
EDITED BY :  Javier Ramírez, Juan Manuel Gorriz, Andres Ortiz, James H. Cole and 

Martin Dyrba

PUBLISHED IN : Frontiers in Neuroinformatics and Frontiers in Aging Neuroscience

DEEP LEARNING IN AGING 
NEUROSCIENCE

https://www.frontiersin.org/research-topics/7877/deep-learning-in-aging-neuroscience
https://www.frontiersin.org/research-topics/7877/deep-learning-in-aging-neuroscience
https://www.frontiersin.org/research-topics/7877/deep-learning-in-aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/neuroinformatics


Frontiers in Aging Neuroscience 1 December 2020 | Deep Learning in Aging Neuroscience

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88966-281-4 

DOI 10.3389/978-2-88966-281-4

https://www.frontiersin.org/research-topics/7877/deep-learning-in-aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:researchtopics@frontiersin.org


Frontiers in Aging Neuroscience 2 December 2020 | Deep Learning in Aging Neuroscience

DEEP LEARNING IN AGING 
NEUROSCIENCE

Topic Editors: 
Javier Ramírez, University of Granada, Spain
Juan Manuel Gorriz, University of Granada, Spain
Andres Ortiz, University of Malaga, Spain
James H. Cole, University College London, United Kingdom
Martin Dyrba, Helmholtz Association of German Research Centers (HZ), Germany

Citation: Ramírez, J., Gorriz, J. M., Ortiz, A., Cole, J. H., Dyrba, M., eds. (2020). 
Deep Learning in Aging Neuroscience. Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-88966-281-4

https://www.frontiersin.org/research-topics/7877/deep-learning-in-aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
http://doi.org/10.3389/978-2-88966-281-4


Frontiers in Aging Neuroscience 3 December 2020 | Deep Learning in Aging Neuroscience

04 Editorial: Deep Learning in Aging Neuroscience

Javier Ramírez, Juan M. Górriz, Andrés Ortiz, James H. Cole and Martin Dyrba

07 Predicting Aging of Brain Metabolic Topography Using Variational 
Autoencoder

Hongyoon Choi, Hyejin Kang and Dong Soo Lee, for the Alzheimer’s 
Disease Neuroimaging Initiative

20 Multivariate Deep Learning Classification of Alzheimer’s Disease Based on 
Hierarchical Partner Matching Independent Component Analysis

Jianping Qiao, Yingru Lv, Chongfeng Cao, Zhishun Wang and Anning Li

32 Evaluation of Functional Decline in Alzheimer’s Dementia Using 3D Deep 
Learning and Group ICA for rs-fMRI Measurements

Muhammad Naveed Iqbal Qureshi, Seungjun Ryu, Joonyoung Song, 
Kun Ho Lee and Boreom Lee

41 Deep Learning and Multiplex Networks for Accurate Modeling of Brain 
Age

Nicola Amoroso, Marianna La Rocca, Loredana Bellantuono, 
Domenico Diacono, Annarita Fanizzi, Eufemia Lella, Angela Lombardi, 
Tommaso Maggipinto, Alfonso Monaco, Sabina Tangaro and 
Roberto Bellotti

53 Evaluation of Enhanced Learning Techniques for Segmenting Ischaemic 
Stroke Lesions in Brain Magnetic Resonance Perfusion Images Using a 
Convolutional Neural Network Scheme

Carlos Uziel Pérez Malla, Maria del C. Valdés Hernández, 
Muhammad Febrian Rachmadi and Taku Komura

69 Dilated Saliency U-Net for White Matter Hyperintensities Segmentation 
Using Irregularity Age Map

Yunhee Jeong, Muhammad Febrian Rachmadi, Maria del C. Valdés-Hernández 
and Taku Komura

83 Parkinson’s Disease Detection Using Isosurfaces-Based Features and 
Convolutional Neural Networks

Andrés Ortiz, Jorge Munilla, Manuel Martínez-Ibañez, Juan M. Górriz, 
Javier Ramírez and Diego Salas-Gonzalez

95 Layer-Wise Relevance Propagation for Explaining Deep Neural Network 
Decisions in MRI-Based Alzheimer’s Disease Classification

Moritz Böhle, Fabian Eitel, Martin Weygandt and Kerstin Ritter on behalf of 
the Alzheimer’s Disease Neuroimaging Initiative

112 Deep Learning in Alzheimer’s Disease: Diagnostic Classification and 
Prognostic Prediction Using Neuroimaging Data

Taeho Jo, Kwangsik Nho and Andrew J. Saykin

Table of Contents

https://www.frontiersin.org/research-topics/7877/deep-learning-in-aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience


EDITORIAL
published: 26 October 2020

doi: 10.3389/fninf.2020.573974

Frontiers in Neuroinformatics | www.frontiersin.org 1 October 2020 | Volume 14 | Article 573974

Edited and reviewed by:

Sean L. Hill,

Centre for Addiction and Mental

Health, Canada

*Correspondence:

Javier Ramírez

javierrp@ugr.es

Received: 22 June 2020

Accepted: 16 September 2020

Published: 26 October 2020

Citation:

Ramírez J, Górriz JM, Ortiz A, Cole JH

and Dyrba M (2020) Editorial: Deep

Learning in Aging Neuroscience.

Front. Neuroinform. 14:573974.

doi: 10.3389/fninf.2020.573974

Editorial: Deep Learning in Aging
Neuroscience

Javier Ramírez 1*, Juan M. Górriz 1, Andrés Ortiz 2, James H. Cole 3,4 and Martin Dyrba 5

1Department Signal Theory, Networking and Communications, University of Granada, Granada, Spain, 2Department of

Communications Engineering, University of Málaga, Málaga, Spain, 3Department of Computer Science, Centre for Medical

Image Computing, University College London, London, United Kingdom, 4Dementia Research Centre, Institute of Neurology,

University College London, London, United Kingdom, 5German Center for Neurodegenerative Diseases (DZNE),

Rostock, Germany

Keywords: deep learning, convolutional neural networks, brain age estimation, neurodegenerative diseases,

automated diagnosis, brain image segmentation

Editorial on the Research Topic

Deep Learning in Aging Neuroscience

1. INTRODUCTION

Deep learning (DL) has revolutionized the field of artificial intelligence by enabling computational
models consisting of multiple processing layers to learn abstract representations of data (Hinton
et al., 2006; Bengio et al., 2006). Conventional machine learning methods have been limited for
decades by the need of expert knowledge to design sophisticated feature extraction algorithms in
the process of transforming raw data into a suitable form for classification. In contrast, deep leaning
methods, as representation-learning techniques, enable the learning model to be fed directly with
raw data in order to discover the representations needed for classification (Krizhevsky et al., 2017;
LeCun et al., 2015).

Currently, an intensive research effort is being devoted to the development of novel
neuroimaging techniques to better understand the mechanisms of the central nervous system
(CNS) and to early recognize age-related neural diseases (Payan and Montana, 2015; Sarraf and
Tofighi, 2016;Martinez-Murcia et al., 2020;Martinez-Murcia et al., 2018, 2016) Ortiz et al.. The vast
amount of data provided by large multicentre studies investigating new biomarkers for age-related
neural diseases presents an opportunity for the development of more accurate deep learningmodels
for early recognition of neurodegeneration as well as the characterization of the progressive course
of neural disorders (Cole and Franke, 2017; Marzban et al., 2019; Segovia et al., 2018; Ortiz et al.,
2016; Wang et al., 2018).

2. RESEARCH TOPIC CONTENT

The aim of this research topic “Deep Learning in Aging Neuroscience,” published in Frontiers in

Aging Neuroscience and Frontiers in Neuroinformatics, was to present the current state of the art in
the theory and practice of deep learning computational modeling techniques in aging neuroscience
with special emphasis on advancing our understanding of the mechanisms of CNS aging and age-
related neural diseases. The research topic features 9 research articles. Most of the contributions
examined disease progression and the relationships between different underlying pathological
changes. Based on their contributions, the research articles were grouped into three main areas:
brain age estimation (2 papers), automatic diagnosis of neurodegenerative diseases (5 papers), and
brain image segmentation models (2 papers).
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2.1. Brain Age Estimation
Predicting brain age based on structural and functional image
data is still a challenging problem. Unveiling the normal aging
of the brain is crucial in understanding the neural correlates
of cognitive aging and neurodegenerative diseases such as
Alzheimer’s disease (AD).

Two papers of the research topic focused on brain age
prediction by means of 18F-FDG brain metabolic topography
data and structural T1-weighted MRI brain scans. Choi et al.
proposed a deep learning model for predicting future brain
metabolic topography by generating brain PET images. The
generative model was based on a variational autoencoder (VAE).
It used an 18F-FDG PET subject image and current age
information as inputs to extract low-dimensional representation
latent features that served as a basis for generation of PET image
patterns corresponding to different brain ages. It was shown
that, in spite of individual variability in age-related change,
future regional metabolic changes were precisely predicted. The
paper by Amoroso et al. presented an approach to predict brain
aging based on structural T1-weighted MRI brain scans. They
combined a complex network framework with deep learning
strategies. Multiplex networks consisting of many layers were
constructed, with each layer representing a single subject, the
nodes being anatomical brain regions and the connections being
derived from their pairwise similarities. A deep neural network
processed nodal metrics, evaluating both the intensity and the
uniformity of connections, to predict subjects’ ages. The model
yielded high accuracies and compared favorably with other state-
of-the-art approaches.

2.2. Automatic Diagnosis of

Neurodegenerative Diseases
This research topic also grouped different approaches for
automatic diagnosis of neurodegenerative diseases based on
deep learning classification models. Qiao et al. proposed a deep
learning classification framework which performed multivariate
data-driven feature extraction for automatic diagnosis of AD.
The method was based on a three-level hierarchical partner
matching independent component analysis (3LHPM-ICA) and
Granger causality (GC) to infer the directional interaction
between the independent components and to extract the effective
connectivity features. Finally, a directed acyclic graph (DAG)
neural network was used for classification. The proposed
methodology was evaluated on a resting-state fMRI dataset
consisting of 34 AD dementia patients and 34 normal controls
(NCs) leading to a classification accuracy of 95.6%, with a
sensitivity of 97.1% and a specificity of 94.1% with leave-one-out
cross validation.

The paper by Qureshi et al. showed an evaluation of functional
decline in AD dementia using three-dimensional convolutional
neural networks (3D-CNN) and group ICA to model functional
connectivity from resting-state fMRI data. The authors divided
the dataset of AD patients into two groups based on dementia
severity with respect to clinical dementia rating (CDR) scores:
very mild to mild (CDR: 0.5–1) vs. moderate to severe (CDR:
2–3) dementia. Results reported a mean balanced classification

accuracy of 92.3%, with specificity of 94.6% and sensitivity
of 89.6%. In addition, medial frontal, sensorimotor, executive
control, dorsal attention, and visual networks were found to be
correlated with dementia severity.

Deep learning techniques showed improved classification
performance in many medical imaging tasks including AD
detection based on structural MRI data. However, these models
are still perceived as being highly non-transparent and difficult
to translate into clinical practice. The paper by Böhle et al.
proposed layer-wise relevance propagation (LRP) to visualize
CNN decisions for AD based on MRI data. This technique yields
importance or relevance maps indicating how much each voxel
is contributing to the final classification outcome, thus showing
the potential of LRP to assist clinicians in interpreting neural
network decisions.

The systematic review by Jo et al. presents recent studies using
deep learning and neuroimaging data for diagnostic classification
of AD. The authors included 16 research articles published
between 2013 and 2018 and classified them according to deep
learning algorithms and neuroimaging data types. Current state-
of-the-art DL approaches yielded accuracies of up to 96.0%
for AD dementia classification and 84.2% for the prediction of
conversion from mild cognitive impairment (MCI) to dementia.
The latter is of particular clinical relevance, as this could
eventually lead to early identification of AD patients, enabling
stratification for clinical trials and targeted interventions to delay
dementia onset. However, the current accuracy of approximately
85% is likely too low for clinical adoption.

A deep learning approach for Parkinson’s disease (PD)
detection using isosurface-based features and convolutional
neural networks was presented in Ortiz et al.. The authors
proposed the use of isosurfaces as a solution to efficiently reduce
the amount of data while keeping the most relevant information.
Here, isosurfaces connect voxels above a specified intensity in a
way similar to contour lines connecting points of equal elevation.
These isosurfaces were then used to implement a classification
system based on the CNN architectures LeNet and AlexNet.
An average accuracy of 95.1% and AUC of 0.97 was achieved
to differentiate PD patients and controls using 123I-Iofluopane
(DaTSCAN) SPECT images. Finally, saliency maps of the last
two-neuron layer were provided to determine which areas of the
input brain images had a greater contribution to the predicted
output class.

2.3. Brain Image Segmentation
Another important topic of research in the field of aging
neuroscience is the development of image segmentation
techniques for the assessment of disease progression. The paper
by Jeong et al. focused on the segmentation of white matter
hyperintensities (WMH) that appear as regions of abnormally
high signal intensity on T2-weighted magnetic resonance image
(MRI) sequences. This imaging marker has been identified as
valuable for dementia and brain aging processes in age-related
neuroscience. The authors developed and evaluated a saliency
U-Net with irregularity age map (IAM) to decrease the U-Net
architectural complexity without performance loss. Their so-
called Dilated Saliency U-Net for WMH segmentation reduced
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the training complexity of the original U-Net segmentation
network and improved the Dice coefficient score to 0.56 with a
sensitivity of 47.5%.

Segmentation of ischaemic stroke lesions remains a challenge
in neuroimaging, especially when dealing with magnetic
resonance perfusion imaging data. Deep learning CNN
architectures developed to date reported low performance
when segmenting ischaemic stroke lesions due to the lesion
heterogeneity with respect to location, shape, size, image
intensity and texture. The paper by Pérez Malla showed an
evaluation of enhanced learning techniques for segmenting
ischaemic stroke lesions in brain magnetic resonance perfusion
images using a CNN scheme. In this way, data augmentation,
transfer learning and post-processing techniques were evaluated
for the segmentation of stroke lesions using the ISLES 2017
dataset, which contains expert annotated diffusion-weighted
perfusion and diffusion brain MRI of 43 stroke patients. Among

the experiments conducted, data augmentation combined
with a binary hole filling procedure achieved the best results,
improving the mean Dice score by 17% compared to the
baseline model.
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Predicting future brain topography can give insight into neural correlates of aging and

neurodegeneration. Due to variability in the aging process, it has been challenging to

precisely estimate brain topographical change according to aging. Here, we predict

age-related brain metabolic change by generating future brain 18F-Fluorodeoxyglucose

PET. A cross-sectional PET dataset of cognitively normal subjects with different age

was used to develop a generative model. The model generated PET images using age

information and characteristic individual features. Predicted regional metabolic changes

were correlated with the real changes obtained by follow-up data. This model was applied

to produce a brain metabolism aging movie by generating PET at different ages. Normal

population distribution of brain metabolic topography at each age was estimated as well.

In addition, a generative model using APOE4 status as well as age as inputs revealed a

significant effect of APOE4 status on age-related metabolic changes particularly in the

calcarine, lingual cortex, hippocampus, and amygdala. It suggested APOE4 could be

a factor affecting individual variability in age-related metabolic degeneration in normal

elderly. This predictive model may not only be extended to understanding the cognitive

aging process, but apply to the development of a preclinical biomarker for various brain

disorders.

Keywords: brain metabolism, FDG PET, variational autoencoder, deep generative model, APOE4

INTRODUCTION

Understanding the normal aging change in the brain is essential to investigate neural correlates
of cognitive aging and various neurodegenerative diseases including Alzheimer’s disease (Jagust
et al., 2009). In particular, the brain metabolism which can be measured by 18F-fluorodeoxyglucose
(FDG) PET has been regarded as a key biomarker for neurodegenerative disorders. Identifying
brain metabolic topography associated with aging could give insight into the neural basis of age-
related cognitive decline and help differentiate normal aging from neurodegenerative disorders.

Although the relationship between cerebral glucose metabolism and aging has been repeatedly
studied, there has been controversy about which brain regions show significant age-related
metabolic decline (Duara et al., 1984; Loessner et al., 1995; Moeller et al., 1996; Petit-Taboue et al.,
1998; Yanase et al., 2005). Individual genetic background and healthy status as well as underlying
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brain disease give rise to the individual variability in age-related
metabolic change (Raz et al., 2005; Grady, 2012). Due to this
variability, we have not been able to predict individual aged
brain understandably. Instead of consideration of individual
variability, previous studies have focused on the trend of overall
aging changes using cross-sectional imaging data with statistical
models such as linear regression. Even though this statistical
analysis could provide overall brain metabolic changes, it was
difficult to individually apply to estimate how far a given subject’s
brain metabolism is from the normal population at the same age.
This individual evaluation of brain metabolism can be extended
to the differentiation between normal and abnormal aging
process. It requires normal population distribution database of
all ages, however, it has been challenging to build a database of
the population distribution of normal brain metabolism for each
age from the limited cross-sectional data with subjects of various
age distribution.

Here, we develop a model for predicting future brain
metabolic topography by generating brain PET image. In this
study, we utilize variational autoencoder (VAE), a type of
unsupervised learning methods, which can generate images
from some representations (VAE) (Kingma and Welling, 2013).
We applied it to predicting FDG brain PET at different
ages. Each FDG PET image combined with the subject’s
current age information was represented by low-dimensional
features and then PET images corresponding different ages
were generated. We also generated population distribution
data of normal brain metabolic topography at different ages,
which represented variability in individual metabolic activity
at each age. As an application of our approach to discovering
factors that potentially affect brain aging, we further investigated
whether APOE4 status impacted on the age-related metabolic
change by using a generative model that uses age and APOE4
information.

MATERIALS AND METHODS

Subjects
In this study, the data included subjects recruited in Alzheimer’s
Disease Neuroimaging Initiative (ADNI) with FDG PET images
(http://adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD, VA Medical Center and University
of California San Francisco. ADNI recruited subjects from over
50 sites across the US and Canada. The primary purpose of
ADNI has been to test whether serial imaging and biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD. For
up-to-date information, see http://www.adni-info.org. Written
informed consent to cognitive testing and neuroimaging prior to
participation was obtained, approved by the institutional review
boards of all participating institutions. Three hundred and ninety
three cognitively normal subjects without Alzheimer’s dementia
or mild cognitive impairment performed baseline FDG PET
(Age: 73.7 ± 5.9, range 56.1–90.1). These PET data and their
age information were used for developing the model. All subjects
underwent the clinical and cognitive assessment at the time of

acquisition. APOE genotyping was performed on DNA samples
obtained from blood. For detailed information on DNA sample
preparation and genotyping, see http://www.adni-info.org. For
393 subjects, 113 (28.8%) were APOE4 carriers and 280 (71.2%)
were APOE4 non-carriers.

FDG PET Preparation
All the PET images were downloaded from ADNI database.
FDG PET images were acquired 30 to 60min and the images
were averaged across the time frames and standardized to
have same voxel size (1.5 × 1.5 × 1.5mm). PET images
were acquired in the 57 sites participating in ADNI, scanner-
specific smoothing was additionally applied (Jagust et al.,
2015). PET images were spatially normalized to the Montreal
Neurological Institute (MNI) space using statistical parametric
mapping (SPM8, www.fil.ion.ucl.ac.uk/spm). Each PET image
was divided by mean FDG uptake of the cerebellum for
normalization.

Variational Autoencoder for PET Volumes
We utilized VAE model to generate virtual PET data according
to age information. VAE-based PET image generation is
summarized in Figure 1A. VAE is a type of unsupervised
learning methods which could represent the high-dimensional
data to low-dimensional features. The major strength of the
VAE is to generate virtual data from latent features. VAE
consisted of two components, encoder and generator. The
encoder reduces the dimension of data by compressing them to
latent features and the generator produces the data from any
values of latent features. The generator of VAE is a probabilistic
generator which assumes that the data were generated from
some conditional distribution and an unobserved variable
z in latent space. Thus, the probabilistic generator can be
defined by pθ (x|z). θ represents the parameters of generator.
The posterior distribution pθ (z|x) can be obtained by prior
distribution p(z), pθ (z|x) ∼ p (z) pθ (x|z). Variational Bayes
learns both parameters, pθ (x|z) and an approximation qφ(z|x)
to the intractable true posterior pθ (z|x). This is achieved by the
loss function,

L (φ, θ) = −Ez∼qφ(z|x)(log pθ (x|z))+ KL(qφ (z|x) ‖ pθ (z))

where KL is Kullback-Leibler divergence between the
learnt latent distribution and the prior distribution pθ (z),
acting as a regularization term (Kingma and Welling,
2013). The first term represents reconstruction loss of
autoencoder.

In this study, we applied VAEwith age information to generate
PET image, so used VAE conditioning on another description of
the data, y (i.e., age information). This model is aimed to generate
data from the conditional distribution as well as latent features z.
Thus, the probabilistic generator and the encoder can be defined
by pθ (x|y, z) and qφ(z|x, y), respectively. The loss function is
changed to,

L (φ, θ) = −Ez∼qφ(z|x,y)(log pθ (x|y, z))+ KL(qφ

(

z
∣

∣x, y
)

‖

pθ (z))
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FIGURE 1 | Metabolic change prediction by generating future brain PET. (A) VAE model which consists of encoder and generator was trained by PET images of

cognitively normal subjects. The encoder represents input PET images to 10 latent features. The generator generates virtual PET image from any values of latent

features and age information. (B) The VAE-based model could generate future brain PET individually using baseline PET image. A subject’s brain PET was encoded

into latent features. We hypothesized that these latent features were unchanged across age. Future brain PET was generated by entering future age and the latent

features. (C) Predicted individually generated PET was compared with real follow-up data. For comparison, delta maps obtained by subtracting baseline from

prediction or follow-up images were generated. (D) Representative cases follow-up PET and individually predicted PET. According to the follow-up data, there was

comparable individual variability in metabolic change. A subject showed globally decreased metabolism (left) while another subject showed increased metabolism in

the frontotemporal cortex (right). Predicted future PET could also reflect the individual variability.

To train VAE, data X and age information y were encoded
into parameters in a latent features Z, and decoder
network reconstructs data from the latent features and
y assuming latent features have normal distributions
around encoded feature z. In practice, generator input
was resampled by the encoded latent features z assuming
normal distribution:zresampled = zencoder + zsd × ε, where

ε represents a random variable (Kingma and Welling,
2013).

Network Architecture and Training
To encode 3-dimensional PET volume, we used multiple
3D convolutional layers for encoding. Specific parameters for
network architecture are summarized in Supplementary Figure 1.
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After the multiple convolutional and pooling layers, 3D feature
volumes are changed to 1-dimensional features. These features
are merged by age information of each subject and additionally
connected to hidden layers and, finally, connected to 10 latent
features. Accordingly, initial PET volume with 79×95×68 matrix
is compressed into 10-dimensional features. Conversely, the
generator consists of convolutional and upsampling layers.
Upsampling simply repeats each dimension of the data. Input
variables of the generator include 10 latent features and age
information. The generator decodes these inputs to PET volume.

This conditional VAE model was trained by gradient descent
algorithm (Adadelta) (Zeiler, 2012) and took 50 epochs for
the training. The VAE was implemented using a deep learning
library, Keras (ver. 1.2.2) with Theano (ver. 0.9.0) backend
(Bastien et al., 2012). Ten percentage of all PET data were
used for the validation set to determine epoch number and
hyperparameters for the neural network architecture.

Estimation of Metabolic Activity in Brain

Regions
The regional metabolic activity of brain regions was obtained
using predefined volume-of-interests (VOI), automated
anatomical labeling (AAL) template. As all PET images were
spatially normalized to MNI template, mean metabolic activity
value of each brain region was simply obtained by masking
specific brain region.

Prediction of Future PET and Comparison

With Follow-up PET
Four-year follow-up FDG brain PET scans were obtained in
26 cognitively normal subjects who underwent baseline PET
scans. Five-year follow-up FDG brain PET scans were acquired
in 11 cognitively normal subjects. Longitudinal change in brain
metabolism was evaluated in these subjects. Using baseline PET
images of the subjects and age, we generated future PET images.
To generate individual future PET image, firstly, baseline PET
image was represented into latent features using the encoder.
We hypothesized that these latent features were unchanged
regardless of subject’s age. Ten latent features of a subject and
future age (i.e., baseline age + 4 or 5) were used for the
generator. We compared real follow-up PET and predicted PET
by using delta maps. To measure similarity between predicted
and real metabolic changes, voxelwise correlation coefficient was
calculated. Similarity measurements were individually obtained.
We statistically tested whether other variables including baseline
age, gender, APOE4 status, Mini-Mental State Examination
(MMSE) and follow-up diagnosis affected the prediction of
metabolic changes. The similarity measurements, correlation
coefficients, of the group according to the APOE4 status,
gender and follow-up diagnosis were statistically compared
using independent t-test. They were correlated with continuous
variables (age and MMSE) using Pearson correlation. We also
additionally evaluated the overall accuracy of predicted image
using mean absolute percentage error (MAPE). MAPE between
predicted and real follow-up PET image was calculated for each
subject.

In addition, overall predicted and real regional changes
were calculated by AAL map. The overall regional metabolic

change was calculated by mean value across all subjects. The
correlation between regional metabolic changes of predicted and
real follow-up PET across brain regions was tested by Pearson
correlation. For visualizing the similarity between predicted and
real metabolic changes, Bland-Altman plots were drawn. Ninety
percentage confidence interval for error of predicted regional
metabolic change was calculated.

Generation of Age-Related Metabolic

Change Movie
The overall age-related metabolic change pattern was evaluated
by the generator model. Firstly, PET data of all subjects were
represented by 10 latent features using the encoder. The mean
feature values were entered into the generator with different age
information between the age of 50 and 100. Thus, we could obtain
representative PET image of each age. To visualize age-related
metabolic change, we generate subtraction map. Generated PET
images with different age were subtracted by a representative
brain PET generated by age of 50. These subtraction maps were
also visualized by an animation.

Population Distribution of Regional

Metabolic Activity at Each Age
We estimated population distribution of regional metabolic
activity by resampling generated PET images. Ten latent features
were randomly resampled assuming each latent feature has
normal distribution. Mean and standard deviation of each latent
feature were determined by the feature values of all subjects.
One Thousand resampled brain PET images were generated and
regional metabolic activity was obtained. Population distribution
of metabolic activity of each region was drawn by histograms and
age-related changes with confidence intervals were drawn.

Metabolic Topography According to Latent

Features
To assess the relationship between latent features and brain
metabolic patterns, brain PET images were generated by
changing values of the latent features. Mean values of latent
features were used for generating PET except for two features for
estimating effects on brain metabolism. These two features were
changed from −2.0 to 2.0 and generated virtual PET images for
plotting.

Variability in Age-Related Metabolic

Change According to the APOE4 Status
To evaluate age-related metabolic change patterns according to
the APOE4 status, another VAE model was trained. Conditional
VAE with age and APOE4 status information was used,
so, conditional variable, y, includes age and APOE4 status
as different dimensions. The training process and network
architectures were same with conditional VAE with age
only.

The overall age-related metabolic change patterns according
to APOE4 status was evaluated as population distribution
estimation. Randomly resampled latent features and different
age values were entered into the generator with each APOE4
status respectively. PET images of each age and APOE4 status
were generated and regional metabolic activity was obtained by
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predefined regions. Population distribution of regional metabolic
activity was estimated for APOE4 carriers and non-carriers. To
find statistically different regions, we calculated the difference
between regional metabolic activity generated by APOE4 carriers
and non-carriers using randomly resampled latent feature values.
To define statistical significance, p-values were computed by the
distribution of the difference. The null hypothesis was that the
regional metabolic difference between APOE4 carriers and non-
carriers is 0. Thus, the statistical significance could be directly
calculated by the proportion of the generated samples where the
difference was lower or higher than 0. Brain regions with different
metabolic activity were found at each age. The difference with
uncorrected p-value < 0.05 was regarded as significant brain
regions which show different metabolism according to APOE4
status.

RESULTS

Prediction of Future Brain Metabolic

Change
The VAE-based model was designed to represent FDG PET
images and corresponding subjects’ age to latent features
(Figure 1A). The posterior part of this model, the generator
component, could produce PET images from any values of the
latent features and age information.

To generate future brain PET images, we firstly obtained
latent features of a subject’s baseline PET image using the
encoder. We assumed that these were not changed according
to aging as characteristic individual features. The features of a
subject were entered into the generator with any age, which
could generate the subject’s virtual brain PET at different
ages (Figure 1B). The model was tested by cognitively healthy
subjects who underwent both baseline and follow-up PET. The
predicted metabolic change was compared with corresponding
real metabolic change computed by follow-up PET data. Each
predicted future brain PET and real follow-up PET was
subtracted from corresponding baseline PET for the comparison
(Figure 1C). As a result, delta maps, the future brain PET
subtracted by the baseline, obtained from real follow-up PET
showed individual variability. Corresponding predicted future
brain PET also showed those variable patterns (Figure 1D).
A subject showed prominently decreased metabolism in the
cerebral cortices, while another showed relatively increased
metabolism in the frontal cortex (Figure 1D). The delta map
obtained by real follow-up was positively correlated with that
obtained by prediction (Supplementary Figure 2).

To compare predicted future brain PET and real follow-up
PET quantitatively, mean metabolic changes of 116 predefined
brain regions across all subjects were calculated. Averaged
predicted changes in regional metabolism was significantly
correlated with the real changes obtained by real follow-up
data (r = 0.59, p < 0.001 and r = 0.59, p < 0.001 for 4-
year and 5-year follow-up, respectively; Figures 2A,B). Bland-
Altman plots showed the difference between predicted and real
regional metabolic activities (Figures 2C,D). The 95% confidence
interval of the prediction error of regional metabolic activity
was −0.027 to 0.027 for 4-year follow-up and −0.027 to 0.048

for 5-year follow-up. In addition, individually predicted and
real metabolic changes were compared. To show how individual
prediction of metabolic change was similar to the real change,
voxelwise correlations of individual delta maps obtained by
follow-up and prediction were calculated. We could find a
trend of high correlation between the two delta maps of the
same subject, even though the prediction of metabolic change
was failed in some subjects (Supplementary Figure 3). The
similarity between predicted and real metabolic change was not
significantly affected by subjects’ age, gender, follow-up diagnosis,
APOE4, and baseline MMSE. As a global measurement of overall
accuracy for predicting future brain PET, we obtained MAPE
by comparing predicted PET with real follow-up PET. MAPE
was 7.8 ± 2.1 and 8.3 ±1.5% for 4-year and 5-year follow-
up, respectively. Notably, MAPE calculated by baseline PET and
reconstructed PET using VAE was 6.6± 1.4% (Figure 2E).

Generating Overall Brain Metabolism

Aging Movie
We applied our model to the assessment of overall regional
metabolic changes. To investigate overall patterns of age-related
brain metabolism, representative brain images were generated
by using different age and mean value of each latent feature
across all subjects (Figure 3A). The representative FDG brain
PET generated from the age of 50 to 90 is presented in Figure 3B.
To visualize the age-related change definitely, the generated FDG
PET with different age was subtracted by the generated PET of
the age of 50 (Figures 3C,D, Supplementary Figure 4). As we
generated brain metabolic topography at all ages, overall age-
related patterns were also visualized by movies (Supplementary
Movies 1, 2).

Figure 3D showed that age-related metabolism decline was
mainly found in the cingulate cortex. Using predefined brain
regions of interests, the metabolic activity of each brain region
was extracted according to aging (Figure 3E). Red dotted lines
represent estimated metabolic decline using the generated PET
obtained by entering mean latent features. Solid lines represent
real metabolic decline obtained by 4-year (Blue) and 5-year
(Green) follow-up data (Figure 3E). The curves estimated by
the VAE model explained that overall metabolic decline with
aging was non-linear. Approximately before 75, the age-related
metabolic decline was steep in the posterior cingulate and caudate
and then the decline became slower after 75.

Distribution of Regional Metabolic Activity

at Each Age
Most brain imaging data including our subjects consist of
imaging with various ages. Thus, it has been challenging to
obtain population distribution of normal brain at each age.
Randomly resampled latent features could generate population
distribution of regional brain metabolic activity for all ages
(Figure 4A). Generated brain PET data from resampled latent
features provide the variety of regional metabolic activity.
Histograms of each brain region at different ages were drawn
(Figure 4B). As aforementioned representative brain metabolic
changes, histograms of posterior cingulate and caudate showed
a trend of left shifting according to aging. Distribution of
overall aging patterns of regional metabolism was also exhibited
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FIGURE 2 | Comparison of predicted metabolic change with real follow-up data. Regional metabolic change from baseline was averaged across subjects for

predicted and follow-up data. Averaged predicted and real changes across the brain regions were significantly correlated for 4-year follow-up images (r = 0.59, p <

0.001) (A) and 5-year follow-up images (r = 0.59, p < 0.001) (B). Bland-Altman plots were drawn for the comparison of predicted and real regional metabolic activity

for 4-year (C) and 5-year PET images (D). The 95% confidence interval of the error of predicted regional metabolism was −0.027 to 0.027 for 4-year follow-up and

−0.027 to 0.048 for 5-year follow-up. Mean absolute percentage error (MAPE) was 1.07% for 4-year follow-up and 1.76% for 5-year follow-up. (E) As a global

measurement of accuracy for predicting future brain PET, MAPE was 7.8 ± 2.1% for 4-year follow-up and 8.3 ±1.5% for 5-year follow-up. MAPE calculated by

baseline PET and output of VAE with baseline age was 6.6 ± 1.4%.

(Figure 4C, Supplementary Figure 5). Dotted lines represent 95%
confidence intervals of regional metabolic activity.

We found individual variability in regional brain metabolism
at different ages. The individual variability was determined by
the distribution of latent features. To show how each latent

feature affects brain metabolism, PET images were generated

by changing latent features. Brain metabolic patterns were

changed according to latent features as shown in Figure 5. As
an example, increased feature 1 was associated with decreased
brain metabolism in the posterior temporal and occipital cortices

and increased feature 2 was associated with increased frontal
metabolism.

APOE4 Status and Age-Related Metabolic

Change
Because clinical variables affect age-related metabolic change
and its variability, we further investigated whether APOE4
status impacts on metabolic changing patterns. Another VAE
model was trained using two conditions, age and APOE4
status (Figure 6A). This model can generate virtual brain
PET images according to the age and APOE4 status. Thus,
age-related metabolic change according to APOE4 can be
estimated by inputting APOE4 positive and negative states,
respectively (Figure 6A). We identified that APOE4 could affect
the variability of age-related metabolic change. The FDG PET
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FIGURE 3 | Overall brain metabolism aging movie by generating representative PET of each age. (A) Using VAE-based model, representative FDG PET images of

different age were generated to identify overall age-related metabolic pattern. Mean latent feature values across all trained subjects were entered into the generator for

representative PET images. (B) Using mean latent features, representative PET images were generated according to aging. (C) Compared with the representative PET

of age of 50, subtraction images were generated. (D) Surface visualization of the subtraction map revealed that age-related decline was mainly found in the cingulate

cortex. (E) Age-related metabolic change in specific brain regions was plotted. Solid lines represent real metabolic change data for 4-year follow-up (blue) and 5-year

follow-up (green). Red dotted lines represent regional metabolic changes estimated by virtually generated PET images.
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FIGURE 4 | Estimating population distribution of brain metabolism at each age. (A) Population distribution of brain metabolic topography was estimated by

resampling latent features. Generated brain PET was repeatedly generated by random latent feature values sampled from the normal distribution. Distribution of

regional metabolism was estimated for all ages. (B) Histograms of distribution of metabolic activity were drawn for putamen, caudate, posterior cingulate, anterior

cingulate, and precuneus at different ages. (C) Confidence intervals of metabolic changes could be estimated by the distribution. Dotted lines represent 95%

confidence interval of regional metabolic activity.

images generated by average latent features and APOE4 positive
and negative status at different ages were subtracted by the
generated PET of the age of 50 (Figure 6B). We found that
metabolic decline in occipital lobe was faster in APOE4 carriers.
Distribution of regional metabolism according to APOE4 status
was estimated (Figure 6C). Using distribution of the metabolic
difference between brainmetabolism generated by APOE4 status,
the significance of the difference in regional metabolism was
estimated (Supplementary Figure 6). The regional metabolic

activity of the calcarine and lingual cortex was significantly higher

in APOE4 carrier than APOE4 non-carrier before 60, while

that of the hippocampus and amygdala was significantly lower

in APOE4 carrier at 50 (Figure 6D). The regional metabolic
activity of posterior cingulate, precuneus and caudate, where
the rapid age-related metabolic decline was found, did not
show a significant difference in accordance with APOE4 status.
Metabolic change in APOE4 carriers and non-carriers of all
brain regions was represented with 95% confidence intervals
(Supplementary Figure 7).

DISCUSSION

In this study, we predicted aging of brain metabolic topography
by using a generative model. Brain metabolic changes are
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FIGURE 5 | Brain metabolic topography according to latent features. As the encoder of VAE compressed PET image into 10 latent features, variability in brain

metabolism is determined by these 10 features. To assess metabolic patterns determined by latent features, brain PET images were generated according to different

latent feature values. An example of the two latent features, increased first latent feature (x-axis) was associated with decreased metabolism in posterior temporal and

occipital cortices. Increased second latent feature (y-axis) was associated with increased metabolism in the frontotemporal cortices at age of 50.

highly variable as aging process and cognitive changes are
affected by several individual factors. Our model aimed at
generating PET images according to the age trained by cross-
sectional PET image data combined with different ages. The
model could provide predicted future metabolic decline and
was validated by real follow-up data. Our results estimate
population distribution of normal brain metabolism at each age.
This approach was extended to investigate the effect of APOE4
status on the variability of regional brain metabolism at different
ages.

Our generative model could find population distribution of
brain metabolic topography for each age as well as predict
age-related metabolic change. Cognitive aging and the age-
related functional decrease are accompanied by increased
individual variability (Ylikoski et al., 1999). This individual
variability is affected by several factors including life experience,
genetic backgrounds, and susceptibility to neuropathology
(Shammi et al., 1998). Furthermore, cognitive variability
in individuals across time tends to occur mainly after

the age of 60 (Wilson et al., 2002). Increased individual
variability in aging has been supported by several functional
neuroimaging studies (Glisky et al., 2001; D’esposito et al.,
2003; Burzynska et al., 2015). Nonetheless, age-related brain
metabolism change has been briefly estimated by observing an
overall correlation between age and metabolism (Duara et al.,
1984; Loessner et al., 1995; Moeller et al., 1996; Petit-Taboue
et al., 1998; Yanase et al., 2005). This previous approach could
not consider individual variability in age-related metabolism
(Ylikoski et al., 1999; Knopman et al., 2014). Furthermore, it
has been difficult to estimate age-dependent normal population
distribution of brain image data as the data consist of subjects
with different ages. A conventional linear regression model
based on overall metabolic changes estimated by all baseline
scans only estimated same decline patterns for all subjects
by calculating a voxelwise linear regression based on the
population.

According to our model, the individual variability of brain
metabolism was represented by the latent features. The latent
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FIGURE 6 | APOE4 status and age-related brain metabolic change. (A) We investigated whether APOE4 status affect age-related metabolic change patterns. A

conditional generative model was developed using APOE4 status as well as age. PET images according to different ages were generated for APOE4 carrier and

non-carrier, respectively. Resampled features provide distribution difference of brain metabolic topography between APOE4 carriers and non-carriers. (B) Delta maps

were generated by subtracting 50-year-old generated images. Metabolic decline was relatively faster in occipital regions of APOE4 carrier. (C) Histograms of regional

metabolic activity were drawn for APOE4 carriers and non-carriers. Before 60, metabolism of calcarine, lingual cortex, hippocampus, and amygdala was different

according to APOE4 status. (D) Age-related regional metabolic activity changes were plotted. Red dots represented APOE4 carriers and blue dots represented

APOE4 non-carriers. Bars represented standard deviations calculated by the distribution. Non-parametric testing revealed the statistical significance. Asterisks

represent uncorrected p < 0.05.
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features determine age-related metabolism patterns because the
generator used only the latent features and age as inputs.
We could indirectly know whether the VAE model uses age
information for generating PET images. Firstly, the generator of
VAE model uses age information in that different metabolism
distributions are shown by different age inputs and same latent
feature values. Furthermore, we compared our VAE model with
another VAE model without age information, which encodes
latent features regardless of age and generates PET from latent
features without age inputs. As a result, the VAE model without
age information extracts more age-dependent latent features
than the VAE model with age information (Supplementary
Figure 8). It suggests that the VAE model without age
information is prone to extract age-dependent image features
with unsupervised manner because age-related changes largely
contribute to the variability in brain metabolism. On the other
hand, our model extracts individual characteristic image features
relatively independent of age by using age information for
the encoder. Each latent feature represented specific metabolic
topography patterns which could be indirectly identified by
generating images according to different feature values as shown
in Figure 5. In this regard, random resampling of the latent
features generated variable brain metabolic topography, which
could be used for estimating population distribution. Our result,
population distribution of brain metabolism at each age can
be applied to quantitatively define regional abnormality in
individuals. Using this distribution, we can define how far a
given individual brain PET is from the normal population. Thus,
this distribution may help to develop quantitative biomarker
which represents abnormal aging process of individual brain
metabolism.

Our model could predict regional patterns of individual
future brain metabolic change, while future prediction of
metabolic change was incorrect in quite a few cases. As shown
in Supplementary Figure 3, the predicted delta maps were
not correlated with real delta maps in individuals at right-
lower portions of the matrix. Individual age-related changes
measured by PET could be the sum of biologic metabolic
change and statistical random errors in FDG PET. The statistical
variability in brain metabolism could affect prediction accuracy
of metabolic changes. Nonetheless, overall regional metabolic
changes obtained by the prediction were highly correlated
with those of real follow-up data as shown in Figure 2. That
was because VAE eventually extracted age-associated metabolic
topography patterns from overall variation of brain metabolism
in the training samples. In other words, because of the high
variability in age-related brain metabolic changes, VAE-based
model generated future brain PET image by approximating
global age-related patterns of training samples. It is closely
related to the limitation of VAE which tends to generate
averaged and blurry images and lack of variety in generated
images (Dosovitskiy and Brox, 2016). Notably, though predicted
overall regional metabolic changes in 5-year follow-up were
significantly correlated with real follow-up data, they tend
to underestimation in the regions with high metabolism and
overestimation in those with low metabolism (Figure 2D).
MAPE of 5-year follow-up was higher than 4-year follow-up

as well as reconstructed images, which suggested the prediction
accuracy could be affected by follow-up intervals. It could be due
to long follow-up interval which could cause more non-aging
factors affecting brain metabolism. Not only aging but several
cognitive, healthy, and nutritional factors affect brain metabolic
patterns (Belanger et al., 2011; Cunnane et al., 2011). Because
of the multiple factors affecting brain metabolism, accurate
individual prediction, particularly for long-term prediction, is
substantially difficult. In this study, we simply assumed that other
factors of future brain PET except age are unchanged. Asmultiple
factors could determine metabolic topography, the generative
model with multiple conditions such as cognitive score may
improve future PET prediction.

Combination of another generative model such as generative
adversarial model may improve the prediction accuracy
(Goodfellow et al., 2014). Briefly, the generative adversarial
model is another generative model using two networks,
generator and discriminator. The generator is trained to
synthesize images from latent features which cannot be
discriminated from the training data, while discriminator is
trained to discriminate real images from generated images.
This type of model also can be combined with conditions such
as aging information. The generative adversarial model can
generate more realistic images compared with VAE, however,
according to our experiments, 3-dimensional PET images
were hard to generate using it. A further modification will be
required to train the model and to generate more accurate
future brain images. In addition, parameters including the
number of latent features, model architectures and optimization
methods could be modified to obtain better results. Although
we tested several models, methods to develop optimized
neural network architectures will be required as a future
work.

Population distribution of metabolic topography revealed that
APOE4 carriers showed higher metabolism in the calcarine and
lingual cortex, while lower metabolism in the hippocampus
and amygdala before 55. The difference in these regions was
not found after 60, which suggested that age-related metabolic
changes of these regions were greater in APOE4 carriers
than non-carriers. The relationship between APOE4 and brain
metabolism in normal elderly has been investigated in previous
studies as well (Oh et al., 2014). The regions which showed
difference metabolism in accordance with APOE4 status were
partly different as the previous study showed that metabolic
decline was faster in composite region-of-interests including
posterior cingulate, precuneus, and lateral parietal cortices
(Oh et al., 2014). Besides, another study using functional
MRI showed APOE4 status affected the differentiation of
functional networks including hippocampal and visual networks
though they used different modality (Trachtenberg et al., 2012).
Structural MRI study showed that APOE4 carriers tended to
have thicker cortex in temporooccipital areas and a steeper
age-related decline in cortical thickness (Espeseth et al., 2008).
Although the regions related to APOE4 were partly different
according to the studies, our result supports APOE4 carriers
could affect functional brain aging patterns. Additionally, by
estimating population distribution, we could identify regional
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metabolic difference at all ages. Our approach can be extended
to the investigation of the association between other clinical
variables and age-related changes. It can eventually help
find the factors that determine the individual variability in
aging.

To our knowledge, this is the first report that applies
a generative model to estimate aging of high dimensional
medical data. As an extended application of our approach,
PET data according to interpretable features, such as sex and
cognitive scores, can be generated by using conditional VAE
which aimed at synthesizing virtual data from the conditional
distribution (Kingma et al., 2014; Sohn et al., 2015). This
conditional generative model can be used for various problems
in neuroimaging analyses. For example, the model may be
used for predicting several task-specific functional brain images
from a single image data. Virtual task-related brain images
can be predicted by inputting tasks as conditional inputs
of VAE model. Furthermore, this approach would improve
conventional statistical voxelwise analyses of neuroimaging data.
An important limitation of the voxelwise analysis is the presence
of multiple covariates (Friston et al., 1994; Petersson et al.,
1999). So far, covariates such as subject’s age and brain volume
have been handled as nuisance variables using general linear
model. Instead, virtual neuroimaging data in same conditions
can be generated by this approach. For instance, we can
compare brain images of different groups by generating virtual
data with controlled covariates such as same age and brain
volume.

As a deep generative model may be able to precisely predict
high dimensional data, the future application will be extended to
various medical implications. Recently, generative models have
been used in various biomedical fields as well as neuroimaging
data. A generative model was applied to generating novel
molecular fingerprints as an artificial intelligence drug discovery
framework (Kadurin et al., 2017). As a recently developed
application to medical image processing, a generative model was
used for automatic lesion segmentation (Alex et al., 2017).

In our study, we predict aging of metabolic topography
by generating PET images. In spite of individual variability
in age-related change, future regional metabolic changes were
precisely predicted. Population distribution of normal brain
metabolism at different ages was estimated. It revealed that
regional metabolic decline was different according to the APOE4
status. This brain metabolic change prediction method can
provide a plausible explanation of individual variability in
cognitive aging. Furthermore, we expect that this approach will
be extended to the development of a preclinical biomarker for
several neurodegenerative disorders as well as defining abnormal
brain aging.
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Machine learning and pattern recognition have been widely investigated in order to
look for the biomarkers of Alzheimer’s disease (AD). However, most existing methods
extract features by seed-based correlation, which not only requires prior information
but also ignores the relationship between resting state functional magnetic resonance
imaging (rs-fMRI) voxels. In this study, we proposed a deep learning classification
framework with multivariate data-driven based feature extraction for automatic diagnosis
of AD. Specifically, a three-level hierarchical partner matching independent components
analysis (3LHPM-ICA) approach was proposed first in order to address the issues in
spatial individual ICA, including the uncertainty of the numbers of components, the
randomness of initial values, and the correspondence of ICs of multiple subjects,
resulting in stable and reliable ICs which were applied as the intrinsic brain functional
connectivity (FC) features. Second, Granger causality (GC) was utilized to infer directional
interaction between the ICs that were identified by the 3LHPM-ICA method and extract
the effective connectivity features. Finally, a deep learning classification framework
was developed to distinguish AD from controls by fusing the functional and effective
connectivities. A resting state fMRI dataset containing 34 AD patients and 34 normal
controls (NCs) was applied to the multivariate deep learning platform, leading to
a classification accuracy of 95.59%, with a sensitivity of 97.06% and a specificity
of 94.12% with leave-one-out cross validation (LOOCV). The experimental results
demonstrated that the measures of neural connectivities of ICA and GC followed by
deep learning classification represented the most powerful methods of distinguishing AD
clinical data from NCs, and these aberrant brain connectivities might serve as robust
brain biomarkers for AD. This approach also allows for expansion of the methodology to
classify other psychiatric disorders.
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disease
characterized by cognitive and intellectual deficits that are
serious enough to interfere with daily life. It usually starts
slowly and worsens over time by destroying brain cells, leading
to memory loss, problems performing familiar tasks, vision
problems, thinking, reasoning, and personality changes (Burns
and Iliffe, 2009; Querfurth and LaFerla, 2010). Gradually, bodily
functions are lost, ultimately leading to death (Alzheimer’s
Association, 2011). With the aging of the world population, AD
has become a serious problem to the health the elderly people
and a huge burden to the healthcare system. Nowadays, AD
can only be slowed down and delayed by drugs, and effective
treatment remains elusive (Jack et al., 2008). The diagnosis of
AD is usually based on cognitive impairments relating to daily
activities or positive physiopathologic markers of AD, such as an
abnormal level of amyloid beta and/or tau in the cerebrospinal
fluid (Dubois et al., 2014). Therefore, it is of great interest to
develop objective biomarkers of AD patients with the help of
neuroimaging studies in order to assist AD clinical diagnosis and
monitor the efficacy of treatment.

Brain imaging technology, combined with advanced signal
processing approaches, has been actively applied to investigate
the underlying biological or neurological mechanisms and
to discover differences between AD patients and normal
controls (NCs) for AD diagnosis or prognosis (Mirzaei et al.,
2016). Positron emission tomography (PET) accessed the
pathophysiologic markers of AD as reductions of glucose
metabolism in the parietal, posterior cingulate and temporal
brain regions of AD patients (Diehl et al., 2004). Additionally,
high resolution structural magnetic resonance imaging (sMRI)
studies have shown that neuroimaging measurements included
cortical thickness (Thompson et al., 2004; Lerch et al., 2008;
Desikan et al., 2009; Dickerson et al., 2009), gray matter density
(Dai et al., 2012; LiuM. et al., 2015; Liu et al., 2016), hippocampal
volume and shape (Colliot et al., 2008; Fan et al., 2008; Hua
et al., 2008; Chupin et al., 2009; Tsao et al., 2017). Histogram
characteristics of regions of interest (ROIs) in the whole brain
(Magnin et al., 2009) could be investigated as brain features
for the classification between AD and NC. Furthermore, the
measures of diffusion tensor imaging (DTI) such as fractional
anisotropy (FA) and mean diffusivity (MD), which indicated
white matter (WM) fiber tract integrity, have been reported
to discriminate AD from NC (Dyrba et al., 2013). Another
study reported that the WM tracts connecting brain regions
defined by 41 Brodmann areas were reconstructed as the
brain connectivity network and the graphs of the connectivity
matrices were described as feature vectors for the classification
of AD (Ebadi et al., 2017). Moreover, the absolute and relative
spectral power, distribution of spectral power, and measures of
spatial synchronization were calculated from recordings of the
electroencephalography (EEG) by following classificationmodels
for the clinical diagnosis of AD (Lehmann et al., 2007). The
lagged linear connectivity of predefined ROIs was also used as
an EEG marker of AD (Babiloni et al., 2016; Triggiani et al.,
2017).

Besides, resting state functional MRI (rs-fMRI) combined
with machine learning has played an important role in
identifying biomarkers of AD. Various classification features of
AD have been detected in previous studies, such as the amplitude
of low frequency fluctuations (Dai et al., 2012) or hippocampal
correlation of low frequency components (Li et al., 2002),
regional homogeneity (Dai et al., 2012), functional correlation
strength of 90 ROIs in terms of the automated anatomical
labeling (AAL) atlas (Dai et al., 2012), whole-brain (Chen et al.,
2011; Ju et al., 2017) or selected regional (Wang K. et al.,
2006) functional correlation connectivity matrices based on AAL
or other atlas (Khazaee et al., 2016), covariance connectivity
matrices (Challis et al., 2015), and graph-theoretical measures
(Dyrba et al., 2015; Khazaee et al., 2015, 2017). However,
most of the existing studies focus on seed-based correlation
analysis which needed a prior (such as atlas) and ignored the
relationship between voxels of brain images. The performance
of the seed-based correlation methods may be unstable due
to the different seeds or atlas as well as the error of the
registration processing (Wang et al., 2009; Zalesky et al., 2010;
Craddock et al., 2012). Therefore, as a multivariate data-driven
based method, independent component analysis (ICA) was
investigated to extract features for automatic classification of AD
in the study, which could identify the underlying data structure
by counting for the relationship between voxels and without need
of prior information.

ICA has been widely applied for analyzing neuroimaging
data (Calhoun et al., 2009) and acknowledged as one of the
two most commonly used methods in functional connectivity
(FC) studies (Zhang and Raichle, 2010). At present, there are
two kinds of ICA methods applied to fMRI: individual ICA and
group ICA. Previous studies have demonstrated that the AD
patients displayed lower FC within the default mode network
(DMN) identified by spatial individual ICA (Toussaint et al.,
2014) or group ICA (Binnewijzend et al., 2012). A recent study
reported that the FC matrices obtained by group ICA and the
graph properties can be applied for the classification of AD
(de Vos et al., 2018). However, compared with group ICA,
the specificity of the individuals can be preserved better in the
individual ICAmethod because a single temporally concatenated
data set of all subjects is decomposed into ICs in group ICA.
This leads to the possibility that the obtained ICs may not
be maximally spatially independent for single subjects and
degrades the precision of the identified functional brain network.
Therefore, this study focuses on the individual ICA in order to
extract the distinguishable features and predict the individuals
with AD. However, there are still some problems in individual
ICA method. First, the output order of ICs is uncertain,
leading to the difficult establishment of the correspondence
between the ICs or functional networks of multiple subjects.
Second, the number of components must be defined before
ICA is performed. Various brain functional networks might be
obtained when the specified number is different. Lastly, the FC
patterns resulting from multiple implementations of the same
ICA algorithm on the same fMRI data may be inconsistent
because of the randomness of the initial value in the ICA
algorithm.
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To address the issues mentioned above, we proposed a
three-level hierarchical partner matching ICA (3LHPM-ICA)
approach, which could identify the stable and reproducible
ICs across multiple individuals. Then the extracted FC features
were fused with the effective connectivity matrices computed
by Granger causality (GC). Finally, the two-dimensional feature
matrices were entered into the deep learning classifier to
distinguish AD from NC. The aim of the current study was to
detect the underlying fMRI data structure and biomarkers of AD
with the multivariate data-driven based feature extraction and
deep learning platform by counting for the relationship between
voxels without needing prior information.

MATERIALS AND METHODS

Participants
Thirty-four participants with mild AD (17 females, 17 males,
mean age 68.64 ± 9.85 years, education 11.47 ± 3.49 years)
were recruited from a memory outpatient clinic at the Huashan
Hospital of Fudan University. Thirty-four age-matched NCs
(13 females, 21 males, mean age 65.55 ± 8.98 years, education
11.31 ± 3.75 years) were recruited by public advertisement to
take part in the study. All AD participants fulfilled the following
clinical criteria: the National Institute of Neurological and
Communicative Disorders and Stroke/Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA; McKhann
et al., 1984) criteria for AD, Mini Mental State Examination
(MMSE) scores between 19 and 23 (inclusive), Clinical Dementia
Rating (CDR) scores (Morris, 1993) of 1.0, Hachinski Ischemic
Scale (HIS) scores less than 4.0 for the exclusion of vascular
dementia and mixed dementia, and there were not any
structural abnormalities other than atrophy in MRI scans. A
standard diagnostic examination that included physical and
neurological examination, medical history taking, extensive
neuropsychological assessments and screening laboratory tests,
was implemented for all patients. The mean MMSE score of
AD group in this study was 21.50 ± 1.61. All NC subjects
had normal neurological examinations, with a CDR score of 0
and independently functioning community membership with
no history of neurological or psychiatric disorders, cognitive
complaints, brain damage or psychoactive medication. All
participants were right-handed with ten or more years of
education. This study was carried out in accordance with
the recommendations of NINCDS-ADRDA, the Institutional
Review Board of Huashan Hospital of Fudan University with
written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the Institutional Review
Board of Huashan Hospital of Fudan University.

Image Acquisition
Imaging was performed on a Siemens Verio 3.0 Tesla MRI
scanner (Siemens, Erlangen, Germany). The head of each
participant was snugly fixed by using foam pads to reduce head
movements and scanner noise. Participants were instructed to
rest with their eyes closed but not to fall asleep during scanning.
Resting state fMRI data were acquired using a T2∗-weighted

echoplanar imaging (EPI) with blood oxygen level dependent
(BOLD) contrast pulse sequence. Thirty-three contiguous axial
slices were acquired along the anterior commissure-posterior
commissure (AC-PC) plane. The acquisition parameters were
as follows: matrix = 64 × 64, field of view (FOV) = 20 cm,
repetition time (TR) = 2,000 ms, echo time (TE) = 35 ms,
voxel size = 3.0 × 3.0 × 4.0 mm3, flip angle = 90◦, slice
thickness = 4 mm. The sequence took 6 min and 40 s, resulting
in a total of 200 volumes.

Image Analysis
Preprocessing
All preprocessing steps of the resting state fMRI images were
performed with SPM12 (Welcome Department of Imaging
Neuroscience, London, United Kingdom) implemented in
MATLAB. The functional scans were slice time corrected for
the interleaved acquisition, spatially realigned to the first scan
to correct for head movements, normalized to the Montreal
Neurological Institute (MNI) coordinate system and spatially
smoothed with an isotropic 8 mm full-width at half-maximum
(FWHM) Gaussian kernel.

Functional Connectivity Analysis Based on
3LHPM-ICA
In this study, a 3LHPM-ICA approach was proposed in order to
solve the problems of individual ICA method. These included
the uncertainty of the output ICs order, the selection of the
number of components, and the randomness of the initial value
in the ICA algorithm, which could identify the reliable and stable
ICs and obtain the intrinsic brain functional networks. Spatial
ICA was performed on the preprocessed fMRI images for each
participant. The obtained ICs were maps that were maximally
spatially independent for each subject and represented the brain
functional subnetworks. The mixing matrix represented time
courses of the ICs, which represented the changes of the brain
functional networks over time.

The number of ICs needs to be specified before ICA is
performed. One cannot, however, know a priori the single
number of components to generate with ICA that is ‘‘optimal’’ for
the identification of reproducible components across individuals.
Therefore, the principles of information criteria were applied
to determine the number of sets of ICs in this study. We
combined minimum description length (Calhoun et al., 2001)
and Akaike’s information criterion (Wang et al., 2011a) to
estimate the interval (lower and upper bounds) and step size
of the numbers of ICs. Additionally, the initial values of
the ICA algorithm are random, meaning that the objective
function in the ICA algorithm may fall into a different local
extremum. As a result, the inconsistent ICs may be produced
when the same ICA algorithm is performed on the same
subject with the same number of components. Accordingly,
in this study, the spatial ICA algorithm was run several
times with the estimated numbers of ICs on each individual
subject. Then the correspondence of ICs between different
subjects with a set of numbers of ICs was established by the
hierarchical partner matching method, which we proposed and
published previously (Wang et al., 2011a; Qiao et al., 2015,

Frontiers in Aging Neuroscience | www.frontiersin.org 3 December 2018 | Volume 10 | Article 41722

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Qiao et al. Deep Learning Classification of AD via ICA

FIGURE 1 | The flowchart of the three-level hierarchical partner matching independent component analysis (3LHPM-ICA) algorithm.

2017). In detail, the proposed 3LHPM-ICA approach consists
of three levels as follows and its framework is shown in
Figure 1.

In the first level, in order to address the problem of the
randomness of the initial values in the ICA algorithm, we
inputted the fMRI data of each subject and performed spatial ICA
by P multiplied with the single number of ICs. Then the ICs of
the subject (denoted as subject Aj) were clustered by the density-
based clustering algorithm which had high efficiency and low
complexity (Rodriguez and Laio, 2014). Specifically, each IC was
considered as one point in the high dimensional space. The local
density of the point and its distance from points of higher density
were computed for each data point. Here, the Pearson correlation
coefficient was applied to measure the distance between two
points. Then, the local density and distance of all points were
sorted in descending order. The first K points were identified as
center points. After that, the distances from all other points to
the center points were calculated for group assignment. Finally,
a group map (GM) was generated by running one-sample t-tests
on each group of ICs.

In the second level, in order to solve the problem of the
correspondence of ICs across different individuals, the GMs of
all the subjects {A1, A2, . . ., AB} that generated with the same
single number of ICs were matched by the partner matching
method, which we proposed and published previously (Wang
and Peterson, 2008). The Tanimoto distance was used tomeasure
the similarity between GMs. Given a GMi of subject A1, the
indices of spatial similarity between GMi and all the GMs of
subject A2 were calculated. The GMj of subject A2 was selected,
which had the maximum similarity index with GMi of subject
A1 among all the GMs of subject A2. After that, the similarity
indices between GMj of subject A2 and all the GMs of subject
A1 were calculated. The GMk of subject A1 was selected which
had the maximum similarity index with GMj of subject A2
among all the GMs of subject A1. If k = i, then the matching
was bidirectional, and we considered GMi of subject A1 and
GMj of subject A2 to be partner matched. This procedure was
repeated to find all pairs of GMs that are bidirectionally matched

between subject A1 and A2. Similarly, the partner matching
method was performed to identify matching GMs across all the
subjects. A collection of GMs that match across subjects was
termed as a cluster. Finally, a cluster map (CM) was generated
by running one-sample t-tests on each cluster of GMs, which
represented a spatial pattern that tends to be present across
subjects.

In the third level, in order to figure out the correspondence
of ICs across different numbers, the CMs of all the subjects that
generated with the estimated multiple numbers of ICs L = {n1,
n2, . . ., nN} were clustered by the partner matching method,
identifying corresponding CMs across the different sets that
were obtained with different numbers of ICs. For each cluster
of CMs, the cluster with the highest Cronbach’s Alpha was
selected as the optimal cluster. The CMs were derived from GMs
and GMs were derived from ICs, thus the most reliable and
stable ICs could be obtained by backward tracing from optimal
clusters.

Effective Connectivity Analysis Based on Granger
Causality
GC has been widely applied to assess brain effective connectivity
in fMRI data analysis. Compared with the structural equation
model and dynamic causal model, GC analysis is very consistent
with the actual situation because it considers time and does not
require any prior knowledge (Goebel et al., 2003; Cohen Kadosh
et al., 2016). In this study, we computed the GC index (GCI) to
assess the causal influence between the ICs that were identified
by the 3LHPM-ICA method.

Let X(t) denote the zero-mean vector time course of an ICs
within region X, and Y(t) denote the zero-mean vector time
course of another IC within region Y. Then X(t) can be estimated
by applying an autoregressive (AR) model of order P as follows:

X(t) =
∑P

i = 1
αiX(t − i)+ εX (1)

where αi are coefficients of theARmodel and εX is the zero-mean
residual. The Y(t) is then added into the above AR model and

Frontiers in Aging Neuroscience | www.frontiersin.org 4 December 2018 | Volume 10 | Article 41723

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Qiao et al. Deep Learning Classification of AD via ICA

X(t) can be estimated by

X(t) =
∑P

i = 1
αiX(t − i)+

∑P

j = 1
βjY(t − j)+ εXY (2)

where β j are coefficients of the AR model and εXY is the new
zero-mean residual. To assess whether the addition of Y(t)
improves the prediction compared with the use of X(t) alone, the
GCI from Y to X can be calculated by

GCIY→X = 1−
var(εXY)
var(εX)

(3)

where var(εXY ) and (εX) are the variance of the estimation errors
or residuals εXY and εX , respectively. If GCI(Y→X) is greater than
zero, the addition of the previous values of Y(t) into the right
side of Equation (1) significantly improves the prediction of the
current values of X(t) and we can deem that Y(t) Granger caused
X(t), that is, region Y has a causal influence and directional
interaction to region X.

In this way, a GCI matrix was obtained by repeating the
above procedure to all ICs for each subject. In the GCI effective
connectivity matrix, rows and columns of the matrix represented
different ICs. Each cell of the matrix represented a distinct
connection between two ICs corresponding to specific row and
column. The diagonal value of the matrix was NaN because
there was no meaningful directional interaction from one IC to
the same one. The GCI matrices of all subjects were computed,
which would be applied as an effective feature in the following
classifier.

Feature Fusion and Classification
The deep learning classification framework in this study consists
of four steps: multivariate analysis, feature extraction, feature
fusion and directed acyclic graph (DAG) network, as shown in
Figure 2. The details can be stated as follows. First, reproducible

ICs were obtained by performing 3LHPM-ICA on training
resting state fMRI data. Then the GCIs were computed to infer
directional interaction between these brain regions by extracting
the time course of each IC within each pattern. Second, the
z-score maps of the reliable ICs were then entered into a
two-sample t-test model implemented in the SPM12 factorial
module to detect group difference of the FC between AD
and NC. The ROIs with significant differences (p < 0.05,
uncorrected) between the two groups of the training set were
extracted as FC features for the pattern recognition analyses.
In addition, GC matrices computed by the time course of
significant ICs were selected as effective connectivity features.
Third, functional and effective connectivity features were fused
by replacing the diagonal values NaN in the GC matrices as
IC features. In this way, a matrix feature was obtained for each
subject. Finally, the two-dimensional characteristic matrices of
the training data were inputted into a deep learning classifier
model. Given test fMRI data, the same steps were conducted
and a feature matrix was entered into the pretrained network
for the prediction of AD/NC. A leave-one-out cross-validation
(LOOCV) strategy was applied to evaluate the performance of
the classifier.

A DAG network is a deep learning method which has its
layers arranged as a DAG and a more complex architecture
where layers can have inputs from, or outputs to, multiple
layers. In this study, we implemented the DAG network for
deep learning with the neural network toolbox in MATLAB
R2018a, as shown in Figure 3, which consisted of a main
branch with layers connected sequentially and a shortcut
connection that enabled the parameter gradients to flow more
easily from the output layer to the earlier layers of the
network. The main branch contained an image input layer, three
convolutional layers, three batch normalization layers, three
rectified linear unit (ReLU) layers, an average pooling layer, a

FIGURE 2 | The framework of the proposed deep learning classification algorithm based on 3LHPM-ICA and Granger causality (GC).
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FIGURE 3 | The architecture of the directed acyclic graph (DAG) network.

fully connected layer, a softmax layer and classification layer. The
shortcut connection contained a single one-by-one convolutional
layer that had an added benefit of not adding any extra
parameters or computational complexity. Batch normalization
layers between convolutional layers and ReLU layers normalized
the activations and gradients propagating through a network,
resulting in speeding up network training and reducing the
sensitivity to network initialization. The average pooling layer
was applied as a down-sampling operation that reduced the
spatial size of the feature map and removed redundant spatial
information.

RESULTS

ICA-Based Functional Connectivity
We performed the 3LHPM-ICA method on the training fMRI
data. The numbers of components were set to be 20 to 130, with
increments of 10 which were determined by information criteria.
In the first level, we performed 10 times ICA with the single
number of ICs on the fMRI data of each subject. The first K points
were identified as center points in the density-based clustering
algorithm. The K was set to be n plus 10 experimentally, where
n is the number of ICs. In the second level, we performed the
partner matching method on the training subjects with the same
single number of ICs. The numbers of the CMs were 29, 36, 46,
55, 62, 69, 77, 86, 95, 102, 113 and 122, while the numbers of
the ICs were 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 and
130, respectively. In the third level, 27 cluster of clusters were
obtained after performing the partner matching method. Three

artifactual cluster of clusters were excluded. Finally, 24 clusters of
ICs that were significantly reproducible in their spatial patterns
across individuals were identified. The general linear model in
SPM was utilized to perform a one-sample t-test on each of
the clusters to generate IC maps that represented FC features.
After that, the reproducible ICs of AD and NC were compared
in a second-level random effects analysis, covarying with age
and sex. Compared with NC, FC in AD was significantly
decreased in various cortical and subcortical areas related to
memory, emotion and cognition, including the middle frontal
gyrus (MFG), superior medial gyrus (SMG), middle orbital gyrus
(MOG), inferior frontal gyrus (IFG), supplementary motor area
(SMA), medial frontal gyrus (MedFG), hippocampus, insula,
putamen, anterior cingulate cortex (ACC), posterior cingulate
cortex (PCC), superior parietal lobule (SPL), superior temporal
gyrus (STG), and middle temporal gyrus (MTG; Figure 4,
Table 1).

GC Based Effective Connectivity
The effective connectivity was measured by computing the
GC of time courses of 24 ICs identified by 3LHPM-ICA. The
24 × 24 GCI matrix was obtained for each subject. The diagonal
of the GCI matrix was set to beNaN because there is no meaning
for the GC from brain area X to itself. Finally, the functional
and effective connectivity features were fused by replacing the
diagonal values of the GCI matrix with IC values in the z-score
IC maps.

Classification
We applied the DAG network for deep learning to classify
and predict the AD/NC. The image size at the input layer in
Figure 3 was 24 × 24 × 1. The filter size in the convolutional
layer ‘‘conv_1’’ was 5 × 5. The number of filters was 16, which
represented the number of neurons that connect to the same
region of the input. The filter size of ‘‘conv_2’’ and ‘‘conv_3’’ were
3 × 3 with 32 filters. The window size in the average pooling
layer ‘‘avpool’’ was 3 × 3 with stride (or step size) 2 × 2. The
filter size in the convolutional layer of the shortcut connection
‘‘skipConv’’ was 1 × 1 with 32 filters. The training lasted for
20 epochs. The batch size was 20. The iteration per epoch was
three and the total iteration was 60. The initial learning rate was
set to be 0.01. The learning rate was multiplied by a factor every
time a certain number of epochs had passed. The multiplicative
factor was 0.1 and the number of epochs between multiplications
was 10. The output was a 1× 2 vector containing the probabilities
of the test data belonging to AD or NC.

In every fold of LOOCV, the number of the training data
was 67 and the last one was used as testing data. In the training
stage, we performed 3LHPM-ICA and GC on the 67 training
data. The extracted features were then entered into the classifier
model. In the testing stage, the ICA was performed on the
testing data. Then the most similar ICs of the testing data
were selected by computing the Euclidean distance between
the ICs of the testing data and the reproducible ICs from the
training data. Finally, the ROIs of the selected ICs and GCIs
were entered into the classifier for the prediction of AD/NC. For
each subject, the 24 by 24 feature matrix was entered into the
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FIGURE 4 | Comparisons of functional connectivity (FC) between Alzheimer’s disease (AD) and normal controls (NCs). The first and fourth columns of three display
the random-effect group connectivity maps detected from the AD. Within each column of three, the first column is a coronal view, the second is a sagittal view, and
the third is an axial view. The second and fifth columns of three display the group connectivity maps detected from the NCs. Each row displays one group
connectivity map generated by applying a one-sample t-test to the clusters of ICs. Any two group connectivity maps within the same row across the first three and
second three columns (as well as the fourth three and fifth three columns) are significantly similar to one another in their spatial configurations. The third and sixth
columns of three display t-contrast maps comparing the group connectivity maps from the AD and control participants. MFG, middle frontal gyrus; MedFG, medial
frontal gyrus; SMG, superior medial gyrus; MOG, middle orbital gyrus; IFG pOp, inferior frontal gyrus (p. Opercularis); IFG pTri, inferior frontal gyrus (p. Triangularis);
SMA, supplementary motor area; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; SPL, superior parietal lobule, IPL, inferior parietal lobule; PCL,
paracentral lobule; STG, superior temporal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; PreCG, precentral gyrus; LG, lingual gyrus.

deep learning network. With LOOCV strategy, a classification
accuracy of 95.59% with a sensitivity of 97.06% and a specificity
of 94.12% was achieved. For comparison the classifiers, including
LeNet5 (LeCun et al., 1998), the kernel support vector machine
(SVM), the maximum uncertainty linear discriminant analysis
(MDLA; Dai et al., 2012) and autoencoder (AE), were also
performed. The deep neural network with stacked AEs consisted
of five layers: an input layer, two hidden layers, a softmax layer
and a classification layer. First, we trained the hidden layers
individually in an unsupervised fashion using AEs. Then we

trained a softmax layer and joined the layers together to form
a stacked network. Finally, a supervised fine-tuning stage was
applied to improve the classification performance by performing
backpropagation on the whole multilayer network. The numbers
of nodes were set to be 100 and 50 in the first and second
hidden layers, respectively. A Gaussian kernel with a width of
0.5 was used in SVM. Several types of features, including the
AAL atlas-based features, GC features and combined ICA and
GC features with different classifiers were also implemented.
The AAL atlas-based features were 90 × 90 matrices obtained

Frontiers in Aging Neuroscience | www.frontiersin.org 7 December 2018 | Volume 10 | Article 41726

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Qiao et al. Deep Learning Classification of AD via ICA

TABLE 1 | Location and comparisons of independent component (IC) maps
between Alzheimer’s disease (AD) and normal control (NC).

Brain areas Location Peak location textitT

Side BA x textity textitz statistic

AD vs. NC (negative)
Middle frontal gyrus L 8 −42 26 43 −4.06
Superior medial gyrus L 10 −1 59 16 −4.05
Calcarine gyrus L 17 −1 −88 4 −4.00
Middle orbital gyrus L 10 −36 50 −2 −3.67
Inferior frontal gyrus R 44 60 20 19 −3.48

(p. Opercularis)
Inferior frontal gyrus L 45 −54 26 22 −3.28

(p. Triangularis)
Supplementary motor area R 6 3 5 52 −3.03
Precentral gyrus L 6 −39 −19 67 −3.08
Medial frontal gyrus L 11 −9 38 −11 −3.97

R 11 6 38 −14 −3.35
Insula L 13 −39 5 4 −2.56
Anterior cingulate cortex L 32 −1 41 22 −6.55
Posterior cingulate cortex L 23 −3 −46 28 −2.94
Hippocampus L 54 −27 −7 −20 −4.60
Amygdala L 53 −24 −1 −11 −3.86
Putamen L 49 −21 8 7 −2.92
Cuneus L 18 −3 −79 25 −2.48
Lingual gyrus L 18 −9 −52 1 −2.84
Superior parietal lobule L 7 −21 −64 55 −2.63
Inferior parietal lobule R 7 36 −43 46 −3.41
Paracentral lobule R 4 3 −37 64 −3.11
Superior temporal gyrus R 22 48 −34 19 −3.23
Middle temporal gyrus R 22 48 −11 −14 −3.35
Inferior temporal gyrus R 20 44 −67 −5 −2.35

All coordinates are in the Montreal Neurological Institute (MNI) ICBM 152 template.

by calculating the Pearson correlation coefficients between the
brain regions, excluding the cerebellum, that were defined with
AAL atlas. The upper triangular feature matrices were reshaped
as feature vectors when SVM and MDLA were performed. The
classification results are shown in Table 2. It can be seen that the
classification performance of the DAG network combined with
ICA and GC features is better than the values obtained with any
single type of features or other types of classifiers.

The weights of the features were computed by the coefficients
of the discrimination hyperplane, and the most discriminative
features for classification are shown in Figure 5. The connections

TABLE 2 | Classification performance of different methods with leave-one-out
cross validation (LOOCV).

Methods Accuracy Sensitivity Specificity

AAL atlas based+SVM 77.94% 73.53% 82.35%
AAL atlas based+MDLA 75.0% 79.41% 70.59%
AAL atlas based+LeNet5 79.41% 76.47% 82.35%
AAL atlas based+AE 80.88% 76.47% 85.29%
AAL atlas based+DAG 82.35% 79.41% 85.29%
GC+SVM 83.82% 85.29% 82.35%
GC+MDLA 82.35% 88.24% 76.47%
GC+LeNet5 85.29% 82.35% 88.24%
GC+AE 88.24% 82.35% 94.12%
GC+DAG 88.24% 91.18% 85.29%
ICA+GC+SVM 91.18% 88.24% 94.12%
ICA+GC+MDLA 89.71% 97.06% 82.35%
ICA+GC+LeNet5 92.65% 94.12% 91.18%
ICA+GC+AE 94.12% 97.06% 91.18%
ICA+GC+DAG 95.59% 97.06% 94.12%

with the largest weights are the most informative. It can be
seen that the IC activity in the MOG, IFG, MFG, ACC, insula,
hippocampus, STG, and the effective connections from IFG
to hippocampus, from ITG to precentral gyrus (PreCG), and
from MFG to hippocampus made larger contributions to the
classification.

DISCUSSION

In the current work, we presented a 3LHPM-ICA approach
which addressed the problems in spatial individual ICA
algorithm such as the uncertainty of the number of components,
the randomness of initial values, and the correspondence of ICs
among multiple subjects. Then, we applied the 3LHPM-ICA
method and GC on resting state fMRI data to investigate the
reproducible and stable ICs across individuals. We then obtained
the intrinsic brain functional and effective connectivity feature
matrices. A deep learning framework was finally investigated to
assess if these brain features can serve as biomarkers for AD.

We found significantly decreased intrinsic FC in AD patients
compared to NC in several subcortical regions including the
hippocampus, amygdala, insula and putamen. As one of the
earliest and most widely investigated brain regions in AD,
researchers have correlated alterations in hippocampal activity
and connectivity as well as shrinkage with the presence of AD,
which explains one of the early symptoms in the impairment
of memory, especially the formation of new memories in AD
patients (Wang L. et al., 2006; Allen et al., 2007; Mu and Gage,
2011; Smith et al., 2014). Amygdala atrophy in AD and its
relation to global illness severity have also been reported (Scott
et al., 1991; Barnes et al., 2006; Poulin et al., 2011), elucidating
the aberrant motor behavior, anxiety and irritability of AD
patients. Another positron emission tomographic study of AD
reported the cholinergic deficit in the amygdala, supporting
that the amygdala played an important role in the retention
of affective conditioning and/or memory consolidation and
cross-verified the role of the amygdala in the emotional and
behavioral symptoms of AD (Shinotoh et al., 2003). The
insula is a key region for cognition, emotion and sensory
processes which has been demonstrated with gray matter loss
(Guo et al., 2012), abnormal activities (Lin et al., 2017), and
disrupted connections in AD (Xie et al., 2012; Liu et al., 2018).
Furthermore, the reduced volumes of putamen, which was
correlated with impaired global cognitive performance, might
contribute to cognitive decline in AD (de Jong et al., 2008;
Roh et al., 2011). Consistent with the previous studies, our
findings of decreased brain connectivity in certain subcortical
areas indicated that these alterations might be related to the
memory, emotion, motor and cognition disorders present in AD
patients.

The loss of neurons and synapses in the cerebral cortex of
AD results in gross atrophy of the affected regions, including
degeneration in the temporal gyrus, parietal lobe, and parts of
the frontal cortex and cingulate gyrus. Neuropathological studies
have shown that AD-related degeneration begins in the medial
temporal lobe (Braak and Braak, 1995). The current finding of
decreased FC in the temporal gyrus is in line with previous
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FIGURE 5 | Feature weights in the classification.

reports of temporal gyrus atrophy (Farrow et al., 2007; Frisoni
et al., 2010; Ho et al., 2010) and FC anomalies (Toussaint
et al., 2014), leading to the memory and learning deficits that
are classically observed with early clinical manifestations of
AD. Our results also revealed disrupted resting state functional
connectivities in the DMN, which consists of the PCC, inferior
parietal lobe (IPL) and prefrontal cortex (PFC). The cortical
thinning (Dickerson and Sperling, 2009) and decreased intrinsic
brain activity (He et al., 2007; Wang et al., 2011b) and
connectivity (Greicius et al., 2004; Toussaint et al., 2014) of DMN
have been demonstrated inmany studies. Therefore, our findings
provide further evidence that the aberration of DMN may
result in the episodic memory, visual imagery and mentalizing
disorders in AD. Moreover, as part of the frontostriatal circuit
which is composed of the ACC, PFC and parts of the basal
ganglia, the ACC is involved in effort-based decision making
and executive functions (Stella et al., 2014; Theleritis et al.,
2014; Le Heron et al., 2018). Disruption of the FC in ACC
found in this study might play a pivotal role in apathy, such as
behavioral activation, social motivation and emotional sensitivity
disorders in AD patients. Therefore, the brain connectivity
alterations of the identified cortical and subcortical regions in
this study may be associated with the cognitive and functional
impairment of AD and potentially served as clinical biomarkers
of AD.

The two-dimensional features fused by the FC obtained
by 3LHPM-ICA and effective connectivity derived from GC

were then applied for classification in this study. Compared
with the traditional feature arrangement and fusion method,
which usually reshaped the two dimensional features into
a vector or concatenated different types of features into a
longer feature vector (Wang K. et al., 2006; Chen et al.,
2011; Dai et al., 2012; Dyrba et al., 2015; de Vos et al.,
2018), the two dimensional feature matrices and feature fusion
method used in this study preserved the spatial structural
characteristics of features and provided a more meaningful
way to combine various types of features for classification.
Moreover, the overfitting issue, which may be caused by
high-dimensional feature space in the traditional methods, could
be alleviated due to the two dimensions of features in this
study.

Advanced deep learning techniques have been successfully
applied for the diagnosis of AD based on PET and sMRI (Suk
and Shen, 2013; Liu S. et al., 2015; Ortiz et al., 2016; Lu
et al., 2018; Shi et al., 2018). A recent report constructed a
customized AE architecture with resting-state correlation based
FC to classify mild cognitive impairments from NCs (Ju et al.,
2017). However, different parcellation schemes may generate
different results. Therefore, compared with the correlation-
based method, the data-driven method in this study avoided
the problem whereby the brain parcellation methods may
affect classification performance. The connectivity patterns of
brain networks derived from ICA and GC were stable and
not influenced by different parcellation atlases. Moreover, we
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compared two kinds of deep learning algorithms with the same
inputted features. One was LeNet5 with sequential connected
layers and the other was the DAG network, which consisted
of sequential connected layers and shortcut connections.
Our results demonstrated that the DAG network has better
performance than the sequential network, possibly because
of the ‘‘skip’’ connections between layers with feed-forward
computations.

Several limitations of the present study should be noted. First,
the sample size in this study was not large and future work
should be done on a larger training sample in order to improve
the robustness and generalization of the classification model.
Second, multimodal neuroimaging features such as sMRI and
DTI should also be investigated in addition the resting state
fMRI, which may lead to higher classification accuracy. Third,
we used a binary classification for the prediction of AD/NC.
However, multi-class classification should be considered for its
clinical applications in the future because there are different
stages of AD such as MCI, LMCI and EMCI. Fourth, it would
be more comparable to compare the accuracy results with the
same benchmark datasets. Therefore, future work will focus
on the implementation of different models based on public
datasets such as ADNI. Finally, a light deep architecture with
two-dimensional input images was applied in this study. More
complicated deep learning models should be implemented such
as GoogLeNet, AlexNet, VGG, ResNet and 3D convolutional
neural networks, which may be more appropriate for big

data. Nevertheless, our results suggested that the functional
and effective connectivity features extracted by 3LHPM-ICA
and GC followed by deep learning classification represented
the most powerful method of distinguishing AD from healthy
data. Due to the flexibility of this technique, it has the
potential to be extended to other psychiatric disorders in the
future.
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Purpose: To perform automatic assessment of dementia severity using a deep learning
framework applied to resting-state functional magnetic resonance imaging (rs-fMRI)
data.

Method: We divided 133 Alzheimer’s disease (AD) patients with clinical dementia
rating (CDR) scores from 0.5 to 3 into two groups based on dementia severity; the
groups with very mild/mild (CDR: 0.5–1) and moderate to severe (CDR: 2–3) dementia
consisted of 77 and 56 subjects, respectively. We used rs-fMRI to extract functional
connectivity features, calculated using independent component analysis (ICA), and
performed automated severity classification with three-dimensional convolutional neural
networks (3D-CNNs) based on deep learning.

Results: The mean balanced classification accuracy was 0.923 ± 0.042 (p < 0.001)
with a specificity of 0.946 ± 0.019 and sensitivity of 0.896 ± 0.077. The rs-fMRI data
indicated that the medial frontal, sensorimotor, executive control, dorsal attention, and
visual related networks mainly correlated with dementia severity.

Conclusions: Our CDR-based novel classification using rs-fMRI is an acceptable
objective severity indicator. In the absence of trained neuropsychologists, dementia
severity can be objectively and accurately classified using a 3D-deep learning framework
with rs-fMRI independent components.

Keywords: dementia, progression assessment, imaging biomarkers, independent component analysis,
neuroimaging, convolutional neural network

Abbreviations: 3D-CNN, three-dimensional convolutional neural networks;CDR, clinical dementia rating;CSF, cerebrospinal
fluid; ICA, independent component analysis; rs-fMRI, resting-state functional magnetic resonance imaging; MCI, mild
cognitive impairment.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of
dementia among dementia patients, with a 40%–60% prevalence
(Ferri et al., 2005). It is a devastating illness and results in
major cognitive and behavioral impairments. The established
underlying mechanism is neurodegeneration, which is attributed
to the accumulation of Aβ, hyperphosphorylation of tau proteins,
and neuroinflammation (Leuner et al., 2007; Frautschy and
Cole, 2010; Shadfar et al., 2015). Although molecular chemistry
research on the mechanism of dementia has been conducted,
numerous reports suggest structural and functional changes
in the brain identified using neuroimaging (He et al., 2007;
Solé-Padullés et al., 2009; Adlard et al., 2014). The assessment
and treatment for patients with AD are multi-modal and
are based on the stage of the illness. At each stage, the
physician should alert and help the patients and their families
to anticipate future symptoms and the related care that may
be required. Although dementia symptoms can be controlled,
slowing disease progression down is not a direct treatment for
the pathophysiological mechanism of AD (Cummings and Fox,
2017). Given that most drugs currently used for treatment of
AD patients act by enhancing cholinergic transmission and thus
require viable synapses (DeKosky and Scheff, 1990; Terry and
Buccafusco, 2003; Sarter and Parikh, 2005; Cacabelos, 2007),
evaluation of the stage of dementia by experts is important
for appropriate symptom control; additionally, the evaluation
of viable synapse is important for determining the progression
of the disease (DeKosky and Scheff, 1990; Scheff et al.,
1990).

However, despite numerous neuroimaging studies, staging
of dementia is generally based on past history and mental
status examination by trained neuro-psychiatrists under the
guidelines of the clinical dementia rating scale (CDR; Hughes
et al., 1982). CDR helps the clinicians to rate the severity
of AD and related disorders on a scale from 0 (normal) to
3 (severe stage) based on clinical interviews with a caregiver
and the person with dementia. The areas that are coded are
memory, orientation, judgment, problem-solving, community
affairs, home, and hobbies. Despite the use of CDR, which is
consensual among neuro-psychiatrists, and is based on extensive
research and statistics to ensure the validity of the dementia
severity rating, the diagnostic process mainly depends on the
assessment of clinical symptoms. Furthermore, the diagnostic
criteria of AD involves a substantial observation period and
a reliable informant. In addition, it is too burdensome for a
general doctor to use CDR (Perneczky et al., 2006). Also, CDR
may have limitations in detecting early dementia (Rockwood
et al., 2000; Schafer et al., 2004). Therefore, an additional
tool for rating dementia severity is definitely required, and
neuroimaging techniques may serve to complement the CDR
scale.

Recently, resting-state functional connectivity is regarded as
an important biomarker for AD. Several studies have reported
that AD patients show decreased resting-state functional
connectivity in the default mode network (DMN; Greicius et al.,
2004; Hafkemeijer et al., 2012; Koch et al., 2012; Franciotti

et al., 2013; Krajcovicova et al., 2014; Joo et al., 2016). Although
atrophy was not observed, mild cognitive impairment (MCI)
was associated with decreased functional connectivity of the
medial temporal lobe or DMN region (Jin et al., 2012).
Several resting-state functional magnetic resonance imaging (rs-
fMRI) studies have addressed the issues of early detection,
classification, and prediction in AD, MCI, normal patients, and
subtypes of dementia. Previous reports have provided optimistic
results for the classification of AD, MCI, and healthy normal
aging individuals. Various approaches, such as independent
component analysis (ICA; Fox et al., 2006; Dosenbach et al.,
2007; Sylvester et al., 2009; Zhou et al., 2010), region of
interest (Wang et al., 2006; Chen et al., 2011; Challis et al.,
2015), graph theory (Supekar et al., 2008; Khazaee et al., 2015),
multivoxel pattern analysis using machine learning (Mahmoudi
et al., 2012), and multimodal (Dai et al., 2012; Dyrba et al.,
2015) approaches have shown high performance (72%–94%
accuracy). However, most prior studies have used datasets only
from a single site/source, except for a study in which the AD
neuroimaging initiative (ADNI) dataset was compared to their
in-house dataset for validation of MCI/Normal classification
algorithm (Suk et al., 2016). Therefore, the classification format
of most previous studies strictly followed the form of the
database. The ADNI dataset is aimed at early detection of AD,
and related studies focus on classifying the normal patients,
MCI, and early AD. Therefore, ADNI did not contain adequate
numbers of severe-stage patients diagnosed with CDR 2 or 3
score (late AD).

ICA is an effectivemethod for functional connectivity analysis
of brain imaging data (Lu and Rajapakse, 2006; Rajapakse and
Zhou, 2007; Brier et al., 2012). Previously, numerous studies have
reported greater functional connectivity in the salience (SAL) of
patients with mild dementia (primarily CDR 1) than in normal
individuals (Fox et al., 2006; Dosenbach et al., 2007; Sylvester
et al., 2009; Zhou et al., 2010). In contrast, functional connectivity
increments of the SAL were seen at levels between CDR 0 and
CDR 0.5, which implicates a reduced correlation at CDR 1.
This difference depends on the method used to acquire the
independent components (Brier et al., 2012). In the past, the ICA
components were reviewed by trained clinicians for the selection
of meaningful components (Oh et al., 2017). Currently, ICA
components can be automatically selected using highly advanced
algorithms (Beckmann et al., 2009; Filippini et al., 2009). On
applying these algorithms, we can consistently and automatically
select the ICA components in classification studies.

Deep learning has gained enormous attention (Gal and
Ghahramani, 2016; Amiri et al., 2018) in the last few years.
The recent advances in machine learning in terms of image
understanding have led to great advances with respect to
identifying, classifying, and quantifying patterns of medical
images, especially using deep learning. In particular, the
utilization of hierarchical functional representations learned
solely with data, instead of manually created features that are
designed based on domain-specific knowledge is at the core of
the progress (Raju et al., 2017; Shen et al., 2017; Amiri et al.,
2018). Previous studies have reported that the classification
of dementia, MCI, and normal individuals can be performed
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automatically using deep learning andmultimodal data including
neuroimaging data or biological measures from cerebrospinal
fluid (CSF; Suk and Shen, 2013; Liu et al., 2015; Suk et al., 2015).
Automated diagnostics using multimodal neuroimaging data
have the advantage of utilizing all information, and demonstrate
the potential to improve diagnostic accuracy. However, the
process is highly complex and requires additional computational
resources. Therefore, it would be preferable to obtain acceptable
accuracy with only unimodal data.

Three-dimensional convolutional neural network (3D-CNN)
in deep learning is a supervised learning framework and
is enabled to distinguish training data similar to the visual
processing of the human eye (Ji et al., 2013). While these
networks have been used specifically for visual recognition in
the 2D domain over the last few years by researchers in visual
computing and artificial intelligence research, it is unlikely
that 3D-CNN was used for volumetric neuroimaging data
classification and prediction. The novelty of this study is that 3D
ICA data were used as input for the 3D-CNNmodel. Considering
that previous studies have shown that group ICA features have
the potential to discriminate dementia severity, we classified the
severity of dementia using 3D deep learning with group ICA
input.

Despite its clinical importance, the severity estimation of AD
using image data was not conducted by any researcher at all,
except for one report that characterizes five resting state networks
of CDR 0.5 and 1 (Brier et al., 2012). Therefore, a major novel
feature of our research is the automatic classification of AD into
two groups of disease severity (very mild and mild vs. moderate
and severe).

To propose an alternative method to complement the CDR
scale in the evaluation of AD, we hypothesized that the functional
connectivity changes according to the stage of AD will be
observed in the rs-fMRI, and the severity of AD could be
classified using 3D-CNN.

MATERIALS AND METHODS

Dataset
This dataset was a part of a large cohort enrolled at National
Dementia Research Center, Chosun University, Gwangju, South
Korea. Each subject provided written informed consent before
the data collection. The data acqusistion was approved by the
institutional review board of the Chosun University Hospital,
Gwangju, South Korea (IRB number 2013-12-018).

The demographics of the participants are shown in Table 1.
CDR is a categorical variable. To better estimate the decline of

TABLE 1 | Subject demographics.

Very mild to mild AD Moderate to severe AD

(n = 77; 30 F/47 M) (n = 49; 32 F/17 M) p-value

Age (years) 73.57 ± 6.49 73.61 ± 4.76 0.160
Education (score) 10.09 ± 4.95 6.79 ± 4.54 0.227
MMSE (score) 23.84 ± 3.90 15.49 ± 4.87 0.09
CDR (score) 0.71 ± 0.25 2.08 ± 0.28 0.001∗

The p-value was computed by applying the t-test to the clinical dementia rating (CDR)
scores.

resting-state functional connectivity with increasing AD severity,
we allocated the labeled data into two groups. Group 1 includes
very mild to mild (CDR 0.5 and 1.0) and group 2 includes
moderate to severe (CDR 2.0–3.0) patients.

Resting-State fMRI Data Acquisition
All the participants were scanned with a Siemens Skyra 3.0-
Tesla scanner. A 2D EPI MR acquisition type was used with the
following parameters: TR/TE = 3,000/30 ms, flip angle = 90◦,
FOV = 240 × 240 mm, voxel size = 3.75 × 3.75 × 3.75,
spacing between slices = 4.8 mm, number of echoes = 1, imaging
frequency = 123.206 Hz, slice acquisition order = ascending
(bottom-up), direction = ‘Transverse > Coronal (2.6) > Saggital
(1.7)’, pixel bandwidth = 3440, inplane phase encoding
direction = ‘ROW’, number of phase encoding steps = 63, echo
train length = 31◦ sampling = 100◦ phase field of view = 100,
variable flip angle flag = ‘N’, and SAR = 0.0778.

Preprocessing of the Resting-State fMRI
Data
The rs-fMRI data was pre-processed with FMRIB Software
Library (FSL1) version 6.0. Standard preprocessing routines
were applied with motion correction, slice timing correction,
spatial smoothing with 6 mm full width half maximum Gaussian
kernel, temporal filtering, and thereafter each subject’s functional
data were co-registered to its corresponding structural image.
Subsequently, for acquiring the group ICA based connectivity
measures, FSL Multivariate Exploratory Linear Optimized
Decomposition into Independent Components (MELODIC)
version 3.14 was utilized to perform a single-session ICA. The
number of independent components was set as 30 (Qureshi
et al., 2017). We used variance normalization and thresholded
the independent component maps with an alternative hypothesis
test that was based on the fitting of a Gaussian/gamma mixture
model to the distributions of the voxel intensities within the
spatial maps and controlling the local false-discovery rate at
p < 0.5. The set of spatial maps from the group-average
analysis was used to generate subject-specific versions of the
spatial maps, and associated time-series, using dual regression
(Beckmann et al., 2005, 2009). First, for each subject, the group-
average set of spatial maps is regressed (as spatial regressors in
a multiple regression) into the subject’s 4D space-time dataset
(Oh et al., 2017; Qureshi et al., 2017). This results in a set
of subject-specific time-series, one per group-level spatial map.
Next, those time series are regressed (as temporal regressors,
again in a multiple regression) into the same 4D dataset,
resulting in a set of subject-specific 3D spatial maps, one
per group-level. We then tested for group differences, using
FSL’s randomized permutation-testing tool (Smith et al., 2004).
Among the 30 independent components, 15 were classified as
noise and/or artifacts using the automated clustering tool of
FSLNets2. Besides the automated selection, these components
were also validated by visual inspection by an experienced
clinical neurologist, similar to the procedure used in our

1www.fmrib.ox.ac.uk/fsl
2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
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FIGURE 1 | Dendrograms of the selected useful independent component-based functional networks using automated clustering. (A) Statistical analysis of each
component. (B) Dendrogram of very-mild and mild groups, two major divisions are shown in red and green color. (C) Dendrogram of moderate and severe groups,
no significant division was found among the functional networks according to the clinical dementia rating (CDR) level.

previous studies (Qureshi et al., 2017). Figure 1A depicts the
selected 15 components. It represents the well-known resting-
state functional networks including the DMN, sensorimotor
network, medial and lateral visual network, left and right dorsal
attention network, central executive network, cerebellar network,
salience network, limbic network, auditory network, and frontal
networks.

Features
We used the 3D volumetric images of these selected functional
networks for the classification between the CDR low and CDR
high groups. These 3D images were acquired by performing dual
regression (Beckmann et al., 2009) on the group ICA result.

Deep Learning and 3D-CNN Framework
Weused a 3D-CNNbased deep learning classification framework
in this study. This framework was implemented on the
TensorFlow library version 1.5 with Nvidia Geforce GTX 1080Ti
graphical processing unit (GPU) support. For the trainingmodel,
we used the Adam optimizer with a learning rate of 0.001,
epsilon value was set at 0.1, and minimal cost was used. Since
the size of the dataset was relatively small for deep learning, to
avoid model overfit, we used ten-fold cross-validation in this
study to report the mean accuracy of the model. A modified
version of VGG-Net classification framework was used in this
study. Specifically, we added batch normalization layers in the
convolution layer. A dropout rate of 0.7 was used in the fully
connected layers. The batch size was set at 12 and 50 epochs
were used. The parameters including learning rate, epsilon value,
dropout rate, batch size, and epoch size were optimized using
the following ranges. For epsilon, we tunned it in the range of

[0.1 : 0.05 : 1], for learning rate, we tunned it in the logarithmic
range of [1, 0.1, 0.01, 0.001, 0.0001, and 0.00001], for the dropout
rate, we tunned it in the range [0.1 : 0.05 : 1], for the batch
size, we optimized it by the maximum available GPU memory,
and the number of epochs were tunned in the range of [10 :
1 : 200]. To the best of our knowledge, CNN is the only deep
learning framework that learn from 3D input, therefore no
other deep learning architectures were tested during this study.
Figure 2 depicts the complete architecture of our 3D-CNN
deep classification framework. Details of the model are given in
Table 2.

Significance Testing
For assessing the statistical significance of the results, we
performed the permutation test on the classification accuracies
and permuted the labels of test data of each of the 10 folds
1,000 times to get the probability of successful classification with
a higher score than the actual test labels.

RESULTS

Our results suggest that CDR level can be used as a good
discriminatory predictor of the dementia stages. We achieved
a mean balanced test accuracy of 92.30% in a ten-fold cross
validation experiment using the 3D-CNN algorithm.

Classification
We achieved an optimistic 10-fold cross-validated classification
accuracy. Since the dataset was not balanced, we also computed
the balanced accuracy to remove any bias present in the
result due to unbalanced data. Table 3 shows all the
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FIGURE 2 | VGG-Net based three-dimensional convolutional neural network (3D-CNN) architecture.

performance evaluation measures in the data including the test
accuracy, train accuracy, specificity, sensitivity, and balanced
accuracy.

Statistical Significance
Statistically, this result has very high significance with
p < 0.001 for all the 10-folds of the classification experiment.
The significance measure through permutation testing were
computhed as the p-values as mentioned in Table 3 for each fold
of the cross-validation.

Clinical Significance
These results suggest that CDR-based novel classification of
rs-fMRI can be accepted as an objective severity index. Table 4

shows the ranking of each functional network as the features
of a deep learning framework based on the unpaired t-test.
The uncorrected p-value revealed the component’s significance.
Figure 3 shows the connectogram of the selected networks.

DISCUSSION

To the best of our knowledge, this is a pioneering study to classify
the severity of dementia using rs-fMRI and 3D-CNN deep
learning architecture rather than a 1D time-series information.
Because the assessment of symptoms of patients with AD is
important for appropriate treatment, the automatic classification
of AD of the two groups of disease severity has important
contributions for clinical practice.

TABLE 2 | Details of the three-dimensional convolutional neural network (3D-CNN) architecture.

Layer Feature Map Stride Kernel Activation structure

Convolution 64 1 × 1 × 1 3 × 3 × 3 Conv
Convolution 64 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Maxpool 2 × 2 × 2 2 × 2 × 2
Convolution 128 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Convolution 128 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Maxpool 1 × 1 × 1 2 × 2 × 2
Convolution 256 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Convolution 256 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Convolution 256 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Maxpool 2 × 2 × 2 2 × 2 × 2
Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Maxpool 2 × 2 × 2 2 × 2 × 2
Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv
Maxpool 1 × 1 × 1 2 × 2 × 2
Fully Connected 4096 Dropout rate 0.7 ReLU
Fully Connected 4096 Dropout rate 0.7 ReLU
Output
Fully Connected 2
Softmax
Classification Layer Argmax
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TABLE 3 | Classification accuracy using 10-fold cross-validation.

Fold Train Acc (%) Test Acc (%) p-value AUC Specificity (%) Sensitivity (%) BAC

1 99.44 95.83 <0.001 0.9936 0.9421 0.9871 0.9647
2 99.72 95.31 <0.001 0.9832 0.9561 0.9294 0.9428
3 99.94 91.66 <0.001 0.9838 0.9162 0.8864 0.9161
4 99.94 88.02 <0.001 0.9649 0.9320 0.8021 0.8671
5 99.94 91.14 <0.001 0.9767 0.9532 0.8587 0.9059
6 99.94 95.83 <0.001 0.9934 0.9734 0.9419 0.9577
7 99.04 94.79 <0.001 0.9809 0.9483 0.9398 0.9441
8 99.88 83.85 <0.001 0.9765 0.9456 0.7383 0.8419
9 99.61 92.18 <0.001 0.9740 0.9231 0.9146 0.9189
10 99.72 96.88 <0.001 0.9936 0.9739 0.9642 0.9690
Mean ± SD 99.72 ± 0.29 92.55 ± 4.11 0.982 ± 0.009 0.946 ± 0.019 0.896 ± 0.077 0.923 ± 0.042

TABLE 4 | Statistical analysis of each component.

Component name Component number uncorrected Rank
p-value (<)

Sensory-motor network 1 0.038933 2
Medial visual-related network 2 0.046845 7
Executive control network 3 0.040517 3
Default mode network 4 0.052597 13
Auditory related network 5 0.051502 11
Left dorsal attention network 6 0.042201 4
Cerebellar network 7 0.056729 14
Lateral visual-related network 8 0.052143 12
Salience network 9 0.058392 15
Right dorsal attention network 10 0.049393 10
Lateral visual-related network-II 11 0.043619 5
Fronto-parietal network 12 0.049307 9
Medial frontal network 13 0.038227 1
Cerebellar network-II 14 0.045902 6
Auditory related network-II 15 0.047154 8

There are previous studies on automated diagnosis using
deep learning and multimodal neuroimaging data involving

the CSF and laboratory assessments. Among these, there are
numerous studies that classified dementia, MCI, and healthy
individuals (Suk and Shen, 2013; Liu et al., 2015; Suk et al.,
2015). It may be helpful to analyze structural MRI changes
in distinguishing between normal patients, MCI, and AD.
However, since structural changes are more likely to have
progressed beyond a certain level, structural MRI may act as
a confounding factor when considering individual differences.
CSF studies may be helpful in assessing severity. To acquire
CSF samples, we perform an invasive procedure, which is a
lumbar puncture. However, considering the enviornment of out
patient departments in Korean hospitals, it is diffciult to perform
invasive procedures. Overall, if cost-effectiveness was taken into
account, it would be best that the severity was determined using
only noninvasive rs-fMRI. If only rs-fMRI was used, the imaging
time could be less than a few minutes and may prove effective in
clinical management.

Only one study reported the characteristics of five resting
state networks of CDR score from 0.5 to 1 (Brier et al., 2012).

FIGURE 3 | Connectogram of all the selected networks. Left connectogram shows the positively correlated connections among the functional networks. Right
connectogram shows the negatively correlated connections.
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This report provided clues to the discriminatory potential of
group ICA features that could contribute to the classification
of dementia severity. However, no study has been conducted
on patients with CDR scores of 2 or 3 with ICA as features,
which were classified automatically from noise using FSLNet
and deep learning structure. Therefore, the major contribution
of our research is the automatic classification of AD into two
groups of disease severity (very mild and mild vs. moderate and
severe).

Our results showed a mean test accuracy of 92.30% in
a 10-fold cross validation experiment using the 3D-CNN
algorithm. We believe that a deep neural network constitutes
the optimal classification weight through iterative learning,
but the extent of contribution of the ICA component of
deep learning architecture to the algorithm is not known.
To reveal the black box of 3D-CNN, we also compared each
component between very mild/mild vs. moderate/ severe
patients. Previous studies have reported that the DMN is
the most significant different functional network between
normal patients and MCI and dementia (Wang et al., 2006;
Jin et al., 2012; Koch et al., 2012), and the salience network
had differences between CDR 0.5 and 1 (Fox et al., 2006;
Dosenbach et al., 2007; Sylvester et al., 2009; Zhou et al.,
2010). Interestingly, our result showed that the medial frontal,
sensory-motor, executive control, left dorsal attention, lateral
visual-related, cerebellar, medial visual-related, auditory-
related, frontoparietal, and right dorsal attention networks
have high ranks and statistical differences. After the onset
of dementia, functional connectivity seems to be observed
in an altered way. We assumed that those networks have
more influence on our classifier. Although DMN and salience
network do not have enough statistical significance, the
combination of the information from various components
and their relationship including functional connectivity
may contribute to the classification algorithm. Figures 1, 2
show the relationships among the components. Red color
represents positive correlations and blue color represents
negative correlation among the components. These associations
represent the activity of each component, and there were no
significant differences between the two groups, which is also
shown in Table 4. Even in case of subtle differences, with deep
learning these can be utilized to extract features to render the
weights more suitable.

Research on drug development for AD has not been able
to improve drug-based treatments, in spite of the recently
advanced understanding of the molecular-cellular biology of the
disease (De Strooper, 2014; Gauthier et al., 2016). Although,
there may be numerous reasons for the failure of new drug
development, as the stage of dementia differs from patient to
patient, it is difficult to evaluate the response to symptoms
alone. In addition, dementia could be a confounding factor
due to the differences in the characteristics of individuals
including genomic, proteomic, and metabolomic cascades. A
previous study reported that current trials have focused on
clinical efficacy and not on the rigorous testing of the putative
mechanisms of disease (Becker et al., 2014). Considering that
the central cholinergic deficit in AD is the consequence of

neurodegeneration, the imaging method of measuring viable
synapses is appropriate for evaluating drug responses. Because
fMRI measures the function of the brain through the blood
oxygen level dependent technique, it may help to compensate for
the weaknesses of drug efficacy assessment through symptoms.
Our classification algorithm based unimodal rs-fMRI extracts
features from the degeneration of the functional connectivity in
dementia. During the evaluation of drug response or behavioral
therapy according to the stage and symptoms of AD, it would
be helpful to investigate the recovery of functional connectivity
objectively.

The novelty of our study is that we analyzed the severity
of dementia, although our study also has limitations.
We used our dataset to create a 3D-CNN classifier, but
we could not perform the verification procedure with
other datasets. Because of the ADNI dataset, which has
been widely used in previous dementia studies, we could
focus on early stage dementia detection; and the numbers
of late-stage dementia patients were not adequate for
comparison. It is necessary to apply our algorithm to other
datasets with adequate numbers of patients with late-stage
dementia.

Another limitation is due to the characteristics of deep
learning. A total of 15 ICAs were selected as input for
deep learning, but it is difficult to determine the precise
effect on the neural network. To overcome this limitation, we
statistically analyzed the differences of ICA between the two
groups.

Another limition of the present study is in terms of the
limited number of subjects, however, it is inappropriate to apply
standard data augmentation approaches on the neuroimaging
data to increase the number of training samples. We believe
that the introduction of any type of synthesized data in training
phase can significantly bias the learning process. In addition, the
signal to noise ratio in fMRI data is relatively small therefore
it is very difficult to apply deep learning to the raw data.
A major advantage of using ICA is the removal of artifacts
because they very much look like the BOLD signal in raw
data.

One of the most important aspects of this research
is the use of neuroimaging to predict the progression of
diseases that humans can not predict, especially for the
subjects with MCI who progress to dementia as compared
to those who do not progress to dementia in the future.
However, we cannot represent it in our present study. The
classification task in this research has a limitation because
the data labels used in this study are based on contemporary
clinical evaluations. In addition, classifying current disease
status is important but clinically, predicting the progression
from MCI to dementia and classifying severity in dementia
is more important for proper and appropriate treatment,
and also prediction from MCI to dementia and current
severity classification can have a decisive impact on prognosis.
Taking all of these measures into account, our analysis can
be considered as a clinically relevant study involving future
outcomes. In the future, we will also perform an advanced
study to predict the progression from MCI to dementia using
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biomarker-based serial labeled data and domain transfer learning
methods.

In conclusion, our study suggests that our novel classifier
using rs-fMRI is acceptable as an objective severity indicator
complementing the CDR scale in the evaluation of AD. In the
absence of trained neurologists, we can classify the dementia
severity objectively and accurately using 3D-deep learning. Our
application and classification algorithm would be an aid for
observing the regeneration of functional connectivity due to
drug treatment according to the stage and symptoms of AD in
the future.
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Recent works have extensively investigated the possibility to predict brain aging from

T1-weighted MRI brain scans. The main purposes of these studies are the investigation

of subject-specific aging mechanisms and the development of accurate models for age

prediction. Deviations between predicted and chronological age are known to occur in

several neurodegenerative diseases; as a consequence, reaching higher levels of age

prediction accuracy is of paramount importance to develop diagnostic tools. In this work,

we propose a novel complex network model for brain based on segmenting T1-weighted

MRI scans in rectangular boxes, called patches, andmeasuring pairwise similarities using

Pearson’s correlation to define a subject-specific network. We fed a deep neural network

with nodal metrics, evaluating both the intensity and the uniformity of connections, to

predict subjects’ ages. Our model reaches high accuracies which compare favorably

with state-of-the-art approaches. We observe that the complex relationships involved

in this brain description cannot be accurately modeled with standard machine learning

approaches, such as Ridge and Lasso regression, Random Forest, and Support Vector

Machines, instead a deep neural network has to be used.

Keywords: age prediction, brain, deep learning, lifespan, aging, structural MRI, machine learning, multiplex

networks

INTRODUCTION

Recently, neuroimaging approaches predicting brain aging have received an increasing attention,
especially thanks to the design and development of extremely accurate strategies (Franke et al.,
2010; Cole et al., 2017a,b). In fact, the possibility of relying on accurate age predictions allows,
as a consequence, the definition of age-related biomarkers for the early detection of anomalous or
pathological conditions (Dosenbach et al., 2010; Franke et al., 2012). In particular, machine learning
models have been used to learn the aging trajectories of healthy brains thus yielding two main
results (Cole and Franke, 2017): (i) predicted age can differ from the actual one and this difference
and its entity can suitable define a marker for anomalous/pathological aging (Dukart et al.,
2011; Koutsouleris et al., 2013); (ii) subject-specific aging processes can be learned, thus driving
personalized monitoring or treatment (when needed) (Baker and Martin, 1997; Cole et al., 2018).

The effectiveness of machine learning methods has resulted to be almost ubiquitous (Hung
et al., 2006; Zacharaki et al., 2009; Abraham et al., 2014; Khedher et al., 2015; Al Zoubi et al.,
2018). Computer aided detection systems for accurate detection of brain diseases have been

41
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thoroughly investigated, nevertheless there are several studies, for
example about Alzheimer’s disease, suggesting there is still room
for significant improvement (Bron et al., 2015; Amoroso et al.,
2018a; Ramírez et al., 2018). More recently, promising results
toward these desirable improvements have been found in two
distinct directions. On one hand, brain connectivity: describing
the brain as a complex network and investigating its properties
would enhance the possibility of detection for anomalies and
pathological conditions affecting the normal functioning of the
brain (Dyrba et al., 2015; Amoroso et al., 2018c); on the other
hand, deep learning: the adoption of deep learning techniques,
prompted by an increment of both computational resources and
observations available to run the learning processes, has become
a prominent choice for analyzing medical images for disparate
uses, such as segmentation, registration, and classification (Ortiz
et al., 2016; Litjens et al., 2017; Shen et al., 2017).

In this work, we present an attempt to combine complex
network framework and deep learning strategies to provide a
novel accurate modeling of brain age. In particular, we use a
multiplex network, which is a multi-layer network. A multiplex
is a network with many layers, each of one representing a
single subject; the nodes are brain anatomical districts and the
connections are their pairwise similarities (Kivelä et al., 2014).
Recent studies have demonstrated the advantage of considering
multiplex networks instead of single networks in terms of
intrinsic information: actually, the information content of the
multiplex is not just the sum of the information content of its
layers (Battiston et al., 2014; Menichetti et al., 2014).

As for standard networks, multiplex networks can be
characterized by suitable metrics (Nicosia and Latora, 2015;
Estrada, 2018); in particular, we use nodal properties to obtain a
feature representation of a brain and then use this framework to
feed a deep learning model to predict the brain age. We compare
the performance of deep learning with state-of-the-art regression
strategies, such as Lasso regression, Ridge regression, Support
Vector Machine, and Random Forest regressions. Besides, we
identify the brain regions which seem to majorally affect the age
prediction.

MATERIALS AND METHODS

Image Processing
In this work we use data from 5 publicly available sources:
ABIDE1 (Autism Brain Imaging Data Exchange), ADNI2

(Alzheimer’s Disease Neuroimaging Initiative), Beijing Normal
University3, ICBM4 (International Consortium for Brain
Mapping), and IXI5 (Information eXtraction from Images).

We selected a dataset including 484 subjects in order to obtain
a roughly uniform distribution in the age range 7 − 80 years; in
particular 133 subjects ranged from 7 to 20 years, 120 from 20
to 40 years, 127 from 40 to 60 years, and 104 above 60 years, see

1http://fcon_1000.projects.nitrc.org/indi/abide/
2http://adni.loni.usc.edu
3http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEnhanced.html
4https://ida.loni.usc.edu/
5https://brain-development.org/ixi-dataset/

Supplementary Materials for further details. Subjects whitin the
0 − 7 age range are not included in this study because, as better
explained in the Discussion section, they require specific image
processing techniques which are not require for the age ranges
considered here, instead.

Mean age was 37.3 ± 20.4 years. All neuroimaging data used
in this study were T1-weighted MPRAGE brain scans (1.5 T
or 3.0 T); 1.5 T and 3.0 T scans do not significantly differ in
their power to detect gray matter changes (Ho et al., 2010). The
participants were healthy controls, thus excluding the presence of
neurodegenerative or psychiatric diseases.

Brain scans were normalized in intensity and skull-stripped
using the Brain Extraction Tool from the FSL library (Jenkinson
et al., 2005); then, non-linear registration was performed using
the Advanced Normalization Tools pipeline (Avants et al., 2009)
to theMNI152 template; accordingly, all registered scans resulted
in 1×1×1mm3 resolution so that, from now onward, voxels and
mm3 will be interchangeably used.

After spatial normalization we separated the left and the
right brain hemispheres and segmented each part in rectangular
boxes, called patches, of l1 × l2 × l3 dimensions. A schematic
representation is provided by Figure 1.

According to a previous study about neurodegenerative
processes in Alzheimer’s disease (Amoroso et al., 2018b), we used
l1 = 10, l2 = 15, and l3 = 20 with l1, l2, and l3 lengths, in
voxels, along the coronal, the axial, and the sagittal orientations,
respectively. Thus, each subject’s brain was represented by a
collection of 600 patches.

The Network Model
By definition, a complex network G = G(N, L) is a couple of two
distinct sets (Boccaletti et al., 2006): N, the set of nodes, and L,
the set of links. The nodes are the elements of the system one
wants to model while the links represent the interactions among
them. This basic framework does not take into account the entity
of the interactions; to consider this aspect weighted networks are
introduced (Newman, 2004). Weighted networks are assigned
a third set of elements W whose elements wij, called weights,
represent the strengths of each interaction between the nodes i
and j; the weights are usually real or integer numbers, so that a
weighted network is denoted G = G(N, L,W).

In this work, the brain networks are defined using each
patch as a node. Patches consist of 3, 000 voxels whose intensity
gray levels ranges from 0 to 1. Accordingly, the whole brain
is segmented in 600 patches. We considered each patch as
a vector with 3, 000 components and measured the Pearson’s
correlation between each pair of vectors thus obtaining the
pairwise similarities, thus we built a weighted network whose
nodes were the patches and whose weights were given by the
measured correlations. Pearson’s correlations range from −1
to 1, however to take into account the left/right symmetry
of the brain we kept the absolute value of correlations.
Accordingly, our networks consist of 600 × 600 symmetric
adjacency matrices whose rows and columns represent the
brain patches and whose elements, ranging from 0 to 1, their
absolute Pearson’s correlations. It is worth noting that the brain
network used in this work is mathematical, in fact nodes have
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FIGURE 1 | After dividing the brain into left and right hemispheres, each hemisphere is divided in 300 patches. This operation is performed for each subject in the

cohort, after registration, thus each patch is expected to roughly contain the same anatomical district and analogous distributions of white matter, gray matter, and

cerebrospinal fluid.

no direct anatomical counterparts and edges are correlations, a
mathematical similarity metric.

Once the single network representation was obtained for each
subject, we built a multiplex model, i.e., a network composed
by several layers, in which the same number of nodes can be
connected in different ways (Nicosia et al., 2013). Usually, when
building a multiplex model, nodes remain unchanged, what
changes is the nature of links: for example, in transport networks,
the nodes could be the neighbors of a city and the layers the
types of transport considered (routes, trains, ...). Age shapes brain
networks by modifying the spatial distribution of white matter,
gray matter, and cerebrospinal fluid and, therefore, the way brain
regions are connected, i.e., their pairwise similarity. Accordingly,
it is natural to define a different layer α for each age and, thus, for
each subject.

Finally, we measured some specific nodal metrics to
characterize the multiplex model. Specifically, we considered the
following features:

• Strength s. The sum of the weights associated to the
connections of a node is a common centrality metrics used to
characterize important nodes within a network. The strength
of the node i in a layer α is:

sαi =

N
∑

j=1

wij

• Inverse Participation Y . It is also important to characterize
how strengths are distributed within a network in order to
understand the relative importance of a node. The inverse
participation of the node i in a layer α is:

Yα
i =

N
∑

j=1

(

wα
ij

sαi

)2

• Multistrength. The analogous of the strength in a
multiplex model.

• Multi-Inverse Participation. The Inverse Participation
computed with respect of the multiplex.

Further details, especially about multiplex metrics, are provided
for example in Amoroso et al. (2018b). Besides, we computed the
conditional probabilities of strength and multistrength against
the nodes with degree k; conditional strength for degree k in the
layer α is:

s(k)α =
1

Nk

N
∑

i=1

sαi δ(kα
i , k)

with Nk the number of nodes with degree k and δ being the
Kronecker function, which is equal to one only when the nodal
degree kα

i is k and zero otherwise.
Analogously, the conditional mean of inverse participation for

degree k in the layer α is:

Y(k)α =
1

Nk

N
∑

i=1

Yα
i δ(kα

i , k)

In the end our multiplex representation yieldedM = 8× |N|

features for each subject, with |N| being the cardinality of N,
|N| = 600, and, therefore,M = 4, 800. The conceptual workflow
is presented in Figure 2.

The basic idea behind our approach is that one of the main
effects involved by aging is brain atrophy; our framework allows
the detection of age related changes in brain using a complex
network model and therefore the possibility to yield accurate
brain age prediction. Pearson’s correlation is a suitable metric
to characterize the spatial distribution of white matter, gray
matter, and cerebrospinal fluid and the multiplex framework
takes into account how this distribution changes over time;
besides, the previously mentioned nodal properties measure
how these changes affect the networks and the different brain
regions, therefore, they allow a direct easy-to-interpret overview
of aging effects.
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FIGURE 2 | Age shapes brain networks by modifying the spatial distribution of white matter, gray matter, and cerebrospinal fluid. Accordingly, nodal metrics, such as

strength and inverse participation, allow the detection and quantification of these age-related changes.

Regression
Once we obtained a feature representation for all subjects,
we trained our deep learning regression model. To assess the
robustness of our brain model and to confirm the effectiveness
of deep learning we also evaluated four other different regression
models that are widely adopted for their accuracy: Lasso
regression, Ridge regression, Support Vector Machine, and
RandomForest. The presented results were cross-validated with a
10-fold procedure repeated 100 times. To evaluate the regression
performance we adopted three different metrics:

• Mean Absolute Error (MAE).

MAE =
1

S

S
∑

i=1

|yi − ŷi|;

• Root Mean Squared Error (RMSE).

RMSE =

√

√

√

√

1

S

S
∑

i=1

(yi − ŷi)2;

• Pearson’s correlation (ρ).

ρ =

∑S
i=1(yi − y)(ŷi − ŷ)

√

∑S
i=1(yi − y)2

√

∑S
i=1(ŷi − ŷ)2

.

with S being the sample size, yi the chronological age, ŷi the

predicted brain age, y the sample average age, and ŷ the average
brain predicted age. All our models were implemented with the
open source R language.

Deep Learning
Adeep neural network is, by definition, a network withmore than
two hidden layers (Hinton et al., 2006). Deep learning strategies
are designed to learn, thanks to the complex interactions
instanced between neural networks’ hidden layers, accurate
representations of the provided observations; in recent years,
deep learning has significantly improved the state-of-the-art in
several fields, such as speech recognition, object detection, and
diagnosis support systems (LeCun et al., 2015).

Artificial neural networks with few learning layers, also
called shallow networks, have been known for decades; since the
introduction of backpropagation algorithms, their training has
shown very promising perspectives but raised several feasibility
issues, especially for the exponential growth of computational
requirements. Besides, a theorem stating that multilayer feed
forward networks with a sufficient number of neurons and as
few as one hidden layers are universal approximators, strongly
suggested to invest more effort on simpler architectures
than deeper ones (Hornik et al., 1989). Finally, there
was a common belief that deep neural network learning
algorithms (especially the gradient descent) could be trapped
in local minima preventing the possibility to yield stable and
accurate results.

Recent results, both theoretical and empirical, showed that
these issues can be overcome and deep learning algorithms can

achieve unmatched performances in several domains. Moreover,

the possibility to easily access huge computational resources has
removed the practical limitations preventing the wide-spread

adoption of deep learning strategies.
In this paper, we use a feedforward deep neural networks with

four hidden layers respectively including 200, 100, 50, and 20
neurons, see Figure 3.
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FIGURE 3 | A schematic representation of our deep neural network. It

consisted of four hidden layers composed of 200, 100, 50, and 20 neurons.

This architecture was implemented with the “h2o” R package.
Among the possible tuning parameters, besides the number of
hidden layers with the corresponding neurons, this package offers
the possibility to define:

• activation functions including: hyperbolic tangent, linear
rectifier, and maxout;

• learning rate;
• training epochs;
• regularization (L1 or L2);
• tolerance;
• rate decay.

The flexibility offered by deep learning architectures is also their
major drawback, as tuning these models can be challenging.
This is why another important option provided by the “h2o”
package (and many others) is the so called grid search,
allowing the systematic exploration of the configurations’ space,
thus automatically determining the most effective design. We
explored different numbers of layers and neurons, as well as
different activation functions, while we adopted default values
for all the remaining parameters. To increase the network
robustness, the weights were randomly initialized at every
execution of the algorithm.

We have already mentioned the optimal architecture, for
what concerns activation function, hyperbolic tangent was used.
We performed extensive search for optimal values thanks to
the ReCaS data center6; further details about the computational
infrastructure are provided in Supplementary Materials. Thanks
to cross-validation analysis we reached an optimal (and stable)
configuration. In order to get a fair comparison with other
regression models, we tried to use default configurations
whenever possible; parameters whose values were tuned in cross-
validation, as for example the number of trees in Random
Forests, are explicitly mentioned, otherwise default values must
be assumed.

6https://www.recas-bari.it/index.php/en/

Ridge Regression
Ridge regression (Hoerl and Kennard, 1970) is a substantial
improvement of standard least square regression in those
case where independent variables suffer or may suffer from
multicollinearity. By definition, multicollinearity consists in
the presence of high intercorrelations among the independent
variables of the model; when present, multicollinearity can
strongly affect the reliability of statistical inferences. Even if brain
patches are sufficiently large to mitigate spatial correlations, it is
not safe to assume, a priori, that neighbor patches are completely
independent.

Ridge regression is basically a least square methods. Using the
standard notation a regression equation is written in matrix form
as Y = Xβ + e with Y the dependent variable, X the independent
variables, β the regression coefficients, and e the residuals.
Ridge regression prescribes, as standard linear regression, the
minimization of the residual sum of squares (RSS):

RSS =

S
∑

i=1



yi − β0 −

p
∑

j=1

βjxij





2

where S is the sample size and p the number of independent
variables. The difference with standard linear regression is that
Ridge regression introduces a penalty or regularization term on
the sum of squared coefficients:

RSSRidge =

S
∑

i=1



yi − β0 −

p
∑

j=1

βjxij





2

+ λ

p
∑

j=1

β2
j

It is evident that when λ → 0 Ridge regression coincides
with ordinary least square regression. When λ → ∞ the high
regularization penalty makes some coefficients small, but yet
not negligible, thus their effect is limited but still included in
the model. Accordingly, the effectiveness of Ridge regression
depends on the tuning of λ penalty: models with small λ values
tend to have high variance and small bias, on the contrary high λ

values involve small variance and high bias. For the present work,
we explored several λ values in cross-validation.

Lasso Regression
Ridge regression considers any independent variable from the
model whereas Lasso (Least absolute shrinkage and selection
operator) regression (Tibshirani, 1996) tackles this issue allowing
the exclusions of some coefficients. Accordingly, Lasso regression
tries to retain the important features and discard those yielding a
negligible contribution to the model.

Lasso residual sum of squares is similar to Ridge regression
except for introducing as a penalty contribution the sum of the
absolute values of the regression coefficients:

RSSLasso =

S
∑

i=1



yi − β0 −

p
∑

j=1

βjxij





2

+ λ

p
∑

j=1

|βj|
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FIGURE 4 | Random Forest algorithm consists of two main phases: (1) data

sample is bootstrapped N times, N is the number of trees and the first

parameter this algorithm needs to be set; (2) when growing a tree j, at each

node splitting i a random set of features fij is sampled; the features selected

change at every split, but the number of sampled features, the second

parameter to be set, remains constant.

Here, again, S is the sample size and p the number of independent
variables. When λ → 0 Lasso regression coincides with the
ordinary least square regression; when λ → ∞ Lasso tends
to the null model with all coefficients βj being 0 and the only
non-vanishing value being the intercept. It is worth noting
that, as for Ridge regression, Lasso regression needs the tuning
of λ parameter in order to balance variance and bias of the
model. As for Ridge regression, we explored several λ values in
cross-validation.

Random Forest
Another option for regression, extremely popular in recent
years, consists in using ensemble learning. Among the possible
choices, the most adopted and widely used algorithm is
Random Forest (Liaw et al., 2002). Random Forests are
constructed bootstrapping the data sample and growing a
number of different regression trees, each of them using
a different bootstrap, statistically with the original dataset.
Besides, as a difference with bagging strategies, Random
Forests add a further layer of randomness by growing
each tree with a different set of predictors randomly
selected every time a node is split, see Figure 4 for a
schematic representation.

The main advantage of Random Forest over classical
regression strategies is its robustness on overfitting; moreover,
it is a good approach for preliminary investigations in the sense
that, depending only two parameters, the number of trees to be
grown and the number of features to pick at each node split,
Random Forests is easy to tune and control.

A relevant aspect to consider is that Random Forest yields
useful information about feature importance, thus resulting in
interpretable models and a ranking about the association between
each independent variable and the dependent variable, a crucial
property in clinical applications. The Random Forest regression

was tuned in cross-validation to search optimal values for the
number of trees and the number of features to select.

Support Vector Machine
Finally, we evaluated the regression performance using Support
Vector Machine (Smola and Schölkopf, 2004). Support Vector
Machine regression is based on a well grounded statistical
framework whose basic idea consists in using the available
observations to learn a function f (x) that has deviations ǫi < ǫ

from targets yi. As a consequence, the model learns to be accurate
at least as the prescribed ǫ precision or, in other words, it does
not accept deviations larger than ǫ. For clinical purposes this
approach is of fundamental importance, as it guarantees the
existence of a limit value which should not be exceeded for the
validity of the model.

The main advantages of Support Vector Machine are 2-fold:
(i) it is a versatile algorithm which can give accurate results in
very different applications, comprising medical ones; (ii) it yields
a compact representation even for huge datasets, thus it is a
suitable choice for big data applications. The main drawback is
probably the need to tune several parameters in order to achieve
the perfect balance between variance and bias of the model. A not
exhaustive list of parameters to tune include:

• the precision of the model ǫ;
• the kernel used for training and prediction, possible choices

are: linear, polynomial (in this case one has to set the degree of
the polynomial too), radial basis and sigmoid;

• the cost value for regularization;

Accordingly, for Support Vector Machines to be consistently
effective it is fundamental to perform a wide search of the
parameter space with a subsequent significant increase of the
computational effort. Nevertheless, the use of modern data-
centers can easily manage the needed requirements in terms of
memory and processing time, thus the computational issues do
not discourage the use of this learning framework. We explicitly
explore the precision and the cost value for regularization.

RESULTS

Deep Learning Prediction Accuracy
We assessed the performance accuracy of our deep learning
model by evaluating three distinct metrics: Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and Pearson’s
correlation ρ. The results presented in Figure 5 show the
estimates of these metrics obtained with 100 rounds of 10-fold
cross-validation.

Average MAE is 4.7 years, the MAE standard error is 0.1.
For what concerns RMSE and correlation, our cross-validated
estimates are: RMSE = 6.2± 1.1 and ρ = 0.95± 0.02.

A not secondary aspect to consider about the reliability
of age-predicting models is their homoscedasticity either their
heteroscedasticity. We performed the Breush-Pagan test to
evaluate the presence or absence of heteroscedasticity and
found p = 0.008, thus rejecting the null hypothesis, with 5%
significance, for the variance of the residuals to be constant over
the whole age range.
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FIGURE 5 | From left to right, histogram of cross-validation results: MAE, RMSE, and Pearson’s correlation ρ.

FIGURE 6 | Overall scatter plot of chronological age (x-axis) and predicted age (y-axis) and the specific four age ranges (right panel): 7 ≤ Age < 20 (A),

20 ≤ Age < 40 (B), 40 ≤ Age < 60 (C), 60 ≤ Age < 80 (D).

Age Ranges Affecting the Model Accuracy
To further investigate the effectiveness of our deep learning
model, we evaluated if the regression accuracy was subject to
significant changes when considering specific age ranges. In
particular, see Figure 6 for the overall scatter plot (left panel) and
four age ranges (right panel): 7 ≤ Age < 20 (a), 20 ≤ Age < 40
(b), 40 ≤ Age < 60 (c), 60 ≤ Age < 80 (d).

These distributions are significantly different according to a
Kruskal-Wallis rank sum test (p < 2.2e−16); in particular, the best
results are obtained for younger subjects while the performance
has a significant drop when considering the groups including
older subjects, see Table 1 for a comprehensive overview.

Correlation is the metric suffering the highest drop in
performance over all the considered age ranges. MAE and RMSE
share a common behavior, their best values are found when
age ranges from 7 to 20; the best correlation is found when
40 ≤ Age < 60.

Sample Size Effect
Previous studies about age prediction usingMRI have established
the pivotal importance of sample size to obtain accurate age-
prediction models. Accordingly, we present in Figure 7 the
assessment of the sample size effect on the accuracy of our model.

TABLE 1 | Performance metrics obtained in different age ranges.

Age range MAE RMSE ρ

7− 20 3.7± 0.2 3.9± 0.1 0.43± 0.02

20− 40 5.1± 0.2 6.6± 0.1 0.57± 0.01

40− 60 6.5± 0.2 8.2± 0.2 0.60± 0.01

60− 80 4.4± 0.2 6.6± 0.3 0.41± 0.03

In particular, correlation, due to a drastic reduction of the sample size and range, suffers

the highest reduction. Best values are in bold.

The results are 2-fold: performance is affected by sample size,
the more the available data, the more accurate age prediction;
when using 80% of data, the deep model reaches a robust plateau.
Whatever we considered, MAE, RMSE, or ρ correlation, the
performance increased with the sample size, besides the variance
of the model decreased.

Other Regression Strategies
To demonstrate the pivotal role of deep learning, we used
the multiplex features to feed other state-of-the-art regression
approaches. In particular, we compared deep learning with
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FIGURE 7 | We evaluated the regression metrics MAE, RMSE, and correlation by randomly sampling a varying percentage of subjects from the whole cohort, from 10

to 100%, and reported the results of 100 ten-fold cross-validations.

TABLE 2 | Comparison of cross-validation regression performances for deep

learning, Ridge and Lasso regression, Random Forest, and Support Vector

Machine.

Model MAE RMSE ρ

Deep learning 4.7± 0.1 6.2± 1.1 0.95± 0.02

Ridge regression 6.0± 0.7 7.8± 1.3 0.92± 0.03

Lasso regression 6.4± 0.7 8.2± 1.3 0.92± 0.03

Random forest 5.9± 0.7 7.6± 0.9 0.94± 0.02

Support vector machine 5.6± 0.7 7.2± 0.9 0.94± 0.01

The reported values are those obtained after grid search for optimal configurations. Best

results are presented in bold.

Ridge and Lasso regressions, Random Forest, and Support
Vector Machine. Table 2 shows the comparison among best
configurations, further details about parameter tuning and
optimal values are reported in Supplementary Materials.

Deep learning provides the most accurate model with respect
of all the considered metrics. After deep learning, Support Vector
Machine gets the best results, nonetheless, deep learning yields
a significant increment of about 16% in terms of MAE and
14% in terms of RMSE. For what concerns correlations, even
if providing the best performance, deep learning does not seem
to significantly improve this metric, another clue suggesting the
need for using correlations cum grano salis.

Feature Importance and Clinical Validation
To investigate which features had a strategic role in the age
prediction, we calculated variable importances by using the
Gedeon method (Gedeon, 1997) implemented in the “h2o” R
package. This implementation considers the weights connecting
the input features to the first two hidden layers and provides,
for each features, the relative importance normalized between
0 and 1. We computed the importance ranking over different
subject samples in order to select the most strategical features
in terms of relative importance and occurrence. We obtained
113 features whose occurrence had not happened by chance
(with a 5% comparison threshold with Bonferroni adjustment).
In Table 3, the first 10 features, directly connected to a patch,
are reported in order of mean relative importance along with the
corresponding anatomical regions pinpointed by that patch.

The different cortical and sub-cortical anatomical regions,
which are proved to be connected with aging, were found

by mapping the related patches on the Harvard-Oxford atlas
(Desikan et al., 2006). In Figure 8, the patches related to these
anatomical regions are underlined in red on the MNI 152
template. It is worth to specify that these clinical findings
are totally in agreement with the literature as argued in the
Discussion section.

DISCUSSION

The method presented in this work, based on the multiplex
model combined with a deep learning regression network allows
the most accurate age prediction, in comparison with other
standard machine learning approaches. Performances presented
here compare well with results recently published (Franke et al.,
2012; Cole et al., 2017a), including voxel-based approaches,
provided the following considerations. First of all, the dataset
used in this work is smaller than those investigated in the
mentioned works; we have confirmed here that as the sample
size increases predicting models tend to be more accurate and
with less variance. Nevertheless, as the fraction of data employed
exceeds 80%, improvements become significantly smaller; the
deep learning model is robust and stable. A not secondary aspect
to consider is age distribution: in this work we have analyzed
a roughly uniform cohort, which is not the case, e.g., in Cole
et al. (2017a). However, the dependence of performance
on dataset composition/homogeneity certainly requires
further investigation.

Another important aspect to consider about the general
validity of the presented results concerns the image processing
pipeline. In this study, we used the FSL library; FSL provides
a consolidated and widespread tool for brain extraction.
Nevertheless, other spatial normalization tools could be used,
as for example SPM DARTEL a particularly suitable tool for
normalization of elder subjects (Pereira et al., 2010). Actually,
there is no general consensus indicating which tool should be
preferred, on the contrary it is common for neuroimaging studies
to define dedicated pipeline exploiting a wide range of existing
tools, such as those previously mentioned, but also including
FreeSurfer, ANTs and novel ones (Shen et al., 2013; Im et al., 2015;
Hazlett et al., 2017).

In fact, we demonstrated here that age predictions are
affected by heteroscedasticity; accordingly, a large data sample
uniformly covering the lifespan range could mitigate this
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TABLE 3 | First 10 features in order of relative importance for aging prediction along with the related cortical and subcortical brain regions.

Features Patch Mean relative importance

Inverse participation (L) Heschl’s Gyrus (includes H1 and H2),

Insular Cortex (GM, WM)

0.95

Multistrength (L) Cingulate Gyrus, anterior division,

Cingulate Gyrus, posterior division, Precentral Gyrus (GM)

0.89

Inverse participation (L) Planum Polare, Heschl’s Gyrus (includes H1 and H2),

Central Opercular Cortex (GM)

0.89

Multistrength (L) Frontal Pole, Frontal Orbital Cortex (GM) 0.89

Inverse participation (R) Paracingulate Gyrus, Cingulate Gyrus,

anterior division (GM, WM)

0.89

Strength (L) Brain Stem, Parahippocampal Gyrus, posterior division (GM) 0.89

Inverse participation (R) Precentral Gyrus, Post-central Gyrus (GM,WM) 0.88

Inverse participation (L) Lateral Occipital Cortex, inferior division,

Middle Temporal Gyrus, temporo-occipital part (GM, WM)

0.88

Inverse participation (L) Lateral Occipital Cortex, superior division (GM) 0.88

Inverse participation (L) Inferior Frontal Gyrus, pars opercularis,

Precentral Gyrus, Middle Frontal Gyrus (GM, WM)

0.88

(L) and (R) indicate left and right hemispheres; (GM) and (WM) indicate that gray and white matter are respectively included in the patch corresponding to a certain feature.

issue. Heteroscedasticity also affects performance accuracy: best
performances in terms of MAE and RMSE are found for
younger subjects (in the [7 − 20) range). This would confirm
the necessity to compare age prediction accuracy declared
in different studies with the caveat that age distribution of
examined cohort should be consistent. This behavior suggests
that morphological differences in healthy brains are accentuated
in later years, younger brains tend to be less heterogeneous and,
therefore, more adherent to a common pattern. However, it is
worth noting that the extent of the age-range influences theMAE,
with wider age-ranges yielding harder prediction problems;
accordingly, we cannot conclude that the model performs better.
This consideration about the influence of the age-range on the
MAE is also important when comparing the current results
between other studies.

Pediatric images usually require specific processing. Actually,
children’s brains significantly differ from the adult ones, because
their growth is characterized by a series of non-linear changes
occurring throughout the development ages; this is particularly
true between 0 and 7 years. However, we do not expect this effect
to significantly affect our analysis, because this specific range was
not included in the analysis. Nonetheless, the standard pipeline
adopted here is based on a template developed from adult brain
data, which are not optimized for pediatric scans and, therefore,
this could limit the accuracy of our model. In future work, we
plan to focus on age prediction in younger cohorts, limiting the
considered age range, and consider dedicated image processing
strategies specifically tailored for younger subjects as suggested
in recent works (Vân Phan et al., 2018).

A different consideration holds for correlation. Correlations
are heavily affected by the overall range of the independent
variable, when considering age sub-samples this range decreases,
the number of observations decreases too; as a consequence, the
resulting correlations do not match with the values computed
using the whole dataset. On the other hand, the other metrics

take into account only the relative difference between observed
and predicted values. In other words, MAE and RMSE on
average tend to reproduce in the age subsamples the same
behavior they have on the entire dataset. This is not true for
correlation. An interesting aspect to investigate in the future
could be the assessment of which factors (sample size within each
age range, multi-site effect on data heterogeneity, ...) are mostly
responsible for this issue. However, deep learning is by far the
most accurate method to predict brain age, followed by Support
Vector Machine. The intrinsic possibility to manage and model
non-linear complex relationships offered by deep models seems
to provide a significant advantage when attempting to predict
brain age.

Another aspect investigated in this study was the feature
importance aimed at finding out which features and which
related anatomical regions were more accountable for the age
prediction.We chose to not perform a dedicated feature selection
in order to outline the role played by the different regression
strategies. Of course, feature selection can play an important role
in enhancing the performance of machine learning, nevertheless,
the focus of this work was to establish the most effective strategy
to exploit the informative content provided by our complex
network model, independently from other processing steps.

It is interesting to notice as the most important features
are often related to patches which identify several times the
same anatomical regions demonstrating their prominent role in
the aging process. Many studies report that these regions are
widely involved in morphometric changes connected with age
(Koini et al., 2018). Indeed, significant age-related reduction in
cortical thickness, surface area, and volume have been found
in areas like Heschl’s gyrus, cingulate and paracingulate gyrus,
parahippocampal gyrus, and temporal lobe which includes
also the planum polare and Heschl’s gyrus (Mann et al.,
2011; Torii et al., 2012). These two latter regions play an
important role in auditory processing which is notoriously
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FIGURE 8 | This figure shows the patches related to the first most important features along 5 axial planes of the MNI 152 template. On the bottom right, a 3D

representation of the patches on the reference space is reported, as well.

affected by age advancement (Warrier et al., 2009). Cingulate and
paracingulate gyrus are implicated in attention and emotional
regulation, and parahippocampal gyrus and medial temporal
lobe are involved in memory. Therefore, these regions also
influence cognitive processes which are still connected with
normal aging. A particular vulnerability to cortical thickness
changes with age was seen in middle frontal gyrus, pre-
central gyrus, post-central gyrus, and in the pars opercularis
of the inferior frontal gyrus. The importance of frontal lobe
regions is supported by evidence of age-related decline in
several cognitive processes such as speed of processing, working
memory, cognitive control, and motor control (Thambisetty
et al., 2010; Lemaitre et al., 2012). Age-related changes have
been also underlined in insula cortical thickness and in brain
stem volume (Churchwell and Yurgelun-Todd, 2013; Lambert
et al., 2013). However, the reader should take into account
that the proposed approach defines a mathematical framework
rather than a real biomedical brain network and it should
not be overinterpreted

In our results, most of the regions related to the first 10
important features are located in the left hemisphere. This
may suggest an age-related decrease or increase of correlation
between the patches related to the important features in the left
hemisphere and the others. Many studies report that structural
and functional hemispheric asymmetry is related to age. Besides,
changes in structural brain asymmetry with age have been found
right in inferior frontal gyrus, anterior insula, anterior cingulate
parahippocampal gyrus, and precentral gyrus (Kovalev et al.,
2003), thus, in agreement with our results. Further investigations
in this sense could be interesting also to examine a still open issue:

whether and which hemisphere ages faster that currently is still
an open issue (Esteves et al., 2018). However, the reader should
take into account the proposed approach defines a mathematical
framework rather than a real biomedical brain network and it
should not be overinterpreted.

Finally, it is worth to mention an aspect that is gaining
more and more interest, which is the increasingly widespread of
“artificial intelligence” and machine learning for health purposes,
especially for the development of diagnosis support systems.
On one hand, thanks to deep learning there is the possibility
to use raw data to directly predict age, height, or subject-
specific clinical scores, the presence of pathological conditions
and eventually their severity. On the other hand, thanks to
particular inversion strategies, recent works have demonstrated
the possibility to retrieve sensible information on patients even
when using pre-trained models (Fredrikson et al., 2015). With
this perspective, using our multiplex model, mediating between
raw data and clinical score, in this case age prediction, could be
also considered a safe way to use sensible data and protect the
users’ privacy, not to mention the computational advantage in
terms of processing time.

CONCLUSIONS

In this work, we demonstrated that: (i) the features retrieved
with our novel brain network model can accurately characterize
the normal aging, besides their informative content compares
well with state-of-the-art; (ii) the informative power of multiplex
features is effectively exploited and significantly maximized when
using a deep learning regression. The proposed methodology
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localizes the brain regions most affecting aging in the left
hemisphere. For what concerns the model accuracy, further
investigations should be performed by increasing the sample size;
the presented results are promising, nevertheless the statistical
robustness of this study would greatly benefit from a larger
dataset, besides this would be of paramount importance for a
fair comparison with other studies. Finally, we observed here
that brain aging is strongly affected by heteroscedasticity, this
effect should properly taken into account by studies investigating
lifespan processes; in particular, worst prediction accuracy was
obtained in the age range 40 − 60, this would reflect the
high specificity and variability characterizing brain atrophy
in these years. Nevertheless, further investigations, exceeding
the aims of the present work will be needed to corroborate
such hypothesis.
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Magnetic resonance (MR) perfusion imaging non-invasively measures cerebral perfusion,

which describes the blood’s passage through the brain’s vascular network. Therefore,

it is widely used to assess cerebral ischaemia. Convolutional Neural Networks (CNN)

constitute the state-of-the-art method in automatic pattern recognition and hence, in

segmentation tasks. But none of the CNN architectures developed to date have achieved

high accuracy when segmenting ischaemic stroke lesions, being the main reasons their

heterogeneity in location, shape, size, image intensity and texture, especially in this

imaging modality. We use a freely available CNN framework, developed for MR imaging

lesion segmentation, as core algorithm to evaluate the impact of enhanced machine

learning techniques, namely data augmentation, transfer learning and post-processing, in

the segmentation of stroke lesions using the ISLES 2017 dataset, which contains expert

annotated diffusion-weighted perfusion and diffusion brain MRI of 43 stroke patients. Of

all the techniques evaluated, data augmentation with binary closing achieved the best

results, improving the mean Dice score in 17% over the baseline model. Consistent with

previous works, better performance was obtained in the presence of large lesions.

Keywords: ischaemic stroke, medical image analysis, deep learning, computer vision, convolutional neural

networks, deepmedic, segmentation

1. INTRODUCTION

Magnetic resonance imaging (MRI) has become a powerful clinical tool for diagnostics. Its
application has been expanded to the evaluation of brain function through the assessment of
a number of functional and metabolic parameters. One such parameter is cerebral perfusion,
which describes the passage of blood through the brain’s vascular network. Amongst the several
techniques used to measure cerebral perfusion (Petrella and Provenzale, 2000; Fantini et al., 2016),
MRI is perhaps the most widely used due to its non-invasiveness. Thus, having great potential in
becoming an important tool in the diagnosis and treatment of patients with cerebrovascular disease
and other brain disorders. It measures cerebral perfusion via assessment of various hemodynamic
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measurements such as cerebral blood volume, cerebral
blood flow, and mean transit time, from serial tissue tracer
concentration measurements. These measurements are analyzed
in relation to their values in normal tissue regions (e.g., normal-
appearing white matter). Therefore, the importance of estimating
the location and extent of the abnormal region automatically.

Expert delineation is usually performed in the imaging
modality that best displays the pathology while simultaneously
evaluating other imaging modalities. The quality of this process
depends on the expert’s experience, and suffers from intra- and
inter-observer variability (Kamnitsas et al., 2017). Automated
segmentation methods are not only necessary to provide the
quantitative information needed to better support clinical
decisions, but also to carry out large scale studies, with increased
reliability and reproducibility, for which manual delineation
is simply unattainable (Maier et al., 2017). Most of these
algorithms use expert-labeled data to “learn” the pattern to be
segmented until a certain level of accuracy is reached, and are
expected to reproduce similar accuracy levels for new unlabeled
data. Deep Learning algorithms, such as Convolutional Neural
Networks (CNN), have risen in popularity due to their success
on computer vision research (Krizhevsky et al., 2012). Though
CNNs are typically used for multi-label image classification
problems, they can also be employed for segmentation tasks
by classifying each voxel according to the region they belong
to Kamnitsas et al. (2017).

In MR perfusion imaging, the pathologies’ appearance does
not follow a clear pattern, which makes their detection far
more difficult. Specifically ischaemic lesions can appear anywhere
in the brain and their shape and signal intensities vary not
only between disease stages but also within them (Maier et al.,
2017). This variability increases with time from the stroke onset.
Also, the intensity within the infarcted region is not necessarily
homogeneous (Kamnitsas et al., 2017).

1.1. CNN Architectures for Brain Lesion
Segmentation - DeepMedic
Specifically for the segmentation of brain lesions, different CNNs
architectures have been evaluated (He et al., 2016; López-Zorrilla
et al., 2017; Guerrero et al., 2018). One of them (Guerrero
et al., 2018) proposed a 2D CNN architecture for White Matter
Hyperintensities (WMH) segmentation, and reported having
achieved state of the art performance in differentiating them from
ischaemic stroke lesions. However, by taking a 2D approach, it
discards important spatial information, since did not take into
account the volumetric nature of the data; and was only evaluated
using structural MRI modalities, where lesions are homogeneous
and easier to identify.

Using a 3D approach to manipulate Magnetic Resonance
Imaging (MRI) data is not straightforward, as it requires
significantly more computing power and memory than the 2D
counterparts (Roth et al., 2014). The main factor that attempts
against 3D segmentation is the slow inference process. This can
be alleviated by taking advantage of dense inference (Sermanet
et al., 2013), a property of full convolutional networks that
avoids recomputing convolutions for overlapping image patches

and thus reduces inference times. 3D CNN architectures have
been used to segment pathologies (Brosch et al., 2016; Milletari
et al., 2016). However, DeepMedic (Kamnitsas et al., 2017) has
emerged as the brain lesion segmentation CNN method for
excellence, due to its availability, technical support and versatility,
as it has been applied not only to segment hyperintense lesions
(Rachmadi et al., 2018b), but also lesions with heterogeneous
signal intensities (i.e., tumors) (Kamnitsas et al., 2017). It has a
3D CNN architecture of two pathways that uses dense-inference
and adds a 3D fully connected Conditional Random Forest
(CRF) as a final post-processing layer. By taking advantage of the
dense inference, DeepMedic can be trained using image segments
(i.e., image patches of size bigger than the network’s receptive
field) to avoid recomputing convolutions of overlapping patches.
Additionally, the dual pathway is used to compute both local and
global (i.e., contextual) features at the same time by processing
the same image at different scales. Finally, the CRF is used
to remove false positives before returning the final results.
DeepMedic reached the first position in the Ischemic Stroke
lesion Segmentation (SISS) subchallenge of the Ischemic Stroke
LEsion Segmentation (ISLES) 2015 challenge1.

In subsequent ISLES challenges other CNN approaches have
been applied. For example, whilst DeepMedic uses a traditional
cross-entropy function (Kamnitsas et al., 2017), the winners of
the ISLES 2017 challenge (Choi et al., 2017; Lucas and Heinrich,
2017), use a loss function based on Dice Similarity Coefficient
(DSC) particularly designed for unbalanced data sets (Sudre et al.,
2017). Also, (Choi et al., 2017) implement a spatial pyramid
pooling layer (He et al., 2014), recently combined with an
encoder-decoder (Chen et al., 2018b) to improve segmentation
predictions. Spatial pyramid pooling guarantees a fixed output
size for different sized inputs (He et al., 2014). This means
that the network can process inputs at different scales, similarly
to DeepMedic, while keeping the same output size. Dilated
convolutions have also proven useful for enhancing the spatial
resolution of the network and thus improving the performance
for semantic segmentation (Chen et al., 2017, 2018a). These
convolutional layers extend the field of view and thus can extract
features at different scales.

1.2. Enhancing Learning Techniques
Variations in CNN architectures appear to show improvements
in the segmentation of certain pathologies. However, these
methods suffer a significant loss in performance when these
changes are applied to datasets acquired with different imaging
protocols, or using different sequences (i.e., task domain
changes), they are applied to the assessment of different types of
lesions caused by different pathology (e.g., the initial task being
to segment tumor lesions, whilst the actual task is to segment
ischaemic stroke lesions), or they are expected to perform tasks
that are related to but not the same task they were trained for
(e.g., lesion segmentation vs. lesion assessment).

There are several ways to enhance the performance of
the CNN architectures without modifying the architecture

1www.isles-challenge.org/ISLES2015/
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itself. In general, they can be enumerated as follows: (1) pre-
processing the input data, (2) modifying the input data by adding
information derived from internal and external sources (i.e., data
augmentation), (3) re-purposing a model trained for one task to
perform a second related task (i.e., transfer learning), and (4)
post-processing the output from the CNN.

1.2.1. Pre-processing the Input Data
The importance of pre-processing the data has been highlighted
by previous works. For example, Rachmadi et al. (2018b), for
segmenting WMH, extract the brain tissue from the originally
acquired MRI, and only input this to the CNN architecture. In
addition, perform a three-step intensity normalization: (1) adjust
the maximum gray scale value of the MRI brain to 10 percent
of the maximum intensity value, (2) adjust the contrast and
brightness of the images such that their histograms are consistent,
and (3) normalize the intensities of the resultant images to zero-
mean and unit-variance. Guerrero and colleagues, for similar
task, used twoMRImodalities (Guerrero et al., 2018), which were
co-registered, resliced to have 1 × 1 mm in-plane voxel size, and
normalized their intensities. In general, intensity normalization,
contrast adjustment and removal of background features that
could confound the algorithms are necessary for achieving a
good segmentation. When multiple MRI sequences or imaging
modalities are used, co-registration is also necessary.

1.2.2. Data Augmentation
Training a machine learning model is equivalent to tune its
parameters so that it can map a particular input to an output. The
number of parameters needed is proportional to the complexity
of the task. These parameters can increase if more information
is given. The increase in the amount of input data without
necessarily meaning an increase in the contextual or semantic
data per se is known as data augmentation and has been used in
brain image segmentation tasks. Several studies have introduced
global spatial information as an additional input to CNN schemes
in form of large 2D orthogonal patches down-scaled by a
certain factor (de Brebisson and Montana, 2015), integrated with
intensity features from image voxels (Van Nguyen et al., 2015), as
a number of hand-crafted spatial location features (Ghafoorian
et al., 2016), synthetic volume (Steenwijk et al., 2013; Roy et al.,
2015), or set of synthetic images that encode spatial information
(Rachmadi et al., 2018b) for mentioning some examples. In
other words, all input datasets are acquired under a limited set
of conditions (e.g., specific MRI scanning protocols, pathology
appearance restricted to few examples, etc.). However, our target
application may exist in a variety of conditions (e.g., pathologies
in different location, scale, brightness, contrasts, shapes). By
synthetically generating data to account for these variations
without adding irrelevant features, good results might be
obtained. A review of the state of the art inmedical image analysis
concluded that very similar algorithms could achieve different
results due to smart data pre-processing and augmentation
(Litjens et al., 2017).

1.2.3. Transfer Learning
Transfer learning has become a popular choice for re-purposing
machine learning models that have proven useful for particular
tasks, by means of either fine-tuning pre-trained models with
data of another nature (i.e., domain adaptation transfer learning),
or using a pre-trained model as a starting point for a model on
a second task of interest (i.e., task adaptation transfer learning).
Domain adaptation transfer learning, where data domains in
training and testing processes differ, has been applied successfully
to brain MRI segmentation tasks. For example, one study
improved Support Vector Machines (SVM)’s performance using
different distribution of training data (Van Opbroek et al.,
2015). Another study pre-trained CNN using natural images for
segmentation of neonatal to adult brain images (Xu et al., 2017),
and other study pre-trained a CNN for brain lesion segmentation
using MRI data acquired with other protocols (Ghafoorian et al.,
2017). Task adaptation transfer learning has been applied to
WMH segmentation, by teaching a CNN to “learn" to detect
texture irregularities instead of binary expert-delineated WMH
segmentations (Rachmadi et al., 2018a).

1.3. Contributions
Our main contributions are to propose and evaluate data
augmentation and transfer learning methods for improving
the output of a widely used brain lesion segmentation CNN
approach, namely DeepMedic, to identify and delineate the
ischaemic stroke lesion fromMR perfusion imaging.

2. METHODS

2.1. Data
The ISLES challenge was conceived as a common benchmark
for researchers to compare their segmentation algorithms (Maier
et al., 2017) for ischaemic stroke lesions. Initially, the first
iteration of ISLES (in 2015), included two sub-challenges,
namely Stroke Perfusion EStimation (SPES) and SISS. The
first sub-challenge was about segmenting stroke lesions in the
acute phase, whereas the second focused on sub-acute lesions
(Maier et al., 2017).

The stroke cases were carefully crafted and included a wide
range of lesion variability. Images were obtained in clinical
routine, with different amounts of image artifacts and different
views (Maier et al., 2017). Also, some subjects suffered from other
pathologies that could be mistaken for ischemic stroke lesions.
All files are given in uncompressed Neuroimaging Informatics
Technology Initiative (NIfTI) format: (*.nii).

ISLES 2017 contains 43 and 32 training and testing acute
subjects, respectively. Included MRI sequences are Apparent
Diffusion Coefficient (ADC), 4D Perfusion Weighted Image
(4DPWI), Mean Transient Time (MTT), relative Cerebral Blood
Flow (rCBF), relative Cerebral Blood Volume (rCBV), Time
to maximum (Tmax) and Time to peak (TTP). Images from
all modalities were skull-stripped, anonymized and individually
co-registered.

The Ground Truth (GT) files, which delimit the actual lesion
region, were only provided for training subjects, so as to avoid
having participants performing fine-tuning on the test data. They
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were segmented on T2-weighted and Fluid Attenuation Inversion
Recovery (FLAIR) sequences after the stroke had stabilized, but
these imaging modalities were not provided.

After careful examination, the stroke subjects in the training
data were classified into three different stroke subtypes. These are
lacunar/subcortical (10 subjects), small cortical (7 subjects) and
big cortical/main artery (26 subjects).

2.2. Baseline Configuration
The baseline CNN model, including its architecture and hyper-
parameters, is based on DeepMedic v0.6.1 (Kamnitsas et al.,
2017). The architecture used slightly differs from the initial
architecture (Kamnitsas et al., 2017).

The number of convolutional layers was 8, and the number of
feature maps for each were [30, 30, 40, 40, 40, 50, 50]. The kernel
size was (3, 3, 3) for all layers. Residual connections in both
pathways were also included so that the input of layers [3, 4, 6]
was added to the output of layers [4, 6, 8].

The final blocks of the scheme were composed of Fully
Connected (FC) layers and a CRF. The number of FC layers was
set to two, with 150 feature maps each. The size of the kernels of
the first FC layer, which combined the outputs of different scales,
was again (3, 3, 3). Additionally, there was a residual connection
between the second and first layers, meaning that the input of
the first FC layer was added to the output of the second and final
FC layer.

The second pathway had an additional parameter that
determined the downsampling factor applied to the images
fed to the second pathway. Additionally, batch normalization
(Ioffe and Szegedy, 2015) was added at the end of each
convolutional layer.

The dimension of the training and validation segments were
[25, 25, 25] and [17, 17, 17], respectively. The latter was equal to
the receptive field of the network. The size of the segments was
limited by the available RAM and GPU memory.

The batch size for training, validation and inference were set
to 24, 48, and 24, respectively. Dropout (Srivastava et al., 2014)
was added in the second FC layer and the final classification layer,
both with a rate of 0.5. Weight initialization followed a modified
Xavier initialization (Glorot and Bengio, 2010) that accounts
for nonlinearities (He et al., 2015). This allows the training of
deeper networks and works well with Parametric Rectified Linear
Units (PReLU) (He et al., 2015), which were the predefined
activation units.

Also, intracranial volume masks were provided to limit the
region where samples were extracted from, which in turn saved
time and memory. This means that foreground samples were
extracted from the GT label mask and background samples
extracted from the region inside the subject mask minus the
intersection with the label mask. By default, samples were
extracted centered in a foreground or background voxel with
equal probability.

During training, epochs were divided into subepochs. The
number of epochs and subepochs was set to 35 and 20,
respectively. For each subepoch, 1,000 segments were extracted
from up to 50 cases.

The learning rate was decreased exponentially and the
momentum linearly increased. The values that had to be reached
at the last epoch were 10−4 for the former and 0.9 for the
latter. The learning rate, initially set to 10−3, started to lower
at epoch 1. Updating learning rates through training is a way
of making sure that convergence is reached and in a reasonable
time (Jacobs, 1988; Zeiler, 2012). The learning optimizer was
RmsProp (Tieleman and Hinton, 2012), with ρ = 0.9 (decay
rate) and ǫ = 10−4 (smoothing term that avoids divisions
by zero). RmsProp was combined with Nesterov momentum
(Nesterov, 1983), as proposed by Sutskever et al. (2013). The
momentum value was set to m = 0.6 and normalized.
Additionally, weight decay was also implemented, in the form
of L1 and L2 normalization with values L1 = 10−6 and
L2 = 10−4, respectively.

Also, two “online" (done during training) data augmentation
techniques were set by default. The first simply involved
reflecting images with a 50% probability with respect to the
X axis (from left to right). The second consisted in altering
the mean and standard deviation of the images, following the
next equation:

I′ = (I + s) ∗m, (1)

where s (shift) and m (multi) are drawn from Gaussian
distributions of (µ = 0, σ = 0.05) and (µ = 1, σ = 0.01),
respectively.

Finally, due to memory limitations, only three out of
the six available channels were used to train the model,
namely ADC, MTT, and rCBF. In some experiments, rCBF
was replaced by rCBV. Only two segmentation classes were
considered, foreground, representing the lesion, and background,
representing everything else.

2.3. Experiments
To evaluate the use of enhancing learning techniques for
identifying ischaemic stroke lesions in perfusion imaging data,
six experiments were run (i.e., E0–E5) by varying one aspect
of the model at a time, such as the type of data or other
parameters. This was done in the form of a pipeline, performing
pair-wise comparisons. At each stage of the pipeline, two models,
with and without a particular change, were compared. The best
performing model of each pair-wise comparison proceeded to
the next stage, until the best performing model of all experiments
was found.

To assess the performance of an experiment, k-fold cross-
validation was employed, where k = 5. Cross-validation is
essential to give a good estimate of the real performance of
an experiment. If cross-validation hadn’t been used, results
would have highly depended on the composition of easy/hard
cases in each set. For example, if the test set had only been
made of easy cases, the performance achieved would have
been greater that if they had been difficult cases. Overall, this
not only increases the robustness of the results but also the
confidence of the decisions related to the changes that have
worked best.
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2.3.1. Data Pre-processing
Performing adequate pre-processing of the data is essential to
maximize the performance of the model. Some of the necessary
pre-processing steps were already done by the ISLES organizers,
such as co-registering all images per subject setting them to
have the same dimension, also per subject, and removing
extracranial tissues.

Additional pre-processing involved resampling all images
to isotropic (i.e., 1 x 1 x 1 mm) voxels size, generating
intracranial volume masks and normalizing the data to have
zero mean and unit variance. The latter is strongly suggested by
DeeMedic’s creator as it would substantially affect performance.
The intracranial volume masks were generating binarizing the
TTP images, and applying binary dilation before the resampling
to improve the boundaries. Due to memory constraints, all
images had to be downsampled with a factor of 0.7 so they could
fit in memory (Algorithm 1).

Algorithm 1 Data Pre-processing

Initialize dF = 0.7
for each subject do

for each channel do
resampled_channels← resample(channel)

end for

mask← compute_mask(channels)
mask← resample(mask)
save_image(mask)
for each resampled_channel do

img ← normalize(resampled_channel,mask)
save_image(img)

end for

end for

2.3.2. E0 - Baseline Configuration
This experiment (i.e., E0) consisted in training the DeepMedic
configuration described previously, with the default parameters
using the pre-processed data. It established the baseline results.
All future experiments were compared against this or a better
performing one. The imaging modalities used as input channels
were ADC, MTT, and rCBF.

2.3.3. E1 - Data Augmentation
We applied the data augmentation method known as intensity
variance. It consists in randomly altering the intensity
values within the Region of Interest (ROI) or GT region
following a Gaussian distribution of mean and variance
equal to the ones computed from the intensity values within
the region.

The rationale behind this idea was to try to deal with one
of the many complications of detecting the ischemic stroke
lesion in these types of images: their intensity inhomogeneity.
As mentioned by Maier et al. (2017), the intensity values within
the lesion territory can vary significantly. By using a mean and
variance based on the already available data, the intensities, while

being different from the original, should not be too different so as
the lesion is no longer recognizable.

This augmentation was done offline, which means that the
altered subjects were created and saved to be fed to the network
during training. It was decided to do it this way so as to avoid
modifying DeepMedic’s core code, which would in turn become
very time consuming. Each new subject is a “clone” of the
original, except for the intensity values within the ROI or GT
label. All channels had their intensity modified. Algorithm 2
shows how this was done.

Algorithm 2 Data augmentation

Initialize clones_number = 1
for each subject do

Load label
for each clones_number do

Initialize clone_path
for each channel do

roi← channel[nonzero(label)]
channel[nonzero(label)]
← gaussian(mean(roi), std(roi))
save_image(channel, clone_path)

end for

end for

end for

This experiment used the same baseline configuration
parameters as E0, with the exception that the data had
been augmented. The original 43 subjects had been
“cloned," following the procedure described above.
Thus, the total number of available training subjects
became 86. However, since validation or testing in
augmented subjects is meaningless, only the subjects
inside the training set contained clones. Naturally, clones
of the validation and test subjects were not part of the
training set.

2.3.4. E2 - Transfer Learning With Error Maps
The goal of this experiment was to improve the performance of
a pre-trained model (i.e., the best performing model so far), by
fine-tuning the model with its error maps (i.e., weighted maps),
using them to draw more image segments from difficult regions
(i.e., those where errors were bigger).

Fine-tuning is a type of transfer-learning aimed at improving
the performance of a network pre-trained for a different -
although similar- task to the one the model was originally
trained for (Pan et al., 2010). For example, two different tasks
can have the same goal and only vary on the information
that is provided to complete them. Usually, this technique
involves re-training a network while “freezing" the first layers,
meaning that their parameters (weights) are kept fixed during
training. Each consecutive layer of a CNN generates more
complex features from the ones detected in the previous layer.
Consequently, the first layers contain simpler features that are
common for similar problems, and thus can be “transferred"
to a similar task. Then, new data is used to retrain the final
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layers, tuning the network to improve performance on the
new task.

In other words, the aim of fine-tuning is to adapt the
network to the small details that make the new task different,
which means the learning rate has to account for that by being
considerably small compared to the original rate the model
was pre-trained with. For that reason, while the learning rate
of the initial model was initialized to 10−3, the rate for this
experiment was 5x10−4. There are three possible benefits of using
transfer learning: a higher start, a higher slope and a higher
asymptote (Aytar and Zisserman, 2011). When performing
transfer learning, it’s possible that one, two, all or none of these
benefits appear.

To improve learning, an adaptive sampling method has
been proposed (Berger et al., 2017) for DeepMedic. It consists
in extracting more image patches in the regions where the
prediction error is bigger, according to error maps generated
throughout training. DeepMedic already offers the possibility of
using weighted maps for the sampling process, which essentially
serves the same function but in a static way (i.e., maps must
be generated beforehand and are not updated during training).
By using these maps, image segments are extracted more often
from those regions where the weights are bigger. Error maps, one
per subject and class, were obtained by computing the square
error between each voxel of the GT label and the predicted
probability map. The probability maps were obtained from
the segmented test cases of each fold, meaning that the error
maps for all subjects could be computed. These maps were
normalized to zero mean and unit variance for homogeneity
between subjects.

The paths of the computed error maps were included in
different files, one for each class. These files were specified in the
configuration parameters, each line representing a subject, which
had to be coherent between files. Weighted maps can be defined
both for training and validation. Since the goal was to improve
the network performance, only error maps for the training cases
were provided. In these cases, fine-tuning was performed by
retraining the best model so far while extracting more image
segments in those regions where errors where bigger, with the aid
of pre-computed error maps. All convolutional layers were left
frozen, thus only tuning the FC layers.

2.3.5. E3, E4, and E5 - Transfer Learning With rCBV
Perfusion parametric maps rCBF and rCBV display different
appearance depending on the area under consideration. In the
core of the stroke both sequences have substantially low values.
However, in the penumbra (i.e., affected but salvageable region),
while rCBF is slightly reduced, rCBV can be normal or even have
higher values compared to normal tissue. Both sequences have
been used to segment the stroke (Chen and Ni, 2012).

In this experiment, the best performing model so far is
retrained using the ADC, MTT, and rCBV as input channels.
Recall that until now, models have used the ADC, MTT,
and rCBF as input channels for training, as defined in the
baseline configuration.

The goal of E3 is to make predictions more robust by tuning
the weights of the FC layers, similar to experiment E2 in previous

section. This would make the network more sensitive to small
changes between rCBF and rCBV, which can be crucial to
accurately segmenting the stroke.

E4 and E5 are essentially the same as E3 with the exception
of the number of frozen layers. E4 has only the first four
convolutional layers frozen, whereas E5 has no frozen layers at
all. This is useful to also examine the effect of freezing different
numbers of layers for the lesion segmentation task.

2.4. Post-processing
In order to test whether the predictions of DeepMedic could
be further improved, different post-processing techniques were
implemented, based on threshold tuning the DeepMedic’s
probability output and performing binary morphological
operations in the binarized result.

However, before applying any of these techniques, DeepMedic
outputs (i.e., predicted lesion and class probability maps) had
to be resampled to their corresponding subjects’ original image
space so that results could be interpreted in the same dimensional
space as the original data. Hence, we resampled all outputs per
subject using the inverse affine transformation applied to the
original images in the ISLES 2017 dataset.

2.4.1. Threshold Tuning
After computing the Receiver Operating Characteristic (ROC)
and Precision-Recall (PR) curves it is possible to obtain the
optimal threshold to be applied to the DeepMedic probabilistic
output, which maximizes the desired metrics. To this end, we
implemented two threshold tuning procedures, one for each
curve. It is worth noting that both methods were independent
and their results were not combined. Also, both curves were
computed using the Scikit-learn library.

The first threshold tuning procedure, Threshold
Tuning 0 (THT0), consisted in obtaining the point
where (precision ∗ recall) was maximum. This is the
furthest point from the bottom-left corner and thus
returns the maximum value for the DSC metric. To
compute it, we concatenated the original GT and the
probability map of the foreground class of all subjects
(separately) to compute the curve, and, then, selected the
optimal threshold.

The second procedure, Threshold Tuning 1
(THT1), based on the ROC curve, consisted in
obtaining the point where (TruePositiveRate(TPR) −
FalsePositiveRate(FPR)) was maximum. This represents
the furthest point from the bottom-right corner and
thus the optimal threshold, giving the maximum
value for the Bookmaker Informedness (BM) metric.
Again, all subjects’ labels and probability maps were
concatenated to compute the curve, and, then, select
this threshold.

The goal of both procedures was to obtain the best average
threshold for the results from the validation set to apply it to
the test set. This was done for all folds independently. This
guarantees that the tuning is not performed on the test (i.e.,
validation) cases, which accounts for a real scenario where the
GT for the test cases are not available.
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2.4.2. Binary Morphological Operations
Binary morphological operations are mathematical operations
used to modify shapes in binary images through a structuring
element: a shape to probe the image. Closing is a binary
morphological operation that can fill holes in big predicted
lesions or join reasonably close small ones to make predictions
more robust. It combines two other simpler morphological
operations: dilation, which expands shapes in an image, and
erosion, which shrinks them. In both cases, the center of the
structuring element is placed at every pixel of the image and a
decision is made. In the case of dilation, a pixel is set to 1 if there
are any pixels equal to one within the shape of the structuring
element, otherwise it’s set to zero. Erosion performs the exact
opposite operation, a pixel is set to 0 as long as there is any pixel
of value 0 within the area covered by the structuring element.

Furthermore, there are two decisions to make regarding this
operation: the shape and size of the structuring element and the
number of iterations. While the first determines the final output
and thus the goodness of the prediction, the second defines
the number of times that the dilation operation inside the close
function is repeated (followed by the same number of iterations
for the erosion operation) 2.

After few experiments, the optimal structuring element was a
3D ball with a radius of 3 voxels, whereas the number of iterations
was tuned by selecting the average of the ones that achieved the
maximum DSC score on validation cases. This post-processing
step was named Filling Holes (FH).

2.5. Evaluation
At each state of the post-processing pipeline, multiple
performance metrics were computed to compare the predicted
segmented lesions with the GT. These metrics were TPR, True
Negative Rate (TNR), Positive Predictive Value (PPV), Accuracy
(ACC), DSC, Matthews Correlation Coefficient (MCC), and
Hausdorff Distance (HD). Being True Positives (TP) the
voxels predicted to be positives and identified positives by
the configuration evaluated, True Negatives (TN) the voxels
predicted to be negatives and identified negatives, False Positives
(FP) the voxels predicted to be negatives but identified positives
and False negatives (FN),the voxels predicted to be positives but
identified negatives, these metrics are defined as follows:

• TPR: Also known as sensitivity or recall, measures the rate of
true positives with respect to the number of real positive cases.

TPR =
TP

P
=

TP

TP + FN
(2)

• TNR: Also known as specificity, measures the rate of true
negatives with respect to the number of real negative cases.

TNR =
TN

N
=

TN

TN + FP
(3)

2https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.

morphology.binary_closing.html

• PPV:Also known as precision, measures the proportion of true
positives with respect to all predicted positives.

PPV =
TP

P′
=

TP

TP + FP
(4)

• ACC: Is a measure of statistical bias. Represents how close the
predictions are from the true values.

ACC =
TP + TN

P + N
=

TP + TN

TP + TN + FP + FN
(5)

• DSC: The Dice similarity coefficient measures the harmonic
mean of PPV and TPR. (Landis and Koch, 1977) define the
intervals and the associated “strength of agreement": [< 0.00]
(Poor), [0.00 − 0.20] (Slight), [0.21 − 0.40] (Fair), [0.41 −
0.60] (Moderate), [0.61 − 0.80] (Substantial), [0.81 − 1.00]
(Almost perfect).

Fi = 2 ∗
PPV ∗ TPR

PPV + TPR
=

2TP

2TP + FP + FN
(6)

• MCC: Also known as the phi coefficient or Matthews
correlation coefficient, is considered a balanced metric of
the quality of binary classification, thus robust to class
imbalance. Values range from –1 (perfect negative correlation)
to 1 (perfect positive correlation), being 0 equal to random
prediction. This metric is considered to be the most
meaningful, specially for imbalanced data (Chicco, 2017).

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(7)

• HD: Measures the distance between two subsets.AS and BS are
equivalent to P (real true cases) and P′ (predicted true cases),
and d(·) is the euclidean distance between two points.

HD(As,Bs) = max{max
a∈As

min
b∈Bs

d(a, b), max
b∈Bs

min
a∈As

d(b, a)} (8)

Since we used k-fold cross-validation, these metrics were
averaged per fold and also between folds. This means that
performance metrics were available per subject (both for the
validation and test sets’ subjects of every fold), per fold and per
experiment. Performance curves, known as precision PPV vs.
recall TPR, error bar and Bland-Altman (Bland et al., 1986) plots
were also produced. In addition, the DeepMedic plotting script
was slightly modified to generate the progress of metrics such
as accuracy or DSC on training and validation sets through the
different epochs.

3. RESULTS

3.1. Segmentation Performance During
Training
The segmentation performance for validation and training sets
during the training process is shown in Figure 1. The DSC
coefficient was stable after improving during few epochs. On
the other hand, sensitivity (i.e., TPR) improved at first but then
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FIGURE 1 | E0 - Segmentation metrics of validation and train subjects during training. The graphs shown are the averages of all 5 folds. The light gray area illustrates

±1 standard deviation. Full segmentation on training cases was not performed by DeepMedic, reason why the lower-right graph is empty.

FIGURE 2 | E0 - Error bars. Each metric for each post-processing step and lesion category is presented. A fourth column, representing all subjects, is also included.

Base results are present in all rows for comparison purposes (semi-transparent black). Each marker represents the mean value, and the upper and lower limits

represent the 95% confidence interval. The metrics shown are: Dice similarity coefficient (DSC), Matthews correlation coefficient (MCC), True positive rate (TPR), True

negative rate (TNR), and Positive predicted value (PPV).
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FIGURE 3 | E0 - Volume Bland-Altman analysis. Each lesion category (lacunar/subcortical, small cortical and big cortical) and post-processing step (THT0, THT1, FH,

and base) are included. Base is also included in each post-processing step row for comparison purposes (semi-transparent black). Each point represents one subject.

The solid line is the mean difference, whereas the dotted-line represents the limits of agreement, computed as mean±1.96 STD. The x axis is the average volume

between the predicted segmentation and the ground truth, whereas the y label is the difference.

worsened and remained stable. Mean accuracy and specificity,
while being very high, did not account for the imbalanced nature
of the data.

In E1, sensitivity tookmore time to reach its peak compared to
E0, but when it stabilized the asymptote was slightly higher. Also,
while DSC behaved similarly to E0, it also achieved higher values.
In E2-E5, the metrics for the first epoch had the same value as
for the last epoch in E1, and did not improve throughout the
training process.

3.2. Baseline Segmentation Performance
Figure 2, shows the error bars for each metric, post-processing
step and lesion category for E0. TPR was highly variable for small
stroke lesions, regardless of whether they were lacunar or cortical,
especially after the THT0 and FH post-processing steps. THT1
produced consistently worse results in terms of accuracy for small
stroke lesions, despite achieving higher TPR (i.e., sensitivity).
The segmentation of big cortical/main artery stroke lesions was
considerably better than those for the other stroke subtypes.
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The Bland-Altman plot showing the volumetric agreement
between the GT and the results from E0 after each
post-processing step can be seen in Figure 3. THT1 produced the
worst results in terms of volumetric agreement regardless of the
stroke subtype, considerably inflating the stroke lesion volume.
This method for selecting the optimal threshold for binarizing
the probabilistic stroke lesion maps obtained, overestimated the
stroke lesion size in general. This overestimation, reflected in
the difference between the volumes of the GT and the output
from applying THT1, was proportional to the stroke lesion
size. The post-processing step pf FH slightly improved the
volumetric estimation of big cortical strokes with respect to the
base measurements.

3.3. Experiments’ Results
E1 was the best performing model, with an average DSC of 0.34
after applying FH. This proves the efficacy of using the data
augmentation method selected (i.e., intensity variance). It also
proves the importance of performing post-processing tasks, such
as THT0 and FH, instead of simply focusing on pre-processing
and then relying on the output of the network.

Table 1 and Figure 4 contain a summary of all experiments.
E1 was superior to E0 and the rest experiments yielded results
close to E1, but they were not able to improve it. E4 and E5 are not
shown because their results were very similar to E3 but slightly
inferior. In general, the transfer learning approaches (E2-E5)
evaluated did not improve the accuracy in the results.

Table 1 shows the key metrics of each experiment both for
all post-processing steps. On average, FH performed best. PPV
and consequently DSC were the metrics that determined the best
performing model.

Figure 4 depicts the DSC error bars for all post-processing
steps and lesion categories. Big cortical lesions were easier to
segment than the rest (i.e., small lesions).

Additionally, Figure 5 shows the precision-recall curves for all
experiments. Results are very different depending on the cases
that fall in each fold. This is a clear sign of the heterogeneous
nature of the data and the inability of the network to generalizing
well. Also from these graphs, results from E1 are slightly superior
to E0 and similar to E2. Interestingly, while E3 produced
the worst results, its predictions were the least heterogeneous
(i.e. the curves are more closer to each other than in any
other experiment).

The winner (Choi et al., 2017) of the ISLES 2017 challenge,
achieved 0.31 DSC and 103.64 HD when the final results were
published in September of 2017, but since then the challenge has
remained open. Consequently, more participants have joined the
challenge and the current top performer, as of the time of writing
this manuscript, achieved 0.36 DSC and 29.37 HD.

To perform a fair comparison between our E1 and the current
state of the art performance, E1 was retrained using all train data
for training and tested on the unlabeled test set of the challenge.
FH was then applied to the predicted lesions using the average
number of iterations in E1 and the results uploaded to the SMIR
web page3.

3www.smir.ch

TABLE 1 | Summary of the main metrics for all experiments (i.e., E0-E3).

Post-proc DSC HD MCC TPR TNR PPV

E0

Base 0.29 62.22 0.30 0.30 0.99 0.36

THT0 0.29 72.83 0.30 0.45 0.97 0.28

THT1 0.12 99.62 0.16 0.94 0.64 0.07

FH 0.32 59.47 0.33 0.38 0.99 0.36

E1

Base 0.32 49.89 0.32 0.34 0.99 0.38

THT0 0.31 72.33 0.33 0.49 0.97 0.30

THT1 0.13 100.29 0.18 0.96 0.65 0.07

FH 0.34 47.85 0.35 0.40 0.99 0.39

E2

Base 0.31 48.48 0.32 0.34 0.99 0.38

THT0 0.31 71.42 0.33 0.48 0.97 0.30

THT1 0.13 100.19 0.18 0.96 0.68 0.08

FH 0.33 46.74 0.35 0.40 0.99 0.38

E3

Base 0.30 57.37 0.31 0.36 0.99 0.36

THT0 0.31 66.37 0.32 0.42 0.98 0.32

THT1 0.12 99.94 0.17 0.97 0.63 0.07

FH 0.33 53.94 0.34 0.42 0.99 0.36

Average metrics from the base prediction and all post-processing steps are shown. These

are: Threshold tuning 0 (THT0), Threshold tuning 1 (THT1) and Filling holes (FH). The

metrics shown are: Dice similarity coefficient (DSC), Hausdorff distance (HD), Matthews

correlation coefficient (MCC), True positive rate (TPR), True negative rate (TNR), and

Positive predicted value (PPV).

E1 achieved 0.29DSC and 49.75HDon the test set, as reported
by the SMIR web page. This value is inferior to the 0.34 DSC
achieved in the E1 experiment and also to the current first
position of the challenge. This difference could be because of the
fact that either the network or the number of iterations for FH
computed in E1 were not able to generalize well on the test data.

3.4. Visual Evaluation of the Results
Figures 6–8 show the results from E1 for representative axial
slices superimposed in the ADC image, from three subjects
randomly selected from each category. In general, stroke lesion
predictions were better in E1, but not by a large margin, and these
figures, overall, exemplify the results obtained.

Compared to E0, some cases were better segmented, but this
was not always the case. For example, the stroke lesion prediction
for subject 9 (lacunar infarct) achieved a DSC score of 0.45
in E0, whereas in E1 it achieved 0.56. However, for subject 21
(small cortical infarct), the DSC score for E0 was 0.26, whereas
in E1 it was 0.24, i.e., a slightly worse score. In general, E1’s
DSC was 10.34% better than E0’s and 6.25% for FH. Most results
were visually very similar. Also, in E1, post-processing steps (i.e.,
THT0, THT1, FH) did not improve results as much as they did
in E0.

TheGT, obtained from the structural T2-weighted images, not
always includes the whole regions with restricted diffusion (i.e.,
dark regions in the ADC map). Contrastingly, in cases of large
strokes, it includes the cerebrospinal fluid in the sulci. For cases in
which the GT extent agrees with the region of restricted diffusion,
the results are better (e.g., cases 9 and 32).
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FIGURE 4 | DSC error bars of all experiments for the base prediction and FH and each lesion category.

FIGURE 5 | Performance curves of E0-E3. The gray lines indicate the iso-F1S curves, the value of DSC for each point in the graph. The AP metrics are also included.
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FIGURE 6 | E1 - Visual segmentation comparison of lacunar/subcortical lesions. The examples include the predicted lesions after each post-processing step. Images

are 2D slices, their cut coordinate in the z axis is included, as well as the volume of each segmentation and the DSC achieved.

Visually, results obtained applying THT1 to the DeepMedic’s
output does not appear to be disparately wrong compared to
those obtained applying THT0 and/or FH.

4. DISCUSSION

Although the best enhanced learning strategy proposed (FH)
improved the segmentation results in the majority of cases, our
results are still suboptimal. We used the default configuration,
batch size, learning rate and activation functions of a CNN
scheme designed to segment tumors from structural MRI
sequences. Also, instead of pre-training the network with data
of similar nature, but a varied, larger dataset, and fined-tune
it with this ISLES 2017 dataset, we directly trained it with a
subset from the latter. Therefore, overfitting was still a problem
even with data augmentation. Reducing it could be achieved
by modifying the number of layers and the size of kernels,
and thus the number of network parameters. It could also
be remedied by using data from other challenges, or even
past iterations of ISLES that also contain the same sequences
for segmenting the stroke lesion. Moreover, the learning rate
schedule should lower the learning rate at predefined epochs.
We used the DeepMedic’s default without prior training the

model to determine when it would be more convenient to
lower the learning rate, and the schedule was set to exponential
decrease. Future work should try to lower the learning rate only
when necessary.

In addition to these suggestions, data augmentation for
medical images can also be done by employing Generative
Adversarial Networks (GAN), which have recently being used in
multiple works (Yi et al., 2018). For example, (Shin et al., 2018)
employs GANs not only to improve accuracy of deep learning
segmentation models through the generation of synthetic brain
tumors, but also to achieve subject anonymity. Other works
have also applied this technique for detecting brain metastases
(Han et al., 2019), classifying liver lesions (Frid-Adar et al.,
2018) and for other medical segmentation tasks (Bowles
et al., 2018). Overall, these works agree on the performance
improvements achieved by applying data augmentation based
on GANs.

Despite the limitations previously mentioned, the GT used
should be put into question. As the examples selected show,
it did not accurately cover the region of restricted diffusion
in the ADC images, underestimating it mainly for small
infarcts and overestimating large infarcts, including regions of
fluid in the sulci. The GT was generated using the structural
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FIGURE 7 | E1 - Visual segmentation comparison of small cortical lesions. The examples include the predicted lesions after each post-processing step. Images are

2D slices, their cut coordinate in the z axis is included, as well as the volume of each segmentation and the DSC achieved.

T2-weighted images (i.e., including FLAIR), not provided. The
mismatch between structural, diffusion and perfusion MRI
modalities is well-known (Chen and Ni, 2012; Motta et al., 2015;
Straka et al., 2010).

Precisely, the perfusion/diffusion mismatch has been reported
to provide a practical and approximate measure of the tissue at
risk, being used to identify acute stroke patients that could benefit
from reperfusion therapies. Clinical studies also show that early
abnormality on diffusion-weighted imaging can overestimate the
infarct core by including part of the tissue “at risk," and the
abnormality on perfusion weighted imaging overestimates this
“at risk" tissue by including regions of benign tissue with reduced
blood perfusion (Chen and Ni, 2012).

The diffusion/fluid attenuated inversion recovery
(DWI/FLAIR) mismatch is also well-known. Together with
the perfusion/diffusion mismatch it is recognized as an
MRI marker of evolving brain ischaemia. A clinical trial that
examined whether the DWI/FLAIRmismatch was independently
associated with the diffusion/perfusion mismatch or not,
concluded that in the presence of the latter, the DWI/FLAIR
pattern could indicate a shorter time between the scan and the
last time the tissue seen was normal (Wouters et al., 2015). The
CNN scheme evaluated does not take into account the time from
the stroke onset—information not provided.

Finally, the types of infarcts were not evenly represented in
the dataset. The large cortical strokes were predominant, which
could explain the bias in the results favoring the cases when the
stroke was of this subtype. The involvement of personnel with
relevant clinical knowledge in the generation of datasets to be
used for developing algorithms aimed to clinical research would
be advisable in the future.

5. CONCLUSION

The model that used data augmentation had the best
performance, achieving an average DSC score of 0.34 for
the test cases after applying FH. This was a reasonable outcome
considering that the network clearly suffered from overfitting,
for which data augmentation is a well-known remedy.

Also, of all post-processing steps evaluated, FH produced
the best improvements on average over the base prediction by
the network. The second best was THT0, which in some cases
surpassed FH. The results from applying THT1, although worst
in terms of accuracy, were not visually very different.

In summary, considering all the complications related to the
nature of this problem that have been mentioned along this
document, it is clear that much work is left to be done in order
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FIGURE 8 | E1 - Visual segmentation comparison of big cortical lesions. The examples include the predicted lesions after each post-processing step. Images are 2D

slices, their cut coordinate in the z axis is included, as well as the volume of each segmentation and the DSC achieved.

to achieve reasonable results on the task of ischaemic stroke
segmentation so that an automatic system can operate reliably on
a clinical environment.
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White matter hyperintensities (WMH) appear as regions of abnormally high signal intensity

on T2-weighted magnetic resonance image (MRI) sequences. In particular, WMH have

been noteworthy in age-related neuroscience for being a crucial biomarker for all types of

dementia and brain aging processes. The automatic WMH segmentation is challenging

because of their variable intensity range, size and shape. U-Net tackles this problem

through the dense prediction and has shown competitive performances not only on

WMH segmentation/detection but also on varied image segmentation tasks. However,

its network architecture is high complex. In this study, we propose the use of Saliency

U-Net and Irregularity map (IAM) to decrease the U-Net architectural complexity without

performance loss. We trained Saliency U-Net using both: a T2-FLAIR MRI sequence

and its correspondent IAM. Since IAM guides locating image intensity irregularities, in

which WMH are possibly included, in the MRI slice, Saliency U-Net performs better than

the original U-Net trained only using T2-FLAIR. The best performance was achieved

with fewer parameters and shorter training time. Moreover, the application of dilated

convolution enhanced Saliency U-Net by recognizing the shape of large WMH more

accurately through multi-context learning. This network named Dilated Saliency U-Net

improved Dice coefficient score to 0.5588 which was the best score among our

experimental models, and recorded a relatively good sensitivity of 0.4747 with the

shortest training time and the least number of parameters. In conclusion, based on

our experimental results, incorporating IAM through Dilated Saliency U-Net resulted an

appropriate approach for WMH segmentation.

Keywords: white matter hyperintensities, irregularity age map, saliency U-Net, MRI, segmentation, dilated

convolution, deep learning

1. INTRODUCTION

White matter hyperintensities (WMH) are commonly identified as signal abnormalities with
intensities higher than other normal regions on the T2-FLAIR magnetic resonance imaging (MRI)
sequence. WMH have clinical importance in the study and monitoring of Alzheimer’s disease (AD)
and dementia progression (Gootjes et al., 2004). Higher volume of WMH has been found in brains
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of AD patients compared to age-matched controls, and the
degree of WMH has been reported more severe for senile onset
AD patients than presenile onset AD patients (Scheltens et al.,
1992). Furthermore, WMH volume generally increases with the
advance of age (Jagust et al., 2008; Raz et al., 2012). Due to
their clinical importance, various machine learning approaches
have been implemented for the automatic WMH segmentation
(Admiraal-Behloul et al., 2005; Bowles et al., 2017).

Limited One-Time Sampling Irregularity Map (LOTS-IM) is
an unsupervised algorithm for detecting tissue irregularities, that
successfully has been applied for segmenting WMH on brain T2-
FLAIR images (Rachmadi et al., 2019).Without any ground-truth
segmentation, this algorithm produces a map which describes
how much each voxel is irregular compared with an overall area.
This map is usually called “irregularity map” (IM) or “irregularity
age map” (IAM). The concept of this map was firstly suggested in
the field of computer graphics to calculate pixel-wise “age" values
indicating howweathered/damaged each pixel is compared to the
overall texture pattern of an image (Bellini et al., 2016). Rachmadi
et al. (2019) then proposed a similar approach to calculate
the irregularity level of WMH with respect to the “normal"
tissue in T2-FLAIR brain MRI (Rachmadi et al., 2017, 2018b).
As WMH highlight irregular intensities on T2-FLAIR MRI
slices, IAM can be also used for WMH segmentation. Although
performing better than some conventional machine learning
algorithms, LOTS-IM still underperforms compared to state-
of-the-art deep neural networks. This is mainly because IAM
essentially indicates irregular regions, including artifacts, other
pathological features and some gray matter regions, in addition
to WMH. However, considering IAM depicts irregularities quite
accurately and can be generated without a training process, we
propose to use IAM as an auxiliary guidance map of WMH
location for WMH segmentation.

Recently, the introduction of deep neural networks, the state-
of-art machine learning approach, has remarkably increased
performances of image segmentation and object detection
tasks. Deep neural networks outperform conventional machine
learning approaches in bio-medical imaging tasks as well as
general image processing. For example, Ciresan et al. (2012) built
a pixel-wise classification scheme that uses deep neural networks
to identify neuronal membranes on electron microscope (EM)
images (Ciresan et al., 2012). In another study, Ronneberger
et al. proposed a new deep neural network architecture called
U-Net for segmenting neuronal structures on EM images
(Ronneberger et al., 2015).

In medical images’ segmentation tasks, U-Net architecture
and its modified versions have been massively popular due to
the end-to-end segmentation architecture and high performance.
For instance, a U-Net-based fully convolutional network was
proposed to automatically detect and segment brain tumors
using multi-modal MRI data (Dong et al., 2017). A 3D U-
Net for segmenting the kidney structure in volumetric images
produced good quality 3D segmentation results (Çiçek et al.,
2016). UResNet, which is a combination of U-Net and a residual
network, was proposed to differentiateWMH from stroke lesions
(Guerrero et al., 2018). Zhang Y. et al. (2018) trained a randomly
initialized U-Net for WMH segmentation and improved the

segmentation accuracy by post-processing the network’s results
(Zhang Y. et al., 2018).

While there have been many studies showing that U-Net
performs well in image segmentation, it has one shortcoming
that is long training time due to its high complexity (Briot

et al., 2018; Zhang C. et al., 2018). To ameliorate this problem,
Karargyros et al. suggested the application of regional maps as

an additional input, for segmenting anomalies on CT images,

and named their architecture Saliency U-Net (Karargyros and
Syeda-Mahmood, 2018). They pointed out that extraction of

relevant features from images unnecessarily demands very
complex deep neural network architectures. Thus, despite neural

networks architecture with large number of layers being able
to extract more appropriate features from raw image data, it
often accompanies a long training time and causes overfitting.
Saliency U-Net has regional maps and raw images as inputs,
and separately learns features from each data. The additional
features from regional maps add spatial information to the
U-Net, which successful delineates anomalies better than the
original U-Net with less number of parameters (Karargyros and
Syeda-Mahmood, 2018).

Another way to improve the segmentation performance
of deep neural networks is through the recognition of the
multi-scale context image information. Multi-scale learning is
important particularly for detection/segmentation of objects
with variable sizes and shapes. A dilated convolution layer
was proposed to make deep neural networks learn multi-scale
context better (Yu et al., 2017). Using dilated convolution
layers, an architecture can learn larger receptive fields without
significant increase in the number of parameters. Previous studies
have reported improvements using dilated convolution layers
in medical image processing tasks (Lopez and Ventura, 2017;
Moeskops et al., 2017).

In this paper, we propose to use IAM as an additional
input data to train a U-Net neural network architecture for
WMH segmentation, owed to the fact that LOTS-IM can
easily produce IAM without the need for training using
manually marked WMH ground-truth data. U-Net architecture
is selected as a base model for our experiments as it has
shown the best learning performance using IAM (Rachmadi
et al., 2018a). To address the incorporation of IAM to U-
Net for WMH segmentation, we propose feed-forwarding IAM
as regional map to a Saliency U-Net architecture. We also
propose combining Saliency U-Net with dilated convolution
to learn multi-scale context from both T2-FLAIR MRI and
IAM data, in a scheme we name Dilated Saliency U-Net.
We compare the original U-Net’s performance with the
performances of Saliency U-Net and Dilated Saliency U-Net on
WMH segmentation.

Consequently, the contributions of our work can be
summarized as follows:

• Proposing the use of IAM as an auxiliary input for WMH
segmentation. T2-FLAIR MRI and IAM complement each
other when they both are used as input to the neural
network, addressing challenging cases especially those with
few small WMH.
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• Integration of Saliency U-Net and dilated convolution for
WMH segmentation; which showed more detailed boundary
delineation of large WMH. It also attained the best Dice
coefficient score compared to our other experimental models.

2. MATERIALS AND METHODS

2.1. Dataset
MRI can produce different types of images to display normal
tissues and different types of clinical abnormalities. It is desirable
to choose suitable image types considering the properties of
biomarkers or diseases targeted in the segmentation task. T2-
weighted is one of the MRI sequences that emphasizes fluids
as bright intensities. The bright intensity of fluids makes WMH
difficult to identify in this MRI modality because WMH are also
bright on T2-weighted. T2-fluid attenuated inversion recovery
(T2-FLAIR) removes cerebrospinal fluid (CSF) signal from the
T2-weighted sequence, increasing the contrast between WMH
and other brain tissues. Therefore, we have chosen T2-FLAIR
MRI as the main source of image data for our experiments.

We obtained T2-FLAIR MRI sequences from the public
dataset the Alzheimer’s Disease Neuroimaging Initiative (ADNI)1

which was initially launched by Mueller et al. (2005). This
study has mainly aimed to examine combinations of biomarkers,
MRI sequences, positron emission tomography (PET) and
clinical-neuropsychological assessments in order to diagnose the
progression of mild cognitive impairment (MCI) and early AD.
From the whole ADNI database, we randomly selected 60 MRI
scans collected for three consecutive years from 20 subjects with
different degrees of cognitive impairment in order to evaluate the
applicability of our proposed scheme not only for cross-sectional
studies but also for longitudinal analyses of WMH. Each MRI
scan has dimensions of 256 × 256 × 35. We describe how train
and test dataset are composed in section 2.8.

Ground truth masks were semi-automatically produced by
an experienced image analyst using a thresholding algorithm
combined with region-growing in the Object Extractor tool of
AnalyzeTM software. This semi-automatic WMH segmentation
used the T2-FLAIR images. Intracranial volume (ICV) and CSF
masks were generated automatically using optiBET (Lutkenhoff
et al., 2014), and a multispectral algorithm developed in-house
(Hernández et al., 2015), respectively. Full details and binary
WMH reference masks can be downloaded from the University
of Edinburgh DataShare repository2.

2.2. Irregularity Age Map (IAM)
As described in section 1, the concept of IAM was proposed with
the development of the LOTS-IM algorithm and its application
to the task of WMH segmentation (Rachmadi et al., 2017, 2018b,
2019). This algorithm was inspired by the concept of “age map”

1Data used in preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the

investigators within the ADNI contributed to the design and implementation of

ADNI and/or provided data but did not participate in analysis or writing of this

report. A complete listing of ADNI investigators can be found at: http://adni.loni.

usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
2https://datashare.is.ed.ac.uk/handle/10283/2214

proposed by Bellini et al. while calculating the level of weathering
or damage of pixels compared to the overall texture pattern on
natural images (Bellini et al., 2016). Rachmadi et al. adopted this
principle to compute the degree of irregularity in brain tissue
from T2-FLAIR MRI.

In this study, the GPU-powered LOTS-IM algorithm
(Rachmadi et al., 2019)3 was used to generate IAM from all
scans. The steps of the LOTS-IM algorithm are as follows. Source
and target patches are extracted from the MRI slices with four
different sizes (i.e., 1 × 1, 2 × 2, 4 × 4, and 8 × 8) to capture
different details in the brain tissues (Rachmadi et al., 2017). All
grid fragments consisting of n × n sized patches are regarded
as source patches. On the other hand, target patches are picked
at random locations within the brain. Thus, non-brain target
patches, located within the CSF mask or outside the ICV mask,
are excluded from computation. Then, the difference between
each source patch and one target patch on the same slice is
calculated by Equation 1;

difference = θ · |max(s− t)| + (1− θ) · |mean(s− t)| (1)

where s and t mean source patch and target patch, respectively,
also θ was set to 0.5 (Rachmadi et al., 2018b). After difference
values between a source patch and all target patches are
calculated, the 100 largest difference values are averaged to
become the age value of the corresponding source patch
(Rachmadi et al., 2017). The rationale is that the average of
the 100 largest difference values produced by an “irregular”
source patch is still comparably higher than the one produced
by a “normal” source patch (Rachmadi et al., 2017, 2018b).
Furthermore, the age value is computed only for source patches
within the brain to reduce the computational complexity. All age
maps from four different patch sizes are, then, normalized to have
normalized age values between 0 and 1; and each of them is up-
sampled into its original image size and smoothed by a Gaussian
filter. The final age map is produced by blending these four age
maps using the Equation 2;

Final age map = α · AM1 + β · AM2 + γ · AM4 + δ · AM8 (2)

where AMx means the age map of x × x sized patches and
α + β + γ + δ = 1. In this study, α = 0.65, β = 0.2,
γ = 0.1 and δ = 0.05 (Rachmadi et al., 2019). Finally, the final
age map is penalized bymultiplying the original T2-FLAIR image
slice to reflect only the high intensities of WMH, and globally
normalized from 0 to 1 over all brain slices. The overall steps are
schematically illustrated in Figure 1.

Though regarded as WMH segmentation map in the original
studies, IAM essentially calculates the probability of each voxel
to constitute an irregularity of the “normal" tissue. This irregular
pattern includes not only WMH but more features such as
artifacts, T2-FLAIR hyperintensities of other nature, as well as
sections of the cortex that could be hyperintense. To compensate
these flaws and take advantage of its usefulness, we developed
a new scheme that uses IAM as an auxiliary guidance map for
training deep neural networks rather than using it for producing
the final WMH segmentation.

3https://github.com/febrianrachmadi/lots-iam-gpu
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FIGURE 1 | Flow chart illustrating the LOTS-IM algorithm proposed by Rachmadi et al. (2019) applied to WMH segmentation. This study uses the final map generated

by this algorithm, and refers to it as “IAM data”.

2.3. U-Net
Since U-Net architecture was firstly presented (Ronneberger
et al., 2015), various image segmentation studies have used
this architecture due to its competitive performance regardless

of the targeted object types. Different to the natural image

segmentation, bio-medical image segmentation involves a more
challenging circumstance as lack of data for the training process

is a common problem. U-Net deals with this challenge with
dense prediction of the input image using up-sampling layers that
produce equal-sized input and output. This approach was drew
by fully convolutional networks (Long et al., 2015).

U-Net is comprised of two parts, the encoding part where
feature maps are down-sampled by max-pooling layers and the
decoding part where the reduced size of feature maps are up-
sampled to the original size. It retains the localization accuracy
with the contracting path, which concatenates the feature maps
stored in the encoding part with the decoding part. These kept
high resolution features help to restore the details of localization
removed by max-pooling layer, when the feature maps are up-
sampled in the decoding part. The architecture is depicted
in Figure 3A.

A drawback of U-Net is its large number of parameters.
To restore the high resolution localization, the network should

increase the number of feature channels in the decoding part.
Training time andmemory usage are proportional to the number
of parameters. So training a U-Net architecture is constrained
by its high consumption of time and memory. Moreover, the
complexity of the (neural) network often induces the problem
of overfitting.

2.4. Saliency U-Net
Saliency U-Net was first introduced to detect anomalies in
medical images using a combination of raw (medical) images
and simple regional maps (Karargyros and Syeda-Mahmood,
2018). Saliency U-Net performed better than U-Net while using
less number of parameters. An architecture with less number of
parameters is preferable as it is easier and faster to be trained.
Karargyros and Syeda-Mahmood showed that convolution layers
are not needed to extract more relevant features from raw images
if auxiliary information from regional map is given as input. The
Saliency U-Net architecture has two branches of layers in the
encoding part (Figure 3B). Each branch extracts features from
raw image and regional map independently, and the extracted
features are fused before the decoding part.

Segmentation results from Saliency U-Net in the original
study (Karargyros and Syeda-Mahmood, 2018) showed more
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precise localization and better performance than the original U-
Net, which contained a larger number of convolutional layers.
Therefore, for WMH segmentation, we propose to use Saliency
U-Net taking T2-FLAIR as raw input image and IAM as
regional map.

2.5. Dilated Convolution
One common issue for image segmentation via deep neural
networks is caused by the reduced size of the feature maps
in the pooling layer introduced to capture global contextual
information. While pooling layers are useful to get rid of some
redundancies in feature maps, the lower size of feature maps after
the last pooling layer also causes loses of some of its original
details/information, decreasing the segmentation performance
where the targeted regions are not spatially prevalent (Yu et al.,
2017; Hamaguchi et al., 2018).

Dilated convolution solved this problem by calculating a
convolution over a larger region without reducing the resolution
(Yu and Koltun, 2015). The dilated convolution layer enlarges a
receptive field including k skips between each input pixel. k is
called dilation factor. In numerical form, a dilated convolution
layer with a dilation factor k and a n × n filter is formulated
as follows:

F(r, c) =

i=n
∑

i=−n

j=n
∑

j=−n

W(i, j)I(r + ki, c+ kj) (3)

Figures 2A–C show examples of dilated convolution filters with
dilation factors 1 to 3.

The additional advantage of dilated convolution is to widen
the receptive field without increasing the number of parameters.
Large receptive fields learn the global context by covering a wider
area over the input feature map, but bring a memory leak and
time consumption out for a growing number of parameters.
Dilation can expand the receptive field of the convolution layer as
much as skipped pixels without extra parameters. For instance, as
shown in Figures 2A,C, the filter with dilation factor 3 has 7× 7
sized receptive field, while the filter with dilation factor 1 has 3×3
sized receptive field.

In this study, we propose the incorporation of dilated
convolution to Saliency U-Net forWMH segmentation. Since the
size ofWMH is variable, it is necessary to recognize different sizes
of spatial contexts for more accurate delineation of WMH. We
believe that dilated convolutions can manage the variable size of
WMH from different sizes of receptive field.

2.6. Our Experimental Models
We examined three different U-Net models for which its
original architecture was trained using input data with different
modalities: T2-FLAIR (model 1), IAM (model 2), and both
(model 3). To feed both T2-FLAIR and IAM together, we
integrated T2-FLAIR and IAM as a two-channel input. As
mentioned in section 2.3, U-Net architecture has encoding and
decoding parts. In the encoding part, input images or feature
maps are down-sampled bymax-pooling layers to obtain relevant
features for WMH segmentation. Then, in the decoding part,
reduced feature maps are up-sampled again by up-sampling

layers to acquire the original size in the final segmentation
map. Max-pooling and Up-sampling layers are followed by two
CONV blocks (yellow blocks in Figure 3). The CONV block
contains a convolution layer, an activation layer and a batch
normalization layer. Batch normalization allows to train neural
networks with less careful initialization and higher learning rate
by performing normalization at every batch (Ioffe and Szegedy,
2015). All activation layers except the last one are ReLU (Nair
and Hinton, 2010), but the last activation layer calculates the
categorical cross-entropy to yield a probabilitymap for each label.

In addition, we trained Saliency U-Net and Dilated Saliency
U-Net by feed forwarding both T2-FLAIR and IAM separately.
In this way, we assume that IAM works as a simple regional
map which provides localization information of WMH rather
than just being a different image channel. While the U-Net
architecture has one branch of the encoding part, Saliency U-
Net encoding part consists of two branches that learn raw images
and regional maps individually. Furthermore, we applied dilation
factors of 1, 2, 4 and 2 to the first four convolutional layers
of Saliency U-Net to form the Dilated Saliency U-Net. The
architectures of U-Net, Saliency U-Net and Dilated Saliency
U-Net can be seen in Figure 3.

Performance of these models are compared to each other in
section 3.We additionally conducted experiments on the original
U-Net models trained only with T2-FLAIR and only with IAM in
order to see how using both T2-FLAIR and IAM as inputs affects
learning WMH segmentation. Our five experimental models are
listed in Table 1.

2.7. Preprocessing
In machine learning, data preprocessing is needed to standardize
the data into a comparable range. It is especially important when
we deal with MRI data whose intensity is not in a fixed range.
Differences in the intensity range are caused by differences in
MRI acquisition protocols, scanner models, calibration settings,
etc. (Shah et al., 2011).

For this reason, we normalized the intensity of the brain
tissue voxels in our train and test data. The image intensity
of the majority of non-brain tissue voxels of an MRI slice is
zero or near-zero, although few non-brain voxels can have peak
intensity values above the intensity range of the brain tissue.
Thus, normalizing intensities from all voxels together can bias
the intensity values toward zero and reduce the effect of WMH
on brain tissue voxels. Brain tissue voxels were filtered using CSF
and the intracranial volume (ICV) masks as follows:

Brain Tissue Region = MRI scan ∩ (¬CSF ∩ ICV ) (4)

We normalized the brain tissue voxels on each slice into a
distribution with zero-mean and unit variance by subtracting the
mean value from each voxel value and dividing the result by the
standard deviation.

Although WMH segmentation can be regarded as the binary
classification of voxels, we re-labeled the ground-truth data
assigning voxels one of the three following labels: non-brain,
non-WMH brain tissue and WMH. However, when evaluating
the segmentation results, we considered both non-brain and
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FIGURE 2 | Examples of dilated convolution filter with 3× 3 size. (A) Dilation factor = 1, (B) Dilation factor = 2 and (C) Dilation factor = 3.

FIGURE 3 | Architecture of three different networks used in this study. (A) the original U-Net, (B) Saliency U-Net, and (C) Dilated Saliency U-Net. Three numbers of

CONV block (yellow block) represents filter size× filter size× filter channels. For the Dilated Saliency U-Net model, red numbers mean a dilation factor for the

convolution layer in each CONV block.

Frontiers in Aging Neuroscience | www.frontiersin.org 6 June 2019 | Volume 11 | Article 15074

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Jeong et al. DSUNet WMH Segmentation Using IAM

TABLE 1 | Dice Similarity Coefficient (DSC), sensitivity, positive predictive value

(PPV), training time and number of parameters for our five experimental models.

Model DSC Sensitivity PPV Training time # Parameters

U-Net(FLAIR) 0.5440 0.4594 0.6275 1 h 52 m 55 s 7,859,715

U-Net(IAM) 0.5274 0.4179 0.6769 1 h 53 m 52 s 7,859,715

U-Net(F+I) 0.5281 0.4902 0.6268 1 h 24 m 22 s 7,861,315

Saliency

U-Net(F+I)

0.5535 0.4730 0.6034 1 h 30 m 1 s 2,756,803

Dilated Saliency

U-Net(F+I)

0.5588 0.4747 0.6374 1 h 4 m 18 s 2,623,683

Values in bold are the highest scores and in italic the second highest. In the brackets after

the model names, the input data type is specified. “FLAIR” is equivalent to T2-FLAIR and

“F+I” refers to taking both T2-FLAIR and IAM as input.

non-WMH brain tissue labels as non-WMH labels to calculate
sensitivity and Dice similarity coefficient which are metrics
for the binary classification. Figure 4 shows the example of
a T2-FLAIR slice, the same slice after preprocessing and
normalization, and the ground-truth slice.

2.8. Training and Testing Setup
For training, 30 MRI scans of the ADNI dataset described in
section 2.1 were randomly selected. These 30 MRI scans were
collected from 10 subjects for three consecutive years. We trained
our networks with image patches generated from these MRI
scans, not slices, to increase the amount of training data. If we
train our models using slice images, the amount of training data
is only 35 × 30 = 1050 slices, which is not ideal for training a
deep neural network architecture. Instead, by extracting 64 × 64
sized patches from each image slice, we could have 30,000 patches
for training data.

For testing, we used the rest 30 scans of the ADNI sample,
which are not used during training. These scans were also
obtained from another 10 subjects for three consecutive years.
The testing dataset was comprised of image slices without patch
extraction. Slice image data is necessary to analyse the results
from our models according to the distributions or volumes of
WMH. Our testing dataset holds 1050 of 256 × 256 image slices
in total as each scan contains 35 slices.

All experimental models were trained using the same network
configuration. We set learning rate to 1e−5 and batch size to 16.
As an optimization method, we selected the Adam optimization
algorithm (Kingma and Ba, 2014), although the original U-Net
scheme used the stochastic gradient descent (SGD) optimizer.
This is because the Adam optimizer can handle sparse gradients.
It is highly possible that our training data produce sparse
gradients as non-brain voxels, which are the majority, have
zero intensity. We applied the Adam optimizer accordingly,
considering this data property.

3. RESULTS

In this section, we present how experiments were conducted, and
analyse and compare the experimental results.

3.1. Evaluation Metrics
We use sensitivity, positive predictive value (PPV) and Dice
similarity coefficient (DSC) to evaluate the models. Sensitivity

measures the rate of true positives as below:

Sensitivity =
TP

TP + FN
(5)

where TPmeans true positive, and FN means false negative. PPV
also measures the rate of true positives but from the total of
positive calls like below:

PPV =
TP

TP + FP
(6)

where FP refers to false positive. DSC is a statistic method to
compare the similarity between two samples of discrete values
(Dice, 1945). It is one of the most common evaluation metrics
in image segmentation. The formula is as follow:

DSC =
2TP

2TP + FP + FN
(7)

where TP and FN are as per Equation 5 and FP means false
positive. DSC is interpreted as the overlapping ratio to the
whole area of prediction and target objects, while sensitivity
measures the correctly predicted region of the target object. If
the prediction includes not only true positives but also wrong
segmentation results (false positives), the DSC score can be low
despite the high sensitivity.

3.2. The Effects of IAM as an Auxiliary Input

Data
Table 1 shows overall performances of our five experimental
models. The adoption of IAM as an auxiliary input data for
U-Net [i.e., U-Net(F+I)] improved sensitivity to 0.4902 but
had lower DSC score than the model that used only the T2-
FLAIR image as input. On the other hand, Saliency U-Net(F+I)
improved the DSC scores achieved by U-Net to 0.5535 while
Dilated Saliency U-Net(F+I) achieved the best DSC score of
0.5588. Dilated Saliency U-Net(F+I) yielded the second best
sensitivity rate after U-Net trained with T2-FLAIR and IAM
[i.e., U-Net(F+I)]. U-Net(IAM) achieved the best PPV value
of our five models and Dilated Saliency U-Net(F+I) achieved
the second highest value of PPV. From these results, we
can see that the three models trained with T2-FLAIR and
IAM particularly increased the sensitivity performance of the
network architectures.

Saliency and Dilated Saliency U-Net included considerably
less parameters than the three U-Net models. As
shown in Table 1, Saliency and Dilated Saliency U-
Net have more than three times less parameters and
slightly shorter training time than the original U-
Net while having better if not similar performance on
WMH segmentation.

With regards to training time, although feeding both T2-
FLAIR and IAM together into U-Net involved the calculation
of more parameters due to the two-channel input, the training
time for this model was shorter than that of U-Net(FLAIR) and
U-Net(IAM). In deep learning studies, visual attention, which
gives larger weight on the region of interest, speeds up learning
by leading the model to concentrate on the relevant regions.
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This has been experimentally demonstrated in previous studies
(Choi et al., 2017; Najibi et al., 2018). In our case, IAM confers
the visual attention effect to the network architecture. Despite
having fewer parameters, Saliency U-Net took longer time
to train than U-Net(F+I). Feed-forward and back-propagation
proceed separately in each encoding part. Dilated Saliency U-
Net significantly decreased the training time compared to the
other models by skipping voxels that reduce the computational
complexity, when calculating the convolution.

Figure 5 presents training and validation losses for our
five models. Same color lines correspond to the same model.
Solid and dashed lines represent training loss and validation
loss each. For all models, both training and validation losses
properly converged. Thus, our models are not overfitted on the
training data.

We also evaluated whether the median and the distribution
of DSC scores throughout the testing set differed significantly
between the five models evaluated. We conducted two tests:
(1) the Wilcoxon ranksum, as implemented by the function
ranksum in MATLAB, to evaluate whether the medians of
the DSC scores from each model across the testing dataset

were significantly different between each other; and (2) the
Kruskal-Wallis test, as implemented by the MATLAB function
kruskalwallis, to evaluate whether the distributions of
these DSC values were statistically significantly different between
the models. Neither the medians nor the DSC distributions
obtained by these five models significantly differed. The
result of the Kruskal-Wallis test is shown in Table 2. The
p-value obtained from the ANalysis Of VAriance (ANOVA)
of the DSC distributions from the five models across all
cases is 0.7786, indicating that the results of these five
models did not differ significantly from each other in
terms of the distribution of DSC across the testing set.
This emphasizes that Dilated Saliency U-Net model can
produce similar level of performance as the original U-Net
models even with less number of parameters and shorter
training time. Figure 6 also illustrates that the DSC scores
obtained from applying our models are similarly distributed to
each other.

Figure 7 visualizes the examples of WMH segmentation
results by our experimental models. In most cases, the use of
two data sources (i.e., IAM and T2-FLAIR images) in training the

FIGURE 4 | (A) Raw T2-FLAIR image, (B) T2-FLAIR input after preprocessing and normalization, (C) Ground truth data with three labels. Blue region is non-brain

area, green region is non-WMH brain tissues and red region is WMH.

FIGURE 5 | Loss graph of our five models. While solid lines indicate training loss, dashed lines represent validation loss.
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network complements each other’s effect detecting tricky WMH
regions. Depending on the contrast/size of WMH or the quality
of IAM, there are some cases in which WMH are distinguishable
on IAM but unclear in T2-FLAIR and vice versa. For example,
if WMH clusters are too small, it is hard to differentiate them
on T2-FLAIR, but they are better observable on IAM, where
WMH and normal brain tissue regions have better contrast. On

TABLE 2 | ANOVA table for our five models.

Source SS df MS F-value p-value

Models 3334.7 4 833.68 1.77 0.7786

SS refers to the sum of squares. df and MS mean degrees of freedom and mean squares,

respectively.

FIGURE 6 | Distributions of DSC score by our five models. “x” and bar at the

middle of box indicate mean and median each. Bottom and top of each box

mean the first and third quartile.

the other hand, in the presence of other irregular patterns such
as extremely low intensities of brain irregularities aroundWMH,
T2-FLAIR can indicate WMH clearly than IAM. In Figure 7A,
U-Net(FLAIR) produced better WMH segmentation result than
U-Net(IAM) due to the poor quality of IAM. Conversely, U-
Net(FLAIR) could not detect WMH well due to unclear intensity
contrast on T2-FLAIR while U-Net(IAM) could segment these
WMH regions as IAM enhanced them as anomalies (Figure 7B).
Furthermore, incorporating both T2-FLAIR and IAM together
as input data produced better WMH segmentation in general
(5–7th columns from left to right of Figure 7).

3.3. WMH Volume Analysis
In this experiment, we evaluate our models based on the WMH
volumes of the MRI scan (i.e., WMH burden) to examine
the influence of WMH burden on the performance of WMH
segmentation. The WMH volume of each MRI scan is calculated
by multiplying the number of WMH voxels by the voxel size.
We grouped MRI scans into three groups according to the range
of WMH volume. Table 3 shows the range of WMH volume
used as criteria for forming the groups, and the number of
scans included in each group. Figure 8A shows the lack of
ambiguity or overlap in the classification of the MRI scans in
each group.

Figure 8B plots the DSC scores yielded by the MRI scans
in the different WMH volume groups by our five experimental

TABLE 3 | Criteria sorting MRI scans according to WMH voxel volume.

Group Range of WMH volume (mm3) # Scans

Large 10, 000 ≤ WMH Vol 6

Medium 4, 000 ≤ WMH Vol < 10, 000 10

Small 1 ≤ WMH vol < 4, 000 14

“# Scans” means the number of included MRI scans. Most of scans are included in Small

and Medium groups.

FIGURE 7 | Examples of WMH segmentation results by our experimental models. Cyan circles indicate WMH detected only by one of the original U-Net models, i.e.,

U-Net(FLAIR) or U-Net(IAM). Row (A) shows a case where WMH is distinguishable exclusively in the T2-FLAIR image, while row (B) shows a case where IAM

highlights WMH clearly. By training networks using T2-FLAIR and IAM, both WMH regions are detected.
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models. Please, note that the DSC scores referred in this section
correspond to the evaluation of the WMH segmentation results
in each MRI scan, not per slice which are used for overall
performance evaluation in section 3.2Table 1. Hence scans of the
Large groupmight have several smallWMH rather than one large
region with confluent WMH.

All models tested in this study showed high median
values of DSC scores in the Medium group, for which
all models performed better than the other groups. In
the Large group, U-Net(FLAIR) and U-Net(F+I) models
performed similarly well, while U-Net(IAM) performed
worst compared with the rest of the models. Mean,
median and standard deviation (std.) values of DSC score
distribution in each group are shown in Table 4. Overall,
the performance of the models for scans with Small and
Medium WMH burden was quite similar (see also Figure 8B).
However, large variations in DSC scores were observed
among the scans of the Small group, especially for the
U-Net(FLAIR) model.

3.4. Longitudinal Evaluation
In the Longitudinal evaluation test we addressed the capacity
of our five models in predicting WMH in subsequent years
after being trained only using the first year samples. Hence, the
training set was formed by the first year samples while the testing
set was composed by the second and third year samples. Table 5
shows the mean DSC score for each sample. In this evaluation,
U-Net(IAM) and Saliency U-Net performed slightly better than
the other three models, partly owed to IAM which could provide
information to predict WMH occurrence. As expected, all our
models predicted better WMH in the second year than in the
third year.

3.5. U-Net vs. Saliency U-Net
In order to evaluate the effectiveness of the Saliency U-Net
architecture, we compared the original U-Net and Saliency U-
Net models trained with T2-FLAIR and IAM. As shown in
Table 1, Saliency U-Net yielded higher DSC score than U-
Net(F+I) despite U-Net(F+I) having higher sensitivity value.

FIGURE 8 | (A) Distributions of data (MRI scan) grouped together based on WMH volume. (B) DSC distributions yielded by tested five models based on WMH

volume. “x” and bar at the middle of box indicate mean and median each. Bottom and top of each box mean the first and third quartile.

TABLE 4 | Mean, median and standard deviation values of the distributions of DSC scores from our experimental models per WMH volume groups.

Model
DSC mean. DSC median. DSC std.

Large Medium Small Large Medium Small Large Medium Small

U-Net(FLAIR) 0.6184 0.6070 0.4147 0.6987 0.6499 0.4559 0.0524 0.1076 0.1746

U-Net(IAM) 0.5168 0.5817 0.4294 0.5036 0.6080 0.4106 0.0668 0.1111 0.1455

U-Net(F+I) 0.6124 0.6025 0.4580 0.6092 0.6276 0.4400 0.0548 0.0931 0.1460

Saliency U-Net(F+I) 0.5824 0.5812 0.4299 0.5853 0.6023 0.4134 0.0377 0.0956 0.1687

DSU-Net_1224 0.5722 0.5929 0.4003 0.5814 0.6286 0.3876 0.0592 0.0965 0.1733

DSU-Net_4221 0.5711 0.5768 0.4253 0.5776 0.6152 0.4250 0.0574 0.1097 0.1640

DSU-Net_1242 0.5882 0.5852 0.4407 0.5782 0.6320 0.4498 0.0536 0.1069 0.1558

Model name DSU-Net_abcd refers to Dilated Saliency U-Net model with dilation factors a, b, c, d in order from the first to the fourth convolution layers. These dilation factors are

applied on convolution layers in the encoding part (i.e., before concatenating T2-FLAIR and IAM feature maps) of the CONV blocks, which consists of convolution, ReLU, and

batch normalization layers. These different Dilated Saliency U-Net models are described in section 3.6. DSU-Net_1242 was used for the Dilated Saliency U-Net model evaluated

in section 3.3.
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Figure 9 shows that Saliency U-Net successfully eliminates some
of the false positives observed in the segmentation result from
U-Net(F+I).

We also investigated the change in Saliency U-Net’s
performance in relation to its complexity when the number
of convolution layers increased/decreased. DSC score, training
time and model complexity (i.e., the number of parameters) are
compared in Figure 10. The rule for changing the Saliency U-
Net complexity is to connect/disconnect the 2 CONV blocks that
are attached/detached at both ends, through a “skip" connection.
However, since the encoder part is a two-branch architecture, 6
CONV blocks are included at once increasing its complexity (i.e.,
4 CONV blocks are added to the encoder part and 2 CONV block
are added to the decoder part). Similar approach is done when
decreasing the complexity, where 4 CONV blocks and 2 CONV
blocks are dropped from the encoder and decoder, respectively.
For clarity, our original Saliency U-Net model (i.e., evaluated in
Table 1 of section 3.2) contains 14 CONVblocks and each CONV
block holds one convolution layer as shown in Figure 3.

As shown in Figure 10, adding more CONV blocks means
increasing both number of parameters and training time

TABLE 5 | DSC score for longitudinal evaluation of our five models.

Model 2nd year 3rd year

U-Net(FLAIR) 0.6136 0.5878

U-Net(IAM) 0.6270 0.6110

U-Net(F+I) 0.6229 0.5823

Saliency U-Net 0.6258 0.6119

Dilated Saliency U-Net 0.6060 0.5881

We evaluated these models using data from both second and third years. As per Table 1,

values in bold are the highest scores and in italics are the second highest ones.

significantly. Furthermore, using too many CONV blocks (i.e.,
Saliency U-Net with 26 CONV blocks) decreased the DSC score
due to overfitting.

3.6. Exploration of Dilated Saliency U-Net

Architecture
In this experiment, we applied different dilation factors in Dilated
Saliency U-Net, which captures multi-context information on
image slices without having to change the number of parameters.
As per Figure 9, which visually displays the segmentation results
from Saliency U-Net, the boundary delineation is still poor
for large WMH regions. Furthermore, we also can see in
the same Figure 9 that dilated convolutions help Saliency U-
Net to reproduce the shape of WMH regions in more detail.
Hence, it is important to know the influence of different
dilated convolution configurations in Dilated Saliency U-Net for
WMH segmentation.

In order to find the most appropriate dilation factors, we
compared different sequences of dilation factors. Figure 3C

shows the basic Dilated Saliency U-Net architecture used in this
experiment. Only four dilation factors in the encoding part were
altered while the rest of the parameters for the training schemes
stayed the same. Yu and Koltun suggested to use a fixed filter size
for all dilated convolution layers but exponential dilated factors
(e.g., 20, 21, 22 ...) (Yu and Koltun, 2015). Therefore, we assessed
“increasing”, “decreasing” and “increasing & decreasing” dilation
factor sequences with factor numbers of 1, 2, 2, 4 and fixed filter
size of 3 × 3. Details of these configurations are presented in
Table 6. From this table, we can appreciate that despite DSU-
Net_4221 performed best in DSC score (0.5622), it recorded the
lowest sensitivity score. The best sensitivity metric was produced
by DSU-Net_1242 (0.4747), but it did not outperform DSU-
Net_4221 in DSC score.

FIGURE 9 | Comparison of WMH segmentation results from U-Net(F+I), Saliency U-Net and Dilated Saliency U-Net. Yellow circles indicate false positive results by

U-Net(F+I). These false positive results are eliminated in the results from Saliency and Dilated Saliency U-Net. Green arrows are pointing to locations where boundaries

are segmented in more detail by Saliency and Dilated Saliency U-Net.
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FIGURE 10 | (Right) Trends of DSC score, training time and number of parameters of Saliency U-Net when more convolution layers are changed. It is also shown

Saliency U-Net with 26 CONV blocks performance in testing (upper Right) decreases although its training (Left) DSC score increase. This is caused by overfitting.

TABLE 6 | Encoder architecture of Dilated Saliency U-Net with different dilation

factors and their performances.

Model Encoder DSC Sensitivity

DSU-Net_1224 (Increasing) CONV 3× 3× 64, d = 1 0.5304 0.4395

CONV 3× 3× 64, d = 2

Max Pooling

CONV 3× 3× 128, d = 2

CONV 3× 3× 128, d = 4

Max Pooling

DSU-Net_4221 (Decreasing) CONV 3× 3× 64, d = 4 0.5622 0.4381

CONV 3× 3× 64, d = 2

Max Pooling

CONV 3× 3× 128, d = 2

CONV 3× 3× 128, d = 1

Max Pooling

DSU-Net_1242

(Increasing & decreasing)

CONV 3× 3× 64, d = 1 0.5588 0.4747

CONV 3× 3× 64, d = 2

Max Pooling

CONV 3× 3× 128, d = 4

CONV 3× 3× 128, d = 2

Max Pooling

Three numbers in the CONV block stans for “filter size × filter size× filter number” and “d”

means a dilation factor and its trend of dilation factor pattern is specified in the bracket.

Values in bold are the highest scores.

FIGURE 11 | DSC score of three different Dilated Saliency U-Net groups

based on WMH volume in MRI scans. The group information is described in

Table 3. “x” and bar at the middle of box indicate mean and median each.

Bottom and top of each box means the first and third quartile.

Additionally, we investigated the influence of dilation factors
in DSC score performance per WMH volume of MRI scans.
Evaluation was conducted on the three groups previously
described in Table 3. Figure 11 shows that DSU-Net_1242
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outperformed other models in every group. The report of mean,
median and standard deviation of DSC score distribution in each
group can be seen in Table 4.

4. DISCUSSION

In this study, we explored the use of IAM as an auxiliary data
to train deep neural networks for WMH segmentation. IAM
produces a probability map of each voxel to be considered
a textural irregularity compared to other voxels considered
“normal" (Rachmadi et al., 2019). While incorporating IAM
as an auxiliary input data, we compared three deep neural
network architectures to find the best architecture for the task,
namely U-Net, Saliency U-Net and Dilated Saliency U-Net. It
has been suggested that Saliency U-Net is adequate to learn
medical image segmentation task with both a raw image and a
pre-segmented regional map (Karargyros and Syeda-Mahmood,
2018). The original U-Net did not improve DSC score despite
using both T2-FLAIR and IAM as input, but the DSC score from
Saliency U-Net was superior to that from the original U-Net
trained only with T2-FLAIR. This is because Saliency U-Net is
able to learn the joint encoding of two different distributions:
i.e., from T2-FLAIR and IAM. Saliency U-Net generated better
results than U-Net despite having less parameters. We also found
that Saliency U-Net had lower false positive rate compared
to U-Net.

Dilated convolution can learn spatially multi-context by
expanding the receptive field without increasing the number
of parameters. We added dilation factors to the convolution
layers in the encoding block of Saliency U-Net to improve
WMH segmentation, especially due to the high variability in the
WMH size. This new model is named “Dilated Saliency U-Net.”
Dilated convolution improved both DSC score and sensitivity
with shorter training time. Dilated Saliency U-Net also yielded
more accurate results in the presence of large WMH volumes
and worked well in Medium and Small WMH volume MRI data
groups which are more challenging. We identified that dilated
convolution is effective when dilation factors are increased and
decreased sequentially.

To our knowledge, this is the first attempt of successfully
combining dilation, saliency and U-Net. We could reduce
the complexity of a deep neural network architecture while
increasing its performance through the integrated techniques and
the use of IAM. Due to the trade-off between performance and
training time, which is proportional to the model complexity,
it is crucial to develop less complex CNN architectures without
decreasing their performance.

Anomaly detection in the medical imaging field has been
broadly studied (Quellec et al., 2016; Schlegl et al., 2017). One
of its difficulties relies on the inconsistent shape and intensity
of these anomalies. IAM helped the CNN scheme to overcome

this problem by providing the localization and morphological
information of irregular regions. We believe it is possible to
generate IAM from different modalities of medical images. Thus,
the application of IAM is highly expandable to detect different
imaging bio-markers involving abnormal intensity values in
other diseases.
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Computer aided diagnosis systems based on brain imaging are an important tool to

assist in the diagnosis of Parkinson’s disease, whose ultimate goal is the detection

by automatic recognizing of patterns that characterize the disease. In recent times

Convolutional Neural Networks (CNN) have proved to be amazingly useful for that

task. The drawback, however, is that 3D brain images contain a huge amount of

information that leads to complex CNN architectures. When these architectures become

too complex, classification performances often degrades because the limitations of the

training algorithm and overfitting. Thus, this paper proposes the use of isosurfaces as

a way to reduce such amount of data while keeping the most relevant information.

These isosurfaces are then used to implement a classification system which uses two

of the most well-known CNN architectures, LeNet and AlexNet, to classify DaTScan

images with an average accuracy of 95.1% and AUC = 97%, obtaining comparable

(slightly better) values to those obtained for most of the recently proposed systems. It

can be concluded therefore that the computation of isosurfaces reduces the complexity

of the inputs significantly, resulting in high classification accuracies with reduced

computational burden.

Keywords: deep learning, isosurfaces, Parkinson’s disease, convolutional neural networks, computer-aided

diagnosis

1. INTRODUCTION

Parkinson’s Disease (PD) is a progressive and chronic neurodegenerative disorder of the central
nervous system that affects movement. PD increases its occurrence with age and, currently, has
a prevalence between 1 and 3% in the population over 65 years of age, becoming the second
most common neurodegenerative disorder after the Alzheimer’s disease. The origin of the disease
has been not determined yet but it is related to the loss of dopaminergic neurons, which causes
reduced quantities of dopamine transporters in the striatum (Simuni and Rajesh, 2009). In fact,
dopaminergic neurons produce dopamine, a neurotransmitter, in the substantia nigra and and it is
transported to the striatum, composed by caudate and putamen, through the nigrostriatal pathway.

To date there is no cure for PD but early diagnosis allows limiting the rate of progression
by applying effective management and may help to develop new therapeutic methods. Diagnosis
of PD is usually based on clinical examinations that analyze different motor symptoms such as
tremor, bradykinesia, rigidity and postural instability (Eckert et al., 2007), along with the response
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to levadopa. Levadopa is a chemical product that converts to
dopamine so that PD is confirmed whether symptoms reduce
after levadopa is administered during a period of time. However,
PD can be confused with other parkinsonian syndromes and in
the early stages of the disease symptoms are still mild and the
response to levadopa are not so clear, whichmay result in difficult
diagnosis. As a consequence, functional neuroimaging are then
usually used to improve the early diagnosis of the disease.

Single Photon Emission Tomography (SPECT) using the
123I − ioflupane radiotracer (also known by its tradename
DaTSCAN) is commonly used for diagnosis of PD. DaTSCAN
binds to the dopaminergic transporters at the striatum, allowing
to measure quantitatively the amount of DaTSCAN in this
region. DaT SPECT or DaTSCAN imaging results in multiple
grayscale images captured by a gamma camera rotated through
360◦ around the body where the intensity of each pixel is directly
correlated with the presence of radiotracers registered by the
gamma camera. These 2D projections are then reconstructed
to produce a 3D image. Comparing to healthy individuals, the
resulting image for PD patients displays lower intensity and/or
asymmetry in the striatal region. This way, DaTSCAN can be
used to differentially diagnose PD with respect to normal or
other diseases presenting similar symptons (NC) by detecting
dopaminergic deficits.

In recent years, different works have analyzed DaTSCAN
images for use in the clinic as an aid to visual reporting. Thus,
a range of of semi-quantification methods can be found in the
literature (Taylor and Fenner, 2017). These methods compute
SBRs (Striatal Binding Ratios) from both, with and without
consideration of the caudates, using different methods and
establishing certain limits and likelihood of disease being present.
The clinician must eventually interpret the results to come to
an overall decision. At this point, machine learning algorithms
can be used to help with such decision. Machine learning
algorithms can combine multiple input variables describing
different features to produce a single value that helps the
clinician. These methods search statistical differences between
two groups, PD and control (NC), using statistical learning (Rojas
et al., 2013; Martínez-Murcia et al., 2014a; Martinez-Murcia et al.,
2016b; Khedher et al., 2015; Pereira et al., 2015; Badoud et al.,
2016). Although there are others, such as Naïve-Bayes (Towey
et al., 2011) or logistic lasso (Tagare et al., 2017), in line with
general trends, SVM, with linear or radial basis function kernel,
has been the most commonly employed tool, and in the last years
the use of methods based on artificial neural networks (ANN)
have gained popularity.

The development of novel architectures and effective training
algorithms has enabled to use multi-layer neural networks or
deep neural networks (aka deep learning) for a wide range of
applications (LeCun et al., 2015), such as speech recognition
(Hinton et al., 2012), drug discovery (Chen et al., 2018) and
genomics (Alipanahi et al., 2015), but it is in the field of
computer vision and image classification where deep learning,
and particularly convolutional neural networks (CNN), has
undergone a real revolution of the state of the art (LeCun et al.,
2015). CNNs are biologically-inspired models that resemble the
human vision system, computing image features at different

abstraction levels by means of the convolution operator, which
is subsequently applied to the response of the previous layer
(Rawat and Wang, 2017). Nowadays, these architectures have
practically reached, or even surpassed, human-level performance
in object recognition (Kheradpisheh et al., 2016). Two of the
most famous CNN architectures are LeNet-5 (LeCun et al., 1998)
and AlexNet (Krizhevsky et al., 2012). They have been well-
studied and provide good results compared to other machine
learning algorithms and even more complex CNNs. In fact,
deeper networks (e.g., Inception Szegedy et al., 2015), with higher
number of abstraction levels, allow computing more complex
features, but they also result much more complex to train. This
causes that the performances degrade because the limitations of
the training algorithms (He et al., 2016) and that the architectures
tend to be overffited. Thus, although deeper architectures have
the potential to outperform simpler LeNet-5 and AlexNet, this
cannot be always achieved and even so, the gain in accuracy may
imply a considerable higher computational burden that may not
be always justified (Martinez-Murcia et al., 2018).

This work analyzes DaTSCAN (3D) images and identifies
features which are suitable for being used in a computer-aided
classification system intended to classify between positive and
negative cases of PD. In particular, this is realized through the
identification of isosurfaces and the extraction of descriptive
features from these by using CNN architectures based on LeNet-
5 and AlexNet. Isosurfaces connect voxels that have the specified
intensity or value, much the way contour lines connect points
of equal elevation. This work culminates in the implementation
of a classification system which uses supervised learning through
CNN architectures to classify DaTSCAN images with an average
accuracy of 95.1%. Sensitivity and specificity of the system
have also been calculated resulting at an average of 95.5% and
94.8%, respectively.

After this introduction, the rest of the paper is structured
as follows. Section 2 reviews related works for PD diagnosis.
Section 3 shows details on the database used in this work,
extracted from the Parkinson Progression Neuroimaging
Initiative (PPMI, RRID:SCR_006431) database, and the applied
preprocessing. Then, section 4 describes the computing of
isosurfaces, the analyzed architectures and their training process.
Section 5 presents and discusses the classification results using
data from the PPMI. And finally, section 6 shows the conclusions
drawn from this work along with its practical applicability.

2. RELATED WORK

The high spatial and color resolution provided by current
neuroimaging systems has prompted them to become the main
diagnosis tool for neurodegenerative disorders. Thus, DaTSCAN
SPECT imaging is used routinely for the diagnosis of PD
through the evaluation of deficits of dopamine transporters of
the nigrostriatal pathway. However, the visual assessment of these
images to come to a final diagnostic is, even for expert clinician,
a time-consuming and complicate task, which requires having
into accountmany variables. Machine learning algorithms, which
allow combining different types of inputs to produce a result, can
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potentially overcome this problem. Additionally, the vast amount
of information contained in DatSCAN images requires the use of
computer aided tools to be exploited, allowing to find complex,
disease-related patterns to increase the diagnosis accuracy. We
review next the main computer-based techniques proposed in
this framework.

Two of the first works to analyze the possibilities of machine
learning algorithms with DaTSCAN were Palumbo et al. (2010)
and Towey et al. (2011). The former compared a probabilistic
neural network (PNN) with a classification tree (CIT) to
differentiate between PD and essential tremor. Striatal binding
ratios for caudate and putamina on 3 slices were used as image
features. The latter used Naïve-Bayes with PCA decomposition
of the voxels in the striatal region. These were followed for a
series of works where SVMs were used as the main classifier
tool, with linear or RBF kernel and different image features. Illán
et al. (2012) and later Oliveira and Castelo-Branco (2015) used
voxel-as-features; i.e., image voxel intensities are used directly
as features. Segovia et al. (2012) used a Partial Least Square
(PLS) scheme to decompose DaT images into scores and loading.
Then, the scores with the highest Fisher Discriminant Ratios
were used as feature for the SVM. Khedher et al. (2015) also
used PLS. Rojas et al. (2013) proposed the use of 2D empical
mode decomposition to split DaTSCAN images into different
intrinsic mode functions, accounting for different frequency
subbands. The components were used to select features related
to PD that clearly differentiate them from NC, allowing an easy
visual inspection. Martínez-Murcia et al. (2014a) decomposed
the DaTSCAN images into statistically independent components
which revealed patterns associated to PD. Moreover, in this
approach, image voxels were ranked by means of their statistical
significance in class discrimination. A more recent approach
also based onmultivariate decomposition techniques is proposed
in Ortiz et al. (2018), where the use of functional principal
component analysis on 3D images is proposed. This is addressed
by sampling the 3D images using fractal curves in order to
transform the 3D DatSCAN images into 1D signals, preserving
the neighborhood relationship among voxels. Striatal binding
ratios for both caudates and putamina were used in Prashanth
et al. (2014), Palumbo et al. (2014), and Bhalchandra et al.
(2015). Martínez-Murcia et al. (2014b) proposed the extraction
of 3D textural-based features (Haralick texture features) for
the characterization of the dopamine transporters concentration
in the image. And finishing with those based on SVM,
Badoud et al. (2016) used univariate (voxel-wise) statistical
parametric mapping and multivariate pattern recognition using
linear discriminant classifiers to differentiate among different
Parkinsonian syndromes.

More recently, methods based on neural networks, especially
deep learning-based methods, have paved the way to discover
complex patterns and, consequently, to outperform the diagnosis
accuracy obtained by classical statistical methodologies (Ortiz
et al., 2016; Martinez-Murcia et al., 2017). The use of models
containing stacks of layers composed of a large number of
units that individually perform simple operations allows to
compute models containing a large number of parameters.
Moreover, these massively parallelized architectures are able

to discover very complex patterns in the data by a learning
process formulated as an optimization problem. Zhang and
Kagen (2017) proposes a classifier based on a single layer
neural network and voxel-as-features from different slices.
Martinez-Murcia et al. (2017) and Martinez-Murcia et al. (2018)
propose the use of Convolutional Neural Networks (CNN) to
discover patterns associated to PD. Increasing the accuracy
requires the use of deeper networks, but this increment also
makes the network prone to overfitting and push the training
algorithms to their performance limits. Thus, architectures
combining more elaborated blocks such as in He et al. (2016)
have been also proposed to effectively increase the number
of layers.

In this work, we describe a classifier based on the well-known
CNNs LeNet-5 and AlexNet where the image features used to
train them are isosurfaces computed from the regions of interest.
The computation of isosurfaces reduces the complexity of the
inputs significantly which results in high classification accuracies
with reduced computational burden.

3. MATERIALS

3.1. Database
Data used in the preparation of this article was obtained
from the PPMI (Parkinson’s Progression Markers Initiative,
RRID:SCR_006431). PPMI is an observational clinical study to
verify progression markers in PD. For up-to-date information
on the study, visit https://www.ppmi-info.org/. The images in
this database were imaged 4 + 0.5 h after the injection of
between 111 and 185 MBq of DaTSCAN. Raw projection data
are acquired into a 128 × 128 matrix stepping each 3 degrees
for a total of 120 projection into two 20% symmetric photopeak
windows centered on 159 KeV and 122 KeV with a total
scan duration of approximately 30–45 min (The Parkinson
Progression Markers Initiative, 2010).

A total ofN = 269 DaTSCAN images from this database were
used in the preparation of the article. Specifically, the baseline
acquisition from 158 subjects suffering from PD and 111 normal
controls (NC) was used.

3.2. Spatial Normalization
Spatial normalization is frequently used in neuroimaging
studies. It eliminates differences in shape and size of brain,
as well as local inhomogeneities due to individual anatomic
particularities. It is particularly key in group analysis, where
voxel-wise differences are analyzed and quantified (Martinez-
Murcia et al., 2016a). In this procedure, individual images are
mapped from their individual subject space (image space) to
a common reference space, usually stated using a template.
The mapping involves the minimization of a cost function
that quantifies the differences between the individual image
space and the template. The most frequent template is the
Montreal Neurological Institute (MNI), set by the International
Consortium for Brain Mapping (ICBM) as its standard template,
currently in its version ICBM152 (Mazziotta et al., 2001),
an average of 152 normal MRI scans in a common space
using a nine-parameter linear transformation. A particular
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case of affine transformation is the similarity transformation,
where only scale, translation and rotation are applied. This is
often used for motion correction and reorientation of brain
images with respect to a reference, and is frequently performed
automatically on many imaging equipment. The DaTSCAN
images from the PPMI dataset are roughly realigned. We will
refer to this as non-normalized (given that it is only a similarity
transformation that preserves shape) or “original.” We further
preprocessed the images using the SPM12 (Functional Imaging
Laboratory of the University College London, 2012) New
Normalize procedure with default parameters, which applies
affine and local deformations to achieve the best warping
of the images and a custom DaTSCAN template defined in
Salas-Gonzalez et al. (2015).

Finally, the regions of interests, those which reveal
dopaminergic activity, were selected. As a result, the images of
original size of (95, 69, 79) were converted into images of size
(29, 25, 41). This means passing from 498,800 to 29,795 voxels,
a diminution of 94%, which reduces dramatically the complexity
of the system without losing almost relevant information since
beyond the elected area the intensity values of most of the pixels
for both groups is very low or zero.

3.3. Intensity Normalization
Intensity normalization is an important step to ensure that the
same intensity levels corresponds to similar drug uptakes, so
that intensities can be compared as an indirect measure of the
neurophysical activity. Similar intensity values should indicate
similar drug uptakes and, as a consequence, differences in these
values may reveal different pathologies (Martínez-Murcia et al.,
2012; Segovia et al., 2012; Padilla et al., 2015).

This paper uses Integral Normalization (Illán et al., 2012):

Îi = Ii/In,i, (1)

where Ii is the image of the ith subject in the dataset, Îi is the
normalized image, and In is an intensity normalization value that
is computed independently for each subject as the mean of the
whole image (in an approximation of the integral). Sometimes,
for Parkinson studies, In is set to the average of the brain without
the striatum; although the influence of this is small and it can
be approximated by the mean of the whole image. Finally, in
this work, the resulting values are further normalized between
0 and 1.

FIGURE 1 | Examples of isosurfaces with threshold = 0.5 for a NC subject (A) and PD patient (B).

FIGURE 2 | Examples of isolines with different threshold for a NC subject (A) and PD patient (B).
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4. METHODS

4.1. Feature Extraction Using Isosurfaces
DaTSCAN SPECT images contains an enormous amount of
information. The approach of using voxels-as-features has been
adopted by different works (Illán et al., 2012; Badoud et al.,
2016) reporting modest classification results around 70–75% and
suggesting that better results can be achieved by using more

refined techniques that focus on the significant information

that lies in such images. When CNN are used, as mentioned

in the previous sections, this can be explained by a reduction

in the complexity that results in lower computational burden

(Martinez-Murcia et al., 2018), more efficient training algorithms

(He et al., 2016) and less proneness to overfitting. The extraction
and selection of features is therefore one of the most determinant
processes, and maybe the most characteristic part, in the
definition of a classification method.

For feature extraction, this paper proposes the use of
isosurfaces. Isosurfaces connect voxels that have the specified
intensity or value much the way contour lines connect points
of equal elevation. Roughly, this implies to set a threshold at a
certain level and take the surface that envelops the remaining
voxels above that threshold. In this work, however, a refined
version for computing isosurfaces is used where interpolation is
employed instead of just thresholding.

Figure 1 shows two examples of isosurfaces computed with a
threshold of 0.5 (intensity is normalized to 1) for a NC subject
and a PD patient. Unfortunately, it is difficult to observe in
a figure different isosurfaces computed for different thresholds
since that with the highest threshold will envelop the rest. As
an alternative, when different thresholds are used, isolines are
preferred. Isolines are simply 2D slices of the corresponding
isosurfaces. In Figure 2 isolines with different thesholds for a
NC subject and a PD patient are represented. The following
characteristics can be observed in isosurfaces/isolines: (i) they
define closed volumes/areas, (ii) they do not cross each other,
(iii) the same threshold can result in several isosurfaces/isolines,
and (iv) the proximity between isosurfaces/isolines provides
information about intensity gradients; the closer they are, the
faster the changes. Regarding the diagnosis of PD, it can be
observed in previous figures that isosurfaces and isolines from
PD patients, in contrast with those from NC subjects, are
characterized by a loss of symmetry between hemispheres.

Feature selection is usually based on either statistical
analysis or optimization of the classifier. In the former,
previously computed thresholds based on statistical relevance
or correlations are set and features are discarded if they are
not above such thresholds without considering the performance
of the classifier. In the latter, however, features are selected,
or discarded, if they improve, or not, the performance of the

FIGURE 3 | CNN architecture based on LeNet.
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classifier. This paper uses this second approach. Classification
results using isosurfaces computed with different thresholds
have been compared, choosing those that provide the best

FIGURE 4 | CNN architecture based on AlexNet.

classification results. More specifically, isosurfaces for thresholds
0.4, 0.5, 0.6, 0.7, and 0.8 have been computed. Then, the two
possible options have been analyzed: forward selection, where
just one isosurface for a threshold is initially used with the
classifier and then others are gradually included if they improve
the results; and backward selection, where the whole set of
isosurfaces is initially employed to classify and then some of
these are removed if their absence does not affect negatively the
classification performance.

4.2. CNNs for Classification
Method based on neural networks are becoming more and
more popular for the development of new early diagnosis tools
(Ortiz et al., 2016). More specifically, CNNs have been proposed
for the detection of patterns in medical images associated to
PD (Martinez-Murcia et al., 2017, 2018). The election and
configuration of the CNN architecture are, however, not trivial
tasks. In fact, although deeper structures, with higher numbers of
layer and units, are potentially more capable of revealing hidden
patterns, they are not always advisable because the complexity
that they introduce. When a big amount of parameters need
to be adjusted, it may result in training problems, overfitting
and high computational loads. Thus, apart from preprocessing
input data to remove non-significant information and feed CNNs
with relevant inputs, the best performances are obtained with
balanced architectures; that is, architectures complex enough to
reveal the relevant patterns but not so complex that it cannot be
conveniently trained with certain guarantees of non-overfitting.
In this paper, two 3D versions based on well-known architectures
have been tested. The first based on LeNet (LeCun et al.,
1998), and then another based on the most powerful AlexNet
(Krizhevsky et al., 2012), both of them fed with pre-processed
data resulting from the computation of the isosurfaces.

TABLE 1 | Characteristics of the AlexNet-based CNN used.

Layer Kernel/Window Output shape Trainable

parameters

Input 29× 25× 41

3D-Conv_1 10@7× 7× 7 10@29× 25× 41 3,440∗

Max_pool_1 2× 2× 2 10@15× 13× 21 0

3D-Conv_2 8@6× 6× 6 8@15× 13× 21 17,288

Max_pool_2 2× 2× 2 8@8× 7× 11 0

3D-Conv_3 7@5× 5× 5 7@8× 7× 11 7,007

3D-Conv_4 6@4× 4× 4 6@8× 7× 11 2,694

3D-Conv_5 5@3× 3× 3 5@8× 7× 11 815

Max_pool_3 2× 2× 2 5@4× 4× 6 0

Flatten 480 0

FC_1 2,048 985,088

FC_2 2,048 4,196,352

FC_3 2 4,098

Total 5,216,782

∗Computed by a single input volume.
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Our first architecture comprises 7 layers, not counting the
input (see Figure 3) : 2 convolutional layers (first and third), 2
subsampling layers (second and fourth), 1 flatten layer (fith) and

2 full connected layers (sixth and seventh). The 2 convolutional
layers use five 3D-kernels of [3 × 3 × 3] to sweep over the
input topologies and transform them into feature maps. Stride

FIGURE 5 | Results of the LeNet-based architecture using as input a single isosurface: sensibilities, sensitivities and accuracies (A) and ROC curves (B).

FIGURE 6 | Results of the AlexNet-based architecture using as input a single isosurface: sensibilities, sensitivities and accuracies (A) and ROC curves (B).

FIGURE 7 | Results of the LeNet-based architecture using as input several isosurfaces: sensibilities, sensitivities and accuracies (A) and ROC curves (B).
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of (1,1,1) and padding are employed with the convolution so that
the output feature maps keep the size of the input. For the second
convolutional layer (3DCONV_2), each unit in each feature map
is connected to [3 × 3 × 3] neighborhoods at identical locations
in the entire set of input feature maps. Thus, the number of
trainable parameters of these two layers are 33 ∗ 5 + 5 = 140
and 33 ∗ 5 ∗ 5 + 5 = 680, respectively. Note however, that
the number of trainable parameters of the first layer increases
if several images are introduces simultaneously (#params =

33 ∗ 5 ∗ #inputs + 5). The two subsampling layers apply max-
pooling, connecting each unit in the output feature map to [2 ×
2 × 2] neighborhood in the input feature map. The output is
the maximum within the [2 × 2 × 2] window. Consequently,
the output feature maps have half the number of units in the
three dimensions. Sub-sampling reduces the complexity of the
CNN and provides invariance to local translations. Once the
feature learning phase is completed, using the convolutional and
sub-sampling layers, feature maps are flattened into a feature
vector. This vector consists of 8 ∗ 7 ∗ 11 ∗ 5 = 3, 080 neurons,
and is followed by two fully-connected layers of 4,096 and 2
neurons, respectively. The number of trainable parameters of
the last two layers are 3, 080 ∗ 4, 096 + 4, 096 = 12, 6190, 776
and 4, 096 ∗ 2 + 2 = 8, 194, respectively. Between these two
layers there is a dropout interphase with 0.5 dropout probability.
The last layer yields the prediction probability using softmax
activation. The total number of trainable parameters of this CNN
is 12,628,790.

The AlexNet based architecture is shown in Figure 4. It
comprises 12 layers: 5 (first, third, fourth, fifth and sixth)
3D-convolutional layers, 3 (second, fourth and eight) max-
pooling (subsampling) layers, 1 flatten layer (ninth) and 3 fully-
connected layers (tenth, eleventh and twelfth). The convolutional
layers use 10, 8, 7, 6 and 5 kernels of sizes [7 × 7 × 7],
[6 × 6 × 6], [5 × 5 × 5], [4 × 4 × 4] and [3 × 3 × 3],
respectively. Convolutional layers use padding and stride (1,1,1),
and output feature maps are connected to every input feature
map (not just a subset). The flatten layer has 480 neurons
and the three last fully connected layers 2,048, 2,048, and 2,
respectively. Between these three fully connected layers there

are two dropout interphases with dropout probability of 0.7.
The last two-neuron layers uses softmax activation to predict a
classification. These characteristics and information about the
number of trainable parameters of this CNN are summarized
in Table 1.

4.3. Evaluation
Classification performance is evaluated by means of the accuracy,
sensitivity and specificity. Resulting from these values, Receiver
Operating Curves (ROC) and the Areas Under the ROC Curves
are also computed. ROC curves comprise the sensitivity and
specificity to provide compromise values between these two
values, while AUC provides a metric regarding the performance
of the classifier.

Classification experiments conducted in this work have been
assessed by nested cross-validation (Stone, 1974), with inner
and outer loops implementing stratified k-fold cross-validation
(k=10) to ensure that the proportion of both classes is preserved
in each fold. The inner loop is used to select the features and
the outer to determine the generalization ability of the proposed
method (Lozano et al., 2017). However, in order to provide a
sweep of the performances obtained for different thresholds and
to carry out a fair comparison with the optimal one, the results
of the outer loop are provided for the different used values (even
when they were not the optimal in the inner loop). Estimation of
the generalization error by cross-validation will always result in
an overestimate in practice, since the entire training set is not
used but just a fraction. This overestimate will depend on the
slope of the learning curve of the classifier and reduces when
k increases.

Standard error is computed from the standard deviation.
Cross-validations performed for k << N (where N is the
number of samples) allow to estimate the standard deviation of
an experiment CV(ζ ). First, the validation error in the j-th fold is
averaged as

CVj(ζ ) =
1

nj
ej(ζ ) =

1

nj

∑

i∈Fj

(yi −̂f
−j
ζ (xi))

2 (2)

FIGURE 8 | Results of the AlexNet-based architecture using as input several isosurfaces: sensibilities, sensitivities and accuracies (A) and ROC curves (B).
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where nj is the number of samples in the j-th fold. Then, the
standard deviation of CVj(ζ ) with 1 ≤ j ≤ k can be computed as:

SD(ζ ) =
√

var(CV1(ζ ), ...,CVk(ζ )) (3)

where var(x) stands for the variance of the vector x. Finally, the
standard error [or standard deviation of CV(ζ )] is computed as:

SEM(ζ ) = k−
1
2 SD(ζ ) (4)

5. RESULTS AND DISCUSSION

In this section, we firstly compare classification results when just
a single input volume (isosurface) is introduced in the LeNet-
based and AlexNet-based architectures. This allows determining
which isosurfaces provide more significant information and
comparing the performances of both architectures.

Figure 5 shows the results of the LeNet-based architecture
for the computed isosurfaces (see section 4.1); Figure 5A graphs
sensibilities, sensitivities and accuracies, and Figure 5B the ROC

curves. Likewise, Figure 6 shows the results for the AlexNet-
based architecture. Classification performances increase slightly
with the threshold, until this is 0.7. This is explained because
the greater the threshold the less the volume captured by the
isosurfaces. Thus, as the threshold increases but the chosen
volume still contains most of the relevant regions (around
the striatum) the performances maintain or improve, since the
computational complexity reduces while keeping the significant
information. However, for thresholds beyond 0.8, the captured
area reduces too much, leaving out relevant regions for the
classification and therefore decreasing the performances. As a
result, intermediate values of isosurfaces, i.e., 0.5, 0.6, and 0.7,
seem to contain the most relevant information providing slightly
better classification results for both architectures. On the other
hand, there is not a clear difference between the results of the two
architectures, both achieving similar performances.

Once the analysis using isosurfaces independently is
completed, classification performances obtained when different
number of isosurfaces are used as input of the architectures
are compared. Note that, although the introduction of more
isosurfaces adds more information, it also increases the

TABLE 2 | Classification results using different methods.

Method Accuracy Sensitivity Specificity AUC

EMD (Rojas et al., 2013) 0.95 0.95 0.94 0.94

Significance M. (Martínez-Murcia et al., 2014a) 0.92 0.95 0.89 0.90

Brahim et al. (2015) 0.92 0.94 0.91 –

VAF 0.8± 0.05 0.72±0.17 0.85± 0.14 0.87

PCA 0.87± 0.04 0.96±0.03 0.86±0.04 0.9

EfPCA (Ortiz et al., 2018) 0.93±0.05 0.97±0.08 0.88±0.05 0.94

LeNet-based 0.95± 0.03 0.94 ± 0.04 0.95±0.04 0.97

AlexNet-based 0.95± 0.03 0.95± 0.05 0.95± 0.04 0.97

FIGURE 9 | Saliency maps of the LeNet-based architecture superimposed on a MRI image: NC (A) and PD (B).
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FIGURE 10 | Saliency maps of the AlexNet-based architecture superimposed on a MRI image: NC (A) and PD (B).

complexity of the CNN (number of trainable parameters of
the first layer) so that the best results are only obtained when
the input has an optimum trade-off between the information
it provides and the complexity that it introduces. Thus, many
possible combinations of isosurfaces have been tested. One of
these tests is shown in Figures 7, 8 for the LeNet-based and
AlexNet-based architecture, respectively. They show the results
for the case where isosurfaces are sequentially added from top
level (0.8) to bottom level (0.4); that is, first the isosurface with
level 0.8 is used by itself (marked as 1 in the figures), then 0.7 is
added (2 in the figures), next 0.6 is also added (3 in the figures)
and so on: 0.8+0.7+0.6+0.5 (4 in the figures) and all of them (5
in the figures).

The inputs chosen eventually as providing the best
classification results while keeping the complexity as low as
possible have been the combination of isosurfaces 0.8 and 0.7
for the LeNet-based architecture and the isosurface 0.7 for
the AlexNet-based architecture. They both provide accuracy,
sensibility and specificity about 0.95 and AUC = 0.97. These
classification performances can be considered as very good when
compared with other well-known methods such as VAF (Voxels
as Features), PCA (Principal Component Analysis) or EfPCA
(Empirical functional PCA), outperforming most methods
recently published in the bibliography for the detection of
Parkinsonism (Rojas et al., 2013; Martínez-Murcia et al., 2014a;
Brahim et al., 2015). Table 2 collects the different performance
classifications, including the typical deviation when available.
Additionally, in order to statistically confirm the effectiveness
of the proposed method, a statistical hypothesis test (Welch
test) has been performed in terms of the AUC. As a result, the
statistical significance of the use of isosurfaces along with the
LeNet-based architecture when compared with the EfPCA (the
next best performing method in the comparison) is confirmed
with a p-value of 0.04. By contrast, a p-value of 0.18 is computed

when both architectures, LeNet and AleNet based, are compared,
which allows to infer that while the use of isosurfaces as a feature
extraction method outperforms previous approaches, it is not
possible to state if one of the two architectures performs better
than the other.

Finally, and for the sake of completeness, the saliencymaps for
the last layer of the Lenet-based and AlexNet-based architecture
are provided. Figures 9, 10 show a relevant slice of the saliency
maps obtained for both architectures superimposed on a MRI
image. Saliency maps use the gradient of output category with
respect to input image to determine the regions of the input
image that have a greater impact on the output class. Thus, for
the Alexnet-based architecture (Figure 10), it is observed that for
control subjects the most decisive regions are those between the
putamen and globus pallidus, while for PD patients, the most
important ones are those in the interface between the caudate
nucleus and the putamen. Similar regions are found in the case
of the LeNet-based classifier. However, in this latter case, for
the control subjects, sparser regions are marked in the figure
(Figure 9), while for PD patients, it again shows as the most
determinant regions the interface between the caudate nucleus
and the left putamen. These anatomical regions matched with
those reported in the literature (Greenberg et al., 2012; Tuite
et al., 2013) as linked to the development of the Parkinson’s
disease, which confirms the use of isosurfaces as an effective
means to extract the most relevant information for PD diagnosis.

6. CONCLUSIONS

This paper proposes the use of isosurfaces as a way to
extract the relevant information from 3D DatSCAN images
so that they can be used as inputs of CNN architectures.
As a result, a classification system that uses LeNet-based
and AlexNet CNN architectures has been implemented. This
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system achieves accuracy of 95.1% and AUC = 97%, providing
comparable (slightly better) values to those obtained for recently
proposed systems. It can be concluded, therefore, that the
computation of isosurfaces reduces the complexity of the inputs
significantly while keeping the relevant information, resulting
in high classification accuracies with reduced computational
burden. Finally, in order to determine which areas of the
input brain images has a greater impact on the predicted
output class, saliency maps of the last two-neuron layer are
also computed.
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Deep neural networks have led to state-of-the-art results in many medical imaging tasks

including Alzheimer’s disease (AD) detection based on structural magnetic resonance

imaging (MRI) data. However, the network decisions are often perceived as being

highly non-transparent, making it difficult to apply these algorithms in clinical routine.

In this study, we propose using layer-wise relevance propagation (LRP) to visualize

convolutional neural network decisions for AD based on MRI data. Similarly to other

visualization methods, LRP produces a heatmap in the input space indicating the

importance/relevance of each voxel contributing to the final classification outcome. In

contrast to susceptibility maps produced by guided backpropagation (“Which change in

voxels would change the outcome most?”), the LRP method is able to directly highlight

positive contributions to the network classification in the input space. In particular, we

show that (1) the LRP method is very specific for individuals (“Why does this person

have AD?”) with high inter-patient variability, (2) there is very little relevance for AD in

healthy controls and (3) areas that exhibit a lot of relevance correlate well with what is

known from literature. To quantify the latter, we compute size-corrected metrics of the

summed relevance per brain area, e.g., relevance density or relevance gain. Although

these metrics produce very individual “fingerprints” of relevance patterns for AD patients,

a lot of importance is put on areas in the temporal lobe including the hippocampus.

After discussing several limitations such as sensitivity toward the underlying model and

computation parameters, we conclude that LRP might have a high potential to assist

clinicians in explaining neural network decisions for diagnosing AD (and potentially other

diseases) based on structural MRI data.

Keywords: Alzheimer’s disease, MRI, visualization, explainability, layer-wise relevance propagation, deep learning,

convolutional neural networks (CNN)
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1. INTRODUCTION

In the 2018 World Alzheimer Report, it was estimated that 50
million people worldwide were suffering from dementia and
this number was projected to rise to more than 152 million
people until 2050. The most common reason for dementia is
Alzheimer’s disease (AD) accounting for around 60–70% of
dementia cases (WHO, 2017). AD is characterized by abnormal
cell death, primarily in the medial temporal lobe. This cell death
is thought to be rooted in protein plaques and neurofibrillary
tangles, which restrict normal neural function (Bondi et al.,
2017). The resulting atrophy is visible in structural magnetic
resonance imaging (MRI) data, and derived markers (such as
hippocampal volume or gray matter density) have been used
to diagnose AD and predict disease progression (Frisoni et al.,
2010; Rathore et al., 2017). In the last decade, those markers
have frequently been employed in machine learning settings
to allow for predictions on an individual level (Klöppel et al.,
2008; Orrù et al., 2012; Weiner et al., 2013; Ritter et al., 2015,
2016). However, those expert features usually reflect only one
part of disease pathology and the combination with standard
machine learning methods, such as support vector machines,
do not allow for finding new and potentially unexpected
hidden data characteristics that might also be important to
describe a disease.

By extracting hierarchical information directly from raw or
minimally processed data, deep learning approaches (LeCun
et al., 2015) can help to fill a gap here and offer a great
potential for improving automatic disease diagnostics. One
family of algorithms that perfectly lends itself to perform non-
linear feature extraction from image data and their respective
classification into disease categories are convolutional neural
networks (CNNs), a type of (deep) neural networks optimized
for image data. The key idea behind CNNs is inspired by the
mechanism of receptive fields in the primate’s visual cortex
and relates to the application of local convolutional filters for
extracting regional information (LeCun and Bengio, 1995). They
typically consist of a sequence of convolutional and pooling layers
which allow for summarizing key characteristics into feature
maps. These feature maps can then be used by a fully-connected
layer or any other classifier for solving the primary supervised
learning problem (e.g., AD classification). CNNs have been
proven to be very successful in a wide range of medical imaging
applications (Litjens et al., 2017), including AD detection based
on neuroimaging data (e.g., Gupta et al., 2013; Suk et al., 2014;
Payan and Montana, 2015; Sarraf and Tofighi, 2016; Korolev
et al., 2017; for a review, see Vieira et al., 2017).

Despite this success, automatically learning the features comes
at a cost: the decisions of neural networks are notoriously hard
to interpret in retrospect. Therefore, deep learning methods,
including CNNs, often face the criticism that they are “black-
box” (Castelvecchi, 2016). In contrast to some simpler learning
algorithms, in particular decision trees, they do not offer a simple
and comprehensible explanation; their architecture is complex
and consists of several tomany layers with hundreds of thousands
parameters that need to be trained. In the medical domain,
however, it is imperative to base diagnoses and subsequent

treatments on an informed decision and not on a single yes/no
answer of an algorithm. Therefore, if CNNs should support
clinicians in their daily work, ways have to be found to visualize
and interpret the network’s “decision” (see Figure 1). In the last
years, a number of suggestions have been made to visualize what
is actually learned by a CNN. Besides straightforward methods
such as the extraction of activations during convolution or the
visualization of weights, among the most well-known techniques
for visualization are the sensitivity analysis by Simonyan et al.
(2013), guided backpropagation by Springenberg et al. (2014),
the deep visualization toolbox of Yosinski et al. (2015) based on
regularized optimization, and the deconvolution and occlusion
method by Zeiler and Fergus (2014). In Alzheimer’s research
only a very few studies exist that looked into such visualization
methods (Esmaeilzadeh et al., 2018; Rieke et al., 2018;
Yang et al., 2018).

Most promising for the use in the medical imaging domain
is the generation of an individual heatmap for each patient,
which lies in the same space as the input image and indicates the
importance of each voxel for the final (individual) classification
decision. By allowing for a human-guided, intuitive investigation
of what drives the classifier to come to a certain classification
decision, individual heatmaps hold great potential in assisting
and understanding diagnostic decisions performed by deep
neural networks. However, for any visualization method that
produces heatmaps, it is very important to understand how
they are computed and what their limitations are. In natural
images, for example, it has been argued that methods relying on
gradients (e.g., sensitivity analysis or guided backpropagation)
only measure the susceptibility of the output to changes in
the input and might not necessarily coincide with those areas
on which the network bases its decision. A powerful method
to overcome this limitation is layer-wise relevance propagation
(LRP, Bach et al., 2015), which decomposes the network’s output
score (e.g., for AD) into the individual contributions of the
input neurons while keeping the total amount of relevance
constant across layers (conservation principle). In contrast to
showing “susceptibility maps” as gradient-based methods, the
heatmap does not rely on gradients, but takes into account model
parameters (i.e., weights) and neuron activations (Bach et al.,
2015; Samek et al., 2015). By this, the heatmaps are less prone
to group effects in the data. Intuitively, LRP has the potential
to answer the question “what speaks for AD in this particular
patient?” as opposed to “which change in voxels would change
the outcome most?” addressed in gradient-based approaches. In
terms of explainability, LRP has been shown to be superior to
those gradient methods and deconvolution methods in three
natural imaging data sets (Samek et al., 2015). In cognitive
neuroscience, the LRP method has been recently applied to
single-trial EEG and functional MRI classification (Sturm et al.,
2016; Thomas et al., 2018). To the best of our knowledge, it has
so far not been applied in clinical disease classification based on
structural MRI data.

In this study, we use LRP to explain individual classification
decisions for AD patients and healthy controls (HCs) based
on a CNN trained on structural MRI data (T1-weighted
MPRAGE) from the Alzheimer’s Disease Neuroimaging Initiative
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FIGURE 1 | Illustration of the benefit of visualization in a deep learning framework for diagnosing Alzheimer’s disease (AD) based on structural MRI data. Deep neural

networks are often criticized for being non-transparent, since they usually provide only one single class score as output and do not explain what has led to this

particular network decision; in this example, the MRI input is classified as belonging to the group of AD patients with a probability of 89%. When no further information

is given, the medical expert is not able to base any medical treatment on this number, since the underlying reasons are unclear. The layer-wise relevance propagation

method (LRP) might alleviate this problem by additionally providing a heatmap in which the positive contributions to the class score (89% AD) are highlighted. Here,

the class score is supplemented by the additional information that in this particular subject AD relevance has been found in the hippocampus, an area known to be

affected in AD. By providing a visual explanation, the LRP framework allows the medical expert to make a much more informed decision.

(ADNI1). Based on the trained CNN model, we generated LRP
heatmaps for each subject in the test set. Importantly, each
heatmap indicates the voxel-wise relevance for the particular
classification decision (AD or HC). To spot the most relevant
regions for AD classification, we computed average heatmaps
across AD patients and HCs, which we then further split into
correct and wrong classification decisions (i.e., true positives,
false positives, true negatives, false negatives). To analyze the
relevance in different brain areas according to the Scalable
Brain Atlas by Neuromorphometrics Inc. (Bakker et al., 2015),
we suggest size-corrected metrics and compared these metrics
between LRP and guided backpropagation. We have chosen
guided backpropagation as a baseline method because (1)
sensitivity analysis is the most common method for generating
heatmaps, (2) it results in more focused heatmaps compared
to only using backpropagation (Rieke et al., 2018) and (3) it is
better comparable to LRP than occlusionmethods with respect to
our relevance measures. On an individual level, we analyzed the

1http://adni.loni.usc.edu/

heatmap patterns of single subjects (“relevance fingerprinting”)
and correlate them with the hippocampal volume as a key
biomarker of AD. We show that the LRP heatmaps succeeded
in depicting individual contributions to AD diagnosis and might
hold great potential as a diagnostic tool.

2. MATERIALS AND METHODS

2.1. Data and Preprocessing
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI,
RRID:SCR_003007) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W.Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). For up-
to-date information, see www.adni-info.org.
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We included structural MRI data of all subjects with
Alzheimer’s disease (AD) and healthy controls (HCs) listed in
the “MRI collection - Standardized 1.5T List - Annual 2 year”.
The subjects in the data set are labeled as AD if the Clinical
Dementia Rating (CDR) score (Morris, 1993) was greater than
0.5. HCs are selected as those subjects with a CDR score of 0.
In total, we included 969 individual scans (475 AD, 494 HC)
of 193 AD patients and 151 HCs (up to three time points). All
scans were acquired with 1.5 T scanners at various sites and
had undergone gradient non-linearity, intensity inhomogeneity
and phantom-based distortion correction. We downloaded T1-
weightedMPRAGE scans and non-linearly registered them to the
1mm resolution 2009c version of the ICBM152 reference brain
using Advanced Normalization Tools (ANTs2). This has been
done to (1) ensure a relative alignment across subjects, (2) allow
the convolutional neural network to extract more robust features,
and (3) be able to analyze the heatmaps in a common space.
For the region-wise analysis of heatmaps, we used the Scalable
Brain Atlas by Neuromorphometrics Inc. (Bakker et al., 2015)
available in SPM123. A list of all areas included can be found in
the SPM12 package.

2.2. Convolutional Neural Network
Architecture
Convolutional neural networks (CNNs) are neural networks
optimized for array data including images or videos (LeCun et al.,
2015). In addition to input and output layer, they consist of
several hidden layers including convolutional and pooling layers.
In convolutional layers, in contrast to fully-connected layers, the
weights and the bias terms are shared between all neurons in a
given layer for a given filter. This means that each of the neurons
applies the same filter or kernel to the input, but at a different
position, usually with a displacement (often called stride) of 1–
3 between neighboring neurons. Since these filters are learned
via the backpropagation algorithm, CNNs do not rely on hand-
crafted features, but can be applied to minimally processed data
(LeCun et al., 2015). CNNs have been very successfully applied
to a large number of applications including image and speech
recognition (Krizhevsky et al., 2012; Abdel-Hamid et al., 2014;
Long et al., 2015) as well as medical imaging andAD classification
based on MRI data (Gupta et al., 2013; Suk et al., 2014; Payan
andMontana, 2015; Sarraf and Tofighi, 2016; Korolev et al., 2017;
Litjens et al., 2017; Vieira et al., 2017).

The model in the present study consists of four convolutional
blocks followed by two fully-connected layers. Each block
features a convolutional layer with f filters (f = 8, 16, 32, 64) and
filter sizes of 3 × 3 × 3. Every convolutional layer is followed by
batch normalization and max pooling with window sizes wxwxw
(w = 2, 3, 2, 3). The fully-connected layers contain 128 and 2
units respectively and dropout (p = 40%) is applied before each.
The final fully-connected layer, which is activated by a softmax
function serves as the network output, providing the class scores
for HCs (first unit) and AD (second unit) respectively. As an
optimizer Adam (Kingma and Ba, 2015) was used with an

2http://stnava.github.io/ANTs/
3http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

initial learning rate of 0.0001 and a weight decay of 0.0001.
The data was split into a training data set (163 AD patients,
121 HCs; 797 images in total), a validation set for optimizing
the hyperparameters (18 AD patients, 18 HCs; 100 images in
total) and a test set (30 AD patients, 30 HCs; 172 images in
total). To ensure independence between training and test data,
we performed the split of the data on the level of patients instead
of images. The data was augmented during training by flipping
the images along the sagittal axis (p = 50%) and translated
along the sagittal axis between –2 and 2 voxels. When the model
did not improve for 8 epochs on the validation set, training was
stopped. The training epoch (i.e., model checkpoint) with the best
validation accuracy (91.00%) was then applied to the test data,
resulting in a classification accuracy of 87.96%.

2.3. Visualization Methods
2.3.1. Layer-Wise Relevance Propagation (LRP)
In the following, we will introduce the Layer-wise Relevance
Propagation (LRP) algorithm by Bach et al. (2015). The core
idea underlying the LRP algorithm for attributing relevance to
individual input nodes is to trace back contributions to the final
output node layer by layer. While several different versions of the
LRP algorithm exist, they all share the same principle: the total
relevance—e.g., the activation strength of an output node for a
certain class—is conserved per layer; each of the nodes in layer
l that contributed to the activation of a node j in the subsequent

layer l + 1 gets attributed a certain share of the relevance R
j

l+1
of that node. Overall, the sum over the relevances of all nodes i
contributing to neuron j in layer l must sum to R

j

l+1
, such that

the total relevance per layer is conserved:

∑

i

R
i→j

l,l+1
= R

j

l+1
(1)

There are different ways in which the relevance can be distributed
over the input nodes i and different rules for how to distribute the
relevances have been proposed. In this paper, we used the β-rule
(as described in Binder et al., 2016b):

R
i→j

l,l+1
=

(

(1+ β)
z+ij

z+j
− β

z−ij

z−j

)

R
j

l+1
. (2)

Here, z
+/−

ij refers to the amount of positive/negative input that

node i contributed to node j. The individual contributions are
divided by the sum over all positive/negative contributions of the

nodes in layer l, z
+/−

j =
∑

i z
+/−

ij , such that the relevance is

conserved from layer l + 1 to layer l. We have chosen this rule,
as it allows for adjusting how much weight is put on positive
contributions relative to inhibitory contributions that benefit
the AD score. LRP with a β value of zero allows only positive
contributions to be shown in the heatmap, whereas non-zero β

values additionally correct for the inhibitory effects of neuron
activations. When diagnosing AD, the network needs to balance
structural evidence speaking for and against AD. Any given local
area that looks healthy to the network, might have inhibitory
effects on the AD score, as it correlates more with HC patients.
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As the network increases its receptive field size throughout the
layers, healthy areas within this receptive field might inhibit
the contribution of affected areas to the final class score of
AD. By reversing this process with LRP, positive contributions
lying closer to healthy areas will thus obtain a lower relevance
score, as they overlap with inhibited receptive fields. This leads
to sparser heatmaps, see also Binder et al. (2016a), and might
disproportionately affect small structures surrounded by “healthy
areas.” As AD—especially in the early stages of the disease—can
affect brain areas in a highly localizedmanner, heatmaps obtained
with lower β values might therefore be more meaningful, as
they highlight all positive contributions, irrespective of their
surroundings. Accordingly, we focus in the present study on
β = 0, but additionally test the robustness for varying values of
β (β = 0, 0.25, 0.5, 0.75, 1).

For a more detailed description of the LRP algorithm, we
kindly refer the reader to Bach et al. (2015); Montavon et al.
(2018). A PyTorch implementation of the LRP algorithm has
been developed for the current work and is available on github4.

2.3.2. Guided Backpropagation (GB)
In order to emphasize and point out the advantages of LRP as
a diagnostic tool, we compared it to a gradient-based method,
the guided backpropagation (GB) algorithm (Springenberg et al.,
2014). In GB, the absolute values of the gradient of the output
with respect to the input nodes is shown as a heatmap, with
the additional twist that negative gradients are set to zero at the
rectification layers of the network. As was shown by Rieke et al.
(2018), “rectifying” the gradients in the backward pass leads to
more focused heatmaps.

2.4. Analyzing the Classification Decisions
The CNN model was evaluated on each MR image from the test
set and, subsequently, both the LRP as well as the GB algorithm
were used to produce a heatmap for each MR image. In the
case of LRP, we produced separate heatmaps for each β value.
We analyzed the resulting heatmaps (1) group-wise to distill
those regions, which are particularly “important” for the AD
classification and (2) individually to understand the network
decisions per sample and find differences between subjects. For
the former, we computed an average AD heatmap (obtained from
all AD subjects) and an average HC heatmap (obtained from all
HCs), which we then further split into a true positive heatmap
(i.e., average heatmap of clinically validated AD patients, who are
classified as AD), a false positive heatmap (i.e., average heatmap
of HCs classified as AD), a true negative heatmap (i.e., average
heatmap of HCs classified as HC) and a false negative heatmap
(i.e., average heatmap of clinically validated AD patients classified
as HC). For GB, these heatmaps highlight those areas to which
the network is on average most susceptible. For LRP, they show
the average relevance of each voxel for contributing to the AD
score. All LRP heatmaps show the average relevance for the
same class (AD), such that they can be compared on the same
scale (relevance for AD diagnosis). As the AD scores of HCs

4https://github.com/moboehle/Pytorch-LRP

typically range between 0 and 0.5, there will be relevance for AD
in HCs, too.

2.5. Atlas-Based Importance Metrics
To quantitatively analyze the heatmaps and the underlying CNN
model, we assessed the importance of different brain areas—
as defined by the Neuromorphometrics brain atlas (Bakker
et al., 2015)—by using the following three metrics for both LRP
and GB.

2.5.1. Sum of AD Importance per Area
As a first metric of importance, the resulting heatmap values
were simply summed per area. While this can already be taken
as a measure of importance, the resulting importance scores
are highly correlated to the area size, see Figure 4. Therefore,
two size-independent metrics for importance were additionally
analyzed inmore detail: the size-normalized sum, and the average
gain (ratio) when comparing to the average HC patient.

2.5.2. Size-Normalized AD Importance Metric
For diagnostic purposes, it can be particularly interesting
to identify areas that over their entire volume carry a lot
of information, i.e., areas with high relevance density or, in
GB, susceptibility density. Therefore, we divided here the sum
of AD importance per area by the size of the area (i.e.,
number of voxels), which corresponds to the regional mean
relevance/susceptibility. While low values over large areas might
be due to statistical fluctuations in the data, clusters of relevance
(LRP) or susceptibility (GB) in a very confined area could be
indicative of the presence of certain biomarkers for AD.

2.5.3. Gain—Ratio of Values With Respect to the

Average HC
Lastly, it is important to note that HCs are not “relevance-
free” under the LRP algorithm: HCs might exhibit certain
structural elements in their brains that are correlated with the
AD diagnosis. While the network might still classify them as HC,
these structures lead to a class score greater than zero for virtually
every subject. Thus, as an additional metric, we will look at the
“gain” in relevance (LRP) and susceptibility (GB) per area, i.e.,
the ratio to the average HC in that area. By doing this, those
areas that differ most between the two cases will be attributed the
highest importance.

3. RESULTS

In section 3.1, we compare the heatmaps generated by GB and
LRP qualitatively with respect to different β values and different
sets of data (AD, HC, true positives, false positives etc., see
Figures 2, 3). In section 3.2, we quantitatively compare the
heatmaps with respect to the different atlas-based importance
metrics (see Figures 4–7). In section 3.3, we present and discuss
the LRP heatmaps of two individual patients (see Figure 8) and
investigate the association between LRP relevance scores and
hippocampal volume as one of the neurobiological key markers
of AD (see Figure 9).
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FIGURE 2 | Average heatmaps for AD patients and healthy controls (HCs) in the test set are shown separately for LRP with β = 0, 0.5, 1 (Left) and GB (Right). The scale for the heatmap is chosen relative to the

average AD patient heatmap for LRP and GB respectively. Hence, values in the average heatmaps that are higher than the 50th percentile and lower than the 99.5th percentile are linearly color-coded as shown on

the scale. Values below (above) these numbers are black (white).
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FIGURE 3 | The average heatmaps over all subjects in the test set are plotted for the following cases (Left to Right): true positives, false positives, true negatives, and false negatives; separately for LRP with β = 0

(Left) and GB (Right). For each heatmap, the color-coding is the same as in Figure 2, i.e., with all values smaller than the 50th percentile of the average AD patient in black, increasing values going over red to

yellow, and all values greater than the 99.5th percentile in white.
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FIGURE 4 | Absolute sum of relevance (LRP, Top) and absolute sum of susceptibility (GB, Bottom) is shown for different brain areas. Susceptibility refers to the

absolute value of the GB gradients. Only the top 25 most important areas under this metric are shown for LRP and GB respectively. The circles show the average sum

for each area over all AD patients (orange) and all healthy controls (HCs, green) in the test set. By setting the metric to linearly scale with the corresponding brain area

size, it becomes clear that this metric is correlated with the size of the brain areas.

3.1. Average Heatmap Comparison
In Figure 2, we show the average heatmaps for AD patients and
HCs, separately for LRP with different β values (β = 0, 0.5, 1)
and GB. The AD pattern between LRP and GB is relatively
similar, which is reasonable because all heatmaps are extracted

from the same CNN model. However, whereas GB heatmaps
are very susceptible for both AD and HCs, LRP heatmaps show
much more relevance in AD patients than HCs. This indicates
that LRP heatmaps might be more valuable in assessing why
a certain person has been classified as AD patient as opposed
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FIGURE 5 | Size-normalized relevance (LRP, Top) and size-normalized susceptibility (GB, Bottom) is shown for different brain areas. Only the top 25 most important

areas under this metric are shown for LRP and GB respectively. We show the average density for all AD patients (orange circles) and all healthy controls (HCs, green

circles) in the test set along with a density estimation of the distribution of values per area (orange and green shaded area for AD and HCs respectively). Moreover, two

patients were selected to emphasize the diversity in relevance distributions for LRP; the patients were selected as those with the highest cosine distance in the

relevance-density space of the 25 areas between each other among those patients that were classified as AD with a class score >90%.

to which voxels should be changed to increase the likelihood
for AD diagnosis. Concerning the different β values, it is noted
that the heatmaps look qualitatively similar, but that sparseness
increases with higher β values (which is due to a larger effect
of inhibitory contributions, see also Binder et al., 2016a). Since
β values close to 0 focus on positive AD contributions and are

thus clinically better interpretable, we focus on β = 0 in the
remaining analyses.

In Figure 3, we show the average heatmaps for the distinct
classification cases (true positives, false positives etc.), separately
for LRP (β = 0) and GB. In particular, the false positives
lead to an interesting insight: For LRP, the false positives
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FIGURE 6 | Gain ofrelevance (LRP, Top) and gain of susceptibility (GB, Bottom) is shown for different brain areas. The gain per area is defined as the average sum of

relevance (LRP) or susceptibility (GB) in a given area divided by the average sum in this area over all healthy controls (HCs) in the test set. Again, only the top 25 most

important areas under this metric are shown for LRP and GB respectively. To provide an estimate of gain in correctly classified subjects, we show here the mean and

density estimations only for true positive (TP) and true negative (TN) classifications. As an additional visual aid, the identity gain (gain of 1) is shown as a dashed line.

exhibit less relevance than the true positives, but generally
in similar areas. This could indicate that in these patients
structures that are correlated with AD were found, albeit
that overall the positive contribution was less compelling
than for true AD patients. For GB, on the other hand,
the false classifications (mostly false positives, but also false

negatives) seem to exhibit the highest gradient values of all
cases. This exemplifies well what GB truly measures: in the
case of false positives (and negatives), the network might be
“unsure” and more easily influenced to change its decision;
the outcome is unstable. The highlighted areas that could
change the outcome are very broadly distributed and need
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FIGURE 7 | Comparison of the effect of different β values on the regional ordering in Figures 4–6. The intersection between the top 10 regions of the three metrics is

shown for different LRP β values in %.

not necessarily represent areas with positive contributions
for AD.

3.2. Atlas-Based Importance Metrics
In Figure 4, we show the sum of AD importance per area,
separately for LRP (β = 0) and GB. Although this metric
seems to be dominated by the size of the respective brain area,
one important qualitative difference between LRP and GB is
visible: in the LRP results, the mean importance values per
area are consistently much higher for AD patients than for
HCs. For GB, this clear split is not present; moreover, the
average sum of gradients in several brain regions, including
the cerebral white matter and cerebellum, is even higher for
HC than for AD. This exemplifies well that the heatmaps for
GB cannot directly be interpreted as showing the relevance
for AD classification, but instead show the sensitivity of the
outcome to certain areas, which does not have to be AD or
HC specific. As the absolute sum of importance correlates with
the size of the respective brain area, the following metrics,
in which we controlled for the brain area size, might be
better interpretable.

In Figure 5, the total sum of importance is normalized by
the size of the respective brain area. Here, the aforementioned
difference in the distributions between HCs and AD patients
becomes even more apparent: while the distributions are very
heavily overlapping for GB, this is not the case for LRP. Notably,
the variance in the AD distributions is much higher in the
AD case than in the HC case. This could indicate that the
network has learned to differentiate between subtypes of AD and
bases its decision on different structural elements for different
patients; the existence of different subtypes of AD has been
investigated in recent work, see for example (Ferreira et al.,
2017; Park et al., 2017). In contrast, for HCs the relevance
density is consistently very low. As an example of the diversity
in importance assessments according to this metric, we added the
“individual fingerprints” of two AD patients to Figure 5; for these

patients the individual heatmaps will be compared in section 3.3
and Figure 8.

In Figure 6, the results for the gain metric for different cases—
true positives and true negatives—are visualized. This metric
allows for plotting the LRP and the GB results on the same scale
and emphasizes once again the stronger distinction between AD
patients and HCs under the LRP algorithm. Most gain for LRP
has been found in areas of temporal lobe including transversal
temporal gyrus, hippocampus, planum temporale and amygdala.

In Figure 7, we compare the regional overlap of the top 10
regions between the β values 0, 0.25, 0.5, 0.75, 1, separately for
the three importance metrics. It is shown that (1) the regional
overlap is strongest for relevance sum followed by relevance
density and relatively unstable for gain of relevance especially for
large and more distant β values and (2) the regional overlap is–
as expected–stronger for neighboring β values. The instability
of the gain metric for higher β values is probably due to the
associated sparsity leading to very low relevance scores for HCs
(which might—in some cases—inflate the gain metric).

3.3. Individual Heatmaps—Fingerprinting
and Neurobiological Relevance
Since the LRP heatmaps take into account the individual filter
activations and therefore highlight positive contributions to the
class score of AD, they might serve as “individual fingerprints”
in a diagnostic tool. In Figure 8, we show several slices of the
relevance heatmaps for two patients in order to highlight the
diversity in those heatmaps. The two patients were selected from
the test set as those with the highest cosine distance in the
relevance-density space between each other among those patients
that were classified as AD with a class score > 90% (their
individual trajectories of region-wise relevance are shown in
Figure 5). It can be seen that the areas, which mainly contributed
to the network decision, are rather different for the two patients.
For one patient (patient B), the class score of the network
is heavily influenced by areas of the temporal lobe, such as
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FIGURE 8 | Three brain slices are shown for patient A and patient B, whose individual slopes in relevance density have been shown in Figure 5. The highlighted areas

are the hippocampus, temporal pole, amygdala, parahippocampal gyrus, medial temporal gyrus (MTG), superior temporal gyrus (STG), triangular part of the inferior

frontal gyrus (TrIFG) and frontal pole. The scale for the heatmap is chosen relative to the average AD patient heatmap. Hence, values in the individual patients that are

higher than the 90th percentile and lower than the 99.5th percentile are linearly color-coded as shown on the scale. Values below (above) these numbers are

transparent (yellow).
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FIGURE 9 | Correlation between hippocampal volume and LRP relevance/GB susceptibility in hippocampus for correctly classified AD patients (true positives; Left:

LRP, Right: GB). For illustration, we show additionally the false positive classifications.

parahippocampal gyrus, entorhinal area, hippocampus, inferior
temporal gyrus and amygdala, while for the second patient
(patient A), frontal areas, including triangular part of inferior
frontal gyrus, superior frontal gyrus and frontal pole, in addition
to superior temporal gyrus seem to be most informative.

To investigate whether higher importance scores correspond
to stronger anatomical deviations (e.g., atrophy) in correctly
classified AD patients (true positives), we performed a
correlation analysis between hippocampal volume and LRP
relevance/GB susceptibility scores (see Figure 9). We show
that the LRP relevance score (β = 0) in the hippocampus is
significantly (negatively) correlated with hippocampal volume
(−0.560, p < 10−3, permutation test), whereas the GB score
is not (0.096, p = 0.77). To rule out that false positives
are outliers in terms of association between hippocampal
volume and LRP relevance, we included them in Figure 9.
Interestingly, for larger β values the correlation tends to
decrease (−0.560, −0.562, −0.525, −0.457, −0.361 for
β = 0, 0.25, 0.5, 0.75, 1 respectively) supporting our notion of a
higher neurobiological relevance in case of β values close to 0.

4. DISCUSSION

In this study, we introduced LRP as a powerful method for
explaining individual CNN decisions in AD classification. After
training a CNN to separate AD patients and HCs based
on structural MRI data, individual heatmaps—indicating the
importance for each voxel for the respective classification
decision—were produced for the test subjects. We analyzed the
heatmaps with respect to different classification subgroups (AD
patients, HCs, true positives, false positives etc.) and different
β values. The relevance of brain regions contained in the
Neuromorphometrics atlas was evaluated using three different
importance metrics, namely the sum of importance per area, the
size-normalized AD importance, and the gain as ratio between

AD and HC importance. We demonstrated that LRP-derived
heatmaps—in contrast to GB—provide (1) high specificity for
individuals and (2) little relevance for AD in HCs. Additionally,
areas that exhibit a lot of relevance correlate well with what
is known from literature. Importantly, these LRP heatmaps
were produced without the need for expert annotations on
the presence or absence of biomarkers throughout the learning
process. This combination of a simple classification task (AD vs.
HC) and in-depth network analysis by LRPmight be a promising
tool for diagnostics. Additionally, it could allow for discovering
new and unknown biomarkers for a variety of diseases and might
help distinguishing subtypes of AD by analyzing the diversity in
“relevance hot-spots” across all AD patients. Furthermore, the
size-corrected metrics (“relevance density” and “relevance gain”)
seem to correlate well with what is known from AD research,
indicating that the most discriminating features for classifying
an input image as AD can be found in the temporal lobe. We
therefore think that a well-trained neural network, analyzed
by means of the LRP algorithm, can become a useful tool for
practitioners and increase the trust in computer-aided diagnoses,
as an interpretable explanation of the decision can be produced.

4.1. Regional Specificity of LRP
We quantitatively evaluated the heatmaps, obtained by either
GB or LRP, toward different brain areas according to the
Neuromorphometrics atlas (Bakker et al., 2015) by summarizing
the importance (AD relevance in case of LRP, susceptibility in
case of GB) for each brain area separately. Both types of heatmaps
mostly identified regions known to be important in disease
progression of AD, such as structures in the medial temporal
lobe including hippocampus, amygdala, parahippocampal gyrus,
and entorhinal cortex (Du et al., 2001; Desikan et al., 2009;
Frisoni et al., 2010; Velayudhan et al., 2013; Weiner et al., 2013;
Klein-Koerkamp et al., 2014; Long et al., 2017) as well as frontal
and parietal areas (Casanova et al., 2011; Quiroz et al., 2013;
Kilimann et al., 2017; Park et al., 2017; Liu et al., 2018). For
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all these regions morphometric changes including global and
local atrophy (e.g., smaller volumes of hippocampus or amygdala,
reduced cortical thickness or gray matter density) or deviations
in shape have been shown and related to disease progression
and cognitive decline (Desikan et al., 2009; Frisoni et al., 2010;
Weiner et al., 2013; Hidalgo-Muñoz et al., 2014; Long et al., 2017;
Ledig et al., 2018). These changes seem to be utilized by our CNN
framework for making individual predictions and are highlighted
in the heatmaps of both LRP and GB. However, the contrast in
importance scores between AD patients and HCs is much higher
for LRP than GB (in GB, the average heatmaps for AD patients
and HCs are quite similar). This supports the notion that LRP
heatmaps reflect AD-specific relevance, whereas GB emphasizes
areas which the network more generally is sensitive to. Regarding
other structures found to be important in our network, it might
be interesting to see if also other neural networks find relevance in
these areas and if predictions about finding significant structural
changes in these areas might be possible at some point. In this
respect, the decisions of such networks can be treated as a “second
opinion” and a reciprocal learning process with medical experts
might be initiated.

4.2. Fingerprinting and Neurobiological
Relevance
In addition to heatmap differences between AD patients and
HCs, we noticed a high variability between the heatmaps of
individual AD patients for the LRP method. This variability
was not only reflected in a high variance of important scores
within regions, but also in individual trajectories (“fingerprints”),
which we exemplary depicted for two AD patients, see Figure 8.
For future work, it might be very interesting to see if these
fingerprints reflect different disease stages of AD (Braak and
Braak, 1991; Casanova et al., 2011) or allow for identifying
subtypes of AD, in which brain areas are affected differently
(Murray et al., 2011; Noh et al., 2014; Scheltens et al., 2016;
Zhang et al., 2016; Ferreira et al., 2017; Park et al., 2017). Zhang
et al. (2016), for example, identified a temporal, a subcortical
and a cortical atrophy factor associated with impairment in
different cognitive domains. Another important question is
whether the relevance found by the LRP method reflect some
true evidence in the sense of biomarkers. By showing that
the hippocampal volume is significantly correlated to the LRP
relevance scores (but not to the GB susceptibility scores), we
argue that LRP—at least partially—succeeded here in breaking
down the relevance to the level of voxels in a meaningful
way. Interestingly, we found higher correlations for lower β

values speaking for a higher neurobiological relevance of β

values close to 0. Further studies are needed to more carefully
relate LRP relevance measures to other clinical markers of AD
including biomarkers and neuropsychological test scores, also in
dependency of different CNN models and parameter settings.
Moreover, our metrics should be evaluated in patients with mild
cognitive impairment (MCI).

4.3. Related Work
Visualization of deep neural networks is a fairly new research
area and different attempts have been made to provide intuitive

explanations for neural network decisions. However, there is
not yet a state-of-the art visualization method as saliency maps
for example have been shown to be misleading (Adebayo et al.,
2018). In Alzheimer’s research, there are only a couple of
studies that looked into different visualization methods based on
MRI and/or PET data. Most of these studies either visualized
filters and activations of the first or last layer (Sarraf and
Tofighi, 2016; Lu et al., 2018; Ding et al., 2019) or used the
occlusion method to exclude some parts (e.g., with a black
patch) of the input image and recalculate the classifier output
(Korolev et al., 2017; Esmaeilzadeh et al., 2018; Liu et al.,
2018). Based on visual impression, they found that the networks
focus primarily on areas known to be involved in AD, such
as hippocampus, amygdala or ventricles, but occasionally also
other areas such as thalamus or parietal lobe appear. Importantly,
in contrast to our study, they did not quantitatively analyze
the data, e.g., with respect to brain areas contained in an
atlas or underlying neurobiological markers. Additionally, they
did not compare different visualization methods or looked
for inter-individual differences. One study, however, used
gradient-weighted classification activationmapping (grad-CAM)
and compared it to sensitivity analysis for AD classification
(Yang et al., 2018). They demonstrate that these different
visualization methods capture different aspects of the data and
show high variability depending e.g., on the resolution of the
convolutional layers. In Rieke et al. (2018), gradient-based and
occlusion methods (standard patch occlusion and brain area
occlusion) were qualitatively and quantitatively compared for
AD classification. High regional overlaps between the methods,
mostly inferior and middle temporal gyrus, were found but
for gradient-based methods the importance was more widely
distributed. Regarding the LRP method, we are only aware
of one application in the neuroimaging field: Thomas et al.
(2018) introduce interpretable recurrent networks for decoding
cognitive states based on functional MRI data and demonstrate
that the LRPmethod is capable of identifying relevant brain areas
for the different tasks and different levels of data granularity.

4.4. Limitations
Although LRP heatmaps seem to be a promising tool for
visualizing neural network decisions, we would like to point out
several limitations of LRP and other heatmap methods in the
context of this study.

First, heatmap methods are limited by the lack of a ground
truth. Most commonly, heatmaps are qualitatively evaluated
based on visual assessment, but there are also studies proposing
sanity checks (Adebayo et al., 2018) or more objective quality
measures such as region perturbation (Samek et al., 2015). In
Lipton (2018), the interpretability of models has been generally
investigated and questioned. In medical research, heatmaps
can be qualitatively evaluated based on prior knowledge
(e.g., hippocampus is known to be strongly affected in AD,
therefore it seems reasonable to find relevance there). Given
that in the specific case of heatmaps for MR images the input
space is highly structured, we proposed here additional ways for
assessing the quality of explanations by using a brain atlas. Future
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studies might assess the neurobiological validity by removing
presumably important brain areas and re-training the classifier.

Second, it is largely acknowledged that heatmaps are quite
sensitive to the specific algorithms (and its parameters, e.g., the β

value in case of LRP) used to produce them. However, regarding
the β values in LRP, we have shown that the heatmaps are
relatively robust toward this parameter, only sparsity increases as
a function of β . Additionally, we demonstrated that the regional
ordering is relatively stable for relevance sum and density, but
unstable for the gain metric—especially in the case of large and
more distant β values.

Third, heatmaps just highlight voxels that contributed to a
certain classifier decision, but do not allow making a statement
about the underlying reasons (e.g., atrophy or shape differences)
or potential interactions between voxels or brain areas. For
example, it is difficult to disentangle interactions between
different regions (certain patterns in the hippocampusmight only
be considered as positive evidence if structure Y is found in area
Z) nor do we know whether the network developed specific filters
for atrophy or the shapes of different structures. Although we
found in this study a significant correlation between hippocampal
volume and LRP relevance measures, we can not make any claim
about causal relationships here. Future studies are necessary
to more systematically investigate the relationship between
manifested neurobiological markers and LRP explanations.

Fourth, heatmaps strongly depend on the type and quality
of the classifier, whose decisions are sought to be explained.
Therefore, each heatmap should be read as an indication of
where the specific networkmodel sees evidence. For badly trained
networks, this does not have to correlate at all with the presence
of actual biomarkers. Nevertheless, the better the classifier, the
more likely it becomes that the classifier uses meaningful patterns
as a basis for its decision and that the heatmaps correlate with
“true” evidence for AD. However, heatmaps are also useful in
cases, where classification performance is low or sample size is
rather small, e.g., for better understanding if the classifier picks
up relevant or irrelevant features (e.g., noise or imaging artifacts)
and if there are any biases present in the data set (Lapuschkin
et al., 2016; Montavon et al., 2018). It would be very interesting
to investigate how the heatmaps change for different networks, as
those which yield stronger classification results should also base
their decisions on better “evidence”.

And finally, it should be stressed that when we refer to
brain areas throughout this work, we refer to the location
that the areas are assigned in the brain atlas and not to the
individual anatomical structures of any patient. Due to inter-
individual differences, the match between the atlas and the
individual patient’s anatomical realities will not be perfect; this
is most likely further aggravated by the presence of atrophy in
AD patients.

5. CONCLUSION

In conclusion, we introduced the LRP method for explaining
individual CNN decisions in MRI-based AD diagnosis. In
contrast to GB, LRP heatmaps can be interpreted as providing

individual AD relevance (“What speaks for AD in this particular
subject?”) as opposed to a general susceptibility for small
variations in the input data. Additionally, we provided a
framework and specific metrics (i.e., “relevance density” and
“relevance gain”) to quantitatively compare heatmaps between
different groups, brain areas or methods. We demonstrated
that these metrics correlate well with clinical findings in AD,
but also vary strongly between AD patients. By this, the
LRP method might be very useful in a clinical setting for a
case-by-case evaluation. However, we would like to point out
that (1) our metrics should be evaluated in different network
architectures and (2) other (individual) brain atlases might be
used for the evaluation of regions. Future studies should evaluate
the LRP method on patients with mild-cognitive impairment
(MCI) and relate findings to known biomarkers in AD. We are
convinced that our framework might also be very useful for other
disease classification studies in helping to understand individual
network decisions.
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Deep learning, a state-of-the-art machine learning approach, has shown outstanding

performance over traditional machine learning in identifying intricate structures in

complex high-dimensional data, especially in the domain of computer vision. The

application of deep learning to early detection and automated classification of

Alzheimer’s disease (AD) has recently gained considerable attention, as rapid progress

in neuroimaging techniques has generated large-scale multimodal neuroimaging data.

A systematic review of publications using deep learning approaches and neuroimaging

data for diagnostic classification of AD was performed. A PubMed and Google Scholar

search was used to identify deep learning papers on AD published between January

2013 and July 2018. These papers were reviewed, evaluated, and classified by algorithm

and neuroimaging type, and the findings were summarized. Of 16 studies meeting

full inclusion criteria, 4 used a combination of deep learning and traditional machine

learning approaches, and 12 used only deep learning approaches. The combination

of traditional machine learning for classification and stacked auto-encoder (SAE) for

feature selection produced accuracies of up to 98.8% for AD classification and 83.7%

for prediction of conversion from mild cognitive impairment (MCI), a prodromal stage

of AD, to AD. Deep learning approaches, such as convolutional neural network (CNN)

or recurrent neural network (RNN), that use neuroimaging data without pre-processing

for feature selection have yielded accuracies of up to 96.0% for AD classification

and 84.2% for MCI conversion prediction. The best classification performance was

obtained when multimodal neuroimaging and fluid biomarkers were combined. Deep

learning approaches continue to improve in performance and appear to hold promise

for diagnostic classification of AD using multimodal neuroimaging data. AD research that

uses deep learning is still evolving, improving performance by incorporating additional

hybrid data types, such as—omics data, increasing transparency with explainable

approaches that add knowledge of specific disease-related features and mechanisms.

Keywords: artificial intelligence, machine learning, deep learning, classification, Alzheimer’s disease,

neuroimaging, magnetic resonance imaging, positron emission tomography
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INTRODUCTION

Alzheimer’s disease (AD), the most common form of dementia,
is a major challenge for healthcare in the twenty-first century. An
estimated 5.5million people aged 65 and older are living with AD,
and AD is the sixth-leading cause of death in the United States.
The global cost of managing AD, including medical, social
welfare, and salary loss to the patients’ families, was $277 billion
in 2018 in the United States, heavily impacting the overall
economy and stressing the U.S. health care system (Alzheimer’s
Association, 2018). AD is an irreversible, progressive brain
disorder marked by a decline in cognitive functioning with no
validated disease modifying treatment (De strooper and Karran,
2016). Thus, a great deal of effort has been made to develop
strategies for early detection, especially at pre-symptomatic stages
in order to slow or prevent disease progression (Galvin, 2017;
Schelke et al., 2018). In particular, advanced neuroimaging
techniques, such as magnetic resonance imaging (MRI) and
positron emission tomography (PET), have been developed
and used to identify AD-related structural and molecular
biomarkers (Veitch et al., 2019). Rapid progress in neuroimaging
techniques has made it challenging to integrate large-scale,
high dimensional multimodal neuroimaging data. Therefore,
interest has grown rapidly in computer-aided machine learning
approaches for integrative analysis. Well-known pattern analysis
methods, such as linear discriminant analysis (LDA), linear
program boosting method (LPBM), logistic regression (LR),
support vector machine (SVM), and support vector machine-
recursive feature elimination (SVM-RFE), have been used and
hold promise for early detection of AD and the prediction of AD
progression (Rathore et al., 2017).

In order to apply such machine learning algorithms,
appropriate architectural design or pre-processing steps must
be predefined (Lu and Weng, 2007). Classification studies using
machine learning generally require four steps: feature extraction,
feature selection, dimensionality reduction, and feature-based
classification algorithm selection. These procedures require
specialized knowledge andmultiple stages of optimization, which
may be time-consuming. Reproducibility of these approaches has
been an issue (Samper-Gonzalez et al., 2018). For example, in the
feature selection process, AD-related features are chosen from
various neuroimaging modalities to derive more informative
combinatorial measures, which may include mean subcortical
volumes, gray matter densities, cortical thickness, brain glucose
metabolism, and cerebral amyloid-β accumulation in regions of
interest (ROIs), such as the hippocampus (Riedel et al., 2018).

In order to overcome these difficulties, deep learning, an
emerging area of machine learning research that uses raw
neuroimaging data to generate features through “on-the-fly”
learning, is attracting considerable attention in the field of large-
scale, high-dimensional medical imaging analysis (Plis et al.,
2014). Deep learning methods, such as convolutional neural
networks (CNN), have been shown to outperform existing
machine learning methods (Lecun et al., 2015).

We systematically reviewed publications where deep learning
approaches and neuroimaging data were used for the early
detection of AD and the prediction of AD progression. A

PubMed and Google Scholar search was used to identify deep
learning papers on AD published between January 2013 and
July 2018. The papers were reviewed and evaluated, classified
by algorithms and neuroimaging types, and the findings were
summarized. In addition, we discuss challenges and implications
for the application of deep learning to AD research.

DEEP LEARNING METHODS

Deep learning is a subset of machine learning (Lecun et al.,
2015), meaning that it learns features through a hierarchical
learning process (Bengio, 2009). Deep learning methods for
classification or prediction have been applied in various fields,
including computer vision (Ciregan et al., 2012; Krizhevsky
et al., 2012; Farabet et al., 2013) and natural language processing
(Hinton et al., 2012; Mikolov et al., 2013), both of which
demonstrate breakthroughs in performance (Boureau et al., 2010;
Russakovsky et al., 2015). Because deep learning methods have
been reviewed extensively in recent years (Bengio, 2013; Bengio
et al., 2013; Schmidhuber, 2015), we focus here on basic concepts
of Artificial Neural Networks (ANN) that underlie deep learning
(Hinton and Salakhutdinov, 2006). We also discuss architectural
layouts of deep learning that have been applied to the task of
AD classification and prognostic prediction. ANN is a network
of interconnected processing units called artificial neurons that
were modeled (Mcculloch and Pitts, 1943) and developed with
the concept of Perceptron (Rosenblatt, 1957, 1958), Group
Method of DataHandling (GMDH) (Ivakhnenko and Lapa, 1965;
Ivakhnenko, 1968, 1971), and the Neocognitron (Fukushima,
1979, 1980). Efficient error functions and gradient computing
methods were discussed in these seminal publications, spurred
by the demonstrated limitation of the single layer perceptron,
which can learn only linearly separable patterns (Minsky and
Papert, 1969). Further, the back-propagation procedure, which
uses gradient descent, was developed and applied to minimize
the error function (Werbos, 1982, 2006; Rumelhart et al., 1986;
Lecun et al., 1988).

Gradient Computation
The back-propagation procedure is used to calculate the error
between the network output and the expected output. The back
propagation calculates the gap repeatedly, changing weights and
stopping the calculation when the gap is no longer updated
(Rumelhart et al., 1986; Bishop, 1995; Ripley and Hjort, 1996;
Schalkoff, 1997). Figure 1 illustrates the process of the neural
network made by multilayer perceptron. After the initial error
value is calculated from the given random weight by the least
squares method, the weights are updated until the differential
value becomes 0. For example, the w31 in Figure 1 is updated by
the following formula:

w31 (t+1)=w31t−
∂ErrorYout

∂w31

ErrorYout=
1

2

(

yt1−yo1
)2

+
1

2

(

yt2−yo2
)2
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FIGURE 1 | The multilayer perceptron procedure. After the initial error value is calculated from the given random weight by the least squares method, the weights are

updated by a back-propagation algorithm until the differential value becomes 0.

The ErrorYout is the sum of error yo1 and error yo2. yt1, yt2 are
constants that are known through the given data. The partial
derivative of ErrorYout with respect to w31 can be calculated by
the chain rule as follows.

∂ErrorYout

∂w31
=

∂ErrorYout

∂yo1
·

∂yo1

∂net3
·
∂net3

∂w31

Likewise, w11 in the hidden layer is updated by the chain rule
as follows.

∂ErrorYout

∂w11
=

∂ErrorYout

∂yh1
·

∂yh1

∂net1y
·
∂net1

∂w11

Detailed calculation of the weights in the backpropagation is
described in Supplement 1.

Modern Practical Deep Neural Networks
As the back-propagation uses a gradient descent method to
calculate the weights of each layer going backwards from the
output layer, a vanishing gradient problem occurs as the layer
is stacked, where the differential value becomes 0 before finding
the optimum value. As shown in Figure 2A, when the sigmoid
is differentiated, the maximum value is 0.25, which becomes
closer to 0 when it continues to multiply. This is called a
vanishing gradient issue, a major obstacle of the deep neural
network. Considerable research has addressed the challenge of
the vanishing gradient (Goodfellow et al., 2016). One of the
accomplishments of such an effort is to replace the sigmoid
function, an activation function, with several other functions,
such as the hyperbolic tangent function, ReLu, and Softplus (Nair
and Hinton, 2010; Glorot et al., 2011). The hyperbolic tangent
(tanh, Figure 2B) function expands the range of derivative values
of the sigmoid. The ReLu function (Figure 2C), the most used
activation function, replaces a value with 0 when the value is <0
and uses the value if the value is >0. As the derivative becomes
1, when the value is larger than 0, it becomes possible to adjust
the weights without disappearing up to the first layer through
the stacked hidden layers. This simple method allows building
multiple layers and accelerates the development of deep learning.

The Softplus function (Figure 2D) replaces the ReLu function
with a gradual descent method when ReLu becomes zero.

While a gradient descent method is used to calculate
the weights accurately, it usually requires a large amount
of computation time because all of the data needs to
be differentiated at each update. Thus, in addition to the
activation function, advanced gradient descent methods have
been developed to solve speed and accuracy issues. For example,
Stochastic Gradient Descent (SGD) uses a subset that is
randomly extracted from the entire data for faster and more
frequent updates (Bottou, 2010), and it has been extended to
Momentum SGD (Sutskever et al., 2013). Currently, one of the
most popular gradient descent method is Adaptive Moment
Estimation (Adam). Detailed calculation of the optimization
methods is described in Supplement 2.

Architectures of Deep Learning
Overfitting has also played a major role in the history of
deep learning (Schmidhuber, 2015), with efforts being made
to solve it at the architectural level. The Restricted Boltzmann
Machine (RBM) was one of the first models developed to
overcome the overfitting problem (Hinton and Salakhutdinov,
2006). Stacking the RBMs resulted in building deeper structures
known as the Deep Boltzmann Machine (DBM) (Salakhutdinov
and Larochelle, 2010). The Deep Belief Network (DBN) is
a supervised learning method used to connect unsupervised
features by extracting data from each stacked layer (Hinton et al.,
2006). DBN was found to have a superior performance to other
models and is one of the reasons that deep learning has gained
popularity (Bengio, 2009). While DBN solves the overfitting
problem by reducing the weight initialization using RBM, CNN
efficiently reduces the number of model parameters by inserting
convolution and pooling layers that lead to a reduction in
complexity. Because of its effectiveness, when given enough
data, CNN is widely used in the field of visual recognition.
Figure 3 shows the structures of RBM, DBM, DBN, CNN,
Auto-Encoders (AE), sparse AE, and stacked AE, respectively.
Auto-Encoders (AE) are an unsupervised learning method that
make the output value approximate to the input value by using
the back-propagation and SGD (Hinton and Zemel, 1994). AE
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FIGURE 2 | Common activation functions used in deep learning (red) and their derivatives (blue). When the sigmoid is differentiated, the maximum value is 0.25, which

becomes closer to 0 when it continues to multiply.

engages the dimensional reduction, but it is difficult to train
due to the vanishing gradient issue. Sparse AE has solved
this issue by allowing for only a small number of the hidden
units (Makhzani and Frey, 2015). Stacked AE stacks sparse AE
like DBN.

DNN, RBM, DBM, DBN, AE, Sparse AE, and Stacked AE
are deep learning methods that have been used for Alzheimer’s
disease diagnostic classification to date (see Table 1 for the
definition of acronyms). Each approach has been developed to
classify AD patients from cognitively normal controls (CN) or
mild cognitive impairment (MCI), which is the prodromal stage
of AD. Each approach is used to predict the conversion of MCI
to AD using multi-modal neuroimaging data. In this paper,
when deep learning is used together with traditional machine
learning methods, i.e., SVM as a classifier, it is referred to as a
“hybrid method.”

MATERIALS AND METHODS

We conducted a systematic review on previous studies that used
deep learning approaches for diagnostic classification of AD with
multimodal neuroimaging data. The search strategy is outlined
in detail using the PRISMA flow diagram (Moher et al., 2009)
in Figure 4.

Identification
From a total of 389 hits on Google scholar and PubMed search,
16 articles were included in the systematic review.

Google Scholar: We searched using the following key words
and yielded 358 results (“Alzheimer disease” OR “Alzheimer’s
disease”), (“deep learning” OR “deep neural network” OR
“CNN” OR “CNN” OR “Autoencoder” OR “DBN” OR “RBM”),
(“Neuroimaging” OR “MRI” OR “multimodal”).

PubMed: The keywords used in the Google Scholar search
were reused for the search in PubMed, and yielded 31 search
results (“Alzheimer disease” OR “Alzheimer’s disease”) AND
(“deep learning” OR “deep neural network” OR “CNN” OR
“recurrent neural network” OR “Auto-Encoder” OR “Auto
Encoder” OR “RBM” OR “DBN” OR “Generative Adversarial
Network” OR “Reinforcement Learning” OR “Long Short Term
Memory” OR “Gated Recurrent Units”) AND (“Neuroimaging”
OR “MRI” OR “multimodal”).

Among the 389 relevant records, 25 overlapping records
were removed.

Screening Based on Article Type
We first excluded 38 survey papers, 22 theses, 19 Preprint, 34
book chapters, 20 conference abstract, 13 none English papers,
5 citations, and 10 patents. We also excluded 11 papers of which
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FIGURE 3 | Architectural structures in deep learning: (A) RBM (Hinton and Salakhutdinov, 2006) (B) DBM (Salakhutdinov and Larochelle, 2010) (C) DBN (Bengio,

2009) (D) CNN (Krizhevsky et al., 2012) (E) AE (Fukushima, 1975; Krizhevsky and Hinton, 2011) (F) Sparse AE (Vincent et al., 2008, 2010) (G) Stacked AE (Larochelle

et al., 2007; Makhzani and Frey, 2015). RBM, Restricted Boltzmann Machine; DBM, Deep Boltzmann Machine; DBN, Deep Belief Network; CNN, Convolutional

Neural Network; AE, Auto-Encoders.

TABLE 1 | Definition of acronyms.

Acronym Description Acronym Description

ANN Artificial neural network CNN Convolutional neural

network

DNN Deep neural network RNN Recurrent neural network

RBM Restricted Boltzmann

machine

GAN Generative adversarial

networks

DBM Deep Boltzmann

machine

SGD Stochastic gradient descent

DBN Deep belief network SVM Support vector machine

AE Auto-encoders ROI Regions of interest

SAE Stacked auto-encoder HMM Hidden markov model

the full text was not accessible. The remaining 192 articles were
downloaded for review.

Eligibility Screening
Out of the 192 publications retrieved, 150 articles were
excluded because the authors only introduced or mentioned
deep learning but did not use it. Out of the 42 remaining
publications, (1) 18 articles were excluded because they did
not perform deep learning approaches for AD classification

and/or prediction of MCI to AD conversion; (2) 5 articles
were excluded because their neuroimaging data were not
explicitly described; and (3) 3 articles were excluded because
performance results were not provided. The remaining 16
papers were included in this review for AD classification
and/or prediction of MCI to AD conversion. All of the
final selected and compared papers used ADNI data
in common.

RESULTS

From the 16 papers included in this review, Table 2 provides
the top results of diagnostic classification and/or prediction of
MCI to AD conversion. We compared only binary classification
results. Accuracy is a measure used consistently in the 16
publications. However, it is only one metric of the performance
characteristics of an algorithm. The group composition, sample
sizes, and number of scans analyzed are also noted together
because accuracy is sensitive to unbalanced distributions.
Table S1 shows the full results sorted according to the
performance accuracy as well as the number of subjects, the
deep learning approach, and the neuroimaging type used in
each paper.
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FIGURE 4 | PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Flow Chart. From a total of 389 hits on Google scholar and PubMed

search, 16 articles were included in the systematic review.

Deep Learning for Feature Selection From
Neuroimaging Data
Multimodal neuroimaging data have been used to identify
structural and molecular/functional biomarkers for AD. It has
been shown that volumes or cortical thicknesses in pre-selected
AD-specific regions, such as the hippocampus and entorhinal

cortex, could be used as features to enhance the classification
accuracy in machine learning. Deep learning approaches have
been used to select features from neuroimaging data.

As shown in Figure 5, 4 studies have used hybridmethods that

combine deep learning for feature selection from neuroimaging

data and traditional machine learning, such as the SVM as a
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TABLE 2 | Summary of 16 previous studies to systematically be reviewed.

References Modality Data

processing/training

Classifier AD:NC

acc.

SEN SPE cMCI:ncMCI

acc.

SEN SPE AD cMCI ncMCI NC Total

Suk and Shen (2013) MRI, PET,

CSF

SAE SVM 95.9 75.8 51 43 56 52 202

Liu et al. (2014) MRI, PET SAE + NN Softmax 87.76 88.57 87.22 76.92

(MCI:NC)

74.29 78.13 65 67 102 77 311

Suk et al. (2014) MRI, PET DBM SVM 95.35 94.65 95.22 75.92

86.75

(MCI:NC)

48.04

95.37

95.23

65.87

93 76 128 101 398

Li et al. (2014) MRI, PET 3D CNN Logistic

regression
92.87

76.21

(MCI:NC)

198 167 236 229 830

Li et al. (2015) MRI, PET,

CSF

RBM + drop out SVM 91.4 57.4

76.21

(MCI:NC)

51 43 56 52 202

Suk et al. (2015) MRI, PET,

CSF

SAE + sparse learning SVM 98.8 83.3

90.7

(MCI:NC)

51 43 56 52 202

Liu et al. (2015) MRI, PET SAE with zero-masking Softmax 91.4 92.32 90.42 82.1

(MCI:NC)

60.0 92.32 77 67 102 85 331

Cheng et al. (2017) MRI 3D CNN Softmax 87.15 86.36 85.93 199 229 428

Cheng and Liu (2017) MRI, PET 3D CNN + 2D CNN Softmax 89.64 87.10 92.00 93 100 193

Aderghal et al. (2017) MRI 2D CNN Softmax 91.41 93.75 89.06 65.62

(MCI:NC)

66.25 65.0 188 399 (MCI) 228 815

Korolev et al. (2017) MRI 3D CNN Softmax 80 87 (AUC) 61 (lMCI:NC) 65 (AUC) 50 43 (lMCI) 77 (eMCI) 61 111

56 (lMCI:NC) 58 (AUC)

Vu et al. (2017) MRI, PET SAE + 3D CNN Softmax 91.14 145 172 317

Liu et al. (2018a) PET RNN Softmax 91.2 91.4 91.0 78.9

(MCI:NC)

78.01 80.0 93 146 (MCI) 100 339

Liu et al. (2018b) MRI Landmark detection +

3D CNN

Softmax 91.09 88.05 93.50 76.9 42.11 82.43 159 38 239 200 636

Lu et al. (2018) MRI, PET DNN + NN Softmax 84.6 80.2 91.8 82.93 79.69 83.84 238 217 409 360 1224

Choi and Jin (2018) PET 3D CNN Softmax 96 93.5 97.8 84.2 81.0 87.0 139 79 92 182 492

SEN = TP/(TP + FN), SPE = TN/(TN + FP). TP, true positive; TN, true negative; FP, false positive; FN, false negative. All data on this table were from ADNI.
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FIGURE 5 | Comparison of diagnostic classification accuracy of pure deep learning and hybrid approach. Four studies (gray) have used hybrid methods that combine

deep learning for feature selection from neuroimaging data and traditional machine learning, such as the SVM as a classifier. Twelve studies (blue) have used deep

learning method with softmax classifier for diagnostic classification and/or prediction of MCI to AD conversion. (A) Accuracy comparison between articles. (B) Number

of studies published per year. (C) Average classification accuracy of each methods.

classifier. Suk and Shen (2013) used a stacked auto-encoder (SAE)
to construct an augmented feature vector by concatenating the
original features with outputs of the top hidden layer of the
representative SAEs. Then, they used a multi-kernel SVM for
classification to show 95.9% accuracy for AD/CN classification
and 75.8% prediction accuracy of MCI to AD conversion.
These methods successfully tuned the input data for the SVM
classifier. However, SAE as a classifier (Suk et al., 2015) yielded
89.9% accuracy for AD/CN classification and 60.2% accuracy for
prediction of MCI to AD conversion. Later Suk et al. (2015)
extended the work to develop a two-step learning scheme: greedy
layer-wise pre-training and fine-tuning in deep learning. The
same authors further extended their work to use the DBM to
find latent hierarchical feature representations by combining
heterogeneous modalities during the feature representation
learning (Suk et al., 2014). They obtained 95.35% accuracy for
AD/CN classification and 74.58% prediction accuracy of MCI
to AD conversion. In addition, the authors initialized SAE
parameters with target-unrelated samples and tuned the optimal
parameters with target-related samples to have 98.8% accuracy
for AD/CN classification and 83.7% accuracy for prediction of
MCI to AD conversion (Suk et al., 2015). Li et al. (2015) used

the RBM with a dropout technique to reduce overfitting in deep
learning and SVM as a classifier, which produced 91.4% accuracy
for AD/CN classification and 57.4% prediction accuracy of MCI
to AD conversion.

Deep Learning for Diagnostic
Classification and Prognostic Prediction
To select optimal features from multimodal neuroimaging
data for diagnostic classification, we usually need several pre-
processing steps, such as neuroimaging registration and feature
extraction, which greatly affect the classification performance.
However, deep learning approaches have been applied to
AD diagnostic classification using original neuroimaging data
without any feature selection procedures.

As shown in Figure 5, 12 studies have used only deep
learning for diagnostic classification and/or prediction of MCI
to AD conversion. Liu et al. (2014) used stacked sparse auto-
encoders (SAEs) and a softmax regression layer and showed
87.8% accuracy for AD/CN classification. Liu et al. (2015) used
SAE and a softmax logistic regressor as well as a zero-mask
strategy for data fusion to extract complementary information
from multimodal neuroimaging data (Ngiam et al., 2011), where
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one of the modalities is randomly hidden by replacing the
input values with zero to converge different types of image data
for SAE. Here, the deep learning algorithm improved accuracy
for AD/CN classification by 91.4%. Recently, Lu et al. (2018)
used SAE for pre-training and DNN in the last step, which
achieved an AD/CN classification accuracy of 84.6% and an
MCI conversion prediction accuracy of 82.93%. CNN, which has
shown remarkable performance in the field of image recognition,
has also been used for the diagnostic classification of AD with
multimodal neuroimaging data. Cheng et al. (2017) used image
patches to transform the local images into high-level features
from the original MRI images for the 3D-CNN and yielded 87.2%
accuracy for AD/CN classification. They improved the accuracy
to 89.6% by running two 3D-CNNs on neuroimage patches
extracted from MRI and PET separately and by combining
their results to run 2D CNN (Cheng and Liu, 2017). Korolev
et al. (2017) applied two different 3D CNN approaches [plain
(VoxCNN) and residual neural networks (ResNet)] and reported
80% accuracy for AD/CN classification, which was the first
study that the manual feature extraction step was unnecessary.
Aderghal et al. (2017) captured 2D slices from the hippocampal
region in the axial, sagittal, and coronal directions and applied 2D
CNN to show 85.9% accuracy for AD/CN classification. Liu et al.
(2018b) selected discriminative patches from MR images based
on AD-related anatomical landmarks identified by a data-driven
learning approach and ran 3D CNN on them. This approach
used three independent data sets (ADNI-1 as training, ADNI-
2 and MIRIAD as testing) to yield relatively high accuracies
of 91.09 and 92.75% for AD/CN classification from ADNI-2
and MIRIAD, respectively, and an MCI conversion prediction
accuracy of 76.9% from ADNI-2. Li et al. (2014) trained 3D CNN
models on subjects with both MRI and PET scans to encode the
non-linear relationship between MRI and PET images and then

used the trained network to estimate the PET patterns for subjects
with onlyMRI data. This study obtained an AD/CN classification
accuracy of 92.87% and an MCI conversion prediction accuracy
of 72.44%. Vu et al. (2017) applied SAE and 3D CNN to subjects
with MRI and FDG PET scans to yield an AD/CN classification
accuracy of 91.1%. Liu et al. (2018a) decomposed 3D PET images
into a sequence of 2D slices and used a combination of 2D
CNN and RNNs to learn the intra-slice and inter-slice features
for classification, respectively. The approach yielded AD/CN
classification accuracy of 91.2%. If the data is imbalanced, the
chance of misdiagnosis increases and sensitivity decreases. For
example, in Suk et al. (2014) there were 76 cMCI and 128 ncMCI
subjects and the obtained sensitivity of 48.04%was low. Similarly,
Liu et al. (2018b) included 38 cMCI and 239 ncMCI subjects and
had a low sensitivity of 42.11%. Recently Choi and Jin (2018)
reported the first use of 3D CNN models to multimodal PET
images [FDG PET and [18F]florbetapir PET] and obtained 96.0%
accuracy for AD/CN classification and 84.2% accuracy for the
prediction of MCI to AD conversion.

Performance Comparison by Types of
Neuroimaging Techniques
In order to improve the performance for AD/CN classification
and for the prediction of MCI to AD conversion, multimodal
neuroimaging data such as MRI and PET have commonly been
used in deep learning: MRI for brain structural atrophy, amyloid
PET for brain amyloid-β accumulation, and FDG-PET for brain
glucose metabolism. MRI scans were used in 13 studies, FDG-
PET scans in 10, both MRI and FDG-PET scans in 12, and
both amyloid PET and FDG-PET scans in 1. The performance
in AD/CN classification and/or prediction of MCI to AD
conversion yielded better results in PET data compared to MRI.
Two or more multimodal neuroimaging data types produced

FIGURE 6 | Changes in accuracy by types of image resource. MRI scans were used in 13 studies, FDG-PET scans in 10, both MRI and FDG-PET scans in 12, and

both amyloid PET and FDG-PET scans in 1. The performance in AD/CN classification yielded better results in PET data compared to MRI. Two or more multimodal

neuroimaging data types produced higher accuracies than a single neuroimaging technique.
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higher accuracies than a single neuroimaging technique. Figure 6
shows the results of the performance comparison by types of
neuroimaging techniques.

Performance Comparison by Deep
Learning Algorithms
Deep learning approaches require massive amounts of data
to achieve the desired levels of performance accuracy. In
currently limited neuroimaging data, the hybrid methods
that combine traditional machine learning methods for
diagnostic classification with deep learning approaches for
feature extraction yielded better performance and can be a
good alternative to handle the limited data. Here, an auto-
encoder (AE) was used to decode the original image values,
making them similar to the original image, which it then
included as input, thereby effectively utilizing the limited
neuroimaging data. Although hybrid approaches have yielded
relatively good results, they do not take full advantage of deep
learning, which automatically extracts features from large
amounts of neuroimaging data. The most commonly used deep
learning method in computer vision studies is the CNN, which
specializes in extracting characteristics from images. Recently,
3D CNN models using multimodal PET images [FDG-PET and
[18F]florbetapir PET] showed better performance for AD/CN
classification and for the prediction of MCI to AD conversion.

DISCUSSION

Effective and accurate diagnosis of Alzheimer’s disease (AD)
is important for initiation of effective treatment. Particularly,
early diagnosis of AD plays a significant role in therapeutic
development and ultimately for effective patient care. In this
study, we performed a systematic review of deep learning
approaches based on neuroimaging data for diagnostic
classification of AD. We analyzed 16 articles published
between 2013 and 2018 and classified them according to deep
learning algorithms and neuroimaging types. Among 16 papers,
4 studies used a hybrid method to combine deep learning and
traditional machine learning approaches as a classifier, and
12 studies used only deep learning approaches. In a limited
available neuroimaging data set, hybrid methods have produced
accuracies of up to 98.8% for AD classification and 83.7%
for prediction of conversion from MCI to AD. Deep learning
approaches have yielded accuracies of up to 96.0% for AD
classification and 84.2% for MCI conversion prediction. While
it is a source of concern when experiments obtain a high
accuracy using small amounts of data, especially if the method
is vulnerable to overfitting, the highest accuracy of 98.8% was
due to the SAE procedure, whereas the 96% accuracy was due
to the amyloid PET scan, which included pathophysiological
information regarding AD. The highest accuracy for the AD
classification was 87% when 3DCNN was applied from the
MRI without the feature extraction step (Cheng et al., 2017).
Therefore, two or more multimodal neuroimaging data types
have been shown to produce higher accuracies than a single
neuroimaging type.

In traditional machine learning, well-defined features
influence performance results. However, the greater the
complexity of the data, the more difficult it is to select optimal
features. Deep learning identifies optimal features automatically
from the data (i.e., the classifier trained by deep learning finds
features that have an impact on diagnostic classification without
human intervention). Because of its ease-of-use and better
performance, deep learning has been used increasingly for
medical image analysis. The number of studies of AD using
CNN, which show better performance in image recognition
among deep learning algorithms, has increased drastically since
2015. This is consistent with a previous survey showing that
the use of deep learning for lesion classification, detection,
and segmentation has also increased rapidly since 2015
(Litjens et al., 2017).

Recent trends in the use of deep learning are aimed at
faster analysis with better accuracy than human practitioners.
Google’s well-known study for the diagnostic classification
of diabetic retinopathy (Gulshan et al., 2016) showed
classification performance that goes well beyond that of a
skilled professional. The diagnostic classification by deep
learning needs to show consistent performance under various
conditions, and the predicted classifier should be interpretable.
In order for diagnostic classification and prognostic prediction
using deep learning to reach readiness for real world
clinical applicability, several issues need to be addressed, as
discuss below.

Transparency
Traditional machine learning approaches may require expert
involvement in preprocessing steps for feature extraction and
selection from images. However, since deep learning does not
require human intervention but instead extracts features directly
from the input images, the data preprocessing procedure is
not routinely necessary, allowing flexibility in the extraction
of properties based on various data-driven inputs. Therefore,
deep learning can create a good, qualified model at each
time of the run. The flexibility has shown deep learning to
achieve a better performance than other traditional machine
learning that relies on preprocessing (Bengio, 2013). However,
this aspect of deep learning necessarily brings uncertainty over
which features would be extracted at every epoch, and unless
there is a special design for the feature, it is very difficult to
show which specific features were extracted within the networks
(Goodfellow et al., 2016). Due to the complexity of the deep
learning algorithm, which has multiple hidden layers, it is also
difficult to determine how those selected features lead to a
conclusion and to the relative importance of specific features or
subclasses of features. This is a major limitation for mechanistic
studies where understanding the informativeness of specific
features is desirable for model building. These uncertainties
and complexities tend to make the process of achieving high
accuracy opaque and also make it more difficult to correct
any biases that arise from a given data set. This lack of
clarity also limits the applicability of obtained results to other
use cases.
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The issue of transparency is linked to the clarity of the
results from machine learning and is not a problem limited to
deep learning (Kononenko, 2001). Despite the simple principle,
the complexity of the algorithm makes it difficult to describe
mathematically. When one perceptron advances to a neural
network by adding more hidden layers, it becomes even more
difficult to explain why a particular prediction was made. AD
classification based on 3D multimodal medical images with
deep learning involves non-linear convolutional layers and
pooling that have different dimensionality from the source data,
making it very difficult to interpret the relative importance
of discriminating features in original data space. This is a
fundamental challenge in view of the importance of anatomy
in the interpretation of medical images, such as MRI or
PET scans. The more advanced algorithm generates plausible
results, but the mathematical background is difficult to explain,
although the output for diagnostic classification should be clear
and understandable.

Reproducibility
Deep learning performance is sensitive to the random numbers
generated at the start of training, and hyper-parameters, such
as learning rates, batch sizes, weight decay, momentum, and
dropout probabilities, may be tuned by practitioners (Hutson,
2018). To produce the same experimental result, it is important
to set the same random seeds on multiple levels. It is also
important to maintain the same code bases (Vaswani et al.,
2018), even though the hyper-parameters and random seeds were
not, in most cases, provided in our study. The uncertainty of
the configuration and the randomness involved in the training
procedure may make it difficult to reproduce the study and
achieve the same results.

When the available neuroimaging data is limited, careful
consideration at the architectural level is needed to avoid the
issues of overfitting and reproducibility. Data leakage in machine
learning (Smialowski et al., 2009) occurs when the data set
framework is designed incorrectly, resulting in a model that uses
inessential additional information for classification. In the case
of diagnostic classification for the progressive and irreversible
Alzheimer’s disease, all subsequent MRI images should be labeled
as belonging to a patient with Alzheimer’s disease. Once the brain
structure of the patient is shared by both the training and testing
sets, the morphological features of the patient’s brain greatly
influence the classification decision, rather than the biomarkers
of dementia. In the present study, articles were excluded from the
review if the data set configurations did not explicitly describe
how to prevent data leakage (Figure 4).

Future studies ultimately need to replicate key findings from
deep learning on entirely independent data sets. This is now
widely recognized in genetics (König, 2011; Bush and Moore,
2012) and other fields but has been slow to penetrate deep
learning studies employing neuroimaging data. Hopefully the
emerging open ecology of medical research data, especially in the
AD and related disorders field (Toga et al., 2016; Reas, 2018), will
provide a basis to remediate this problem.

OUTLOOK AND FUTURE DIRECTION

Deep Learning algorithms and applications continue to evolve,
producing the best performance in closed-ended cases, such as
image recognition (Marcus, 2018). It works particularly well
when inference is valid, i.e., the training and test environments
are similar. This is especially true in the study of AD when
using neuroimages (Litjens et al., 2017). One weakness of
deep learning is that it is difficult to modify potential bias in
the network when the complexity is too great to guarantee
transparency and reproducibility. The issue may be solved
through the accumulation of large-scale neuroimaging data and
by studying the relationships between deep learning and features.
Disclosing the parameters used to obtain the results and mean
values from sufficient experimentations can mitigate the issue
of reproducibility.

Not all problems can be solved with deep learning.
Deep learning that extracts attributes directly from the
input data without preprocessing for feature selection
has difficulty integrating different formats of data as an
input, such as neuroimaging and genetic data. Because
the adjustment of weights for the input data is performed
automatically within a closed network, adding additional
input data into the closed network causes confusion
and ambiguity. A hybrid approach, however, puts the
additional information into machine learning parts and the
neuroimages into deep learning parts before combining the
two results.

Progress will be made in deep learning by overcoming
these issues while presenting problem-specific solutions. As
more and more data are acquired, research using deep
learning will become more impactful. The expansion of 2D
CNN into 3D CNN is important, especially in the study of
AD, which deals with multimodal neuroimages. In addition,
Generative Adversarial Networks (GAN) (Goodfellow et al.,
2014) may be applicable for generating synthetic medical images
for data augmentation. Furthermore, reinforcement learning
(Sutton and Barto, 2018), a form of learning that adapts to
changes in data as it makes its own decision based on the
environment, may also demonstrate applicability in the field
of medicine.

AD research using deep learning is still evolving to
achieve better performance and transparency. As multimodal
neuroimaging data and computer resources grow rapidly,
research on the diagnostic classification of AD using deep
learning is shifting toward a model that uses only deep learning
algorithms rather than hybrid methods, although methods need
to be developed to integrate completely different formats of data
in a deep learning network.
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