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Editorial on the Research Topic

Neuromodulation in Basic, Translational and Clinical Research in Psychiatry

There has been emerging evidence of non-pharmacologic therapeutics for psychiatric illnesses to
modulate brain activity. These methodologies are often referred as “neuromodulation,” which is
a broad term that could technically be considered to cover any medical, surgical, or physiologic
therapy designed to alter the function of the nervous system in some manner. In the clinical
neurosciences, however, neuromodulation is understood to refer specifically to therapies that
involve targeted delivery of electrical current or magnetic field, which includes electroconvulsive
therapy (ECT), one of the oldest treatments in psychiatry, and vagus nerve stimulation (VNS),
approved by the Food andDrug Administration (FDA) in 2005 for severe depression, and repetitive
transcranial magnetic stimulation (rTMS), approved by the FDA in 2008 for the treatment of
major depression. Recently, studies using transcranial direct current stimulation (tDCS), electric
trigeminal nerve stimulation (eTNS), deep brain stimulation (DBS), and neurofeedback have been
also reported in a growing trend. To develop more effective treatments for psychiatric diseases,
translational approaches bridging basic and clinical evidence deserve considerations.

In this e-book, we tried to provide a forum for researchers interested in basic, translational, and
clinical research of neuromodulation for psychiatric illnesses and aim to facilitate an integrative
view of neuromodulation. It was our unexpected pleasure to have 16 papers in this topic which
reported new exciting findings and cutting edge methodologies. The included papers were divided
into four groups as follows: (1) the clinical application of tDCS, ECT, and rTMS for psychiatric
diseases, (2) the brain function enhancement by tDCS, (3) new application of neurofeedback, and
(4) translational research in neuromodulation.

The clinical application of neuromodulation for psychiatric diseases, mainly mood disorders
and cognitive impairments, was described in the papers of the first group. To examine the effects
of ECT on neuronal oscillatory pattern and phase synchronization, and the relationship between
clinical response or cognitive change and electroencephalogram (EEG) measurements, Takayima
et al. analyzed resting 19-lead EEG data recorded from 13 depressed patients before and after
a course of ECT by exact low resolution electromagnetic tomography (eLORETA). They found
ECT modulation on resting-state EEG oscillatory patterns and phase synchronization in central
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nodes of the default mode network (DMN) and suggested
that changes in beta synchronization in the left hemisphere
might explain the ECT-related cognitive side effects. Nishida
et al. evaluated the immediate impact on anxiety of tDCS to
the left dorsolateral prefrontal cortex (DLPFC) or dorsomedial
prefrontal cortex (DMPFC) in 14 patients with major depressive
disorder (MDD) and 19 healthy controls (HCs) and its
association with pre-stimulus brain activity by using eLORETA.
They suggested that the association between pre-tDCS brain
activity and the anxiety reduction effect of tDCS depends on
psychopathology (depressed or non-depressed) as well as the
site of stimulation (DMPFC or left DLPFC) and insomnia. To
compare rTMS-induced cortical plasticity changes in patients
with MDD and in healthy volunteers, Vignaud et al. used
motor evoked potentials (MEPs) evoked by single-pulse TMS
before and after a single and continuous intermittent theta-
burst stimulation (TBS). They observed impaired TBS-induced
neuroplasticity in patients with MDD compared to that in
controls and suggested impaired long-term potentiation (LTP)-
like mechanisms in MDD. Kazemi et al. reported the effects of
bilateral rTMS of DLPFC on the activity of resting state network
(RSN) as well as relevant cognitive function in patients with
bipolar depression that responded to treatment. They suggested
that bilateral rTMS of DLPFC changed the activity of RSN and
consequently improves verbal memory and executive functions
in patients with bipolar depression. Inagawa et al. assessed the
safety and efficacy of tDCS during cognitive training on cognitive
functioning in patients with mild or major neurocognitive
disorders by adopting two-arm, parallel, randomized, and sham-
controlled trial and reported tDCS is safe and tolerable but
causes no statistically significant cognitive effects in patients
with mild or major neurocognitive disorders. Cruz Gonzalez
et al. conducted the systematic review on the literature about
the efficacy of tDCS in improving cognitive outcomes in mild
cognitive impairment (MCI) and dementia, including 12 studies
with 195 patients with dementia and four studies with 53 patients
with MCI. They concluded that tDCS improves memory in
dementia in the short term and have a mild positive effect on
memory and language in MCI. These studies showed clinical
validity and usefulness of neuromodurational methodology with
the effectiveness on brain activity and pathophysiology related to
certain brain areas and connectivity related to various types of
cognitive process and psychiatric symptoms.

The second group of papers investigated the possibility of the
enhancement of brain function of normal subjects by applying
tDCS. To test whether anodal offline tDCS over the left prefrontal
cortex (PFC) enhances working memory (WM) capacity by
modulating the oscillatory activity in the left dorsolateral PFC
(DLPFC) using magnetoencephalography (MEG), Ikeda et al.
investigated the cortical oscillatory changes induced by anodal
tDCS during aWM task. They elucidated no-correlation between
stable WM capacity and increased gamma-band oscillation
induced by tDCS. Gold and Ciorciari applied tDCS to “flow
states,” considered a positive, subjective experience during an
optimal balance between skills and task demands. Although
they found the increased flow experience by real stimulation for
both trained and untrained Tetris players compared to sham
stimulation, improved performance effects were only seen with

untrained groups. They concluded that tDCS may encourage
flow experiences in complex real-life motor tasks that occur
during sports, games, and everyday life. Steinberg et al. reviewed
the literature about acute behavioral, neurophysiological, and
neurochemical effects and the mechanistic pathways of tDCS
and aerobic exercise (AE) and discusses potential interactions
and synergies between tDCS and AE that might be provoked
when directly combining both techniques. They suggested that a
direct combination of tDCS and AE provides multiple beneficial
opportunities for synergistic effects both within non-clinical
settings in health and for treating several psychiatric and
neurologic conditions. These papers proved quite wide and
promising utility of tDCS on the brain function enhancement
and augmentation which would provide huge markets for
normal subjects.

The third group contains the new application of
neurofeedback from Karch et al. assessing the combination
of real-time fMRI (rtfMRI) and neurofeedback (NF) to predict
the outcome of NF training plus group psychotherapy at the
beginning of the treatment for patients with tobacco use disorder.
They reported that they could estimate a successful withdrawal in
patients with tobacco use disorder by analyzing the first rtfMRI
NF session: a pronounced reduction of frontal responses during
NF training in patients might be the functional correlate of better
therapeutic success. They suggested that the results of the first
NF sessions could be useful as predictor whether a patient will
be able to achieve success after the behavioral group therapy and
NF training in quitting smoking or not. Chiba et al. conducted
a systematic review to compare Decoded Neurofeedback
(DecNef) effect with those of conventional EEG/fMRI-based
neurofeedback on post-traumatic stress disorder (PTSD)
amelioration. They suggested that DecNef could be a promising
therapy that bypasses the unpleasantness of conscious exposure
associated with conventional therapies for fear related disorders,
including PTSD. The other types of neurofeedback studies,
especially electrophysiological procedures, which have some
advantages like cheaper running costs, smaller apparatus, and
non-invasiveness without any exposure to radiation or strong
magnetic fields, would be encouraged and provoked by these
MRI neurofeedback studies.

The fourth group of articles tried to expand the new frontiers
for translational research of neuromodulation, combining
electroacupuncture and neurogenesis in PTSD rats (Zhou
et al.), TMS and brain-derived neurotrophic factor (BDNF) in
fibromyalgia and depression (Cardinal et al.), acoustic startle
response (ASR), and locomotor dynamics in autism spectrum
disorder (ASD) (Ebishima et al.; Ogino et al.), P300 and
heart rate in emotional processing (Matsuo et al.). The future
translational approach bridging between clinical application on
neuropsychiatric diseases and basic pathophysiological research
about themechanism of these neuromodurationalmethodologies
will be expected.

In summary, this e-book presented novel methodologies and
various applications of neuromodulation in psychiatry. As a
result, these papers established the feasibility and plausibility of
neuromodulation in psychiatry with new evidence and threw
impacts on new directions for expanding new possibility of
neuromodulation for basic and clinical application.
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Introduction: Bipolar patients have abnormalities in cognitive functions and emotional
processing. Two resting state networks (RSNs), the default mode network (DMN) and
the sensorimotor network (SMN), play a decisive role in these two functions. Dorsolateral
prefrontal cortex (DLPFC) is one of the main areas in the central executive network
(CEN), which is linked to the activities of each of the two networks. Studies have
found DLPFC abnormalities in both hemispheres of patients with bipolar depression.
We hypothesized that the bilateral repetitive transcranial magnetic stimulation (rTMS)
of DLPFC would produce changes in the activity of both the SMN and DMN as well
as relevant cognitive function in patients with bipolar depression that responded to
treatment.

Methods: 20 patients with bipolar depression underwent 10 sessions of 1 Hz
rTMS on right DLPFC with subsequent 10 Hz rTMS on left DLPFC. Changes in
electroencephalography resting networks between pre and post rTMS were evaluated
utilizing low-resolution electromagnetic tomography (eLORETA). Depression symptom
was assessed using the Beck Depression Inventory (BDI-II) and cognitive function was
assessed by Verbal Fluency Test (VFT), Rey Auditory Verbal Learning Test (RAVLT),
Stroop Test, and Wisconsin Card Sorting Test (WCST).

Results: Responders to rTMS showed significantly lower DMN activity at baseline
and a significant decrease in SMN connectivity after treatment. Non-responders did
not significantly differ from the control group at the baseline and they showed higher
activity in the SMN, visual network, and visual perception network compared to control
group following treatment. Bilateral rTMS resulted in significant changes in the executive
functions, verbal memory, and depression symptoms. No significant changes were
observed in selective attention and verbal fluency.
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Conclusion: Bilateral stimulation of DLPFC, as the main node of CEN, results in
changes in the activity of the SMN and consequently improves verbal memory and
executive functions in patients with bipolar depression.

Keywords: sensorimotor network, default mode network, bipolar depression, bilateral transcranial magnetic
stimulation, low-resolution electromagnetic tomography, resting state networks, cognitive functions

INTRODUCTION

Emotional processing (Wessa and Linke, 2009) and cognitive
functions (Torrent et al., 2006) are two areas known to be
impaired in individuals with bipolar disorder. Those with bipolar
disorder may be unable to use cognitive functions to regulate
and maintain emotional states. This can lead to a dysfunction in
their emotional processing and emotion regulation (Keener and
Phillips, 2007; Phillips and Vieta, 2007). Studies on resting state
neural networks in bipolar disorder have identified abnormalities
in four networks, including the default mode network (DMN;
Fan et al., 2012), central executive network (CEN; Baker et al.,
2014), salience network (SN; Lopez-Larson et al., 2017), and
sensorimotor network (SMN; Martino et al., 2016). The DMN
and SMN have a major role in emotional and cognitive
processing. Several studies have focused on DMN abnormalities
in individuals with bipolar disorder (Calhoun et al., 2008; Allin
et al., 2010; Öngür et al., 2010). It has been reported that
DMN deactivation plays an important role in cognitive functions
(Daselaar et al., 2004; Shulman et al., 2007); decreased DMN
activity is correlated with successful functioning in various
cognitive domains (Anticevic et al., 2012). One trial identified
greater activity in the areas of middle temporal gyrus, middle
frontal gyrus, and caudate in individuals with bipolar disorder
compared to healthy controls (Fan et al., 2012). Similarly, reduced
DMN deactivation has been observed in patients with bipolar
depression during cognitive tasks (Fernández-Corcuera et al.,
2013).

Research has also suggested the CEN and DMN act conversely
(26), with the SN mediating activity between the two (Goulden
et al., 2014). Both CEN and SN negatively regulate DMN function
(Sridharan et al., 2008; Murphy et al., 2009). A recent study has
shown that inhibition of a major node in CEN by 1 Hz repetitive
transcranial magnetic stimulation (rTMS) leads to disinhibition
of DMN. Conversely, stimulation by single pulse TMS leads
to a negative connectivity of DMN with CEN and SN (Chen
et al., 2013). SMN has an important role in emotional functions
[e.g., emotion discrimination (Banissy et al., 2010) and emotion
recognition (Wood et al., 2016; Davis et al., 2017)] and cognitive
functions [e.g., working memory (D’Esposito and Postle, 2015)
and social cognition (Pineda, 2008)]. Recently, it has been argued
that abnormality in interhemispheric activities in SMN is the
basis of emotion processing dysfunction in patients with bipolar
disorder (Ishida et al., 2017). In fact, in a number of mental
health disorders, the interaction between SMN and DMN has
been shown to be dysfunctional (Chenji et al., 2016).

Dorsolateral prefrontal cortex (DLPFC) is a major node in the
CEN, associated with both cognitive (Townsend et al., 2010) and
emotional (Hassel et al., 2008) abnormalities in bipolar disorder.
Abnormality of DLPFC function has been identified in both

hemispheres in patients with bipolar depression (Brooks et al.,
2009). Decreased DLPFC metabolism has been reported in some
studies, (Baxter et al., 1989; Martinot et al., 1990) while metabolic
increase is reported in others (Ketter et al., 2001). rTMS to the
DLPFC is expected to have an impact on both the SMN and the
DMN networks, particularly to the pre-SMA (Wang et al., 2005;
Nachev et al., 2008) and mPFC (Chai et al., 2011), respectively. As
discussed, both of these interconnected networks are involved in
bipolar disorder, with reduced SMN activity and increased DMN
activity evident in bipolar depression (Martino et al., 2016).

A recently published meta-analysis suggested rTMS is a
safe and relatively effective therapy to treat bipolar depression
(McGirr et al., 2016). There is a very low risk for treatment-
emergent affective switches, while no increased risk of future
manic episodes from a course of active rTMS treatment has
been observed (McGirr et al., 2016). Given the involvement of
the DMN, SMN, and DLPFC in bipolar depression (Fernández-
Corcuera et al., 2013) and that DLPFC stimulation can affect the
DMN and SMN, the current study proposed that rTMS provided
to the DLPFC would alter DMN and SMN function, with
subsequent improvement in cognitive function and emotional
processing relevant to bipolar depression. Given the reported
involvement of the DLPFC in both hemispheres in patients with
bipolar depression (Brooks et al., 2009), sequential bilateral rTMS
was selected as the intervention for this study.

Electroencephalography (EEG) was selected as a tool to obtain
new insights on neurophysiological features in patients with
bipolar depression, especially in regards to the role of the
DMN and SMN in mediating clinical response. Changes in EEG
resting state networks (RSNs) between pre and post rTMS were
explored utilizing EEG functional network analysis, evaluated
by exact low-resolution electromagnetic tomography (eLORETA;
Pascual-Marqui et al., 2011). eLORETA is a three-dimensional,
discrete, linear, and weighted minimal norm inverse solution
method. It is uniquely endowed with the property of exact
localization to a test point source at any location, albeit with
low spatial resolution. Because of the principles of linearity and
superposition, the method produces a low-resolution estimate
of any distribution of electric neuronal activity. In a detailed
and exhaustive comparison with other competing linear inverse
solution methods, it was shown that eLORETA has improved
localization properties in the presence of noise and in multiple
source situations (Pascual-Marqui et al., 2011). In a previous
study utilizing resting state EEG data of 80 healthy subjects,
five resting state independent networks were identified with the
eLORETA system (Aoki et al., 2015).

Hypotheses of the current study were therefore (1) patients
with bipolar depression will show abnormal DMN connectivity
compared to controls; (2) DLPFC rTMS will produce changes in
regions of the DMN and SMN which contribute to improvement
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of cognitive functions and clinical symptoms in responders to
rTMS; and (3) DLPFC rTMS will produce changes in DMN
and SMN connectivity in patients with bipolar depression who
respond to treatment.

MATERIALS AND METHODS

This was an open-label study in which 20 patients with bipolar
disorder received 10 sessions of sequential bilateral rTMS,
one session a day, 6 days a week. Patients were evaluated at
baseline (pre-treatment) and at the end of the treatment course
(post-treatment). Resting EEG data from these 20 patients was
compared to data from 80 healthy controls collected in a previous
study (38).

Participants
The clinical sample consisted of twenty patients (8 men and
12 women; M ± SD = 28.65, age range of 16–47) referred
to the Atieh Clinical Neuroscience Center (Tehran, Iran) from
April to September 2015. All patients had a diagnosis of bipolar
disorder, and were experiencing a current depressive episode
as verified by a psychiatrist based on DSM-IV-TR criteria. The
inclusion criteria were (1) age range of 16–70 years, (2) diagnosis
of bipolar depression confirmed by a psychiatrist and based
on DSM-IV-TR, (3) current treatment under supervision of a
psychiatrist, (4) a score higher than 14 (mild depression) on the
Beck Depression Inventory (BDI-II; Beck et al., 1996), and (5)
unchanged medication regime during the treatment process. The
study exclusion criteria were (1) a history of rTMS treatment
for any disorder, (2) presence of intracranial implants (such as
shunts, irritations, electrodes) or any other metal object inside
or near the head (e.g. mouth) which could not be removed,
(3) cardiac pacemaker, (4) acute heart disease, (5) a history of
epilepsy or seizure in the individual or first degree relatives,
(6) a history of head trauma, and (7) pregnant or breastfeeding
women. Medication was unchanged from a month before starting
the treatment until the end of the course of rTMS. If the treating
psychiatrist identified any need to change a patient’s medication,
the patient was excluded from the study.

Resting state EEG data, collected from 80 healthy control
participants in a previous study (27), were utilized for
comparison purposes. The control sample consisted of 57 males
and 23 females (mean age = 44, standard deviation = 20) without
any history of neurological or psychiatric disorder. Control
participants 60 years of age or older were screened for global
cognitive deficits [i.e., mini-mental state examination (MMSE)
and clinical dementia rating (CDR)]. A CDR score of zero was
obtained for all screened participants and a median MMSE
score of 30 (interquartile range; 29–30). A 120-s window of
recorded EEG was selected and artifact rejected after strict visual
inspections of the certified electroencephalographers.

Table 1 shows demographic and clinical information for
clinical and control participants. Informed consent was obtained
prior to commencement of this trial from all participants who
received TMS. The study was approved by the University of
Tehran ethics committee.

rTMS
Repetitive transcranial magnetic stimulation was administered
with a Magstim Rapid 2 machine (Magstim Company Ltd.,
Whitland, United Kingdom) and a 70-mm figure-of-eight coil
(air film coil). rTMS treatment was applied on F3 and F4 EEG
regions based on the international 10-20 system. Right DLPFC
stimulation was applied at 1 Hz for a 10-s train of stimulation, 2-s
inter-train interval, and a total of 150 pulse trains. This resulted
in 1500 pulses per session for a total of 15,000 pulses to the
right DLPFC over 10 sessions. Within each session, right side
stimulation was immediately followed by left DLPFC stimulation
at a frequency of 10 Hz, 5 s of stimulation, 10-second inter-
train interval, and 75 pulse trains. This resulted in 3750 pulses
per session and a total of 37,500 pulses over 10 sessions to left
DLPFC.

Resting motor threshold (RMT) was determined prior to
treatment. RMT is defined as the minimum intensity required
to stimulate the motor cortex and lead to a contraction in the
abductor policies brevis (APB) muscle. Stimulation at threshold
should cause APB muscle contraction in at least five out of 10
attempts. Treatment stimulation intensity was set at 120% of the
RMT on the right side and 100% of the RMT on the left side.

EEG Recording
Electroencephalography data were recorded by a 19-channel
amplifier (Mitsar, Russia) using an ElectroCap (ElectroCap, Inc,
OH). Electrodes were located on a cap based on a 10-20 system.
A1+A2 electrode was used as the reference. Electrode impedance
was kept below 5 k� and the sampling rate was 250 Hz. EEG was
recorded for 5 min while patients were resting in an acoustics
room with closed eyes. EEG data were filtered using a band-pass
filter (0.3–40 Hz). Electroocular artifacts were removed by setting
the amplitude threshold to ±70 µV. Independent component
analysis (ICA) was also performed to remove muscle artifacts.
After artifact removal an interval of 60 s of the data for each
subject were used for further analyses.

eLORETA Network Analysis
The eLORETA brain model and electrode coordinate system are
based on the Montreal Neurological Institute average MRI brain
map (MNI 152; Mazziotta et al., 2001). The solution space is
limited to the cortical gray matter, comprising 6239 voxels of 5-
mm3 space resolution. The validity of eLORETA tomography as
a reliable and effective tool for exploring brain activities has been
confirmed by several studies using intracranial EEG (Zumsteg
et al., 2006), PET (Dierks et al., 2000), structural MRI (Worrell
et al., 2000), and fMRI (Vitacco et al., 2002; Mulert et al., 2004).
eLORETA images in the current study were evaluated in the
following five frequency bands: delta (2–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–60 Hz).

The 60 s of artifact-free EEG from all participants’ recordings
were fragmented into 2-s fragments offline. The processed 2-
s artifact-free EEG fragments were analyzed with eLORETA
software, exploring functional EEG activity based on the five
RSNs reported in the previous study (Aoki et al., 2015; see
Figure 1). These networks included (1) independent component
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TABLE 1 | Demographic and clinical characteristics of study participants and paired t-test results in test variables of Wisconsin Card Sorting Test, Rey Auditory Verbal
Learning Test, Verbal Fluency Test, Stroop Test, and Beck Depression Inventory.

N rTMS group N control group

Sex

Male 8 (40%) 57 (71/25%)

Female 12 (60%) 23 (28/75%)

Medication

Tricyclics 11 (24/4%)

Selective serotonin reuptake inhibitor 4 (9%)

Atypical antipsychotics 14 (31/1%)

Mood stabilizers 16 (35/5%)

Mean SD Mean SD t df P Eta squared

Executive function

Preservative errors (WCST) 4.95 2.76 2.25 2.40 4.64 19 0.0001 0.51

Total errors (WCST) 14.45 4.80 11.80 4.84 2.38 19 0.03 0.23

Total efforts (WCST) 57.35 4.20 53.55 5.50 2.52 19 0.02 0.25

Completed number of categories (WCST) 4.70 1.71 5.10 1.48 −1.32 19 0.20 0.08

Phonetic fluency 34.65 15.45 37.40 14.73 −1.28 19 0.21 0.07

Semantic fluency 53.95 9.70 57.05 12.37 −1.72 19 0.10 0.14

Memory and verbal learning

Total recall 12.45 1.82 13.95 1.57 −4.56 19 0.0001 0.52

Immediate recall 10.55 2.80 13.45 1.60 −5.66 19 0.0001 0.62

Delayed recall 10.88 3.02 13.30 2.57 −3.84 19 0.001 0.43

Recognition 13.90 1.21 14.45 0.88 −1.99 19 0.06 0.17

Attention and focus

Stroop interference 0.77 2.10 0.50 1.85 0.63 19 0.54 0.002

Depression symptoms

Beck depression inventory 30.15 10.05 15.25 8.37 4.77 19 0.0001 0.54

FIGURE 1 | eLORETA-neurophysiological independent components (ICs). Five neurophysiological network activities were identified in the previous study. In
respective figures, red and blue voxels indicate increasing and decreasing in power, respectively, with increasing ICs activities. The definitions of these networks are
described as follows. (A) IC-4; the visual network in alpha frequency band. (B) IC-5; dual-process of visual perception network, characterized by a negative
correlation between the right ventral visual pathway (VVP) in alpha and beta frequency bands and left posterior dorsal visual pathway (DVP) in alpha frequency band.
(C) IC-6; self-referential processing network (DMN), characterized by a negative correlation between the medial prefrontal cortex (mPFC) in beta frequency band and
right temporoparietal junction (TPJ) in alpha frequency band. (D) IC-9; dual-process of memory perception network, functionally related to a negative correlation
between the left VVP and the precuneus in alpha frequency band. (E) IC-10; sensorimotor network (SMN) in beta and gamma frequency bands.

4 (IC-4): the visual network in alpha frequency band; (2)
IC-5: dual-process visual perception network, characterized by
a negative correlation between the right ventral visual pathway

(VVP) in alpha and beta frequency bands and left posterior
dorsal visual pathway (DVP) in alpha frequency band; (3)
IC-6: self-referential processing network (DMN), characterized
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by a negative correlation between the medial prefrontal cortex
(mPFC) in beta frequency band and right temporoparietal
junction (TPJ) in alpha frequency band; (4) IC-9: dual-process
of memory perception network, functionally related to a negative
correlation between the left VVP and the precuneus in alpha
frequency band; and (5) IC-10: SMN in beta and gamma
frequency bands.

Detailed explanations of the methodology utilized in this RSN
analysis can be found in the original Aoki et al. (2015) study
described above. However, a brief description of eLORETA-ICA,
by which these five RSNs were obtained is provided here. ICA is a
mathematical and statistical technique which disintegrates mixed
signals into statistically independent components. Electrical
activities of desired vertices (cortical solutions) are computed
by eLORETA using scalp EEG recordings. Cortical solutions for
subjects over frequency bands are arranged in data matrices
with the format: subject × frequency band × cortical solutions.
Data matrices are consequently processed by a group ICA
application embedded in eLORETA (Pascual-Marqui and Biscay-
Lirio, 2011), yielding a set of independent components. The
independence of these components was maximized based on
fourth-order cumulant as its difference criterion (Cardoso,
1989; Cichocki and Amari, 2002). Subsequently, independent
components with red and blue colored brain maps (red and blue
indicate increasing and decreasing cortical activities respectively,
as independent component activities are increased) were derived
in total power order. Therefore, differences in functional
network construction in two sets of EEG data can be evaluated
by comparing their corresponding independent components’
coefficients.

Thus, in this study, we used these five networks to investigate
the difference of functional network constituents between
patients with bipolar depression and healthy controls (Aoki et al.,
2015). To explore difference in network coefficients we calculated
z-scores. All coefficients were adjusted by age in linear regression
based on Aoki et al. (2015). The significance level was set at
p = 0.05 following Bonferroni correction.

Cognitive and Clinical Assessment
The primary outcome measure was cognitive function: executive
functioning, selective attention, and verbal memory was assessed
before and after treatment by the (1) Verbal Fluency Test
(VFT) (Lezak, 2004), (2) Rey Auditory Verbal Learning Test
(RAVLT) (Jafari et al., 2010), (3) Stroop Test (Stroop, 1935),
and (4) Wisconsin Card Sorting Test (WCST; Nelson, 1976).
The secondary outcome measure was response rate (50% or
greater reduction in mean BDI-II scores from baseline to end
of treatment). Paired t-tests were used to evaluate change in
cognitive functions and depressive symptoms.

RESULTS

All participants with bipolar disorder completed a course of
rTMS treatment. No side effects of rTMS were observed. Two
patients were not able to participate in post-treatment EEG
recording because of issues undertaking the EEG testing.

Effect of rTMS on Cognitive Functions
and Depressive Symptoms
Effects of rTMS on Cognitive Functions
T-tests (Table 1) showed a decrease in preservation errors
[t(19) = 4.64, P < 0.0001], total errors on the WCST [t(19) = 2.38,
P = 0.03], and total efforts [t(19) = 2.52, P = 0.02] following a
course of rTMS. However, there was no significant increase in
the completed number of WCST categories, or any change in
verbal fluency, or change on the STROOP test (all p > 0.05).
Verbal memory was enhanced post-rTMS, evident in total recall
(P = 0.0001), immediate recall (P = 0.0001), and delayed recall
(p = 0.0001). No significant effect on recognition memory was
seen (p > 0.05).

Effects of rTMS on Depressive Symptoms
A decrease in depression symptoms was evident from baseline to
treatment end [t(19) = 4.77, P < 0.0001). Eleven of 20 patients
(55%) met response criteria (≥50% reduction in BDI-II score),
while three of 20 patients met remission criteria (final BDI-II
score < 8).

eLORETA Network Analysis
Baseline Comparison of Patients vs Healthy Controls
At baseline, the only difference between the patients (n = 18) and
the control group was in the DMN (mPFC and TPJ). The patients
with BPAD at baseline exhibited significantly less activity in IC-6
coefficient (self-referential processing network, characterized by
a negative correlation between the mPFC in beta frequency band
and right TPJ in alpha frequency band) compared to the controls
(p = 0.007).

Responders and Non-responders vs Controls Before
Treatment
Similar to the overall sample, the only difference between
responders (n = 10) and the control group prior to treatment was
in DMN (mPFC and TPJ; p = 0.0009). Non-responders (n = 8) did
not differ from the control group across any networks. Compared
with healthy controls prior to treatment, responders exhibited
a significant lack of activity in IC-6 coefficient (self-referential
processing network, characterized by a negative correlation
between the mPFC in beta frequency band and right TPJ in alpha
frequency band). Non-responders (n = 8) showed no significant
differences from controls prior to treatment.

Responders Post-treatment
After treatment, the only difference between responders and
the control group was in the SMN. Post-treatment, responders
exhibited significantly less activity in the IC-10 coefficient (SMN
in beta and gamma frequency bands) compared with the model
of healthy controls (p = 0.012).

Non-responders Post-treatment
Non-responders exhibited significantly higher activity in IC-4
coefficient (the visual network in alpha frequency band; p = 0.015)
and IC-10 coefficient (SMN in beta and gamma frequency bands;
p = 0.0009) compared with the healthy controls post-treatment.
In addition, they demonstrated significantly higher activity in
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IC-9 coefficient (dual-process of memory perception network,
functionally related to a negative correlation between the left
VVP and the precuneus in alpha frequency band) after rTMS
(p = 0.00002).

Comparison of Patients vs Controls Post-treatment
After treatment, there was a significant difference observed
between participants with bipolar disorder and the control group
in SMN and the memory perception network. Patients with
BPAD after intervention exhibited significantly higher activity in
IC-9 (dual-process of memory perception network, functionally
related to a negative correlation between the left VVP and the
precuneus in alpha frequency band; p = 0.003) and significantly
less activity in IC-10 (SMN in beta and gamma frequency bands;
p = 0.00002).

DISCUSSION

Our study demonstrated noticeable changes in RSNs activity
in patients with bipolar depression following bilateral rTMS to
DLPFC. Compared to the control group, responders to rTMS
treatment showed significantly lower DMN activity at baseline
assessment and non-responders did not significantly differ from
the control group at baseline. However, responders showed a
significant decrease in SMN connectivity and higher activity
in the SMN, visual network, and visual perception network
compared to controls was observed in non-responders following
treatment. Bilateral rTMS resulted in significant changes in
executive functions, verbal memory, and depression symptoms
in patients with bipolar depression.

DMN and SMN Changes at Baseline and
Following Bilateral Stimulation Among
Responders
In the present study, a reduction of gamma activity in pre-SMA
and beta activity in the postcentral area occurred among the
responders to rTMS. The results were in line with those in a
previous study on patients with bipolar depression, in which
gamma frequency activity in postcentral areas was significantly
decreased among the responders to unilateral rTMS stimulation
(Kazemi et al., 2016). In another study, an imbalance was
observed in the DMN/SMN activity of bipolar patients, compared
to other resting networks such as DMN/SN and DMN/CEN.
Further, a high ratio of DMN/SMN activity was reported
in the depression phase while the opposite happened in the
manic phase. The relationship between these two networks was
considered as a diagnostic marker for this disorder (Martino et al.,
2016). The activity of the pre-SMA and precentral areas of SMN is
probably related to motor and sleep functions in bipolar patients.
Sleep disorders and psychomotor problems are regarded as two
predictors of response to rTMS treatment (Brakemeier et al.,
2007). Furthermore, the symptom of psychomotor retardation
and agitation among depressed patients is a predictor of
response to drug therapy (Yoshimura et al., 2004; Mallinckrodt
et al., 2007; Herrera-Guzman et al., 2008), ECT (Van Diermen
et al., 2015), and rTMS (Brakemeier et al., 2007). Regarding the

patients with major depressive disorder (MDD), psychomotor
retardation is related to the changes in the integrity of pre-
SMA and SMA-proper white matter (pathway), as well as
the changes in structural connectivity in rACC-pre-SMA and
DLPFC-pre-SMA (Bracht et al., 2012). Some abnormalities
were observed in the motor cortex of patients with bipolar
disorder when they were doing motor tasks. In addition,
an increase in rCBF in the right SMA was reported among
these patients (Berns et al., 2002; Caligiuri et al., 2004). The
medications used to manage the symptoms of bipolar disorders
suppress the activities across motor cortical regions with greater
effects in primary motor cortex areas (Caligiuri et al., 2004).
Suppressing motor cortex activity among the patients treated
by mood-stabilizing medications is regarded as a positive
predictor for treatment in bipolar disorder (Caligiuri et al.,
2004).

The precentral area is considered as another part of SMN,
in which the activities are negatively related to DMN activities
(Tomasi and Volkow, 2011). In some studies, sleep disturbance
has been considered as a predictor for the response to rTMS
treatment (Brakemeier et al., 2007). However, insomnia, as the
most common problem, can affect the patients with bipolar
depression (Winokur et al., 1969; Casper et al., 1985). Patients
with primary insomnia experience some defects in the size of
brain gray matter in precentral and postcentral areas (Joo et al.,
2013). The activity in the beta frequency band is related to
both types of insomnia. Further, an increase in beta activity
was observed among the patients with insomnia and healthy
people at the onset of sleep and during the NREM phase in
sensorimotor areas (Wang et al., 2005). A reduction in the beta
activity indicates a decrease in the activities in the postcentral
area, and the changes in this area can be related to sleep problems
among patients.

The Changes in Resting State Networks
Among Non-responders to Bilateral
rTMS
Regarding the non-responders to rTMS, some changes were
observed in IC-4, IC-9, and IC-10 after the treatment. These
patients experienced a decrease in alpha frequency activity in
the areas related to occipital visual network, compared with the
healthy controls. In addition, an increase occurred in the IC-9
activities, i.e., increased alpha frequency activities in precuneus
and VVP.

A small number of analyses have focused on investigating
the electrophysiological correlates of not responding to rTMS
treatment (Arns et al., 2012, 2014). These studies have largely
focused on EEG power rather than connectivity analysis. For
example, non-responders had slower alpha peak at baseline(Arns
et al., 2012). Recently, in another study, non-responders to
rTMS treatment had low connectivity within the dopaminergic
pathway, which is correlated to anhedonia (Downar et al.,
2014). However, in the present study, anhedonia was not
directly measured. Thus, future studies can focus on anhedonia
as a predictor of not responding to treatment in bipolar
patients.
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Difference in DMN Functions Between
Bipolar Patients and Healthy Controls at
Baseline
Less beta and alpha activity at the baseline was observed in
mPFC and right TPJ, respectively, among all patients, compared
to those in the healthy group. Few studies have evaluated resting
EEG abnormalities in bipolar patients. Regarding the results of
previous research, the present study supports the role of alpha
and beta frequency bands in bipolar disorder (Ozerdem et al.
2008; 2013). Recently, source localization analysis was studied
to compare depressive and manic phases in bipolar patients.
Based on the results, bipolar patients in the manic phase had
lower theta in brodmann areas 13, 38, and 47, compared to
bipolar patients in the depressive phase. In addition, higher Beta-
2 and Beta-3 were reported in brodmann area 6 and cingulate
cortex among the patients. In line with the results in the present
study, this study emphasized the role of frontal and temporal
lobes in both phases of bipolar disorder (Painold et al., 2014).
The results of previous studies indicated that some problems
are available in the DMN function (Brady et al., 2017) and
the affective network (Luking et al., 2011; Pannekoek et al.,
2014) among the patients with mood disorder. According to
a recent meta-analysis, there is a hyper-connectivity among
depressed patients, compared to healthy people in the socio-
affective network (Schilbach et al., 2014). The findings indicate
that the abnormalities of these two areas of DMN can be related
to the etiology of bipolar depression, which can be regarded as a
probable neuromarker.

Improvements in Cognitive Functions
Considering the literature, the present study pioneered to explore
the effectiveness of bilateral stimulation treatment on improving
cognitive functions among patients with bipolar depression.
However, the findings of this study are consistent with those
addressing bilateral stimulation on unipolar patients, which have
indicated that rTMS could produce improvements in cognitive
functions (Loo et al., 2003; McDonald et al., 2006; Fitzgerald et al.,
2012). Further, some significant changes took place in verbal
memory, which are consistent with the results of the present
study.

Furthermore, the impairment of verbal memory is considered
as the only cognitive problem which continues during mania
phase, depression, and euthymic mood in patients with BPAD
(Basso et al., 2002). An impairment in verbal memory can
be considered as a unique feature of bipolar depression,
as well as the endophenotype of this disorder, due to its
persistence in depressive phase (Malhi et al., 2007). Generally,
successful treatment methods have similar effects on the
neuropsychological profiles among these patients in treating
bipolar depression. Pharmacological treatment (lamotrigine)
(Pavuluri et al., 2010) and other therapies (McIntyre et al.,
2012) improve the executive functions or verbal memory.
Electrophysiological studies demonstrated that cognitive deficits
in bipolar patients are related to frontal-temporal dysfunctions
(Andersson et al., 2008). In a normal verbal memory, apart from
optimal performance in the temporal lobe, the cooperation of

frontal lobe, especially ventro mPFC, is required (Gilboa et al.,
2009).

The present study demonstrated significant improvement in
executive functions after rTMS treatment, in addition to the
improvement in verbal memory. Usually, normal function in
WCST requires a proper functioning in the prefrontal cortex.
The area which is mostly associated with the preservation errors
is the DLPFC (Berman et al., 1995). Further, neuroimaging
studies have also focused on another area of the frontal
cortex called “ventrolateral prefrontal cortex,” which is related
to the performance of this test (Konishi et al., 1998). Some
studies emphasized that this area of the brain experiences some
abnormalities such as a reduction in the volume of gray matter
among bipolar patients (Ellison-Wright and Bullmore, 2010). In
addition, the stimulation of this area instead of DLPFC has been
recently suggested for increasing the response to treatment in
bipolar patients (Downar and Daskalakis, 2013).

Limitations of the Study
One serious limitation of our study was simultaneous use
of medicine and rTMS, which made the interpretation of
results complex and difficult. But to overcome this problem,
patients’ medications remained unchanged from 1 month
before treatment to the end of treatment. Furthermore,
eLORETA network template was extracted from medicine-
free normal patients. Thus, the potential medicine effects on
neurophysiological activities could not be completely discounted.
To the best of the authors’ knowledge, no previous study has
demonstrated medication effects on eLORETA ICA analysis.
Nevertheless, cautious interpretation of our results is required.
Another potential limitation of this study was the reliance
on the BDI-II to evaluate treatment outcomes. However, in
previous research where expert-based assessment tools were used
alongside self-reports, no significant difference was observed
between these methodologies in their evaluation of treatment
response and recovery rates (Pridmore et al., 2000). In a
previous study, we used 80 healthy subjects with a wide
age range (44.2 ± 20.0 years) and revealed that there were
common five EEG-RSNs across a wide age range and their
activities showed no age dependences (Aoki et al., 2015).
This result indicates that age related changes of EEG-RSN
activities are better described by cognitive functions rather
than age itself which was suggested by fMRI studies (Balsters
et al., 2013; Staffaroni et al., 2018). Therefore, in this study,
although there was a significant age difference between these
80 healthy subjects and bipolar patients, we could compare
EEG-RSN activities between 80 healthy subjects and bipolar
patients.

CONCLUSION

Targeting the main nodes of SMN and DMN with rTMS appears
to be useful in the treatment of depression. The current study
suggests targeting the mPFC and TPJ areas of DMN, areas related
to the socio-affective network, can be effective in treating bipolar
depression.
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Background: Transcranial direct-current stimulation (tDCS) facilitates cognitive

improvement in healthy and pathological populations. It has been increasingly used in

cases of mild cognitive impairment (MCI) and dementia. Our research question is: Can

tDCS serve as a clinical intervention for improving the cognitive functions of persons with

MCI (PwMCI) and dementia (PwD)?

Objective: This systematic review evaluated the evidence to determine the efficacy of

tDCS in improving cognitive outcomes in PwD and PwMCI.

Methods: A systematic review was conducted of studies published up to November

2017 involving tDCS in cases of MCI and dementia. Studies were ranked according to

the level of evidence (Oxford Center for Evidence-Based Medicine) and assessed for

methodological quality (Risk of Bias Tool in the Cochrane Handbook for Systematic

Reviews of Interventions). Data was extracted on all protocol variables to establish

a reference framework for clinical interventions. Different modalities, tDCS alone or

combined with cognitive training, compared with sham tDCS were examined in both

short and long-term effects. Four randomized control trials (RCTs) with memory

outcomes were pooled using the fixed-effect model for the meta-analysis.

Results: Twelve studies with 195 PwD and four with 53 PwMCI met the inclusion

criteria. Eleven articles were ranked as Level 1b. The results on the meta-analysis on

pooled effects of memory indicated a statistically significant medium effect size of 0.39

(p = 0.04) for immediate effects. This improvement was not maintained in the long term

0.15 (p = 0.44).
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Conclusion: tDCS improves memory in PwD in the short term, it also seems to

have a mild positive effect on memory and language in PwMCI. However, there is no

conclusive advantage in coupling tDCS with cognitive training. More rigorous evidence

is needed to establish whether tDCS can serve as an evidence-based intervention for

both populations.

Keywords: tDCS (transcranial direct-current stimulation), neuromodulation, MCI (mild cognitive impairment),

dementia, cognitive rehabilitation, cognitive training, systematic review, meta-analysis

INTRODUCTION

Transcranial direct-current stimulation (tDCS) is a type of
non-invasive brain stimulation (NIBS). tDCS delivers weak
direct currents to the brain that can alter spontaneous firing
rates on neural activity, which subsequently translates into
behavioral changes (Nitsche et al., 2008). It is a process
that has been described as “portable, painless, inexpensive
and safe” (Kadosh et al., 2012). During the administration
of tDCS, depolarization or hyperpolarization of the neuronal
membrane of target neurons may be induced, even though the
small electric fields of tDCS are considered to be below the
intensity required to evoke action potentials (Nitsche et al.,
2003; Miniussi et al., 2013; Tatti et al., 2016). In other words,
tDCS causes a shift in the membrane potential threshold which
is likely to change the probability that an incoming action
potential will result in post-synaptic firing during and after
its administration (Prehn and Flöel, 2015). Such changes in
neuronal excitability modulates the cognitive processes and
tDCS can induce physiological processes. Due to the proposed
resemblance of the effects of tDCS and cognitive processes
on cerebral physiology, researchers have been using NIBS to
alter cognition (Kuo and Nitsche, 2012; Prehn and Flöel,
2015).

Mild Cognitive Impairment (MCI) is defined as the stage
between normal and dementia-type pathological aging. MCI
is a syndrome of cognitive decline in non-demented persons
that does not affect the capacity to be independent in activities
of daily living (ADLs; Portet et al., 2006). In contrast, people
who suffer from dementia present a more severe cognitive
decline and do not preserve independence in functional
abilities and ADLs (Langa and Levine, 2014). Epidemiological
investigations suggest a range of prevalence for MCI of 7–
24% among adults aged over 65, and the manifestation of
MCI is consistently shown to have a high risk of progression
to dementia (Langa and Levine, 2014; Petersen et al., 2014).
To date, there is no pharmaceutical treatment shown to
be effective in improving cognitive functioning in MCI and
dementia (Langa and Levine, 2014), although cognitive training
interventions show promise for improving targeted cognitive
functions in elderly persons without cognitive impairments
(Ball et al., 2002). Cognitive Rehabilitation (CR) is defined
as “the therapeutic process of increasing or improving an
individual’s capacity to process and use incoming information
so as to allow increased functioning in everyday life.” This
includes methods to train and restore cognitive functioning as

well as compensatory techniques (Sohlberg and Mateer, 1989,
p. 871).

CR is therefore essential and research has indicated that NIBS
can positively affect the cognitive performance of populations
affected by cognitive disorders (Miniussi et al., 2008). Differences
in tDCS experimental protocols regarding the parameters
employed such as the montage, the current, the intensity or the
size of the electrodes can affect the electric field strength. All of
these variables contribute to increase the heterogeneity of the
electric field’s properties among studies thus producing different
outcomes (Woods et al., 2016). Furthermore, targeting a neural
network with tDCS while it is engaged by a cognitive stimulation
activity, during or after the administration of tDCS, may yield
better therapeutic effects than stimulating the same cortical
region lacking cognitive stimuli (Cruz Gonzalez et al., 2018).
tDCS may increase the strength of transmission across synaptic
circuits in pathways that are stimulated by cognitive practice.
Thus, coupling both techniques could create a synergistic positive
effect on behavior (Miniussi et al., 2013; Birba et al., 2017; Cruz
Gonzalez et al., 2018). The effectiveness of tDCS in CR targeting
people with MCI or dementia must therefore be established.
It is fundamentally important to learn about all the different
configurations and protocols in which tDCS has been employed
to assess its utility.

We systematically reviewed the literature regarding effects
of tDCS on persons with MCI and dementia to address the
following questions: (1) Does tDCS alone improve cognitive
functioning in persons with MCI and dementia? (2) Does tDCS
coupled with cognitive training, or as a priming to other cognitive
interventions yield greater benefits in cognitive functioning
than the administration of tDCS alone? (3) Are the effects
of tDCS on the cognitive functions able to maintain across
time?

In this study, we reviewed and evaluated the effects of
tDCS on cognitive functions in people with MCI or dementia
from all the available clinical trials. A systematic review of the
available information up to the present will enable researchers
to better understand the potential of tDCS to offer solutions for
cognitive deterioration, with the aim of outlining more robust
interventions in the future for people with MCI and dementia.
Other reviews involving the use of different NIBS on healthy
aging (Prehn and Flöel, 2015), dementia (Freitas et al., 2011; Hsu
et al., 2015), MCI (Birba et al., 2017) have been carried out since
2011, but we provide an update and meta-analysis of recent trials
to focus exclusively on the use of tDCS in MCI and dementia
populations.
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METHODS

Eligibility Criteria
We performed a systematic review and meta-analysis following
the PRISMA guidelines (Liberati et al., 2009). Studies were
selected based on the following criteria:

- Participants: Participants included in the study were older
adults with MCI and persons with a diagnosis of dementia. The
criteria for MCI includes (a) subjective memory complaint; (b)
objective cognitive decline; (c) preserved ADLs, and (d) not
demented (Petersen et al., 1999). The diagnosis of dementia
followed the criteria of the NINCDS-ADRDA (McKhann et al.,
1984) and the DSM-IV (American Psychiatric Association,
2000). Participants with any other neurological disease that was
not dementia, such as only the Parkinson’s type, were excluded.

- Interventions: tDCS alone (anodal, cathodal, or sham), or a
combination of tDCS (online or offline) with an additional
cognitive task (CT).

- Comparisons: The comparison group could be a placebo with
sham tDCS, sham tDCS in combination with a CT, or a
control group performing a cognitive intervention. In order to
establish evidence on tDCS protocols for people with MCI or
dementia, studies without sham tDCS were included.

- Outcome measurements: The outcomes were measurements of
cognitive functions and neuroimaging techniques.

- Study design: All clinical trials published in English from
January 2007 to November 2017 were included.

Search Strategy
Studies were identified by a systematic literature search in
the following databases: PubMed, Web of Science, Science
Direct, MEDLINE, and PsycINFO. A search was performed
combining all the chosen keywords across the above databases.
The keywords and the search strategy are presented in Table 1. A
hand search was also performed to identify relevant studies.

Selection Criteria
After removing duplicates, the abstracts of the articles retrieved
were screened to make a final decision for further review. Two
investigators realized the search and the selection of studies
to be included. Any disagreements were resolved by a third
reviewer.

Data Extraction
The data extracted from the selected studies were conducted
by two investigators using a standardized data extraction
sheet which included study design, study population,
number of participants, mean participant age, gender ratio,
general cognitive level, number of intervention sessions,
experimental/sham tDCS parameters, combination of tDCS
with other interventions, outcome measures, neuroimaging
techniques, assessment sequence, follow-up, effect(s) of the
intervention, and intervention safety reports.

Methodological Quality
The studies selected for review were categorized and leveled
according to their design based on the hierarchy level of

TABLE 1 | Sample search strategy and databases.

Search strategy Database Articles

yielded

Aged OR aging OR old adult OR old people OR

old person OR aged OR aging/aging OR elder

OR geriatric

PubMed 2282878

Web of science 20020579

Science direct 160098

Medline 2215444

PsycINFO 990595

Mild cognitive impairment OR MCI OR subtle

cognitive impairment OR mild dementia OR

prodromal dementia

PubMed 39043

Web of science 32402

Science direct 26522

Medline 18949

PsycINFO 13300

Dementia OR Alzheimer’s disease OR AD OR

vascular dementia OR VD OR dementia with

Lewy bodies OR DLB OR mixed dementia OR

frontotemporal dementia

PubMed 680614

Web of science 230907

Science direct 8365

Medline 218682

PsycINFO 67559

1 AND 2 OR 3 PubMed 688964

Web of science 234611

Science direct 1936

Medline 221967

PsycINFO 69699

Cognition OR executive function OR attention

OR memory or working memory OR cognitive

training OR cognitive intervention OR cognitive

stimulation OR cognitive rehabilitation OR

cognitive remediation OR brain training OR

mental training OR memory training OR

mnemonic training OR executive function

training OR attention training or working

memory training

PubMed

Web of science

Science direct

Medline

PsycINFO

688598

934342

24133

462185

815917

Transcranial direct-current stimulation OR tDCS

OR direct-current stimulation OR TES OR DC

stimulation OR electrical stimulation OR

transcranial stimulation OR non-invasive brain

stimulation OR NIBS OR neuromodulation

PubMed 65155

Web of science 60269

Science direct 11106

Medline 44985

PsycINFO 36695

4 AND 5 AND 6 PubMed 1135

Web of science 601

Science direct 43

Medline 460

PsycINFO 333

Randomized control trials OR clinical trial OR

crossover studies OR case control studies OR

case series OR case report OR placebos OR

sham OR control

PubMed 3021385

Web of science 3889523

Science direct 231043

Medline 2521985

PsycINFO 744877

7 AND 8 PubMed 434

Web of science 317

Science direct 31

Medline 235

PsycINFO 181

evidence [Oxford Center for Evidence-based Medicine—Levels
of Evidence (March 2009)—CEBM1]. All randomized control

1https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-

evidence-march-2009 (Accessed March 29, 2018).
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TABLE 2 | Methodology’s heterogeneity assessment of RCT’S.

Study Stimulated

region

Intensity

(mA)

Sessions Duration

(min)

André et al., 2016 LDLPFC 2 4 20

Cotelli et al., 2014 LDLPFC 2 10 25

Khedr et al., 2014 LDLPFC 2 10 25

Suemoto et al., 2014 LDLPFC 2 6 20

Bystad et al., 2016a Temporal

cortex (T3)

2 6 30

LDPFC, Left dorsolateral prefrontal cortex.

trials (RCTs) were then rated by the first two authors using the
Risk of Bias Tool in the Cochrane Handbook for Systematic
Reviews of Interventions (Higgins and Green, 2008).

Data Analysis
Only RCTs, excluding crossover designs, were considered
for meta-analysis. In some cases, authors were contacted
to obtain data from their studies. After the review of the
clinical methodology’s heterogeneity of each study (Table 2), the
selected papers were further assessed for statistical heterogeneity,
using the I-squared and Chi-squared statistics of the outcome
measures.

Data of pooled memory outcomes comparing: (1) Short-term
effects of tDCS treatments vs. sham tDCS that targeted the
dorsolateral prefrontal cortex (DLPFC) were calculated based on
the differences between post-intervention evaluations relative to
the baseline to assess the immediate effects of tDCS; (2) Long-
term effects of tDCS treatments vs. sham tDCS that targeted
the DLPFC; were assessed according to the differences between
follow-up evaluations relative to the baseline.

All outcomes were analyzed as continuous variables with the
mean change, the largest standard deviation, and the sample
size in each group. The standardized mean difference and 95%
confidence intervals were calculated for all meta-analyses using
the fixed-effect model. The effect size was considered to be
small between 0.2–0.49, moderate (0.5–0.79), and a value of
0.8 or above was considered to be large (Cohen, 1992). If I2

was below 40%, it was considered to not represent statistical
heterogeneity. Otherwise, the random-effect model was used
instead. Significance was set at p = 0.05 and both meta-analyses
were conducted using Review Manager Software 5.3.

RESULTS

Study Selection
The search strategy identified 1,198 published articles from the
selected databases: PubMed (n= 434), Web of Science (n= 317),
Science Direct (n = 31), Medline (n = 235), and PsycINFO
(n = 181) (Table 1). Sixteen articles met the eligibility criteria
(Figure 1).

Study Characteristics
Eleven studies (Ferrucci et al., 2008; Boggio et al., 2009, 2012;
Cotelli et al., 2014; Khedr et al., 2014; Suemoto et al., 2014;

Penolazzi et al., 2015; André et al., 2016; Bystad et al., 2016a,b,
2017; Costa et al., 2017) involved the application of tDCS on
persons with dementia (PwD). These articles included three
randomized crossover studies (Ferrucci et al., 2008; Boggio et al.,
2009, 2012), five RCTs (Cotelli et al., 2014; Khedr et al., 2014;
Suemoto et al., 2014; André et al., 2016; Bystad et al., 2016a), two
single-subject pretest-post-test case studies (Bystad et al., 2016b,
2017), and two single-subject crossover-design studies (Penolazzi
et al., 2015; Costa et al., 2017). Four articles (Meinzer et al., 2015;
Yun et al., 2016; Ladenbauer et al., 2017; Murugaraja et al., 2017)
exposed persons with MCI (PwMCI) to the application of tDCS.
These four studies each used a different design: a randomized
crossover (Meinzer et al., 2015), an RCT (Yun et al., 2016), a
group pretest-post-test (Murugaraja et al., 2017), and a balanced
crossover (Ladenbauer et al., 2017).

These studies included a total of 195 participants with
dementia and 53 participants with MCI. Eleven studies applied
tDCS “alone” (Ferrucci et al., 2008; Boggio et al., 2012; Khedr
et al., 2014; Suemoto et al., 2014; André et al., 2016; Bystad
et al., 2016a,b, 2017; Yun et al., 2016; Ladenbauer et al., 2017;
Murugaraja et al., 2017) and five paired tDCS with CT (Boggio
et al., 2009; Cotelli et al., 2014; Meinzer et al., 2015; Penolazzi
et al., 2015; Costa et al., 2017). The details of the studies’
characteristics and protocols are set out in Table 3.

tDCS Parameters
Two studies randomly assigned participants to anodal, cathodal,
and sham groups (Ferrucci et al., 2008; Khedr et al., 2014). The
majority of the studies involved anodal and sham groups (Boggio
et al., 2009, 2012; Cotelli et al., 2014; Suemoto et al., 2014;Meinzer
et al., 2015; Penolazzi et al., 2015; André et al., 2016; Bystad
et al., 2016a; Yun et al., 2016; Costa et al., 2017; Ladenbauer
et al., 2017; Murugaraja et al., 2017). In contrast, three studies
focused on anodal stimulation lacking sham tDCS (Bystad et al.,
2016b, 2017; Murugaraja et al., 2017). Regarding the dose,
we found a high level of heterogeneity among experiments.
Only four studies were single-session (Ferrucci et al., 2008;
Boggio et al., 2009; Meinzer et al., 2015; Ladenbauer et al.,
2017) whereas the number of sessions for the rest of studies
ranged from 4 to 10 (Cotelli et al., 2014; Khedr et al., 2014;
Suemoto et al., 2014; Penolazzi et al., 2015; André et al., 2016;
Bystad et al., 2016a; Yun et al., 2016). Bystad carried out two
case studies adopting unusual approaches, the first study with
a daily dose of tDCS for a duration of 8 months (Bystad
et al., 2017) and the second study using tDCS twice daily
consecutively for 6 days (Bystad et al., 2016b). With respect to
the electric fields, more homogeneous parameters were chosen
among studies. The majority of the studies applied 2mA of
intensity and the targeted region for the active electrode was
the DLFPC and the right supraorbital region for the cathode
(Figure 2).

Six studies reported mild adverse reactions such as itchy and
tingling sensations, redness in the area of electrode application,
burning scalp, headache, dizziness, and pricking (Ferrucci et al.,
2008; Khedr et al., 2014; Suemoto et al., 2014; Bystad et al., 2017;
Ladenbauer et al., 2017; Murugaraja et al., 2017).
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FIGURE 1 | Flow chart for study selection and level of evidence. RCT’s, Randomized control trials.

Effectiveness of tDCS “Alone”
Seven studies on the dementia population reported positive
effects of anodal (Ferrucci et al., 2008; Boggio et al., 2012;
Khedr et al., 2014; André et al., 2016; Bystad et al., 2016b,
2017) and cathodal tDCS (Khedr et al., 2014) on cognition.
All these cognitive improvements were associated with memory
and global cognition. All outcomes but two (Boggio et al.,
2012; Bystad et al., 2017) were statistically significant. However,
two of these studies failed to report positive effects in the
attention domain (Ferrucci et al., 2008; Boggio et al., 2012).
Two others did not report any positive effects of anodal
tDCS on cognition (Suemoto et al., 2014; Bystad et al.,
2016a).

Four studies (Boggio et al., 2012; Cotelli et al., 2014; Khedr
et al., 2014; Bystad et al., 2016b) assessed the long-term effects of
tDCS. Three of these reported significant changes: one showed

that the improvement caused by anodal tDCS persisted 4 weeks
after the end of stimulation (Boggio et al., 2012), another
indicated that either anodal or cathodal tDCS improved mean
MMSE score at 1- and 2-month follow-up (Khedr et al., 2014),
and the third study revealed that 2 months after the end of the
intervention, anodal tDCS was clinically significant (Bystad et al.,
2016b).

Only two studies performed neuroimaging tests. In the first,
an ERP experiment confirmed significant effects reducing P300
latency after both anodal and cathodal tDCS (Khedr et al., 2014).
The second used EEG, although it did not prove changes from
baseline (Bystad et al., 2016b).

Three studies evaluated the efficacy of anodal tDCS on
PwMCI. Overall, anodal tDCS achieved significant improvement
in memory (Yun et al., 2016; Murugaraja et al., 2017).
Furthermore, two of these studies investigated the neural effects
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FIGURE 2 | tDCS parameters used across the studies included. IFG: 1, (Ferrucci et al., 2008); 2, (Boggio et al., 2009); 3, (Boggio et al., 2012); 4, (Cotelli et al., 2014);

5, (Suemoto et al., 2014); 6, (Khedr et al., 2014); 7, (Bystad et al., 2016a); 8, (Bystad et al., 2016b); 9, (Bystad et al., 2017); 10, (Penolazzi et al., 2015); 11, (Costa

et al., 2017); 12, (André et al., 2016); 13, (Meinzer et al., 2015); 14, (Yun et al., 2016); 15, (Murugaraja et al., 2017); 16, (Ladenbauer et al., 2017); IFG, inferior frontal

gyrus; L/DLPFCT, left/right dorsolateral prefrontal cortex; L&R, left and right.

of anodal tDCS. Yun et al. (2016) utilized PET to demonstrate
a significantly increased metabolism in cortical regions. In the
same way, the work of Ladenbauer et al. (2017) made clear,
through the use of concurrent EEG, that slow oscillatory tDCS
significantly increased overall slow oscillations (SO) and spindle
power (Ladenbauer et al., 2017).

Effectiveness of tDCS Combined With CT
Details and methods about the CT operated among studies
are shown in Table 3. All the studies involving PwD showed
significant benefits after receipt of anodal tDCS paired with a CT.
Boggio et al. (2009)applied tDCS while participants completed
cognitive assessments, enhancing memory in a visual recognition
memory task, but there were no effects on attention. The work
of Cotelli et al. (2014) combining memory training with tDCS
and sham tDCS resulted in improved memory performance
illustrated in a face-name association memory task, as compared
to a group which received tDCS paired with motor training; this
improvement persisted significantly after 12 weeks. However, it
failed to produce significant effects on standardized cognitive
tests. In one single-subject crossover study, the cognitive training

associated with memory components was started right after
the end of tDCS administration and the findings revealed a
significant accuracy improvement in a verbal working memory
task. In contrast, there is no indication of amelioration in other
cognitive assessments (Penolazzi et al., 2015). Alternatively, one
case study that focused on stimulating the production and
comprehension of language through a combination of anodal
tDCS and linguistic training found a significant effect in an
auditory comprehension task (Costa et al., 2017).

The work of Meinzer et al. (2015) targeting PwMCI revealed
that during exposure to anodal tDCS, participants performed
significantly better in a semantic word-retrieval task than those
who received sham tDCS, achieving the level of healthy elderly
subjects. Furthermore, the application of anodal tDCS led to
reduced task-related prefrontal hyperactivity shown by resting-
state fMRI.

Details of the CT
Study Quality
The level of evidence of all the trials is displayed in Figure 1.
Details can be found in Table 4. Most of the studies reported a
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TABLE 4 | Methodological quality (Cochrane Risk of Bias Tool).

Study Random

sequence

generation

Allocation

concealment

Blinding of

participants and

personnel

Blinding of

outcome

assessment

Incomplete outcome

data

Selective

reporting

Other bias

Ferrucci et al., 2008 Unclear High High Low Low Low Low

Boggio et al., 2009 Unclear Low High High Low Low Low

Boggio et al., 2012 Unclear High Low High Low Low Low

Cotelli et al., 2014 Unclear Unclear High Low High Low Low

Suemoto et al., 2014 Low Low High Low Low Low Low

Khedr et al., 2014 Low Low Low Low Low Low Low

Bystad et al., 2016a Low High Low Low Low Low Low

André et al., 2016 Unclear High High High Low Low Low

Meinzer et al., 2015 Unclear High High Low Low Low Low

Yun et al., 2016 Low High Low Low Low Low Low

Ladenbauer et al., 2017 Unclear High High High Low Low Low

risk of bias describing the method used to conceal the allocation
sequence (Ferrucci et al., 2008; Boggio et al., 2012; Meinzer et al.,
2015; André et al., 2016; Bystad et al., 2016a; Yun et al., 2016;
Ladenbauer et al., 2017). The most common methodological
limitation of these studies was the issue of the blinding of the
personnel due to the nature of most tDCS devices.

Meta-Analysis
Four studies (Cotelli et al., 2014; Khedr et al., 2014; Suemoto
et al., 2014; André et al., 2016) involving 119 PwD in total
were included in the meta-analysis. One RCT study was
excluded because the region of stimulation was the temporal
region (Bystad et al., 2016a). The results revealed a statistically
significant mean effect size of 0.39 [95% CI, 0.02, 0.74] (p= 0.04)
that favored real tDCS over sham stimulation for immediate
effects. There was no evidence of heterogeneity across studies
(Q = 4.73, I2 = 37%, p = 0.19). An overall small non-significant
effect of 0.15 [95% CI, −0.023, 0.52] (p = 0.44) was noted
in long-term effects of tDCS in comparison with sham tDCS.
Heterogeneity was not found (Q = 2.18, I2 = 0%, p = 0.53;
Figure 3).

DISCUSSION

All the 11 articles (RCTs) whose evidence was ranked as level 1b
presented a commendable methodological quality with a general
presence of low risk of bias. From the MMSE admission scores
in the AD studies that ranged from 15 to 24.5 and MCI studies
from 26.75 to 28.3, we noticed that the effects of tDCS benefits
on cognition were significantly better for patients with mild to
moderate cognitive decline.

When comparing the effectiveness of tDCS, in single and
multisession interventions, positive changes occurred in both
behavioral and neural systems. In this systematic review, we
aimed to reveal robust interventions by identifying similar
elements across studies. One main concern when designing
interventions in NIBS is the treatment duration in multisession
trials. There is similarity in terms of the number of sessions

across the selected studies: four to ten sessions, staggered over 1–
2 weeks. These short interventions can provide valuable data that
allow tDCS to be proposed as a potential option in CR. However,
the benefit is rather short-term with a medium effect size of 0.39.
This also contrasts with other long intervention frameworks for
clinical use in which more time is needed to evaluate whether
the changes have a real benefit in reversible conditions such
as MCI (Portet et al., 2006) or have an impact in long-term
neurodegenerative processes such as dementia. For example, an
alternative was proposed by Bystad et al. (2017) that adopted
an 8-month protocol of daily tDCS use in a person with AD
to stabilize cognitive decline. The long-term outcome probably
requires prolonged periods of intervention.

Although six studies reported side effects (Ferrucci et al., 2008;
Khedr et al., 2014; Suemoto et al., 2014; Bystad et al., 2017;
Ladenbauer et al., 2017; Murugaraja et al., 2017), all participants
tolerated the therapies well and the sensations experienced were
mild. This suggests that the parameters employed are sufficiently
safe (up to 30min, 2mA). Another concern is that the range of
the parameters for intensity and duration stimulation and the
size of the electrodes were highly diverse, making it difficult to
draw conclusions in order to select a specific protocol for future
research.

Another view is that when selecting a region of interest for
stimulation, most of the studies targeted the temporal regions
(Ferrucci et al., 2008; Boggio et al., 2012; Bystad et al., 2016a,b,
2017), for the role this area plays in certain memory processes
(Brown et al., 1987; Kaye et al., 1997) as well as language (Nguyen
et al., 2018). Another common region of interest is the DLPFC
because of its importance in high-order cognitive mechanisms
(Tremblay et al., 2014). Language-oriented work has targeted the
inferior frontal gyrus and DLPFC as well, successfully achieving
better performance in semantic word retrieval (Meinzer et al.,
2015) and comprehension of language (Costa et al., 2017). In the
same way, studies that applied tDCS combined with CT operated
a CT related with a cognitive domain associated with the brain
area targeted by tDCS. Although this approach is reasonable and
consistent, the studies failed to assess if other cognitive domains
associated with other brain regions were affected. Due to the
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FIGURE 3 | Meta-analyses forest plot. (A) Short term effects of tDCS on memory. Data derived from a fixed effect model. Each line represents an individual effect size

of each study. The diamond at the bottom shows the standardized effect size (0.39). Relative weight for each trial is illustrated by the sized of the corresponding

square. (B) Long term effects of tDCS on memory. Data derived from a fixed effect model. Each line represents an individual effect size of each study. The diamond at

the bottom shows the standardized effect size (0.15). Relative weight for each trial is illustrated by the sized of the corresponding square.

lack of focality of tDCS and the variability of the current flow
direction, there is a possibility that other neural networks, not
directly targeted by tDCS, could have been affected (Woods et al.,
2016).

Three studies used an extracephalic cathodal montage
(Ferrucci et al., 2008; Boggio et al., 2012; Cotelli et al., 2014) but
the majority of the studies selected a cephalic montage by placing
the cathode on the supraorbital region (Fp2) (Boggio et al., 2009;
Khedr et al., 2014; Suemoto et al., 2014; Meinzer et al., 2015;
Penolazzi et al., 2015; André et al., 2016; Bystad et al., 2016a,b,
2017; Costa et al., 2017; Murugaraja et al., 2017).

Overall, these studies have selected predominantly global
cognition and memory domain as experimental evaluators.
Despite the fact that these constructs are similar in nature,
there is great variability in terms of assessment and CT chosen.
All the studies but two (Suemoto et al., 2014; Bystad et al.,
2016a) report positive effects of the application of tDCS. Against
this trend, among the other articles, we must emphasize that
only six studies translated these improvements into standardized
cognitive assessments (Ferrucci et al., 2008; Khedr et al.,
2014; André et al., 2016; Bystad et al., 2016b; Yun et al.,
2016; Ladenbauer et al., 2017) while other studies reporting
improvements in non-standardized CT to prove the effects
of tDCS. Yet it must be acknowledged that certain cognitive
functions are mediated by networks of various brain sites and
might be difficult to be influenced by targeting only a subset of
their brain regions (Reinhart et al., 2017), besides the short length
of the interventionmight have contributed to these changes being
insufficient to translate into standardized test results.

It is hypothesized that targeting a neural circuit with tDCS
paired with a CT may produce stronger therapeutic effects
than stimulating the same brain area without cognitive stimuli
(Birba et al., 2017; Cruz Gonzalez et al., 2018). The evidence
on whether using tDCS alone or in combination with other CT
yields identical results and seems to be inconclusive in both
PwD or PwMCI. Recently, a single-subject design study using
cognitive stimulation practice across sessions in combination
with simultaneous anodal tDCS showed significantly stronger
effects on planning ability, processing speed, and attention of
cognitive stimulation practice than both sham tDCS and the
application of cognitive stimulation practice alone in PwMCI
(Cruz Gonzalez et al., 2018). This finding prompts the plausible
speculation that tDCS, combined with cognitive training, might
have synergic effects. A recent review of CR or cognitive training
interventions with control conditions for PwD shows that RCTs
on the effect of cognitive training on PwD are limited and there is
no indication of any significant benefits from cognitive training
(Bahar-Fuchs et al., 2013). Following this line of thought, future
studies would carry more weight if they considered combining
both interventions in comparison with control groups receiving
tDCS or cognitive training alone, and would report not just
benefits in the trained CT but also generalization to the trained
cognitive domains and daily functioning.

Only five studies reported the use of brain imaging as an
outcome demonstrating the neuromodulatory effects of tDCS
(Khedr et al., 2014; Meinzer et al., 2015; Bystad et al., 2016b; Yun
et al., 2016; Ladenbauer et al., 2017). In the absence of imaging
techniques, we can only speculate on the results of behavioral
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tests without examining the underlying neural mechanism of
tDCS in MCI or dementia.

This is the first meta-analysis to explore the short- and long-
term effects of tDCS in thememory domain, targeting theDLPFC
in PwD. We have found evidence that tDCS has a significant
immediate effect but that it is not significantly sustained with
the passage of time. We suggest that future research address the
need to evaluate the long-lasting effects of tDCS on the cognitive
domain, implementing both behavioral and imaging follow-up
evaluations.

This study has several limitations. For instance, although
the pooled outcomes for meta-analysis were all memory-based,
the selected studies used different tests. In addition, only four
studies could be included, this might contribute to making the
meta-analyses somewhat underpowered, thus the findings should
be interpreted with cautions. Another striking example is the
AD stage, which varied among the studies. Moreover, we have
not included the most recent work published since November
2017 (Cruz Gonzalez et al., 2018), because of the time eligibility
criteria. This systematic review included all tDCS trials carried
out in dementia andMCI populations, and subsequently reported
a few papers that did not use a comparison group (sham tDCS),
which weakens the conclusions somewhat.

CONCLUSION

Our meta-analysis suggests that there is modest evidence
supporting tDCS on the DLPFC ameliorates memory in PwD,

however, the benefits are not long-term. Our review shows
that tDCS alone seems to have a positive effect on cognition
particularly for memory and language in PwD, with mild to
moderate cognitive decline, and MCI. Whether tDCS might
produce better outcomes on PwMCI and PwD in coupling with
another CT than when administered alone remains unclear.

Although all these findings are promising, the administration
of tDCS might not yet be a valid option for clinical intervention
for dementia or MCI. Some of the results come from non-
RCT studies, and the heterogeneity of the clinical trials
does not allow one to define a clear protocol with optimal
parameters. Furthermore, the interventions were too short to
determine the real effects on cognitive functions and none
of the studies assessed the impact of treatments on everyday
cognition in daily functioning, which is an essential domain
to be considered due to the functional consequences of
dementia. We recommend that future studies include prolonged
periods of intervention, neuroimaging techniques, and consider
more robust, standardized methodology of tDCS in order to
establish whether tDCS can serve as an evidence-based clinical
intervention for PwMCI and PwD.
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An important objective for researchers and clinicians is to gain a better understanding
of the factors that underlie autism spectrum disorders (ASDs). It is possible that
investigating objective and quantitative behavioral phenotypes and their relationship to
clinical characteristics, such as autistic traits and other emotional/behavioral problems,
might facilitate this process. Given this, in the current study we examined the link
between locomotor dynamics and clinical characteristics, including autistic traits and
emotional/behavioral problems, in children with ASD (n = 14) and typically developing
(TD) children (n = 13). A watch-type actigraph was used to continuously measure
locomotor activity which was assessed in terms of mean activity levels and the skewness
of activity. Parents assessed quantitative autistic traits using the Japanese version of
the Social Responsiveness Scale (SRS) and emotional and behavioral problems using
the Japanese version of the Strengths and Difficulties Questionnaire (SDQ). Results
showed that among all children, all-day activity was more negatively skewed, suggesting
sporadic large all-day “troughs” in activity and was significantly correlated with the
SRS social awareness subscale score (ρ = −0.446, p = 0.038). In addition, the more
negatively skewed daytime locomotor activity was associated with the SDQ Hyperactivity
Inattention subscale score (ρ = −0.493, p = 0.020). The results of this study indicate that
investigating locomotor dynamics may provide one way to increase understanding of the
neurophysiological mechanisms underlying the clinical characteristics of ASD.

Keywords: autism spectrum disorders, autistic traits, social awareness, hyperactivity/inattention, locomotor
activity, quantitative behavioral phenotypes
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INTRODUCTION

The potential importance of translational research for autism
spectrum disorder (ASD) is increasing given that its biological
pathology and fully effective treatments have not yet been
determined. Specifically, the acquisition of more knowledge
about objective and quantitative neurobiological and behavioral
indices may facilitate the development of basic and clinical
research as well as lead to possible ASD phenotypes being
identified.

In this context, locomotor dynamics may constitute a useful
objective and quantifiable measure for translational research, as
investigation of this behavioral index is less invasive and can
be continued for an extended period of time in both laboratory
(animal) and clinical research for the study of psychiatric and
developmental disorders (Nakamura et al., 2008). Focusing on
higher-order statistics such as skewnessmight be especially useful
when characterizing behavioral alterations in psychiatric and
developmental disorders. For example, we recently reported that
in children with ASD, locomotor activity was significantly more
negatively skewed—defined as a left-skewed distribution (or a
long left tail relative to the right tail) with extreme values lower
than their mean—for all-day activity, and also tended to be more
negatively skewed for daytime activity, and, that this pattern
of locomotor activity was related to acoustic hyper-reactivity
(Takahashi et al., 2018). Further extending the use of actigraphy
to help determine the clinical relevance of locomotor activity in
ASD may help reveal important mechanisms in the underlying
neurophysiology of this condition, while using higher-order
statistics might further contribute to the realization of this
purpose.

The objective of this study therefore was to investigate the
relationship between locomotor activity and different clinical
characteristics to determine the clinical relevance of locomotor
activity in ASD and typically developing (TD) children. More
specifically, as the investigation of locomotor activity is more
common in attention-deficit hyperactivity disorder (ADHD;
Cheung et al., 2015, 2016; De Crescenzo et al., 2016) compared
to ASD, and ASD is known to have several comorbid
psychiatric and developmental problems including attention
deficit and hyperactivity (Lai et al., 2014), in this study we
investigated the relationship between locomotor activity and
emotional/behavioral problems as well as autistic traits. We
hypothesize that locomotor activity indexes measured in daily
life, such as negative skewness—which are related to ASD—will
also be related to these clinical characteristics of ASD.

MATERIALS AND METHODS

Participants
Data were used from 27 Japanese children aged from 7 to
16 years old. Fourteen had ASD (13 boys) while 13 were TD
children (10 boys). All participants were included in our previous
study (Takahashi et al., 2018). Diagnoses were made by child
psychiatrists after medical records were reviewed and a clinical
interview had been performed based on the Diagnostic and

Statistical Manual of Mental Disorders, Fourth Edition, Text
Revision (American Psychiatric Association, 2000). Diagnoses
were confirmed by using the Autism Diagnostic Observation
Schedule (Lord et al., 2000) and Autism Diagnostic Interview-
Revised (Lord et al., 1995). There were no significant differences
between the groups in terms of sex, age (age in months; ASD
125.6 ± 30.9; TD 138.5 ± 38.2; U = 76, p = 0.467). The Wechsler
Intelligence Scale for Children-Third Revision (Wechsler, 1991)
showed that, the estimated IQ was above 70 for every child
included in the study, and did not differ between groups
(IQ: ASD 105.7 ± 23.3; TD 104.7 ± 18.3; U = 31, p = 0.958).
No children were being medicated with psychotropic substances
and none of them smoked. Besides having autism, no children
had any central nervous system abnormalities. For the TD group
having a previous or current psychiatric diagnosis or learning
disability served as exclusion criteria.

Ethics Approval and Consent to Participate
This study was conducted in accordance with the Helsinki
Declaration with institutional review-board approval being
granted by the Research Ethics Committee of the National
Center of Neurology and Psychiatry (#A2013-112) and the
research ethics committee of the Graduate School of Education,
the University of Tokyo (#13-119). After the details of the
study were explained to them, all participants and their parents
provided written informed consent before being included in the
study.

Assessment of Autistic Traits and
Emotional/Behavioral Problems
Parents used the Japanese version (Kamio et al., 2013) of the
Social Responsiveness Scale (SRS; Constantino and Gruber,
2005) to assess quantitative autistic traits. This scale consists of
five treatment subscales: social awareness, social cognition, social
communication, social motivation, and autistic mannerisms.
Higher SRS scores indicate increased social impairment.

To assess emotional and behavioral problems, we
used the Japanese version (Moriwaki and Kamio, 2014)
of the Strengths and Difficulties Questionnaire (SDQ;
Goodman, 1997). This measure also has five subscales:
four difficulty subscales (Emotional Symptoms, Conduct
Problems, Hyperactivity Inattention, and Peer Problems)
and one strengths subscale (Prosocial Behavior). The
scores of the four difficulty subscales can be summed to
create a total difficulties score. As with the overall SDQ
difficulties score, higher scores on the individual difficulty
subscales reflect greater difficulties. In contrast, higher
scores on the prosocial behavior subscale indicate increased
prosociality.

Assessment of Locomotor Dynamics
In order to assess locomotor dynamics participants were
informed that they should wear the MicroMini Motionlogger
actigraph (Ambulatory Monitors Inc., Ardsley, NY, USA;
Teicher, 1995) on the wrist of their non-dominant hand.
Specifically, that they should wear it on their wrist for > 7 days
during the spring, summer, or winter school vacations (TD:
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FIGURE 1 | Significant relationships observed between locomotor dynamics and clinical characteristics. (A) Relationship between all-day skewness and the SRS
social awareness score. (B) Relationship between daytime skewness and the SDQ Hyperactivity Inattention score. ASDs, Autism Spectrum Disorders; SDQ,
Strengths and Difficulties Questionnaire; SRS, Social Responsiveness Scale; TD, Typical Development.

7.7 ± 1.9 days, ASD: 7.8 ± 1.8 days, U = 80, p = 0.574).
Full details of the assessment of locomotor dynamics are
provided in our previous study (Takahashi et al., 2018). It was
expected that children would wear this device continuously
throughout the study period. However, they were instructed to
remove it when either bathing, or during rigorous exercise, or
when performing any activity that might result in the device
being damaged. They were also informed that they should
just lead their lives normally while wearing the actigraph
device. After the recording period had finished, three boys
with ASD and two boys with TD had to be excluded from
the actigraph behavioral data analysis for not wearing the
actigraph for a long enough period of time during the daytime
hours.

As described previously (Takahashi et al., 2018), sleep–wake
cycles were scored using Action W-2 software, and we now
further examine the mean and skewness, the first- and
third-order statistical moments, of the locomotor distributions,
for all-day and daytime activity. Sleep parameters were not
examined, since none of them differed significantly between ASD
and TD children.

Statistical Analysis
To examine categorical differences in the participants’ scores
we used Chi-square tests (and Fisher’s exact tests when
necessary). Due to the non-normal distributions of most
of the locomotor activity and clinical characteristic variables
nonparametric analyses were performed. The Mann-Whitney

TABLE 1 | Clinical characteristics of the participants.

Typical development Autism spectrum disorders

Mean SD Mean SD U P

Social Responsiveness Scale
Total Score 20.5 10.0 70.1 34.4 8 <0.001
Social Awareness 3.2 2.3 9.9 3.5 2 <0.001
Social Cognition 4.0 3.2 14.6 5.4 7.5 <0.001
Social Communication 6.6 3.9 22.2 13.7 16.5 <0.001
Social Motivation 4.3 3.6 8.7 6.3 49 0.043
Autistic Mannerisms 2.5 1.5 14.7 9.1 12 <0.001
Strengths and Difficulties Questionnaire
Total Difficulties Score 6.3 3.7 15.8 6.6 17.5 <0.001
Emotional Symptoms 1.2 1.7 2.9 2.3 52.5 0.610
Conduct Problems 1.6 1.4 2.9 2.0 57 0.105
Hyperactivity Inattention 2.3 0.9 5.9 2.3 19 <0.001
Peer Problems 1.2 1.2 4.1 2.8 32.5 0.003
Prosocial Behavior 7.7 1.4 4.9 2.9 33 0.004

SD, standard deviation; Mann-Whitney U test. Number of participants (typical development: autism spectrum disorders) = 13:14.
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U test was used to compare mean parameter values. Spearman’s
rank order correlation coefficients were used to examine
the relationships between variables. The level of statistical
significance was set at p < 0.05. As multiple tests were
performed a Bonferroni adjustment was subsequently applied
to determine statistical significance. SPSS Ver. 22 (IBM
Japan, Tokyo, Japan) was used to perform all statistical
analyses.

RESULTS

Differences in Clinical Characteristics
Between Children With Autism Spectrum
Disorders and Controls
All SRS scores were significantly higher in the ASD group than
in the controls (Table 1). Compared with the TD group, the
ASD group had a significantly lower SDQ Prosocial Behavior
score and significantly higher scores for Total Difficulties and
the SDQ Hyperactivity Inattention and Peer Problems subscales
(Table 1).

Relationship of Locomotor Dynamics to
Clinical Characteristics
We found significant relationships between the locomotor
dynamics and clinical characteristics which are presented in
Figure 1. Specifically, for all children combined there was
a significant negative relationship between all-day skewness
and the SRS social awareness score (Figure 1A). In addition,
there was also a significant negative relationship between
daytime skewness and the SDQ Hyperactivity Inattention
score (Figure 1B). No other significant relationships were
observed for the clinical characteristics of locomotor dynamics,
while the significant relationships described above became
non-significant when we divided the children into groups (ASD
and TD).

DISCUSSION

The results of this study showed that more negatively skewed
all-day locomotor activity evaluated with an actigraph
was related to the SRS social awareness score when the
ASD and TD children were combined in one group.
In addition, more negatively skewed locomotor activity
during the daytime was related to the SDQ Hyperactivity
Inattention score. To the best of our knowledge, this is
the first time an association has been reported between
locomotor dynamics and clinical characteristics, including
autistic traits and emotional/behavioral problems, in
children with ASD and TD. Our results suggest that
besides using standard descriptive statistics when examining
behavioral characteristics in ASD children, it may also be
beneficial to utilize third-order statistical moments such as
skewness.

For all children combined, the autistic trait of social awareness
was related to significantly more negative skewness in all-day
locomotor activity (defined as a left-skewed distribution with

extreme values lower than their mean, which suggests behavior
marked by an increase in large sporadic ‘‘troughs’’ below
mean activity levels), with this behavioral characteristic having
been previously found in ASD compared to TD children
(Takahashi et al., 2018). Although the biological background
of social awareness is uncertain, it might be associated
with von Economo’s neurons, which are also known to be
involved in motor awareness (Cauda et al., 2014). Thus, the
use of higher order statistics, such as skewness to examine
locomotor activity in animals and humans might help clarify
the biological background of autistic traits, including social
awareness.

The behavioral problem of hyperactivity/inattention was
related to significantly more negative skewness of daytime
locomotor activity, which tended to be more negative in
children with ASD compared to control children (Takahashi
et al., 2018). These results support the idea that ADHD may
be highly comorbid in ASD (Lai et al., 2014), and suggest
daytime locomotor activity and its skewness might serve
as a potential behavioral phenotype that is connected with
the comorbid clinical features of hyperactivity/inattention
in ASD children. Several comorbid problems are frequently
reported in ASD (Lai et al., 2014), including hyperactivity,
inattention as well as motor abnormalities, such as
motor delay, deficits in coordination and movement
planning. Atypical movement in ASD may be regulated by
emotion (Trevarthen and Delafield-Butt, 2013; Vernazza-
Martin et al., 2013). Future studies investigating these
comorbid features in relation to locomotor activity and
emotional regulation in daily life might help elucidate the
neurophysiological mechanisms that may underlie these features
in ASD.

The small number of children in the ASD and TD groups is a
significant study limitation. While it was still possible to detect
significant associations between some aspects of locomotor
dynamics and clinical characteristics for all children combined,
significant relationships were not observed when the children
were divided into groups. Further, gender differences exist in
many aspects of ASD (Lai et al., 2014), however, participants in
this study were mainly boys, while the age span was rather large.
In addition, although we did not find significant differences in
sleep parameters in our previous study (Takahashi et al., 2018),
sleep problems are frequently observed in ASD children (Lai
et al., 2014) and might possibly be seasonal (Hayashi, 2001),
which could have impacted on our analysis of both nighttime
and daytime locomotor activity. Given this, research that uses
a larger number of children of both sexes with a narrower age
range that also controls for season is now warranted to more
clearly determine the relationship between locomotor dynamics
and different clinical characteristics.

CONCLUSION

Negatively skewed all-day locomotor activity (as seen in activity
that was characterized by large sporadic all-day ‘‘troughs,’’)
might be a potentially useful quantitative behavioral index related
to ASD, especially autistic social awareness. For all children,
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more negatively skewed daytime locomotor activity was also
associated with comorbid hyperactivity/inattention behavioral
problems. The results of this study thus build on and extend
previous research on locomotor dynamics and further develop
understanding of the potential neurophysiological mechanisms
that may underlie clinical characteristics in ASD.
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Today, several pharmaceutic and non-pharmaceutic approaches exist to treat psychiatric
and neurological diseases. Because of the lack of treatment procedures that are
medication free and without severe side effects, transcranial direct current stimulation
(tDCS) and aerobic exercise (AE) have been tested to explore the potential for initiating
and modulating neuroplasticity in the human brain. Both tDCS and AE could support
cognition and behavior in the clinical and non-clinical context to improve the recovery
process within neurological or psychiatric conditions or to increase performance. As
these techniques still lack meaningful effects, although they provide multiple beneficial
opportunities within disease and health applications, there is emerging interest to
find improved tDCS and AE protocols. Since multimodal approaches could provoke
synergetic effects, a few recent studies have begun to combine tDCS and AE within
different settings such as in cognitive training in health or for treatment purposes
within clinical settings, all of which show superior effects compared to single technique
applications. The beneficial outcomes of both techniques depend on several parameters
and the understanding of neural mechanisms that are not yet fully understood. Recent
studies have begun to directly combine tDCS and AE within one session, although
their interactions on the behavioral, neurophysiological and neurochemical levels are
entirely unclear. Therefore, this review: (a) provides an overview of acute behavioral,
neurophysiological, and neurochemical effects that both techniques provoke within only
one single application in isolation; (b) gives an overview regarding the mechanistic
pathways; and (c) discusses potential interactions and synergies between tDCS and AE
that might be provoked when directly combining both techniques. From this literature
review focusing primarily on the cognitive domain in term of specific executive functions
(EFs; inhibition, updating, and switching), it is concluded that a direct combination
of tDCS and AE provides multiple beneficial opportunities for synergistic effects.
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A combination could be useful within non-clinical settings in health and for treating
several psychiatric and neurologic conditions. However, there is a lack of research and
there are several possibly interacting moderating parameters that must be considered
and more importantly must be systematically investigated in the future.

Keywords: non-invasive brain stimulation, neuro-rehabilitation, cognitive training, transcranial electric
stimulation, executive functions, physical activity, cognitive enhancement, tDCS

INTRODUCTION

One of the most striking characteristics of the human brain is
its ability to respond to changing internal and external states
by reorganizing and restructuring neural circuitry on different
timescales ranging from milliseconds to many years. This ability,
called neuroplasticity, is extremely important throughout a
person’s entire life, whether it is in skill or knowledge acquisition
or within recovery processes after brain injury (Kays et al., 2012).
Synaptic strengthening and building new synaptic connections
is a key element within neuroplasticity and must be studied
to determine the best means to recover or initiate optimal
neuroplastic processes in case of disruptive events through
disease or injuries that provoke maladaptive brain functions
and abnormal neuroplasticity (Nitsche et al., 2012). Traditional
and conventional treatments of maladaptive brain functions
and neuroplasticity include medications; however, these are
often accompanied by severe side-effects (De Hert et al., 2011).
Therefore, there is an increasing need for non-pharmacological,
cost-effective, harmless, and easily applicable, yet still effective
treatments that can be used to replace drugs or as supplements
to increase overall treatment success. Two techniques are of
relevance to fulfill such needs: transcranial current stimulation
(tCS), such as transcranial direct current stimulation (tDCS), and
aerobic exercise (AE).

The tDCS technique provides a non-invasive and safe way to
modulate neuronal activity and provoke neuroplastic changes,
which has been predominantly shown in the human motor
cortex, such as the primary motor cortex (M1) (Huang et al.,
2017). tDCS applies a weak and constant current via surface
electrodes attached to the scalp and placed over a target brain
area. While most tDCS studies stimulated motor regions, several
works have been applied to investigate the effects of tDCS on
non-motor regions, such as the prefrontal cortex (PFC). In
particular, prefrontal tDCS is a promising technique of initiating
neural plasticity within neurological and psychiatric conditions
that are associated with maladaptive neuroplasticity (for a review
see Flöel, 2014). Different forms of regular AE have also been
associated with functional and structural brain adaptations
enabling the individual to better adapt to new demands (Hötting
and Röder, 2013). Moreover, the research of acute effects of AE
have documented a series of effects on the cognitive domain in
health and disease (McMorris, 2016b). These techniques provide
promising and multiple beneficial opportunities in neurologic
and psychiatric diseases (Fregni et al., 2006a; Knöchel et al.,
2012; Kuo et al., 2014; Forbes et al., 2015) and also in health
(Choe et al., 2016; Ward et al., 2017). More specifically, there is
increasing evidence from clinical trials that both tDCS and AE

can be beneficial in stroke (Duncan et al., 2003; Fregni et al.,
2005; Tang et al., 2009; Brunoni et al., 2012; Marquez et al., 2015),
fibromyalgia (Castillo-Saavedra et al., 2016; Fink and Lewis,
2017), Alzheimer’s disease (Ferrucci et al., 2008; Intlekofer and
Cotman, 2013; Farina et al., 2014; Hsu et al., 2015; Inagawa et al.,
2018), Parkinson’s disease (Fregni et al., 2006c; Schenkman et al.,
2012), major depressive disorder (Fregni et al., 2006b; Kuo et al.,
2014; Schuch et al., 2016; Yokoi et al., 2018), and schizophrenia
treatments (Gorczynski and Faulkner, 2010; Kuo et al., 2014;
Smith et al., 2015; Yokoi et al., 2018).

However, despite such promising results, clinical effectiveness
is not yet fully supported as both techniques often lack
meaningful effect sizes (Kekic et al., 2016). Therefore, recent
research has explored optimal exercise protocols such as the ideal
dosage andmodalities. Also, optimal tDCS stimulation protocols,
e.g., electric intensity, electrode configuration, and duration,
were studied (Paulus, 2011; Woods et al., 2016). Moreover,
improved techniques such as optimized focality (Datta et al.,
2009), multi-electrode (Dmochowski et al., 2011; Pixa et al.,
2017a,b), brain priming (Christova et al., 2015; Hurley and
Machado, 2017), or network stimulation (Fischer et al., 2017)
were used to improve tDCS effects.

Other researchers have proposed that multimodal approaches
(i.e., more than one intervention technique) may initiate
synergistic or additive effects and increase effectiveness (Ward
et al., 2017; Cespón et al., 2018). Multimodal approaches can
only be effective if supposed mechanistic pathways of both to-be-
combined techniques justify an additive outcome with respect to
the targeted system. Recent works took advantage of the exclusive
and convergingmechanistic pathways of tDCS and AE, including
their possibilities to initiate cortical plasticity processes. Those
possibilities presented theoretical considerations (Moreau et al.,
2015) and promising empirical findings in the combined use of
tDCS and AE in therapeutic, non-clinical, and sports settings
(Okano et al., 2015; Angius et al., 2017; Edwards et al., 2017;
Ward et al., 2017). In a randomized control trial (RCT), tDCS
and AE resulted in greater improvements in multiple cognitive
domains in a 4-month cognitive training intervention in healthy
persons more than each technique alone, indicating promising
opportunities for complex occupational settings (Ward et al.,
2017). Moreover, combined tDCS/AE applications in a RCT
reduced pain perception in fibromyalgia (Mendonca et al., 2016)
and reduced appetite sensation in a single session experiment
(Montenegro et al., 2012). Other directly sport-related studies
were also able to modulate perceived exertion in a submaximal
cycling exercise task (Okano et al., 2015). In addition, improved
endurance performance was found (Angius et al., 2017, 2018;
Edwards et al., 2017). Based on this potential of tDCS to improve
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sport performance, potential applications in sport-related skills
are currently discussed (Colzato et al., 2017).

When reviewing the new and multimodal empirical studies,
the rationale for a combination of tDCS and AE and their
potentially targeted mechanisms, which are responsible for
desired additive/synergistic effects, often remained vague and
on a superficial level. This lack of knowledge may be because:
(a) the exact mechanistic pathways of tDCS and AE in exerting
their impact on the brain are still not fully understood; (b) there
is a large number of moderating parameters and variabilities
known for each technique alone; and (c) there is a complete
lack of knowledge about how those moderating parameters
interact specifically and how both techniques interact generally
when applied together. This work describes the mechanistic
pathways of tDCS and AE and asserts that understanding the
possible interactions of these pathways is critical when designing
combination interventions aimed at improving cognition in
healthy individuals or patients suffering neuropsychiatric or
neurological diseases.

Based on chronic exercise effects (i.e., the effects of exercise
training for several weeks or months), Moreau et al. (2015)
provide a description and rationales of mechanistic pathways
(2015) for tDCS/AE, and Hendrikse et al. (2017) also discussed
the effects of the combination of AE with repetitive transcranial
magnetic stimulation (rTMS). Acute effects and their possible
interactions provoked by tDCS and AE methods on behavioral,
neurophysiological and neurochemical levels even within a
single application and short time succession have not been
systematically addressed when combining tDCS and AE (Moreau
et al., 2015; Hendrikse et al., 2017). This article reviews the
reports of acute effects (specifically, only one application) in
the tDCS and AE field, and the effects that should be carefully
considered when combining both methods for future research
or clinical use. Due to the large variety of effects on several
brain functions and behaviors, the primary focus is on the acute
effects of AE and tDCS on cognitive abilities and particularly on
executive functions (EFs).

Our literature search in central databases (i.e., MEDLINE,
Web of Science, PsycINFO and Google Scholar) for this narrative
review primarily included studies that investigated the effects
of AE (i.e., no resistance exercise) or tDCS (i.e., no other brain
stimulation method) on tests that measure EFs or cognition in a
single session intervention. Based on this search we also checked
the reference list of selected articles. The intention of such a
broad search strategy was to find as many studies as possible,
simultaneously reducing the risk of missing any studies that
combined tDCS and AE in one single session intervention on
the cognitive system. We used the logical operators ‘‘OR’’ and
‘‘AND’’ between exercise-related terms (i.e., exercise and physical
activity) and brain stimulation terms (tDCS and transcranial
direct current stimulation) and the cognition search modifier
cogniti∗ (i.e., cognition, cognitive). We did not restrict the time
interval of the search but concentrated our study description on
tasks that are thought to measure EFs (see section ‘‘Executive
Functions and Their Neuroanatomical Basis’’). We also excluded
studies that investigated effects in more than one session (e.g.,
chronic exercise effects on cognitive functions or tDCS repetition

across days) and in other domains (e.g., the motor or emotional
domain) as this would require additional reviews. Based on
this review and the performed comparison of tDCS and AE
effects on EFs, possible interacting pathways and mechanisms
are discussed while additionally consulting insights from studies
focusing on other functions (e.g., motor domain). As there
are several forms of exercise paradigms, we use the term AE
when cardiovascular exercise had been performed within highly
automated movements such as in cycling, walking or running.
AE includes physiological changes on the metabolic, respiratory
and cardiovascular system of the body, while anaerobic exercise
includes higher intensity activities which can be maintained
only during a short time frame. Other exercise paradigms
are resistance exercise (i.e., strength training) which affects
also metabolic systems but also intra- and inter-muscular
coordination, or coordinative exercise which often involve less
physiological demand on the human body (Voelcker-Rehage
and Niemann, 2013; Voelcker-Rehage et al., 2017). This review
primarily focuses those effects that are elicited by AE protocols,
while indicating whether another paradigm has been applied in a
specific study.

Executive Functions and Their
Neuroanatomical Basis
Early researchers in the field of EFs described a ‘‘central
executive,’’ (Baddeley and Hitch, 1974) or a ‘‘supervisory
attentional control system’’ (Norman and Shallice, 1986). Both
models propose a specific kind of a superordinate control
instance that acts as the central mechanism which coordinates
and processes higher cognitive functions. Despite controversy
about exact definitions and cognitive models, there is a
consensus about the complexity of EFs and significance to
human adaptive behavior (Jurado and Rosselli, 2007). Today,
it is widely accepted that EFs are an umbrella term for a set
of lower-level cognitive processes that serve higher cognitive
processes such as self-regulation, coping with novel situations,
complex planning, and decision making (Miyake et al., 2000;
Friedman et al., 2008; Miyake and Friedman, 2012; Niendam
et al., 2012; Diamond, 2013). One key question that remained
unresolved was whether there is one single executive functioning
(unity) or whether there are distinct functions (diversity)
(Jurado and Rosselli, 2007). Current influential assumptions
in cognitive psychology and neuroscience provide evidence
for both perspectives and indicate that EFs are unitary and
non-unitary in nature (e.g., Duncan et al., 1996; Godefroy
et al., 1999). Based on confirmatory factor analysis, Miyake
et al. (2000) stated that the three following unique, but not
completely separable, EFs form the core aspects of cognitive
control: updating relevant information in the working memory
(i.e., updating ability), switching between different tasks and
rule sets (i.e., shifting ability), and inhibiting responses to
dominant, pre-potent stimuli (i.e., inhibition ability; Miyake
et al., 2000).

More generally, EFs are mainly processed in a superordinate,
widespread frontal–cingulate–parietal–subcortical cognitive
control network of the brain (Niendam et al., 2012). Thus,
activations of different brain areas are integrated to guide
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behavior, attention regulation, thought, goal setting, and other
higher-level cognitive abilities (Alvarez and Emory, 2006; Jurado
and Rosselli, 2007). Despite the fundamental necessity of the
integrity of the entire brain in forming controlled behavior,
the PFC is of exceptional relevance as this brain area and its
sub regions orchestrate behavior by integrating information
coming from other cortical and subcortical areas (Stuss and
Alexander, 2000; Stuss et al., 2002). Such involvement of the
PFC in EFs has been identified in neuropsychological studies on
human patients with lesions in PFC structures by neuroimaging
studies and also in various animal studies (Stuss and Alexander,
2000; Stuss et al., 2002). Brain lesions in the PFC provoke
decreased performance in various tasks requiring EF abilities,
including flexibility, working memory, and inhibition (Niendam
et al., 2012), indicating that the intact function of this area is
fundamental for optimal performance (Stuss and Alexander,
2000).

Similar brain activation patterns are observable across EF
tasks, but there is also a unique and specific activation
pattern within single EFs (Niendam et al., 2012). Experimental
evidence exists that EFs are processed by various interconnected
brain regions, ranging from frontal and motor areas to
subcortical structures (Niendam et al., 2012). More specifically,
the dorsolateral PFC (DLPFC), medial frontal cortex, anterior
cingulate cortex (ACC), frontal and posterior parietal cortex,
motor areas, and cerebellum are all involved in EF processing
(Fuster, 2002; Badre and D’Esposito, 2007; Bellebaum andDaum,
2007; D’Esposito, 2007). Further analyses and meta-analysis of
brain areas activated between EFs (i.e., domain-specific areas)
indicate different activity patterns in the anterior PFC, anterior
andmidcingulate regions, and even in unique subcortical regions
such as the basal ganglia, cerebellum and thalamic pathways
(Kassubek et al., 2004; Lewis et al., 2004; Monchi et al.,
2006; Niendam et al., 2012). Thus, those differences in neural
activation patterns across cognitive processing together with
the coactivation of common structures during cognitive task
support the unity-diversity perspective that was proposed based
on behavioral data (Miyake et al., 2000; Miyake and Friedman,
2012; Snyder et al., 2015).

Executive Function Tests
Many test procedures exist that have been developed to test
various EFs. Some of the more complex tests [e.g., the Tower of
London (TOL), Wisconsin Card Sorting Test] tap into multiple
EFs or have been used in one study to test one specific EF and
in another to test a different EF. For example, the well-known
Stroop test has been used in AE studies to measure inhibition
ability in one study (Peruyero et al., 2017), but it is often used or
termed as being a measure of cognitive flexibility (Masley et al.,
2009). This non-specificity, lack of definition and terminology
across studies has been criticized in some influential models;
thus, it is often difficult to clearly state which test measures
a specific ability (Miyake et al., 2000; Miyake and Friedman,
2012; Snyder et al., 2015). Nevertheless, according to recent
works, the updating ability represents a specific kind of working
memory that has often been tested by the N-back, Keep track,
Sternberg and other, more complex neuropsychological tests

(Snyder et al., 2015). This function is concerned with storing a
specific amount of information in working memory while this
information has to be continuously updated with new incoming
information; in other words, irrelevant ‘‘old’’ information must
be removed from working memory and new information must
be stored and handledmentally. Typical performance parameters
include reaction time and accuracy. The shifting function is
responsible for applying a new task rule that must be fulfilled.
Specifically, the shifting function controls the flexible switch
from one concept to the other based on task demands. Tests to
measure the switching ability are, for example, the Global-local,
Trail-making or the Number-letter tasks. Typical performance
parameters include the switching costs, which can be calculated
by the differences in reaction times between stimuli (within
a test) where no switch was necessary and with those stimuli
preceding a rule switch (i.e., the score represents the time for
rule shifting). The inhibition function is thought to control the
correct identification of relevant task stimuli while ignoring task-
irrelevant, yet pre-potent stimuli. In other words, the inhibition
function ensures that responses to task-irrelevant stimuli must
be inhibited. Some of the most common tests are the Wisconsin
Card Sorting, Stroop, Flanker, Simon, Stop-signal, or Go/no-go
tests.

AEROBIC EXERCISE EFFECTS ON
EXECUTIVE FUNCTIONS

Early and systematic investigations on the acute exercise-
cognition interaction observed that several cognitive abilities can
be modulated (positively and negatively) by a short period of
physical whole-body exercise (McMorris, 2016c). Typical study
designs include a baseline measure of the cognitive function of
interest with a subsequent AE intervention and a retesting of
the cognitive function. Retesting was performed either during
or after the AE intervention with the focus of online or offline
effects, respectively. Usually, a control condition was included
where either the same (cross-over) or another participant group
(between-design) performed the same tests in the same sequence
in rest or in another activity. Thereby, exercise was traditionally
defined as being a stressor; thus, its interaction with cognition
would follow an inverted-U profile derived from the Yerkes-
Dodson arousal-performance theory (see McMorris and Hale,
2012 for an overview). This theory posits the existence of an
optimal relationship between the arousal level and cognitive
performance (Yerkes and Dodson, 1908). As long as arousal
is on a ‘‘too low’’ or ‘‘too high’’ level and not at the peak of
the inverted-U, it means that optimal cognitive performance
cannot be achieved without any change in the arousal level. This
model was transferred to the AE field, suggesting that physical
exercise modulates the arousal level based on the intensity (see
further below on mechanistic pathways of how AE modulates
arousal).

One limitation of this access is that exercise intensity
definitions have varied across research on the exercise-
cognition relationship, leading to inconsistent definitions and
consequently heterogeneous findings. However, several exercise
intensity definitions exist when describing relative or absolute
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physiological or subjective parameters (Norton et al., 2010;
American College of Sports Medicine, 2018). Relative indices
include parameters such as the individual heart rate ranges
(i.e., % of maximal heart rate), oxygen uptake (i.e., %
of maximum oxygen uptake = VO2max), and ratings of
perceived exertion scales (e.g., range between 6 = very low
and 20 = absolute limit). Absolute intensity metrics include
parameters such as the metabolic equivalent (MET). One current
categorization (American College of Sports Medicine, 2018)
of exercise intensity, such as the % of maximal heart rate
(%HRmax), includes five distinct exercise intensities: inactive
below 50%, low between 50% and 64%, moderate between
65% and 74%, high (or vigorous) above 75% and maximal at
100%. Based on those or comparable categorizations, several
studies have hypothesized that as exercise intensity is low
(low arousal), the performance in various cognitive tasks is
low (including EF tasks using the Stroop, Flanker or more
complex neuropsychological tests such as the TOL test and
including memory, attention, and choice-reaction time tasks);
in addition as exercise intensity rises to moderate levels,
performance (and arousal) increases. Subsequently, the cognitive
performance decreases again with rising exercise intensity
levels (McMorris, 2016c). However, less empirical evidence
supports the inverted-U hypothesis, and various reviews and
meta-analyses are inconsistent and even provide opposite
conclusions (Brisswalter et al., 2002; Tomporowski, 2003;
Lambourne and Tomporowski, 2010; McMorris et al., 2011;
Chang et al., 2012; McMorris and Hale, 2012, 2015). Specifically,
cognitive performance was not consistently associated with
intensity levels following an inverted-U profile (e.g., Chang et al.,
2012).

Heterogeneous findings are due to many multifaceted and
interacting parameters that can moderate the exercise-cognition
interaction. It has been extensively shown that exercise intensity
can influence the performance of EFs (Kamijo et al., 2007) and
cognition in general (Chang et al., 2012). Labelle et al. (2013),
as an example, found that the accuracy scores in a Stroop test
declined during a high intensity AE cycling task compared to
moderate intensity. It has also been repeatedly shown that the
timing of cognitive test administration can affect the outcome of
the cognitive test. According to a meta-analysis across different
cognitive domains by Chang et al. (2012), no effects on cognitive
functions occurred within the first 10 min of exercise, negative
effects emerged between 11 min and 20 min of exercise, and
positive effects appeared after 20 min (Chang et al., 2012). Such
a conclusion has been confirmed for the EF inhibition ability
(reaction time of incompatible stimuli in a Stroop test), as 20 min
of moderate exercise intensity improved inhibition, while 10 and
45 min had no effects on inhibition (Chang et al., 2015b). The
Chang et al. (2012) meta-analysis also showed positive effects
on cognitive functions regardless whether cognitive tests were
administered during exercise, immediately following exercise,
or after a time delay. Another meta-analysis observed a small
negative effect of cognitive performance during AE (Lambourne
and Tomporowski, 2010). This discrepancy potentially occurred
because the latter study focused only on healthy participants and
crossover designs (see Chang et al., 2012).

Also, exercise modality has an effect on EFs since Pontifex
et al. (2009) showed that reaction times in a Sternberg task
(working memory) were faster (compared to rest condition)
after only 30 min of AE and not after a bout of resistance
exercise of 30 min. Interestingly, even a change in environmental
factors (e.g., changed gravity or confinement) affected cognitive
functions differently compared to AE conditions (Schneider
et al., 2013; Vogt et al., 2014). Other studies have shown that the
exercise-cognition relationship can be modulated by cognitive
task difficulty, the cognitive domain (i.e., whether EFs or other
cognitive tasks relating to attention or pure memory task are
measured), and age (Kamijo et al., 2009; Weng et al., 2015;
Voelcker-Rehage et al., 2017). Despite the age and cognitive
domain, a further crucial factor seems to be the individual
fitness status (Labelle et al., 2013). During exercise (i.e., online),
individual fitness level is associated with enhanced cognition
for highly fit subjects, but is negligible in moderately fit and
decreased for unfit participants; while only unfit and highly
fit, but not moderately fit participants benefited after exercise
(i.e., offline) (Chang et al., 2012). A recent systematic review
focusing on high-intensity exercise in trained people found
that acute effects are dependent on the cognitive domain.
In 10 reviewed studies simple tasks were not affected while
the effects were stronger in parameters indicating speed of
processing compared to accuracy parameters in complex tasks
(Browne et al., 2017).

Several meta-analyses and reviews, however, suggest that
EFs, within the broad domain of cognition, benefit from AE
regardless of exercise paradigm, modality, intensity and time of
testing (Chang and Etnier, 2009; Lambourne and Tomporowski,
2010; Chang et al., 2012, 2015a,b). In addition, it is argued that
moderate exercise intensity is most beneficial; however, these
positive effects in cognitive tasks have been mostly found in
terms of speed of processing (across cognitive domains) and not
accuracy (e.g., the number of errors made in a specific test),
while the observed effect sizes were highest for EFs compared
to tasks of alertness/attention and recall (McMorris and Hale,
2012).

Moreover, moderate exercise sessions affect speed of
processing positively and accuracy slightly negatively, especially
in working memory tasks (e.g., in N-back tests) (McMorris et al.,
2011; McMorris and Hale, 2012). However, in this meta-analysis,
the inclusion criteria of working memory tasks included all EF
tasks (e.g., Stroop and flanker tasks), thus not agreeing with
the discussed definition (e.g., a Stroop test does not assess
working memory performance). In contrast, recent studies, such
as Tempest et al. (2017), show that performing high-intensity
exercise improved inhibition performance (reaction time in a
flanker test) but decreased updating performance (aggravated
d’ value of a 2-back test; d’ value represents task performance
accounting for accuracy and reaction time) suggesting that EFs
are not uniformly affected by exercise, despite having the same
test protocol (Weng et al., 2015; Tempest et al., 2017). These
different effects indicate that exercise selectively affects neural
networks and possibly prefrontal sub-regions that support the
different EF abilities. However, whether this is due to time
or intensity dependent properties of exercise and thus due to
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differences in methodological study designs remains an open
question. Furthermore, caution is needed as most evidence for
the acute exercise effects on EFs have been derived based on EF
tests mainly testing inhibition (Ludyga et al., 2016), and there
are also several studies suggesting no effects or even detrimental
effects (Basso and Suzuki, 2017).

tDCS EFFECTS ON EXECUTIVE
FUNCTIONS

Due to the significant involvement of the PFC in cognitive
processing and in EFs, a growing amount of studies have
analyzed tDCS-induced modulations of PFC activity and its
possibility to enhance cognitive functions including EFs (see
Strobach and Antonenko, 2017) in the short-term (see Tremblay
et al., 2014) and in the long term (Park et al., 2014; Metzuyanim-
Gorlick andMashal, 2016). The typical study design for analyzing
acute tDCS effects on EF ability or other cognitive domains
includes a pretest of the cognitive function of interest, followed
by an intervention, where the cognitive test is performed during
(i.e., online effects) or after (i.e., offline effects) tDCS. Usually,
the same test sequence was performed either in a cross-over or
between-subject design, where a sham stimulation (i.e., placebo)
was provided and/or real tDCS at a brain region suspected not
to be involved in cognitive processing (e.g., M1). If applicable,
the experiment was performed with a single-blind (participant
was not aware whether stimulation is real or sham) or at best
cases, with a double-blind protocol (neither participant nor
the investigator were aware whether the stimulation is real or
sham).

Meta-analyses and reviews on acute tDCS effects on cognition
performed so far provide mixed results about their capacity
to modulate cognitive performance. While some studies report
small to moderate beneficial effects (Dedoncker et al., 2016;
Hill et al., 2016; Mancuso et al., 2016), others report no effects
using tDCS within one single session in healthy young humans
(Horvath et al., 2015) or when individuals perform working
memory tasks (Medina and Cason, 2017). However, due to
various experimental designs regarding electrode configurations,
intensities, durations, electrode size and state-dependency, no
general assumption on efficacy appears to be valid until more
clarity is gathered (Jacobson et al., 2012; Tremblay et al., 2014).
It is widely accepted within the motor domain that anodal
stimulation of motor regions facilitates neural networks and
that cathodal stimulation inhibits neural networks engaged in
several motor tasks (for a review see Buch et al., 2017). This
dichotomy is not yet well established for the stimulation of
non-motor regions such as prefrontal areas. Consequently, some
authors argue that tDCS-effects observed in the motor-domain
cannot simply be transferred to the cognitive domain (Miniussi
et al., 2008; Jacobson et al., 2012). Nonetheless, combined
neurophysiological and behavioral studies present evidence for
altered neural excitability (Nitsche and Paulus, 2000; Nitsche
et al., 2005) and comparable polarity-specific effects in the
PFC (review in Wörsching et al., 2016). However, one major
caveat of tDCS is the high inter-subject variability suggesting
that tDCS effects are dependent of individual factors, such as

the instantaneous state of the brain (Antal et al., 2008; Dutta,
2015; Li et al., 2015) or genetic variations (Plewnia et al.,
2013).

In terms of executive function research, few studies (review
in Strobach and Antonenko, 2017) have investigated shifting
ability using 10–30 min of tDCS, while only two have shown
specific task-shifting effects (Leite et al., 2011, 2013). Leite
et al. (2011), using two different shifting tasks, observed that
stimulating the DLPFC either with an anodal or cathodal
electrode configuration modulated the response speed of the
shifting ability. The active electrode was placed over F3 (F3 refers
to the electrode position according to the 10-20 international
system for electrodes positioning) and the return electrode
over the contralateral supraorbital area. Anodal stimulation
improved the task performance, while cathodal stimulation
decreased the task performance. Using cross-hemispheric tDCS
stimulation (i.e., either left PFC anodal and right PFC cathodal
electrode positions or vice versa) on two task-switching tests
in a subsequent study, Leite et al. (2013) concluded that
such effects were critically dependent on the laterality and the
task. This was deduced because performance improvements
in accuracy and speed of processing were reversed based
on whether the right or the left PFC was stimulated, and
which of the two task-shifting tests were used (Leite et al.,
2013).

More evidence exists for the ability to update information
in the working memory. Several studies have shown that
this ability can be positively modulated by tDCS applied to
the left DLPFC with anodal tDCS lasting 10–30 min (Fregni
et al., 2005; Ohn et al., 2008; Andrews et al., 2011; Teo
et al., 2011; Zaehle et al., 2011b; Hoy et al., 2013; Meiron
and Lavidor, 2013). Those studies indicate that especially the
left DLPFC is critically for working memory tasks. More
specifically, Ohn et al. (2008) found significantly increased
accuracy scores for a verbal 3-back task during and even
30 min after stimulation. Also, in the Fregni et al. (2005)
study, positive effects on working memory performance were
observed after only 10 min of tDCS. Comparable positive
effects in clinical trials for one stimulation session were also
found in patients with Parkinson’s disease (Boggio et al.,
2006; Fregni et al., 2006c). Notably, in the Boggio et al.’s
(2006) study only 2 mA but not 1 mA, yielded any performance
improvements, indicating intensity-dependent effects. Intensity-
dependent effects on working memory capacity (n-back task)
were also observed in healthy participants in the Teo et al. (2011)
study. Thus, tDCS current intensity is a critical factor that should
be considered in health and disease tDCS interventions. Another
interesting finding reported by Gill et al. (2015) showed that
higher demands on the cognitive systems during tDCS had a
significant effect on post-stimulation performance, indicating
that the task and the timing of stimulation is an additional
critical factor to consider. Not only left DLPFC, but also
right DLPFC could be a potential target area for improving
workingmemory performance as anodal tDCS over right DLPFC
improved performance within a spatial working memory task,
and particularly in themore complex task components (Wu et al.,
2014).
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There is also some evidence that tDCS can modulate the
inhibition ability when the right PFC hemisphere is stimulated
by anodal tDCS lasting 10–20 min as indicated by improved
response inhibition (i.e., reaction times) in Go/No-Go and
Stop-Task paradigms (Jacobson et al., 2012; Kwon et al., 2013;
Hogeveen et al., 2016). In contrast, when using the Stroop
task, increased performance has been identified by right DLPFC
anodal tDCS and by left DLPFC anodal tDCS (Jeon and Han,
2012). Both anodal tDCS-initiated (right and left hemisphere)
improvements were observable as long as 2 weeks after the
stimulation session. Another study also using the Stroop task
and a bilateral left anodal/ right cathodal tDCS electrode
configuration, observed a positive effect in the response speed
(Loftus et al., 2015). Other studies by Zmigrod et al. (2016),
using the Eriksen flanker and Simon test (inhibition function),
showed that cathodal tDCS over the right DLPFC influenced
performance of the flanker test, but not of the Simon test
(Zmigrod et al., 2016). An additional study also showed that
only cathodal tDCS over the right DLPFC, but not anodal tDCS,
influences the control of impulsiveness (Beeli et al., 2008). While
the latter two studies showed selective tDCS effects (i.e., only
cathodal effects), Hsu et al. (2011) reported that both anodal
and cathodal tDCS over the superior medial frontal cortex either
improved or deteriorated inhibitory control ability compared
to sham stimulation. There are also some studies that explored
prefrontal tDCS effects on more complex EFs measures such
as the TOL, a test that taps into multiple EFs abilities. (Welsh
et al., 1999; Miyake et al., 2000; Snyder et al., 2015). Dockery
et al. (2009) found that 15 min of both anodal and cathodal
tDCS over the left DLPFC improved planning performance
measured by the TOL. Interestingly they observed that these
effects were phase dependent, i.e., cathodal tDCS improved
performance in an early learning phase while anodal tDCS was
effective only in a later phase, suggesting training-phase-specific
effects (Dockery et al., 2009). Comparable TOL improvements
(initial thinking time) were found in a prefrontal bilateral tDCS
protocol with anodal left DLPFC (cathode placed on the right
DLPFC) improved TOL performance but cathodal left DLPFC
tDCS had no effects (Heinze et al., 2014). Although so far only
few studies exist, taken the reviewed single studies and reviews
together there is some evidence that tDCS can modulate all
three EFs even within one single application. However, due to
different stimulation protocols (intensity, duration and timing),
other non-significant effects and one contrasting meta-analysis
(Horvath et al., 2015; Strobach et al., 2016), much more
research is necessary to be certain how EFs are modulated by
tDCS.

NEUROPHYSIOLOGICAL AND
NEUROCHEMICAL EFFECTS OF ACUTE
EXERCISE

Early animal studies on the exercise-cognition interaction
proposed that increased arousal due to aerobic whole-body
exercise increases brain concentration of neurotransmitters
such as noradrenaline. This, in turn, activates the reticular

formation, a heterogeneous and not well-defined structure
of the nervous system that contains various nuclei associated
with neurotransmitter releases. Due to this function (for a
historical overview see McMorris, 2016b) in the noradrenergic,
serotonergic and the dopaminergic pathways, the reticular
formation is integral to the arousal activation system
(review in Meeusen and De Meirleir, 1995). Currently, it
is thought that only one session of exercise induces the
synthesis and release of diverse neurochemical substances
such as noradrenaline, adrenaline, dopamine, brain-derived
neurotrophic factor (BDNF), insulin-like growth factor 1
(IGF-1), lactate, vascular endothelial growth factors (VEGF)
and hypothalamic–pituitary–adrenal axis (HPA) hormones
(e.g., cortisol) and, as shown in animal studies, they can
potentially pass either directly or indirectly through the brain-
blood-barrier to modify the arousal level and neuroplastic
mechanisms (McMorris and Hale, 2015; McMorris et al.,
2016; Basso and Suzuki, 2017). This modification, which is
emphasized and detailed in the catecholamine hypothesis
first proposed by Cooper (1973) and further developed by
works of McMorris (Cooper, 1973; McMorris et al., 2008;
McMorris, 2016a), leads to either the optimal or suboptimal
preparation of a person for action and aids in neurogenesis and
neuroplasticity.

The catecholamine hypothesis (McMorris et al., 2008)
provides a rational explanation for the discussed meta-analytical
findings of moderate positive effects sizes in cognitive
performance (McMorris and Hale, 2012). Based on the findings
of neurochemicals associated with acute bouts of exercise, it is
thought that elevated concentrations of the neurotransmitter’s
dopamine and norepinephrine observed during and following
moderate-intensity exercise, should theoretically facilitate
cognition. However, observations of catecholamine releases
(and thus reticular system) in response to low-intensity AE
indicate that processing speed in various cognitive tasks is
reduced due to less activation in the relevant brain areas.
In contrast, high-intensity exercise induces more massive
catecholamine releases during and following the exercise
session and introduces neural noise, ultimately leading to
decreased cognitive performance. However, such an inverted-U
relationship has never been unequivocally observed, and recent
considerations on this hypothesis are only conceivable by adding
data from animal studies (McMorris et al., 2008; McMorris,
2016a).

More specifically, moderate increase of catecholamines due to
moderate exercise intensity mostly performed between 20 min
and 30 min were optimal for working memory improvements. In
contrast, longer lasting moderate exercise provoked interaction
between HPA hormones and catecholamine, leading to the
inhibition of cognitive performance (McMorris et al., 2016).
Furthermore, high-intensity AE sessions induced activation of
β-adrenoreceptors in the hippocampus and lead to increased
memory performance and elevated BDNF concentrations
(Neeper et al., 1995; Piepmeier and Etnier, 2015; Szuhany et al.,
2015), agreeing with the observation that a short period of
high-intensity exercise increased BDNFmore than a long-lasting
moderate exercise intensity session (Winter et al., 2007). Single
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studies are confirmed by meta-analytic evidence with moderate
effect sizes showing BDNF releases after only one-session
exercise (Szuhany et al., 2015). In addition, suggesting against
an exercise-intensity dependence of BDNF release (review in
Piepmeier and Etnier, 2015), low-intensity exercise elevated
BDNF in the same amount as in a high-intensity condition. In
contrast, Ferris et al. (2007) confirmed the exercise intensity
dependence of BDNF release after 30-min cycle exercise, but
could not find any correlation of BDNF changes with EFs,
such as inhibition ability measured by a Stroop test (Ferris
et al., 2007). Moreover, no intensity effect was observed since
the Stroop task performance improved pretest- to posttest
at the same extent, regardless of exercise intensity. In a
recent comprehensive review of acute exercise effects on
neurophysiological parameters, it was reported that there is
consistent observation that high exercise intensity around the
anaerobic threshold induces approximately 15% increases in
BDNF which last up to 20 min after exercise. However, one
limitation of studies on intensity-dependent BDNF effects in
humans is the risk that peripherally measured BDNF may
not sufficiently reflect cortical BDNF level (Basso and Suzuki,
2017).

There are also many electroencephalography (EEG)
studies investigating tasks that evoke EEG responses during,
immediately after, or with a time delay after AE. They are
mostly quantified using event-related potentials (ERPs) P300,
contingent negative variation (CNV), error-related negativity
(ERN) and error positivity (EP). P300 is a prominent marker
that can be seen as a positive deflection in the EEG amplitude
about 300 ms after a stimulus and P300 is an index of attentional
resources devoted to task completion (Polich, 2007). Thereby,
difficult and complex tasks reduce P300 and increase latency.
Kamijo et al. (2004a), as an example, observed decreased
P300 amplitude after a high-intensity cycling exercise in a
Go/no-go task and increased P300 amplitude after moderate
intensity exercise (Kamijo et al., 2004a). Based on this pattern,
they suggested that reduced attentional resources were available
after high-intensity exercise and increased resources after
moderate exercise. In another study by Kamijo et al. using the
CNV as a marker of attention and arousal, they found further
evidence for intensity dependent effects of exercise on central
neurocognitive markers (Kamijo et al., 2004b).

By using additional markers such as the ERN and EP
(markers observable in evaluation of conflict during instances
of erroneous), those ERPs clearly demonstrate that the
exercise-cognition relationship is reflected in task-evoked brain
activity (Yanagisawa et al., 2010; Chang, 2016), with further
evidence for intensity-dependent effects (Olson et al., 2016).
In contrast, early stimulus-locked components of the EEG
such as N1 and P2 (reflecting early processing steps that
are not directly related to EFs) are not affected by exercise,
while P300 and CNV reflect exercise-associated behavioral
changes. A review by Chang (2016) concluded that a moderate
exercise protocol lasting between 18 min and 30 min exerts
beneficial effects on cognition and neurocognitive markers
(Hillman et al., 2003, 2009; Scudder et al., 2012; Drollette et al.,
2014).

Moreover, oscillatory EEG (i.e., the synchronized activity
patterns of neurons in a functional neural network) activity
recorded during and after exercise indicated increases in the
alpha band (8–12 Hz oscillation indicating a marker of arousal);
however, this was not different from the increase measured for
other frequency bands (Crabbe and Dishman, 2004). Subsequent
research observed frontal alpha asymmetry (FAA) changes.
FAA is a marker of different activity in the left and right
PFC hemispheres, and this study indicated higher relative left
prefrontal activity elicited by moderate and strenuous exercise
intensity. This pattern wasmeasurable up to 38min post-exercise
and associated with post-exercise moodmodification (Woo et al.,
2009; Hall et al., 2010; Hicks et al., 2017). Gutmann et al.
(2015), for example, showed that the resting state individual
alpha peak frequency (iAPF), which is a marker of arousal
and attention and is associated with the speed of information
processing, was increased after an exhaustive exercise compared
to steady state moderate exercise intensity. This finding suggests
there is a mechanism leading to an optimal brain state for
cognitive performance (Gutmann et al., 2015). Furthermore,
resting-state functional magnetic resonance imaging (fMRI)
analysis proposes that AE increases the integration of attention
and executive control networks indicative of functional network
connections that are particularly sensitive to moderate-intensity
AE (Weng et al., 2017). A review on acute exercise effects
including animal and human studies summarized that a single
bout of exercise increases hippocampal theta activity and
other frequency bands across the entire cortex, positively
modulates the P300 and indicates that cognitive enhancement
is accompanied by increase in cerebral blood flow (Basso and
Suzuki, 2017).

However, no clear association exists between brain
oxygenation, cerebral blood flow, and cognitive performance
during exercise, although alterations of these parameters have
repeatedly been reported (review inAndo, 2016). This conclusion
contrasts with the influential reticular-activating hypofrontality
model (Dietrich, 2003; Dietrich and Audiffren, 2011). This
complex theory principally suggests that the human brain
has a limited information-processing capacity that eventually
leads to decreased cognitive performance with rising exercise
intensity. According to this model, moderate exercise intensity
leads, through activation of the reticular system, to increased
arousal, and in turn, to increased cognitive performance, but
this effect only applies in tasks that are well-learned. As soon
as the intensity is high, the model proposes that motor areas of
the brain must be higher activated due to resource allocations
for motor task completion. If exercise intensity level is to be
maintained, this can only occur at the expense of the PFC areas,
which are downregulated. In turn, this PFC deactivation results
in poorer cognitive performance especially in tasks that rely on
PFC structures such as EFs. However, this well-defined model,
while it has some striking empirical support (for an overview
see Dietrich and Audiffren, 2011), only accounts for any online
(effects observed during AE) exercise-cognition interactions
(i.e., limited explanatory power for any offline effects), and there
are other empirical findings, which disagree with this model
(e.g., Tempest et al., 2017).
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NEUROPHYSIOLOGICAL AND
NEUROCHEMICAL EFFECTS OF tDCS

In tDCS, the transcranially induced, weak, direct current flows
from the anode to the cathode, passing the neural tissue, and
is thought to exert transient alterations in the neural processes
of the stimulated brain region. Although the exact physiological
mechanisms of tDCS are still being studied, it is presumed that
the primary mechanism of action derives from a polarity-specific
subthreshold polarization of the resting membrane potential
of neurons (Nitsche and Paulus, 2000, 2001). Recently, it was
indicated by intracranial recordings in primates and epilepsy
patients that 1–2 mA of anodal tDCS slightly elevated the
resting membrane potential by approximately 0.2–0.5 mV (Opitz
et al., 2016). In turn, such a transiently increased membrane
excitability is suggested to boost the likelihood of action
potentials (APs), resulting in a higher spontaneous firing rate of
neurons. In contrast, cathodal tDCS exert the opposing effect of
a transient hyperpolarization, thereby more likely diminishing
cortical excitability and the spontaneous firing rate of neurons
(Creutzfeldt et al., 1962; Bindman et al., 1964; Nitsche and
Paulus, 2000; Romero Lauro et al., 2014).

Consequently, anodal tDCS is typically associated with
increased cortical excitability, while cathodal tDCS is associated
with decreased cortical excitability. The polarity-specific effects
of tDCS on resting membrane potentials originate from
tDCS-induced changes in the conductivity of voltage-dependent
ion channels. Anodal tDCS is assumed to increase cortical
excitability due to modulations of N-Methyl-D-Aspartate-
receptor-mediated (NMDA) Ca2+-channels, causing alterations
in Ca2+ influx (Nitsche et al., 2003a). However, polarity-
specific alterations of cortical excitability are predominantly
demonstrated in motor regions of the brain (e.g., M1),
such as by higher amplitudes of TMS-induced motor-evoked
potentials (MEPs) (Nitsche and Paulus, 2000, 2001). Excitability
changes were also observed in non-motor regions by means of
sensory-evoked potentials (SEPs) in the somatosensory cortex
(Dieckhöfer et al., 2006), auditory-evoked potentials (AEPs)
in the auditory cortex (Zaehle et al., 2011a), and visually-
evoked potentials (VEPs) in the visual cortex (Antal et al.,
2004).

Short durations of tDCS application can elicit effects that
last a few seconds, whereas longer-lasting tDCS application can
prolong the after effects on membrane excitability and cortical
activity. Exemplarily, it was demonstrated that 13 min of anodal
and 9 min of cathodal tDCS can initiate long-lasting after-
effects for 30 to 120 min (Nitsche and Paulus, 2001; Nitsche
et al., 2003b; Kidgell et al., 2013) and can last up to 24 h
when tDCS was repeatedly applied throughout 1 day (Bastani
and Jaberzadeh, 2014). Longer-lasting after-effects of tDCS are
rendered to provoke neuroplastic processes, as indicated by
tDCS-related modulations of several neuroplasticity markers,
such as glutamate (Nitsche et al., 2003a), gamma-aminobutyric
acid (GABA) (Nitsche et al., 2004), dopamine (Nitsche et al.,
2006; Monte-Silva et al., 2009), serotonin (Nitsche et al., 2009),
acetylcholine (Kuo et al., 2007) and BDNF (Fritsch et al., 2010).
In the corresponding primary mechanism of action, anodal tDCS

causes a reduced concentration of GABA with a concurrent
increase in glutamate concentration, while cathodal tDCS brings
about the opposing effect (Stagg et al., 2009; Stagg and Nitsche,
2011). Furthermore, the reduced GABA concentration and the
concurring reduced GABA-gated intracortical inhibition (ICI)
provoked by anodal tDCS leads to a facilitative effect on
glutamate-driven neuroplasticity (Stagg et al., 2009; Kim et al.,
2014). Therefore, tDCS-related neuroplasticity appears mainly as
a glutamatergic process comprising NMDAs, and is based on
their numbers upon glutamatergic synapses causing increased
synaptic strength and responsiveness to glutamate (Gillick and
Zirpel, 2012), and NMDA-mediated influx of Ca2+ (Liebetanz
et al., 2002; Nitsche et al., 2003a). Fluctuations of Ca2+ are
further associated with both long-term potentiation (LTP) and
long-term depression (LTD) (Bennett, 2000), synaptic processes,
which are contingent upon BDNF (Fritsch et al., 2010).

In addition, fMRI, EEG, and functional near-infrared
spectroscopy (fNIRS) approaches reported local functional
synchronization due to tDCS (Polanía et al., 2011, 2012; Kunze
et al., 2016) and altered brain activity in nearby and functionally
connected brain areas (Baudewig et al., 2001). fMRI studies
observed extended and large-scale network changes following
one session of cathodal stimulation (Ardolino et al., 2005;
Lang et al., 2005). fNIRS approaches reported hemodynamic
changes after prefrontal anodal tDCS (Merzagora et al., 2010)
and EEG recordings found that the oscillatory activity of the
brain adapts its frequency in response to tDCS (Keeser et al.,
2011; Zaehle et al., 2011b; Jacobson et al., 2012). In particular,
anodal tDCS applied over the left DLPFC increased the cortical
perfusion in the stimulated area, while a strong decrease was
observed after the stimulation (Stagg et al., 2013). Moreover,
prefrontal tDCS reduces low-frequency EEG oscillations and
increases event-related activity (for an overview see Wörsching
et al., 2016). Also, surface brain area activity changes and
alterations in neural processing in deeper prefrontal structures
have been described (Keeser et al., 2011). Studies on resting-
network activities consistently report tDCS induced influences
on regional activity on functional connectivity across brain
regions interhemispheric and intrahemispheric (Turi et al., 2012;
Hartwigsen and Siebner, 2013; Hartwigsen et al., 2015; Bergmann
et al., 2016; Kunze et al., 2016).

Further neurophysiological measures during EF execution
(inhibition tasks, a combined Go/no-go and Stop signal task)
using a combined tDCS-EEG approach observed that an
anodal bilateral tDCS (right hemispheric anodal/left hemispheric
cathodal) of the right inferior frontal cortex (IRF) modulated
the P300 ERP component, while no clear effects were observed
on a behavioral level (Cunillera et al., 2016). This study was
one of the first to report EEG data during the stimulation as
the EEG is usually compromised by the tDCS electrical field.
Although P300 was affected by tDCS, the authors concluded
that bilateral tDCS of the right IRF is not the best option to
modulate response inhibition. Another study targeted the medial
frontal cortex with cathodal tDCS and induced EP modifications
of the EEG (Bellaïche et al., 2013). Since the EP reflects error
monitoring, the authors concluded that targeting those brain
areas involved in error monitoring with a neuromodulatory
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technique such as tDCS would be valuable for therapy. This
conclusion was based on the error monitoring ability in patients
suffering neuropsychiatric conditions being frequently impaired.
Keeser et al. (2011) observed modulations of the P300 ERP
component of the EEG, together with behavioral improvements
in an updating ability task (N-back) after anodal tDCS (cathode
placed over the left supraorbital cortex) of the left DLPFC
(Keeser et al., 2011). Further source analysis using EEG based
standardized low resolution tomography (sLORETA) revealed
enhanced para-hippocampal gyrus activity, suggesting that tDCS
alters the regional surface neural activity and reaches deeper PFC
structures.

Based on the reviewed studies targeting the PFC, there is
converging evidence that prefrontal tDCS impacts resting state
activity, task-evoked activity, brain oscillations, brain perfusion
and oxygenation, bioenergetics, functional connectivity, event-
related spectral perturbations (ERSPs) and ERPs. Consequently,
tDCS of the PFC initiates comparable synaptic-plasticity and
associated neuroplastic markers known from motor cortex
studies (see Wörsching et al., 2016). However, direct measures of
excitability changes using TMS, which induces a direct measure
of cortical excitability (i.e., MEPs), are not available for prefrontal
structures.

INTERACTIONS AND SYNERGIES
BETWEEN ACUTE tDCS AND ACUTE
PERIODS OF AEROBIC EXERCISE

Converging evidence exist indicating that both tDCS and AE
involve promising mechanistic pathways that initiate changes
in cortical excitability and neuroplasticity that can improve
cognitive functions even in the short-term. Therefore, it is
conceivable that a combination of both techniques could act
in a synergistic fashion to improve cognitive performance
beyond the level known for each technique alone. The idea of
combining multiple techniques is far from being new, as several
recent studies and reports have shown complementary effects
when tDCS and exercise are combined in an interventional
approach (Okano et al., 2015; Angius et al., 2017; Edwards
et al., 2017; Ward et al., 2017). There are also several other
multimodal interventions using AE without tDCS, aimed to
improve cognitive functions. For example, a direct combination
of meditation with AE mitigated symptoms of major depressive
disorder, provoked enhanced neurocognitive markers (P300)
and indicated increased synchronous brain activity during a
cognitive control task (Alderman et al., 2016). Thus, similar
to meditation, tDCS may synergistically modulate neural
networks in combination, as this technique has been shown
to mitigate depressive symptoms, increasing cognitive functions
and modifying neural activity (Fregni et al., 2006b; Schuch
et al., 2016). Other more direct interventions with the purpose
of improving cognitive functions have combined cognitive
training with AE training, either in a direct combination
(i.e., cognitive training during exercising) or in an indirect
fashion (i.e., sequentially). In a meta-analysis of studies with
older aged participants, mixed results compared to single

interventions appeared; however, this result could have been
due to the heterogeneity of training protocols (Zhu et al.,
2016). In particular, studies applying a sequential approach
have either revealed positive effects on EFs (Rahe et al., 2015;
Lai et al., 2017) or no superior effects on EFs compared
to single-modality training (Shatil, 2013). Importantly, the
latter study applied AE training and cognitive training on
different days, while the other two studies combined cognitive
and AE training in one session by having cognitive training
followed directly by AE. Thus, one bout of AE and its acute
effects could initiate an ideal environment for increases in a
subsequent training of EF or other cognitive functions and
might thus serve as a brain primer for subsequent tDCS
intervention.

In line with the presented argumentation that multimodal
interventions provide a possibility for initiating neuroplastic
processes and superior performance gains compared to single-
modality interventions based on the literature reviewed thus
far, AE might be capable of positively interacting with the
tDCS induction of synaptic plasticity. It could well be, although
not tested so far, that combining these techniques may
enhance synaptic processing and network activity that are
associated with EFs. For example, following the catecholamine
hypothesis, a session of moderate AE intensity elicits an ideal
amount of catecholamine release for cognitive enhancement.
This enhancing pathway is potentially mediated through
catecholamine, because pharmacological studies have shown that
central EF tasks require the activation of the noradrenergic
and dopaminergic pathways (Luciana et al., 1998; Berridge
et al., 2006; Chamberlain et al., 2006). The enhancement of
EFs by anodal tDCS during stimulation (i.e., online), however,
is thought to be based primarily on changes in resting
membrane potential (Stagg and Nitsche, 2011). Those divergent
mechanisms, capable of initiating cognitive enhancement on its
own, might be one possibility when combined in one session
for synergistic effects on EF performance. While tDCS may
modulate the frontal neural networks in a more specific and
focused manner when stimulating the PFC structures such as
the DLPFC [e.g., even more focally using smaller electrodes,
i.e., high-definition tDCS systems (Datta et al., 2009; DaSilva
et al., 2011; Villamar et al., 2013)], the AE may activate
broader networks through reticular arousal activations pathways
and neural oscillatory modifications (Hall et al., 2007; Woo
et al., 2009; Gutmann et al., 2015; McMorris and Hale, 2015;
McMorris, 2016a,b; Basso and Suzuki, 2017; Hicks et al., 2017).
The involvement of the two converging pathways may then,
as an example, enhance EF inhibition. In particular, brain
areas involved in inhibition, such as the ACC (van Veen
et al., 2001; Mansouri et al., 2009; Kühn et al., 2016; Weng
et al., 2017), are not directly accessible by tDCS, but they
can be reached by arousal activation through physical exercise
(Critchley, 2004). This, in turn, might be supportive in a
synergistic fashion for the executive function ability inhibition
and possibly other EFs.

Alternatively, AE performed directly prior to an anodal tDCS
session of the PFC, in which EFs are trained or tested may
act complimentary for the induction of neuroplasticity based
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on BDNF expression. The increase in BDNF might create an
optimal environment for longer lasting tDCS induced LTP
initiation. As BDNF factors are necessary for successful and
efficient LTP induction (Cotman and Berchtold, 2002), these
pathways (AE initiated BDNF and tDCS initiated LTP) might
converge into optimal learning processes and synaptic plasticity.
In particular, animal studies at which rodents performed exercise
sessions have indicated that BDNF levels in the hippocampus are
related to enhanced learning and memory processes (Vaynman
et al., 2004), and, as reviewed, BDNF expression in humans
due to exercise has been repeatedly observed (Winter et al.,
2007; Szuhany et al., 2015). Cortical concentrations of BDNF
are reduced concomitant with disturbed LTP mechanisms in
several diseases, such as Alzheimer’s disease, Parkinson’s disease,
depression, anorexia, and many other diseases (Mariga et al.,
2017). Thus, AE in combination with tDCS might act for disease
prevention or to enhance cognition and cognitive training
regimens and restore maladaptive neural functions in such
diseases. However, in specific cases, and based on the targeted
system, the AE intensity plays an additional critical role since
high-intensity exercise has several positive effects such as a
superior elevation of BDNF compared to moderate intensity.
Exercise-induced BDNF increase in general (Piepmeier and
Etnier, 2015; Szuhany et al., 2015) is higher due to heavy exercise
compared to a longer-lasting moderate exercise session (Winter
et al., 2007). Thus, the exercise intensity may have a critical
role for initiating/restoring optimal neuroplasticity, which is
mediated by BDNF, such as in major depression (Brunoni et al.,
2008), a psychiatric state which can be influenced by tDCS
and AE (Fregni et al., 2006b; Kuo et al., 2014; Schuch et al.,
2016).

Due to heterogeneous findings on cognitive abilities during
exercise, it is only possible to speculate about how this cognitive-
exercise interaction could be additionally modulated with
parallel anodal or cathodal tDCS. Although the tDCS-induced
electrical field might be affected during whole body movements
through movement artifacts and head transpiration, behavioral
modifications due to stimulation during exercise have already
been observed repeatedly (Angius et al., 2017). Several recent
works provide first evidence that single bouts of tDCS can
improve exercise performance (for an overview, see Angius
et al., 2017; Edwards et al., 2017). In most of these studies
(9 out of 12), anodal tDCS was applied to the left or right
M1 and the cathode was mostly placed at an extra-cephalic
position (e.g., shoulder) or a contralateral site, such as the
contralateral forehead. In two studies, the anode was placed
over the temporal area (T3) and in another study in a central
position (Cz). However, with the exception of two studies,
anodal tDCS was applied prior to the exercise protocol and
lasted for 10–20 min. In sum, the studies indicated mixed
results but point toward a tendency to improve exercise
performance following tDCS application. Primarily, it is thought
that tDCS reduces and delays supra-spinal fatigue accompanied
by a reduced subjective perceived exertion (Williams et al.,
2013; Okano et al., 2015; Angius et al., 2016). Therefore,
one additive effect of tDCS and AE might emerge due to
the fact that people can endure higher exercise intensities,

especially in aged or clinical populations, when tDCS is applied
to the motor cortex for example prior to an AE session. As
outlined, heavy AE seems to be more beneficial in terms of
BDNF releases compared to moderate AE (Basso and Suzuki,
2017) which, in turn, may have a stronger effect on cognitive
performance.

However, to the best of our knowledge, no study has
investigated a possible interaction between exercise, tDCS,
and cognition. Therefore, only indirect conclusions for the
cognitive domain can be derived from combined tDCS-AE
studies within the motor- and sports-related domain. To the
best of our knowledge, so far, there is only one published
RCT trial that implemented in a multimodal study design a
group that received tDCS and AE treatments (Ward et al.,
2017). In this comprehensive 4-month study, cognitive training
success (computer-based EF and working memory training)
was compared between five different groups, whereas one of
those groups received tDCS over DLPFC (HD-tDCS: two small
anodes were placed on left and right PFC and two return
electrodes at occipital areas) during cognitive training and
a physical exercise training. The rationale is that previous
studies have shown that cognitive training success accompanied
by tDCS or by AE training outperformed cognitive training
in isolation (Ward et al., 2017). When they are combined
in one group, converging mechanisms, as reviewed in this
work (LTP, neural excitability, network modifications, and
synaptic plasticity) and addressed by Ward et al. (2017),
should ultimately be expressed in enhanced cognitive learning
success compared to unimodal interventions (e.g., only cognitive
training). Indeed, they found that the combined tDCS-exercise
group outperformed other unimodal and multimodal groups
in cognitive performance, suggesting synergetic effects on the
cognitive system. Unfortunately, there is no specific information
about the time delay between the exercise session and the
tDCS-cognitive training session. Moreover, exercise sessions also
included resistance training and non-standardized AE training
protocols, making it difficult to clearly conclude whether the
higher cognitive training effects were due to the combinatory
effects evoked by each single technique alone, or whether there
were any direct and acute interactions between exercise and
subsequent tDCS effects (e.g., exercise that serves as a brain
primer; more details regarding this aspect are in the next
paragraphs).

One key parameter for the interaction between tDCS and
AE seems to be the timing of the AE and tDCS sessions,
i.e., whether tDCS is applied prior, during, or after AE. Based
on tDCS studies stimulating the motor areas, the timing of
tDCS relative to a given task seems to be a crucial factor
with a strong impact on study outcomes (Stagg and Nitsche,
2011). In experiments where tDCS is applied during task
performance (online tDCS), the specific neural network involved
to perform the task is mainly stimulated and the tDCS-induced
neuroplastic changes primarily occur within the task-related
neuronal circuits (Huang et al., 2017). However, studies indicated
behavioral improvements following online tDCS and after tDCS
administration in the absence of task performance (offline
tDCS). As reviewed, the timing of AE with regards to cognitive
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test administration is important, but the timing interacts
with exercise intensity especially during AE (i.e., online). In
addition, both the online and offline cognitive testing within
AE seem to be an option to enhance behavioral output, as
AE effects may serve as an ideal primer to initiate an optimal
environment to improve brain functions in both cases. No
explicit knowledge is available for the best timing of tDCS and
AE. However, if an intervention wants to exert the online-
effects or any after-effects of one technique directly on another
technique, then the timing appears to be crucial, considering
the observation of tDCS after-effects of no longer than 120 min
(Nitsche and Paulus, 2001; Nitsche et al., 2003b; Kidgell et al.,
2013).

Further hints for the optimal timing come from priming
studies (Parkin et al., 2015), since a specific kind of priming
or ‘‘pre-conditioning’’ (a task or intervention applied before
a second ‘‘conditioning’’ task or intervention) is thought to
initiate ‘‘metaplastic’’ processes by using a short priming (or
pre-conditioning) period of tDCS stimulation before the actual
stimulation (TMS or tDCS) is applied. There is emerging
evidence from motor, cognitive, and vision studies that
metaplasticity provokes more robust results and even boosts
effects of conventional protocols (Hurley and Machado, 2017).
The term metaplasticity refers to the Bienenstock et al. (1982)
model (BCM) of synaptic modification. The BCM implies that a
preceding inhibition of cortical activity decreases the threshold
of a subsequent excitation and vice versa for a preceding
elevation of cortical excitation (i.e., increased threshold for
excitation) (Bienenstock et al., 1982). Consequently, the plasticity
of the state of a neuron depends on earlier states induced
by separate prior events (Abraham, 2008; Hulme et al.,
2013). It is thought that such an experience-dependent neural
plasticity mechanism requires the existence of a state-dependent
fast-reacting system that can dynamically adapt in response
to preceding synaptic activity to retain network stability and
permit enduring LTP or LTD-like mechanisms (Abraham, 2008;
Feldman, 2009).

Thus, the modification or state of a neural network prior
to an intervention can have an impact on a subsequent
intervention where the same network is targeted (within the
timeframe of after-effects). This mechanism was tested by
Carvalho et al. (2015) using two tDCS sessions with a time
delay and different polarities in a working memory task
(N-back) (Carvalho et al., 2015). Notably, anodal tDCS over
the DLPFC as a pre-conditioning period decreased working
memory performance during subsequent anodal tDCS of DLPFC
(conditioning stimulation). This decrease occurred when a time
delay was placed between the two stimulations; thus, metaplastic
processes may have changed the direction of polarity. In contrast,
using cathodal tDCS as a primer 10 min before a second cathodal
tDCS conditioning stimulation enhanced working memory
performance, suggesting a metaplastic mediated compensation
with an upregulation process due to the prior inhibition period
induced by cathodal tDCS. Thus, the effects reversed, agreeing
with the BCM model for retaining network stability and a
phenomenon called the ‘‘rebound effect’’ (Creutzfeldt et al.,
1962). Consequently, due to the aforementioned AE acute effects,

a short bout of high-intensity AE, as an example, could be
an additional tool and taken as a primer (pre-conditioner)
for subsequent anodal or cathodal tDCS. Considering that one
bout of AE increases excitability of the brain and increases
the aforementioned BDNF levels, AE might synergistically
interact with LTP-like mechanisms induced by metaplasticity.
Therefore, either AE or tDCS could be considered a versatile
tool to initiate a specific desirable state of the brain. Thereby,
AE—with its possibility to modify the excitability of the brain
could be used as a brain primer, and tDCS could be used
as a therapeutic tool to synergistically target specific brain
areas more specifically. Alternatively, AE could be applied after
a tDCS phase to facilitate consolidation in the hours after
tDCS.

A further aspect to consider may be that meta-analyses
provide evidence that moderate exercise intensity is most
beneficial for cognitive functions, but affects only the speed
of processing and not accuracy (McMorris et al., 2011;
McMorris and Hale, 2012). Increases in catecholamine with
working memory performance improvements were observable
at between 20 min and 30 min of moderate exercise
intensity, while longer lasting moderate AE resulted in
cognitive inhibition (McMorris et al., 2016). For tDCS, studies
show that offline stimulation improves accuracy in working
memory tasks and helps neuropsychiatric patients during online
stimulation to a greater extent than tDCS is able to improve
processing speed (Dedoncker et al., 2016; Hill et al., 2016).
Thus, there might be a synergistic pathway for a combined
short and moderate AE session and subsequent tDCS to
improve both the accuracy and speed of working memory
performance.

Another potential pathway for its combined effect is the
inhibitory system, as recent evidence shows that increased tonus
of the inhibitory system is essential for increasing cognitive
performance due to its important regulatory activity of multiple
competing systems. Interestingly, the lack of cognitive demand
leads to a lack of inhibition, likely due to a compensatory
mechanism (Capano et al., 2015). Exercise seems to have a
dual effect with an initial increase in excitatory circuits activity
followed by an increase in inhibitory circuits, and has been used
in children to increase inhibitory control, especially in cases of
attention deficit hyperactivity disorder (ADHD) (Chang et al.,
2014). Anodal tDCS seems to lead to a similar effect. Although
anodal tDCS does lead initially to an increase in spontaneous
neuronal firing, it is followed by an increase in intra-cortical
inhibition (Nitsche et al., 2005; Vignaud et al., 2018). Thus,
combining both therapies may enhance these effects; however,
in this case, the timing of both therapies needs to be planned,
as the AE session may not be during the compensation phase
and increase in the inhibitory tonus. There is currently a lack
of data to test this hypothesis, and simultaneous application
of both therapies seems the best option (Mendonca et al.,
2016).

Future Implications
The outcome of a direct combination of tDCS and AE (i.e., tDCS
occurs either during or in a sequential fashion with AE) on

Frontiers in Human Neuroscience | www.frontiersin.org 12 January 2019 | Volume 12 | Article 53448

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Steinberg et al. Synergies Between tDCS and Exercise

FIGURE 1 | Acute effects of transcranial direct current stimulation (tDCS) and aerobic exercise (AE) and possible interactions. Shown is a schematic overview/
summary of the key concepts/effects reviewed in this article. The figure shows some acute effects and interacting parameters that could play a role when both
techniques are applied in combination for supporting cognitive performance. The green color represents the AE effects and the blue color those of tDCS. The more a
specific effect (or moderating parameter) is displayed in the middle of the two-colored boxes the more the effects are comparable between both techniques. This
drawing does not focus on providing a comprehensive overview of all acute effects that have been observed for tDCS and AE (e.g., those for the motor, perceptual
or affective domain). Instead, this figure includes those that might be supportive of the cognitive domain and those that should be critically evaluated in future
multimodal approaches. LTP means long-term potentiation and LTD long-term depression.

a molecular and system level has not yet been investigated.
However, the outcome of both techniques is modulated by many
parameters, and all of which may be of relevance when both
techniques are directly combined (see Figure 1 for an overview).
Following our working hypothesis that moderating parameters
need to be considered, the timing of cognitive test administration
(or the training of EF) and the AE intensity are important factors
to be investigated in the future with regards to whether tDCS and
AE are sequentially or directly combined.

One practical argumentation of combining both techniques
come from an applied perspective as both techniques have
remarkable similarities besides converging mechanisms and
modulatory capacity of brain functions. For both techniques,
20 min of application has been found to be especially supportive
in initializing high effects with enhancement of EFs and
other cognitive abilities. As an example, tDCS of the DLPFC
or moderate-intensity AE of about 20 min have shown to
enhance the EF inhibition, in both online and offline situations
(Kamijo et al., 2007; Davranche et al., 2009; Loftus et al.,
2015; Strobach and Antonenko, 2017). Moreover, the techniques
can be performed in a direct combination (i.e., stimulation
during exercising) when mobile wireless tDCS hardware is
used. Critical aspects such as movement artifacts (compared
to EEG or fNIRS) do not have a major role, and tDCS and
AE are relatively easy to apply, cost-effective and without
known severe side effects. Thus, they can be easily applied

in almost all settings in real life, in health, in sport, peak
performance, and in the treatment of disease (except in patients
with contraindications) without any significant restrictions in
body movement.

The various effects of both techniques on cognition and
brain functions, their potential synergistic interactions, and
their promising possibilities from an applied perspective suggest
that further systematical investigations into the value of their
combined use in health and disease is worthwhile. Because of
the possibility of both tDCS and AE modulating brain functions
and EFs, it would be desirable to investigate whether AE can
prime the brain to foster an ideal brain state for optimized
brain stimulation using tDCS. Thus, if a method wants to
prime the brain or aims to initiate meta-plasticity processes
by combined tDCS/AE, exercise intensity and duration (e.g.,
long moderate or short high intensity), timing (i.e., the delay
between exercise and tDCS session), sequence (i.e., exercise
before tDCS or after tDCS), and polarity (i.e., cathodal or
anodal) of tDCS are critical factors to be considered. Regardless
of metaplasticity, depending on the study objective or clinical
objectives, whether downregulation of a given brain area (such
as in depressive patients) or upregulation (such as in cognitive
training for healthy people) is intended, should be carefully
considered.

Especially with respect to the reticular activation
hypofrontality theory (see section ‘‘Neurophysiological and
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Neurochemical Effects of Acute Exercise’’), it might also be
worth systematically modulating prefrontal cortical activity with
tDCS or transcranial alternating stimulation (tACS) to actively
upregulate or downregulate PFC activity during exercise. Using
tDCS or tACS (through application of alternating current to
brain areas, this technique aims to modulate brain oscillations
and thus the functions that are associated with specific frequency
bands) as a versatile tool and possibility for making causal
inferences may help to confirm or reject the idea of rising
hypofrontality with increasing exercise intensity (Dietrich and
Audiffren, 2011). However, if there is a downregulation of the
PFC by high AE intensity according to this hypofrontality model,
a combined cathodal tDCS might synergistically support the
down regulative capacity of AE on PFC structures. This could
be experimentally investigated and actively used to optimize AE
treatment protocols that have been shown to help depressive
patients (Melo et al., 2016), possibly by the pathways defined
in the hypofrontality model (Dietrich and Audiffren, 2011). In
turn, anodal tDCS administered to the motor cortex during high
AE intensity may release brain capacities which are available
for cognitive functioning. The increased motor cortical activity
required for intensive motor performance, might be supported
by increasing motor cortical activity with anodal tDCS applied
over the motor cortex. Hence, one may speculate that the
higher cortical activity induced exogenously by anodal tDCS
provokes lower needs for endogenous brain activity for motor
performance, which in turn, release brain capacities (e.g.,
information-processing) and enhance cognitive performance
during high AE.

Moreover, it might worth considering that modulations
in brain oscillatory activity such as in the individual alpha
band (e.g., FAA) can be provoked by exercise and tDCS
and tACS (Zaehle et al., 2010, 2011b; Herrmann et al.,
2013; Soekadar et al., 2016; Herrmann and Strüber, 2017;
Kasten and Herrmann, 2017). Because several neurological and
psychiatric conditions are associated with dysfunctional brain
synchronization and maladjusted oscillatory communication
(Stam et al., 2003; Schnitzler and Gross, 2005), a combined
application of AE and tACS/tDCS could help research to
modulate brain oscillations and study the associated behavior
systematically.

Despite any potential and promising possibilities of a
combined tDCS-AE use, however, there are several important
aspects to consider. Although there is a multitude of studies
indicating beneficial tDCS effects on cognitive function and
possible synergistic pathways, there are also several studies
suggesting no or even detrimental effects. Moreover, there
are hints that the current state of the brain and dynamically
changing brain physiology can have a significant impact on
any tDCS-related effects, a factor which must be carefully
considered and which might be especially susceptible by
exercise and its moderating factors. As an example, one could
assume that the effects elicited by a combined tDCS-exercise
protocol on cognitive functioning may be contingent upon
the individual fitness level, thus making it important to
account for inter-subject variability. Moreover, the present
review did not consider the different effects of tDCS and AE

being the result of factors such as age (e.g., very young and
old people), gender or specific neurological and psychiatric
states, all of which might be differently affected by the two
techniques and specifically by the moderating parameters
reviewed here. Lastly, even if there are any potential synergistic
combined tDCS-AE effects from one application, it must
also be examined whether this has an impact on any longer
lasting (i.e., repeated application of a combined AE-tDCS)
interventional approaches, where additional factors must also be
considered.

CONCLUSIONS

AE and tDCS can have remarkably similar effects on EFs
and other cognitive domains and support rapid initiating of
neuroplasticity in the human brain within a short timescale.
This similarity offers multiple beneficial opportunities within
clinical research, such as treatment of psychiatric diseases
or neuro-rehabilitation and also in non-clinical settings, such
as sport. Compared to other multimodal approaches, such
as combined AE-TMS studies or treatments combined with
pharmaceutics, tDCS-AE has the advantages of its easy-to-
apply and time and cost-effective applications without any yet
known severe side effects. The acute effects of both techniques
on the neurophysiological, neurochemical, and behavioral level,
such as the enhancement of cognitive skills, modifications of
neural activity, and catecholamine, have striking similarities and
provide synergistic mechanistic pathways that might improve
brain functions and neuroplasticity in health and disease when
both techniques are applied in direct combination. While
AE might provoke more large-scale changes across the entire
brain, serving as a brain primer to provoke a given desired
brain state, tDCS may then: (a) be used to more focally
and specifically modulate brain activity and behavior; and
(b) lead to more robust and higher effects possibly due
to lower intersubjective variability and potential metaplastic
effects.

Due to various interacting and dynamically changing
parameters, caution must be given to those moderating
parameters that could significantly impact the interaction
between both techniques, possibly leading to the abolishment
of any effect (see Singh et al., 2016). As outlined, moderating
parameters of AE and tDCS, such as exercise and electric
intensity, tDCS polarity, exercise and tDCS duration, and timing
of tDCS, provoke modifications on several levels of the human
organism, even with only one application. Both AE and tDCS
are capable of modulating cognitive functions, brain activity,
and excitation in terms of brain oscillations, hemodynamic
activity, NDMAmediating the release of neurochemicals, BDNF,
and growth factors. This modification can initiate enhanced
cognition and behavior or support treatments in neurologic and
psychiatric conditions. However, such promising positive effects
probably appear only under specific conditions that need to be
carefully controlled and evaluated.

The acute interactions of one session of exercise and tDCS
on cognition have not been empirically addressed so far
and should be systematically and experimentally investigated
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in the future. Special emphasis should determine whether
there is a dose-response relationship in terms of exercise
and tDCS intensity and duration, stimulation area and
polarity, and whether the time course between exercise and
stimulation could interact on several levels of the healthy
and the impaired human brain. If synergistic or additive
effects from acute combined effects can be experimentally
observed in the cognitive or in the motor domain, future
interventions may benefit from synergies between both
techniques.
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Background: Autism spectrum disorder (ASD) is associated with persistent impairments
in adaptive functioning across multiple domains of daily life. Thus, investigation of the
biological background of both adaptive and maladaptive behaviors may shed light on
developing effective interventions for improving social adaptation in ASD. In this study,
we examined the relationship between adaptive/maladaptive behaviors and the acoustic
startle response (ASR) and its modulation, which are promising neurophysiological
markers for ASD translational research.

Method: We investigated the ASR and its modulation in 11 children with ASD and
18 with typical development (TD), analyzing the relationship between startle measures
and adaptive/maladaptive behaviors assessed with the Vineland Adaptive Behavior
Scales (VABS) Second Edition.

Results: Peak-ASR latency was negatively correlated with the VABS total score and
socialization domain score of adaptive behaviors, while the ASR magnitude for relatively
weak stimuli of 75–85 dB was positively correlated with VABS maladaptive behavior
scores. Prepulse inhibition (PPI) at the prepulse intensity of 70–75 dB was also correlated
with VABS maladaptive behavior. However, these relationships did not remain significant
after adjustment for multiple comparisons.

Conclusions: Our results indicate that the prolonged peak-ASR latency of ASD children
might be associated with impairment in the developmental level of adaptive behavior,
and that the greater ASR magnitude to relatively weak acoustic stimuli and smaller PPI
of ASD children might increase the risk of maladaptive behavior. Future studies that have
larger sample sizes will be important for further elucidating the neurophysiological factors
that underpin adaptive as well as maladaptive behaviors in ASD.

Keywords: acoustic startle reflex, adaptive behavior, hypersensitivity, autism spectrum disorder, neurophysiology,
sensorimotor gating
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INTRODUCTION

Autism spectrum disorder (ASD) is associated with persistent
impairments in adaptive functioning across multiple domains
including social, communicative, occupational, or other
important areas of daily life (American Psychiatric Association,
2000). Development of adaptive behaviors and prevention of
maladaptive behavior are primary and fundamental intervention
aims in ASD.

Sensory abnormalities have often been reported as symptoms
of ASD (Lai et al., 2014), and also reported to be related to
adaptive/maladaptive behaviors (Lane et al., 2010; Schauder and
Bennetto, 2016). Thus, investigating the biological background of
sensory abnormalities and its relationship to adaptive as well as
maladaptive ASD behaviors might uncover the neurobiological
cascade of adaptive/maladaptive behaviors, which may shed
light on developing effective interventions for improving social
adaptation in ASD, however, there is a dearth of research on this
issue.

Recently, we reported that the acoustic startle reflex (ASR)
and its modulation, such as sensorimotor gating evaluated
as prepulse inhibition (PPI), might serve as a promising
and quantitative neurophysiological endophenotype of sensory
processing and act as a diagnostic marker of ASD as well
as comorbid psychiatric conditions (Takahashi et al., 2014,
2016). A prolonged peak-ASR latency (Takahashi et al., 2014,
2016) and a greater ASR magnitude (Takahashi et al., 2014,
2016) in response to weak stimuli of 65–85 dB was found in
children with ASD compared to those with typical development
(TD), and these indices were related to autistic traits and
emotional/behavioral difficulties in ASD children (Takahashi
et al., 2016).

Building on this earlier research, in this study, we investigated
the influence of the ASR and its modulation including PPI
on adaptive/maladaptive behaviors, assessed with the Japanese
version (Kuroda et al., 2014) of the Vineland Adaptive Behavior
Scales (VABS), in children with ASD and those with TD,
in order to examine the neurophysiological background of
these behaviors in ASD. We hypothesized that adaptive and
maladaptive behaviors might be related to different aspects of the
ASR and its modulation. We investigated several ASR intensities,
as a greater ASR to relatively weak stimuli has been related to
several clinical features in children with ASD (Takahashi et al.,
2016).

MATERIALS AND METHODS

Participants
Eleven Japanese children with ASD (age 8–16 years old; eight
boys) and 18 typically developing (TD) Japanese children (age
8–16 years old; 12 boys) participated in the study. Experienced
child psychiatrists assigned diagnoses after reviewing medical
records and performing clinical interviews based on the
Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition, Text Revision (American Psychiatric Association,
2000). Diagnoses were confirmed using the Autism Diagnostic
Interview-Revised (Lord et al., 1995) and the Autism Diagnostic

Observation Schedule (Lord et al., 2000). Intelligence quotient
(IQ) was assessed with the Wechsler Intelligence Scale for
Children-Third Revision (WISC-III: Wechsler, 1991). Neither
sex (χ2 = 0.117, df = 1, p = 0.732), age (age in years; ASD
11.6 ± 2.1; TD 11.4 ± 2.1; U = 91, p = 0.719), or estimated IQ
(ASD 85.6 ± 40.1; TD 95.6 ± 32.5; U = 44.5, p = 0.317) differed
significantly between the two groups. Additionally, results from
the WISC-III (Wechsler, 1991) also showed that the estimated
IQ for every child in the study was above 70. No child smoked
and none were currently being medicated with psychotropic
substances. Children were excluded from the study if they had
any degree of hearing loss or abnormalities of the central nervous
system apart from autism. Additionally, members of the TD
group were excluded if they had previous or current psychiatric
diagnoses or a learning disability.

Ethics Approval and Consent to Participate
The Research Ethics Committee of the National Center of
Neurology and Psychiatry, Japan granted institutional review-
board approval for the study (#A2013-112) and it was undertaken
in accordance with the principles laid out in the Helsinki
Declaration 1964 and its subsequent amendments. The study
procedures were fully explained to all participants and their
parents who then provided written informed consent before
being included in the study.

Startle Response Measurement
A commercial computerized human startle-response monitoring
system (Startle Eyeblink Reflex Analysis System Map1155SYS,
Nihonsanteku Co., Osaka, Japan) was used to deliver acoustic
startle stimuli and to record and score the corresponding
electromyographic activity. The specific methods for stimulus
presentation and eyeblink acquisition have been described in
detail previously (Takahashi et al., 2017, 2018). The following
startle measures were examined: (1) ASR65, ASR75, ASR85,
ASR95, and ASR105: average ASR eyeblink magnitude in
response to pulse intensities of 65, 75, 85, 95, and 105 dB SPL,
respectively; (2) the peak-ASR latency, defined as the average
peak-ASR latency across trials with an ASR larger than 60 µV;
(3) habituation of the ASR during the session, defined as the
percentage of ASR amplitude reduction at 105 dB SPL and
(4) PPI65, PPI70, PPI75: PPI at prepulse intensities of 65, 70,
and 75 dB SPL, respectively. The PPI at each prepulse intensity
was defined as the percentage of amplitude reduction between
pulse alone and pulse with prepulse trials. Trials were discarded
if the voltage of their peak electromyographic activity was above
60 µV within a latency window of 0–20 ms following the startle-
eliciting stimulus onset. Startle measures were not calculated
for conditions in which more than half of the trials had been
discarded.

Assessment of Adaptive and Maladaptive
Behaviors
The children’s adaptive and maladaptive behaviors were assessed
with the Japanese version (Kuroda et al., 2014) of the VABS
Second Edition (Sparrow et al., 2005), which was administered to
the mothers of the participants by a child psychiatrist. The VABS
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Second Edition is composed of two parts, an ‘‘adaptive behavior
evaluation’’ part, which measures the level of adaptive behavior
[the skills needed by individuals to function and be self-sufficient
within their everyday environments (Sparrow et al., 2005)],
and a ‘‘maladaptive behavior evaluation’’ part, which measures
behavior that is problematic with respect to individual social
life. Among the four different domains of adaptive behavior
evaluation, communication (conceptual), socialization (social),
and daily living (practical) adaptive skills were evaluated, whereas
the motor adaptive skills domain was not used in this study
as this score is designed to be evaluated only in participants
who are aged 6 years or under, or over 50 years. Each of
these domains comprises subdomains (receptive, expressive,
and written skills in communication; personal, domestic, and
community skills of daily living; interpersonal relationships, play
and leisure time, and coping skills of socialization; and gross and
fine motor skills) with item sets assessing specific content areas
(e.g., adaptive skills). Maladaptive behavior evaluation comprises
three domains (internalizing problems, externalizing problems,
and others). We obtained total standard scores (M = 100,
SD = 15) as well as scores for each of the adaptive behavior
domains, and a v-scale score (M = 15, SD = 3) for maladaptive
behavior. The higher the adaptive behavior standard score, the
higher the adaptive behavior level, the higher the maladaptive
behavior v-scale score, the higher the risk of maladaptation in
life.

Statistical Analysis
Chi-square tests were used to examine categorical proportions.
As most of the variables relating to the ASR and VABS scores
were not normally distributed, nonparametric analyses were
performed. The Mann-Whitney U test was used to compare

the median scores of parameter values. Spearman’s rank order
correlation coefficients were used to examine the relationships
between variables. SPSS Ver. 22 (IBM Japan, Tokyo, Japan)
was used to perform all statistical analyses with the level of
statistical significance set at p < 0.05. A Bonferroni correction
was subsequently used to adjust significance levels for multiple
comparisons.

RESULTS

Differences in Adaptive/Maladaptive
Behaviors and Startle Measures Between
Children With Autism Spectrum Disorders
and Controls
The VABS scores and ASR measures for both groups are
presented in Table 1. All VABS scores except the maladaptive
behavior score, were significantly lower in the ASD group than
in the controls. Children with ASD had a significantly prolonged
peak-ASR latency. Additionally, their ASR75 was significantly
greater. A trend towards greater ASR65 and ASR85 was also
observed in ASD children. There were no statistically significant
differences observed between the groups for other ASRmeasures,
including ASR modulation of habituation and PPI at all prepulse
intensities. However, after correction for multiple comparisons,
only group differences in the VABS total and socialization
domain scores remained significant.

Relationship of Adaptive/Maladaptive
Behaviors to Startle Measures
Figure 1 shows the scatter plot of significant relationships
between the VABS scores and ASR measures for all subjects.

TABLE 1 | Adaptive/maladaptive behavior scores and startle measures.

Typical development (N = 18) Autism spectrum disorders (N = 11)

Median Inter-quartile range Median Inter-quartile range U p-value Effect size (r)

Vineland Adaptive Behavior Scales Adaptive behavior
Total 104 92.5–128.0 91 69.0–94.0 17.0 <0.001 0.69
Communication 103 77.0–112.5 75 66.0–88.0 41.0 0.009 0.49
Socialization 99 91.5–119.5 83 79.0–92.0 8.0 <0.001 0.76
Daily living 110 104.0–132.0 98 72.0–117.0 41.0 0.009 0.49

Maladaptive behavior 16 13.5–17.5 18 13.0–20.0 75.5 0.287 0.20

Peak startle latency (ms) 72.4 67.0–79.5 85.0 71.9–90.1 36.0 0.005 0.53
Acoustic startle magnitude (µV)
65 dB 30.4 20.1–35.9 37.6 35.6–46.3 61.5 0.092 0.31
75 dB 28.5 18.9–40.2 46.0 40.1–56.4 52.0 0.035 0.39
85 dB 37.7 32.4–44.3 57.1 50.0–81.5 57.0 0.059 0.35
95 dB 47.5 28.9–65.1 47.3 44.0–56.3 96.0 0.893 0.03
105 dB 75.9 61.0–82.0 65.7 51.0–149.6 84.0 0.500 0.13
Habituation (%)† 28.9 13.0–36.3 22.8 2.7–31.0 52.0 1.000 0.00
Prepulse inhibition (%)†

65 dB 20.4 4.3–37.7 14.2 5.2–23.1 66.0 0.618 0.10
70 dB 30.2 13.3–42.4 39.8 5.5–48.4 87.5 0.778 0.05
75 dB 42.3 29.7–48.8 49.2 16.8–59.6 89.5 0.851 0.04

Mann-Whitney U test. The level of statistical significance was set at p < 0.003 after a Bonferroni correction. †Number of participants (typical development, TD: autism spectrum
disorders, ASDs) for habituation = 13: 8; Prepulse inhibition (65-dB prepulse) = 15: 10; (70-dB prepulse) = 17: 11; (75-dB prepulse) = 17: 11.
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FIGURE 1 | Scatterplots of significant relationships of adaptive/maladaptive behavior scores to startle measures. (A) VABS total score to peak startle latency.
(B) VABS socialization (social) domain score to peak startle latency. (C) VABS maladaptive behavior score to ASR for 75 dB stimuli. (D) VABS maladaptive behavior
score to ASR for 85 dB stimuli. (E) VABS maladaptive behavior score to PPI at 70 dB prepulse. (F) VABS maladaptive behavior score to PPI at 75 dB prepulse. ASD,
autism spectrum disorder; ASR, acoustic startle response magnitude; PPI, prepulse inhibition; TD, typical development; VABS, Vineland Adaptive Behavior Scales.
The rho and the p-values are derived from Spearman’s rank order correlations. The level of statistical significance was set at p < 0.001 after a Bonferroni correction.
Number of participants (TD:ASD): (A–D) 18:11; (E,F) 17:11.

The peak-ASR latency was negatively correlated with the
VABS total score and socialization domain score, while the
ASR magnitudes for 75–85 dB stimulation were positively
correlated with the VABS maladaptive behavior score. PPI at
the prepulse intensity of 70–75 dB was also correlated negatively
with the VABS maladaptive behavior score. However, these
relationships did not remain significant after adjustment for
multiple comparisons.

In the ASD group, we found a significant correlation between
the VABS maladaptive behavior score and PPI70 (ρ = −0.651,
p = 0.030). This relationship did not remain significant after
adjustment for multiple comparisons. No other significant
relationships between the ASR measures and VABS scores were
observed in either group.

DISCUSSION

In this pilot study, we found possible relationships between
adaptive and maladaptive behaviors and different aspects of the
ASR in children with ASD and TD. Impaired adaptive behavior
evaluated by the VABS total and socialization domain scores
was negatively related to peak-ASR latency, while the VABS
maladaptive behavior score was related not only to a greater
startle magnitude to weak acoustic stimuli of 75 and 85 dB, but
also to PPI.

Possible relationships were observed between impaired
adaptive behaviors, especially for the socialization domain, and
prolonged peak-ASR latency. Regarding the VABS adaptive
behavior domains, previous research has highlighted that the
socialization domain is consistently impaired in people with
ASD irrespective of their cognitive level (Volkmar et al., 1987;
Carter et al., 1998; Fenton et al., 2003; Klin et al., 2007; Perry
et al., 2009). Thus, prolonged peak-ASR latency might serve as a
possible marker of the impaired adaptive behavior which is seen
in ASD.

We also found a possible relationship of maladaptive
behavior to a greater startle response to relatively weak
acoustic stimuli as well as PPI. The PPI is considered
to be a stable neurophysiological marker, which continues
to develop to full maturation until around 8 years of
age (Takahashi et al., 2011). PPI impairment has been
noted in several psychiatric diseases, such as schizophrenia,
obsessive-compulsive disorder and posttraumatic stress disorder
(Takahashi et al., 2011), however, consistent results have not
been obtained with respect to the PPI of ASD in previous studies
(Takahashi and Kamio, 2018), and we did not find a PPI
difference between ASD and TD children. Thus, maladaptive
behavior might be explained not only by greater hyper-reactivity
to relatively weak stimuli, which was found in ASD, but also by
impairment of sensorimotor gating, which is not specific to ASD.
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This suggests that interventions for maladaptive behavior might
be better started as early as possible before full PPI development
has occurred.

The small sample size was a major limitation of this study.
As significant ASR 65 group differences that were reported
in previous studies (Takahashi et al., 2014, 2016) were not
observed in the current study, and most of the associations
between the ASR measures and adaptive/maladaptive behaviors
became non-significant when the children were divided into
groups, the small sample size might have affected the results.
Further, although gender differences exist in ASD (Lai et al.,
2014), this study consisted mainly of boys, while the age
span of the children was also rather large. In addition,
adaptive behaviors were evaluated with standardized scores
while maladaptive behaviors were assessed with v-scale scores,
and these scoring differences might also have affected the
results. Future studies that have larger sample sizes of both
sexes where the age range is narrower and that use other
assessment tools standardized for maladaptive behavior will
be important for further elucidating the neurophysiological
factors that underpin adaptive as well as maladaptive behaviors
in ASD.
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Introduction: Electroconvulsive therapy (ECT) has antidepressant effects, but it also
has possible cognitive side effects. The effects of ECT on neuronal oscillatory pattern
and phase synchronization, and the relationship between clinical response or cognitive
change and electroencephalogram (EEG) measurements remain elusive.

Methods: Individuals with unipolar depressive disorder receiving bilateral ECT were
recruited. Five minutes of resting, eyes-closed, 19-lead EEG recordings were obtained
before and after a course of ECT. Non-overlapping 60 artifact-free epocs of 2-s duration
were used for the analyses. We used exact low resolution electromagnetic tomography
(eLORETA) to compute the whole-brain three-dimensional intracortical distribution
of current source density (CSD) and phase synchronization among 28 regions-of-
interest (ROIs). Paired t-tests were used to identify cortical voxels and connectivities
showing changes after ECT. Montgomery Asberg Depression Rating Scale (MADRS) and
Mini-Mental State Examination (MMSE) were used to evaluate the severity of depression
and the global cognitive function. Correlation analyses were conducted to identify the
relationship between changes in the EEG measurements and changes in MADRS or
MMSE.

Results: Thirteen depressed patients (five females, mean age: 58.4 years old) were
included. ECT increased theta CSD in the anterior cingulate cortex (ACC), and decreased
beta CSD in the frontal pole (FP), and gamma CSD in the inferior parietal lobule (IPL). ECT
increased theta phase synchronization between the posterior cingulate cortex (PCC)
and the anterior frontal cortex, and decreased beta phase synchronization between the
PCC and temporal regions. A decline in beta synchronization in the left hemisphere was
associated with cognitive changes after ECT.

Abbreviations: CSD, current source density; DMN, default mode network; ECT, electroconvulsive therapy; EEG,
electroencephalography; LORETA, low resolution electromagnetic tomography.
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Conclusion: ECT modulated resting-state EEG oscillatory patterns and phase
synchronization in central nodes of the default mode network (DMN). Changes in beta
synchronization in the left hemisphere might explain the ECT-related cognitive side
effects.

Keywords: electroconvulsive therapy, electroencephalography, depressive disorder, low resolution
electromagnetic tomography, current source density, phase synchronization

INTRODUCTION

Electroconvulsive therapy (ECT) is the most effective
antidepressant treatment (Kellner et al., 2012), but it also
has potential cognitive side effects (Semkovska and McLoughlin,
2010). A better understanding of the biological mechanisms
behind ECT-related antidepressant effects and cognitive side
effects may have implications for developing new antidepressant
treatments that have comparable efficacy to ECT without the
cognitive side effects.

The electroencephalogram (EEG) is one of the principal
methods for extracting information from the human brain
noninvasively (Fingelkurts and Fingelkurts, 2015). Studies
investigating the effects of ECT on electrophysiological
measurements date back to the 1930s. Although the results
of early studies using qualitative ratings were not consistent,
quantitative analyses of EEG data have reported ECT-induced
slow-wave increases in the fronto-temporal regions (Sackeim
et al., 1996). Recent studies found that ECT-induced theta
changes in the subgenual anterior cingulate cortex (ACC)
were associated with improvement in psychotic symptoms
(McCormick et al., 2009), and ECT modulated multi-scale
entropy in depressed patients (Farzan et al., 2017). However, the
number of studies examining the electrophysiological effects of
ECT is still small compared to other modalities, such as magnetic
resonance imaging (MRI; Abbott et al., 2014). Moreover,
the relationship between changes in clinical response and/or
cognitive function and changes in EEG measurements remains
elusive.

Depression is now conceptualized as a system-level disorder
(Mayberg et al., 2005), and it has been reported that
depression showed increased resting-state EEG functional
connectivity among multiple brain regions (Fingelkurts et al.,
2007; Leuchter et al., 2012). The effects of antidepressant
medications and transcranial magnetic stimulation (TMS) on
brain electrophysiological measures have been examined by
using a newly developed measurement of EEG functional
connectivity, namely lagged non-linear connectivity or lagged
phase synchronization (Pascual-Marqui et al., 2011; Olbrich
et al., 2014; Iseger et al., 2017; Kito et al., 2017). Because
phase synchronization is considered to be a fundamental
neural mechanism relating to neural plasticity and cognitive
processes (Fell and Axmacher, 2011), this measurement seems
to be ideal for investigating the underlying mechanisms
of ECT.

The aim of this study was to investigate the effects of ECT
on cortical oscillatory activity and EEG phase synchronization
throughout the brain. We also investigated whether changes in

these EEG measurements were associated with clinical response
as well as cognitive change.

MATERIALS AND METHODS

Trial Setting
We performed a longitudinal study to compare changes in
neuronal oscillatory pattern and phase synchronization before
[time point (TP1): time between admission and the first ECT]
vs. after ECT (TP2: within 1 week of the completion of the
ECT series). This study was conducted at Keio University
Hospital from June 2013 through December 2015. Ethical
approval was obtained from the Ethics Committee of Keio
University School of Medicine, and the study was conducted in
accordance with the principles expressed in the Declaration of
Helsinki. Written informed consent was obtained from all the
participants.

Participants
Individuals meeting the following inclusion criteria were
recruited from Keio University Hospital: (1) International
Classification of Disease 10th edition (ICD-10) diagnosis of
depressive disorder (F32, F33; World Health organization,
1994); (2) inpatients at the psychiatric ward; (3) clinical
indications for ECT including treatment resistance and a need
for a rapid and definitive response; and (4) age ≥20 years.
Exclusion criteria were the following: (1) a lifetime history
of neurological or degenerative disorder; (2) unstable or
severe medical illness; (3) ECT treatment within the last
3 months; (4) lifetime history of drug or alcohol misuse;and
(5) difficulty in communication. These participants were
originally collected for a previous study (Hirano et al.,
2017).

Clinical Assessments
The following clinical assessments were performed by trained
psychiatrists who were blinded to the EEG data at TP1 and
TP2. Montgomery Asberg Depression Rating Scale (MADRS;
Montgomery and Asberg, 1979) was used to evaluate the severity
of depression, and Mini-Mental State Examination (MMSE;
Folstein et al., 1975) was used for the assessment of global
cognitive function. We also collected participants’ demographic
and clinical information including age, sex, past medical history,
medications prescribed, and ECT data (e.g., the number of ECT
sessions). Clinical response was defined as a decrease in MADRS
score of at least 50% from baseline (Rush et al., 2003), and
remission was defined as a total MADRS score of 10 or less
(Zimmerman et al., 2004).
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ECT Treatment
ECT was performed with bitemporal electrode placement using
a brief-pulse square-wave device (Thymatron system IV device;
Somatics, Inc., Lake Bluff, IL, USA). The intensity of the first
ECT session was determined based on the half age method.
Treatments were performed three times a week, and treatments
were continued until a plateau was reached and no more
improvement was seen in the last two sessions. EEG seizure
manifestations were monitored to ensure adequate seizure.
When the EEG seizure duration was less than 25 s, the patients
were restimulated at a higher intensity after a 1 min interval.
Thiopental (3.5 mg/kg) was used for general anesthesia, and
succinylcholine (1 mg/kg) was used to induce muscle relaxation
(A Task Force Report of the American Psychiatric Association,
2001).

EEG Recording
The participants underwent EEG before (TP1) and after (TP2)
a series of ECT. The first recording was performed between
admission and the first ECT, and the second recording was
done within 1 week after the last ECT. EEG data was obtained
and digitalized on Nihon Kohden EEG machines (Neurofax
EEG-1200) by trained technicians at Keio University Hospital.
Five minutes of resting EEG was recorded under eyes-closed
conditions from 19 scalp locations according to the international
10/20 system (Fp1/2, F3/4, C3/4, P3/4, O1/2, F7/8, T3/4, T5/6, Fz,
Cz, Pz) referenced to linked ear lobes (A1 and A2). Impedances
were kept below 5 kΩ. Data were collected digitally with a
sampling rate of 500 Hz. Simultaneous video recordings were
used to check each segment for movements and to exclude these
segments.

EEG Preprocessing
EEG raw data was first analyzed using the EEGLAB (Delorme
and Makeig, 2004). The data were downsampled to 250 Hz
to reduce computing time, filtered at 1.0 Hz (high-pass) and
50 Hz (notch-filter), and segmented in 2-s epocs. Then the
EEG signal was decomposed into independent components (ICs)
by Infomax IC analysis (Bell and Sejnowski, 1995), using the
EEGLAB runica command. Each IC was visually examined and
ICs corresponding to artifactual sources were removed. The
cleaned EEG signal was reconstructed by retro-projecting only
the ICs containing a cerebral signal. The reconstructed signals
were referenced to Cz and the first 60 epocs were entered into the
following analyses.

EEG-Source Localization Analysis
We used exact low resolution electromagnetic tomography
(eLORETA) to compute the three-dimensional (3D) intracortical
distribution of electric neuronal activity for the following
six bands: delta (1.0–3.5 Hz), theta (4.0–7.5 Hz), alpha
(8.0–12.0 Hz), beta 1 (12.5–20.0 Hz), beta 2 (20.5–30.0 Hz),
gamma (30.5–45.0 Hz). The eLORETA method is a discrete, 3D-
distributed, linear, weighted minimum norm inverse solution.
Compared with previous versions, eLORETA has no localization
bias in the presence of structured noise in simulated data
(Pascual-Marqui, 2007a). Numerous studies using functional
MRI (fMRI; Vitacco et al., 2002; Mulert et al., 2004), structural

MRI (Worrell et al., 2000), positron emission tomography (PET;
Pizzagalli et al., 2003; Zumsteg et al., 2005), and intracranial
EEG (Zumsteg et al., 2006a,b) have validated LORETA to
study brain activity. Studies using a relatively small number
of electrodes (i.e., 19 electrodes) have applied LORETA source
localization successfully (McCormick et al., 2009; Thatcher et al.,
2014).

Several previous studies have reported abnormal current
source density (CSD; Pizzagalli et al., 2002, 2004) and EEG
functional connectivity (Olbrich et al., 2014) in depressed
patients, as well as changes in EEG functional connectivity with
antidepressant treatments, including antidepressant medications
(Olbrich et al., 2014; Iseger et al., 2017), and TMS (Kito
et al., 2017). The eLORETA solution space (6,239 voxels; spatial
resolution; 5 mm) is restricted to the cortical gray matter. The
Montreal Neurologic Institute average MRI brain (MNI152;
Mazziotta et al., 2001) is used as a realistic head model for
which the lead field was computed (Fuchs et al., 2002). At each
voxel, LORETA values represent the power of the computed
intracortical current density distribution for each frequency
band. To eliminate variability for the total power changes of each
subject, we used subject-wise data normalization implemented in
LORETA before statistical analyses.

EEG Functional Connectivity Analysis
We selected 28 regions-of-interest (ROIs) covering the whole-
brain based on Brodmann Areas (BAs) provided in the
eLORETA software, as others did in a previous study (Di
Lorenzo et al., 2015; Supplementary Table S1). We selected
a single voxel in the center of each ROI as the representative
voxel. We used lagged phase synchronization (Kito et al.,
2017) as a measure of EEG functional connectivity between
all pairs of ROIs. Lagged phase synchronization quantifies
the non-linear relationship between two ROIs after the
instantaneous zero-lag contribution has been excluded. This
correction is important because zero-lag synchronization is
usually due to non-physiological artifacts, such as volume
conduction and low spatial resolution that usually affect other
connectivity indices (Nolte et al., 2004; Stam et al., 2007).
Details on the lagged phase synchronization algorithm can be
found in several reports (Pascual-Marqui, 2007b; Kito et al.,
2017).

Statistical Analysis
We conducted paired t-tests to compare differences in CSD
and lagged phase synchronization between TP1 and TP2.
We used statistical nonparametric mapping (SnPM; Nichols
and Holmes, 2002). This method determined the critical
probability threshold values for the actually observed t-values
with correction for multiple comparisons across all voxels and
all frequencies. A total of 5,000 permutations were conducted
to calculate the critical threshold tcrit for p = 0.05 with
correction for multiple comparisons among all voxels and
frequencies. The omnibus null hypothesis was rejected if at
least one t-value (i.e., voxel tmax) was above the tcrit. The use
of SnPM in eLORETA has been validated in several studies
(Pascual-Marqui et al., 1999; Canuet et al., 2012). To investigate
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associations between EEG changes and clinical changes, we
extracted individual eLORETA values and connectivity values
from identified brain regions and connectivities using the above-
mentioned paired t-tests, and we conducted correlation analyses
as exploratory analyses. Clinical changes included MADRS
reduction volume (post MADRS score − pre MADRS score) and
MMSE reduction volume (postMMSE score− preMMSE score).
Statistical analyses were performed using SPSS ver 24.0 (IBM
Inc., Armonk, NY, USA). Statistical significance was defined by
a p-value of <0.05 (two-tailed). Multiple testing corrections were
not conducted for the correlation analyses, as these analyses were
exploratory.

RESULTS

Demographic and Clinical Characteristics
Demographics and clinical characteristics of the participants are
summarized in Table 1. Thirteen individuals [five females, mean
age: 58.4 (Standard Deviation: 13.6) years old] with unipolar
depressive disorder completed this study. After ECT, the total
MADRS score was significantly reduced from TP1 to TP2 [TP1:
30.3 (8.6), TP2: 6.5 (6.3), df = 12, t = 9.04, p < 0.001], whereas
the total MMSE score did not change [TP1: 27.0 (3.0), TP2: 26.3
(2.9), df = 11, t = 0.76, p = 0.46]. Remission and response rate
were 69.2% (9/13) and 92.3% (12/13), respectively. The number
of ECT was mean 9.9 (SD: 1.8).

Longitudinal Effects of ECT on Whole
Brain CSD
Whole-brain analyses using eLORETA showed the following
changes in oscillatory cortical activity patterns after ECT
(tcrit = 1.52, p < 0.05): increased theta (t = 1.70) in the
ACC and the medial prefrontal cortex (MPFC); decreased
beta 2 (t = −1.75) in the frontal pole (FP), and decreased

TABLE 1 | Clinical characteristics of the participants.

Number of patients 13
Age, years 58.4 (13.6)

Female, n (%) 5 (38.5%)
Psychotic features, n (%) 5 (38.5%)
Age at onset, years 48.2 (7.7)

Number of depressive episodes 2.5 (1.4)

Duration of current episode, months 10.2 (12.4)

Number of prior antidepressants 4.0 (1.8)

Number of ECT treatments 9.9 (1.8)

Time between the pre-EEG and the first ECT, days 9.1 (7.8)

Time between the last ECT and post-EEG, days 3.1 (1.7)

MADRS total score
pre-ECT (TP1) 30.3 (8.6)

post-ECT (TP2) 6.5 (6.3)

Clinical Remitters, n (%) 9 (69.2%)
Clinical Responders, n (%) 12 (92.3%)
MMSE total score

pre-ECT (TP1) 27.0 (3.0)

post-ECT (TP2) 26.3 (2.9)

Data are number or mean (standard deviation) unless stated otherwise. Abbreviation:
TP1, pre-ECT series (baseline); TP2, post-ECT series (endpoint); ECT, Electroconvulsive
therapy; EEG, Electroencephalogram; MADRS, Montgomery Asberg Depression Rating
Scale; MMSE, Mini-Mental State Examination.

gamma (t = −1.74) in the right inferior parietal lobule (IPL;
Figure 1).

Longitudinal Effects of ECT on Lagged
Phase Synchronization
Analyses of changes in lagged phase synchronization between
TP1 and TP2 (tcrit = 5.37, p < 0.05) revealed that there was
a significant increase in theta phase synchronization between
the right anterior PFC (APFC) and the right posterior cingulate
cortex (PCC; t = 5.48). There were significant decreases in the
beta 1 phase synchronization between the right insula (INS)
and the right superior parietal lobule (SPL; t = −5.85), between
the left PCC and the left INS (t = −6.60), and between the
left PCC and the left lateral temporal lobe (LTL; t = −5.55;
Figure 2).

Correlation Between Changes in EEG
Measurements and Clinical Changes
There were no correlations between changes in CSD in three
identified regions (theta CSD in the ACC/MPFC, beta2 CSD in
the FP, and gammaCSD in the right IPL) and changes inMADRS
or MMSE (Supplementary Table S2). However, connectivity
changes between the left PCC and the left INS (r = −0.68,
df = 10, p = 0.015) as well as connectivity changes between the
left PCC and the LTL (r = −0.64, df = 10, p = 0.024) had negative
associations with changes in MMSE.

DISCUSSION

The current study revealed that ECT increased theta activity
in the ACC/MPFC, decreased beta activity in the FP, and
decreased gamma activity in the IPL. ECT increased theta
phase synchronization between the PCC and the APFC, and
decreased beta phase synchronization between the PCC and the
temporal regions. We could not find any associations between
clinical response and any EEG measurements, but we found
a relationship between decreased beta phase synchronization
and cognitive change after ECT. This is the first study to show
the correlation between ECT-related cognitive change and beta
phase synchronization.

Longitudinal Effect of ECT on Neural
Oscillations
We found that ECT increased theta oscillations in the
ACC/MPFC and decreased high frequency oscillations in the FP
and the right IPL. Since the 1930s, many studies have reported
ECT-induced slow wave oscillations in the frontal lobe (Krystal
et al., 2000; Farzan et al., 2014), and a recent EEG study reported
that ECT decreased high frequency oscillations, especially in
patients who responded to ECT (Farzan et al., 2017). Our results
are in line with these previous findings, which may support the
validity of our findings.

According to fMRI and EEG studies, frontal medial theta
activity was negatively correlated with blood oxygen level
dependent (BOLD) signals in the default mode network (DMN)
regions, namely medial frontal, inferior frontal, precuneus/PCC,
inferior parietal, middle temporal cortices, and the cerebellum
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FIGURE 1 | Brain regions showing change in oscillatory patterns after a course of electroconvulsive therapy (ECT). Our analyses revealed the following changes
after ECT: (A) increased theta (4.0–7.5 Hz) in the anterior cingulate cortex (ACC) and the medial prefrontal cortex (MPFC); (B) decreased beta 2 (20.5–30.0 Hz) in the
frontal pole (FP); and (C) decreased gamma (30.5–45.0 Hz) in the right inferior parietal lobule (IPL). Red regions correspond to significantly increased CSD after ECT,
and blue regions correspond to significantly decreased CSD after ECT. Abbreviation: CSD, current source density.

(Scheeringa et al., 2008). In addition, high-frequency bands,
including beta (Laufs et al., 2003) and gamma (Mantini
et al., 2007), were positively correlated with DMN BOLD
signals. Considering these previous findings, the current results
(increased theta in the ACC/MPFC, decreased beta in the MPFC,
and decreased gamma in the IPL) may indicate that ECT
decreased resting-state electrical activity in nodes of the DMN.
A recent meta-analysis of PET studies investigating the effect of
treatments for depression (i.e., antidepressant medications and
ECT) on brain metabolism revealed that ECT decreased activity

in central nodes of the DMN (Chau et al., 2017). Given that
electroencephalographic oscillations are a relatively more direct
measure of neuronal activity than other modalities (e.g., PET,
MRI), the current study may provide additional evidence for the
results from previous PET studies.

We could not find any correlations between oscillatory
changes in nodes of the DMN regions and ECT and MADRS
reduction. One potential interpretation is that an ECT-induced
reduction in DMN activity may be just a by-product of electrical
stimulation or seizure, and not related to clinical response.
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FIGURE 2 | Results of analyses of changes in lagged phase synchronization with ECT. (A) There was a significant increase in theta phase synchronization between
the right APFC and the right PCC. (B) There were significant decreases in the beta 1 phase synchronization between the right INS and the right SPL, between the left
PCC and the left INS, and between the left PCC and the left LTL. Abbreviation: APFC, anterior prefrontal cortex; PCC, posterior cingulate cortex; INS, insula; SPL,
superior parietal lobule; LTL, lateral temporal lobe.

Another potential explanation is that a change in DMN activity
due to ECT may be related to a change in specific psychiatric
symptoms, and not related to a change in the entirety of
depressive symptoms (i.e., total HAM-D scores). Since DMN
activity is considered to be associated with rumination and
autobiographical memory (Zhu et al., 2012), a future study
should focus on the relationship between ECT-induced changes
in DMN activity and specific symptoms (e.g., rumination) or
autobiographical memory, which is known as ECT-related side
effects (Semkovska and McLoughlin, 2013).

Longitudinal Effect of ECT on Lagged
Phase Synchronization
ECT-induced EEG slowing suggests that synchronization occurs
in the synaptic activity of large neuronal populations, with a
reduction in firing rate (Sackeim et al., 1996). Our observed
results of ECT-induced increased phase synchronization in theta
frequency between the PCC and the APFC (BA9, 10) support
this notion. These two regions (PCC and BA9/10) are located in
the posterior and anterior central nodes of the DMN, suggesting
that ECT may increase phase synchronization within the DMN.
Since there were no correlations between changes in theta
phase synchronization and those in MADRS and MMSE, the
implication of our findings still remains unclear. Therefore,
to elucidate the clinical relevance of changes in theta phase
synchronization due to ECT, a large sample study that focuses
on specific symptoms related to the DMN is needed.

Additionally, the current study revealed that ECT decreased
beta phase synchronization between the PCC and the temporal
regions. This is in line with a previous EEG study using
graph theoretical analysis, which reported that a single session
of seizure therapy decreased the phase synchronization in
the beta frequency band (Deng et al., 2015). Furthermore,
we found a significant correlation between changes in beta
synchronization and changes in MMSE scores, which may
suggest that depressed patients who present a larger decrease
in beta synchronization after ECT show more cognitive decline
after ECT. A prior study has also reported that lower beta band
synchronization is associated with lower MMSE scores (Stam
et al., 2003). Furthermore, the PCC has an important role in
autobiographical memory (Leech and Sharp, 2014), which is one
of the cognitive functions largely affected by ECT (Semkovska
and McLoughlin, 2013). In addition, our finding was restricted
to the left hemisphere. The short-term cognitive side effects of
ECT change depending on the electrode placement (i.e., bilateral
vs. unilateral). Right unilateral electrode placement has been
shown to have less cognitive side effects than bilateral electrode
placement (Kolshus et al., 2017), and left unilateral electrode
placement tended to have more verbal memory impairment
than right unilateral electrode placement (Kellner et al., 2017).
The interpretation of these results is understandable based on
the theory that the left hemisphere is dominant for language
and verbal processing for most people. Left-lateralized results
in the current study are consistent with this evidence. We
used only bilateral electrode placement in the study because
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our participants were severely depressed patients who needed
rapid improvement, but future studies should compare the
effects of ECT on neurophysiological and neuropsychological
measurements between different electrode placements to test
our hypothesis. Taken together, our findings of a decrease
in beta synchronization between the left PCC and the left
temporal regions may reflect the underlying electrophysiology of
ECT-induced cognitive impairments.

LIMITATIONS

The current study should be interpreted with the following
limitations. First, the number of participants was limited. A
larger study is needed to confirm our preliminary results.
Second, all patients continued their psychopharmacological
medications, which may affect the EEG oscillatory pattern and
phase synchronization. However, a previous study reported
that antidepressant medications increased beta band phase
synchronization as calculated by LORETA (Olbrich et al., 2014).
The effects of ECT on EEG phase synchronization (i.e., ECT
decreased beta band phase synchronization) may be stronger
than the effects of antidepressant medications. Third, we did
not conduct multiple testing corrections for correlation analyses,
as the analyses were exploratory. The observed relationship
between beta synchronization and cognitive change needs to
be replicated. In addition, MMSE includes multiple cognitive
domains, so future studies should focus on specific cognitive
domains that relate to ECT. Fourth, our sample includes only
depressive disorder to avoid heterogeneity, but this also limits the
generalizability of our results.

CONCLUSION

ECT reduced resting-state EEG oscillatory activity in central
nodes of the DMN regions and increased phase synchronization

within the DMN. An ECT-induced reduction in beta phase
synchronization was associated with the cognitive side effects
experienced by patients after a series of ECT.
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Impaired neural plasticity may be an important mechanism in the pathophysiology of
major depressive disorder (MDD). Coupled with electromyography (EMG), repetitive
transcranial magnetic stimulation (rTMS) is a useful tool to evaluate corticospinal
excitability and cortical neuroplasticity in living humans. The goal of this study was
to compare rTMS-induced cortical plasticity changes in patients with MDD and in
healthy volunteers. In this single-blind controlled study, 11 drug-free patients with MDD
and 11 matched healthy controls were analyzed. Cortical excitability, measured by
the amplitude of motor evoked potentials (MEPs) evoked by single-pulse TMS, was
assessed before and repeatedly after (for 30 min) participants received a single session
of intermittent theta-burst stimulation (iTBS) and continuous TBS (cTBS). rTMS was
applied over the left motor cortex using a neuronavigation system. Intensity was set at
80% of the active motor threshold (AMT). A large interindividual variability was observed
after both iTBS and cTBS in the two groups. At the group level, we observed impaired
iTBS-induced neuroplasticity in patients with MDD compared to that in controls. No
differences were observed between the groups regarding cTBS-induced neuroplasticity.
Our results suggest impaired long-term potentiation (LTP)-like mechanisms in MDD.

Clinical Trial Registration: www.Clinicaltrials.gov, identifier #NCT02438163.

Keywords: major depressive disorder, transcranial magnetic stimulation, theta-burst stimulation, cortical
excitability, neural plasticity

INTRODUCTION

Unipolar major depressive disorder (MDD) is a very frequently occurring disorder associated
with high impairment of global functioning and significant societal economic burden (Kessler
et al., 2003; Whiteford et al., 2013). Despite current efforts, the pathophysiology of MDD is
not completely elucidated. Among the several theories that have been proposed, the ‘‘neural
plasticity abnormalities’’ theory in particular, which may bridge the prevailing theories, has
gained attention (Wainwright and Galea, 2013). Neural plasticity encompasses an array of key
brain mechanisms (birth, survival, migration, and integration of neurons, synaptogenesis and
apoptosis). Several studies have reported impaired neural plasticity at different levels in patients
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with MDD. For instance, postmortem studies have revealed a
reduction in the number of synapses and a decreased expression
of synaptic function-related genes in the prefrontal cortex (PFC)
of patients with MDD (Kang et al., 2012). Patients with MDD
also display a reduction in brain volume compared with healthy
volunteers, especially in the hippocampus (Campbell et al., 2004)
and in the PFC (Drevets, 2000). Taken together, these studies
suggest a close relationship between abnormal neural plasticity
and MDD, but more studies are needed to establish the key role
of these mechanisms in MDD pathophysiology (for a review see
Cantone et al., 2017).

Transcranial magnetic stimulation (TMS) is a noninvasive
brain stimulation method that can be used to evaluate some
indexes of neural plasticity in living humans. Some authors
have suggested that the modulation of motor corticospinal
excitability measured by single pulse TMS following a
repetitive TMS (rTMS) session may reflect neural plasticity
(Cantone et al., 2017). Among all the currently available
rTMS protocols, the theta burst stimulation (TBS) is a brief
rTMS protocol enabling an assessment of cerebral plasticity,
especially at a synaptic level (Huang et al., 2005). Depending
on the stimulation parameters, TBS can induce either an
inhibition of corticospinal excitability (following continuous
TBS, cTBS), or an enhancement (following intermittent
TBS, iTBS). In these studies, the induced modulation of
corticospinal excitability is assessed by the size of motor
evoked potentials (MEPs) measured before and after the
rTMS session. For instance, by measuring the modulatory
effects of a single TBS session in individuals with Asperger’s
syndrome, Oberman et al. (2012) observed a significant
alteration in the modulation of corticospinal excitability in
patients compared to that in healthy volunteers in response
to both iTBS and cTBS suggesting aberrant mechanisms of
plasticity in patients. These results suggest that TBS may
reveal abnormal neuroplasticity in patients with psychiatric
neurodevelopmental conditions. However, to the best of our
knowledge, the modulatory effect of TBS on neural plasticity
has never been investigated in patients with MDD. We
hypothesized that patients with MDD would display decreased
TBS-induced modulation of corticospinal excitability compared
with healthy volunteers.

MATERIALS AND METHODS

The study was approved by a local ethics committee (CPP
Sud-Est 6), ANSM 2013-A00971-44 and registered in
www.Clinicaltrials.gov (NCT02438163). All patients provided
written, informed consent. The trial was conducted in the
Hospital Le Vinatier, University Department for treatment-
resistant depression, University of Lyon, France. All patients
were consecutively recruited fromMarch 2014 to October 2017.

Participants
Fourteen patients with unipolar MDD according to DSM 5 and
14 matched healthy controls were enrolled in the study. Three
patients with MDD were not included in the final analyzed
sample. One patient with MDD was excluded because of an

unexpected cerebral lesion discovered during the magnetic
resonance imaging (MRI); one patient withdrew her consent;
one was excluded because we were not able to obtain a 1 mV
baseline MEP. It should be note that one patient only took
part in the cTBS session because of strong nausea on the
morning of the iTBS session, and setting up another day
of investigation with the patient was not possible due to
the introduction of antidepressant medication. In the healthy
control group, three participants were not included in the final
analyzed sample: two participants withdrew their consent, and
one was excluded because she presented with an antecedent
of a major depressive episode. Therefore, the final analyzed
sample consisted of 11 healthy participants, 10 patients with
MDD who received cTBS and 11 patients with MDD who
received iTBS.

Only right-handed patients (according to the Edinburgh
Handedness Inventory) from both genders [eight females, three
males, age range 28–61, mean = 44.6 (standard deviation = 10.8)
years old] with a Montgomery–Åsberg Depression Rating
Scale (MADRS) score between 20 and 35 and free from any
psychotropic drugs (including antipsychotic, antidepressant,
and antiepileptic drugs) were included. For patients with
MDD under psychotropic drugs, the wash out period was at
least of five half-life time of the concerned drugs. Exclusion
criteria consisted of (i) melancholic features; (ii) presence
of a neurological or psychiatric comorbidity, except for
anxiety disorder; (iii) pregnancy; and (iv) contraindications
for TMS.

The group of healthy controls was composed of 11 right-
handed individuals [seven females, four males, age range
26–59, 42.3 (9.4) years old]. The inclusion criteria consisted
of the following: (i) no current psychiatric, neurologic or
infectious disease with a potential effect on the brain; and
(ii) free from any psychotropic drug. The exclusion criteria
consisted of (i) pregnancy; and (ii) contraindications for
TMS. Further characteristics of the participants are given
in Table 1.

TABLE 1 | Demographic and clinical characteristics of the participants.

Patients Healthy p
with MDD controls

n 11 11
Gender (female/male) 8/3 7/4 1
Age 44.6 (10.7) 42.3 (9.4) 0.59
Number of prior episodes 1.6 (1.4) 0 (0) <0.001
MADRS 29.8 (4.7) 0 (0) <0.001
Duration of illness (months) 19.1 (22.6) 0 (0) <0.001

STAI trait 55.5 (10.2) 34.8 (6.6) <0.001
STAI state before iTBS 52.4 (11.1) 27.4 (7.0) <0.001
1 mV MEP before iTBS 59.8 (13.9) 57.5 (8.2) 0.65
AMT before iTBS 33.9 (9.1) 35.5 (7.3) 0.67
STAI state before cTBS∗ 54.5 (13.4) 28.5 (7.6) <0.001
1 mV MEP before cTBS∗ 58.8 (12.0) 58.3 (9.5) 0.91
AMT before cTBS∗ 34.8 (7.6) 34.5 (6.9) 0.93

The results are given as the mean ± standard deviation. MADRS, Montgomery–Åsberg
Depression Rating Scale; STAI, State-Trait Anxiety Inventory scale; AMT, activity motor
threshold; 1 mV MEP, TMS intensity to obtain an MEP with a mean amplitude of 1 mV at
baseline. ∗Only 10 patients with MDD received continuous theta-burst stimulation (cTBS).
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Transcranial Magnetic Stimulation to
Assess TBS-Induced Neural Plasticity
Participants were seated in a comfortable chair with both
arms supported passively. Electromyographic (EMG) recordings
from the right first-dorsal interosseus muscle (FDI) were taken
using Ag/AgCl surface electrodes (Disposable Surface Electrodes
SEAg-C-0.7/100/22X30; Friendship Medical, Xi An, China).
Raw signals were amplified and digitized using a commercially
available amplifier (Keypoint Portable System). All recordings
were manually analyzed offline.

TMS was applied over the left primary motor cortex
(M1) using a posterior-anterior current direction through a
standard figure-of-eight coil (Cool Coil Magnetic Stimulator
B65, Mag2Health) connected to a MagPro-X100 stimulator.
The coil was manually and tangentially placed with the handle
pointing backwards at an angle of 45◦ to the midline. The
stimulation site leading to large and stable MEPs was defined
as the optimal coil position over the left M1. To ensure
that the coil reliably remained over the same stimulation
target throughout the entire experimental session (baseline, TBS
protocol, and repeated MEP recordings), the coil was guided
with an MRI-coupled neuronavigation system [SYNEIKA ONE
(SYN1) version 1.5.1].

To recordMEPs at baseline and repeatedly after TBS, the TMS
intensity was set to evoke MEPs of approximately 1 mV (S1mV)
amplitude at baseline. We measured the peak to peak amplitude
of 15 MEPs at baseline and 10 MEPs (Groppa et al., 2012) at
different time points: 5, 10, 20, and 30 min after the end of the
TBS session.

Theta-Burst Stimulation Procedures
Participants were randomly assigned to receive two sessions of
TBS delivered on two separate days. The experimental sessions
were performed with a wash period between 2 and 7 days.
Sessions took place at the same time of day (morning or
afternoon) to prevent diurnal influences on neurophysiologic
measures (Stagg and Nitsche, 2011; Kuo and Nitsche, 2012). All
participants but one received one session of cTBS and one session
of iTBS (Huang et al., 2005). The cTBS paradigm consisted of
three pulses at 50 Hz every 200 ms for 40 s (for a total of
600 pulses). In the iTBS paradigm, participants received a 2-s
train of cTBS repeated every 10 s for a total of 190 s (600 pulses).
In both experiments, the intensity of stimulation was set at an
intensity of 80% of the active motor threshold (AMT). AMT was
assessed in the setting phase described above and was defined
as the lowest intensity to obtain at least five MEPs of 200 µV
over 10 stimulations in the FDI contracted at 20% of maximal
strength (Huang et al., 2005). This strength was measured using
a dynamometer (Hand Dynamometer Vernier HD-BTA, driven
by the software Logger Pro 3); a continuous audio-visual EMG
feedback was available to evaluate participants’ relaxation or their
level of muscle contraction. The experimental design is illustrated
in Figure 1.

Clinical Assessments
The severity of depressive symptoms was assessed
using the MADRS. State and trait anxiety levels

were assessed using the State-Trait Anxiety Inventory
questionnaire (STAI; Spielberger, 1989); the trait form of
the questionnaire (STAI Y-B) was addressed during the
inclusion visit and the state form (STAI Y-A) before each
TBS session.

Data Analysis
The sociodemographic and clinical characteristics as well as the
baseline MEP measures of participants were compared between
groups using independent two-tailed sample t-tests and Fischer’s
exact tests for gender.

The relative MEP values calculated as the mean of 10 MEPs
peak amplitudes post TBS/the mean of 15MEPs peak amplitudes
at baseline in each subjects were used as primary outcomes.
A repeated measures ANOVA (RM-ANOVA) was undertaken
with relative MEP value at the different time points as the
dependent variable, group (healthy controls vs. patients with
MDD) as the between-subject factor, and time as the within-
subject factor. Two RM-ANOVAs were conducted to analyze the
effect of iTBS on the one hand and the effect of cTBS on the
other hand.

When appropriate (significant interactions in the RM-
ANOVAs), post hoc comparisons were performed to more
specifically determine the changes in MEP amplitude.
TBS-induced modulation of MEP size across the five time points
(baseline, 5, 10, 20 and 30 min) in both condition (iTBS and
cTBS) were also investigated as the maximum peak amplitude at
the individual level. Number of responders and non-responders
after TBS according to Hamada et al. (2013) classification were
also calculated and compared across groups using Fischer exact
test. Responders and non-responders were defined according
to the grand average of TBS responses below and above 1 for
cTBS and iTBS, respectively (Hamada et al., 2013). SPSS 21 was
used for all analyses, and the level of significance was set
at p < 0.05.

RESULTS

Sociodemographic and Clinical
Characteristics
There were no significant differences in age, gender, or AMT
measures between groups at baseline. State and trait anxiety
were significantly higher in patients with MDD than in healthy
controls (Table 1).

TBS Induced Changes in Neural Plasticity
At baseline, there was no significant difference in the mean 1 mV
MEP between the groups. Before the iTBS session, the mean
amplitude of 1 mV MEP in the MDD group was 969.7 (SD 243)
vs. 1055.7 (129) µV in the control group (p = 0.317). Before
the cTBS session, the mean amplitude of 1 mV MEP in the
MDD group was 1206.3 (385) vs. 975.4 (131) µV in the control
group (p = 0.074).

The individual data illustrating the modulation of MEP
amplitudes induced by iTBS and cTBS are displayed in Figure 2.
A large interindividual variability was observed in the two
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FIGURE 1 | Experimental design. MRI, magnetic resonance imaging (T1-weighted image acquired to be used with the neuronavigation system); AMT, activity motor
threshold; 1 mV MEP, transcranial magnetic stimulation (TMS) intensity to obtain an MEP with a mean amplitude of 1 mV; MEP, motor evoked potential; iTBS,
intermittent theta-burst stimulation; cTBS, continuous theta-burst stimulation.

FIGURE 2 | Effects of one session of TBS on MEP amplitude at an individual level. (A) Effects of iTBS. (B) Effects of cTBS. Healthy controls are outlined with dark
lines; patients with major depressive disorder (MDD) are outlined with gray lines. The results are given as the mean ± SEM.

groups. The mean effects of iTBS and cTBS on both groups are
displayed in Figure 3.

iTBS-Induced Changes in Neural Plasticity
The RM-ANOVA revealed a significant group × time
interaction when participants were exposed to iTBS
(F(4,21) = 2.504, p = 0.049).

The post hoc comparisons revealed that after iTBS, the
difference between depressed subjects and healthy controls was
significant at 20 min post iTBS (p = 0.038). The difference was
not significant at the other time points (5 min: p = 0.193; 10 min:
p = 0.130; 30 min: p = 0.406).

Measured by the peak, the MEP size was significantly elevated
by iTBS in the control group (p = 0.009), whereas no modulation
of MEP size was induced in patients with MDD (p = 0.339).

Three patients with MDD out of the 10 were classified
as responders whereas six healthy controls out of 11 were
responders. The difference did not reach significance
p = 0.39 (Figure 4).

cTBS-Induced Changes in Neural Plasticity
The RM-ANOVA revealed no significant group × time
interaction when participants were exposed to cTBS
(F(4,22) = 0.986, p = 0.42).

No significant effect of cTBS on MEP measured by the peak
MEP size was observed in both groups.

Eight patients with MDD out of the 11 were classified
as responders whereas seven healthy controls out of 11 were
responders. The difference did not reach significance p = 1.00
(Figure 4).
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FIGURE 3 | Changes in MEP amplitude after one session of TBS in patients with MDD and healthy controls at the group level. (A) Effects of iTBS. (B) Effects of
cTBS. ns, not significant.

FIGURE 4 | Effects of one session of TBS on MEP amplitude according to responder and non responder status across groups at an individual level.

Safety
No serious adverse events were observed during the study.
Three patients with MDD and four healthy controls reported
mild headache during iTBS exposure. Two patients with MDD
and one healthy control reported mild headache during cTBS
exposure. This symptom disappeared after administration of a
mild analgesic (paracetamol).

DISCUSSION

The aim of this study was to evaluate neural plasticity integrity
in patients with MDD compared with that in healthy controls.
Using TBS, we reported that iTBS-induced changes in neural
plasticity were altered in patients with MDD. Whereas MEP
size post iTBS was significantly increased in healthy controls,
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no effects of iTBS on MEP size were observed in patients
with MDD. No effects of cTBS were observed in either group.
Importantly, in addition to those effects, we observed a large
interindividual variability in the effects of both iTBS and cTBS
on MEP amplitude regardless of group.

The effects of rTMS protocols have been proposed to relate
to activity-dependent changes in synaptic neurotransmission,
reflecting neural plasticity (Ziemann et al., 2008). Among
the currently available rTMS protocols, the TBS protocol has
been proposed to measure neural plasticity, especially at the
synaptic level (Huang et al., 2005). Depending on the stimulation
parameters, TBS is assumed to induce either an inhibition of
corticospinal excitability (following cTBS) or an enhancement
(following iTBS). These effects outlast the stimulation period for
approximately 40 min in healthy subjects (Oberman et al., 2012).
The transient suppression of corticospinal excitability following
cTBS and its transient enhancement following iTBS appear to
be mediated by cortical processes (Di Lazzaro et al., 2011) and
are assumed to reflect indexes of long-term depression (LTD)
and long-term potentiation (LTP)-like mechanisms, respectively
(Huang et al., 2005; Huerta and Volpe, 2009). Moreover,
cTBS has been shown to involve GABAergic neurotransmission,
whereas iTBS involves the glutamatergic NMDA receptor
pathway (Huang et al., 2007; Stagg et al., 2009). In light of
these studies, our results suggest that the LTP-like mechanisms
mediated by the glutamatergic NMDA receptor pathway are
impaired in patients with MDD. No significant difference was
observed between patients with MDD and healthy controls
regarding LTD-like mechanisms.

Effect of iTBS on Cerebral Plasticity
The integrity of LTP-like mechanisms involving GABA
and glutamatergic neurotransmission has already been
investigated in patients with MDD using TMS. For instance,
modulation of the duration of the interstimulus interval when
applying paired-pulse TMS allows for the investigation of the
inhibitory and facilitatory mechanisms mediated by GABAergic
neurotransmission (short-interval intracortical inhibition–SICI,
Ziemann et al., 1996) and glutamatergic neurotransmission
(intracortical facilitation–ICF). Although discrepancies between
studies investigating those phenomena exist, in a meta-analysis,
Radhu et al. (2013) found that SICI was decreased in patients
with MDD compared with that in controls. These results are in
line with ours reporting alterations of neural plasticity in the
motor cortex in patients with MDD. These observations are also
consistent with animal studies reporting that the iTBS-induced
LTP mechanisms could be modulated by the administration of
GABA antagonists (Kotak et al., 2017).

Altered Cerebral Plasticity Following iTBS in Other
Psychiatric Conditions
Our results in healthy controls are in line with the classically
described effects of iTBS onMEP amplitude (Huang et al., 2005).
Our results are also consistent with a previous study evaluating
iTBS-induced neural plasticity in patients with psychiatric
conditions. For instance, in a controlled study, Suppa et al.
(2014) reported that healthy subjects displayed an increase in

MEP amplitude after iTBS, whereas MEP amplitude remained
unchanged in patients with Gilles de la Tourette syndrome. In
the same study, the same group of authors also assessed the effect
of iTBS onMEP amplitude in patients with obsessive compulsive
disorder (OCD) and reported that iTBS induced an equal
increase in MEP amplitude in both groups (Suppa et al., 2014).
Finally, Oberman et al. (2012) reported that the iTBS-induced
effects on MEP amplitude were significantly greater and
longer lasting in patients with autism spectrum disorder than
in healthy controls. Altogether, these results illustrate the
usefulness of iTBS in revealing impaired neural plasticity in
patients with psychiatric conditions, allowing us to distinguish
patients with decreased iTBS-induced neural plasticity (MDD,
Gilles de la Tourette syndrome), increased iTBS-induced
neural plasticity (autism spectrum disorder) or similar
iTBS-induced neural plasticity (OCD) compared to that in
healthy controls.

Effect of cTBS on Cerebral Plasticity
We observed that cTBS did not modulate MEP amplitude in
patients withMDD. These results were in line with several studies
revealing no effects of cTBS on cerebral plasticity in patients
with other psychiatric conditions. For instance, no effect of cTBS
on MEP amplitude was reported in patients with schizophrenia
(Hasan et al., 2015), in patients with obstructive sleep apnea
(Opie et al., 2013), and in patients with Gilles de la Tourette
syndrome (Suppa et al., 2014). A possible explanation is that
cTBS may be less efficient at inducing cerebral plasticity in
patients with psychiatric disease than iTBS.

In the current study, cTBS also had no effect on MEP
amplitude in healthy controls. Although these results were
unexpected, they are in line with several studies showing
that the effects following different TBS paradigms are subject
to high interindividual variability (McAllister et al., 2009;
Todd et al., 2009; Goldsworthy et al., 2012; Hamada et al.,
2013). For instance, in their study investigating the effect
of cTBS in patients with schizophrenia, Hasan et al. (2015)
did not report any significant changes on MEP amplitude
following TBS in the control group. The current results were
however not in line with findings from Oberman et al. (2012)
showing longer cTBS response in patients with autism spectrum
disorder than in controls. The lack of a significant effect of
TBS in the current study suggests that high interindividual
variability can mask a significant TBS effect at the group level.
However, the size of our sample did not allow us to cluster
participants into TBS responders and nonresponders to explore
this question.

Strengths and Limitations
In the current study, only 10 MEPs were recorded to assess
TBS-induced neuroplasticity. This could have hampered the
reliability of the reported results and contribute to the observed
high interindividual heterogeneity. Indeed a recent study
indicated that 21 MEPs are required for reliable estimation of the
MEP amplitude (Chang et al., 2016).

The lack of detailed neurocognitive assessment (allowing
to detect a mild cognitive impairment which is a common
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finding in MDD), the lack of a preliminary evaluation of the
integrity of the cortico-spinal conductivity and the lack of a
more accurate T2-MRI scan instead of only the T1-weight
MRI (allowing to detect brain lesions in both white and gray
matter for differential diagnosis) did not allow us to exclude
that such comorbidities in our sample may have influenced
current results.

Further studies should investigate the close relationship
between depressed mood and cognitive dysfunction since this
aspect has crucial implications in determining changes of
cortical excitability to TMS (Guerra et al., 2015), that can
induce neuroplastic phenomena at the level of M1 (Pennisi
et al., 2015) and enhance the risk of clinical deterioration in
depressed subjects, in depressed subjects, especially in subjects
with vascular depression (VD; Pennisi et al., 2016).

Another limit is that we only assessed the TBS-induced
plasticity on the dominant M1 and not on both sides. Indeed,
given that several studies found an interhemispheric difference
of motor threshold it would have been interesting to evaluate
cortical excitability from both hemispheres, in order to obtain
bilateral data to compare before and after cTBS/iTBS.

From a more cognitive perspective, it would have been of
interest to assess neural plasticity induced in the dorsolateral
PFC (DLPFC), a brain region critically involved in the
pathophysiology of MDD (Concerto et al., 2015). In line with
this, combining EEG and TMS, Noda et al. (2018) reported an
impaired neuroplasticity in the DLPFC of patients with MDD
compared to healthy subjects.

Lastly, an important limitation of the current study was
the relatively small sample size of included patients, which
might hide significant differences between healthy subjects and
patients with MDD at the group level. Nevertheless, our sample
size is within the range of other TBS studies in patients with
neuropsychiatric conditions (Eggers et al., 2010; Huang et al.,
2011; Hasan et al., 2015). A second limitation was in the single-
blind procedure of the study and the lack of a sham TBS group.
Indeed, in order to not leave patients without treatment for
a too long period of time, we decided to perform only two
measurements separated by 2–7 days: 1 day with iTBS, 1 day with
cTBS. Added a sham arm or added an arm investigating DLPFC
plasticity would have increase the time where patients did not
received medication.

Despite these limitations, the main strength of our study is
that the included patients with MDD were drug free. Indeed,
medication and especially psychopharmacological drugs are
known to highly influence the cortical excitability parameters
assessed by TMS (for a review see Paulus et al., 2008); therefore,
this bias did not influence the current results.

CONCLUSION AND PERSPECTIVES

In summary, iTBS-induced cerebral plasticity was altered in
patients with MDD, whereas no effect of cTBS-induced cerebral
plasticity was observed. These results suggested abnormal
LTP-like plasticity mediated by glutamatergic neurotransmission
in patients withMDD. These abnormalities should be considered
an endophenotype biological marker of MDD. However, because
of the small sample of the current study, results should be
taken with caution and further studies are needed to explore
this topic more thoroughly. Moreover, although MDD and the
so called VD share some clinical similarities, VD may rely on
distinct pathophysiological mechanisms (Concerto et al., 2013)
that could be highlighted by distinct neuroplasticity alterations.
In the perspective of a differential diagnosis, it would be of
interest to replicate our experimental protocol in the sample
of VD patients. Lastly, as TBS-induced neuroplasticity results
in a large interindividual variability, other TMS paradigm
such as quadripulse stimulation (QPS) that have showed less
inter-subject variability in healthy controls (Nakamura et al.,
2016) could be useful to evaluate alteration in patients with
psychiatric condition.
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One of the most prominent symptoms in addiction disorders is the strong desire
to consume a particular substance or to show a certain behavior (craving). The
strong association between craving and the probability of relapse emphasizes the
importance of craving in the therapeutic process. Former studies have demonstrated
that neuromodulation using real-time fMRI (rtfMRI) neurofeedback (NF) can be used
as a treatment modality in patients with tobacco use disorder. The aim of the present
project was to determine whether it is possible to predict the outcome of NF training
plus group psychotherapy at the beginning of the treatment. For that purpose, neuronal
responses during the first rtfMRI NF session of patients who remained abstinent for
at least 3 months were compared to those of patients with relapse. All patients were
included in a certified smoke-free course and took part in three NF sessions. During the
rtfMRI NF sessions tobacco-associated and neutral pictures were presented. Subjects
were instructed to reduce their neuronal responses during the presentation of smoking
cues in an individualized region of interest for craving [anterior cingulate cortex (ACC),
insula or dorsolateral prefrontal cortex]. Patients were stratified to different groups
[abstinence (N = 10) vs. relapse (N = 12)] according to their individual smoking status
3 months after the rtfMRI NF training. A direct comparison of BOLD responses during
the first NF-session of patients who had remained abstinent over 3 months after the
NF training and patients who had relapsed after 3 months showed that patients of
the relapse group demonstrated enhanced BOLD responses, especially in the ACC,
the supplementary motor area as well as dorsolateral prefrontal areas, compared to
abstinent patients. These results suggest that there is a probability of estimating a
successful withdrawal in patients with tobacco use disorder by analyzing the first rtfMRI

Frontiers in Human Neuroscience | www.frontiersin.org 1 March 2019 | Volume 13 | Article 6581

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2019.00065
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2019.00065
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2019.00065&domain=pdf&date_stamp=2019-03-04
https://www.frontiersin.org/articles/10.3389/fnhum.2019.00065/full
http://loop.frontiersin.org/people/115982/overview
http://loop.frontiersin.org/people/472442/overview
http://loop.frontiersin.org/people/262843/overview
http://loop.frontiersin.org/people/363496/overview
http://loop.frontiersin.org/people/116036/overview
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00065 March 1, 2019 Time: 16:3 # 2

Karch et al. fMRI-Based Neurofeedback in Tobacco-Dependent Patients

NF session: a pronounced reduction of frontal responses during NF training in patients
might be the functional correlate of better therapeutic success. The results of the first NF
sessions could be useful as predictor whether a patient will be able to achieve success
after the behavioral group therapy and NF training in quitting smoking or not.

Keywords: real-time fMRI, neurofeedback, craving, tobacco use disorder, therapy success

INTRODUCTION

Smoking tobacco can lead to diverse symptoms and illnesses
including cancer, respiratory and cardiovascular diseases and is
one of the most significant causes of death in Europe (Ezzati and
Lopez, 2003; Sasco et al., 2004; Thun et al., 2013). Worldwide
more than 5 million people per year die as a result of tobacco
use1 (World Health Organization [WHO], 2018). In addition,
tobacco users who die prematurely deprive their families of
income, raise the cost of health care and slow down the economic
development1 (World Health Organization [WHO], 2018).

Important aspects of tobacco use disorder are a reduced
control of tobacco intake, the inability to stop or reduce substance
use, tolerance development, withdrawal symptoms and a strong
desire to consume the particular substance (craving behavior).
Even though more than 70% of smokers want to quit, only
5% are successful in doing so (Hatsukami et al., 2008). In
addition, the relapse rate in patients with tobacco addiction is
relatively high. According to different meta-analyses there is not
enough evidence that behavioral therapies alone can prevent
long-term relapse (Agboola et al., 2010; Hajek et al., 2013). Even
with combined medication and cognitive behavioral therapies,
the most common outcome 1 year after an attempt to quit
is a relapse (Piasecki, 2006). A review about the effectiveness
of different medication therapies combined with behavioral
support in the United Kingdom showed that abstinence rates
were comparable after 3 months with mean values of pooled
point prevalence between 35 and 55% (Coleman et al., 2010).
The common German cognitive behavioral therapy program
called “Rauchfrei Programm” (translation: smoke-free program)
showed an abstinence rate of 40% after 6 months and 31%
after 1 year (Gradl et al., 2009; Wenig et al., 2013). Therefore,
the need for new and improved treatments helping smokers
to stop smoking seems obvious. Craving can be elicited, e.g.,
by the Presentation of Nicotine-Relevant Information (Saladin
et al., 2012). The regional areas of brain activation associated
with craving in nicotine-dependent smokers are scientifically
well studied. Functional neuroimaging studies have examined
increased craving-related responses, e.g., in the anterior cingulate
cortex (ACC) (McClernon et al., 2005; Wilson et al., 2005;
Brody et al., 2007; Goudriaan et al., 2010; Hartwell et al.,
2011), the medial prefrontal cortex (mPFC) (Hartwell et al.,
2011) and the precuneus/cuneus (Smolka et al., 2006; Hartwell
et al., 2011) during the presentation of substance-related
information, while these areas are linked to attentional processes
(Augustus Diggs et al., 2013) and motivation (Augustus Diggs

1http://www.who.int/mediacentre/factsheets/fs339/en/

et al., 2013). Also, the insula has shown to play a major
role in addictive behavior (Naqvi and Bechara, 2010). The
role of the insula is not yet clear: it may be related to
conscious interoception, emotional experience and decision-
making. Naqvi and colleagues presented evidence that the insula
represents the interoceptive effects of drug taking, making this
information available to conscious awareness, memory and
executive functions (Naqvi and Bechara, 2010; Naqvi et al., 2014).
In addition, the orbitofrontal cortex (OFC) (Hartwell et al.,
2011) which is thought to be related to cognitive reappraisal
(Goldstein and Volkow, 2002) and regions involved in decision
making and goal-directed behavior such as the dorsolateral
prefrontal cortex (DLPFC) (Goldstein and Volkow, 2002) seem
to be important.

Results of the meta-analysis focusing on neurobiological
aspects of smoking cue reactivity in smokers indicate that
smoking cues reliably evoke larger neuronal responses than
neutral cues in the extended visual system, the precuneus, the
posterior cingulate gyrus, the ACC, the dorsal prefrontal cortex
(dPFC) and the mPFC, the insula, and the dorsal striatum
(Engelmann et al., 2012). The areas that were found to be
responsive to smoking cues agree in most parts with theories
of the neurobiology of cue reactivity (Engelmann et al., 2012).
Surprisingly, there was a reliable cue reactivity effect in the
precuneus which is not typically considered a brain region
important to addiction (Engelmann et al., 2012). Furthermore,
the meta-analysis did not show any significant effect in the
nucleus accumbens (Engelmann et al., 2012). Altogether, the
authors of the meta-analysis emphasize that the extended visual
system should receive more attention in future studies of smoking
cue reactivity (Engelmann et al., 2012).

A good overview of cue-related activities and their functions
has been presented by Miller (2013). They report that neuronal
responses which are related to cues have been shown in brain
regions that are associated with attention, reward and goal-
directed behavior (Miller, 2013). Responses in the secondary
and tertiary visual cortex, the precuneus as well as the gyrus
fusiformis have been observed (Miller, 2013). Activations in
these regions show an increased allocation of attention on the
visual smoking cues (Miller, 2013). Activations of limbic and
paralimbic structures including the hippocampus, the thalamus,
the amygdala, the insula and the cingulate cortex reflect the
contribution of emotional processes (Miller, 2013). Moreover,
increased cue-related responses have been shown in the posterior
cingulate cortex and particularly in the ACC (Miller, 2013).
Activations in the ACC have been interpreted as reflecting, e.g.,
conflict monitoring and reward learning, as well as the emotional
relevance of stimuli (Miller, 2013). Motivational processes of
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smoking-related cues have been linked to BOLD responses in the
ventral tegmentum and the ventral striatum (Miller, 2013). In
addition, BOLD responses in the PFC including the orbitofrontal
cortex (OFC), the inferior frontal gyrus (IFG), the medial frontal
gyrus (MFG) and the superior frontal gyrus (SFG) have been
related to emotion and reward-related processes (OFC and IFG)
and the mobilization of cognitive control and executive processes
(MFG and SFG) (Miller, 2013).

Some researchers have investigated a possible difference
between ‘craving’ and ‘resisting craving’ regarding the underlying
neuronal brain regions. For example the ACC could be especially
detected for ‘craving’ whereas ‘resisting craving’ was more
assigned to the dorsomedial PFC (Hanlon et al., 2013). The
cigarette cue resist condition elicited enhanced brain responses
in the left dorsal ACC, the posterior cingulate cortex (PCC), and
the precuneus compared with the cigarette cue crave condition
(Brody et al., 2007). In addition, a study which focused on
craving and resisting craving found a considerable overlap
between the areas activated during craving and attempts to resist
craving, supporting the idea that these two aspects do not have
to be investigated separately because craving is almost always
associated with some degree of resisting the urge to smoke, and
vice versa (Hartwell et al., 2011).

Functional magnetic resonance imaging also enables the
detection of functional connectivity which has been shown to
be altered in several neurodegenerative and neuropsychiatric
diseases, including addiction disorders. Concerning nicotine
addiction, smokers show a loss of functional connectivity in
brain areas of the executive control network and an increase
of connectivity in brain areas of the default mode network
modulated by the insula, or the salience network which
contains the insula (Fedota and Stein, 2015; Vergara et al.,
2017). Furthermore, the thalamostriatal connectivity seems to
be increased in smokers. Recent prediction studies showed
that the risk of relapse increases when addicted patients
have decreased functional connectivity in corticolimbic and
corticostriatal networks (Moeller and Paulus, 2018). In tobacco
dependent people insula-related functional connectivity seems to
be positively correlated with the success in smoking cessation.
In this context connectivity between the insula and primary
sensorimotor cortical areas or control-related brain regions, such
as the dACC and the DLPFC, seems to play an important role in
the potential to stop smoking and to stay abstinent (Janes et al.,
2010; Addicott et al., 2015; Zelle et al., 2017).

Several studies focused on the relationship between craving
and relapse rates. A systematic review showed mixed results
with respect to the relationship between craving and relapse rate
(Wray et al., 2013). By contrast, a recent study demonstrated
that greater neural activation during pre-treatment exposure to
smoking cues in the right ventral striatum, the left amygdala,
and the anterior cingulate was associated with longer periods of
abstinence following cessation (Owens et al., 2017). The authors
concluded that these results suggest that pre-treatment reactivity
to smoking cues in areas associated with cue reactivity may
be associated with successfully maintaining abstinence during
treatment (Owens et al., 2017). Another study demonstrated
that subjects that were not successful in their attempt to quit

smoking revealed heightened fMRI reactivity to smoking-related
images in brain regions implicated in emotion, interoceptive
awareness, and motor planning and execution (Janes et al.,
2010). Additionally, these subjects had decreased functional
connectivity between a network comprising the insula and brain
regions involved in cognitive control (Janes et al., 2010). Overall
there is some evidence for a relevant association between craving
and/or craving-related neurobiological responses and the risk of
relapse. This emphasizes its importance for future studies and
within the therapeutic process. Hence, reducing craving and the
physiological response to smoking cues could well have positive
effects on smoking cessation outcomes.

Neurofeedback (NF) delivered via real-time functional
magnetic resonance imaging (rtfMRI) enables the immediate
visualization of brain activations or functional connectivity
between brain areas, and offers the possibility to modulate
voluntarily neuronal activity in circumscribed brain areas. It
can also be seen as a training method whereby a person is
confronted with a mental or emotional task while simultaneously
receiving information about changes in neural activity in brain
areas. This information can be used for self-regulation, control
and modulation of the neural activity in a target region which
is important for the ongoing task. The modulation of neuronal
responses is expected to lead to changing behavior (Stoeckel
et al., 2014). It is assumed that predominantly implicit learning
processes, including operant conditioning, modulate distinct
behavioral patterns (Caria et al., 2007; deCharms, 2007).

While EEG-based NF is restricted to the modulation of
neuronal activity in cortical areas as well as relatively broad
brain regions, fMRI-based NF can be used to modulate the
activity in subcortical areas and small cortical brain regions,
as well as functional connectivity between areas (Koush et al.,
2017). Several studies refer to brain regions which are related to
emotional and/or cognitive processes (Posse et al., 2003; Caria
et al., 2007; Johnston et al., 2010; Dyck et al., 2011; Hamilton
et al., 2011; Lee et al., 2011; Zotev et al., 2011). Other studies
demonstrate the modulation leading to specific behavioral effects
(Rota et al., 2009; Caria et al., 2010).

There is already some evidence about positive effects
of EEG, respectively, fMRI NF training on patients with
attention-deficit/hyperactivity disorder (ADHD) (Arnold et al.,
2013; Zilverstand et al., 2017), as well as depression (Choi et al.,
2011; Linden et al., 2012). RtfMRI studies in schizophrenic
patients have shown that patients were able to influence their
insular activity (Ruiz et al., 2013a,b). Functional variations were
accompanied by an improvement to recognize negative facial
expressions (Ruiz et al., 2013a). In depressive patients training
of brain regions which are associated with emotion regulation
was related to an improvement of depressive symptomatology
(Linden et al., 2012).

There are only a few studies focusing on NF processes
in persons with addiction-related symptoms (Hartwell et al.,
2013). However, there are a lot of indices that neuromodulation
can be a unique opportunity to directly apply neuroscientific
knowledge to the treatment of addiction (Luigjes et al., 2013).
Kirsch et al. (2016) examined the modulation of reward-related
striatal brain responses in non-addicted heavy social drinkers:
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subjects were instructed to downregulate the responses in their
ventral striatum. RtfMRI led to a significant downregulation of
striatal activations in the real group, whereby the sham conditions
did not reveal comparable effects (Kirsch et al., 2016). A study of
our own working group aimed at modulating craving-associated
neuronal responses in patients with alcohol addiction using
individualized feedback (Karch et al., 2015). The results showed a
significant reduction of neuronal responses in patients at the end
of the training compared to the beginning, especially in the ACC,
the insula, the inferior temporal gyrus and the medial frontal
gyrus. In addition, patients reported slightly reduced craving after
the NF training, compared to before. The results suggest that it
is feasible for patients with alcohol dependency to reduce their
neuronal activity using rtfMRI NF (Karch et al., 2015).

Regarding nicotine dependence, Li et al. (2013) demonstrated
that smokers with rtfMRI NF were able to reduce voluntarily
neuronal responses in the ACC during the presentation
of smoking-relevant information. These modulations were
associated with a temporarily decreased craving for nicotine (Li
et al., 2013). Hartwell et al. (2016) showed that individualized
real-time fMRI NF can be an appropriate method to attenuate
craving in nicotine-dependent smokers (Hartwell et al., 2016).
The efficacy of multiple NF training sessions as well as the need to
consider the nicotine-dependence severity was further supported
by the fact that individuals with lower nicotine-dependence
severity were more successful in reducing the activation in
the ACC over time (Canterberry et al., 2013). Recent studies
mention that the additional inclusion of functional connectivity
information in fMRI-based NF could improve its efficacy in the
reduction of cigarette craving (Kim et al., 2015). Overall, rtfMRI
NF has been increasingly discussed as a potential therapeutic
method (Augustus Diggs et al., 2013; Bruhl, 2015; Sitaram et al.,
2017; Sokunbi, 2017).

Especially because of the comparatively great effort for
patients, the high technical requirements and the high costs of
rtfMRI NF training, it seems to be relevant to find indicators
for a therapeutic indication. Former studies regarding the
prediction of smoking relapse suggest that smokers high in
anger trait may have greater mood difficulties during abstinence
and may be more vulnerable to early relapse than smokers
with low anger trait (al’Absi et al., 2007). Another study found
differences in cue reactivity of smokers before participating
in a cessation clinical trial predicting outcomes with 79%
accuracy in combination with results of an Emotional Stroop
task (Janes et al., 2010). In a resting state fMRI study, a logistic
regression based on functional connectivity predicted relapse
of smokers before medication therapy with 80.7% accuracy
(Shen et al., 2017). Classifying abstinent smokers according to
their individual relapse risk profile may be helpful in order
to find the best therapeutic strategy, for example to switch to
medication therapy or to modulate the existing strategy, or
to even intensify the neurofeedback training. In this context,
the use of neuroimaging data for prediction models seems
to be promising for addiction disorders in general as fMRI
data show altered brain reactivity to drug-related and non-
drug-related cues and certain changes in functional connectivity
and gray and white matter volumes (Moeller and Paulus,

2018). Concerning fMRI neurofeedback, there is no data as
yet about the prediction of abstinent smokers regarding the
risk of relapse.

The aim of the present project was to determine whether
it is possible to predict functional differences of patients who
remained abstinent and patients who relapsed after receiving
rtfMRI NF training plus group psychotherapy. We focused
especially on the question whether there are any brain activity
differences between groups which appear already at the beginning
of NF training. For that purpose, patients were stratified in two
separate groups according to their individual treatment success
3 months after the NF training sessions. Neuronal responses
during the first rtfMRI NF session of patients who then remained
abstinent for at least 3 months were compared to those of patients
with relapse. To our knowledge, none of the previous studies
has combined NF training with behavioral group therapeutic
strategies in patients with tobacco use disorder.

MATERIALS AND METHODS

Subjects
The study comprised the investigation of 54 patients with tobacco
use disorder (♀ = 22, ♂ = 32). All patients were recruited through
an advertisement in a regional daily newspaper. Key inclusion
criteria were age between 18 and 65 years, no prior head injury or
lifetime diagnosis of a neurological and/or psychiatric disorder,
and the ICD-10 diagnosis of nicotine dependence (F 17.2).
The exclusion criteria were, e.g., claustrophobia, pregnancy,
any implanted metal or a cardiac pacemaker. All participants
reported having a solid mental and physical constitution at the
time of testing. The study received approval from the local
research ethics committee of the Medical Faculty of LMU Munich
and is in accordance with the Declaration of Helsinki and
subsequent revisions. The participation in the rtfMRI sessions
was compensated with 50€ per session. The participation in the
group therapeutic program was free of charge.

After proving their study qualification by a short standardized
questionnaire in a telephone interview, patients participated in a
specialized therapeutic program for nicotine-dependence (“Das
Rauchfrei Programm,” IFT – Gesundheitsförderung Gesellschaft
mbH, München, 2012) at the Department of Psychiatry and
Psychotherapy, LMU Munich. RtfMRI NF training was provided
three times as an add-on to the group therapy sessions.
Standardized questionnaires were used in order to assess
sociodemographic data, information about smoking and craving
as well as psychopathological information.

18 patients had to be excluded from the study because
of missing measurement appointments or technical problems
(four patients), permanent makeup (one patient), dropping
out of the group therapeutic program (six patients), structural
anatomic brain abnormalities (two patients), medication because
of clinical diagnosed depression (one patient) and deviant social
behavior (one patient). Three more patients were not available
in the follow-up telephone interview; for this reason, it was
not possible to assign these patients to one of the groups
(abstinence vs. relapse).
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Taking into account the exclusions from the study, the results
of 36 nicotine-dependent smokers (♀ = 11, ♂ = 25) aged between
19 and 65 years (M = 43.83, SD = 12.37) with a number of 3 to 51
pack-years (M = 26.29, SD = 14.43) were analyzed.

All nicotine-dependent smokers were randomized in a real NF
training group (N = 22) and a sham NF group (N = 14). During
the real condition, neuronal responses in a ROI that is located
in an individual, craving-related area within the insula, the ACC
or the DLPFC were presented parallel to the tobacco-associated
pictures. During the sham condition, the participants received
feedback about neuronal responses in brain areas that are not
related to craving (e.g., parietal cortex).

In order to determine the significance of the first NF session
for the therapeutic outcome after the complete NF training, we
focus in this manuscript on the results of the real group. The
results of the sham group will be presented elsewhere in detail
(Karch et al., unpublished).

For that purpose in the present study the results of smokers
of the real group who remained abstinent 3 months after
the rtfMRI NF training and group therapy (abstinent group;
N = 10) with those of smokers of the real group who relapsed
within the first 3 months after the interventions (relapse group;
N = 12) were compared.

Psychometric Questionnaires
Different psychometric tests were used as a screening for
neurologic and/or psychiatric diseases. The symptomatology of
the participants was determined using the Fagerström Test for
Nicotine Dependence (FTND) (Heatherton et al., 1991) and
Questionnaire on Smoking Urges – German (QSU-G) (Tiffany
and Drobes, 1991). Verbal intelligence was assessed using the
verbal intelligence test (WST) (Schmidt and Metzler, 1992). In
addition, we used several questionnaires in order to determine
affective symptoms including the Barratt Impulsiveness Scale
(BIS-11) (Patton et al., 1995), the Aggression Questionnaire
(AQ) (Buss and Perry, 1992), Beck Depressions Inventar (BDI)
(Beck and Steer, 1987), State-Trait-Anger Expression Inventory
(STAXI) (Schwenkmezger et al., 1992), State-Trait-Anxiety
Inventory (STAI) (Laux et al., 1981), NEO-Five Factor Inventory
(NEO-FFI) (Costa and McCrae, 1992).

Paradigm
FMRI measurements took place at the Department of Radiology,
Ludwig Maximilian University of Munich. The three NF-training
sessions were conducted after day 4, day 5, and day 6 or 7
of the smoking-free program (see Figure 1). Before and after
each fMRI session participants’ degree of craving was examined
with the German version of the “Questionnaire on Smoking
Urges” (QSU-G). CO-levels were measured using the UBLOW
CO breath tester (Neomed Medizintechnik GmbH).

The visual stimulation utilized consisted of 20 neutral and 20
tobacco-related pictures. The neutral pictures originated from
the International Affective Picture System (IAPS2) or were taken
in the course of the study. Tobacco-relevant pictures contained
specific triggers for tobacco consumption, e.g., persons smoking,

2http://csea.phhp.ufl.edu

cigarettes or cigarette packets. The tobacco-related pictures were
taken from databases or in the course of the study.

Three paradigms were used during the fMRI measurements:
(1) cue exposure, (2) resting state and (3) rtfMRI NF paradigm.

(1) Cue exposure: The cue exposure paradigm was used as
functional localiser. Neutral and nicotine-related pictures were
presented block-wise to the participants using the software
program PsychoPy (v1.78.00, Peirce et al., 2019). A single run
consisted of 9 blocks of 40 s each; during 5 blocks neutral
pictures were presented, during 4 blocks nicotine-related pictures
were presented. Each picture was shown for 4 s. Patients were
instructed to look at the pictures. Neuronal response contrasts
during tobacco-related cues and neutral pictures were then
identified and compared using the multiplanar activation maps
calculated in the TBV online analysis: the activation cluster
with the most extensive BOLD response to addiction-related
information in the ACC, DLPFC, and insula was defined as
region of interest for each person and day individually (threshold
t = 3). The ACC, the DLPFC and the insula were identified
on the first acquired EPI image of the online analysis using
conventional neuroanatomical MRI landmarks (Ulmer, 2010)
and the multiplanar reconstructions offered by TBV, and later
validated in the offline analysis after transfer to Talairach space.

(2) Resting state: Resting state-sequences were acquired
on each day before and after the NF-task: the results
of these sequences will be presented in elsewhere
(Keeser et al., unpublished).

(3) rtfMRI NF-paradigm: The NF-training consisted of three
sessions of NF training with three NF runs each. Apart from
the NF-task during addiction-related cues, the paradigm of a
single NF run was identical to the paradigm of a cue exposure
run. During the presentation of tobacco-associated stimuli,
participants were instructed to decrease their individual neuronal
responses in the target ROI. ROI-based BOLD responses were
calculated and visualized using the Turbo-BrainVoyager3. The
BOLD responses in the target ROI were visualized using a
‘graphical thermometer,’ which based on the top one-third of
voxels with the highest t-values for BOLD responses for the
comparison of addiction-related and neutral stimuli. During the
neutral condition, participants were requested to look at the
pictures without any further instruction.

Between NF runs, participants of both groups were asked
about their perceived success during the rtfMRI training run
and received feedback from a staff member. All participants
were encouraged to apply various strategies to identify the best
individual method. The participants were not instructed to use a
specific strategy for modulation. However, it was recommended
that they could try methods that have demonstrated to be
successful coping with craving in the past.

Group Therapy
All patients took part in a certified and manualized “smoke-
free program” (Kroeger and Gradl, 2007) over 6 weeks,
a program based on cognitive-behavioral and motivational
concepts. It includes an induction session, 6 group sessions at

3http://www.brainvoyager.com/TurboBrainVoyager.html
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FIGURE 1 | Experimental procedures: the patients participated in three rtfMRI NF sessions within 5 weeks; during the NF training presentation of neutral and
tobacco-related pictures in blocks of 40 s with 10 pictures of the respective category; participants were instructed to reduce brain activity during the presentation of
tobacco-associated information; during the presentation of neutral information, participants were instructed to simply gaze at the pictures. Before and after each NF
training session, resting-state activity was acquired. NF, neurofeedback.

90 min and, 2 individual telephone counseling appointments.
The treatment can be divided in 3 phases: creation of motivation,
preparation of smoking cessation and stabilization. The program
focuses on the positive benefits of a nicotine-free life and uses
different methods for behavioral change, e.g., psychoeducation,
motivational communication, prevention, understanding, and
treatment of relapse, etc. At the induction session, patients get an
idea of a smoking-free life and information about smoking. The
topics of the six group session is “the ambivalence of smoking,”
“errors in logic and alternatives,” “preparations of smoking
cessation,” “experiences with the smoking stop,” “identity as a
smoking-free person,” and “planning the future”4.

MRI Data Acquisition and fMRI Data
Analysis
A 3 Tesla Philips MR System Ingenia scanner with echo planar
capability (Release 4.1 Level 3 2013-04-05, Philips Medical
Systems Nederland B.V.) and a 32-channel phased array head
coil was used for imaging. Subjects had to wear ear plugs and
headphones for noise protection. We also used cushions in the
coil to minimize head movement. A T1-weighted high-resolution
3D data set was acquired for each subject for anatomical
referencing. Functional MR data were acquired using an EPI
sequence in the identical position as the anatomical images [Field

4https://www.rauchfrei-programm.de/images/Rauchfrei_Jahresbericht_2018.pdf

of View: 230 mm × 230 mm × 132 mm; spatial resolution:
3 mm × 3 mm × 4 mm; slice thickness: 4 mm; gap: 0.15 mm;
repetition time: 2000 ms; echo time (TE): 35 ms; 25 axial slices].

The results of the resting state sequence will be presented
elsewhere (Keeser et al., unpublished).

rtfMRI Pre- and Post Data Processing
We used the TurboBrainVoyager (Version 3.0, Brain Innovation,
Maastricht, 2011) for the initial processing and real-time
analysis as well as the feedback for the participants. For
further analysis, raw-data in a DICOM-format were converted
into a NIfTI-format using MRIConvert (Version 2.0.7 build
369, University of Oregon, Lewis Center for Neuroimaging,
2013). All subsequent data-analyses of the fMRI sequence
were carried out with the BrainVoyager software package
(Brain Innovation, Maastricht, Netherlands). In order to reduce
relaxation time effects the first 5 images were excluded from any
further analysis. The preprocessing of the fMRI data included
high-pass filtering (cut-off: three cycles in a time course) to
remove low-frequency signal drifts inherent in echo planar
imaging. Additionally, a slice scan time correction (cubic),
spatial smoothing (Gaussian filter with FWHM 8.0 mm),
and a 3D motion correction (trilinear interpolation) were
applied. Functional images were transferred to a standard
Talairach brain. Significant BOLD activity was determined by
a cross-correlation of the pixel intensity of MR images with
an expected hemodynamic response function. Voxelwise t-tests
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were used to identify those brain areas where the signal change
differed significantly between tobacco-related responses and
neutral stimuli. We used the Bonferroni correction at a threshold
of p< 0.05 to counteract the problem of multiple testing. For each
participant the conditions tobacco-relevant pictures and neutral
were calculated as regressors.

Statistical Analysis
Statistical analysis of the questionnaire ratings of patients of
abstinent versus relapse group was calculated with SPSS version
23 with a level of significance p < 0.05. Because of the small
sample size, we first calculated the non-parametric Mann–
Whitney-U test for independent samples or the Wilcoxon test
for dependent samples. In a second step, the two-tailed t-test for
independent or dependent samples was calculated. If the results
of both tests did not differ, the t-test were mentioned instead of
the non-parametic test. A general linear model with a repeated
measure design was calculated in order to compare variations
before and after the NF session.

RESULTS

Relapse Rates
Ten patients of the real group remained abstinent during the first
3 months after the therapeutic program, 12 patients relapsed.

The abstinence rate was 45.5%. Regarding the sham group, 9
patients remained abstinent, 5 patients relapsed. The relapse
rate did not differ significantly between groups (p = 0.270;
Chi-Quadrat test).

Comparison of Psychometric Data
Between Abstinent and Relapse Group
on the Day of the First rtfMRI NF Session
The comparison of patients of the abstinent group compared
to the relapse group did not show any significant differences
regarding verbal intelligence, CO score and personality on day
1. In addition, there were hardly any significant differences
regarding psychopathology. A significant difference between
groups was only demonstrated in the Anger-In subscale
of STAXI (p = 0.001). Additionally, differences between
groups regarding pack-years or consumption of cigarettes
per day did not differ significantly between abstinent and
relapse (see Table 1).

Changes of Craving: Influence of Groups
(Abstinent; Relapse)
The comparison of QSU-overall score revealed no
significant difference between pre–post measurements
[measurement before/after rtfMRI NF training session;
F(1,20) = 0.063; p = 0.805]. In addition, the interaction

TABLE 1 | Comparison of the psychometric data of abstinent group vs. relapse group.

Questionnaire Abstinent Relapse p-value

M SD M SD

Pack-years 30.20 12.60 19.96 14.61 0.097

Consumption of cigarettes per day 22.00 5.87 17.67 6.21 0.111

C0 score 1.60 1.075 4.67 6.733 0.171

WST 106.30 7.45 112.08 15.22 0.287

Neo-FFI-Neuroticism 18.50 5.87 17.55 6.74 0.734

Neo-FFI-Extraversion 23.60 6.77 27.73 5.18 0.131

Neo-FFI-Openness to experiences 25.10 7.28 27.45 5.56 0.412

Neo-FFI-Compatibility 26.90 5.43 30.36 4.06 0.112

Neo-FFI-Conscentiousness 31.86 4.09 33.71 4.52 0.803

Fagerström 4.70 2.91 5.25 1.49 0.122

BDI 6.90 6.85 4.92 6.96 0.510

QSU-overall 61.70 24.08 71.75 14.37 0.239

STAI-State 36.39 10.30 39.00 6.99 0.497

STAI-Trait 38.11 10.41 35.00 10.55 0.518

STAXI-State 11.44 2.70 11.25 1.77 0.844

STAXI-Trait-Anger 19.22 3.23 18.17 7.31 0.692

STAXI-Anger-Control 23.89 2.93 21.67 5.98 0.319

STAXI-Anger-Out 13.44 2.96 12.92 4.14 0.749

STAXI-Anger-In 19.44 4.28 13.17 3.01 0.001

BIS-11 attention-to-details 25.44 3.59 23.00 4.44 0.272

BIS-11 motoric-impulsiveness 23.89 4.15 22.17 4.15 0.382

BIS-11 coping 23.11 2.68 22.50 4.30 0.659

AQ 65.80 17.63 69.45 11.32 0.622

M, mean, SD, standard deviation.
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effect was not significant [pre–post treatment ∗ group:
F(1,20) = 0.196; p = 0.662]. The between groups (abstinent
vs. relapse) difference [F(1,20) = 0.893; p = 0.356]
was not significant.

The comparison of QSU-Factor 1 (strong desire and
intention to smoke) did not show any significant differences
regarding the pre–post measurements [F(1,20) = 0.083;
p = 0.777], the interaction effect [pre–post treatment ∗ group:
F(1,20) = 0.018; p = 0.894] and the between groups difference
[F(1,20) = 0.723; p = 0.405].

The comparison of QSU-Factor 2 (anticipation of relief
from negative effect with an urge desire to smoke) revealed
non-significant differences between the pre–post measurements
[F(1,20) = 0.063; p = 0.805]. In addition, the interaction effect
[pre–post treatment ∗ group: F(1,20) = 0.133; p = 0.720] and
the between groups effect [F(1,20) = 0.280; p = 0.603] were
not significant.

Outcome-Based Comparison of
Neuronal Responses During the Cue
Exposure Task
During the cue exposure task of the 1st day, smokers that
remained abstinent (see Figure 2 and Table 2) and smokers that
relapsed within the 3 months intervals after the NF training
(see Figure 2 and Table 3) demonstrated tobacco cue-related
responses (tobacco-related pictures minus neutral pictures)
especially in brain regions that are associated with the processing
of visual information (e.g., visual association cortex).

The comparison of neuronal responses of smokers
who relapsed and smokers who remained abstinent
revealed only small differences within the fusiform gyrus
(see Figure 2 and Table 4).

Comparison of the Target ROIs for NF
Training Between Groups
The following brain regions were used as target ROIs for the NF
training: abstinent group: DLPFC left: 2 patients; DLPFC right:
1 patient; insula left: 6 patients; insula right: 1 patient; relapse
group: DLPFC left: 2 patients; DLPFC right: 2 patients, insula left:
2 patients, insula right: 3 patients; ACC left: 1 patient; ACC right:
2 patients. Overall, we did not find any clear association between
treatment success and brain region.

Functional Variations During
Neurofeedback
Neuronal Responses of the Abstinent Group During
the First NF Session
The comparison of BOLD responses during the presentation of
smoking-related cues and neutral pictures during the first NF
session in smokers who remained abstinent 3 months after the
NF training demonstrated increased responses while smoking
cues were presented, especially in the superior/medial frontal
gyrus, the ACC, the inferior parietal lobule, the culmen, the
fusiform gyrus, the superior/inferior parietal lobule, and the
insular cortex. Neutral pictures led to increased BOLD responses

in the superior/middle frontal gyrus, the ACC and the cerebellum
(see Figure 3 and Table 5).

Neuronal Responses of the Relapse Group During the
First NF Session
In the relapse group, NF training during the presentation of
tobacco-related cues led to increased responses especially in
the ACC, the superior/medial/middle frontal gyrus, the insula,
the thalamus, the precentral gyrus, the fusiform gyrus, the
inferior parietal lobule/supramarginal gyrus, the inferior/middle
temporal gyrus, the cuneus/precuneus, the culmen and the
fusiform gyrus compared to the presentation of neutral stimuli
(see Figure 3 and Table 6).

Outcome-Based Comparison of Neuronal Responses
During the First NF Session
The comparison of neuronal responses (tobacco-related pictures
minus neutral pictures) during the first rtfMRI session of
smokers who relapsed and smokers who remained abstinent
showed increased responses in the relapse group, especially
in frontal brain regions including the medial/middle/superior
frontal gyrus, the ACC, the caudate nucleus and the superior
temporal gyrus. By contrast, the responses in the inferior occipital
gyrus and the fusiform gyrus were decreased in the relapse group
(see Figure 3 and Table 7).

DISCUSSION

The aim of the project was to assess neurobiological response
differences between tobacco-dependent patients who benefitted
from a combined individualized rtfMRI NF training and
group therapeutic program and tobacco-dependent patients
who relapsed within the first 3 months after these therapeutic
interventions. We focused especially on functional differences
between patients of both groups during the first NF training
after a general stop of smoking in order to detect early
functional features which may be helpful for a fast therapeutic
decision-making regarding the application of NF training as
add-on-therapy.

For the NF training an individualized target region within
the DLPFC, the ACC or the insula was determined for
each participant during a localiser run while craving-related
tobacco-cues were presented. The selection of the brain
region was based on the information from several prior
studies showing that these areas are of special importance for
cue-elicited craving (McClernon et al., 2005; Wilson et al.,
2005; Brody et al., 2007; Goudriaan et al., 2010; Naqvi and
Bechara, 2010; Hartwell et al., 2011; Naqvi et al., 2014). The
functional localizer for the ROI selection was defined separately
for each training session. Reason for this strategy was the
consideration that the relevance of functional responses in
each brain region can alter during the therapeutic process.
This could probably lead to variations in the personal
significance of brain regions between sessions. All participants
were asked to downregulate craving-related BOLD responses
using NF training.

Frontiers in Human Neuroscience | www.frontiersin.org 8 March 2019 | Volume 13 | Article 6588

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00065 March 1, 2019 Time: 16:3 # 9

Karch et al. fMRI-Based Neurofeedback in Tobacco-Dependent Patients

FIGURE 2 | Neuronal responses during cue exposure task [tobacco-related pictures > neutral pictures; p(Bonf) < 0.05, T-score: 4.830–8]. (A,B) Smokers of both
groups demonstrated neuronal responses to tobacco related pictures especially in the brain regions associated with visual information processing (x = 0; y = 0;
z = 0). (C) The comparison of brain responses of the relapse group and the abstinent group showed only very small functional differences within the fusiform gyrus
were detected (x = –1; y = –53; z = –18).

TABLE 2 | Neuronal responses in abstinent group during the cue exposure task of the first fMRI session [tobacco-related pictures minus neutral pictures; clusters of >30
voxels, p(Bonf) < 0.05, T-score: 4.830–8].

Abstinent group

Center of gravity Size t-score

Brain region Side BA x y z ∅ Max

Tobacco-related pictures > neutral pictures

Superior Parietal Lobule/Inferior Parietal Lobule R 7 34 −54 47 6187 6.41 9.67

Superior Parietal Lobule/Inferior Parietal Lobule L 7 −28 −58 47 2810 5.77 7.77

Middle Frontal Gyrus R 6 50 5 37 1395 5.36 6.56

Inferior Occipital Gyrus/Lingual Gyrus L 18/19 −37 −69 −4 15232 8.94 19.25

Inferior Occipital Gyrus/Lingual Gyrus R 18/19 33 −70 −4 18026 8.77 15.19

BA, Brodman area; side, hemisphere; L, left; R, right; max, maximal t-score; ∅, average t-score; size, cluster size; voxels, number of activated voxels; x, Talairach coordinate
x-axis; y, Talairach coordinate y-axis; z, Talairach coordinate z-axis.

Clinical Outcome
Relapse Rate
The abstinence rate was 45.5% after 3 months. The ‘Rauchfrei
Programm’ is the most common cognitive behavioral group
program for quitting smoking in Germany (Gradl et al., 2009;

Rasch et al., 2010). Former studies indicated that immediately
after the program, 60.9% of the participants stopped smoking.
After 6 months, the abstinence rate was 40.2%, 31.8% after
1 year (Gradl et al., 2009; Wenig et al., 2013). In our study, the
combination of this program with rtfMRI-Neurofeedback did not
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TABLE 3 | Neuronal responses in relapse group during the cue exposure task of the first fMRI session [tobacco-related pictures minus neutral pictures; clusters of >30
voxels, p(Bonf) < 0.05, T-score: 4.830–8].

Relapse group

Center of gravity Size t-score

Brain region Side BA x y z ∅ Max

Tobacco-related pictures > neutral pictures

Superior Parietal Lobule/Precuneus R 7 29 −54 50 1698 5.59 7.08

Fusiform Gyrus R 19/37 38 −65 −8 17700 8.90 19.63

Lingual gyrus/Cuneus R 17/18 2 −80 5 4460 5.50 6.95

Fusiform Gyrus/Middle Occipital Gyrus L 19/37 −47 −64 −9 11615 8.47 14.52

Tobacco-related pictures < neutral pictures

Fusiform Gyrus/Parahippocampal Gyrus L 36/37 −24 −42 −14 1582 −6.23 −8.79

BA, Brodman area; side, hemisphere; L, left; R, right; max, maximal t-score; ∅, average t-score; size, cluster size; voxels, number of activated voxels; x, Talairach coordinate
x-axis; y, Talairach coordinate y-axis; z, Talairach coordinate z-axis.

TABLE 4 | Neuronal responses in relapse group minus abstinent group during the
cue exposure task of the first fMRI session [tobacco-related pictures minus neutral
pictures; clusters of >30 voxels, p(Bonf) < 0.05, T-score: 4.830–8].

Relapse group versus abstinent group (localizer of the first fMRI session)

Center of gravity Size t-score

Brain region Side BA x y z ∅ Max

Relapse > abstinent (localizer)

Fusiform gyrus R 37 35 −50 −19 498 5.76 7.44

BA, Brodman area; side, hemisphere; L, left; R, right; max, maximal t-score; ∅,
average t-score; size, cluster size; voxels, number of activated voxels; x, Talairach
coordinate x-axis; y, Talairach coordinate y-axis; z, Talairach coordinate z-axis.

significantly change the entire abstinence rate. Unfortunately, the
relapse rate of the real and sham group did not differ significantly.

Craving
The assessment of variations in the clinical data did not show
any significant difference regarding craving on the first day.
Findings about the association between craving and relapse
rates are mixed: a systematic review revealed that (a) there
were only a few cases of significant associations between
craving collected as part of cue-reactivity studies and treatment
outcome, (b) craving after quitting smoking was a stronger
predictor of treatment outcome than craving before quitting
smoking, and (c) several moderators are likely to influence the
relationship between craving and cessation outcome (Wray et al.,
2013). The authors conclude that craving is not a necessary
condition of relapse. In addition, inconsistent relationships
between craving and treatment outcome call the value of
craving as a target of treatment into question and emphasize
limitations in the prognostic utility of craving (Wray et al.,
2013). However, other studies showed that the activation in
the right ventral striatum predicted the duration of abstinence
beyond the level of nicotine dependence (Owens et al., 2017).
Additionally heightened neuronal reactivity in brain regions
related to the regulation of emotions, interoception and motor
planning/execution to smoking-related cues as well as decreased

functional connectivity between insula and cognitive brain areas
were presented in subjects that relapsed (Janes et al., 2010). The
authors concluded that their data suggest that relapse-vulnerable
smokers can be identified before quit attempts, which could
enable personalized treatment, improve tobacco-dependence
treatment outcomes, and reduce smoking-related morbidity and
mortality (Janes et al., 2010).

Despite these inconsistent results regarding the association
between craving and relapse, cue-induced craving to smoke
has been considered one of the driving forces in continued
smoking (Tiffany, 1990). Psychopharmacological interventions
have demonstrated only a small impact on cue-induced craving
(Tiffany et al., 2000; Ferguson et al., 2009).

Functional Imaging Data
BOLD Responses During the First NF Training
Session of the Relapse Group Compared to the
Abstinent Group
The comparison of BOLD responses during the NF first
training session between patients who relapsed and patients who
remained abstinent revealed increased responses in the relapse
group, especially in the PFC cortex (SFG/medial PFG/middle
PFG) and the ACC (see Figure 3 and Table 7). BOLD responses
in the PFC, especially the SFG and MFG, have been related to
cognitive processes including executive control (Miller, 2013).
The ACC can be attributed to cognitive as well as emotional
processes (Miller, 2013): The ACC does have connections to
both the ‘emotional’ limbic system and the ‘cognitive’ prefrontal
cortex. Thus, the ACC seems to play an important role in the
integration of neuronal circuitry to affect regulation (Stevens
et al., 2011), including the ability to control and manage
uncomfortable emotions. Avoidance of painful emotions is often
the motivational force in negative behaviors such as substance
abuse. These actions are taken as part of maladaptive approaches
to control, avoid, or regulate painful emotions (Stevens et al.,
2011). During NF training, a regulation of craving-associated
emotions is necessary. Increased responses in the respective
brain areas during the NF session in the relapse group could
indicate that the downregulation of craving-related responses in
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FIGURE 3 | Neuronal responses of the first neurofeedback-session [tobacco-related pictures > neutral pictures; p(Bonf) < 0.05, T-score: 4.830–8]. (A) Smokers of
the abstinent group demonstrated enhanced neuronal responses during the presentation of smoking related cues especially in frontal brain regions (e.g.,
superior/medial frontal gyrus, ACC), the pariatal cortex and the insula (x = 0; y = 4; z = 42). (B) Smokers of the relapse group demonstrated enhanced neuronal
responses during the presentation of smoking related cues compared to neutral pictures especially in frontal brain regions (e.g., superior/medial/middle frontal gyrus,
ACC), the insula, pariatal areas as well as temporal regions and the cuneus/precuneues (x = 0; y = 18; z = 27). (C) Neuronal responses of smokers who relapsed
compared to smokers who remained abstinent: patients of the relapse group demonstrated enhanced BOLD responses especially in the medial/middle and superior
frontal gyrus, the ACC, the caudate nucleus and the superior temporal gyrus compared to patients that remained abstinent. By contrast, the responses in the inferior
occipital gyrus and the fusiform gyrus were decreased in the relapse group (x = 4; y = 3; z = 34).

brain areas which are especially associated with cognitive and
emotional processes is less successful in these patients than in
patients who remained abstinent after therapeutic interventions.

Furthermore, increased BOLD responses in the relapse
group compared to the abstinent group were shown in the
caudate nucleus/claustrum. The caudate nucleus is one of
the structures that make up the dorsal striatum which is a
component of the basal ganglia (Yager et al., 2015). Apart from
various motor functions, the caudate is also one of the brain
structures which compose the reward system and functions as
part of the cortico-basal ganglia-thalamic loop (Yager et al.,
2015). This area has proved to play an important role in the
context of dependence disorders, including tobacco. A review of
Balfour (2004) indicated that the stimulation of dopamine (DA)
projections to the nucleus accumbens play a complementary role
in the development of nicotine dependence (Balfour, 2004). The
hypothesis in the review proposes that increased extra-synaptic

DA in the accumbens confers hedonic properties on behavior,
such as smoking which deliver nicotine, and thereby increase
the probability that the response is learned. The authors of
the review argue that sensitisation of the DA projections to
the accumbal core, and the behaviors which depend on this
process, play a pivotal role in the maintenance of a tobacco
smoking habit (Balfour, 2004). Against this background increased
responses in the relapse group during the down-regulation
NF task might indicate that these smokers were less able to
modulate their neurobiological responses in the reward system
which is influenced by dopaminergic innervation. The salience of
tobacco-related cues may resist increased in this group compared
to smokers who benefitted from the training.

By contrast, the responses in the inferior occipital gyrus
and the fusiform gyrus were decreased in the relapse group
compared to the abstinent group. These areas have been related
to the secondary and tertiary visual cortex and can, e.g., be

Frontiers in Human Neuroscience | www.frontiersin.org 11 March 2019 | Volume 13 | Article 6591

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00065 March 1, 2019 Time: 16:3 # 12

Karch et al. fMRI-Based Neurofeedback in Tobacco-Dependent Patients

TABLE 5 | Neuronal responses in abstinent group during the first rtfMRI NF session [tobacco-related pictures minus neutral pictures; clusters of >30 voxels,
p(Bonf) < 0.05, T-score: 4.830–8].

Abstinent group

Center of gravity Size t-score

Brain region Side BA x y z ∅ Max

Tobacco-related pictures > neutral pictures

Superior Frontal Gyrus/Medial Frontal Gyrus R 6 4 −5 61 3206 6.52 11.34

Medial Frontal Gyrus/Anterior Cingulate Gyrus R/L 6/32 1 13 40 837 5.33 7.14

Precuneus/Superior Parietal Gyrus/Inferior Parietal Lobule R 7/40 32 −51 47 4110 5.58 7.00

Superior Parietal Lobule/Inferior Parietal Lobule/Postcentral Gyrus L 5/7/40 −30 −45 55 2886 2.82 8.65

Fusiform Gyrus/Lingual Gyrus R 18/19 35 −65 −4 34888 10 25.75

Culmen R/L 0 −53 −5 51795 7.02 14.29

Fusiform Gyrus L 37/19 −40 −61 −6 25750 11.02 26.89

Sub-lobar/Insula/Superior Temporal Gyrus/Precentral Gyrus L 13/22/44 −49 10 3 3564 6.34 10.79

Superior Frontal Gyrus/Middle Frontal Gyrus R 10 30 49 17 999 5.84 8.36

Tobacco-related pictures < neutral pictures

Middle Frontal Gyrus/Superior Frontal Gyrus R 6/8 28 18 49 1892 −5.94 −8.14

Middle Frontal Gyrus/Superior Frontal Gyrus L 6/8 −27 16 51 1217 −5.62 −6.86

Anterior Cingulate Gyrus/Medial Frontal Gyrus L/R 32/24/9/10 −2 40 9 3982 −6.03 −9.24

Cerebellum L −24 −42 −16 1089 −6.74 −10.4

BA, Brodman area; side, hemisphere; L, left; R, right; max, maximal t-score; ∅, average t-score; size, cluster size; voxels, number of activated voxels; x, Talairach coordinate
x-axis; y, Talairach coordinate y-axis; z, Talairach coordinate z-axis.

TABLE 6 | Neuronal responses in relapse group during the first rtfMRI NF session [tobacco-related pictures minus neutral pictures; clusters of >30 voxels,
p(Bonf) < 0.05, T-score: 4.830–8].

Relapse group

Center of gravity Size t-score

Brain region Side BA x y z ∅ Max

Tobacco-related pictures > neutral pictures

Cingulate Gyrus/Medial Frontal Gyrus/Superior Frontal Gyrus L 24/32/6 −1 4 46 29215 7.31 13.7

Precentral Gyrus/Middle Frontal Gyrus R 6 36 −7 44 11388 5.95 8.11

Middle Frontal Gyrus/Superior Frontal Gyrus R 6/9 34 33 28 5090 5.83 7.98

Insula/Precentral Gyrus/Inferior Frontal Gyrus R 13/44/47/22 41 8 1 26082 6.9 14.11

Middle Frontal Gyrus/Superior Frontal Gyrus L 9/10 −34 35 26 5703 5.64 7.04

Insula/Precentral Gyrus L 13 −43 5 16 26699 6.86 15.88

Thalamus L/R 0 −18 2 40474 6.01 10.12

Inferior Parietal Lobule/Supramarginal Gyrus L 40 −35 −49 39 8650 5.71 8.67

Middle Occipital Gyrus/Fusiform Gyrus L 19/37 −42 −64 −7 12976 9.16 18.17

Inferior Parietal Lobule/Supramarginal Gyrus R 40 43 −43 36 12146 6.48 13.29

Cuneus/Precuneus R 7/31/18 12 −70 30 22047 6.70 12.53

Inferior Temporal Gyrus/Middle Temporal Gyrus R 37 39 −63 −3 21868 10.78 25.15

Culmen R 5 −64 −9 20198 8.57 17.44

Cuneus/Precuneus L 18/31 −14 −74 20 6345 5.88 8.25

Culmen/Declive/Lingual Gyrus R 18 5 −65 −7 19420 8.45 17.44

Lingual Gyrus/Fusiform Gyrus R 18 38 −65 −3 23581 10.50 25.15

Tobacco-related pictures < neutral pictures

Fusiform Gyrus/Parahippocampal Gyrus L 37/20 −26 −44 −14 1530 −6.60 −9.99

Lingual Gyrus/Inferior Occipital Gyrus/Fusiform Gyrus L 17/18 −14 −89 −6 1878 −6.73 −10.5

BA, Brodman area; side, hemisphere; L, left; R, right; max, maximal t-score; ∅, average t-score; size, cluster size; voxels, number of activated voxels; x, Talairach coordinate
x-axis; y, Talairach coordinate y-axis; z, Talairach coordinate z-axis.
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TABLE 7 | Neuronal responses in relapse group minus abstinent group during the first rtfMRI NF session [tobacco-related pictures minus neutral pictures; clusters of
>30 voxels, p(Bonf) < 0.05, T-score: 4.830–8].

Relapse group versus abstinent group

Center of gravity Size t-score

Brain region Side BA x y z ∅ Max

Relapse > abstinent

Cingulate Gyrus/Medial Frontal Gyrus L 24/6 −2 −2 46 2715 5.63 7.17

Cingulate Gyrus/Medial Frontal Gyrus R 24/6 7 −70 40 2060 5.96 9.49

Middle Frontal Gyrus R 8/9 33 27 39 1609 5.88 8.39

R 8/6 51 8 39 637 5.28 6.13

R 9 41 21 34 545 5.37 6.28

Anterior Cingulate/Medial Frontal Gyrus R 32/9/10 8 39 13 3390 5.59 7.36

Middle Frontal Gyrus/Superior Frontal Gyrus L 10 −31 51 19 940 6.30 9.67

Extra-Nuclear/Lentiform Nucleus/Caudate R 16 14 0 3852 5.55 7.94

Lentiform Nucleus/Extra-Nuclear/Claustrum L −22 12 −2 2261 5.90 10.35

Superior Temporal Gyrus L 22 −49 13 −4 1117 5.69 8.94

Relapse < abstinent

Lingual Gyrus/Fusiform Gyrus/Inferior Occipital Gyrus/Declive L 18/19 −29 −74 −8 13679 6.39 11.56

Lingual Gyrus/Inferior Occipital Gyrus/Fusiform Gyrus R 18/19 24 −85 −10 2263 6.44 8.92

BA, Brodman area; side, hemisphere; L, left; R, right; max, maximal t-score; ∅, average t-score; size, cluster size; voxels, number of activated voxels; x, Talairach coordinate
x-axis; y, Talairach coordinate y-axis; z, Talairach coordinate z-axis.

influenced by attention. Bradley et al. (2003) for example have
shown that both extent and strength of functional activity of the
occipital cortex were linked to the judged affective arousal of
the different picture contents. The author suggested that more
extensive visual system activation reflects ‘motivated attention’
where motivational engagement directs attention and facilitates
perceptual processing of important stimuli (Bradley et al., 2003).
The increased down-regulation of craving-related responses in
the relapse group in these areas could indicate that patients
of this group chose a different strategy compared to smokers
of the abstinent group. Apparently, these patients modulated
more strongly visual perception processes which are influenced
by motivation, personal significance of the visual information
and attention rather than emotional processes or other cognitive
processes (including cognitive control, executive functions),
related to craving. These modulations seem to be indirect effects
since the target ROIs for the modulation were located within the
prefrontal cortex/insula.

Craving-related responses between groups before the NF
training (during the localizer run) differed only marginally in a
small region within the right fusiform gyrus (see Figure 2 and
Table 4). For that reason, we assume that differences between the
relapse group and the abstinent group during rtfMRI NF cannot
be attributed to craving-related responses before training.

NF Related Responses During the First NF Session in
the Abstinent Group and the Relapse Group
In both groups BOLD responses during the NF trials
(presentation of tobacco cues and NF information) compared to
the neutral condition during the first NF training sessions were
enhanced, especially in brain areas related to cognitive and/or
emotional craving processes as well as attention/motivation (see

Figure 3 and Tables 5, 6) including frontal/fronto-central areas,
the insula, parts of the secondary visual processing system and
brain regions which are important for reward processing.

In both groups, real NF had been provided and participants
had been instructed to downregulate their brain responses in
individually defined ROIs within the frontal cortex. Nevertheless,
in both groups brain responses in most parts of the brain were
increased during NF compared to the neutral condition. These
results may indicate that craving-related responses stayed visible
despite NF modulation. Less prominent differences between the
cue-related stimulation plus NF and the neutral condition could
be expected after several NF sessions (Ruiz et al., 2013b).

Participants who remained abstinent after the training also
revealed decreased responses in several frontal areas, including
the middle FG, the SFG and the ACC/medial FG. These patients
seemed to be able to reduce their individual responses more
strongly than patients of the relapse group.

Comparison of Psychometric Data of the
Relapse Group With the Abstinent Group
An array of questionnaires and ratings were used in order
to compare psychopathological aspects and aspects of the
personality of patients who remained abstinent with those who
relapsed. We did not find any differences regarding physical
dependence (Fagerström test), pack-years, number of cigarettes
per day, intelligence (WST), personality (Neo-FFI), craving
(QSU-G), anxiety (STAI), impulsivity (BIS), and aggression (AQ).
Concerning anger expression (STAXI), the anger-in subscale
demonstrated an increased score on the day of the first rtfMRI
NF session for patients who remained abstinent during 3 months
after the NF training compared to patients who relapsed. This
may indicate a varying approach in both groups regarding the
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expression of negative emotions. However, the difference seems
to be small: The results of all other subscales were comparable
between groups. Altogether, the differences between groups were
marginal and we did not detect any reliable variables influencing
the success of the therapeutic approach.

Individualized ROI Definition
The selection of a personalized ROI enhances the probability
for valid feedback: the selection of the target ROI was based
on each individual’s neuronal responses during the localizer
run during the presentation of craving-related information.
The individualized ROIs which were identified for feedback
encompassed areas of the DLPFC, the insula or the ACC.
These regions were selected based on information from former
studies using exposure to smoking-related cues compared with
neutral cues (Janes et al., 2016, 2017). In these studies the
ACC has been reported to be involved in executive functioning
such as decision making, choosing between alternatives and
evaluating possible outcomes to optimize results. In addition,
the ACC is an important area for emotional processing (Bush
et al., 2000). Furthermore, previous rtfMRI NF studies have
demonstrated that the activity within the ACC can be influenced
by the participants (Weiskopf et al., 2003; Hamilton et al., 2011;
Hartwell et al., 2016).

The challenge of not smoking following exposure to smoking-
related cues presents both a cognitive and an emotional task
for nicotine-dependent smokers while individual variations
in the involvement of the ACC and the PFC is expected
(Hartwell et al., 2016).

The selection of an individualized task-driven NF minimized
the risk of providing NF from a non-activated area, e.g., owing to
possible alterations as a result of previous NF sessions (Hartwell
et al., 2016). It seems sensible for future studies to include the
examination of an optimal target region for NF in patients with
tobacco dependence.

Disadvantages of an individualized task-based ROI definition
may be that the anatomical specificity is reduced and the
possibility to compare the results between patients is limited.

Comparison With the Results of Other
NF Studies With Patients With Tobacco
Use Disorder
In some aspects the design of the present study was comparable
to the design of the study of Hartwell et al. (2016). In both
studies an individualized NF approach for craving-associated
BOLD responses was used, based on an initial run during
which smoking-related cues were employed to provoke craving;
participants completed three neuroimaging visits with three NF
runs each. The results of the study of Hartwell et al. (2016) reveal
decreased subjective craving and cue-induced brain activation.

The results of the present study show small differences in
terms of craving between groups: the difference reached trend
level. In addition, BOLD responses were influenced by the day of
measurement and the group. One main difference between these
studies is the inclusion criteria: unlike our study Hartwell et al.
(2016) did not include treatment seeking smokers.

Influence of Intensity of Craving on
BOLD Responses
The study of Wilson and Sayette (2015) demonstrated that brain
responses measured during mild states of desire fundamentally
differ from those measured during states of overpowering
desire (i.e., craving) to use drugs (Wilson and Sayette, 2015).
A meta-analysis revealed that fMRI cue exposure studies using
nicotine-deprived smokers produced different patterns of brain
activation to those using non-deprived smokers (Wilson and
Sayette, 2015). The authors conclude that the intensity of
the urges does matter, and more explicit attention to urge
intensity in future research should have the potential to yield
valuable information about the nature of craving (Wilson and
Sayette, 2015). In our study, the intensity of craving was
comparable between groups: we did not find any differences
concerning the craving intensity between the abstinent and
relapse group.

Limitations
Several limitations should be noted in the interpretation and
application of the results.

Our interpretation is based on the results of the real group
and does not consider the results of the sham group that will be
reported elsewhere in detail (Karch, Paolini et al., unpublished).
Therefore, even if our results are suggesting neurofeedback
specific effects, we cannot completely exclude that some of our
findings are independent of the targeted NF approach. Various
control groups, for example with alternative – not neurofeedback
based – strategies are needed, perhaps in future studies with
bigger sample sizes to address this question.

Concerning the paradigm, we did not include any
cue-exposure scanning without feedback for training evaluation
directly after the rtfMRI training. In addition, we did not record
neurobiological data during the post-training survey 3 months
after the NF sessions. For that purpose it is not possible to
determine whether and to which extent neurobiological effects
are enduring. During the rtfMRI training, tobacco-associated
pictures as well as neutral pictures were presented repeatedly to
the participants. This might have led to some kind of habituation
and a diminished response at later repetitions. However, we
expected that habituation effects would occur in the relapse
group as well as in the abstinent group.

Future research in treatment-seeking smokers prepared to
initiate a cessation attempt is needed and should include further
fMRI sequences after the NF training in order to assess the
persistence of neuronal effects.

The optimal number of NF training sessions is not yet clear.
In the present study, all patients participated in three rtfMRI NF
sessions in order to enhance the power compared to single session
training. However, further studies are needed focusing on the
systematic examination of this topic.

CONCLUSION

Patients with tobacco use disorder who remained abstinent for at
least 3 months after a behavioral group therapy combined with
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a rtfMRI NF training demonstrated decreased neural responses
during the first cue-associated NF training session compared
to patients who relapsed, especially in the ACC, the SMA as
well as dorsolateral prefrontal areas. It seems that a pronounced
neural reduction in frontal brain regions related to cognitive-
emotional processes during craving in the first NF training may
be used as an early predictor of a better therapeutic success
for quitting smoking in patients with tobacco use disorder.
As our NF target areas, i.e., the ACC, the insula and the
DLPFC, were mainly included in these brain areas of decreased
neural responses, the success in smoking cessation may be
related to the success in conducting effective rtfMRI NF. This
approach needs further research, exploration and development,
especially in order to assess the persistence of neuronal and
therapeutic effects.
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Transcranial direct current stimulation (tDCS) has been shown to have mixed effects on
working memory (WM) capacity in healthy individuals. Different stimulation paradigms
may account for these discrepancies, with certain features being favored. To determine
the effect in the context of anodal tDCS, we investigated whether anodal tDCS
induced cortical oscillatory changes during a WM task. Specifically, we tested whether
anodal offline tDCS over the left prefrontal cortex (PFC) enhances WM capacity
by modulating the oscillatory activity in the left dorsolateral PFC (DLPFC) using
magnetoencephalography (MEG). This study employed a double-blind, randomized,
crossover design, in which 24 healthy right-handed participants conducted MEG
recordings during a 3-back task after administration of 2 mA tDCS or sham stimulation
as a placebo. Our results showed that the effect of tDCS did not appear in the behavioral
indices—WM accuracy (d′) or reaction time (RT). From the results of the time-frequency
analysis, significant event-related synchronization (ERS) in the high-gamma band
(82–84 Hz) of the left DLPFC was found under the tDCS condition; however, ERS
was not correlated with WM capacity. Furthermore, we calculated the modulation index
(MI), which indicates the strength of phase-amplitude coupling (PAC). tDCS significantly
decreased MI of the left DLPFC, representing the theta-gamma PAC during the n-back
task using color names as verbal stimuli. Our results suggest that although tDCS
increased the gamma-band oscillation indicating greater neural activity in the left DLPFC,
it did not lead to an improvement of WM capacity; this may be due to the inability of
gamma-band oscillation to couple with the task-induced theta wave. WM capacity might
not increase unless theta-gamma PAC is not enhanced by tDCS.

Keywords: tDCS, working memory, DLPFC, MEG, phase-amplitude coupling, n-back task, color
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INTRODUCTION

Working memory (WM) permits the maintenance of perceived
information over a short period of time. WM has specialized
buffers, a phonological loop and visuo-spatial sketchpad, and the
central executive, which represent executive function (Baddeley
and Hitch, 1974; Baddeley, 2012). Executive function has
been a focus of recent research as it serves as an attention
controller that allocates and coordinates attentional resources
for a variety of cognitive tasks (Osaka et al., 2007). Executive
function is needed to solve complex (‘‘frontal lobe’’) tasks
and is thought to comprise three subcomponents—shifting,
updating, and inhibition (Miyake et al., 2000). Shifting
describes the flexibility of switching between tasks or mental
sets, updating is the ability to monitor and rapidly add
to or delete WM contents, and inhibition is the ability
to deliberately override dominant or prepotent responses
(Miyake and Friedman, 2012). For example, the n-back
task, which is frequently used to measure WM capacity,
relies more heavily on concurrent updating ability than
it does shifting (Kane et al., 2007; Snyder et al., 2015).
Neuroimaging studies suggest that executive functions are
located in the prefrontal cortex (PFC), cingulate cortex, and
parietal cortex (Baddeley, 2003; Niendam et al., 2012). In
particular, activation of the left dorsolateral PFC (DLPFC) has
been observed in tasks that require executive function (Smith and
Jonides, 1999). In electrophysiology, the relationship between
WM and brain rhythms has been studied (Klimesch, 1999).
Electroencephalography (EEG) and magnetoencephalography
(MEG) studies have frequently reported event-related oscillatory
changes, which are considered to represent the increase or
decrease in synchronous activity of neuronal populations. When
frequency-specific changes of the ongoing oscillatory power
occur, the increase or decrease of power is called event-related
synchronization (ERS) or desynchronization (ERD), respectively
(Pfurtscheller and Lopes da Silva, 1999). Some studies have
reported prominent theta power increases over frontal regions
during various WM tasks (Ishii et al., 1999; Jensen and
Tesche, 2002; Hsieh and Ranganath, 2014). Task-dependent
theta band oscillations recorded over the frontal cortex have
been shown to increase with memory demand (Jensen and
Tesche, 2002). Furthermore, higher frequencies have also been
shown to contribute to WM function. Inhibitory gamma-
aminobutyric acid (GABA) neurons in the DLPFC mediate the
synchronization of pyramidal neurons at the gamma frequency;
accordingly, patients with schizophrenia, where synthesis of
GABA is decreased, frequently present with WM deficits
(Lewis et al., 2005). An integrated study using EEG and
magnetic resonance spectroscopy confirmed that in vivo GABA
measures, gamma-band oscillations, and WM capacity were
tightly correlated (Chen et al., 2014).

Recently, advancements have been made in studies aimed
at improving WM capacity through non-invasive stimulus
methods (Steinberg et al., 2018). Transcranial direct current
stimulation (tDCS) is a widely used technique for non-invasive
brain stimulation, which is a subset of transcranial electrical
stimulation (tES) methodology (Nitsche and Paulus, 2011).

During its initial study, the effect of tDCS on motor function
was investigated. tDCS over the motor cortex depends on its
current polarity, with research suggesting that anodal tDCS
increases excitability of the motor cortex, whereas cathodal
tDCS decreases excitability (Nitsche and Paulus, 2000). The
mechanism of excitability change caused by tDCS has been
studied electrically and pharmacologically. One animal study
found that anodal currents to the cortical surface depolarized
pyramidal neurons, whereas cathodal currents hyperpolarized
them (Purpura and McMurtry, 1965). In a human study, cortical
excitability continued even after cessation of current stimulation;
however, this aftereffect was blocked by an NMDA receptor
antagonist (Nitsche et al., 2003). In addition, tDCS extending
over a few minutes led to LTP-like plasticity, which could spread
to other cortical and subcortical regions (Polania et al., 2012).
Taken together, it is thought that direct current has a modulation
effect on cortical plasticity (Stagg and Nitsche, 2011). Oscillatory
changes caused by tDCS was also reported in some articles.
Anodal tDCS applied to the occipital region has been found to
elicit gamma band ERS in the visual cortex (Hanley et al., 2016;
Wilson et al., 2017). Since tDCS has been shown to modulate
brain activity, enhancement of cognitive function has also
been studied. Among cognitive functions, of particular interest
has been the acute influence of tDCS on executive functions
(Strobach and Antonenko, 2017). Many studies have stimulated
the left PFC, which is the core brain region involved in cognitive
function (Santarnecchi et al., 2015). F3, the left prefrontal site in
the international 10–20 system, is located approximately above
the left DLPFC and is the primary candidate for placing an anode
during tDCS. Anodal tDCS over F3 has been shown to improve
WM capacity, compared to sham, cathodal tDCS, and anodal
tDCS over the motor cortex (Fregni et al., 2005). The effect
of polarity of direct current stimulation on cognitive function
is difficult to study. From a meta-analysis study, the anodal-
excitation effect is commonly found in cognitive studies, but
cathodal-inhibition effects are unclear (Jacobson et al., 2012).

However, while positive effects of tDCS on WM capacity
have been reported, negative results have also been found. For
example, tDCS over the left DLPFC had no effect on n-back
accuracy, reaction time (RT; Mylius et al., 2012; Hoy et al.,
2013; Hill et al., 2018), or Wechsler Adult Intelligence Scale,
Fourth Edition (WAIS-IV) scores (Sellers et al., 2015). There are
several possible reasons for these differences in results including
stimulation site, polarity, current, cathode location, length of
stimulation, and online vs. offline stimulation (Medina and
Cason, 2017). One review reported that offline anodal tDCS
applied to healthy participants improved WM accuracy and RT,
whereas online did not (Hill et al., 2016). Thus, the impact of
tDCS on WM capacity is still unclear and its neural basis should
be better defined, ideally using the commonly used n-back task.
Gamma oscillations are the key to interpreting the effect of
anodal tDCS, WM capacity, and the left DLPFC.

Thus, we selected a stimulation method with a high possibility
of improving WM capacity and investigated tDCS-induced
neural activity changes. tDCS should be effective with anodal
stimulation and an offline paradigm. Here we report the effects
of tDCS on behavioral and neurophysiological state. We
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hypothesized that anodal offline tDCS over F3 will enhance
WM capacity by modulating the oscillatory activity in the
left DLPFC using MEG. If tDCS effectively stimulates the
left DLPFC, oscillatory changes should occur during a task
which elicits strong activation in that region. WM capacity was
measured by the 3-back task. The n-back task is a continuous
performance test used to estimate WM capacity (Rosvold et al.,
1956; Haatveit et al., 2010). The task requires participants to
monitor whether the current stimulus is the same as the one
presented n trials before—where n is a predefined number,
usually 1, 2, or 3. As we assessed the effects of tDCS on WM
performance, floor and ceiling effects should be avoided. For
healthy young adults, the 2-back task can be performed easily
(Ikeda and Osaka, 2007) and, without special training, the 4-back
task is difficult (Buschkuehl et al., 2014); accordingly, the 3-back
task was considered suitable to study the effects of tDCS on
WM performance. In a previous fMRI study (Ikeda and Osaka,
2007) performed with right-handed participants, the 2-back
task using verbal stimuli (Word condition) increased activity
in the left PFC, which is an important region for verbal WM
(Smith et al., 1998). In addition, presentation of visual color
stimuli that belong to the same color category (Within condition)
activates the right PFC, whereas using highly codable color
stimuli (Cross condition) has intermediate properties among the
other two conditions. These results indicate that the items to
remember in the n-back task could bias the balance between
the left and right hemispheres of activation areas according to
participant’s dominant language hemisphere. If tDCS activates
verbal WM and updating ability together, WM capacity and/or
neural oscillations would be enhanced in the Word condition.

MATERIALS AND METHODS

Participants
Twenty-four healthy adult male students (mean = 21.3 years
old, SD = 1.26) were recruited from Kanazawa University and
participated in this experiment. All participants were right-
handed, which was assessed by the Edinburgh Handedness
Inventory (Oldfield, 1971). They had normal or corrected-to-
normal vision. The Farnsworth Dichotomous Test for color
blindness (Panel D-15) was used to assess color vision. One
participant had a suspected case of Deuteranopia, however, he
passed the color discrimination test described later. Participants
were native Japanese speakers with normal hearing and had
no medical or family histories of neurological or psychiatric
disorders. Full IQ scores (mean = 108.4, SD = 5.83) were
estimated using the Japanese version of the National Adult
Reading Test (Matsuoka et al., 2006). Participants agreed to
participate in this study with full knowledge of the experimental
nature of the research. Each participant provided written
informed consent prior to participation. The Ethics Committee
of Kanazawa University approved this study, which conformed
to the tenets of the Declaration of Helsinki.

Experimental Design
The study employed a randomized double-blind, controlled
placebo, crossover design that included washout period of at

least 1 month (mean = 57.4 days, SD = 25.9). Initially, all
participants were randomly assigned to either the tDCS-Sham
or Sham-tDCS group. At the beginning of each testing day,
participants performed a practice session of the 1-, 2-, and
3-back task. Next, participants were administered tDCS or sham
stimulation with 20-min rest between two 13-min stimulation.
After the stimulation, participants were prepared for MEG
recordings and received a 10-min explanation of the procedure.
Following a 15-min auditory task (Miyagishi et al., 2018), we
measured the MEG signal to investigate the neural effects of
tDCS on the 3-back task (Figure 1A). After all the experiments
were finished, participants conducted a color naming task and a
color discrimination task to check that all color stimuli in this
experiment were recognizable and discriminable.

tDCS
A direct current was induced through two saline-soaked surface
sponge electrodes (5 × 7 cm) and delivered using a battery-
driven, constant current stimulator (DC-STIMULATOR Plus,
neuroConn GmbH, Germany). The anode electrode was placed
over F3, and the cathode electrode was placed over F4
(see the international EEG 10–20 system) during stimulation
(Figure 1B). Participants received the stimulus twice before
MEG recording, and the duration of a stimulation was 13 min
at a current strength of 2 mA to maximize the aftereffects
of stimulation (Monte-Silva et al., 2013). During the sham
stimulation, electrodes were also attached to the participant,
but the current was only delivered during the first 10 s,
which prevented the participants from noticing the absence of
electrical stimulation.

n-Back Task
A block in each n-back task contained 15 trials to respond. In
the 3-back condition, a block contained 18 trials as the first
three trials were only for encoding (Figure 2). Each stimulus
was presented for 1,000 ms followed by a 1,500 ms interstimulus
interval (ISI). Participants had to respond with their right
index or middle finger depending on whether the stimulus
was the same or different from the one presented in three
trials previously, using a response pad (LUMINA LU400-PAIR,
Cedrus Corporation, San Pedro, CA, USA). The percentage
of both ‘‘same’’ trials and ‘‘different’’ trials was 50% within
each condition. WM accuracy was measured using d′ which is
calculated from hit rate and false-alarm rate (MacMillan and
Creelman, 2004) and RT was defined as the time from a stimulus
presentation to button press.

All participants had practice sessions using capital letters
(from A to H) that were not presented in the MEG recording
session to confirm that they understood how to perform the
n-back task. At first, participants completed a 1-back and 2-back
condition until they achieved an accuracy greater than 85%.
Following the successful completion of these tasks, a fixed-length
practice session of the 3-back task and six blocks were conducted.
These practice sessions were conducted before tDCS or sham
stimulation in the both days.

In the MEG recordings, we employed verbal (color word) or
visual (color rectangle) stimuli as items to remember during an
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FIGURE 1 | (A) Study design: a double-blind, randomized, crossover design was employed. Twenty-four participants were recruited and randomly assigned to
receive either transcranial direct current stimulation (tDCS) or Sham stimulation during the first session. After a washout period of at least 1 month, the second
session was conducted. (B) Task flow of the experiments in each session: practice of the n-back task was conducted in the order of 1-, 2-, and 3-back conditions.
tDCS or sham stimulus as a placebo was administrated. Two sponge electrodes, anode and cathode were on the F3 and F4 according to the international
10–20 system, respectively. Electrodes were removed and preparation for magnetoencephalography (MEG) recordings in a shielded room was initiated. The first
MEG task was an auditory task reported in Miyagishi et al. (2018). The 3-back task was started approximately 25 min after the end of stimulation.

n-back task. In the Word condition, Japanese words describing
the color name were in white (Meiryo font, 36 point). The color
coordinates of stimuli are listed in Supplementary Table S1.
Visual stimuli were presented on the screen in front of a
participant using a liquid crystal projector (IPSiO PJWX6170N,
Ricoh Company Ltd., Tokyo, Japan). All stimuli were controlled
through Presentation (Version 13.1, Neurobehavioral Systems,
Berkeley, CA, USA) running on Windows XP. The luminance
and chromaticity of color stimuli were measured by a luminance
and color meter (CS-200, Konica Minolta, Japan). The size of
color stimulus was 5.6◦ × 5.6◦, and the neutral gray background
field was 24.1◦ × 21◦ (width × height). An optical sensor
connected to the MEG system was attached outside of the
background field, which generated a trigger signal synchronizing
with the start time of visual stimulus presentation.

MEG Recordings
Magnetic fields were measured using a 160-channel whole-
head-type system (MEGvision PQA160C; Ricoh Company, Ltd.,
Kanazawa, Japan). Sensors were configured as first-order coaxial
gradiometers with a baseline of 50 mm; the diameter of each
coil of the gradiometers was 15.5 mm. Magnetic fields were
sampled at 2,000 Hz per channel with a 500 Hz low-pass
filter. Using a Signa Excite HD 1.5T system (GE Yokogawa
Medical Systems Ltd., Milwaukee, WI, USA), we obtained a
T1-weighted structural image with spherical lipid markers placed
at the five MEG fiducial points to enable us to superpose
the MEG coordinate system on the MRI data. A T1-weighted
image consisted of 166 sequential 1.2 mm-thick slices with
a resolution of 512 × 512 points within a field of view of

261 × 261 mm. The cortex surface was reconstructed using
Freesurfer software (version 5.31).

Data Analysis
Behavioral data processing and analysis were performed
using R software (version 3.5.12). Each dependent variable,
d′ for accuracy and RT for speed, was analyzed using a
two-way repeated measures analysis of variance (ANOVA),
with Intervention (tDCS, Sham) and Condition (Word, Cross,
Within) as the within-subject factors.

MEG data processing and analytical procedures were
performed using Brainstorm software (Tadel et al., 2011) ran
on MATLABr (version R2016b, The MathWorks, Natick, MA,
USA). Four noisy channels were eliminated from the analysis.
Eye-movement and cardiac artifacts were removed using the
signal-space projection (SSP) method. Segments that included
headmovement ormuscle artifacts detected in a visual inspection
or in the automatic processing procedure in Brainstorm, were
discarded. Next, data were filtered using band-pass (0.5–100 Hz)
and notch (60 Hz) filters. The epoch was defined as −1,000 to
3,000 ms relative to the visual stimulus onset (0 ms), followed by
selecting correctly encoded trials.

We estimated the signal source using the anatomical cortical
surface data of each subject tessellated with 15,000 vertices. The
lead field was then computed using the overlapping spheres
algorithm. The inverse solution was calculated for each session
through the linearly constrained minimum variance vector

1http://surfer.nmr.mgh.harvard.edu/
2http://cran.r-project.org/
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FIGURE 2 | Schematic figure of an experimental block showing three conditions and the corresponding 3-back responses: stimuli for the Word condition are
represented here in English instead of Japanese Kana used within the tDCS-MEG study. ∗Means that no response is needed.

beamformer. A noise and data covariance matrix were calculated
based on the MEG recordings obtained during the−100 to 0 ms,
and 0–2,350 ms time windows of every epoch within a session.

Two regions of interest (ROIs: L/R DLPFC = Rostral
Middle Frontal) were determined based on the Desikan-Killiany
atlas (Desikan et al., 2006) implemented in Freesurfer. Signals
were taken from the first mode of the principle component
analysis decomposition of the signals within each ROI. A
time-frequency analysis was conducted using a multi-taper
convolution method with the Hanning window (0.3 s). The
Event-related spectral perturbation (ERSP) represents the event-
related percent changes in signal magnitude relative to a
prestimulus baseline period (from −400 to −100 ms). To
compare the neural activation under the tDCS and sham
conditions, we conducted paired-sample permutation t-tests on
the data, which contained the three following dimensions: ROI
(left/right), time (–500 to 2,500 ms), and frequency (1–100 Hz).
The statistical threshold was set at p < 0.05, two-tailed, with
a false discovery rate (FDR) correction. The additional analysis
on the gamma-band power, which was significantly affected
by tDCS, was conducted using a two-way repeated measures
ANOVA, with Intervention (tDCS, Sham) andCondition (Word,
Cross, Within) as the within-subject factors. Furthermore, a
correlation analysis was performed to explore the correlation
between gamma-band oscillations and WM capacity (d′).

RESULTS

Figure 3 summarizes the behavioral data of the 3-back task
during MEG recordings. To assess the ceiling or floor effect on
WMcapacity, we calculated skewness of d′ (range:−0.67 to 0.47).
No highly skewed distribution was found, and thus the ceiling
or floor effect was not observed. From the results of the
ANOVA performed on d′ data, the main effect of intervention
was not significant (F(1,23) = 1.140, p = 0.297, η2p = 0.047),

FIGURE 3 | Box plots with individual participant data of (A) d′ and (B)
reaction time (RT): stars denote significant difference at p < 0.05.

the main effect of condition was significant (F(2,46) = 58.038,
p < 0.001, η2p = 0.716), and their interaction was not significant
(F(2,46) = 0.244, p = 0.785, η2p = 0.011). From the results of
the ANOVA for RT, similarly, the main effect of intervention
was not significant (F(1,23) = 0.352, p = 0.559, η2p = 0.015),
the main effect of condition was significant (F(2,46) = 12.140,
p < 0.001, η2p = 0.346), and their interaction was not significant
(F(2,46) = 1.324, p = 0.276, η2p = 0.054). All behavioral data were
affected by condition factor only. The results following multiple
comparisons using Holm’s sequentially rejective Bonferroni
method identified that d′ under the Word condition was
significantly higher than the Cross (t(23) = 4.118, p < 0.001,
d = 0.492) and Within condition (t(23) = 8.775, p < 0.001,
d = 1.643). Further, d′ under the Cross condition was higher
than that for the Within condition (t(23) = 8.053, p < 0.001,
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FIGURE 4 | Effect of intervention on oscillatory cortical activity: event-related spectral perturbation (ERSP) plots from the results of time-frequency analysis are given
for the tDCS condition and Sham condition in the left and right dorsolateral prefrontal cortex (DLPFC). The bottom panels show the results of the permutation t-test
(tDCS—Sham). The rectangle regions surrounded by a dotted line indicate significant event-related synchronization (ERS) or desynchronization (ERD) with false
discovery rate (FDR) correction (p < 0.05).

d = 1.113). RTs under Word (t(23) = 3.623, p = 0.003, d = 0.291)
and Cross conditions (t(23) = 4.979, p < 0.001, d = 0.291) were
significantly faster than theWithin condition; however, there was
no significant difference between the Word and Cross condition
regarding RT (t(23) = 0.570, p = 0.574, d = 0.032).

We tested the main effect of intervention on MEG data. From
the results of the permutation t-test on time-frequency data,
tDCS increased high-gamma band power (82–84 Hz) in the left
DLPFC from 270 to 600 ms and 1,750–2,000 ms after stimulus
onset. In the right DLPFC, tDCS significantly reduced gamma
band power in 47–49 Hz band from 1,180 to 1,400 ms and
at 49 Hz from 1,610 to 1,720 ms (Figure 4). To explore this
result in more depth, we analyzed the data where tDCS had a

significant effect on high-gamma band ERS or gamma band ERD
using two-way ANOVA. In the left DLPFC at 82–84 Hz, there
were significant main effects of intervention (F(1,23) = 19.461,
p < 0.001, η2p = 0.458) and condition (F(2,46) = 5.541, p = 0.007,
η2p = 0.194) on high-gamma band ERS. Their interaction was
not significant (F(2,46) = 1.579, p = 0.217, η2p = 0.064). The
results following multiple comparisons showed that percent
signal change under the Word condition was significantly higher
than that under the Cross (t(23) = 2.655, p = 0.028, d = 0.501)
and Within (t(23) = 3.229, p = 0.011, d = 0.218) conditions
(Figure 5A). In the right DLPFC at 47–49 Hz, there was a
significant main effect of intervention on gamma band ERD
(F(1,23) = 15.048, p < 0.001, η2p = 0.396), and no significant main
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effect of condition (F(2,46) = 0.367, p = 0.645, η2p = 0.016) and no
interaction (F(2,46) = 0.582, p = 0.563, η2p = 0.025; Figure 5B).

There was a significant correlation between d′ and percent
signal change in the high-gamma band oscillation in the left
DLPFC after the sham stimulation (t(70) = 2.101, r = 0.244,
p = 0.039). There were no other significant correlations
(Figures 5C,D). Furthermore, in each ROI and in each
intervention, percent signal change data were divided into
the three groups corresponding to Word, Cross, and Within
conditions; we then conducted correlation analyses in each group
(2 ROIs × 2 interventions × 3 conditions). No significant
correlations were found within these groups (p > 0.05).

Further analyses were performed to explore the phase-
amplitude coupling (PAC) between high-gamma band and theta

FIGURE 5 | Box plots with individual participant data of percent signal
change in (A) the left DLPFC and (B) the right DLPFC. Data from the left
DLPFC were extracted from 270 to 600 ms at 82–84 Hz, and data from the
right DLPFC were extracted from 1,180 to 1,400 ms at 47–49 Hz, during
which tDCS had significant effects. Stars denote the significance at p < 0.05;
however, the stars indicating the significant main effect of intervention are
omitted. Scatter plots (C,D) show the correlation between d′, indicating
working memory (WM) capacity, and percent signal change that appeared
above in the (A) left and (B) right DLPFC, respectively. The results of
correlation analysis (Pearson’s correlation coefficient, r) at each intervention
are shown in (C,D).

bands. We also analyzed the modulation index (MI) showing the
strength of theta (4–7 Hz) phase and high-gamma (82–84 Hz)
amplitude coupling in the left DLPFC within the time of interest,
in which tDCS significantly increased high-gamma band power
(270–600 ms). In this time window, task-related gamma-band
oscillations were present in this region. An increase of MI
indicates a phase-dependent increase in amplitude (Canolty et al.,
2006; Tort et al., 2010). From the ANOVA results for the MI,
the main effect of intervention (F(1,23) < 0.001, p = 0.987,
η2p < 0.001) and condition (F(2,46) = 0.212, p = 0.810, η2p = 0.009)
were not significant; however, their interaction was significant
(F(2,46) = 5.574, p = 0.007, η2p = 0.195). The simple main
effect of intervention in the Word condition was significant
(F(1,23) = 8.819, p = 0.007, η2p = 0.277), but those in the
Cross (F(1,23) = 0.492, p = 0.490, η2p = 0.021) and the Within
condition (F(2,46) = 1.956, p = 0.175, η2p = 0.078) were not
significant. Regarding tDCS intervention, the condition factor
was significant (F(2,46) = 3.640, p = 0.034, η2p = 0.137). At that
level, MI in the Word condition was significantly lower than the
Within condition (t(23) = 3.335, p = 0.009, d = 0.715) following a
post hoc t-test using the Holm’s sequentially rejective Bonferroni
method. In summary, the significant reduction effect of tDCS
on the MI was found in the Word condition (Figure 6A).
There was no significant correlation between d′ and PAC (tDCS:
t(70) = −1.492, r = −0.176, p = 0.140; Sham: t(70) = −0.010,
r = −0.001, p = 0.992; Figure 6B). Furthermore, no significant
correlations were found with the groups (p> 0.05).

DISCUSSION

We found that offline anodal tDCS over F3 did not improve
WM performance in accuracy and speed, partially rejecting our
hypothesis (Figure 3). Despite the lack of behavioral changes,
tDCS significantly induced high-gamma band ERS (82–84 Hz)
in the left DLPFC and gamma band ERD (47–49 Hz) in

FIGURE 6 | (A) Box plots with individual participant modulation index (MI)
data showing the strength of phase-amplitude coupling (PAC) in the left
DLPFC: stars denote significant difference at p < 0.05. (B) Scatter plots
showing the correlation between d′, and MI.
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the right DLPFC (Figure 4). At first, we found that tDCS
significantly enhanced high-gamma band power regardless of the
condition, because the interaction (intervention × condition)
was not significant. However, the main effect of condition was
significant, and the Word condition had a higher power than
the two other conditions. This implies that high-gamma band
power in the left DLPFC could be responsible for activation
of verbal WM rather than a domain-general updating ability.
Given this, it may be possible that WM capacity does not
increase, even if tDCS activated verbal WM, in the Cross and
Within conditions, in which colored rectangles were visually
remembered. Furthermore, we found a significant positive
correlation between the high-gamma band power and WM
capacity (d′) after the sham stimulus. However, when the data
were divided into groups corresponding to the three conditions,
group-wise correlations were not significant. Accordingly, the
relationship between high-gamma power and WM capacity was
spurious, which could be explained by the nature of the task
condition. In other words, high-gamma oscillation in the left
DLPFC might not affect WM capacity, and it could be altered
by the items to be remembered. Our findings also raise the
possibility that there are optimal frequencies for updating verbal
WM as a mental rehearsal system. During 3-back task, tDCS
induced oscillations of a higher frequency than the frequency
band (30–45 Hz) known to be effective for the 2-back task
accuracy (Hoy et al., 2015a). High-gamma ERS over 50 Hz in
the left DLPFC has also been observed in language-related tasks,
such as a verb generation task (Hashimoto et al., 2017) and
an object naming task (Babajani-Feremi et al., 2014). Another
possibility is that the relationship between gamma band power
and WM capacity has an ‘‘inverted-U’’ shape, much like that of
dopamine andWM (Takahashi et al., 2008). Healthy adultsmight
have an appropriate level of gamma band activity, and tDCS
could have a smaller impact on WM capacity than it might in
patients with cognitive impairment, whose gamma band power
is decreased.

We also observed significant gamma band ERD in the right
DLPFC after cathodal tDCS over F4, whereas the effect of
condition and the interaction was not significant (Figure 5B).
In addition, gamma band power in the right DLPFC was not
correlated with WM capacity (Figure 5D). The right DLPFC has
been suggested to be responsible for executive function inhibitory
control during a Stroop task (Vanderhasselt et al., 2009). The
ERD observed in our study seems not to be important for
updating ability, verbal WM, or items to remember, because no
significant result was found.

From our results, it is still unclear why the tDCS-induced
gamma oscillation did not affect WM capacity. There is a
possibility that increasing high-gamma band oscillations which
do not interact with the lower-band rhythm may not align
with improving WM capacity (Turi et al., 2018). From a local
field potential study, when the memory system holds multiple
items, the population of neurons in the PFC of a rhesus
monkey shows phase-dependent activity (Siegel et al., 2009).
In human studies, high-gamma (80–150 Hz) amplitude couples
to the theta (4–8 Hz) and alpha (8–12 Hz) trough recorded
by electrocorticogram; in particular, during several verbal tasks,

theta-gamma coupling was prominent in the left DLPFC (Voytek
et al., 2010). The MI (Canolty et al., 2006), indicating theta-
gamma PAC measured by EEG, has been shown to be greater in
healthy adults than patients with mild cognitive impairment or
Alzheimer’s dementia during the 2-back task (Goodman et al.,
2018). These studies suggest that the complex waves where
gamma-band amplitude is coupled to theta-band phase could
convey sequential information necessary to perform n-back tasks
(Roux and Uhlhaas, 2014).

We found the significant interaction of tDCS and task
condition in theta-gamma PAC during the verbal 3-back task
(Figure 6A). Indeed, anodal tDCS induced greater high-gamma
band power in the left DLPFC (Figure 5A); however, theta-
gamma PAC was not affected, or rather reduced, during the task
which recruits the left DLPFC. Considering with high-gamma
band oscillation mentioned above (Figure 5A), it is possible
that, in the Word condition, the decrease in PAC canceled
out the enhancement of the high-gamma band power induced
by tDCS, which might have activated the verbal WM. While
gamma band ERS in the left DLPFC is known to be positively
correlated with WM capacity (Hoy et al., 2015a, 2016), the
timing of emergence of gamma-band oscillation may also play an
important role. One transcranial alteration current stimulation
(tACS) study reported that gamma band tACS did not improve
WM capacity in patients with schizophrenia (Hoy et al., 2015b).
Future studies should aim to uncover the most effective timing
of gamma band oscillations for WM capacity in more detail.
Moreover, we found no significant correlation between PAC
and WM capacity (Figure 6B). Similar to the high-gamma ERS
induced by tDCS in this experiment, the frequency of PACmight
be also important for WM capacity. In conclusion, our findings
provide neurophysiological evidence that the effect of tDCS on
WM capacity is not always robust.

Our study has some limitations from the inherent nature
of the n-back task. For estimating WM capacity, the n-back
task is useful; however, memory functions, such as encoding,
maintenance and retrieval, are not clearly distinguishable in
time. During the time of interest (270–600 ms), a new item
is encoded into WM storage and is compared with the stored
item simultaneously. In addition, the pre-stimulus baseline
period in a trial may also be the end section of the previous
trial as trials were presented continuously. Therefore, baseline
correction processes may affect the values in the latter time
period of a trial. If we reveal the effect of tDCS on the
memory process in detail, memory tasks that have a pre-trial
baseline period and distinguish between encoding, maintenance,
and recognition, such as a reading span task (Daneman and
Carpenter, 1980; Osaka and Osaka, 1992) should be used.
Furthermore, a WM task that can overcome the immediate
learning effect, introducing a pre-post design for each day would
increase the statistical power.
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Background: Major depressive disorder (MDD) and fibromyalgia (FM) present
overlapped symptoms. Although the connection between these two disorders has
not been elucidated yet, the disruption of neuroplastic processes that mediate the
equilibrium in the inhibitory systems stands out as a possible mechanism. Thus,
the purpose of this cross-sectional exploratory study was: (i) to compare the motor
cortex inhibition indexed by transcranial magnetic stimulation (TMS) measures [short
intracortical inhibition (SICI) and intracortical facilitation (ICF)], as well as the function of
descending pain modulatory systems (DPMS) among FM, MDD, and healthy subjects
(HS); (ii) to compare SICI, ICF, and the role of DPMS evaluated by the change
on Numerical Pain Scale (NPS) during the conditioned pain modulation test (CPM-
test) between FM and MDD considering the BDNF-adjusted index; (iii) to assess
the relationship between the role of DPMS and the BDNF-adjusted index, despite
clinical diagnosis.

Patients and Methods: A cohort of 63 women, aged 18 to 75 years [FM (n = 18),
MDD (n = 19), and HC (n = 29)].

Results: The MANCOVA analysis revealed that the mean of SICI was 53.40% larger in
FM compared to MDD [1.03 (0.50) vs. 0.55 (0.43)] and 66.99% larger compared to HC
[1.03 (0.50) vs. 0.34 (0.19)], respectively. The inhibitory potency of the DPMS assessed
by the change on the NPS during CPM-test was 112.29 % lower in the FM compared
to MDD [0.22 (1.37) vs. −0.87 (1.49)]. The mean of BDNF from FM compared to MDD
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was 35.70% higher [49.82 (16.31) vs. 14.12 (8.86)]. In FM, the Spearman’s coefficient
between the change in the NPS during CPM-test with the SICI was Rho = −0.49,
[confidence interval (CI) 95%; −0.78 to −0.03]. The BDNF-adjusted index was positively
correlated with the disinhibition of the DPMS.

Conclusion: These findings support the hypothesis that in FM a deteriorated
function of cortical inhibition, indexed by a higher SICI parameter, a lower function
of the DPMS, together with a higher level of BDNF indicate that FM has
different pathological substrates from depression. They suggest that an up-regulation
phenomenon of intracortical inhibitory networks associated with a disruption of the
DPMS function occurs in FM.

Keywords: fibromyalgia, depression, primary motor cortex, pain, CPM, BDNF

INTRODUCTION

Major depressive disorder (MDD) and fibromyalgia (FM) present
overlapped symptoms. Although the connection between these
two disorders has not been elucidated yet, the disruption
of neuroplastic processes that mediate the equilibrium in
the inhibitory systems stands out as a possible mechanism.
These processes comprise a central pathologic mechanism
of the sensitization syndrome (CSS) (Maletic et al., 2007;
Woolf, 2012). The CSS embodies the long-term consequence
of an abnormal stress-response system (Lyon et al., 2011)
that culminates in the amplification of sensory inputs. It
covers the decline of top-down inhibitory activity (dysregulation
of dopamine, serotonin, norepinephrine, epinephrine, and
endogenous opioids) (Wallace and Gotto, 2008) and the
enhancement of bottom-up excitatory activity.

Both MDD and FM present a robust association with an
imbalance of glutamatergic (Glu) and GABAergic transmission.
Motor cortex disinhibition indexed by transcranial magnetic
stimulation (TMS) measurements became a robust common
feature of MDD (Fidalgo et al., 2014; Lewis et al., 2016) and
FM (Caumo et al., 2016). In chronic pain, changes in the short
intracortical inhibition (SICI) (a surrogate marker of GABAergic
activity) are mixed. Some studies in neuropathic pain (Nijs et al.,
2014), chronic myofascial, FM, and migraine found a reduction
in the SICI (Chadaide et al., 2007; Dall’Agnol et al., 2014).
And, a similar result has been found in depression (Antal et al.,
2010; Conforto et al., 2012; Cantone et al., 2017). Regarding to
intracortical facilitation (ICF) (a proxy of glutamatergic activity),
an increased activity of excitatory intracortical interneurons
(Dall’Agnol et al., 2014; Vidor et al., 2014; Botelho et al., 2016;
Caumo et al., 2016; Dussán-Sarria et al., 2018) was found in
chronic pain, while it is decreased in MDD (Cantone et al., 2017).
Another biomarker associated with both MDD and FM is the
brain-derived neurotrophic factor (BDNF) (Zhou et al., 2017).
A reduction of the serum BDNF has been observed in MDD
(Zhou et al., 2017), while an increment has been found in FM
(Zanette et al., 2014; Deitos et al., 2015; Caumo et al., 2016).

The BDNF has a central role in the clinical picture of
dysfunctional neuronal circuits. It strengthens glutamatergic
synapses, while it weakens GABAergic synapses (Zhang et al.,

2013). In chronic musculoskeletal pain, the serum BDNF was
inversely correlated with the SICI and positively correlated with
a decreased inhibitory role of the descending pain modulatory
system (DPMS). Thereby, it is reasonable to consider the
serum BDNF and the motor cortex excitability measured by
TMS as probing neural plasticity indexes to improve the
comprehension of the neural substrates shared by FM and
MDD, as well as their interplay with the inhibitory function
of DPMS. The DPMS function is assessed by the conditioned
pain modulation (CPM) paradigm. CPM engages activation
of a cortically regulated spinal-bulb-spinal loop by the diffuse
noxious inhibitory control (DNIC) mechanism, where “pain-
inhibits pain” phenomenon (Bars et al., 1979; Yarnitsky, 2010).
The neurobiological mechanism involved in the CPM-test
includes several neurobiological systems, such as serotoninergic,
opioidergic, and noradrenergic (Lindstedt et al., 2011; Baba
et al., 2012; Treister et al., 2013). These neurobiological systems
are also involved with psychological characteristics of chronic
pain, i.e., anxiety (Karg et al., 2011; Horjales-Araujo et al.,
2013), depression (Karg et al., 2011), and pain catastrophizing
(Horjales-Araujo et al., 2013). Thus, the DPMS is also influenced
by psychological characteristics, which explain at least part of
the interpersonal variability in pain perception (Racine et al.,
2012). According to earlier studies, a higher score on the CS
Inventory for chronic pain was positively associated with greater
dysfunction of DPMS and correlated positively with serum BDNF
(Caumo et al., 2017). While another study with in chronic
myofascial pain found a positive association of DPMS with
increase in ICF, serum BDNF levels, and disability due to pain
(Botelho et al., 2016). At the same way in chronic pain (e.g., FM
and chronic myofascial pain) compared to osteoarthritis the SICI
was associated with greater dysfunction in DPMS (Caumo et al.,
2016). We hypothesize that a deteriorated function of cortical
inhibition, the dysfunction of the inhibitory DPMS and serum
BDNF can differentiate FM from MDD and HS.

Considering that homeostatic plasticity is the ability of
neurons to maintain their levels of excitability within a narrow
range, thereby, the disruption of this equilibrium is likely to have
a central role in the physiopathology of FM and MDD. Thus, this
exploratory study tested the hypothesis that FM patients would
present higher disinhibition of the motor cortex compared to
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MDD and HS. Another hypothesis was that the dysfunction of the
DPMS is related to the disinhibition of the motor cortex evaluated
by the SICI in FM. Thus, this study was meant to meet the
following objectives: (i) to compare the motor cortex inhibition
indexed by the TMS measures SICI and ICF as well as the DPMS
to evaluate the neuroplastic changes in FM, MDD, and HS; (ii)
to compare the inhibitory function at the cortical level indexed
by the SICI and ICF as well as the descending pain inhibitory
system between clinical diagnoses (FM and MDD) considering
the BDNF adjusted index as a marker of neuroplasticity; (iii)
to examine the relationship between the role of DPMS with the
BDNF adjusted index despite clinical diagnosis.

MATERIALS AND METHODS

Study Design, Settings, and Subjects
We conducted an exploratory cross-sectional study following
the Strengthening the Reporting of Observational studies in
Epidemiology (STROBE) statement. The Ethics Committee
Board of the Hospital de Clínicas de Porto Alegre (HCPA)
(Institutional Review Board IRB 0000921) approved the protocol.
All individuals provided oral and written consent before their
engagement in the study.

Participants
The study’s subject recruitment and data collection were
conducted from August 2017 to July 2018. The sample included
literate, right-handed females, aged from 18 to 75 years. The
inclusion and exclusion criteria pertaining each one of the three
groups (FM, MDD, and HC) are presented in Figure 1.

Major depressive disorder subjects were recruited from the
Basic Health Unit (BHU). Diagnosis of MDD was performed
according to the diagnostic criteria outlined in the Diagnostic and
Statistical Manual of Mental Disorders, 5th Edition (American
Psychiatric Association , 2013).

Fibromyalgia patients were recruited by direct contact from
the institutional chronic pain clinic, by referrals from other
clinic units, and from the BHU at HCPA. They were reached
by phone and answered a screening questionnaire. Those who
met the inclusion criteria were invited to medical evaluation for
history collection and a detailed description of their symptoms.
FM diagnosis was established according to the criteria of the
American College of Rheumatology (2010–2016) by experienced
pain physicians. Those patients who reported at least a pain score
on the Numerical Pain Scale (NPS) greater than 5, on most days
of the last 3 months, were included.

Volunteers were recruited from the community by
advertisement postings in universities and in public places in
Porto Alegre city. They answered a structured questionnaire that
assessed the following variables: current acute or chronic pain
conditions, use of analgesics in the past week, rheumatologic
disease, clinically significant or unstable medical psychiatric
disorder, history of alcohol abuse in the past 6 months,
neuropsychiatric comorbidity, and use of psychotropic substance
or drugs. They were excluded when presenting scores higher

than 13 on the Beck Depression Inventory (BDI) (Beck et al.,
1996; Gomes-Oliveira et al., 2012).

Instruments and Assessment
Outcomes
The primary outcome was the motor cortex inhibitory function
indexed by SICI and ICF, and the DPMS assessed by the change
on NPS during CPM-test, ranging from 0 to 10 during CPM-test.
A secondary outcome was the heat pain threshold (HPT).

Dependent Variables
TMS measures
Left primary motor cortex (M1) measures were assessed
through TMS MagProX100 stimulator (MagVenture Company,
Lucernemarken, Denmark) with figure-eight coil (MagVenture
Company). Ag-AgCl electrodes were placed over the first dorsal
interosseous (FDI) belly muscle and in its corresponding tendon
on the distal phalanx of the index finger. Then, we recorded the
responses to stimuli from the FDI muscle of the right hand by
surface electromyography (EMG). Before to start the measures,
patients were placed in a comfortable chair and informed
about the TMS procedure, including possible sensations that
might experience.

To identify motor “hot spot,” the coil was placed over the
left M1 at 45◦angle to the sagittal line tangential to the scalp.
To ensure the proper placement of the coil during cortical
excitability assessments, researchers marked the site with a
soft-tipped pen. To reduce variability, the same researcher
performed all TMS assessments. The measures of TMS, such as
amplitudes of the single and paired-pulse, and the latency and
the measures of the cortical silent period (CSP) were recorded on
an Excel spreadsheet.

Motor threshold (MT) defined as the lowest stimulus used
to induce 50% of the evoked potentials of resting FDI. Initially,
it was set the minimum amplitude of 50 mV peak-to-peak, in
at least 5 of 10 (at least 50%) of successive trials. Subsequently,
single-pulse TMS protocol with an intensity of 130% of MT was
applied to record ten motor evoked potential (MEP). It is a
measure that reflects the excitability of the membrane potential
of pyramidal neurons in M1 (Nielsen and Norgaard, 2002).

Cortical silent period has been associated with inhibitory
network influenced by GABAB-receptors (Werhahn et al., 1999).
Likewise, ten CSPs (measured during muscle activity measured
on a dynamometer set to approximately 20% of the maximal
force) were recorded using an intensity of 130% of the RMT.

Short intracortical inhibition mainly reflects GABA(A)
receptor-mediated inhibitory function (Ilić et al., 2002; Cash
et al., 2017), while ICF denotes excitatory transmission
mostly through the glutamatergic N-methyl-D-aspartate receptor
(Ziemann et al., 1998).

We used a paired-pulse TMS protocol to measure SICI and
ICF with an interstimulus interval (ISI) to evaluate the SICI equal
to 2 and 12 ms for ICF, respectively.

We set individual conditioning stimulus (first) at 80% of
the MT to measure the ICF and SICI, while for the test
stimulus (second) we set at 130% (Kujirai et al., 1993a).
A total of 30 randomized paired-pulse trials were conducted
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FIGURE 1 | The flow of the study with the inclusion and exclusion criteria of three groups: patients with depression or fibromyalgia and healthy subjects.

(ten for each measure: SICI, ICF, and control stimuli). The
units for these parameters were: MEP in mV; SICI and ICF
in their ratio to the MEP; and the CSP in milliseconds (ms)
(Pascual-leone et al., 1994).

Conditioned pain modulation test (CPM-test)
Conditioned pain modulation test (CPM-test) to evaluate the
DPMS a nociceptive tonic stimulus was used, such as immersion
of the non-dominant hand in water at a temperature of zero up to
1◦C for 1 min. To control if water temperature was maintained in
the range between zero to 1◦C, a thermostat was used to control
temperature variation. The QST procedure was introduced after
30 s of cold-water immersion. The CPM TEST was determined by
the difference between the pain score on NPS during the QST at
the same time they maintained their dominant hand in cold water
immersion (QST+CPM) than the temperature of the subjects felt
6/10 pain on the NPS scale [during the initial period (T0)].

Heat pain threshold
It was assessed through quantitative sensory testing (QST), which
uses the method of limits with a computer Peltier-based device
thermode (30630 mm) (Schestatsky et al., 2011). Firstly, the
thermode was attached to the skin on the ventral position of the
mid-forearm. Baseline temperature was set at 32◦C and increased
at a rate of 1◦C/s to a maximum of 52◦C. Each participant

was instructed to push the button immediately at the moment
the stimulation became painful. This trial was composed of
three assessments with an ISI of 40 s (Schestatsky et al., 2011),
and then an average temperature of the three assessments was
calculated. The position of the thermode was slightly altered
between evaluations to avoid sensitization of nociceptors.

Independent Variables
Assessments of Demographic and Clinical
Characteristics
Standardized questionnaire
A standardized query was used to assess demographic data
and medical comorbidities. Patients were requested to provide
information about their age, sex, level of education, marital status,
and lifestyle habits. They also provided information about their
health status, including clinical and psychiatric diagnosis.

Psychiatric diagnosis
Psychiatric diagnosis was based on the Structured Clinical
Interview for DSM-V (SCID) applied by a trained psychiatrist.
This instrument consists of a semi-structured diagnostic
interview created from DSM – V. The answers identify the
presence or absence of the symptoms, scored according to the
judgment of the evaluator. It is composed of 10 modules, which
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can be used in a combined or independent way (2012). In the
study, the “A” module was used to diagnose mood episodes
(MDDs). The translation and adaptation of this clinical interview
into Portuguese language present, in general, good reliability for
mood disorders (Del-Ben et al., 2001).

Psychological state and sleep quality
All instruments used were validated for the Brazilian population
and the assessments were conducted by two trained evaluators.
The following tools were applied: Beck Depression Inventory-II
(Beck et al., 1996; Gomes-Oliveira et al., 2012), Pittsburgh Sleep
Quality Index (PSQI) (Buysse et al., 1989; Bertolazi et al., 2011),
Fibromyalgia Impact Questionnaire (FIQ) (Burckhardt et al.,
1991; Marques et al., 2006), State-Trait Anxiety Inventory (STAI)
(Kaipper et al., 2010), Brazilian Portuguese Pain-Catastrophizing
scale (BP- PCS) (Sehn et al., 2012) and Visual Analog Pain
Scale (0 no pain and ten worst pain). Analgesic use was defined
by an average of analgesics used per week during the previous
month. For data analysis, analgesic use was included as a
dichotomous variable (more than 4 days per week or lower than
4 days per week).

BDNF dosage
Blood samples were collected and identified in a standardized
manner. The blood samples were obtained in plastic tubes
and centrifuged for 10 min at 4,500 rpm at 4◦C. Serum was
stored at −80◦C for further BDNF assay. Serum-mediator
concentrations were determined using BDNF (Chemicon
CYT306, lower detection limit 7.8 pg/mL; EMD Millipore,
Billerica, MA, United States) enzyme-linked immunosorbent
assay kits, according to the manufacturer’s instructions.

Efforts to Address Potential Sources of Bias
In order to reduce assessment bias, two researchers with the
vast clinical expertise in treating outpatients in pain clinic were
responsible for making the diagnostics according to pre-specified
criteria. A trained psychiatrist with more than 10 years of
experience in psychiatric care applied the psychiatric diagnosis
based on the SCID-VR. Two evaluators with specific training
were responsible for all assessments and for applying the
standardized protocol to assess the QST and the CPM-test.
To reduce the variability, the same researcher performed all
TMS assessments.

Study Size
For type I and II errors of 0.05 and 0.20, respectively,
and anticipating partial η2 of 0.25 for multiple regression
analysis, which allows for three predictors (diagnosis, age, and
BDNF), a sample size of 60 patients was estimated. It was
calculated using the post hoc statistical power calculator for
hierarchical multiple regression at https://www.danielsoper.com/
statcalc/calculator.aspx?id=17. Finally, considering the likely
attrition rate and other unexpected factors, the required sample
size was determined to be 63 patients.

Statistical Analysis
To assess if the data presented a normal distribution the
Shapiro was used – Wilk test. Descriptive statistics were used

to summarize the main characteristics of the sample. ANOVA
was performed to compare the three groups in the univariate
analysis. A MANCOVA was used to test the differences between
groups (FM, MDD, and healthy controls) on the multiple
outcome controlled for age (Huberty and Morris, 1989). The
dependent variables included in the MANCOVA were the cortical
excitability [SICI and ICF and the change on the NPS (0–10)
during the CPM-test] and HPT (secondary outcomes).

To construct an adjusted surrogate index of factors related to
neuroplasticity we created a BDNF adjusted index (dependent
variable). For this purpose, we used a multivariate regression
model with a stepwise method controlled by multicollinearity.
We included in the model the following variables, which can
affect the biological process of BDNF secretion: age, analgesic use,
classes of antidepressants: [selective serotonin reuptake inhibitors
(SSRIs), serotonin–norepinephrine reuptake inhibitors (SNRIs),
tricyclic] and anticonvulsants uses (Yes/No).

Another MANCOVA model was used to assess the
relationship between the SICI, ICF and the change on NPS
during CPM-test (dependent variables) with the BDNF –
adjusted index as a covariate, according to diagnosis group. To
analyze the correlation between the SICI, change on NPS during
CPM-test and BDNF adjusted index the Spearman’s correlation
analysis was used. All analyses were adjusted by multiple
comparisons using the Bonferroni’s Multiple Comparison Test.
To analyze the data, we used the software SPSS version 22.0
(SPSS, Chicago, IL, United States).

RESULTS

Socio-Demographic, Clinical, and
Psychological Characteristics of the
Sample
The demographic, the clinical and the psychiatric characteristics
are presented in Table 1. The analysis showed that compared
to controls, both MDD and FM groups are older and have
lower educational levels. In comparison to healthy controls,
both FM and MDD presented higher levels of trait anxiety and
depressive symptoms.

The cortical excitability parameters measured by TMS,
psychophysical measures and serum BDNF according to
diagnosis group are presented in Table 2. We observed that FM
group, compared to MDD, showed lower ICF, higher SICI, and
higher serum BDNF. However, in this univariate analysis, we did
not find a difference in the efficiency of DPMS among groups.

Assessment of Cortical Excitability (SICI,
ICF), and HPT According to Groups
A MANCOVA with the cortical excitability (SICI and ICF), the
function of DPMS assessed by the change on NPS during CPM-
test and HPT parameters as dependent variables and independent
age revealed a significant difference between groups (Hotelling’s
Trace = 0.99, F = 10.42, and P < 0.0001). FM group compared to
healthy controls showed lower HPT, higher SICI, and lower ICF.
While the MDD group compared to healthy controls presented
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TABLE 1 | Demographic characteristics.

Fibromyalgia Major depressive disorder Healthy control

(n = 17) (n = 18) (n = 28)

Demographic

Age (years)∗ 50.5 (±8.7)a 45.2 (±15.9)a 43.8 (±13.0)b

BMI2∗ (Kg/m2) 31.31 (±7.3)a 25.89 (±5.2)b 22.78 (±2.9)b

Years of education [median (Q25–75)]◦ 11.0 (6.5–12.5)a 11.5 (10.0–16.2)a 17.0 (15.7–18.5)b

Employed (yes/no) 10/7 14/4 41/0

Smoking (yes/no) 4/13 1/17 1/40

Alcohol use (yes/no) 4/13 7/11 12/29

Clinical and psychiatric

Use of psychotropic medications (yes/no) 11/6 18/0

Selective serotonin reuptake inhibitors (SSRIs) (yes/no) 11/6 16/02

Tricyclic antidepressant (yes/no) 10/7 10/8

Dual antidepressant (yes/no) 2/15 2/16

Pregabalin (yes/no) 6/11 0/18

Antipsychotic (yes/no) 0/17 3/15

Clinical chronic disease (yes/no)∗ 11/6a 11/7a 1/40b

Hypertension (yes/no) 10/7 3/15 1/40

Type 2 Diabetes mellitus (yes/no) 1/16 3/15

Asthma (yes/no) 3/14 1/17

Psychiatric disorder according to the SCID-V (yes/no)∗ 12/5 18/0

Major depressive episode 12/5 18/0

Generalized anxiety disorder 3/14 1/17

Beck Depression Inventory – BDI – II∗ 25.4 (±12.8)a 22.3 (±14.4)a 3.4 (±4.5)b

Pain Catastrophizing Scale – PCS∗ 33.9 (±12.0)a 15.7 (±13.6)b 6.1 (±8.0)c

State-Trait Anxiety Inventory – STAI∗

STAI – State∗ 27.3 (±5.3)a 28.4 (±3.6)a 28.4 (±3.6)a

STAI – Trait∗ 29.35 (±8.1)a 27.4 (±4.5)a 22.1 (±5.3)b

Pittsburgh Sleep Quality Index – PSQI∗ 12.6 (±4.8)a 7.1 (±2.3)b 3.74 (±2.0)c

Fibromyalgia impact questionnaire (FIQ) 70.4 (±14.5) – –

Pain measures

Analgesic doses used per week median (Q25–75)◦ 16 (6.5 – 24.5) – –

Pain on the VAS (0 – 100 mm) median (Q25–75)◦ 6.7 (5.8 – 8.2) – –

Quantitative sensory testing (QST)

QST: heat pain threshold∗ 38.0 (±3.5)a 39.8 (±3.7)a,b 42.1 (±3.2)b

Pressure pain threshold (kg/cm2)∗ 2.4 (±1.1)a 4.1 (±1.3)a 4.1 (±1.3)b

Data area presented as mean and standard deviation (SD) or frequency (n = 63). 2Body Mass Index. ∗Comparisons using ANOVA. Post hoc differences from each
other are indicated via superscript numbers. ◦Comparison by Kruskal–Wallis Test, values represented as median and P25 – P75 comparisons using ANOVA. Post hoc
differences from each other are indicated via superscript numbers.

TABLE 2 | Cortical excitability measures assessed by the TMS, psychophysical pain measures, and BDNF.

Fibromyalgia (n = 17) Major depressive disorder (n = 18) Healthy control (n = 28) F P

Motor evocate potential – MEP 1.28 (±0.25) 1.56 (±0.52) 1.45 (±0.43) 1.750 0.183

Intracortical facilitation – ICF 0.33 (±0.23)a 1.39 (±1.02)b 1.14 (±0.27)b 16.268 <0.001

Short intracortical inhibition – SICI 1.03 (±0.50)a 0.55 (±0.43)b 0.34 (±0.19)b 18.701 <0.001

Cortical silent period – CSP 67.21 (±19.51)a 48.58 (±12.21)b 70.90 (±25.38)a 8.168 0.001

BDNF ng/ml 49.82 (±16.31)a 14.12 (±8.86)b 18.04 (±10.19)b 50.246 <0.001

Heat pain threshold (C) 38.03 (±3.45)a 39.83 (±3.70)a,b 42.11 (±3.23)b 7.903 0.001

Change on NPS during CPM TEST 0.22 (±1.37)a −0.87 (±1.49)a −2.54 (±2.46)b 11.208 <0.001

Data are presented as mean and standard deviation (SD) (n = 63). Different superscripts (a,b) indicate significant difference among treatment groups after post hoc
analysis adjusted by Bonferroni (P < 0.05). Analysis of variance (ANOVA) to compare mean (SD).
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larger SICI. However, MDD did not show a difference in the ICF.
The age did not correlate with the SICI, ICF, and HPT. The results
of this adjusted multivariate model are presented in Table 3.

Relationship Between Cortical
Excitability and Descendent Pain
Modulatory System With the BDNF
According to MDD and Fibromyalgia
Factors such as age, antidepressant, anticonvulsant, antipsychotic
and analgesics can influence either BDNF secretion, the cortical
excitability or the function of descending pain modulating
system. They are involved in the neuroplasticity processes.
Thus, we construct a BDNF adjusted index as a surrogate
marker of the neuroplasticity. For this purpose, the multiple
regression analysis was used. The variables antidepressant
selective serotonin reuptake inhibitors (SSRIs), anticonvulsants

and analgesic use were retained in the model. Age and tricyclic
antidepressant were excluded from the model. The mean (SD)
of serum BDNF according to SSRIs users and no-users was
27.77 (5.63) vs. 43.91 (25.63), respectively. The R2 = 0.38, [β
coefficient = −14.50, confidence interval (CI) 95% = −26.43
to −2.56, t = 2.48]. Whereas, the mean (SD) of serum BDNF
according to anticonvulsant use or not was 60.87 (15.54) vs. 25.37
(18.18), respectively. The R2 = 0.54, (β coefficient = 22.71, CI
95% = 8.19 to 37.22). The mean (SD) when they used analgesics
more than 4 days per week or lower than 4 days per week was
48.03 (17.51) vs. 20.41 (17.79), respectively. The R2 = 0.54, (β
coefficient = 20.94, CI 95% = 9.84 to 32.04).

A MANCOVA model was used to assess the relationship
of dependent variables (SICI, ICF, and CPM-test) according
to FM and MDD groups adjusted by the BDNF adjusted
index. This analysis revealed a significant difference between
diagnostic groups (Hotelling’s Trace = 0.70, F = 7.06, and

TABLE 3 | Multivariate linear regression model of the cortical excitability and heat pain threshold measures among FM, MDD, and HC groups (n = 63).

Dependent variables Type III sum of squares df Mean square F P Partial eta squared

(A) Main effects

Corrected model

Heat pain threshold (◦C degree) 33.462a 3 11.154 7.269 0.000 0.326

Change on NPS during CPM-test 53.593b 3 17.864 5.129 0.004 0.255

Short intracortical inhibition [(SICI), ratio: SICI/test stimulus] 4.255c 3 1.418 7.923 0.000 0.346

Intracortical facilitation [(ICF), ratio: ICF/ test stimulus] 11.506d 3 3.835 8.972 0.000 0.374

B SEM t P CI 95%

(B) Beta coefficients

Dependent variable: heat pain threshold (◦C degree)

Intercept 3.387 0.699 4.844 0.000 (1.97 to 4.79)

Fibromyalgia −1.816 0.457 −3.973 0.000 (−2.74 to−0.89)

Major depressive disorder −0.067 0.442 −0.153 0.879 (−0.95 to 0.82)

Healthy controls 0reference

Age 0.017 0.014 1.232 0.224 (−0.01 to 0.05)

Dependent variable: Change on NPS during CPM-test

Intercept −3.104 1.053 −2.947 0.005 (−5.22 to−0.98)

Fibromyalgia 2.394 0.689 3.476 0.001 (1.07 to 3.78)

Major depressive disorder 1.335 0.666 2.005 0.051 (−0.06 to 2.67)

Healthy controls 0reference

Age 0.022 0.021 1.055 0.297 (−0.02 to 0.07)

Short intracortical inhibition [(SICI), ratio: SICI/test stimulus]

Intercept 0.245 0.239 1.026 0.310 (−0.24 to 0.73)

Fibromyalgia 0.698 0.156 4.469 0.000 (0.38 to 1.02)

Major depressive disorder 0.215 0.151 1.428 0.160 (−0.09 to 0.52)

Healthy controls 0reference

Age 0.002 0.005 0.428 0.671 (−0.008 to 0.01)

Dependent variable: intracortical facilitation [(ICF), ratio: ICF/ test stimulus]

Intercept 1.618 0.369 4.385 0.000 (0.87 to 2.36)

Fibromyalgia −0.731 0.241 −3.030 0.004 (−1.22 to−0.25)

Major depressive disorder 0.273 0.233 1.169 0.249 (−0.19 to 0.74)

Healthy controls 0reference

Age −0.011 0.007 −1.496 0.142 (−0.02 to 0.004)

aR2 = 0.326 (Adjusted R2 = 0.282). bR2 = 0.255 (Adjusted R2 = 0.205). cR2 = 0.346 (Adjusted R2 = 0.302). dR2 = 0.374 (Adjusted R2 = 0.333).
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P = 0.001). The BDNF adjusted index did not correlate with
the SICI, ICF, nor with the change on NPS during CPM-
test. The power of this analysis was 96%. The results of this
adjusted multivariate model are presented in Table 4. The
analysis revealed that the FM group compared to MDD showed
a greater dysfunction of the descending pain inhibitory system
compared to MDD. However, FM showed higher SICI compared
to MDD, in the sense that there is a disengagement between
the inhibitory motor cortex function and the descending pain
inhibitory system. Whereas, we did not find a difference between
groups in the ICF.

Figures 2A,B present the relationships between the SICI and
the CPM (primary outcomes) according to FM and MDD. The
means were compared using MANCOVA, and post hoc adjusted
for multiple comparisons using Bonferroni correction (the model
is presented in Table 4).

Secondary Analysis: Relationship
Between SICI, Change on NPS During
CPM-Test and BDNF Adjusted Index
The Scatter plots of the raw change on NPS during CPM-
test and SICI according to diagnosis group FM and MDD is
presented in Figures 3A,B, respectively. The change on NPS
during CPM-test and SICI in the FM showed a conversely non-
parametric correlation. Such non-parametric correlation means
that in patients with FM a greater SICI is related to lower scores
in the CPM-test or vice – versa. It is important to highlight that
lower scores in the CPM-test indicates better function of the

DPMS as assessed by the change on the NPS during CPM-test.
The correlation coefficient between the scores in the NPS (0 –
10), during CPM TEST and the SICI in the FM was Spearman’s
Rho = −0.49 and its CI 95% was (−0.78 to −0.03); P = 0.04. The
correlation coefficient between the NPS, during CPM-test and the
SICI in the MDD was Spearman’s Rho = 0.17, and its CI 95% was
(−0.32 to 0.59); P = 0.5.

The BDNF adjusted index and change on NPS during CPM-
test, despite diagnosis group, showed a positive non-parametric
correlation. Such non-parametric correlation means that a
greater score in the BDNF adjusted index was correlated with
higher dysfunction of the DPMS or vice-versa. The Spearman’s
Rho = 0.35, and its CI 95% was (0.02 to 0.61); P = 0.03.

DISCUSSION

These results extent evidence that FM displays a deteriorated
function of cortical inhibition, indexed by higher SICI parameter
compared to MDD and HC. This finding contrasts to our initial
hypothesis that it would be decreased. On the other hand, it
confirms the assumption that there is greater disinhibition of
the DPMS in FM compared to MDD and that it is conversely
correlated with the SICI in FM but not in MDD. Also, they
showed a positive relationship between the change in the NPS
during CPM-test with a measure of neuroplasticity composed by
the BDNF adjusted index, despite the clinical diagnostic.

These results demonstrate the relevance of using the motor
cortex measures to understand the imbalanced inhibitory or

TABLE 4 | Relationship between intracortical inhibition (SICI and ICF) and descendent pain modulating as assessed by the change on NPS during CPM-test with the
BDNF according to diagnosis group (FM and MDD) (n = 35).

Type III sum of squares df F Mean square error P Partial eta squared

Corrected model

Intracortical facilitation (ICF) 10.755a 2 5.377 9.751 0.000 0.38

Change on NPS during CPM TEST 13.812c 2 6.906 3.907 0.030 0.20

Short intracortical inhibition (SICI) 2.110b 2 1.055 4.786 0.015 0.23

B SEM t P CI 95%

Dependent variable: intracortical facilitation [(ICF), ratio: ICF/ test stimulus]

Intercepted 1.662 0.278 5.978 0.000 (1.09 to 2.23)

Fibromyalgia −0.641 0.419 −1.531 0.136 (−1.49 to 0.21)

Major depressive disorder 0reference

BDNF – adjusted – index −0.015 0.012 −1.260 0.217 (−0.04 to 0.009)

Dependent variable: change on NPS during CPM-test

Intercepted −0.385 0.498 −0.773 0.445 (−1.39 to 0.63)

Fibromyalgia 1.760 0.749 2.349 0.025 (0.23 to 3.28)

Major depressive disorder 0reference . . . .

BDNF – adjusted – index −0.021 0.022 −0.970 0.339 (−0.07 to 0.02)

Short intracortical inhibition [(SICI), ratio: SICI/test stimulus]

Intercepted 0.659 0.176 3.752 0.001 (0.30 to 1.02)

Fibromyalgia 0.640 0.265 2.418 0.021 (0.10 to 1.18)

Major depressive disorder 0reference . . . .

BDNF – adjusted – index −0.006 0.008 −0.77 0.443 (−0.021 to 0.01)

aR2 = 0.379 (Adjusted R2 = 0.340). bR2 = 0.230 (Adjusted R2 = 0.182). cR2 = 0.196 (Adjusted R2 = 0.146).
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FIGURE 2 | Comparisons between [fibromyalgia (n = 17) and major depressive disorder (n = 18)]. (A) Short intracortical inhibition [(SICI) ratio: SICI/test stimulus].
(B) Change on Numerical Pain Scale (NPS) during CPM TEST. Error bars indicate standard error of the mean (S.E.M.). ∗Positioned above the bars indicate
differences between groups (fibromyalgia and major depressive disorder) assessed by MANCOVA with post hoc Bonferroni’s multiple comparison test.

FIGURE 3 | Scatter plots of change on NPS during CPM-test and SICI according to fibromyalgia (A) and major depressive disorders (B).

excitatory intracortical neurochemical circuitry to comprehend
the underpinning pathophysiology process of FM and MDD. The
most relevant result was to show that the increase of SICI is
conversely correlated with the change in the NPS during CPM-
test only in FM, in the sense that more substantial intracortical
inhibition is associated to a higher potency of the descending pain
inhibitory system. Here, it is important to realize that negative
values in the CPM-test indicate a higher effect of heterotopic
stimulus inhibits the test stimulus (i.e., “pain-inhibits pain”),
in other words, a better function of the DPMS. Indeed, the
change in the SICI may indicate that a disruption of mechanism
mediated by inhibitory gamma-aminobutyric acid (GABAergic)
occurs interneurons within the primary motor cortex (Di Lazzaro
et al., 2006) in FM, at the same time, it indicates an up-
regulation phenomenon of intracortical inhibitory networks

mediated by GABAA receptors. As previously demonstrated by
the tiagabine use (a GABA-reuptake inhibitor) that decreased
the SICI (Werhahn et al., 1999) or reduced excitability of
intracortical facilitatory systems (van Elswijk et al., 2007). In
the same way, earlier studies found that changes in pain
pathways that facilitate convergent stimuli are associated with
nerve injury, which can induce selective apoptosis of inhibitory
GABAergic interneurons (Moore et al., 2002). These processes
decreased the inhibitory receptors expression on primary afferent
terminals and postsynaptic neurons, and it culminates with a
higher perception of repetitive nociceptive stimuli (Staud et al.,
2007). Both phenomena comprise a primary mechanism of the
pathophysiology of neuropathic pain syndromes, but it also has
been pointed out as a possible mechanism in FM, while the
CPM-test is a marker of dysfunction of DPMS in chronic pain.
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Thus, this increased cortical inhibition could be a compensatory
response to contra-regulate the changes induced by the persistent
hyperexcitability induced by chronic pain. This hypothesis
finds support in a physiological protective reaction, when a
prolonged effort at adaptation can result in the dysregulation of
other systems, such as autonomic, metabolic, and inflammatory
systems. Also, this assumption is substantiated by results of
the previous study in chronic pain syndromes (trigeminal
neuralgia, poststroke pain syndrome, back pain, and FM), which
demonstrated a decreased intracortical inhibition after anodal
stimulation, concurrently with the improvement in pain scores
(Antal et al., 2010). Likewise, the rTMS induced a long-lasting
reduction in the SICI by a possible mechanism mediated by
activation of NMDA receptors associated to downregulate hyper
excitability associated with the mal-adaptive neuroplasticity
(Kobayashi and Pascual-Leone, 2003).

In contrast, observational studies found a decreased SICI
in chronic pain (Mhalla et al., 2010). Although the reasons to
explain these differences are not clear, it is necessary to consider
that the FM is a syndrome with complex pathophysiology
involving a neurochemical imbalance in the excitatory and
inhibitory mechanisms mediated by multiple systems (i.e.,
GABAergic, glutamatergic, noradrenergic, serotonergic, etc.).
Likewise, it is possible that these incongruences between the
results of studies may be explained by the sample characteristics
related to the severity of disorders, the medication used,
disability, comorbidities, etc.

This difference in the SICI between FM and depression suggest
that these two disorders may have considerable overlaps in
neuroplasticity processes, but the TMS patterns together with
the distinct standard of dysfunction in the DPMS as well in the
BDNF serum indicate that these two disorders have substantial
differences in their pathophysiological mechanisms. This way,
these results give support to understand differences in the
cardinal symptoms of each one of these two disorders (i.e.,
fatigue, migratory pain, pain catastrophizing, etc.), which are
prototypical symptoms of FM. Besides, it can help to personalize
the therapeutic approach. Despite the absence of a FDA-approved
neuromodulation protocol targeted to patients with comorbidity
MDD and FM, the effectiveness of neuromodulatory techniques
(i.e., tDCS and TMS) has been supported by consistent evidence
to treat both FM and depression (Kauffmann et al., 2004;
Antal et al., 2010; Brunoni et al., 2011; Marie, 2014; Fagerlund
et al., 2015; Castillo-Saavedra et al., 2016; Cheng et al., 2018;
Karina do Monte-Silva et al., 2019). Considering that these
two disorders are frequently overlapped, it poses a considerable
challenge to decide if it would be better to stimulate the M1
or the dorsal lateral prefrontal cortex for the treatment of pain
accompanied by depression.

However, the interpretation of the SICI measure should
consider that it is a low-threshold inhibition test elicited during
paired-pulse TMS, which does not influence the descending
corticospinal volleys (Di Lazzaro et al., 1999) neither alters spinal
reflexes (Kujirai et al., 1993b). Thus, the SICI might be a tool
to identify the cortical inhibition. However, the values of SICI
should not be interpreted in isolation, since it is influenced
by several factors such as the precision of measurement, the

mechanism of pain (i.e., inflammatory vs. neuropathic pain),
the severity of pain and the psychotropic medications, etc.,
Accordingly, the M1 may be an entry port to assess the complex
pain-related neural network, also to understand the M1 role to
inhibit or interrupt pain signals and as a measure to evaluate
the cortical process on the neuroplasticity of chronic pain. This
hypothesis finds support in a previous study, which showed
that in FM a strong M1–ventral lateral thalamus connectivity at
baseline predicted a more significant reduction in pain across
tDCS treatment (Cummiford et al., 2016). A similar effect
was found when the invasive chronic motor cortex stimulation
decreased the thalamic hyperactivity in patients with thalamic
pain (Tsubokawa et al., 1993). Aligned with this assumption,
we found extensive literature showing that the transcranial
stimulation (i.e., tDCS and TMS) might improve the disrupted
neurochemical processes in chronic pain (Cheng et al., 2010).

Both FM and MDD are disorders associated with chronic
stress that share several symptoms and sometimes co-exist in
the same patient. In this study greater serum levels of BDNF
in FM compared to MDD and healthy controls was observed.
The current finding is in agreement with the previous studies
that found higher serum BDNF in FM (Deitos et al., 2015),
whereas in MDD there is a vast literature showing lower
serum BDNF (Karege et al., 2002). Thus, these results suggest
that this neurotrophic factor could be a correlate marker of
distinct mechanisms that underpin the pathophysiology of FM
and MDD. The BDNF is secreted by the microglia and it
participates in the adaptative and protective neuroplasticity
processes. However, in chronic pain, this mechanism is likely
to be overactivated and raise a counterproductive response, in
the sense that the microglia-to-neuron communication might
attenuate the pain inhibitory action of GABA and the glycine
receptor-mediated inhibition (Ferrini and De Koninck, 2013).
This hypothesis is supported by compelling evidence that BDNF
is a ubiquitous pain mediator at many levels of the nervous
system. Given this, it would be hard to conclude that the
generation of BDNF is a compensatory mechanism specific to
chronic pain conditions (i.e., FM, chronic inflammatory, and
neuropathic pain). Although in the current study we have not
observed a significant relationship between the BDNF adjusted
index and the inhibitory function of motor cortex indexed by
the SICI, this may be explained by an error type II, since
other studies found a significant correlation between the SICI
and BDNF. Indeed, the adjusted index of BDNF was used as
a measure to summarize several factors associated with the
BDNF secretion (i.e., antidepressant, anticonvulsants, age, etc.).
Thereby, we need parsimony in the interpretation of this inter-
relationship, since this study is an exploratory and approximately
65% of FM presented psychiatric diagnosis and used psychotropic
medications (tricyclic antidepressant, pregabalin, etc.). Thereby,
it is possible that intermediates confounding factors did not have
entirely controlled (Cole and Hernán, 2002) or a non-significant
p-value after adjustment reflects the absence of a relevant effect
these relationships in this sample (Baguley, 2004).

Also, we identified a more substantial dysfunction in DPMS
in FM compared to MDD, and the BDNF adjusted index was
positively correlated with the disinhibition of DPMS. This result
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is aligned with an earlier study that found similar results related
to the increase of serum BDNF and the disruption of the
inhibitory function of DPMS in chronic musculoskeletal pain
(Botelho et al., 2016; Caumo et al., 2016). Likewise, it has
been demonstrated that the increased synthesis of BDNF in
the nociceptive pathways is responsible for increasing neuronal
excitability by causing disinhibition in dorsal horn neurons in
the spinal cord (Ferrini and De Koninck, 2013). In the brain,
the BDNF has been shown to activate descending nociceptive
facilitation in the nucleus raphe magnus (Zhang et al., 2013).
Also, at the periaqueductal gray neurons, the BDNF has a central
role for orchestrating descending antinociception (Lewis et al.,
2012; Nijs et al., 2014). Thus, the disinhibition of the motor
cortex indexed by SICI together with the dysfunction of the
descending antinociceptive mechanisms is an essential feature
of FM, which we did not observe in depression. However, it
is difficult to determine whether the deterioration of cortical
inhibition, changes in BDNF and the dysfunction of DPMS may
be an underlying pathophysiological mechanism of the disease or
a disease severity state-dependent phenomenon.

Although our results are likely to help to advance in the
comprehension of changes in measures related to neuroplasticity
in the two disorders, our results are correlational and do not
allow a causality relationship. This study has some limitations:
Firstly, TMS consists of an indirect neurophysiological measure
intended to assess the activity of a neurotransmitter system.
Second, psychiatric disorders remain a potential confounding
factor, and they cannot have been adequately controlled,
even if anxiety, depression, catastrophizing pain behavior,
and psychiatric diagnosis were assessed. More than 70%
(12/17) of FM group suffered from any mental illnesses.
However, this finding is expected, as the emotional burden
is a recurrent finding in chronic pain syndromes. Third,
we must address the effect of psychotropic medicines under
cortical excitability because the regular prescription of these
medicines deliberates the proper treatment of both disorders.
Nevertheless, it is critical to mention that different changes in
cortical excitability produced using psychotropic medications
might produce distinctive outcomes in acute and long-term
use. Fourth, we performed this study only in females, and
it is essential to consider a sex effect in pain perception
and modulation. Likewise, our results must be carefully
interpreted, given the design of this study. Further, research
designed to address differences and similarities between FM

and MDD are required to claim if the neuroplastic and
neurophysiological measures constitute differential biomarkers
of their pathophysiological mechanisms.

CONCLUSION

In conclusion, these findings support the hypothesis that in FM
a deteriorated function of cortical inhibition, indexed by a higher
SICI parameter, and a lower function of the DPMS, together with
higher levels of BDNF indicate that FM has different pathological
substrates from depression. They suggest that an up-regulation
phenomenon of intracortical inhibitory networks associated with
a disruption of the DPMS function occurs in FM.
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Electroacupuncture Pretreatment
Ameliorates PTSD-Like Behaviors in
Rats by Enhancing Hippocampal
Neurogenesis via the Keap1/Nrf2
Antioxidant Signaling Pathway
Cui-hong Zhou1†, Fen Xue1†, Shan-shan Xue1†, Han-fei Sang2, Ling Liu3, Ying Wang1,
Min Cai1, Zhang-Jin Zhang4, Qing-rong Tan1, Hua-ning Wang1* and Zheng-wu Peng1*

1 Xijing Hospital, Fourth Military Medical University, Xi’an, China, 2 Department of Anesthesiology, Xiang’an Hospital, Xiamen,
China, 3 Institution of Neuroscience, Fourth Military Medical University, Xi’an, China, 4 School of Chinese Medicine, LKS
Faculty of Medicine, The University of Hong Kong, Hong Kong, China

Electroacupuncture (EA) pretreatment is a clinically useful therapy for several brain
disorders. However, whether and via which exact molecular mechanisms it ameliorates
post-traumatic stress disorder (PTSD) remains unclear. In the present study, rats
received EA stimulation for seven consecutive days before exposure to enhanced
single prolonged stress (ESPS). Anxiety-like and fear learning behaviors; hippocampal
neurogenesis; the expression of nuclear factor erythroid 2-related factor 2 (Nrf2),
Kelch-like ECH-associated protein 1 (keap1), and heme oxygenase 1 (HO-1); and
the activity of AMP-activated kinase (AMPK) were evaluated at 14 days after ESPS.
EA pretreatment improved hippocampal neurogenesis and ameliorated anxiety-like
behaviors in ESPS-treated rats. EA pretreatment also increased the expression of Nrf2
and HO-1 and the activity of AMPK. Furthermore, Nrf2 knockdown by a short hairpin
RNA affected anxiety-like behaviors and expression of neuroprotective markers (BDNF,
DCX) in a manner similar to ESPS alone and dampened the neuroprotective effects
of EA pretreatment. In contrast, Keap1 knockdown increased the expression of HO-1,
improved hippocampal neurogenesis, and alleviated PTSD-like behaviors. Altogether,
our results suggest that EA pretreatment ameliorates ESPS-induced anxiety-like
behaviors and prevents hippocampal neurogenesis disruption in a rat model of PTSD
possibly through regulation of the keap1/Nrf2 antioxidant defense pathway.

Keywords: electroacupuncture, pretreatment, post-traumatic stress disorder, hippocampus, keap1/Nrf2

INTRODUCTION

Post-traumatic stress disorder (PTSD) is a fear-based biopsychosocial disorder that is caused
by exposure to severely traumatic events, such as sexual violence, war, and life-threatening
accidents (Careaga et al., 2016). PTSD severely affects patients’ quality of life and social stability.
Epidemiological studies have revealed that more than half of the world’s population experiences
stressful events and that the lifetime and average prevalence of PTSD are 6.8% and 8%, respectively
(McLaughlin et al., 2015; Liu et al., 2017). Currently, PTSD is mainly treated with psychological
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intervention and drugs. However, none of these approaches
have proved to constitute a satisfying method to improve
the clinical symptoms of these patients (Sripada et al., 2016).
Thus, the development of novel treatment strategies is an
urgent need in PTSD.

It is well known that the hippocampus plays a crucial role
in memory processes and fear conditioning responses—highly
relevant phenomena to the pathogenesis of PTSD (Corcoran
and Maren, 2001; Kheirbek et al., 2013; Girardeau et al., 2017).
Physical or psychosocial stressors may induce morphological
changes in the hippocampus, including reduced neurogenesis
and loss of pyramidal neurons (Cohen et al., 2014). Patients
with PTSD have reduced hippocampal volumes (Filipovic et al.,
2011) and animal models of PTSD show suppressed hippocampal
cell proliferation, inhibited neurogenesis, and increased neuronal
apoptosis (Peng et al., 2013). It has been suggested that
brain oxidative damage may be the cause of hippocampal
structure and function impairments (Miller and Sadeh, 2014).
In the hippocampus of PTSD-like rats, total reactive oxygen
species (ROS), peroxynitrite and superoxide levels are elevated
(Wilson et al., 2013). Moreover, cranially irradiated superoxide
dismutase (SOD)-deficient mice exhibit decreased neurogenesis
in the hippocampus due to long-term ROS accumulation (Yuan
et al., 2015). Interestingly, preclinical studies have also shown
that antioxidants can improve hippocampal neurogenesis and
attenuate anxiety-like behaviors in animal models (Bouayed et al.,
2009; Moustafa, 2013). One may then hypothesize that inhibiting
oxidative damage may improve hippocampal function and be
beneficial for treating PTSD.

Nuclear factor erythroid 2-related factor 2 (Nrf2) and
its antioxidant signaling pathway are key regulators of
neuroprotection against oxidative stress (Mitsuishi et al.,
2012; Ahuja et al., 2016). The activation of Nrf2 confers
protective effects to many central nervous system diseases
(Gan and Johnson, 2014), and Nrf2 silencing in the brain
increases anxiety-like behaviors in rats (Khalifeh et al., 2015).
Under physiological conditions, Nrf2 binds to Kelch-like
ECH-associated protein 1 (keap1) in the cytoplasm. However,
upon exposure to ROS, Nrf2 disassociates from keap1 and then
translocates to the nucleus, where it activates the transcription
of several antioxidant enzymes genes, including SOD and
heme oxygenase 1 (HO-1) (Kubben et al., 2016; Cai et al.,
2017), which protect hippocampal neurons against oxidative
stress (Lee et al., 2015). A recent study has shown that
Nrf2 activation in lipopolysaccharide-treated mice or cells
is accompanied by an increase in the phosphorylation of
AMP-activated kinase (AMPK) and inhibition of AMPK blocked
aucubin-induced expression of Nrf2 and its downstream effector
HO-1 (Qiu et al., 2018). Taken together, inhibition of oxidative
damage via activation of the keap1/Nrf2 antioxidant defense
pathway may improve hippocampal function and be beneficial
for treating PTSD.

Electroacupuncture (EA) combines the advantages of
acupuncture and electrophysiological stimulation. Its beneficial
effects, including during the pretreatment phase, have been
demonstrated for several neuropsychiatric disorders. Although
the precise mechanisms remain to be fully elucidated, enhanced

neurogenesis and synaptic plasticity, and prevention of oxidative
damage and inflammation have been described following EA
pretreatment in previous studies (Feng et al., 2010; Chen et al.,
2012, 2016). It has been suggested that the keap1/Nrf2 pathway
may be involved in the protective effect of EA (Yu et al., 2014,
2015). Activation of both AMPK and HO-1 is required for EA
to exert its therapeutic effects (Yu et al., 2014, 2015). Thus, we
hypothesize that EA pretreatment is beneficial for the prevention
of PTSD and that the keap1/Nrf2 pathway might play a role in
this process. In this study, we sought to determine whether EA
pretreatment could ameliorate stress-associated behaviors in a
rat model of PTSD. We also aimed to examine whether changes
in the activity of keap1/Nrf2 and its downstream antioxidative
proteins in the hippocampus could be involved in the EA
pretreatment effects.

MATERIALS AND METHODS

Animals
Male Sprague–Dawley rats (280–320 g) were obtained from the
Animal Center of Fourth Military Medical University (FMMU).
Rats were group-housed (four per cage) and maintained at
20–25◦C on a 12-h light/dark daily cycle with free access to food
and water. The experiment procedures were in accordance with
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the Animal Use and
Protection Committee of the FMMU.

Experimental Design
Experiment I
To determine the effect of EA pretreatment on PTSD, after
7 days of acclimatization, 32 rats were randomly divided into
four groups (eight rats per group): control, EA, enhanced
single prolonged stress (ESPS), and EA + ESPS. Rats in the
control group were given false stimulation (EA treatment without
electricity) for seven consecutive days (30 min every day) and
then housed in their home cage for 2 weeks. Rats in the
EA and EA + ESPS groups were stimulated with EA at a
frequency of 2/15 Hz and an intensity of 1 mA for seven
consecutive days (30 min every day). Rats in the ESPS group
were given false stimulation (EA treatment without electricity)
for seven consecutive days and then subjected to ESPS. The
researchers performing the behavioral testing were blinded to the
animals’ group allocation. Then, hippocampal neurogenesis, the
expression of BDNF, DCX, Nrf2, and HO-1, as well as the activity
of AMPK were evaluated.

Experiment II
To investigate the role of the Nrf2 antioxidant signaling
pathway in the hippocampus in the neuroprotective effect of
EA pretreatment, 64 rats were randomly divided into eight
groups (eight rats per group): Scramble, Scramble + ESPS,
Scramble + EA + ESPS, shNrf2, shNrf2 + ESPS, shNrf2 + EA,
shNrf2 + EA + ESPS, and shkeap1 + ESPS. Rats in the
Scramble, Scramble+ ESPS, and Scramble+ EA+ ESPS groups
were injected with scramble short hairpin RNA (shRNA) (a
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lentivirus carrying scramble shRNA), while rats in the shNrf2,
shNrf2 + ESPS, shNrf2 + EA, shNrf2 + EA + ESPS, and
shkeap1 + ESPS groups were injected with Nrf2-shRNA or
keap1-shRNA lentivirus in the hippocampus. Two weeks after
the lentivirus injection, rats in the Scramble + EA + ESPS,
shNrf2 + EA and shNrf2 + EA + ESPS groups received EA
stimulation (2/15 Hz, 1 mA) for seven consecutive days (30 min
every day), while rats in the Scramble, Scramble+ ESPS, shNrf2,
shNrf2 + ESPS and shkeap1 + ESPS groups received false
stimulation as described in Experiment I, after which rats in the
Scramble + ESPS, Scramble + EA + ESPS, shNrf2 + ESPS,
shNrf2+ EA+ ESPS, and shkeap1+ ESPS groups were subjected
to ESPS. The behavioral tests were performed 2 weeks after
ESPS. Then, hippocampal neurogenesis and gene expression were
determined as in Experiment I.

EA Treatment
Electroacupuncture treatment was performed as described
previously (Feng et al., 2010; Wang et al., 2014). Briefly, rats
were maintained on a platform (10 cm × 10 cm × 50 cm)
without anesthesia and the acupoint “Bai hui” (GV20), which
is located at the intersection of the sagittal midline and the line
linking the rat ears, was stimulated for 30 min daily (frequency:
2/15 Hz, waveform: dilatational wave, intensity: 1 mA) by using
the G6805–2 EA instrument (No. 227033; Qingdao Xinsheng
Ltd.). False stimulation was performed at the same acupoint
without electricity.

Enhanced Single Prolonged Stress
(ESPS)
Enhanced single prolonged stress was performed in accordance
with our previous study (Wang H. N. et al., 2015). Rats were
restrained for 2 h and then immediately exposed to forced
swimming in water (diameter: 24 cm, height: 50 cm, water
temperature: 24◦C) for 20 min and then exposed to diethyl
ether until they lost consciousness after recuperation for 15 min.
Finally, rats were exposed to a single electric foot shock (1 mA for
4 s) after 30 min of recovering in a rectangular box with stainless
steel rods floors and aluminum and acrylic walls.

Behavioral Tests
All the behavioral tests began 14 days after ESPS exposure. Rats
were acclimatized to the separate experimental room for at least
30 min prior to each test, and all experiments were conducted
under low light conditions in order to minimize anxiety effects.
The area was cleaned with 75% ethanol between tests. Besides, the
open field test was conducted prior to the elevated plus maze test
on the same day, while the fear conditioning test was performed
24 h after the elevated plus maze test.

Open Field Test (OFT)
According to previous studies (Sullivan et al., 2003; Missault
et al., 2019), the OFT was used to assess anxiety-related
behavior and locomotor activity in an open field arena
(47 cm × 47 cm × 50 cm). Rats were gently placed in one of
the arena’s corners and recorded from the soundproof box, which

was illuminated by a red fluorescent light (30 W). After each trial,
the apparatus was cleansed with 75% ethanol. The time spent in
the center of the arena that could be used for the quantification of
rodent anxiety and exploratory drive was recorded for 10 min and
analyzed by using an automatic system (Top Scan, Clever Sys Inc.,
United States). Rats with high levels of innate anxiety typically
avoid the center arena and spend more time in close proximity
to the walls. The total distance moved in the open field was
also measured to analyze general locomotor activity according to
previous work (Yang et al., 2016).

Elevated Plus Maze Test (EPMT)
The EPMT has been well validated for detecting anxiety-like
behavior. The Plexiglas apparatus (Dig Behav, Ji Liang Co.,
Ltd., Shanghai, China) consisted of two opposite open arms
(50 cm × 10 cm) and two enclosed arms (50 cm × 10 cm,
surrounded by a 40 cm-high black wall) elevated 50 cm above
the floor. Rats were placed in the center area of the maze for
each individual trial lasting 5 min. The number of entries and
the time spent in the open arms were recorded and measured
by an automatic analyzing system (Top Scan, Clever Sys Inc.,
United States) and used as indices of anxiety (Kim et al., 2016).
The area was cleansed with 75% ethanol between tests.

Fear Conditioning Test
The experiments were performed in the shock chamber (Context
A: a rectangular box with stainless steel rod floors and aluminum
and acrylic walls) and a neutral test context (Context B: a
rectangular box with white acrylic floor and acrylic frame roof) as
described previously (Nie et al., 2014; Liu et al., 2016). For shock
application, rats were placed into the shock chamber (Context A)
for 16 s and then exposed to a tone (3 min, 80 dB, 9 kHz); then,
rats received a foot shock (4 s, 1.0 mA) and remained in the shock
chamber for 60 s, after which they were returned to their home
cages. The contextual fear conditioning test was performed 4 h
after shock application. Rats were placed in the same chamber
where they were trained (Context A) but without a tone or foot
shock application for 3 min, and then they were immediately
returned to their home cages. The auditory-cued fear test was
performed 24 h later; rats were placed in the chamber (Context
B) for 3 min, and received a neutral tone (3 min, 80 dB, 9 kHz).
Then, rats remained in the test chamber (Context B) for another
60 s. The freezing behavior was recorded and analyzed by using a
computerized automatic analyzing system (Freezing Scan, Clever
Sys Inc., Reston, VA, United States).

RNA Isolation and Quantitative
Real-Time PCR (qRT-PCR) Analysis
Rat brains were rapidly dissected on ice after sacrificed and the
hippocampus were isolated and placed on dry ice immediately.
Then, total RNA was isolated by using the RNAiso Plus kit
according to the manufacturer’s protocol (Takara Bio, Inc.,
Otsu, Japan). The quality and quantity of RNA were analyzed
by spectrophotometry using the Multiskan Sky Microplate
Spectrophotometer (Thermo Fisher Scientific, Inc.). The optical
density at 260/280 nm of RNA in all samples ranged from 1.8 to
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2.0 and the concentration ranged from 400 to 1,000 ng/µl. For
real-time PCR analysis, 1,000 ng of RNA from each sample was
reverse transcribed (37◦C for 15 min, 85◦C for 5 s, and 4◦C for
10 min) by using the Prime-Script RT Reagent Kit (Takara Bio,
Inc., Otsu, Japan). The cDNA was quantified by using real-time
PCR with SYBR Premix Ex TaqTM II (RR820Q, Takara) according
to the manufacturer’s protocol on a Bio-Rad IQ5 Real-Time
PCR Detection System. The primers used for real-time PCR
were designed and synthesized by Takara Biotechnology Co.,
Ltd. (Dalian, China) according to the target mRNA sequence
(GAPDH: NM_017008.4; Nrf2: NM_031789.2; and keap1:
NM_057152.2). The primer sequences were as follows: GAPDH,
forward and reverse: 5′-CCAATGTGTCCGTCGTGGATCT-3′
and 5′-GTTGAAGTCGCAGGAGACAACC-3′, respectively;
Nrf2: forward and reverse, 5′-TTGGCAGAGACATTCCCA
TTTGTA-3′ and 5′-GAGCTATCGAGTGACTGAGCCTGA-3′,
respectively; and keap1: forward and reverse, 5′-
CATCGGCATCGCCAACTTC-3′ and 5′-GCTGGCAGT
GTGACAGGTTGA-3′, respectively. Each reaction consisted of
2 µl of cDNA product from the diluted reverse transcription
reaction (5×), 0.5 µM of primers (forward and reverse), and 12.0
µl of SYBR Green real-time PCR master mix. The reactions were
incubated in a 96-well plate and the two-step qRT-PCR program
used was as follows: 1 cycle of 95◦C for 30 s, followed by 40 cycles
of 95◦C for 5 s, 60◦C for 30 s, and 1 cycle of 95◦C for 15 s, and
then maintained at 4◦C. Subsequently, the relative changes in
gene expression of Nrf2 and keap1 were normalized to the level
of GAPDH mRNA of each sample (Jo et al., 2014; Chen et al.,
2019) and analyzed by 2−11Cq method and shown relative to
expression in control samples (Livak and Schmittgen, 2001).

Lentivirus
A recombinant lentivirus coding for green fluorescent protein
(GFP) carrying Nrf2-shRNA, keap1-shRNA or non-silencing
RNA were purchased from Shanghai Genechem Co., Ltd.
(Shanghai, China). Based on rat Nrf2 and keap1 mRNA
sequences (accession number: NM_031789; NM_057152), three
shRNA targeting different regions of Nrf2 mRNA (shNrf2-a,
shNrf2-b, shNrf2-c), keap1 mRNA (shkeap1-a, shkeap1-b,
shkeap1-c) and a scrambled non-silencing control shRNA
(scramble) were generated. The targeting sequences were as
follows: shNrf2-a, 5′-CTGGATGAAGAGACCGGAGAA-3’;
shNrf2-b, 5′-GAGAAAGAATTGCCTGTAATT-3′; shNrf2-c,
5′-CCAAAGAGCAGTTCAATGATT-3′; shkeap1-a, 5′-GGA
CAAACCGCCTTAATTCTT-3′; shkeap1-b, 5′-CAGCAGAACT
GUACCTGTTTT-3′; shkeap1-1c, 5′-GGGCGTGGCTGTCCT
CAATTT-3′; and scramble, 5′-TTCTCCGAACGTGTCACGT-3′.

Primary Culture of Astrocytes and
Transfection
As described previously (Zhou et al., 2017), astrocytes were
harvested from the brains of newborn rats. Briefly, the
hippocampus of newborn rats was isolated and single-cell
suspensions were obtained. Then, the cells were resuspended in
Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal
bovine serum (FBS) and plated in 75-cm2 flasks coated with

poly-L-lysine and incubated at 37◦C with 5% CO2 for 10 days.
After shaking at a speed of 240 rpm, astrocyte-enriched cultures
were obtained. To screen and validate the efficiency of the
produced lentivirus in targeting the Nrf2 and keap1 mRNAs,
astrocytes were infected with the lentiviral particles according to
the previous study (Li et al., 2012). Three days after transfection,
the transfected astrocytes were harvested for real-time PCR and
immunohistochemistry analysis.

To verify the identity of the astrocytes and the lentivirus
infection, astrocytes were fixed in 4% paraformaldehyde at 4◦C
for 0.5 h. After washes in phosphate-buffered solution (PBS), the
astrocytes were incubated with mouse anti-glial fibrillary acidic
protein (GFAP, ab7260, 1:1,000, Abcam) diluted in buffer (1%
w/v bovine serum albumin and 0.3% Triton in PBS), overnight
at 4◦C. The cells were washed and incubated with fluorescent
secondary antibodies (Alexa Fluor 594 donkey anti-rabbit IgG,
R37119, 1:1,000, Invitrogen) for 2 h and then incubated with
DAPI for 20 min to stain the cellular nuclei. The preparations
were analyzed under a laser-scanning confocal microscope
(FV-1000, Olympus, Tokyo, Japan) and the silencing efficiency of
shNrf2 and shkeap1 was assessed by real-time PCR. Ultimately,
the shNrf2-a and shkeap1-c constructs were selected for the
following in vivo experiments.

Stereotaxic Surgery and Microinjections
As described previously (Uzakov et al., 2015), the concentrated
titer-matched lentiviral suspension (5 µl, 2.5 µl for each side) was
injected into the dentate gyrus (DG) (AP −3.0 mm; L ±1.8 mm;
H 3.6 mm from dura) by an automatic nanoinjector at a rate of
0.25 µl/min. Then the syringe needle was left in position for 5 min
after delivery to prevent reflux.

Immunohistochemistry and
Bromodeoxyuridine (BrdU) Detection
As described previously (Peng et al., 2018), rats were injected with
100 mg/kg BrdU (B5002, Sigma-Aldrich) for three consecutive
days intraperitoneally. Twenty-four hours after the last BrdU
injection, rats were anesthetized (chloral hydrate solution, i.p.
40 mg/kg) and then perfused with 4% paraformaldehyde in PBS.
Brains were removed and transferred to 30% sucrose in PBS for
1 week to dehydrate and then sectioned (16-µm brain coronal
sections) with a cryostat and mounted on gelatinized slides.

To assess cell proliferation, the brain sections were incubated
in hydrochloric acid (2 N) at 37◦C for 30 min and washed
in 0.1 M sodium borate (pH 8.5) and PBS. Then, the sections
were incubated with the primary antibody: anti-NeuN (ab177487,
1:500, Abcam) and anti-BrdU (B8434, 1:500, Sigma-Aldrich)
at 4◦C overnight. Next, they were incubated with secondary
antibodies: Alexa Fluor 594 donkey anti-mouse (R37115, 1:1,000,
Invitrogen) and Alexa Fluor 488 donkey anti-rabbit IgG
(A-21206, 1:1,000, Invitrogen) or Alexa Fluor 405 goat anti-rabbit
IgG (A-31556, 1:1,000, Invitrogen). The sections were observed
under a fluorescence microscope and the BrdU-labeled cells
were quantified.

For the immunofluorescence detection of DCX and
cell-specific analysis of Nrf2, brain sections were incubated
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with primary antibody DCX (D9943, 1:1000, Sigma-Aldrich)
and NeuN (ab177487, 1:500, Abcam), Nrf2 (AB413, 1:100,
Sigma-Aldrich) and NeuN (MAB377B, 1:200, Sigma-Aldrich)
or Nrf2 and GFAP (ab10062, 1:500, Abcam) overnight at 4◦C
after blocking with 5% (w/v) bovine serum albumin for 1 h.
Subsequently, sections were incubated with Alexa Fluor 405
goat anti-rabbit IgG (A-31556, 1:1,000, Invitrogen) and Alexa
Fluor 488 donkey anti-rabbit IgG (A-21206, 1:1,000, Invitrogen)
or Alexa Fluor 594 donkey anti-rabbit IgG (R37115, 1:1,000,
Invitrogen) for 2 h with or without DAPI at room temperature.
The images were captured by the Olympus FV1200 confocal
laser-scanning microscope (Olympus, Japan) and processed
for further quantification. The percentage of double labeling of
NeuN/Nrf2 and GFAP/Nrf2 was quantified by using Image-pro
Plus 6.0 analysis software.

According to previous unbiased stereology protocol (Hill et al.,
2018), every sixth section throughout the entire rostral caudal
extent of the hippocampus was used to determine the number of
BrdU-labeled cells or DCX+ in the DG. The number of BrdU+
or DCX+ cells was counted under a fluorescence microscope
(Olympus, Japan) in the area of the subgranular zone (SGZ). The
total number of positive cells in the SGZ of the hippocampal
DG was estimated by multiplying the number of cells counted
in every sixth section by six. For each marker, four animals were
analyzed. All counts were performed by an experimenter blinded
to the purpose of the study.

Western Blot Analysis
Rat brains were rapidly dissected on ice after sacrificed
and the hippocampus were isolated and washed with ice
PBS. Then tissues were cut into pieces and weighed and
lysed in a buffer composed of 62.5 mM Tris-HCl, 2% w/v
sodium dodecyl sulfate, 10% glycerol, 50 mM dithiothreitol,
and 0.1% w/v bromophenol blue. The protein concentrations
of the supernatant were determined by the BCA Protein
Assay Kit (Invitrogen). Then, samples were separated by 10%
polyacrylamide gel (40 µg of total protein per lane) and
transferred onto polyvinylidene difluoride membranes. The
membranes were blocked with 5% non-fat dried milk and
incubated with anti-Nrf2 (ab137550, 1:1000, Abcam), HO-1
(ab13248, 1:2000, Abcam), DCX (D9943, 1:1000, Sigma-Aldrich),
AMPKα (2603, 1:1000, Cell Signaling), p-AMPKα (2535, 1:
1000, cell signaling), BDNF (ab205067, 1:1000, Abcam), keap1
(ab139729, 1:1000, Abcam), and β-actin antibodies (ab8227,
1:5000, Abcam) overnight at 4◦C. The membranes were then
washed and incubated with secondary antibodies for 1 h at
room temperature. Immunoreactive bands were detected using
the Super Signal West Pico Chemiluminescent Substrate (34077;
Thermo Fisher Scientific, Inc.) and visualized on X-ray films.
Quantifications were performed by using densitometric analysis
implemented in the Bio-Rad QuantityOne1-D Analysis Software.

Statistical Analyses
Data are presented as mean ± standard deviation and statistical
analyses were performed by using SPSS 19.0 software (SPSS Inc.,
Chicago, IL, United States). Experimental data were subjected to
Levene’s test and the Kolmogorov–Smirnov test for equality of

variances and normal distribution, and then subjected to two- or
one-way analysis of variance (ANOVA) with Tukey’s post hoc
test was performed to compare means of different groups and
P < 0.05 was defined as the threshold for statistically significance.

RESULTS

EA Pretreatment Ameliorates
Anxiety-Like and Fear Learning
Behaviors in ESPS-Treated Rats
First, we determined the effect of EA pretreatment on PTSD
(Figure 1A). Two-way ANOVA revealed that ESPS and EA
treatment did not induce any motor impairment in rats because
there were no differences in the total distance traveled in the
OFT in both stress (control vs. ESPS, F = 0.486, P = 0.489)
and EA treatment (control EA vs. EA, F = 0.275, P = 0.603)
factors (Figures 1B,D). There were significant differences in
the time spent in the center in the OFT for the stress factor
(F = 13.606, P < 0.01, Figure 1E), as well as in the number of
entries in the open arms (F = 8.532, P < 0.01) and the time
spent in the open arms (F = 10.653, P < 0.01) in the EPMT
(Figures 1C,F,G). However, there were no significant differences
for the EA treatment factor neither in the time spent in the center
in the OFT (F = 1.009, P = 0.321) nor as in the number of
entries in the open arms (F = 1.298, P = 0.261) and the time
spent in the open arms (F = 1.058, P = 0.310) in the EPMT. In
addition, there were significant differences for the stress factor
in the freezing times both during the contextual fear (F = 5.816,
P < 0.05, Figure 1H) and the cued fear conditioning (F = 10.686,
P < 0.05, Figure 1I) tests. Furthermore, there were also
significant differences for the EA treatment factor in the freezing
times during the contextual fear test (F = 4.474, P < 0.05). Post
hoc comparisons further showed that ESPS markedly reduced
the time spent in the center in the OFT as well as the number
of entries into the open arms and the time spent in the open
arms in the EPMT (ESPS vs. control, P < 0.05). Further, EA
pretreatment increased values of these parameters (EA + ESPS
vs. ESPS, P < 0.05). Additionally, rats in the ESPS group showed
a significant increase of freezing time in both contextual fear
and cued fear conditioning tests when compared to the control
group (P < 0.05). EA pretreatment significantly decreased
freezing times and enhanced fear learning in ESPS-treated rats
(EA + ESPS vs. ESPS, P < 0.05, Figures 1H,I). These results
suggest that EA pretreatment could ameliorate anxiety-like
behaviors and fear learning in ESPS-treated rats.

EA Pretreatment Increased
Neurogenesis and BDNF Expression in
the Hippocampus of ESPS-Treated Rats
As shown in Figure 2, there were significant differences for
the stress factor in the number of BrdU-positive (BrdU+)
(F = 15.455, P < 0.01, Figures 2A,B) and DCX-positive (DCX+)
(F = 78.030, P < 0.01, Figure 2C) cells in the DG of the
hippocampus. There were also significant differences for the
EA treatment factor in the number of BrdU+ cells (F = 5.181,
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FIGURE 1 | Electroacupuncture pretreatment ameliorates anxiety-like and fear learning behavior in ESPS-treated rats. (A) Timeline of the EA pretreatment, ESPS
exposure, and behavioral testing in Experiment I. All animals were subjected to 1 week of adaptation, and then EA (EA at 1 mA in intensity and 2/15 Hz in frequency
or EA without current) was administered once a day from days 7 through 13. ESPS treatment was performed on day 14. BrdU was administered once a day from
days 27 through 29 by intraperitoneal injection and behavioral alterations were measured from days 28 through 30 before rats were sacrificed. (B) Real-time
movement traces in the open field. (C) Elevated plus maze movement traces. (D) Quantification of the total distance traveled in the open field box. (E) The time
spent in center of the open filed box. (F) Numbers of entries in the open arms of the elevated plus maze test. (G) The time spent in the open arms of the elevated
plus maze test. (H) Freezing time of the contextual fear response. (I) Freezing time of the cued fear response. ∗P < 0.05, #P < 0.05 vs. ESPS.
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P < 0.05, Figure 2B) but not DCX+ cells (F = 1.256, P = 0.274,
Figure 2C) in the DG. Meanwhile, there were significant
differences of BDNF and DCX expression (Figures 2D,E) for
both the stress (FBDNF = 44.189, P < 0.01; FDCX = 39.830,
P < 0.01) and EA treatment (FBDNF = 10.566, P < 0.01;
FDCX = 7.902, P < 0.05) factors. Post hoc comparisons further

showed that ESPS decreased the number of BrdU+ and DCX+
cells in the hippocampus (ESPS vs. control, P < 0.01), and
EA pretreatment prevented this damage induced by ESPS
(EA + ESPS vs. ESPS, P < 0.05). In addition, ESPS stimulation
markedly decreased the expression of DCX and BDNF (ESPS
vs. control, P < 0.01), while EA pretreatment effectively

FIGURE 2 | Electroacupuncture pretreatment improved hippocampal neurogenesis and the expression of BDNF, DCX, and Nrf2 and their related genes in
ESPS-treated rats. (A) Microphotographs and (B,C) histograms of BrdU-positive proliferating cells and of the DCX-positive immature neurons in the dentate gyrus.
(D–H) Representative immunoblots and densitometry analysis of (D) DCX, (E) BDNF, (F) p-AMPK, (G) Nrf2, and (H) HO-1 expression in the total hippocampus of
control, EA, ESPS, and EA + ESPS groups. ∗P < 0.05, #P < 0.05 vs. ESPS, ##P < 0.01 vs. ESPS. Bar: 100 µm.
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reversed these changes (EA + ESPS vs. ESPS, P < 0.05).
These results suggest that EA pretreatment is effective in
preventing impairments of the hippocampal neurogenesis in
ESPS-treated rats.

EA Pretreatment Influences the
Expression of Nrf2 and HO-1 and the
Activity of AMPK in the Hippocampus of
ESPS-Treated Rats
There were significant differences for the stress factor in the
expression of Nrf2 (F = 13.443, P < 0.01, Figure 2G) and HO-1
(F = 10.367, P < 0.01, Figure 2H) and the activity of AMPK
(F = 5.883, P < 0.05, Figure 2F). There were also significant
differences for the EA treatment factor in the expression of Nrf2
(F = 7.487, P < 0.05) and HO-1 (F = 5.766, P < 0.05). However,
there was no significant difference for the EA treatment factor in
the activity of AMPK (F = 3.054, P = 0.094). Meanwhile, there
were significant differences for the stress factor in the percentage
of the NeuN+Nrf2+ (F = 41.861, P < 0.05, Figures 3A,B) and
GFAP+Nrf2+ (F = 18.449, P < 0.05, Figures 3A,C) cells in
DG. Post hoc comparisons further showed that ESPS decreased
the activity of AMPK and the expression of Nrf2 and HO-1
(ESPS vs. control, P < 0.05), as well as the double labeling
of NeuN and Nrf2 or GFAP and Nrf2, which were prevented
by EA pretreatment (EA + ESPS vs. ESPS, P < 0.05). These
results indicate that the neuroprotective effect of EA pretreatment
in ESPS-treated rats could be mediated by the activation of
AMPK/Nrf2 antioxidant pathway.

Nrf2 Knockdown in the Adult
Hippocampus Blocks the Protective
Effects of EA Pretreatment on
ESPS-Treated Rats
In order to establish the contribution of Nrf2 on the effects
of EA pretreatment (Figure 4A), we knocked down Nrf2 or
Keap1 in the DG by bilateral injections of LV-GFP shRNA
(shNrf2 or scramble) (Supplementary Figure S1). No significant
differences in the total distance traveled in the open-field arena
were observed (F7,56 = 0.210, P = 0.982, Figures 4B,D). However,
there were significant differences in the time spent in the central
area of the OFT (F7,56 = 4.937, P < 0.01, Figure 4E), the entry
numbers (F7,56 = 4.938, P < 0.01, Figures 4C,F) and the time
spent (F7,56 = 4.041, P < 0.01, Figure 4G) in the open arms of
the EPMT, as well as the freezing time in the fear conditioning
test (contextual freezing time: F7,56 = 2.831, P < 0.05, Figure 4H;
cued freezing time F7,56 = 4.195, P < 0.01, Figure 4I). EA
pretreatment successfully reversed all the changes associated to
ESPS exposure (Scramble + EA + ESPS vs. Scramble + ESPS,
P < 0.05). However, the protective effect of EA pretreatment
was dampened by Nrf2 knockdown (shNrf2 + EA + ESPS vs.
Scramble + EA + ESPS, P < 0.05). Moreover, downregulation
of keap1 itself also ameliorated the deficits observed in behavior
and in the hippocampal neurogenesis of ESPS-treated rats
(shkeap1 + ESPS vs. Scramble + ESPS, P < 0.05). These results

indicate that the keap1/Nrf2 antioxidant pathway may play a role
in the anti-anxiety effects of EA pretreatment.

The Neuroprotective Effect of EA
Pretreatment Is Inhibited by
Downregulation of Nrf2
shNrf2 treatment effectively downregulated Nrf2 (F7,24 =
7.425, P < 0.01, Figure 5D) and HO-1 expression (F7,24 = 6.559,
P < 0.01, Figure 5E), decreased AMPK (F7,24 = 12.33,
P < 0.01, Figure 5C) activity, and dampened the effects of the
EA pretreatment on the expression of BDNF (F7,24 = 16.85,
P < 0.01, Figure 5A) and DCX (F7,24 = 7.484, P < 0.01,
Figure 5B) in PTSD rats. In addition, shkeap1 significantly
decreased keap1 protein level (Figure 5F) but increased BDNF
and DCX expression in ESPS-treated rats, when compared to the
Scramble+ ESPS group (P < 0.05).

We also examined adult DG neurogenesis after lentiviral
treatment. Significant differences in the number of BrdU+
(F7,24 = 8.057, P < 0.01, Figures 5G,H) and DCX+
(F7,24 = 6.339, P < 0.01, Figures 5G,I) cells were observed.
EA pretreatment increased the number of BrdU+ and
DCX+ cells (Scramble + EA + ESPS vs. Scramble + ESPS,
P < 0.01). This effect was inhibited by Nrf2 downregulation
(shNrf2 + EA + ESPS vs. Scramble + EA + ESPS, P < 0.05).
Moreover, there were more BrdU+ and DCX+ cells in
the shkeap1 + ESPS group than in the Scramble + ESPS
group (P < 0.01).

DISCUSSION

In the present study, we provide first evidence that EA
pretreatment can ameliorate the behavioral deficits and
the impairments of hippocampus neurogenesis observed in
ESPS-treated rats. EA pretreatment increased the expression
of Nrf2, HO-1, and BDNF as well as the phosphorylation
level of AMPK in the hippocampus of ESPS-treated rats.
However, knockdown of Nrf2 in the hippocampus before
the EA pretreatment dampened the therapeutic effects
of the EA pretreatment, while keap1 knockdown in the
hippocampus displayed similar neuro-protective effects to
those observed for the EA pretreatment. We suggest that EA
pretreatment may represent an effective preventive strategy
for PTSD and its beneficial effects may involve the keap1/Nrf2
antioxidant pathway.

Acupuncture is a traditional Chinese medicine technique
typically included in the field of complementary and alternative
medicine (Langevin et al., 2011). It is widely used for managing
chronic pain (Zhao et al., 2017; Hershman et al., 2018) and
more recently has been suggested as a treatment for PTSD
(Grant et al., 2018). The general sympatho-inhibitory effects of
acupuncture depend on needle location and acupuncture type.
Although research has not been as exhaustive as in manual
acupuncture, EA has also been used in the treatment of several
disorders as an improvement of traditional acupuncture. EA
(particularly at low frequency) has been shown to produce more
widespread effects in the brain than manual acupuncture, as
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FIGURE 3 | Electroacupuncture pretreatment improved hippocampal Nrf2 expression in both neurons and astrocytes in DG of ESPS-treated rats.
(A) Microphotographs and (B,C) histograms of the percentage of NeuN/Nrf2 and GFAP/Nrf2 double labeling cells in the DG. ∗P < 0.05, #P < 0.05 vs. ESPS.
Bar: 100 µmm.

assessed by functional magnetic resonance imaging (Napadow
et al., 2005). Studies have found that EA influences the activity
of the autonomic nervous system, as well as of prefrontal and
limbic brain structures, including the amygdala, hippocampus,
and the hypothalamus. EA has also been described to influence
hypothalamic–pituitary–adrenal axis (HPA) function and plasma
cortisol levels (Song et al., 2012; Mucuk et al., 2013; Le et al.,
2016), which are involved in the pathophysiology of PTSD.
In general, most of the preclinical and clinical studies on
EA have focused on its role as a therapeutic agent. However,
an ideal therapeutic scenario would involve prevention of
symptoms even before its appearance. It is found that EA
pretreatment (2/15 Hz) applied at the GV20 (“Bai hui”)
conferred neuroprotection against cerebral ischemia (Wang et al.,
2012; Zhao et al., 2015), and EA pretreatment with the same
frequencies applied at Fengfu and Fengchi (GB20) provided

neuroprotective effects during craniocerebral tumor resection
(Lu et al., 2010). Meanwhile, 2/15 Hz EA pretreatment also
reduced glutamate toxicity and exerted antiapoptotic effects
on experimental stroke rats (Zhou et al., 2013; Zhu et al.,
2013). More importantly, Wang et al. (2009) showed that EA
pretreatment applied at the GV20 with 2/15 Hz conferred
neuroprotection against cerebral ischemia by stimulating the
production of 2-AG and AEA in the brain and activating
CB1R. Consistent with the above implications, the present
study indicates that EA pretreatment applied at the GV20 with
2/15 Hz for seven continuous days before rats are exposed to
ESPS ameliorate PTSD-like behavior, including the increases in
anxiety and the alterations in fear learning typically observed
in these animals. Altogether, our data support the notion
that EA pretreatment may be an effective therapy for the
prevention of PTSD.
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FIGURE 4 | Nrf2 knockdown in the adult hippocampus inhibits the protective effects of electroacupuncture pretreatment on behavior of ESPS-treated rats.
(A) Timeline of the stereotactic injection, EA pretreatment, ESPS administration and behavioral testing in Experiment II. Lentivirus with shRNA (Scramble or shNrf2 or
shkeap1) were stereotaxically injected into the bilateral hippocampal dentate gyrus on day 7, EA was administered once a day from day 21 to 27. ESPS treatment
was performed at day 28. BrdU was administered once a day from day 40 to 42 and behavioral alterations were measured from day 41 to 43 before rats were
sacrificed. (B) Real-time movement traces in the open field. (C) Real-time movement traces in the Elevated plus maze. (D) Quantification of the total distance
traveled in the open field test. (E) The time spent in center of the open filed box. (F) Numbers of entries in the open arms of the elevated plus maze test. (G) The time
spent in the open arms of the elevated plus maze test. (H) Freezing times in the contextual fear. (I) Freezing times in the cued fear conditioning tests. ∗P < 0.05 vs.
Scramble, ∗∗P < 0.01 vs. Scramble, #P < 0.05 vs. Scramble + ESPS, &P < 0.05 vs. Scramble + EA + ESPS.
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FIGURE 5 | Knockdown of Nrf2 with shRNA lentivirus in the hippocampus dampened the neuroprotective effect of EA pretreatment on ESPS-treated rats. (A–F)
Representative immunoblots and densitometry analysis of (A) BDNF, (B) DCX, (C) p-AMPK, (D) Nrf2, (E) HO-1, and (F) keap1 in the total hippocampus of Scramble,
Scramble + ESPS, Scramble + EA + ESPS, shNrf2, shNrf2 + EA + ESPS, and shkeap1 + ESPS treated groups. (G) Microphotographs and (H,I) histograms of the
BrdU-positive proliferation cells and of the DCX-positive immature neurons in the dentate gyrus. ∗P < 0.05 vs. Scramble; ∗∗P < 0.01 vs. Scramble; #P < 0.05 vs.
Scramble + ESPS; ##P < 0.01 vs. Scramble + ESPS; &P < 0.05 vs. Scramble + EA + ESPS; &&P < 0.01 vs. Scramble + EA + ESPS. Bar: 100 µm.
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It is well known that hippocampal neurogenesis is involved
in anxiety. Factors impairing hippocampal neurogenesis may
induce disruption of mood and anxiety (Hill et al., 2015; Miller
and Hen, 2015). In addition, hippocampal neurogenesis seems
to be involved in anti-anxiety drug effects and promotion
of hippocampal neurogenesis have been shown to hold the
potential to alleviate anxiety and mood disorders (Jin et al.,
2016; Mohammad et al., 2017). Recent anatomical and functional
evidence indicates a dissociation of the dorsal and ventral regions
of the hippocampus. It was found that the dorsal hippocampus is
critical for learning and memory performance, while the ventral
hippocampus is involved in anxiety and behavioral inhibition
(Bannerman et al., 2014; Kempadoo et al., 2016; Floriou-Servou
et al., 2018). In line with this, a growing body of evidences
also supports a role for adult hippocampal neurogenesis in both
the cognitive functions that are thought to be mediated by the
dorsal hippocampus and emotional regulation that has been
attributed to the ventral hippocampus (Wu and Hen, 2014;
Zhang et al., 2018). Thus, neurogenesis in both the dorsal and
ventral DG might be involved in the pathogenesis of PTSD.
However, it should also be recognized that dorsal and ventral
DG are not completely isolated from each other. Instead, they
can interact via several routes (Fanselow and Dong, 2010).
Meanwhile, it has been shown that hippocampal neurogenesis
can be modulated indirectly by altering the in vivo hippocampal
microenvironment (Monje et al., 2003; Seki, 2003). In our present
study, although viral shRNA interference was delivered to dorsal
DG, the decreased expression of Nrf2 or Keap1 was observed in
the whole hippocampus (Supplementary Figure S1). The effects
of viral shRNA interference that was delivered to other regions of
the hippocampus were still needs further investigations.

Since Nrf2 is involved in the regulation of hippocampal
neurogenesis and in the neuroprotective effects of EA (Wang
X. R. et al., 2015; Robledinos-Anton et al., 2017), we further
measured the activity of AMPK and expression of Nrf2 and
HO-1 in the hippocampus. We also observed the involvement of
Nrf2 or Keap1 in the neuroprotective effects of EA pretreatment
by shRNA knockdown experiments. We showed that EA
pretreatment promoted neurogenesis, as suggested by an increase
in the number of BrdU+ cells and DCX+ immature neurons, and
increased Nrf2/HO-1 and AMPK activity in the hippocampus of
ESPS-treated rats. Downregulation of Nrf2 not only dampened
the effects of EA pretreatment on PTSD-like behaviors but also
reduced EA-induced increased neurogenesis in the hippocampus,
indicating that the neuroprotective effects of EA pretreatment
on PTSD rats may involve the Nrf2/HO-1 pathway. Previous
studies have shown that the antioxidant effects of Nrf2 are
exerted by disassociation from keap1, and treatment with a
keap1 inhibitor exhibits protection in several diseases of the
central nervous system (Quinti et al., 2017). In line with
these results, we found that keap1 knockdown increased the
expression of HO-1, improved hippocampal neurogenesis, and
alleviated PTSD-like behaviors of ESPS-treated rats, replicating
the therapeutic effects of EA. On the other hand, we found that
Nrf2 knockdown alone induces effects that are similar to those
of ESPS alone. Thus, it is a possible scenario that keap1/Nrf2
and its downstream antioxidative cascade elements play a role

in the anti-PTSD effects of EA pretreatment. In addition, “Bai
hui” is located on the skin incision line and the incision might
interfere with the following EA treatment even after 2 weeks
of recovery. Although the results in Experiment II indicated
that ESPS induced a significant PTSD-like behavior in rats that
received virus injection (Scramble vs. Scramble+ ESPS), and this
PTSD-like behavior was ameliorated by EA (Scramble + ESPS
vs. Scramble + EA + ESPS), the interference of skin incision on
the effects of EA pretreatment is still unrevealed. A comparison
between EA + ESPS and Scramble + EA + ESPS is required
in the future. In addition, Nrf2 is ubiquitously expressed in
the central nervous system. Indeed, astrocytic-derived extrinsic
support is known to play an important role in protecting neurons
against oxidative stress (Shih et al., 2003). Previous studies further
found that Nrf2-mediated glutathione biosynthesis and release
from astrocytes protects neurons from oxidative stress, and
Nrf2 overexpression specifically in astrocytes confers non-cell
autonomous protection to surrounding neurons and leads to
neuroprotection in in vivo models (Vargas et al., 2008; Chen et al.,
2009). Recent work also indicated that developmental epigenetic
Nrf2 repression weakens neuronal antioxidant defenses but is
necessary to create an environment that supports neuronal
development (Bell et al., 2015), and astrocytic Nrf2 signaling
could be regulated by neuronal activity (Habas et al., 2013).
Thus, based on the available literature, the regulation both on the
expression of Nrf2 either in neurons or glial cells is meaningful.
The present study found that Nrf2 was widely expressed in the
nuclei of neurons and astrocytes, and ESPS induced a significant
reduction in the double labeling of NeuN and Nrf2 or GFAP and
Nrf2, which was ameliorated by EA pretreatment. The precise
cellular mechanism still calls for further investigation.

In addition to reduced hippocampal neurogenesis, a growing
body of evidence has been indicating that disruption of the brain
derived neurotrophic factor (BDNF) may be also involved in
the pathophysiology of PTSD (Cohen et al., 2018; Hou et al.,
2018). Interestingly, recent studies have also reported that BDNF
is involved in the biological effects of EA (Lin et al., 2017; Pak
et al., 2018). The interplay between Nrf2 and BDNF has also
been investigated. A previous study indicated that BDNF protein
levels are decreased in the Nrf2 knockout mice (Martin-de-
Saavedra et al., 2013). However, another study reported that Nrf2
activation was regulated by the TrkB-BDNF pathway (Bouvier
et al., 2017) and the Nrf2 antioxidant axis was upregulated
by BDNF overexpression in a rat model of traumatic brain
injury (Chen et al., 2017; Ishii et al., 2018). In line with these
observations, we found that EA pretreatment normalized BDNF
expression in the hippocampus of ESPS rats, and this effect
was blocked by Nrf2 shRNA knockdown. In addition, basal
hippocampal expression of BDNF was also decreased in rats
injected with Nrf2 shRNA, while down-regulation of keap1
up-regulated the expression of BDNF in the hippocampus of
PTSD-like rats. Based on these data, we suggest that regulation
of BDNF may also be involved in the anti-PTSD effects of
EA pretreatment and that Nrf2 may be an upstream regulator
of BDNF. However, we do not provide evidence clarifying the
potential mechanism by which Nrf2 activation may regulate
BDNF expression.
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In summary, our results show that EA pretreatment
has neuroprotective effects against ESPS-induced anxiety-like
behaviors and hippocampal neurogenesis defects in rats. We also
found that the neuroprotective effect of EA pretreatment was
associated with an upregulation of the molecular mechanism
associated with protection against oxidative damage and of
BDNF expression. This effect of EA may involve the activation
of the keap1/Nrf2/HO-1 pathway. Additionally, we found that
Nrf2 is an upstream regulator of BDNF during EA-induced
neuroprotection. Altogether, our findings provide new insights
regarding the possibility of using EA in the prevention of PTSD
and the mechanisms by which this protective effect may occur.
However, the effects of different parameters of EA treatment
on the activation of Nrf2 antioxidant pathway as well as the
direct influence of Nrf2 knockout on PTSD-like behaviors remain
unclear. Further studies are required to explore the detailed
signaling cascades and cellular mechanisms involved in the
regulation of keap1/Nrf2 after EA treatment.
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FIGURE S1 | Lentivirus screening and microinjections. The silencing efficiency of
different lentiviruses carrying different shRNA sequences were tested in astrocyte
cultures by real-time PCR analysis. (A) Representative microphotographs of GFAP
staining (red), DAPI staining (blue), and lentivirus infection (green) in astrocytes.
(B,C) Histograms showing the effect of different shRNA sequences on the levels
of Nrf2 and keap1 mRNAs. (D) Microphotographs of the NeuN (blue) and lentivirus
infection (green) signals in the dentate gyrus. (E) Illustration of the bilateral injection
of the lentivirus in the dentate gyrus of rats. (F,G) Histograms showing the change
of Nrf2 and keap1 mRNAs in the hippocampus of rats after lentivirus infection.
(H,I) Representative immunoblots and densitometry analysis the change of Nrf2
and keap1 protein level in the hippocampus of rats after lentivirus infection.
∗P < 0.05 vs. Scramble; ∗∗P < 0.01 vs. Scramble. Bar: 100 m.
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Music is commonly used to modify mood and has attracted attention as a potential
therapeutic intervention. Despite the well-recognized effects of music on mood, changes
in affective perception due to music remain majorly unknown. Here, we examined if the
perception of aversive stimuli could be altered by mood-changing background music.
Using subjective scoring data from 17 healthy volunteers, we assessed the effect of
relaxing background music (RelaxBGM), busy background music (BusyBGM), or no
background music (NoBGM) conditions on response to aversive white noise stimulation.
Interestingly, affective response to the white noise was selectively alleviated, and white
noise-related P3 component amplitude was reduced in BusyBGM. However, affective
responses as well as P3 amplitude to reference pure tone stimuli were similar regardless
of background music conditions. Interestingly, heart rate (HR) increased in BusyBGM,
whereas no increase in HR was found in similar distress, NoBGM condition. These
findings suggest that increase in HR, which happens during BusyBGM exposure, can be
a reflecting feature of music that ameliorates the affective response to aversive stimuli,
possibly through selective reduction in neurophysiological responses.

Keywords: background music, affective response, mood changes, event-related potentials, modulation of
affective perception

INTRODUCTION

From majestic operas to a casual humming, music plays an indispensable and extensive role
in human life. One reason for the ubiquity of music is its ability to change mood (Sloboda
and Juslin, 2001). For example, the choice of background music in a movie can dramatically
change the impact of visual scenery perception, even if the music itself is not being consciously

Abbreviations: NoBGM, no background music; RelaxBGM, relaxing background music; BusyBGM, busy background
music; ANOVA, analysis of variance; ANS, autonomic nervous system; CRT, cathode ray tube; HR, heart rate; POMS,
Profile of Mood States; TMD, Total Mood Disturbance; SAM, Self-Assessment Manikin; ERP, event-related potential; EPN,
early posterior negativity; LORETA, low resolution brain electromagnetic tomography; PCC, posterior cingulate cortex.
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listened to Boltz (2004). The mood adjusting effects of
background music are not only applicable to movies, but
are widely used in environments, such as shopping malls
and restaurants, to enhance the behavior of customers
(Milliman, 1982, 1986). Background music is not limited to
composed melodies: several online music streaming services
provide artificial mixtures of daily noise claimed to serve as
‘‘concentration helping’’ background music (Zhang et al., 2013).

Recently, an increasing number of studies have elucidated
the efficacy of music therapy (Bradt et al., 2013; Aalbers et al.,
2017; van der Steen et al., 2018). Interestingly, a relaxing effect
is not the only expected outcome of some music therapies.
For example, in music therapy for pain, the main outcome is
the alleviation of pain perception (Lee, 2016). This suggests
that music can regulate cognitive perception, beyond a direct
effect on mood. Another interesting aspect of music therapy is
continuous attention to music is not necessary because passive
listening is as effective as active listening in several cases
(Mercadie et al., 2015; Millett and Gooding, 2018). Indeed, the
music used in music therapy is played at normative loudness;
it need not be loud or boisterous as in a concert hall. These
findings suggest that unconscious listening to background
music in daily life can affect mood and consequently modify
affective perception.

Such change in affective perception can be assumed as a
kind of affective bias. In relation to the clinical consideration,
the affective perceptions are negatively biased in patients with
depression, which is paralleled by reduced P3 amplitudes related
to happy-face perception (Cavanagh and Geisler, 2006). In
the basic cognitive science study, it is reported that auditory-
induced pleasant mood enhances the cognitive inhibition that
is paralleled with pronounced amplitudes in event-related
potential (ERP) components between 150 and 550 ms (Yuan
et al., 2011). In addition, these early components of ERP
are thought to be involved in the mechanism of affective
bias (Huang and Luo, 2006). For example, P3 component
is related to the valence perception (Conroy and Polich,
2007). Early posterior negativity (EPN) is also considered to
be the early stage of affective process, mirroring the fast
and effortless detection of emotional stimuli (Olofsson et al.,
2008; Ullrich et al., 2016). Consistently, in a recent article,
we reported that the sounds of different aversiveness were
associated with different neuroelectric activities in this time
range. Briefly, aversive white noise stimuli involved more
activity in the parietal region than pure tone stimuli in
the time range corresponding to EPN and P3 components
(Masuda et al., 2018).

Intriguingly, the effects of background music on cognitive
function are not conclusive. For example, one study reported
that background music has beneficial effect on reasoning
or memory performance (Rauscher et al., 1993) whereas
another study found detrimental effects on memory and
comprehension tasks (Furnham and Strbac, 2002). These
contrasting results could be attributable to the difference in
the methodologies, targeted cognitive function, or applied
choice of music. Choice of music type is important because
it is reported that music interferes with the learning process

depending on the congruency of the learning material and the
kind of background music (Sousou, 1997). Similarly, music
with increased arousal and positive affect can improve the
performance of certain tests of spatial abilities (Thompson
et al., 2001). The difference in the autonomic nervous
system (ANS) might be involved in the inconsistent results
because the autonomic nervous activity is related to type of
music (Zatorre, 2015).

Thus, to establish the basis of affective bias caused by daily
loudness music therapy, we performed a multimodal study
that examined neurocognitive responses as well as the ANS
changes. As an ANS measure that is closely related to mood, we
examined changes in heart rate (HR) along with the subjective
measurement of mood (Sammler et al., 2007).

We hypothesized that calmingmusic can alleviate the aversive
perception paralleled with reduced amplitudes of aversive-
related EPN/P3 and reduction of corresponding neural activity
in parietal region. In addition, we expected such music to have a
soothing effect on ANS activity, such that it would be observable
as decreased HR. This report is an extension of our recent work
that reported the appraisal mechanism of white noise and pure
tone (Masuda et al., 2018).

MATERIALS AND METHODS

Subjects
Advertisements were used to recruit 17 healthy adult participants
for this study (10 men; mean age ± standard deviation,
21.6 ± 2.06 years). The participants were compensated with
a gift card with a value equivalent to U2,500. Interview by a
psychiatrist confirmed that the participants had no psychiatric
disorders, hearing problems, or smoking history and did not
habitually take medication or consume caffeine on the day
of the study. All the subjects were right-handed, which was
confirmed using Edinburgh handedness score being not <50
(Oldfield, 1971). All subjects had normal hearing ability. Four
subjects had experience of taking music lessons in their
childhood, but no subject was taking music education at
the time of the experiment. This study was in accordance
with the recommendations of the ethical committee at Shiga
University of Medical Science with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the ethical committee at Shiga University of Medical
Science (Approved #26-227).

Experimental Design and Settings
Background Music and Sound Stimuli
Two types of background music were used to induce changes in
mood. Relaxing background music (RelaxBGM) was a privately
composed music that was spacious and ethereal, such as music
typically played for yoga or meditation. Busy background music
(BusyBGM) was an artificial mixture of traffic noise that was
reminiscent of a busy highway. The background music was
played at the same loudness in all conditions, at an average
loudness of 40 dB[A]. In addition, no background music
(NoBGM) condition [<30 dB(A) silence] was used.
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A 500-ms burst of 50 dB[A] white noise with instantaneous
(10 ms) rise/fall times was used as an aversive stimulus. The
white noise included all frequency bands within the audible
range. A 1,000-Hz pure tone was used as a reference. Pure
tone was used as a reference because sounds with 1,000 Hz
peaks are most ubiquitously observed (Kim et al., 2012)
and less affected by age-related losses in hearing sensitivity
(Cruickshanks et al., 1998). We presented the stimuli in a passive
task context, where subjects were instructed to simply view a
presented fixation point without special attention to sound or
background music.

Subjective Measures of Mood and Affective
Response
The subjects were asked to score their subjective emotional
responses using the Self-Assessment Manikin (SAM), a
two-dimensional subjective scoring system developed for
assessing affective stimuli of the International Affective Picture
System (Bradley and Lang, 1994). This is a nine-point rating scale
comprising sets of figures to measure valence (1 = unpleasant;
9 = pleasant) and arousal responses (1 = arousing; 9 = calming).
We used the Profile of Mood States (POMS), which has high
levels of reliability and validity, to measure psychological distress.
In the scale, participants were required to rate 65 mood-related
adjectives on a 5-point scale (0 = not at all to 4 = extremely).
The scores of 65 adjectives were combined to make six sub-scale
scores, and Total Mood Disturbance (TMD) was then calculated
based on the sub-scale scores. A larger TMD score indicates an
increased state of distress.

Procedures and Settings
Subjects underwent three background music experiments, in
which one of the three background music options (RelaxBGM,
BusyBGM, or NoBGM) was played (Figure 1, upper panel).
The background music was selected following randomized
counterbalanced crossover design. During the experiment,
subjects remained seated on a chair placed 70 cm in front
of a cathode ray tube (CRT) display in a sound proof and
electromagnetic shield room. The illumination in the room
was maintained at 80 lux. The subjects were instructed to
look at a white-cross fixation point that appeared against
the black CRT background during the entire experiments.
Auditory stimulation was provided through headphones (AKG
closed-back headphones, K404, Vienna, Austria).

One experiment was consisted with two major blocks
(Figure 1, lower panel). In the first block, participants were only
exposed to the background music. The effect of background
music on mood was examined by TMD before and after a 5-min
exposure to the background music. In addition, the participants
were asked to use SAM to rate their appraisal evaluation of the
background music. After completion of the ratings, the subjects
immediately proceeded to the second block.

In the second block, the participants were exposed to the
same background music for 5 min as in the first block,
followed by the administration of pure tone and white noise
sound stimuli with background music lasting approximately
5 min. The pure tone and white noise sound stimuli were

programmed to randomly produce each frequency 75 times, with
randomized stimulus intervals of 2,000 ± 200 ms using E-Prime
v 2.0 software (Psychology Software Tools, Pittsburgh PA, USA).
The participants completed SAM for both white noise and pure
tone stimuli immediately after each experiment.

Electroencephalography Data Acquisition
Electroencephalography (EEG) signals were recorded using
NetStation software [Electrical Geodesics Inc (EGI), Eugene, OR,
USA] with 64-channel recordings made through a HydrocCel
Geodesic Sensor Net v.1.0. gel cap. Data were sampled using
a high-input impedance amplifier (200 MΩ, EGI Inc., Model:
GES 300), at 500 Hz and referenced to Cz. Electrode impedances
were kept at <60 kΩ throughout the experiments, following
the guideline recommending the electrode impedance to be less
than the input impedance of the amplifier by a factor of at least
100 (Picton et al., 2000). The participants were asked to remain
awake, and a vigilant state was qualitatively confirmed by online
observation of the EEG signal by a somnologist during the study.

Event-Related Potential (ERP) Data
Processing
EEG data processing was performed using EEGLAB (version
14.1.2; Delorme and Makeig, 2004), an open source toolbox that
runs on MATLAB version 2017a (Mathworks Inc. Natick, MA,
USA). Briefly, EEG data were re-referenced to the average of the
left and rightmastoids, and bandpass filtered offline by 0.1–50Hz
using linear finite impulse response filtering method. Gross
artifacts were visually rejected following independent component
analysis based artifact correction embedded in EEGLAB,
excluding 1–3 components produced by eye movement or
muscle activity. We epoched all data segments 500 ms prior to
and 1,500 ms post stimulations, and baseline corrections were
done by subtracting the average of 100 ms prior to stimulation
using ERPLAB (version 7.0.0; Lopez-Calderon and Luck, 2014).
Epochs for ERP calculation were first selected using the simple
voltage threshold function of ERPLAB using 100 µV as the
threshold. Finally, an examiner, without the knowledge of the
experiment conditions, visually confirmed artifact-free epochs
for ERP calculation. The average number of epochs used for
ERP calculation was as follows: 55.76 ± 2.57 for pure tone
and 53.94 ± 2.44 for white noise in NoBGM; 54.29 ± 2.69 for
pure tone and 51.88 ± 2.77 for white noise in RelaxBGM;
and 48.59 ± 3.54 for pure tone and 48.76 ± 3.43 for white
noise in BusyBGM. To compare component amplitudes, we
calculated themean relative-to-baseline amplitude value between
the specified time range from each electrode. To compare ERP
component amplitudes on region-of-interest basis, we averaged
the potentials of four electrodes (Pz, Cz, C3, and C4). We focused
on these four electrodes because EPN/P3 related potentials
were most pronounced in these electrodes (Supplementary
Figure S1). To investigate the regions involved in the differential
processes between pure tone and white noise, we used
time series standardized low resolution brain electromagnetic
tomography analysis (sLORETA) every 2 ms to estimate the
current source density distribution for each ERP component
(Pascual-Marqui et al., 1994).
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FIGURE 1 | Schematic representation of the study. The study was conducted following randomized counterbalanced crossover design. Each participant underwent
three experiments with different background music conditions. In each background music condition, two blocks of experiments were conducted. In block 1,
participants were exposed to selected background music for 5 min. In block 2, participants were exposed to the background music for 5 min, followed by exposure
to the same background music with intermittent sound stimuli.

Heart Rate and Calculation of Autonomic
Features
Kubios HRV (version 2.1, Kubios, Finland) was used for
HR detection (Tarvainen et al., 2014). The type II lead of
electrocardiogram was simultaneously recorded during EEG
recordings, and the data were later processed by Kubios HRV.
HR was calculated from 20 s data at the beginning or end of
BGM exposure.

Statistical Analyses
Data are shown as mean ± standard error of mean, unless
otherwise stated. For the examination of effects by background
music and sound stimuli, a two-way repeated measures (3 × 2)
analysis of variance (ANOVA) with three background music
conditions and two sound stimuli as the within-subjects
factors was conducted unless otherwise described. Greenhouse-
Geisser correction was used when the sphericity was violated.
Bonferroni pairwise comparison was used to adjust for multiple
comparisons. SPSS statistics software Version 22 (IBM, Armonk,
NY, USA) was used to perform statistical analysis. sLORETA
images were statistically compared between sound conditions
using the voxel-by-voxel t-test, which was corrected by Statistical
non-Parametric Mapping (SnPM) randomization (number of
randomizations = 5,000). The threshold of statistical significance
was set at P < 0.05.

Comparisons of Components of
Event-Related Potentials
To examine the changes in sound stimulation related
potentials in each background music condition, we focused
on 200–300 and 300–450 ms because these time ranges were
pivotal in the aversive process of pure tone and white noise
(Masuda et al., 2018).

RESULTS

Subjective Ratings of Appraisal Response
and Consequential Mood by Background
Music
First, to investigate how participants experienced the background
music, the two-way repeated measures (2 × 2) ANOVA
within the subject factors background music (RelaxBGM and
BusyBGM) and subjective evaluations (SAM scores in valence
and arousal) was performed. This analysis showed significant
effect of background music (F(1,16) = 94.298, P < 0.01,
partial η2 = 0.855), and SAM (F(1,16) = 28.810, P < 0.01,
partial η2 = 0.643) as well as their interaction between
background music and SAM (F(1,16) = 24.800, P < 0.01,
partial η2 = 0.608). BusyBGM was perceived as more aversive
than RelaxBGM (valence score: BusyBGM, 2.71 ± 0.24;
RelaxBGM, 6.24 ± 0.22, Figure 2A, t(16) = 13.631, P < 0.01).
In addition, BusyBGM was more arousing than RelaxBGM
(arousing score: BusyBGM, 5.18 ± 0.33; RelaxBGM, 6.88 ± 0.32,
t(16) = 6.5884, P < 0.01).

Thereafter, we examined the mood changes caused by
5-min exposure to RelaxBGM, BusyBGM, and NoBGM using
TMD calculated from POMS questionnaire. TMD score had
high internal consistency in our study sample (Cronbach’s
Alpha = 0.915). The two-way repeated measures ANOVA with
background music and the time (before or after background
music exposure) as within subject factors found simple main
effect by time (F(1,16) = 11.437, P < 0.01, partial η2 = 0.417) and
no effect of background music (F(2,32) = 1.251, P = 0.300, partial
η2 = 0.073), and significant interaction between background
music and time (F(2,32) = 10.159, P < 0.01, partial η2 = 0.388).
Following planned comparisons, to check background music
specific change of the mood, found worsening of TMD in
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FIGURE 2 | Affective responses and consequential mood for each background music condition. (A) Affective responses to relaxing background music (RelaxBGM)
and busy background music (BusyBGM) are shown based on two-dimensional evaluation: valence and arousal. Note that RelaxBGM was more pleasant and
calming than BusyBGM. (B) Emotional consequences of listening to each background music for 5 min are shown. Note that mood worsened in BusyBGM and no
background music (NoBGM) conditions, whereas RelaxBGM prevented the worsening. (C) Heart rate (HR) changes were noted during exposure to each background
music. HR increased in BusyBGM, while HRs at the beginning were similar in all conditions. Asterisk shows significant difference between the indicated pair.

BusyBGM (pre vs. post: 6.71± 1.14 vs. 10.88± 1.34, t(32) = 4.077,
P < 0.01, Figure 2B) and NoBGM (pre vs. post: 6.35 ± 0.84 vs.
10.18 ± 1.73, t(32) = 3.733, P< 0.01), although no worsening was
observed in RelaxBGM (pre vs. post: 8.29 ± 1.44 vs. 6.65 ± 1.19,
t(32) = 1.608, P = 0.353).

Heart Rate Changes Due to the
Background Music
Similar to the analysis of the mood changes due to background
music, we performed the two-way repeated measures ANOVA
on HR with background music and time as within subject
factors. We used two representative average HR from two
time windows, the first and the last 20 s of BGM exposure
(Figure 2C). This analysis found significant main effect of
the time (F(1,16) = 9.061, P = 0.008, partial η2 = 0.362).
However, no significant effect of background music was found

(F(2,32) = 0.319, P = 0.729, partial η2 = 0.020) and marginal
interaction was found (F(2,32) = 3.014, P = 0.063, partial
η2 = 0.159). In following planned comparisons, an increase
in HR was found to be specific to BusyBGM condition
(pre vs. post: 58.16 ± 1.79 vs. 61.49 ± 2.10, t(32) = 4.291,
P < 0.01), and HR remained constant in NoBGM (pre vs. post:
58.97 ± 1.86 vs. 59.68 ± 1.89, t(32) = 0.901, P > 0.900) and
RelaxBGM conditions (pre vs. post: 58.43± 1.77 vs. 59.94± 2.29,
t(32) = 1.945, P = 0.182).

Changes in Affective Response to White
Noise/Pure Tone in the Three Background
Music Conditions
We examined if pure tone and white noise caused different
affective responses in the three background music conditions
using the two-way repeated measures ANOVA. The analysis
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FIGURE 3 | Affective response to white noise and pure tone for each
background music condition. Self-Assessment Manikin (SAM) scores for
white noise and pure tone are graphically presented. Panel (A) shows the
valence scores, whereas Panel (B) shows the arousal scores. Significant
difference due to background music condition is shown by asterisk.

on valence found significant main effect for the sound
stimuli (F(1,16) = 16.812, P = 0.001, partial η2 = 0.512) and
marginal significance for background music (F(2,32) = 2.744,
P = 0.079, partial η2 = 0.146), although the interaction
between them was not significant (F(2,32) = 0.232, P = 0.794,
partial η2 = 0.014). Planned comparisons within the same
sound stimulus found aversive response to white noise
significantly reduced in BusyBGM compared to those
in NoBGM (BusyBGM vs. NoBGM: 3.47 ± 0.34 vs.
2.76 ± 0.28, t(32) = 3.339, P < 0.01, Figure 3A), although
no significant reduction of aversiveness was found in
RelaxBGM compared to NoBGM (RelaxBGM vs. NoBGM:
3.06 ± 0.33 vs. 2.76 ± 0.28, t(32) = 1.391, P = 0.521).
Interestingly, aversive response to pure tone was comparable
to NoBGM in both RelaxBGM (RelaxBGM vs. NoBGM:
4.24 ± 0.32 vs. 3.94 ± 0.31, t(32) = 1.391, P = 0.521) and
BusyBGM (BusyBGM vs. NoBGM: 4.47 ± 0.21 vs. 3.94 ± 0.31,
t(32) = 2.504, P = 0.052).

The same analysis on arousal found marginal effect of sound
stimuli (F(1.000,16.000) = 4.176, P = 0.058, partial η2 = 0.207) but
no significant effect of background music (F(1.916,30.656) = 1.171,
P = 0.322, partial η2 = 0.068) as well as no significant interaction
(F(1.471,23.539) = 2.368, P = 0.127, partial η2 = 0.129).

Planned comparisons found no significant difference in
arousal responses to white noise, which was similar to
NoBGM condition in both RelaxBGM (RelaxBGM vs. NoBGM:
4.47 ± 0.37 vs. 4.00 ± 0.38, t(16) = 1.095, P = 0.869)
and BusyBGM (BusyBGM vs. NoBGM: 4.47 ± 0.43 vs.
4.00 ± 0.38, t(16) = 1.000, P > 0.900 in BusyBGM, Figure 3B).
Similarly, comparable arousal responses were found for pure
tone (arousal response to pure tone: RelaxBGM vs. NoBGM:
4.65 ± 0.36 vs. 4.71 ± 0.31, t(16) = 0.203, P > 0.900) and in
BusyBGM (BusyBGM vs. NoBGM: 5.29 ± 0.38 vs. 4.71 ± 0.31,
t(16) = 2.163, P = 0.138).

Neurophysiological Response to Sound
Stimulations
The two-way ANOVA analysis on P3 component amplitude
found simple main effect of background music (F(2,32) = 7.601,
P < 0.01, partial η2 = 0.322) and sound stimuli (F(1,16) = 77.962,
P < 0.01, partial η2 = 0.830), although there was no
significant interaction (F(2,32) = 0.929, P = 0.405, partial
η2 = 0.055). Following comparison within each sound stimuli
found that white noise-related amplitude was significantly
smaller in BusyBGM (BusyBGM vs. NoBGM: 3.36 ± 0.58 vs.
5.64 ± 0.64 µV, t(32) = 3.906, P < 0.01; Figure 4), although
amplitude was comparable between RelaxBGM and NoBGM
(RelaxBGM vs. NoBGM: 4.54 ± 0.42 vs. 5.64 ± 0.64 µV,
t(32) = 1.885, P = 0.21). Interestingly, the pure tone–related
amplitude in BusyBGM was comparable to NoBGM (BusyBGM
vs. NoBGM: 0.98 ± 0.34 vs. 2.15 ± 0.58 µV, t(32) = 1.999,
P = 0.16) as well as in RelaxBGM (RelaxBGM vs. NoBGM:
1.47 ± 0.42 vs. 2.15 ± 0.58 µV, t(32) = 1.175, P = 0.75).

For EPN component, simple main effect of sound stimuli
(F(1,16) = 31.617, P< 0.01, partial η2 = 0.664) was found, although
there was no main effect of background music (F(2,32) = 0.361,
P = 0.700, partial η2 = 0.022) and no significant interaction
(F(2,32) = 0.591, P = 0.560, partial η2 = 0.036). Planned
comparisons of amplitudes within each sound stimuli found
EPN in BusyBGM (BusyBGM vs. NoBGM: −0.64 ± 0.38 vs.
−0.89 ± 0.72 µV, t(32) = 0.587) and RelaxBGM (RelaxBGM
vs. NoBGM: −1.17 ± 0.69 vs. −0.89 ± 0.72 µV, t(32) = 0.634)
were comparable to those in NoBGM for white noise.
Pure tone–related EPN in BusyBGM (BusyBGM vs. NoBGM:
−2.69 ± 0.40 vs. −3.35 ± 0.60 µV, t(32) = 1.524, P = 0.412)
and RelaxBGM (RelaxBGM vs. NoBGM: −2.96 ± 0.45 vs.
−3.35 ± 0.60 µV, t(32) = 0.890, P > 0.900) were also comparable
to those in NoBGM.

Source Localization of ERP
Time series analysis using sLORETA between white noise and
pure tone revealed significantly greater electrical activity induced
by white noise than pure tone under NoBGM and RelaxBGM,
whereas no difference was found for BusyBGM (Figure 5). In the
NoBGM condition, significant difference between white noise
and pure tone were found for the time window between 294 and
328 ms after sound stimulation, as previously reported (Masuda
et al., 2018). During this time range, significantly increased
electrical activity was found in the parietal lobe centering at the
left inferior parietal lobule, for white noise compared with pure
tone (left parietal lobe, BA 40, Figure 5A). In RelaxBGM, the
difference between white noise and pure tone at the same time
range was not found. However, there was a significantly increased
electrical activity in the posterior cingulate cortex (PCC) in white
noise compared with pure tone (Brodmann 40) at 340 ms in
RelaxBGM (Figure 5B).

DISCUSSION

In this study, we examined the effect of mood-changing
background music on affective perception. Because music
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FIGURE 4 | Event-related potentials (ERPs) to white noise and pure tone for each background music condition. Each panel shows the grand average ERP for each
BGM condition. ERPs evoked by white noise (blue line), and pure tone (green line) are presented. Shaded colors represent the mean ± standard error. (The inset box)
The electrodes used in the calculation of ERP (Pz, Cz, C3, and C4) are shown in red, while others are in blue.

therapy is reportedly used in pain clinics to reduce pain
perception, we predicted that calming background music would
help to reduce aversive reaction to white noise.

We used two newly composed background music, aiming
to change the mood. The initial assessment of appraisal
response to RelaxBGM and BusyBGM revealed that they had
intended appraisal effects. As we expected, BusyBGM had mood
worsening effect. Slightly different from our initial expectation,
the mood was worsened in NoBGM condition possibly because
of the stress of sitting still. RelaxBGM appeared to prevent
such mood worsening, if not improved the mood. The mood
in BusyBGM or NoBGM was not at an evidently stressful level,
as the POMS total disturbance scores in the present study were
low compared to that in studies assessing a stressful condition
using the same measure (Rosenzweig et al., 2003). Intriguingly,
even with the similar level of mood worsening in BusyBGM
and NoBGM, ANS activity selectively changed in BusyBGM as
shown by the increased HR. Considering that the initial HR
was similar at the beginning of background music exposure, HR
increase was specifically attributable to BusyBGM. The result
is consistent with a previous study that showed HR changes
depend on music (Koelsch and Jäncke, 2015), particularly in the
presence of discomforting music (Sammler et al., 2007). Thus,
the absence of HR increase in the NoBGM condition suggests
that ANS activity could be differentially modulated even in the
same subjective distress level. This is consistent with a report
that showed differential ANS modulation by different type of
stressors (Hu et al., 2016).

In examination of the background music effect on affective
perception of white noise and pure tone, we found unexpected
reduction in aversive response to white noise in BusyBGM.
The reduction was specific to white noise, suggesting that low
level aversiveness, as that found against pure tone, was less
prone to the backgroundmusic effect. One possible psychological
explanation for these unexpected results is that moderate distress
can reduce the effect of aversive stimulation. It is often indicated
that moderate stress is more facilitating for human performance
than no stress because the presence of stress often leads to
improved performance (Smeets et al., 2008; Hupbach and
Fieman, 2012) and emotion (Marin et al., 2010).

In this study, the neurophysiological responses showed the
effect of background music similar to subjective response:
white noise-related P3 amplitude was reduced in BusyBGM,
whereas that in RelaxBGM remained comparable to NoBGM.
The reduction in P3 amplitudes in BusyBGM was not due
to simple phonic masking effects of the stimulus sounds
by background music because the same loudness RelaxBGM
did not show the same effects. In addition, P3 amplitude
related to pure tone was comparable in all background
music, suggesting that the observed amplitude change was
white noise-specific. The reduction in P3 amplitude could
be assumed as a reflection of reduced cognitive capacity to
the sound stimulation, according to the processing capacity
model (Kok, 2001). A study using a similar sound stimulation
technique reported reduced ERP amplitudes in a state with
increased mental concentration (Ullsperger et al., 2001). The
amplitude reduction in sound-related ERP due to mental
state is reminiscent of distress-dependent ERP changes in the
present study. Thus, it is suggested that passive hearing of
BusyBGM continuously consumes cognitive capacity, thereby
reducing the white noise-related P3 component, although
RelaxBGM did not have such an effect. In addition, a similar
sound probe experiment showed the P3 amplitude related to
startling loud sound was reduced while subjects were looking
at emotional pictures (Keil et al., 2007). Because our study
used normative loudness sound (50 dB) stimulation, instead
of loud sound (95 dB) as in Keil’s study, the present results
expand the knowledge that appraisal response to everyday
level loudness sound could also be modulated by background
music. Contrary to our findings, a study addressing the effects
of similar background music conditions (excited background
music, relax background music, and NoBGM) on cognitive
inhibitory function reported that N2d and P3 component
amplitudes are not affected (Burkhard et al., 2018). These
findings suggest that the interference of background music
might be a cognitive function specific, although this idea awaits
further examination.

The time range corresponding to P3 (300–650 ms) is thought
to be involved in linking sound stimuli and emotion (Koelsch,
2010). Our previous findings also support the involvement of
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FIGURE 5 | Source localization of differences in ERPs. Differences in neuroelectric activity induced by white noise and pure tone are presented. Regions with
significantly increased neuroelectric activity responding to white noise stimulus are shown in yellow to red gradations. (A) Increased activities were found around
Brodmann area 40 in no background music (NoBGM) condition. (B) Increased activities were found around Brodmann area 31 in relaxing background music
(RelaxBGM) condition. (C) No statistically different responses were found in busy background music (BusyBGM) condition. Color bars show the locations of extreme
t-values that close to the significant level (P < 0.05, corrected for multiple comparisons). Maximum t-value and corresponding P-value are described above in
corresponding figures, and the regions of maximum difference are shown as Montreal Neurological Institute (MNI) coordinates.
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P3 in the valence determination for white noise perception
(Masuda et al., 2018). To further examine the mechanism of
reduced P3 amplitude, we performed the current source density
analysis on aversive perception related potentials. This analysis
showed significantly different neuroelectric activities between
white noise and pure tone in NoBGM and RelaxBGM, whereas
no significant difference was found in BusyBGM.

The absence of significantly different neuroelectric activity in
BusyBGM was consistent with the decreased P3 amplitude
difference in BusyBGM, whereas significantly different
neuroelectric activities were consistent with the significant
ERP amplitudes difference in NoBGM and RelaxBGM. The
increased neuroelectric activity of the parietal region in NoBGM
may have resulted from the additional process associated with
white noise, presumably resolving the sound feature (Masuda
et al., 2018). In RelaxBGM, increased neuroelectric activity was
found in the PCC. The PCC is generally believed to function
as one of the nodes in default mode network (Buckner et al.,
2008), and thus, increased activity in white noise compared with
pure tone process is unexpected. However, a report mentioned
that the PCC also plays a role in the cognitive perception
of tintius (Vanneste and De Ridder, 2012), suggesting that
the activity in the area may be involved in the perception
of discomfort auditory experience. These results suggested
that background music exert effects on process later than
300 ms, explaining why we did not find background music
effect on EPN.

Considering that the HR increase was the difference between
NoBGM and BusyBGM, HR increase could be a physiological
feature predicting reduced perception of aversiveness. Because
increased HR is associated with increased mental workload (Liu
et al., 2017), HR increase in BusyBGM may reflect increased
mental workload related to continuous auditory processing
of busy noise. This assumption fits aforementioned cognitive
capacity model. Thus, the P3 amplitude reducing effect may
be exerted by background music that accompanies an increase
in HR possibly through increased mental activity, which was
typically found in BusyBGM in this study.

Although we have discussed the results of the present study
in relation to music and possible link to music therapy in
general, there are several limitations. First, we used white noise
as aversive stimulation, although it was only shown to be
aversive relative to 1,000 Hz pure tone. Thus, we should be
careful when interpreting the findings of the present study
as a common mechanism underlying all aversive stimuli. In
addition, we used two background music, as a representative of
busy music and relaxing music. However, it is not warranted
that all music within one category will have the same effect.
In fact, RelaxBGM did not improve the mood in this study,
although it apparently prevented mood worsening. Thus, it is

inappropriate to conclude the effect of the mood improving
music based on the results of the present study. It should
also be noted that we used city noise as BusyBGM. Further
studies in this field are required to generalize the effects
of background music on affective perception. Regarding the
statistics, we reported the results of planned comparisons in
all analyses based on the suggestion that comparisons are
meaningful even when interaction was not significant (Wei et al.,
2012). Last, our study sample included four participants who
had history of music education. We included these participants
to keep statistical power, but we also confirmed that results
were largely similar even after excluding these participants
(Supplementary Material).

Overall, this study concluded that background music can
modulate affective perception via changes in neuroelectric
response to certain stimulation. We hope these findings facilitate
the optimization of music therapy and cognitive control.
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Background: Post-traumatic stress disorder (PTSD) is a neuropsychiatric affective

disorder that can develop after traumatic life-events. Exposure-based therapy is currently

one of the most effective treatments for PTSD. However, exposure to traumatic stimuli

is so aversive that a significant number of patients drop-out of therapy during the

course of treatment. Among various attempts to develop novel therapies that bypass

such aversiveness, neurofeedback appears promising.With neurofeedback, patients can

unconsciously self-regulate brain activity via real-time monitoring and feedback of the

EEG or fMRI signals. With conventional neurofeedback methods, however, it is difficult to

induce neural representation related to specific trauma because the feedback is based on

the neural signals averaged within specific brain areas. To overcome this difficulty, novel

neurofeedback approaches such as Decoded Neurofeedback (DecNef) might prove

helpful. Instead of the average BOLD signals, DecNef allows patients to implicitly regulate

multivariate voxel patterns of the BOLD signals related with feared stimuli. As such,

DecNef effects are postulated to derive either from exposure or counter-conditioning,

or some combination of both. Although the exact mechanism is not yet fully understood.

DecNef has been successfully applied to reduce fear responses induced either by

fear-conditioned or phobic stimuli among non-clinical participants.

Methods: Follows the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) guidelines, a systematic review was conducted to compare

DecNef effect with those of conventional EEG/fMRI-based neurofeedback on PTSD

amelioration. To elucidate the possible mechanisms of DecNef on fear reduction,

we mathematically modeled the effects of exposure-based and counter conditioning

separately and applied it to the data obtained from past DecNef studies. Finally, we
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conducted DecNef on four PTSD patients. Here, we review recent advances in

application of neurofeedback to PTSD treatments, including the DecNef. This review is

intended to be informative for neuroscientists in general as well as practitioners planning

to use neurofeedback as a therapeutic strategy for PTSD.

Results: Our mathematical model suggested that exposure is the key component for

DecNef effects in the past studies. Following DecNef a significant reduction of PTSD

severity was observed. This effect was comparable to those reported for conventional

neurofeedback approach.

Conclusions: Although a much larger number of participants will be needed in

future, DecNef could be a promising therapy that bypasses the unpleasantness of

conscious exposure associated with conventional therapies for fear related disorders,

including PTSD.

Keywords: PTSD, real-time functional magnetic resonance imaging, multi-voxel decoding, fMRI decoded

neurofeedback (DecNef), neural reinforcement, neuromodulation

INTRODUCTION

Post-traumatic stress disorder (PTSD) is a debilitating
condition following life-threatening traumatic events. PTSD is
characterized by four symptom clusters, namely, re-experiencing
of the traumatic event, avoidance of trauma-related stimuli,
general changes in mood and cognition, and hyperarousal
(DSM-5). While exposure therapy is one of the most effective
treatments for PTSD (Foa and Kozak, 1986; Schnurr et al.,
2007), it involves exposure to trauma-related stimuli and is
itself an excruciating process. In exchange for its effectiveness,
the distress of exposure therapy renders the patients with
difficulties in engagement and with a considerable rate of
early drop-out (i.e., 20–40% within the first 2 months of the
treatment period), which may lead to suboptimal outcomes
(Hembree et al., 2003; Schnurr et al., 2007). Furthermore,
another limitation of exposure therapy is that 30–50% of
PTSD patients do not respond to this treatment (Bradley et al.,
2005). Therefore, a novel therapy for PTSD is necessary from a
clinical perspective.

Neurofeedback is a promising alternative approach to
ameliorate PTSD symptoms without unnecessary distress.
Neurofeedback can modulate brain activity via real-time
monitoring and feedback of EEG or fMRI signals, which are
used to self-regulate brain functions. Repeatedly induced PTSD-
related brain activity during feedback session may change its
frequency of spontaneous appearance after feedback session
(Kluetsch et al., 2014; van der Kolk et al., 2016). As reviewed
in this article, the conventional neurofeedback mainly regulates
the average EEG or fMRI signals from specific brain region in a
univariate way: either up- or down-regulate the average activity
of a specific region. So far, these effects are promising, but are
yet to replace conventional therapy. Decoded Neurofeedback
(DecNef) has recently grown rapidly as a novel neurofeedback
procedure for clinical applications (Watanabe et al., 2017; Shibata
et al., 2018). Instead of the average fMRI BOLD signals, DecNef
allows patients to implicitly regulate multivariate voxel patterns

of BOLD signals which has been decoded in advance. By
targeting the multivariate patterns representing feared stimuli,
DecNef has been shown to change symptom-related brain
activity in subclinical phobia (Taschereau-Dumouchel et al.,
in submission).

Since DecNef regulates multivariate brain activity, it has three
advantages over the conventional univariate neurofeedback.
First, DecNef can regulate neural representation for specific
stimuli, which allows one to design neurofeedback to directly
intervene them. This particularly benefits the treatment of PTSD,
since traumatic episodes and the related neural representations
differ across individual patients. Second, it allows patients to
induce ideal brain activation patterns which are likely to be
observed during or after an effective exposure therapy. This
might especially benefit the exposure therapy-resistant patients.
For example, using a method called hyperalignment (Haxby
et al., 2011; Taschereau-Dumouchel et al., 2018), the exposure
therapy-resistant patients may learn to induce the neural
representations which would be observed following successful
exposure therapy, when such representations are inferred from
the “surrogate” therapy responders. Third, DecNef can infer
the causality of brain activity pattern associated with PTSD
(Watanabe et al., 2017). The change of PTSD causative brain
activities should change PTSD-related behavior. If DecNef only
changes brain activity without affecting behavior, the seemingly
PTSD causative brain activities might not be really causative.
It might just be observed as a confounder: it might arise
as a result of other true causative brain activity. In this
regard, DecNef allows one to carefully test whether the targeted
changes in brain activity accompanies the intended changes
in behavior.

Despite such advantages of DecNef, whether DecNef is
effective on actual PTSD symptoms is yet to be determined.
To determine the future direction to developing neurofeedback
for PTSD therapy, it is essential to compare the effects across
different neurofeedback strategies: EEG, fMRI neurofeedback,
and DecNef. Furthermore, to efficiently develop a novel
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treatment method based on DecNef, it is desirable to understand
the exact mechanism underlying its effects.

In this review, we first discuss recent challenges in application
of both EEG and fMRI neurofeedback to PTSD treatment as well
as state-of-art technique that can be applied to PTSD. Second, we
illustrate the potential and power of fMRI-based neurofeedback
methods for PTSD treatment including DecNef. Thirdly, we
discuss the possible mechanisms of DecNef on fear reduction.
We hope that this review will aid the researchers who try to
develop novel neurofeedback therapy on PTSD by selecting the
most promising strategy among EEG or fMRI, or DecNef.

MATERIALS AND METHODS

Systematic Literature Search
A systematic literature search was undertaken in line with
the search conducted by Reiter et al. (2016). Briefly, the
PubMed, PsychoInfo, and Cochrane databases were used on
dates between October 5 and October 24, 2018. The following
keywords were used in our search: “Neurofeedback” OR “EEG
biofeedback” OR “neurotherapy” combined by AND with
“PTSD” OR “post-traumatic stress disorder.” Case studies were
excluded. The present systematic review follows the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines. The inclusion criteria are presented in
the PRISMA flow chart (Figure 1). Neurofeedback trials were
included if they fulfilled the following criteria: (1) PTSD patients
according to relevant classification systems (e.g., DSM-IV/V
or ICD-10), (2) published in English, (3) comparing EEG or
fMRI neurofeedback effects with regard to (a) pre vs. post-
neurofeedback interventions, (b) neurofeedback vs. waiting
list, (c) neurofeedback vs. sham/active neurofeedback, and (d)
neurofeedback vs. conventional treatment. (4) Trials had to
report (a) symptom severity or (b) brain activity at the time of
the follow up. Here, a participant assigned to waiting list receives
intervention after the active treatment group. In sham feedback,
participants are provided with brain signal of another participant
or with an artificially generated signal. In active neurofeedback,
participants are provided with feedback of an alternative aspect
of brain function. Titles and abstracts were screened for eligibility
by one assessor (TC) (screening phase, n = 48). All studies not
excluded in this process were examined in detail on a full text and
included in this review independently by two assessors (KI, TC; n
= 13). All reference lists of review papers and potentially eligible
studies were reviewed to identify any additional papers. The risk
of bias in each study was assessed by the Oxford Centre for
Evidence-based Medicine, Levels of Evidence (Ellis et al., 1995).
We additionally review the state-of-art studies derived from hand
search during the systematic literature search.

Decoded Neurofeedback for PTSD
We conducted a DecNef experiment for 4 individuals with
PTSD with approval from the Ethics Committee of Osaka
Medical College. Signed, informed consent was obtained before
all procedures. Inclusion criteria were: diagnosed with DSM-
IV PTSD as determined by the Clinician-Administered PTSD
Scale, age of 20–55 years, traumatized by angry human males

(i.e., they are victims of domestic violence or child abuse), having
strong fear for passive viewing of angry face picture, which was
confirmed with a score of >60 on the self-report subjective
units of distress (SUDs). SUDs scale is continuum from 0 (no
stress) to 100 (maximum load), and 50 is regarded as strong
but barely endurable load. Exclusion criteria were: moderate
or severe head injury, and/or a current diagnosis of psychosis
or active suicidality in addition to general contraindication
to MRI. Participants were scanned in a 3T MRI scanner
(Prisma, Siemens) with a head coil at the ATR Brain Activation
Imaging Center. fMRI signals were acquired using a gradient EPI
sequence. During the experiments, we obtained 33 contiguous
slices (TR= 2 sec, voxel size= 3× 3× 3.5 mm3, 0mm slice gap)
oriented parallel to the AC-PC plane, which covered the entire
brain. We also obtained T1-weighted MR images (MP-RAGE;
256 slices, voxel size= 1× 1× 1 mm3, 0mm slice gap).

Session for Decoder Construction
We first conducted a decoding session to quantify neural
representations of traumatic stimuli, i.e., angry male-face
pictures. The decoder was constructed so as to classify the
fMRI bold signal pattern in superior temporal sulcus (STS)
evoked by angry male faces from those evoked by happy female
faces. Here, STS is known to represent facial emotions (Peelen
et al., 2010). A modified continuous flash suppression (CFS)
method was applied to render face presentation subjectively
less distressing. The whole experiment comprised of 88 trials
of each condition and was subdivided in 11 runs of 5min
duration. Whole exemplars (i.e., 16 exemplars) were shown
once in each run in a randomized order. The obtained BOLD
signals were preprocessed with mrVista software developed at
Stanford University (http://vistalab.stanford.edu/software/). The
functional images went through 3D motion correction without
spatial and temporal smoothing. Then, the images went through
rigid-body transformations to be aligned to the structural image
for each participant. The BOLD signals from only the gray
matter were extracted using a gray matter mask. Following
preprocessing, the BOLD signals from the STS was further
processed in the following steps: After removing a linear trend,
the time-course in each voxel was z-score transformed within
each run to minimize the baseline differences across the runs.
The BOLD signal was averaged across 3 TRs which corresponded
to the image presentation period at the maximum contrast
(6 s). The signals were shifted by 6 s (3TRs) to compensate for
the hemodynamic delay. The preprocessed fMRI signals from
the STS were then used to construct a decoder to classify the
activation patterns for angry vs. neutral faces. We used sparse
logistic regression (SLR) (Yamashita et al., 2008) to automatically
select the voxels that were relevant for classification. We trained
the decoder using 176 data points obtained from 176 trials (across
all 11 fMRI runs). The decoder was used in the following DecNef
training to evaluate the trial-by-trial likelihood that participants
could induce brain activation patterns for the angry faces.

DecNef Session
DecNef was conducted for 3 consecutive days following previous
procedures (Koizumi et al., 2016; Taschereau-Dumouchel et al.,

Frontiers in Human Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 233150

http://vistalab.stanford.edu/software/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Chiba et al. Decoded Neurofeedback for PTSD

FIGURE 1 | PRISMA flow-chart illustrating the results of the search strategy.

2018). During the DecNef training stage of our experiment, STS
neural patterns of activity related to angry male faces occurred
repeatedly, without the participants’ awareness of their doing
so. Such, successful activation of this multi-voxel pattern was
reinforced with monetary reward. On each day, participants went
through 11 fMRI runs with 15 trials each (20 sec per trial).
Each trial had a sequence of an induction period (6 s), a fixation
period (7 s), a feedback period (1 s), and an inter-trial interval
(6 s). Participants were instructed to “somehow” regulate their
brain activity during induction period so as to maximize the
feedback score. Feedback was calculated based on how similar
the induced neural pattern was to that related to angry faces.
Feedback was presented as a size of a disc after 6 s of the fixation
period following the induction period. A hemodynamic delay
of 6 s was taken into account. Participants were not informed
as to what the feedback score represented (that is, likelihood
of angry face activation in the STS). The size of the disc was
determined as follow: First, the functional images obtained from
Induction period underwent 3D motion correction with the
Turbo BrainVoyager software (Brain innovation). Second, we
extracted the time-course of BOLD signals from the voxels
selected during decoder construction (see decoder construction),
and shifted the signals by 3TRs (i.e., 6 s) to adjust for the
hemodynamic delay. Third, after removing a linear trend, the
BOLD signal time-course was z-score transformed for each voxel
using the BOLD signals obtained during the 20 s period following
the initial 10 s period from each fMRI run. Fourth, the processed
BOLD signals for each voxel were averaged across the 3 TRs

corresponding to the induction period from each trial. Lastly,
we calculated the likelihood that the patterns of averaged BOLD
signals represented angry faces using a decoder constructed with
the data from decoder construction session. The disc size (i.e.,
radius) was proportional to the calculated likelihood of angry
faces (0–100%). The feedback disc was presented inside a ring
with 5◦ radius, which indicated the possible maximum size of
the disc. After each run, texts were presented on the monitor to
inform the amount of monetary reward earned from the current
run as well as the accumulated amount from all the completed
runs on that day. The reward corresponded to the sum of trial-by-
trial likelihoods of angry faces, scaled to yield maximum amount
of 300 yen (US $2.5) per run. After completing DecNef training
each day, participants received the total monetary reward in cash.

The Mechanism of Decoded

Neurofeedback
We hypothesized that the DecNef effects on fear reduction
were either exposure-based (EB) or depend more on counter
conditioning (CC), two common fear reduction effects achieved
with the behavioral procedures to present feared objects alone
without aversive outcome or to associate feared objects with
positive outcome, respectively (Dickinson and Dearing, 1979;
Foa and Kozak, 1986). To clarify the mechanism underlying
DecNef, we mathematically modeled the effects of EB and CC
separately, on the basis of the Rescorla-Wagner model (Rescorla
and Wagner, 1972), and synaptic plasticity rules (Hebb, 1949).
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Based on this framework, we re-analyzed data fromKoizumi et al.
(2016) and Taschereau-Dumouchel et al. (2018).

Rescorla-Wagner Model
In the Rescorla-Wagner model, degree of learning is quantified
in terms of associations between conditioned (CS) and
unconditioned (US) stimuli. Here, CS usually means emotionally
neutral stimuli which will be paired with (CS+: target stimuli) or
not paired with (CS–: control stimuli) US in the fear conditioning
session. US is itself aversive stimuli such as pain or loud noise.
After presented with US, CS+ presentation alone would evoke
fear response, which are not observed before paired with US. This
model casts the conditioning processes into discrete trials, during
which stimuli may be either present or absent. This model defines
∆VX as the change in the strength of the association between the
CS (labeled “X”) and the US:

∆Vn+1
X = αXβ(λ − Vtot)

Vn+1
X = Vn

X + ∆Vn+1
X

where α is the salience of X, β is the learning rate parameter for
the US, λ is the maximum conditioning possible for the US, and
Vtot is the total associative strength of all stimuli present, that is,
X plus any others. That is, (λ−Vtot) indicates the prediction error
for the US. Vx is the current associative strength of X and is used
to predict the associative strength of the next trial Vn+1

X using the

expected change in the association ∆Vn+ 1
X .

Estimation of Effect Based on Simple Exposure
In exposure-based therapy, Vn

X can be considered as prediction
error while αX can be considered as likelihood for the target
stimuli during induction period. Overall, part of ∆Vn+1

X results
from EB effect is calculated as follows:

∆Vn+1
X(EB)

= −β threshold
(

Ltarget(n) − Lcontrol(n)
)

Vn
X

∆Vn+1
X(EB)

= −βsp threshold
(

Ltarget(n) − Lcontrol(n)
)

Vn
X

where the threshold(X) = X if X > 0, and 0 otherwise. The βsp

is the parameter for synaptic plasticity, that is, the learning rate
of conditioning with positive value. Ltarget(n) is the likelihood
for the target information at the n-th trial, while Lcontrol(n) is
the likelihood for the control information at the same trial.
The extinction learning generally occurs after repeated exposure
(Milosevic and Radomsky, 2008; Maren et al., 2013), therefore
the expected change in the association ∆Vn+1

X through single
exposure trial is postulated to be small in comparison with the
strength of the association Vx. According to this postulation,
Vn
X can be approximated to be constant throughout the session.

Given the linear decrease in Vx across exposure therapy
(Milosevic and Radomsky, 2008), we also assumed that the
∆VX(EB) across trials are almost constant when the likelihood is
higher than the chance level. Thus, the equation above can be
approximated as follows:

∆Vn+1
X(EB)

= −β ′
spH(Ltarget(n) − Lcontrol(n))

H(X) is the Heaviside step function, which is 1 if X > 0 and 0
otherwise. Overall, to estimate EB in line with Rescorla-Wagner

model, we assumed that EB effect is linearly proportional to the
total number of trials in which induction of brain activation
pattern resemble the one of the target stimuli. The trial was
defined as successful when likelihood of brain activation pattern
for target is higher than chance level, that is, higher than 50%
in Koizumi et al. (2016), and higher than the likelihood for the
control animal category in Taschereau-Dumouchel et al. (2018).
Thus, DecNef effect based on EB throughout the session is
approximated as follows:

∑

i
1V i

X(EB) = −β ′
sp

∑

i
H(Ltarget(i) − Lcontrol(i))

Estimation of Effect Based on Counter Conditioning
Regarding the CC effect, the difference between Reward and
Vn
X can be considered as prediction error. To estimate CC, we

assumed that the trial has a fear reduction effect when the brain
activation pattern for target was associated with a reward. The
target brain activity is assumed to be induced when the likelihood
of brain activation pattern for target was higher than chance level;
i.e., 50%. We also assumed that the CC effect is a product of the
two factors, namely success in induction of the neural activity
pattern for the target stimuli and the amount of the reward.
Because both factors are in proportion to likelihood for target
pattern, the part of 1Vn+1

X resulting from CC effect is calculated
as follows:

1Vn+1
X(CC)

= −β1 threshold
(

Ltarget(n) − 0.5
)

(Reward− Vn
X)

where Reward is κ threshold
(

Ltarget(n) − 0.5
)

. The κ is a
coefficient of the reward. Under the assumption that VX is much
smaller than Reward, the equation above can be approximated
as follows:

1Vn+1
X(CC)

= −β1κ threshold
(

Ltarget(n) − 0.5
)∧2

Thus, DecNef effect derived from CC throughout the session is
calculated as follows:

∑

i

1V i
X(CC) = −β1κ

∑

i

threshold(Ltarget(i) − 0.5)∧2

Separate Estimation of the Effects by EB and CC
Finally, to separately estimate the effect of EB and CC on fear
reduction, we assumed that the DecNef effect is weighted linear
summation of VX(EB) and VX(CC) using mixed effect model to
adjust the clustering from study type, that is either experimentally
conditioned fear (Koizumi et al., 2016) or naturalistic animal
phobia (Taschereau-Dumouchel et al., 2018). The mixed effect
was used to adjust the difference in strength between the
experimental vs. natural association with fear. Tests for absence
of influential data points and independence did not reveal any
violation of the assumptions for mixed effect models. The total
effect is given as follows:

VX(amg) = βEB VX(EB)
′
+ βcc VX(CC)

′
+ (1|paper)

VX(EB)
′
= VX(EB )/βsp

′

VX(CC)
′
= VX(EB )/β1κ
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where VX(amg) is a subtraction of amygdala response to control

stimuli at post-DecNef from those to target stimuli at post-
DecNef. The βEB and βCC is the coefficient of EB effect and CC
effect, respectively.

RESULTS

Thirteen published articles were identified that met the
criteria for this review. Ten studies adopted the EEG
neurofeedback approach, while 3 studies adopted the fMRI
neurofeedback approach.

Neurofeedback
EEG Based Neurofeedback on PTSD
EEG neurofeedback was performed to alter the power spectrum
of certain filtered frequencies of activity. In line with that for
other anxiety disorders (Hammond, 2005a,b, 2011; Schoenberg
and David, 2014), EEG neurofeedback for PTSD is mainly used
to regulate the power of either alpha waves alone or of both
alpha and theta waves. Alpha activity is targeted because it is
generally associated with a calm, relaxed state. PTSD patients
have both decreased power and accelerated frequency of the
alpha rhythm (Jokić-begić and Begić, 2003; Wahbeh and Oken,
2013). Six studies were designed to up-regulate the power of alpha
rhythms either by combining rewards with alpha wave (Gapen
et al., 2016; van der Kolk et al., 2016; Askovic et al., 2017) or by
alpha desynchronization (Kluetsch et al., 2014; Nicholson et al.,
2016; Ros et al., 2017). Alpha/theta training has been adopted
in three studies (Peniston and Kulkosky, 1991; Peniston et al.,
1993; Smith, 2008). Contrary to typical EEG neurofeedback for
PTSD which targets alpha and/or theta waves, several studies
have instead adopted sensorimotor rhythm (SMR) training (Pop-
Jordanova and Zorcec, 2004; Askovic et al., 2017). SMR training
was associated with enhanced attention performance and less
motor activity (Sterman, 1996; Egner and Gruzelier, 2001). In
one of these studies (Askovic et al., 2017), the therapists selected
a neurofeedback protocol to specifically target each individual’s
specific maladaptive EEG patterns. Probably the most reliable
empirical evidence for the success of EEG neurofeedback for
PTSD came out from a study, reported above (van der Kolk et al.,
2016), that was performed in the randomized, waitlist-controlled
manner (van der Kolk et al., 2016). In this study, individuals with
chronic PTSD in the neurofeedback group, compared with the
control group, showed significant PTSD symptom improvement,
as well as improvement in affect regulation capacities as
measured by the Inventory of Altered Self-Capacities.

fMRI-Based Neurofeedback on PTSD
Conventional fMRI neurofeedback for PTSD was mainly used
for modulation of amygdala activity levels (Table 1). Two studies
downregulated amygdala activity during symptom provocation
(Gerin et al., 2016; Nicholson et al., 2017a,b), while one study
upregulated amygdala activity during happy emotion induction
(Zotev et al., 2011). In one of these studies (Gerin et al., 2016),
2 of 3 patients had clinically meaningful improvement in PTSD
severity as measured by CAPS, while the third patient had almost
no improvement. In another of these studies (Zotev et al., 2011),

a consummate technique called emotion regulation was used. In
this technique, participants learn to upregulate their amygdala
activity while recalling happy autobiographical memories. This
technique was originally developed in the research field on
depression, in which it was found to show sizable effects with
a double-blind placebo control design (Young et al., 2017). In
Zotev’s PTSD study, however, the effect was found modest.

Neurofeedback Using EEG Fingerprint
EEG is mobile and low cost but with limited spatial resolution,
while MRI has a high spatial resolution but with low accessibility
and low cost-effectiveness. To overcome these limitations of both
equipments, simultaneous EEG-fMRI was introduced to estimate
the amygdala fMRI-bold signal from EEG data, which is termed
the amygdala electrical fingerprint (Keynan et al., 2019). Based
on this fingerprint, amygdala activity was calculated using EEG
only during the neurofeedback session, which was fed back to
the participants.

This procedure is applied successfully to stress management in
healthy soldiers and its effectiveness was demonstrated in double
blinded manner. In comparison with participants assigned to
either control neurofeedback group or with no neurofeedback
group, participants assigned to experimental group showed
significant reduction in alexithymia and faster emotional stroop
which was regarded as activating a resilience process.

Decoded Neurofeedback (DecNef) for Fear

Memory
DecNef can be used to modify brain activity specific to different
pathogeneses. Specifically, using this approach the multi-voxel
activation patterns of fMRI signal within specific region of
interests (ROIs) that represent designated mental experiences
and states can be targeted. Figure 2 shows a conceptual schema
of DecNef. Prior to DecNef training, participants first go through
a fMRI decoder construction session. In this session, fMRI multi-
voxel patterns for specific stimuli (e.g., red circle and green
circle) are recorded. This fMRI signal is subsequently examined
by a machine learning technique to decode brain activity on
the basis of the presented stimuli (e.g., to decode the two fMRI
signal patterns that correspond to when viewing a red and a
green circle, respectively). This decoded multi-voxel pattern is
used to create the target for induction in the participants brain
during subsequent DecNef training in the MRI scanner (e.g., the
target might be to induce brain activity related to a red, rather
than a green circle). During DecNef training, real-time fMRI
signal is processed immediately and the similarity between this
signal and that of the target, within a predefined brain activity,
is calculated online. Roughly speaking, feedback is given based
on this similarity and participants aim to unconsciously and/or
volitionally manipulate their own brain activity so that this
similarity is increased. The feedback approximately represents
the “similarity” between the target fMRI signal pattern evoked
by the real stimulus (e.g., red circle or animal pictures) and a
current fMRI signal pattern observed in the absence of the real
stimulus. In this article, we use the term “similarity” for the
sake of simplicity. Rigorously, however, the feedback is not the
similarity of a current fMRI signal pattern for specific stimuli.
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TABLE 1 | Applications of neurofeedback for PTSD patients.

References Sample Design

N %male Age (years) Medicated

(yes/no)

Randomized

(yes/no)

NF approach Control

group

Risk

of bias

Outcome measures

and measures used

DecNef Chiba,

this manuscript

4 0 40 (mean) Yes, n = 3 No Multivariate pattern

for angry face

No C CAPS:97.8–>54.5

f-MRI-nf Zotev et al., 2018 23 (15

NF vs. 8

sham)

100 30.8 vs. 36.8

(mean)

Yes Amygdala

upregulation during

a happy emotion

induction

sham B CAPS: 55–>41

Nicholson et al.,

2017a,b

10 40 49.6 (mean) Yes, n = 9 No Amygdala

downregulation

No C A shift in amygdala

complex connectivity

Gerin et al., 2016 3 100 37.3 (mean) Yes, n = 3 No Amygdala

downregulation

No C CAPS: 65–>37

EEG-nf Askovic et al.,

2017

2 100 31(mean) Yes, n = 2 No Enhance either the

SMR or alpha

rhythm

No C HTQ:3.15–>1.85

HSCL-D: 3.30>2.1

HSCL-A: 3.2–>1.95

van der Kolk et al.,

2016

28 89 46 (mean) Yes, n = 16

(NF) n = 10

(WL)

Yes Enhance alpha

activity

WL B NF:

CAPS:80.1–> 44.1

DTS:67.3–>55.7

WL:

CAPS:75.2–> 65.8

DTS:63.0–>60.6

Nicholson et al.,

2016

21 14 39.9 (mean) Yes, n = 11; No Alpha

desynchronization

C A shift in amygdala

complex connectivity

Ros et al., 2017 21 14 39.9 (mean) Yes, n = 11; No Alpha

desynchronization

No C Decrease in TAC

correlated with

increases in Hurst

exponent at the

feedback channel

Increase in

Alpha amplitude

Gapen et al., 2016 17 12 32–64

(Range)

Yes, n = Yes (T4-P4

or T3-T4)

Enhance alpha

activity

Active DTS: 69.14–>49.26

Kluetsch et al.,

2014

21 14 39.9 (mean) Yes, n = 11;

no, n = 10

No Alpha

desynchronization

No C A shift in functional

connectivity

Smith, 2008 10 100 26–63

(Range)

Yes, n = 3 No Two phased: (1)

bipolar uptraining

(15–18Hz and

12–15Hz) + theta

(4–7Hz) suppression

and (2) alpha/theta

(5–8Hz) training

followed by bipolar

uptraining

No C PTSD induced

symptoms of

depression and

attention measured by

HAMD and TOVA

Pop-Jordanova

and Zorcec, 2004

10 70 9 (mean) No No SMR No C Skin electric resistance

Brainwave changes

PTSD symptoms

Peniston et al.,

1993

20 100 37.2 (mean) Not reported No Alpha/theta No C Synchronization,

Brainwave amplitude

changes,

PTSD symptoms

reported by monthly

telephone contact

Peniston and

Kulkosky, 1991

29 (15

NF vs.

14 TAU)

100 36.1 vs.

37.25 (mean)

Yes Yes Alpha/theta TAU B MMPI-indexed

personality changes

Medication

consumption PTSD

symptoms reported by

monthly telephone

contact

TAC, Thayer Activation Checklist; NF, neurofeedback condition; WL, waitlist condition; CAPS, Clinician-Administered PTSD Scale; HTQ, Harvard TraumaQuestionnaire; HSCL-D, Hopkins

Symptom Checklist Depression Scale; HSCL-A, Hopkins Symptom Checklist Anxiety Scale; DTS, the Davidson Trauma Scale; HAMD, Hamilton Depression Rating Scale; TOVA, Test

of Variables of Attention; SMR, The sensorimotor rhythm; MMPI, Minnesota Multiphasic Personality Inventory; TAU, Treatment-as-usual.
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The feedback is based on how much the decoder classifies the
current fMRI signal into a target class, that is, likelihood of the
target class. More concretely, the decoder was constructed to
identify a stimulus (e.g., a snake picture) that is presented to a
participant among different stimuli (e.g., animal pictures other
than the snake) based on fMRI signal patterns. The feedback
reflects the output of the decoder that represents likelihood of
the target stimulus. Consequently, the feedback could be derived
from hundreds or even hundreds of millions of brain activity
patterns, and is an abstract index of a specified information by
the decoder. This is a unique characteristic of DecNef compared
with other causal methods such as optogenetics reproducing only
once-occurred brain activity.

DecNef has been applied to manipulations of brain activity
patterns corresponding to various mental states such as
perceptual learning (Shibata et al., 2011), face preference (Shibata
et al., 2016), meta-cognition (Cortese et al., 2016), color-
orientation association (Amano et al., 2016), and reduction in
physiological fear responses (Koizumi et al., 2016; Taschereau-
Dumouchel et al., 2018).

During DecNef for reduction in physiological fear responses,
participants could be trained to associate with a reward the
decoded brain representation of given traumatic/distressful
events. This approach might be more effective than conventional
neurofeedback because it is somewhat akin to exposure therapy,
which is the most effective therapy for phobia and PTSD, but
does not cause the conscious awareness of the fearful event that
so many people find so aversive during exposure therapy.

Recent studies have shown that DecNef can reduce
physiological fear responses to both fear conditioned stimuli
(Koizumi et al., 2016) and feared animals (Taschereau-
Dumouchel et al., 2018; Figure 3). There was particularly
strong evidence for the effect of DecNef in the study
with feared individuals, because this study utilized a
double-blind, placebo-controlled, randomized paradigm
(Taschereau-Dumouchel et al., 2018).

In the study where DecNef was used to reduce fear to
fear conditioned stimuli (Koizumi et al., 2016) the multi-voxel
activation pattern of activity related to the fear conditioned
stimuli was paired with a reward. As a result, a significant
reduction of participants’ physiological fear response to these
stimuli was observed. Specifically, in this study participants were
told that during each trial of the DecNef training they should
“somehow” self-regulate their neural activity. Unbeknown to
the participants, the target was for them to induce the multi-
voxel pattern of fMRI signal related to one of the two fear
conditioned stimuli. On each trial, if the participant successfully
induced the target pattern of fMRI signal, then they received a
large reward. Thereby, via trial and error, participants learned
to induce this particular pattern of neural activity, resulting in a
reduced fear response to this stimulus when it was presented after
DecNef training. However, this approach contains a fundamental
problem for clinical application. Using this approach, prior to
DecNef training, the target multi-voxel pattern of fMRI signal
has to first be determined in a decoding session. This requires
the explicit and repeated presentation of the target stimulus. In
a laboratory setting, it is possible to decode the fMRI signal

patterns for the to-be-feared conditioned stimuli a priori; i.e.,
ahead of fear conditioning. However, such a priori decoding is
difficult in the clinical setting where patients will come in with
the fear associations already strongly formed. Exposure to fear-
relevant stimuli during the decoding session is likely to be highly
distressful for the patients with phobia/PTSD.

This problem was overcome in a study by Taschereau-
Dumouchel et al. (2018). Using a method called hyperalignment,
the relevant neural representations of feared animals were
inferred based on data from “surrogate” participants. Briefly,
in an fMRI experiment, participants were presented with
images of multiple animals and objects. In order to create
the decoder of an animal feared by a designated participant,
hyperalignment was used to create a “common representational
space” using the neural representations of the non-fearful
animals. Through this common space, it was then possible
to use only the data of the “surrogate” participants to train
a multi-voxel decoder of the feared animal. As such, the
decoders could be trained without presenting the designated
participant with aversive pictures. By subsequently using these
decoders in a DecNef training, a significant reduction in
the physiological fear response to the feared animals was
found (Figure 3).

In summary, participants unconsciously induced brain
activity for stimuli that they feared. Of importance, in contrast to
conventional exposure-based therapy, these procedures evoked
no distress in the participants.

Decoded Neurofeedback for PTSD: A Preliminary

Result
Recently, we conducted a DecNef experiment for 4 individuals
with PTSD. After DecNef training, all 4 patients exhibited a
clinically significant reduction (Krystal et al., 2011) (10-point
decrease) in scores on the Clinician-Administered PTSD scale
for DSM-4 (CAPS-4), which represents PTSD severity. Figure 4
shows the CAPS total scores before and after the intervention.
After the intervention, 1 patient no longer even met the PTSD
diagnosis criteria, which is defined as a total score of below 20 on
CAPS (Weathers et al., 2001).

Mechanisms of Decoded Neurofeedback

(DecNef) Effect
DecNef seems to be a promising approach to treat fear-
related diseases such as anxiety disorder, phobia, and PTSD.
However, how DecNef reduces the fear responses is not
fully understood. Two possible mechanisms have been
previously postulated (Koizumi et al., 2016; Taschereau-
Dumouchel et al., 2018), namely exposure-based (EB)
effect and counter conditioning (CC) effect. The EB effect
is consistent with the idea in conventional exposure-based
therapy. That is, simple exposure to feared target under
the safe condition reduces fear response to the target. This
idea is also consistent with fear extinction learning. The
CC effect is to change the association of the stimuli with
fear by associating the stimuli with a reward (Dickinson
and Dearing, 1979). That is, presentation of fearful stimuli
together with reward reduces the fear response to the target.
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FIGURE 2 | Schema of decoded neurofeedback. The participant, in the scanner, is instructed to “somehow” regulate their brain activities so that the feedback is

maximized. Then, “somehow” manipulated brain activity pattern are processed as a fMRI signal and compared with target brain activity pattern. Finally, the

participants are presented with a disk whose size is in proportion to the likelihood, which is also in proportion to the amount of reward the participant will gain from

that trial. This cycle is then repeated. The figure is adopted from Yamada et al. (2017), with no permission required.

FIGURE 3 | DecNef effects on fear reduction in (A) fear-conditioned stimuli and (B) feared animals. The response to target stimuli was reduce compared to control

stimuli in both (A) fear-conditioned stimuli and (B) feared animals as measured by both amygdala activity and skin conductance response (SCR). Error bars represent

standard errors. (A) Modified from Koizumi et al. (2016), with permission from the authors. (B) Modified from Taschereau-Dumouchel et al. (2018), with no permission

required. *p < 0.05.
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FIGURE 4 | DecNef effects on PTSD amelioration. PTSD symptom cluster

(i.e., re-experiencing, avoidance, and hypervigilance) and total severity scores

as measured by the past week version of the CAPS-4. The re-experiencing

symptoms and hypervigilance symptoms, as well as total PTSD severity at pre

DecNef session reduced significantly compared at post-DecNef session. Error

bars represent standard errors.

This effect is known to be larger than simple exposure
effect (Newall et al., 2017).

In order to dissociate the effects of EB from those of CC
on fear reduction via DecNef, we mathematically modeled the
DecNef effects as those derived from EB and CC separately,
on the basis of Rescorla-Wagner model and synaptic plasticity
rules. Briefly, we assumed that EB effect is linearly proportional
to the numbers of the trials in which the target activity pattern
was successfully induced (likelihood above chance). We also
assumed that CC effect of each trial is proportional to the
induction likelihood of the target pattern multiplied by the
amount of reward, which the participant obtains the trial.
This model can predict the DecNef effect (βEB = −0.016,
p = 0.0069, df = 28, βCC = 0.014, p = 0.0017, df =

28) with a non-significant estimated intercept for the paper
(1|paper = −0.692, p = 0.55, df = 28). The predicted values
from the model were correlated with the experimental values
(r = 0.54, p = 0.0013; Figure 5). Since negative value of
VX(amg) indicates the reduction of physiological reactivity to

target stimuli, the smaller value of beta indicates that the
corresponding variables are more effective. Therefore, this result
suggests that EB effect, the negative coefficient, is the key
component for DecNef effect on the reduction of fear response
observed fromKoizumi et al. (2016), and Taschereau-Dumouchel
et al. (2018). The VX(EB) and VX(CC) have a significant
effect only when data from two studies were combined. No
statistically significant effect has been observed for them from
a single study. With each study, the predicted values from the
model were not significantly correlated with the experimental
values [r = 0.36, p = 0.17 for Koizumi et al. (2016); r
= 0.36, p = 0.16 for Taschereau-Dumouchel et al. (2018)],
however, the effect sizes were of intermediate magnitude, in the
direction expected.

FIGURE 5 | Comparison between predicted value and experimental value of

Amygdala reactivity post-DecNef (target–control). Black dot indicates the

individual data from Koizumi et al. (2016) while the white dot indicates the

individual data from Taschereau-Dumouchel et al. (2018).

DISCUSSION

We reviewed current status of neurofeedback trials for PTSD
amelioration intended to be informative for neuroscientists in
general as well as practitioners planning to use neurofeedback as
a therapeutic strategy for PTSD. Despite promising results
are derived from both EEG and fMRI neurofeedback
(Table 1), the efficacies of these approaches have not yet
been warranted.

We show preliminary data indicating that DecNef ameliorated
PTSD symptoms through 3 days of feedback training. Although
tentative, this result was comparable to conventional exposure
therapy and conventional neurofeedback approach. Together
with a short intervention period required, the results so far
are encouraging to suggest that DecNef could be a promising
procedure to alleviate actual PTSD symptoms. In the future, a
larger sample of participants and a double-blind placebo control
design are needed to demonstrate the effectiveness of this novel
method for treating PTSD.

To further clarify the underlying mechanisms of DecNef,
we demonstrated that the previously reported effect of DecNef
in fear response reduction (Koizumi et al., 2016; Taschereau-
Dumouchel et al., 2018) is estimated by the amount of successful
induction of the target brain activity patterns. Whether the
predominant contribution of EB effect is intrinsic to DecNef or
specific to the previous two studies awaits further investigation.
For example, it is worth testing the possibility that the effect of
CC became noisier in the two studies because of the temporal
delay of reward by several seconds. Here, we assumed that
the linear term of the degree to which the targeted neural
representation is successfully induced (i.e., likelihood for target
pattern) corresponds to EB effects, while the quadratic term
corresponds to counter conditioning effects. Although these
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assumptions are tentative, the results still hold that the DecNef
effect in fear reduction is explained by the likelihood for
successful induction of activation pattern linearly rather than
by the quadratic polynomial of it. The current model should be
applied to a much larger sample size for further validation in a
future study.

In clinical application, DecNef has a limitation in that
it can induce only specific brain activation patterns which
can be decoded via multivariate pattern analysis. However,
DecNef can directly access the representation for feared stimuli
without eliciting conscious aversive experience if combined
with procedures such as hyperalignment or CFS. This means
that DecNef allows patients to be implicitly exposed to
extreme traumatic stimuli with little distress, which could be
advantageous to conventional exposure based therapy which can
deal with only moderate traumatic stimuli.

In addition to DecNef, three promising alternative approaches
have been proposed in research areas other than PTSD. First,
conventional univariate fMRI-based neurofeedback can be used
more effectively with deep understanding of disease. With
deep understanding of Major depressive disorder, Young et al.
demonstrated its efficacy utilizing a double-blind, placebo-
controlled, randomized clinical paradigm (Young et al., 2017).
Patients with depression show blunted amygdala hemodynamic
activity to positive stimuli, and amygdala engagement appears
to be critical for emotional processing and responding to both
negative and positive stimuli. Based on these knowledges, they
increased the amygdala’s hemodynamic response to positive
memories in patients with depression. Specifically, participants
were instructed to retrieve positive memories while attempting
to increase the hemodynamic activity in the left amygdala which
was feedback to the participant as a blue bar (Young et al., 2017).
This neurofeedback significantly decreased depressive symptoms
and increased the percent of specific memories recalled on an
autobiographical memory test. Second, EEG-fingerprint has been
shown to be a feasible approach (Keynan et al., 2019). One of
the fundamental problems in applications of neurofeedback for
PTSD treatment arises from equipment characteristics: EEG is
mobile and low cost but with limited spatial resolution, while
MRI has a high spatial resolution but with low accessibility
and low cost-effectiveness. To overcome these limitations, EEG-
fingerprint technique enables us to estimate the amygdala fMRI-
bold signal from EEG data. It can confer a participant stress
resilience (Keynan et al., 2019). In the future, prospective cohort
study may be needed to verify the effectiveness of this novel
method for preventing PTSD development. Lastly, Functional
Connectivity Neurofeedback (FCNef) (Fukuda et al., 2015;
Yamashita et al., 2017) has been applied to patients of major
depressive disorder and schizophrenia, and autistic participants,
and its preliminary but encouraging effects have been shown

(Yamada et al., 2017). Instead of brain activity patterns in
specific region, FCNef manipulates the functional connectivity
which is defined as synchronicity of activation between spatially
apart two brain regions. FCNef allows patients to induce brain
activity so as to normalize disease specific resting state functional
connectivity patterns which are objectively determined using
machine learning technique (Yahata et al., 2016, 2017; Yamada
et al., 2017). Further development of these alternative approaches
as well as of DecNef should bring more effective treatment
options for wider clinical populations.

CONCLUSION

In this review, we discussed recent advances in neurofeedback
therapy for PTSD and presented the findings of a DecNef
experiment that we conducted on patients with this disorder.
While neurofeedback therapy is still in the initial stages of
development, approaches such as DecNef have the potential
to provide an alternative to the conventional method of
PTSD treatment by preventing PTSD patients from feeling
distress during the course of treatment. One limitation of this
review is that since it is the dawn period of neurofeedback
development, we cannot draw a conclusion from current
literature what type of neurofeedback is most promising for
PTSD amelioration. However, in the future, using neurofeedback
approaches such as DecNef may allow for more targeted
pathogenesis-based treatment of a variety of other psychiatric
disorders as well.
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Background: Flow states are considered a positive, subjective experience during an

optimal balance between skills and task demands. Previously, experimentally induced

flow experiences have relied solely on adaptive tasks.

Objective: To investigate whether cathodal transcranial direct current stimulation (tDCS)

over the left dorsolateral prefrontal cortex (DLPFC) area and anodal tDCS over the right

parietal cortex area during video game play will promote an increased experience of

flow states.

Methods: Two studies had participants play Tetris or first-person shooter (FPS) video

games while receiving either real tDCS or sham stimulation. Tetris recruited 21 untrained

players who infrequently played video games while the 11 FPS participants played FPS

frequently. Flow experience was assessed before and after stimulation.

Results: Compared to sham stimulation, real stimulation increased flow experience for

both untrained Tetris and trained FPS players. Improved performance effects were only

seen with untrained groups.

Conclusion: Cathodal and anodal tDCS over the left DLPFC and right parietal areas,

respectively may encourage flow experiences in complex real-life motor tasks that occur

during sports, games, and everyday life.

Keywords: flow, psychophysiology, tDCS, neuromodulation, decision making

INTRODUCTION

Flow, or optimal experience is a “holistic response” which results from a harmony found between
all the states of consciousness and the individuals’ skills matching their goals (Csikszentmihalyi,
1990). According to Csikszentmihalyi’s (1990, 1997) flow theory, the flow state relates to the skill
set perceived to be possessed by the individual relative to the perceived challenges of the activity.
Challenges can be considered as “opportunities for action” thus flow is produced by any situation
that requires skill (Csikszentmihalyi and Nakamura, 1999; Nakamura and Csikszentmihalyi, 2014).
One of the leading neurocognitive theoretical models of flow purported by Dietrich (2004)
denotes a state of transient hypofrontality, which enlists the full support of the implicit system
to execute a task at optimal output (maximum skill/maximum efficiency) while the majority
of the online executive function of the prefrontal cortices are inhibited (Dietrich, 2004, 2006).
Implicit memory has been identified as a key functional region in flow states as it reduces verbal-
analytical involvement in motor control by encouraging limited dependence on working memory
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(Masters, 1992; Maxwell et al., 2001; Liao and Masters, 2002)
enabling performance with higher neural efficiency than explicit
motor tasks relying on working memory (Zhu et al., 2011).
Whereas, the automaticity reached in implicit memory is fast,
effortless and free from distraction (Shiffrin and Schneider, 1977).

Specifically, the left dorsolateral prefrontal cortex (DLPFC)
has been shown to modulate working memory (Barbey et al.,
2013). Sharing Brodmann’s area 8 (BA8) and close proximity to
the frontal left is the medial prefrontal cortex (MPFC) which has
been associated with self-monitoring and reflective processing
employed during explicit processes which limit the efficiency of
the system (Shiffrin and Schneider, 1977; Gusnard et al., 2001;
Northoff et al., 2006; Yarrow et al., 2009). More recently, Ulrich
et al. (2014) identified certain neural underpinnings that help
explain part of the flow paradigm, in particular, a decrease in
frontal activity around the MPFC.

Furthermore, the flow system is proposed to be a reflexive
system guided by the preceding input (Dietrich, 2003). Therefore,
it is believed that a basic level of skill acquisition is needed
to have a flow experience, as the implicit system requires a
series of learnt specialized and independent response patterns
to output (Csikszentmihalyi and Csikszentmihalyi, 1988). These
automated stimulus response procedures are believed to require
many hours of highly dedicated practice. Learning of automated
responses takes time because of the limited ability of the explicit
working memory to transfer specialized and reflexive response
patterns to the implicit system due to capacity restrictions
(Mishkin et al., 1984; Dietrich, 2004). Experts are expected to
have more automaticity available as the implicit system requires
a series of specialized and independent response patterns to
output, free from buffering other properties of the information
in a higher order representation (Masters, 1992; Ohlsson, 2012).
Flow is considered to increase in intensity on the continuum
of experiential quality of the activity as the participant learns
to utilize more of their dedicated facilities required for the task
(Csikszentmihalyi and Csikszentmihalyi, 1988).

It has been shown that the brain makes use of an internal
model which provides a sensorimotor representation of oneself
with the world around (Jordan, 1996). Forward and inverse
models can be utilized to explain the role of implicit processing
by identifying the role of the network connecting the cerebellum,
parietal and frontal regions to explain this control of high level
processes such as decision making (Ito, 2008). These models
consider that the prefrontal regions construct the mental model,
but this mental model, used to explain and anticipate reality,
exists in the parietal regions (Penfield and Perot, 1963), enabling
the prefrontal region to be bypassed (Atherton et al., 2003; Chen
et al., 2003). In one of the few neuroimaging studies on flow, an
increase in activation was shown in the parietal regions as well as
a decrease in prefrontal activity during a math task (Ulrich et al.,
2014). Additionally, it has been shown that implicit bottom-up
visual attention receives greater control from the parietal regions
whereas top down control of more explicit processes are related
to the frontal regions (Li et al., 2010). Furthermore, a long-range
circuit has been found between these two regions that appears
anatomically connected to guide choices toward movement goals
(Sasaki et al., 1976; Pesaran et al., 2008).

To further test flow states and how it emerges, and possibly
induced, is essential to better understand the flow state in
practice. Transcranial direct current stimulation (tDCS) is a
noninvasive brain stimulation technique that alters cortical
excitability and activity in a polarity-dependent way. Anodal
stimulation increases excitability (Liebetanz et al., 2002), whereas
cathodal decreases it (Nitsche and Paulus, 2001). Stimulation for
a few minutes has been shown to induce plastic alterations of
cortical excitability and more specifically has shown to influence
cognitive functions such as working memory by stimulating the
left DLPFC (Fregni et al., 2005; Chrysikou et al., 2013; Zhu
et al., 2015). Cathodal DLPFC tDCS has been shown to improve
implicit learning outcomes for high-level motor tasks such as golf
putting (Zhu et al., 2015) and cognitive flexibility (Chrysikou
et al., 2013). Furthermore, it has been shown that tDCS has
helped improve learning outcomes for implicit motor tasks,
in which right parietal anodal stimulation resulted in greater
neural efficiency through an improved task learning performance
(Clark et al., 2012), as well as mental activities such as numerical
competence (Cohen et al., 2010), network connectivity (Hunter
et al., 2015) object detection during visual search (Bolognini
et al., 2010; Clark et al., 2012; Tseng et al., 2012), spatial
attention (Roy et al., 2015), and non-verbal material (Manuel and
Schnider, 2016). Additionally, tDCS influence on parietal regions
has shown a balance between the working memory capacity
(skill) and the working memory task (Jones and Berryhill, 2012).
More recently, Ulrich et al. (2018) used anodal tDCS over the
forehead Fpz to stimulate the medial prefrontal cortex (MPFC)
and found higher flow experiences for people experiencing low
flow. Therefore, tDCS learning enhancement could increase the
level of visual attention skill in order that the participant could
reach the skill-challenge balance (Clark et al., 2012) and limit the
role of the prefrontal monitoring in order to allow for greater
movement into flow states (Zhu et al., 2015).

While flow states require a certain level of previous skill
to be automatized into their implicit memory, tDCS has been
shown to result in ceiling effects for experts compared to novice
performers (Bullard et al., 2011; Tseng et al., 2012; Furuya et al.,
2014; Rosen et al., 2016). Therefore, two groups of trained and
untrained video gamers were selected for the study to explore the
contrasting effects of the required skill acquisition and expertise
tomove into flow states with tDCS ceiling effects of expertise. The
Tetris game paradigm has proved easy to quantify performance
and level of difficulty in both flow (Keller and Bless, 2008; Keller
et al., 2011; Harmat et al., 2015) and tDCS studies (Spiegel,
2013). First person perspective video games have also shown
to operationalize a good balance of skill and challenge with
immersive experiences for both flow (Kivikangas, 2006; Nacke L.
and Lindley C., 2008; Nacke L. and Lindley C. A., 2008; Nacke
and Lindley, 2010; Nacke et al., 2010; Klasen et al., 2011) and
tDCS studies (Bullard et al., 2011; Clark et al., 2012; Coffman
et al., 2012; Falcone and Parasuraman, 2012). Therefore, both
experimental paradigms were used to determine the mediating
role tDCS will have in supporting the induction of flow states.

The focus of this study was to observe the inductive role
of tDCS on flow states using two different paradigms. It was
hypothesized that right parietal anodal tDCS and cathodal tDCS
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of the left prefrontal area would result in a shift in the subjective
experience toward higher intensity experiences of flow states for
both trained and untrained users of video games.

MATERIALS AND METHODS

Participants
Two experiments were ethically approved (by University
Committee) to study the effects of tDCS on flow states during
video game play. All participants were recruited by word of
mouth or from advertisements in game forums. Experiment
1 inclusion requirement was trained gamers played 1st person
shooter videogames (FPS) on average several times a week.
Eleven right-handed males (M = 29 years, SD = 7.15) played a
FPS across two sessions within a week using randomized active
and sham tDCS conditions.

Experiment 2 inclusion requirement was untrained gamers
who on average played videogames once amonth or less. Twenty-
three participants were originally tested but two were corrupted
due to their being initial pilot tests, therefore only 21 right handed
participants were tested; 11 females (M = 30.18 years, SD= 6.14)
and 10 males (M = 31.8 years, SD = 3.61), played TETRIS R©

(Tetris Holding). Tetris was used for the untrained group as it is
an easy game to learn and all participants were familiar with how
to play it. Participants were randomly assigned between active
and sham conditions.

Inter-game Flow Questionnaire
At the end of each trial, participants were asked to retroactively
assess their experience from their recent game trial and respond
to a Flow State Scale (Jackson and Marsh, 1996) with two
additional core questions of the flow state: “Everything Clicked”
and “I was ‘in the zone’.”

Game Play
In Experiment 1, participants were given the choice to play two
different FPS games: “Counter Strike: Global Offensive” (Valve)
or “Battlefield 4” (EA). Both games had the same settings of
competing against live online players, most kills wins and played
only in a single map environment. Due to different map, weapon
and control settings, two games were used to allow players to
participate in the FPS game they felt most proficient in to give
them the best chance to enter into flow.

In Experiments 2, three versions of TETRIS were used: slow
(bored), adaptive (flow), and fast (anxious). The slow round was
set to a speed of 2 and the drop button was disabled, forcing the
person to sit around and wait for the piece to reach the bottom of
the screen. The anxious round started at speed level 8 and would
go up once a person made 5 lines. The adaptive condition started
at 4 and went up in score if the player made 5 lines in 20 moves,
but it would slow a level down if they had not met this criterion.

Stimulation
tDCS stimulation was applied using an NeuroConn DC-
Stimulator (NeuroConn GmbH) machine with a montage of
left prefrontal cathode and right parietal anode. tDCS was

administered via two 5 × 5 cm electrodes covered with saline-
soaked sponges. The stimulation site was determined by means
of the 10/20 system, in which the cathode and anode were
positioned over the F3 area and P6 area, respectively. Whilst
tDCS excitability changes have been shown to last up to 60min
(Nitsche and Paulus, 2001), results have shown performance
effects dwindle after 30min of stimulation (Iyer et al., 2005).
Therefore, stimulation condition was set for 20min (including
10 s ramp-up and 10 s ramp-down time) at 2mA while sham
condition also lasted 20min but was set for 30 s of stimulation
at 1mA. Participants are shown typically unable to determine
whether receiving real or sham stimulation (Gandiga et al., 2006).

Procedure
In Experiment 1, participants were told they were receiving
tDCS stimulation over two separate sessions. In the first session,
participants chose their FPS game and entered an online game
room with 16 or more online players. The games’ objective is to
stop the other team therefore game scores were based on number
of kills. Participants played a warm up round of free play without
testing for about 20min while the experiment set-up occurred.
Participants would then be informed that testing would begin. A
trial would last until the participant lasted longer than 3min and
completed two kills in a row without dying. They then would be
notified the trial had finished with a flashing light controlled by
the researcher to fill out the Inter-Game Flow Questionnaire. The
participant would press a button to acknowledge the light flash
before answering the questionnaire.

The participant was randomly assigned a stimulation or sham
condition which lasted 20min of either 2mA for the active
stimulation condition or 30 s of 1mA over the 20min period
for sham condition. Participants would continue to play during
that time without testing. Participants would then begin another
testing session after stimulation following the previous testing
procedure. Experiment 1 participants would return a week later
and participate again with the same experimental protocol but
receiving the opposite stimulation condition.

In Experiment 2, participants played a 15min warm up of the
balanced condition prior to testing. Then the participants would
be informed about a change in the gaming condition and they
would complete two trials of the slow, fast, and then adaptive
TETRIS games for ∼3min. The researcher would then request
they complete the Inter-Game Flow Questionnaire after each
trial. The participant was randomly assigned a stimulation or
sham condition which lasted 20min of either 2mA for the active
stimulation condition or 30 s of 1mA over the 20min period
for sham condition. Participants would continue to play the
adaptive condition during that time, and complete subsequent
Inter-Game Flow Questionnaires. Participants would then begin
another testing session after stimulation but only complete the
adaptive and fast conditions.

Statistical Analysis
The research explored different hypotheses around performance
ceilings as well as flow induction for the different training level
of the groups to reduce learning effects and therefore enlisted
different group design in the analysis.
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Experiment 1

A repeated measures analysis of variance (ANOVA) was used
to assess the significant main effect of the dependent variable,
perceived state of flow score, during the first person video game
before and after the two trials (tDCS and sham).

Experiment 2

Amixed ANOVA was used to determine a significant main effect
of the dependent variable, perceived state of flow score, during
the events associated with each of the trials and games; e.g., this
was compared to lines completed in TETRIS during different
conditions. Similarly, a mixed ANOVA was used to determine a
significant main interaction effect for tDCS stimulation with each
of the trials and games.

RESULTS

No participant reported experiencing adverse effects during or
after tDCS. A slight itching sensation during approximately
the first 30 s of stimulation was reported. The sham condition
reported the same initial itching sensation, and when explicitly
asked, believed to have undergone real stimulation.

An overall positive effect was observed for all participants
from both experiments, in which participants from both
experiments resulted in a significantly higher experience of flow
states after tDCS compared to sham or control conditions.
Experiment 1 hypothesized specifically that tDCS would
modulate the experience of flow states for trained players of
first-person shooter videogames. A repeated measures ANOVA
determined a significant main effect of [F(1, 54) = 5.82, p < 0.02,
ηp² = 0.10; see Figure 1]. As hypothesized, simple main effects
revealed that participants rated higher experiences of flow states
after tDCS stimulation on average by (M = 0.37, p < 0.001, ηp²
= 0.24) compared to sham which increased non-significantly on
average byM = 0.08.

Additionally, there were non-significant effects for main
effects of kill performance [F(1, 54) = 0.214, p = 0.645; see
Figure 2], with greater performance improvements after tDCS

FIGURE 1 | Flow scores from trained participants after Active Stimulation and

Sham Stimulation. Bars—Standard Error.

on average by M = 0.45 compared to sham which reduced on
average byM =−0.2.

Experiment 2 also resulted in the expectedmodulation pattern
of flow states for untrained players of the puzzle game TETRIS.
A mixed ANOVA was used to determine a significant main
interaction effect for tDCS stimulation [F(1, 48) = 7.24, p < 0.01,
ηp² = 0.13; see Figure 3]. As hypothesized, planned simple main
effects revealed participants in the flow condition rated higher
experiences of flow states after tDCS stimulation on average by
M = 0.27 (p < 0.02, ηp² = 0.22) compared to sham which
reduced non-significantly by M = −0.13. While there was no
main effect for the interaction of tDCS over time for the anxious
condition, a significant effect showed higher flow states after
tDCS stimulation by M = 0.27 (p < 0.05, ηp² = 0.2) compared
to a non-significant effect for sham that increased flow scores
on average by M = 0.17. Note that tDCS was not tested in the
boredom condition.

Additionally, as expected there was a significant main
interaction effect for performance in TETRIS based on number
of completed lines [F(1, 48) = 7.41, p < 0.01, ηp² = 0.13; see
Figure 4], with greater line completion performance after tDCS
on average by M = 3.54 (p < 0.001, ηp² = 0.4), compared to
a non-significant effect for sham that increased line completion
byM = 0.31.

DISCUSSION

As hypothesized, the results of this study indicate that tDCS
can modulate an induction into flow states for video game
players using a montage of prefrontal left cathode and right
parietal anode. Additionally, as expected the trained FPS players
performance was not improved by tDCS while the untrained
TETRIS players improved due to tDCS stimulation compared to
sham.While the results across both trained and untrained players
of video games presented higher flow states after tDCS, the
authors did find this interesting because it was unknown whether
the performance ceiling effect might also effect the experienced
intensity of flow states. While tDCS ceilings effects were present

FIGURE 2 | Number of kills performance scores from trained participants after

Active Stimulation and Sham Stimulation. Bars—Standard Error.
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FIGURE 3 | Flow scores from untrained participants playing TETRIS after

Active Stimulation and Sham Stimulation. Bars—Standard Error.

FIGURE 4 | Number of completed lines—performance scores from untrained

participants after Active Stimulation and Sham Stimulation.

Bars—Standard Error.

in the performance results of this study, which has been shown
previously to apply to expert compared to novice performers
(Bullard et al., 2011), studies have typically observed this from
the perspective of motor skill tasks and not for psychological
states. Perhaps psychological states may not be limited in the
realm of performance by tDCS, i.e., tDCS studies have been
shown to improve mood (Nitsche et al., 2009) and maybe further
worth exploring the difference in limits tDCS modulation has for
psychological states compared tomotor skills. Another reason for
the lack of ceiling effect may be that the high frequency of game
play in the trained vs. the untrained group was not high enough
to denote expertise and thus diminish the modulating effects of
tDCS on flow states.

Whilst, to the authors knowledge, there has only been
one prior research paper published on tDCS for flow states,
which used a different montage of anodal stimulation over Fpz
(Ulrich et al., 2018), the findings in this study could therefore
be considered foreshadowed by previous papers documenting
effects of tDCS in learning and working memory. The current

findings align with previous research indicating that cathodal
left prefrontal tDCS stimulation, as shown by Zhu et al. (2015),
results in the reliance of improved implicit motor learning
which could be considered to increase the modulation of the
intensity of the flow experience as more resources are freed up
for experiential processing (Dietrich, 2003). Inhibiting DLPFC
has been shown to increase motor learning by disrupting the
explicit motor system (Galea et al., 2010), as well as a dynamic
balance with resources between explicit and implicit systems
(Eichenbaum and Cohen, 2004; Kantak et al., 2012). The current
study aimed to take advantage of this disruption of explicit
executive functions to enhance the role of implicit processing
and hence enable easier movement into elevated intensity of flow
states. Furthermore, Zhu et al. (2015) reported a reduction in
verbal working memory after the application of left prefrontal
cathodal tDCS which Dietrich (2003) considers a requirement
of his hypofrontality hypothesis to describe flow due to the
reduction of high level buffering and maintenance.

Furthermore, the current findings also align with previous
right anodal parietal research indicated in Clark et al. (2012)
which resulted in positive learning effects in visual attention,
thereby possibly reducing the amount of resources required
to dedicate to the task to facilitate flow through implicit
systems. Furthermore, the fronto-parietal attention network
has been shown as a brain network relevant to attention
activation during target detection tasks (Posner and Petersen,
1990). A review by Andersen and Cui (2009) indicated the
role that the posterior parietal cortices (PPC) plays in the
frontal parietal network through sensorimotor transformations
including planning, decision making, forward model estimation
and attentional faculties. Additionally, the tDCS has been shown
to influence parietal regions based on a balance between the
working memory capacity (skill) and the working memory
task (Jones and Berryhill, 2012) which appears quite similar
to the principle antecedents of flow states (Csikszentmihalyi
and Csikszentmihalyi, 1988). In this study, we suspect that as
attentional resources continue to increase during visual search
elements of a task, such as video games, it may lead to a greater
probability of noticing target objects, enhanced encoding of the
location of the target object within the image and, therefore,
greater accuracy and less buffering. This reduction in processing
requirement could possibly open up the processing capacity to
increase the perception of skill and thereby result in higher flow
states ratings.

Dietrich (2004) originally considers flow states a reflexive
system however from these results a new understanding
maybe beginning to unfold as flow states may better be
considered a predictive system that has developed and
implemented through “forward and inverse models” which
are considered neurological attempts at predicting the outcome
of each action (Kawato, 1999). Ito (2008) describes the
forward model through the prefrontal, temporal-parietal,
and cerebellar network, in which the prefrontal area as
the “controller” creates and transmits command signals
that modify activities encoded while the temporo-parietal
areas are considered the “mental model” which converts a
command into an output action. Parietal anodal stimulation
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appeared to increase within network connectivity between
key elements of the forward and inverse models including
the inferior and superior parietal along with the cerebellar
intrinsic networks, key for enhanced learning outcomes
(Hunter et al., 2015).

This forwardmodel could help explain themodulatory impact
of the tDCS in inducing flow states as the system becomes less
reliant on the moderating effects of the prefrontal controller
whilst encouraging the ability to output commands fed in
from the cerebellar network. This freedom from higher order
interference enables the action output of the temporal-parietal
regions the ability to more easily implement the memory model.
This smoother activation free from frontal modulation may have
resulted in the experience of less thinking and concern with the
surroundings while the parietal excitation may have felt like an
easier implementation of the memory models.

Additionally, the inverse model affords the prefrontal area
to be bypassed and instead processing relies more heavily on
the anterior cingulate cortex (ACC). The ACC has also been
shown to be involved in flow states such as an EEG game study
testing the difference between boredom, frustration and flow
states (Nuñez Castellar et al., 2016). The ACC was determined
as an actor in engaging the fronto-parietal network as well as
monitoring conflicts in the focus of attention (Walsh et al.,
2011). However, more recently Ulrich et al. (2014) found in a
similar three level (boredom, flow, overload) arithmetic fMRI
study of flow that the ACC reduced in activity. Nonetheless,
while more study is needed to ascertain its role in attentional
focus and flow states, the pattern of decreased prefrontal activity
and increased parietal activity reported in Ulrich et al. (2014),
found flow state results that mirrored the fronto-parietal network
tDCS montage used in this study. It would be interesting to
replicate this current study with a mirrored montage as the
forward model appears to be supported by bilateral activation of
the fronto-parietal network.

Limitations
Whilst the results are indicative of a positive intervention
of tDCS toward flow states, it would also be advantageous
to consider the vast range of tDCS impacts. TDCS’s effects
have been shown as distributed rather than local (Keeser
et al., 2011) and thus could impact unintended areas such
that placing the prefrontal cathodal could influence multiple
areas such as the DLPFC and the MPFC. Therefore, it
may be worth considering using High Definition-tDCS in
order to more accurately target locations associated with
flow states in order to understand which areas specifically
are responsible.

Furthermore, it is difficult to assess the full comparative
impact of tDCS on flow and the ceiling effects between the trained
and untrained players because the experimental design used
a different methodology of a repeated experiment, alternating
sham and tDCS for trained players while for untrained players
they were only exposed one time to the experiment with a
random allocation of tDCS or sham. This testing methodology

in addition to testing between two different gaming paradigms
are contributing factors to confounding the results. Therefore, for
future testing it would be worth testing the role of tDCS ceiling
effects on flow scores between trained and untrained players
using the same experimental and gaming paradigm.

Additionally, it would be interesting to test different
tDCS montages for modulating flow states. Flow states
had been found in neuroimaging studies with both
left and right parietal activation (Ulrich et al., 2014).
Additionally, forward model neuroimaging studies
have shown bilateral activation of parietal regions
(Heinzel et al., 2017; Sokolowski et al., 2017).

CONCLUSIONS

In the present study, we explored the subjective experiences
of flow states for video gamers at different level of training
after a tDCS intervention with a montage of a left prefrontal
cathode and right parietal anode. Results revealed a subjective
change toward higher intensity of flow experiences and an
expected ceiling on task performance for trained and an
improvement in task performance for untrained participants.
With more research, tDCS could prove to be an effective
tool to uncover more of the functional pathways involved
in flow states and promote more positive subjective
experiences for complex tasks including greater levels of
immersion and enjoyment. By improving performance and
states, tDCS could assist people to become more diligent,
motivated and effective in tasks for occupational and
rehabilitative efforts.
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Transcranial direct current stimulation is a promising neuromodulation method for
treating depression. However, compared with pharmacological treatment, previous
studies have reported that a relatively limited proportion of patients respond to tDCS
treatment. In addition, the neurophysiological mechanisms underlying tDCS treatment
remain unclear, making it difficult to identify response predictors for tDCS treatment
based on neurophysiological function. Because treatment effects are achieved by
repetitive application of tDCS, studying the immediate effects of tDCS in depressive
patients could extend understanding of its treatment mechanisms. However, immediate
changes in a single session of tDCS are not well documented. Thus, in the current
study, we focused on the immediate impact of tDCS and its association with pre-
stimulus brain activity. To address this question, we applied anodal tDCS to the left
dorsolateral prefrontal cortex (DLPFC) or dorsomedial prefrontal cortex (DMPFC) in
14 patients with major depressive disorder (MDD) and 19 healthy controls (HCs), at
an intensity of 1.0 mA for 20 min in a single session. To evaluate anxiety, the state
trait anxiety inventory was completed before and after tDCS. We recorded resting
electroencephalography before tDCS, and calculated electrical neuronal activity in the
theta and alpha frequency bands using standardized low-resolution electromagnetic
tomography. We found that, during application of left DLPFC tDCS to patients with MDD,
the anxiety reduction effect of tDCS was related to higher baseline theta-band activity
in the rostral anterior cingulate cortex (rACC) and no medication with benzodiazepine
used as hypnotic. For DMPFC stimulation in MDD, the anxiety reduction effect was
associated with lower baseline alpha-band activity in the left inferior parietal lobule.
In contrast, in HCs, the anxiety reduction effect was associated with higher baseline
alpha activity in the precuneus during DMPFC stimulation. The current results suggest
that the association between pre-tDCS brain activity and the anxiety reduction effect of
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tDCS depends on psychopathology (depressed or non-depressed) as well as the site
of stimulation (DMPFC or left DLPFC) and insomnia. Furthermore, the results suggest
that tDCS response might be associated with baseline resting state electrophysiological
neural activity.

Keywords: transcranial direct current stimulation, left dorsolateral prefrontal cortex, dorsomedial prefrontal
cortex, anterior cingulate, anxiety, depression

INTRODUCTION

Transcranial direct current stimulation is a widely used
neuromodulation technique for basic neurocognitive
research in healthy subjects as well as clinical applications
in major depression and other psychiatric disorders (Fregni
et al., 2015; Martin et al., 2018) In clinical practice, the
development of new treatment approaches without medication
is important for patients, who show low tolerance to
pharmacotherapy because of substantial side effects (Brunoni
et al., 2012). tDCS provides a potentially useful approach
because the tDCS stimulator is a mechanically simple
device, with a lower cost than other non-invasive brain
stimulation devices.

In recent decades, major depressive disorder (MDD) has
become one of the most serious lifetime diseases in many
countries (Murray and Lopez, 1996). Although treatments for
MDD have improved, current treatment options have limitations
(Kupfer et al., 2012).

In treatment methods involving non-invasive brain
stimulation for MDD, the left dorsolateral prefrontal
cortex (DLPFC) has been found to play a major role in
executive functioning, and is widely recognized as a suitable
target for anodal tDCS to recover executive control and
emotion regulation.

A recent meta-analysis supports the application of tDCS
to the DLPFC in MDD (Mutz et al., 2018). Furthermore, a
recent large-scale study reported no inferiority of tDCS treatment
compared with escitalopram (Brunoni et al., 2017). However,
the specific treatment effects of tDCS remain controversial
(Tremblay et al., 2014; Mondino et al., 2015; Brunoni et al.,
2017; Martin et al., 2018). A recent study by Brunoni
and colleagues reported that response rates to tDCS were
significantly higher than placebo, but the remission rate was
not significantly different between tDCS and placebo groups
(Brunoni et al., 2017). Furthermore, the treatment mechanisms
of tDCS remain unclear.

Recently, several studies proposed additional targets for
treatment of MDD, suggesting non-invasive brain stimulation
of the dorsomedial prefrontal cortex (DMPFC) as one potential
approach (Downar and Daskalakis, 2013). This proposal is based
on the finding that the DMPFC, including the anterior cingulate
cortex, is involved in regulation of emotions (Bush et al., 2000),
and is anatomically connected with the amygdala and nucleus
accumbens, which have both been implicated in MDD.

More recent studies have confirmed the feasibility of rTMS
on the DMPFC for MDD (Downar et al., 2014; Kreuzer et al.,
2015; Schulze et al., 2018). However, we know little evidence of

the mechanism of DMPFC stimulation even beyond the context
of major depression (Bakker et al., 2015; Colzato et al., 2015;
Kreuzer et al., 2015).

There are several limitations of the current evidence
supporting further implementation of tDCS into clinical
practice. First, better understanding of the neurophysiological
mechanisms underlying the effects of tDCS is needed.
Second, biomarkers are needed for predicting tDCS
treatment responders. One possible approach for
addressing these current limitations is to examine the
neurophysiological signatures of patients. Specifically,
the pre-stimulus state of the brain may explain the
variability in responses to tDCS. Recent studies have
reported that pre-treatment electroencephalography (EEG)
predicts changes in cognition after 15 sessions of tDCS
in the left DLPFC in depressive patients, and that frontal
electrodes exhibit predictive power for changes in cognition
(Al-Kaysi et al., 2016, 2017).

Although predicting treatment effects with pre-treatment
neurophysiological activity would have direct implications for
clinical practice, the neurophysiological mechanisms underlying
treatment effects may remain obscured because treatment effects
are achieved by repeated application of single-session tDCS,
and the accumulation of immediate neural responses to single-
session tDCS may modify the stable state of brain activity
and eventually improve depressive symptoms. Therefore, we
assumed that examining the neural mechanisms of a single-
session of tDCS intervention might provide a first step for
disentangling the complex treatment mechanisms of tDCS for
MDD. Among symptomatic problems of MDD, single session of
tDCS is hard to change sustained symptoms such as depressive
mood, anhedonia, agitation or loss of motivation, while anxiety
is relatively volatile across time. In the current study, we
therefore focus on state anxiety to look at the effect of single-
session tDCS.

In the current study, we set two main aims. First, we
investigated the immediate effects of prefrontal tDCS on brain
activity and state anxiety. Second, we compared the effects
between stimulation of the left DLPFC, the canonical target
of tDCS for MDD, and the DMFPC, the potential target
predicted by neuroanatomical architecture. To this end, we
applied anodal tDCS to the left DLPFC or DMPFC in MDD
patients and healthy controls (HCs), with 20 min of stimulation
in a single session. We measured state anxiety before and
after tDCS and neural activity with EEG before tDCS. Finally,
we examined association between neural activity and state
anxiety to investigate neural predictors of the change in anxiety
induced by tDCS.
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MATERIALS AND METHODS

Participants
We recorded a total of 20 patients with MDD, assessed by the
DSM-IV and evaluated with the Hamilton Depression Rating
Scale (HAM-D), and a total 24 HCs subjects recruited for
this study. After eliminating data corresponding to subjects
that were left-handed, or unavailable EEG, or psychological
evaluation, 14 patients with MDD and 19 HCs were finally
included in this study. All participants were right-handed,
and were graduates of high school or higher education. All
participants were diagnosed by experienced psychiatrists
using a structured interview and physical examination. We
excluded patients with history of dementia, schizophrenia,
substance dependence, epilepsy or head trauma. Participants
do not have anxiety disorder comorbidities, such as generalized
anxiety disorder, panic disorder, and phobia. Thirteen patients
have received antidepressant. 10 patients were medicated
by benzodiazepine as sleeping medication and 2 patients
medicated by a mood stabilizer. Chi-squared test with
Yates’s correction between gender did not show significant
difference (x2(1) = 3.076, p (0.08). All HCs had no history of
psychiatry disorders. This study was carried out in accordance
with the recommendations of “Safety of transcranial direct
current stimulation, tDCS by Japanese Journal of Clinical
Neurophysiology 2011.”

The study protocol was approved by the Institutional
Ethics Review Committee of Kansai Medical University
(UMIN000015046). We obtained written informed consent from
all participants in accordance with the Declaration of Helsinki.
Participants were recruited from September 2014 to April 2017.
Details of participants are shown in Table 1.

tDCS
tDCS was administered with a battery-driven stimulator
(DC Stimulator Plus, Neuroconn, Ilmenau, Germany).
The electrical current was applied at 1 mA via electrically
conductive rubber electrodes (20 cm2, circular in shape)
attached with an adhesive conductive EEG paste. Anodal
stimulation was administered over the left-DLPFC (F5, 10–
10 EEG international electrode placement, Figure 1) or the
DMPFC (AFz, 10-10 EEG international electrode placement,
Figure 2) with the cathodal electrode placed on the left
shoulder. Direct current was administered for 20 min during
the resting state. We also simulated the current flow of our
montage with a simulation software using a finite element
model (HD-explore, Soterix Medical, New York, United
States) (Figures 1, 2).

Procedure
We adopted a between-subjects cross-over design (Figure 3).
The order of stimulation was counterbalanced. Each subject was
randomly assigned to receive left DLPFC or DMPFC tDCS in
the first session. The participant received tDCS on the other site
in the second session. There was an interval of at least 1 week
between tDCS sessions.

TABLE 1 | Demographic data.

Group MDD HC

Session Left DLPFC DMPFC Left DLPFC DMPFC

Sample size 14 19

Sex:
Male/female

12/2 12/7

Drug treatment

No 1 0

One
antidepressant

11 0

Two
antidepressants

2 0

Benzodiazepine 10 0

Mood stabilizer 2 0

Age-years:
mean ± SD

44.93 ± 14.68 48.94 ± 15.80

Education
period

15.36 ± 1.55 15.63 ± 1.34

Number of
previous
episodes:
mean ± SD

2.36 ± 0.93 0.00 ± 0.00

HAM-D17
score on the
day of the
session:
mean ± SD

14.07 ± 5.40 13.79 ± 4.82 0.21 ± 0.42 0.21 ± 0.54

FIGURE 1 | Modeling of electric field distribution for the montage of left
DLPFC stimulation. (A) Sagittal view, (B) side view, (C) above view, A: anterior,
P: posterior.

FIGURE 2 | Modeling of electric field distribution for the montage of DMPFC
stimulation. (A) Sagittal view, (B) side view, (C) above view, A: anterior, P:
posterior.

Psychological Test
We measured the STAI (state-trait anxiety inventory), which
consists of two subscales, STAI-SA for state anxiety to
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FIGURE 3 | Study design.

FIGURE 4 | Location of regions of interest (IP: inferior parietal lobe; DLPFC: dorsolateral prefrontal cortex; rACC: rostral anterior cingulate cortex; AI: anterior insula;
ITL: inferior temporal lobe).

assess anxiety before and after tDCS and STAI-TA for trait
anxiety before tDCS.

EEG Recording
Resting and eyes-closed EEG was recorded with an EEG-1200
Nihon Kohden (Tokyo, Japan) system. A 64 ch Ag/AgCl sintered
Waveguard Original EEG cap from ANT Neuro (Netherland)
was used for the recordings. It was necessary to use a subset of
the electrodes comprising of 19 EEG electrodes corresponding
to the international 10–20 system for analyses, because the tDCS
electrodes placed under the EEG cap interfered with substantial
number of EEG electrodes in the frontal area. We recorded EEG
before and after tDCS. However, only EEG recordings before
tDCS were used in the analyses described below.

EEG Analysis
Signals of cortical electric neuronal activity were computed
from the baseline, pre-stimulation EEG recordings using
standardized low resolution electromagnetic tomography
(sLORETA) (Pascual-Marqui, 2002). In its current

implementation (free academic software package available
at https://www.uzh.ch/keyinst/loreta), this method produces
signals of appropriately standardized current density from 6239

TABLE 2 | Regions of interest (ROIs) and their coordinates in the MNI space.

x y z

rACC 0 45 0

Left DLPFC −40 26 34

Right DLPFC 40 26 34

Left AI −30 24 −13.5

Right AI 30 24 −13.5

Left ITL −42 −33 −25.5

Right ITL 42 −33 −25.5

Left IPL −45 −52 48

Right IPL 45 −52 48

Precuneus 0 −66 34

rACC, rostral anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; AI,
anterior insula; ITL, inferior temporal lobe; IPL, inferior parietal lobe.
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TABLE 3 | STAI-SA pre tDCS and STAI-SA post tDCS.

Group MDD HC

Session Left DLPFC DMPFC Left DLPFC DMPFC

STAI-
SA_pre

47.29 (±9.10) 44.71 (±8.11) 36.32 (±7.02) 35.84 (±6.80)

STAI-
SA_post

44.64 (±9.96) 43.14 (±9.81) 38.42 (±6.40) 37.16 (±6.52)

Post–Pre
change of
STAI-SA

−2.64 (±5.23) −1.57 (±6.01) 2.11 (±5.86) 1.32 (±4.35)

DLPFC, dorsolateral prefrontal cortex stimulation; DMPFC: dorsomedial prefrontal
cortex stimulation, MDD: major depressive disorder, HC: healthy controls, STAI-SA:
State-Trait Anxiety Inventory - state anxiety.

cortical gray matter voxels, sampled on a 5 mm resolution grid,
using the MNI152 anatomical template (Mazziotta et al., 2001;
Fuchs et al., 2002). sLORETA has received both theoretical

(Greenblatt et al., 2005; Sekihara et al., 2005; Pascual-Marqui,
2007) and experimental validation (Pascual-Marqui et al., 2009).

The sLORETA signals were then further processed to
produce values of cortical spectral power in two classical EEG
frequency bands: theta (4–8 Hz) and alpha (8–12 Hz). We chose
these two frequency bands because they have been repeatedly
reported to be associated with MDD and response to treatment
(Klimesch, 1999; Moore et al., 2000; Nishida et al., 2015;
Kitaura et al., 2017).

Regions of Interest
Ten regions of interest (ROIs) were chosen based on previous
studies investigating neurophysiological mechanisms in patients
with MDD (McGrath et al., 2013; Kaiser et al., 2015; Pizzagalli
et al., 2018) (Figure 4). Pizzagalli et al., investigated the
importance of current density in rACC for improvement of
depression symptoms with EEG-LORETA. The meta-analysis
by Kaiser et al., showed significant difference in resting state

TABLE 4 | Single regression analysis about STAI-SA.

Session Dependent variable Independent variable β SE β t-value p-value Standard β R2

MDD Change of STAI-SA STAI-SA pre −0.064 0.127 −0.507 0.616 −0.099 −0.028

HC Change of STAI-SA STAI-SA pre −0.339 0.111 −3.047 0.004 −0.453∗∗ 0.183

MDD, major depressive disorder; HC, healthy controls; STAI-SA, State-Trait Anxiety Inventory-state anxiety; β, the regression coefficient; SE β, standard error of the
regression coefficient; R2, the squared multiple correlation coefficient.

TABLE 5 | Log-transformed current density power at 10 ROIs in alpha and theta bands.

Group MDD HC

Session Left DLPFC DMPFC Left DLPFC DMPFC

Current density Mean SD Mean SD Mean SD Mean SD

Theta_rACC 0.186 0.518 0.133 0.570 0.521 0.519 0.400 0.454

Theta_leftDLPFC −0.380 0.459 −0.386 0.411 −0.079 0.526 −0.153 0.417

Theta_rightDLPFC −0.342 0.512 −0.258 0.480 −0.214 0.492 −0.162 0.462

Theta_leftInsula 0.072 0.528 0.070 0.437 0.478 0.491 0.346 0.361

Theta_rightInsula 0.138 0.585 0.215 0.531 0.276 0.516 0.279 0.447

Theta_lrftITP −0.350 0.413 −0.246 0.247 −0.003 0.437 −0.084 0.366

Theta_rightITP −0.328 0.467 −0.199 0.376 −0.115 0.438 −0.264 0.466

Theta_leftIPL −0.531 0.481 −0.667 0.378 −0.216 0.426 −0.119 0.618

Theta_rightIPL −0.543 0.486 −0.637 0.433 −0.253 0.481 −0.254 0.606

Theta_precuneus −0.412 0.669 −0.613 0.521 −0.175 0.467 −0.013 0.582

Alpha_rACC −0.172 0.399 −0.190 0.331 −0.017 0.406 −0.111 0.358

Alpha_leftDLPFC −0.720 0.468 −0.661 0.242 −0.484 0.331 −0.508 0.310

Alpha_rightDLPFC −0.525 0.453 −0.432 0.315 −0.636 0.409 −0.681 0.341

Alpha_leftInsula −0.056 0.545 0.009 0.230 0.157 0.273 0.039 0.292

Alpha_rightInsula 0.116 0.590 0.185 0.376 −0.028 0.311 −0.099 0.257

Alpha_lrftITP 0.233 0.794 0.535 0.494 0.381 0.614 0.299 0.592

Alpha_rightITP 0.404 0.925 0.621 0.633 0.316 0.616 0.064 0.725

Alpha_leftIPL −0.010 0.793 0.290 0.705 0.140 0.706 0.327 0.763

Alpha_rightIPL 0.173 0.857 0.460 0.706 0.210 0.612 0.179 0.793

Alpha_precuneus 0.254 0.881 0.483 0.758 0.281 0.710 0.357 0.826

DLPFC, dorsolateral prefrontal cortex; DMPFC, dorsomedial prefrontal cortex, rACC, rostral anterior cingulate cortex; AI, anterior insula; ITL, inferior temporal lobe; IPL,
inferior parietal lobe; MDD, major depressive disorder; HC, healthy controls.
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functional connectivity in patients with depression and HCs.
In addition, McGrath et al. have shown that anterior insula
and inferior temporal lobe were candidates of biomarkers of
treatment by cognitive behavior therapy by using positron
emission topography.

We defined rACC from average coordinates (i.e., centroid)
of the atlas which Pizaggali et al. used in their paper. Atlas of
DLPFC and Inferior temporal lobe in our study was obtained
from Kaiser’s literature, and the coordinates used for the anterior
insula and inferior temporal lobe originate from the work of
McGrath (McGrath et al., 2013; Table 2).

Statistical Analysis
For each stimulation session, the change in anxiety scores was
defined as the STAI-SA score at post tDCS minus the STAI-SA
score at pre tDCS (baseline). Thus, a negative value of the change
indicates a reduction of state anxiety. In the current study, we
aimed to investigate the association between these dependent
variables and cortical activities in 10 ROIs. We also included
the “with” or “without” administration of benzodiazepines as
an independent variable, and baseline STAI-SA scores for
considering the effect of the diversity of participants.

Firstly, we applied a least absolute shrinkage and selection
operator (LASSO) for selecting appropriated variables and
regularization. The set of independent variables consisted of the
cortical spectral power for the theta and alpha bands, at 10
ROIs calculated from baseline, pre-stimulation EEG-sLORETA
for each DLPFC or DMPFC session, plus the medication about
with/without benzodiazepines and STAI-SA scores at pre-tDCS
in patients and controls separately. Cross-Validation leave-one-
out was performed to determine the optimal tuning penalty
parameter (λ) for each session. Finally, variable selection was
performed by using the estimated λ value. We performed LASSO
with R (3.6.0), RStudio (1.2.1335), and glmnet package (2.0–18).

Next, forced entry multiple regression analyses were
conducted for changes in STAI-SA scores as dependent variables,
with the set of cortical activity in each theta and alpha band at
selected independent variable, for both left DLPFC and DMPFC
stimulation session, in the MDD group and in the control group.
SPSS version 26 was used for this multiple regression analysis.

Adverse Events
Six of 23 participants reported headaches, tingling sensation,
itching, or experiencing the taste of iron. Because all reported
events were mild, all participants continued the experiments and
recovered from the adverse effects immediately after the sessions.

RESULTS

Change in STAI Scores
We first examined overall changes in state anxiety. Table 3
shows the baseline and the Post–Pre tDCS changes in STAI-SA
scores (Table 3).

Analysis of variance revealed that the baseline STAI-SA score
was significantly higher in the MDD group than that in the
HC group (F[3,62] = 8.943, p < 0.001). However, analysis of

covariance revealed no significant difference in changes of STAI-
SA score between the two groups (F[1,63] = 1.562, p = 0.215),
and within each group (MDD: F[1,25] = 0.180, p = 0.675; HC:
F[1,35] = 0.397, p = 0.533). The paired t-test did not show the
significantly between the score of pre-tDCS and the one of post-
tDCS in both MDD (left DLPFC session: t = 1.67, df = 14,
p = 0.12, DMPFC session: t = 0.83, df = 14, p = 0.42) and HC
(left DLPFC session: t = −1.57, df = 18, p = 0.14, DMPFC session:
t = −1.32, df = 18, p = 0.20) groups.

In order to examine the influence of baseline STAI-SA
score on tDCS-induced changes of STAI-SA, we performed
single regression analysis where the independent variable is
the baseline STAI-SA score for each group, and the dependent
variable is as STAI-SA change (Table 4). We did not find
significant association between pre-tDCS STAI-SA score and
tDCS-induced changes of STAI-SA score in the MDD group
(p = 0.61), while it was significant in the HC group (β = −0.339,
p = 0.004). We also examined whether pre tDCS STAI-
SA score was different between the subjects treated with
benzodiazepine and those without benzodiazepine. Mann–
Whitney U-tests did not show the significant difference between
the two groups (p = 0.72).

TABLE 6 | Least absolute shrinkage and selection operator (LASSO) for selecting
appropriated variables and regularization.

Sessions Dependent
variable

Independent variable λ β

MDD on left
DLPFC

Change of
STAI-SA

Theta rACC 0.199 −0.375

Benzodiazepine −0.752

MDD on left
DLPFC

Change of
STAI-SA

Alpha left ITL 0.227 0.285

Alpha precuneus 0.187

Benzodiazepine −0.414

MDD on
DMPFC

Change of
STAI-SA

Theta left DLPFC 0.262 −0.199

Theta right insula −0.036

Theta precuneus 0.205

MDD on
DMPFC

Change of
STAI-SA

Alpha rACC 0.156 −0.018

Alpha left DLPFC −0.184

Alpha right ITL 0.114

Alpha left IPL 0.544

HC on left
DLPFC

Change of
STAI-SA

Theta n.s. 0.503 n.s.

HC on left
DLPFC

Change of
STAI-SA

Alpha n.s. 0.503 n.s.

HC on
DMPFC

Change of
STAI-SA

Theta n.s. 0.244 n.s.

HC on
DMPFC

Change of
STAI-SA

Alpha rACC 0.220 0.129

Alpha precuneus −0.403

rACC, rostral anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; ITL,
inferior temporal lobe; IPL, inferior parietal lobe; DLPFC, dorsolateral prefrontal
cortex stimulation; DMPFC stimulation, dorsomedial prefrontal cortex; MDD, major
depressive disorder; HC, healthy controls; β, the regression coefficient; λ, tuning
penalty parameter; n.s, no significance.
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TABLE 7 | Regression analysis in each theta and alpha bands at on left DLPFC and MDD in patients and HC.

Session Dependent variable Independent variable β SE β t-value p-value Standard β R

MDD on left DLPFC Change of STAI-SA Theta rACC −5.912 1.809 −3.268 0.007∗∗
−0.586 0.583

benzodiazepine −6.281 1.998 −3.144 0.009∗∗
−0.563

MDD on left DLPFC Change of STAI-SA Alpha left ITL 2.571 1.915 1.343 0.209 0.390 0.598

Alpha Precuneus 1.728 1.725 1.002 0.340 0.291

benzodiazepine −4.181 2.039 −2.051 0.067 −0.375

MDD on DMPFC Change of STAI-SA Theta left DLPFC −6.600 6.328 −1.043 0.321 −0.451 0.327

Theta right Insula −0.428 5.022 −0.085 0.934 −0.038

Theta Precuneus 5.299 2.768 1.914 0.085 0.460

MDD on DMPFC Change of STAI-SA Alpha rACC −2.237 3.497 −0.640 0.538 −0.123 0.679

Alpha left DLPFC −6.678 4.630 −1.442 0.183 −0.268

Alpha right ITL 2.259 1.735 1.302 0.225 0.238

Alpha left IPL 5.210 1.587 3.283 0.009∗∗ 0.611

HC on left DLPFC Change of STAI-SA Theta n.s. – – – – – –

HC on left DLPFC Change of STAI-SA Alpha n.s. – – – – – –

HC on DMPFC Change of STAI-SA Theta n.s. – – – – – –

HC on DMPFC Change of STAI-SA Alpha rACC 3.416 2.349 1.454 0.165 0.282 0.481

Alpha precuneus −2.923 1.019 −2.869 0.011∗
−0.556

rACC, rostral anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; ITL, inferior temporal lobe; IPL, inferior parietal lobe; MDD, major depressive disorder, HC;
healthy controls. ∗p < 0.05, ∗∗p < 0.01.

FIGURE 5 | Schematic summary of results in patients with MDD, based on Table 7. The red circles enclose regions with a positive slope (B > 0), and best
responders with negative STAI-change corresponded to decreased cortical activity. The blue circle encloses a region with a negative slope (B < 0), and best
responders with negative STAI-change corresponded to increased cortical activity.

Brain Activity in ROIs
We further examined pre-tDCS brain activity estimated by
sLORETA. Table 5 shows the values of brain activity calculated
by LORETA. Paired t-tests revealed no significant difference in
log-transformed current density power between the DLPFC and
DMPFC sessions, in each of the MDD and HC groups (MDD:
p = 0.299; HC: p = 0.255).

Multiple Linear Regression Models
To examine whether pre-tDCS brain activity can be associated
with anxiolytic effect, we first performed Lasso regression to
select predictor variables of each set of theta or alpha activity

(Table 6). Here we also included benzodiazepine medication
as a predictor variable to control effect of benzodiazepine
medication. We then further performed multiple regression
analysis if selected variables was associated with tDCS-
induced STAI-SA changes. Table 7 shows the results of
forced entry multiple linear regression models. Negative
values for STAI change corresponded to a reduction of state
anxiety after tDCS.

Figures 5, 6 show the schematic summaries of the MDD and
HC group with significantly difference (P < 0.05). We modeled
the change in STAI-SA scores in vertical axis, and the set of
cortical theta and alpha activity in 10 ROIs in horizonal axis for
left DLPFC and DMPFC stimulation, and in each group.
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FIGURE 6 | Schematic summary of results in the HC group, based on
Table 7. The blue circle encloses a region with a negative slope (B < 0), and
best responders with negative STAI-change corresponded to increased
cortical activity.

DISCUSSION

The current findings confirmed that, regarding the left DLPFC
stimulation site in patients with MDD, the anxiety reduction
effect of tDCS was related to higher baseline theta-band activity
in the rostral anterior cingulate cortex (rACC). In contrast,
the anxiety reduction was associated with higher baseline alpha
activity in the precuneus in the HC group.

In the current study, we have specifically focused on
immediate anxiolytic effect of tDCS, and we did not expect
to change sustained depressive symptoms. We indeed consider
accumulation of immediate anxiolytic effects will eventually lead
to long-term improvement of depressive symptoms.

The association of the anxiolytic effect of left DLPFC tDCS
with high baseline theta-band activity in the rACC is in accord
with the findings of previous studies (Arns et al., 2014; Li et al.,
2014; Bailey et al., 2018). A large scale meta-analysis studies have
further shown that functional and structural alterations in the
rACC are associated with broad spectrum of psychiatric disorders
(Goodkind et al., 2015; Sha et al., 2019). Patients with MDD
have been reported to exhibit dysfunction in the left DLPFC
as well as the rACC (Pizzagalli et al., 2002; Mayberg et al.,
2005). A study for treatment resistant depression patients who
were administered with rTMS for 4 to 7 weeks showed the
antidepressive effect was predicted by functional connectivity
between stimulation site and the subgenual cingulate (Weigand
et al., 2018). Liston and colleagues also reported that activation
of the subcallosal cingulate cortex was a main predictor for
the effect of transcranial magnetic stimulation (Liston et al.,
2014). Pizzagalli and colleagues reported that LORETA current
density of theta-band in the rACC was a predictor of response
to antidepressants. The current findings are in accord with these
previous studies, and further suggest that the rACC, including the
subcallosal cingulate cortex, is involved in the anxiolytic effects of

tDCS applied to the left DLPFC, and may appear to be important
for predicting the response of MDD patients to tDCS.

The current findings also revealed a correlation between
baseline alpha-band activity in the IPL and state anxiety
reduction during DMPFC stimulation in the MDD patient group.
Several previous studies have examined the relationship between
anxiety and functional brain imaging in IPL (Hasler et al., 2007;
Goldin et al., 2009). Importantly, the current results revealed
opposite prediction patterns in patients with MDD and HCs;
the best responding HCs (exhibiting negative STAI change)
were those with high alpha activity in precuneus in response to
DMPFC stimulation.

A study by Fox et al. suggested that the region for stimulation
by neuromodulation can be selected not only by the direct effect
of the stimulation, but also by the propagation effect, depending
on the interconnected regions of the resting state networks
(Fox et al., 2014).

As the precuneus and ACC constitute the default mode
network (Sheline et al., 2009), applying tDCS to the DMPFC
might affect activity in the precuneus, which is functionally
densely connected with the DMPFC. This association was only
found in the HC group, presumably reflecting intact functionality
of the default mode network in healthy individuals. Importantly,
other remote effects of tDCS have been reported in previous
studies. tDCS applied to the left DLPFC was reported to increase
functional connectivity in the fronto-parietal network, while
decreasing connectivity in the default mode network (van der
Werf et al., 2010; Eldaief et al., 2011). It should be noted
that anxiety disorder and depression are likely to be related
to dysfunction of this frontal-parietal network (Sylvester et al.,
2012). And this dysfunction also may yield the opposite changing
of STAI-SA; decreasing the mean score of STAI-SA in MDD and
increasing STAI-SA mean score in HCs.

Regarding the prediction of responses to tDCS treatment in
patients with MDD, Al-Kay et al. conducted a prediction analysis
with EEG data for treatment outcomes in response to prefrontal
tDCS. The results revealed that frontal EEG channels were
important for predicting mood improvement after treatment
sessions (Al-Kaysi et al., 2017). In contrast to previous studies,
the current study involved a single tDCS application, and did not
examine predictors of overall treatment, but immediate responses
to a single session of treatment. We believe determining the
immediate neurophysiological effects of tDCS is particularly
important for understanding the treatment mechanisms of
tDCS, because the accumulation of immediate changes may
eventually lead to long-term plasticity underlying the overall
treatment effects. It should also be emphasized that sLORETA
can localize activity in deeper subcortical regions, whereas scalp
EEG electrodes provide limited information about the underlying
cortical activity due to cortical surface orientation and volume
conduction effects.

Interestingly, the patients taking no benzodiazepine
medication had apparently an anxiety reduction effect for
left DLPFC stimulation; however, there was no significantly
difference pre-STAI scores between patients with and without
benzodiazepine. The results is indeed consistent with a previous
clinical trial. The clinical trial comparing the treatment response
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between tDCS and sertraline showed that benzodiazepine
decreases the effect only in the tDCS treatment group (Brunoni
et al., 2013). Benzodiazepine is used as hypnotics in this study,
thus, it might be interesting to investigate interactions between
tDCS and benzodiazepine relating to insomnia in future research.

Additionally, previous studies have reported slow EEG power
changes before and after tDCS under the tasks, which would
support further studies using slow frequencies (Keeser et al., 2011;
Wirth et al., 2011; Jacobson et al., 2012; Ulam et al., 2015).

LIMITATIONS

Our current results, demonstrating the anxiety-reducing effects
of tDCS in patients with MDD, will be of interest to researchers
and clinicians who seek to use neuromodulation techniques as
a novel treatment for depression. However, several limitations
of the current study should be noted. First, the relatively small
number of participants and no placebo stimulations may warrant
some caution in the interpretation of these results. Second,
because we applied only one stimulation, we did not examine
the therapeutic effects of tDCS on depressive symptoms. Third,
chi-squared test for gender imbalance between the MDD and
HC groups tended to be imbalanced, suggesting gender effect
may account for the difference between MDD and HC. However,
this study design also has several strengths. First, we adopted
with-in subject cross over design. Second, by adopting single-
session tDCS, we were able to reduce the total experiment time
and burden on the subjects compared with experiments involving
multiple stimulation sessions. In future research, a randomized
controlled trial of tDCS intervention with a large number of
participants would be helpful for addressing these limitations.

CONCLUSION

The current results revealed that the immediate anxiolytic effect
of left DLPFC tDCS was associated with activity in the rACC
and the left IPL, whereas DMPFC stimulation was correlated
with activity in the precuneus. These findings suggest that the
effects of tDCS are not only directly related to the stimulation
area, but also to other brain areas involved in the same
resting state networks. Further, we propose that pre-stimulus

EEG, in combination with the LORETA source estimation
analysis, provides a promising tool for predicting the outcome of
treatment intervention, including tDCS.
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Introduction: Transcranial direct current stimulation (tDCS) is a potentially novel
strategy for cognitive enhancement in patients with mild or major neurocognitive
disorders. This study aims to assess the safety and efficacy of tDCS during cognitive
training on cognitive functioning in patients with mild or major neurocognitive disorders.

Methods: This study was primarily a single arm for safety, secondary a two-arm,
parallel, randomized, and sham-controlled trial for potential efficacy. Patients with mild or
major neurocognitive disorders were recruited. The participants and raters were blinded
to the group assignment. The participants in the active arm received tDCS (anodal;
F3, cathodal, Fp2, 2A, 20 min) twice daily for five consecutive days, whereas those
in the sham arm received the same amount of sham-tDCS. Calculation and reading
tasks were conducted in both arms as a form of cognitive intervention for 20 min
during tDCS. The primary outcome was the attrition rate during the trial in the active
arm, which is expected to be less than 10%. The secondary outcomes were the
between-group differences of adjusted means for several cognitive scales from baseline
to post-intervention and follow-up.

Results: Twenty patients [nine women (45%)], with a mean (standard deviation) age
of 76.1 years participated; nine patients (45%) with minor neurocognitive disorders
and 11 (55%) with major neurocognitive disorders were randomized, and 19 of them
completed the trial. The attrition rate in the active arm was 0%, with no serious adverse
events. Further, in the Intention-to-Treat analysis, patients in the active arm showed no
statistically significant improvement compared with those who received the sham in the
mean change scores of the mini-mental state examination [0.41; 95% CI (−1.85; 2.67) at
day five, 1.08; 95% CI (−1.31; 3.46) at follow-up] and Alzheimer’s disease assessment
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scale – cognition subscale [1.61; 95% CI (−4.2; 0.98) at day 5, 0.36; 95%CI (−3.19;
2.47) at follow-up].

Conclusion: These findings suggest that tDCS is safe and tolerable but causes no
statistically significant cognitive effects in patients with mild or major neurocognitive
disorders. Additional large-scale, well-designed clinical trials are warranted to evaluate
the cognitive effects of tDCS as an augmentation to cognitive training.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03050385.

Keywords: transcranial direct current stimulation, cognitive training, neurocognitive disorder, dementia, mild
cognitive impairment

INTRODUCTION

Dementia is a disorder characterized by cognitive decline
that interferes in patients’ daily living and social functioning.
Alzheimer’s disease (AD), is the most common cause of
developing dementia, and its progression is usually insidious and
slow. Often, a prodromal and transitional state exists, without
loss of independence, called mild cognitive impairment (MCI)
(Petersen et al., 1999; Gauthier et al., 2006). The progression of
dementia not only causes functional impairment in patients, it
also degrades the caregiver’s quality of life or social functioning
due to caregivers’ burden (Gill et al., 2017). Currently approved
pharmacotherapies, cholinesterase inhibitors, and memantine are
not disease-modifying and cannot revert the course of the disease,
although they show a slight improvement in cognitive scales
(Birks, 2006). Therefore, increasing focus has been placed on
delaying deterioration or conversion from MCI to AD and other
forms of dementia.

Recent studies have gradually revealed a few potentially
modifiable factors, such as physical inactivity, social isolation,
and depression (Gill et al., 2017). Further, a few cognitive
interventional studies have also been conducted. Cognitive
training generally includes guided practice on a set of
standardized tasks designed to reflect specific cognitive domains.
A recent meta-analysis indicated that the overall effect of
cognitive training on cognition in MCI was moderate (Hedges’
g = 0.35) and that in dementia was small (g = 0.26) (Hill
et al., 2017). However, many of these trials assessed short-
term cognitive outcomes. Moreover, based on the results
from randomized trials that lasted for at least 6 months,
cognitive training in patients with MCI suggested no effects
on performance, with low strength, and insufficient evidence
(Butler et al., 2018). Therefore, further strategies are awaited to
combat cognitive decline in such patients. Transcranial direct
current stimulation (tDCS) is a non-invasive neuromodulation
technique, which involves passing a direct electrical current
through the cerebral cortex, usually via two electrodes placed

Abbreviations: AD, Alzheimer’s disease; ADAS-Cog, Alzheimer dementia
assessment scale – cognitive subscale; CDR-J, clinical dementia rating-Japanese
version; CI, confidential interval; DLPFC, dorsolateral prefrontal cortex; FAB,
frontal assessment battery; LBD, lewy body disease; LTP, long-term potentiation;
MCI, mild cognitive impairment; MMRM, mixed-effect model repeated
measurement; MMSE, mini-mental state examination; SD, standard deviation;
tDCS, transcranial direct current stimulation.

on the scalp. One electrode serves as an anode and the other
functions as the cathode. The tDCS device generates and delivers
a small electric current (usually 1 to 2 mA) to different areas of
the brain (Yokoi et al., 2018). The basic mechanism of tDCS is
that the anodal tDCS increases neuronal excitability by causing
a depolarization of the resting potential, while the cathodal
tDCS hyperpolarizes the resting potential, thereby suppressing
neuronal excitability (Philip et al., 2017). The change in neuronal
excitability may lead to alteration in brain functioning in the
vicinity of the stimulated area (Meinzer et al., 2015). Further,
the alteration in brain functioning may also be explained
by the hypothesis that prolonged membrane polarization by
tDCS changes neuroplasticity through N-Methyl-D-aspartic acid
(NMDA) receptors, thereby leading to long-lasting aftereffects of
tDCS (Nitsche et al., 2003).

A recent meta-analysis of randomized controlled trials
indicated that tDCS may be effective on cognition in healthy
participants (Dedoncker et al., 2016); however, a meta-analysis of
randomized controlled trials on the effect of tDCS on cognition
in patients with dementia and MCI shows that tDCS is not
always effective overall (Inagawa et al., 2018). The discord among
the findings of these studies may be due to differences in the
electrode montage, stimulation parameters, and timing of tDCS
in the training tasks (Liu et al., 2017). Further, according to our
systematic review and meta-analysis (Inagawa et al., 2018), only
one study among the 11 previous studies on the effects of tDCS
on cognition in dementia and MCI described a plan to provide
sample size calculation. In addition, although we had planned to
estimate sample size from previous studies, no study assessed the
effect of tDCS combined with cognitive rehabilitation in patients
with MCI at July 2016, when we started this study. Therefore,
it was impossible to calculate sample size from the results of
previous studies. It is important to provide a priori sample size
calculation in order to gain sufficient statistical power to detect a
difference in clinical trials. However, many previous studies did
not provide sample size calculations and, thus, the results from
these studies may be false-negatives, when the results are actually
positive. Further, according to our meta-analytic review (Inagawa
et al., 2018), the quality of study designs in these previous studies
seems to be poor. In fact, many of them did not clearly state
allocation concealment, blinding of personnel, or any method
of handling missing data. These problems may overestimate the
effects of tDCS, although tDCS is actually not effective.
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Further, previous studies on tDCS revealed the beneficial
cognitive/anti-depressant effects of anodal tDCS in AD patients
undergoing simultaneous cognitive training (Hsu et al., 2015), in
depressive patients taking antidepressants (Brunoni et al., 2013),
and in MCI patients receiving physical therapy (Manenti et al.,
2016). Further, a randomized trial demonstrated that active tDCS,
but not sham, over DLPFC combined with a working memory
task showed greater improvement in healthy participants in
terms of the performance of an attention and working memory
test 1 month after the final treatment, compared with tDCS
alone (Martin et al., 2013). These studies indicate the possibility
of augmentation strategies of tDCS simultaneously with the
conduct of cognitive training for improving cognition in patients
with dementia and MCI.

The objectives of the proposed study are to assess the
safety and feasibility of tDCS during cognitive rehabilitation,
as well as to estimate potential efficacy applicable for further
confirmatory studies in patients with neurocognitive disorders.
Because combining tDCS with cognitive training may enhance
the benefits of tDCS, we hypothesize that tDCS will improve,
particularly when administered during cognitive tasks in patients
with these disorders.

MATERIALS AND METHODS

Trial Design
This exploratory study was a single-arm study in terms of
safety, while this was a two-arm, parallel, randomized, sham-
controlled trial for the assessment of potential efficacy, and
feasibility among 20 participants with a diagnosis of major
neurocognitive disorder or mild neurocognitive disorder based
on the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) (American Psychiatric Association, 2013). This study
is reported in accordance with the CONSORT (Consolidated
Standards of Reporting Trials) 2010 statement of information to
include when reporting a randomized trial, which was developed
to provide guidance in the form of a checklist of recommended
items to help improve the quality of a study design (Moher et al.,
2010; Supplementary Table S1).

Participants were supposed to be randomly assigned in
the ratio of 1:1 to one of two groups – an active group
or a sham group – using the order of entry into the study
and a computer-generated randomization list obtained using
a computer-generated randomization method, MUJINWARI
(IRUKA System Cooperation, Tokyo, Japan). This was done
to ensure a balanced allocation of the following factors across
groups: age range (55–60 years, 61–70 years, 71–80 years,
or 81–90 years), sex (male or female), and diagnosis (major
neurocognitive disorder or mild neurocognitive disorder).
This randomization method includes stratification for all of
those factors. The allocation sequence was concealed until
they completed the follow-up evaluations. tDCS device was
always kept at the back of participants’ visibility during
its administration so that participants did not recognize
allocation concealment. tDCS administrators only obtained
access to a computer-generated randomization list, and tDCS

administrators kept the allocation secret so that outcome raters
did not recognize allocation concealment. Both the participants
and raters were blinded to the group allocation; however, the
investigators and those administering the tDCS were not blinded
to the group allocation. In order to assess the quality of the
blinding, after completing the study on day 5, the participants
were asked to guess whether they were allocated to the active
or sham group of the study. Further, we evaluated demographic
and clinical characteristics, and used these data to provide
descriptive characteristics of the population, and to analyze
whether these characteristics could predict the outcomes. This
study was registered on ClinicalTrials.gov (NCT03050385).

Participants
Both inpatients and outpatients were recruited by referrals from
psychiatrists in a single academic hospital: National Center
of Neurology and Psychiatry in Tokyo, Japan; both male and
female patients were selected. The principal investigators or
sub investigators assigned participants to interventions. The
following were the key inclusion criteria: (a) subjects aged
between 55 and 90 years and diagnosed with either major
neurocognitive disorder or mild neurocognitive disorder, as
defined in DSM-5; (b) subjects taking a stable dose of anti-
dementia medications, such as cholinesterase inhibitors or
memantine, for at least 2 weeks preceding enrollment; and
(c) subjects who are able to walk independently, with or
without an aiding device. The following were the key exclusion
criteria: (a) subjects with severe psychotic symptoms requiring
antipsychotic treatment, (b) subjects estimated to be in need
of hospitalization within 6 weeks because of severe depression
and/or suicidal ideation, (c) subjects who have a clinical
contraindication to electroconvulsive therapy or tDCS, (d)
subjects with an MMSE score less than 18 or a clinical dementia
rating-Japanese version (CDR-J) global score of more than two,
(e) subjects who were unable to attend more than 2 days of the
trial, and (f) subjects for whom MMSE subscales of either “write a
sentence” or “copy a figure” was zero. The patients were carefully
assessed by a specialized psychiatrist before the trial. Because
of the safety of tDCS to date (Bikson et al., 2016), no specific
exclusion criteria were applied. Patients who were receiving anti-
dementia medications were not excluded, but they were required
to be receiving stable doses of these medications for at least
2 weeks prior to the first day of the administration of stimulation.

Intervention
Transcranial direct current stimulation was performed using a
specially developed battery-driven constant 1 × 1 low-intensity
tDCS (Model 1300A; Soterix Medical Inc., New York, NY,
United States) that delivers direct current through two saline-
soaked surface sponge electrodes (35 cm2) with a maximum
output of 2 mA. This device also has a switch off allocation. If
the administrator turned the switch on, the sham stimulation
was delivered; if the administrator turned the switch off, active
stimulation was delivered. During the stimulation, the device
was placed behind the participants, and their allocation was kept
secret so that they would not know which group they were
randomized to. The anode electrode was placed over the left
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dorsolateral prefrontal cortex (DLPFC) (F3) and the cathode
was placed over the contralateral supraorbital ridge (Fp2), using
the 10/20 electrode placement system in both active and sham
arms. This method of DLPFC placement has been established by
neuro-navigation techniques, as this method is relatively accurate
for localization (Herwig et al., 2003). The DLPFC was selected
because a previous study on healthy participants indicated that
tDCS over DLPFC had beneficial effects on working memory
(Martin et al., 2013). The cathode electrode was placed over
the contralateral supraorbital area, which was similar to recent
tDCS studies on cognitive functioning in patients with MCI
(Manenti et al., 2016), Alzheimer’s dementia (Khedr et al.,
2014), and schizophrenia (Narita et al., 2017). It must be noted
that for aging populations, stimulation with 2 mA has been
shown to be safe. Actually, no severe adverse events due to
tDCS with 2 mA have been reported (Bikson et al., 2016). The
participants in the active arm received active tDCS at a constant
current with an intensity of 2 mA for 20 min per session,
with two sessions per day for 5 consecutive days. Those in the
sham arm received the same treatment as those in the active
arm, but the overall active stimulation period was only 60 s,
including the 30 s for both the fade-in and fade-out periods.
For the other periods, the stimulator remained active but did
not generate current for 20 min in each session. Therefore,
those in the sham arm usually experienced an initial itching
sensation but received no current for the remainder of the
session. All the participants received both tDCS (either active
or sham) and cognitive training task for 20 min per session.
On each day, the second active or sham tDCS session was
conducted at least 20 min after the end of the first tDCS session
in order to take into consideration the aftereffects of tDCS. In

other words, the interval between the first and second tDCS
session was 20 min.

These tasks comprised an initial 10 min calculation task,
followed by a 10 min language task in Japanese. During the
calculation task, participants solved basic arithmetic questions –
such as single-digit addition, subtraction, and multiplication –
as quickly and accurately as possible. During the language
tasks, which included the Kanji writing task and the Kanji
connecting task, participants answered questions related to
Japanese Kanji letters. All the questions were printed on A4 sheets
(210 mm × 297 mm). In the Kanji writing task, each participant
was asked to interpret the meaning of hiragana characters and
to write letters in Kanji. The participants performed a Kanji
connecting task on a 10 × 10 grid, which contained a Kanji
letter in each grid. In a separate table, there was a list of 20
different Kanji letters. In this task, the participants began from
the first Kanji letter in the upper-left corner of the 10 × 10 grid
(Figure 1a). Next, the participants were instructed to look at the
Kanji letters on the right and toward the bottom of the first Kanji
letter (Figure 1b) and match it with a Kanji letter included in the
list of 20 different Kanji letters in the table (Figure 1c). When
one of them would match, they connected this Kanji letter to the
first Kanji by drawing a line from one to another (Figure 1d). In
the next step, the new Kanji letter would take the place of the first
Kanji letter (Figure 1e). The participants were asked to repeat this
process for all the Kanji letters until they reached the Kanji letter
in the bottom-right corner of the grid (Figure 1f).

The difficulty and complexity of the cognitive tasks were the
same across sessions, but the content was different. We did
not calculate the scores that could be obtained from the tasks.
A previous randomized controlled trial indicated that similar

FIGURE 1 | Kanji connection task. (a) The participants began from the first Kanji letter in the upper-left corner of the 10 × 10 grid. (b) The participants were
instructed to look at the Kanji letters on the right and toward the bottom of the first Kanji letter. (c) The participants were instructed to match it with a Kanji letter
included in the list of 20 different Kanji letters in the table. (d) When one of them would match, they connected this Kanji letter to the first Kanji by drawing a line from
one to another. (e) The new Kanji letter would take the place of the first Kanji letter. (f) The participants were asked to repeat this process for all the Kanji letters until
they reached the Kanji letter in the bottom-right corner of the grid.
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working memory tasks (reading and simple arithmetic problems)
as the one in our pilot study improve executive functions, verbal
episodic memory, focus attention, and processing speed in elderly
patients who are healthy (Nouchi et al., 2016). The rationale for
using these working memory tasks is that the training activates
the bilateral prefrontal cortex (Arsalidou and Taylor, 2011). We
also chose this task because the task was familiar to Japanese
elderly population and feasible to be conducted among patients
with dementia (Kawashima et al., 2005). We were interested
in investigating the effects of tDCS on global cognition when
combined with the cognitive training task commonly used for the
elderly population in Japan, in order to ensure whether clinically
meaningful effects can be obtained by adding multisession
tDCS to cognitive training using common cognitive measures of
MMSE and ADAS-Cog.

Outcomes
As this was the first phase of an exploratory feasibility trial,
a sample size of 20 individuals, including sham, was adapted. In
the intervention group, the primary outcome was the attrition
rate during the trial, which is expected to be less than 10%. We
selected the attrition rate as the primary outcome because it
was important to first assess the safety and feasibility of tDCS
in Japanese patients with neurocognitive disorders due to the
fact that, to the best of our knowledge, no previous studies
were found in such patients receiving tDCS while simultaneously
being engaged in cognitive rehabilitation in Japan on July, 2016
when we started this study. The secondary outcomes were
between-group differences in mean ADAS-Cog, MMSE, frontal
assessment battery (FAB), and CDR-J scores from the baseline.
We selected ADAS-Cog (whose score ranged from 0 to 70) and
MMSE (whose score ranged from 0 to 30) for the assessment
of global cognition, FAB (whose score ranged from 0 to 18) for
the evaluation of frontal lobe functions, and CDR (whose score
ranged from 0 to 3) for the estimation of the severity of dementia.
All the above-mentioned outcome measures were scored by a
psychologist after a clinical interview, who was blinded to group
allocation. The outcome measures were assessed at the baseline,
at the end of the final stimulation, and 2 weeks after the final
stimulation (Supplementary Table S2).

Data Collection Methods and Data
Monitoring
The assessments were conducted at the baseline, immediately
after the intervention, and 2 weeks after the end of the
intervention (Supplementary Table S2). Baseline and follow-
up evaluations were conducted by experienced psychologists,
who were blinded to the group assignments. The outcome data
was sent to an independent data monitor, and neither the
investigators nor the raters handled any data directly throughout
the study. The data were initially recorded on paper files, with
each participant assigned to a code number. These files were
stored in a locked security box. Upon completion of the follow-up
data collection, the data was sent to an independent data tester for
cleaning up. The data monitor center also oversaw and reviewed
the progress of the trial. If a participant decided to withdraw

their consent, we allowed that participant to stop at any time. We
also ceased the intervention if we observed any severe adverse
events like burning. In this pilot study, the Efficacy and Safety
Assessment Committee, which comprised members that were
independent of the research, in the National Center of Neurology
and Psychiatry checked and assessed whether or not this clinical
trial was conducted safely and appropriately. The committee
was called upon to decide whether it is possible to continue
the trial or whether the research protocol must be revised in
cases of either severe adverse events or protocol violations.
The committee also performed this procedure by checking the
documents of this trial in the intermediate period when five
participants completed or discontinued their participation in this
trial. The safety questionnaire on adverse events was established
at the time according to the guidelines published in a recent
consensus paper (Brunoni et al., 2011).

Statistical Analysis
We conducted an intention-to-treat analysis for patients who
were randomized to either the active or sham arms; in addition,
we summarized demographic data for all patients. Further, we
calculated the point estimate of tDCS-related dropout proportion
in the intervention group, where we checked whether the
estimate was less than 10%. The exact confidential intervals
(CIs) of this binomial proportion (Clopper and Pearson, 1934)
were assessed. In order to evaluate the mean treatment effect,
we conducted mixed models for repeated measures (MMRM)
analysis to detect changes from baseline in ADAS-Cog, MMSE,
FAB, and CDR-J at day 5 and follow-up. The MMRM analysis
models included the covariates of age (55–60 years, 61–70 years,
71–80 years, or 81–90 years), sex (male or female), and disease
(dementia or MCI), which were the stratification factors of
dynamic allocation. This MMRM analysis models had treatment
groups, time, group-by-time interaction, age, sex, diagnosis, and
baseline as a fixed effect and unstructured covariance structure.
Fisher’s exact test was used to assess the integrity of blinding. We
used STATA 14 (StataCorp LP, College Station, TX, United States)
and SAS version 9.4 to conduct the statistical analysis.

RESULTS

Participants
Of the 21 participants who agreed to provide written consent,
20 were randomized to either the active or sham arms. Seven
patients (five patients had AD, one had lewy body disease
(LBD), and the other had the other type of etiology) were
allocated to the active arm, while 13 patients (11 patients
had AD, one had LBD, and the others had unspecified types
of neurocognitive disorders) were allocated to the sham arm.
Further, 19 participants (seven in the active arm and 12 in the
sham arm) received all 10 tDCS sessions and completed the
final assessment. All patients in tDCS group were outpatients.
Two participants withdrew from the study: one withdrew during
the intervention phase, and one before randomization. Figure 2
depicts a flow chart on participants’ selection, and Table 1
presents baseline characteristics. Recruitment and follow-up were
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FIGURE 2 | Flow chart of participant selection.

conducted from July 2016 until July 2017 because more than
20 participants finished follow-up examinations. 20 participants
were included for statistical analysis.

Primary Outcome
The primary outcome was an attrition rate in the intervention
group. The attrition rate in the group was 0%, with no

TABLE 1 | Demographics and clinical characteristics (n = 20).

Active group Sham group

Mean ± SD or n (%)

7 (100%) 13 (100%)

Age (year) 76.6 ± 5.7 76.2 ± 7.7

Female 4 (57.1%) 6 (46.2%)

Major neurocognitive disorder 3 (42.9%) 7 (53.8%)

Right-handed 7 (100%) 13 (100%)

Duration since diagnosis (year) 0.9 ± 1.2 1.2 ± 1.5

Family history

Dementia 3 (42.9%) 3 (23.1%)

Mental disorder 0 (0%) 0 (0%)

Neurological disorder 1 (14.3%) 1 (7.7%)

Medication over the past 6 months

Antidepressant, antipsychotics 1 (16.7%) 3 (23.1%)

Benzodiazepine 3 (42.9%) 4 (30.8%)

Cholinesterase inhibitors 4 (57.1%) 10 (76.9%)

Past history

Substance abuse disorder 1 (14.3%) 0 (0%)

Schizophrenia 0 (0%) 0 (0%)

Mood disorder 0 (0%) 0 (0%)

Neurologic disorder 0 (0%) 2 (15.4%)

Head trauma 1 (14.3%) 2 (15.4%)

Visits to day care center for seniors 1.3 ± 2.6 0 ± 0

SD, standard deviation.

requirements of hospitalization, trial discontinuation, or any
specific treatment in the active arm. The CIs of this proportion
were from 0.0 to 41.0%.

Secondary Outcomes
MMSE
The differences in adjusted means between groups for MMSE
scores were 0.41 [95% CI: −1.85 to 2.67] (p = 0.705) at day
five, and 1.08 [95% CI: −1.31 to 3.46] (p = 0.352) at follow-
up, respectively (Table 2). There was no statistical significance
in the between-group difference between the active and sham
groups. Supplementary Table S3 presents the change scores
in adjusted mean difference from the baseline in each group.
Figure 3 illustrates the mean values and standard deviations
(SDs) at each point.

TABLE 2 | The differences in adjusted means between groups for each cognitive
scale in the MMRM analysis.

Active tDCS vs. Sham

Clinical Post-treatment Two-weeks follow

studies from baseline up from baseline

95% 95%

Difference CI p Difference CI p

MMSE 0.41 −1.85 2.67 0.705 1.08 1.31 3.46 0.352

ADAS-Cog −1.61 −3.19 2.47 0.205 −0.36 −3.19 2.47 0.791

FAB −2.27 −6.17 1.63 0.233 −3.01 −6.46 0.45 0.083

CDR 0.06 −0.09 0.22 0.404

MMRM, mixed-effect model repeated measurement; tDCS, transcranial direct
current stimulation; 95% Cl, 95% confidential intervals; MMSE, mini-mental
state examination; ADAS-Cog, Alzheimer dementia assessment scale – cognitive
subscale; FAB, frontal assessment battery; CDR-J, clinical dementia rating-
Japanese version.
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FIGURE 3 | The change scores in adjusted mean difference from baseline on ADAS-Cog and MMSE. In order to understand the mean change from baseline in each
group easily, baseline scores in each group were shown as zero in this graph.

ADAS-Cog
The differences in adjusted means between groups for ADAS-Cog
scores were 1.61 [95% CI: −4.2 to 0.98] (p = 0.205) at day five and
0.36 [95% CI: −3.19 to 2.47] (p = 0.791) at follow-up (Figure 3).
There was no statistically significant difference between the active
and sham arms. Supplementary Table S3 presents the change
scores in the adjusted mean difference from baseline in each
group. Figure 3 illustrates the mean values and SDs at each point.

FAB
The differences in adjusted means between groups for FAB scores
were −2.27 [95% CI: −6.17 to 1.63] (p = 0.233) at day five and
−3.01 [95% CI: −6.46 to 0.45] (p = 0.083) at follow-up. FAB
showed a dip in the active arm at both day five and follow-up,
but no statistically significant differences were found between the
groups. Supplementary Table S3 presents the change scores in
the adjusted mean difference from baseline in each group.

CDR
The differences in adjusted means between groups for CDR
scores were 0.06 [95% CI: −0.09 to 0.22] (p = 0.404) at follow-
up. Supplementary Table S3 presents the change scores in the
adjusted mean difference from baseline in each group.

Adverse Events
We found neither severe adverse events nor the need for
medications caused by adverse events in each group. Table 3
presents adverse events related to tDCS.

Integrity of Blinding
In the sham and active groups, seven of 12 participants (58.3%)
and three of seven participants (42.9%), respectively, correctly
identified the allocation group (p = 1.000, as assessed by Fisher’s
exact test). Thus, participants were unable to guess their actual
group beyond that by chance.

DISCUSSION

Using data from a small sized sample, no cognitive effects of
tDCS were detected in this pilot study; however, this is certainly
not definitive because of the insufficient sample size used in this
study. Further studies using a larger sample size are warranted
in order to arrive at a clear conclusion regarding whether or
not tDCS is effective for improving cognition in patients with
mild or major neurocognitive disorders and also to evaluate the
generalizability of this pilot study. Moreover, we did not adjust
for multiplicity because the primary objective of this study was
to assess the safety and feasibility of tDCS in Japanese elderly
patients with neurocognitive disorders, and the secondary aim
was to exploratorily estimate potential efficacy applicable for
further proof-of-concept studies to demonstrate the effects of
tDCS on cognition in patients with neurocognitive disorders.
Apart from that, the augmentation strategy in this pilot study
should have been more sophisticated. Although proof of concept
has been indicated, whereby anodal stimulation over DLPFC
during a working memory task led to enhanced performance the

TABLE 3 | Adverse effects related to tDCS reported by patients in each group.

tDCS Sham p

Headache (n, %) 1 (14.3%) 5 (38.5%) 0.354

Neck pain (n, %) 0 (0%) 2 (15.4%) 0.521

Scalp pain (n, %) 0 (0%) 4 (30.8%) 0.249

Tingling (n, %) 3 (42.9%) 9 (69.2%) 0.428

Itching (n, %) 1 (14.3%) 3 (30.8%) 1.000

Burning sensation (n, %) 2 (28.6%) 4 (30.8%) 1.000

Skin redness (n, %) 2 (28.6%) 2 (15.4%) 0.587

Sleepiness (n, %) 1 (14.3%) 2 (15.4%) 1.000

Trouble concentrating (n, %) 1 (14.3%) 1 (7.7%) 1.000

Acute mood change (n, %) 0 (0%) 1 (7.7%) 1.000

Others (n, %) 0 (0%) 0 (0%) 1.000
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next day (Martin et al., 2013), the cognitive training task used
in this pilot study is not exactly the same as that employed in
previous studies. Moreover, the Kanji connection task is short
and tough as compared with that in previous studies. A previous
study indicates that those trainees who put more effort into
training were more anxious or depressed, and showed lesser
improvement in cognition (McAvinue et al., 2013). Therefore, it
may be necessary not only to modify the tDCS protocol but also
to optimize the cognitive task in future trials.

Further, the target population may not have been optimal.
A previous randomized controlled trial indicates that tDCS is not
effective on global cognition assessed by ADAS-Cog in patients
with moderate and severe dementia with apathy. The authors
discuss that in order to gain cognitive benefits of anodal repetitive
tDCS, it is necessary to have at least some remaining neuronal
function to promote plasticity, which may not be possible in
aged patients with AD. In this study, the target population may
have been patients in an early stage of the disease, like MCI.
Moreover, the difference between mild neurocognitive disorders
and major neurocognitive disorders is the interference with
independence in daily activities. Then, cognitive deficits in mild
neurocognitive disorders may be stable or even reversible, but
those in major neurocognitive disorders may be continuous or
even progressive. These differences between the mild and major
disorders especially for the potential difference in the course of
cognitive change may have confounded the results presenting the
after-treatment cognitive changes from baseline although we did
include the variable as a covariate in the analysis. A preliminary
randomized sham-controlled trial indicated that comparisons
of anodal tDCS for the DLFPC group (2 mA, 25 min daily
for 10 days) vs. the sham group revealed significant interaction
between time and treatment for MMSE scores post-stimulation,
1 month later, and 2 months later in 22 patients (11 in each group)
with mild-to-moderate Alzheimer’s dementia (p = 0.04) (Khedr
et al., 2014). Another preliminary randomized sham-controlled
trial indicated that anodal tDCS over the DLPFC group (2 mA,
25 min daily for 10 days) vs. the sham group showed a significant
interaction between time and treatment (p = 0.0041) on the
Parkinson’s disease cognitive rating scale at the post-stimulation
point and 3-month follow-up period in 20 patients (10 in each
group) with MCI in Parkinson’s disease (Manenti et al., 2016). On
the other hand, no significant effect of anodal tDCS over DLPFC
was found on the Apathy scale (p = 0.55 for repeated measures)
or ADAS-Cog (p > 0.40) in 40 patients (20 in each group) with
moderate-to-severe AD compared to the sham group (Suemoto
et al., 2014). Moreover, tDCS may not be effective in global
cognition in these patients. Although a few studies show potential
cognitive benefits, a functional trade-off has been suggested in
which improvement in a single cognitive domain comes at the
cost of decline in another one (Philip et al., 2017). In addition,
the effect of tDCS appears to be site-specific; thus, the effect of
tDCS in itself may not sufficiently transfer to other brain regions
to improve global cognition (Kim et al., 2014).

In order to determine whether or not the effect of tDCS on
cognition in neurocognitive disorders is clinically meaningful,
one of the possible options is to compare the effect of tDCS with
that of the first-line standard treatment. Although Cholinesterase

inhibitors (ChE-Is) have never been approved for standard
treatment in patients with MCI in Japan, they are considered
to be the first-line pharmacological agent for mild to moderate
AD. ChE-Is work by inhibiting the breakdown of acetylcholine,
an important neurotransmitter related to memory, by blocking
the enzyme acetylcholinesterase. The between-group difference
in mean changes of MMSE was 1.37, according to a systematic
review and meta-analysis of unconfounded, double-blinded,
randomized, placebo-controlled trials designed to evaluate the
efficacy of patients with dementia due to AD, in which treatment
with a ChE-I was administered for approximately 6 months
(Birks, 2006). If the effect size obtained from the ongoing
phase-II randomized trial is similar to that in our pilot study,
which was 1.08 at follow-up, tDCS could be a potential tool
for alleviating cognitive deficits in those patients. Further, the
differences in adjusted means between groups for ADAS-Cog
scores at day five was −1.61 (p = 0.205) (Figure 3). Further trials
are warranted to evaluate whether these cognitive benefits can be
generalized to the larger population in MCI and mild dementia
in this tDCS protocol.

The strength of this study is that it has a relatively low
bias risk as compared with previous studies. Although tDCS
administrators were not blinded, both participants and raters
were blinded. A random sequence was generated through
computers, and allocation was concealed until the disclosure of
the data; blinding was well integrated. Further, all pre-specified
outcomes were shown after registration on ClinicalTrials.gov.
The dropout rates were low in both groups: 0% in the active group
and 7.69% in the sham group. These indicate the quality of this
study. Another strength of our study is the novelty that, to the
best of our knowledge, this is the first study to assess optimized
tDCS protocol combined with cognitive training in patients with
both MCI and mild dementia. Further, our pilot study indicated
that tDCS combined with cognitive training was safe and feasible.
In addition, we selected ADAS-Cog and MMSE because these
scales are the screening tools that are most commonly used to
measure cognitive deficits in clinical settings.

This study has a few additional limitations. First, the follow-
up period is too short to evaluate changes in disease progression
and to test whether additional interventions are needed over
time. Second, cognitive training tasks used in this pilot study
are not entirely the same as those used in previous studies,
which indicates that calculation tasks and reading tasks improve
executive functions, verbal episodic memory, focus attention,
and processing. Third, our cognitive training protocol is short
and tough compared to that of previous studies. This may have
caused psychological stress among participants, which may have
decreased the effect of cognitive training (McAvinue et al., 2013).
Fourth, our pilot study only selected MMSE and ADAS-Cog total
scores for the assessment of global cognition and FAB for the
evaluation of frontal lobe cognitive function. In future studies,
a standard scale, like the repeatable battery for the assessment
of neuropsychological status (RBANS), is an appropriate choice
to comprehensively assess the global cognition and cognitive
domains separately and to gain statistical power enough to
assess the meaningful cognitive benefits in patients with early
stages of neurocognitive disorders. For example, RBANS may
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be well suited because it is a brief and comprehensive battery
consisting of the following indices: memory, attention, language,
visuospatial/constructional, and total scores. This scale enables
raters to simultaneously assess global cognition and several
other domains of cognition, including memory, attention, and
language. Fifth, we selected MMRM analysis for multiple
outcome measures and several time points, so the results obtained
from those measures should be interpreted carefully. Future trials
with a proper sample size calculation for one primary outcome
may provide meaningful results. Sixth, a small sample size may
lead to lack of statistically significant power. It is important
to provide a priori sample size calculation in order to gain
sufficient statistical power to detect a difference in clinical trials.
However, we did not provide it because it was necessary to first
assess the safety and feasibility of tDCS in Japanese patients
with neurocognitive disorders, as, to the best of our knowledge,
this is the first pilot study of tDCS in such patients. Therefore,
the results obtained from this study may well lack statistical
power to detect a difference between the active and sham arms.
If the primary outcome of a future trial lies in the differences
of adjusted means between groups for ADAS-Cog scores at day
five, the minimal sample size with statistical power over 0.8 is
estimated to be 46 in each group; this is based on the assumption
that the between-group difference in ADAS-Cog scores is −1.61
and its SD is 2.70. Based on this sample size calculation, we
have initiated a phase-II randomized, sham-controlled trial of
tDCS on cognition in MCI and mild dementia. This trial has
been registered in the Japan Registry of Clinical Trials (protocol
number: jRCTs032180016). Seventh, the patients were supposed
to be randomized to the treatment groups with a 1:1 ratio but the
outcome of the allocation was 7:13. That was because too many
factors were included in the factors for minimization techniques
in spite that the sample size was small. Eighth, the results may
be interpreted carefully because we conducted statistical tests
for a variety of outcome groups without taking multiplicity into
consideration because this trial was an exploratory trial.

In conclusion, tDCS is safe and tolerable in the context of
cognitive rehabilitation. We found no statistically significant
cognitive effects of tDCS in patients with mild or major
neurocognitive disorders. Further trials with larger samples may
clarify the efficacy of tDCS on global cognition and several
cognitive domains in such patients.
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