ous neurons [see Simoncelli et al. (2004), and references therein].
When the input is under experimental control, approximated
white-noise is usually applied, so that equal energy is applied
across a broad range of time-scales (alternatively, whitening pro-
cedures may be used). This was shown to guarantee (under some
additional restrictive conditions, see Paninski, 2003) that the
estimation is unbiased.

There are several limitations to the use of reverse correlation
methods. First, if the stimuli space is multi-dimensional, unbiased
coverage of this space is very difficult experimentally, as the num-
ber of stimuli needed increase exponentially with each additional
dimension [Benda et al. (2007) already purposed closed-loop
stimulation as a method to efficiently sample this space when sys-
tematic, open-loop coverage is impractical]. More importantly,
the underlying (and often unstated) assumption in these meth-
ods is that the system is feed-forward and static; the receptive field
derived using STA is tightly related to the linear stage of Linear-
Nonlinear-Poisson neuronal models, which do not account for
refractoriness, output-dependent processes or threshold dynam-
ics. Moreover, since the space of all possible output dynamics is
not necessarily covered (e.g., high firing rates are rarely reached),
such output-dependent effects may not be fully expressed in
white-noise perturbation.

White-noise analysis, however, holds the considerable advan-
tage of enabling identification of the input features to which
the system is sensitive using very limited a-priori knowledge
(e.g., the relevant modality). As it happens, this advantage
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precisely addresses the above mentioned impediment to the
implementation of the response clamp, namely the need to iden-
tify a relevant and effective control variable. Thus, STA and the
response clamp may be used in tandem, each method com-
plementing the other: first, STA is implemented to expose the
“static” or “baseline” receptive field; then, the response clamp
uses this receptive field to produce the control variable, in order
to expose the dynamic and output-dependent processes of the
system.

COMPARISON WITH OTHER CLOSED-LOOP TECHNIQUES
Closed-loop control is, in itself, a widely accepted tool in many
fields of research. Physiologists have employed closed-loop tech-
niques and protocols to control aspects of neuronal activity at
all levels of biological organization [see Arsiero et al. (2007) and
references therein]. Already in the late 1960’s, Eberhard E. Fetz
showed that the activity of a single cortical neuron may be rein-
forced by applying closed-loop control of food pellets delivery
(Fetz, 1969).

In psychophysics, a variety of procedures were developed over
the past few decades in order to measure the psychometric thresh-
old in closed-loop (Treutwein, 1995). The underlying assumption
in all these procedures is that, in a given experiment, the threshold
is static, and hence the procedure is stopped once it “converges” to
a reliable estimate of this threshold. The key novelty in applying
the response clamp to psychophysical investigations (Marom and
Wallach, 2011), therefore, is in the analysis of post-convergence
fluctuations of the threshold.

The fundamental difference between both the voltage- and
response-clamp methods and other closed-loop techniques is that
the control signal in all these techniques (be it food-pellet delivery
rate, stimulation amplitude, etc.) is seldom used in order to gain
access to the dynamics of hidden state variables. An interesting
exception worth mentioning is a clinical method called glucose
clamp (DeFronzo et al., 1979), developed in order to diagnose
insulin secretion and resistance by analysis of the control sig-
nals (rates of glucose/insulin perfusion or infusion). This method,

though rarely used in clinical practice, is considered the “gold
standard” in the diagnosis of diabetes.

It should be stressed that the use of the PID control algo-
rithm is, in and by itself, of no fundamental importance to the
realization of the response clamp. This algorithm was chosen
owing to its simplicity and generality; the PID is a pure-feedback,
model free algorithm, and therefore little a-priori knowledge of
the controlled system is required in order to implement it. Any
other algorithm which efficiently clamps the system’s response
may be used. One might expect, for instance, that using other
adaptive psychophysical protocols would yield similar results to
those of Marom and Wallach (2011); rigorous examination of this
prediction, however, is yet to be performed.

CONCLUDING REMARKS
The voltage clamp revolutionized the way physiologists study
the mechanisms of excitability and synaptic communication.
The response clamp method extends the clamp rationale toward
functional characterization of neural systems. It offers a general
framework for closed-loop exploration that may be implemented
at any level of organization, using any available technique of
measurement or perturbation. It may also be combined with
complementary, open-loop approaches such as white-noise anal-
ysis. Finally, one may envision a paradigm in which voltage- or
dynamic-clamp “command” is controlled in closed-loop by the
response clamp algorithm. Such a multi-layered clamp set-up
may aid in bridging the gap between mechanistic and functional
characterization of neural systems.
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While modulating neural activity through stimulation is an effective treatment for
neurological diseases such as Parkinson’s disease and essential tremor, an opportunity
for improving neuromodulation therapy remains in automatically adjusting therapy to
continuously optimize patient outcomes. Practical issues associated with achieving this
include the paucity of human data related to disease states, poorly validated estimators
of patient state, and unknown dynamic mappings of optimal stimulation parameters
based on estimated states. To overcome these challenges, we present an investigational
platform including: an implanted sensing and stimulation device to collect data and
run automated closed-loop algorithms; an external tool to prototype classifier and
control-policy algorithms; and real-time telemetry to update the implanted device firmware
and monitor its state. The prototyping system was demonstrated in a chronic large animal
model studying hippocampal dynamics. We used the platform to find biomarkers of the
observed states and transfer functions of different stimulation amplitudes. Data showed
that moderate levels of stimulation suppress hippocampal beta activity, while high levels
of stimulation produce seizure-like after-discharge activity. The biomarker and transfer
function observations were mapped into classifier and control-policy algorithms, which
were downloaded to the implanted device to continuously titrate stimulation amplitude
for the desired network effect. The platform is designed to be a flexible prototyping tool
and could be used to develop improved mechanistic models and automated closed-loop
systems for a variety of neurological disorders.

Keywords: automation, closed-loop, neuromodulation, prototyping, hippocampus, seizure

INTRODUCTION
Neuromodulation devices for deep brain stimulation (DBS)
deliver targeted electrical stimulation to treat symptoms of dis-
eases such as Parkinson’s disease, essential tremor, and dystonia.
To ensure benefit, these therapies require not only accurate place-
ment of the stimulating electrode within neural tissue, but also
proper selection of stimulation parameters (e.g., amplitude, pulse
width, and frequency). These parameters can be used to mitigate
side effects including hemiballism, gait and speech disturbances,
and dyskinesias (Limousin et al., 1996, 1998; Hamani et al.,
2005; Yu and Neimat, 2008; Bronstein et al., 2011). While many
patients benefit from DBS, the parameter selection process is
largely heuristic, and reprogramming sessions may be weeks or
months apart.

Effort has been applied for more than a decade to build auto-
mated systems (Figure 1) that use patient state to adjust stimula-
tion parameters, thereby reducing the delay between stimulation
updates by many orders of magnitude compared to human inter-
vention. Realizing these systems requires development of sensors
to measure patient data and algorithms to translate the data
to the appropriate stimulation parameters (Priori et al., 2012).
Complexity in the nervous system motivates partitioning the
algorithm into two components: one that translates sensor data

into estimates of state (i.e., a classifier algorithm) and another that
translates the state estimate into a stimulation parameter update
(i.e., a control-policy algorithm). In this work, state is left inten-
tionally ambiguous because its meaning depends on the appli-
cation: examples include seizure versus non-seizure; Parkinson’s
ON versus OFF; asleep versus awake; or others. Regardless of
the application, dividing the algorithm provides the following
benefits:

• Matches clinical workflow: clinical practice often separates a
patient assessment (“classification”), which translates clinical
data into a diagnosis, and a treatment plan (“control policy”),
which translates a diagnosis into a therapy. Designing the sys-
tem to match this separation enables physicians to more easily
validate and improve algorithms according to their existing
workflow.
• Partitions complexity: algorithms can involve significant com-

putational load, which is difficult for implantable systems due
to power constraints (Lee Kyong et al., 2012). Partitioning the
algorithm should enable more modular testing and prototyp-
ing; this is particularly useful when algorithm components can
be externalized to allow greater computational freedom than
the implanted device can provide. Once vetted, algorithms with
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the desired trade-offs between performance, latency, and power
consumption can be committed to embedded firmware for
untethered operation.

The “agent-environment” model from artificial intelligence
research is one model for describing the relationship between
the physician and the automated neuromodulation system in
learning and implementing algorithms (Figure 2). The goal of
the agent is to develop a performance element (i.e., algorithm)
to model the relationship between environmental percepts and
actions taken by effectors. The informed critic (i.e., clinician-
researcher) updates the performance element by learning from
its input data (sensors) and intermediate processing (knowledge)

FIGURE 1 | Simplified model of a closed-loop neuromodulation

system.

to develop new problems or hypotheses regarding the algorithm.
Iterative testing allows the critic to simultaneously learn about
the environment and develop the best performance element to
modulate it.

The agent-environment model is suitable for the development
of neuromodulation systems for several reasons. The model:

• Includes the physician-researcher’s involvement to capture
subject behavior to validate the algorithm.
• Describes the role of the performance element not only as a

key element of the automated closed-loop.system, but also as
the mechanism for the physician-researcher to learn about the
nervous system.
• Captures the importance of developing better sensors and

effectors to improve the ability to monitor and modulate the
nervous system.
• Captures the iterative learning process needed to develop a

first-principles understanding of the neurological diseases.
• Leaves the nature of the algorithm open, keeping free the choice

of machine-learning techniques (e.g., support vector machine,
Kalman filter) and data types (e.g., accelerometer, gyroscope,
biopotential).

The translation of automated closed-loop systems has been
helped by the development of more sophisticated neural sen-
sors as well as improved understanding of the neural signals that
underlie disease. Neurochip-2 (Zanos et al., 2011) and Hermes-D
(Miranda et al., 2010) are two examples of technology to mea-
sure from the network. Neurochip-2 provides three channels of
sensing and stimulation and allows for fast response loop clo-
sure to explore concepts like neural plasticity. The Hermes-D
system allows for wireless, larger scale measurement (32 channels)
of activity, but lacks stimulation capability. Both systems have
the advantage of higher bandwidth, which allows for measure-
ment of single unit activity, but draw greater than 1000× more

FIGURE 2 | Generalized framework for a learning agent (reproduced with permission; WikiCommons).
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power for operation than a typical DBS implant, giving them
longevity of at most a few days between recharges. Moreover,
the limited biomarkers and control variables currently known
for neurological diseases motivate the development of platform
technologies to enable improved first-principles understanding,
which may lead to more rapid clinical translation. A critical
step in developing this understanding is the ability to pro-
vide simultaneous neural recording and therapeutic stimulation,
which is lacking in many research tools today. This capabil-
ity is needed to understand the system transfer function, which
we define as the relationship between stimulation and network
behavior.

The study of biopotential biomarkers has shown spectral
power in local field potentials (LFP) to be a disease-relevant indi-
cator in a variety of settings (Schnitzler and Gross, 2005; Uhlhaas
and Singer, 2006). In particular, these signals are useful in study-
ing networks of thalamo-cortical structures and their dynamic
inter-relationships, where abnormal neural synchrony is believed
to be a hallmark of disease states (Llinas and Ribary, 2001; Siegel
et al., 2012). Furthermore, quantified differences in neural syn-
chrony, which can be measured by calculating power (uV/rtHz)2

in a particular frequency band (for example, “beta”), have been
shown to correlate with symptom severity. For instance, power
in the beta band (15–30 Hz) has been found to be related to
cardinal Parkinson’s symptoms such as bradykinesia and rigid-
ity (Hammond et al., 2007; Eusebio and Brown, 2009; Kühn
et al., 2009; Priori et al., 2012). Characteristic changes in power
at the theta tremor frequency (Hellwig et al., 2001) and coher-
ent activity in the 6–15 Hz frequency band (Raethjen et al.,

2002) have also been found in essential tremor. Synchronization
in even lower frequencies (alpha and theta range) has been
found in dystonia (Liu et al., 2002; Silberstein et al., 2003;
Kühn et al., 2009; Sharott et al., 2008; Singh et al., 2011).
Correlations between power in frequency bands as low as alpha
(Zumsteg et al., 2006) and as high as 500 Hz (Blanco et al., 2011)
have been reported in patients with epilepsy. Equally impor-
tantly, it has been shown that the effect of therapy can be
correlated with LFP signals both in DBS (Eusebio et al., 2012;
Priori et al., 2012) and levodopa therapy (Rossi et al., 2008). In
aggregate, these studies suggest that LFP is a promising sensor
input for automated systems treating a variety of neurological
disorders.

In this work, we describe a platform for investigating these
neural signals toward the development of an automated, closed-
loop bioelectronic neuromodulation system. The platform com-
prises tools and a process flow to map the general learning agent
to neuromodulation research and enables rapid prototyping of
these tools in an implantable neuromodulation device. We use
a preclinical, in vivo nervous system model to demonstrate the
functional components of the system: collection of neural data,
identification of relevant features (i.e., biomarkers), development
of the algorithm, and consolidation of the algorithm into an
implanted device.

SYSTEM STRATEGY AND INFRASTRUCTURE
To implement this system we mapped the general learning agent
functional blocks into the neuromodulation domain (Figure 3).
The interface is bi-directional, extracting measures of neural state

FIGURE 3 | Mapping a generalized learning model to the

neuromodulation system; the components that are implanted are

highlighted by the dashed box. The shaded boxes represent the implanted

components that interface with the environment. Algorithm prototyping
occurs in the agent where the physician and researcher can generate new
algorithms based on historical data and algorithm performance.
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through percepts and actuating states in the nervous system
through effectors. Percepts are received through a combination
of sensors that include bioelectrical sensing from electrodes (e.g.,
ECG, EMG, and LFP) and inertial sensing, (e.g., posture and
activity). The effector pathway is defined by electrical stimula-
tion pulse patterns, with parameters similar to approved therapy
devices.

The challenge in designing the performance element is that
characteristics of both percepts and effectors are still evolving.
The algorithm addresses this ambiguity through use of classi-
fier portion that maps sensed signals to estimates of state and a
control-policy portion that maps state estimates into a desired
stimulation.

We have implemented the learning system using an
implantable research device and external application tool
coupled with real-time telemetry; the system is illustrated in
Figure 4. We call this partition of external learning elements
that can be transferred to the implantable device performance
element a “hybrid” design approach. The goal is to construct
a complete platform (combining hardware, software, and
firmware) for the learning procedure. The learning protocol
includes four main steps from initial exploration to a chronic

prototype for validation: collection of sensed neural data; design
of the performance element’s classifiers based on biomark-
ers; development of the performance element control policy
based on measured neural system identification; and embed-
ding of the performance element into the device for chronic
validation.

To do this, we designed a system with the following features:

◦ Implantable device for delivering stimulation including the
following components:

• Bioelectric sensing with 4 bipolar sensing channels with
150 nV/rtHz noise floor without stimulation and 300
nV/rtHz noise floor with stimulation (nb: Stanslaski et al.,
2012 describes constraints of sensing during stimulation).
• Inertial sensing with a custom three-axis accelerometer with

a 10 mg-rms resolution floor drawing under 600 nW/axis
(Denison et al., 2007).
• Stimulation using a commercially available neural simulator

system with accepted therapy.
• Embedded algorithm with independently modifiable classi-

fier and control-policy algorithms.

FIGURE 4 | Functional flow diagram of the hybrid implantable system with the internal and external partitions denoted.
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◦ External tool for learning and prototyping classifiers to trans-
late sensor data to state estimates.

• Save, parse, and annotate data collected from implantable
device.
• Implement, prototype, and compare machine learning algo-

rithms.
• Develop and test classifiers for the implanted system.

◦ External tool for learning and prototyping control policies to
translate state to stimulation updates.

• Stream data directly from the implantable device to an
external processor with latency less than 1 s (0.5 s typical).
• Send stimulation parameter updates to the implantable

device with latency from command to stimulation at the
electrode in less than 1 s (0.5 s typical).
• Monitor state transitions in classifier and control-policy

algorithms.

◦ Telemetry system for retrieving data, modifying classifiers,
prototyping control policies, and rewriting device firmware.

The key for this system is to integrate all necessary elements to
provide a complete platform for an accelerated learning proce-
dure amenable to rapid-prototyping and clinical translation. The
details of these steps follow below.

COLLECTION OF SENSED NEURAL DATA
The design of the performance element starts with data collection.
While there are many methods to sense biopotential data, fully
implanted devices offer the advantage of higher signal fidelity
than fully external devices (e.g., EEG), reduced infection risk, and
improved chronic, ambulatory data collection capability com-
pared with implanted devices with external components (e.g.,
externalizing leads during DBS surgery or the Hermes-D system).
We have previously described the design and implementation of
our fully implanted, bi-directional neural interface (Rouse et al.,
2011). In brief, the device contains both sensing and stimulation
components. The stimulation feature embodies the capability of
a commercial DBS system. Biopotential sensing is enabled with
a custom-integrated interface chip that allows for measurements
of LFP generated from EMG, ECoG, LFP, and ECG (Avestruz
et al., 2008), with noise floor of 150 nV/rtHz without stimula-
tion and 300 nV/rtHz with stimulation (nb: Stanslaski et al., 2012,
gives details and constraints of sensing during stimulation). The
custom integrated circuit (IC) provides data analysis for up to
four bipolar channels, which are selectable between Nyquist-rate
waveforms (i.e., time channels) and spectral power at specific fre-
quency bands of interest (i.e., power channels). The time channels
provide complete spectral information; however, they incur the
penalty of much higher power consumption. Power channels, on
the other hand, extract a power envelope that is down-sampled
to 5 Hz prior to digital signal processing. The reduction of sig-
nal dynamic range prior to digitization is a common technique
for saving energy in micropower systems. The design model is
to use the time channels for neural system identification, includ-
ing identifying biomarkers and to transfer to the power channels
to optimize efficiency chronically. The inertial element uses a

micromachined three-axis accelerometer that transduces capac-
itive fluctuations to a voltage output. The resolution floor of the
inertial element is 10 mg rms, in a 20-Hz band of detection. The
sensor draws a total of 2 uW during normal operation, which
minimizes longevity impact in the device (Denison et al., 2007).
The sensor inputs from bioelectric and inertial sensors can be
fused together in the algorithm, if desired.

Data acquisition also provides an opportunity for optimiz-
ing efficiency. While the device supports streaming telemetry
for time and power channels, it is limited to environments in
which the subject is close to a telemetry system, and desired data
sampling frequency is low. Event triggered recordings allow for
timed segments of high sampling frequency data when the subject
is ambulatory. Triggers include user programmable, timer-driven
intervals; embedded classifiers; external subject button presses; or
combinations thereof. For a typical event structure like motion
or seizure onsets, an 8-s loop recording could be applied for two
recording channels. With a typical data rate of 422 Hz, approx-
imately 200 recordings can be stored by the embedded SRAM
until it needs to be downloaded and cleared. To organize and
manage the resulting number of files gathered over a longitudi-
nal study, a file system was developed to provide data structure
to researchers. Information such as event time stamps, parameter
settings, and event type is embedded in the data during record-
ing and automatically extracted as a companion file to the data.
The combination of the custom integrated hardware, signal pro-
cessing strategy, and data gathering infrastructure facilitates the
design of the performance element.

LEARNING → PERFORMANCE ELEMENT I: CLASSIFICATION
The first subsystem of the performance element is a classifier
to estimate the state of the nervous system from the sensed
LFP biopotentials. Following the hybrid approach of our plat-
form, we implement the classifier as both an internal function
of the implantable device and as an external tool for learning
and problem generation; the functional flow of the tool is illus-
trated in Figure 5. The external tool allows users to visualize time
domain and spectral data, graphically annotate biomarkers of
interest, and automatically generate classifiers using supervised
machine-learning algorithms. In addition, classifier sensitivity
and specificity can be adjusted manually to obtain the desired per-
formance. The resulting classifiers can be stored and compared
using automatically computed detection statistics. Beyond data
manipulation, the key value of the tool is its relationship with the
implanted device; the tool:

1. Serves as a data repository for grouping and sorting data files
from different recording sessions.

2. Parses data collected from the implanted device, automati-
cally accounting for differences in formatting and recording
settings.

3. Creates algorithms that can be uploaded directly into the
implantable device.

The default on-board classifier algorithm is a linear-discriminant
using a modified Fischer-discriminant approach; it is a linear
decision boundary in a user-selectable feature space that identifies
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FIGURE 5 | Functional flow for data annotation and classification using the external software tool.

an event signal sample from other samples. The algorithm was
designed using reduced set methods as described in (Shoeb et al.,
2009). The use of the multi-dimensional linear boundary was
found to optimize trade-offs in power consumption, latency, sen-
sitivity, and specificity. Recent work by Lee describes a similar
trade-off calculation and supports our design choices (Lee Kyong
et al., 2012). The on-board algorithm can be used for detecting
events, which are time-stamped and used to trigger recordings
while the subject is ambulatory, thereby reducing current drain
nearly 100-fold and reducing classification latency 5-fold, from
∼1 s to ∼200 ms. If the biomarker’s characteristics warrant a
more complex classifier or shorter latency, the algorithm can be
updated, trading off power consumption.

LEARNING → PERFORMANCE ELEMENT II: CONTROL POLICY
The second algorithm subsystem is the control policy that maps
the state estimate into an optimal stimulation sequence. Like
the classifier algorithm, we implemented the control-policy algo-
rithm both internal to the device and as an external system
for learning and problem generation. Non-linearities in network
dynamics heighten the need to sample many input–output pairs
for system identification. This can be accomplished in two ways:

First, the external tool may be used to sweep any stimulation
parameter (e.g., amplitude or frequency) while the implantable

device senses and saves biopotential data to the internal memory.
Once retrieved from the device, system identification is per-
formed by measuring the relationship between the stimulation
parameters and biopotentials.

Second, the control policy may be adjusted in real-time on a
researcher’s device using an external device to wirelessly trans-
fer data: sensed data is passed to the researcher’s device and
control-policy output is passed to the implantable device. This
capability enables prototyping algorithms including the use of
tapped-delay lines and time synchronizing with other sensors and
hardware, and deriving a variety of signal features (e.g., phase
amplitude coupling). The external device ensures data integrity
in both directions through cyclic-redundancy checks and ensures
patient safety by returning the device to safe, pre-programmed
stimulation state should the researcher’s control policy behave
unexpectedly. Additional safety is ensured by allowing the control
policy to select only among stimulation parameter boundaries
that have been predetermined by the researcher.

For the platform design, particular attention was paid to
the latency in the telemetry links, which is a key factor to
effectively study the dynamics. In the first generation of devel-
opment, we required that total latency through the channel
be constrained to 1 s or less, and typically under 0.5 s. This
degree of latency is suitable for many closed-loop algorithms that
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operate on timescales of seconds, hours, or days. The inherent
latency of the links was dominated by two factors: the first is
the data packet format and error correction handshakes using
the 175 kHz ISM band, and the second is the internal packet
transfer within the bioelectronic device, which, for safety reasons,
are secondary interrupt priorities compared to the therapeu-
tic stimulation. Although the latency can be much improved
by running in the device, it limits flexibility during the initial
learning phase. Therefore, for most cases, the new stimulation
parameters are generated externally, where algorithms can be
made arbitrarily complex and rapidly evaluated to see if they
capture the desired behavior of the neural system. It is highly
desirable to validate the behavior prior to committing to verifi-
cation of embedded firmware due to regulatory constraints and
requirements. For example, the platform can implement arbi-
trary control paradigms such as simple bang–bang controllers
(modeled from early cardiac defibrillators) or more sophisticated
proportional-integral-derivative and linear-quadratic-Gaussian
controllers for achieving the optimal path to the desired state
maintenance.

COMMITTING THE PERFORMANCE ELEMENT TO THE EMBEDDED
DEVICE FOR VALIDATION
After learning and prototyping the classifier and control pol-
icy, the algorithm can be validated by embedding onto the
implantable device firmware using telemetry. The firmware uses
a dedicated boot loader that allows for a new series of code
to be flashed to non-volatile memory inside the device in a
few minutes. The firmware in the device is partitioned such
that the classifier and control policy can be updated indepen-
dently of the therapy code, thereby keeping the interaction
to that necessary for real-time classification and closed-loop
operation. To assist in validation, the firmware is capable of
streaming out the classifier and control-policy states in addi-
tion to sensed signals in real-time, so that the user has visi-
bility into the algorithm operation. For chronic operation, the
state transition information is included in the data log for
validation.

METHODS: DEMONSTRATION OF THE LEARNING AGENT
ARCHITECTURE
As demonstration of the capabilities of our method and tools,
we used the system to investigate, characterize and dynamically
modulate the hippocampal dynamics within the circuit of Papez.
The circuit of Papez is a thalamo-cortical circuit implicated in
temporal lobe epilepsy and involves a reentrant loop involving
the hippocampus (HC) and thalamus. The goal was to design
from first principles a demonstrative “homeostatic” feedback
loop, which would titrate stimulation dynamically to maintain
network activity reflected in the field potentials; the intention
was to show the capabilities of the technology, as opposed to
demonstrate or claim a therapeutic algorithm per se. Design of the
loop required that we address many issues of neuromodulation
design: testing in an awake and freely moving subject, considera-
tion for reliability and repeatability, and chronic implant stability
and safety. Methods are detailed from the physiological prepa-
ration and technology points of view. The focus of this effort

was on exploring the bioelectrical properties of the network and
building up a closed-loop system; the conceptual schema for
developing inertial-based systems, classifiers and control policies
was previously demonstrated with this architecture (Schultz et al.,
2012).

PHYSIOLOGICAL METHODS
The in vivo device was chronically implanted in an ovine
animal model conducted under an IACUC-approved protocol
(Stypulkowski et al., 2011) and is summarized here. Following
anesthesia, 1.5T MRIs were collected and transferred to a surgi-
cal planning station. Trajectories for a unilateral anterior nucleus
(AN) DBS lead (Medtronic model 3389) and unilateral HC lead
(Medtronic model 3387) were planned, and leads implanted using
a frameless stereotactic system (NexFrame from Medtronic, Inc.).
Once lead placement was confirmed based upon electrophysio-
logical measures, Medtronic model 37083 extensions were con-
nected to the DBS leads, tunneled to a post-scapular pocket, and
connected to the prototype chronic implantable device. Figure 6
illustrates the overall system placement and setup. Following clo-
sure of all incisions, anesthesia was discontinued, and the animal
was transferred to surgical recovery.

All sensing and stimulation documented here were conducted
in a single, awake sheep resting in a sling. In this particular work,
all reported data were recorded from the HC with bipolar mon-
tage using contacts surrounding a monopolar stimulation contact
(square, biphasic 300 µs pulse width on E1 with far-field return)
to mitigate artifacts via common-mode rejection during stim-
ulation (Stanslaski et al., 2012); functional network data from
thalamic stimulation and sensing are not shown, but can be found
in Stypulkowski et al. (2011). Neural data, stimulus trains and
classifier detections were recorded and saved by PC software via
wireless telemetry. Data were gathered over 15 months and rep-
resents over 18 months of operation with the device completely
implanted.

As background to the analysis that follows, our physiologi-
cal system relies on three qualitatively discernible states in the
biological system:

1. Resting: defined as the state before any stimulation/
neuromodulation has occurred.

2. After-discharge (AD): defined as the state of high-energy LFP,
similar to a seizure event, and by characteristic head move-
ments of the subject. In our definition, the AD could occur at
any time, independent of stimulation delivery.

3. Suppression: defined as the state with activity that is below the
nominal resting state.

LEARNING FLOW METHODOLOGY
The system was deployed on the physiological preparation to
develop an embedded closed-loop algorithm using our tools and
processes. The technical methods applied the design flow outlined
in the system architecture to the physiological preparation:

• Collection of sensed neural data
Using the bi-directional telemetry link and embedded data
gathering capabilities, we gathered baseline training data on
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FIGURE 6 | Closed-loop neuromodulation system implanted in an ovine model. The figure is reproduced from Stanslaski et al. (2012) with permissions
from the IEEE.

background network activity. We also used the stimulator
and sensing functionality to identify useful biomarkers and
understand system transfer functions required for closing the
feedback loop.
• Learning → Performance element I: design of classifier

algorithm
The software algorithm tool was used to develop classifiers to
support the after-discharge detection and verify suppression
levels, which were validated using the real-time telemetry link.
• Learning → Performance element II: development of the

control policy
After development of the classifiers, the auto-detection of after-
discharges and therapy titration was validated using off-line,
real-time processing with the bi-directional telemetry link. Key
parameters were verified to be acceptable for timing latency. An
additional algorithm (data not shown) was tested to show the
system could automatically search the parameter space to find
acceptable suppression behavior.
• Committing the performance element to the embedded

device for validation
The final embedded algorithm implemented three sub-
algorithms into a single-state machine: AD detection and mit-
igation; suppression detector; and parameter search. The code
was then downloaded to the device through wireless teleme-
try, error checked for complete flash writes, and the implant
was then activated with the closed-loop algorithm. All states
were exercised in the algorithm routine to validate operation.
State transitions were also recorded in the device data records
for automated annotation of files, allowing for observational
validation and algorithm refinement.

RESULTS
COLLECTION OF SENSED NEURAL DATA: IDENTIFICATION
OF BIOMARKERS AND ALGORITHMS
We aimed to explore the states of the system to find
relevant control-variable biomarkers in vivo. Analysis of the
post-stimulation data showed decreasing mean beta band power

with increasing stimulation amplitude, suggesting suppression of
activity, at least locally to the HC (Figure 8, right). To deter-
mine whether the network was truly suppressed, we performed
a second series of transfer function experiments which measured
the pre-stimulation baseline beta band power level followed with
a high amplitude delivery (≥1.50 V) “probe pulse” capable of
inducing AD. Because our experimental setup was not a seizure
model, we used the post-stimulation AD duration as the desired
output for assessment of network effect. Through spectral anal-
ysis of the data, we observed a potential control variable in the
20± 2.5 Hz band (approximately the beta band) that seemed
correlated to the qualitatively observed states:

1. Resting state corresponded to relatively constant beta band
power (approximately 2.7 uVrms).

2. AD state corresponded to increased beta band power (approx-
imately 30 uVrms).

3. Suppression state corresponded to decreased beta band power
(approximately 1.5 uVrms).

We characterized the biomarker over 15 months of data collec-
tion. For data shown, the units of spectral power in all data
figures are (uV/rtHz)2, with an arbitrary scale referred to as least
significant bit (LSB). Results showed that AD generation was
a probabilistic function of stimulation amplitude; stimulation
below 1.5 V did not result in any AD, stimulation between 1.5
and 1.7 V resulted in occasional ADs, and stimulation above 1.7 V
always resulted in ADs (data not shown). Furthermore, AD dura-
tion appeared to be a function of the beta band pre-stimulation
state; the greater the pre-stimulation beta band power above the
defined suppressed state, the greater the AD duration (Figure 7).
Furthermore, these observations were robust: the suppressed state
beta band power varied by less than 2LSB over the entire duration
of the experiment. These results imply that spectral beta band
power could be a control variable of interest when modulating
network state.
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To further understand the dynamic state of the system, we
aimed to characterize the transfer function between our proposed
biomarker—spectral beta band power—and stimulation patterns.
To characterize the response of the biomarker to stimulation,
we ran several titration sweeps. The recorded biomarker signals
were captured at rest, during AD events, and during delivery of
stimulation at several amplitudes (0.75–1.7 V) and frequencies
(50, 120 Hz) in order to determine a reference value to discrim-
inate both suppression and ADs. Figure 8 shows the network
response during stimulation (25 s, red) and between stimulation
periods (25 s, blue). Importantly, the detection of AD induction
required sensing neural activity in the presence of stimulation
(Stanslaski et al., 2012) and would have been lost if channel
blanking were employed.

FIGURE 7 | After-discharge duration as a function of beta band

power increase from suppressed baseline. High amplitude stimulation
parameters were kept constant in a given session and were always
determined to be sufficient to initiate an AD.

The titration sweep for determining network-state response to
stimulation is a critical step in designing the neural control algo-
rithm. The data suggest that stimulation can have different effects
on the network: while low and moderate stimulation amplitude
appears to suppress the network excitability, high stimulation
amplitude can induce an AD. Based on these results, we wanted
to use our platform to implement a performance element to have
two key features: (1) change stimulation amplitude to keep the
network at the balance point of suppression and induction of AD
and (2) due to the probabilistic nature of AD induction, allow for
the detection of AD in real-time to abort stimulation and adjust
the stimulation levels lower. To do this, we designed the per-
formance element in two parts: states classification and control
policy implementation.

LEARNING PERFORMANCE ELEMENT I: DESIGN OF CLASSIFIER
ALGORITHMS
To automate a control loop, we used the observed qualitative
correlations with a quantitative algorithm to detect the AD in
real-time with a classifier constructed with the external classifier
tool. To help mitigate stimulation artifact, we also used spec-
tral band (approximately 70 Hz) to capture stimulation energy
in the network without being confounded by observable changes
in neural physiology. To achieve this, we applied a measure
of stimulation artifact as a feature input within the algorithm
to distinguish stimulation result and non-stimulation result as
described in Stanslaski et al. (2012). We include the two power
channel outputs in Figure 9 for demonstration purposes, show-
ing correlation between the amplitude of beta band power and
AD in Figures 9A,B.

After annotation was supplied to the training data sets, we
used the tool to develop a linear, binary classifier to detect AD
with and without stimulation. The detection probability den-
sity plot, receiver operating characteristic (ROC) curves, and
detection cross-validation result, which are directly generated

FIGURE 8 | Determination of the hippocampal network transfer

function between stimulation and beta band spectral power.

There is an initial reduction in beta band power at low stimulation

amplitudes, followed by an increase in beta band power at higher
stimulation amplitudes, resulting in occasional AD during stimulation
at 1.5 V.
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FIGURE 9 | Training the classifier to detect the onset of

after-discharges in the presence of stimulation. (A) Is a dataset with
a representative AD. “Discard transient” periods refer to portions of
the signal that were not used in training. (B) Is a dataset for providing
stimulation artifact without an AD present. (C) Provides the histogram

of detection states versus distance from the classifier boundary.
(D) Estimates the true positive (TP) and false positive (FP) percentages
based on the classifier. (E) Shows the impact of onset and termination
constraint logic on detector specificity by overlaying the estimated
detector state with recorded data files.

by the software tool, are presented in Figures 9C,D, and E,
respectively. The detection probability histogram (C) represents
the magnitude of the state from the boundary, allowing for mul-
tiple dimensions of data to collapse to a single graph biomarker
separation. The detection probabilities graph (D) provides an
estimate of the true-positive and false-positive rates based on
the derived classifier. The filtered detection summary graph (E)
allows for the user to set onset and termination duration con-
straints (i.e., a minimum duration in a classified state before
detection is determined) to help improve specificity at the expense
of classifier latency. Graph (E) shows an overlay of the clas-
sification state over the data. We downloaded and embedded
into the implanted device the classifier that optimized sensitivity,
specificity, and latency trade-offs.

In addition, we used the tool to develop a separate classifier
that could detect the presence of the suppression state based on
the beta signal. This was also tested and similarly embedded in
the implanted device. Thus, with these classifiers, the state of

the neural system could be quantitatively classified on-line as
suppression, AD, or resting.

LEARNING PERFORMANCE ELEMENT II: DEVELOPMENT OF THE
CONTROL POLICY
With the classifier in place, we next determined the control
policy. Given the unknown neural dynamic requirements and
algorithm parameters, the control policy was first prototyped
using the hybrid development partition to determine the stim-
ulation amplitudes and changes that would be used for each
state. Figure 10 illustrates an example of this testing to show
that stimulation can induce both the AD state and the suppres-
sion state. In this test, the controller logic uses two stimula-
tion programs. In the cycle stim (CS) program, high amplitude
stimulation (1.50 V) capable of inducing an AD is cycled on
and off, while spectral power in critical bands and classifier
state is continuously telemetered out of the device. If the clas-
sifier does not detect an AD, stimulation continues to cycle.
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FIGURE 10 | Hybrid system validation of the auto-shutoff algorithm for preventing sustained after-discharges in the hippocampus.

When the AD state is detected, stimulation is stopped and an
alternate setting is applied. The decreased network excitabil-
ity (DNE) program delivers a lower stimulation level (1.25 V)
after a programmed delay for one cycle, then returns to the CS
program.

Figure 10 (bottom) shows typical results achieved with
the hybrid algorithm. We ensured no false-positive detections
occurred in both open-loop and closed-loop cases by examining
the time-domain data. Our results demonstrate that open-loop
stimulation leads to sustained ADs post-stimulation roughly 50%
of the time when the cycle stimulation is applied without the algo-
rithm enabled, whereas with the algorithm enabled, the sustained
AD probability drops to 0% [N = 12, three monitor sessions,
15 months].

COMMITTING THE PERFORMANCE ELEMENT TO THE EMBEDDED
DEVICE FOR VALIDATION
As a final prototyping phase, we desired a system capable of
embedded operation to enable chronic, ambulatory data col-
lection for long-term validation as well as improved response
latency compared to subjects or other observers (e.g., researches,
caregivers).

Based on findings with the hybrid system, the device was
enabled to run a multi-branch algorithm for hippocampal net-
work dynamics. The algorithms developed for the embedded
detector were merged into a common state machine. As shown in
Figure 11, this included the three critical loops for the algorithm
corresponding to the states of the system, all of which share a
common stimulation sequence forward loop. The beta band power
threshold for determining the state classification was determined
using the classifier. In addition, we prescribed an increment of
0.05 V and decrement of 0.1 V for stimulation controllers—i.e.,
slow attack, fast recovery for attempting to maximize safe searches
of the parameter space.

• Suppression loop—detects suppression after stimulation and
maintains defined suppression in the HC based on network
activity within a broad beta band (10–30 Hz); the detector
gates when stimulation pulses would occur based on measured
spectral power.
• After-discharge loop—detects after-discharge and aborts stim-

ulation, decrements stimulation amplitude, and sets a new
“ceiling” on the stimulation level for future excitation patterns
to avoid future AD events.
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FIGURE 11 | The embedded control policy for modulating hippocampal network dynamics. Color codes at the top will be used to mark states in the
resulting data summary.

• Resting loop—detects resting state and increments stimulation
amplitude to verify the ceiling is still valid; this loop is acti-
vated when suppression is no longer being achieved with the
suppression loop to counteract slowly changing behavior such
as circadian patterns, medication dosing, etc.

Note: Additional parameters such as initialization variables
and counters are also programmable through telemetry and could
be refined as needed.

The algorithm firmware was downloaded into the device and
validated with cyclic-redundancy checking.

The embedded algorithm was then evaluated with on-line
processing in the ovine model. Figure 12 presents a typical out-
come of the standalone implantable device with the algorithm
embedded; we demonstrate all possible states of the of the con-
trol policy in this data sample. We start by stimulating at an
amplitude known to generate AD, resulting in appropriate stimu-
lation shut-off. Then, stimulation is ON with reduced stimulation
amplitude (from 1.7 to 1.6 V). Stimulation at this level produces
suppression for one cycle, leading to maintenance of this stimu-
lation level for 1 cycle. On the next cycle, however, suppression is
not detected, resulting in stimulation increase to 1.65 V and then

again to 1.7 V. At 480 s, the 1.7 V stimulation again leads to an AD.
The stimulation is again turned off due to the AD detection and
the stimulation level is returned to 1.6 V. This testing showed that
the learning procedure could result in a fully embedded solution,
from initial identification of biomarkers and transfer functions to
a fully-embedded control policy operating in vivo.

Several practical points are also worth noting. First, the algo-
rithm is power efficient, because it runs reliably with total current
drain less than 20 µW with the addition of sensing and algo-
rithm control. This represents roughly 10% of the nominal ther-
apy power used in movement disorder neuromodulation system.
Second, the algorithm shows robustness because signal power
channel baseline is stable over 15 months with variation within
2 LSB, which is more than 20 times smaller than the AD detection
threshold. Finally, the control policy is restricted to a bounded
set of stimulation parameters with programmable inter-locks,
thereby helping to ensure tolerability and safety.

DISCUSSION
Automated closed-loop control systems may potentially improve
neuromodulation therapies by reducing latency for therapy
adjustments and personalizing therapies to improve patient
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FIGURE 12 | Data sample from embedded algorithm (Figure 11). The
sample demonstrates data associated with detection of seizure-like events
in the presence and absence of stimulation and change stimulation

parameters, resulting in no observed after-discharges. “Pre-detection”
refers to the period of time when the onset or termination constraint has
not yet been met.

health. These approaches rely on improved understanding of
the nervous system dynamics and how they drive the mech-
anisms of action for neuromodulation. Mapping these con-
cepts to a learning agent framework helps define key com-
ponents that can lead to better characterization of the sys-
tem: sensors for chronically collecting data; effectors for mod-
ulating the network; and algorithms for translating data into
stimulation parameters. The investigational platform described
here fills a gap in current technology by enabling a process
methodology for designing and prototyping these algorithms and
embedding them in an automated closed-loop neuromodulation
device.

In this work, we demonstrated a platform consisting of an
implantable device integrated with external tools for developing
classifier and control-policy algorithms. We tested the platform
in a system that exhibited contrasting behavior with respect to
stimulation amplitude, motivating our algorithm design to find
the fine balance point between over- and under stimulation.
One of our significant findings was a potentially non-monotonic

relationship between stimulation amplitude and system response:
beta band power was reduced from baseline at low stimulation
amplitudes, while it was increased at higher stimulation ampli-
tudes, resulting in occasional AD. These results imply that neural
feedback may be an important consideration in determining the
optimal stimulation amplitude.

While we performed our experiments in an in vivo ovine,
our investigational approach could be applied to the study
of other disease states, such as Parkinson’s disease, essential
tremor, epilepsy, or other neurological conditions. Preliminary
exploration of the automated algorithm supports the design of
other closed-loop systems using similar control policies to those
described here (Eusebio and Brown, 2009; Priori et al., 2012).
Furthermore, our system is not limited to neural biopotentials;
we can theoretically record any biopotential of sufficient ampli-
tude (e.g., EMG). These biopotentials, along with other sensor
data, may be useful in prototyping and validating algorithms
for future automated closed-loop systems (Yamamoto et al.,
2012).
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Our design involved several practical considerations. Perhaps
most importantly, we designed the generalized learning system
on a chassis that has received prior approval for select thera-
pies. Building off an established foundation helps to lower the
translational barriers to exploring advanced systems. An addi-
tional key design element is the ability to sense activity in the
presence of stimulation (also described in Priori et al., 2012).
Our results demonstrate the potential importance of network
phenomena that occur while the network is being modulated—
especially while characterizing transfer functions of the ner-
vous system that might underlie mechanisms of action. In this
work, this capability allowed us to monitor for evidence of
AD during the stimulation as well as dynamically adjusting the
stimulation ceiling as a function of suppression state. These
phenomena may be missed by neural sensing architectures that
blank out the signal chain during the stimulation (Sun et al.,
2008).

Another practical consideration is that the learning path-
way is amenable to chronic embedded algorithm operation,
particularly in light of the trade-offs between complexity and
performance versus simplicity and power consumption (Lee
Kyong et al., 2012). The offline analysis and hybrid design
approach allow for rapid prototyping of concepts before com-
mitment to embedded firmware. Once embedded, the power
draw with our system could be reduced to 20 uW, below
10% of existing nominal therapy power for Parkinson’s dis-
ease, and latency can be reduced to approximately 200 ms. In
the future, use of complementary sensors such as accelerom-
eters and patient feedback may enable algorithms to main-
tain simplicity and efficiency without sacrificing performance.
Ultimately, the ability to titrate stimulation to therapy using
responsive algorithms (such as the suppression loop) could
potentially yield a net energy savings of chronic respon-
sive systems.

Finally, the experiments allowed us to observe overall reliabil-
ity of the system. Observed signals of network states were stable
over the course of the 15-month experiment, providing evidence
of robustness in our detection algorithms (>20-fold margin) to
detect state changes. This finding, combined with other results
(Stypulkowski et al., 2011), provides initial confidence in the
reliability of the system in an in vivo environment. In addition,
our control-policy implementation used bounded stimulation
parameters to ensure tolerability and safety. The chronic reliabil-
ity and means of ensuring safety provide both a mechanism for
longitudinal learning to occur within one subject and chronic val-
idation of the methods, thereby greatly increasing the likelihood
of clinical translation.

The study does suffer from limitations, mostly tied to the
choice of animal model used for validation. First, the validation
is tied to physiology measures and not a true disease model. The
ultimate therapeutic utility of the algorithm will require addi-
tional testing in animal and clinical models which might drive
refinement of the algorithm. In addition, the hybrid system is
limited by telemetry latency. Future investigations characterizing
the latency of the feedback loop may be needed to better under-
stand this impact vis a vis neural dynamics. System latency may
be particularly relevant when stimulating multiple neural regions,
such as in stimulating pairs of neural targets or in functional elec-
trical stimulation of muscle in response to sensed neural signals.
Ultimately this latency is addressed when embedded in the sys-
tem, but might limit the broader application of the hybrid design
process.

In summary, we believe increased understanding of the ner-
vous system with such platform systems may lead to improved
technical capability to modulate the nervous system to address
pathophysiology. As these systems mature, they can be embedded
into devices to augment and potentially correct for a malfunc-
tioning nervous system.
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Seizure control using deep brain stimulation (DBS) provides an alternative therapy to
patients with intractable and drug resistant epilepsy. This paper presents novel DBS
stimulus protocols to disrupt seizures. Two protocols are presented: open-loop stimulation
and a closed-loop feedback system utilizing measured firing rates to adjust stimulus
frequency. Stimulation suppression is demonstrated in a computational model using
3000 excitatory Morris–Lecar (M–L) model neurons connected with depressing synapses.
Cells are connected using second order network topology (SONET) to simulate network
topologies measured in cortical networks. The network spontaneously switches from
tonic to clonic as synaptic strengths and tonic input to the neurons decreases. To
this model we add periodic stimulation pulses to simulate DBS. Periodic forcing can
synchronize or desynchronize an oscillating population of neurons, depending on the
stimulus frequency and amplitude. Therefore, it is possible to either extend or truncate
the tonic or clonic phases of the seizure. Stimuli applied at the firing rate of the neuron
generally synchronize the population while stimuli slightly slower than the firing rate
prevent synchronization. We present an adaptive stimulation algorithm that measures the
firing rate of a neuron and adjusts the stimulus to maintain a relative stimulus frequency to
firing frequency and demonstrate it in a computational model of a tonic-clonic seizure. This
adaptive algorithm can affect the duration of the tonic phase using much smaller stimulus
amplitudes than the open-loop control.

Keywords: seizure model, deep brain stimulation, tonic-clonic, synchrony

INTRODUCTION
Approximately one third of patients with epilepsy do not have
sufficient control of their seizures even with the use of antiepilep-
tic drugs. The use of deep brain stimulation (DBS) to suppress
or truncate seizures is an alternative approach for controlling
seizures in drug refractory patients. However, DBS for seizure
suppression has had mixed clinical success (Loddenkemper et al.,
2001). The SANTE trial, a multi-center clinical trial, used open-
loop DBS, and demonstrated a 35% reduction in seizures (sig-
nificantly more than in the control group), but with very few
seizure free patients (Fisher et al., 2010). Neuropace has devel-
oped a closed-loop stimulator that has been tested in multi-center
clinical trials, resulting in a 37.9% decrease in seizures, which
is also significant compared to a control group. Although some
patients are reluctant to have a device implanted in their brain
(Arthurs et al., 2010), there exists a population of patients who
have exhausted other medical options and are willing to take sur-
gical risks for any reduction in seizures. There is therefore a need
to improve the efficacy of DBS.

We presume that DBS may be more effective if the stimulation
parameters could be optimally tuned for each patient. However,
improving the efficacy of DBS by tuning the stimulus parameters
is difficult, particularly as the mechanism by which DBS sup-
presses seizures is poorly understood (Vonck et al., 2003). With a
better understanding of the mechanisms by which DBS functions,

we may be able to design and optimize stimulus parameters and
develop a closed-loop stimulator that tunes the stimulus param-
eters. This paper illustrates how DBS stimulus parameters can be
selected based on the dynamics of neurons within the targeted
brain area in order to affect synchrony in different stages of a
seizure.

There are several different working hypotheses about the
underlying mechanism by which DBS is able to suppress seizures.
In animal models indirect evidence suggests that stimulation
in the anterior thalamic nuclear complex can induce a release
of the inhibitory neurotransmitter GABA, which presumably
depresses the activity of neurons and results in the observed
increase of seizure threshold (Mirski et al., 1997). In brain
slice experiments it is possible to directly measure the effect
of DBS stimuli in neurons. It has been shown that high fre-
quency stimulation can cause neurons to go into a depolarization
blockade, where cells are unable to fire, that will truncate
the seizure (Bikson et al., 2001). DC electric fields can be
used to hyperpolarize neurons, in order to change the neu-
ron’s excitability and suppress seizures (Gluckman et al., 1996).
It has also been suggested that the stimulation may prevent
neuronal synchronization; under this hypothesis DBS stimuli
with a Poisson train of pulses at the same frequency as the
high frequency stimulation has been shown to suppress seizures
(Wyckhuys et al., 2010).
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TONIC-CLONIC SEIZURES
Grand-mal epileptic seizures consist of two major stages: the tonic
and clonic phases. In the tonic phase patients lose consciousness
and their muscles tense up, while in the clonic phase the patients
begin to jerk (Fisch and Olejniczak, 2006; Bragin et al., 2010).
High frequency oscillations (HFOs) (oscillations above 150 Hz)
in the intracranial electroencephalogram (EEG) recordings are
observed during these seizures (Schindler et al., 2007b) as well as
using magnetoencephalogram (MEG) (Garcia Dominguez et al.,
2005; Perez Velazquez et al., 2007). In human studies, it has been
shown that firing rates at the onset of the seizure are very high and
decrease over the course of the tonic-clonic seizure (Ward, 1961).
EEG measurements suggest that population amplitude and coher-
ence is greater in the clonic phase than the tonic phase (Quian
Quiroga et al., 1997). Frequency sweeps observed in EEG during
seizures are a biomarker that can be used to detect seizures (Schiff
et al., 2000).

We have recently proposed a model explaining (1) a mecha-
nism for the transition from tonic to clonic phases by slowing of
firing of neurons over the seizure and (2) the differing ability of
neurons to synchronize at high firing rates and low firing rates
(Beverlin et al., 2011). The change in the firing rate in the model
is due to due to synaptic depression of the neurons and spike rate
adaptation of the neurons, both of which occur at high firing rates
(Abbott et al., 1997; Manor and Nadim, 2001). When analyzing
EEG, determining the transition between tonic to clonic is some-
what subjective to the epileptologist. In this paper we will simply
define the tonic phase of the seizure as network activity with high
firing rate and low synchrony, while the clonic phase is high firing
rate with high synchrony.

FIRING RATE AND NETWORK SYNCHRONY
In previous brain slice experiments, it was found that while
the firing rates of neurons were high during the tonic phase of the
seizure, neurons exhibited a low degree of correlation. During the
clonic phase the firing rate decreased and the population became
highly synchronous (Netoff and Schiff, 2002). This transition
from the tonic to clonic phases may be integral to the evolution
of the seizure and its eventual termination. Based on this hypoth-
esis, it has been shown that synchronizing populations with DBS
pulses may promote seizure termination and truncate the seizure
(Schindler et al., 2007a). We have recently developed a compu-
tational model that illustrates a mechanism by which synchrony
changes during a seizure (Beverlin et al., 2011).

In our model, seizures start by the failure of inhibition.
Without inhibition, the excitatory neurons increase their firing
rate and excitatory drive within the network increases in a posi-
tive feedback loop resulting in very high firing rates. Over time,
the firing rate slows down, and the network transitions to a syn-
chronous high amplitude clonic phase of seizure. In the model
the transition from tonic to clonic phases is caused by a change
in the sensitivity of neurons to synaptic inputs as their firing rate
slows; this leads to a shift in synchrony. We demonstrate how the
transition occurs in a network of model neurons and explain the
mechanisms using pulse-coupled oscillator theory. There are sev-
eral ways in which network synchrony may change in vivo, includ-
ing the reintroduction of activity from the inhibitory population

(provided they have entered depolarization block at the seizure
onset) (Ziburkus et al., 2006), synaptic depression, and vesicle
depletion. In our model, the change in firing rate is produced by
including synaptic depression and a gradually decreasing input
current to the model neurons, to simulate spike rate adaptation
of the neurons.

PERIODIC STIMULATION IN EPILEPSY
DBS has been tested in models of epilepsy in order to disrupt
seizures (Good et al., 2009; Fisher et al., 2010; Nelson et al.,
2011; Rajdev et al., 2011). Stimuli designed to increase synchrony
has been shown to effectively truncate seizures (Schindler et al.,
2007a) and DBS has been employed in clinical trials with reason-
able success (Morrell, 2006; Fisher et al., 2010; Morrell and On
behalf of the RNS System in Epilepsy Study Group, 2011).

During a seizure the firing rate of neurons changes as the
phases of the seizure progress. Therefore, we hypothesize that the
influence of DBS on population synchrony will change if the stim-
ulus does not adapt to the firing rate of the neuron. In this paper
we first estimate the effects of periodic DBS on neuronal popula-
tions that are firing at high rates during the tonic phase, and then
on the low firing rates during the clonic phase. To study the effects
at each phase of the seizure, we fix the synaptic strengths and
apply constant current and vary the DBS frequency and ampli-
tude measuring the resulting increase or decrease in synchrony.
We find that independent of firing rate, there are ratios of stimu-
lus frequency to neuronal frequency that can either synchronize
or desynchronize. Then, in the full model with changing fir-
ing rates, we demonstrate an adaptive algorithm that measures
the firing rate of a neuron to adjust the stimulus frequency to
maintain stimulation in the regime that promotes or decreases
synchrony over the entire duration of the seizure. This exemplifies
how an adaptive stimulus algorithm may be designed to disrupt
synchrony in a population where the population oscillation is
changing.

METHODS
We investigate the effectiveness of DBS within an epileptic
model using computational simulations of excitatory neuronal
networks. The neuron model captures the dynamics of a real
neuron’s sensitivity to synaptic inputs, current inputs, and peri-
odic forcing from applied stimuli. Synaptic depression variables
change the recurrent excitatory drive amongst the population,
which changes the firing rates of the neurons. As the neuron’s fir-
ing rate changes, the sensitivity to synaptic inputs also changes,
allowing them to synchronize at slow firing rates, but not at high
firing rates. Networks of neurons are connected using a second
order network (SONET) that keeps the neurons at the edge of
synchrony at the high firing rate.

MORRIS–LECAR MODEL NEURON
We use a modified version of the Morris–Lecar (M–L) model neu-
ron (Morris and Lecar, 1981; Izhikevich, 2007), a 2-D reduction
of the Hodgkin–Huxley model (Rinzel, 1985). DBS stimulation
is simulated by applying periodic pulses of current input of
varying strength and frequency, depending on the stimulation
protocol. The conductance based M–L model calculates the
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change in voltage as a function of the membrane’s ionic currents
as described by the following equations:

CV̇ = Iinput + IDBS + Inoise − gL(V − EL)

− gNam∞(V)(V − ENa)− gK n(V − EK )

−D(S− F)(V − Esyn),

ṅ = n∞ (V)− n

τ (V)

m∞ (V) = 1

1+ e
V1/2− V

k

τ (V) = C e
−(Vmax−V)2

σ2

Ṡ = − S

τs

M∑
j = 1

δ
(

t − t
j
syn

)

Ḟ = − F

τf

M∑
j = 1

δ
(

t − t
j
syn

)

where C is the membrane capacitance, V is the membrane volt-
age, Iinput is an input current common to all neurons, Inoise is a
white noise input proportional to the square root of the time step
independent to each neuron, g are the maximal conductances of
each current source, E are the reversal potentials for each ion,
m and n are the ionic gating variables, where m∞ and n∞ are
the steady-state activation for a given voltage, V1/2 m satisfies
m∞

(
V1/2

) = 0.5, Vmax is the value of V at the maximum value
of m, k is the degree of slope at V1/2, τ is the voltage dependent
time constant of the inactivation variable, σ determines the sen-
sitivity of the time constant of V , S represents the slow variable
of the synaptic input shape, with a time constant τs and F is the
fast synaptic time constant. At times of synaptic input, 1 is added
to both the S and F state variables for each presynaptic event
at time tsyn for all M events. Synaptic depression, D, is defined
as Di + 1,j = Di,jd, updated for cell j after a synaptic input i as
described in Varela et al. (1997) where the strength of depression
is controlled by d.

The model is explained in more detail in our recent
seizure model paper (Beverlin et al., 2011). The parameters
of the M–L model were chosen so that the phase response
curve (PRC) is similar to PRCs we have measured in hip-
pocampal pyramidal neurons (Netoff et al., 2005); they
are as follows: C = 1.0 μF, gL = 8 nS, EL = −53.24 mV,
gNa = 18.22 nS, ENa = 60 mV, gK = 4 nS, EK = −95.52 mV,
V1/2 m = −7.37 mV, km = 11.97 mV, V1/2 n = −16.35 mV, kn =
4.21 mV, τ = 1 ms, spikeWidth = 0.03, Esyn = 0, τf = 0.25 ms,
τs = 0.5 ms. Matlab code for this model is available
at http://neuralnetoff.umn.edu/public/TonicClonicControl and
from Model DB website (http://senselab.med.yale.edu/modeldb).

NETWORK STRUCTURE
Directional networks of 3000 cells were generated with an aver-
age of 30 out-going excitatory synaptic connections using a

second order network topology (SONET), which places addi-
tional correlated structure to random networks (Zhao et al.,
2011). The specific network structure is determined by specify-
ing the average connectivity (first order statistic) as well as the
additional prevalence of two edge motifs, thus referred to as
second order motifs. These second order structures are recipro-
cal, convergent, divergent, and chain connections, as illustrated
in Figure 1. We generate large networks by specifying the first
and second order statistics. It has been found that the preva-
lence of chains and convergent connections have a strong effect
on the synchronizability of the network. Here we choose the
network statistics which allow a network to both synchronize
and desynchronize, depending on input current and firing rate.
The network we use has statistics similar to that measured
in rat visual cortex (Song et al., 2005). The specific SONET
was chosen out of 186 candidates discussed in recently pub-
lished results (Zhao et al., 2011). This network, which had
4 times the prevalence of reciprocal connections, 1.4 times the
convergent connections, 1.3 times the divergent connections,
and 1.2 times the chain connections compared to a random
graph, was the closest to measured cortical networks in a rat
model.

NETWORK SYNCHRONY MEASURE
Network synchrony is quantified using the Kuramoto order
parameter (r) which ranges from 0 (neurons evenly distributed in
phase) to 1 (neurons in coherent phase) and calculated as follows:

reiφ = 1

N

N∑
j = 1

eiθj

FIGURE 1 | Second order motifs. Connection motifs of two and three-cell
combinations with two directional connections. The motifs are reciprocal,
convergent, divergent, and chain motifs. The prevalence of these motifs
within a larger network can be specified when generating the network.
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where the phases of neurons (θj) are summed to create
a population vector with magnitude (r) (Kuramoto, 1984;
Strogatz, 2000).

RESULTS
The influence of DBS was tested in a network model that repro-
duces a tonic to clonic shift in network synchrony as a function of
the firing rate of the neurons (Beverlin et al., 2011). In the simu-
lations, at the seizure onset the firing rate of the neurons are very
high, as might be expected with runaway excitation, and then over
the duration of the seizure, the firing rate of the neurons slowly
decreases, eventually bringing about a transition to the clonic
phase of the seizure, seen in Figure 2. The tonic-clonic transition
model reproduces the shift in synchrony observed in EEG. In this
model, the firing rate was modulated by a combination of changes
in tonic drive to all the neurons, representing drive of exogenous
sources, and synaptic depression from neurons within the net-
work. Simulations included 3000 M–L neurons connected using
a second order network designed to be at the edge of synchrony
when neurons were in the tonic phase of the seizure. Over the
duration of the seizure we decreased the tonic drive to represent
depression from the exogenous inputs, and the synapses within
the network depress during the seizure due to the modeled synap-
tic depression. Decreased input from both the exogenous and
endogenous sources results in a decrease in firing rate over the
duration of the seizure.

In this paper we apply periodic stimulation to the seizure
model. All cells receive the same stimulus input for a given set of
stimulus parameters, assuming that the population is uniformly

FIGURE 2 | Tonic-clonic transition in model network. Synchrony
emerges in large scale networks with synaptic depression and
ramped current from I = 0 nA to I = −5 nA and inclusion of synaptic
depression. Average synaptic strength across the population is
plotted against time in the 3rd panel labeled as “Syn Drive.”
Synchrony as a function of time is plotted at the bottom,
measured using the Kuramoto order parameter. Synchrony emerges
as interspike intervals of the neurons exceed about 7 ms. Synchrony
will not occur if tonic current is held at 5 nA keeping interspike
intervals shorter than about 7 ms.

distributed from the electrode. To analyze the effects of the stim-
ulation in each phase, we hold the applied current in the neurons
constant and freeze the synaptic plasticity to study the effects of
stimulation at each phase of the seizure separately. We analyze and
model the effects at a high firing rate during the tonic phase and
then again at a low firing rate during the clonic phase. Then, we
restore the changing exogenous current and plasticity back into
the model to measure the effects of periodic stimulation to the
duration of the tonic and clonic phases.

OPEN-LOOP PERIODIC STIMULATION WITH FIXED DRIVE TO NEURONS
First, periodic stimulation was applied to a network simulation
driven with high current input (6 nA ), to model the tonic phase
of the seizure. At this high firing rate the unstimulated network
does not synchronize. Results of stimulation applied to all cells of
the network at 5.5 ms intervals are shown in Figure 3. Stimulus
at this interval during the tonic phase increases synchrony in the
tonic phase.

Simulations were repeated while varying the stimulation fre-
quency and amplitude. Synchrony was measured using the

FIGURE 3 | Synchronizing a tonic phase model using periodic

drive. Computational simulation of network activity with current set to
6 nA to simulate tonic phase of seizure. Top, population is entrained
to periodic stimuli (points of stimulation as dots along top axis). ISI
increases from 4.8 to 5.5 ms. Synaptic drive decreases from
depression due to strong input from DBS. Synchrony of unstimulated
network is low (gray) and stimulating with 5.5 ms pulses increases
synchrony. Below, rasterplots of neuronal network spike times during
unstimulated tonic activity and with network stimulation to
synchronize. Spike times of 1000 model neurons from the 3000 cell
network simulation. Left, unstimulated cells have low synchrony.
Right, network stimulated with 5.5 ms pulses becomes coherent.
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Kuramoto order parameter, averaged over the last one quar-
ter of the simulation to estimate the steady-state synchrony
in the network. These simulations were repeated over a range
of stimulus amplitudes and frequencies, results are shown
in Figure 4. Darker areas indicate stimulus parameters that
entrain the neurons, resulting in a synchronized popula-
tion. These entrained regions are known as Arnold Tongues
(Milton and Jung, 2003). These “tongues” of entrainment
occur at integer ratios of stimulus period to the natural
period of oscillation. The points on the map that are lightly
shaded indicate those parameters where the network remains
desynchronized.

The simulations were then repeated while applying a −2 nA
current, in order to simulate a network during the clonic seizure
phase, shown in Figure 5, where the unstimulated network would
spontaneously synchronize. The network is then periodically
stimulated with a 2 ms period, shown as dots along the top curve
in Figure 5. This stimulation reduces the synchrony compared to
the unstimulated simulation.

Simulations were run for a range of stimulus amplitudes
and frequencies, while driving the network at −2 nA. A syn-
chrony map for these results is shown in Figure 6. One notable
difference is that the region of entrainment has shifted from
5.5 ms around the natural period when the system is driven
with 6 nA, to a region of entrainment of 8.5 ms around the
natural period when driven at −2 nA. Because the low current
network synchronizes spontaneously, a wider range of stimulus
parameters synchronize the network. There are several windows
which desynchronize the population. In the example shown in
Figure 5, we use 2 ms period for stimulation, but 4 ms or about
12.5 ms for example could be used as indicated by light bands in
Figure 6.

CONTINUOUS CONTROL OF SEIZURES WITH VARIABLE STIMULUS
FREQUENCY
Ultimately, control of seizure states may be most effectively
achieved by implementing a closed-loop feedback system, in
order to select the stimulus frequency from the measured neu-
ronal frequency (Nelson et al., 2011). We have noticed that

FIGURE 4 | Synchrony map of stimulated tonic networks. Current input
of 6 nA applied to all cells. Grayscale indicates calculated synchrony as the
Kuramoto order parameter averaged over the last 200 ms of individual
simulation for a range of stimulus amplitudes and periods.

the stimulus frequency that entrains the neurons occurs at fre-
quencies just slightly faster than the firing rate of the neurons.
Stimulus regimes that desynchronize the population are found
to be slightly slower than the firing rate of the neurons. Based
on this observation, we developed a simple feedback system

FIGURE 5 | Desynchronizing the clonic phase. Computational simulation
of network activity with current set to −2 nA to simulate clonic phase of
seizure. See Figure 3 for general figure description. Synchrony of the
unstimulated clonic network increases to a strong value near 0.8 (gray).
When applying the 2 ms periodic DBS pulse, the network activity is
desynchronized. Bottom Left, unstimulated cells have high synchrony.
Bottom Right, network stimulated with 2 ms pulses. Less synchronous
activity is observed in the stimulated network.

FIGURE 6 | Synchrony map of stimulated clonic networks. Current input
of −2 nA applied to all cells. Grayscale indicates calculated synchrony as
Kuramoto order parameter averaged over the last 200 ms of each
simulation for a range of stimulus amplitudes and periods.
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that modulates the stimulus period depending on the firing rate
of one cell within the network. All other parameters are the
same as previously used in the unstimulated tonic-clonic model,
including the current ramp and network topology. Here, the
feedback system selects the stimulus frequency based on a user
chosen ratio of stimulus to measured frequencies. This ratio can
be selected from the entrainment maps. A choice of 1:1, for
example, would entrain a population, while a choice of 1:1.14
(stimulated to measured frequency ratio) may desynchronize a
population.

Figure 7 shows the response of the network while stimulating
at intervals 1.14 times the interspike intervals of neurons in
the population. Synchrony emerges later in this stimulated
case than the unstimulated network, prolonging the tonic
phase. Eventually, the network slows sufficiently such that syn-
chrony takes over, despite the dispersive effects of the stimulus.
Conversely, by applying the stimulus at the same frequency as
the firing rate of the neurons (1:1 ratio) we were able to bring
about synchrony in much less time than in the unstimulated case,
truncating the tonic phase, as shown in Figure 8. In both the
synchronizing and desynchronizing closed-loop feedback exper-
iments we used stimulus amplitude of 10 nA, one quarter the
amplitude used in the open-loop conditions to achieve a similar
effect.

DISCUSSION
Tonic-clonic seizures can be devastating to a patient with
epilepsy. While there is evidence that DBS can reduce seizures,
no clinical application has been found to be fully effective in
truncating seizures. It is well known in oscillatory models that
periodic forcing of a network of oscillators can synchronize or
phase disperse the oscillators (Glass and Mackey, 1988; Elbert
et al., 1994; Kaplan et al., 1996). It has previously been proposed

FIGURE 7 | Tonic phase prolonged. Stimulating at a desynchronizing
frequency ratio of 1:1.14 where the stimulus is firing slightly
slower than the measured frequency of one chosen cell.
The tonic phase of low synchrony is prolonged when stimulating
compared to the unstimulated model. Graphs labeled the same as
Figure 3.

that this may be used to control seizures (Milton and Jung, 2003).
In a recent paper, we proposed that this may be involved in treat-
ing Parkinsonian symptoms (Wilson et al., 2011). In this paper
we use similar periodic stimulation theory to affect the tonic and
clonic phases of a seizure in a computational model we have
recently developed (Beverlin et al., 2011). Recently we proposed
that the shift from the desynchronized tonic phase to the syn-
chronous clonic phase occurs as the neuronal firing rate adapts
over the duration of the seizure. At the high firing rates, the model
neurons do not synchronize, but as the firing rates slow down, the
cells become more sensitive to synaptic inputs and the network
synchronizes. The change in spike rate is modeled by gradually
decreasing the current drive to the neurons along with depressing
synapses.

In this paper, we have added periodic stimulation to the tonic-
clonic model to determine if periodic stimulation could be used to
affect the duration of the seizure phases. We analyzed the effects of
stimulus frequency and amplitude on the population synchrony
at the tonic phase and again at the clonic phase. Depending on the
stimulus frequency we were able to synchronize neurons during
the asynchronous tonic phase, or desynchronize neurons in the
synchronous clonic phase. Periodic stimulation at integer ratios
of the stimulus frequency to the natural frequency was found to
entrain and thereby synchronize the population. Conversely, peri-
odic stimulation just slightly slower than the firing rates (and at
some frequencies, faster than the firing rates of the neurons) could
desynchronize the population. Our findings can be explained
with PRC theory, which we previously used to explain the effects
of the stimulus at different frequency amplitudes and its effect on
population synchrony (Beverlin et al., 2011). The effect of firing
rate shifting the peak of the PRC to the left in response to excita-
tory inputs is generally true and should therefore not be heavily

FIGURE 8 | Tonic phase truncation. Network of cells stimulated at 1:1
frequency ratio compared to one measured cell in the network. Bottom:
Transition to synchronous clonic phase is earlier (black line) than the
unstimulated model (gray line). Here the clonic phase is extended. Graphs
labeled the same as Figure 3.
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model dependent (Gutkin et al., 2005; Fink et al., 2011). We chose
the M–L model because it is one of the simplest conductances
based neuronal models that can demonstrate this effect.

Periodic stimulation of a network during a seizure with a
fixed period would have a mixed effect; synchronizing at some
phases of the seizure and desynchronizing at others, as the neu-
rons are constantly changing their firing rate. However, the ratio
of stimulus frequency to neuronal firing rate that entrains or
desynchronizes the population is relatively consistent. Therefore,
we created a closed-loop control system that adjusts the stimu-
lus frequency to desynchronize or synchronize the population,
holding the stimulus at a fixed rate relative to the neuronal firing
rate. In this case the tonic phase of the seizure could effectively
be shortened by applying a stimulus at the same frequency of the
neurons, while the tonic phase could be prolonged by applying
a stimulus frequency that is slightly slower than the firing rate
of the neurons, effectively preventing the synchronization of the
population.

This model illustrates the principle that periodic stimulation at
certain ratios to the measured firing rate of neurons can be used
to promote or decrease synchrony and this principle may be used
in a closed-loop feedback system for seizure suppression. We are
not suggesting that this model is an accurate model of the actual
physiology in the brain. Instead, if PRCs can be measured during
seizures, our theory may be tested experimentally. We plan to test
these hypotheses in brain slice experiments in the near future.

In addition, the complicated structure and function of real
neurons in real tissue are beyond the scope of this paper. Here
we have investigated the applicability of DBS in a model net-
work; naturally, there may be real world complications when
implementing these protocols depending on the location of the
electrode(s) and stimulus parameters. In addition, clinical appli-
cations of DBS thus far are typically less than 200 Hz. For example
the SANTE trials studying the treatment of refractory epilepsy
used a stimulation of 145 Hz (Fisher et al., 2010). Some of the
frequencies in our model presented here exceed these typical fre-
quencies, but the relative frequency between the stimulus and the
neuronal firing rate is what we consider important. Our model
is not designed to produce realistic firing rates, so we do not
suggest based on this model that these are realistic stimulation
frequencies for all brain regions that should be used clinically.

There are many aspects of this simulation which are not phys-
iologically realistic which could be improved in future studies.
First, the neurons are modeled as oscillators. Generally, neurons
do not fire periodically. However, at the onset of a seizure with
high rate of synaptic asynchronous synaptic inputs, neurons may
fire close to periodically. All the neurons are also modeled as oscil-
lators with the same parameters and the same firing rate, while it
would be more realistic to model the neurons with a distribu-
tion of parameters and firing rates. Furthermore, in this model
the stimulus was applied uniformly to all the neurons. In a real
neuronal network there is geometry to the position of the neu-
rons and a stimulus electrode will not uniformly stimulate all the
neurons. All of these aspects of the model could be improved to
make it more realistic, and will be the focus of further investiga-
tion, but we do not feel will change the fundamental approach we
present here to desynchronizing populations.

How might this algorithm be implemented in practice, such as
in a brain slice model of seizures and eventually in humans? First,
a stimulation electrode and a recording electrode are needed.
Then, it is necessary to determine the optimal stimulus fre-
quency ratio with respect to the neuronal frequency. This can be
determined from the neuron’s PRC to the stimulus. The PRC is
measured by open-loop stimulation at random intervals that are
on average much longer than the period of the neuron on average.
The phase of the oscillation is measured before and after the stim-
ulation to estimate the phase advance of each stimulus. Generally,
some model representing the phase advance as a function of the
stimulus phase is fit to the resulting data. PRCs would need to be
measured at different firing rates or phases of the seizure. From
the measured PRCs the Lyapunov Exponents (LEs) of the popu-
lation response at is estimated different stimulus amplitudes and
frequencies (Wilson et al., 2011). Stimulus parameters are selected
that maximize the LE to desynchronize the population, or min-
imize the LE to synchronize. To implement the algorithm, the
recording electrode would be used to measure the firing rate of
neurons in the population; the measured firing rate would then
be used to modulate the frequency of the stimulating electrode.

An interesting finding is that the closed-loop controller could
affect the duration of the tonic phase with equal efficacy at
one quarter the stimulus amplitude than the open-loop control.
This indicates that a simple measure of the neuronal firing rate
may significantly improve the efficacy of DBS.

It is important to note that we do not propose that it is best
to synchronize and shorten the duration of the tonic phase of the
seizure, or to prolong it. We consider that the restructuring of the
neuronal network by induction of synaptic plasticity by high fir-
ing rates of neurons during seizures may ultimately be the long
term deleterious effect if seizures. The goal of the therapy may be
to minimize the plasticity changes during a seizure. If neurons fire
synchronously, plasticity may be greater than when neurons fire
asynchronously. In this case, maximizing the tonic phase of the
seizure and minimizing the clonic phase may result in less plastic-
ity changes. However, if the synchronization of the population is
integral to the termination of the seizure promoting synchrony
may terminate the seizure earlier (Schindler et al., 2007a). For
example, if seizures are sustained by recurrent excitation, increas-
ing synchrony may decrease the excitable pool of neurons, thereby
decreasing the likelihood of re-entry and terminating seizures ear-
lier. Using a stimulus that can modulate the duration of the tonic
phase may help us determine whether synchrony is just a network
behavior that occurs at the termination of the seizure or whether
it is integral to the termination.

HFOs are population oscillations that are seen between
seizures. Suppressing these oscillations may be considered a tar-
get for DBS stimulation. The hope would be that disrupting these
pathological oscillations may suppress epileptogenesis. The same
approach used in this paper might be used to design a stim-
ulus to suppress HFOs. HFOs might be a good target because
they are observed to increase prior to a seizure in human and
animal models (Worrell et al., 2004), and are thought to arise
from synchronous bursts of neurons that occur in an epileptic
focus (Bragin et al., 1999, 2010; Ibarz et al., 2010). There is also
strong experimental evidence that synchrony amongst cortical
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regions is increased in epileptic patients (Bullock et al., 1995;
Towle et al., 1999; Ben-Jacob et al., 2007; Schevon et al., 2007;
Prusseit and Lehnertz, 2008; Zaveri et al., 2009) and that this syn-
chrony changes in the lead up to a seizure (Lehnertz and Elger,
1995; Chavez et al., 2003; Le Van Quyen et al., 2005). In con-
trast, other evidence suggests that synchrony may decrease prior
to a seizure (Mormann et al., 2003). We hypothesize that tuning
DBS stimulators to desynchronize prominent pathological oscil-
lations relevant to the generation of seizures interictally suppress
seizures. However, we are not aware of any direct evidence that
DBS affects these oscillations.

CONCLUSION
This work proposes a novel method to alter seizures using DBS.
In a computational model we have demonstrated that the dura-
tion of the tonic-phase of a seizure may be extended or shortened
by promoting synchrony using periodic stimulation. Promoting
or decreasing synchrony depends on the relative frequency of the
stimulation to the firing rate of the neurons. By using a closed-
loop feedback to adjust the stimulation frequency dependent on
the firing rate of the neurons, we are able to extend or decrease
the duration of the tonic phase with much weaker stimulus pulses
than was necessary in open-loop stimulation.
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We designed a novel assisted closed-loop optimization protocol to improve the efficiency
of brain-computer interfaces (BCI) based on steady state visually evoked potentials
(SSVEP). In traditional paradigms, the control over the BCI-performance completely
depends on the subjects’ ability to learn from the given feedback cues. By contrast, in
the proposed protocol both the subject and the machine share information and control
over the BCI goal. Generally, the innovative assistance consists in the delivery of online
information together with the online adaptation of BCI stimuli properties. In our case,
this adaptive optimization process is realized by (1) a closed-loop search for the best set
of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the
subject and the machine. These closed-loop interactions between subject and machine
are evaluated in real-time by continuous measurement of their efficiencies, which are
used as online criteria to adapt the BCI control parameters. The proposed protocol aims to
compensate for variability in possibly unknown subjects’ state and trait dimensions. In a
study with N = 18 subjects, we found significant evidence that our protocol outperformed
classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into
account interindividual variabilities: e.g., under the new protocol, baseline resting state
EEG measures predict subjects’ BCI performances. This paper illustrates the promising
potential of assisted closed-loop protocols in BCI systems. Probably their applicability
might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools
for clinical contexts and as new paradigms for basic research.

Keywords: brain-computer interface, brain-machine interface, activity-dependent stimulation, resting state EEG,

resting state network, individual alpha frequency, BCI illiteracy, BCI performance predictor

INTRODUCTION
The use of closed-loop interaction with biological nervous sys-
tems for observation and control purposes goes back to the
beginnings of electrophysiology in the 1940s when the voltage
clamp technique was developed (Marmont, 1949; Cole, 1955).
Later on, the dynamic clamp technology to implement artifi-
cial membrane or synaptic conductances (Robinson and Kawai,
1993; Sharp et al., 1993) has produced many examples of suc-
cessful closed-loop interactions with neural systems at the cellular
and circuit levels (for reviews see Prinz et al., 2004; Goaillard
and Marder, 2006; Destexhe and Bal, 2009; Economo et al.,
2010).

We recently proposed a generalization of the dynamic clamp
concept in electrophysiology and animal ethology to design
closed-loop interactions with biological nervous systems beyond
electrical stimulation and recording. In particular, we investigated
in our previous work goal-driven real-time closed-loop interac-
tions with drug microinjectors, mechanical stimulation devices
and video event driven stimulators (Muniz et al., 2008, 2011;
Chamorro et al., 2009, 2012). These examples illustrate that mod-
ern activity-dependent stimulation protocols can reveal dynamics
otherwise hidden under traditional stimulation techniques, pro-
vide control of regular and pathological states, induce learning
processes, bridge between distinct levels of analysis and lead to
a further automation of experiments. In this paper, we propose

the same assisted closed-loop approach described in our previ-
ous work to optimize the efficiency of steady state visually evoked
potentials (SSVEP) based brain-computer interfaces (BCI) which
might have a large impact for applied uses, such as computer
control and biomedical or prosthetic uses, but also as novel
paradigms for basic research. Generally, the innovative assistance
consists in the delivery of online information with regard to the
control over the given BCI goal both to the human subject and
to the system, together with the online adaptation of BCI stimuli
properties.

BCIs use measures of brain activity, typically real-time human
EEG recordings, usually in order to interact with devices such
as virtual keyboards, etc. (for recent reviews see e.g., Birbaumer,
2006; Van Gerven et al., 2009; Nicolas-Alonso and Gomez-Gil,
2012). Among the most successful BCIs are those which rely
on SSVEPs, a type of event related potentials (ERPs) generated
by the nervous system in response to repetitive visual stimula-
tion (flicker) by linear superposition of transient visually evoked
potentials (VEPs) (Capilla et al., 2011) up to 90 Hz (Herrmann,
2001): apart from smaller responses in higher harmonic frequen-
cies, the brain mainly generates electrical activity at just the same
fundamental frequency as its visual system is exposed to the visual
flicker frequency. SSVEPs are frequently used in basic and applied
research because of their relatively large magnitudes which lead to
superior signal-to-noise ratios (SNRs) and make them relatively
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stable against artifacts as compared to other ERPs (Vialatte et al.,
2010).

SSVEP-BCIs make use of the physiological property that
SSVEP magnitudes can be modulated by visual-spatial selective
attention (e.g., Morgan et al., 1996). Thus, SSVEP based BCIs
employ multiple visual stimuli (e.g., LEDs or regions on a screen)
flickering at different frequencies. Apart from these intraindivid-
ual state changes due to attention, SSVEP magnitudes further
depend both on extrinsic variables as the spatial and temporal
frequencies of the stimulus, and on other intrinsic intra- and
interindividual dimensions of the subjects themselves (Ding et al.,
2006; Lopez-Gordo et al., 2011). The optimal spatial frequency of
a structured stimulus is related to individual traits such as visual
acuity or age (Vialatte et al., 2010). There is also a significant dif-
ference in the magnitude of SSVEPs between flicker stimulation
of the center (fovea centralis) vs. the periphery of the visual field.
Environmental conditions (e.g., screen brightness and frequency,
distance to the screen, etc.) also influence the performance of the
BCI. Although determined by multiple factors, SSVEP magni-
tudes are modulated by the subjects’ states of attention. Hence,
online monitoring of SSVEP magnitudes elicited by arrays of
multiple flickering light sources allows BCI systems to detect to
which flicker source the subject is attending to at a given moment.
Taken altogether, these aspects call for automated mechanisms to
optimize parameters of the stimuli and of the BCI control, aiming
toward flexible adaptiveness to specific individual and contextual
situations of SSVEP-BCI use.

Commonly, SSVEP-BCIs use only one prefixed set of flicker
frequencies, but nonetheless there are studies employing two dif-
ferent prefixed sets (e.g., Volosyak et al., 2009, 2011) which lead
to remarkably different results. Those findings imply that BCI
efficiency may crucially depend on flicker frequency selection.
Following this idea, we created an assisted closed-loop adap-
tive algorithm to search for the best frequencies for each subject
and for each particular time point/situation of use. The adaptive

and informative nature of this novel online approach aims to
improve the BCI efficiency as compared to traditional paradigms
(see Figure 1). Firstly, this optimization process is realized by
performing a real-time closed-loop search for the best set of fre-
quencies to achieve the given BCI goal. The number of stimuli and
their effectiveness with regard to the BCI goal modulate this real-
time search strategy. The closed-loop search is evaluated in real-
time by a continuous measurement of the actual BCI efficiency
(see section “Efficiency Measures”), which is used as an online cri-
terion to select the BCI control parameters. Secondly, the SSVEP
online recording is processed, on the one hand, to an online audi-
tory feedback to inform the subject and, on the other, is used
to inform the system to select the best flicker frequencies. This
shared information constitutes the assisted part of the closed-
loop. The proposed protocol aims to address the problems which
arise from different hardware configurations, subjects’ intra- and
inter-individual variabilities, e.g., in neuropsychological dimen-
sions of executive functioning (see e.g., Funahashi, 2001) etc., and
other sources of variability in experimental settings and intrinsic
dimensions.

The paper is organized as follows: in section “Materials and
Methods” the new assisted closed-loop system is described; in sec-
tion “Results” analyses and correlates efficiency as compared with
traditional BCI paradigms are presented; finally, in “Discussion”
section we discuss about the generalization and applicability of
the proposed novel protocol.

MATERIALS AND METHODS
PARTICIPANTS
A convenience non-probability sample of N = 18 healthy subjects
from our department was used applying the exclusion criteria
self-reported chronic medication/substance intake and neurolog-
ical diseases as e.g., epilepsy. Our sample consisted of 6 females
and 12 males with age Mdn = 26.00 years (25th percentile =
23.00, 75th = 35.75), range = 18–59. Subjects had a normal or

FIGURE 1 | Comparison of a traditional BCI neurofeedback (left) vs. the

novel assisted closed-loop paradigm (right) which informs both the

subject (about his/her brain activity in relation to the BCI goal) and the

system (about the specificities of the given subject). In our example, the

assisted closed-loop provides online information (i) to the system about the
most effective flicker frequencies and (ii) to the subject about the actual
distance to the pre-defined threshold by continuous auditory feedback
(loudspeaker symbol, right).
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corrected-to-normal vision and were right-handed. Permission of
the ethics committee of Autonomous University of Madrid was
obtained; all subjects participated voluntarily in the sense of an
informed consent without receiving any incentives. Participants
were informed that they could leave the experiments at any time
without giving any explication.

SSVEP BCI SYSTEM
Stimulation device
We constructed a stimulation panel with four white color LEDs
(manufacturer Seoul Semiconductor, white lamp LED LW500AM,
∅ 5 mm, viewing angle 100◦), using a 100 � series resistor to
the digital +5V output of the acquisition board (see below)
which results in a luminous intensity output IV ≈ 700 mcd for
each LED.

On a black background panel, each LED was mounted into
a reflector with ∅40 mm diffuser cap carrying an outstanding
non-transparent cylindrical black screen of 45 mm length; the
spatial organization is illustrated in Figure 2. Below each white
flicker light source we placed a green color standard signaling
LED to instruct the subject where to look during the BCI task.
The distance of the LED stimulation panel to the subject was kept
∼60 cm, resulting in a visual angle of ∼3.8◦ for every light source.

BCI task
The BCI task consisted in subjects trying to follow a prefixed
sequence of 16 steps by focusing their vision onto a specific flick-
ering white light source out of the four possible ones at each step,
as continuously indicated by the smaller green signaling LEDs
below. This sequence was identical for all subjects. A brief beep
sound confirmed the indicated flickering light source as correctly
detected.

STIMULATION
We compared the BCI efficiency under three conditions of
flicker frequency selection: (i) by the assisted closed-loop (ACL)

protocol, (ii) by a standard protocol with stimulation frequen-
cies prefixed at 27, 28, 29, and 30 Hz (because 1 Hz distances are
commonly employed in SSVEP-BCIs e.g., Herrmann, 2001; Diez
et al., 2011; Volosyak et al., 2011), and (iii) by a protocol which
used a selection of top frequencies for each subject (see section
“ACL Algorithm”). In order to compensate for possible presenta-
tion order effects, the order of (i), (ii), y (iii) was permutated over
the subjects.

Figure 3 shows the timeline of the experiment. The first phase
of the experiment consisted in the measurement of the individual
EEG baseline and the frequency scanning phase to select a set of
flicker stimulation frequencies for each subject (the number of
frequencies in this set is specific for each participant—see below).
The second phase is the BCI phase with its three conditions (i),
(ii), and (iii) mentioned above.

SIGNAL ACQUISITION AND PREPROCESSING
The signal acquisition and preprocessing steps are summa-
rized in Figure 4. The EEG signal was recorded at 1024 Hz
with eight sintered Ag/AgCl electrodes mounted into a “Aegis
Array” stretch lycra cap (Sands Research Inc., Texas/USA)
using a “BRAINBOX® EEG-1166” 64 channel EEG amplifier
(Braintronics B.V, Almere/Netherlands) with in-house software
written in C. Vertical and horizontal EOG was recorded bipo-
larly by an in-house battery driven analog amplifier follow-
ing a circuitry of Usakli and Gurkan (2010) with sintered
Ag/AgCl electrodes fixed by adhesive rings above/below the
left eye vs. at left/right epicanthus connected to a data acqui-
sition board (NI-PCI-6251, National Instruments) at 1024 Hz.
The eight standard 10–20 positions were FPz, F3, Fz, F4, Cz,
Pz, POz, and Oz (Jasper, 1958). For online SSVEP detection
as BCI input only POz and Oz were used, while for later
offline studies the signals from all eight mentioned electrodes
were analyzed. The EEG reference electrode was placed at nose
tip, EOG ground electrode at glabella and impedances were
kept <10 k�.

FIGURE 2 | Diagram of the BCI flicker stimulation setup (left) and the

signal acquisition/stimulation system. The flickering frequency was
controlled by a software driving the digital output of a National Instruments
data acquisition (DAQ) board (model NI-PCI-6251) directly connected to the
white colored LEDs, generating 0/+5V off vs. on signals according to the

desired flicker frequency. We verified the intended flicker frequency for each
light source independently by a photodiode connected to a digital
oscilloscope. Luminous intensity output is IV ≈ 700 mcd for each white LED.
Smaller green color standard signaling LEDs were placed below to instruct
subjects where to look during the BCI task.
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FIGURE 3 | Timeline of the experiment. In the first phase individual EEG
baseline activity is measured and in the following frequency scanning phase
those frequencies electing largest SSVEP magnitudes are selected for each
subject individually, while those below a predefined threshold are excluded

(Top Freq.). Later, these values are used in the BCI phase. Under the prefixed
frequency condition, always the same frequency set of 27, 28, 29, and 30 Hz
is used for stimulation. Red boxes indicate stimulation, blue resting periods
and gray baseline recording; in each box durations are reported.

FIGURE 4 | Signal chain of acquisition and online preprocessing. Input
signals are the time domain EEG signals at electrodes Oz and POz sampled
at 1024 Hz which finally result in normalized SSVEP spectral power
densities Sf for each of the 20 stimulation frequencies f using as
transformation to frequency domain the Fast Fourier Transform (FFT).

To improve SSVEP detection, we used the online computed
difference signal between Oz and POz as bipolar montage as the
only input signal to our BCI system. This reduces both EOG/EMG
artifacts and EEG activity not related to the visual cortex because
this montage implements a simple and computationally inexpen-
sive spatial high pass filter (see Figure 5). Thus, the SNR for the
SSVEP detection is increased as compared to unipolar montages
(Diez et al., 2010). In a time window of 2 s, this difference sig-
nal was then linearly detrended, treated by a Hann-window and
then converted into frequency domain by Fast Fourier Transform

(FFT) with a window length of 2048 sample points. The chosen
Hann-window function has a quite narrow main lobe, which
determines a good frequency resolution, and reasonable side lobe
suppression (Harris, 1978). Those FFT coefficients meeting the
exact flicker frequencies were used, one single coefficient for
each flicker frequency. Thus, 20 real numbers were obtained and
squared to represent the power spectral densities (PSDs) in the
flicker range 20–39 Hz (see Figure 4). This procedure was devel-
oped following Diez et al. (2011). The described analysis was
continuously repeated as sliding windows with a displacement of
250 ms, resulting in 87.5% overlapping. With all four LEDs emit-
ting steady light, magnitudes of baseline EEG activities Bf were
measured over 30 s at each future flicker stimulation frequency,
determined as MPSD by the described procedure (5 sets of 6s with
2 s resting periods in between, see Figure 3 Baseline). Subjects
were instructed to use only the resting periods in-between for eye
blinks/relaxation and otherwise maintain their eyes quietly open,
trying to avoid jaw and tongue movements to reduce EOG/EMG
artifacts.

For the frequency scanning phase of the experiment an iden-
tical measurement procedure was used, but with time windows
for flicker stimulation of 4 s in each frequency f of the 20–39 Hz
range resulting in magnitudes of SSVEPs as response, Rf . Each
stimulation epoch is followed by a 2 s resting period. In the BCI
phase of the experiment, the same procedure is used for the
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FIGURE 5 | (A) Example of EEG time domain signals during 3 s before and
after 21 Hz flicker stimulation at electrodes Oz (red) and POz (blue). Using their
difference signal (black) as BCI input, in the sense of a bipolar montage,
remarkably reduces common DC offsets, EOG/EMG artifacts and EEG
contributions other than due to the visual cortex: the difference signal offers a

simple spatial high-pass filter. (B) Example of signal-to-noise ratios Sf during a
single iteration of the algorithm ACL using four different flicker frequencies. The
gray shadowed area represents the noise floor with dimensionless value 10;
this level was defined as SSVEP detection threshold for all subjects. Horizontal
lines indicate the detection duration of each target frequency at each step.

selected stimulation frequencies in a single measurement window
of 2 s.

SSVEP PSD magnitudes were normalized to EEG baseline
activity in a given frequency f as dimensionless signal-to-noise
ratios:

Sf = Rf /Bf (1)

In order to minimize fatigue, we tried to keep the baseline and
frequency scanning phase as short as possible, 40 s in total for the
baseline and 160 s for frequency scanning.

ACL ALGORITHM
Selection of the top frequencies for each subject
A closed-loop approach is used to select the set of the four top
stimulation frequencies by compatibility for each subject and
in the given experimental context. As a first step, the specified
range is scanned which results in a-priori score for each of them.

Stimulation frequencies are defined as valid if their Sf exceeds a
prefixed threshold (set to 10) any time during the ongoing flicker
stimulation. For N valid frequencies, the frequency correspond-
ing to the largest Sf gets an initial score of s1(0) = N, the second
to best s2(0) = N − 1, etc. The frequency corresponding to the
lowest Sf gets a score of sN(0) = 1. Finally, the four best scores
define the selection of the four top stimulation frequencies.

First closed-loop in the ACL-algorithm: iterative selection of the
most compatible frequencies
The previous procedure provides initial scores for each frequency
s1(0), s2(0), . . . , sN(0) which depend on subjects’ intra- and
interindividual state and trait dimensions and on the extrinsic
conditions in which the BCI is used. The selection of the four
stimulation frequencies is then further optimized in an itera-
tive approach attending to their compatibility. Thus, as the next
step, we calculate the following compatibility measure between all
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possible pairs of frequencies x and y taking into account a measure
of their distance and their scores:

cxy(t) = α · (sx(t)+ sy(t)
)+ β · dxy (2)

Here t represents the iteration number. We assigned the follow-
ing weights to the distance and the scores: α = 1.5 and β = 1,
respectively, where dxy is a measure of the distance between the
frequencies which we define below. The values for α and β were
set empirically based on several trials. Because four frequencies
are used simultaneously in our specific BCI implementation, the
most compatible four frequencies have to be selected out of N
valid frequencies, determined by the protocol described above:
the first step is to identify pairs of frequencies with optimal
compatibility (“2 freq.” search in the ACL branch in Figure 2).
This search consists of 3N/4 iterations (see below), each of them
divided into 16 steps with a resting period at its end. The
ACL departs from the scores calculated in the scanning proce-
dure s1(0), s2(0),. . ., sN (0): they are modified in the successive
iterations to search for the best compatibility.

In each iteration, the subject has to follow a sequence of flicker
light sources by focusing upon them, as continuously indicated by
the location of the green light. The flicker frequencies are chosen
by selecting maxxy(cxy) at the end of the iteration. To update the
scores, we take into account both the success rate and the time as:

sx(t) = sx(t − 1) · (δ · SR − γ · T) (3)

where SR is the success rate (correct SSVEP detections over 16, the
number of possible detections) and δ and γ are parameters of the
ACL algorithm which were set to δ = 1.2 and γ = 0.02. T is the
duration of the detection in seconds. The values for δ and γ were
chosen based upon the range of SR and T and several simulations.

In this first part of the algorithm, the distance between two
specific frequencies fx and fy for Equation (2) is calculated as:

dxy =
∣∣fx − fy

∣∣ (4)

Each cxy(t) is updated by the new scores after each iteration. Once
this procedure has run p = �3N/4� times, the highest cxy(p) is
selected and a new set is created with the union of both frequen-
cies. Now, the next highest cx′y′(p) disjoint from the previous set
is chosen and a new set is constructed. This is repeated �N/2�
times because this is the total number of possible disjoint pairs. It
is ensured that each set is disjoint from all others. p = �3N/4� is
chosen to test �3N/2� frequencies, so that the best frequencies are
tested more than once. It is important to note that the duration
of the frequency tests has to be restricted.

Afterwards, the second part of the algorithm is performed, the
selection of four frequencies. The same procedure as in the first
part is employed, but instead of single frequencies, sets of two fre-
quencies are used. The values of sx′(p + 1) of each set are adjusted
according to the values cxy(p), where x′ = x ∪ y. In this way, the
set with the highest value gets s1′(p+ 1) = �N/2�, the second
best s2′(p+ 1) = �N/2� − 1 and so on. The last one gets s�N/2�′
(p+ 1) = 1. From this point of the algorithm on, these sets are
indivisible.

Using the same procedure performed with two frequencies, the
process is repeated with four of them. The compatibility and the
score actualization rules are still the same. The only difference is
the distance measure for Equation (2) calculated as:

dxy =
∑2k

i= 1

∑2k
j= 1

∣∣fi − fj
∣∣

2k · (2k− 1)
(5)

where k is the number of frequencies of each set (in this case 2),
and fi and fj are the individual frequencies taken from the union
of the sets x and y. Note that here x and y refer to sets of two
frequencies while in Equation (4) x and y referred to individ-
ual frequencies. This distance expresses the arithmetic mean of
all possible pairs in the set resulting from the union of the initial
sets x and y. Note that for k = 1, this distance measure is exactly
the same distance (Equation 4) as used in the first part of the algo-
rithm. In this second part �3N/8� iterations are performed, which
is N/2 (the number of disjoint sets) times 3/4 (see above).

Second closed-loop in the ACL-algorithm: online auditory feedback
of SSVEP magnitudes
In order to offer additional dynamic information to the subject
related to his/her brain activity beyond the SSVEP detection con-
firmation cue, we provide a continuous online auditory feedback
during the trials which represents the distance between the actual
state and the pre-defined goal. The feedback signal consists of a 20
possible sinusoids with a range between 100 and 575 Hz which are
updated every 0.25 s. The represented distance measure is defined
as the difference between the EEG-SSVEP signal to noise ratio
for the target frequency (S

target
f ) and the threshold. Once S

target
f

has reached this threshold level, the auditory feedback is muted.
Previously, subjects are instructed that their goal is to raise the
pitch of the sinusoids as high as possible, and that after possi-
ble success their further goal would be trying to keep the sounds
muted for 1.75 s; after this silence, the program automatically pro-
ceeds to the trial’s next step. This kind of continuous auditory
feedback aims to help subjects to learn to gain control in their par-
ticular way over SSVEP magnitudes by attracting their attentional
resources to these voluntary attempts to increase self-regulation
of their resonating brain states.

Concluding, there are two assisted closed loops in our system:
the first one operates over the stimulation frequency set with the
aim to directly improve the ITRs of each subject. This closed-loop
informs the system about subject and environment specificities.
The second one informs the subject about his/her brain activity
in relation to the use of the interface and helps him/her to do so
faster and more accurately. This closed loop works several times
for each step of a trial.

SSVEP DETECTION
In order to reduce the experiment’s complexity in terms of a
reductionistic paradigm, we choose a simple SSVEP detection
strategy in our study. During the top and prefixed frequency stim-
ulation, the S

target
f value is calculated every 0.25 s. If this value

exceeds the threshold for 1.75 consecutive seconds, then this
SSVEP is defined as “detected.” The threshold value was set to
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10 which reflects the observed noise flow (see Figure 5). To avoid
longer waiting periods when the subject is unable to exceed the
threshold, a time limit of 4 s is used, after which that step is
considered as fault.

During the ACL, to favor SSVEP detection in case that the sub-
ject exceeds the threshold and more time than the 1.75 s is needed
to be classified as “detected,” there is a small modification in this
protocol to allow adaptive time extensions. When S

target
f exceeds

the threshold in a given 0.25 s time step, the time limit is increased
for another 0.25 s.

EFFICIENCY MEASURES
After each iteration of the algorithm, both the success rate and
time needed are saved. For the prefixed and top frequencies,
standard Information Transfer Rate (ITR) is calculated:

ITR(SR, t) = (log2(N)+ SR · log2(SR)+ (1− SR)·
log2((1− SR)/(N − 1))

) · Norm/t (6)

where N is the number of targets (N = 4 in our case). The value
SR represents the success rate and t is the time taken in minutes.
Norm is a normalization value set to 960 (60 s times 16 steps in
each iteration). Note that if SR ≤ 1/N, then ITR(SR, t) = 0.

In contrast to the conditions prefixed and top, ITR is measured
several times during the ACL. Thus, for further a-posteriori anal-
yses these ITR distributions have to be represented by descriptive
statistics: for condition ACL therefore M and Mdn of success rates
and needed times are used to calculate ITRMean and ITRMedian,
completed by maximum ITR (ITRMax).

CONVERGENCE MEASURE
For a-posteriori analyses, a convergence measure for the algo-
rithm in terms of the stimulus frequency exploration was defined:
the duration of the 2 freq. search of the algorithm is divided
into two parts. For each part, the numbers of explored frequen-
cies are determined and divided by the maximal number of
possible frequencies which could be explored (twice the num-
ber of iterations). The decrease comparing this measure in the
second part vs. in the first part is a sign for how much the fre-
quency exploration is converging. As can be seen in Table 1, the
number of iterations varies over the subjects. The convergence
measure is not reported for the first part because in our sam-
ple all subjects had the same maximal value 1, i.e., all possible
frequencies were explored. We will use this measure to discuss
how the ACL algorithm seems to adapt to subjects’ interindividual
differences.

STUDY DESIGN
A three conditions (ACL, top, prefixed) balanced within-subjects
design with three times full permutation of presentation order
(ABC, ACB, BAC, BCA, CAB, CBA) and with random assignment
of subjects, resulting in N = 18 was employed.

BASELINE RESTING STATE EEG MEASURES AS POSSIBLE
INTERINDIVIDUAL CORRELATES OF ITR PERFORMANCES
Aiming to investigate possible correlations between baseline
resting state EEG measures and the variables of the experiment,

the 30 s baseline EEG (see Figure 3) at all eight electrodes
reported above were manually cleaned from artifacts with the
result of M = 20.02 s, SD = 5.54 artifact free epochs. Under
MATLAB 7.11.0.584 win64, EEG signals were preprocessed in a
first step by linear detrending followed by a 8th order Butterworth
1.5–70 Hz band pass filter and finally by a 8th order Butterworth
45–55 Hz notch filter against 50 Hz power line electromagnetic
interferences. Then, preprocessed EEG signals were converted
into frequency domain by a sliding windows FFT transform of
2 s window length (2048 sample points) with 3.906 ms displace-
ment (4 sample points, which correspond to a 256 Hz sample
frequency in the resulting frequency domain signals), after linear
detrending and treatment by a Hann-window function. Obtained
FFT coefficients were squared to obtain the power spectrum
and then normalized by dividing by 2048 sample points. In
order to obtain absolute PSDs for the defined EEG frequencies
bands of interest, corresponding coefficients were summed:
thetaLow (3.5–6.5 Hz), thetaHigh (6.5–7.5 Hz); alphaLow
(7.5–9 Hz), alphaHigh (9–12.5 Hz); betaLow (12.5–18 Hz),
betaMid (18–24 Hz), betaHigh (18–30 Hz); totalSpectrum
(0.5–70 Hz). In a first step, those absolute frequency domain
PSDs signals were normalized dividing every sample point by the
corresponding one of totalSpectrum which resulted in dimen-
sionless ratios. These ratios indicate for every 256 time points per
second the relative energy contribution of the frequency band
of interest to the EEG total energy at this particular moment.
In a last step, in order to represent EEG baseline resting state
activities in the analyzed artifact free epochs by one single value
for every frequency band, means of these normalized signals
were computed over all corresponding time points. Thus, finally
we obtained the desired baseline resting state EEG measures
as relative mean PSDs for further correlational analyses, single
values for every frequency band over all subjects.

Another measure of interindividual EEG variability is the rest-
ing state individual alpha frequency (IAF), because it has been
found to be remarkably stable within subjects, but relatively vari-
able between subjects (Kondacs and Szabó, 1999). In order to
determine IAF in our experiment, coefficients of PSDs corre-
sponding to the frequency band 8–13 Hz at Oz were normalized
by totalSpectrum PSDs and averaged over all sliding windows in
the artifact free baseline resting state epochs. In this averaged and
normalized power spectrum the alpha frequency with the highest
PSD was manually measured and defined as IAF (peak frequency
method).

STATISTICAL ANALYSES
All statistical analyses were computed using SPSS 17.0 and
STATISTICA 6.0. Previously, Shapiro–Wilk tests were calculated
to check each of the three conditions for normal distribution in
the underlying populations. If one or more conditions showed
significant departures from normality, non-parametric tests were
preferred for further analyses: a Friedman test was performed as
an omnibus test to investigate whether the central tendencies of one
or more conditions differed significantly from the rest. In case
of such a significant result, post hoc pairwise comparisons were
performed in order to find out what conditions exactly differed
significantly from each other, based upon comparison of mean
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Table 1 | Data of the N = 18 subjects under the three experimental conditions.

No. of subject SR SR SR SR SR ITR ITR ITR ITR ITR Age SNR Convergence

Pre Top Mean Mdn Max Pre Top Mean Mdn Max SSVEPs in measure

ACL ACL ACL ACL ACL ACL scanning

phase N trials 2nd half

1 0.31 0.88 0.77 0.78 0.88 0.24 21.19 15.01 15.34 21.57 23 15.20 13 0.5

2 0.56 0.63 0.57 0.5 0.75 5.65 7.34 5.03 3.06 11.7 23 15.89 11 0.4

3 0.75 0.38 0.80 0.88 0.94 11.88 0.82 15.25 19.48 26.33 27 14.44 14 0.57

4 0.81 0.94 0.95 0.97 1 17.89 27.29 26.62 29.21 34.9 33 31.38 15 0.71

5 0.75 0.56 0.68 0.59 0.69 16.9 7.09 12.08 8.42 12.98 24 8.02 15 0.36

6 0.06 0.25 0.35 0.25 0.63 0 0 0.56 0 6.98 25 8.08 9 0.5

7 0.81 0.69 0.85 0.81 1 19.32 11.68 21.18 18.58 36.92 59 23.76 12 0.92

8 0 0.44 0.59 0.59 0.75 0 1.88 5.12 5.12 10.56 18 8.03 5 0.5

9 0.63 0.44 0.69 0.69 0.75 6.76 1.79 9.17 9.17 12.47 52 8.68 4 1

10 0.75 0.75 0.83 0.84 0.94 16.53 16.18 21.16 22.31 30.02 23 59.20 14 1

11 0.56 0.81 0.88 0.88 1 5.35 18.23 21.84 22.16 31.47 50 37.70 14 0.64

12 0.19 0.25 0.56 0.69 0.69 0 0 4.67 9.42 9.73 24 6.35 6 0.33

13 0.69 0.81 0.81 0.81 0.94 10.07 19.32 18.06 18.06 28.32 34 8.43 8 0.87

14 0.69 0.75 0.66 0.69 0.75 12.7 16.53 11.13 12.7 16.18 27 48.58 14 0.93

15 0.31 0.31 0.58 0.56 0.69 0.21 0.22 5.4 4.96 9.57 45 12.01 14 0.43

16 0.18 0.5 0.63 0.56 0.94 0 3.43 6.34 4.42 21.14 20 16.35 9 0.38

17 0 0 0.34 0.34 0.38 0 0 0.42 0.42 0.76 22 14.15 11 0.6

18 0.5 0.69 0.76 0.75 0.81 3.43 12.98 15.43 14.63 18.58 32 30.03 13 0.67

Shapiro–Wilk’s W 0.883 0.961 0.947 0.952 0.896 0.850 0.886 0.950 0.960 0.956 0.832 0.819 0.876 0.909

p 0.030 0.631 0.385 0.460 0.049 0.008 0.034 0.420 0.594 0.520 0.005 0.003 0.022 0.082

Mdn 0.56 0.60 0.69 0.69 0.78 5.5 7.22 11.61 11.06 17.38 26.00 14.82 12.50 0.59

Percentile 25 0.19 0.36 0.58 0.56 0.69 0.00 0.67 5.10 4.83 10.35 23.00 8.34 8.75 0.42

Percentile 75 0.75 0.77 0.82 0.82 0.94 13.66 16.96 18.84 18.81 28.75 36.75 30.37 14.00 0.88

Note: Information transfer rates (ITRs) in bits/min as measures of individual BCI performances under the different experimental conditions and all Mdn values are

highlighted in bold for further analyses.

N trials refers to the number of iterations in the first part of ACL (using two flicker LEDs).

Convergence measure first half is not reported in the table because all subjects had the same value 1.

SNR SSVEPs in Scanning phase are means over all used 20 flicker frequencies.

rank differences using as significance criteria the critical rank dif-
ferences proposed by the more progressive approach of Conover
(1980) vs. the more conservative of Schaich and Hamerle (1984).

In order to quantify the effect sizes of those post hoc pairwise
comparisons which resulted in significant differences, we used
the probability of superiority of dependent scores, PSdep, recom-
mended by Grissom and Kim (2012) and developed in Grissom
(1994). It expresses the probability that in a randomly sampled
matched pair the value from the condition containing the higher
scores is indeed larger than that from the one containing lower
scores. PSdep is calculated by dividing the number of positive dif-
ferences between the condition containing the higher scores minus
the condition containing the lower scores by the total number of
matched pairs. For classifying PSdep into small, middle and large
effect sizes based upon the standards of Cohen (1988), the cut-off
values reported by Grissom (1994) are used: small 0.56, medium
0.64, and large 0.71. The same author offers a table to directly con-
vert PS into equivalent Cohen’s �. Thus, as effect size measures
both PSdep and Cohen’s � are reported with standards small � =
0.20, medium � = 0.50 and large � = 0.80 (Cohen, 1988).

In order to check whether significant differences over all six
possible permutations of the presentation order might be found,
a mixed-design repeated measures ANOVA was computed with
stimulation condition as repeated within-subjects factor with three
levels (i) ACL algorithm represented as ITRMedian, (ii) prefixed
and (iii) top and presentation order as between-subjects factor
with the six possible permutations as levels (ABC, ACB, BAC
etc.). Previously, Levene’s tests were performed in order to check
for homogeneities of error variance. Moreover, the assumption
of sphericity of the covariance matrix was verified previously by
a Mauchly’s sphericity test in order to assure that the F ratios
match an F distribution. If there was a significant departure
from sphericity, Greenhouse-Geisser estimates were used to cor-
rect degrees of freedom which results in fractions instead of usual
integers. Although data may not follow a normal distribution,
ANOVA has been demonstrated to be relatively robust against
moderate deviations from normality (see e.g., Khan and Rayner,
2003). Univariate analyses were used to examine whether there
is a significant between-subjects main effect of presentation order
and further if there is a significant interaction effect between
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presentation order× stimulation condition. Analyses were repeated
representing condition (i) ACL algorithm also as ITRMean vs.
ITRMax.

For the investigation of linear correlational relationships,
Spearman’s rank order correlation coefficient Rho was additionally
used apart from the common Pearson product-moment correlation
coefficient r due to its relative robustness firstly against outliers,
but also against other than linear, but still monotonic relation-
ships and against departures from normality or homoscedas-
ticity. Whenever relevant influence of outliers was suspected,
Spearman’s rank correlation coefficient Rho was preferred.

A-priori statistical test power analyses with the program
G∗Power 3 (Faul et al., 2007) show that Pearson correlation sig-
nificance tests in the employed sample size of N = 18 and with
standard significance level α = 0.05 have test powers (1− β) ≥
0.80 as recommend by Cohen (1988), when they have effect sizes
in the underlying population ρ ≥ 0.60, as compared to H0 : ρ =
0.00. For ρ = 0.50 test power is (1− β) ≥ 0.60, for ρ = 0.40
(1− β) = 0.40 and for ρ = 0.30 (1− β) ≈ 0.20. Thus, although
the employed sample size N = 18 is relatively small, hypothesis
testing of Pearson correlations with full recommended strictness
is definitely possible at the level of assumed large effect sizes.

RESULTS
Table 1 reports the data for all N = 18 subjects under the
three experimental conditions, representing (i) ACL algorithm as
ITRMean, ITRMedian and ITRMax. Inferential statistical hypothe-
ses testing that (i) outperformed the other two flicker stimulation
conditions is reported below.

Figure 6 shows the SSVEP frequency-response curves in our
experiments. For all subjects, the 20 flicker frequencies in the
scanning phase were presented in the same order: 23, 37, 30,
31, 36, 22, 29, 33, 39, 24, 35, 21, 25, 27, 32, 34, 28, 20, 26, and
38 Hz. Sequential randomness of this order is confirmed with
Z = −0.230 and pexact = 0.828 (Wald–Wolfowitz runs test after
Mdn split dichotomization). Our findings that in the 20–39 Hz
range, lower flicker frequencies over all subjects (Figure 6A) evoke
higher SSVEP magnitudes are in line with other studies which
reported a global maximum SSVEP amplitude around 10 Hz
with additional local maxima around 20, 40, and 80 Hz (Regan,
1989; Herrmann, 2001; Bayram et al., 2011). In our sample, we
found that SSVEP frequency-response curves differed remark-
ably between subjects (Figure 6B) probably due to trait and state
variabilities which justifies that they are determined in our exper-
iment in the scanning phase for every subject individually.

FIGURE 6 | (A and B) SSVEP-SNR frequency-response curves.
(A) Mdns over all N = 18 subjects, (B) example of two subjects with
opposed frequency-response curves (black # subject 16, blue #9).
(C) Frequency-dependent interindividual association between SSVEP-SNR

magnitudes and ITR performances under the three experimental
conditions, computed as Spearman’s rank order correlations: (i) ACL
algorithm (red), (ii) top (blue) and (iii) prefixed (black), filled circles
represent significant p < 0.05.
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Analyzing Figure 6C, higher frequencies≥30 Hz lead to higher
correlations; no relevant differences can be seen comparing
the three experimental conditions. Interestingly, following e.g.,
Zschocke and Hansen (2012), 30 Hz is the upper boundary of beta
activity observable in scalp EEGs by conventional amplifiers.

SIGNIFICANT AND LARGE IMPROVEMENT OF SSVEP-BCI EFFICIENCY
BY THE NOVEL ACL ALGORITHM
Analyzing the differences in the central tendencies between the
three experimental conditions (i) ACL algorithm (ii) prefixed
(iii) top we represented condition (i) based upon three different
descriptive statistics, (a) ITRMean, (b) ITRMedian, (d) ITRMax (see
section “Materials and Methods” and Table 1). Applying non-
parametric inferential statistics we found a very significant and
very large superiority of condition (i) ACL algorithm over the
other two (ii) and (iii) which is independent of its three types
of representation (a), (b), and (c), while there is no significant
difference between (ii) and (iii). The used statistical methods and
measures for the following results are found in section “Statistical
Analyses.”

(a) A Friedman omnibus test comparing the ITRs between the
three experimental conditions (i) ACL algorithm represented
as ITRMean, (ii) prefixed and (iii) top shows a significant
overall difference with χ2(2) = 10.116, p = 0.006.
Post-hoc pairwise comparisons based upon critical mean
rank differences 0.82 (Schaich and Hamerle, 1984) vs. 0.58
(Conover, 1980) indicate that ITRs are significantly higher in
(i) ACL algorithm as compared to (ii) prefixed (mean rank dif-
ference = 1.03, very large effect size PSdep = 0.83, � = 1.37)
and also as compared to (iii) top (mean rank difference = 0.64,
large effect size PSdep = 0.72, � = 0.83). Comparison of (ii)
prefixed with (iii) top results in a non-significant difference
(mean rank difference = 0.39).

(b) A Friedman omnibus test comparing the ITRs between the
three experimental conditions (i) ACL algorithm represented
as ITRMedian, (ii) prefixed and (iii) top shows a significant
overall difference with χ2(2) = 9.262, p = 0.01.
Post-hoc pairwise comparisons based upon critical mean
rank differences 0.82 (Schaich and Hamerle, 1984) vs. 0.57
(Conover, 1980) indicate that ITRs are significantly higher in
(i) ACL algorithm as compared to (ii) prefixed (mean rank dif-
ference = 0.94, very large effect size PSdep = 0.81, � = 1.25)
and also as compared to (iii) top (mean rank difference = 0.64,
very large effect size PSdep = 0.76, � = 1.21) applying the
less conservative criterion of (Conover, 1980). Comparison
of (ii) prefixed with (iii) top results in a non-significant
difference (mean rank difference = 0.31).

(c) A Friedman omnibus test comparing the ITRs between the
three experimental conditions (i) ACL algorithm represented
as ITRMax, (ii) prefixed and (iii) top shows a significant overall
difference with χ2(2) = 22.986, p = 0.00001.
Post-hoc pairwise comparisons based upon critical mean
rank differences 0.82 (Schaich and Hamerle, 1984) vs. 0.41
(Conover, 1980) indicate that ITRs are significantly higher
in (i) ACL algorithm as compared to (ii) prefixed (mean rank
difference = 1.47, extremely large effect size PSdep = 0.94,

� = 2.25) and also as compared to (iii) top (mean rank dif-
ference = 1.19, extremely large effect size PSdep = 0.94, � =
2.25). Comparison of (ii) prefixed with (iii) top results in a
non-significant difference (mean rank difference = 0.28).

THE ACL ALGORITHM SEEMS TO ADAPT TO SUBJECTS’
INTERINDIVIDUAL DIFFERENCES
NTrials in condition (i) ACL algorithm using two flicker LEDs
(see Table 1) is deterministically given by 3/4 of the total num-
ber of the SSVEP-SNR responses under the 20 flicker frequencies
in the scanning phase of the experiment which had exceeded
the defined threshold value of 10 (suitable frequencies), see ACL
Algorithm of section “Materials and Methods.” Thus, in order
to make the investigation of possible interindividual associations
between the SSVEP-SNR magnitudes with the convergence mea-
sure second half (see section “Materials and Methods”) relatively
independent from NTrials, all subjects with NTrials < 25th per-
centile (8.75 ≈ 9) were excluded, # subject 6, 8, 9, 12, 13, and 16.
The resulting rest of N = 12 subjects showed a relatively small
variability with range of NTrials between 11 and 15. The mea-
sure SSVEP-SNR mean magnitudes in the scanning phase of the
experiment (a) over all flicker frequencies from 20 to 39 Hz was
split into two measures, one for (b) lower frequencies from 20
to 29 Hz and the other for (c) higher frequencies from 30 to
39 Hz. In this subsample, convergence measure second half shows
large and highly significant correlations with (a) of r = 0.839, p =
0.001, with (b) of r = 0.843, p = 0.001 and with (c) of r = 0.763,
p = 0.004. Checking these relationships against the remaining
variability of NTrials and age as controlled third variables in par-
tial correlation analyses, indeed no changes are observed; those
found relationships can be considered as linearly independent
from NTrials and age. Hence, these findings show that the con-
vergence of the ACL algorithm highly depends on the subjects’
trait ability to generate higher SSVEP-SNR magnitudes, with
no relevant differences observed between lower vs. higher flicker
frequencies: focusing on a subsample with a more or less con-
stant number of suitable frequencies, the ACL algorithm explored
the more distinct frequencies in those subjects who displayed
the larger SSVEP-SNR magnitudes in the scanning phase of the
experiment.

In conclusion, these findings imply that the ACL algorithm
shows a distinct exploration behavior for different subjects and
thus indeed is able to adapt to subjects’ interindividual differ-
ences. Whether this adaptation is the cause for the ACL algo-
rithm’s outperformance of (ii) top and (iii) prefixed cannot be
examined in depth with the employed experimental design and
has to be investigated in further studies.

BASELINE RESTING STATE EEG MEASURES AS CORRELATES OF
INTERINDIVIDUAL DIFFERENCES
Searching for significant and relevant associations between
interindiviudal variabilities of ITR performances under the three
experimental conditions vs. of baseline resting state EEG rela-
tive mean PSDs in all computed frequency bands at all eight
used electrodes, effects were only found in thetaHigh (6.5–7.5 Hz)
and betaMid (18–24 Hz). In all the other bands nothing could be
observed.
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Whereas Pearson correlations showed no relationships
between the resting state relative mean thetaHigh PSDs at Oz vs.
ITRs in conditions (iii) prefixed (r = 0.034, p = 0.894) and (ii)
top (r = 0.196, p = 0.436), a significant positive correlation with
condition (i) ACL algorithm was found (r = 0.467, p = 0.048)
representing the performance as ITRMedian. Searching for similar
relationships in the other seven used electrodes, no associations
were observed; these effects exclusively occur at Oz in our sample.
Following the effects size classifications of Cohen (1988), this
correlation is to be considered as moderate. Partial correlation
analyses confirmed that this correlation is linearly independent
against age and all means of SSVEP-SNRs in the previous scan-
ning phase of the experiment over (a) all 20 flicker frequencies,
(b) also over the lower frequencies 20–29 Hz and (c) also over the
higher frequencies 30–39 Hz.

At least in the examined sample, interindividual variability
in relative mean thetaHigh PSD at Oz seems to differentiate
between ACL algorithm and the other two conditions: the larger
the observed relative mean PSDs among subjects in the base-
line resting state are, the better will be their later SSVEP-BCI
performance exclusively under the use of ACL algorithm.

At first sight, analyzing baseline resting state relative mean
betaMid PSDs, an exclusive relationship with only the ITRs in
condition (iii) top was found for F3 (r = 0.484, p = 0.042),
although its neighbor electrodes also showed relationships not
very far away from significance, probably due to small sample

size: F4 with r = 0.425, p = 0.117 and Fz with r = 0.410, p =
0.091. All the other used electrodes showed no associations.
After further graphic inspection of relevant scatterplots and Box-
Whisker-Plots, a possible negative relationship between baseline
resting state relative mean betaMid PSDs at Oz and ITRMean in
condition (i) ACL algorithm was suspected, hidden by outliers.
Box-Whisker-Plots suggested case 15 and 11 as outliers, so for
further analysis Mahalanobis distances were computed in a lin-
ear regression analysis with the ITRsMean of condition (i) ACL
algorithm as criterion variable and baseline resting state relative
mean betaMid PSDs at Oz as predictor variable. The inspec-
tion of Mahalanobis distances and the scatterplot (see Figure 7)
suggest that subject 15 and 11 might be considered as out-
liers. Excluding them changes the correlation from r = −0.262,
p = 0.294 to significant r = −0.530, p = 0.042. Partial correla-
tion analyses confirmed that this correlation is linearly indepen-
dent against age and all means of SSVEP-SNRs in the previous
scanning phase of the experiment (a), (b), and (c) mentioned
above.

Interestingly, excluding case 15 and 11, baseline resting state
relative mean PSDs betaMid vs. thetaHigh both at Oz show an
almost significant correlation over the subjects with r = −0.482
and p = 0.059, probably due to the small sample size, which
is stable against the third variables age and all SSVEP-SNRs in
the previous scanning phase of the experiment (a), (b), and (c),
mentioned above.

FIGURE 7 | Scatterplot of baseline resting state relative mean betaMid
PSDs at Oz vs. ITRMean in condition (i) ACL algorithm, 95% confidence

regression bands as dotted lines, subject numbers in bold, Mahalanobis
distances in brackets calculated in a linear regression analysis with the

ITRMean as criterion variables and relative mean betaMid PSDs as

predictor variables. Subject 15 and 11 (in red) might be considered as
outliers (see text). Excluding them changes the Pearson correlation from
r = −0.262, p = 0.294 to significant r = −0.510, p = 0.043.
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In conclusion, baseline resting state relative mean betaMid
PSDs seem to predict ITR performances under (i) ACL algorithm
vs. (iii) top in an opposed fashion depending on the electrodes:
the lower baseline resting state relative mean betaMid PSDs are at
Oz, the higher will be the ITRs under condition (i); and the higher
baseline resting state relative mean betaMid PSDs are at frontal
electrodes (F3, Fz, F4) the higher will be the ITRs under condi-
tion (iii). In addition to these findings in betaMid, the higher the
baseline resting state relative mean thetaHigh PSDs at Oz are, the
higher will be the ITRs exclusively under condition (i).

Returning to the above described subsample of N = 12
obtained by exclusion of all subjects with NTrials < 25th per-
centile (8.75 ≈ 9), an interesting observation was found: IAF
shows differentiating relationships with ITR performances: a sig-
nificant correlation of r = 0.577, p = 0.0496 was only found with
ITRs under (i) ACL algorithm (see scatterplot Figure 8), but nei-
ther under (ii) top with r = 0.394, p = 0.205 nor under (iii)
prefixed r = 0.283, p = 0.373. The higher subjects’ IAF are in
the subsample, the better will be their ITR performance exclu-
sively under the ACL algorithm. Partial correlation analyses con-
firmed that this association is linearly independent against age.
Repeating this analysis for the entire sample of N = 18 no sig-
nificant correlations between individual alpha frequency (IAF)
and ITR performances under the three experimental conditions
become apparent (i) with r = 0.282, p = 0.257, (ii) r = 0.198,
p = 0.432 and (iii) r = 0.243, p = 0.332. These findings imply
that subjects with low ITRs in all three conditions might represent
another population as compared to the rest. Further studies may
try to replicate these findings and identify dimensions which
discriminate between these possible two different populations.
Moreover, these findings could be relevant for the understanding

FIGURE 8 | Scatterplot of individual alpha frequency (IAF) vs. ITRMean

under condition (i) ACL algorithm (best-fit regression line for N = 12

as continuous line, 95% confidence regression bands as dotted lines).

A significant Pearson correlation with r = 0.577, p = 0.0496 was found in
the remaining subsample of N = 12 (blue points), removing subjects with
NTrials < 25th percentile (8.75 ≈ 9) (red points), while over the entire
sample of N = 18 the correlation is hidden with r = 0.282, p = 0.257 (all
points). This relationship seems to exist exclusively for condition (i) ACL
algorithm: the higher subjects’ IAF are in this subsample, the better will be
their ITRMean performance exclusively under (i). Partial correlation analyses
confirmed that this association is linearly independent against age.

of the so-called BCI illiteracy phenomenon (Blankertz et al., 2010;
Vidaurre and Blankertz, 2010; Volosyak et al., 2011), see section
“Discussion.”

Inspired by the findings of Koch et al. (2008) who found corre-
lations of IAF with both magnitudes of visually evoked potentials
(VEPs) and also with cortical oxygenation measured by near-
infrared spectroscopy (NIRS), Spearman rank order correlations
were computed between IAF and means of SSVEP-SNR magni-
tudes in the scanning phase of the experiment (a) over all 20
used flicker frequencies 20–39 Hz, (b) over the lower frequen-
cies 20–29 Hz and (c) over the higher frequencies 30–39 Hz in the
described subsample of N = 12. Although not fully reaching sig-
nificance level, probably due to the relatively small sample size,
an interesting pattern was found: IAF vs. (a) with rho = 0.561,
p = 0.058, IAF vs. (b) with rho = 0.183, p = 0.568 and IAF vs.
(c) rho = 0.557, p = 0.060. Although not fully significant, prob-
ably due to the small sample size, interindividual differences in
SSVEP-SNR magnitudes under the employed higher flicker fre-
quencies seem to show a tendency of positive association to
higher IAFs while this relationship might not exist for the stim-
ulation with the lower frequencies (or if so, it may presumably
be lower). These findings motivated the re-analysis of the found
relationship in Figure 8 by partial correlations whether it would
be linearly independent against SSVEP-SNR magnitudes in the
scanning phase of the experiment (a), (b) and (c) as described
above. While (a) and (b) showed no relevant influence on this
relationship, controlling for (c) resulted in a reduction from
former Pearson r = 0.577, p = 0.0496 to r = 0.396, p = 0.228.
Hence, these findings imply that IAF and (c) the magnitude
of SSVEP responses to only the employed higher flicker fre-
quencies share remarkably amounts of common interindividual
variability while explaining variability of ITRMean under the ACL
algorithm.

EFFECTS OF THE PERMUTATION OF PRESENTATION ORDER
Investigating possible effects of the permutation of presentation
order, a mixed-design repeated measures ANOVA was computed
with stimulation condition as repeated within-subjects factor with
three levels (i) ACL algorithm represented as ITRMedian, (ii) pre-
fixed and (iii) top and presentation order as between-subjects
factor with the six possible permutations as levels (ABC, ACB,
BAC etc.). Levene’s tests showed homogeneities of error vari-
ances. There was no significant between-subjects main effect of
presentation order with F(5, 18) = 2.26, p = 0.115, η2

p = 0.485.
Because Mauchly’s sphericity test indicated a significant departure
from the assumption of sphericity with χ2(2) = 6.54, p = 0.038,
Greenhouse-Geisser estimates were used to correct degrees of free-
dom (ε = 0.691). There was no significant interaction between
presentation order × stimulation condition with F(10, 18) = 0.67,
p = 0.738, η2

p = 0.219. ANOVA analyses were repeated also
for condition (i) ACL algorithm represented as ITRMean and
ITRMax which resulted in similar findings. In conclusion, neither
significant main effects nor significant interactions could be
found over all six possible permutations of presentation order.
Hence, the found effects in the central tendencies reported above
with regard to all ITR performances can be considered as inde-
pendent from possible presentation order effects.
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DISCUSSION
Although electrophysiology-based closed-loop interactions with
biological nervous systems have been used since the 1940s, mod-
ern computers and online software control techniques allow a
wide variety of novel activity dependent protocols in neuroscience
research and related applications. Current BCI bring up a num-
ber of problems related to relatively long previous training times
and still relatively low efficiencies (ITRs). This calls for novel
techniques which can also address context and subject specifici-
ties, e.g., adaptive detection of SSVEPs (e.g., Krauledat et al.,
2008).

In this paper we described an assisted closed-loop protocol
which enhances BCI efficiency, as compared to classic BCI pro-
tocols, by providing both the subject and the system with online
information which helps them to reach the BCI goal in their
interaction. We used a reductionistic paradigm to constrain the
inherent complexity of closed-loop exploration: four simultane-
ous frequencies, a basic SSVEP detection strategy and a relatively
simple task to be accomplished by the user. More complex BCI
systems might further benefit from the described approach. Our
paradigm calls for many possible improvements, ranging from
advanced SSVEP detection algorithms, stimuli which inform the
user more effectively, up to a more adaptive online control of the
interface itself by measuring and exploring additional dimensions
(multimodality).

The literature on SSVEP-BCIs does not report general recom-
mendations for the selection of the properties of the visual stimuli
(Wu et al., 2008; Zhu et al., 2010), although it is known that
the SSVEP magnitudes depend on extrinsic and intrinsic dimen-
sions (Ding et al., 2006; Lopez-Gordo et al., 2011). Our study
shows that a closed-loop subject-specific selection of the stimula-
tion frequencies together with the closed-loop auditory feedback
lead to increased BCI ITR performance which outperformed the
employed control conditions.

Although assisted closed-loop protocols seem to enhance BCI
efficiency, their use is limited by the additional time needed for
the exploration process. In the protocol discussed in this paper,
the average time to perform the experiment was around half an
hour, flicker frequency selection took most of this time. Due to
time restrictions, the parameter space can never be explored com-
pletely, so BCI efficiency improvement might remain suboptimal.
Thus, there is some unknown trade-off between improvement
and time needed, which should be explored in further studies.
Furthermore, the question how replicable the found flicker fre-
quencies are in the same subjects over multiple follow-up time
points could be explored. Probably, observing this stability over
time (e.g., test-retest reliability) may help to discover important
trait vs. state dimensions related to variability of BCI perfor-
mance. Another limitation due to the SSVEP physiology is that
the time window for the auditory feedback is relatively short, so
subjects have to establish control over the BCI goal in the range
of a few seconds. This implies possible interactions with sub-
jects’ traits and states related to cognitive processing speed and
dimensions of learning abilities.

ACL algorithms offer new possibilities as compared to tra-
ditional open-loop paradigms, but require additional decisions
and new perspectives for their design and analysis, e.g., with

regard to online measurement of actual states and performance,
parameter search responding to the particular dynamic behavior
of the system, properties of the feedback stimuli, actuation laws,
etc. However, our findings imply that this additional effort can
improve BCI efficiency and contribute to reveal dynamics of the
nervous system which would remain hidden under traditional
paradigms. Because our analyses showed that EEG resting state
measures can predict assisted closed-loop SSVEP-BCI perfor-
mance, our novel approach seems to flexibly adapt/interact with
interindividual cerebral variabilities. Although found in the con-
text of a sensory motor rhythms (SMRs) based BCI, other recent
work also demonstrated that EEG resting state measures can be
relevant predictors of BCI performance (Blankertz et al., 2010).
In this emerging field, it could be fruitful to identify possible EEG
resting state measures which can differentiate/predict between
BCI performances based on biosignals originating from distinct
physiological mechanisms: SSVEPs, P300, SMRs, slow cortical
potentials (SCPs), electrocorticogram (ECoG), magnetoencephalog-
raphy (MEG), NIRS or blood-oxygen-level-dependent (BOLD).
Apart from these biosignals reflecting brain activity, periph-
eral psychophysiological measures have been investigated in the
context of BCIs, especially as performance predictors, such as
parasympathic/vagal parameters of resting state heart rate vari-
ability (HRV) (Kaufmann et al., 2011).

Our proposed approach of new adaptive-interactive
paradigms might offer innovative ways how to address the
problem of the so-called BCI illiteracy, i.e., the incapacity of
some subjects to achieve control of BCIs (Blankertz et al.,
2010; Vidaurre and Blankertz, 2010; Volosyak et al., 2011).
It might be fruitful to explore the possible different impact
of ACL algorithms in BCIs based on the mentioned distinct
physiological mechanisms, especially with regard to their specific
BCI illiteracies.

As mentioned in section “Baseline Resting State EEG Measures
as Possible Interindividual Correlates of ITR Performances,” the
IAF is a measure of interindividual EEG variability because it is
remarkably stable within subjects, but relatively variable between
subjects (Kondacs and Szabó, 1999). IAF seems to be highly her-
itable, e.g., Posthuma et al. (2001) found in a study comparing
mono- vs. dizygotic twins, analyzing a large representative sam-
ple of healthy Dutch adults (N = 688), that 71–83% of total IAF
variance could be ascribed to genetic variances. Thus, IAF may
be considered as an endophenotype following the definition of
Gottesman and Gould (2003). Klimesch (1997) found in a sample
of age matched subjects that the IAF of good working memory
performers is about 1 Hz higher vs. that of bad performers. Jin
et al. (2006) found that IAF is positively correlated with con-
flict reaction time. Severity of Alzheimer’s disease is positively
related to the extent of typical IAF slowing in this pathology
(Rodriguez et al., 1999). On the neurophysiological level, Steriade
et al. (1990) reported that IAF depends on membrane properties
of the thalamic neurons which project to the cortex, implying
thalamo-cortical feedback loops as one of the important gen-
erators of alpha activity (Lopes da Silva, 1991). Mayer et al.
(2007) successfully modeled the synchronization of locally cou-
pled bistable thalamic oscillators as controlled by the influence of
corticothalamic projections, probably responsible for widespread
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spindle oscillations in the thalamus. Given these findings, IAF
might be understood as a positive correlate of thalamo-cortical
information processing speed. With regard of possible correla-
tions of IAF with SSVEP magnitudes, Koch et al. (2008) found
interesting correlations of IAF with both magnitudes of VEPs and
cortical oxygenation measured by NIRS. Concluding, IAF seems
to open new insights into the understanding of the neural circuits
underlying BCI performance and thus should be considered as a
promising predictor for further studies.

In this study, only eight EEG electrodes were used to investi-
gate EEG resting state measures as performance predictors, but
further works might use more electrodes of the 10–20 system
to allow a-posteriori offline analyses of scalp maps and the use
of source localization techniques, e.g., LORETA (for a review see
Grech et al., 2008). Findings of research concerning the cerebral
resting-state networks call for further studies which use simultane-
ous EEG/fMRI recordings (for reviews see e.g., Fox and Raichle,

2007; Van den Heuvel and Hulshoff-Pol, 2010; for typical stud-
ies see e.g., Damoiseaux et al., 2006; Van den Heuvel et al., 2009;
Yuan et al., 2012).

Opening the scope to other uses, the demonstrated advan-
tage of our adaptive-interactive BCI protocol can be expanded
conceptually, e.g., to innovative applications such as diagnos-
tic/therapeutic tools in clinical contexts: exploring the subject-
specific dynamical trajectory of machine-subject interaction
could extract information which otherwise would remain undis-
covered. Thus, far beyond an engineering focus, the proposed
approach might be employed as a new paradigm for basic neu-
roscientific and biomedical research.
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Brain-state-dependent stimulation (BSDS) combines brain-computer interfaces (BCIs)
and cortical stimulation into one paradigm that allows the online decoding for
example of movement intention from brain signals while simultaneously applying
stimulation. If the BCI decoding is performed by spectral features, stimulation
after-effects such as artefacts and evoked activity present a challenge for a successful
implementation of BSDS because they can impair the detection of targeted brain
states. Therefore, efficient and robust methods are needed to minimize the influence
of the stimulation-induced effects on spectral estimation without violating the real-time
constraints of the BCI. In this work, we compared four methods for spectral estimation
with autoregressive (AR) models in the presence of pulsed cortical stimulation. Using
combined EEG-TMS (electroencephalography-transcranial magnetic stimulation) as well as
combined electrocorticography (ECoG) and epidural electrical stimulation, three patients
performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms
were varied between sessions: (1) no stimulation, (2) single stimulation pulses applied
independently (open-loop), or (3) coupled to the BCI output (closed-loop) such that
stimulation was given only while an intention to move was detected using neural data.
We found that removing the stimulation after-effects by linear interpolation can introduce
a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to
an overestimation of decoding performance in the closed-loop setting. We propose the
use of the Burg algorithm for segmented data to deal with stimulation after-effects.
This work shows that the combination of BCIs controlled with spectral features and
cortical stimulation in a closed-loop fashion is possible when the influence of stimulation
after-effects on spectral estimation is minimized.

Keywords: brain-computer interfaces, cortical stimulation, spectral estimation, brain-state-dependent stimulation,

autoregressive models

1. INTRODUCTION
Cortical stimulation is being used to study cortical function, e.g.,
(Matsumoto et al., 2007). In clinical settings, it is employed for
surgical planning (Lefaucheur and de Andrade, 2009) and ther-
apy (Tsubokawa et al., 1991). Furthermore, preliminary studies
on the use of cortical stimulation for stroke rehabilitation which
used stimulation together with physiotherapy in order to modu-
late cortical excitability have been conducted (Brown et al., 2008;
Levy et al., 2008). Taking the current brain activity of the patient
into account when selecting stimulation parameters has been
proposed as a possible improvement (Plow et al., 2009). Such
an activity-dependent stimulation paradigm has been used by
Jackson et al. (2006), who were able to show that cortical micros-
timulation associated in time with brain activity during a motor

task can induce neural reorganization lasting for several days after
stimulation in primates.

The effects of transcranial magnetic stimulation (TMS) as
well depend on brain states of the stimulated person (Mitchell
et al., 2007). Recently, Bergmann et al. (2012) applied TMS
coupled to electroencephalography (EEG) to investigate the
dependency of stimulation effects on the phase of slow EEG
oscillations during sleep. In general, such activity-dependent
or brain-state-dependent stimulation (BSDS) paradigms allow
to investigate cortical networks at specific activation levels,
making BSDS a potentially useful tool in cognitive neuro-
science (Jensen et al., 2011) as well as in clinical studies
improving consistency of the stimulation effects (Plow et al.,
2009).

Frontiers in Neural Circuits www.frontiersin.org November 2012 | Volume 6 | Article 87 | 406

http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/about
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/Neural_Circuits/10.3389/fncir.2012.00087/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ArminWalter&UID=49614
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Ander_RamosMurguialday&UID=5022
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=NielsBirbaumer&UID=3290
http://community.frontiersin.org/people/MartinBogdan/44796
mailto:armin.walter@uni-tuebingen.de
mailto:armin.walter@uni-tuebingen.de
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Walter et al. Coupling BCI and cortical stimulation

For effective BSDS, reliable decoding of the brain-state from
the ongoing brain activity is necessary. Over the last decades in the
field of brain-computer interfaces (BCIs) several different strate-
gies were investigated (Birbaumer et al., 1999; Birbaumer and
Cohen, 2007). Especially in the case of movement-related brain
states during active or imagined limb movements, spectral power
has been shown to be useful for their decoding. In particular,
event-related (de-) synchronization of sensorimotor rhythms is
an informative measure for discriminating movement and resting
states (Wolpaw et al., 2002). Therefore, if one wants to combine
BSDS with a movement task, one has to minimize the interfer-
ence of the stimulation on the estimation of the spectral features
to detect the brain-state properly.

The stimulation effects involve problems with spectral estima-
tion caused by the stimulation artefact and the evoked neural

activity. A stimulation pulse evokes an artefact in the signal
(Figure 1A) with an amplitude in the range of several hun-
dred millivolts or even volts, thus often exceeding the dynamic
range of the amplifier (Veniero et al., 2009). In the vicinity of
stimulation, evoked potentials are recorded (Figure 1B) which
can reach amplitudes of several hundred microvolts (Matsumoto
et al., 2007). Thus, if an analyzed window contains a stim-
ulation pulse, the estimation of the spectrum of this win-
dow is difficult, because it is not stationary. This is evident
in Figure 1C, showing that each stimulation pulse results in
strong jumps in the estimated spectral power. Waiting long
enough after the pulse is one solution. This approach results
in non-continuous brain-state decoding with waiting periods
after a stimulus of at least several hundred milliseconds. It dic-
tates a longer inter-stimulus interval (ISI), because a robust
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FIGURE 1 | The effect of stimulation pulses on time-frequency analysis

(TFA) with AR models. (A) Example trace of ECoG data with intermittent
stimulation pulses. Each pulse is visible as a sharp, strong artefact in the
signal. The lower part of the illustrates the phases of the trial over the
course of the recording: cue: an auditory cue, movement: patient attempts
to move the hand, and rest: patient relaxes. (B) A zoom on the last
stimulation pulse visible in (A), also displaying an evoked potential, peaking
13 ms after the pulse. If the gray-shaded area up to the dashed line is
defined as a gap, both the stimulation artefact and the strongest evoked

components are covered. (C) Time-course of the power at 12 Hz of the
signal displayed in (A), resulting from a time-frequency analysis with
auto-regressive models (order 16) when a window of 500 ms is shifted in
40 ms steps over the data. Hence, a single stimulation pulse distorts the
spectrum for the next 500 ms because it remains in the data window.
(D) Zoom on the region of the last stimulation pulse. Power at 12 Hz
without stimulus processing (solid line) and when the gap is defined as in
(B) and either MEMgap (dashed line) or AR modeling with order 16
(dashed-and-dotted line) are applied to deal with it.
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estimate of the brain-state is needed before the next pulse can be
applied.

If small ISIs and/or continuous decoding of the brain-state is
necessary, methods that enable spectral estimation of data con-
taining stimulation after-effects are mandatory. One potential
solution for this, which has been used mainly in offline stud-
ies (no BSDS), is to separate the stimulation effects from the
signal, as for example in Litvak et al. (2007). This places restric-
tions on the recording setup, such as the need for an amplifier
with high dynamic range to cover the entire amplitude of the
artefact and it is unclear whether such a procedure can be per-
formed online without resulting in residual artefacts which would
still lead to distortions of the spectrum. We present in this paper
another solution suitable for online BSDS: we ignore the short
segment of data dominated by the after-effects of stimulation
when estimating the spectrum, leaving us with the challenge to
estimate the spectrum when portions of the data are missing
from a continuous data flow. We term such an excluded data
segment a gap. In online experiments, using either signals syn-
chronized with the stimulator or a peak detection algorithm, one
can mark a sample before the stimulation pulse as the begin-
ning of the gap. The number of following samples marked as
belonging to the gap (i.e., the gap size) should be chosen in
advance such that the gap, ideally, encloses just the stimulation
artefact, and the largest evoked components. The dashed line and
the dashed-and-dotted line in Figure 1D show the results of two
approaches introduced in this work to extract the spectral power
when the artefacts are masked by the gap shown in Figure 1B.
They are much closer to the power before and after the stimulus,
compared to the power without any processing of the stimulus
(solid line).

In this paper we compare different online brain-state decod-
ing methods on their suitability to perform spectral estimation
using autoregressive (AR) models on data containing stimulation
pulses and gaps. We consider here only stimulation paradigms
with pulsed stimuli and restrict ourselves to data acquired with
EEG or electrocorticography (ECoG) and stimulation performed
using TMS or epidural electrodes. First, we introduce the meth-
ods for spectral estimation in the presence of gaps and investigate

the effects of parameter estimates such as AR model order and
gap size on the resulting spectrum. We present results from a
simulation study in which gaps are artificially inserted into a
BCI data set recorded without stimulation. We then show the
different results of the algorithms on short data segments of
two BCI training experiments, one with simultaneous TMS and
one with simultaneous epidural electrical stimulation to illus-
trate the effects of cortical stimulation on spectral estimation
and the results of correcting stimulation after-effects. Finally,
we investigate the separability of intended hand movement
and rest for different experimental paradigms (no stimulation,
open-loop, or closed-loop stimulation) using non-invasive and
invasive data during BCI experiments in three chronic stroke
patients.

2. METHODS
2.1. PARTICIPANTS
Data was recorded from three chronic stroke patients (Table 1)
suffering from paresis of the left hand. None of the patients was
able to produce voluntary finger movements with the left hand.
All procedures were approved by the local ethics committee of
the medical faculty of the university hospital in Tübingen. Each
stroke patient was implanted with 16 epidural platinum iridium
disk electrodes (Resume II, Medtronic, Fridley, USA) with a con-
tact diameter of 4 mm placed over the ipsilesional S1, M1, and
pre-motor cortex on four strips with an inter-electrode center-to-
center distance of 10 mm. They were arranged in a 4× 4 grid-like
pattern (Figure 2). During pre-surgical evaluation, all subjects
completed the task described below with combined EEG-TMS
(non-invasive case) and repeated the same task after the surgery
using electrical epidural stimulation and recordings from the
implanted electrodes (invasive case). The BCI and stimulation
experiments were conducted during a period of 4 weeks following
the implantation.

2.2. TASK
The patient was facing a 19′′ monitor. The left upper limb of the
patient was fixed using two straps, one at the forearm and one
around the wrist and magnets fixed the fingertips to the actuators

Table 1 | Patient characteristics.

Patient Age (y) Sex Months lapsed Paralysis Infarct side Lesion Affected area

since injury

P1 56 M 80 Left Right subcortical and
cortical

Basal ganglia
hemorrhage

Putamen, internal capsule,
insula, opercular part of inferior
frontal gyrus

P2 52 M 159 Left Right subcortical and
cortical

MCA territory infarct
(frontal)

Frontal lobe including motor
cortex (M1), parietal lobe
including somatosensory cortex
(S1)

P3 63 F 71 Left Right subcortical and
cortical

Basal ganglia
hemorrhage

Head of striate body, lentiform
nucleus, thalamus, whole
internal capsule, insula, frontal
lobe
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FIGURE 2 | ECoG electrode positions from overlay of MRI and

post-surgical CT for the three patients. From left to right: P1–P3.

of a mechatronic hand orthosis (Tyromotion Amadeo HTS, Graz,
Austria). This device was controlled by a BCI and moved the
fingers of the paralyzed hand between an opened and a closed
position. The range of the movement was adjusted in each session
(Ramos-Murguialday et al., 2012) because it was limited by the
spasticity of the patient. Each trial of the task consisted of three
phases: preparation (2 s), feedback (6 s), and rest (8 s). During
preparation, the subject received an auditory cue (“Left Hand”)
but was instructed to wait with the execution until the next audi-
tory command (“Go!”) was given at the start of the feedback
phase. During the feedback phase starting with a closed position
of the left hand, the patient had to try to open the left hand until
the end of the feedback phase. At that point, another auditory
cue (“Relax!”) was given. During the rest period, the left hand
of the patient was returned to its original closed position (2–3 s)
and the patient was instructed to relax. An experimental session
was divided into a 4–16 runs, each of these consisting of 11 trials.
Runs with clear non-stimulation-related artefacts (e.g., amplifier
saturation) on the analyzed channels were excluded from further
analysis, resulting in a minimum of three runs per session for
analysis and an average of 8.7± 4.3.

2.3. ELECTROPHYSIOLOGICAL RECORDING
Both EEG and ECoG were recorded with monopolar 32-
channel amplifiers (BrainAmp MR plus, BrainProducts, Munich,
Germany) with a sampling rate of 1000 Hz. The data was acquired
in a packet-wise fashion, where the recording computer received
every 40 ms one packet of data consisting of 40 samples per
channel. The same behavior was modeled in our simulations
of an online BCI. A high-pass filter with a cutoff frequency at
0.16 Hz and a low-pass filter with a cutoff frequency at 1000 Hz
were applied. We recorded 32 channels of EEG in the stan-
dard 10–10 system, referenced to FCz, using circular Ag-AgCl
electrodes. ECoG data was referenced to an electrode at the
medio-frontal corner of the electrode grid over pre-motor cortex.
Signal acquisition, signal processing and control of the ortho-
sis and (if present in the experiment) the TMS or electrical
stimulator were performed using the general-purpose BCI frame-
work BCI2000 (http://www.bci2000.org) (Schalk et al., 2004)
extended with custom-developed features for the control of these
devices.

2.4. STIMULATION
We applied stimulation in the non-invasive case over the hotspot
for extensor digitorum communis (EDC) activity, identified by a

standard mapping paradigm (Wassermann et al., 2008). TMS was
applied with a figure-of-eight coil (NeXstim, Helsinki, Finland)
with single biphasic pulses (sinusoidal coil current, positive phase
first, pulse width 280 μs) and an intensity of 110% of the resting
motor threshold. The ISI of successive pulses was set to 3 s.

For epidural electrical stimulation we used single biphasic
anodal square-wave pulses with a length of 500 μs. Stimulation
intensity was selected individually per patient and session and
chosen to reliably evoke MEPs on the paretic upper limb of
the patient. The minimum ISI was set to 2 s in most experi-
ments except when stimulation was applied coupled with the
BCI output. In this case, a minimum ISI of 500 ms was cho-
sen. The pulses were applied using a constant current stimulator
(STG4008, Multichannel systems, Reutlingen, Germany) with the
anode as the epidural electrode that evoked the strongest MEPs
on the left upper limb and the cathode being a 50× 90 mm adhe-
sive electrode placed on the left clavicle of the patient. The current
source of the stimulator was switched off 2 s after the last stimula-
tion pulse if no other pulse was triggered before due to a software
error, leading to a small but visible step in the recorded signal
(Figure 1B).

2.5. AUTOREGRESSIVE (AR) MODELS
A popular choice for spectral estimation in BCI research is to use
an AR model for which the coefficients are estimated with the
maximum entropy method (Krusienski et al., 2006; McFarland
and Wolpaw, 2008). An AR model can be viewed as a linear
predictor of the signal samples x(tk), defined as:

x(tk) =
p∑

i= 1

cix(tk− i)+ e

where p is the order of the model and e a sample of a white
noise process. If one uses a continuous window of length N with
N � p consisting of samples x(t0) to x(tN−1), one could solve
the following equations with a least-squares procedure to get the
coefficients ci:

x(tk) =
p∑

i= 1

cix(tk− i) (1)

x(tk−p) =
p∑

i= 1

cix(tk− p+ i) for all k = p, . . . , N − 1

However, the resulting coefficients do not guarantee a stable AR
model (de Waele and Broersen, 2000). Burg proposed a recur-
sive algorithm for the solution of this system that provides stable
models with less variance compared to least squares solutions
and the Yule-Walker algorithm (Kay and Marple, 1981; de Waele
and Broersen, 2000). The Burg algorithm computes the AR coef-
ficients in p steps by evaluating in the i-th step the residuals
of forward and backward prediction of the samples using the
coefficients obtained in the (i− 1)-th step. It is described in
Appendix 1.1 in more detail. Spectral estimation with AR models
is briefly introduced in Appendix 1.2.
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The Burg algorithm requires that the input data is sampled
continuously without gaps, a condition which is shared by most of
the other algorithms for AR model estimation. Therefore, we need
to either fill or remove the gaps before applying one of these algo-
rithms to our data or modify the AR model estimation algorithms
to be usable for data with gaps.

2.6. SPECTRAL ESTIMATION IN THE PRESENCE OF GAPS
This section contains a short description of the different algo-
rithms we compare in this paper that deal with the pre-processing
of data containing gaps for spectral estimation with AR models.
The input for these algorithms are a segment of data and a vector
that contains for each sample in the segment either a 1 (sample
belongs to a gap, it has to be excluded from spectral estimation)
or a 0 (sample is “clean”).

Four methods for dealing with gaps in the data are described
below: (1) linear interpolation, (2) AR modeling which fill the
gap with generated data, (3) the joining of data segments that
removes the gap, and (4) a modified Burg algorithm for segmented
data. After application of the methods (1)–(3), the standard Burg
algorithm is used to estimate the AR model and the spectrum.

2.6.1. Linear interpolation
We can bridge gaps in the data by linear interpolation between the
last sample before and the first sample after the gap:

x̂(tg+ k)= x(tg− 1)+ k+ 1

l+ 1
· (x(tg+ l)− x(tg− 1)

)
, 0 ≤ k ≤ l− 1

(2)
where x are the signal samples recorded at times ti, l is the length
of the gap in samples and tg−1 is the index of the last sample
before the gap.

While this might work for offline analysis of a data set, in the
case of online analysis during a BCI experiment, in which data is
received in a sample- or packet-wise system, one might have not
yet received the first clean sample after the gap when trying to
produce an estimate for x(tg+ k) within the gap. We used a sim-
ple approach to solve this problem which consists of filling the
gap with the value of the last sample before the gap (x̂(tg+ k) =
x(tg− 1)) as long as we have not received the packet containing the
end of the gap and using linear interpolation for the rest of the
gap otherwise. We term this approach on-line compatible linear
interpolation.

2.6.2. AR modeling
As a somewhat more sophisticated technique compared to linear
interpolation, we generated data from an AR model to fill the gap.
For this we used the coefficients ci of the AR model estimated for
the data window directly before the gap to predict the missing
samples x̂:

x̂(tg+ k) =
p∑

i= 1

cix
′(tg+k−i)+ σ · e(tg+k), 0 ≤ k ≤ l− 1, (3)

x′(tg+j) =
{

x(tg+j) if j < 0

x̂(tg+j) otherwise

x′ can refer to either actually recorded samples before the gap or
estimated samples by the AR procedure. σ is the standard devia-
tion of the white noise component in the estimated AR model and
e(t) one value of a white noise process. While this approach has
the property to generate data for the gap consistent with the pre-
viously measured data, one might prefer to use a mixture of AR
modeling and linear interpolation for the online case. This would
avoid jumps in the data when merging generated data within the
gap with new samples acquired after the gap. These jumps occur
for all AR model orders we have tested in our simulations (see
Appendix 1.4 for details). We have used this combination here by
performing AR extrapolation when information about the first
sample after the gap was not available and using linear interpola-
tion otherwise. The signal was received in packets with a length
of 40 ms and for each packet, one of three actions were taken:
(1) if a packet contained the start and the end of a gap, then lin-
ear interpolation was used to fill the gap. (2) If it contained only
the start or if the whole packet was part of the gap, then the AR
model was used as a linear predictor to fill the gap. (3) If it con-
tained only the end of the gap, then the last sample of the last
packet and the first sample after the gap were connected by linear
interpolation.

2.6.3. Joining two segments
If one chooses to ignore the information of the gap altogether
when estimating the model, one might consider simply joining
the two segments around the gap, therefore sacrificing informa-
tion about the timing in the vicinity of the gap. In practice, this
means that we update the data window only with those samples
from a newly acquired data packet that do not belong to a gap.
In order to keep the window size for spectral estimation con-
stant, this has the consequence that older samples are used to
compute the spectrum with this method compared to the other
algorithms.

2.6.4. Burg algorithm for segments (MEMgap)
For standard algorithms that compute the AR coefficients, the
samples within the data window need to be continuous. We can
make the least-squares estimation of the AR coefficients compat-
ible with data containing gaps by eliminating all equations from
(Equation 1) that contain samples from within a gap and then
solving the rest of the equations for the coefficients ci. As the
Burg algorithm (see Appendix 1.1) yields more stable AR mod-
els than the least-squares estimation, we modified it to work with
gaps based on the Burg algorithm for segmented data proposed
in de Waele and Broersen (2000). This was achieved by limiting
the computation of forward and backward prediction errors in
each step of the algorithm to those samples that are far enough
away from a gap. In the remainder of this paper, this algorithm is
called MEMgap (Maximum Entropy Method for data with gaps)
for brevity. A detailed description of the algorithm is given in
Appendix 1.3.

2.7. SIMULATIONS ON CLEAN DATA
To study empirically the influence of gaps on the estimated
spectrum, we performed simulations on 12 data sets that were
recorded without stimulation by artificially inserting gaps, then
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applying the methods described above to estimate the spectrum.
The results of the different methods were compared with a ref-
erence time-frequency analysis obtained when using the original
data set without gaps. Each data set has a length of 182 s. These
data sets, each containing 11 trials, were recorded with ECoG in
patient P1 in one experimental session. For clarity reasons, we
restrict ourselves to one channel (an electrode over right M1).
For spectral computation we kept the length of the window con-
stant at 500 ms and the update rate at 25 Hz = 40 samples. We
estimated the power at frequencies between 5 and 99 Hz in 2 Hz
increments and varied for each method the gap size (0–100 ms in
steps of 5 ms) and the model order (values: 16, 32, and 64). We
computed the normalized bias, root mean squared error (RMSE)
and variance (var) of the stimulus processing algorithms as
follows:

bias(f ) =
1
n

∑
i(P(f , i)− P0(f , i))

P0(f )

RMSE(f ) =
√

1
n

∑
i(P(f , i)− P0(f , i))2

P0(f )

var(f ) = Var

(
P(f )− P0(f )

P0(f )

)

P(f , i) is the spectral power of data window i for frequency bin
f , P0(f , i) is the power of the original data window without
gaps and P0(f ) is the average power of the full original record-
ing without gaps for frequency bin f . n is the number of data
windows that are affected by gaps (i.e., data windows where
P(f , i)− P0(f , i) is not zero). var(f ) is the variance of the dif-
ference between the power values of the original data and the
power values of the data with gaps for all data windows affected
by gaps and frequency bin f , divided by the average power for
frequency bin f in the data set without gaps. For example, a
normalized bias of −0.1 means that the estimated power after
application of the stimulus processing algorithm is on average
10% smaller than the power of the original data set if a gap is
present.

The statistical evaluation of the spectral bias results in the
simulations was performed as follows: we obtained the bias for
each data set, resulting in 12 values, and performed a non-
parametric Wilcoxon signed-rank test for zero median. If the
p-value for this test was below 0.01, we regarded the bias as
significant.

3. RESULTS
First we show results of simulated gaps on data without stimula-
tion to assess the influence of gaps and the stimulation-processing
algorithms on the estimated spectrum. Then we illustrate the
influence of real single TMS and epidural stimulation pulses on
the spectrum if they are left untreated and how the methods
of this paper deal with their after-effects. Finally, we apply the
algorithms to data sets of BCI experiments with open-loop or
closed-loop stimulation and investigate the effect of each method
on the discrimination between the brain states during intended
movements and rest.

3.1. GAP SIZE
Figures 3A–C show the influence of gap sizes between 5 and
100 ms on the error in spectral estimation for three particular fre-
quencies (9, 21, and 81 Hz) and a model order of 32. We find that
the RMSE increases with the gap size for all methods. This hap-
pens, because the information of the samples that are excluded
by the gap is missing for the AR estimation, leading to a greater
deviation from the AR coefficients without gaps for increasing gap
size. The linear interpolation methods exhibit a negative bias and
the AR-prediction shows positive bias (Figures 3D–F and 5). The
negative bias of the linear interpolation methods occurs because
a section of the data window is reduced to a straight line which
has a power of almost 0 for higher frequencies, leading to a
decrease in the estimated power for these frequencies. This effect
increases with greater gaps. AR modeling can lead to jumps in
the data, because the extrapolated signal from the start of the
gap is not necessarily connected to the actual recorded signal at
the end of the gap. Such jumps result in higher estimated power
across all frequencies and thus a positive bias. For longer gaps
this bias increases because the potential deviation from the true
values after the gap (the jumps) becomes larger. The mixture
of linear interpolation and AR prediction is in general closer to
0 than the other two, but the sign of its bias depends on data
packet size and gap size. The joining and MEMgap algorithms
exhibit a bias close to zero, but the RMSE is smaller for MEMgap
than for joining. The variance (Figures 3G–I) also scales with gap
size but there are strong differences between the methods visible,
with MEMgap and the linear interpolation methods having the
lowest variance.

3.2. MODEL ORDER
Variations of the model order have the largest effect on the AR
modeling and the MEMgap algorithm. While AR modeling
exhibits a significant positive bias at 21 Hz for gaps longer than
60 ms at a model order of 16 (Figure 4D), it is not significantly
biased for a model order of 32 and 64 (Figures 4E,F). As shown in
section 3.3 and Figure 5, this is due to the frequency-dependency
of the bias for AR modeling which has a global minimum around
20 Hz for model order 32 and 64. For MEMgap we find no
significant bias for all model orders (Figures 4D–F) and that
the absolute error of the power estimation, captured by the
normalized RMSE, as well as the variance, increases rapidly with
increasing model orders (Figures 4A–C,G–I). This is probably
due to the lower number of samples fully available for AR esti-
mation with MEMgap compared to the standard Burg algorithm:
for MEMgap, forward or backward prediction errors can not
be calculated for up to 2p samples around each gap, where p is
the model order. Higher values of p only increase this difference,
leaving MEMgap with less and less samples for AR estimation,
thus probably leading to greater errors. In general, MEMgap has
the lowest RMSE for orders 16 and 32 and gaps longer than 30 ms
and the lowest RMSE of all methods with a bias close to 0 at an
order of 64.

3.3. FREQUENCY
In Figure 3, we show the results for low and high frequencies with
9 and 81 Hz as parts of the μ and high γ bands, respectively, in
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FIGURE 3 | Normalized RMSE, bias, and variance of the spectral power

estimation for the frequency bin at 9 Hz (A,D,G), 21 Hz (B,E,H), and 81 Hz

(C,F,I) for a model order of 32. The colored lines illustrate the course of the

normalized RMSE in (A–C), the normalized estimation bias in (D–F), and the
normalized variance in (G–I) relative to the gap size for the different algorithms.
The thin black line in (D–F) denotes an ideal estimation bias of 0.

addition to the “intermediate” frequency of 21 Hz as part of the
β-band. For 81 Hz, the linear interpolation methods already show
a significant negative bias for gaps of 5 ms, whereas for 9 Hz this
only becomes significant for gaps greater than 35 ms. This is easily
understandable considering that one cycle of a 9 Hz oscillation
lasts for more than 100 ms, therefore linear interpolation over a
gap of 10–20 ms would be fairly consistent with the real shape of
the undisturbed signal. The bias of MEMgap is not significant for
any frequency (Figures 3D–F). The joining method on the other
hand exhibits a negative bias for 9 Hz and gaps smaller than 40 ms
and a significant positive bias for 81 Hz. For 21 Hz, The bias is
significant only for gaps smaller than 10 ms. In terms of RMSE
and variance (Figures 3A–C,G–I), MEMgap always displays the
lowest values for gap sizes greater than 50 ms.

The results in Figures 3D–F, especially for AR modeling and
joining, suggest that the bias might be frequency-dependent. In
Figure 5, the bias is shown relative to the frequency bin for model
orders of 16, 32, and 64 for a gap size of 100 ms where it should be
most pronounced. We find that for the joining method, the bias

is negative, although non-significant, for frequencies lower than
25 Hz and positive otherwise (significant for most frequencies
>60 Hz). For AR modeling, the bias is in general positive (signif-
icantly for all frequencies for model order 16 and above 55 Hz for
32) and increases with frequency, has a minimum around 20 Hz
for a model order of 32 and 64 and is also increased for lower fre-
quencies. For linear interpolation, there is a bias close to −0.2,
indicating a reduction in power of about 20%, for frequencies
higher than 20 Hz. This value can be explained with the fact that
20% (100 ms of a 500 ms window) of the data had to be filled
by linear interpolation which removes the high-frequency con-
tent. MEMgap exhibits no significant bias across all frequencies
and model orders, except for very low frequencies and high model
orders where all methods show a positive bias. Although the bias
for the mixture of AR modeling and interpolation is also not
significant for most frequencies above 10 Hz and higher model
orders, this is due to the interaction between gap size and packet
size for this particular method. As seen in Figures 3D or F, for
example, a gap size of 80 would lead to a positive bias.
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3.4. APPLICATION ON DATA WITH STIMULATION
In our experiments, we received the data in packets with a length
of 40 ms. This leads to the jumps seen in the bias relative to the
gap size for the combination of AR modeling and linear interpo-
lation (e.g., Figure 3F, magenta line) as either linear interpolation
of AR modeling dominate the outcome. The packet length might
be different for other recordings, so we excluded this method from
the rest of the experiments, as the conclusions would be very spe-
cific for our setup. Further experiments are needed to investigate
the influence of this specific parameter. As the simulation results
of the two versions of linear interpolation did not differ much, we
restricted ourselves to four of the six methods for the remainder of
the paper: online-compatible linear interpolation, AR modeling,
joining, and MEMgap.

A model order of 16 was chosen for spectral estimation and
AR extrapolation as this section is mostly illustrative in nature
and serves the purpose to study whether the results from the sim-
ulations are transferable to data with actual stimulation. In terms
of the estimation bias, we found the clearest effects for a model
order of 16: a negative bias for linear interpolation and a positive
bias for AR modeling. The latter bias was not present for higher
model orders around the studied frequency bin of 21 Hz.

Figure 6 illustrates the effect of epidural stimulation on the
recorded ECoG activity, the evoked activity after stimulation and
their influence on spectral estimation for one representative stim-
ulation pulse. Figure 6A shows the raw trace of data with a single
pulse of electrical epidural stimulation occurring at time point 0.
Figure 6B displays a zoom on the first 100 ms after the pulse. The
stimulation artefact itself is contained within the first 10 ms after
the pulse. After that, one can find evoked activity with its peak
occurring 13 ms after the pulse and an amplitude of 240 μV. This
is much higher than the short-term amplitude fluctuations found
in our ECoG data without stimulation.

Figure 6C demonstrates the importance of adjusting the
length of the gap to the actual stimulation effects on the signal.
Applying a gap of 10 ms to the data might be enough to cover
the stimulation artefact itself, but the spectrum then still shows a
clear positive bias due to the influence of the evoked activity. The
results for short gap sizes are very similar to those without any
gap. Only gaps greater than 20 ms cover the extent of the artefact
and the initial evoked activity, leading to power values that are
similar to those obtained for data windows without the stimula-
tion event (windows 16–26). There is no clear difference in the
outcome of the gaps greater than 20 ms.
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FIGURE 6 | Example ECoG trace of an epidural stimulation event.

(A) One second of data with the stimulation at time point 0. The brackets
show the moving window used for spectral analysis. (B) Zoomed version of
the left plot, showing the evoked activity and the stimulation artefact in
greater detail. Dashed lines show the start and end markings of the gap,
here with a length of 50 ms. The end point of the gap can be varied in
time. (C) Output of the spectral estimation using MEMgap for gap sizes of
5, 10, 20, 50, 75, and 100 ms and the frequency bin centered at 21 Hz. The
logarithm of the estimated power is shown because of the large

differences between the power at a gap size of 0 and 50 and above.
Window numbers correspond to the brackets shown in (A), where the first
one is 1, the second one (shifted by 40 ms) is 2 and so on. The
computation of windows −1, 0, and 15–26 used data that is outside the
margins of (A). (D) Comparison of linear interpolation (red), AR modeling
(green), joining (blue), and MEMgap (gray) with gap sizes of 10 (dashed)
and 50 (solid) applied on the data in (A). The solid black line with circles in
(C) and (D) shows the result of spectral estimation without processing of
the stimulation after-effect (gap size = 0).

Frontiers in Neural Circuits www.frontiersin.org November 2012 | Volume 6 | Article 87 | 414

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Walter et al. Coupling BCI and cortical stimulation

In Figure 6D, linear interpolation, joining the data segments,
MEMgap, and AR modeling are compared when applied to the
stimulation event both for short and long gaps. All methods per-
form poorly for a gap size of 10 ms, but there are differences for
50 ms. Applying joining and AR modeling results in higher power
values than linear interpolation and MEMgap with a clear differ-
ence in estimated power between the windows with and without
stimulation. Assuming perfect exclusion of all stimulus-related
effects, we expect that the power does not differ strongly between
e.g., window 15 (which includes a small portion of the gap) and
window 16 (without the gap), therefore the result of MEMgap and
linear interpolation is more realistic than the output of the other
methods. At least for the AR modeling method, the increased esti-
mate of the power compared to, for example, linear interpolation
is consistent with the positive bias shown in Figure 3B. A rea-
son for the positive bias of the joining method for this example
data set might be that drifts of the signal after a stimulation on
epidural electrodes are common. If we take a data segment with
post-stimulus drifts, exclude the gap and join the data before
and after the gap into one window, it will contain a sharp dis-
continuity and have a comparatively high spectral power. With
linear interpolation, the discontinuity will be less severe and have
a smaller impact on the signal power. For MEMgap it does not
play a role as data before and after the gap is always separated
during estimation of the AR coefficients.

Stimulation artefacts and evoked activity are found for com-
bined EEG and TMS in a similar way as for stimulation over

implanted electrodes with the strength of the evoked activity
depending on the distance to the stimulation site. We illustrate
this in Figure 7 with the result of a TMS pulse on the activity
recorded on a distant EEG channel. There is no strong evoked
potential visible after the stimulation, therefore, as is evident
in Figures 7C,D, a short window of 10 ms is already sufficient
to cover the artefact and to produce an estimation of spectral
power that is similar in value compared to that resulting for
data windows long after the stimulation when using either linear
interpolation, joining or MEMgap to correct for the gap.

3.5. INFLUENCE ON DECODING PERFORMANCE
The stimulation-processing algorithm can bias the estimated
spectrum, or will at least produce deviations from the origi-
nal spectral power without gaps. This poses the question, how
strongly these errors influence the actual brain-state decod-
ing during a BCI experiment. For example, if the bias of lin-
ear interpolation toward underestimation of the signal power
directly influences, how well we can differentiate data pack-
ets obtained during a movement from those recorded during
rest, then this algorithm is not suitable for BSDS because it
might induce a bias in the subject’s performance in an online
experiment.

To investigate this, we used data sets with different stimu-
lation paradigms and recording methods (EEG and ECoG) to
assess the influence of the algorithms and gap size on the decod-
ing abilities of a BCI system. The patients always performed the
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FIGURE 7 | Example trace of a TMS pulse applied over EEG channel (C4) but recorded on a distant channel (F4). (A–D) Same as in Figure 6. Note the
missing evoked activity in (A) and (B) after the pulse.
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same cued attempted hand movements but we varied the stimu-
lation paradigm between no stimulation, stimulation with fixed
ISI and stimulation coupled to the output of the BCI (i.e., BSDS).
In the last paradigm, the stimulation pulses were only applied
while the BCI detected an intention to move from modulations
of the power in the β-band and therefore moved the orthosis. If
stimulation was used, stimulation artefacts were identified online
with a peak detector if the voltage of two consecutive samples
differed by more than 1 mV. The start of the gap was set 2 ms
before this artefact and the gap size was adjusted for each patient
and session depending on the length of the evoked activity as
determined by several test stimuli applied before the start of the
session. This resulted typically in a gap length between 30 and
70 ms. Stimulus processing was performed during recording with
the online-compatible linear interpolation method.

In the offline analysis, we applied the four methods: joining,
linear interpolation, AR modeling, and MEMgap on these data
sets and varied the gap size between 0, 10, 50, and 100. We simu-
lated the two different stimulation conditions on the data without
stimulation by varying, in which phases of the trial gaps are
placed: in the uncoupled condition the whole trial was valid, so
the placement of gaps was independent of the activity and brain-
state of the patient. For the coupled condition only time points
within the movement phase were used as gaps, thus simulating a
BSDS paradigm. In both cases the ISI was fixed at 2 s.

After applying the respective stimulation processing algo-
rithm, we computed the spectral power between 16 and 22 Hz
on channels located over the right motor cortex. For EEG mea-
surements we used FC4, C4, and CP4 as defined by the 10–10
system (Society, 2006), whereas for ECoG measurements the elec-
trodes were selected individually per patient based on the results
of a screening session. We used a window size of 500 ms and a
model order of 16 for spectral estimation. These were the same
parameters, channels and frequencies that had been used during
the online feedback experiments in which the data was recorded.
Furthermore, our simulations showed a positive estimation bias
for AR modeling at 16–22 Hz only for a model order of 16, not for
32 or 64. Thus, we only used an order of 16 for the simulations on
data without stimulation. In order to investigate, whether higher
model orders have a substantial effect on the processing of real
stimuli, we used model orders of 16, 32, and 64 on the data with
open-loop and closed-loop stimulation. For each run (consisting
of 11 trials), we calculated the area under the ROC curve (AUC)
for the sum of the logarithm of the power values within each data
window in the movement phase versus those in the rest phase.
We used this as a measure of the separability of these phases on
a single-packet level. Taken together from all three patients, we
analyzed 87 runs of EEG recordings without stimulation, 24 runs
with uncoupled EEG-TMS, 131 ECoG runs without stimuli, 51
runs of ECoG with uncoupled, and 82 runs of ECoG with coupled
stimulation. For each recording and stimulation condition, algo-
rithm and gap size, this resulted in a distribution of AUC scores,
one per run.

The conditions without stimulation allowed us to test for the
bias and absolute error introduced by the gaps into the AUC
scores. Thus, we computed the pair-wise differences between the
AUC scores of a gap size of 0 and those of all combinations

of algorithms and gap size for these conditions. Using Kruskal–
Wallis tests, Bonferroni-corrected for multiple comparisons, we
tested which algorithm leads to the smallest absolute differences
in AUC scores. We also applied Wilcoxon signed rank tests to
assess, whether the median of the differences deviates signifi-
cantly from 0, indicating a systematic bias in the AUC scores.
As there is no “true” reference distribution of the AUC scores
possible for data with stimulation, we used Bonferroni-corrected
non-parametric Friedman tests which account for possible effects
of using the same sessions in all conditions to test whether gap
sizes greater than 0 lead to different AUC scores compared to a
gap size of 0 and to test whether there is a difference between the
algorithms at a certain gap size.

Figure 8 shows data without any actual stimulation, so ideally
the difference in AUC scores between a gap size of 0 and of 100
should be zero for all runs. In Figures 8A,B, stimuli were sim-
ulated throughout the trial, thus independent of the task or the
output of the BCI. Session-wise comparison of the AUC values
with Friedman tests for each gap size show significant differences
between MEMgap and the other algorithms only for long gaps.
There is a slight decrease in the average AUC value for all algo-
rithms for a gap size of 100 compared to 0 and MEMgap and join-
ing yield significantly smaller absolute differences in AUC scores
compared to AR modeling and interpolation (p < 0.000001). In
Figures 8C,D, the stimuli were simulated only throughout the
movement phase. We find a significant decrease in AUC values for
AR modeling and a significant increase for linear interpolation.
This means that linear interpolation artificially “improves” the
decoding power. As shown in the simulation studies, linear inter-
polation of large gaps leads to a decrease of the power between 16
and 22 Hz (negative bias) which increases the event-related desyn-
chronization effect of sensorimotor rhythms during attempted
movements (Wolpaw et al., 2002). The MEMgap method shows
a significantly smaller deviation of the AUC values at gap sizes of
50 and 100 from the AUC values without gaps than all the other
methods (p < 0.000001). In contrast to the other algorithms, the
median of the AUC differences after MEMgap never differs signif-
icantly from 0 for the BSDS condition, except for the ECoG data
set with a gap size of 100 (p = 0.005). The other algorithms dif-
fer significantly from MEMgap in almost all cases of the coupled
conditions.

Patients in the data sets shown in Figures 9A,B were stimu-
lated independent of the task. We show only a model order of
16, because the results for an order of 32 and 64 are very similar.
It is evident from gap sizes of 0 and 10 that untreated stimula-
tion after-effects are detrimental for decoding. Online decoding
will be more successful if enough samples are excluded after a
stimulus (in these examples: a gap size of 50 ms seems to work
well, although this varies between patients). Using Friedman tests
for session-wise comparison of the AUC scores, significant dif-
ferences of the algorithms are found, although the mean absolute
differences are very small (≤0.01). In case of the uncoupled ECoG
condition, AUC scores with untreated stimulation after-effects are
significantly lower than AUC scores for gap sizes of 50 and 100,
independent of the applied algorithm (p < 0.01). This effect is
due to residual stimulation after-effects for small or absent gaps
that lead to a very high power of data windows that contain
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FIGURE 8 | Continued

FIGURE 8 | Distributions of the differences between AUC values

without gaps and AUC values of gap sizes of 10, 50, and 100 for data

sets without stimulation. A deviation from 0 indicates an over- or
under-estimation of class separability. (A) ECoG and (B) EEG data with gaps
simulated throughout the whole trial (uncoupled condition). (C,D) AUC
values computed on the same data sets as in (A) and (B), respectively,
but with gaps simulated only within the movement phase (coupled
condition, BSDS). Boxes cover the range between the lower and upper
quartile of AUC differences with the median depicted as a black line. The
whiskers extend to the most extreme data point which is no more than 1.5
times the interquartile range away from the box. ∗AUC scores differ
significantly from MEMgap for this gap size (p < 0.05, Friedman test,
Bonferroni-corrected).

electrical or magnetic pulses. In particular such data windows in
the movement phase will be classified incorrectly. If the strong
after-effects are removed by longer gaps, the classifier is more
likely to produce a correct result which is reflected in the increased
AUC score for gaps of at least 50 ms.

Finally, in Figure 9C, stimulation was given only during the
movement phase. The average AUC value for a gap size of 0 is
smaller than 0.5, indicating a higher power during movement
than during rest, as opposed to the expected event-related desyn-
chronization. This is due to the task-dependent existence of the
stimulation effects: the large stimulation after-effects that occur
only during the movement phase lead to a very high spectral
power of this phase. Thus, the spectral power of the movement
phase is very well separable from the power of the rest phase for a
gap size of 0. For a gap size of 10, there is a large variability in the
AUC scores. This is because for one of the three patients, a gap
of 10 ms was not sufficient to cover all artefact-related jumps in
the recording, resulting in AUC scores lower than 0.5. If the after-
effects are dealt with by using a gap size of 50, the relationship
between the power during rest and feedback reverses and resem-
bles the expected ERD/ERS pattern. For a gap size of 100, we
find in Figure 9C that the largest average AUC value is reached
for linear interpolation and the smallest one for AR modeling,
both differing significantly from the AUC values for MEMgap
(p < 0.000001). This relationship is found for all tested model
orders, where joining and AR modeling are on average worse
than MEMgap by more than 0.02 and 0.05, respectively, while
linear interpolation yields higher scores by at least 0.01. This is
consistent with the simulation results in Figures 8C,D indicat-
ing an artificial over- and under-estimation of class separability
by these methods. It supports the hypothesis that MEMgap is
probably best suited to deal with large gaps in the data, especially
for BSDS, because based on the simulation studies the deviation
from the true AUC value is significantly smaller than for the other
methods.

4. DISCUSSION
One challenge when trying to combine online brain-state decod-
ing from spectral data and direct cortical stimulation is that the
after-effects of stimulation such as artefacts (Taylor et al., 2008) or
evoked activity (Matsumoto et al., 2007) can have a much higher
amplitude than the background brain signals. Therefore, estima-
tion of the brain-state from a segment of data has been unreliable,
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FIGURE 9 | Influence of the stimulation processing algorithm and gap

size on the separability between intended movement and rest for

experiments with stimulation. No processing of the stimulation
after-effects was conducted for a gap size of 0. For gap sizes of 10, 50, and
100, AUC values were calculated after application of the four algorithms
(boxes from left to right) real interpol, AR model, joining, and MEMgap. A
baseline AUC value of 0.5 is shown as a solid line, because this is the chance
level for a purely random classifier (Fawcett, 2006). (A) Average AUC values
for the separation of movement and rest from experiments with epidural

stimulation and ECoG recordings. Stimulation pulses were given throughout
the whole trial with a fixed ISI of 2 s and the gap size was varied between 0,
10, 50, and 100. (B) Same as (A), but for TMS-EEG data with an ISI of 3 s.
(C) Average AUC values for ECoG data sets where stimulation pulses were
triggered only if the BCI system detected an intention to move within the
movement phase (BSDS). Boxes are defined as in Figure 8, open circles
depict AUC values outside the range of the boxplot whiskers. ∗AUC scores
for this algorithm and gap size differ significantly from MEMgap (p < 0.05,
Friedman test, Bonferroni-corrected).

if such stimulation after-effects are contained in this segment.
This leaves us with three options: we can (1) use only data seg-
ments for decoding that are free of any after-effects, (2) attempt
to separate stimulation after-effects from background brain activ-
ity, e.g., by fitting a template of the expected shape of the effects
to the recording, or (3) isolate the portions of the data segment
that are “contaminated” by stimulation effects and use only the
“clean” parts for decoding.

In earlier studies combining TMS and EEG without BSDS
(i.e., without the necessity to perform real-time brain-state-
decoding from the EEG), options (1) and (2) have been used.
In such studies, either a fixed length window around the stimu-
lus was removed offline (Fuggetta et al., 2006), a decomposition
into artefact-free and contaminated data was attempted in post-
processing (Litvak et al., 2007; Morbidi et al., 2007; Erez et al.,
2010) or a sample-and-hold circuit was used during recording
to fix the amplifier output at a constant level during the pulse
(Ilmoniemi et al., 1997). The latter method is especially helpful
for amplifiers that recover from TMS pulses only after a delay
of several hundred milliseconds (Ilmoniemi and Kičić, 2010),
although some current amplifiers are able to keep this delay
lower than 10 ms (Veniero et al., 2009). The drawback of the
sample-and-hold approach is that information on the brain sig-
nal directly after the pulse is invariably lost and that the signal
contains gaps.

Option (1) has also been used by Bergmann et al. (2012) in
their study on EEG-guided TMS, making a waiting period of
several seconds between stimulation pulses necessary. If the brain-
state is decoded from spectral features and for example 500 ms
of data is needed to estimate these features robustly, one has to

wait for 500 ms plus the expected duration of the stimulation
after-effects for making the first estimate of the brain-state after
a stimulation pulse. This duration is therefore also the absolute
minimum ISI in this scenario. Removal of the after-effects by tem-
plate subtraction is only possible, if several constraints are met:
the full amplitude range of the stimulation effects has to be within
the dynamic range of the amplifier, as portions of the data in
which the amplifier is in saturation can not be recovered with
this method, resulting in the necessity to correct for gaps in the
signal as in option (3). If the recorded effects are not sufficiently
stable, attempting to remove them will lead to residuals in the
signal. Like the original after-effects, these residuals can have a
detrimental effect on the quality of the estimated spectrum and,
thus, the decoding process. The employed removal algorithms
need to be suitable for an online BCI, so they need to work on a
single-trial level and therefore should not be too computationally
demanding.

We have chosen approach (3) for this work, the deliberate
introduction of gaps into the signal covering the strongest after-
effects of stimulation and correcting for these gaps during spectral
estimation. This allows continuous decoding without influence of
the stimulation after-effects, as long as the duration of the after-
effects is estimated properly. To apply this approach, methods
are needed that do not depend on continuous data segments for
brain-state decoding and can deal with gaps in the data.

In our experiments, we analyzed the spectral power in the
μ- and/or β-band to detect the patient’s intention to move the
paralyzed hand. We compared different approaches (linear inter-
polation, AR modeling, joining of data segments, and the Burg
algorithm adapted for segmented data) on their ability to estimate
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the spectrum with gaps in the data. To this end, we used an ECoG
BCI training data set and analyzed the normalized RMSE, bias
and variance of the difference between the estimated spectrum
with and without gaps. The RMSE increased with the gap size,
although the slope of the error increase was smaller for MEMgap
and joining than for algorithms that fill the gap with artificial
data (linear interpolation and AR modeling). We found a clear
systematic negative bias for linear interpolation and a system-
atic positive bias for AR modeling. We studied the frequency
range between 16 and 22 Hz in most detail, where the bias of
AR modeling was only apparent for a model order of 16, but a
clear bias of AR modeling can be found for other frequencies at
higher model orders, making this method also potentially unre-
liable. The joining method produces a bias close to 0 around a
frequency of 20 Hz, but can lead to a positive bias for higher
frequencies, whereas the MEMgap method always results in a
bias close to 0. For gaps smaller than 40 ms, linear interpola-
tion typically has the smallest absolute deviation from the true
power values while MEMgap outperforms the other methods for
longer gaps.

As our simulations show, the RMSE for linear interpolation
is smaller than for MEMgap, thus at first glance making linear
interpolation superior to MEMgap for large model orders and/or
small gaps. However, in the context of a continuous BCI decoding
for BSDS, the negative bias exhibited by the linear interpolation
methods will bias the output of the BCI in favor of ERD, thus dis-
torting the real performance of the participant to some extent if
stimulation is coupled to the detected brain-state. We therefore
think that MEMgap is most suited for BSDS as it is superior or at
least equal to the other methods in terms of RMSE and variance,
does not introduce a systematic bias and outperforms the other
methods in minimizing the stimulation after-effects in our BCI
paradigm.

Whether this approach of identifying and ignoring the seg-
ments of data dominated by stimulation after-effects is feasible
in any given experimental setting depends on the duration of
stimulation-evoked potentials after the pulse. As we showed here
in the simulation studies, if the strongest evoked activity is con-
tained within the first 50–100 ms after the pulse, then a decoding
approach using MEMgap is feasible. If no strong evoked activ-
ity is observed, e.g., in the case of a remote recording location
as illustrated in Figure 7, then a short gap of 10 ms covering the

stimulus artefact together with linear interpolation or MEMgap
would be sufficient. In Ferreri et al. (2011), evoked EEG activity
following single pulse TMS was found for up to 300 ms after the
pulse with amplitude fluctuations of less than 20 μV for late com-
ponents. Although we do not expect that such small potentials
would have a large impact on the estimated spectrum, especially
compared to the stimulation artefact itself or early evoked activ-
ity, for every experiment of BSDS with continuous decoding, the
size and shape of the evoked activity should be carefully studied
to get a proper estimate of the duration of strong after-effects. As
was shown by Casarotto et al. (2010), the after-effects depend on
a number of parameters, such as stimulation intensity, location
and (in the case of TMS) coil orientation. If gaps longer than the
100 ms tested here are necessary to cover all stimulation-related
activity, one should either wait long enough until all effects have
ceased before making the next brain-state decoding attempt, or
increase the size of the data window on which the spectrum is esti-
mated to ensure that it contains enough clean samples to compute
a valid estimate.

In conclusion, we have shown that the application of corti-
cal stimulation coupled to the output of an online brain-state
decoder based on spectral features is feasible as long as the
employed algorithms remove both the stimulation artefact and
large early components of evoked activity and allow spectral esti-
mation on non-continuous data. Especially if closed-loop BSDS is
used, algorithms that do not introduce a strong bias into the esti-
mated spectrum such as MEMgap are to be preferred over biased
methods like linear interpolation to ensure a reliable decoding
of the brain-state. In general, the methods investigated here are
not restricted to applications with cortical stimulation but can be
employed whenever spectral estimation has to be performed on
non-continuous data sets with missing blocks of samples.
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1. APPENDIX
1.1. THE BURG ALGORITHM
The Burg algorithm is used for the estimation of the coefficients
ci of an autoregressive (AR) model

x(tp) =
p∑

i= 1

cix(tp− i)+ e

with order p for samples x(tk), 0 ≤ k < N, e a sample from a white
noise sequence. The algorithm needs p recursive steps and in each
step j, the coefficients cj,i for an autoregressive model of order j
are computed by the following procedure:

An initial estimation of the power of the white noise compo-
nent in the AR model is obtained by

P0 = 1

N

N−1∑
k= 0

|x(tk)|2.

Each new coefficient ci,i is computed by minimizing the forward
and backward prediction errors

fp,k = x(tk)−
p∑

i= 1

cp,i x(tk− i) with k = p, . . . , N − 1

bp,k = x(tk− p)−
p∑

i= 1

cp,i x(tk− p+ i) with k = p, . . . , N − 1

with the formula

ci,i =
−2

∑
k∈Ii

fi− 1,k · bi− 1,k− 2∑
k∈Ii

(|fi− 1,k|2 + |bi− 1,k− 1|2
) , Ii = {i+ 1, . . . , N − 1}.

(A1)

Each previously computed coefficient ci− 1,k is then adjusted by

ci,k = ci− 1,k + ci,i · ci− 1,i− k

and we update the power estimation to

Pi = (1− |ci,i|2) · Pi− 1

and the forward and backward prediction errors:

fi,k = fi− 1,k + ci,i · bi− 1,k− 1

bi,k = bi− 1,k− 1 + ci,i · fi− 1,k .

After p steps, this results in the AR coefficients ci = ci,p, i =
1, . . . , p.

1.2. ESTIMATING THE SPECTRUM FROM AN AR MODEL
An AR model can be interpreted as an all-pole infinite-impulse-
response filter with order p and coefficients ci which is applied to

a white noise process with a power of Pp (Pardey et al., 1996).
Thus, after finding the p autoregressive coefficients ci, one can
estimate the spectrum by evaluating the transfer function H(z) =√

Pp

(
1−∑p

k=1 ckzk
)−1

of the filter to find power values

P(ω) = Pp

|1−
p∑

k= 1
cke−jkω|2

at (normalized) frequencies ω.

1.3. THE MEMgap ALGORITHM
If one assumes that a sequence g of length N exists and that
g(n) = 1 only if the corresponding sample x(tn) is part of a gap
in the data and 0 otherwise then we just have to make sure that
none of the samples x(tn) with g(n) = 1 influence the estimation
of the model coefficients. The Burg algorithm computes the AR
coefficients for order p in p steps, yielding in the i-th step the coef-
ficients of an AR model with order i. If we use in the i-th step only
those samples fully for computation of the AR coefficients that
are at least i+ 1 time steps away from a sample with g(n) = 1, we
achieve the desired effect. To be more precise, the coefficients are
computed by evaluating forward and backward prediction errors
(see Appendix 1.1). In the MEMgap algorithm, forward predic-
tion errors are only computed for samples that are at least i+ 1
time steps after a gap, backward prediction errors only for those
at least i+ 1 time steps before a gap. Formally, this is done by
modifying Ii in Equation (A1) to the set

Ii ={k | g(k) = 0 ∧ i < k < N ∧
(k− n < 0 ∨ k− n > i) ∀n with g(n) = 1}.

This set can also be computed iteratively in each step of the Burg
algorithm as Ii = Ii−1 ∩ I′i−1, where I′i−1 is the set Ii−1 with each
entry incremented by 1 and I0 = {k | g(k) = 0 ∧ 0 < k < N}.
This resembles a “forbidden zone” that initially contains only the
gaps but grows in each step of the algorithm by one sample. The
estimation of the white noise power P0 has to be calculated only
with samples outside of gaps: P0 = 1

|I0|
∑

k∈I0
|x(tk)|2. The rest of

the algorithm works as the standard Burg algorithm described in
Appendix 1.1.

Obviously, this method can only work if the continuous seg-
ments between gaps are long enough. Therefore, there needs
to be at least one segment of samples with a length that is at
least equal to the model order p in order to make an estimation
of the spectrum with this method. In practice, it is preferable
if the number of samples in such a segment is several times
higher than the model order in order to reduce the bias and
variance of the estimator. If there are ns segments of clean data
with a length greater than p and the total number of samples
in these segments equals M, then only M − 2nsp forward and
backward prediction errors are available in the p-th step of the
MEMgap algorithm, although all M samples are evaluated to
compute these errors. This means that even if the total num-
ber of samples within gaps might be the same, one can expect
that the variance of the spectral estimation will be smaller if
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there are only a few large gaps in the data compared to having
many small gaps because less samples contribute fully in the sec-
ond case. According to de Waele and Broersen (2000), the same
holds for the estimation bias which is inversely proportional to
the number of available samples.

1.4. AR MODELING INDUCES JUMPS IN THE SIGNAL
The approach to fill the gap with samples that were extrapo-
lated by an AR model fitted to the data before the gap can be
problematic, if the extrapolation diverges strongly from the mea-
sured data. When actually measured samples are added to the
data buffer after the gap, there can be a large amplitude difference
between the last (extrapolated) sample within the gap and the first
measured sample after the gap (Figure A1A). Such a “jump” in
the signal results in high power across all frequencies, thus distort-
ing the spectrum. To assess the influence of the model order and
the gap size on the jumps, we ran simulations on the data from
the ECoG recordings without stimulation used in Figure 8A: in
total, 11266 stimuli were simulated on 397 minutes of data, the
gap size was varied between 0 and 100 ms in steps of 5 ms and
model orders 16, 32, and 64 were tested.

We applied AR modeling to deal with the gaps and measured
the jump as the absolute voltage difference between the last sam-
ple generated by the AR model at the end of the gap and the
first sample after the gap. The results are shown in Figure A1B.
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FIGURE A1 | (A) An example, how AR modeling fills a gap in the
signal. A gap is introduced into an ECoG signal (blue) between 500
and 600 ms. An AR model of order 32 is estimated from the
500 ms before the gap and applied as a linear predictor to generate
100 samples to fill the gap (red). The original ECoG samples within

the gap are shown in gray. The voltage difference between the last
sample generated for the gap and the first ECoG sample after the
gap is the jump height. (B) Average jump height after filling the
gap with AR modeling for model orders 16 (black), 32 (red), and 64
(green).

For comparison, the average absolute voltage difference between
neighboring samples of the original ECoG data without any gaps
or stimuli is 1.68± 0.43 μV (mean± std).

We found that for all model orders, the average height
of the jump increases sharply up to a gap size of 10, yield-
ing 12.35± 5.0 μV for order 16, 11.82± 4.43 μV for 32 and
11.29± 4.37 μV for 64. For further increasing gap size, the
average jump height increases more slowly for higher model
orders than for lower ones. For a gap size of 100 ms we
find average jump heights of 28.08± 14.94 μV for order 16,
23.45± 12.51 μV for 32 and 20.23± 11.94 μV for 64. Thus,
while the jump height at the end of the gap is significantly
smaller for a model order of 64 compared to 32 and 16
(gap size = 100, paired Wilcoxon signed rank tests, both p <

10−17), it is still vastly higher than the average sample-to-
sample difference for ongoing ECoG activity. Therefore, we can-
not conclude that higher model orders prevent jumps after the
gap.

Furthermore, if the gaps are used to cover the effects of real
stimulation, there has to be a jump at the end if the gap is
filled by AR modeling and evoked activity is present. AR model-
ing attempts to extrapolate the pre-stimulus signal which almost
certainly differs in its time course from the stimulation-evoked
activity, therefore extrapolation can not work perfectly, regardless
of the model order.
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