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Editorial on the Research Topic

Adipose Tissue: Which Role in Aging and Longevity?

Since 2018, we are living in a world where there are more people over age 65 than there are children
under five. Predictions indicate, if this trend continues, by the year 2050, the number of people
over 65 will be double the number of people under five (1). Consequently, an understanding of
the optimal physiological, endocrinological, and anthropometric conditions associated with better
health during aging is to be considered a priority topic. In parallel with the increasing aging of the
population, there is a parallel increase of overweight and obese individuals among older adults (2).

Normal aging involves important changes to body composition, including decreased muscle
mass and increased fat mass (3). Basal metabolism, for the majority of the elderly, is the main daily
energetic expenditure and its decrease with age provides one explanation for the tendency to gain
weight, with age. In addition to this physiological statement, lifestyle changes in aged people and the
associated reduction in physical activity level favors weight increase with age. Total body fat peaks
at about 65–70 years, while in advanced old age it decreases. Aging, indeed, modifies adipose tissue
accumulation and redistribution resulting in accumulation of abdominal fat. These age-related
changes alter many physiological functions including inflammation and contribute to age-related
diseases such as cardiovascular events, diabetes mellitus, hypertension, stroke, and several types of
cancer (4). However, to what extent, the age-related adipose tissue remodeling impacts the health
status in elderly is incompletely understood.

To highlight and clarify the main age-related changes in adipose tissue and discuss its
implications on health status with particular regard to age-related diseases, we dedicated a Research
Topic to the alteration of lipid storage, the redistribution and the types of fat, the production of
different mediators contributing to a pro-inflammatory status in aging.

Conte et al. are setting the stage, discussing the evident evolutionarily advantage provided by
this tissue common among all animal species. Maintaining the correct distribution of body fat
seems crucial for health and longevity. Interestingly, it seems that while a lower threshold of fat
mass exists, it does not appear existing an upper one. In human and in many animals, adipose
tissue can be accumulated in very large amounts. Most probably, an upper limit was not established
by natural selection because a large accumulation of body fat in the wild is uncommon, unlike what
we are observing during modern times in our species. Although the health implication of excessive
body fat is evident, as they discuss, they also propose that a suitable amount of fat is probably an
important feature for reaching extended longevity (Conte et al.).

Because of its simplicity, BMI is broadly used as a surrogate for body fat, although it is
highly imprecise. For example, a bodybuilder with a low percentage of body fat could fall in the
obese category. Ponti et al. present how body composition is different at different ages, stressing
that there is not only an increase in body fat but also a redistribution of body mass with age.
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In particular, fat mainly increases in the trunk (largely visceral
fat), but not in arms or legs. A major difference also exists
between male and female older adults likely contributing to
the sex-difference in the prevalence of age-related diseases.
An accurate assessment of body composition is critical to
discriminate an increase/decrease of fat rather than muscle
mass in the elderly. Ponti et al., review the most precise
methods available for the clinic and for research to determine
body composition [dual-energy X-ray absorptiometry (DXA),
ultrasound, computed tomography (CT) andmagnetic resonance
imaging (MRI)] outlining advantages and disadvantages of
each technique.

Zoico et al. focus on the significance of changes happening
during aging in two subcategories of body fat: brown adipose
tissue (BAT) and beige adipose tissue, fat tissues rich in
mitochondria with the univocal (brown) or conditional (beige)
function of converting stored energy into heat.

Adipose tissue is a recognized endocrine organ, producing
a variety of adipokines, whose levels tend to increase with
aging. Mancuso and Bouchard have provided a comprehensive
overview of adipokine functions, classifying them as pro-
inflammatory (leptin, resistin, chemerin, retinol binding protein
4, lipocalin 2, CCL2, IL-1β, IL-6, IL-12, IL-18, and TNF-α) and
anti-inflammatory (adiponectin, vaspin, secreted-frizzled-related
protein 5, omentin-1 C1q/TNF-related proteins).

Arai et al. focus on the roles and significance of adiponectin,
an adipokine whose levels are elevated in centenarians. In
contrast to the majority of other adipokines, its plasma levels are
inversely related to body fat. In this report, the authors describe
how this adipokine is considered highly beneficial for longevity,
possibly contributing to enhancing insulin sensitivity. They
also describe some interesting paradoxes related to adiponectin
that challenge its beneficial role: the observed association
between higher adiponectin level and mortality in patients with
cardiovascular disease and with frailty in elderly subjects. They
propose a solution to these paradoxes introducing the concept of
adiponectin resistance: higher adiponectin levels, in their view, is
possibly a compensatorymechanism in response to inflammation
and oxidative stress.

In light of the current SARS-CoV-2 pandemic affecting
prevalently the elderly (5), an important topic is the role
of the process of aging in the susceptibility to infectious
diseases. Obesity, as it increases with age, exerts a cumulative
effect. Obese individuals are increasingly vulnerable to fungal,

bacterial, and viral infection. Frasca and McElhaney present an
overview of the roles of obesity on the immune response to
respiratory tract infection. Specifically, they analyze the risk for
the elderly represented by pneumococcus infection, highlighting
the presence of an interesting obesity paradox: it appears that
obesity is protective against the more serious complications of
this bacterial infection. This stresses the need to investigate
further, how obesity is modulating our immune response (Frasca
and McElhaney).

Salvestrini et al. look from further away at the
interrelationship between excess body fat and aging. Their
considerations stem from a reflection on the experimental
paradigm of life span extension by caloric restriction, specifically

on how best to consider control animals when translating
experimental results to human (6). If a control animal, ad libitum
fed, has to be considered an animal with no excess fat, equivalent
to a normal weight human (BMI between 18.5 and 24.9) than
to benefit from the lifespan-extending effect of CR, a human
should approach underweight. If, instead, as many authors are
proposing [reviewed in (6)], control animals in many instances
should be considered the equivalent of obese humans, then the
lifespan-extending capacity of CR is simply communicating that
obesity has a life shortening effect, which is well-known from
epidemiological evidence. From these considerations Salvestrini
et al. have looked at obesity under the lens of the hallmarks of
aging as listed by López-Otín et al. (7); the vast collection of
literature they overviewed, demonstrates an impressive overlap
between the process of aging and the metabolic consequences of
excess body fat (Salvestrini et al.).

Although the increase of body fat with age remains a major
risk factor for age-related diseases, several studies are needed to
disentangle the complex network of metabolic, endocrinological,
and immunological mediators that are involved. Moreover,
the general increase of the elderly population leads to the
consequent increase of 90+ elderly and centenarians. Many
studies demonstrated the peculiarity of these individuals (8, 9),
however little is known about the amount and kind of adipose
tissue they have. Future researches are needed to investigate the
age-related remodeling of body fat including also very old people.
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Obesity negatively affects immune function and host defense mechanisms. Obesity is

associated with chronic activation of the innate immune system and consequent local

and systemic inflammation which contribute to pathologic conditions such as type-2

diabetes mellitus, cancer, psoriasis, atherosclerosis, and inflammatory bowel disease.

Individuals with obesity have increased susceptibility to contract viral, bacterial, and

fungal infections and respond sub-optimally to vaccination. In this review, we summarize

research findings on the effects of obesity on immune responses to respiratory tract

infections (RTI), focusing on Streptococcus pneumoniae (“pneumococcus”) infection,

which is a major cause of morbidity and mortality in the US, causing community-acquired

infections such as pneumonia, otitis media and meningitis. We show that the risk

of infection is higher in elderly individuals and also in individuals of certain ethnic

groups, although in a few reports obesity has been associated with better survival of

individuals admitted to hospital with pneumococcus infection, a phenomenon known

as “obesity paradox.” We discuss factors that are associated with increased risk of

pneumococcal infection, such as recent infection with RTI, chronic medical conditions,

and immunosuppressive medications.

Keywords: obesity, aging, inflammation, respiratory tract infections, pneumococcus

INTRODUCTION

The increase in the frequency of obesity is a worldwide phenomenon. Obesity is defined as a
body-mass index (BMI) ≥ 30 kg/m2, by both the Centers for Disease Control and Prevention
(https://www.cdc.gov/obesity/adult/defining.html) and the World Health Organization (https://
www.who.int/topics/obesity/en/) and is associated with several debilitating chronic diseases
including cardiovascular disease (1), type-2 diabetes mellitus (T2DM) (2–4), cancer (5), psoriasis
(6), atherosclerosis (7), and inflammatory bowel disease (IBD) (8). Published data indicate that
high BMI negatively correlates with protective immune responses and obese individuals are highly
susceptible to viral, bacterial, and fungal infections (9–11). Obesity also increases the risk of
musculoskeletal disorders and chronic back/lower limb pain (12); reduces cognitive function
and is considered a potential risk factor for Alzheimer’s disease and dementia (13, 14); induces
ovulatory infertility (15); increases the risk of early and late miscarriage, gestational diabetes and
preeclampsia, and complicates labor and delivery (16); impairs respiratory function by reducing
lung expansion and narrowing airways in the lung (17), leading to asthma (18), and obstructive
sleep apnea (19). In general, obesity decreases both the healthspan and lifespan, increases premature
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mortality and significantly increases global healthcare costs. This
global obesity epidemic affects all age groups as shown in a recent
survey conducted on 68 million people from 195 countries (20).

Obesity negatively affects immune function and host defense
mechanisms. One of the reasons is because obesity is an
inflammatory condition associated with chronic activation of the
immune system and consequent local and systemic inflammation
which are negatively associated with a functional immune system.
It has previously been shown that systemic chronic inflammation
induces intrinsic inflammation in immune cells and a status of
immune activation associated with reduced immune responses.
Elevated serum levels of TNF-α typical of old age negatively
correlate with T cell function, due to the down-regulation of
CD28 gene transcription and cell surface expression (21). B cells
are also affected by inflammation. We have shown that B cells
from elderly individuals spontaneously make higher amounts of
TNF-α than those from young individuals (22). B cell intrinsic
TNF-α levels are positively correlated with serum TNF-α and,
more importantly, these B cell levels of TNF-α before stimulation
are negatively correlated with the function of the same B cells
after in vivo or in vitro stimulation with the influenza vaccine or
with mitogens, respectively. These findings are supported by the
observation that inhibition of TNF-α improves both T (23, 24)
and B cell (22) function.

The adipose tissue (AT) is a major immunological tissue
that contributes to systemic inflammation. AT inflammation
is characterized by infiltration and activation of immune cells
secreting pro-inflammatory mediators, such as cytokines and
chemokines, as well as adipokines, which recruit immune cells
to the obese AT. Recruited immune cells differentiate into
inflammatory subsets and secrete additional pro-inflammatory
molecules which contribute to the maintenance of local and
systemic inflammation. Immune cells infiltrating the AT include
neutrophils, macrophages, T cells, B1 and B2 cells, NK cells, and
innate lymphoid cells. The cellular composition of AT is dynamic
and is regulated by acute and chronic stimuli including diet, body
weight, and fasting.

Aging is associated with a progressive decline in physiological
functions, leading to overt chronic disease, frailty and mortality.
Physiological changes include inflammation of the AT, which
leads to AT dysfunction, increased secretion of pro-inflammatory
mediators, immune cell infiltration and accumulation of
senescent cells. These processes altogether promote low-
grade chronic inflammation [inflammaging (25, 26)] and
insulin resistance, and lead to transition from metabolically
normal obesity to metabolic syndrome. This occurs through
metaflammation (27) in which excess nutrients, due to inefficient
glucose metabolism, promote chronic low-grade inflammation.
Metabolic hallmarks of metaflammation are high levels of
glucose, lipids, free fatty acids, and reactive oxygen species. AT
dysfunction may be a fundamental contributor to the elevated
risk of chronic disease, disability, and adverse health outcomes
in the elderly.

This review will show the experimental evidence that
obesity is linked to higher severity of RTI in individuals
of different ages similar to what has been shown in older
adults. Potential mechanisms responsible for these effects will be

discussed. We will focus primarily on Streptococcus pneumoniae
(“pneumococcus”) infection, which is a major cause of morbidity
and mortality in the US, causing community-acquired infections
such as pneumonia, otitis media, and meningitis.

OBESITY AND RTI

Figure 1 summarizes major obesity-associated changes in body
systems which may be responsible for reduced responses to
RTI. Lung function is altered in obesity (28). Altered lung
mechanics and increased airway resistance related to obesity
cause an increase in work of breathing and decreased exercise
capacity. Thus, increased respiratory rates and complaints of
fatigue are experienced by obese vs. lean individuals. These
changes in lung function are mainly due to the higher weight
load on the thorax, which is independent of any underlying
parenchymal lung disease, significantly contribute to physical
disability and impaired quality of life. Obese individuals with
chronic obstructive pulmonary disease (COPD), a leading
cause of morbidity and mortality worldwide, as well as with
chronic bronchitis and emphysema, require increased muscular
effort needed for ventilation and exhibit greater dyspnea (29,
30). Moreover, the sedentary lifestyle of these patients leads
to increased fat accumulation in the lung and consequent
airway obstruction.

In general, mechanisms related to the obesity-driven, low-
grade chronic inflammation may be dramatically influenced
by the presence of comorbid conditions. Obesity is in fact
a complex metabolic condition associated with changes in
many different physiological functions of the organism, and
these changes, alone or in combination, may induce, support,
and exacerbate lung inflammation. These conditions include
gastroesophageal reflux, a risk factor for aspiration pneumonia
and asthma (31), which may be worsened by hypertension
and dyslipidemia, two conditions affecting immune responses
in the lungs and increasing susceptibility to asthma and
aspiration pneumonia (32).

Several pro-inflammatory cytokines and adipokines are
secreted by the AT. Thesemediators, released into the circulation,
contribute to the low-grade chronic inflammation (33) and
induce pulmonary inflammation. The lung is continuously
exposed to insults from the air and also to toxic molecules
circulating through the pulmonary and bronchial vasculature.
Mouse studies have shown that different molecules, such as
bacteria, ozone, allergens, and particulate matter, activate the AT
to secrete pro-inflammatorymediators involved in the generation
of pulmonary inflammation (34–37). In addition, mechanisms
of defense against pathogens and smaller particles that have
successfully penetrated the mucosal barrier, including first-line
filtration, mucosal IgA, alveolar cells, and resident immune cells
in the parenchyma are decreased in obese individuals leading to
low-grade chronic inflammation.

Leptin is an adipokine primarily secreted by the AT (38). Its
effects on systemic and pulmonary inflammation in the settings
of obesity have been the focus of several studies. Plasma levels of
leptin positively correlate with the amount of body fat and BMI,
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FIGURE 1 | Obesity effects on different body systems involved in the response to respiratory tract infections. Obesity-induced changes in the lung may be due to

higher weight load on the thorax and lead to reduced lung function. Obesity-induced changes in the immune system lead to chronic inflammation, immune activation,

and reduced clearance of pathogens. Obesity also causes gastroesophageal reflux, which is a risk factor for aspiration pneumonia and asthma, due to the excess of

belly fat posing pressure on the stomach, and gut microbiome dysbiosis. Cardiovascular complications of obesity include hypertension, dyslipidemia, and endothelial

dysfunction. Obesity-induced changes in the adipose tissue are responsible for increased insulin resistance and glucose intolerance, both leading to chronic

inflammation.

increase with age (39), and contribute to the inflammatory status
of the AT associated with obesity. Leptin induces the secretion
of inflammatory cytokines by macrophages (40), T cells (41),
and B cells (42, 43) in vitro. Leptin has also been reported to
increase leukotriene synthesis by alveolar macrophages, leading
to pulmonary inflammation (44). Leptin is known to down-
regulate functional immune responses (45). There is evidence
that cells in the lung may also be capable of secreting leptin
(46, 47), although it seems more likely that leptin is found in the
lung as a consequence of increased microvascular permeability
associated with lung inflammation (48).

Viral RTI
Viruses causing severe RTI in elderly individuals include
influenza A and B virus, respiratory syncytial virus (RSV), human
parainfluenza virus (HPIVs), rhinovirus, enterovirus, human
coronavirus (HCoVs). The effects of obesity have only been
described for a few of these viral infections.

While many studies have investigated the effect of obesity
or aging on the risk of influenza virus, only a few studies have
analyzed the effect of both, likely because obesity has been
shown to induce defects in peripheral immune cells similar to
those induced by aging. We hypothesize that multifactorial age-
associated conditions and parameters might be concomitantly
associated with the predisposition of older adults to be infected
with the influenza virus. During the 2009 influenza pandemic
season, it was shown that obesity was positively associated
with reduced pulmonary immune defenses not only against

the Influenza A(H1N1)pdm09 virus but also against other
pathogens (49). Several reports have clearly indicated that
obese and morbidly obese individuals were more susceptible
to infection with the Influenza A(H1N1)pdm09 virus, to a
greater severity of illness after infection (49–51), to higher
rates of hospitalization (50), admission to intensive care units
(52), and death not only in the US (49) but also in many
other countries (53–56).

The importance of RSV is increasingly recognized in
hospitalized adults, but mainly in those 65 years and older.
Vaccines for the prevention of RSV infections are not yet
available, and development efforts are made more difficult in
the older population due to age-associated decreases in immune
responses. RSV infection in older adults causes great suffering
due to hospitalization and death and is considered a social
burden similar to that of seasonal influenza (57, 58). Clinical
manifestations of RSV infections are similar to those caused by
other viral respiratory pathogens. Most of the studies published
on RSV-associated hospitalizations have been conducted in
individuals ≥65 years, with 5–10% of hospitalizations for acute
respiratory illnesses due to RSV infection. Older adults with
COPD and/or congestive heart failure have been shown to
be at higher risk (57, 59). A study conducted in middle-aged
and older adults has shown that RSV infection was associated
with obesity (60). Although there are no published studies
on RSV infection in obese individuals, we can hypothesize
that the clinical effects are similar to those observed in
older adults.
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The Bacterial RTI With Streptococcus

Pneumoniae
Infection with the gram-positive bacteria Streptococcus
pneumoniae (“pneumococcus”), a common pathogen in the
nasopharynx most commonly associated with pneumonia,
represents a major cause of morbidity and mortality. The risk
of infection is higher in obese vs. lean individuals. Obesity has
been associated with increased risk of pneumonia in young
individuals (61). Studies on the effect of pneumococcus infection
in obese elderly individuals are limited, but one study has
reported that the incidence of community-acquired pneumonia
in obese patients is directly associated with higher BMI in both
age groups (62). However, other studies have conversely shown
that obese compared to lean individuals are 2-fold more likely
to survive after being admitted to hospital with pneumococcus
infection, suggesting that extra energy may help to fight both
infection and inflammation (63). After adjustment for potential
confounders, morbid obesity was not associated with mortality,
whereas obesity was associated with decreased mortality. Neither
morbid obesity nor obesity were associated with admission into
intensive care units and use of mechanical ventilation. This
apparently controversial result may be due to the fact that when
BMI is used as a measure of adiposity results may differ across
different study populations. BMI is a crude anthropometric
biomarker and it does not take into account different important
measures of adiposity, such as fat mass, body fat distribution,
measures of central adiposity, and nutritional status. Another
reason may be due to the different inflammatory profile of
the participants recruited into the studies. For example, obese
individuals with high circulating levels of leptin, the adipokine
secreted in large amounts during obesity, may have enhanced
local immune responses against respiratory pathogens and
increased host defense mechanisms in the lung (64). Leptin is a
strong immunomodulator of both innate and adaptive immune
responses and increases macrophage phagocytosis, neutrophils
chemotaxis and natural killer cell cytotoxicity, as well as B and T
cell function, leading to increased bacterial clearance. Therefore,
increased leptin levels could increase immune responses of obese
individuals and better protection against infection. Although a
recent study of survivors of community-acquired pneumonia
showed that this obesity paradox could not be attributed to
differences in biomarkers of several inflammatory pathways (65),
this study has only measured four markers of inflammation (not
including leptin) and did not distinguish pneumonia from other
causes of death, limiting the conclusions about inflammation as
the pathophysiological explanation of the obesity paradox.

The risk of infection is also significantly higher in individuals
aged 65 years and older as compared to younger individuals
(66). Table 1 summarizes major studies cited in this review
showing the effects of age and comorbidities on mortality rates
after infection with pneumococcus. Before the availability of
antimicrobial treatments, >70% of patients hospitalized died
of bacterial pneumococcal pneumonia and mortality rates were
even higher in older adults (73). By the end of the twentieth
century, mortality rates had dropped to 20% in individuals ≥65
years of age and to 40% in those ≥85 years of age (67–69).
The American Centers for Disease Control and Prevention

TABLE 1 | Effect of age and comorbidities on mortality rates after pneumococcus

infection.

Population age Comorbidities Mortality rates Reference

18–64 years None reporteda 19% (67)

≥64 T2DMb 45% (68)

Chronic lung disease 33% (68)

Congestive heart failure 20% (68)

Chronic renal failure 60% (68)

≥65 None reported 20% (66)

≥65 AIDSc 69%e (69)

SLEd (All comorbidities) (69)

Chronic lung disease (69)

Chronic liver disease (69)

Congestive heart failure (69)

Chronic renal failure (69)

80 None reporteda 71% (70)

≥85 None reporteda 38% (67)

78–100 years None reporteda 27% (71)

86–104 years None reporteda 20% (72)

aThis study analyzed the total population, including healthy, and non-healthy individuals.

The mortality rates due to the different comorbidities are not reported.
bT2DM, type-2 diabetes mellitus.
cAIDS, acquired immune deficiency syndrome.
dSLE, systemic lupus erythematosus.
e In this study mortality rates were calculated considering the total population (healthy and

not healthy with the listed comorbidities).

(CDC) reported that in 1995, in 4 areas of the US, the rate
of invasive pneumococcal infection among older adults was 3-
fold higher than infections with group B streptococcus, 10-fold
higher than with Haemophilus influenzae, and 25-fold higher
than meningococcus or Listeria monocytogenes infections (66).
Rates of infection in elderly individuals from Asia, Africa or
South America are less known.

In addition to obesity and aging, several other risk factors
have been identified, including previous viral RTI such as
influenza and RSV (74–76) as well as chronic illnesses such
as COPD, congestive heart failure, cerebrovascular diseases and
dementia, cancer, and T2DM (77). Use of corticosteroids has
also been shown to be significantly associated with the risk of
pneumococcus infection (77).

The incidence of pneumococcal pneumonia increases with age
and the number of co-morbidities; those with 2 at-risk conditions
have a similar risk to those with a high-risk rheumatologic
condition, and those with ≥3 co-morbidities have a 2-fold
higher risk compared to those with a rheumatoid condition (78).
The age-associated increase in low-grade chronic inflammation
has been shown to be associated with increased susceptibility
to pneumococcal infection, with higher disease severity and
decreased survival in older adults (79, 80). In general, microbial
dysbiosis drives intestinal permeability and translocation of
bacterial components into the bloodstream, further sustaining
inflammation, immune activation, and decreased immune
responses (81). Increased gut permeability with age induces not
only systemic but also lung inflammation and tissue damage, as
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shown by increased levels of circulating bacterial toxins, leading
to pulmonary endothelial damage.

Not only the gut microbiota, but also the upper RT (URT)
(82) microbiota changes with age contributing to Streptococcus
pneumoniae colonization and its inefficient clearance, as shown
by studies conducted in mice (83). The URT is colonized
by several different species of pathogens and is continuously
exposed to bacteria present in the environment, which survive
in the nasal and oral cavities of older individuals, due to
loss of resistance to colonization and altered immunity. It
has been shown that efficacy of intranasal vaccination with
a live attenuated influenza virus, measured by mucosal IgA
secretion, depends on the specific bacterial composition of the
nasal cavity, suggesting the importance of nasal microbiota for
nasal immunity (84). Whether the URT microbiota of obese
individuals contributes to Streptococcus pneumoniae colonization
remains to be investigated by further studies.

Obesity is associated with changes in gut microbiota at
phylum-level and with reduced bacterial diversity in mice
and humans (85, 86). Mouse studies have identified intestinal
microbiota products that protect the host from pneumococcus
infection and have shown the mechanisms involved. Briefly, it
was shown that the gut microbiota increases phagocytosis of
alveolar macrophages and protects from tissue damage during
pneumococcus-induced sepsis (87). Human studies are necessary
to confirm the positive results obtained in mice.

Nursing homes represent one of the settings for outbreaks
of pneumococcal infection in the elderly. Vaccination has been
reported to protect<10% of elderly individuals in nursing homes
during outbreaks of pneumococcal infection (70–72).

The risk of pneumococcal infection is also higher in
individuals of certain ethnic groups. Afro-American people of
all ages living in the US are 2- to 4-fold more susceptible than
Caucasian individuals, but rates of infection are only slightly
higher in the older Afro-American population (88, 89). Native
Americans and Alaskans are at higher risk of pneumococcal
disease than individuals of other ethnic groups. In the population
≥60, Native Alaskans as well as Native Americans of the Apache
tribe living in Arizona had a 2-fold increase risk of pneumococcal
disease as compared to non-native populations living in the
same area (90, 91). In Northern Canada as well, higher risk
of pneumococcal disease has been reported for Indigenous
populations (92). Higher rates of multiple chronic conditions
related to the colonization of Indigenous people’s diets over many
generations may, in part, explain these disparities, and require
further study (93).

CONCLUSIONS

Chronic activation of the innate immune system and consequent
local and systemic inflammation related to obesity contributes
to pathologic conditions such as T2DM, cancer, atherosclerosis,
and IBD. While obese individuals have increased susceptibility
to viral, bacterial and fungal infections, outcomes of these
infections may be determined by a host of other factors.
This is evident when comparing outcomes of influenza and
pneumococcal pneumonia; while both older age and obesity
contribute to the serious complications of influenza, obesity
appears to be protective against the serious complications
of pneumococcal pneumonia with advancing age, the so-
called “obesity paradox.” Future studies will need to address
the significant gaps in understanding the interaction of age,
obesity, multiple chronic conditions, and the microbiome,
particularly related to the risk for and complications of acute
RTI. Mechanistic studies are needed to move beyond what
has been learned from epidemiologic studies to develop new
biomarkers and related preventive and therapeutic approaches
to improving outcomes of acute respiratory illness in persons
with multiple chronic conditions. Future studies will also
need to address prevention of obesity, by improving eating
habits and increasing physical activity, as a way to fight
RTI. There is indeed experimental evidence showing that
weight reduction decreases systemic inflammation and improves
immune responses against bacterial, viral and fungal infections.
Several epidemiological studies have evaluated the effects of
diet and exercise in protecting subjects from several diseases
associated with chronic low-grade inflammation. This will
reduce the risk for infectious diseases, will increase their
responses to pathogens, and reduce the burden of illness and
health-related costs.
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Human aging is characterized by dramatic changes in body mass composition that

include a general increase of the total fat mass. Within the fat mass, a change in the

proportions of adipose tissues also occurs with aging, affecting body metabolism, and

playing a central role in many chronic diseases, including insulin resistance, obesity,

cardiovascular diseases, and type II diabetes. In mammals, fat accumulates as white

(WAT) and brown (BAT) adipose tissue, which differ both in morphology and function.

While WAT is involved in lipid storage and immuno-endocrine responses, BAT is aimed

at generating heat. With advancing age BAT declines, while WAT increases reaching the

maximum peak by early old age and changes its distribution toward a higher proportion

of visceral WAT. However, lipids tend to accumulate also within lipid droplets (LDs) in

non-adipose tissues, including muscle, liver, and heart. The excess of such ectopic

lipid deposition and the alteration of LD homeostasis contribute to the pathogenesis

of the above-mentioned age-related diseases. It is not clear why age-associated tissue

remodeling seems to lean toward lipid deposition as a “default program.” However, it can

be noted that such remodeling is not inevitably detrimental. In fact, such a programmed

redistribution of fat throughout life could be considered physiological and even protective,

in particular at extreme old age. In this regard, it has to be considered that an excessive

decrease of subcutaneous peripheral fat is associated with a pro-inflammatory status,

and a decrease of LD is associated with lipotoxicity leading to an increased risk of insulin

resistance, type II diabetes and cardiovascular diseases. At variance, a balanced rate of

fat content and distribution has beneficial effects for health and metabolic homeostasis,

positively affecting longevity. In this review, we will summarize the present knowledge on

the mechanisms of the age-related changes in lipid distribution and we will discuss how

fat mass negatively or positively impacts on human health and longevity.
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INTRODUCTION

Aging is a complex process characterized by progressive changes
in body mass composition that lead to a functional decline at
cellular and organ levels over time.With advancing age, leanmass
and bone mineral density decrease, while total fat mass increases
and changes its distribution, particularly in the abdominal region,
often without concomitant changes in body mass index (BMI)
(1). In mammals, fat mass accumulates as adipose tissue or
ectopic lipid deposition. Adipose tissue is a dynamic organ
involved in the regulation of energy homeostasis, mainly divided
in three types, brown (BAT), white (WAT), and BEIGE which
differ in embryogenesis, anatomy, and function (2–4). While
BAT possesses high levels of mitochondria and is specialized in
fat burning to generate heat, WAT is characterized by a low
density of mitochondria and it is generally involved in lipid
storage in two biological distinct compartments: subcutaneous
(SAT) and visceral (VAT) adipose tissue. WAT is not only
involved in the storage of lipids, but also plays an important
role as immuno-endocrine organ (5). With advancing age, BAT
mass declines, while WAT increases reaching the maximum
peak by early old age and changing its distribution toward
a higher proportion of VAT (2). WAT redistribution is also
accompanied by an accumulation of fat mass in non-adipose
tissues and organs, such as muscle, liver, heart, pancreas and
others, that normally contain only small amounts of fat, stored
within lipid droplets (LDs) (6). Adipose tissue shows also an
extraordinary plasticity (7), in fact it can differentiate into
another type of adipose tissue, such as BEIGE (8, 9) or replace
the parenchyma of organs that undergo involution with age, such
as the thymus.

It is well-described that increased proportions of fat
mass affect body metabolism and play a central role
in many chronic diseases, including insulin resistance,
obesity, cardiovascular diseases, type II diabetes, and
sarcopenia (1, 10, 11).

In this review, we will summarize the changes that occur
in lipid distribution with increasing age, and we will propose
that: (i) the generalized increased amount of fat (in form
of adipose tissue or intracellular lipid droplets) should be

interpreted as an adaptive response to environmental conditions
and, as such, is not per se a detrimental phenomenon; (ii)
it can be a case of antagonistic pleiotropy, i.e., while it has
detrimental effects at old age, it can turn to be protective in
extreme longevity.

THE ROLE OF FAT MASS IN THE
EVOLUTION AND DURING AGING

Body fat storage has a long evolutionary history and represents
a fundamental strategy to store energy fuel that is crucial for
survival in conditions where food is not continuously available
(12). All living organisms, from prokaryotes to mammals, have
the ability to store energy that can be mobilized in response
to a need, such as growth, metabolism, and reproduction
(13). While simple organisms obtain and use energy only in

response to an immediate need, more complex organisms have
developed a mechanism to store energy in form of adipose
tissue or ectopic lipid deposition (5). In insects, fat bodies
represent not only lipid deposits but also organs able to perform
complex endocrine and exocrine functions similar to those of
the liver (14). Fat bodies play their biosynthetic and metabolic
activities by the production of circulating proteins, acting as
hormones, necessary in several physiological conditions, such
as morphogenesis, egg maturation, and lipid and carbohydrate
metabolism (15).

In mammals, fat mass distribution has reached a quite
high degree of complexity. In these organisms, fat mass is
widely distributed in the whole body and it is involved
in many physiological processes, i.e., energy supply during
periods of starvation or undernutrition, regulation of metabolic
homeostasis, reproduction, thermoregulation, immune response
with production of cytokines and chemokines (13, 16). However,
fat mass does not remain constant during lifespan, but changes
in content and distribution from birth to extreme old age
(17). These changes regard both adipose tissue and intracellular
lipid stores (LDs) in non-adipose sites, and some of them, as
in the case of thymic involution occurring at puberty, have
to be considered as physiologically programmed. Much less is
known about the fat mass changes occurring at advanced age.
The “thrifty genotype theory” (18) explains the accumulation
of adipose tissue as a strategy of metabolic adaptation, shaped
by natural selection, to survive conditions of food scarcity.
However, the existence of a specific genetic program leading
to lipid deposition during aging is unlikely, considering that,
according to the more advanced theories, aging in mammals
is neither programmed nor selected by evolution. Thus, it
seems more plausible that the age-associated lipid deposition
is rather a phenomenon of adaptive remodeling in response to
environmental conditions. Like many other adaptive phenomena
it is conceivable that it may have both beneficial and detrimental
effects. A growing body of evidence demonstrates that high
levels of fat mass are associated with the development of several
metabolic diseases (10), for this reason very often the fat
deposition is considered tout court purely detrimental for the
organism, and every age-associated weight gain bad for health.
However, several lines of evidence demonstrate that also the
deficiency of adipose tissue, as observed in transgenic mice or
during lipodystrophy, results in the development of metabolic
dysfunctions (19–21). For example, human lipodystrophies are
characterized by genetic defects in lipid storage with total or
partial loss of fat mass and related metabolic abnormalities
such as insulin resistance and hypertension (22). Moreover,
transgenic mice expressing dominant-negative protein A-ZIP/F
(19) are characterized by the absence of WAT, reduced amount
of BAT, elevated serum glucose, insulin, free fatty acids (FFA),
triglycerides and type II diabetes (19). Consistently, adipose tissue
results to have beneficial protective effects toward metabolic
syndromes (19, 23–25). We argue that also during aging fat
deposition can have beneficial effects, in particular at very old
age, when it can be an important reserve of strategic energy
crucial for resilience and recovery from stress and, eventually,
for survival.
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FAT MASS DISTRIBUTION IN HUMAN
AGING

In normal aging total fat mass increases over the adult lifespan
with a peak at about 65–70 years, while in extreme old age
fat mass decreases (26). In the following paragraphs, we will
describe the different types of body fat mass (adipose tissue and
ectopic lipid depots) and the re-distribution of such fat mass
during aging.

White Adipose Tissue (WAT)
WAT is a complex tissue composed by unilocular adipocytes,
other cellular types, such as immune and stem cells, and
connective tissue (4). The main role of WAT is the storage of
energy and, as such, it actively controls the energy metabolism
of all organs and tissues. In fact WAT secretes cytokines and
proteins that communicate with other organs, such as brain,
liver, muscle, or pancreas (27). As mentioned in the introduction,
the two major WAT depots are SAT and VAT. In human
body, SAT is present in the hypodermis of abdominal, gluteal,
and femoral districts, while the counterpart VAT resides within
abdominal cavity (omental, mesenteric, retroperitoneal, gonadal
fat) and mediastinum. Moreover, VAT is also present around

specific organs such as heart, stomach and blood vessels. With
aging WAT increases and re-distributes, in particular a relative
decline of SAT in the abdomen and limb region (thigh, calve),
and a concomitant increase of VAT can be appreciated (4, 28).
While SAT is considered protective, being the main source of
adiponectin (29), VAT is considered detrimental as it produces
pro-inflammatory mediators such as leptin, that boost the status
of chronic, subclinical inflammation typically found in the
elderly and indicated as inflammaging (30). Aging also entails
a dysregulation in WAT and a consequent excess of circulating
FFA. Higher levels of circulating FFA lead to lipotoxicity and the
development of metabolic disorders (31, 32).

Overall, WAT is involved in several physiological processes,
as demonstrated by different studies on animal models. Studies
on leptin-deficient ob/ob mice, with metabolic and immune
dysfunctions, demonstrated that the transplantation of WAT
normalizes high glucose levels, body weight and fertility (33), as
well as thymus/spleen cellularity and inflammatory parameters
like IL-6 (21). Moreover, a novel protective role for WAT in
the immune response has been proposed (34). In particular,
WAT from mice infected with bacteria represents a reservoir of
memory T cell populations and promotes a protective memory
response to infections (34). Studies in humans, and in particular
in healthy centenarians, demonstrated thatWAT becomes crucial
in the extreme old age, as it secretes circulating factors such as
adiponectin, that are associated with a protective metabolic and
anti-inflammatory phenotype (35, 36).

As a whole, all these data suggest that WAT remodeling
with aging may have not only negative but also positive effects
on health.

Brown Adipose Tissue (BAT)
BAT is a highly vascularized, heat-producing tissue, aimed at
protecting animals from hypothermia through thermogenesis.

This role is prominent in small size animals and newborns. It
is distributed in cervical, supraclavicular, axillary, paravertebral,
mediastinal, and upper abdominal regions (4). BAT is
characterized by the presence of multilocular adipocytes
containing abundant mitochondria that express high levels
of UCP1 through which dissipate the proton gradient across
the inner membrane and produce heat (37, 38). In addition
to the traditional role of BAT in thermogenesis, recent data
suggest that BAT plays an important endocrine role through
the release of several endocrine factors, particularly in response
to thermogenic activation (39). All these signaling molecules
control metabolic processes via autocrine, paracrine, and
endocrine mechanisms. These factors include (i) vascular
endothelial growth factors (VEGFs) and insulin-like growth
factor I (IGF-I), which, respectively, favor angiogenesis and
increase the number of brown adipocyte precursor cells; (ii)
several bone morphogenetic proteins (BMPs), implicated
in the regulation of adipocyte differentiation and energy
expenditure; (iii) thyroid hormone (triiodothyronine, T3), a
well-recognized regulator of thermogenesis; iv. interleukin-6
(IL-6) and fibroblast growth factor 21 (FGF21). Although IL-6 is
commonly considered a pro-inflammatory cytokine, studies of
BAT transplantation demonstrate the beneficial effects of IL-6
derived from BAT in the control of metabolism (40). IL-6 is a key
mediator to improve glucose homeostasis and insulin sensitivity,
and contributes to the increase of circulating levels of FGF21
that plays an important role in the control of glucose and lipid
metabolism (41).

In humans, BAT is abundant in newborns and infants, while
it gradually declines from adolescence to adulthood (42, 43).
In adults the amount of BAT is modulated by several factors,
such as hormones, physical activity, cold exposure, and diet
(44, 45), however the responsiveness to these stimuli declines
during aging (46). Due to the endocrine role of BAT, several
evidences demonstrate that its induction plays a protective role
in counteracting age-related metabolic diseases. While the loss
of BAT predisposes to WAT accumulation and weight gain
(47), the transplantation of BAT in murine models induces an
enhancement of energy expenditure, weight loss and insulin
sensitivity, and prevents or even reverses obesity (48, 49). It
was also shown that caloric restriction is able to stimulate
BAT growth, conferring protection against the major age-
related pathologies, such as cardiovascular diseases, cancer, and
neurodegenerative disorders (50, 51). Moreover, increased levels
of BAT mass promote longevity and enhance metabolism (52).

Beige Adipose Tissue and Browning
BEIGE or BRITE (“brown in white”) adipose tissue is a subset
of WAT with features of BAT. In particular, BEIGE tissue is
composed of adipocytes derived from differentiation of WAT
pre-adipocytes or trans-differentiation of WAT adipocytes, a
phenomenon known as “WAT browning” (53, 54). In adults
BEIGE tissue is localized within white fat depots, at inguinal
and neck levels, where acts as WAT (55), while under particular
stimuli, beige adipocytes acquire brown-like functions (56). The
stimuli inducing the browning are not still well-understood,
however it is known that they influence several molecular factors
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to orchestrate browning and thermogenesis mechanisms. Briefly,
browning and thermogenesis are generally mediated by chronic
cold exposure or hormones and peptide factors that activate the
β-3-adrenergic receptor, an adipose tissue-selective adrenergic
receptor (57). Moreover, the zinc finger protein PRDM16 and the
mitochondrial protein UCP1 are considered the key contributors
to prompt browning activity in the new BEIGE tissue (58).
Noteworthy, a reduced expression of PRDM16 and UCP1 leads
to the reversion of beige adipocytes into white adipocytes
(59–61). Browning is a reversible mechanism pointing to the
extraordinary plasticity of the adipose tissue. The process of
browning is impaired during aging leading to a loss of BEIGE
tissue and to a progressive decline in metabolic activity. This
phenomenon is in part due to a reduction in the response to
the β-adrenergic stimuli with aging (62). In fact, some studies
have demonstrated that the loss of β-3-adrenergic receptor
leads to an incapacity of white adipocytes to differentiate in
beige adipocytes upon cold exposure (63, 64). Other studies in
knockout or transgenic mice for different molecular regulators
of browning underline the importance of this thermogenic tissue
on age-associated metabolic dysregulations. As an example, in
old mice the ablation of the winged helix factor FOXA3, a factor
inducing the increase of adiposity and decrease of BAT mass
with aging, induces browning, increases thermogenic capacity,
decreases WAT expansion, thus leading to improved insulin
sensitivity and lifespan extension (65). Other factors involved
in the formation of brown adipocytes and in the regulation of
lifespan are the BMPs. For example, BMP4, BMP7, and BMP8b
control beige adipocyte development. In particular, mice treated
with these factors increase browning processes and are protected
from insulin resistance (29, 66).

Ectopic Lipid Depots
Several tissues, such as bone marrow, skeletal muscle, liver and
pancreas, make use of fatty acids as energy source, and these
fatty acids accumulate within LDs in form of neutral lipids,
mainly as triacylglycerols (TAGs) and steryl esters. LDs play
an evolutionarily conserved role from yeasts to multicellular
eukaryotic organisms (67). The physiological role of LDs is the
maintenance of cellular energy homeostasis and the protection
from lipotoxicity caused by an excess of FFA accumulation (68).
An alteration in LD homeostasis leads to an excess of lipid
intermediates, such as diacylglycerols, which in turn perturb
metabolic pathways and cellular functions causing inflammation,
mitochondrial stress and increase of reactive oxygen species
(ROS) (68). The amount and size of LDs increase with age and
contribute to the development of several age-related metabolic
diseases such as type II diabetes, obesity, hepatic steatosis, and
sarcopenia (68–75). Nevertheless, the primary causes of age-
dependent ectopic fat accumulation remain largely unknown.
However, not only the excess but also the deficiency of LDs
leads to the onset of metabolic disorders (6, 20), in fact a
growing body of evidence suggests that a balance between
neutral lipid accumulation and their degradation is essential
for the health and longevity of the organism. Numerous
studies of model organisms, such as yeasts, nematodes, insects,
and mice indicate that LDs are involved in the regulation

of several longevity-related mechanisms, most of which are
evolutionary conserved. It has been demonstrated that LDs
control metabolic and lipid homeostasis and stimulate the
release of different molecular mediators, such as lipophilic
hormones that act as aging regulators and promote longevity
(76). As an example, LD accumulation in the intestine of
Caenorhabditis elegans contributes to the secretion of hormonal
steroid pregnenolone, also present in humans, that extends
lifespan (77–79). Consistently, the accumulation of TAGs has
been reported as a novel pro-longevity factor in yeast. In fact,
genetic manipulations leading to an increase in TAG content
(by either the decrease of TAG lipases or the increase of
TAG biosynthesis enzymes), extend yeast chronological lifespan
(80, 81) independently of other lifespan regulators, such as
dietary restriction (82). Moreover, LDs are involved in the
adaptive stress responses and cell survival by the production of
signaling molecules involved in the immune response pathway
(83). As an example, in humans LDs serve as main storage
site for arachidonic acid, which is the precursor of signaling
molecules, such as eicosanoids or retinoic acids, which regulate
inflammation (84).

All these findings indicate that the balance of fat accumulation
in non-adipose tissues is important for the maintenance of a
healthy status, in fact, both the excess and scarcity of fat are linked
to the development of pathologies (20).

THE ENDOCRINE ROLE OF ADIPOSE
TISSUE DURING AGING

Adipose tissue is an important endocrine organ that controls
numerous physiological functions such as appetite, body weight,
insulin sensitivity, fat distribution, glucose and lipid metabolism,
neuroendocrine functions. This endocrine activity influences the
whole body metabolism by releasing FFA, adipokines, cytokines
and other molecular factors (85) that play a pleiotropic function
on different tissues such as the liver, skeletal muscle, heart,
lung, blood vessels, and sensory receptors, such as olfactory
ones. Recent studies demonstrate that olfactory system is closely
linked to adipose tissue in the regulation of energy balance
(86, 87). In particular, the olfactory mucosa and bulb are
provided with receptors for adipose-derived factors, such as
leptin and adiponectin through which they influence body
metabolism (88). How the age-related changes in adiposity
modify olfactory function remains unclear. However, it is
reasonable to think that the adipose tissue dysfunction with
aging may affect energy homeostasis by perturbing the olfactory
system through the production of these adipokines, and, in turn,
outputs from the olfactory tract are among the causes of adipose
tissue modifications.

WAT regulates also immune functions. In this regards, a link
between white adiposity (in particular of VAT) and immune
aging was found. In WAT, there are different types of immune
cells that under stress conditions, such as obesity, impair their
immune capacity increasing the pro-inflammatory behaviors
in adipose tissue (89). Pro-inflammatory mediators can be
produced also by senescent cells that accumulate in adipose tissue
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during aging (10). As for the olfactory system, the regulation
of immune cell function by the adipose tissue depends on
the secretion of adipokines such as leptin and adiponectin,
that were originally classified as pro- or anti-inflammatory,
respectively. The primary function of leptin is the regulation
of appetite and energy expenditure by acting at the level of
the central nervous system. It is known that higher circulating
levels of leptin are present in obese and overfeeding individuals
(90, 91). However, studies in ob/ob mice have demonstrated
that the absence of leptin leads to obesity, hyperlipidaemia
and insulin resistance, while leptin administration reverses
these metabolic perturbations (92, 93). Accordingly, leptin
administration has been proposed as a possible therapy to
ameliorate glycemic control and dyslipidaemia in human patients
affected by lipodystrophy or congenital leptin deficiency (94, 95).
Likewise, adiponectin displays protective metabolic functions
such as stimulating fatty acid oxidation and improving insulin
sensitivity (96). High plasma levels of adiponectin are associated
with low fat mass (97) and low incidence of metabolic disorders,
including type II diabetes (98). Thus, leptin and adiponectin play
different roles that converge on the maintenance of balanced
energy levels and fat stores. Data from animal models highlight
the critical functions of adipokines in metabolic homeostasis
and longevity. In particular, these murine models, characterized
by mutation or knockout in genes involved in metabolism,
exhibit an extended lifespan associated to higher levels of
plasma adiponectin, reduced adiposity, and lower-fasting insulin
concentration (99–104). All these findings indicate that there
is a clear association between elevated circulating levels of
adiponectin and longevity, where the key mediator appears to
be the maintenance of adiponectin-dependent insulin sensitivity.
A recent cross-sectional study in caloric restricted mice of
different age shows that longevity phenotype is linked to a
specific adiponectin isoform with high molecular weight (105).
This isoform was recognized as the most effective in enhancing
the insulin sensitivity in humans (106). It is reported that the
circulating levels of adiponectin and leptin (only in males),
but not of resistin, increase with age (107). Noteworthy, also
centenarians display higher levels of adiponectin associated to
preserved insulin sensitivity. In particular, high adiponectin
blood levels are associated with high levels of HDL-cholesterol
and low levels of glycated hemoglobin (HbA1c) and C-reactive
protein (35). Moreover elevated adiponectin levels are inversely
correlated with the HOMA-IR, a risk factor for the onset of
age-related metabolic diseases (108, 109).

Another factor secreted by adipose tissue is FGF21, an
important metabolic regulator. FGF21 is in fact involved in
the transcription of adiponectin in WAT, and these two factors
together act to control energy metabolism and insulin sensitivity
in other organs, such as liver and skeletal muscle (110, 111).
FGF21 increases insulin sensitivity, energy expenditure, and
weight loss also by inducing browning activity (112). Moreover,
FGF21 has been also proposed as an antiaging hormone, in
fact the overexpression of FGF21 in mice extends the lifespan
(113). However, very recently we found that circulating levels of
FGF21 in humans increase with age from 21 to 100+ years in
healthy individuals and these high levels are related to worsened

biochemical health parameters in old persons and decreased
survival in extreme longevity (114). Accordingly, the role of
FGF21 as a pro-longevity hormone has been questioned, as
it appears to be responsible for the phenotype of accelerated
aging in Opa1-deficient mice (115). This apparent contradiction
could be explained in the framework of the hormetic paradigm.
In other words, FGF21 is per se protective and likely able to
recover a mild stress, but when the stress becomes stronger,
it overcomes the beneficial effects of FGF21 and possibly an
excessive production of FGF21 can have detrimental effects on
the health status (114). WAT secretes also various bioactive
compounds, indicated as Volatile Organic Compounds (VOCs)
(116). VOCs are low-weight molecules produced by cellular
metabolism that are involved in different physiological processes.
VOCs mirror normal or abnormal physiological processes and
reflect the metabolic condition of the organism and might have
promise as diagnostic tools for a number of diseases as well
as the metabolic condition of elderly people, as they seem to
be characterized by a modified production of VOCs (117–119).
Human fat can produce consistent amounts of VOCs detectable
in breath, skin and sweat, and fluids, such as blood, urine, saliva,
and in feces. It has been demonstrated that metabolic disorders or
other diseases are characterized by specific VOCs profiles (120).
Moreover, recent data demonstrate that the exposure to a new
profile of VOCs contributes to an increase of pro-inflammatory
cytokines involved in the development of metabolic diseases
(116, 121). Therefore, it is reasonable to think that the age-related
rearrangement of adipose tissue is at least in part responsible
not only of the alteration of fat hormones production, but also
of VOCs profiles, with at present unpredictable effects on the
health status.

As a whole, adipose tissue and its derived adipokines have a
critical role in controlling whole body energy metabolism, as well
as some of the major age-related dysfunctions and longevity.

ORGAN INVOLUTION AND FAT
INFILTRATION WITH AGING

One of the most universal manifestations of aging is the
progressive atrophy or involution of many organs and tissues.
This phenomenon is characterized by a loss of mass due to the
concomitant reduction of cell proliferation and the increase of
cell death rates, together with the accumulation of senescent cells
(122). In some cases, this age-related loss of organ parenchyma
does not lead to mere organ shrinkage, but is rather paralleled
by an infiltration of adipocytes and sometimes by a complete
replacement of organ with adipose tissue (122). The reasons
why the age-related organ involution is accompanied by a
replacement of adipose tissue remains poorly understood. As
described above, adipose tissue has a crucial role in metabolic
processes. Therefore, the adipose tissue substitution during organ
involution is not a simple replacement with a neutral tissue, but
it has to be considered as an adaptive response with dramatic
biological consequences, as adipose tissue plays an active role
as a source of hormones and adipokines that may regulate the
homeostasis of the adjacent tissues (2, 91, 123). The substitution
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of parenchyma with adipose tissue is particularly evident in
thymus, bone marrow, but also in muscle and pancreas, and
generally begins between 20 and 50 years of age, excepting the
thymic involution that begins much earlier, around late infancy-
puberty (122). However, all human organs are gradually invaded
by fat cells from birth onwards.

Thymus and bone marrow are two organs highly subjected to
age-associated changes. They represent primary lymphoid
organs, playing a fundamental role to provide cellular
components of immune system during lifespan (124). The
thymus is responsible for thymocyte differentiation and
maturation into T cells, while bone marrow is the main site for
the generation of all blood cells and for the maturation of B cells.
The thymus progressively loses its functionality with age, in a
process termed thymic involution or atrophy (125, 126). This
phenomenon begins relatively soon after birth and results in a
significant loss in thymic mass and a replacement with WAT
within the thymus but also in the peripheral areas (127, 128).
The organ replacement with WAT seems to occur in all species
that possess the thymus indicating that this process is not only
evolutionary ancient and conserved (129) but also important to
counterbalance the loss of thymus by maintaining the size of this
organ throughout life (125).

Aging induces adipocyte accumulation also in bone marrow
cavities resulting in a loss of hemopoietic activity and bone
loss disorders. Mesenchymal stem cells (MSC) of bone marrow

can give rise to adipocytes or bone-forming osteoblasts. With
age, these MSC tend to differentiate more into adipocytes that
can become the prevalent cellular population of the marrow.
Several studies suggest that this process leads to an impairment
of osteogenic and hematopoietic activities (130–132) and is
associated with the development of a great number of age-related
diseases, such as osteoporosis and type II diabetes (133, 134). It
is however suggested that the presence of adipose tissue in the
marrow is necessary and beneficial for the health of the bone,
especially when it has features of BAT (135).

As previously mentioned, aging is also associated with adipose
tissue infiltration at non-adipose sites that normally are not
involved in the fat storage. This age-related ectopic adiposity
is associated with the progressive impairment of organs and
tissues. This phenomenon affects, in particular, skeletal muscle,
liver, pancreas, and heart. In skeletal muscle, elevated adipose
deposition is observed at both intra- and inter-muscular sites.
These two types of ectopic adiposity negatively impact on muscle
strength and quality, as demonstrated in previously studies
from our laboratory and others (75, 136, 137). In older people
intra-muscular lipid content is associated with insulin resistance
and the development of metabolic disorders (138). Moreover,
in skeletal muscle, a subset of stem cells indicated as fibro-
adipogenic progenitors (FAPs) appears to play a major role in
inter-muscular adipose tissue (IMAT) infiltration, a phenomenon
linked to progressive muscle dysfunction. FAPs appear to be

FIGURE 1 | Schematic representation of adipose tissue function in successful aging or in pathological conditions. In successful aging a preserved balanced

metabolism can maintain a physiological remodeling of adipose tissue that is likely an adaptive response to environmental conditions; in pathological conditions the

unbalanced energy homeostasis leads to an excessive adipose tissue hypertrophy that becomes detrimental and contributes to the onset of age-related

metabolic diseases.
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driven toward adipogenic differentiation by muscle inactivity
(139). It is therefore plausible to consider the increased adiposity
of skeletal muscle observed with age as an adaptive response to
mutated organismal requests.

Pancreas undergoes several alterations with aging, not only in
volume but also structure. In particular, a significant reduction of
pancreatic antero-posterior diameter, an increase of pancreatic
lobulation and a decline of parenchymal component with a
concomitant parenchymal fat mass increase (fatty replacement
or lipomatosis) have been observed. This fatty replacement in
pancreas is characterized by the infiltration of adipose tissue,
as interlobular fat, between pancreatic lobules, accumulating
around vessels (140, 141). The increase of pancreatic fat
infiltration with aging is not well-understood and is still
under debate. The degree of fatty replacement varies among
subjects and depends on the condition, physiological, or
pathological, in which each individual is involved. However,
in any case, like in other organs, also the age-related
atrophy of pancreas is associated to a replacement with
fat mass.

In liver, an increase of intracellular fat mass in hepatocytes
appears to be associated only with a progressive dysfunction
of hepatic organ. Several evidence indicate that hepatic fat
infiltration is associated with an increase of oxidative stress,
inflammatory response, and cellular senescence, leading to the
alteration of hepatic structure and the onset of non-alcoholic
fatty liver diseases (NAFLD) (142, 143). Studies on the causes or
effects of aging on hepatic adiposity are still limited. However,
several evidence suggest that the progression of NAFLD is
associated with telomere shortening, increased p21 expression
and increased M1 macrophage inflammatory responses that are
considered specific markers of cellular aging (144, 145). The
increased expression levels of these markers are also observed
in adipocytes, indicating that adipocytes under oxidative stress
exhibit increased levels of ROS, shortened telomeres and switch
to senescent/pro-inflammatory phenotype with the decline in
insulin sensitivity (146).

In heart, the epicardial adiposity increases in size between
myocardium and pericardium (147). In healthy conditions,
cardiac adipose tissue has physiological functions, including
metabolic, thermogenic and mechanical functions (148). New
findings demonstrate that epicardial fat is mainly composed of
adipocytes with features similar to brown or beige adipocytes
(149), playing a protective role against the development of
metabolic diseases (150). In particular, these adipocytes act
through paracrine secretion of anti-atherogenic cytokines, such
as adiponectin and adrenomedullin. However, the epicardial
fat is susceptible to age-associated changes. In fact, with
aging brown/beige adipose tissue undergoes a brown-to-white
transition becoming dysfunctional and contributing to the onset
of several pathologies.

All these data suggest that the increase of fat mass with
age (including the increase of volume of adipose tissue,
replacement of parenchyma and ectopic lipid deposition) is an
apparently universal phenomenon, linked in general (but not
exclusively) to the onset of pathological conditions (Figure 1).
In fact, it is considered that adipocytes in adipose tissue
do not change in number with age but rather in size, thus
resembling the phenomenon occurring in obesity (151, 152).
Adipocytes from obese persons are larger and unilocular,
they release high amounts of FFA, produce less adiponectin
and are infiltrated with M1 macrophages and produces pro-
inflammatory cytokines (152), thus representing a risk factor for
many age-associated diseases. The same seems to occur with
age, as the large majority of the persons show a remodeling
of adipose tissue with these features. In this regard, obesity
could be considered as a sort of accelerated aging of the
WAT. However, adipose tissue remodeling with age is likely an
adaptive response to environmental conditions, therefore is not
necessarily detrimental, and a preserved balanced metabolism
can maintain a physiological remodeling of adipose tissue,
without excessive WAT hypertrophy, but also without excessive
loss of adiposity. This could be a key feature for achieving
successful aging and longevity.

FIGURE 2 | Fat mass remodeling with aging. During aging, from birth to advanced age, fat mass changes its amount and distribution. White adipose tissue (WAT)

increases both in number and volume of adipocytes, while brown adipose tissue (BAT) decreases. Concomitantly there is an increase in lipid deposition in ectopic

tissues (ECT) such as liver, muscles, pancreas where lipids are stored within lipid droplets.
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CONCLUSIONS

The maintenance of a balanced amount of fat mass is crucial
for health and survival, as discussed above. According to the
“thrifty phenotype” theory, humans were selected to accumulate
fat depots to face periods of food shortage. However, while a
critical lower threshold of fat content exists, an upper threshold
is apparently missing, and adipose tissue can accumulate in
great amounts. The absence of an upper threshold for fat
accumulation is probably due to the fact that this phenomenon
did not occur in the wild frequently enough to undergo
selection, or, alternatively, resulted neutral for the fitness
of individuals.

With aging, the “thrifty phenotype” seems to emerge more
dramatically, and the balance is tilted toward an increase
of fat mass, at the level of VAT and SAT as well as in
ectopic sites (liver, muscles, etc.) (Figure 2). This increase in
fat deposition at the level of SAT and VAT can be considered
an adaptive response to modified health conditions interacting
with contingent environmental conditions, leading eventually
to decreased energy expenditure. However, in some cases the
storage of surplus energy can not be claimed as the reason for
fat accumulation, especially when this occurs ectopically at the
expenses of other tissue types with important vital functions, as
in the case of thymic involution or skeletal muscle infiltration. In
this case, it seems that fat deposition in form of WAT is a sort of
physiological program (genetically determined?) for organs and
tissues undergoing age-related atrophy or involution. We have
mentioned the fact that different stem cell subpopulations such as
muscle FAPs and bone marrow MSC preferentially differentiate
to adipocyte with age, therefore, we are tempted to speculate that
the pathway leading to this cell type is a sort of a default choice
in involution processes. Should this speculation be verified, the
reasons for this choice remain elusive.

The accumulation of WAT has been for long time viewed as
detrimental, being the source of pro-inflammatorymediators and

other important endocrine modulators and strongly associated
with metabolic diseases such as insulin resistance and type II
diabetes, cardiovascular diseases and cancer. However, it is not
totally clear whether this negative role is present also in extreme
old age. Actually, data on body composition in non-agenarians
and centenarians are largely missing, even though the BMI of
these people is usually lower than that of younger (70–80 years-
old) persons. It is possible that, as for other risk factors like lipid
serum profile and inflammatory parameters (153, 154), also the
presence of a consistent amount of WAT can be important for
survival at very advanced age. Further studies are needed to verify
this hypothesis.

To sum up, human aging is characterized by a general
tendency to increase adiposity, a phenomenon that in
industrialized Countries can synergize with obesogenic
conditions and become a health-threatening phenomenon.
However, low adiposity is a risk factor too, as discussed, and a
qualitatively adequate amount of fat is likely a key feature of
long life.
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During the last 40 years, there has been a world-wide increase in both the prevalence

of obesity and an increase in the number of persons over the age of 60 due to a

decline in deaths from infectious disease and the nutrition transition in low and middle

income nations. While the increase in the elderly population indicates improvements

in global public health, this population may experience a diminished quality of life

due to the negative impacts of obesity on age-associated inflammation. Aging alters

adipose tissue composition and function resulting in insulin resistance and ectopic

lipid storage. A reduction in brown adipose tissue activity, declining sex hormones

levels, and abdominal adipose tissue expansion occur with advancing years through

the redistribution of lipids from the subcutaneous to the visceral fat compartment. These

changes in adipose tissue function and distribution influence the secretion of adipose

tissue derived hormones, or adipokines, that promote a chronic state of low-grade

systemic inflammation. Ultimately, obesity accelerates aging by enhancing inflammation

and increasing the risk of age-associated diseases. The focus of this review is the impact

of aging on adipose tissue distribution and function and how these effects influence the

elaboration of pro and anti-inflammatory adipokines.

Keywords: adipose tissue, adipokines, aging, menopause, cardiovascular disease, diabetes

INTRODUCTION

The global population of individuals aged 60 years and older is expected to nearly double from
12 to 22% between 2015 and 2050 (1). Simultaneously, there has been a dramatic increase
in the prevalence of obesity worldwide among developed and, more recently, low and middle
income nations (2). Obesity exacerbates aging-associated inflammation by impairing insulin
responsiveness and contributes to the pathophysiology of diseases frequently observed in the
elderly (3). While increased weight and adiposity accompany aging, the redistribution of adipose
tissue to the abdominal compartment is of greater concern. These changes occur for a number of
reasons including declines in testosterone in men and estrogen in women following menopause,
and alterations in the cellularity and function of subcutaneous adipose tissue (4, 5). Brown adipose
tissue activity declines with age potentially as a result of reduced sympathetic nerve output
and age-induced upregulation of the transcription factor FOXOA3 (6). In addition, the shift
in the deposition of lipids to the abdominal adipose tissue compartment is associated with an
increased risk of chronic disease (7). The ability of adipocytes to buffer dietary lipids declines
with age and lipids are deposited in the liver and muscle which contributes to a low-grade
state of inflammation, insulin resistance, and metabolic syndrome. Collectively, these changes in
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adipose tissue function and distribution during aging affect the
synthesis of adipose tissue-derived mediators, or adipokines,
known to regulate many physiologic processes including
inflammation. This review will briefly describe global population
trends, age-associated inflammation, and changes in adipose
tissue function and distribution in aging and obesity, and discuss
how these factors influence the production of pro and anti-
inflammatory adipokines.

AN INCREASE IN THE OBESE ELDERLY
POPULATION

The number of individuals aged 65 years and older is increasing
to a point where 20% of the population in the US will be 65
years or older by 2030 (1). In addition, successful public health
measures have reduced the number of deaths from infectious
disease in low and middle income nations raising the number of
individuals who are over the age of 60 years on a global scale.
Unfortunately, a transition of nutrition, where western style diets
rich in calories from fat and simple carbohydrates have replaced
traditional diets across the globe increasing the prevalence of
obesity, defined as having a body mass index (BMI) of ≥30.
This has coincided with an increase in chronic illnesses known
to be caused by excess adiposity (7). Weight increases with age
and BMI peaks occur in people aged 50–59 years and adipose
tissue reaches its peak between the ages of 60 and 79 years. In
total, 38.5% of persons aged 60 and older in the US were obese
(8, 9). The increased prevalence of global obesity appears to have
been caused by the over consumption of highly-palatable, energy
dense food, and a decline in energy expenditure as a consequence
of sedentary behavior (10, 11). Increased life expectancy has the
potential to improve quality of life in countries with growing
elderly populations. However, if life extension is associated with
excess adipose tissue and altered metabolic homeostasis, the
added years of life may result in diminished health status as a
consequence of age-associated chronic disease, loss of physical
function, and frailty (12).

INFLAMMATION IN AGING AND OBESITY

The term “Inflammaging” was originally coined by Claudio
Franceschi to describe the chronic low-grade inflammation in
the absence of infection driven by endogenous signals that
accompany aging (3). In this scenario, the innate immune system
is activated by the accumulation of cellular damage caused
by reactive oxygen species (13–15). This inflammatory state
increases the risk of cardiovascular disease, type 2 diabetes,
arthritis, and several other ailments that compromise quality
of life in the elderly (16–19). Likewise, a chronic state of
low grade inflammation is observed in subjects with excess
adiposity. Under these conditions, inflammation is initiated
by the inability of adipose tissue to buffer dietary lipids
resulting in lipotoxicity mediated by the ectopic deposition of
lipids in the liver and skeletal muscle (20). Lipotoxicity in
these tissues increases reactive oxygen species and activates
serine threonine kinases such as c-jun N-terminal kinase

(JNK), IκB kinase (IKK), and protein kinase C (PKC). These
events disrupt insulin receptor signaling cascades and promote
insulin resistance (15). In addition, bioactive lipid metabolites,
diacylglycerol and ceramides, accumulate and negatively impact
mitochondrial function, and biogenesis (21–23). These events are
associated with the development of hepatic steatosis and muscle
dysfunction and may trigger the development of sarcopenia (21–
23). Inflammaging may also have a significant impact on the
distribution and function of adipose as mentioned below.

ADIPOSE TISSUE DEPOT FUNCTION
AND DISTRIBUTION

The major adipose tissue depots include the visceral,
subcutaneous, bone marrow, and perivascular compartments. It
is becoming increasingly clear that these depots have distinctly
different functions. For example, the visceral adipose tissue
depot buffers dietary lipids by storing excess calories in the form
of triglycerides (20). It releases this stored energy in response
to physical activity and caloric deficits in order to provide fuel
for physiologic functions in the post-prandial state and during
fasting. The subcutaneous compartment provides insulation,
cushioning, and serves as a long-term energy storage depot (7).
The function of bonemarrow adipose tissue is poorly understood
but this tissue replaces hematopoietic cells during aging and is
the most abundant source of adiponectin in mice and humans
(24). Perivascular adipose tissue, that surrounds major and
small arteries and veins, regulates thermogenesis and vascular
tone (25). Brown adipose tissue is closely associated with the
cervical, supraclavicular, and superior mediastinal vasculature
in humans (26). The deposition of lipids in various adipose
tissue depots is governed by sex hormones, the location of sex
hormone receptors, catecholamines, and the activity of adipose
triglyceride, hormone sensitive, and lipoprotein lipases (27).

SEX DIFFERENCES IN ADIPOSE TISSUE
DEPOSITION WITH AGE

Men have a lower percentage of body fat than women and tend
to deposit more adipose tissue above the waist in abdominal
visceral and subcutaneous compartments compared with pre-
menopausal women. While visceral adipose tissue accounts for
only 6–20% of total body fat, accumulation of fat in this depot
is associated with an increased risk of metabolic syndrome,
and cardiovascular disease (27). This is the distinguishing
characteristic of the android pattern of adipose tissue deposition
which is due to differences in the levels of sex hormones,
testosterone and estrogen, and the adipose tissue depot specific
expression of their receptors (27). In general, adipose tissue
mass increases with age in response to a chronic positive
calorie balance, reduced physical activity, and a lower basal
metabolic rate (28). As men age, the increase in fat mass
occurs predominantly above the waist with the expansion of
the abdominal visceral and subcutaneous compartments and
this has been attributed to declining levels of testosterone (29)
Testosterone levels peak in men during puberty, begin declining
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by 1% annually between the ages of 20 and 30, and reach
their nadir after the age of 70 (27). In addition to a decline
in testosterone synthesis, physiologically available testosterone,
free testosterone and testosterone bound to albumin, also
declines as a consequence of increased levels of steroid hormone
binding globulin (SHBG) which binds testosterone and prevents
its contribution to adipocyte fat metabolism (29). While
the mechanism by which testosterone affects adipose tissue
deposition has not been clearly defined, studies conducted on
adipocytes obtained from human visceral adipose tissue have
demonstrated that testosterone enhances lipolysis and inhibits
lipid incorporation (27).

In premenopausal women, adipose tissue is distributed
predominantly in the gluteal femoral subcutaneous compartment
and this is associated with a lower risk of cardiovascular disease
compared with abdominal fat deposition (30). This is due
to estrogen receptor alpha (ERα) expression in subcutaneous
gluteal femoral adipose tissue depots which mediates lipoprotein
lipase activity and triacylglycerol accumulation in adipocytes
this region (27). After reaching menopause, estrogen levels
decline in women, and the androgen to estrogen ratio
increases. Consequently, there is a redistribution of lipids
to visceral adipose tissue compartment and an increased
risk of cardiovascular disease, hypertension, and diabetes (5,
27, 31). The androgen to estrogen ratio is also elevated
in premenopausal women with polycystic ovarian syndrome
(PCOS) (32). In this a condition, lipid redistribution is also
evident resulting in increased abdominal visceral adiposity
and an increased risk of cardiometabolic disease (32). In
addition to changes in white adipose tissue with age, a
decline in brown tissue activity in older adults has also been
reported (24, 33, 34).

IMPACT OF AGING ON BROWN ADIPOSE
TISSUE ACTIVITY

A notable change in adipose tissue distribution associated with
aging and obesity is the loss of brown adipose tissue whose
function declines with advancing years and increasing body fat
percentage (26). Energy is released in the form of heat from
lipids stored within brown adipose tissue with the upregulation
of uncoupling protein-1 (UCP-1) (26). One potential mechanism
behind the loss of brown adipose tissue involves the transcription
factor forkhead box protein A3 (FOXA3) which increases with
aging and visceral obesity (6). Ablation of FOXA3 protects
against the development of obesity and insulin resistance in
aged mice on a high fat diet and improves lifespan (6). Another
proposed mechanism associated with a decline in brown adipose
tissue with aging is a reduction in sympathetic drive (34). Brown
adipose tissue is activated and recruited to generate heat by
the sympathetic nervous system. In a study by Bahler et al.
sympathetic nerve activity and brown adipose tissue recruitment
and activity were lower in lean older men 50–60 years old vs.
lean young men aged 20–28 years (34). Finally, age may affect
brown adipose tissue adipokines produced by this tissue that
are known to regulate precursor cell adipocyte commitment,
differentiation, and factors that promote thermogenesis (35).

Brown adipose tissue adipokines have been reviewed extensively
by Villarroya et al. (35).

CHANGES IN ADIPOSE TISSUE CELLULAR
COMPOSITION AND DISTRIBUTION
WITH AGING

Adipose tissue is composed of mature adipocytes, preadipocytes,
mesenchymal cells, and various cell types that make up the
stromal vascular fraction including vascular endothelial cells,
smooth muscle cells, fibroblasts, and several different types of
immune cells (36–40). Mature adipocytes store excess calories in
the form of triacylglycerol within vacuoles to provide energy to
the host in times of a negative energy balance. During weight
gain, adipose tissue expands with an increase in both number
of adipocytes (hyperplasia) and volume (hypertrophy). The
expansion of adipocytes by hyperplasia is associated with insulin
sensitivity and metabolic control, which are characteristics of
subcutaneous adipocytes. In contrast, adipose tissue expansion
by hypertrophy is associated with reduced triacylglycerol storage
capacity, ectopic lipid deposition, and impaired insulin sensitivity
(20). It also leads to adipocyte necrosis, polarization of adipose
tissue macrophages that assume a classically activated or M1
phenotype, and recruitment of additional monocytes and other
immune cells from the circulation in response to the elaboration
of chemokines such as CCL2 and CXCL5 (41, 42). Aging
has a significant impact on the lipid storage capacity and the
distribution of adipose tissue in human subjects. As mentioned
above, body fat percentage increases with age mostly due
to increases in visceral adipose tissue expansion (43). While
this is primarily due to a chronic positive energy balance,
it is also influenced by a shift in lipid storage from the
subcutaneous to the visceral fat depot (43). The decline in
subcutaneous fat depot storage and function is thought to
occur through the decline in progenitor cell function and the
accumulation of senescent adipose tissue cells (44). Mesenchymal
cells are progenitor cells found within the stromal vascular
fraction that can undergo differentiation into preadipocytes and
eventually mature adipocytes. The progenitor cell populations
isolated from aged adipose tissue have reduced function and
an impaired ability to incorporate lipids and potential to
differentiate into preadipocytes (45, 46). In addition, there is
an accumulation of senescent cells that lack the ability to
divide in response to metabolic stress (47). These senescent cells
express a distinguishing set of markers such as p16, p21,
caveolin-1, and senescence-associated β-galactosidase (SA-β-gal).
The secretion of bioactive mediators produced by these cells,
referred to as having a senescent-associated secretory phenotype,
is characterized by an increase in IL-6 and plasminogen activator
inhibitor (PAI-1) (48, 49). Other factors that contribute to cellular
senescence include telomere shortening and mitochondrial
dysfunction (50, 51).

EFFECT OF AGING ON RESPONSIVENESS
TO AUTONOMIC NERVE FUNCTION

Aging is associated with a decline in autonomic nervous
system function which diminishes the ability of the elderly
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to respond to environmental and internal stimuli (52). These
impairments in autonomic system function include the loss of
some autonomic nerve projections, alterations in the output
and balance of sympathetic and parasympathetic outflow to
visceral organs, and reduced receptor responsiveness (52). One
notable example is the impact of aging on catecholamine-
induced lipolysis in visceral adipose tissue (53). Under normal
metabolic controls, norepinephrine released by sympathetic
nerves induces lipolysis of triglycerides stored in adipocytes
residing in visceral adipose tissue. Norepinephrine is metabolized
by the enzyme monoamine oxidase A which is expressed in
adipose tissue and sympathetic neuron-associated macrophages.
In aged mice, adipose tissue macrophages are recruited to
expanding visceral adipose tissue and activated in a NLRP3-
inflammasome-dependent manner resulting in an increase in
monoamine oxidase A and norepinephrine degradation (53).
In human adipose tissue from aged humans, the import and
degradation of norepinephrine is enhanced in sympathetic
neuron-associated macrophages. In this circumstance, the
expression of a sodium-dependent norepinephrine transporters
(SLA6A2) and monoamine oxidase A are increased with aging
resulting in greater clearance of norepinephrine and reduced
lipolysis in visceral adipocytes (54). These changes are associated
with an expansion of visceral adipose tissue, impaired insulin
sensitivity, and a decline in subcutaneous adipocytes number
and function with age (43, 55, 56). Ultimately, adipose tissue
endocrine function and adipokine secretion are impacted as
discussed below in section Effect of Aging on Adipose Tissue
Adipokine Secretion.

EFFECTS OF AGING ON ADIPOSE TISSUE
ADIPOKINE SECRETION

Adipose tissue is the largest endocrine gland in the human
body that secretes hundreds of bioactive molecules. Among
these hormones are the adipokines, proteins secreted by
adipocytes and stromal vascular cells that have profound
effects on several physiologic functions including appetite
and satiety, adipogenesis, reproduction, glucose homeostasis,
energy expenditure, inflammation, and several other physiologic
functions (57). The impact of aging on adipose tissue adipokine
secretion is influenced by age associated changes in adipose tissue
distribution, cellular composition, local tissue inflammation,
sex hormones, and cellular differentiation (43, 58–61). These
combined effects alter the balance of local and systemic pro and
anti-inflammatory adipokine levels. In general, the expansion
of visceral adipose tissue by hypertrophy is associated with an
increase in proinflammatory adipokines and a decline in anti-
inflammatory mediators (42). With aging, nearly all adipokine
levels are elevated in comparison with younger individuals with
the same body fat percentage as mentioned below.

Pro-Inflammatory Adipokines
Leptin
Leptin is a proinflammatory adipokine best known for its
role in appetite, satiety, and energy expenditure (62–64).

Leptin is produced by adipose tissue and circulates in blood
in proportion to total fat mass. It informs the central nervous
system about the status of peripheral energy storage and
contributes to the defense against weight loss. For example,
when adipose tissue levels decline with weight loss, circulating
leptin declines and this reduces the amount of leptin that
reaches the hypothalamic nuclei in the brain that controls energy
homeostasis. In response to lower leptin, appetite increases
which promotes feeding. As energy intake increases, adipose
tissue lipid levels rise and this restores circulating leptin and
diminishes appetite to pre-weight loss levels (65). Obesity is
a state of excess adipose tissue where elevated leptin levels
fail to reduce appetite and increase energy expenditure. The
failure of leptin to restore metabolic homeostasis in obesity
is described as state of leptin resistance. Obesity induces
leptin receptor induced inhibitory signals, hypothalamic
inflammatory stimuli, endoplasmic reticulum stress, and
gliosis. Collectively, these events promote leptin resistance
in obesity (65).

In general, levels of leptin are higher in women compared with
men and this difference is not only due to a higher percentage
of body fat in women but is also affected by androgens (66,
67). The rate of leptin production per unit mass of adipose
tissue is higher in women vs. men and this difference can
be attributed to testosterone which suppresses leptin synthesis
(67). Interestingly, higher leptin synthesis has been reported in
subcutaneous adipose tissue compared with that observed in
omental fat in overweight and obese humans (68). Despite the
decline in subcutaneous fat observed in older individuals, leptin
is correlated with total fat mass throughout the life course and
age does not have an independent effect on leptin and adiposity
in men or women (43, 61, 69–71). Therefore, the increased levels
of circulating leptin in older adults is primarily due to increased
fat mass in comparison with younger adults. In addition, It has
been hypothesized that leptin responsiveness may be diminished
with increasing age due to impaired hypothalamic leptin receptor
signaling which has been demonstrated in aged rats (72, 73).
While themechanism responsible for age related leptin resistance
in humans has not been demonstrated, reduced expression of the
short form of the leptin receptor (LepRa) in peripheral blood
monocytes has been reported in aged humans. LepRa is known
to transport leptin across the blood brain barrier (71). Whether
age diminishes hypothalamic leptin responsiveness in humans
remains to be seen that is linearly correlated with total body fat
and BMI.

Resistin
Another proinflammatory adipokine that is known to increase
with obesity is resistin which was originally described by Steppan
et al. as mediating insulin resistance in mice (74). Research on
the role of resistin in human disease associated with obesity
has been challenging due to differences between mouse and
human resistin in homology and cellular sources. For example,
in mice, resistin is produced by adipose tissue and monocytes.
In humans, monocytes and macrophages but not adipose tissue,
produce this adipokine. Resistin has been implicated as an
important proinflammatory mediator in atherosclerosis since it
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induces monocyte-endothelial cell interactions by increasing the
expression of intracellular adhesion molecule-1 (ICAM-1) and
vascular endothelial adhesion molecule-1 (VCAM-1) (75–77).
While age does not appear to affect resistin levels independent
of fat mass, elevated levels of this adipokine are associated
with an increased risk of cardiovascular disease in elderly men
and women and insulin resistance in patients with a history of
coronary intervention (70, 76, 78, 79).

Chemerin
Chemerin is a hormone secreted by adipose tissue that activates
the chemokine-like receptor-1 (CMKLR-1) to initiate innate and
adaptive immune responses (80). It is a secreted prohormone
that requires further processing by proteases in order to become
biologically active (81). This proinflammatory adipokine acts as a
chemoattractant for immature dendritic cells, macrophages, and
natural killer cells that express CMKLR-1 (82). It is correlated
with BMI and elevated in individuals with central obesity and
may be an important link between excess adiposity and type 2
diabetes (81, 83, 84). It promotes the secretion of adipokines that
induce insulin resistance in diabetes. Chemerin was positively
associated with age but it is not clear if increased chemerin
occurs as a consequence of aging or the accumulation of visceral
adipose tissue with advancing years (80). In addition, there
is uncertainty about a specific role of chemerin in metabolic
diseases associated with excess adiposity since weight loss
and improved metabolic control are associated with reduced
chemerin levels. This might suggest that chemerin synthesis is
responsive to metabolic status rather than it being a bioactive
mediator that promotes inflammation and insulin resistance
independent of other proinflammatory mediators (85). Evidence
of sexual dimorphism for this adipokine is supported by
increased levels of chemerin mRNA in subcutaneous vs. visceral
adipose tissue compartments in women in a report by Alfadda
et al. (86). In men and women with polycystic ovarian disease,
a condition characterized by elevated levels of testosterone and
increased visceral adipose tissue, mRNA levels of chemerin were
elevated in the visceral compared with subcutaneous adipose
tissue compartments (87).

Retinol Binding Protein 4 (RBP4)
RBP4 is member of the lipocalin family of proteins that binds
retinoic acid and transports it to peripheral tissues and whose
expression increases with BMI, total body fat, and hepatic
adipose tissue (88, 89). In addition to adipocytes, it can be
produced by the liver and macrophages. RBP4 may directly
promote adipose tissue inflammation and insulin resistance
in humans since enhanced expression of RBP4 in transgenic
mice results in adipose tissue inflammation and macrophage
accumulation (90). In addition, RBP4 expression is associated
with the percentage of trunk fat (central adiposity) and insulin
resistance in young but not elderly subjects (91). Interestingly,
RBP4 levels are significantly elevated in aged individuals
independent of central adiposity (91). Circulating levels of
RBP4 are higher in male compared with female mice and
humans (92, 93).

Lipocalin 2 (LCN2)
LCN2, also referred to as neutrophil gelatinase-associated
lipocalin, is another member of the lipocalin family of proteins
that transports lipid molecules such as retinoic acid, arachidonic
acid, leukotriene B4, and platelet activating factor in circulation
(94). It is produced by adipocytes at high levels in mice and
humans in response to inflammatory stimuli and the impact
of age on this proinflammatory adipokine is unknown (95,
96). However, adipose tissue-derived LCN2 has been shown to
promote the pathogenesis of renal injury, a condition that is
more prevalent in aged individuals with type 2 diabetes (97, 98).
In addition, it may also play an important proinflammatory
role in adipose tissue remodeling during visceral fat expansion
(99). Since LCN2 is from the same family of proteins as
RBP4, a lipid transporter whose synthesis increases with
advancing years, age may affect the expression of LCN2 and
influence the progression of diseases associated with obesity
(91). Like chemerin, a sexual dimorphic pattern of LCN2
mRNA expression has been observed in humans with higher
levels in visceral vs. subcutaneous adipose tissue depots in
men and women with polycystic ovarian disease. In women,
LCN2 transcripts are higher in the subcutaneous vs. visceral
compartments (87).

Classical Proinflammatory Cytokines CCL2, IL-1β,

IL-6, IL-12, IL-18, and TNF-α
Age associated changes to adipose tissue increase the synthesis of
classical cytokines (100–104). As noted early, aging results in the
redistribution of lipids that accumulate in visceral adipose tissue
(43). This results in an increase in adipocyte hypertrophy since fat
mass expansion via adipocyte hyperplasia is inhibited by an age-
related decline in the ability of progenitor cells to differentiate
into preadipocytes. Proinflammatory cytokines also inhibit
preadipocyte differentiation and maturation, and promote
adipocyte senescence (44–46, 56, 60). Proinflammatory cytokines
(IL-1β, IL-6, TNF-α) secreted by adipose tissue macrophages
reduce PPAR-γ expression, an important transcription factor that
induces adipogenesis (42). Monocytes are recruited to visceral
adipose tissue in response to chemokines such as CCL2 and these
cells differentiate into adipose tissue macrophages (105). These
proinflammatory mediators, associated with the M1 classically
activated macrophage phenotype, impair insulin sensitivity and
glucose tolerance (42, 106, 107). An increase in the adipose tissue
population of CD8+ T cells and a decline in regulatory T cells are
thought to contribute to the promotion and maintenance of the
M1 phenotype of adipose tissue macrophages with aging (107–
109). In general, proinflammatory adipokines increase with age
due to either increased adipose tissue mass or an enhancement of
inflammation that promotes increased synthesis. In opposition
to these proinflammatory bioactive molecules are the anti-
inflammatory adipokines which also have been observed to
increase with age. The overabundance of proinflammatory
adipokines associated with excess central adiposity may
outweigh the effects of the anti-inflammatory adipokines
mentioned below.
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Anti-inflammatory Adipokines
Adiponectin
The anti-inflammatory adipokine, adiponectin, is the most
abundantly expressed adipokine found in human serum at
levels in the µg/ml range (110). In contrast to all other
adipokines, it is predominantly produced by bone marrow
adipose tissue (24). Adiponectin forms complex aggregates
that circulate in high (HMW), medium, and low-molecular
weight forms with the HMW form having the greatest effect
on improving insulin sensitivity and glucose tolerance (111).
There are two isoforms of the adiponectin receptor (AdipoR1
and AdipoR2) that are expressed in vascular endothelial cells,
monocytes and macrophages, skeletal and cardiac muscles
cells, and adipocytes (60, 112). Adiponectin plays a protective
role against cardiovascular disease since it inhibits foam cell
formation, adhesion molecule expression, and endothelial cell-
monocyte interactions (113, 114). It also inhibits the synthesis
of proinflammatory cytokines such as IL-6, IL-18, and TNF-α
synthesis by blocking NF-κB activation (115, 116). Adiponectin
promotes adipogenesis and the expansion of adipose tissue
via hyperplasia, a mechanism of fat pad expansion that
reduces adipose tissue inflammation and maintains insulin
responsiveness and glucose homeostasis (117). Peroxisome
proliferator-activated receptor-gamma (PPARγ) agonists, such
as the glitazone drugs, increase adiponectin synthesis (118,
119). Serum adiponectin levels are elevated with age, fasting,
treatment with glucocorticoids, and conditions that enhance
the expansion of bone marrow adipose tissue (24, 120–123). In
contrast, lower levels of adiponectin are associated with obesity,
cigarette smoking, and oxidative stress (124, 125). Centenarians
have higher levels of adiponectin and this may be associated
with longevity (126, 127). While elevated adiponectin may be
associated with improved metabolic status in the elderly, it
has also been associated with reduced physical functioning
(127, 128). Serum adiponectin levels are higher in women
than in men (129).

Vaspin
Visceral adipose tissue-derived serpin (Vaspin), a member of
the serine protease inhibitor family of proteins, is expressed
by visceral fat in rats and humans (130). It was originally
found in Otsuka Long-Evans Tokushima rats and associated
with obesity and insulin sensitivity in rats and humans
(130, 131). Higher levels of vaspin have been reported in
women vs. men (132). Exogenous administration of vaspin
improves insulin responsiveness and glucose tolerance in
mice (132). In addition, vaspin levels increase following
aerobic exercise in untrained individuals (132, 133). In
addition to adipose tissue, vaspin is produced by the β-
cells of the pancreas, skin, and the hypothalamus in mice
(133). Vaspin declines with aging and insulin sensitivity but
increases following treatment with insulin or pioglitazone
(130, 133). Interestingly, vaspin mRNA is undetectable in
the adipose tissue of lean adults (BMI < 25) but increases
in visceral and subcutaneous adipose tissue of individuals

in association with BMI, body fat percentage, and insulin
sensitivity (134).

Secreted-Frizzled-Related Protein 5 (SFRP5)
SFRP5 is an anti-inflammatory and insulin sensitizing adipokine
that promotes adipogenesis by inhibiting wingless type
MMTV integration site (Wnt) 5a/JUN N-terminal kinase
(JNK) intracellular signaling events in macrophages and
preadipocytes suppressing the synthesis of TNF-α‘, IL-1β,
and CCL2 (60, 135, 136). Its production in adipose tissue
promotes adipose tissue expansion via hyperplasia (42).
Levels of SFRP5 are lower in individuals with obesity,
diabetes, non-alcoholic fatty liver disease, and hypertension
and negatively correlated with C-reactive protein (CRP)
(60, 137–142). SFRP5 levels increase with age and are
higher in female compared with males in both rodents and
humans (143).

Omentin-1
Omentin-1 is an anti-inflammatory adipokine that is expressed
in omental and epicardial fat (visceral adipose compartment)
as wells as bronchial goblet cells, mesothelial cells, vascular
cells, Paneth cells within the small intestine, colon, and ovaries
(144). While the isoform omentin-2, has been identified, its
distinct biologic function is unknown. Although the receptor
and physiological functions of omentin-1 are unknown, it
signals through AMP-kinase/AKT/NF-κB/MAP Kinase (ERK,
JNK, p38) pathways. In general, lower levels of omentin-1 are
associated with systemic inflammation and impaired metabolic
control such as in obesity, type I and type 2 diabetes, coronary
artery disease, metabolic syndrome, and hepatic steatosis (144–
149). Omentin-1 levels increase with age, weight loss, olive oil
rich diets, aerobic exercise, administration of fibroblast growth
factor (FGF)-21, and following treatment with drugs used to
improve insulin responsiveness (144, 150–156). Omentin-1 may
be a promising treatment for atherosclerosis since exogenous
administration of this adipokine prevents atherosclerosis in Apo-
e deficient mice by reducing reactive oxygen species synthesis,
suppression of TNF-α—induced intracellular adhesion molecule
(ICAM) and vascular endothelial cell adhesion molecule
(VCAM) expression, and monocyte interaction with vascular
endothelium (157).

C1q/TNF-Related Proteins (CTRPs)
CTRPs are anti-inflammatory adipokines that are structurally
similar to adiponectin and 15 different isoforms have been
identified (158). CTRPs activate intracellular signaling events
via AMP-kinase which inhibits proinflammatory cytokine
production (159). CTRPS enhance insulin responsiveness and
glucose tolerance after high intensity interval training (160).
CTRP1, CTRP9, and CTRP12 increase with insulin sensitivity
and promote glucose uptake (161–163). CTRP1 is somewhat
different than other CTRP family members since it is produced
by non-adipocytes within the stromal vascular fraction of
adipose tissue and increases with obesity and hypertension
(158). CTRP1 is associated with atherosclerosis and promotes
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FIGURE 1 | Aging promotes the redistribution of lipids from the subcutaneous to the abdominal visceral compartment. Aging promotes cellular senescence and

impairs mesenchymal stem cell (MSC) differentiation in subcutaneous adipose tissue. These changes diminish adipocyte function by reducing preadipocyte

maturation, restrict adipocyte hyperplasia, and reduce subcutaneous adipocyte mass. In addition, declining sex hormones in men (testosterone) and women

(estrogen) also contribute to visceral adipose tissue expansion. Brown adipose tissue declines because of reduced sympathetic output and increases in the

transcription factor FOXOA3. Subsequently, lipids are redistributed to the abdominal adipose tissue depot. As adipose tissue expands in this compartment,

adipocytes undergo hypertrophy, a process that contributes to adipocyte necrosis, adipose tissue inflammation, and the elaboration of proinflammatory classical

cytokines and adipokines. Monocytes and other immune cells are recruited to the visceral adipose tissue depot to remove necrotic adipocytes and participate in

tissue remodeling limiting lipid storage. Ultimately, these events contribute to ectopic lipid storage and insulin resistance. Bone marrow adipose tissue expands to

replace hematopoietic cells and this is associated with increased adiponectin synthesis. While many pro and anti-inflammatory adipokines increase with age, the

dominance of proinflammatory adipokines shifts the balance to favor a chronic state of inflammation.

monocyte-endothelial cell interactions (164). In contrast, CTRP3
has potent anti-inflammatory effects since it blocks LPS–TLR4
mediated inflammation (165). CTRP3 is lower in patients with
type 2 diabetes and its levels are inversely proportional to
blood glucose and insulin (166). Interestingly, serum levels
of CTRP3 and CTRP5 increase following 8 weeks of aerobic
training in middle-aged and older men and women and
this was associated with reduced arterial stiffness (167). In
liver cells, CTRP13 improves glucose uptake and insulin
resistance in lipid laden hepatocytes (168). Finally, CTRP11
and CTRP14 have been shown to stimulate angiogenesis of
endothelial cells and these CTRP isoforms may be important
in adipose tissue vascularization (169). More research is needed

to study the potential use of CTRPs known to improve
insulin sensitivity and glucose tolerance in patients with type
2 diabetes.

CONCLUSIONS

There has been a dramatic increase in the number of people
over the age of 60 years globally. Unfortunately, these extra years
may be associated with a lower quality of life due to chronic
illness and metabolic disease associated with obesity. Aging
promotes the redistribution of lipids from the subcutaneous to
the abdominal visceral compartment. The process is summarized
in Figure 1. The inflammation that occurs in aging is exacerbated
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by excess adiposity contributing to an increased risk of type
2 diabetes, cardiovascular disease, and many other diseases
associated with obesity. To counter these events, interventions
that maintain adipose tissue function during aging, such as
eliminating senescent cells, exercise, weight loss, and drugs that
promote insulin sensitivity, may increase life expectancy and
ultimately, quality of life. More research is needed to assess the
impact of sex differences and aging on adipokine synthesis and
function and whether these differences contribute to or are a
consequence of diseases associated with aging.
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Adipose tissue, which was once considered as a simple energy storage depot,

is now recognized as an active endocrine organ that regulates the whole-body

energy homeostasis by secreting hundreds of bioactive substances termed adipokines.

Dysregulation of adipokines is a key feature of insulin resistance and a metabolic

syndrome associated with obesity. Adipokine dysregulation and insulin resistance

are also associated with energy-deprivation conditions, such as frailty in old age.

Previous studies have demonstrated that preserved insulin sensitivity and low prevalence

of diabetes are the metabolic peculiarities of centenarians, suggesting the possible

role of adipokine homeostasis in healthy longevity. Among the numerous adipokines,

adiponectin is regarded as unique and salutary, showing negative correlations with

several age- and obesity-related metabolic disturbances and a positive correlation

with longevity and insulin sensitivity among centenarians. However, large-scale

epidemiological studies have implied the opposite aspect of this adipokine as a

prognostic factor for all-cause and cardiovascular mortality in patients with heart failure or

kidney disease. In this review, the clinical significance of adiponectin was comparatively

addressed in centenarians and the very old, in terms of frailty, cardiovascular risk,

and mortality.

Keywords: centenarian, longevity, adipokines, adiponectin, frailty

INTRODUCTION

Advances in obesity research from the early 1990s have shed light on the prominent role of
adipose tissues as an active endocrine organ that regulates energy homeostasis by secreting bioactive
substances termed adipokines (1). A growing number of these adipokines have been identified,
and their roles in regulating whole-body energy homeostasis via modulation of several signaling
cascades in the target tissues are being increasingly discovered. Dysregulation of adipokines
is regarded as a key feature of insulin resistance, hyperglycemia, and dyslipidemia, as well as
the comorbidities of obesity, such as metabolic syndrome, type 2 diabetes mellitus (T2DM),
and cardiovascular disease (2, 3). However, accumulating evidence signifies that adipokine
dysregulation is also associated with wasting syndromes such as cachexia and sarcopenia,
suggesting that adipose endocrine function is essential for maintaining whole-body energy
homeostasis, which is indispensable for a multitude of physiological functions under the conditions
of both energy excess and deprivation (4). Furthermore, genetic manipulation of the adipose tissue
has been shown to promote longevity in mice models, denoting its possible role in regulating the
lifespan (5).

Centenarians have been able to delay the onset of life-threatening diseases, such as
cardiovascular diseases or cancers, or even escape from them altogether until the late years of
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life, thus serving as models for healthy aging (6, 7). For more
than three decades, centenarian studies have been conducted
to identify biological markers conducive to healthy longevity.
Several key pathways for maintaining health and longevity have
been thereby discerned; of which insulin sensitivity has been
recognized as one of the major pathways to healthy longevity,
which is conserved right from dwarf mice to centenarians
(8). In this review, we have discussed the possible roles of
adipokines, especially adiponectin, in regulating longevity in
humans and the possibility that this regulation may be mediated
via the preservation of insulin sensitivity and compensatory
mechanisms against inflammation and oxidative stress that
occurs with aging.

INSULIN SENSITIVITY AS A HALLMARK OF
LONGEVITY: LESSONS FROM
LONG-LIVED MICE AND CENTENARIANS

Caloric restriction is one of the most replicated pro-longevity
interventions across species (9). Interestingly, calorie-restricted
mice and a series of long-lived rodent models, such as the Ames
dwarf, Snell dwarf, and growth hormone receptor knockout,
share common features, including reduced GH/insulin-like
growth factor 1 (IGF-1) signaling, preserved insulin sensitivity,
reduced growth, and body size (10). The precise molecular
mechanism by which reduced somatotropic signaling enhances
longevity has not yet been completely elucidated; however,
downregulation of reactive oxygen species and increased stress
resistance may be involved in the aging delay witnessed in
these models (11–13). In humans, insulin sensitivity normally
decreases during aging; nonetheless, accruing evidence has
documented the preservation of insulin sensitivity and glucose
homeostasis among the centenarians and their offspring. In the
late 1990s, Paolisso et al. first reported that glucose tolerance and
insulin sensitivity were better preserved in healthy centenarians
than in elderly individuals aged >75 years using a euglycemic
glucose clampmethod (14). Subsequently, in the Leiden longevity
study, Wijsman et al. revealed that the offspring of long-
lived siblings had better insulin sensitivity than the controls
of corresponding age and body mass index (BMI), hinting at
the inheritable component of insulin sensitivity and longevity
(15). Metabolic syndrome (MS) and T2DM, both of which
are devastating consequences of insulin resistance, increase in
older adults (16, 17). Intriguingly, the low prevalence of these
metabolic diseases is reportedly observed worldwide among the
centenarians. In the Tokyo Centenarian Study, Takayama et al.
examined 304 centenarians living in the Tokyometropolitan area
and inferred that the prevalence of diabetes mellitus was only
6.0%, which is less than half of that in the general population
of 60s (15.3%) and 70s (14.7%) in Japan (18). The Finnish
Centenarians Study (19) presented a 10% prevalence of T2DM
among the Finnish centenarians, which was lower than that
recorded among the 65- to 85-year-old Finnish individuals.
Similarly, the Italian Multicenter Study on Centenarians (20)
demonstrated that 4.9% of the 602 centenarians had T2DM,
and the New England Centenarian Study stated that 4% of

the 424 centenarians had T2DM (21), both of which were
lower upon comparison with the respective aged but younger
populations. These findings collectively indicate that preserved
insulin sensitivity and glucose homeostasis are the hallmarks of
longevity in both rodents and humans.

ADIPOKINE PROFILES
OF CENTENARIANS

To date, vigorous basic research has been conducted on the
biology underlying the association between insulin sensitivity
and longevity, and the adipokines have emerged as a possible
mechanistic link (22, 23). Among these substances, adiponectin
is one of the most potent molecules regarding insulin sensitizing
activity. Unlike the majority of adipokines, plasma adiponectin
levels displayed an inverse correlation with adiposity and are
reduced in obese individuals (24). Adiponectin plays an anti-
diabetic role within the liver and skeletal muscles by facilitating
the glucose uptake at these sites, thereby enhancing the insulin
sensitivity. Adiponectin also has anti-inflammatory and anti-
atherogenic properties and is thus regarded as an immensely
beneficial adipokine (25). Leptin is another adipokine of interest
that regulates whole-body energy homeostasis by restricting food
intake and stimulating energy expenditure (26). In a series of rat
models, decreased visceral fat mass, obtained either by caloric
restriction or surgical resection, improved age-related insulin
resistance, possibly via alteration of leptin and other adipokine
secretions (27, 28). Moreover, mice with fat-specific disruption
of the insulin receptor gene (FIRKO) have been demonstrated
to exhibit reduced adiposity, lower fasting insulin levels, and
enhanced longevity (5). FIRKO mice were also characterized
by elevated serum adiponectin levels. These rodent models
demonstrated that reduced adiposity itself can extend the lifespan
and altered adipokine secretion, especially the upregulation of
adiponectin and insulin sensitivity, may be the critical mediators
of this process.

On the basis of these experimental evidences from longevity
model animals, centenarian studies investigated the association
between adipokines and healthy longevity in humans. We used
PubMed to search for relevant publications before November
2018 in English. We used the search terms “centenarians”
by title/abstract screening and “adipokines,” “adipocytokines,”
“leptin,” and “adiponectin.” We also checked the reference lists
of the relevant publications identified in the search. We excluded
articles without control groups (usually healthy, older adults),
and identified seven studies as shown in Table 1. In the first
study of its kind, Paolisso et al. demonstrated that the plasma
leptin levels were higher in the 19 healthy centenarians than
in adults aged <50 years, but lower in elderly aged 75–99
years (29). The levels in healthy centenarians were inversely
correlated with IGF-1/IGF-1 binding protein 3 molar ratio,
alluding the possible effects of the unbound form of IGF-1
on circulating leptin regulation (29). In contrast, Baranowska
et al. reported that 75 female centenarians had significantly
lower leptin levels than elderly females aged 64–67 years or
younger females aged 20–43 years (30). Low leptin levels in
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centenarians seem to be independent of BMI or fat mass,
because BMI of centenarians did not differ from that of younger
females. While Pareja-Galeano et al. demonstrated that 81
healthy centenarians without major disease had significantly
higher leptin levels than sex-matched elderly controls aged 70–
80 years, although BMI was not compared between the two
groups (31). Recently, in older adults, Lana et al. demonstrated
that higher leptin levels were associated with a greater risk of
incident frailty, which was independent of body fat, homeostasis
model assessment for insulin resistance (HOMA-IR), or CRP
(32). Conflicting findings over leptin levels in centenarians
may reflect multiple regulatory mechanisms of this adipokine
with aging. Regarding adiponectin, Arai et al. reported that
66 female centenarians had higher plasma adiponectin levels
than the BMI-matched younger females (33). In addition, the
high plasma adiponectin concentrations in centenarians were
associated with an advantageous metabolic phenotype, including
higher high-density lipoprotein-cholesterol (HDL-C) levels and
lower hemoglobin A1c, and negatively correlated with C-reactive
protein and E-selectin concentrations (33). Bik et al. also testified
the occurrence of hyperadiponectinemia in Polish centenarians
(34); the researchers found an inverse correlation between
plasma adiponectin levels and HOMA-IR, a reliable marker of
insulin resistance. In addition, Atzmon et al. also claimed that
118 long-lived individuals (aged ≥95 years) had increased the
adiponectin levels and that the levels were inversely correlated
with BMI, waist circumference, and percent body fat, but
positively correlated withHDL-C and the lipoprotein particle size
(35). In the circulation, adiponectin has three oligomeric forms,
including a trimer (low-molecular weight), hexamer (medium-
molecular weight), and high-molecular weight (HMW) form.
Among them, HMW adiponectin is the major active form as
it displays greater insulin sensitizing and anti-inflammatory
properties in experimental studies (36). Bik et al. investigated the
adiponectin isoforms in 58 Polish centenarians and found that
they have significantly higher levels of total isoforms, as well as
all isoforms of adiponectin individually, compared with elderly
individuals aged approximately 70 years (37). The investigators
also proved that both total andHMWadiponectin were positively
correlated with HDL-C and negatively correlated with the fasting
glucose and insulin levels, HOMA-IR, and triglycerides (37).
As presented in Table 1, most studies demonstrated a high
plasma adiponectin level among the centenarians, which can be
correlated with a preferable metabolic phenotype, including high
HDL-C and insulin sensitivity, thereby signifying the beneficial
metabolic effects of this adipokine on enhancing longevity.
However, because centenarian studies on circulating adiponectin
are exclusively based on cross-sectional design, whether high
adiponectin levels are the cause or consequence of long life
remain to be elucidated.

GENETIC DETERMINANTS OF
CIRCULATING ADIPONECTIN LEVELS

There are several studies on the genetic variations that determine
the circulating adiponectin level. The first genome-wide linkage

study asserted that the gene (ADIPOQ) in 3q27 was highly
associated with circulating adiponectin levels in Hispanic-
Americans (39). Thereafter, the most reported single nucleotide
polymorphism (SNP) in ADIPOQ, rs266729, located in the
promoter region, was significantly linked with the circulating
adiponectin level. This was demonstrated because subjects with
GG genotype in rs266729 exhibited higher plasma adiponectin
levels than those of other genotypes in some replicated studies,
including those hailing from different ethnic backgrounds (40,
41). This SNP is supposed to be the most promising genetic
variation related to adiponectin level and also the risk of MS (42),
T2DM (43), and insulin resistance (41). Another SNP located
in the promoter region of ADIPOQ, rs1656930, was highly
connected with the adiponectin levels of elderly Japanese subjects
(44). Another genome-wide association study (GWAS) revealed
that SNP (rs4783244), located in intron 1 of the T-cadherin
gene (CDH13) was significantly associated with the plasma
adiponectin levels of Taiwanese (45), Japanese (46) subjects and
the risk of MS and T2DM (45). These SNPs are also implicated
in cardiovascular remodeling, such as carotid intima-media
thickening (40) and cardiovascular complications (47), possibly
through the modulation of circulating adiponectin levels.

The association between adiponectin genotype and longevity
was tested in a cohort of Ashkenazi Jews with exceptional
longevity. Atzmon et al. examined the plasma adiponectin
levels and ADIPOQ genotypes in long-lived individuals (>95
years), their offspring and controls, and uncovered that the two
common variants of ADIPOQ were over-represented among the
male long-lived individuals compared with the corresponding
controls (35). Interestingly, the findings were not observed in
the female participants. Further studies with a large sample size
are warranted to replicate the association between ADIPOQ and
human longevity.

ADIPONECTIN AND CARDIOVASCULAR
MORTALITY: ADIPONECTIN PARADOX

In contrast to the basic science reports and findings from
centenarian studies, which collectively support the beneficial
metabolic effects of adiponectin, accumulating observational
studies have demonstrated an unexpected association between
high adiponectin levels and increased mortality in patients with
cardiovascular disease, particularly heart failure. In 195 patients
with chronic heart failure, Kistorp et al. demonstrated that
high plasma adiponectin levels were associated with increased
mortality risk, independent of the severity of the heart failure and
BMI (48). Moreover, circulating adiponectin was significantly
correlated with N-terminal pro-brain natriuretic peptides (NT-
proBNP), and the association between adiponectin and mortality
remained significant after adjustment by NT-proBNP (48).
Subsequently, the connection between adiponectin and mortality
has been replicated in studies with much larger samples and
other clinical settings, such as ischemic heart disease, type
1 and type 2 diabetes, end-stage renal disease, and even in
the general elderly population (49–51). These findings are
counterintuitive to its salutary metabolic effects and thus called
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TABLE 1 | Centenarian studies reporting circulating leptin and adiponectin levels.

References Sample size no. of centenarians

(% of females)

Controls BMI Leptin level Adiponectin

level

Paolisso et al. (29) 19 (58% females) 30 Adults (aged <50 years) 30 elderly ↓ ↔
* ND

Arai et al. (33) 66 (100% females) 66 BMI-matched young females ↔ ND ↑

Bik et al. (34) 22 (100% females) 45 young females 19 elderly females

36 obese females

↓ ND ↑

Baranowska et al.

(30)

75 (100% females) 45 young females 26 elderly females

37 obese females

↓ ↓ ↑

Atzmon et al. (35) 118 (aged ≥95 years, 74% females)

228 offspring (50% females)

78 elderly ↓ (probands)

↔ (offspring)

ND ↓ (probands)

↔/↑†(offspring)

Meazza et al. (38) 48 (77% females) 50 elderly 62 neonates ↓ ↓ ↑

Bik et al. (37) 58 (86% females) 68 elderly ↓ ND Total ↑, HMW ↑

MMW ↑, LMW ↑

Pareja-Galeano

et al. (31)

81 (51% females) 46 elderly ND ↑ ↔

*Leptin levels in centenarians was higher than that in adults, but lower than that in the elderly. ↑
†
Adiponectin levels in offspring was lhigher than that in elderly controls when adjusted

for age, sex, and BMI. ↑ Higher in centenarians compared to controls. ↓ Lower in centenarians compared to controls. ↔ No difference between centenarians and controls.

adiponectin paradox. Ameta-analysis of earlier studies, including
24 prospective studies suggested that the paradoxical association
between high adiponectin levels and increased all-causemortality
risk is more significant in those with coronary heart disease
(CHD) at the baseline than those without CHD (52). Sex
dimorphism is also documented, and high adiponectin levels
predict cardiovascular mortality in men, but not in females

with T2DM (53). In contrast, recent meta-analysis, including
55 and 28 studies for all-cause and cardiovascular mortality,
respectively, demonstrated that 1-SD increment of adiponectin
was associated with a 24 and 28% increase in all-cause and
cardiovascular mortality, respectively (54). When restricted to
studies with natriuretic peptides measurement, a substantial
reduction in the associations between circulating adiponectin
and all-cause and cardiovascular mortality was substantially
attenuated by adjustment for natriuretic peptides, denoting
that the adiponectin paradox is partly mediated by natriuretic
peptides (54). Interestingly, Tsukamoto et al. demonstrated
that both atrial and brain natriuretic peptides enhance the
production of adiponectin in adipocytes and that the intravenous
infusion of ANP increases circulating adiponectin levels in
humans (55). These data imply that the paradoxical association
between circulating adiponectin and mortality may be indirect
and mediated by coexisting cardiovascular risk factors, such as
natriuretic peptides.

Another plausible mechanism underlying the paradoxical

association is adiponectin resistance. Adiponectin enhances

insulin sensitivity by improving glucose uptake in the skeletal
muscles, inhibiting gluconeogenesis and stimulating the β-
oxidation of fatty acids through adiponectin receptor 1 (Adipo
R1) and receptor 2 (56, 57). In patients with chronic heart
failure, Van Berendoncks et al. proved that adiponectin levels
are increased, both in circulation and in their gene expression in
the skeletal muscle, but also demonstrated a downregulation of
Adipo R1 and deactivation of the PPAR-α/AMP-activated protein
kinase pathway. Hence, increased adiponectin concentrations are
not effectively connected with downstream signal transductions,
resulting in functional adiponectin resistance (58). Therefore,

in this context, high circulating adiponectin in heart failure
represents the presence of a protective mechanism to counteract
adiponectin resistance and the compromised energy metabolism.

A causal relationship between adiponectin and CHD has been
addressed by genetic research. In a Mendelian randomization
study, Borgers et al. examined the link between the genetic
variant of adiponectin levels and CHD risk using data from

GWAS consortia (59) and found no causal role of adiponectin
level in CHD risk. On the other hand, Uetani et al. observed
that a GWAS-based SNP in CDH13 was associated with
both circulating HMW adiponectin levels and increased all-
cause mortality in the general population (60), although the
researchers did not address cardiovascular-specific mortality.
More experimental and epidemiological studies are needed to
determine whether adiponectin has direct deleterious effects on
cardiovascular pathology and mortality.

ADIPONECTIN AND FRAILTY IN THE VERY
OLD: ANOTHER PARADOX

Paradoxical associations between high adiponectin levels and
mortality are conspicuous in the very old even without
cardiovascular disease or chronic kidney disease, indicating the
potential involvement of this adipokine in geriatric syndrome,
such as frailty and sarcopenia. This topic has been vigorously
addressed in our longitudinal cohort study for old people,
known as the SONIC (i.e., septuagenarians, octogenarians,
and non-agenarians investigation with centenarians) study,
which investigated the age differences and similarities in
factors influencing healthy aging and psychological well-being,
including psychological (i.e., cognition, change in emotion
and compensation, personality, and psychological development);
social (i.e., socio-economic status and social relationship);
and medical, dental, and nutritional aspects (61). In 353
community-dwelling older adults of approximately 83 years,
Nagasawa et al. deduced an association between circulating
adiponectin and frailty status according to the cardiovascular
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FIGURE 1 | Hypothetical roles of adiponectin in centenarians. Based on paradoxical evidence regarding the association between adiponectin and health outcomes,

we propose two hypothetical roles of adiponectin in centenarians. Adiponectin is a salutary adipokine that is present at high levels in healthy and lean individuals, e.g.,

centenarians. High adiponectin levels are associated with low insulin levels and low HOMA-IR, and a favorable lipid profile, which is consequently associated with a

low risk of coronary artery disease and type 2 diabetes. In contrast, in patients with catabolic states, such as chronic heart failure and sarcopenia, adiponectin is

upregulated as a part of compensatory mechanisms against inflammation and oxidative stress in relevant organs. Once the compensation fails, in case of adiponectin

resistance, high adiponectin levels predict high mortality in advanced stage of disease or aging.

health study criteria (62). The investigators found significantly
higher adiponectin levels in frail subjects than in their non-
frail counterparts. Moreover, a multivariate logistic regression
analysis affirmed that the elevated adiponectin level, higher
estimated glomerular filtration rate, and lower hemoglobin were
independent determinants of the pre-frail/frail status when
compared with the non-frail status. Weight loss, low muscle
mass, and poor physical functioning are the core components
of frailty in older adults. Among the 2,821 participants of
health ABC study, who had whole-body dual-energy DXA, Baker
et al. explored the independent association among circulating
adiponectin, body composition, physical functioning, and
mortality (63). The authors uncovered a significant relationship
between high adiponectin and historical weight loss, low muscle
mass, and low muscle density. Adiponectin was substantially
associated with increased risk of incident disability and all-cause
mortality; however, when adjusted for weight loss and physical
performance at baseline, the association was attenuated and no
longer significant. On the basis of these findings, the researchers
suggested that the high adiponectin levels in the very old may
represent a compensatory response to low energy availability
in the setting of starvation. Interestingly, high adiponectin in
plasma is associated with low functional capacity in patients

with chronic heart failure (64), signifying that this adipokine
may be a marker for wasting in CHF. Moreover, among 1,303
patients with predialysis chronic kidney disease, Hyunn et al.
demonstrated that a higher adiponectin level was associated
with protein malnutrition defined by hypoalbuminemia, low
BMI, low urine creatinine excretion, and low protein intake
(65). Collectively, these epidemiological findings suggested that
circulating adiponectin may be a useful biomarker of catabolic
processes, such as sarcopenia and cachexia, in the chronic
conditions, which are frequently associated with weight and
muscle loss as well as high mortality risk among the elderly.

HIGH ADIPONECTIN LEVELS IN
CENTENARIANS: POSSIBLE
COMPENSATORY RESPONSES TO
MAINTAIN METABOLIC AND
REDOX HOMEOSTASIS

In contrast to the beneficial metabolic and cardioprotective
effects of adiponectin observed in long-lived animal models,
immense epidemiological evidence supports the paradoxical
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relationship between high adiponectin levels and poor outcomes
in cardiovascular and geriatric conditions. If that is the
case, how can we interpret the high adiponectin levels in
centenarians? Most of the centenarian studies aiming at
circulating adiponectin are cross-sectional and comprise
a relatively small sample size, hence posing limitations in
elucidating the causal relationship between high adiponectin
and exceptional longevity. Recently, Sebastiani et al. assessed
38 age-related circulating biomarkers in ∼5,000 healthy, older
adults of the long-life family study, aged 25–110 years, and
34 biomarkers had a statistically significant association with
age at assessment (66). Among these, adiponectin and NT-
proBNP showed similar correlation coefficients with age (r
= 0.3178, p < 0.001; r = 0.3793, p < 0.001, respectively),
although correlation between these two biomarkers are not
shown. Their findings suggest that the high adiponectin levels
in centenarians may be the consequence of advancing age,
even without prevalent cardiovascular disease. To examine
prognostic significance of adiponectin, we investigated the
association between a set of adipokines and all-cause mortality
in a prospective cohort study of 252 centenarians, aged
100–108 years (67). In this work, we noticed the significant
association of low leptin and high TNF-alpha with higher
mortality risk. Interestingly, stratified analysis by BMI revealed
that the significant association of leptin and mortality was
reduced in lower-BMI group, suggesting that it was mediated
by low fat mass. In contrast, association between TNF-alpha
and mortality was increased in lower-BMI group compared
to their counterparts, suggesting that catabolic states, such
as sarcopenia and cachexia, contribute to high mortality in
centenarians, at least in those with low BMI. However, plasma
adiponectin levels were not associated with mortality in the
total sample or in the lower-BMI group; thus, our results
do not support the paradoxical association between high

adiponectin and increased mortality in the extreme old age.

Although some aspects of the complicated relationship between
adiponectin and health outcomes are still unresolved, based
on the findings so far, we would like to propose a hypothesis
that high adiponectin levels in centenarians might reflect the
compensatory response to maintain metabolic homeostasis
and to counteract oxidative stress and inflammation, which are
relevant in catabolic states, such as sarcopenia and chronic heart
failure (Figure 1). Currently, we have extended the adiponectin
study to semi-supercentenarians (individuals aged >105 years)
and supercentenarians (individuals aged >110 years) with
various cardiovascular biomarkers to test the hypothetical
roles of adiponectin in longevity. Further longitudinal research
with sequential measurements of adiponectin and other
biomarkers is warranted to gain a better understanding of
the role played by adiponectin in promoting healthy aging
and longevity.
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Lines of evidence from several studies have shown that increases in life expectancy

are now accompanied by increased disability rate. The expanded lifespan of the aging

population imposes a challenge on the continuous increase of chronic disease. The

prevalence of overweight and obesity is increasing at an alarming rate in many parts of the

world. Further to increasing the onset of metabolic imbalances, obesity leads to reduced

life span and affects cellular and molecular processes in a fashion resembling aging. Nine

key hallmarks of the aging process have been proposed. In this review, we will review

these hallmarks and discuss pathophysiological changes that occur with obesity, that

are similar to or contribute to those that occur during aging. We present and discuss the

idea that obesity, in addition to having disease-specific effects, may accelerate the rate

of aging affecting all aspects of physiology and thus shortening life span and health span.

Keywords: obesity, overweight, aging, aging hallmarks, caloric restriction

INTRODUCTION

The world population is aging at a rapid pace (1), we face a future where the number of elderly
people will exceed that of children and there will bemore people at extreme old age than ever before.
The significant rise in average life expectancy during the 20th century ranks as one of society’s
greatest achievements. In addition, the increase in life expectancy is accompanied by a change
in principal causes of disease and death, creating an “epidemiologic transition”. This transition
is based on a decline in infectious and acute disease and an increase in chronic and degenerative
disease (2).

The question whether living longer represents more years of healthier life or an increase in years
of disability is an important question (3, 4). Evidence from several studies indicate that the recent
increase in life expectancy is accompanied by an increased disability rate. The net result is no net
difference in the length of a healthy life span in some estimations (5–7) and potentially a decrease
in other estimates (8, 9). In a large-scale study of 187 countries examining the global burden of
disease, Salomone and colleagues indicated that as life expectancy rose between 1990 and 2010, the
number of healthy years lost to disability has also increased (10). This trend, which is typical of
industrialized countries, has a significant impact on public health, due to the cost of care imposed
by the increase in years lost to disability and underscores the need to make healthy aging a priority.

A major factor contributing to the increase in disability is an increase in obesity,
creating a new and pressing challenge for public health (11–17). Obesity is expanding
at a worrisome rate, the frequency of overweight and obesity combined increased by
27.5% for adults and 47.1% for children between 1980 and 2013. In developing countries,
the proportion of obese adults rose from about 15% in 1980 to more than 20%
in 2013 (18). Obesity is associated with an increased risk of cardiovascular disease,
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type 2 diabetesmellitus, cancer, osteoarthritis, work disability and
sleep apnea (19).

It has been suggested that obesity not only increases the onset
of metabolic imbalances, but also decreases life span and impacts
cellular processes in a manner similar to aging (20).

A defining characteristic of aging is the gradual loss of
physiological integrity, which results in increased vulnerability
to disease and death. This loss of physiological integrity
underlies multiple pathologies, including cancer, diabetes,
cardiovascular disorders and neurodegenerative disease (21).
Recently, nine hallmarks which define the aging process have
been described (21). We will briefly discuss each of the hallmarks
of aging, the potential interactions between each hallmark and
obesity and, where available, the effect of caloric restriction (CR).

TELOMERE ATTRITION

Telomeres are repetitive, non-coding, chromosomal regions
located at the end of each chromosome. These telomeric regions
are assembled into higher order structures, which prevent
both chromosomal fusions and activation of the DNA damage
response. In human somatic cells, telomere erosion occurs with
each cell division creating a trigger for senescence when a critical
length is reached and the telomere structure is destabilized (22).

Aging and Telomeres
Telomere length is inversely correlated with lifespan (23),
and telomere dysfunction accelerates the aging process (21).
Telomere shortening, moreover, can be accelerated by factors that
induce aging and attenuated by factors that improve health (24).
On these grounds, telomere length has been proposed as marker
of biological aging (21). Inflammation and oxidative stress have
been associated with aging in general (25), and shortening of
telomeres in particular.

Obesity and Telomeres
Obesity causes oxidative stress and inflammation, which may
increase the rate of telomere shortening (24). Although the
association is weak or moderate, the results of a systematic
review by Mundstock and colleagues show a trend toward
a negative association between obesity, in particular central
obesity, and telomere length (24). Human studies indicate that
telomere shortening is directly correlated to adiposity (26), and
telomere length is inversely associated with BMI (19). However,
this association is not linear across the age and it is stronger
in younger compared to older individuals (26). Interestingly,
telomere length measured from subcutaneous adipocytes was
significantly lower in obese patients compared to never-obese
ones (27), and it appears that physical activity may protect
patients from telomere shortening due to obesity, although
extended periods of overweight/obesity seem to mitigate this

Abbreviations: BMI, body mass index; CR, caloric restriction; ASC, Adipose-

derived stem cells; UPR, unfolded protein response; HSC, hematopoietic stem

cells; BM, bone marrow; BMAT, bone marrow adipose tissue; BM-MSC, bone

marrow stromal stem cell; HFD, high fat diet; GH, growth hormone; IGF-1,

insulin-like growth factor; IGFBP, IGF binding protein. HSP, heat shock protein;

ER, endoplasmic reticulum; UPR, unfolded protein response.

protection (28). It should be noted that these results are not
consistent in all studies (29).

Telomere length in leukocytes is linked to both obesity and
smoking. For example, telomere length was inversely correlated
with serum concentration of leptin, an adipokine which may
contribute to an inflammatory state and elevated oxidative stress
(30). Importantly for the current discussion, leukocyte telomere
length, a common aging biomarker, has been shown to negatively
correlate with BMI, although the association was relatively weak
and gender specific (females only) (31).

Take Home Summary
A dedicated review on the possible links between obesity,
telomeres and aging concludes: “obesity may affect telomere
dynamics and accelerate the aging process” (32). We feel that
although the results cumulatively show a tendency toward an
inverse correlation between obesity and telomere length; it
is more prudent to conclude that the available studies are
heterogeneous and show a weak statistical significance (24, 26).

EPIGENETIC ALTERATION

Epigenetic modifications such as DNA methylation, histone
modification and chromatin remodeling refer to alterations
in gene expression that are inherited in descendant cells or
organisms (33).

Aging and Epigenetics
Epigenetic changes occur with age and there appears to be a
relationship between epigenetic changes and age-related health
problems (21). One of the strongest correlations between
epigenetics and aging involves changes in a subset of methylation
sites throughout the genome. These sites were identified as having
an altered methylation pattern during aging and these changes
have been proposed to represent an “epigenetic clock,” that may
be tied to the aging process (34).

Nutrition and Epigenetics
There is evidence that lifestyle changes, including weight
loss/gain, affect gene expression by altering the DNAmethylation
pattern (35) and increasing the risk of developing diseases in
later life. In this context, nutrition, among other environmental
factors, plays a key role in inducing epigenetic changes and these
changes can influence the phenotype of subsequent generations
(36). Among nutrients, methyl donors play a central role. For
example, folate supplementation during gestation increasedDNA
methylation at imprinted loci within the IGF2 gene and was
associated with lower birth weight, while loss of imprinting at the
IGF1 gene correlates with somatic overgrowth (36).

High fat diets (HFD) have been shown to alter the epigenome.
For example, in utero, HFD feeding and maternal obesity
alters DNA methylation patterns and histone modifications
while increasing susceptibility to obesity in offspring (37). The
offspring of mice exposed to a HFD exhibit modifications such
as histone acetylation, in genes involved in metabolic pathways,
such as glycemic homeostatic regulation. These modifications
can affect the gluconeogenic capacity and potentially lead to
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excessive glucose production and altered insulin sensitivity in
adulthood (38).

Another example of epigenetic alteration due to HFD is the
increased expression of the histone deacetylase HDAC5.
Increased expression of this deacetylase reduces BDNF
chromatin accessibility and consequently its transcription.
BDNF is a key regulator of synaptogenesis, essential for
learning and memory. It has been demonstrated that HDAC5
is significantly increased in the brains of diabetic patients
and in the brains of mice chronically fed a HFD (39). These
epigenetic changes in the brain may persist, even after a return to
normal diet, leading to pathological alterations in the cognitive
machinery (40). In this study, Wang and coll. demonstrated that
limited, early presence of obesity and insulin resistance may
have long-term deleterious consequences in the brain, leading
to a more susceptible, less resilient cognitive machinery, and
contributing to the onset/progression of cognitive dysfunction,
such as impairment in learning and memory formation, during
aging (40).

Obesity and Epigenetics
Besides the impact of nutrition, the direct role on aging and
life span of BMI and obesity associated epigenetic changes, have
also been studied. Several studies demonstrated that obesity is
associated with extensive changes in gene expression in multiple
tissues (41) and that increased BMI is associated with an altered
methylation of specific genes (42–44). For instance, Nevalainen
et al. showed that obesity is associated with methylation
changes in blood leukocyte DNA that could lead to immune
dysfunction. They also investigated the association between BMI
and epigenetic age in blood cells and demonstrated that BMI
is positively associated with epigenetic aging in middle-aged
individuals (44). The impact of obesity on epigenetic aging is also
described by Horvath et al. They showed that obesity accelerates
epigenetic changes associated with aging in the human liver
resulting in an apparent age acceleration of 2.7 years for a 10-
point increase in BMI (45), supporting the idea that obesity may
accelerate the aging process.

Caloric Restriction and Epigenetics
CR as well as overnutrition can induce epigenetic alterations,
which potentially impact aging. CR clearly retarded the
methylation drift, thus resulting in a significantly younger
“methylation age” (46). Another example is SIRT6, a
stress responsive deacetylase that represents a potentially
significant enzyme for aging (47, 48). Functionally, SIRT6
plays an important role in DNA repair, telomerase function,
genomic stability, cellular senescence and in regulation of the
transcription factor nuclear factor-κB (NF-κB), which is involved
in inflammation and aging (21, 49). SIRT6 activity is significantly
modulated by CR (49). Nutrient depletion or long-term CR
increase SIRT6 activity in the brain, white adipose tissue, muscle,
liver and kidney in mice (49, 50).

Take Home Summary
Several reports demonstrate that nutrition and obesity are able to
modulate the epigenetic signature of an individual, even during

prenatal development. The observed alterations do not always
overlap those seen in aging, however some studies show a close
correlation between epigenetic alteration induced by obesity
and an acceleration of tissue aging. This suggests that obesity
could accelerate age-related dysfunction by inducing epigenetic
alterations that are not necessarily the same as those observed
during aging in non-obese individuals.

MITOCHONDRIAL DYSFUNCTION

Mitochondria play a central role in bioenergetic metabolism
and ATP production, and maintenance of their function across
lifespan is essential for general homeostasis.

Aging and Mitochondria
Because of their key role in multiple cellular functions,
these organelles are involved in multiple distinct processes
with relation to aging, including: inflammation, mitophagy
and proteolysis, the mitochondrial unfolded protein response,
cellular senescence, stem cell function, accumulation of DNA
mutations, and bioenergetics alterations [reviewed in (51)].
During the aging process, a reduction in the efficiency of
mitochondrial bioenergetics has been observed and several
involved mechanisms have been described, such as a reduced
biogenesis, mutation in mtDNA, alteration in mitochondrial
dynamics (imbalance fission/fusion) or defective mitophagy (52).

Both excessive nutrient consumption and obesity have been
linked with mitochondrial dysfunctions.

Excessive Nutrient Consumption and
Mitochondria
During excessive nutrient consumption, the metabolism shifts
toward increased lipid storage and glycolytic ATP synthesis
while concurrently decreasing mitochondrial biogenesis (53).
Mitochondria play an essential role in nutrient adaptation;
excessive consumption of nutrients affects their functions in
those tissues that participate to nutrient metabolism: adipose
tissue, liver, and skeletal muscle. Excessive nutrient intake also
increases the concentration of free fatty acids and mitochondrial
ROS production, leading to hyperglycemia and adipocyte
mitochondrial dysfunction. In this tissue, mitochondrial
biogenesis, mtDNA content and the rate of β-oxidation are
reduced while adipogenesis, fatty acids esterification and
lipolysis are altered. These modifications contribute to alteration
of insulin sensitivity (54).

Obesity and Mitochondria
Obesity has also been associated withmitochondrial dysfunctions
(54). CR, conversely, which increases longevity, maintains
mitochondrial function (55). Several studies showed that
obesity induces a reduction in mitochondrial biogenesis and a
decreased mitochondrial oxidative capacity in adipocytes of both
rodents (56) and humans (54). In obese individuals, reduced
mitochondrial biogenesis is associated withmetabolic alterations,
low-grade inflammation, and insulin resistance (57). Several lines
of evidence (54) suggest that obesity induces a shift toward a
fission process linked to mitochondrial dysfunction in liver and
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skeletal muscle. In skeletal muscle of obese mice, an increased
mitochondrial fission was observed and the activity of protein
involved in mitochondrial dynamic was altered (58).

Some of the adaptations observed under excessive nutrient
consumption are also observed in obesity; mitochondria of obese
individuals show a reduced oxidation of fatty acids, have less
defined internal membranes, a lower energy generation capacity
and an increased glucose dependence for ATP synthesis (59).

Mitochondria are also a central players in apoptosis (60),
and the availability or ingestion of nutrients is related to
the regulation of cell death. Excessive food intake impairs
mitochondrial respiratory capacity and sensitizes mitochondria
to apoptotic stimuli (59). Obesity upregulates apoptotic pathways
proteins in rodent and humans, and increased apoptosis in
adipocytes, as demonstrated by an association between body fat
and a pro-apoptotic state in adipose tissue of obese patients (54).

Take Home Summary
Mitochondrial dysfunction occurs in aged tissues, in response
to excessive nutrient intake, and in obesity, contributing to
inflammation and insulin resistance. Aging and obesity appear
superimposable in their impact on mitochondria and it is
reasonable to hypothesize that they could exert additive effects.

CELLULAR SENESCENCE

Cellular senescence is an irreversible block of the cell cycle that
limits the proliferative potential of cells (61). Cellular senescence,
along with apoptosis, is a physiological process that plays a crucial
role in the removal of damaged cells and tissue remodeling; it is
a crucial mechanism for development but becomes deleterious
when it affects stem and immune cell function, impacting
tissue homeostasis. Senescence can be triggered by several stress
stimuli, such as telomere uncapping, DNA damage and oncogene
activation (62). Senescent cells have a large flattenedmorphology,
stop DNA replication, show increased levels of proteins involved
in cell cycle arrest and tumor suppression (such as the tumor
suppressor p53 and cyclin-dependent kinase inhibitors [CDKi]
p16INK4A, p21CIP1/WAF1, and p15INK4B), and are positive for
the senescence-associated β-galactosidase (SA β-gal). They also
display altered histone modification profiles and an altered
secretome consisting of pro-inflammatory factors, growth factors
and proteases, the so called senescence associate secretory
phenotype: SASP (63). SASP factors influence the behavior
of neighboring cells, resulting in the paracrine induction of
senescence, tissue remodeling, and recruitment of immune cells
(e.g., T lymphocyte and macrophage) (63). Although senescent
cells are resistant to apoptosis, their activation of immune system
causes removal of nearby cells as well as the senescent cells
themselves (64).

Aging and Cellular Senescence
During the initial description of replicative senescence, Hayflick
proposed that the process may contribute to organismal aging
(65). Although two key axioms of this idea, i.e., the relationship
of replicative senescence with donor age or with species longevity
are not supported by subsequent experiments [reviewed in (66)],

an increase in senescent cells has been observed in vivo in
different tissues (67, 68). Perhapsmore importantly, the clearance
of accumulated senescent cells in tissue during aging has been
demonstrated to extend median lifespan and to attenuate age-
related deterioration of organs in mice (69).

Obesity and Cellular Senescence
It has been demonstrated that SA β-gal+ cells are more
abundant in pre-adipocyte and endothelial cells isolated from
obese compared to lean rats and human, moreover there is a
positive correlation between BMI and adipose tissue SA β-gal
activity and p53 [reviewed in (64)]. There is an accumulation of
senescent T cells and an increased number of macrophages in the
inflammatory foci of the visceral adipose tissue of HFD-fed obese
mice (70), and obese mice accumulate senescent glial cells in the
brain (71).

Adipocyte Cellular Senescence
Senescent pre-adipocytes are defective in their differentiation
capacity; it has been shown that senescent adipose-derived
stromal/progenitor cells express reduced levels of adipogenic
regulators and altered expression of adipogenic differentiation
gene patterns in response to adipogenic hormone stimuli (72).
In the heterochronic parabiosis model, blood from 3 months old
mice is able to reduce the levels of pro-inflammatory cytokines in
the visceral adipose tissue of 18 months old mice (73).

Take Home Summary
There appears to be a strong relationship between obesity and
senescence. Reports like the ones described above suggest that
obesity may promote the aging process by inducing senescence.
Conversely, senescence and the resulting pro-inflammatory
secretory phenotype could contribute to the morbidity associated
with obesity and plays a role in the development of insulin
resistance and diabetes. There is vast literature in support of this
view, and we refer the interested readers to gather valuable in
depth reviews (74–76). Finally, Fontana et al. have proposed that
CR might exert its anti-aging capacities by limiting senescent cell
accumulation (77).

STEM CELL EXHAUSTION

Aging and Stem Cells
There is increasing evidence that the aging process can have
adverse effects on stem cells. As stem cells age, their renewal
ability deteriorates and their ability to differentiate into the
various cell types is altered (78). The life-long persistence of
stem cells in the body makes them particularly susceptible to the
accumulation of cellular damage, which ultimately can lead to
cell death, senescence or loss of regenerative function (79). These
changes translate into reduced effectiveness of cell replacement
and tissue regeneration in aged organisms.

Obesity and Stem Cells
Obesity is associated with a pro-inflammatory response in a
wide variety of tissues. Inflammation can activate the stem
cell compartment with negative consequences. For example, a
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reduction in functionally active stem cells has been observed
in subcutaneous adipose tissue from obese patients (80).
Adipose-derived stem cells (ASC) isolated from obese patients
demonstrated a reduced proliferative ability and a loss of
viability together with changes in telomerase activity and
telomere length (81). Moreover, their mitochondrial content
and function are altered. Specifically, ASC contain a greater
number of mitochondria and produce more ROS, however their
mitochondria show a reduced respiration capacity, concomitant
with a shift toward β-oxidation instead of glycolysis for
energy production.

ASC from obese patients have reduced differentiation
potential and are less proangiogenic (80), which is reflected
in differences in their gene expression profile (82). Onate and
colleague, demonstrated that obesity impairs the expression of
genes involved in regulation of cell proliferation, differentiation
and angiogenic potential of ASC, rendering them less
multipotent. Moreover, obesity seems to affect ASC trafficking
and homing (82), changes which may reduce the capacity of
these cells for tissue repair (80).

Obesity also influences bone marrow (BM) homeostasis,
increasing adipocyte formation. Bone marrow adipose tissue
(BMAT) originates from bone marrow stromal stem cells
(BM-MSC), which give rise to adipocyte, osteoblast and
hematopoietic-supporting stroma (83). BMAT is an endocrine-
active fat depot capable of influencing BM stem cells. Chronic
low-grade inflammation associated with obesity is a stressor
for BM stem cells due to the continuous response to
inflammatory cytokines. In turn, inflammation causes alterations
in the microenvironment with implications for cell production.
In mice, HFD-induced obesity leads to a progenitor cell
exhaustion and impairs osteoblast recruitment and bone
formation, decreasing proliferative potential of progenitor cells
and enhancing adipocytic differentiation of BM-MSC (83).

Obesity has a direct effect on the hematopoietic stem cell
(HSC) compartment; however, obesity and aging seem to have
different effects. HSC aging leads to a paradoxical increase
in the stem cell pool and decline in stem cell function.
One of the prominent modifications of HSC properties with
age is their biased differentiation toward myeloid lineage at
the expense of their lymphoid potential (84). None of these
characteristics are observed in obesity. An elegant study by
Lee et al. demonstrated that obesity leads to changes in the
cellular architecture of the stem cell compartment. HSCs acquire
an immature phenotype, remain quiescent, and are refractory
to the low-grade inflammation signals, while differentiated
progenitors are more greatly affected. Through the use of a
genetic mouse model, the authors demonstrated that obesity
affects the long-term reconstitution ability of HSC while also
leading to an exacerbated proliferative response of multipotent
progenitors. These effects are linked to the upregulation of
Gfi1, a key regulator of HSC quiescence and self-renewal,
in response to the oxidative stress associated with obesity
(85). The aberrant HSCs activity is progressively acquired
during weight gain but it is long lasting after weight loss,
demonstrating that obesity induces lasting changes in the HSC
compartment (85).

It has been demonstrated that postnatal overnutrition reduces
myogenic stem cell frequency and function (86) and that HFD
fed mice show a reduced number of neural stem cells in the
hypothalamus with a reduced differentiation capacity (87).

Caloric Restriction and Stem Cells
Stem cells are adapting their metabolism in response to
environmental changes, they skew toward a quiescent state in
case of stress, or begin to proliferate-differentiate in response
to injury (88). The effects of diet on stem cell metabolism and
function have been assessed in response to CR. CR slows down
age-related decline and enhances stem cell activity by altering
their metabolic activity, promoting oxidative phosphorylation
over glycolysis (88). CR potentially shifts the balance toward self-
renewal while reducing the numbers of differentiated cells, thus
preserving the stem cell pool and preventing stem cell exhaustion
(89). In both young and old mice, CR increases the frequency and
function of skeletal muscle stem cells by increasingmitochondrial
content and promoting oxidative metabolism (90).

Take Home Summary
With the exception represented by the effects on the HSC
compartment, both obesity and aging, negatively impact ASC,
neural stem cells and BM homeostasis. In contrast, CR promotes
self-renewal and prevents stem cell exhaustion. Overall, obesity
does not mimic aging in terms of stem cells compartments
but, similar to aging, has a disrupting influence on their tissue
maintenance functions.

DEREGULATED NUTRIENT SENSING

The major signal pathways that participate in nutrient sensing
are: the insulin/ insulin-like growth factor (IGF-1) signaling
(IIS) pathway which informs the cell of the presence of glucose
(and IGF-1); mTOR, for sensing amino acid concentrations (and
integrating this information with growth factor signals from the
IIS); AMPK which senses low-energy state by detecting low level
of ATP; and sirtuins which sense nutrient scarcity by detecting
high NAD+ levels.

Aging and Nutrient Sensing
Trophic signals that activate IIS or the mTOR pathways are
now considered major accelerators of aging. Multiple studies
in mutant mice show that a reduction in the growth hormone
(GH)/ IGF-1 signaling extends life span [reviewed in (91)] and
at least one study points to an IGF-1 independent role of GH
(92). mTOR activity is now regarded by many as a central
player in dictating the pace of aging (93). On the opposite side,
upregulation of the AMPK and sirtuins pathways may mediate
lifespan extension (21).

Obesity and the Insulin/ IGF-1 Signaling
(IIS) Pathway
Mediators of inflammatory signals such as c-Jun NH2-terminal
kinase (JNK) and kB kinase-B (IKKβ) impair insulin signal
pathways, in turn interfering with the phosphorylation of
receptor substrate 1 (IRS1), reducing the interaction with PI3K

Frontiers in Endocrinology | www.frontiersin.org 5 May 2019 | Volume 10 | Article 26651

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Salvestrini et al. Obesity Accelerates Aging

and consequently reducing glucose uptake (94). In obesity,
altered insulin action and the consequental PI3K/Akt signaling
pathway alteration in skeletal muscle, liver and adipose tissue
may cause systemic insulin resistance (95). In skeletal muscle,
insulin resistance leads to a decreased glucose transport, and
a reduction in glycogen synthesis. In liver, insulin resistance
results in a failure of gluconeogenesis suppression, however
it stimulates fatty acid synthesis. Adipose tissue shows altered
insulin-stimulated glucose transport and lipolysis. However, not
all insulin signaling is diminished. For example, in liver tissue,
the gluconeogenic pathway becomes insulin resistant, although
insulin dependent lipogenesis stays sensitive (96).

When caloric restriction is present, the liver produces less
IGF-1 and it is refractory to GH stimulation (97). While it
has been clearly demonstrated that hyperinsulinaemia in obesity
leads to significantly reducedGH secretion, which affects insulin’s
ability to maintain normal glucose homeostasis (98). The effects
of obesity on IGF-1 levels are more controversial. Chronic
hyperinsulinemia is associated with increased circulating IGF-1
levels. Insulin suppresses IGF binding protein (IGFBP)-1 and -2,
which reduce the bioavailability of IGF-1 in the peripheral tissues
(98). Increasing BMI is associated with a reduction of IGFBP-1
and IGFBP-2 expression and consequently with high circulating
free IGF-1 levels (98). However, while it has been reported that
IGF-1 levels are high in obesity, other studies show that it is
not increased or may even be decreased (98). These differences
may be due to methodological challenges associated with IGF-
1 measurements.

Diet and surgical induced weight loss can revert the defects in
the GH/IGF-I axis in obesity (99).

Obesity and the mTOR Pathway
Obesity promotes mTOR activity in adipose tissue, leading to
exacerbated hyperlipidemia and insulin resistance (100). For
example, mTORC1 is hyperactivated in tissue of obese and
HFD fed rodents (101) and genetic variation in Raptor, an
mTOR-interacting partner, is associated with overweight/obesity
in American men of Japanese ancestry (102). High adiposity is
closely associated with development of insulin resistance, and
it has been demonstrated that in the state of overnutrition, one
of the molecular factors involved in insulin resistance is the
ribosomal protein S6 kinase 1 (S6K1), a downstream target of
mTOR signaling (103).

Decreased activation of mTOR/S6K1 has been associated
with increased insulin sensitivity (104). S6K1 is hyperactivated
in the adipose tissue, liver and muscle of different genetic
mouse model of obesity. It has been described that HFD fed
s6k1 deficient mice are protected from developing obesity and
insulin resistance (103). Chronic activation of the mTOR/S6K1
pathway by insulin, TNF-α and amino acids promote insulin
resistance in obese mice and primary cultures of skeletal muscle
cells from patients with type 2 diabetes through increased IRS1
serine phosphorylation and degradation (105). The HFD fed s6k1
deficient mice show a strong reduction of phosphorylation of
these sites; suggesting that S6K1 inhibits insulin signaling by
mediating IRS1 phosphorylation (104). Moreover, obese patients
express increased levels of RPS6KB1, the human gene encoding

S6K1, in visceral fat compared to lean volunteers (103). Fat
mass reduction after CR is associated with adipose tissue mTOR
inhibition. Accordingly, pharmacological inhibition of mTORC1
pathway is associated with a reduction of both adipocyte size and
number (106). Deletion of the mTORC1 target p70S6K protects
against age- and diet-induced obesity (104).

Obesity and the AMPK Pathway
Obesity induces a broad, non-tissue, or isoform specific decrease
in AMPK activity (107). HFD substantially inhibits AMPK
activity in white adipose tissue, heart and liver, and this
reduced activity is associated with systemic insulin resistance and
hyperlipidemia (107). It has been reported that AMPK activity is
lower in morbidly obese humans who are insulin resistant than
in comparably obese individuals who are insulin sensitive (108).
AMPK activity is also reduced in the paraventricular nucleus of
mice with diet-induced obesity (109). In addition, some studies
demonstrated the impairment of AMPK activation in skeletal
muscle of individuals with obesity and diabetes (110, 111), and in
visceral adipose tissue of centrally obese humans with Cushings
syndrome, a disorder associated with insulin resistance (112).

Obesity and Sirtuins
There is a correlation between obesity and reduced Sirt1 levels.
Adipose tissue from HFD fed mice (113) and db/db leptin
resistant obese mice (114) show a significant reduction of Sirt1.
Lower levels of Sirt1 have been reported in obese pigs compared
to lean ones (115), and Choi et al. demonstrated that microRNA
mir34a, which is elevated in obesity, reduces NAD+ levels
and Sirt1 activity (116). Observational studies demonstrated the
association between changes in sirtuins and obesity in human.
Reduced mRNA levels of Sirt1 were observed in adipose tissue
from obese women compared to lean women (117) and in
peripheral blood mononuclear cells of diabetic subjects with
insulin resistance (118). Furthermore, an increased expression

of Sirt1 and Sirt3 was observed in adipose tissue of severely
obese patients who experienced weight loss after gastric banding
surgery (119).

Take Home Summary
In biogerontology, the IIS and mTOR pathway are considered
“accelerators” of the aging process. There is accumulating
literature suggesting that in obesity, these pathways are
over-activated. In contrast, there is also accumulating literature
showing that pro longevity pathways, such as the AMPK and
sirtuins pathways are dampened by obesity. In conclusion, there
is solid evidence that obesity deregulates cellular mechanisms
related to nutrient sensing.

ALTERED INTERCELLULAR
COMMUNICATION

It is accepted that aging impacts the organism at the cellular level,
but also decreases the capacity of cells of an organism to interact.
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Aging and Intercellular Communication
During aging, there is a decreased communication at the
neuronal, neuroendocrine and endocrine levels. Two of the
most compelling examples of impaired communication are
inflammaging and immunosenescence (120). Inflammaging
refers to the concept that aging is accompanied by a
proinflammatory state, which is the consequence of multiple
conditions, SASP, defects in autophagy and mitophagy, an
enhanced activation of the inflammatory mediator, NF-κB. This
phenotype results in elevated cytokines such as: IL-1b, tumor
necrosis factor, and interferons. These cytokines can accelerate
and propagate the aging process. Immunosenescence refers to the
decreasing efficiency of the adaptive immune system with aging.

Obesity and Pro-inflammatory Cytokines
With obesity, the adipocyte secretome changes toward
greater secretion of pro-inflammatory mediators and reduced
production of anti-inflammatory or insulin sensitizing factors
(121). More precisely, hypertrophic conditions induce adipocyte
stress, activating Jun N-terminal kinase (JNK), NF-κB, Ask1,
and MKK4. Activation of these pathways induce adipocytes,
endothelial cells and immune cells to produce pro-inflammatory
cytokines, endothelial adhesion molecules, proatherogenic and
chemotactic mediators [IL-6, tumor necrosis factor- α (TNF-α),
IL-1β, MCP-1, PAI-1, Csf-1, progranulin, chemerin, and others]
in adipose tissue (122). These changes impact both number
and function of immune cells, increasing the number and the
activity of a subset (macrophages, neutrophils, mast cells, B, and
T lymphocytes) and other subtypes [eosinophils, T helper 2, Treg
and natural killer T cells (NKT)] (123, 124).

It has been demonstrated that macrophage number increases
with adiposity, and the accumulation is greatest in visceral fat
in humans (124). Chemoattractant molecules, such as MCP-1,
secreted by adipocytes, recruit monocytes from peripheral blood
to adipose tissue, where they differentiate into macrophages
(125). Moreover, MCP-1 promotes the local proliferation of
adipose-resident macrophages. Monocytes migrate in adipose
tissue in response to adipocyte-derived cell stress markers,
including CCL5, IL-6, IFN-γ and TNF-α which enhance
macrophage accumulation and their polarization toward a pro-
inflammatory M2 phenotype (124). The increased number of
macrophages has a positive correlation with the degree of insulin
resistance in both mice and humans (124). Elevated chemokine
ligand (CXCL)-2 release by adipose tissue promotes neutrophil
infiltration, which are 20-fold more abundant in adipose tissue
from HFD fed mice compared to chow-fed ones (124). On
the contrary, obesity decreases AT eosinophil numbers leading
to reduced insulin sensitivity while an increase in eosinophils
in response to IL-15 overexpression improves obesity-induced
insulin resistance (123).

CD4+ Th1 cells increase in human subcutaneous adipose
tissue with obesity and exhibit an activated CD25+ phenotype.
HFD fed mice show an increased IFN- γ secretion, that impaired
insulin signaling and promoted macrophage infiltration, as
a consequence of Th1 cell predominance (124). As with
CD4+, obesity also increases CD8+ T cell levels along with
their products, granzyme B and IFN-γ. In obesity, Treg

cells, suppressors of inflammatory reactions, are decreased
both in their proliferative capacity and in number. Dendritic
cells accumulate in AT of HFD fed mice, and induce a
pro-inflammatory microenvironment by secreting IL-6 and
promoting macrophage recruitment/proliferation, following
enhanced INF signaling and MCP-1 production (124).

The resulting imbalance in immunological phenotypes
leads to development of local inflammation that further
spreads into systemic circulation affecting other organs. For
example, the adipokine Haptoglobin (Hp), a clinical marker of
inflammation increased in the cerebral spinal fluid of patients
with neurodegenerative disorders, has an abundance positively
related to body fat in adipose tissue and plasma (126, 127).

Because inflammaging contributes to immunosenescence, the
obesity-derived inflammatory status reduces the efficiency of
the immune system, consistent with the observation that obese
people are more susceptible to infection from bacteria, fungi
or viruses [see an article part of this Research Topic, (128)].
For a more in depth discussion of the interconnections between
adipokines and aging we refer the reader to two additional articles
which are part of this Research Topic (129, 130).

Obesity and Extracellular Vesicles
Extracellular vesicles (EV, micro-vesicle and exosomes) are
nanoparticles that contain protein and nucleic acids, which
interact with target tissues. Exosomes are increased in many
inflammatory conditions (131), and increased numbers of
microvescicles have been associated with obesity (132), while a
significant reduction occurs in CR or following bariatric surgery
in obese patients (133).

Several studies have demonstrated that EVs collected from
adipose tissue of ob/ob obese mice induce, in a target cell
population, changes consistent with the obese phenotype (134).
EV treated monocytes were more activated, secreted more
IL-6 and TNF-α compared to those treated with EV from
wild type mice, and macrophages were more activated and
had an increased homing capacity to adipose tissue and liver
(134). In humans, EVs isolated from adipose tissue induced
monocytes to adopt properties characteristic of adipose tissue
macrophages (135).

Finally, it has been demonstrated that obesity reduces the pro-
angiogenic potential of adipose tissue stem cell-derived EV by
reducing VEGF, MMP-2 and miR-126 content (136).

Take Home Summary
The literature persuasively suggests that the accumulation of
pro-inflammatory cells, in the adipose tissue of obese patients,
through cytokines and extracellular vesicles, accelerates the rate
of aging both in the adipose tissue itself and the entire organism.

GENOMIC INSTABILITY

Aging and Genomic Instability
The hypothesis that aging may result from the accumulation
of DNA damage is one of the classical theories of aging
(137), and is supported by considerable evidence. For example,
accumulation of DNA damage (138) and mutations (139) with
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increasing chronological age. Longevity differs by several orders
of magnitude among animals and long life spans seem to
associate with a greater capacity to detect the presence of DNA
damage at the cellular level [reviewed in (140)]. Enhanced
recognition of damage should allow enhanced DNA repair. In
mammals, there is an exponential relationship between longevity
and the capacity to perform the first step of non-homologous
end-joining, i.e., the recognition of linear DNA ends (141),
resulting in improved genomic stability (140, 142).

Obesity and Genomic Instability
The impact of obesity on genomic instability has been analyzed
in a recent review by Setayesh et al. (143). Results from
animal studies and from 39 studies in humans, monitoring
DNA damage in lymphocytes and sperm, were analyzed.
However, heterogeneity in the study design, methodology, and
confounding factors, preclude the conclusion that an association
exists between obesity and DNA damage. Nevertheless, the causal
relation between excess of body weight and genomic instability is
supported by mechanistic studies.

Several molecular mechanism may cause genetic instability
in overweight/obese individuals; one of them is oxidative
stress. Oxygen derived free radicals may act as potential
cytotoxic intermediates inducing inflammatory and degenerative
processes, or as signal messengers for the regulation of gene
expression. Many articles show evidence for the induction of
oxidative DNA damage and a decreased antioxidant capacity
in obesity. High glucose levels directly, and high insulin levels,
through the over activation of its signaling pathways, could
be responsible for increased ROS formation. Othman et al.
demonstrated that insulin causes DNA damage in kidney cells
(144); it has been demonstrated that insulin and glucose blood
level correlate with DNA damage in Korean men (145), as well
as DNA damage in sperm in a mouse model (146). Other studies
provide evidence for a reduction of antioxidant enzymes and a
subsequent oxidative stress as a consequence of obesity, in human
and mice (143).

Oxidative stress leads to oxidation of fatty acids, and some
metabolites of lipid peroxidation are molecules that attack DNA
and are involved in the etiology of cancer. Elevated levels of lipid
peroxidationmarkers are observed in blood, muscles and adipose
tissue of obese individuals. Excess body weight causes hormonal
imbalance and it has been demonstrated that alterations of
hormonal status plays a role in some cancers, including breast
and endometrial cancer (143). Hormones increase the mitotic
activity of breast cells, leading to accumulation of errors in DNA
replication that are frequently converted in persistent mutations
(147). Some products of estrogen metabolism cause direct DNA
damage. Metabolites of estradiol are mutagenic in rat and human
cells, and the association between genotoxic estrogen metabolites
and breast cancer is well documented (143). Another mechanism
by which ROS are generated is glycation. Glycation end products
cause DNA damage directly and via interaction with signaling
pathways. They bind specific receptors and activate NADH-
oxidase to induce ROS formation (148). Elevated concentrations
of glycation end products have been observed in adipose tissue
and the livers of HFD fed mice (149), as well as human adipose

tissue (150). In patients withmetabolic syndrome, elevated serum
levels of glycation end products correlate with markers of insulin
resistance and inflammation (151).

The persistent production of ROS by inflammatory cells
present in adipose tissue damages macromolecules (DNA, RNA,
lipids, carbohydrates and proteins), induces genomic instability
and tips the balance from an antitumor activity of ROS to a tumor
promoting one (152).

Obesity is strongly associated with an increased incidence of
cancer both in humans (153) and in rodents (143). An impact of
obesity has been described also on infertility, and some studies
(154, 155) demonstrated an increase in DNA damage in the
sperm of obese men.

Obesity, moreover, impacts the DNA repair process.
For example, the offspring of mice fed a low folate diet
showed a reduced base excision repair capacity in several
brain regions when exposed to HFD (156). There is an
inverse association between adiposity and nucleotide
excision repair (157), while some studies demonstrate an
altered methylation pattern of genes involved in DNA
repair in overweight individuals (143). Significantly, HFD
reduces the expression of MLH1, a protein involved in
DNA mismatch repair, and elevate CpG methylation in
mice (158).

Caloric Restriction and Genomic Instability
Several studies demonstrated a beneficial impact of CR on
genomic stability. CR slows down the rate of DNA damage
by decreasing the levels of oxidative stress and by increasing
the expression of stress response genes to enhance DNA repair
(159). Although the vast majority of available studies are on
rodents, there is also evidence in humans; for example, after 12
months of bariatric surgery, using the comet assay, a significant
reduction in DNA damage is observed in peripheral blood
cells (160).

Take Home Summary
Although much research has been performed, the assumption
of a relation between obesity and genomic instability is not
supported unequivocally. Oxidative damage seems as the one
mechanism regarded as the most relevant (161).

LOSS OF PROTEOSTASIS

Proteins represent a key components of cells and tissues,
and protein quality control and homeostasis are critical to
the organism. Proteostasis is maintained through multiple
mechanisms ensuring stabilization of correctly folded proteins
and degradation ofmisfolded proteins. The first task is performed
by chaperones, most prominently the heat shock protein (HSP)
family, and the second task is performed by proteasome and
lysosome mediated degradation (162). Proteins are synthetized
in the endoplasmic reticulum (ER) where unfolded proteins
are bound by the ER stress sensor Binding immunoglobulin
protein (BiP/GRP78) to trigger the unfolded protein response
(UPR). The existence of this evolutionarily conservedmechanism
provides evidence of the critical role of proteostasis.
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Aging and Loss of Proteostasis
With age, the ability of many cells and organs to preserve
proteostasis under resting and stressful conditions is gradually
compromised (162). Key pathways affected by the aging process
alter components of the proteostasis machinery, e.g., by inducing
reduction of chaperones or proteasomal degradation (163, 164).
The consequent increase in misfolded or degraded proteins can
lead do the development of age-related pathologies such as
Alzheimer and Parkinson diseases (165).

Obesity and Loss of Proteostasis
Obesity can induce prolonged or chronic UPR response (166)
possibly mediated by proteasome dysfunctions (167). In the
livers of mouse models of obesity and in HFD fed mice,
proteasome activity is reduced and polyubiquinated proteins
accumulate. In thesemice, impaired proteasome function leads to
hepatic steatosis, hepatic insulin resistance, and UPR activation.
Treatment with chemical chaperones partially reverted this
phenotype (168). Elevated free fatty acids in obesity activate
the UPR in both adipose tissue and liver (167). It has been
demonstrated that ER protein folding is impaired in the liver
and within adipose tissue of obese mice. Overexpression of the
chaperone BiP/GRP78 in the liver of ob/ob mice reduces UPR
activationmarkers, hepatic steatosis, and improved insulin action
(169). Obesity-induced changes in ER calcium store can induce
a reduction in chaperone-mediated protein folding activity, ER
stress and UPR activation (167). Cholesterol and free fatty acids
induce ER stress via increased reactive oxygen species, and
ER Ca2+depletion from sarco/endoplasmic reticulum calcium
ATPase (SERCA) dysfunction. Diminished SERCA expression
and activity were observed in livers and macrophages of obese
and insulin resistant mice, which also have higher level of ER
stress (170). Overexpression of SERCA in obese mice reduced
UPR activation and improved glucose homeostasis (167).

Other key regulators of ER homeostasis are the three luminal
sensor inositole, requiring protein 1 (IRE1α), protein kinase
RNA-like ER kinase (PERK) and activating transcription factor
6 (ATF6). Obesity leads to a disproportionate production of
these key molecules. A reduction of ATF6 in the presence of a
sustained PERK activation was observed (171). Hyperactivation
of the IRE1α-XBP1 pathway has been documented in the adipose
tissue of obese human (172). Shan et al. found that IRE1α was
activated in adipose tissue macrophages and adipocytes of HFD
fed mice (172). Their observations are consistent with other
studies showing that in genetic and diet-induced models of
obesity, IRE1α undergoes prominent activation (173).

A link between HSPs and obesity was suggested by
observations that HSP70 was reduced in muscles of insulin-
resistance obese patients with type 2 diabetes (174). Subsequently,
several studies confirmed an altered expression of HSPs in
obese humans and animals (94). Binding of extracellular HSP60
to TLR4 triggers a proinflammatory response and promotes
insulin sensitivity (175). Obese subjects with or without type 2
diabetes have high HSP60 plasma levels. Interestingly, a reduced
expression was observed in morbidly obese individuals after
weight loss due to bariatric surgery (94).

Upregulation of HSP72 and HSP25 was previously shown to
inhibit JNK and IKK-β activation, improve glucose tolerance,
restore insulin-stimulated glucose transport, and increase insulin
signaling in skeletal muscles from rats fed at high-fat diet (176).

Misfolded proteins can also be removed through autophagy,
which is enhanced by CR (177). Autophagy is regulated by the
integrated action of insulin and mTOR, both altered in obesity
(178). Bugliani et al. have recently reported that promotion
of autophagy increases survival of human pancreatic beta cells
under ER stress and in type 2 diabetes (179). Yang et al.
demonstrated that defective autophagy is causal to impaired
hepatic insulin sensitivity and glucose homeostasis (178).
Persistent IIS signaling in cell culture decreases autophagy and
cell viability (164). Significant autophagy defects are observed
related to ER stress in the liver tissue of HFD fed mice, and
restoration of autophagy reduced ER stress (178).

Take Home Summary
Here we have briefly reviewed the abundant literature indicating
that obesity significantly decreases mechanisms associated with
proteome maintenance.

CONCLUSIONS

Two, Not Mutually Exclusive, Hypotheses
We have reviewed and organized the literature with the
intent of showing the existing parallels between excessive fat
accumulation and the aging process. We have categorized these
reports following what have been proposed to be the nine
hallmarks of aging (21) (Figure 1). Based on the evidence,
two distinct hypotheses can be proposed. One is that the
cellular responses provoked by an excess of nutrients cause
obesity, and that obesity is responsible for accelerating the
pace of aging. Supporting this hypothesis are the observations
that knocking out the fat-specific insulin receptor, to produce
extremely lean mice (180), and removal of visceral fat in rats
(181) increased life span; additionally, CR on lean strains of
rats, had only a minor effects on lifespan (182, 183). The
alternative possibility is that the cellular responses provoked
by an excess of nutrients are responsible for increasing the
pace of aging. This common soil shared by both aging and
obesity has been named “adipaging” (184), and there is some
evidence of commonalities: hyperglycaemia, for example, induces
senescence and the SASP in endothelial cells and macrophages
(185) while glucose reduction prevents replicative senescence
in human mesenchymal stem cells (186). The more abundant
macronutrients (by weight and by calories) in the diet are usually
carbohydrates and lipids, and specific reviews are available
that focus on the possible toxic effects of their respective
excess: carbotoxicity (187) and lipotoxicity (188). In this second
scenario, obesity represents only a side effect of the excess
nutrient status and the fulcrum are the cellular nutrient sensing
pathways; see for example the possible central role of mTOR
(189, 190). Whether adipose tissue hyper-function/dysfunction
is causative of aging functional decline or whether it represents
simply a marker of the advancing aging process will become
clearer with future studies. In addition, not all fat depots are equal

Frontiers in Endocrinology | www.frontiersin.org 9 May 2019 | Volume 10 | Article 26655

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Salvestrini et al. Obesity Accelerates Aging

Nega�ve influences on 

proteostasis 

Possible nega�ve 

epigene�c 

influences 

Nega�ve influences 

on nutrient sensing 

Nega�ve influences 

on mitochondrial 

func�on  

Nega�ve 

reciprocal 

influences with 

cellular 

senescence 

Possible 

nega�ve effects 

on telomeres 

Possible 

nega�ve effects 

on genomic 

stability 

Nega�ve 

effects on 

intercellular 

communica�on 

Possible 

nega�ve effects 

on stem cells 

Obesity and/or 

nutrient excess  

FIGURE 1 | Effect of obesity or nutrient excess on the hallmarks of aging.

The size of the arrows indicate how solid are the evidences, see “take home

summaries” in the text. The double-headed arrow for cellular senescence

indicate that detrimental influences can feedback from senescence to obesity.

in their impact to health (191) and it could also turn out that both
hypotheses are concurrently true (192).

Will Caloric Restriction Work on Humans?
While large epidemiological analyses indicate obesity will
threaten any future gains in life expectancy (193), caloric
restriction is considered a powerful tool to slow down the pace
of aging. The effect of CR on increasing life span were first
observed in rodents in 1935 (194). Although there are important
differences between mouse, rat and human fat depots (195), the
CR regiment has a clear impact in reducing fat mass in all these
species (196). Caloric restriction studies are undoubtedly highly
valuable for understanding the aging process; however, how to
translate the data on animal models to human is a highly debated
issue (197–204).

One caveat is that the response of our species could not be
as strong as the one observed in experimental species. In fact,

although the extension of life span with CR seems a universal
biological response, this response is particularly evident in
model species (Saccharomyces cerevisiae, Caenorhabditis elegans,
Drosophila melanogaster and Rodents) suggesting involuntary
selection caused by human husbandry (205). Additionally, while
wild-Drosophila respond to CR (206), wild-mice do not (207).

Moreover, it is not clear if all humans will benefit
from CR. Data on diets mimicking fasting (208), a more
recent approach to caloric restriction, suggest that this
approach is effective, particularly on subjects at risk for
metabolic disease (209). Additionally, while extreme obesity
consistently increases all-cause mortality, overweight and
even mild obesity appears protective toward cardiovascular
disease. A phenomenon well described and referred to as
the obesity paradox (210). This stresses the importance
of carefully considering the starting BMI level before
suggesting CR to people. Lorenzini has proposed that initial
BMI levels could be the main reason why the two larger
CR studies on rhesus monkeys gave discordant result on
longevity (201).

If the possibilities raised in this review are correct, we
will have to conclude that it is not CR that is slowing
down aging but it is the ad libitum feeding, coupled
with the lack of physical activity (the typical condition
of laboratory animals) that are actually accelerating aging
(181). If this is true, we should call ad libitum feeding
“overfeeding,” an insight that has profound implications
well beyond geroscience (211), and translating to humans
the evidence from CR on animals will be as simple as to say:
“avoid obesity”.
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Across aging, adipose tissue (AT) changes its quantity and distribution: AT becomes

dysfunctional with an increase in production of inflammatory peptides, a decline of those

with anti-inflammatory activity and infiltration of macrophages. Adipose organ dysfunction

may lead to age-related metabolic alterations. Aging is characterized by an increase in

adiposity and a decline in brown adipose tissue (BAT) depots and activity, and UCP1

expression. There are many possible links to age-associated involution of BAT, including

the loss of mitochondrial function, impairment of the sympathetic nervous system,

age-induced alteration of brown adipogenic stem/progenitor cell function and changes in

endocrine signals. Aging is also associated with a reduction in beige adipocyte formation.

Beige adipocytes are known to differentiate from a sub-population of progenitors resident

in white adipose tissue (WAT); a defective ability of progenitor cells to proliferate and

differentiate has been hypothesized with aging. The loss of beige adipocytes with age

may be caused by changes in trophic factors in the adipose tissue microenvironment,

which regulate progenitor cell proliferation and differentiation. This review focuses on

possible mechanisms involved in the reduction of BAT and beige activity with aging,

along with possible targets for age-related metabolic disease therapy.

Keywords: brown adipose tissue (BAT), beige adipose tissue, aging, inflammaging, metabolic disease

INTRODUCTION

Aging is considered a common and a well-established risk factor for several chronic diseases, as well
as for decline in physical function and frailty (1–3). Moreover, aging is associated with increasing
prevalence in obesity, dyslipidaemia, type 2 diabetes, glucose intolerance and other comorbidities.

In recent years, the adipose organ has assumed considerable importance in aging and age-
related metabolic dysfunction. Important and profound changes in the adipose organ occur with
aging in terms of adipose tissue distribution and composition, and it has been suggested that

progressive dysfunction of AT may represent an important hallmark of the aging process. AT
dysfunction represents a process responsible for the metabolic alterations, the multi-organ damage
and the systemic pro-inflammatory state (“inflammaging”) typical of aging itself (4). Data in the
literature support the idea that adipose tissues are organized in a large adipose organ with discrete
anatomy, vasculature and innervation, specific cytology and high plasticity (5). AT is distributed
in several depots, localized into two main compartments: subcutaneous (SAT) and visceral (VAT)
adipose tissue with different compositions and functions. The main cells of AT are represented by
adipocytes, defined as white and brown adipocytes in relation to their different morphology, which

63

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2019.00368
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2019.00368&domain=pdf&date_stamp=2019-06-20
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:elena.zoico@univr.it
https://doi.org/10.3389/fendo.2019.00368
https://www.frontiersin.org/articles/10.3389/fendo.2019.00368/full
http://loop.frontiersin.org/people/661186/overview
http://loop.frontiersin.org/people/655457/overview
http://loop.frontiersin.org/people/680499/overview


Zoico et al. Brown and Beige Adipose Tissue and Aging

reflects their different functions (5) (Table 1). Both types of cells
are present within multiple sites of adipose organ in discrete
depots and are named white and brown adipocytes.

At the morphological level, the main characteristic of white
adipocytes is their single large intracellular lipid droplet (LD),
while the brown adipocytes are characterized by the presence of
multiple small cytoplasmic LDs (Table 1). White adipocytes have
the function of storing excess lipids in the form of triglycerides
(TG) and releasing free fatty acids (FFA) in periods of body
energy demand; white adipocytes also synthesize and release
adipokines which regulate metabolic homeostasis (Table 1).
The main function of brown adipocytes is the dissipation
of energy through uncoupled respiration so as to produce
heat; this mechanism is mediated by a protein called the
uncoupling protein-1 (UCP-1), present in the inner membrane
of mitochondria (6) (Table 1).

A third type of adipocyte with an intermediate morphology
between that of white and brown adipocytes, also referred
to as beige, “brite” (brown-like-in-white) or “inducible
brown” adipocytes, was firstly described in mouse WAT
and then found in various human WAT depots (7, 8). Despite
similarities to brown adipocytes, beige adipocytes can undergo a
thermogenic or storage phenotype depending on environmental
conditions (Table 1).

Across aging, AT undergoes changes in quantity and
distribution, with an increase in total AT and VAT up to 65 years,
as well as of ectopic fat deposition, and a decrease in SAT (9–11).
Across aging, BAT declines, even if BAT activity may be identified
in some rodents models and, under certain conditions, in human
beings. However, the relevance and potential role of BAT decline
with aging has still not been fully explored and determined.

BROWN ADIPOSE TISSUE: ANATOMICAL
DECLINE WITH AGING

The main deposits of brown adipose tissue in the mouse are
located around the spinal cord in the paravertebral area and in the
mediastinum (12), especially in the para-aortic area and around
the heart, at the apex. Infradiaphragmatic deposits have also been
described, in particular in the perirenal area, which occur in
smaller quantities than the supra-diaphragmatic deposits (13).

Most of available information on BAT has been obtained from
rodents because a carcass evaluation can be performed. In mice,
white, brown, and mixed areas are present in discrete depots;
some subcutaneous and visceral depots are clearly partitioned
into WAT and BAT (14, 15). Under physiological conditions,
the exposure of mice to cold increases the amount of BAT
depots. After cold exposure, UCP-1-dependent pathways are
also activated in subcutaneous WAT (sWAT), and in brite
adipocytes through the activation of the sympathetic nervous
system (16–18).

In adult humans there are functionally active areas of BAT,
more frequently in women than in men, in particular in the
cervico-supraclavicular region; however, the study of human

Abbreviations: BAT, brown adipose tissue; WAT, white adipose tissue; SAT,

subcutaneous adipose tissue; VAT, visceral adipose tissue.

BAT is difficult (19). In humans, the 18F-fluorodeoxyglucose
(18F-FDG) positron emission tomography (PET-CT) computed
tomography is the most common method for the measurement
of metabolically active BAT, by the identification of AT regions
that have a high assimilation of 18F-FDG on the PET scan. It
is important to point out that the BAT detected using 18F-FDG
PET-CT has been demonstrated to correspond histologically to
BAT (20). [18F] FDG PET reveals glucose metabolism in tissues;
in detail, active BAT of mice and humans preferentially combusts
fatty acids derived from plasma triglycerides after lipolysis, which
is fueled by glucose. Indeed, [18F] FDG PET does not detect
directly metabolically active BAT, but it is still a reliable indicator
of activated BAT (21, 22).

In humans, BAT changes during the various stages of life
(Figure 1). BAT begins to form during gestation, and it has a
critical role in thermoregulation in the first phases of human
life because newborns do not possess the ability to shiver yet. In
infants, the large bilateral supraclavicular depot represents the
most metabolically active form of BAT, which can be rapidly
activated to heat production (Figure 1). During childhood,
adolescent BAT is found mainly in the supraclavicular region
but, although active BAT is present in every child, metabolically
active BAT is detected only in about half of adolescents after cold
exposure (23–25).

Moreover, other evidence suggests that there is an increase
in BAT activity during adolescence, especially during sexual
maturation and musculoskeletal development. Studies with
FDG-PET/TC scans indicate that there is a synchronized growth
of BAT and skeletal muscle during puberty and the development
of these tissues is related (24, 25).

BAT function and mass decline with aging. Anatomical
distribution of BAT is similar between adolescents and
adults: most of the depots are located in the cervical-
supraclavicular region and other depots are in axillary,
mediastinal, paravertebral, epicardial and abdominal regions (26,
27) (Figure 1). Peripheral depots, such as interscapular one, are
the first to lose BAT with increasing age, whereas deeper BAT
depots, in particular perivascular or perikidney ones, decline in
later stages of life (28–30) (Figure 1).

Non-stimulated BAT can be identified in people under the
age of 50 years at a rate of three times more than in individuals
older than 64 years old (26–31). Through the use of FDG-
PET/TC to visualize BAT in living subjects, it has been shown
that cold-stimulated BAT activity decreases with age (26, 27, 29).
Loss of BAT may plateau around the sixth decade of life and
then decrease in later years, and cold-stimulated BAT activity
is rarely detected in individuals over the age of sixty; this could
explain why there is a decrease in the ability of the elderly
to tolerate cold temperature and to control body temperature
(29). However, FDG PET/TC studies measure only activated
BAT, which may or may not reflect changes in mass (29). The
decline in BAT activity with age in humans is consistently
supported by findings from rodents: in fact, the interscapular
BAT depot in rats becomes infiltrated by white adipocytes
with age, with an important decline in UCP1 activity and
function (30). A significant loss of UCP1 with age is also
observed in rats subcutaneous WAT, confirming the findings
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TABLE 1 | Main morphological and functional characteristics of white, brown, and beige adipocytes.

Characteristics White adipocytes Brown adipocytes Beige adipocytes

Morphology Spherical cells with a single

cytoplasmatic lipid droplet

and peripheral “squeezed”

nucleus

Polygonal cells with several cytoplasmatic lipid

droplets and a roundish nucleus

Paucilocular/Multilocular adipocytes with

intermediate morphology

Ultrastructural morphology Low mitochondrial content Large, spherical and packed mitochondria

which laminar cristae

High mitochondrial content

Innervation Low noradrenergic fibers Numerous noradrenergic fibers are found in fat

lobules with blood vessels

-

Vascularization 5–7 times less

vascularization than BAT

High vascularization -

Markers UCP-1 negative cells

Leptin positive cells

S100B positive cells

UCP-1 positive cells Leptin negative cells UCP-1 positive cells

S100 B positive cells

Leptin positive

Localization SAT and VAT depots and

ectopic fat

Cervical-supraclavicular, perirenal and

paravertebral regions and around the major

vessels such as aorta

In various WAT human depots (inducible

transition white to beige)

Embryological origin WAT adipocyte precursors

can derive from both Myf5+

and Myf5- lineages

The same of skeletal muscle deriving from

specific cells of the dermomiotome

(from Myf5+ cells)

White-to-brown adipocyte transdifferentiation

and de novo differentiation of precursor cells

Function Storage of energy Thermogenic activity Thermogenic or storage phenotype depending

on environmental conditions

Changes with aging:

-Chronic sterile inflammation

-Progenitor cell decline

-Senescence

-Adipokines changes

↑

↑

↑

↑

↑

↔

↑

↔

↑

↔

↑

↔

↑ = increased; ↔ = unchanged.

of human autopsy studies (31). It therefore seems that many,
if not all forms of BAT, may undergo a gradual transition
toward WAT with increasing age both in human as in rodent
studies (30, 31).

In summary, aging is one of the most relevant determinants of
BAT activity and it is associated with a ubiquitous decline of BAT
activity throughout life (32, 33).

MECHANISMS OF BROWN ADIPOSE
TISSUE DECLINE WITH AGING

Several mechanisms have been shown to be related to BAT
decline with aging, including loss of mitochondrial function,
impairment in the sympathetic nervous system and age-induced
alterations in endocrine signals and inflammation (Figure 2).

Impairments in Mitochondrial Activity
During aging, there is a significant decline in UCP1 activity,
a protein uniquely expressed in the inner mitochondrial
membrane of brown adipocytes. Mitochondrial dysfunction
has been recognized to have a relevant role in the pathogenesis
of several age-related disorders, such as type 2 diabetes,
obesity, heart failure, neurodegenerative diseases and
tumorigenesis (34, 35).

In particular, mitochondrial dysfunction with aging is
characterized by an increase in mitochondrial DNA mutations
and a reduction in biogenesis and oxidative phosphorylation.

For this reason, aging may be associated with an impairment
in brown adipogenic stem/progenitor cell function and
consequently with a reduction in the regenerative potential of
BAT with storage of dysfunctional brown adipocytes (34, 36).

Decrease in the Sympathetic Nervous
Stimulation and Sensitivity in BAT With Age
The sympathetic nervous system (SNS) plays a key role in
regulation of BAT recruitment. Moreover, exposure to cold
is a potent BAT stimulator through the SNS. Cathecolamines
activate B3-adrenergic receptors located on the surface of brown
adipocytes to promote UCP1 gene expression and activity related
to thermogenesis and lipolysis (37, 38).

The sympathetic nervous system of BAT can be
visualized by I-meta-iodobenzylguanidina SPECT (39).
123I-metaiodobenzylguanidine (123IMIBG), a radiolabeled
norepinephrine analog, is commonly used for scintigraphic
assessment of neuroendocrine tumors and cardiac sympathetic
activity (39). 123I-MIBG scintigraphy, in particular, has already
been used specifically to localize BAT in rats. Interestingly, a
recent study in lean adult humans after cold exposure, measured
BAT through the combination of the two imaging methods: the
123IMIBG SPECT/CT, as a measure of sympathetic stimulation
and activation, and the 18F-FDG PET/CT, as an indicator of
BAT metabolic activity (37–39). In older lean subjects, both
sympathetic drive and BAT activity were lower compared to
younger lean and obese men (37).
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FIGURE 1 | Different location of BAT and WAT at different ages. Brown adipose tissue (BAT) in infants and young adults had been described to be localized mainly in

the cervical-supraclavicular region as well as in periaortic areas inside the thorax and the abdomen, and in particular in the perirenal fat. With aging the amount of

detectable BAT decreases progressively and it remains represented mainly in the supraclavicular and perirenal sites. Peripheral depots (interscapular) are the first to

loose BAT with increasing age, whereas deeper BAT depots, such as the perivascular or perirenal depots, decline in later stages of life. Aging is also characterized by

a redistribution of white adipose tissue (WAT) with a progressive loss of subcutaneous adipose tissue (SAT) from limbs and an accumulation in trunk and abdomen of

visceral adipose tissue (VAT) compared to adults.

Therefore, it is possible that a lower absolute SNS signal and a
possible decline in sensitivity of BAT for the SNS stimulationmay
result in a decreased ability to activate and recruit BAT in older
men and may also explain why older humans have an inability
to appropriately regulate their temperature when exposed to
cold (37, 38).

Age-Related Hormonal Changes and BAT
BAT mass and/or function may decline during adulthood, as
a consequence of changes particularly in the somatotropic and
gonadotropic axes.

Human fetal BAT shows a high expression of estrogen
receptors, suggesting that tissue-levels of estrogens may regulate
BAT activity (40, 41). Recent evidence suggests that estrogens
and androgens are positively related to BAT activity and function
while glucocorticoids have negative effects. Glucocorticoids,
such as dexamethasone, reduce the cathecholamine-induced
expression of UCP1 (42). With aging, sex hormone levels decline,
while glucocorticoid levels remain relatively stable; for this
reason, this decrement in levels of gonadotropic hormones in late
adulthood and relative increase in glucocorticoid activity may
contribute to the loss of BAT activity with aging (41, 42).

Thyroid hormones are also known regulators of
thermogenesis: UCP1 levels are related to triiodothyronine
levels. Extensive evidence shows that T3 promotes UCP1
synthesis at transcriptional levels in BAT, as well as UCP1 activity
by modulation of cAMP production. Aging is associated with
a decrease in serum T3 and a reduced conversion of active T3
caused by an age-dependent loss of DIO2, as is demonstrated in
murine WAT (43). Recent evidences demonstrated that UCP1
expression in WAT also correlates with circulating thyroxine
serum levels (43, 44), suggesting that thyroid hormones may
contribute to the browning of white adipose tissue and increasing
thermogenesis (45).

A few recent papers suggest ghrelin signaling as an important
thermogenic regulator in aging. The ablation of the ghrelin
receptor, the growth hormone secretagogue receptor (GHS-R),
decreases the risk of age-associated obesity and insulin resistance.
Ghrelin and obestatin are derived from the same preproghrelin
gene; however, in brown adipose tissue, ghrelin reduces the
expression of UCP-1 but obestatin increases it. During aging,
plasma ghrelin and GHS-R expression in BAT are increased,
but plasma obestatin is stable; this may lead to an imbalance

in thermogenic regulation, which may in turn exacerbate age-
related thermogenic impairment. Moreover, GHS-R ablation
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FIGURE 2 | Orgin of white, brown and beige adipocytes and effect of aging. The appearance of beige cells among white adipose tissue (WAT) depots is referred to as

“browning.” It has been hypothesized that these cells origin from the de novo differentiation of a distinct sub-population of WAT resident progenitors, which express

the markers CD 137 and TMEM26 on their surface. Moreover beige-type cells may generate also from white-to-brown adipocyte transdifferentiation, from MYF5

positive cells. Several mechanisms as chronic inflammation, progenitor cell decline, senescence of the different adipose cell compartments as well as changes in

adipokines productions, may together contribute to a dysfunctional adipose organ with aging.

activates thermogenic signaling, enhances insulin activation,
mitochondrial biogenesis, and improves BAT mitochondrial
function (46, 47).

In recent papers, it has been suggested that fibroblast growth
factor 21 (FGF21), secreted by the liver and adipose tissue, may
also play a role in the browning process of WAT depots. In fact,
mice with a FGF21 deficiency display an impaired ability to adapt
to chronic cold exposure, with reduced browning of WAT. In
particular, it has been demonstrated that adipose-derived FGF21
increases the expression of UCP1 and other thermogenic genes in
fat tissues in an autocrine/paracrine manner (48, 49). However,
aging is characterized by a progressive increase in FGF21 levels
from 5 to 80 years, independently of body composition (49). This
discrepancy between the increase in FGF21 levels and decrease
browning of WAT with aging could be at least in part reconciled,
hypothesizing an FGF21-resistant state with age itself. In fact,
evidences from studies conducted on rodents supported the
existence of an age-related FGF21-resistant state (50). Similarly,
in some metabolic states such as obesity and diabetes, FGF21
levels are elevated and an FGF21-resistant condition has been
suggested to also accompany these diseases (51).

Inflammaging
The production of pro-inflammatory mediators and the
infiltration of immune cells in AT, a process of chronic
inflammation typical of obesity and metabolic conditions,
also increases with age, so that has been referred to as
“inflammaging” (52–54).

Several evidences have suggested that compared to WAT,
brown and beige adipose tissue are less likely to undergo local

inflammation due to immune cells infiltration, but present an
increased production of inflammatory cytokines as TNF-alpha
and MCP-1, in presence of dysregulated metabolism linked to
obesity (53).

It has been hypothesized that inflammation with the
production of these cytokines may indirectly impair the
thermogenic activity in BAT because of altered insulin sensitivity
and reduced glucose uptake (53).

Several pro-inflammatory cytokines are suggested to be
involved in these mechanisms that globally reduce UCP-1 gene
expression and browning phenomena (52, 54). In particular,
TNF-a, one of the principal cytokines that increases during these
inflammatory processes, via Toll-like receptor (TLR) activation
induces apoptosis of brown adipocytes and inhibits the
expression of UCP1 and b3-adrenergic receptor on adipocytes,
ultimately decreasing thermogenesis in BAT (52). Other
inflammatory mediators, such as pattern recognition receptors
(PPR) and nucleotide-oligomerization domain containing
proteins (NODs), have been suggested to have a critical role in
modulating BAT activity during inflammation via activation of
NF-kB and MAPK signaling pathways (53, 54).

BEIGE ADIPOCYTES AND AGING

Beige/brite adipocytes are likely to originate from both a
white-to-brown transdifferentiation mechanism and de novo
differentiation from specific precursor cells (Figure 2).

The phenomenon by which the appearance of beige cells
among WAT depots is observed is referred to as “browning”
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(55); this mechanism is mainly based on adrenergic signals
and cold exposure. The beige-type cells in white fat depots
are genetically different from those in classic interscapular
and perirenal BAT, which are derived from myogenic factor
5 (MYF-5) positive precursors (56). Moreover, recent evidence
suggests that both BAT and WAT adipocytes derive from the
vascular endothelial cells of adipose tissue, supporting a role
for transdifferentiation (57). This induction of beige adipocytes
depends on several mechanisms, including, in addition to the
aforementioned environmental temperature, genetics factors,
diet, developmental periods and anatomic location of the adipose
tissues (58).

With regard to the de novo differentiation, adipose stem
and/or progenitor cells reside within WAT, which can proliferate
and differentiate into either white or beige/brite adipocytes.
In particular, a distinct sub-population of WAT resident
progenitors, which express the markers CD 137 and TMEM26
on their surface, show a greater ability to differentiate into beige
cells (59).

As a consequence of this, the age-related dysfunctional
regeneration and reduction of classical brown and beige tissues
could be due to a defective ability to proliferate and differentiate
from inducible WAT or due to a loss of CD137/TMEM
26+ progenitors.

Moreover, different molecular mechanisms have been
described that underlie the loss of beige adipose tissue during
aging. Interestingly, SIRT1, an important target in AT biology
(60), drives the browning of adipose tissue by promoting the
interaction between PPARgamma and PRDM16, a potent
inducer of beige adipose-specific genes (61). A recent study
demonstrated another role of SIRT1, via the regulation of the
senescence pathway p53/p21 (62). By reducing the expression
of p53, a transcription factor of p21, SIRT1, enhances beige
adipocyte differentiation capability of elderly adipose tissue-
derived mesenchymal stem cells (AT-MSCs). During aging
there is a reduction in SIRT1 levels, but how its expression
is regulated into these stem cells is still unclear. Recently, it
has been demonstrated the microRNA 34a (miRNA 34a) is
a direct regulator of SIRT1 (63). Interestingly, miRNA-34a
suppresses the process of browning under conditions of obesity,
in part via its regulation of SIRT1 and FGF-21. This evidence
supports its role of being a candidate molecule for improving the
differentiation ability of elderly AT-MSCs as a treatment of aging
obesity (63).

BROWN AND BEIGE AGING: POTENTIAL
INTERVENTION TARGETS

White and brown AT has been suggested as a target for
the prevention of type 2 diabetes, lipid disorders, as well as
for delaying aging. Counteracting the age-associated loss of
brown and beige adipose tissue could be an interesting and
innovative therapeutic approach. Different types of strategies and
molecular targets have been suggested for implementing possible
interventions to slow age-related changes in brown and beige
adipose tissue.

Physical Exercise
Well known and widely studied are the effects of physical exercise
on adipose tissue physiology, since it is well known that regular
physical activity improves glucose tolerance and reduces white
adipose tissue mass. Several studies have shown that physical
exercise is associated with changes in both subcutaneous and
visceral fat, a reduction of adipocyte size and lipid content,
enhanced expression of metabolic pathway genes, modified
secretion of adipokines and increased mitochondrial activity
(64). However, less well-known and studied are the effects of
physical exercise in AT of elderly humans, and in particular
on BAT.

Studies evaluating the effect of exercise on BAT in old
rodents and humans have been published with conflicting results.
In a recent study conducted in old rats, both strength and
aerobic training determined an increase in BAT, in mitochondrial
activity, thus reducing total body fat (65). These results were
also confirmed in other rodent models, where the physical
exercise-associated browning of subcutaneous WAT has been
demonstrated (66).

However, these findings were not confirmed in elderly subjects
as a decrease in mitochondrial activity and in glucose uptake in
BAT after training has been shown (67).

More examination is mandatory to completely understand the
impact of the complex relationships between different types of
exercise and exercise-induced adaptations in WAT and BAT, as it
is a field of study of considerable interest.

Nutritional Strategies
Since intermittent fasting was proved to optimize energy
metabolism (68), in a recent study rodents were kept on
an every-other-day fasting regimen: this approach favored the
activation of beige fat thermogenesis and improved obesity-
related metabolic diseases, probably via a microbiota-beige fat
axis (69). Interestingly, in a human model, Orava and colleagues
observed that insulin stimulated a 5-fold increase in FDG uptake
in BAT, suggesting that BAT may contribute to postprandial
energy metabolism in humans (70).

Recent researches have demonstrated that some food
ingredients may be involved in promoting energy expenditure
and fat oxidation in BAT. In fact, it has been shown that capsaicin
and its analogs in hot peppers, as well as caffeine and catechins
in green tea, could be related to an increased energy expenditure
(71, 72). In particular, capsaicin may induce a browning program
in WAT, stimulating UCP-1 and promoting SIRT1 expression
and activation through TRPV1 (transient receptor potential
channels) channels (73). Josse et al. have reported that an
ingestion of meals supplemented with capsinoids may increase
energy expenditure and lipid oxidation through an activity on
Beta3-adrenergic receptors (74, 75).

It has also been shown that PUFAs (Long-chain omega-3
polyunsaturated fatty acid) and, in particular, eicosapentaenoic
acid (EPA), known for their anti-inflammatory and cardio
protective effects, reduce high-caloric diet related obesity and
insulin resistance in mice. The mechanism underlying BAT
activation seems to depend on FGF21 expression, also without

Frontiers in Endocrinology | www.frontiersin.org 6 June 2019 | Volume 10 | Article 36868

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Zoico et al. Brown and Beige Adipose Tissue and Aging

cold exposure, suggesting that EPA supplementation alone may
mimic the cold induced BAT activation (76).

All of this evidence may demonstrate future area of research
for a non-pharmacological strategy to treat obesity and age-
related metabolic disease, also in elderly individuals.

Cold Exposure
It is now widely known from studies on mice and humans that
exposure to cold increases the activity of brown adipose tissue
(27). Saito et al. found an unexpected high presence of cold-
activated BAT by performing FDG-PET/CT scans in healthy
adults under warm and cold conditions, which suggests an
important role of temperature in the regulation of BAT activity
and body fat content. More recently, gene expression profiles
and metabolic pathways activated in BAT exposed to cold have
been investigated; in an interesting study conducted in mice, it
was shown that cold exposure highly influenced BAT metabolic
activity. Exposure to cold is characterized by lower levels of
glycolysis and gluconeogenesis intermediates, higher levels of
tricarboxylic acid cycle metabolites, free fatty acids and acyl-
carnitine metabolites, suggesting that glycolysis and β-oxidation
of fatty acids in BAT are biological pathways that contribute to
increased thermogenesis by cold exposure (77, 78).

Recent studies have evidenced that mitochondrial reactive
oxygen species (ROS) play an important role in modulating
thermogenesis and UCP1 activity. In fact, cold exposure is
characterized by an increased mitochondrial superoxide and
oxidation of lipids and proteins in BAT. Furthermore, acute cold
exposure leads to enhanced oxidation and a decrease of reduced
glutathione in BAT; this process is associated by increased
protein thiol oxidation, which has been suggested as a vital
signaling mechanism required for UCP1-induced thermogenic
metabolism (79, 80).

Pharmacological Strategies
The PPARgamma agonist rosiglitazone exerts its thermogenic
effects on adipocytes by increasing PRDM16 (regulator
PR domain containing 16) protein half-life, a zinc-finger

transcriptional factor that plays a key role in the differentiation

of adipocytes (61). In fact, PRDM16 controls the bidirectional
switch between brown adipocytes and myoblasts. PRDM16
determines the brown fat-like gene expression and thermogenesis
in both BAT and WAT. Moreover, the expression of this
transcriptional regulator is strongly correlated with beige cell-
selective genes, in the so-called browning process (61). From
a therapeutical point of view, some reports have supported
extensive inhibition of adipokines production, including
resistin, 1-acidglycoprotein, and haptoglobin, by treatment of
white adipocytes with thiazolidinedione (TZD) and non-TZD
synthetic PPARgamma ligands (81).

Moreover, Finlin et al. have suggested that mirabegron, a beta
3-agonist, induces the expression of UCP1 and beige adipocyte
markers to a higher degree than 10 days of repeated cold
exposure. This phenomenon may be exploited to increase beige
adipose tissue in older, insulin-resistant, obese individuals (82).

Vitamin A metabolites or retinoids are other hormones
required for BAT activation. Retinoic acid strongly induces UCP1
expression in adipocytes, indicating that body thermogenic
capacity may also be related to the vitamin A status. Retinoic
acid may also determine adipocyte differentiation and survival,
with high doses inhibiting and low doses promoting adipogenesis
of adipose cells precursors in vitro (83). The administration of
retinoids in high-fat diet mice is associated with an increase
in adipose UCP1 expression and a reduction in body weight.
However, its role in humans is still controversial: UCP1
expression is differently affected by all-trans retinoic acid (ATRA)
in mouse and human adipocytes (84).

Bone morphogenetic proteins (BMPs) are a family of secreted
molecules that contribute to the differentiation of mesenchymal
stem cells and drive the formation and thermogenic activation
of BAT (85). BMP9 treatment has been shown to determine
the browning of subcutaneous WAT, to improve glucose
tolerance and reduce weight gain in in vivo experiments (86).
A role for BMP8B in the regulation of thermogenesis has
also been described; this protein regulates nutritional and
thermogenic factors in mature BAT, improving the response
to noradrenaline through enhanced p38MAPK/CREB signaling
and increased lipase activity. Bmp8b−/− mice show impaired
thermogenesis and decreased metabolic rate, determining
weight gain despite hypophagia. BMP8B is also expressed
in the hypothalamus, and Bmp8b−/− mice display altered
neuropeptide levels and reduced phosphorylation of AMP-
activated protein kinase (AMPK), indicating an anorexigenic
state (87).

Fibrates exert their lipid-lowering activity via PPARalpha. The
new compound, GW9578, was demonstrated to enhance insulin
sensitivity and to decrease adiposity in vivo (88). Moreover,
the PPARalpha agonist GW9578 stimulates expression of the
thermogenic gene program in beige adipocytes and rescues
the beige-to-white fat transition phenotype induced by loss of
Lsd1 (89).

However, most of the research about transcriptional factors
involved in the regulation of BAT development has been carried
out in mice and the expression of these marker genes seems less
consistent in the humans, with a lack of specific data for elderly
subjects in particular.

CONCLUSIONS

Further human studies are needed to investigate the effectiveness
of nutritional and pharmacological stimulation to maintain BAT
and beige mass and sensitivity during aging.

However, any therapeutical targeting of BAT activity and/or
mass will first require a clear understanding of the mechanisms
involved in potentiating BAT activity.
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The aging process is characterized by the chronic inflammatory status called

“inflammaging”, which shares major molecular and cellular features with the

metabolism-induced inflammation called “metaflammation.” Metaflammation is mainly

driven by overnutrition and nutrient excess, but other contributing factors are metabolic

modifications related to the specific body composition (BC) changes occurring with

age. The aging process is indeed characterized by an increase in body total fat mass

and a concomitant decrease in lean mass and bone density, that are independent

from general and physiological fluctuations in weight and body mass index (BMI). Body

adiposity is also re-distributed with age, resulting in a general increase in trunk fat

(mainly abdominal fat) and a reduction in appendicular fat (mainly subcutaneous fat).

Moreover, the accumulation of fat infiltration in organs such as liver and muscles also

increases in elderly, while subcutaneous fat mass tends to decrease. These specific

variations in BC are considered risk factors for the major age-related diseases, such

as cardiovascular diseases, type 2 diabetes, sarcopenia and osteoporosis, and can

predispose to disabilities. Thus, the maintenance of a balance rate of fat, muscle

and bone is crucial to preserve metabolic homeostasis and a health status, positively

contributing to a successful aging. For this reason, a detailed assessment of BC in elderly

is critical and could be an additional preventive personalized strategy for age-related

diseases. Despite BMI and other clinical measures, such as waist circumference

measurement, waist-hip ratio, underwater weighing and bioelectrical impedance, are

widely used as a surrogate measure for body adiposity, they barely reflect the distribution

of body fat. Because of the great advantages offered by imaging tools in research and

clinics, the attention of clinicians is now moving to powerful imaging techniques such as

computed tomography, magnetic resonance imaging, dual-energy X-ray absorptiometry

and ultrasound to obtain a more accurate estimation of BC. The aim of this review is

to present the state of the art of the imaging techniques that are currently available to

measure BC and that can be applied to the study of BC changes in the elderly, outlining

advantages and disadvantages of each technique.
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INTRODUCTION

The rapid increase of elderly population represents a
global health problem (1) together with the concurred
increased incidence of age-related diseases, including type
2 diabetes mellitus (T2DM), obesity, metabolic syndrome
and cardiovascular diseases (CVD). The new field known as
“geroscience” recognized that these chronic pathologies and
aging itself share seven interconnected common mechanistic
pillars such as epigenetics, adaptation to stress, stem cells and
regeneration, proteostasis, macromolecular damage, metabolism
and inflammation (2). To date, gerontologists propose to focus
on these basic agingmechanisms to successfully counteract all the
major age-related diseases, and to slow down the aging process
(3). In particular, the chronic low grade inflammatory status
occurring during aging, called “inflammaging,” (4, 5) is tightly
linked to metabolism, because any impairment of metabolic
pathways can fuel inflammation. This metabolism-induced
inflammation has been recently named “metaflammation” (6).
Modern research aimed at finding potential sources of low-grade
inflammation is now focusing on the major molecular and
cellular mechanisms such as cellular senescence, mitochondrial
dysfunction, activation of the inflammasome (7) and changes
in gut microbiota composition, which mostly overlap with
metaflammation and inflammaging (8). Several studies showed
that metaflammation may trigger obesity-induced insulin
resistance, suggesting a causative role in T2DM itself (9) and in
diabetes-induced complications (10). Murine models of diabetes
and obesity showed that an overexpression of pro-inflammatory
molecules in fat tissue occur, which in turn increases insulin
sensitivity (11). Several studies also revealed that the adipose
tissue is a main source of inflammatory molecules, such as
IL-6 and MCP1 (12, 13). Metaflammation is mainly driven by
overnutrition and nutrient excess (3, 14), which are present in
metabolic diseases, but body composition changes occurring with
age can also contribute. Indeed, the aging process is characterized
by an increase in body total fat mass and a concomitant decrease
in lean mass and bone density, that are independent from general
and physiological fluctuations in weight and body mass index
(BMI) (15). Moreover, the accumulation of muscle fat, visceral

fat and liver fat, in form of lipid droplets (LD), also shows an
age-dependent increase, while an opposite tendency is observed
for subcutaneous fat mass (16). However, it should be taken
into account that when the decrease of subcutaneous peripheral
fat becomes excessive, it is associated with a pro-inflammatory
status, and a reduction of LDs is associated with lipotoxicity
(17) leading to CVD, an increased risk of insulin resistance
and T2DM. Thus, in order to preserve a metabolic homeostasis
and a health status positively contributing to longevity, it
is desirable to maintain a balanced rate of fat content and
distribution (18). For this reason, a detailed assessment of body
composition (BC) in elderly is critical and could be an additional
preventive personalized strategy for age-related diseases. The
most commonly used method to investigate BC employs a
five-level model, which make it possible to classify the human
body according to five levels of increasing complexity: I, atomic;
II, molecular; III, cellular; IV, tissue-organ; V, whole body. To

date, whole-body, organ-tissue, and molecular levels are the
most studied in human BC assessment. BMI measurement is
widely used as a surrogate measure for body fatness, due to
the simplicity of anthropometric methods and the widespread
availability of techniques to assess it, however it does not reflect
the precise distribution of body fat. A hierarchical cluster analysis
based on BMI together with BC parameters revealed that clusters
with very similar BMI have a different amount of fat, lean and
bone masses (19). Numerous clinical methods and techniques
such as waist circumference measurement, waist-hip ratio,
underwater weighing and bioelectrical impedance analyses are
also available. However, the attention of clinicians has recently
focused to several imaging techniques to study BC, because of
the great advantages offered by imaging tools in the research
and clinical aspects of this field (20, 21). The imaging methods
used to analyze BC aim to divide body mass into its components
based on their different physical properties. Depending on the
information sought, several methods can be used to measure BC,
such as computed tomography, magnetic resonance imaging,
dual-energy X-ray absorptiometry and ultrasound, each showing
specific advantages and limitations. In selecting the diagnostic
imaging method, one should consider the accuracy and type of
the information obtained, the safety of assessment (e.g. in terms
of radiation exposure), the time required and costs (equipment
and personnel) (Tables 1, 2). Nowadays, Dual-energy X-ray
Absorptiometry (DXA) represents a reference method for the
assessment of human BC in the research field (22, 23), due to
its fast acquisition time, low radiation exposure and relatively
low cost when compared to other available techniques (24–27).
Within the framework of the European NU-AGE project
(conducted from 2011 to 2016) a DXA scan has been carried
out in a large number (N = 1,121) of sex-balanced, free-living,
apparently healthy older adults aged 65–79 years enrolled in 5
European countries (Italy, France, United Kingdom, Netherlands
and Poland) (28) for the first time. The results showed that BC
characteristics are different in elderly women and men across
Europe (19) and that a better adipose-related inflammatory
profile is associated to a more favorable BC in terms of fat and
lean mass markers (29). In this review, we summarize the present
knowledge of available imaging methods to measure BC, with a
focus on the measurement of BC changes occurring with age and
we discuss pros and cons of each technique.

DUAL-ENERGY X-RAY ABSORPTIOMETRY

(DXA)

DXA was originally developed to evaluate bone mineral density,
but it has gained popularity as a method to assess whole-
body and regional soft-tissue composition. DXA divides the
body into three components; bone mineral content (BMC),
lean mass (LM) and fat mass (FM). Since the method assesses
three body-composition components at a molecular level, it is
widely considered as the gold standard for BC assessment in
clinical practice.

This technique is based on the physical principle that X-rays
of different energies are differentially attenuated when passing
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TABLE 1 | Overview of body composition methods for assessing adiposity and regional fat depots in older adults.

Body fat compartment

Method Frequently used

measures

Visceral

fat

Inter-/

intramuscolar fat

Whole body

fat

Low cost Availability Radiation

exposure

Precision Accuracy

Anthropometry Body Mass Index + + ++ +++ +++ +++ + ++

Skinfold thickness + + ++ +++ +++ +++ + +

Waist circumference ++ + ++ +++ +++ +++ + +

Arm circumference + + + +++ +++ +++ + ++

Predicted fat mass + + ++ +++ +++ +++ + +

Bioelectrical

impedance

Predicted fat mass + + ++ +++ +++ +++ + +++

Ultrasound Mid-tight image (+)++ ++ + +++ +++ +++ ++ +++

Dual energy

X-ray

absorptiometry

Whole body scan ++ + +++ ++ ++ ++ +++ +++

Computed

tomography

Abdominal image +++ ++ + + + + +++ ++

Mid-tight image + +++ + + + + +++ +++

Magnetic

resonance

imaging

Abdominal image +++ ++ + + + +++ +++ ++

Mid-tight image + +++ + + + +++ +++ +++

Total body multi

image

+++ +++ +++ + + +++ +++ ++

+++ indicates a very positive feature of the method, while + indicates a less positive feature.

TABLE 2 | Overview of body composition methods for assessing whole body and regional skeletal muscle in older adults.

Skeletal muscle compartment

Method Frequently used

measures

Regional muscle Whole body muscle Low cost Availability Radiation

exposure

Precision Accuracy

Anthropometry Arm circumference ++ + +++ +++ +++ + +

Calf circumference ++ + +++ +++ +++ + +

Predicted ASMM + ++ +++ +++ +++ + +

Bioelectrical

impedance

Predicted FFM mass + + +++ +++ +++ + +++

Predicted ASMM ++ ++ +++ +++ +++ + +++

Ultrasound Mid-tight image ++ + +++ +++ +++ ++ +++

Dual energy X-ray

absorptiometry

Whole body scan +++ ++ ++ ++ ++ (+)++ +++

Computed tomography Mid-tight image +++ + + + + +++ +++

Magnetic resonance

imaging

Mid-tight image +++ + + + +++ +++ +++

Total body multi

image

+++ +++ + + +++ +++ ++

ASMM, Appendicular Skeletal Muscle Mass; FFM, Fat-Free Mass.

+++ indicates a very positive feature of the method, while + indicates a less positive feature.

through the various tissues of human body. By radiating the body
in anterior-posterior direction using two different energies, and
assuming a two-compartment model in each measurement point
(pixel), the image can be reconstructed; the two-compartment
model assumes that pixels not containing bone depend on LM
and FM ratio, and that pixels containing bone depend on BMC

and soft tissue ratio with a subsequent interpolation of LM and
FM ratio based on neighboring pixels not containing bone.

DXA allows total-body and standard regional body
composition measures, including trunk, arms, legs, android
and gynoid regions, and ideally, can estimate every human body
part of interest (Figure 1).
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In addition, it is now possible to estimate with DXA the
amount of visceral adipose tissue (VAT) and subcutaneous
adipose tissue (SAT) in the android region that represent, a
harmful factor and a presumable protective factor, respectively,
in cardio-metabolic status of patient.

The DXA approach represents a good candidate to be a gold
standard technique to measure longitudinal changes in BC in
multiple pathologic or paraphysiologic conditions because of its
high accuracy and precision, large availability, and low-cost.

DXA is a non-invasive, quick and safe method for BC
assessment, and the radiation exposure is considered small
and safe for repeated measures (a whole-body scan takes only
6–10min and the radiation exposure is equivalent to a day
spent sunbathing).

Currently available DXA systems for scanning whole-body
tissue composition are capable to analyze a wide range of weights
and sizes, including severe obese subjects (>200 kg with relatively
wide scanning space >65 cm).

Amarked impaired hydration status may affect DXA accuracy
because of the programmed assumption of a constant and
uniform LM hydration (25).

Reference values of BC assessed by DXA on adults over 60
years old are available from the National Health and Nutrition
Examination Survey 1999–2004 and from other studies on local
population (30).

ULTRASOUND (US)

Ultrasound is another technique that has been used for a long
time to assess FM. US, based on echo reflections, offers a
two-dimensional gray-scale image, between black (no echoes)
and white (strong reflections), and shows skin-subcutaneous fat
borders, fat-muscle, and muscle-bone interfaces (31). Although
US procedures are considered accurate, reproducible, and fast
for the analysis of abdominal adiposity by allowing a local, easy
and close-at-hand evaluation of subcutaneous and visceral fat
compartments (32), there are different opinions about its validity.
Borkan et al. suggested that with respect of ultrasound, skinfolds
were a better measure of subcutaneous fat (33), while Fanelli
and Kuczmarski proposed that US was identical to skinfolds
when determining body fat (34). US intra-abdominal thickness
measurement was introduced by Armellini and colleagues to
demonstrate that US was the most powerful identifier of visceral
adipose tissue area into intra-abdominal thickness (35, 36).

It is easy to understand how the absence of a straight
standardized protocol leads to a decrease in accuracy
and reliability of US measurements of BC, mainly for
visceral adiposity. In a recent study was demonstrated that
reproducibility and repeatability, especially for visceral fat, were
proved more stable in fasting state and expiration (37).

COMPUTED TOMOGRAPHY (CT) AND

MAGNETIC RESONANCE IMAGING (MRI)

CT andMRI are cross-sectional imagingmodalities providing 2D
or 3Dmaps of pixels allowing for the in vivomeasurement of lean

mass and total adipose tissue and its subdepots (subcutaneous,
intermuscular, and visceral).

CT presents great practical significance due to its routinely
use for diagnosis and follow-up in various diseases and allows an
accurate quantification of whole-body composition (Figure 2).

Being a volumetric technique, CT allows to measure body
components at tissue-level using pre-established Hounsfield
Units (HU) to recognize different tissue density (soft tissue: 30–
50HU; fluid-sovrafluid: 0–30HU; adipose tissue:−100HU; bone
and calcification: 100–1000 HU).

CT imaging at L3 level provides total, visceral or subcutaneous
adipose fat area, visceral adipose volume, total psoas area,
and skeletal muscle index (SMI) (38). Moreover, according to
ethnicity- and sex-specific data, CT has been used to derive
a predictive cardio-metabolic risk (CMR) equation (39). This
type of evidence endorsed other specific research, analyzing
pericardial fat, intrathoracic fat and epicardial fat, showing the
potential contribution in CMR stratification (40). Also, because
CT images targeted on the III lumbar vertebra are similar to
those on chest, they could be tentatively performed solely. As
CT usage has now increased in clinical practice, the radiation
exposure should be taken in mind, since it represents a risk factor
for oncologic disease development.

Differently from CT that is calibrated against the Hounsfield
scale, signal intensities inMRI are often non-quantitative because
image intensity values do not reflect physical properties of
the imaged body. MRI allows to measure body fat-free mass
such as skeletal muscle mass at arms, legs and trunk level,
specific organ masses, and provides also an estimate of bone
marrow adipose tissue (41). From a technical point of view
body composition measurement with MRI is based on the
different magnetic properties of hydrogen nuclei contained in
water and fat. Several MRI sequences have been developed
to measure body fat, using variations in radiofrequency pulse
to differentiate between adipose tissue and fat-free mass (27).
A variety of pulse sequences are thus available to generate
contrast between fat and non-adipose tissue (42). Adipose
tissue is characterized by a short T1 and a long T2 relaxation
time; in T1-weighted spin-echo sequence, fat appears as a
high signal (white) because of a high concentration of relative
immobile protons, thus differentiating it from muscles, fluids,
bone and internal organs, which appear as gray signals (43).
The time of acquisition for such sequences is relatively long
and implies some issues, such as respiratory/motion artifacts.
Variations of this sequence have been developed in order to
reduce the acquisition time. Nowadays, a whole-body MRI scan
of an individual can be obtained in about 5min, allowing
for the detailed evaluation of total and regional fat depots.
Whole-body scanning is the most accurate and reproducible
protocol to obtain an accurate quantitative map of body fat
distribution and content, but it has been mainly limited to
research studies due to the high scan costs and the need
of time-consuming image analysis (44). In fact, the amount
of data generated by whole-body MRI requires a complex
analysis, generally not manually feasible, except for very small
studies. In the last years, this has led to the development of
semiautomated or automated methods for MRI-based body
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FIGURE 1 | Dual-energy X-Ray absorptiometry (DXA) examination of body composition. In the center of the picture (E) is represented the skeletal map of whole body

scan by DXA highlighting the standard ROIs specifics for body composition assessment (head—H, trunk—T, upper limbs—U, lower limbs—L), with the two regions at

“high metabolic significance” representing by gynoid (G) and android (A) regions. On the side are depicted the soft tissue maps of whole body DXA scan (from fat

mass—yellow—to bone mass—blue); in particular on the left are visualized old (A) and young (C) males (respectively upper and lower), while in the right old (B) and

young (D) females (respectively upper and lower), highlighting the increase of fat mass in aging. Images are kindly provided by IRCCS Rizzoli Orthopedic Institute, Unit

of Diagnostic and Interventional Radiology (2019).
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FIGURE 2 | CT images of the android region. CT image slices of the android region showing changes in adiposity distribution (visceral fat—arrowheads; subcutaneous

fat—arrows) depending on age and sex: (A) young male, (B) old male, (C) young female, (D) old female. With advancing age, there is a redistribution of fat mass

compartment with increase of visceral compartment for both sexes (in particular for males); it is also noteworthy that the subcutaneous compartment is prevalent in

females, both in young and old age. Images are kindly provided by IRCCS Rizzoli Orthopedic Institute, Unit of Diagnostic and Interventional Radiology (2019).

composition analysis. Furthermore, single-slice and region-
specific multi-slice protocols were developed to make data
analysis easier and faster (Figure 3) (43, 45). An alternative to
whole-body imaging is the acquisition of the solely abdominal
region, which allows to measure fat depots frequently associated
with CMR factors, like visceral adiposity (46). Multi-slice
protocols have become the preferredmethod for large population
studies, while single-slice protocols have been mainly used in
small cohort studies, even if a number of protocols differ in
the landmarks to be used for acquisition; the level of L4–L5
has been the most commonly reported anatomical landmark
for single-slice imaging, while a level close to L2–L3 has been
considered by several authors as the preferable site to evaluate
visceral adipose tissue depot (41, 43). A poor prediction of
visceral and subcutaneous tissue changes was reported in a
longitudinal study with single-slice MRI evaluation at L4–L5
level (47).

There is an increasing interest in using MRI to evaluate
age-related muscle changes to understand the contribution
of poor muscle quality and fat infiltration in sarcopenia.
Recently, Yang et al. demonstrated that a single slice cross-
sectional area at mid-femur can be used in clinical practice
for a fast and non-invasive diagnosis of sarcopenia in old
adults (48). Compared to other imaging techniques, a key
advantage of MRI is the ability to detect changes in the
muscle structure occurring during the aging process or
during disease progression, making this technique a powerful
tool in longitudinal studies. Quantitative magnetic resonance

imaging (QMRI) can be achieved by proton nuclear magnetic
spectroscopy or magnetic resonance spectroscopy (MRS),
which allows the accurate measurement of intramyocellular
lipid and extramyocellular lipid in muscle fibers. MRS can
precisely discriminate adipose and lean tissue by enhancing
contrast, offering the possibility to estimate the accumulation
of tryglicerides in non-adipose tissue (ectopic lipid). Diffuse
fat infiltration in organs and lean tissue can be also estimated
using “quantitative fat-water imaging,” which is based on Dixon
imaging, a gradient recalled echo imaging method which uses
the chemical shift between proton resonance frequencies in
water and in fat (44). MRI shows the best contrast between
fat and muscle tissue, allowing for an accurate evaluation
of muscle quality. It has been shown to possess a higher
sensitivity compared to CT in detecting early fatty replacement
in muscles (49). Differently from DXA, QMRI has the great
advantage to be independent of fat-free mass hydration level,
showing great accuracy and low-minimal changes detectable
in longitudinal studies. However, underestimation of fat mass
and overestimation of fat-free mass by QMRI compared with
a 4-compartments model has been reported (50). In old adults
infiltration of adipose tissue is recognized as a predictor of
poor muscle and mobility functions. MRI was used to study
intramuscular adipose tissue in frail and non-frail individuals,
showing that more muscle fat infiltration was detectable in
older frail subjects (18.0 vs. 11.7%) (51). In women over 50
years old, MRI-measured muscle fat infiltration was reported
to be positively associated with increased fracture risk (52),
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FIGURE 3 | MR T1-weighted image slices of the gynoid region showing age-related muscle changes in both sexes (poor muscle quality and fat infiltration—arrows). In

addition larger subcutaneous adipose tissue are observed in the gynoid region of an old female (D) compared to a young female (C); on the contrary the

representation of subcutaneous compartment in the same region is the same both for a young male (A) and an old male (B). Images are kindly provided by IRCCS

Rizzoli Orthopedic Institute, Unit of Diagnostic and Interventional Radiology (2019).

while lower extremity muscle fat infiltration was shown to
be negatively associated with performance based measures of
physical function (53).

Currently, MRI represents the most advanced and accurate
technique for the study of body composition, by allowing the
measurement and quality assessment of muscle volume and
cross-sectional analysis. Its ability to detect changes in the
muscle structure occurring with aging makes this technique
extremely fascinating to understand age-related progressive loss
of muscle strength and quality. MRI, together with CT, represents
the gold-standard technique in exploring muscle mass and
quality for research purpose, however the limited access to
the equipment, the complexity of data analysis and high cost,
limit the use of MRI routinely in clinical practice (54). A
strong methodological weakness is represented by the lack of
a standardized evaluation protocol in image analysis, limiting
comparison between studies (55).

CHANGES IN BODY COMPOSITION WITH

AGE

Overall Adiposity
From young age to about 75 years old, body weight and
consequently BMI usually increases. This trend is followed
by a decline with an intermediate period of stability (56).
Due to physiologic height loss with aging, the BMI in
elderly may be overestimated in weight-stable persons and
this condition is particularly true in women >85 years old
(57). In elderly, recurrent weight changes events are usual and

the individual evolutions of body weight and BMI are very
miscellaneous (58, 59).

In a healthy Italian population, an increase of FM and a
decrease of LMwere detected up to 70 years old, although women
were less affected by this phenomenon. As the matter of fact
FM in women increased up to the first four decades of life and
remained steady afterwards, differently from the development
of FM in men (remarkable increase, especially after 60 years
old) (22).

Consequently, the percentage of body fat in both sexes
increases up to∼70 years old, but these percentage modifications
appear less evident later, because of a trend to a reduction in fat
mass after 80 years old (60). In weight stable old adults, the loss
of skeletal muscle mass contributes to an increase in body fat
percentage (61, 62).

The complex and partially unknown endocrine role of
adipose tissue on muscle metabolism emphasizes the existence
of an adipo-muscular axis that can influence metabolic changes
between physiologic and pathologic states, including obesity and
inflammation, but also in para-physiologic conditions such as
aging. As examples, an accelerated loss of LM has been associated
with greater body fatness in old age and a significantly greater
quantity of LM is lost during weight loss than is gained during
weight increase, specifically in old men (63, 64).

Body Fat Distribution
A general increase in trunk fat (largely visceral fat) and a decrease
in appendicular fat (largely subcutaneous fat) have been observed
with age. The reduction in subcutaneous adipose tissues has
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also been confirmed using whole-body MRI as well as CT data
of the mid-thigh or US measurements at abdominal level. The
increase in abdominal adiposity has been estimated through
anthropometric methods such as waist circumference, but a
direct measurement can be obtained only by imaging techniques
such as CT and MRI (expensive but accurate) as well as US and
DXA (available but less accurate).

In a recent study evaluating adipositymarkers of visceral fat by
US, no differences were found betweenmales and females in their
30 to 50 s, while a significant difference emerged for those in their
60 to 70 s; the visceral fat content increases noticeably during
aging in males, while in females major changes were significantly
observed in the preperitoneal circumference (65).

Considering DXA imaging analysis, a significant
redistribution of both central and visceral FM was shown
to happen for men during their lifetime, but not for women. In a
healthy sample, android and visceral fat progressively increased
in elderly males, while females, in old decades, seem to go toward
a less pronounced android or visceral redistribution of fat. While
in healthy females the central FM distribution maintains a stable
android/gynoid ratio, Bazzocchi et al. showed that in males a
linear progression to an abdominal redistribution of FM could be
observed over time. In particular, SAT depots were significantly
higher in females, becoming nearly overlapping in males and
females from 50 to 70 years old (22).

Apart from the redistribution of body fat, another feature
of old age-related BC changes are the accumulation of fat
infiltration into non-fat tissues. The alterations in ectopic fat
have been mostly studied in aging muscles, especially with
the support of whole-body MRI scans. Several evidences in
literature suggests that the amount of inter-muscular adipose
tissue increases rapidly with aging: about +10% and +6% per
year in old men and women, respectively. In particular, the
increase in inter-muscular adipose tissue is most visible in those
who underwent an increase in total body weight, but it also
accumulates in people who experience weight loss (66–68).

Skeletal Muscle Mass
In 1997, the age-related loss of muscle mass was termed
sarcopenia, from the Greek words sarx (meaning flesh) and penia
(meaning loss). Forbes and Reina were among the first to report
prospective data that showed an age-related decrease in lean body
mass (about−0.41 kg per year in adults).

However, it is globally accepted today that the concepts of low
lean mass and decreased muscle function should necessarily be
both incorporated into a current definition of sarcopenia.

According to this tendency, several working groups
worldwide have new consensus definitions of sarcopenia
published in recent years, even if a unique consensus with regard
to the specific cut-off point or the most appropriate technique
for assessment of low skeletal muscle mass in old adults has not
been identified yet (23, 69–71).

In some studies, the deterioration in skeletal muscle mass in
elderly have been measured by using 24-h urinary creatinine
excretion and CT cross-sectional area, providing an accurate
assessment of the skeletal muscle mass loss because other lean
tissues, in particular bone and visceral organs, are excluded from

muscle evaluation. From these findings, the relative yearly decline
in the skeletal muscle mass was evaluated to be between −0.64
and −1.29% per year for old men, and between −0.53 and
−0.84% per year for old women (63, 66, 67, 72–74). Both the
increase in body fat and the loss of muscle mass with age make
old adults at a higher risk of developing sarcopenic obesity, a
condition characterized by excess of body adiposity associated
with a reduced muscle mass and/or strength (75, 76).

More recent studies using DXA showed a general decrease of
LM at upper and lower limbs with age in both sexes. Considering
FM/LM distribution at the appendicular body, the decrease of
LM was associated to an increase of FM. In particular, LM
impoverishment was reported after 40 years in men (remarkably
after 50 years old), and later, in the 50 years old, in women.
Moreover, women seemed to maintain a more favorable arm
masses ratio during aging. In this study, anthropometry was
reported to be scarcely representative of LM of arms in both
genders, independently of age, therefore the authors suggested
that a correct assessment of BC at limbs should be achieved by
imaging such as DXA (22, 77).

ASSOCIATIONS OF FAT MASS WITH

MOBILITY, DISABILITY, AND MORTALITY

In the elderly, obesity determined by a high BMI has been
shown to be tightly associated with a decline in functional
performances, possibly leading to disability. For example, a
prospective study from Koster et al. involving almost 3,000
participants between 70 and 79 years old showed that a BMI
above or equal 30 kg/m2 was associated with a 60% increased risk
of mobility limitations, which was reported to be independent of
the participants lifestyle habits. This finding is consistent with
the idea that obesity could be an important factor affecting the
functional status of individuals rather than a mere indicator of
physical inactivity (78).

It is not clear if an increased risk of functional limitations
in the elderly is also associated with overweight, i.e., a BMI
comprised between 25.0 and 29.9 kg/m2. A study involving 406
participants aged 70–89 years showed that the risk of developing
major mobility limitations was reduced in overweight individuals
compared to normal weight or obese subjects. However, several
studies indicated that a high abundance of body adiposity in the
elderly may lead to an increased risk of mobility limitations and
disability (79–85).

Adiposity is not the only determinant of functional status in
old age; individual lifetime histories of being overweight or obese
is also to be considered when considering the risk of disability. It
has been reported that in older men and women who have been
overweight or obese since age 25, the risk of developing mobility
limitations was almost 3 times higher compared to individuals
which maintained a normal weight throughout their lifetime.
Conversely, individuals who became overweight or obese only
in old age showed a risk 1.7 times higher. Thus, a longer history
of high body fatness appears to augment the risk of functional
failure in old age. Weight gain is another significant determinant
of functional performances in advancing age, as suggested by
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several prospective studies. For example, in a cohort of almost
3,000 Italian individuals over 65 years old, a weight gain of more
than 5% after their 50s was correlated with an augmented risk of
limitations in activities of daily living (ADLs) (86–89).

However, it was also observed that a 7-years weight gain
pattern among men and women over 65 years old did not
increase the risk of limitation in ADL or mobility compared to
individual who maintained a stable weight (59).

Weight instability and oscillations have been associated with
a higher risk of limitation of ADL and mobility infirmity in the
elderly (59, 79, 90).

Most of the weight changes reported in these studies were
unintentional. In other intervention studies, improvements of
physical performances in obese old adults after intentional
weight loss following dietary restriction were reported. Thus, the
American Society for Nutrition has recognized the functional
benefits of intentional weight loss in obese elderly (91–93);
nevertheless, additional studies are required to set up optimal
weight loss strategies for obese older adults and to assess their
long-term benefits.

Generally, the correlations between BMI and mortality in
the elderly have been described showing U-shaped or J-shaped
relationships. An increased risk of death is associated with a
low BMI (underweight), although a possible causal relationship
linking an underlying illness (for example cancer) causing a
low BMI and the consequent increased mortality rate cannot
be excluded. An increased mortality risk has been sometimes
reported only for obese elderly, while others indicate an increased
mortality risk in overweight old adults. Therefore, a clear
relationship is still a matter of debate (94–96).

Surprisingly, in some observational studies a protective effect
of high levels of body fatness on mortality have been reported
in the elderly (97). However, these studies are potentially
inconsistent due to methodological biases in sampling and
statistical analysis that may increase the reported protective
effects on mortality. In fact, other studies not suffering
from sampling or grouping biases conclude that being either
overweight or obese decrease the chance of a healthy aging. A
J-shaped association between BMI and 10-years mortality was
detected among non-smokers older adults (98). A systematic
review and meta-analysis examining the impact of a high BMI
on mortality risk in older adults concluded that BMI in the
overweight range is not associated with an increased risk of
mortality, whereas obesity showed a significant association with
a higher mortality risk. More recent studies have supported
the finding that a high BMI negatively affects healthy life
expectancy, and it is also associated with an increased risk for
cancer mortality, in particular for colorectal cancer. A difference
between men and women exists in the degree that excess body
weight increases mortality risk (99–106).

Limiting the analysis to very old adults only, obesity appears to
be unrelated to mortality risk and no protective effect of adiposity
was observed (107, 108). It is possible that the relationship
between adiposity and mortality can assume different meanings
depending on the age, and that in some circumstances a higher
BMI may be protective, even though more studies are required
to gain more insights into this relationship. However, most
of the studies conducted so far consider only the BMI as a

measure of adiposity. Since the complexity of body fatness
cannot be completely explained using the sole BMI, some studies
investigated the relationship betweenmortality risk and adiposity
by assessing the impact of different fat compartments. Even these
studies resulted in conflicting evidences (102, 109–112).

Another important predictor of mortality risk in old adults is
represented by body weight change. In particular, a recent study
considering a multiethnic cohort of 63,040 individuals showed
that weight loss rather than gain was associated with an increased
mortality risk (59, 113–118).

As discussed above, these results suggest that unintentional
weight loss may increase mortality risk in older adults, but not
intentional weight loss. Unintentional weight loss may be the
consequence of an underlying disease. Unfortunately, in most of
the studies conducted so far intentional rather than unintentional
weight loss distinction is not very clear. Body weight increase has
not been found to be associated with a higher mortality risk in
older adults (59, 114).

However, using a reliable BC measurement approach,
researchers showed that elderly men who gained >5% fat mass
over a 4.6-years follow-up had a higher mortality risk compared
to men who did not change their fat mass (116). Since weight
gain may be the result of an increase in fat as well as muscle mass,
which can have a different impact on the associated risks, it is
necessary for upcoming studies to evaluate the actual changes
in different body compartments to consider their effects on
mortality risk. A large waist circumference has been associated
with mobility limitations and disabilities in several studies (119–
123). In prospective studies, a high-risk waist circumference at
baseline (of ∼ >102 cm in men and >88 cm in women) was
correlated with a higher incidence of mobility and functional
limitations, with a greater association in inactive older adults (78,
124–130). A longitudinal study assessing a 5.5-years modification
in waist circumference showed that this was not associated
with a change in the self-reported disability, reporting that the
main predictor associated with physical decline was indeed the
reduction in appendicular fat-free mass (74).

Muscle quality and muscle fat infiltration assessed by CT was
associated with a higher risk of incident mobility limitations in
men and women over 70 years old (84, 131–133).

High waist circumference in old adults is also a predictor
of mortality. Increased mortality risk was observed also in
normal BMI individuals who showed a large waist circumference,
even if this association was reported to be dependent on
cardiorespiratory fitness. It is possible that especially in older
men, waist circumference could be a stronger predictor for
mortality risk than BMI itself. In fact, in a study evaluating
the associations between BMI, waist circumference and specific
causes of mortality (such as deaths from lung cancer and chronic
respiratory disease), waist circumference but not BMI showed
statistically significant positive associations with deaths from
major specific causes (102, 110, 134–138). In contrast, it has been
shown a protective effect of a larger waist circumference in adults
of 65 years old (100, 108).

Some studies suggest a negative impact of abdominal fat in life
expectancy of old adults. A J-shaped relationship between DXA-
assessed central adiposity and mortality was described (112).
Similarly, visceral adiposity determined by CT was shown to be
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correlated with an increased risk in men over 50 years old (111,
139). A recent analysis investigating the relationship between
BC and inflammation in a large European cohort of elderly has
shown that BC and regional lean/fat distribution can define BC
clusters that differently associate with inflammatory markers and
inflammatory profiles (29).

ASSOCIATIONS OF LEAN MASS WITH

MOBILITY, DISABILITY, AND MORTALITY

It has been suggested that skeletal muscle mass reduction, or
sarcopenia, that occurs in aging is associated with a decline in
functional status in the elderly (70). Indeed, several studies have
shown that sarcopenia is related to a poorer functional status
or to a 5-years functional decline in old age. Surprisingly, two
studies have shown that muscle mass gain rather than loss may
lead to a worse functional status or greater functional decay.
However, this may be due to the interfering role of excess
adiposity, which is associated with a higher skeletal muscle mass
but a poor functional status, thus the importance of considering
the role of body fatness when investigating the correlations
between skeletal muscle mass and functional status changes in
the elderly (139–144). Several studies have shown that sarcopenia
is not associated with or only weakly associated with: (A) a
compromised functional capacity (145–149) and (B) a future
functional decline (84, 85). According to these studies, which
performed careful adjustments for both body fat and body

height, the high body fat mass strongly affects functioning in old
men and women, regardless of the physical activity level of the
participants. This suggests that the impact of an excess body fat
on the functional status in old age is far more important than
a low skeletal muscle mass. In 2004, the concept of sarcopenic
obesity (defined as having a body fat percentage >40% and a
skeletal muscle index <5.45 kg/m2) was launched, following the
results of a study that showed a twofold higher risk of developing
instrumental ADL disability in old sarcopenic adults (based on
a threshold amount for the appendicular skeletal muscle mass
divided by the body height squared) who had a high proportion
of body fat compared to elderly with normal fat levels and
without sarcopenia. However, more recent cross-sectional studies
have not supported the finding that a mixture of low muscle
mass and high body fat mass is more disadvantageous to the
functional status than a high body fat mass alone. Considering
sarcopenia alone, no association with an increased risk of a
poor functional status was observed. One other recent study
conducted on French women showed that compared to obese
women, the sarcopenic obese women tended to have a higher
risk of difficulty descending stairs but no differences were found
for the other six physical function elements investigated in the
study (148, 150–153). According to the present literature, is
not possible to convey that the combination of obesity and
sarcopenia is more damaging for physical performance than
obesity alone. Additionally, it remains unclear whether the risks
associated with sarcopenic obesity are higher than the sum of the

FIGURE 4 | Graphical summary of the standards for DXA, CT, MRI and US for the detection of metabolic dysfunction in elderly. Standards for sarcopenia, obesity and

sarcopenic obesity are summarized.
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single risks of obesity and sarcopenia together. The evaluation of
body masses by the imaging methods described in this review
could support clinical practice for the diagnosis of metabolic
dysfunctions in elderly. In particular, because DXA scan can
evaluate total and regional fat, lean and bone masses with
accuracy for the visceral adiposity in the android compartment,
it represents the gold standard for the diagnosis of sarcopenia,
osteoporosis as well as of the CMR in both obesity and
sarcopenic obesity. MRI, CT, and US are mainly used in research
settings. MRI and CT are gold standards for the evaluation of
inter/intramuscular fat and visceral-perivisceral compartments
particularly important in sarcopenic obesity diagnosis. US is
mainly used to measure subcutaneous, peritoneal and visceral
fat thus being of particular use for the diagnosis of CMR risk in
obesity. The graphical summary reported in Figure 4 shows the
standards for each technique.

A clear association between low muscle mass and functional
decline in elderly has not been assessed due to the lack
of evidences, although it has been suggested that a marked
skeletal muscle mass waste in old age might intensify the
chance of functional limitations and disability. As an example,
a study involving 159 elderly (both males and females) who
were monitored up for 5.5 years, showed that the loss of the
appendicular muscle mass and leg muscle mass (as measured
by DXA) was correlated with a decline of the disability score
(74). Changes in the appendicular skeletal muscle mass over

5 years had a faint and positive association with changes in
physical functioning measures (144). Unfortunately, it remains
not clear whether the actual shrinkage in skeletal muscle mass
or the involuntary decrease of body weight, which in turn leads
to a decrease in skeletal muscle mass, could be the crucial factor
inducing the functional status decline occurring with age. A
recent trial showed that after voluntary weight loss, the loss of
fat mass in the abdomen and thighs compared to the changes
in skeletal muscle mass was the main determinant of improved
functional performance (154, 155).

Only three prospective studies conducted so far evaluated
skeletal muscle mass in an accurate and precise way and
investigated the association between sarcopenia and mortality in
older adults. The Health, Aging and Body Composition Study
showed that the lowmuscle mass in the inferior limbs (as assessed
by CT or DXA) was not strongly associated with a 4.9-years
mortality risk in males and females aged 70–79 years (156).
While in men, the low midthigh muscle cross-sectional region
(as measured by CT) was associated with mortality (HR, 1.26;
95% CI, 1.02–1.55), in women this relationship was not observed
(HR, 0.94; 95% CI, 0.61–1.35). In a cohort of 934 old adults over
65 years old from the In Chianti study it was discovered that the
calf muscle area (as measured by peripheral quantitative CT) was
not associated with a 6-years mortality (111).

In addition, also sarcopenic obesity was not associated
with an increased mortality risk. Lastly, data from 3,153 65+

FIGURE 5 | The changes that usually occur with age such as overall increase of body fat and ectopic fat infiltration and the decrease of skeletal muscle should be

accurately measured in order to add this information to a personalized preventive strategy to counteract age-related disease and disabilities. Although anthropometric

measures, underwater weighting and electric bioimpedance represent cheap, easy and completely safe methods, they do not guarantee a high precision and accuracy

to define BC compartments with none or a scarce definition. On the other hand, imaging techniques can guarantee a very high definition of body compartments either

in fat or lean mass with a high accuracy and precision. However, all the imaging methods expose the subjects to low or medium levels of radiation, are not easily

available and are quite expensive. Depending on the information sought, all these aspects should be taken into account when selecting the method to measure BC.
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Chinese adults, showed similarities between sarcopenic and
non-sarcopenic subjects in terms of 5-years mortality risk
(144). On the whole, these studies systematically show that a
higher mortality risk is not associated with a low muscle mass.
Conversely, a recent study conducted during a 4.6-years follow-
up found that the loss of appendicular muscle mass (as measured
by DXA) was associated with an increased mortality risk in 4,331
males aged 65–93 years (116).

According to the available literature evidence, it is not possible
to rule out the possibility that the increased mortality is actually
caused by the weight loss experienced and the underlying cause of
this loss, considering that in old adults the loss of skeletal muscle
mass is strictly correlated with weight loss (154).

CONCLUSIONS

The changes in BC occurring during lifetime are strictly
related to health status. The increase of fat mass and
the decrease of lean mass typical of elderly have indeed
been associated with the increase of age-related pathologies
and functional decline. A reduced mobility, the onset of
disabilities and falls are among the major cause of reduced
quality of life among elderly. Moreover, the specific increase
of visceral fat in abdomen and of the ectopic fat storage
in other organs and tissues and the decrease of skeletal
muscle mass have been associated with an increased pro-
inflammatory status and insulin resistance that can further
increase the risk of pathologies including CVD and T2D. For
these reasons, the study of composition and distribution of
body masses it is becoming urgent because the inclusion of
information regarding quantity and quality of fat, lean, and
bone tissues could personalize preventive strategies for age-
related pathologies.

Anthropometric measures such as BMI, waist circumference,
waist to hip ratio, underwater weighing and more recently
bioelectrical impedance are widely used to measure BC because
of easy application, low costs and avoid radiation exposure.

However, the precision and accuracy of these methods
is rather low and the level of distinction among different
components of body mass and compartments is poor.

To date, the use of imaging techniques such as US, CT, MRI
and DXA in clinical, but also in research is increasing due to
an elevated precision and accuracy associated with a satisfactory
level of discrimination among body masses.

However, depending on the information requested, specific
advantages and limitations could be envisaged (Figure 5):

i) MRI and CT are imaging modalities that provide
very precise and accurate information for whole body,
inter/intramuscular and visceral fat and for whole body and
regional muscle but they both require a clinical setting, thus
their availability is low, they are quite expensive and the
exposure to radiation is high, in particular for CT;

ii) DXA provides images of whole-body fat and regional muscle
with high precision and accuracy as well as MRI and CT.
It is the most widely used technique for the study of bone
composition and even if it requires a clinical setting it is
relatively available and cheap, while involving a very low
exposure to radiation;

iii) US is mainly used to measure abdominal adiposity. It is a low
cost technique and avoids exposure to radiation, however its
accuracy and reliability is still debated.

Collectively, imaging techniques are very promising in the study
of BC and age-related changes. However, further efforts are
needed to decrease the costs and thus increase the availability
to population.

Lastly, the creation of standardized reference normative
databases should be encouraged among researchers and to this
aim a valid method for the cross-calibration among different
scanners should be established to compare results among
different research centers.
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