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Editorial on the Research Topic

Emerging Cellular Stress Sensors in Neurological Disorders: Closing in on the Nucleolus and

the Primary Cilium

The primary cilium and the nucleolus represent signaling hubs that regulate cell homeostasis
and stress responses. Primary cilia have long been considered vestigial organelles but are now
viewed as sensory antennae that transduce extracellular signals, including mechano- and chemo-
transduction. The nucleolus is traditionally viewed as the site where ribosomal RNA synthesis and
ribosome biogenesis occurs, which is now considered both a sensor and a mediator of the cellular
stress response. Both organelles transduce developmental and homeostatic pathways, including
Wnt signaling, mechanistic target of rapamycin (mTOR) and autophagy. Both organelles adjust
their structure and function in response to changes not only in the extracellular environment but
also in the intracellular milieu. Interestingly, neither are typical membrane-bound organelles, and
they both adapt their structure in a dynamic fashion, suggesting a crucial role in cell homeostasis.
These conceptual similarities, along with the newly discovered impact of deficits in primary ciliary
and nucleolar function on neuronal homeostasis, raised the idea of the first collection of reviews
and original articles addressing primary cilium- and nucleolus-dependent mechanisms in normal
neuronal function and neurological disorders.

The Research Article by Monaco et al. describes a novel method to differentially isolate primary
cilia from motile cilia by flow cytometry. Differently from motile cilia, primary cilia express type
III adenylyl cyclase (AC3), a primary cilium-localized, cAMP-generating enzyme, and prominin,
a glycoprotein typical of neural stem cells. Intriguingly, different populations of primary cilia
characterized by the expression of specific receptors in an age-dependent fashion are identified
here, validating this method for the investigation of primary cilia-dependent signaling pathways in
health and disease conditions.

A second Research Article by Zhou et al. focuses on AC3 for its fascinating genetic association
in human studies with autistic spectrum and major depressive disorders. The authors use mouse
knockout models of the AC3 gene to look at differences in expression of phosphorylated protein
isoforms in the brains of control andAC3-knockoutmice. Interestingly, the authors also distributed
their data sets by sex, and came up with hundreds of sex-specific phosphoprotein expression
patterns, one third of which have shown association with autism.
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The mini-review by Sarkisian and Semple-Rowland looks
at connections between primary cilia and glioma. Gliomas
are tumors arising from glial cell populations in the brain
and spinal cord, comprising the majority of malignant
brain tumors. The authors focus upon the most aggressive
tumor type, the glioblastoma, and examine correlations and
causative experiments that have been recorded and performed,
respectively, to test whether primary cilia influence tumor
development and progression. The data are decidedly mixed and
do not seem to deliver a consistent answer whether tumor cells
are ciliated, and conversely, the tumor identity of ciliated cells
identified in biopsies. This uncertainty is mirrored by functional
experiments, showing that either the presence or the absence
of primary cilia on tumor precursor cells can promote tumor
progression. In a second mini-review, the authors Park et al.
make an excellent summary of the multiple, diverse, essential
functions that primary cilia have in the formation of the brain,
including patterning, layering, and neuronal migration within
the forebrain, expansion of precursor pools in the cerebellum,
and more subtle effects observed in learning and memory.
They touch upon the best-investigated pathways, including
Hedgehog, Wnt, mTOR, and they even discuss autophagy
in this context.

In the Brief Research Report by Mustafa et al. we present
the initial characterization of a mutant mouse lacking primary
cilia in dopaminoceptive neurons. These models will be useful
to investigate the impact of primary cilia in diseases affecting
the dopamine system, such as Huntington’s disease (HD). We
show that either altered structure or loss of primary cilia is
associated with increased mTOR activity in a progressive mouse
model of HD. In addition loss of primary cilia results in
bigger mutant Huntingtin nuclear inclusions, suggesting a more
advanced pathological stage. Future studies should address the
disease phenotype at later stages. A second Brief Research Report
by Lucarelli et al. looks at the distribution of primary cilia in
a murine model of the neurodegenerative Niemann-Pick C1
(NPC1) disease. NPC1 is characterized by biochemical changes
in lipid and cholesterol metabolism resulting in dopamine
imbalances and corresponding locomotor defects. In their mouse
model, the authors observe a decrease in dopamine transporter
expression, and also an increase in the number of primary cilia,
in the dorsal striatum. In line with this concept, both reports
strongly suggest that primary cilia are involved in homeostatic

responses to changes in striatal dopamine. Future studies should
address the impact of primary cilia of mTOR dysregulation and
autophagy in neurodegeneration.

On the other side, the excellent Review by Pfister provides
an outstanding overview of the regulation of autophagy by the
second stress sensor organelle object of this Research Topic, the
nucleolus. The author discusses recent findings on the crosstalk
between mTOR signaling and nucleolar activity, and how
autophagy represents a response to nucleolar stress in numerous
human diseases. She provides an unprecedented outline of
nucleolar proteins functioning in autophagy regulation. A second
exciting Review by Latonen provides a comprehensive overview
of the most recent functions discovered for the nucleolus
in neuronal homeostasis. The author identifies the nucleolus
as a central hub of cellular proteostasis and focuses on its
important new role in cell homeostasis, affected by changing its
material properties. The role of nucleolar aggresomes is discussed
as a potential mechanism of nuclear aggregate accumulation
common to many neurodegenerative diseases, such as HD and
amyotrophic lateral sclerosis. This Review also presents the
emerging role of long non-coding RNA in ribosomal RNA
transcription and stress response.

Although there is no current evidence that primary cilia
and nucleoli are interdependent, this Research Topic poses the
provocative thought that the structure and function of these
two key stress sensors and mediators might be connected. This
collection promises to inspire original ideas and innovative
studies, to provide a deeper understanding of physiological
processes and disease mechanisms, and to identify new strategies
for the maintenance of neuronal health and disease treatment.

AUTHOR CONTRIBUTIONS

RP and KT drafted the manuscript.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Parlato and Tucker. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 March 2020 | Volume 14 | Article 645

https://doi.org/10.3389/fncel.2019.00055
https://doi.org/10.3389/fncel.2019.00218
https://doi.org/10.3389/fncel.2019.00565
https://doi.org/10.3389/fncel.2019.00226
https://doi.org/10.3389/fncel.2019.00156
https://doi.org/10.3389/fncel.2019.00151
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


ORIGINAL RESEARCH
published: 14 January 2019

doi: 10.3389/fncel.2018.00519

A Flow Cytometry-Based Approach
for the Isolation and Characterization
of Neural Stem Cell Primary Cilia
Sara Monaco †, Katja Baur †, Andrea Hellwig, Gabriele Hölzl-Wenig, Claudia Mandl
and Francesca Ciccolini*

Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany

Edited by:
Kerry Lee Tucker,

University of New England,
United States

Reviewed by:
Xuanmao Chen,

University of New Hampshire,
United States

Matthew Sarkisian,
University of Florida, United States

*Correspondence:
Francesca Ciccolini

ciccolini@nbio.uni-heidelberg.de

†These authors have contributed
equally to this work

Received: 28 September 2018
Accepted: 12 December 2018
Published: 14 January 2019

Citation:
Monaco S, Baur K, Hellwig A,

Hölzl-Wenig G, Mandl C
and Ciccolini F (2019) A Flow

Cytometry-Based Approach for the
Isolation and Characterization of
Neural Stem Cell Primary Cilia.
Front. Cell. Neurosci. 12:519.

doi: 10.3389/fncel.2018.00519

In the adult mammalian brain, the apical surface of the subependymal zone (SEZ)
is covered by many motile ependymal cilia and a few primary cilia originating from
rare intermingled neural stem cells (NSCs). In NSCs the primary cilia are key for the
transduction of essential extracellular signals such as Sonic hedgehog (SHH) and
platelet-derived growth factor (PDGF). Despite their importance, the analysis of NSC
primary cilia is greatly hampered by the fact that they are overwhelmingly outnumbered
by the motile cilia. We here take advantage of flow cytometry to purify the two cilia
types and allow their molecular characterization. Primary cilia were identified based on
immunoreactivity to the marker adenylate cyclase type III (AC3) and differential levels of
prominin-1 whereas motile cilia displayed immunoreactivity only to the latter. Consistent
with the morphological differences between the two classes of cilia, enrichment of motile
cilia positively correlated with size. Moreover, we observed age-dependent variations in
the abundance of the two groups of ciliary organelles reflecting the changes associated
with their development. The two cilia groups also differed with respect to the expression
of signaling molecules, since PDGF receptor (PDGFR)α, smoothened (Smo) and CXC
chemokine receptor (CXCR)4 were only detected in isolated primary but not motile cilia.
Thus, our novel method of cilia isolation and characterization by flow cytometry has the
potential to be extended to the study of cilia from different tissues and organs, providing
a powerful tool for the investigation of primary cilia in physiological and pathological
conditions.

Keywords: primary cilium, ependymal cilium, subependymal zone, Sonic hedgehog, platelet-derived growth factor

INTRODUCTION

Primary cilia have an emerging function in the transduction of developmental and homeostatic
pathways and their dysfunction is associated with a number of human diseases, collectively
referred to as ciliopathies (Berbari et al., 2009; Tobin and Beales, 2009). Primary cilia are
present throughout the brain and they are involved in several functions including neurogenesis,
migration, autophagy and development (Guemez-Gamboa et al., 2014). The adult subependymal
zone (SEZ) is the largest germinal niche in the adult brain, where neural stem cells (NSCs)
mainly generate new interneurons for the olfactory bulb throughout adulthood. The apical
side of the SEZ is lined with a myriad of motile cilia stemming from ependymal cells and a
few primary cilia protruding from NSCs. The two cell types form a characteristic pinwheel
structure at the apical SEZ surface in which ependymal cells encircle a NSC (Mirzadeh et al., 2008).
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Like adult NSCs, ependymal cells are generated from radial glia
precursors perinatally and continue to develop during the first
weeks after birth (Merkle et al., 2004; Spassky et al., 2005). As a
consequence, primary cilia extending from radial glia represent
the prevailing cilia type before birth. Both ependymal cells and
NSCs undergo changes during postnatal aging. In particular,
pinwheel structures become rarer in aged mice (Shook et al.,
2012) likely due to NSCs losing the apical attachment (Obernier
et al., 2018). Ageing also affects the ependymal layer with loss
of ependymal cells into the ventricular space (Del Bigio, 2010).
Primary and motile cilia are defined by striking morphological
differences. The primary cilia axoneme, which is 1–9 µm long
(Dummer et al., 2016) and 0.2–0.3 µm wide, is constituted
at its core by a ring of nine microtubule pairs (9 × 2 + 0).
In contrast, the generally longer motile cilia, whose length is
extremely variable in different tissues (Lee, 2013), have a 9 × 2
+ 2 core structure with the ring of external microtubule doublets
connected by inner and outer dynein arms and an additional
central pair of microtubule singlets. Despite being structurally
and functionally different both primary and motile cilia express
prominin-1, a glycoprotein commonly used to isolate stem
and progenitor cells from the developing and adult nervous
system, which is selectively localized in membrane protrusions
(Weigmann et al., 1997), including cilia (Pfenninger et al., 2007;
Coskun et al., 2008). However, whereas prominin-1 expression is
a constant feature of ependymal motile cilia, a subset of primary
cilia in the SEZ lacks the expression of the glycoprotein at the cell
membrane (Codega et al., 2014; Khatri et al., 2014). Modification
of the tubulin residues such as acetylation and glycosylation,
which increase the stability of the microtubule and the length of
the axoneme, are found in both types of cilia. However, the type 3
adenylate cyclase (AC3) localizes to primary cilia only and it is
considered to be a marker of primary cilia in all regions of the
mouse brain (Bishop et al., 2007).

The beating of ependymal motile cilia contributes to the
movement of the cerebrospinal fluid (CSF) in the ventricular
system of the brain representing an essential component of
a protecting barrier whose integrity is important to maintain
the size of the ventricles (Shook et al., 2014) as well as to
create concentration gradients for the guidance of migrating
neurons (Sawamoto et al., 2006). Underscoring the importance
of the ependymal ciliary function, several neurological conditions
(Ikeda et al., 2005; King, 2006; Suzuki et al., 2009) such
as hydrocephalus (Lee, 2013; Jiménez et al., 2014) and
schizophrenia (Palha et al., 2012) have been associated to
impaired circulation of the CSF. The flow of the CSF is also
disrupted in Huntington’s disease, which leads to an increase
in the length of ependymal cilia (Keryer et al., 2011). In
contrast, primary cilia in radial glia have been associated to the
regulation of cell cycle progression (Tong et al., 2014; Izawa
et al., 2015). This function reflects the fact that the mother
centriole in the basal body of the primary cilia is needed for the
mitotic spindle formation. Furthermore, the organelle is essential
to transduce signals involved in the regulation of progenitor
proliferation such as Sonic hedgehog (SHH) and platelet-derived
growth factor (PDGF) signaling (Youn andHan, 2018). Although
genes coding for ciliary function are specifically enriched in

NSCs and cilia depletion affects NSC quiescence in the SEZ
(Beckervordersandforth et al., 2010), not all quiescent NSCs
in this region display a primary cilium (Khatri et al., 2014).
Moreover ablation of primary cilia affects proliferation only in
NSCs of the ventral SEZ (Khatri et al., 2014; Tong et al., 2014).
Thus, the function of primary cilia in NSCs is still unclear.

The direct analysis of the expression of signaling molecules
in primary cilia would significantly contribute to elucidate their
function. Here we describe an innovative flow cytometry-based
method to isolate motile and primary cilia from the SEZ and
provide evidence for its suitability to analyze the molecular
composition of cilia both at the population as well as at the single
cilia level.

MATERIALS AND METHODS

Analysis and Purification of Cilia From the
SEZ by Flow Cytometry
Deciliation and Immunostaining
All animal experiments were approved by the
Regierungspräsidium Karlsruhe and the local authorities of
Heidelberg University. Adult mice were killed by CO2 inhalation
followed by cervical dislocation whereas E18 embryos were
sacrificed by decapitation. The brain was removed from the skull
and the SEZ was dissected in ice-cold dissection medium (150
µM sucrose, 125 µM NaCl, 3.5 mM KCl, 1.2 mM NaH2PO4,
2.4 mM CaCl2, 1.3 mM MgCl2, 2 mM HEPES, 6.65 mM D-(+)
glucose; Khatri et al., 2014). The dissected tissue was put in
sort medium (NS-A basal medium and L15 medium (1:1), 2%
B27 supplement, 1% fetal calf serum (FCS), 0.6% D-(+) glucose,
10 ng/ml huFGF-2, 0.001% DNase) containing APC-conjugated
anti-prominin-1 antibody (Becton Dickinson, BD) for 30 min at
4◦C and then washed at room temperature with sort medium to
eliminate the excess of antibody. Deciliation was performed by
combining the two most common methods for cilia detachment:
mechanical shear and calcium shock (Mitchell et al., 2009).
Briefly, the tissue was incubated in sort medium containing
10 mM CaCl2 and subjected to mechanical agitation on a
rotatory shaker (200 rpm) at 4◦C. After 20 min, the medium,
containing cilia, was centrifuged for 1 min at 2,000 rpm at 4◦C
to remove cellular debris. The supernatant was collected and
immunostained with anti-AC3 antibodies (Santa Cruz) and
Alexa Fluor 488-conjugated secondary antibodies for 30 min
at 4◦C.

Fluorescence Activated Cell Sorting
Cilia preparations were sorted on a FACSAria II cytometer
(BD) at single event precision. Sorting gates were set based on
florescence levels of samples stained with secondary antibodies
only or samples which were not incubated with any antibodies
(autofluorescence).

To standardize Forward (FSC) and Side (SSC) scatter values
we used as reference beads of known size, i.e., 3 µm (Rainbow
Fluorescent Particles, BD) and 6 µm (Accudrop beads, BD).
Sorted ciliary particles that based on the reference beads had a
size smaller than 3µm, between 3µm and 6µmor greater than 6
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µmwere separately collected and analyzed. Hereafter they will be
referred to as 2µm (<3µm), 5µm (3–5µm) and 8µm (≥6µm)
particles.

Characterization of the Cilia Types (Primary vs.
Motile)
For each size group, double staining with anti-AC3-Alexa 488
and prominin-APC antibodies was analyzed and four gates were
set: AC3+/Prom− (AC3+), AC3+/Prom+ (double positive, DP),
AC3−/Prom+ (Prom+), AC3−/Prom− (double negative, DN).

Functional Characterization
For each size group immunostaining was used for detecting
one of the following antigens: Smoothened, PDGFRα or
CXC chemokine receptor (CXCR)4. For PDGFRα and
CXCR4 staining, the dissected tissue was incubated in sort
medium containing anti-prominin-APC (Miltenyi Biotec)
and anti-PDGFRα or CXCR4 antibodies conjugated with PE
(Invitrogen) for 30 min and washed with sort medium before
proceeding to deciliation and staining with anti-AC3 antibody
(Invitrogen) manually conjugated with Dylight 488 (Abcam,
cat# ab201799). For Smoothened analysis, the tissue fragments
were incubated with or without SAG (Cayman Chemical, cat#
11914, 200 nM) in NS-A medium (Euroclone/Biozol) containing
2 mM L-glutamine (Gibco), 100 U/ml penicillin/streptomycin
(Gibco), 2% B27 supplement (Invitrogen), 10 ng/ml huFGF-2
(Peprotech) overnight at 37◦C. The samples were labeled with
anti-Smoothened antibodies (Novus Biologicals) and anti-
rabbit-APC secondary antibodies for 30 min. The samples were
then washed, deciliated and the supernatant was subjected to
AC3 staining as described above.

Western Blot
For western blot analysis, a specific number of particles was
sorted into PBS containing proteinase inhibitor and after
ultracentrifugation at 4◦C at 27,000× g for 40 min resuspended
in RIPA buffer. The samples were subjected to standard
immunoblot analysis with mouse anti-acetylated tubulin
antibody (Sigma-Aldrich). Immunoreactivity was quantified
using ImageJ and the results were normalized by the number of
particles collected in each sample.

Whole Mount Immunostaining
Whole mount dissection was performed as previously described
(Mirzadeh et al., 2008). The dissected tissue was fixed in
3% formaldehyde/4% sucrose (dissolved in PBS) for 2 h,
permeabilized with 0.5%NP-40 for 10min, incubated in 100mM
glycine to inactivate residual aldehyde groups, and blocked in 5%
FCS for 1.5 h. The samples were then incubated with primary
antibodies against acetylated tubulin (Sigma Aldrich) and either
β-catenin (Santa Cruz), AC3 (Invitrogen) or prominin-1 (kind
gift from Denis Corbeil, Technical University of Dresden) in
0.1% NP-40 over night at 4◦C. After washing, the samples
were incubated with secondary antibodies and DAPI for nuclear
counterstain for 2 h and analyzed using a C2 Plus confocal
microscope with NIS software (Nikon) or a TCS SP8 confocal
microscope with LAS X software (Leica).

Antibodies
A list of all primary antibodies used, source, catalog/lot number
and concentration is provided in Supplementary Table S1.

Electron Microscopy
Scanning electro microscopy (SEM) was performed as previously
described (Khatri et al., 2014). Briefly, the samples were fixed
with 2% glutaraldehyde in 0.1 M sodium phosphate buffer.
After washing and postfixation with 2% osmium tetroxide/1.5%
potassium ferrocyanide for 1 h, they were washed and dehydrated
with an ascending series of ethanol and pure acetone before
critical point drying. The samples were then sputter-coated with
an 80% gold, 20% palladium alloy and examined with a ULTRA
55 field-emission scanning electron microscope (ZEISS).

Statistical Analysis
Statistical significance tests (ANOVA with Tukey’s post hoc test
or Student’s t-test) of at least three independent experiments
were calculated using GraphPad Prism and OriginPro 2016. Data
represent means ± SEM. P-values are indicated in the figures as
follows: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

RESULTS

A Flow Cytometry-Based Method for
Isolation of Primary Cilia From the SEZ
As schematically illustrated in Figure 1, we took advantage of
flow cytometry to set up a novel approach to identify and isolate
primary cilia from the murine SEZ. We performed this method
with samples obtained from the SEZ of adult mice, in which
motile ependymal cilia are much more abundant than primary
cilia, and the corresponding germinal area dissected from
embryos at embryonic day (E) 18, when primary cilia represent
the vast majority of the cilia. Such age-dependent differences in
cilia type proportion are readily visible upon immunostaining of
the apical side of the germinal area at the two ages with antibodies
directed against acetylated tubulin, which is expressed in both
types of cilia (Supplementary Table S2; Figure 2A). Critical steps
of the procedures are the deciliation, i.e., the detachment of cilia
from the cell body, the identification and the separate collection
of the two cilia types. To promote deciliation we used the
traditional method of mechanical shearing in the presence of a
high calcium ion concentration (Hastie et al., 1986;Mitchell et al.,
2009; Ishikawa and Marshall, 2013). Comparing SEM images of
the apical surface of the lateral ventricle wall of E18 (Figure 2B)
and adult mice (Figure 2C), after deciliation or no treatment
(Control), showed that the treatment was effective in removing
primary but not motile cilia. In untreated embryonic tissue,
primary cilia were readily visible (Figures 2Ba,a′, highlighted
in green) whereas, after deciliation, they were largely absent
(quantification in Supplementary Figure S1A). Sometimes a
remaining stump could be detected (Figures 2Bb,b′, highlighted
in green). This suggests that deciliation also gives rise to
fragments of different sizes, as previously reported (Mitchell
et al., 2009). In contrast, many tufts of ependymal cilia were
still present after deciliation, (Figure 2C) although their number
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was significantly reduced (quantification in Supplementary
Figure S1B). In order to distinguish motile from primary cilia
we have taken advantage of differential expression of prominin-1
(Prom) and AC3 in the two cilia types. As summarized in
Supplementary Table S2, whereas prominin-1 in the adult tissue
is expressed more strongly in ependymal cells, AC3 has only
been detected in primary cilia (Bishop et al., 2007). Consistent
with this, immunostaining of AC3 in whole mount preparations
of the SEZ of mice of different ages revealed AC3 expression
in primary but not motile cilia and that the immunostaining
decreased with age (Figure 3A). On the contrary, prominin-1
expression was detected in both cilia groups (Figure 3B).
However, whereas in motile cilia prominin-1 was expressed at
consistently high levels (Figure 3B, white arrow), primary cilia
displayed high variability in expression levels, ranging from
very high (Figure 3B, red arrow) to undetectable (Figure 3B,

green arrow). To address variability in cilia length, ranging
between 1 µm and 9 µm (Dummer et al., 2016), we have used
beads of known size to set the forward (FSC) and side light
scatter (SSC) parameters (Figures 1A,B) and monitor changes
in particle size during sorting. Although for bigger particles, like
for example cells, the first parameter reflects cell size whereas the
second indicates complexity (granularity), for smaller particles
the measurement of both parameters provides a better detection
of changes in size. Independent of size, we detected four
types of particles: primary cilia particles immunopositive for
either AC3 only (AC3+) or double immunopositive (DP) for
both AC3 and Prom, motile cilia particles immunopositive for
Prom only (Prom+) and double immunonegative fragments
(DN; Figure 1C). To further investigate their nature, the four
populations of particles were separately collected by FACS,
concentrated by ultracentrifugation and then analyzed by

FIGURE 1 | A flow cytometric approach for the isolation and characterization of primary and motile cilia. Flowchart of the experimental procedure for cilia
identification and characterization according to size and marker expression. The ∗ symbol represents a conjugated fluorophore. (A,B) FACS plots showing the
distribution of reference beads and a sample of cilia according to forward (FSC) and side (SSC) scatter. (C) Representative FACS plot illustrating the distribution of
2 µm particles upon immunostaining with antibodies directed against adenylate cyclase type iii (AC3; AC3-FITC) and prominin-1 (Prom-APC). The gates indicate
AC3 positive (AC3+), Prominin positive (Prom+) and double positive (DP) particles.
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FIGURE 2 | Primary and motile cilia on the apical side of the subependymal zone (SEZ). (A) Confocal images showing a representative example of the apical side of
the SEZ in whole mount preparations immunostained for acetylated tubulin (green) and β-catenin (red). Nuclei were visualized by DAPI staining (blue). Scale bars:
20 µm. (B) Scanning electron microscope (SEM) images of the apical surface of the lateral ventricular wall in whole mount preparations from E18 mice before
(Control) and after deciliation. Higher magnification views of panels (a,b) are shown in (a’,b’), respectively. Primary cilia are highlighted in green. After the treatment
many of the primary cilia are detached and only short stumps are left on the cell surface (b’). Scale bars: 2 µm. (C) SEM images of the apical surface of the SEZ in
whole mount preparations of 8 week-old mice (8w). Scale bars: 10 µm.

western blot to investigate the expression of acetylated tubulin
(Figure 4). Particles were first sorted based on differences in
size only (Figure 4A). After normalization according to the
number of sorted particles, quantitative analysis of the western

blots showed that although acetylated tubulin was present in
all sorted populations, its amount increased with particle size
(Figure 4B). This corroborates that the sorted material indeed
contains cilia. We next sorted the particles based on differential
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FIGURE 3 | AC3 and prominin-1 expression on the apical side of the SEZ. (A) Representative confocal images illustrating the apical side of the SEZ upon
immunostaining with acetylated tubulin (green) and AC3 (red). Nuclei were visualized by DAPI. Scale bar: 20 µm. (B) Confocal images of whole mount preparations
immunostained for acetylated tubulin (green) and prominin-1 (Prom, red). Nuclei were visualized by DAPI. White arrow indicates motile cilia, red arrow indicates
Prom+ primary cilia and green arrow indicates Prom− primary cilia. Scale bars: 20 µm.

staining. We collected the same number of particles (200,000)
for DN, AC3+ and Prom+ particles but only 50,000 of the less
abundant DP particles (Figure 4C). Densitometric analysis after
normalization for the number of particles revealed that AC3+,
DP and Prom+ populations similarly contain at least double the
amount of acetylated tubulin than DN particles (Figure 4D).
This indicates that the three groups of immunopositive particles
indeed contain cilia material whereas the DN particles include
contaminating material and a few ciliary fragments.

Flow Cytometric Analysis of Cilia Markers
AC3 and Prominin-1 Allows Identification
of Primary and Motile Cilia
To further validate our method for the identification of primary
and motile cilia by flow cytometry, we took advantage of the fact

that before birthmotile cilia are very rare whereas primary cilia in
the SEZ decrease with aging (Figure 2A). Therefore, we next used
flow cytometry to investigate the abundance of the three cilia-
enriched fractions defined by the differential antigen expression
and subdivided according to size in preparations obtained either
from E18 embryos or 8 week or 25 week-old mice (Figure 5).
As illustrated by representative FACS plots (Figure 5A), at each
age and for each size we measured the same number of total
particles. At all ages examined collected cilia consisted mostly
of 2 µm particles followed in decreasing order of abundance by
5 µm and 8 µm particles (Supplementary Figure S2). This is
probably due to the fragmentation of the cilia during the process
of deciliation (illustrated in Figure 2Bb′). Quantitative analysis
of the number of immunopositive particles in each size-defined
population highlighted that the abundance of AC3+ (Figure 5B)
and DP (Figure 5C) particles greatly declined with age. However,
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FIGURE 4 | Acetylated tubulin expression in sorted cilia. (A) Representative immunoblot analysis of acetylated tubulin in samples of sorted particles of different sizes
from adult mice. (B) Densitometric analysis of four independent experiments. (C) Immunoblot analysis of acetylated tubulin in samples sorted according to the
expression of AC3 and prominin-1: double negative (DN), AC3+ only (AC3+), double positive (DP), prominin-1 only (Prom+). (D) Densitometric analysis of three
independent experiments normalized for the number of particles. Values represent the fold increase relative to the fist sample. Error bars represent SEM. Statistically
significant differences are indicated with asterisks (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).

whereas the number of AC3+ particles progressively declined
with age, the number of DP particles did not vary significantly
between samples obtained from E18 embryo and 8-week-old
mice, but abruptly decreased thereafter. Moreover, whereas at all
ages AC3+ particles were similarly distributed across the various
size groups (Figure 5B), DP cilia were mostly found in the 8 µm
subpopulation. These observations suggest that the AC3+ and
DP particles represent distinct types of primary cilia, which is
consistent with the variability of prominin-1 expression observed
in primary cilia by immunostaining (see Figure 3B). In contrast
to primary cilia, the fraction of Prom+ particles increased with
age, reaching its maximum level in preparations of 25-week-old
mice (Figure 5D). Moreover, in samples obtained from adult
but not E18 mice this group was particularly enriched in the
8 µm fraction, consistent with the fact that motile cilia reach
full length after birth and are generally longer than primary
cilia.

Taken together, these results show that the number of
AC3+ particles is highest in the embryonic preparations and
progressively decreases in samples obtained from older mice in
contrast to Prom+ particles, which increase with age (Figure 5E).
Since apical primary cilia in the SEZ are present on NSCs,
the observed age-dependent decline in primary cilia particles is
consistent with previous findings showing that the neurogenic
capacity of the SEZ declines with age due to a progressive
decrease in NSCs (Maslov et al., 2004; Luo et al., 2006; Bouab
et al., 2011; Capilla-Gonzalez et al., 2014).

Analysis of PDGFRα and
CXCR4 Expression in Sorted Particles
To further confirm the identity of the sorted particles as primary
or motile cilia, we next investigated the expression of signaling
molecules which have been found in primary cilia, such as
PDGFRα and CXCR4 (Supplementary Table S2; Schneider
et al., 2005; Busillo and Benovic, 2007; Christensen et al.,
2017; Schmid et al., 2018). To this end we obtained cilia
preparations from the tissue of E18, 8 week and 25 week-old
mice and analyzed particles of each given size either for PDGFRα

(Figures 6A,B) or CXCR4 (Figures 6C,D) immunoreactivity.
This analysis revealed that, independent of the size of the
particles, the expression of both receptors drastically decreased
after birth and continued to decrease with age in the case
of PDGFRα. In contrast, CXCR4 was hardly detectable in
cilia obtained from adult mice and no significant difference
was observed between the two age groups (Figures 6A–D).
However, independent of the age there was a positive correlation
between the size and the relative expression of both antigens,
which may indicate discontinuous expression of the two
receptors along the cilia, leading to absent immunoreactivity
in some of the fragments. We next investigated similar
cilia preparations after triple immunostaining with antibodies
specific for prominin-1 and AC3 and either PDGFRα or
CXCR4 (Figures 6E,F). This analysis revealed that in every
sub-population of size and age, almost all the particles displaying
PDGFRα (Figure 6E) or CXCR4 (Figure 6F) immunoreactivity
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FIGURE 5 | Cilia characterization according to the expression of AC3 and prominin-1 in different mouse ages. (A) Representative FACS plots illustrating the
distribution of particles of different sizes according to AC3 and prominin-1 (Prom) staining in E18 embryos, 8 week-old (8w) and 25 week-old (25w) mice.
(B–D) Quantification of AC3+, DP and Prom+ particles in at least three independent experiments. Values represent the average percentage of particles in each
population. Error bars represent SEM. Statistically significant differences are indicated with asterisks (∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0005). (E) Schematic
representing the relative expression of AC3 and Prom across ages.

had also a marker profile of primary cilia, i.e., AC3+ and
DP and not of Prom+ motile cilia. Indeed, depending on
size and age, this fraction represented between 0% and 0.7%
of the labeled particles. Moreover, although at every age
analyzed the majority of the cilia immunoreactive for either

receptor were AC3+, with increasing age the abundance
of PDGFRα+ and CXCR4+ cilia displaying a DP profile
significantly increased, suggesting that not only the number but
also the type of primary cilia expressing either receptor changes
with age.
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FIGURE 6 | Platelet-derived growth factor receptor α (PDGFRα) and CXC chemokine receptor 4 (CXCR4) expression in primary cilia. (A,C) FACS histograms
depicting PDGFRα and CXCR4 total expression in particles of different size in E18 embryos (E18), 8 week-old (8w)- and 25 week-old (25w) mice. The gates include
PDGFRα-PE or CXCR4-PE positive particles. (B,D) Quantification of the average percentage of PDGFRα+ and CXCR4+ particles in at least three independent
experiments. (E,F) Quantitative analysis of the co-localization of PDGFRα and CXCR4 with AC3 (green bars), prominin-1 (Prom; red bars) and both AC3 and Prom
(blue bars), as percentage of PDGFRα+ or CXCR4+ total particles. Values represent the average percentage of particles in each population. Error bars represent
SEM. Statistically significant differences are indicated with asterisk (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).

Analysis of Smoothened Expression in
Sorted Particles
Another protein known to be associated with primary cilia
is Smoothened (Smo; Supplementary Table S2) which, upon

binding of SHH to Patched1, translocates to the primary cilium
(Corbit et al., 2005; Eggenschwiler and Anderson, 2007; Rohatgi
et al., 2007; Wilson et al., 2009). To activate SHH signaling,
we incubated E18 tissue fragments in medium containing
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FIGURE 7 | Co-localization of Smoothened and AC3 in primary cilia. (A) Representative dot plots of untreated (Control) and SAG-treated samples (SAG) from
E18 embryos immunostained for AC3-FITC and Smoothened-APC (Smo-APC). (B) Quantification of the percentage of Smo+AC3+ particles. Bar graphs show
mean ± SEM, p-values are calculated with Student’s t-test. Statistically significant differences are indicated with asterisks (∗p < 0.05, ∗∗p < 0.01).

smoothened agonist SAG (Bijlsma et al., 2012; Fan et al.,
2014; Lewis and Krieg, 2014; Milenkovic et al., 2015) and
analyzed the effect of the treatment on Smo expression in
primary cilia (Figure 7A). Quantitative analysis of AC3 and
Smo co-expression showed that, independent of the particles
size, exposure to SAG increased the expression of Smo within
the population of AC3+ primary cilia, especially in the
subpopulation of bigger (8 µm) particles (Figure 7B). This
observation is consistent with the notion that activation of
Smo leads to its translocation to the primary cilium and it
further confirms the identity of the AC3+ particles as primary
cilia.

DISCUSSION

Primary cilia have recently come to the forefront of the scientific
interest after the discovery that a wide range of human diseases,
collectively referred to as ciliopathies, are caused by defective
functions of these organelles (Waters and Beales, 2011). For
cilia purification and characterization, we took advantage of flow
cytometry, which unlike the traditional approach of purification
in sucrose density gradient (Raychowdhury et al., 2005; Mitchell
et al., 2009) allows combining high throughput characteristics
with highly sensitive analysis of multiple parameters in single
particles of interest. Because of the analytical power of flow
cytometry we were able to distinguish primary from motile
cilia and investigate variability within these cilia types. For the
differential identification of cilia we exploited the fact that in
the brain AC3 is abundantly expressed in primary cilia, but not
in motile cilia of the ependymal layer (Bishop et al., 2007). A
possible exception may be represented by the cilia lining the
3rd ventricle, which express AC3 (Chen et al., 2016) however
it was not investigated whether these organelles are motile cilia
or primary cilia derived from tanycytes (Jarvis and Andrew,
1988; Mirzadeh et al., 2017). Consistent with the notion that it
is present in primary but not motile cilia, we showed here that
AC3 readily stains the primary cilia of embryonic radial glia but

not the motile cilia in the adult SEZ. We here found that the
majority of primary cilia do not express prominin-1, which is
in keeping with previous observations in the adult SEZ (Codega
et al., 2014; Khatri et al., 2014). Although prominin-1 was
found widely expressed in embryonic radial glia, the expression
was often associated with the apical membrane and not only
with primary cilia (Dubreuil et al., 2007). Besides marker
expression, several lines of evidence support our conclusion
that the approach allows to discriminate primary vs. motile
cilia. First, we found that the abundance of the two groups
varies during aging reflecting the known changes in the presence
of apical progenitors (Maslov et al., 2004) and ependymal
cells (Capilla-Gonzalez et al., 2014). Second, the expression of
the investigated signaling molecules was only observed in the
group of primary cilia particles. In neural precursors several
receptor-dependent pathways require a functioning primary
cilium (Guemez-Gamboa et al., 2014). Despite the mechanism
being still unclear, it is well established that SHH stimulation
leads to increased presence of Smoothened in the primary
cilium (Corbit et al., 2005; Rohatgi et al., 2007). Our data
that PDGFRα localizes to primary cilia is also consistent with
previous observations showing that neural precursors depend
on primary cilia for transduction of PDGFRα signaling (Carter
et al., 2012) and indicate that, like in fibroblasts (Schneider
et al., 2005), also in neural precursors PDGFRα localizes to the
primary cilium. Both CXCR4 and CXCR7 have been shown to
localize to the cilia of developing interneurons (Wang et al.,
2011). In the postnatal brain CXCR4 has been shown to be
present also in neural progenitors of the SEZ (Tran et al., 2007).
Moreover CXCR4-mediated signaling affects homing, (Kokovay
et al., 2012), proliferation (Wu et al., 2009) and migration
(Imitola et al., 2004; Carbajal et al., 2010) of neural precursors
in culture and in vivo. Since the expression of CXCR4 has been
shown throughout the ependymal layer of the SEZ (Stumm et al.,
2002) our data suggest that the receptor does not localize to the
motile cilia. We also found that the expression of all signaling
molecules analyzed was particularly pronounced in AC3 single
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positive but not DP primary cilia. This may reflect the different
nature of the two ciliary particles. Indeed, the nature of the
population expressing PDGFRα in the adult SEZ is still a matter
of debate (Jackson et al., 2006; Chojnacki et al., 2011) and it
is known that NSCs more differentiated precursors, but not
ependymal cells respond to SHH in the adult SEZ (Ahn and
Joyner, 2005). The fact that the expression of both PDGFRα

and CXCR4 declines with age especially in AC3 single positive
particles further supports the hypothesis of two distinct groups
of primary cilia. However, further analysis would be necessary to
conclusively address this issue.

Further evidence that we could distinguish between motile
and primary cilia is the fact that the deciliation method used here
allowed us to enrich for the latter organelle type. An increase
in the intracellular concentration of calcium was first used for
the detachment of flagella from lower eukaryotes (Watson and
Hopkins, 1962; Gibbons, 1965; Hansma andKung, 1975; Adoutte
et al., 1980). In these studies exposure to high calcium ion
concentration, often in the presence of detergents, was used to
elicit the lysis of the membranous fraction and the detachment
of the flagella at the level of the transition zone. Intracellular
calcium elevations were shown to trigger shedding of flagella
in protists by a mechanism that involves microtubule severing
activity and contraction of the fibers in the transition zone, which
may also lead to membrane fission (Quarmby and Hartzell, 1994;
Sanders and Salisbury, 1994; Lohret et al., 1998). Calcium influx
leads to deciliation also of olfactory (Anholt et al., 1986) and
primary cilia (Overgaard et al., 2009). The relative inefficacy
of the approach on the detachment of the motile cilia likely
reflects the different expression of molecules regulating calcium
homeostasis and sensing inmotile cilia compared to primary cilia
as well as flagella (Satir and Christensen, 2007; Delling et al., 2013;
Doerner et al., 2015; Inaba, 2015; Lishko and Kirichok, 2015).
The method triggers membrane fusion after deciliation, thereby
minimizing contamination from cellular material (Satir et al.,
1976). Nevertheless, contaminating cellular material including
mitochondria was often observed in classical preparations. In
addition, osmotic lysis of the membrane leading to the separation
of the skeletal axoneme from the ciliary membrane was often
observed. In contrast, the particles we purify in the present study
likely contain both cilium components as for their purification
we used antibodies binding to integral or peripheral proteins of
the ciliary membrane and by western blot analysis we observed
an enrichment in acetylated tubulin, which is found in the
axoneme. However, the fact that we observed acetylated tubulin
not associated with ciliary membrane proteins, i.e., in the DN
particles, may indicate the presence of ciliary axoneme structures
dissociated from the membrane.

Thus, our novel flow cytometry-based approach for the
isolation of primary cilia is a new tool for the investigation of
these organelles whose function is still poorly understood.
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FIGURE S1 | Quantification of primary and motile cilia on SEM images.
(A) Quantification of the number of primary cilia in four SEM fields of SEZ whole
mounts of E18 mice before (control) and after deciliation. (B) Quantification of the
number of tufts of motile cilia in three SEM fields of SEZ whole mounts of
8 week-old mice (8w) before and after deciliation. Bar graphs show mean ± SEM,
p-values are calculated with Student’s t-test. (∗p < 0.05, ∗∗∗p < 0.001).

FIGURE S2 | Sorting of particles according to size. Quantification of the relative
abundance of sorted particles of different sizes in embryo (E18) 8 (8w) and 25
(25w) week-old mice from three independent experiments. Values represent the
average percentage of particles in each population.

TABLE S1 | List of antibodies used in this study.

TABLE S2 | List of markers used in this study to identify and characterize primary
and motile cilia.
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Type III adenylyl cyclase (AC3, ADCY3) is predominantly enriched in neuronal primary

cilia throughout the central nervous system (CNS). Genome-wide association studies in

humans have associated ADCY3 with major depressive disorder and autistic spectrum

disorder, both of which exhibit sexual dimorphism. To date, it is unclear how AC3

affects protein phosphorylation and signal networks in central neurons, and what causes

the sexual dimorphism of autism. We employed a mass spectrometry (MS)-based

phosphoproteomic approach to quantitatively profile differences in phosphorylation

between inducible AC3 knockout (KO) and wild type (WT), male and female mice.

In total, we identified 4,655 phosphopeptides from 1,756 proteins, among which

565 phosphopeptides from 322 proteins were repetitively detected in all samples.

Over 46% phosphopeptides were identified in at least three out of eight biological

replicas. Comparison of AC3 KO and WT datasets revealed that phosphopeptides

with motifs matching proline-directed kinases’ recognition sites had a lower abundance

in the KO dataset than in WTs. We detected 14 phosphopeptides restricted to

WT dataset (i.e., Rabl6, Spast and Ppp1r14a) and 35 exclusively in KOs (i.e.,

Sptan1, Arhgap20, Arhgap44, and Pde1b). Moreover, 95 phosphopeptides (out of 90

proteins) were identified only in female dataset and 26 only in males. Label-free MS

spectrum quantification using Skyline further identified phosphopeptides that had higher

abundance in each sample group. In total, 204 proteins had sex-biased phosphorylation

and 167 of them had increased expression in females relative to males. Interestingly,

among the 204 gender-biased phosphoproteins, 31% were found to be associated

with autism, including Dlg1, Dlgap2, Syn1, Syngap1, Ctnna1, Ctnnd1, Ctnnd2, Pkp4,

and Arvcf. Therefore, this study also provides the first phosphoproteomics evidence

suggesting that gender-biased post-translational phosphorylation may be implicated in

the sexual dimorphism of autism.

Keywords: Type III adenylyl cyclase (AC3), primary cilia, major depressive disorder (MDD), autistic spectrum

disorder (ASD), phosphoproteomics, delta catenin, sexual dimorphism of autism, gender-biased phosphorylation
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INTRODUCTION

Primary cilia are tiny microtubule-based, membrane-ensheathed
signaling devices present in most mammalian cells (Singla
and Reiter, 2006). They depend on a special intraflagellar
transport system for trafficking select cargo into and out of
the cilium (Rosenbaum and Witman, 2002). Primary cilia are
present in virtually every neuron in the brain, although they
do not harbor synaptic junctions. Thus far, no ionotropic
GABAA receptor or glutamate receptors have been identified
in neuronal cilia (Qiu et al., 2016; Sterpka and Chen, 2018).
Although their physiological function is not well-understood
(Louvi and Grove, 2011), defects in neuronal primary cilia
lead to obesity, psychiatric diseases, intellectual disability, and
neurodevelopmental disorders in humans (Fliegauf et al., 2007).
Additionally, neuronal primary cilia have abundant expression
of G-protein coupled receptors (GPCRs), such as type 3
somatostatin receptor (Wang et al., 2009; Einstein et al., 2010),
type 6 serotonin receptor (Brodsky et al., 2017), and melanin-
concentrating hormone receptor 1 (Green et al., 2012). This
suggests that neuronal primary cilia depend on metabotropic
signal pathways, rather than electrical input from synapses, to
modulate neuronal activity. Most, if not all, ciliary GPCRs (Schou
et al., 2015) are found to be either Gαs- or Gαi-protein coupled
receptors (Qiu et al., 2016; Sterpka and Chen, 2018), which
rely on heterotrimeric G-proteins, adenylyl cyclases, and cyclic
adenosine monophosphate (cAMP) to send signals to the soma
of neurons (Qiu et al., 2016; Sterpka and Chen, 2018).

AC3 represents a key enzyme mediating the cAMP signaling
pathway in neuronal cilia (Bishop et al., 2007; Qiu et al., 2016)
and is highly expressed in olfactory sensory cilia and in neuronal
primary cilia throughout the central nervous system (CNS). It
is known that AC3 in olfactory sensory neurons is essential for
olfactory signal transduction in the main olfactory epithelium,
and loss of AC3 leads to anosmia (loss of smell) (Wong et al.,
2000). In the CNS, the physiological function of AC3 is yet to be
established, but multiple lines of genetic evidence have associated
AC3 with major depressive disorder (MDD) (Wray et al., 2012),
obesity (Nordman et al., 2008; Stergiakouli et al., 2014), and
autism spectrum disorders (ASD) (Skafidas et al., 2014; Yuen

et al., 2017) in humans. Moreover, our previous studies have
demonstrated that AC3 ablation in mice leads to pleiotropic
phenotypes, including olfactory deficit (Wong et al., 2000; Chen
et al., 2012), social interaction deficit (Chen et al., 2016), and
depression-like behaviors (Chen et al., 2016). However, thus far
it is unknown how AC3 or cAMP generated in neuronal primary
cilia regulates signal transduction of central neurons.

Post-translational modifications (PTM) regulate signaling
pathway and cellular processes, mediating intracellular
communication and neuronal function. Protein phosphorylation
is a major type of PTM, which can cause allosteric structure
changes of proteins, activation, or inhibition of enzymes,
alterations in protein’s subcellular localization, and protein-
protein interactions (Johnson, 2009). The major downstream
effector protein of cAMP in cells is protein kinase A (PKA),
whose activation leads to the phosphorylation of various
proteins to propagate the cAMP signaling. We hypothesized that

cAMP generated by AC3 locally in neuronal primary cilia can
trigger a series of phosphorylation events, thereby modulating
the structure and function of many downstream proteins
and consequently affecting neuronal function. Therefore,
identification of protein phosphorylation affected by AC3 will
help delineate AC3-signaling network in CNS neurons. To
systematically identify phosphorylation that is modulated by
AC3, we employed a mass spectrometry-based quantitative
phosphoproteomic approach, a powerful method to elucidate
many signal pathways including the cAMP signaling pathway
(Gunaratne et al., 2010; Roux and Thibault, 2013; Humphrey
et al., 2015), to conduct a comparative phosphoproteomic
profiling analysis. In this study, using a high-performance liquid
chromatography-tandemmass spectrometry technology (HPLC-
MS/MS), we identified thousands of peptides from prefrontal
cortical tissues, some of which are differentially phosphorylated
in AC3 wild type (WT) and knockout (KO) samples.

To date, although phosphoproteomic profiling analyses have
identified a high throughput of phosphorylation sites (p-sites) in
a variety of tissues, mouse strains, and different brain regions
(Huttlin et al., 2010), virtually no studies have specifically
compared phosphoproteomic differences between male and
female samples. However, many neurodevelopmental disorders
or psychiatric diseases such as MDD, attention deficit and
hyperactivity disorder (ADHD) and ASD show a profound sex-
bias (Halladay et al., 2015). For example, females have a higher
risk of MDD than males (Labaka et al., 2018), whereas ASD
affects more males than females with a male to female ratio of
4:1 (Kogan et al., 2009). It is unclear what causes the sexual
dimorphism of these diseases. To evaluate the possibility that
gender may differentially impact protein phosphorylation in
the frontal cortex, we specifically compared phosphoproteomic
datasets of two genders. This effort led to identification of over
200 proteins, whose phosphorylation were sex-biased. More
female-biased phosphopeptides were identified thanmale-biased.
Surprisingly, a high percentage of these targets (31%) are autism-
associated proteins/genes, which include Dlg1, Dlgap2, Syn1,
SynGap1, Ctnna1, and four delta catenin proteins (Ctnnd1,
Ctnnd2, Pkp4, and Arvcf ) (Yuan and Arikkath, 2017). Hence, this
study provides the first phosphoproteomic evidence suggesting
that gender-biased protein phosphorylation may contribute to
the sexual dimorphism of autism.

MATERIALS AND METHODS

Supplemental Information provides additional Methods
and Materials including Mice, Immunofluorescence Staining
and Confocal Imaging, Western blot methods and detailed
statistical methods.

Tissue Preparation, Protein Extraction, and
Phosphopeptide Enrichment
Prefrontal cortex tissues were isolated from 18 to 20 week old
mice after euthanization, flash-frozen in liquid nitrogen, and
stored in −80◦C until analysis. Samples were then homogenized
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and lysed by grinding on ice in tissue lysis buffer (50mM Tris-
HCl, pH 8.0, 150mM KCl, 1% TritonX-100, 0.5mM PMSF,
0.5mM EDTA) containing proteinase inhibitor cocktail (Cat.
No. 04693159001, Roche, Germany) and phosphatase inhibitor
cocktail (Cat. No. 04906837001, Roche, Germany). Lysates were
cleared twice by centrifugation at 14K RPM for 20min at 4◦C.
Protein centration was measured with Qubit fluorometer and
∼3mg of brain lysate from each sample was loaded in 12–
20% gradient SDS-PAGE. In-gel digestion with reduction (final
concentration 10mM dithiothreitol, 56◦C, 1 h) and alkylation
(final concentration 55mM iodoacetamide, 45min in dark) were
carried out at 37◦C for 4 h. Phosphopeptides were enriched by
MOAC (TitansphereTM Phos-TiO Kit; GL Sciences Inc., Tokyo,
Japan). Briefly, 500 µl of Speed Vac enriched trypsin digested
peptides (1 mg/ml) were mixed with 1,000 µl binding solution
(25% lactose acid, 60% acetonitrile, 0.3% trifluoroacetic), loaded
onto Phos-TiO tip with 3mg titanium dioxide (TiO2) resin. The
resin was washed with 80% acetonitrile and 0.4% trifluoroacetic
and eluted with 50 µl 5% ammonium hydroxide followed
by 50 µl 5% pyrrolidine. Enriched phosphopeptides were
concentrated via Speed Vac for pyrrolidine removal and mass
spectrometric analysis.

Mass Spectrometry and Database
Searching
HPLC-MS/MS data was acquired on a LTQ Orbitrap Elite mass
spectrometer (Thermo Fisher, CA) coupled to a NanoAccuity
UPLC (Waters, MA) in Whitehead MS Facility at MIT (Boston,
MA). Peptides were separated by a C18 column at 250 nL/min
flow rate and 90-min gradient program. LC-MS data were
acquired in an information-dependent acquisition mode, cycling
between a MS scan (m/z 395–1,800, resolution 240,000) acquired
in the Orbitrap, followed by 10 low-energy CID analysis in the
linear ion trap. The centroided peak lists of the CID spectra were
generated by PAVA (Guan and Burlingame, 2010) and searched
against SwissProt.2017.11.01 Mus Musculus protein database,
using Batch-Tag, a program module in Protein Prospector
version 5.21.2 (University of California, San Francisco). A
precursor mass tolerance of 20 ppm and a fragment mass
tolerance of 0.6 Da were used for protein database search
with S/T/Y phosphorylation included in variable modifications.
Protein hits are reported with a Protein Prospector protein
score ≥22, protein discriminant score ≥0.0 and a peptide
expectation value ≤0.01 (Chalkley et al., 2005). With similar
parameters, false discovery rate (FDR) of all samples was <1.5%
when searched against the SwissProt random concatenated
database. A threshold of SILP score > 6 was imposed for false
phosphorylation site assignment <5%.

Label-Free Quantification
Label-free quantification was performed using Skyline ver
4.1.0.18169 via MS1 full-scan filtering with the library generated
by ProteinProspector (Cut-off score = 0.95; Precursor charge
= 2, 3, 4, 5; Max Miss Cleavages = 1) and the SwissProt
Mus Musculus protein FASTA file (Schilling et al., 2012). MS
results of three fractions from each sample were combined into
one project. Peak areas of identified peptides were generated

from Skyline and normalized to the protein concentration of
lysate samples. Phosphopeptides with different phosphorylation
states, such as mono-phosphorylation and di-phosphorylation,
were considered as different entries for quantitation. Identical
phosphopeptides from different gel fractions of a same sample
were combined for quantitation. Since methionine oxidation
can be introduced during sample handling, phosphopeptides
with different methionine oxidation states were combined
for quantitation. Phosphopeptides with identical sequence in
homologous proteins were included in the calculation of protein
phosphorylation level for homologous proteins.

Bioinformatics Analysis
The phosphoprotein lists generated from ProteinProspector
were analyzed by AmiGO 2 (Mi et al., 2017) for pathway/network
enrichment. The kinase substrate motif search was
performed by web-based Motif-X v1.2 10.05.06 (motif-
x.med.harvard.edu/motif-x.html) and analyzed basing on the
Human Protein Reference Database (www.hprd.org) (Keshava
Prasad et al., 2009; Chou and Schwartz, 2011). Phosphopeptides
with site assignment confidence level higher than 95% were
aligned in Motif-X. The motif widths were adjusted to 6 amino
acids from each side of the phosphorylation site. The occurrences
were set as 5 and significances were set as 0.000004, which led
to a maximal number of motifs and p < 0.001. Protein-protein
interaction network analysis was performed by the Cytoscape-
based Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING, string-db.org) (Szklarczyk et al., 2015). All the proteins
with phosphorylation that revealed differences between AC3 KO
and WT, or between female and male were searched in PubMed
and AutDB (Autism Gene Database, updated in Sept. 2018)
(Basu et al., 2009), an autism candidate gene database, to explore
possible association between the disease and phosphoproteome.

Data Analysis
Data analysis and figure constructs were performed with Origin
Pro andGraphpad Prism 7 software for Student’s t-test, normality
test. Phosphopeptides detected in no <3 KO samples but none
in any WT control samples (out of n = 8 pair) were considered
statistically significantly enriched in AC3 KO sample group
(determined by Two Population Proportions Comparison).
For phosphopeptides that were detected in both genotypes
or genders, label-free quantitation of was used to identify
statistically significant (p < 0.05) differences in phosphorylation
between KO and WT, or female and male. Phospho-peptides

with ln
peak area of KO#

average peak area of all
≤ 0 showed lower phosphorylation

levels of the target peptide site in AC3 KO samples than in

WT samples. Conversely, ln
peak area of KO#

average peak area of all
≥ 0 showed

higher phosphorylation levels of the target phosphopeptide
site in AC3 KO samples than in WT samples. For label-free
quantification between two genders, phosphopeptides detected
in 3 of 8 gender pairs covered both of two genders were

analyzed. Phosphopeptides with ln
peak area of F#

average peak area of all
≤ 0

and − ln
peak area of M#

average peak area of all
≤ 0 had lower phosphorylation

levels in female samples than in male samples. In vice versa,
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ln
peak area of F#

average peak area of all
≥ 0 and − ln

peak area of M#
average peak area of all

≥ 0

means phosphorylation levels of target phosphopeptide site in
female samples were higher than that in males. All peptides
spectra presented in the figure and table were reviewed and
verifiedmanually. If not otherwise indicated in the figure legends,
statistical analysis was a paired student t-test with a two-tailed
distribution. n.s. not significant, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗ p <

0.001. Data were considered as statistically significant if p < 0.05.
Data in the graph were presented as mean ± standard error of
the mean.

Two Population Proportions Comparison
We used “Two Population Proportions” for comparison to
set the “3 out of the n = 8 samples” cut-off to determine
“a phosphopeptide is enriched in one sample group.” Mass
spectrometer randomly picks a peptide separated by HPLC to be
sequenced and identified. High abundance peptides are detected
more frequently. We calculated the p-value by comparing two
population proportions between two groups as the following.
Specifically, we wanted to test the null hypothesis of p1 = p2
against the research hypothesis of p1 6= p2 in the following.

For an individual phosphopeptide, in control group, p̂1 =
X1
n1

= 3
8 ; in AC3 KO group, p̂2 = X2

n2
= 0

8 ; in the combined

group p̂ = X1+X2
n1+n2

= 3
16 ; We calculated the test statistics value

according to the z-score z =
p̂1−p̂2√

p̂(1−p̂)
(

1
n1

+ 1
n2

) = 1.92, and

used the standard normal distribution, N (0,1) to approximate
the p = P

(
N (0, 1) > z

)
= 0.027 < 0.05. Similarly, if a

phosphopeptide was detected in 2 control samples and was not
detected in any KO samples, then z-score = 1.52, p = 0.0655.
If a phosphopeptide was detected in three control samples and
detected in 1 KO sample, Z = 1.62, p = 0.0526. Conclusion: If a
phosphopeptide was detected in three or more than three control
samples (out of n = 8), but in none of 8 KO samples, then the
proportion that this phosphopeptide in the Control group was
significantly higher than that in the KO group. Similarly, this
calculating method was applied to the other three groups (KOs,
females, and males).

Statistics to Determine “More
Female-Biased Phosphorylation Than
Male-Biased”
We used two statistical methods “Two Population Proportions”
comparison and “Student t-test” to determine if there were “more
female-biased phosphorylation than male-biased.” Using Two
Population Proportions comparison, we calculated a z-score =

9.87, p < 0.0001. Conducting an unpaired Student t-test yielded
a p = 0.023 < 0.05. Detailed methods were provided in the
Supplemental Information.

Statistics to Determine “A High Percentage
of the Sex-Biased Phosphoproteins Are
From ASD-Associated Genes”
AutDB collects a total of 1,053 ASD gene entries. The human
genome is estimated to have 20,000 genes. Thus, the 1,053

ASD genes are estimated to represent 5.2% of all human
genes in human genome. We have identified 204 sex-biased
phosphorylation, among which 32 proteins (15.6%) were listed
in the AutDB as ASD genes. The ASD gene percentage is
32/204= 15.6%.We used “Two Population Proportions” method
to compare two groups and produced a Z-score = 6.57 and
p < 0.0001. Detailed statistical method was provided in the
Supplemental Information.

Statistics of Cross Comparison of Four
Groups
We used Pearson’s Chi-square test to carry out a cross
comparison of four groups (Female KOs, Females WTs, Male
KOs, Male WTs). Detailed method as well as the results
of cross comparison of 4 groups were provided in the
Supplemental Information.

Choosing Appropriate Statistical Method
for Data Comparison
Throughout this manuscript, we mostly used two population
proportions comparison (3 out of n = 8 cut off) as well as
Student’s t-test for data comparison. Rationales were provided in
the Supplemental Information.

RESULTS

AC3 Is Highly Enriched in Neuronal Primary
Cilia, but Not in Astrocyte Cilia or Microglia
in the Prefrontal Cortex
Because AC3 is associated with MDD (Wray et al., 2012; Chen
et al., 2016) and ASD (Skafidas et al., 2014; Yuen et al., 2017), we
chose the prefrontal cortex, a brain region important for social
behaviors, personality and emotion, and mood state (Siddiqui
et al., 2008), in our phosphoproteomics analysis. First, we tested
if AC3 is expressed in the prefrontal cortex and if so, in which
cell types it is expressed. Immunofluorescence staining images
demonstrate that AC3 is highly expressed in neuronal primary
cilia (Figure 1A), but not microglia (Figure 1B) or astrocytic
primary cilia (Figure 1C) in the prefrontal cortex. These results
are consistent with previous reports (Kasahara et al., 2014; Sipos
et al., 2018; Sterpka and Chen, 2018), showing that AC3 is
primarily confined to neuronal primary cilia in the brain. These
data also suggest that AC3 mostly modulates the function of
neurons, but not of astrocytes or microglia.

Given the major target protein of cAMP in cells is PKA, which
can phosphorylate numerous downstream proteins, we set out
to determine if AC3 affects post-translational phosphorylation in
neurons in the prefrontal cortex. To circumvent developmental
complications, we utilized AC3 floxed:Ubc-Cre/ERT2 KOmouse
strain (Chen et al., 2016) to ablate AC3 temporally in adult
mice. Ubc-Cre/ERT2 is a tamoxifen-inducible Cre strain with
Cre expression driven by the ubiquitin C promoter (Ruzankina
et al., 2007). Administration of tamoxifen to the AC3 floxed:Ubc-
Cre/ERT2 mice removed more than 95% AC3’s immunostaining
signal in the prefrontal cortex (Figure 1F), whereas vehicle
injection had no effect (Figure 1G), demonstrating that AC3
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FIGURE 1 | Immunofluorescence staining of AC3 in the mouse prefrontal cortex. AC3 was predominantly enriched in neuronal primary cilia in the prefrontal cortex, but

not microglia or astrocyte cilia. (A) Co-staining of NeuN (a neuronal marker, red) and AC3 (green) demonstrates that AC3 in primary cilia mostly localize very closely with

neuronal soma (red). (B) Co-staining of IBA1 (a microglia marker, magenta) with AC3 (green) demonstrates the absence of AC3 in microglia. Note that green staining

generally does not overlap with magenta. (C) Co-staining of GFAP (an astrocyte marker, red) with AC3 (green) shows that most astrocytes do not have AC3 in cilia.

(D–G) AC3 was highly expressed neuronal primary cilia in AC3 WT (D,F), but minimally in AC3 inducible KO tissues (E,G). (F,G) are enlarged from (D,E), respectively.

was successfully ablated in the adult mouse brain after
tamoxifen injection.

Mass Spectrometry-Based
Phosphoproteomic Analysis Using AC3 WT
and KO, Male and Female Samples
To efficiently identify phosphorylation differences in the
prefrontal cortex between AC3 KO and WT mice, we
utilized a MS-based phosphoproteomic approach to identify
phosphopeptides in large scale. Proteins of the prefrontal cortex
(isolated fromWT, KO,male, and female mice, respectively) were
extracted and digested with trypsin. Resultant phosphopeptides
were enriched using TiO2 enrichment column and then subjected
to HPLC-MS/MS analysis and database search for identification
using UCSF Protein Prospector (Figure 2). Additionally, we
determined the relative abundance of (p)Ser, (p)Thr, and (p)Tyr
residues in the dataset. On average, ∼94% of detected unique
peptides were phosphorylated peptides, indicating that the
phosphopeptide TiO2 enrichment was efficient and successful

(Figure 2). Among all phosphorylated peptides (total 94%),
(p)Ser accounted for 73% of total phospho-peptides, (p)Thr
19%, and (p)Tyr 2% (Figure 2), which is consistent with
previous phosphoproteomic reporting (Olsen et al., 2006;
Huttlin et al., 2010).

In total, 4,655 different phosphopeptides were detected from
1,756 proteins (Table S1), among which 2,390 (51.4%) were
present at least in three out of the 8 biological replicas in AC3 KO
group, 2,244 (48.2%) in AC3WT group, 2,427 (52.2%) in Female
group, 2,158 (46.4%) inMale group (Table S2). Five hundred and
sixty five phosphorylation sites from 322 proteins were detected
out of all 16 samples (Table S3). In each sample group (n =

4 for each), 62% of phosphorylated peptides were detected in
more than 2 of 4 samples, and 27% of phosphorylated peptides
were detected in all 4 samples (Figure 3A), demonstrating
reproducibility of the phosphoproteomic analysis. Note that the
same peptide having two p-sites was counted as two different
modifications. Histograms of the average of eight pairs of
KO/WT MS1 peak area and 8 pairs of female/male MS1 peak
area demonstrate that our datasets largely fell in approximate
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FIGURE 2 | Workflow of phosphoproteomics analysis. Prefrontal cortex tissue homogenizations were separated via SDS-PAGE and cut into 3 fractions with equal

protein amount (according to Coomassie blue staining intensity measured by ImageJ). Protein extraction via in-gel digestion with trypsin (1:300 enzyme/substrate) was

performed on ∼3mg protein for each sample. Phosphopeptides from each fraction were enriched by TitansphereTM Phos-TiO2 Kit and analyzed with HPLC-MS/MS

for 90min, respectively. A MS2 spectra of Pde1b (p)Ser7 (p)Ser18 is shown as an example. MS spectra data were analyzed by ProteinProspector (ver. 5.21.2, UCSF,

San Francisco, CA) and Skyline (ver. 4.1.0.18169). Among all MS-detected phosphopeptides (94%), 73% are (p)Ser, 19% (p)Thr, and 2% (p)Tyr. n = 16, 4 female WTs,

4 female KOs, 4 male WTs, and 4 male KOs.

statistic normal distribution (Figure 3B). Our experiments using
biological replicas generated a range of 43–62% for peptide-
level repeatability and a range of 53–75% for protein-level
repeatability, representing a good range for phosphoproteomics
analyses (Figure 3C). Forty-six to fifty-two percentages of
phosphopeptides were present at least in three out of the 8
biological replicas in one sample group. These numbers were
consistent with previous report (35–60%) and verified data
solidity (Tabb et al., 2010).

For global phosphoproteomic profiling, the average MS1
peak area of KOs relative to WTs (x-axis), and the average
MS1 peak area of males relative to females (y-axis) were
constructed into a scatter plot (Figure 3D). This shows that the
phosphorylation levels of most peptides had no general difference
between genotypes or between genders, whereas only some
modifications exhibit marked differences between AC3 KOs and
WTs, or between females and males (Figure 3D). To validate our
phosphoproteomic data, we also looked into Western blotting as
an orthogonal method, but we were limited by the availability
of commercial antibodies. We chose three anti-phosphopeptide
antibodies (anti-pCaMK2a/b T286/287, anti-pSyn1 S605, anti-
pERK1/2 T203/Y205 T183/Y185) for Western blot assays to
verified their MS data. The anti-pCaMK2 antibody recognizes
both the CaMK2a (p)Thr 286. The Western blot signal shows
that CaMK2a (p)Thr 286 had no difference between WT and

KO samples, and between male and female samples, which were
consistent with their MS1 quantification data (Figure S1). Two
other antibodies (anti-pSyn1 and anti-pERK1/2) yielded similar
results (Figure S1).

To determine which classes of proteins were enriched
in our MS-based phosphoproteomic analysis, the dataset of
all phosphopeptides was subjected to Gene Ontology (GO)
enrichment analysis (Mi et al., 2017). The GO analysis
demonstrated that synaptic vehicle exocytosis proteins,
gluconeogenesis, synaptic membrane protein, SNARE complex,
tubulin, kinases, and SNAP receptor activity were highly
enriched in our dataset, while G protein-coupled receptors,
protease inhibitors, extracellular space proteins, ligand-gated
ion channels, proteins mediating immune responses, and
phagocytosis, cell recognition proteins, transferase, and nuclease
activity were under-represented (Figure S2).

Motifs Matching Proline-Directed Kinases’
Substrate Motifs Had Decreased
Abundance AC3 KO Samples
cAMP regulates many kinases’ activity including PKA and
ERK1/2 (Waltereit and Weller, 2003; Sassone-Corsi, 2012).
To classify MS-identified phosphopeptides into different motif
categories and to determine if AC3 ablation affects the overall
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FIGURE 3 | Data quality of phosphoproteomic analysis. (A) Venn-diagram of phosphorylated peptides detected from 4 groups (female KO, female WT, male KO, male

WT). In each group, around 62% of phosphorylated peptides were detected in more than 2 of 4 samples, and around 27% of phosphorylated peptides were detected

in all 4 samples. (B) Histogram of relative phosphopeptide abundance of KOs compared to WTs (left), and females compared to males (Autism Genome Project et al.,

2007). The histogram indicates that the dataset fits into a normal distribution. The X-axis denotes average ratio of phosphopeptide intensity in AC3 KO relative to WT

(left), or females relative to males (Autism Genome Project et al., 2007). (C) Peptide and protein repeatability. The 28 random pairs of our biological replicates (8 per

groups) showed a range for peptide-level repeatability as 43–62% and a range for protein-level repeatability as 53–75%. (D) Scatter plot of phosphopeptide

abundance of KOs relative to WTs, and of females relative to males. (D-a) The X-axis denotes average ratio of phosphopeptide intensity of AC3 KOs relative to WTs.

The Y-axis denotes average ratio of phosphopeptide intensity of females relative to males. (b–e) Zoom-in plot of (a) for phosphopeptides that are highly enriched in

female WTs (b); female KOs (c); male WTs (d); and male KOs (e). Cut-off lines ln (KO/WT) or ln (female/male) were set to 1, meaning over 2.7-fold increase in

phosphopeptide MS1 spectra intensity. The majority of p-sites exhibit similar expression levels, whereas some p-sites have different phosphorylation levels among

AC3 KOs and WTs, or males and females.
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FIGURE 4 | Proline-directed kinase recognized peptide abundance is decreased in AC3 KOs compared to WTs. The sequence logos for (p)Ser with a proline residue

at the +1 position for 4 different sample groups. (A,B) comparison of proline-detected specific motifs in enrichment fold between AC3 KOs and WTs (n = 8 pairs, 4

male pairs and 4 female pairs, *P < 0.05).

activity of certain group of kinases, we used Motif-X (see
Figure S3 for detailed method workflow) to determine the
abundance of phospho-motifs in our samples, which infers
corresponding kinases’ activity (Pinna and Ruzzene, 1996).
Motif-X is a software tool to extract overrepresented motifs from
all phosphopeptide sequences of a dataset (Chou and Schwartz,
2011). Out of the four sample groups, we found that proline-
directed kinase’s substrate motifs were the most common motifs
in our samples (37% of all p-sites in AC3 KOs and 38% of all
p-sites in WTs), largely in line with previous report (Huttlin
et al., 2010). The motif [...(p)S-P...] was highly enriched in all
four groups of samples (Figure 4A). Moreover, we compared the
Motif-X sequence logos with Mouse International Protein Index
(IPI) database and found that motifs ([Sxxx(pS)P], [Exxxx(pS)P],
[(pS)xxSP], [SxPx(pS)P], [(pS)PxxE], [(pS)P]) were enriched in
AC3 KO mice, while motifs ([Sxxx(pS)P], [(pS)xxSP], [(pS)P],
[SPxx(pS)P], [(pS)PxxE]) were more abundantly present in AC3
WT mice (Figure 4A). Notably, the enriched proline-directed
kinase-recognized motifs in our dataset matched to the kinase
substrate motifs of GSK-3, CDK5, ERK1, ERK2, and mitogen-
activated protein kinase-activated protein kinase 3 (Mapkapk3)
reported on the Human Protein Reference Database (http://
hprd.org/serine_motifs).We discovered that themotifs matching
proline-detected kinases’ recognition sites had significantly
higher abundance in AC3WT than in AC3 KOmice (Figure 4B),
and the difference was gender unspecific. These data suggest that

ablation of AC3 decreases the overall activity of proline-directed
kinases in the prefrontal cortex.

Differential Expression of
Phosphopeptides in AC3 KO and WT Mice
To identify phosphopeptides that were differently expressed
in AC3 KO and WT mice, we compared AC3 KO and
WT datasets. Phosphopeptides that were expressed differently
(p < 0.05 by Two Populations Proportions comparison) in
AC3 WT and KOs were pooled in Tables 1, 2. Table 1

lists 14 phosphopeptides (from 14 proteins/genes such as
Map2 and Spast) that were identified only in AC3 WT
dataset. Table 2 contains 35 phosphorylation sites (out of
35 genes including Arhgap20, Arhgap44, Dlgap2, Pde1b, and
Sptan1) that were exclusively detected in AC3 KO dataset. In
addition to the presence-or-absence detection, phosphopeptides’
mass spectra in a dataset also exhibit variant abundance in
different samples, reflecting the phosphopeptides expression
levels in tissues. To determine if there are quantitative
spectra differences between AC3 WT and KO mice, we used
Skyline software (Schilling et al., 2012) to conduct label-free
quantification. The Skyline-guided quantification was based
on the MS1 peptide level. After completion of the MS1
qualification, we used differentially expressed peptides in WTs
and KOs to construct a heat map. Comparison of WT data
with KO data led to identification of 20 phosphopeptides

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 February 2019 | Volume 13 | Article 3426

http://hprd.org/serine_motifs
http://hprd.org/serine_motifs
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Zhou et al. Phosphoproteomics of AC3 Knockout Mice

TABLE 1 | Phosphopeptides exclusively detected in AC3 WT dataset.

Gene Protein name Detection

times (WT)

Peptide References for ASD

or related disorders

Acaca* Acetyl-CoA carboxylase 1 3 monophos-(18)FIIGSVSEDNSEDEISNLVK Girirajan et al., 2013

Map1a* Microtubule-associated

protein 1A

4 monophos-(2586)AKPASPARR Myers et al., 2011

Map2 Microtubule-associated

protein 2

3 monophos-(1004)ELITTKDTSPEK Mukaetova-Ladinska

et al., 2004

Spast Spastin 3 diphos-(89)SSGTAPAPASPSPPEPGPGGEAESVR
Talkowski et al., 2012

Ahsg Alpha-2-HS-glycoprotein 3 monophos-(301)HAFSPVASVESASGETLHSPK #N/A

Bloc1s3 Biogenesis of

lysosome-related organelles

complex 1 subunit 3

3 diphos-(51)VAGEAAETDSEPEPEPTVVPVDLPPLVVQR #N/A

Ctps1 CTP synthase 1 3 diphos-(570)SGSSSPDSEITELKFPSISQD #N/A

Kcnip3 Calsenilin 3 diphos-(49)WILSSAAPQGSDSSDSELELSTVR #N/A

Ppp1r14a Protein phosphatase 1

regulatory subunit 14A

4 monophos-(19)ARGPGGSPSGLQK #N/A

Rabl6 Rab-like protein 6 4 monophos-(477)NISLSSEEEAEGLAGHPR #N/A

Sap30l Histone deacetylase

complex subunit SAP30L

3 diphos-(89)KASDDGGDSPEHDADIPEVDLFQLQVNTLR #N/A

Slc6a20b Sodium- and

chloride-dependent

transporter XTRP3B

3 monophos-

(0)MESPSAHAVSLPEDEELQPWGGAGGPGQHPGRPRSTECA

HPGVVEK

#N/A

Ube2v1 Ubiquitin-conjugating

enzyme E2 variant 1

3 monophos-(135)LPQPPEGQCYSN #N/A

Znf281 Zinc finger protein 281 3 monophos-

(0)MKIGSGFLSGGGGPSSSGGSGSGGSSGSASGGSGGGR

#N/A

Phosphopeptides listed in the table were detected in no <3 times in AC3 WT dataset (n = 8), but never detected in any AC3 KO dataset (n = 8). Proteins on top of the table were

annotated in the AutDB (or per PubMed literature, labeled with *) to be associated with ASD or neurodevelopmental disorders. The number in brackets indicates the position of amino

acid just before the peptide.

(from 19 proteins/genes), which had significantly different
phosphorylation levels (p < 0.05 by unpaired Student’s t-test)
between AC3 WT and KO dataset (Figure 5A). Six of them had
higher expression in AC3 KOs (Figure 5A, Top), whereas 14 of
them (from 13 proteins/genes) were more abundantly expressed
in WTs (Figure 5A, Bottom). The overall phosphorylation levels
of all phosphopeptides and the 20 differentially expressed
phosphopeptides have no significant difference between AC3
WT and KO datasets (Figure 5B). Figure 5C shows that
three representative phosphopeptides (identified from Cntnap2,
Atp2b2, and Ctnnd2) exhibited significant different MS1 peak
area between WT and KO dataset.

In total, we identified 65 proteins either with phosphopeptides
exclusively present in AC3 WTs or KOs (as listed in Tables 1, 2)
or with phosphopeptide abundance having significant differences
in WTs or KOs (as shown in Figure 5A). Since ADCY3 is
associated with MDD (Wray et al., 2012; Chen et al., 2016)
and ASD (Skafidas et al., 2014; Yuen et al., 2017), we asked if
AC3 affects phosphorylation of other autism-associated proteins.
While MDD does not have a candidate gene databank thus
far, ASD does have several databases, among which AutDB
provides rich resources on ASD candidate genes (http://autism.
mindspec.org/autdb/search) (Basu et al., 2009). We used these
65 proteins to search against AutDB as well as PubMed and
found that 9 out of 65 were annotated in AutDB and other 7

were annotated in PubMed to be associated with ASD, which
include phosphopeptides from Dlgap2, Map2, Ank2, Ctnnb2,
Cntnap2, Sptan1, and Spast (Tables 1, 2 and Figure 5A). To
explore if Adcy3 ablation affects ciliary protein phosphorylation,
we compared AC3 WT and KO datasets with Ciliome Database,
a comprehensive ciliary proteome database maintained by the
Leroux lab (http://www.sfu.ca/$\sim$leroux/ciliome_database.
htm). Nine of the sixty five of proteins (14%) were listed in the
Ciliome Database. Five of them (Fam126a, Ggct, Pde1b, Ctnnd2,
and Gapvd1) were highly phosphorylated, whereas 4 (Rabl6,
Eif3b, Klc2, and Numbl) exhibited lower phosphorylation in AC3
KOs. We did not find many hits (only 14%) that match with
proteins that are listed in the Ciliome Database. We reasoned
that our TiO2 enrichment method harvested phosphopeptides
fromwhole tissue lysate of prefrontal cortex (mostly cytosol), and
primary cilia or the basal body only contributed to a little portion
of the peptide pool. Still, there are several interesting targets such
as Pde1b (Li et al., 2004), Rabl6 (Blacque et al., 2005), Klc2 (Li
et al., 2004), andNumbl (Ramamurthy et al., 2014) that have been
reported to be involved in ciliary biology.

To determine if some protein interaction network may be
associated with the phosphoproteins differentially expressed
in AC3 KOs and WTs, the 65 proteins were mapped onto
the mouse Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) database (string-db.org) of known
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TABLE 2 | Phosphopeptides exclusively detected in AC3 KO dataset.

Gene Protein name Detection

times (KO)

Peptide References for ASD

or related disorders

Dlgap2 Disks large-associated protein 2 3 monophos-(717)CSSIGVQDSEFPDHQPYPR Girirajan et al., 2013

Hepacam Hepatocyte cell adhesion molecule 5 monophos-(316)DKDSSEPDENPATEPR Myers et al., 2011

Lsm14a* Protein LSM14 homolog A 3 monophos-(214)RSPVPARPLPPTSQK Mukaetova-Ladinska

et al., 2004

Map1a* Microtubule-associated protein 1A 3 monophos-(457)KFSKPDLKPFTPEVR Talkowski et al., 2012

Map2 Microtubule-associated protein 2 4 monophos-(1634)SGILVPSEK Girirajan et al., 2013

Myh11* Myosin-11 4 monophos-(1946)VIENTDGSEEEMDAR Myers et al., 2011

Nav1* Neuron navigator 1 3 monophos-(374)LELVESLDSDEVDLK Mukaetova-Ladinska

et al., 2004

Sptan1* Spectrin alpha chain, non-erythrocytic 1 4 diphos-(1181)DEADSKTASPWK Talkowski et al., 2012

Strip2* Striatin-interacting proteins 2 3 monophos-(361)QDSLDIYNER Girirajan et al., 2013

Agk Acylglycerol kinase, mitochondrial 3 monophos-(281)LASFWAQPQDASSR #N/A

Arfgap2 ADP-ribosylation factor

GTPase-activating protein 2

4 monophos-(428)AISSDMFFGR #N/A

Arhgap20 Rho GTPase-activating protein 20 3 diphos-(795)SKPVPISVASYSHGSSQDHPRK #N/A

Arhgap44 Rho GTPase-activating protein 44 3 monophos-

(604)GSPGSIQGTPCPGTQLGPQPAASPSQLPADQSPHTLR

#N/A

C2cd2l C2 domain-containing protein 2-like 3 monophos-(413)NLGTPTSSTPRPSITPTK #N/A

Cdk14 Cyclin-dependent kinase 14 3 monophos-(92)VHSENNACINFK #N/A

Clip2 CAP-Gly domain-containing linker

protein 2

3 monophos-(914)VLLLEANRHSPGPER #N/A

Cops5 COP9 signalosome complex subunit 5 3 monophos-(282)GSFMLGLETHDR #N/A

Cox4i1 Cytochrome c oxidase subunit 4 isoform

1, mitochondrial

3 monophos-(42)DYPLPDVAHVTMLSASQK #N/A

F11r Junctional adhesion molecule A 3 diphos-(278)VIYSQPSTRSEGEFK #N/A

Fam126a Hyccin 3 monophos-(452)SFEQVSGAPVPR #N/A

Ggct Gamma-glutamylcyclotransferase 3 monophos-(169)GKISDEMEDIIK #N/A

Itm2c Integral membrane protein 2C 3 monophos-(20)AAASGPASASAPAAEILLTPAR #N/A

Kcnb2 Potassium voltage-gated channel

subfamily B member 2

3 monophos-(460)SMELIDVAVEK #N/A

Kctd8 BTB/POZ domain-containing protein

KCTD8

3 monophos-(410)RNSELFQSLISK #N/A

Lysmd2 LysM and putative

peptidoglycan-binding

domain-containing protein 2

3 monophos-(28)SRSTSEPEEAELSLSLAR #N/A

Mdh2 Malate dehydrogenase, mitochondrial 4 monophos-(241)AGAGSATLSMAYAGAR #N/A

Nwd1 NACHT and WD repeat

domain-containing protein 1

3 monophos-

(935)LWSLLSGQEKVTILDGGSQNPTEPQSWDLHVDER

#N/A

Pde1b Calcium/calmodulin-dependent

3’,5’-cyclic nucleotide

phosphodiesterase 1B

4 diphos-(6)SPPEMLESDCPSPLELK #N/A

Pgam1 Phosphoglycerate mutase 1 3 monophos-(117)SYDVPPPPMEPDHPFYSNISK #N/A

Pja1 E3 ubiquitin-protein ligase Praja-1 3 monophos-(226)VFFDTDDDDDVPHSTSR #N/A

Serbp1 Plasminogen activator inhibitor 1

RNA-binding protein

3 monophos-

(240)QISYNCSDLDQSNVTEETPEGEEHPVADTENKENEVEEVK

#N/A

Srcin1 SRC kinase signaling inhibitor 1 3 diphos-(1124)AVSEVVRPASTPPIMASAIKDEDDEER #N/A

Stac2 SH3 and cysteine-rich

domain-containing protein 2

3 monophos-(45)SKSVENFFLR #N/A

Tjp2 Tight junction protein ZO-2 3 monophos-(965)DASPPPAFKPEPPK #N/A

Tyro3 Tyrosine-protein kinase receptor TYRO3 3 monophos-(799)AEQPTESGSPEVHCGER #N/A

Phosphopeptides listed in the table were detected in no <3 times in KO dataset (n = 8), but never detected in any AC3 WT dataset (n = 8). Proteins on top of the table were annotated

in the AutDB (or per PubMed literature, labeled with *) to be associated with ASD or neurodevelopmental disorders. The number in brackets indicates the position of amino acid just

before the peptide.
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FIGURE 5 | Comparison of phosphopeptide abundance in AC3 KO and WT datasets and their protein interaction. (A) Heat map of phosphopeptides that show

significant differences in AC3 KOs or WTs. X-axis denotes ln (peak area of individual peptide from KO data/average peak area of all data) for AC3 knockout dataset, or

-ln (peak area of individual peptide from WT data/average peak area of all data) for AC3 WT dataset. Peak area differences of phosphopeptides in KO and WT

datasets with p< 0.05 (unpaired Student’s t-test) was used to construct the heat map. (B) The sum peak areas of all identified phosphopeptides in AC3 WTs (n = 8)

and AC3 KOs (n = 8) have no difference (left). The sum peak areas of 20 phosphopeptides (shown in A) in AC3 controls and AC3 KOs have no significant difference

(unpaired Student’s t-test). (C) Three representative plots phosphopeptides from Cntnap2, Atp2b2, and Ctnnd2 of label-free quantification of phosphorylation levels in

WTs and KOs. (D) Protein-protein interaction STRING analysis using phosphoproteins differentially expressed in AC3 KOs and WTs. AC3 and PKA were manually

included. Phosphoproteins with increased phosphorylated levels in KOs were highlighted in red, or in WTs highlighted in blue. Proteins marked in half red/blue had

both increased and decreased p-sites on different positions in both WTs and KOs. Interaction score confidence = 0.400.

protein interactions (Figure 5D). STRING is a Cytoscape-based
protein-protein interaction network analysis software, which
maps and predicts protein-protein interaction (Szklarczyk et al.,
2015). AC3 (Adcy3) as well as PKA (Prkaca) were added into the
STRINGdatabasemanually to examine whether these 65 proteins
also have direct or indirect interaction with each other. We found
34 of 65 proteins had direct or indirect interaction with each
other (Figure 5D). Thirteen out of the thirty-four had decreased
expression level in AC3 KOs, whereas 19 of them had increased
expression in AC3 KOs. Two of them (Map1a and Map2)
had both up-regulated and down-regulated phosphopeptides
(Figure 5D). Notably, the protein interaction map centered
around Sptan1 (encoding α-II Spectrin). In the protein-protein
interaction network, 45% of connectivity are established between
Sptan1 with other genes, removing Sptan1 would dramatically
change the network (Figure S4). Sptan1 has a bi-phosphorylation
site (S1186|T1188|S1190) detected in 4 AC3 KO samples, but in
none of 8 WTs (see Table 2). Sptan1 is a principal membrane
skeleton component and provides a spectrin-actin cytoskeleton
interface to integrate signals (Machnicka et al., 2012, 2014).

Sptan1 plays a critical role in neurodevelopment and mutations
of Sptan1 leads to encephalopathy, intellectual disability and
ASD (Syrbe et al., 2017). Note that AC3 is associated with ASD
(Skafidas et al., 2014; Yuen et al., 2017) and primary cilia regulate
neurodevelopment (Valente et al., 2014).

Differential Expression of Phosphopeptides
in Male and Female Samples
Males and females differ greatly in cognition, behaviors, and
disease susceptibility (Zagni et al., 2016). Remarkably, many
psychiatric diseases, such as ADHD, MDD, and ASD, exhibit
a sexual dimorphism (Zagni et al., 2016). But to date it is
unclear what causes the sexual dimorphism of these disorders.
We hypothesized that post-translational phosphorylation may
correlate with the sexual dimorphism of ASD. To determine if
there are any gender-biased phosphorylations in our samples,
we compared female and male datasets. All phosphopeptides
exclusively enriched (p < 0.05 by Two Populations Proportions
comparison) in males or females are listed in Tables 3, 4. In
total, 95 phosphorylated peptides (out of 90 proteins such
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TABLE 3 | Phosphopeptides exclusively detected in female dataset.

Gene Protein name Detection

times (in

females)

Peptide References for ASD

or related disorders

Apc Adenomatous polyposis coli protein 4 monophos-(1434)SKTPPPPPQTVQAK Girirajan et al., 2013

Atp1a1 Sodium/potassium-transporting

ATPase subunit alpha-1

6 monophos-(707)QGAIVAVTGDGVNDSPALKK Schlingmann et al.,

2018

Atp1a3 Sodium/potassium-transporting

ATPase subunit alpha-3

6

6

monophos-(466)VAEIPFNSTNK

monophos-(697)QGAIVAVTGDGVNDSPALKK

Myers et al., 2011

Mukaetova-Ladinska

et al., 2004

Bin1 Myc box-dependent-interacting

protein 1

3 monophos-(312)VNHEPEPASGASPGATIPK Talkowski et al., 2012

Cnksr2 Connector enhancer of kinase

suppressor of ras 2

3 monophos-(502)SNSPAHYSLLPSLQMDALR Girirajan et al., 2013

Dlgap2 Disks large-associated protein 2 3 diphos-(1032)AASFRQNSATER Myers et al., 2011

Jph3* Junctophilin-3 5 monophos-(417)EFSPSFQHR Mukaetova-Ladinska

et al., 2004

Lrrc7 Leucine-rich repeat-containing

protein 7

3 monophos-(1342)SREQQPYEGNINK Talkowski et al., 2012

Magi2* Membrane-associated guanylate

kinase, WW and PDZ

domain-containing protein 2

4 monophos-(1004)IIPQEELNSPTSAPSSEK Girirajan et al., 2013

Map1b* Microtubule-associated protein 1B 4 monophos-(1194)DYNASASTISPPSSMEEDKFSK Myers et al., 2011

Map2 Microtubule-associated protein 2 3 monophos-(1004)ELITTKDTSPEK Mukaetova-Ladinska

et al., 2004

Map6* Microtubule-associated protein 6 3 monophos-(293)SEGHEEKPLPPAQSQTQEGGPAAGK Talkowski et al., 2012

Nav1* Neuron navigator 1 3 monophos-(374)LELVESLDSDEVDLK Girirajan et al., 2013

Neo1 Neogenin 3 monophos-(1200)LELKPIDKSPDPNPVMTDTPIPR Myers et al., 2011

Plcd3* 1-phosphatidylinositol

4,5-bisphosphate phosphodiesterase

delta-3

3 monophos-(489)ILSDREEEEEEEEEAEEALEAAEQR Mukaetova-Ladinska

et al., 2004

Prex1 Phosphatidylinositol

3,4,5-trisphosphate-dependent Rac

exchanger 1 protein

3 monophos-(1178)SNSSYLGSDEMGSGDELPCDMR Talkowski et al., 2012

Psmd4* 26S proteasome non-ATPase

regulatory subunit 4

4 monophos-(237)AAAASAAEAGIATPGTEDSDDALLK Girirajan et al., 2013

Ptpn1* Tyrosine-protein phosphatase

non-receptor type 1

4 monophos-(325)ELFSSHQWVSEETCGDEDSLAR Myers et al., 2011

Slc12a6* Solute carrier family 12 member 6 3 monophos-(21)IDDIPGLSDTSPDLSSR Mukaetova-Ladinska

et al., 2004

Smarcc1* SWI/SNF complex subunit SMARCC1 3 diphos-(323)RKPSPSPPPPTATESR Talkowski et al., 2012

Sorbs1* Sorbin and SH3 domain-containing

protein 1

6 monophos-(49)GTPSSSPVSPQESPKHESK Girirajan et al., 2013

Spast Spastin 3 diphos-(89)SSGTAPAPASPSPPEPGPGGEAESVR Myers et al., 2011

Spry2* Protein sprouty homolog 2 3 monophos-(108)SISTVSSGSR Mukaetova-Ladinska

et al., 2004

Srgap2* SLIT-ROBO Rho GTPase-activating

protein 2

5

3

monophos-(496)KQDSSQAIPLVVESCIR

monophos-

(692)GGSMEDYCDSTHGETTSAEDSTQDVTAEHHTSDDECEPIEAIAK

Talkowski et al., 2012

Girirajan et al., 2013

Srpk1* SRSF protein kinase 1 4

4

monophos-(31)GSAPHSESDIPEQEEEILGSDDDEQEDPNDYCK

monophos-(285)MQEIEEMEKESGPGQK

Myers et al., 2011

Mukaetova-Ladinska

et al., 2004

Strip1* Striatin-interacting protein 1 3 monophos-(56)KDSEGYSESPDLEFEYADTDK Talkowski et al., 2012

Trio Triple functional domain protein 3 monophos-(2274)NFLNALTSPIEYQR Girirajan et al., 2013

Aagab Alpha- and gamma-adaptin-binding

protein p34

4 monophos-(196)VASAESCHSEQQEPSPTAER #N/A

Aak1 AP2-associated protein kinase 1 4 monophos-(678)TSQQNVSNASEGSTWNPFDDDNFSK #N/A

(Continued)
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TABLE 3 | Continued

Gene Protein name Detection

times (in

females)

Peptide References for ASD

or related disorders

Acot11 Acyl-coenzyme A thioesterase 11 3 monophos-(24)SISHPESGDPPTMAEGEGYR #N/A

Akap12 A-kinase anchor protein 12 4 diphos-(260)EKEPTKPLESPTSPVSNETTSSFK #N/A

Amer2 APC membrane recruitment protein 2 4 monophos-

(551)DSDSGDALCDLYVEPEASPATLPATEDPPCLSR

#N/A

Arfgef3 Brefeldin A-inhibited guanine

nucleotide-exchange protein 3

3 monophos-(2050)GPDSPLLQRPQHLIDQGQMR #N/A

Arhgef12 Rho guanine nucleotide exchange

factor 12

3 monophos-(326)SEGVQDAEPQSLVGSPSTR #N/A

Atg4c Cysteine protease ATG4C 5 monophos-(424)DFDFTSTAASEEDLFSEDERK #N/A

Atp1a2 Sodium/potassium-transporting

ATPase subunit alpha-2

6 monophos-(474)VAEIPFNSTNK #N/A

6 monophos-(704)QGAIVAVTGDGVNDSPALKK

Bsn Protein bassoon 3 monophos-(1038)SHGPLLPTIEDSSEEEELREEEELLR #N/A

Camkv CaM kinase-like vesicle-associated

protein

4 monophos-

(395)SATPATDGSATPATDGSVTPATDGSITPATDGSVTPATDR

#N/A

Cir1 Corepressor interacting with RBPJ 1 3 monophos-(188)NLTANDPSQDYVASDCEEDPEVEFLK #N/A

Cmtm4 CKLF-like MARVEL transmembrane

domain-containing protein 4

4 monophos-(191)TESRDVDSRPEIQR #N/A

Cpsf7 Cleavage and polyadenylation

specificity factor subunit 7

3 monophos-(192)DSSDSADGRATPSENLVPSSAR #N/A

Csnk1a1 Casein kinase I isoform alpha 3 monophos-(304)AAQQAASSSGQGQQAQTPTGK #N/A

Dos Protein Dos 3 monophos-(613)RGDSVDCPPEGR #N/A

Epb41l1 Band 4.1-like protein 1 5 diphos-(465)SEAEEGEVRTPTK #N/A

Epb41l3 Band 4.1-like protein 3 4 monophos-(48)QQPALEQFPEAAAHSTPVKR #N/A

Evl Ena/VASP-like protein 4 monophos-(232)VQRPEDASGGSSPSGTSK #N/A

Farp1 FERM, RhoGEF and pleckstrin

domain-containing protein 1

3 monophos-(387)QSPQSASLTFGEGTESPGGQSCQQAK #N/A

Gpalpp1 GPALPP motifs-containing protein 1 3 monophos-

(127)GREDPGQVSSFFNSEEAESGEDEDIVGPMPAK

#N/A

Hid1 Protein HID1 3 diphos-(583)TPEPLSRTGSQEGTSMEGSRPAAPAEPGTLK #N/A

Hook3 Protein Hook homolog 3 4 monophos-(226)LNQSDSIEDPNSPAGR #N/A

Hspa4 Heat shock 70 kDa protein 4 5 monophos-

(521)MQVDQEEPHTEEQQQQPQTPAENKAESEEMETSQAGSK

#N/A

Ipo5 Importin-5 3 monophos-(814)RQDEDYDEQVEESLQDEDDNDVYILTK #N/A

Kctd16 BTB/POZ domain-containing protein

KCTD16

4 monophos-(282)WSSSHCDCCCK #N/A

Lrrc47 Leucine-rich repeat-containing

protein 47

3 monophos-

(507)STSENKEEDMLSGTEADAGCGLSDPNLTLSSGK

#N/A

Lrsam1 E3 ubiquitin-protein ligase LRSAM1 6 monophos-

(206)ESGLDYYPPSQYLLPVLEQDGAENTQDSPDGPASR

#N/A

Mvb12b Multivesicular body subunit 12B 3 monophos-(194)NHDSSQPTTPSQSSASSTPAPNLPR #N/A

Nckipsd NCK-interacting protein with SH3

domain

5 monophos-

(257)APSPEPPTEEVAAETNSTPDDLEAQDALSPETTEEK

#N/A

Ndel1 Nuclear distribution protein nudE-like

1

5 monophos-(223)GTENSFPSPK #N/A

Nsf Vesicle-fusing ATPase 3 monophos-(202)ENRQSIINPDWNFEK #N/A

Nufip2 Nuclear fragile X mental

retardation-interacting protein 2

4 monophos-(614)DYEIENQNPLASPTNTLLGSAK #N/A

Ogfrl1 Opioid growth factor receptor-like

protein 1

3 monophos-(372)EPGEEADKPSPEPGSGDPKPR #N/A

Oxr1 Oxidation resistance protein 1 3 diphos-

(358)QEKSSDASSESVQTVSQMEVQSLTATSEAANVPDR

#N/A

(Continued)
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TABLE 3 | Continued

Gene Protein name Detection

times (in

females)

Peptide References for ASD

or related disorders

Pacsin1 Protein kinase C and casein kinase

substrate in neurons protein 1

4 monophos-(388)ALYDYDGQEQDELSFK #N/A

Pacsin3 Protein kinase C and casein kinase II

substrate protein 3

6 monophos-(332)DGTAPPPQSPSSPGSGQDEDWSDEESPRK #N/A

PAGR1 PAXIP1-associated glutamate-rich

protein 1

3 monophos-(222)DLFSLDSEGPSPTSPPLR #N/A

Pds5b Sister chromatid cohesion protein

PDS5 homolog B

3 monophos-(1353)AESPETSAVESTQSTPQK #N/A

Pitpnc1 Cytoplasmic phosphatidylinositol

transfer protein 1

3 diphos-(112)YEDNKGSNDSIFDSEAK #N/A

Pnmal1 PNMA-like protein 1 3 monophos-(319)SALPAADSPGNLEDSDQDGGPENPAK #N/A

Ppp1r7 Protein phosphatase 1 regulatory

subunit 7

3 diphos-(20)RVESEESGDEEGK #N/A

Prkce Protein kinase C epsilon type 4 monophos-(343)SKSAPTSPCDQELK #N/A

Psen1 Presenilin-1 3 monophos-(344)DSHLGPHRSTPESR #N/A

Ptrf Polymerase I and transcript release

factor

4 diphos-(175)ESEALPEKEGDELGEGER

PEDDTAAIELSSDEAVEVEEVIEESR

#N/A

Rad23a UV excision repair protein RAD23

homolog A

4 diphos-(119)EDKSPSEESTTTTSPESISGSVPSSGSSGR #N/A

Rap1gap2 Rap1 GTPase-activating protein 2 3 monophos-(8)KQELANSSDVTLPDRPLSPPLTAPPTMK #N/A

Rasgrf2 Ras-specific guanine

nucleotide-releasing factor 2

3 monophos-(722)KFSSPPPLAVSR #N/A

Rps6kc1 Ribosomal protein S6 kinase delta-1 5 monophos-(646)ESEAQDSVSRGSDDSVPVISFK #N/A

Rragc Ras-related GTP-binding protein C 3 monophos-(83)MSPNETLFLESTNK #N/A

Rtn1 Reticulon-1 5 diphos-(303)QDLCLKPSPDTVPTVTVSEPEDDSPGSVTPPSSG

TEPSAAESQGK

#N/A

Serbp1 Plasminogen activator inhibitor 1

RNA-binding protein

3 monophos-(240)QISYNCSDLDQSNVTEETPEGEEHPVAD

TENKENEVEEVK

#N/A

Snx16 Sorting nexin-16 3 monophos-(91)EAEEQHPEAVNWEDRPSTPTILGYEVMEER #N/A

Ssbp3 Single-stranded DNA-binding protein

3

5 monophos-(345)NSPNNISGISNPPGTPR #N/A

Stambpl1 AMSH-like protease 4 monophos-(232)SDGSNFANYSPPVNR #N/A

Synpo Synaptopodin 5 monophos-(760)VASLSPAR #N/A

Tacc1 Transforming acidic

coiled-coil-containing protein 1

3 monophos-(549)APVSVACGGESPLDGICLSEADK #N/A

Tmf1 TATA element modulatory factor 4 monophos-(333)SVSEINSDDELPGK #N/A

Tmpo Lamina-associated polypeptide 2,

isoforms beta/delta/epsilon/gamma

3 monophos-(60)GPPDFSSDEEREPTPVLGSGASVGR #N/A

Trappc10 Trafficking protein particle complex

subunit 10

4 monophos-(704)RQESGSSLEPPSGLALEDGAHVLR #N/A

Trim28 Transcription intermediary factor

1-beta

3 monophos-

(435)QGSGSSQPMEVQEGYGFGSDDPYSSAEPHVSGMK

#N/A

4 diphos-

(591)LASPSGSTSSGLEVVAPEVTSAPVSGPGILDDSATICR

Tyro3 Tyrosine-protein kinase receptor

TYRO3

3 monophos-(799)AEQPTESGSPEVHCGER #N/A

Zfyve20 Rabenosyn-5 6 monophos-(206)DSLSTHTSPSQSPNSVHGSR #N/A

Phosphopeptides listed in the table were detected in no <3 times in female dataset (n = 8), but never detected in any male dataset (n = 8). Proteins on top of the table were annotated

in the AutDB (or per PubMed literature, labeled with *) to be associated with ASD or neurodevelopmental disorders. The number in brackets indicates the position of amino acid just

before the peptide.

as Atp1a3, Srgap2, and Dlgap2) were detected only in female
samples, whereas 26 phosphopeptides (out of 26 proteins such
as Ctnnd1, Ctnnd2, Efnb3, and Caskin1) were only found in male

samples. Among these p-sites, one striking example is catenin δ-
2 (p)Ser7, which was highly enriched in males. This site has been
reported in male mice on UniPort database (Huttlin et al., 2010;
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TABLE 4 | Phosphopeptides exclusively detected in male dataset.

Gene Protein name Detection

times (in

Males)

Peptide References for ASD

or related disorders

Abi1* Abl interactor 1 3 monophos-(173)TNPPTQKPPSPPVSGR Girirajan et al., 2013

Apc Adenomatous polyposis coli protein 3 diphos-(1856)NDSLSSLDFDDDDVDLSR Myers et al., 2011

Caskin1* Caskin-1 3 monophos-(727)SQEYLLDEGMAPGTPPK Mukaetova-Ladinska

et al., 2004

Cspg5* Chondroitin sulfate proteoglycan 5 3 monophos-(529)LKEEESFNIQNSMSPK Talkowski et al., 2012

Ctnnd1* Catenin delta-1 3 monophos-(344)GSLASLDSLRK Girirajan et al., 2013

Ctnnd2 Catenin delta-2 6 monophos-(4)KQSGAAPFGAMPVPDQPPSASEK Myers et al., 2011

Efnb3* Ephrin-B3 3 monophos-(271)GGSLGLGGGGGMGPR Mukaetova-Ladinska

et al., 2004

Irf2bpl Interferon regulatory factor 2-binding

protein-like

3 diphos-(633)RNSSSPVSPASVPGQR Talkowski et al., 2012

Map1b* Microtubule-associated protein 1B 3 diphos-(1290)SVSPGVTQAVVEEHCASPEEK Girirajan et al., 2013

Srgap2* SLIT-ROBO Rho GTPase-activating

protein 2

3 diphos-(981)TSPVVAPTSEPSSPLHTQLLKDPEPAFQR Myers et al., 2011

Tbc1d5 TBC1 domain family member 5 3 monophos-(543)SESMPVQLNK Mukaetova-Ladinska

et al., 2004

Atat1 Alpha-tubulin N-acetyltransferase 1 3 diphos-(269)SSSLGNSPDRGPLRPFVPEQELLR #N/A

Camsap1 Calmodulin-regulated

spectrin-associated protein 1

4 diphos-(546)TDVSPPSPQMPR #N/A

Cryab Alpha-crystallin B chain 4 monophos-(56)APSWIDTGLSEMR #N/A

Fam103a1 RNMT-activating mini protein 3 monophos-(31)RPPESPPIVEEWNSR #N/A

Fam134a Protein FAM134A 3 diphos-(293)TALALAITDSELSDEEASILESGGFSVSR #N/A

Kbtbd11 Kelch repeat and BTB

domain-containing protein 11

4 monophos-(60)ASAAEGSEASPPSLR #N/A

Kiaa1467 Uncharacterized protein KIAA1467 6 monophos-

(15)SPDLGEYDPLTQADSDESEDDLVLNLQQK

#N/A

Map4 Microtubule-associated protein 4 5 monophos-(514)DMSPSAETEAPLAK #N/A

Mbp Myelin basic protein 3 monophos-(145)YLATASTMDHAR #N/A

Mrpl23 39S ribosomal protein L23,

mitochondrial

5 monophos-(117)SPEPLEEELPQQR #N/A

Phactr1 Phosphatase and actin regulator 1 4 diphos-(326)LESSEQRVPCSTSYHSSGLHSSDGITK #N/A

Rbm5 RNA-binding protein 5 4 monophos-(614)GLVAAYSGDSDNEEELVER #N/A

Sik3 Serine/threonine-protein kinase SIK3 3 monophos-(490)RASDGGANIQLHAQQLLK #N/A

Slc6a17 Sodium-dependent neutral amino acid

transporter SLC6A17

3 diphos-(679)VPSEAPSPMPTHR #N/A

Sptbn1 Spectrin beta chain, non-erythrocytic 1 3 monophos-(2122)GDQVSQNGLPAEQGSPR #N/A

Phosphopeptides listed in the table were detected in no <3 times in male dataset (n = 8), but never detected in any female dataset (n = 8). Proteins on top of the table were annotated

in the AutDB (or per PubMed literature, labeled with *) to be associated with ASD or neurodevelopmental disorders. The number in brackets indicates the position of amino acid just

before the peptide.

UniProt Consortium, 2018). This p-site was detected in six out
of eight male samples (3 KOs and 3 controls), but in none of
the eight female samples, indicating that catenin δ-2 (p)Ser7 is a
male-specific phosphorylate site. Notably, mutations in catenin
δ-2 cause autism in female-enriched multiplex autism families
(Turner et al., 2015)

Similarly, to compare phosphorylation level differences
between females and males, Skyline-based label-free
quantification was also performed on female and male datasets.
We further found 96 phosphopeptides (out of 88 proteins)
having increased phosphorylation levels in females relative to
males, whereas only 11 peptides had significantly decreased

phosphorylation levels in females (Figures 6A,B). Strikingly,
31 proteins (with 34 peptides) out of 88 (∼35%) are associated
with ASD, either annotated in the AutDB (Basu et al., 2009)
or per PubMed reporting. Thirty-six of phosphopeptides out
of the 33 proteins are presented in Figure 6B. Note that the
overall phosphorylation levels had no differences between male
and female samples, while the sum MS1 peak area of the 107
differentially expressed phosphopeptides were much higher in
females than in males (Figure 6C). Phosphopeptide abundance
of four representatives, Rims1, Pacs1, Syngap1, and Ctnnd2
(both associated with ASD) are shown in Figure 6D. These data
suggest that more proteins in females are highly phosphorylated
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FIGURE 6 | Comparison of phosphopeptide abundance in female and male datasets. (A) Heat map of 96 peptides (out of 88 proteins) having increased

phosphorylation levels in females relative to males. Phosphopeptides with peak area of MS1 differed in males and females (p < 0.05, Student’s t-test, unpaired) were

included into the heatmap. 34 phosphopeptides from 31 Autism-related proteins were on the bottom whereas other 57 proteins were on the top. X-axis donates ln

(peak area of individual peptide from female data/average peak area of all data) for female dataset, or –ln (peak area of individual peptide from male data/average peak

area of all data) for male dataset. (B) Heat map of 11 peptides out of 11 proteins having increased phosphorylation levels in males relative to females. 2

phosphopeptides from 2 Autism-related proteins were on the bottom whereas other nine proteins were on the top. (C) The sum spectrum peak areas of all

phosphopeptides have no difference in females (n = 8) and males (n = 8) (left). The sum spectrum peak areas of 107 phosphopeptides out of 99 proteins (as listed in

A,B) were much higher in females than in males (p < 0.01, by unpaired Student’s t-test). (D) Representative plots of four phosphopeptides (from Rims1, Pacs1,

Syngap1, and Ctnnd2) of MS1-based quantification of phosphorylation levels in females compared to males.
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FIGURE 7 | Protein-protein interaction analysis using phosphoproteins differentially expressed in females and males. (A) Proteins with phosphorylation differences

between female and male dataset, which had presence-or-absence detection differences (listed in Tables 3, 4) or were identified in quantificational analysis (listed in

Figures 6A,B), were mapped onto the mouse STRING database of protein-protein interactions. One hundred and ten of two hundred and four mapped proteins had

interactions with each other, 82 of them were connected in a tight network, whereas other 28 proteins having interaction with a few proteins are not shown. The rest

had no interaction with others. (B) STRING protein-protein interaction analysis of 63 ASD proteins with different phosphorylation levels in females and males.

Thirty-eight of sixty-three proteins were connected in a tight interactions network with each other. Interaction score confidence = 0.400. For (A,B), proteins with

increased phosphorylation levels in females were highlighted in red and in males marked in blue. Proteins in red/blue had both increased and decreased p-sites on

different positions in females and males. Proteins in white were manually added into the interaction map. The gene names of delta catenin family were written in red.

in the frontal cortex than in males, with a high percentage of
them being autism-associated proteins.

It is common that one protein activity can up- or down-
regulate the activity of its interacting proteins in shared signal
transduction pathways (von Mering et al., 2003). To assess
if these ASD-related proteins interact with each other, 204
proteins with different phosphorylation levels in males or
females (as listed Tables 3, 4 and Figures 6A,B) were mapped
onto the mouse STRING database to examine protein-protein
interaction. Figure 7A depicts that 82 out of 204 proteins were
connected in a tight network, 69 proteins of the 82 had higher
phosphorylation in females, three of them (e.g., Ctnnd2) had
different phosphorylated peptides with increased phosphorylated
levels in both females and males. Further, 63 proteins out of
the 204 (∼31%) with different phosphorylation levels in females
or males were clearly associated with ASD. Thirty-two out of
the sixty three of proteins were autism candidate entries in
the AutDB, whereas the other 31 were reported in PubMed. It
is noteworthy that all delta catenin proteins (Ctnnd1, Ctnnd2,
Pkp4, and Arvcf, with names marked in red Figure 7B) exhibit
gender-biased modifications. Furthermore, 50 out of the 63 ASD
proteins had increased phosphorylation levels in female samples,
whereas only eight proteins increased in male and five proteins
had different phosphorylated peptides increased in both genders.

STRING analysis further demonstrated that 38 of these 63 ASD
proteins showed strong protein-protein interactions with each
other (Figure 7B). These data demonstrate that 204 proteins
had sex-biased phosphorylation and 31% of them were ASD-
related genes which showed strong protein-protein interactions,
suggesting that autism-related proteins may be highly regulated
by post-translational phosphorylation in the female brain.

DISCUSSION

Malfunctions of primary cilia cause a broad spectrum of diseases
in humans, particularly developmental disorders. AC3 is highly
enriched in neuronal primary cilia, and not well-expressed
in mature astrocyte cilia or microglia in the frontal cortex
(Figure 1). AC3 is genetically associated with many human
diseases including obesity (Nordman et al., 2008; Stergiakouli
et al., 2014), ASD (Skafidas et al., 2014; Yuen et al., 2017), and
MDD (Wray et al., 2012). It is unknown how AC3 regulates
signaling network in central neurons. Besides activating the
CNG channel in olfactory sensory neurons, AC3 (or cAMP)
in olfactory cilia also sends signals to the cytosol of olfactory
sensory neurons (DeMaria and Ngai, 2010) and regulates gene
transcription (Serizawa et al., 2003). Given PKA is the major
downstream protein of cAMP in most tissues, we postulated
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that identification of protein phosphorylation modulated by
AC3 could help delineate AC3-regulated signaling network in
central neurons.

We utilized a high-efficiency method to conduct comparative
phosphoproteomics analyses combining TiO2 phosphopeptide
enrichment with HPLC-MS/MS analysis. This approach allows
for large-scale identification of phosphopeptides. In our assay,
more than 1,500 phosphorylated peptides and 30,000 spectra
were detected from each sample (Figure 3). We analyzed 16
samples and in total 4655 phosphopeptides were identified
from 1756 proteins. We have manually verified all mass spectra
presented in Figures 5–7 and Tables 1–4. This work provided a
list of phosphoproteins that help elucidate the function of AC3
in the brain and unravel gender-biased protein phosphorylation.
Intriguingly, we identified more gender-biased modifications
than those of genotype-biased, suggesting that gender difference
is much bigger than genotype differences in the frontal cortex in
the phosphoproteomic assay.

To compare phosphorylation levels in proteins that are
involved in cAMP signaling pathway, phosphopeptides identified
from G-proteins, adenylyl cyclases, PKA, phosphodiesterases
(PDE), phosphatases, as well as their regulating proteins
were summarized in Table S4. It shows that phosphatases
(such as Ppp1r1b) were highly phosphorylated, while G-
protein α-subunits were not. cAMP-dependent protein kinases’
catalytic subunits were less phosphorylated than their regulatory
subunits (Table S4). Phosphorylation of two adenylyl cyclases
(Adcy5 and Adcy9) have been detected and apparently that
Adcy9 is highly phosphorylated in the frontal cortex. Among
differentially expressed phosphopeptides between WTs and
KOs, one interesting hit was Pde1b (p)Ser18. Pde1b is a
calcium/calmodulin-dependent phosphodiesterase that breaks
down both cAMP and cGMP (Sharma et al., 2006). Pde1b
(p)Ser18 was detected in 4 of 8 AC3 KO mice (one female
and three male animals), but in none of the control mice
(Table 2), suggesting that Pde1b may function downstream of
AC3. Additionally, Ppp1r14A (p)Ser19 (protein phosphatase 1
regulatory subunit 14A), which was detected in 4 of 8 WT mice
(2 female and 2 male animals), but in none of 8 KO mice
(Table 1). Ppp1r14A is a C-kinase phosphorylation-dependent
inhibitor protein of phosphatase, implicated in cerebellar long-
term synaptic plasticity (Eto et al., 2002). In contrast, Ppp1r1b,
which is a cAMP/PKA-dependent phosphoprotein and regulates
the activity of phosphatase-1, had at least four sites identified
(Ser42|45|46, Ser97, Ser130, Thr182|192) in the dataset. However,
we did not detect significant differences in phosphorylation levels
in these four sites between WT and KO datasets (Table S4).
Additionally, both Rho GTPase-activating protein 20 (Arhgap20)
and Rho GTPase-activating protein 44 (Arhgap44) have p-sites
that were exclusively detected in KO dataset (Table 2), suggesting
these RhoGaps may be regulated by AC3 in the frontal cortex.

Male and female brains differ in many aspects including
connectivity (Ingalhalikar et al., 2014), disease susceptibility
(Zagni et al., 2016), and gene expression (Trabzuni et al., 2013).
Numerous studies have attempted to use different approaches
including next-generation sequencing technology to decipher the
differences betweenmale and female brains (Trabzuni et al., 2013;

Werling et al., 2016; Gershoni and Pietrokovski, 2017). However,
current research apparently has overlooked posttranslational
modification differences in male and female brains, and
phosphoproteomics databanks (UnitProt and Phosphosites) thus
far have not collected any data specifically from female brain
samples. This study filled this gap and we have conducted
systematic phosphoproteomic profiling using prefrontal cortical
samples of both genders. Consequently, we have identified
95 phosphopeptides only present in female samples, and
26 phosphopeptides restricted to male samples (Tables 3, 4).
Label-free mass spectrometric quantification further revealed
that 96 phosphopeptides have higher phosphorylation levels
in females, while 11 phosphopeptides are more abundantly
expressed in males. We found that phosphorylation of many
autism-associated proteins, including but not limited to Dlg1,
Dlgap2, Syn1, SynGap1, and Srgap2 (Figures 6, 7 and Tables 3,
4), are gender-biased, occurring more in females than in
males. As shown in Figure 6B and Tables 3, 4, 63 out of 204
phosphopeptides (∼31%) are from autism-associated proteins.
Some proteins/genes are not listed in the AutDB, but they directly
interact with autism proteins or were found to be associated
with autism per literature in PubMed. For example, Caskin1 Ser
728 was only identified in males (Table 4). Caskin-1 interacts
with neurexins, which bind to neuroligins in the synapses. Both
neurexins and neuroligins are strongly associated with autisms
(Südhof, 2017). Caskin1 itself is implicated in autism (Daimon
et al., 2015).

Among all differentially modified proteins in genders,
one protein family is of particular interest. That is the
delta catenin family, which contains ARVCF (encoded by
Arvcf ), catenin δ-1 (Ctnnd1), catenin δ-2 (Ctnnd2), and
plakophilin-4 (Pkp4) (Yuan and Arikkath, 2017). All the
delta catenin proteins are expressed in the central nervous
system and regulate neural development, and they are strongly
implicated in neurodevelopmental disorders (Turner et al.,
2015; Yuan and Arikkath, 2017). Remarkably, the activity of
delta catenin family is highly regulated by post-translational
modifications such as ubiquitination and phosphorylation to
modulate protein-protein interaction with cadherin, membrane
localization, and protein stability (Yuan and Arikkath, 2017).
Of note, this family has two regions flanking the ARM
domain that are highly enriched with phosphorylation sites
(Yuan and Arikkath, 2017). Interestingly, all four delta
catenin proteins: ARVCF (Suzuki et al., 2009), catenin δ-
1 (Hussman et al., 2011), catenin δ-2 (Turner et al., 2015),
and plakophilin-4 (Hussman et al., 2011) are implicated in
ASD or neurodevelopmental disorders. Relevant to the sexual
dimorphism of autism, mutations of catenin δ-2 has been found
to cause severe autism in female-enriched multiplex autism
families (Turner et al., 2015). Loss-of-function of catenin δ-
2 causes severe developmental phenotypes in animal model.
Our MS analysis revealed that catenin δ-2 Ser 7 was restricted
to males. Moreover, catenin δ-2 Thr 469 (another p-site)
have increased phosphorylation in females relative to males.
We have also detected p-sites of the delta catenin family
which are also differentially modified in males or females:
catenin δ-1 Ser 346 was only detected in males (Table 4);
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ARVCF Thr 643 has decreased phosphorylation in females;
PKP4 Ser 220 had higher expression in females (Figure 6).
Together, these data suggest that the delta catenin family may
participate in the regulation of gender-biased posttranslational
phosphorylations, consequently affecting neuronal development
in the prefrontal cortex. This interpretation is further supported
by STRING analysis, showing that these four proteins are
connected in a String interaction map with gender-biased
phosphorylation (Figure 7B).

In summary, this comparative phosphoproteomic profiling
has generated several interesting findings: (1) AC3 ablation
leads to decreased activity of proline-directed kinases in the
frontal cortex; (2) There is a gender-biased phosphorylation
in 204 proteins, 31% of which are associated with ASD;
(3) Four delta catenin family members, all associated with
autism, contain gender-biased phosphorylation sites. Hence,
although future work is warranted, this study provides
useful phosphoproteomic clues to elucidate the function
of AC3 in the CNS. It also presents the first proteomic
evidence suggesting that sex-biased post-translational
phosphorylation is implicated in the sexual dimorphism
of autism.
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Primary cilia are microtubule-based organelles that are typically present on cells during
the G0 or G1-S/G2 phases of the cell cycle. Recent studies of glioblastoma (GBM)
biopsies, a brain tumor that is notorious for its aggressive growth and resistance to
treatment, show that many cells in the tumor lack cilia. At this point, it remains unclear
whether primary cilia promote or suppress glioma tumorigenesis. In this review, we will
discuss the different roles that have been proposed for primary cilia in glioma and how
cilia may contribute to the resistance of these tumors to current therapies.

Keywords: glioblastoma, cilium, brain cancer, temozolomide, ciliary signaling

INTRODUCTION

Primary cilia are microtubule-based organelles that relay signals to the cell on which they reside
and release signals into the cellular microenvironment (Wood and Rosenbaum, 2015; Garcia et al.,
2018), but their functions in glioma remain unclear. To our knowledge Schuster (1964) were
the first to report the presence of ciliated fibroblasts in a human brain tumor. Despite detecting
cilia bearing long axonemes, these investigators concluded that “it is difficult to imagine these
cilia fulfilling any useful function, confined and atypical as they are.” A few years later, Tani and
Ametani (1970) described ciliated cells in human gliomas and concluded that the cilia “. . .might
be called vestigial; merely formed because of an inherited tendency of centrioles to form cilia,
rather than structures necessarily performing highly specialized functions”. The widely held view
that these cilia were of little consequence was largely based on the observations that they lacked
the central microtubule pair that is a feature of motile cilia. The early 2000s saw renewed interest in
mammalian primary cilia and the emergence of a new hypothesis that primary cilia are key signaling
cellular organelles that function throughout the body (for review see: Singla and Reiter, 2006; Goetz
and Anderson, 2010). With the discovery of new roles for primary cilia in regulating neural stem
cell proliferation and migration in embryonic and adult brain regions (e.g., Breunig et al., 2008; Han
et al., 2008; Spassky et al., 2008; Han and Alvarez-Buylla, 2010; Baudoin et al., 2012; Higginbotham
et al., 2012, 2013; Guo et al., 2015), this hypothesis has triggered new studies designed to understand
the function of primary cilia in brain tumors.

Primary cilia are now postulated to be involved in the pathogenesis of various cancers including
brain tumors such as medulloblastoma (Han et al., 2009) and choroid plexus tumors (Li et al., 2016);
however, the role(s) that these important organelles have in the pathogenesis of glioma, the most
common form of brain cancer in adults, are just now beginning to be examined (also see Alvarez-
Satta and Matheu, 2018). In this review we focus primarily on the most aggressive form of glioma,
glioblastoma (GBM) and discuss the prevalence of ciliated cells in these tumors, the roles that these
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cilia may play in controlling glioma tumorigenesis, and findings
that suggest the ciliated state of these cells may affect their
susceptibility to standard of care GBM (glioblastoma) therapies.

PREVALENCE OF PRIMARY CILIA IN
GLIOMA BIOPSIES AND CELL LINES

A first step toward understanding the functions of primary cilia
in tumors is to document the prevalence of these organelles in
tumor tissues. For a summary of the status of cilia expression and
function in non-glioma cancer subtypes, the reader is referred
to a recent review (Eguether and Hahne, 2018). Our group has
examined GBM biopsies collected from over 20 patients and have
detected primary cilia in all biopsies (Sarkisian et al., 2014). The
numbers of ciliated cells in these biopsies ranged from <1 to
∼25% of the population of tumor cells. Cilia were found on cells
expressing Ki67, a cellular marker for proliferation, and on cells
associated with the vasculature and pseudopalisading necroses,
common pathological features of GBM. Closer examination of
the cilia using EM analyses revealed the presence of normal
appearing primary cilia and of cilia that appeared to have defects
affecting the basal body or cilium. A mixture of normal and
abnormal cilia in GBM biopsies was also reported by Moser
et al. (2014) who examined 7 patient biopsies and reported
finding normal cilia in one biopsy and cilia possessing various
ultrastructural abnormalities that affected the basal body or
axoneme in the remaining 6 biopsies. It is not clear whether these
ultrastructural abnormalities affect cilia function. Currently,
there are very few methods that allow assessment of cilia function.
The best characterized is the sonic hedgehog (SHH) signaling
pathway using SHH and subsequently monitor activation of
downstream signaling genes (for review see: Goetz and Anderson,
2010). However, it should be noted that primary cilia also host
many other signaling pathways including WNT, Notch, Hippo,
platelet-derived growth factor (PDGF), insulin-like growth factor
(IGF), mechanistic target of rapamycin (mTOR), and multiple
G protein-coupled receptors (for review see: Liu et al., 2018;
Wheway et al., 2018).

It is important to note that documentation of ciliated cells in
human tumor biopsy samples could be significantly affected by
the region of the tumor from which the biopsy is obtained, as
well as the type of fixative used to preserve the sample and delays
in fixation (e.g., Hua and Ferland, 2017). A typical research lab
that receives a biopsy may know the general brain region from
which the biopsy was obtained and details about the fixation
of the tissue. In our experience, immunostaining of many cilia
marker proteins in biopsy tissues is significantly improved if the
tissues were immediately fixed in 4% paraformaldehyde. Clearly,
additional analyses of GBM biopsies will be required to determine
the relative frequency of ciliated cells within tumors and to
improve the ultrastructural characterization of these cilia.

What cell types are ciliated in GBM tumors? The
GBMmicroenvironment can contain multiple cell types that
either resemble or derive from glia, microglia, oligodendrocytes,
neurons, fibroblasts, and vascular cells (Charles et al., 2012;
Rich, 2016). In our analyses of patient-derived xenograft

(PDX) tumors, ciliated cells appear to be similarly, distributed
in the large core of the tumor and in distal tumor satellite
growths (Hoang-Minh L. B. et al., 2016). At this point, the
distribution of primary cilia across the various cell types in
human GBM in situ remains unknown. To determine which
cells in GBM tumors are ciliated, it will be necessary to obtain
and section larger regions of human brain that contain these
tumors and then analyze the sections using combinations of
immunohistochemistry, immuno-electron microscopy (EM),
and reconstruction of serial sections.

In vitro analyses of tumor cell lines is a second approach
used to study the role(s) that cilia might have in regulating
tumor cell biology. Moser et al. (2009) performed the first
immunocytochemical and quantitative EM analyses of various
GBM cell lines (U-87 MG, T98G, U-251 MG, U-373 MG, and
U-138 MG) and found that these cells rarely gave rise to cilia,
or if the cells were ciliated, the cilia were often ultrastructurally
abnormal. These particular GBM cell lines have fallen out of
favor with many neurooncology researchers in part because the
DNA profiles of the cell lines differ from those of the original
tumor cells (Allen et al., 2016). It is unclear how these genetic
changes might affect ciliogenesis. In view of this, we have studied
ciliogenesis in five different recently derived human and mouse
primary GBM cell lines and have found that approximately
5–30% of the cells across these cell lines were ciliated and that
the cilia were ultrastructurally normal and stained positively for
proteins known to localize to the ciliary axoneme and basal
body (e.g., IFT88, ARL13B, SMO, GLI3, ADCY3, gamma and
acetylated alpha tubulin, and PCM1; Sarkisian et al., 2014;
Hoang-Minh L. et al., 2016; Hoang-Minh et al., 2018).

Can ciliogenesis be induced in GBM cells? Serum withdrawal
is one way to induce differentiation and ciliogenesis (Santos
and Reiter, 2008); however, we and others have been unable
to stimulate ciliogenesis in cultured GBM cells using serum
withdrawal (Moser et al., 2009; Sarkisian et al., 2014). These
observations suggest that it may not be possible to induce
ciliogenesis in glioma cells that if true may explain why many of
the commonly used GBM cell lines studied in vitro typically lack
cilia. Factors that may contribute to the low numbers of ciliated
cells present in various cell lines, include structural cilia defects,
the rapid turnover of the cultured cells, and heterogeneity of the
cells with regard to their ability to generate or retain cilia. GBM
growth is aggressive and so it is possible that the rapid turnover
of cells within these tumors narrows the window of time during
which cilia would be present. Alternatively, it may be that only a
small fraction of cells in the tumor are capable of growing cilia.
We examined this latter possibility by isolating cell clones from
two PDX cell lines that normally display ∼10–25% ciliated cells at
any given time and found that most of the clones that we isolated
gave rise to ciliated progeny (Hoang-Minh L. B. et al., 2016). This
finding indicates that even though ciliation was relatively low,
most of the cells in these cell lines were capable of giving rise to
ciliated daughter cells.

In summary, the consensus among GBM tumor biopsy and
cell line studies indicates that anywhere from ∼<1 up to ∼30%
of the cells in glioma biopsies and in these cell lines are ciliated at
any given time. Future studies that characterize ciliated glioma
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lines should make reference, if possible, to the frequency of
ciliated cells in the biopsy from which they were derived. If we
are able to associate patient outcomes with the numbers and
functions of ciliated cells within GBM tumor biopsies, then it
may be possible use this information to better inform patient
prognoses and treatments.

CILIA AND GLIOMAGENESIS

Cilia are organelles typically associated with differentiated cells
but are also assembled by dividing cells. In dividing cells, cilia
are assembled by the mother centriole during G1 and can persist
throughout the cell cycle but disappear during mitosis (Ford et al.,
2018). Because cilia are intimately involved in cell division, it is
possible that mutations that disrupt ciliogenesis could promote
tumorigenesis as a result of a loss of cell cycle control (Plotnikova
et al., 2008; Basten and Giles, 2013). In this section we will briefly
review research data that support diametrically opposed roles for
cilia in controlling tumor cell proliferation in glioma.

Recent studies of the lysophosphatidic acid receptor 1
(LPAR1) and cell cycle-related kinase (CCRK) and its substrate,
intestinal cell kinase (ICK), suggest that proliferation of normal
astrocytes and glioma cells is enhanced in cells that have either
lost or have not synthesized primary cilia. The cilia of normal
human astrocytes contain elevated levels of the LPAR1 (Loskutov
et al., 2018), a receptor whose downstream signaling cascade
activates the G-protein, Gα12/ Gαq (Goldsmith et al., 2011).
Loskutov et al. (2018) found that proliferation can be induced
in immortalized human astrocytes lacking primary cilia by
activating LPAR1 signaling, signaling that is normally limited in
ciliated cells because Gα12 and Gαq are excluded from the cilium.
The increase in proliferation of the deciliated cells was found to
be due to redistribution of LPAR1 to the plasma membrane of
the cell where it was able to actively signal through association
with Gα12/ Gαq. Furthermore, they found that treatments of
deciliated astrocytes and of intracranial tumors in a mouse
model of GBM with a small molecule inhibitor of LPA signaling
significantly reduced proliferation of the astrocytes and growth
of the intracranial GBM tumors, respectively. The results of this
study support the idea that one function of primary cilia is to limit
GBM proliferation, and that loss of tumor cell cilia may lead to
the redistribution of LPAR1 to the plasma membrane and lead to
cell proliferation as a result of increased LPAR1 signaling.

In addition to LPAR1 signaling, CCRK and its substrate,
ICK, have been linked to the regulation of ciliogenesis and
proliferation of tumor cells (Tian et al., 2012). Yang et al. (2013)
found that knockdown of CCRK in cultured U251 GBM cells
increased the numbers of ciliated cells in the cultures from ∼2
to 8% and slowed proliferation of the cells. They also found
that depleting CCRK in NIH3T3 fibroblast cells increased levels
of ICK at the tips of the cilia and prevented the cells from re-
entering the cell cycle. Our group has also found that blocking
ciliogenesis in one PDX tumor cell line by expressing a dominant
negative form of Kif3a in the cells accelerated proliferation of
these cells and their tumorigenic capacity in a PDX model
(Hoang-Minh L. B. et al., 2016). Collectively, the results of

these studies indicate that deciliation of transformed GBM cells
may lead to loss of control of the cell cycle and increased
tumor growth.

Interestingly, there is evidence that tumor cells may actively
repress ciliogenesis thereby promoting tumor growth. For
example, an increase in the levels of the transcription factor
EZH2 in melanoma cells, which normally suppresses expression
of genes regulating ciliogenesis, can lead to WNT/β-catenin-
mediated tumorigenesis (Zingg et al., 2018). Notably, inhibition
of EZH2 in GBM with elevated levels of EZH2 has been reported
to suppress growth of these tumors (Jin et al., 2017). Thus, future
studies should examine how EZH2 affects ciliogenesis in GBM.

There are also studies that suggest that cilia may promote
tumor cell proliferation. Cells throughout the brain are ciliated
(Fuchs and Schwark, 2004; Bishop et al., 2007; Guemez-Gamboa
et al., 2014; Sarkisian and Guadiana, 2015) and it appears that
cilia on progenitor cells may activate distinct signaling pathways
that regulate cell proliferation. For example, in the hippocampal
dentate granule zone of developing and adult brain, the cilia
of neuronal progenitor cells mediate SHH signaling thereby
promoting neurogenesis (Breunig et al., 2008; Han et al., 2008).
Interestingly, a significant number of gliomas also respond to
SHH (Dahmane et al., 2001; Bar et al., 2007; Clement et al.,
2007; Gruber Filbin et al., 2013; Morgenroth et al., 2014). In a
study of a PDX cell line reported to be responsive to SHH, we
found that SHH only promoted proliferation of the tumor cells
if they were ciliated or were capable of forming cilia, and that
proliferation was blocked if ciliogenesis was inhibited using a
dominant negative form of KIF3a or if SMO function in cilia was
inhibited using cyclopamine (Hoang-Minh L. B. et al., 2016). We
also found that CRISPR/Cas9-mediated suppression of PCM1, a
protein that localizes to centriolar satellites and is required for
ciliogenesis, inhibited the proliferation of two GBM cell lines
apparently through enhancement of apoptotic cell death (Hoang-
Minh L. et al., 2016).

Glioblastoma cells may also release factors from their cilia
that could influence tumorigenesis. Recently, we used piggyBac
transgenesis to label GBM cilia with Arl13b:GFP that allowed us
to use live imaging to monitor the cilia (Hoang-Minh et al., 2018).
We observed that a small fraction of GBM primary cilia released
vesicles from their distal tips. We also found that culture media
conditioned by ciliated GBM cells enhanced cell proliferation
of GBM cells while media conditioned by cultures of GBM
cells lacking cilia did not, an observation that suggests cilia
themselves may release factors that enhance cell proliferation.
The cells that appeared to release ciliary vesicles were Ki67−

suggesting that quiescent glioma cells may release factors into
the microenvironment that could influence tumor growth. Our
findings are noteworthy because they are consistent with recent
reports that show primary cilia tip excisions occur in multiple
non-cancer cell lines and that these excision events appear to
be a mechanism that can drive quiescent cells back into the cell
cycle (Nager et al., 2017; Phua et al., 2017; Ford et al., 2018).
These observations indicate that examination of the content and
the mitogenic activities of glioma-derived primary cilia vesicles
may provide insight into mechanisms underlying tumor growth
or recurrence.
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FIGURE 1 | Possible influences of primary cilia on glioma cell proliferation and the response of these cells to standard-of-care therapies. The upper panels illustrate
three ways in which cilia could impact glioma cell proliferation. (A) Loss or malformation of the cilium could alter signaling pathways in the cell leading to
dysregulation of the cell cycle. (B) Cilia signaling may actively promote cell proliferation (e.g., in response to SHH) or may, through vesicle release, enhance tumor
growth, and proliferation. (C) Cilia may not have an impact on cell proliferation. The lower panels illustrate three ways cilia could influence the response of glioma to
therapy with the caveat that the type of therapy, e.g., chemotherapy versus irradiation, may shape the cell’s response differently. (D) Loss or malformation of the
cilium could have one of two very different effects: it could increase the sensitivity of the cell to therapy under conditions in which cilia normally support cell survival,
or it could increase the resistance of the cell to therapy if cilia-dependent signaling normally activates cell death pathways. (E) Cilia signaling could increase cell
resistance to therapy by triggering cell survival pathways through either autocrine or paracrine signaling. (F) Glioma cells may have evolved so that their response to
therapy occurs independently of cilia.

CILIA AND RESISTANCE OF TUMORS
TO THERAPY

The standard of care therapies for GBM are surgery,
temozolomide (TMZ) chemotherapy, and gamma-irradiation.
Very little is known about how the presence or absence of cilia on
glioma cells affects the efficacies of these treatments. We found
that some ciliated cells express ZEB1, a transcription factor that
promotes glioma initiation, invasiveness, and resistance to TMZ
chemotherapy (Siebzehnrubl et al., 2013; Sarkisian et al., 2014).
Using two PDX cell lines in which we inhibited cilia formation
using either CRISPR/Cas9 ablation of either PCM1 or KIF3a,
or of both, we found that the loss of either KIF3A or PCM1 in
these cells was associated with an increase in the cell’s sensitivity
to TMZ exposure (Hoang-Minh L. et al., 2016). Depletion of
both KIF3A and PCM1 did not increase the sensitivity of the
cells to TMZ above that observed in cells in which only one
protein was ablated. These results suggest that cilia signaling may
contribute to the survival of cells exposed to TMZ chemotherapy.
Additional studies will be needed to determine whether this
phenomenon is consistently observed in ciliated PDX cell lines
and in intracranial models of GBM.

The results of a recent study of multiple types of drug-
resistant cancer cell lines (e.g., rhabdoid tumor, non-small cell
lung carcinoma, and lung adenocarcinoma) suggest that drug
resistance in these cell lines is accompanied by an increase in

ciliogenesis and cilia signaling as measured by SHH pathway
activation (Jenks et al., 2018). These authors found that increased
cilia length was sufficient to confer drug-resistance and that
blocking either ciliogenesis or cilia signaling pathways was
able to reverse drug-resistance. It would be worthwhile to
determine whether these mechanisms are active in GBM cells.
It is noteworthy that stimulation of ciliogenesis in cultured U251
GBM cells by knocking out CCRK also promoted the localization
of members of the SHH pathway to cilia, an effect that could
possibly enhance the signaling capacity of these structures (Yang
et al., 2013). Similarly, we reported that Arl13b overexpression
promotes SMO localization to GBM cilia in the absence of SHH,
and that high levels of ARL13B and SMO expression in the tumors
of glioma and gastric tumor patients was positively correlated with
shortened post-diagnosis survival in these patients (Shao et al.,
2017; Hoang-Minh et al., 2018). Thus, it is possible treatments
or conditions that stimulate glioma cell ciliogenesis could induce
drug resistance in these cells and lead to tumor recurrence.

SUMMARY AND FUTURE DIRECTIONS

Taken together, the roles or primary cilia in GBM may depend
on the relative abundance of ciliated cells in these tumors and
the signaling capacities of the cilia. So far, data from existing
experiments indicate that glioma cilia may have dual roles,
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either restricting or promoting gliomagenesis (Figure 1). If we
can obtain high quality tumor biopsies, it may be possible to
determine the numbers of ciliated cells in specific tumors and
what signaling pathways may be active within these tumors. The
question is whether this information could be useful in predicting
how GBM tumors would respond to therapies employing SHH
pathway inhibitors or chemotherapy/radiation. The hypotheses
raised in this review require further testing in PDX models.
Identification of signaling pathways activated by glioma cell cilia
may point to new strategies to slow or inhibit the aggressive
growth of these tumors.
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Protein- and RNA-containing foci and aggregates are a hallmark of many age- and
mutation-related neurodegenerative diseases. This article focuses on the role the
nucleolus has as a hub in macromolecule regulation in the mammalian nucleus. The
nucleolus has a well-established role in ribosome biogenesis and functions in several
types of cellular stress responses. In addition to known reactions to DNA damaging and
transcription inhibiting stresses, there is an emerging role of the nucleolus especially
in responses to proteotoxic stress such as heat shock and inhibition of proteasome
function. The nucleolus serves as an active regulatory site for detention of extranucleolar
proteins. This takes place in nucleolar cavities and manifests in protein and RNA
collections referred to as intranucleolar bodies (INBs), nucleolar aggresomes or amyloid
bodies (A-bodies), depending on stress type, severity of accumulation, and material
propensities of the macromolecular collections. These indicate a relevance of nucleolar
function and regulation in neurodegeneration-related cellular events, but also provide
surprising connections with cancer-related pathways. Yet, the molecular mechanisms
governing these processes remain largely undefined. In this article, the nucleolus as
the site of protein and RNA accumulation and as a possible protective organelle for
nuclear proteins during stress is viewed. In addition, recent evidence of liquid-liquid
phase separation (LLPS) and liquid-solid phase transition in the formation of nucleoli and
its stress responses, respectively, are discussed, along with the increasingly indicated
role and open questions for noncoding RNA species in these events.

Keywords: nucleoli, stress responses, protein aggregation, amyloidosis, proteasome inhibition, non-coding RNA

INTRODUCTION

Nucleoli are the site of ribosome biogenesis. They are formed in nuclei around tandem head-to-tail
gene repeats of ribosomal DNA (rDNA) in the so called nucleolar organizing regions (NORs). In
human cells, NORs are located in the short arms of five acrocentric chromosomes, and their size
ranges from 50 kb to >6 Mb (Mangan et al., 2017). The nucleoli are initiated upon and structurally
depend on active transcription of rDNA. The nucleoli are dispersed during mitosis as the rDNA
transcription is halted. During telophase, the rDNA transcription resumes, and the nucleoli begin
to reform as small nucleoli around individual NORs. As the cell cycle progresses, nucleoli fuse,
forming larger, mature nucleoli containing multiple NORs (Hernandez-Verdun, 2011; Figure 1).

In human cells, the mature nucleoli are associated with perinucleolar heterochromatin
(PNH), DNA sequences located distal and proximal to NORs on the acrocentric chromosomal
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arms (McStay, 2016), which is likely to contribute to positioning
of the nucleoli to the 3D context in the nuclei. Currently, the
sequences of the acrocentric arms are missing from human
genome drafts. Yet, what is known is that the sequences on the
centromeric side of rDNA are heavily segmentally duplicated
and likely do not contain NOR regulatory elements (Floutsakou
et al., 2013; Mangan et al., 2017). The telomeric sides of NORs
contain regions called distal junctions (DJs). Their sequences are
shared between the acrocentric chromosomes and dominated by
around 100 kb inverted repeats and seem to have a complex
chromatin structure (Floutsakou et al., 2013; Mangan et al., 2017).
DJ sequences have been suggested to anchor rDNA to the PNH
(Mangan et al., 2017). Other anchors for the spatial positioning of
the nucleoli are intermediate filament proteins, especially lamins
A/C, B1 and B2, that connect the nucleoli to nuclear matrix
and contribute to maintaining nucleolar structure and functions
(Martin et al., 2009; Louvet et al., 2014; Matsumoto et al., 2016;
Buchwalter and Hetzer, 2017; Sen Gupta and Sengupta, 2017).

The nucleoli belong to a group of membraneless organelles
(MLOs), and as such, they are dynamic structures with
highly mobile constituents that can diffuse in and out to
the nucleoplasm. Recently, the role of liquid-liquid phase
separation (LLPS) in formation of MLOs has been increasingly
recognized (Shin and Brangwynne, 2017; Sawyer et al., 2018).
LLPS has a role in the formation and internal organization
of the nucleoli to functional substructures (Feric et al.,
2016). The current view thus holds that formation of the
nucleoli is a combination of both active recruitment of
factors and LLPS.

The nucleoli have a tripartite structure (Figure 1) with
the three substructures functionally separate. The fibrillar
centers (FCs) contain non-transcribed rDNA and rDNA
chromatin associated factors. The rDNA transcription
occurs at the interface between FCs and dense fibrillary
component (DFC), in the latter of which occurs the early
processing of precursor ribosomal RNA (rRNA). Late
processing of rRNA and assembly of ribosome units takes
place at the granular component (GC), surrounding the FCs
and DFCs. Interestingly, yeast and other lower eukaryotes
lack FCs, which may be connected to the closed nuclear
division and intactness of the nucleoli through the cell cycle
(Thiry and Lafontaine, 2005).

The tripartite nucleolar structure in human cells depends
on the active transcription of rDNA, as several studies have
shown inhibition of rDNA transcription by RNA polymerase I
(RNApolI) disperses the nucleoli (reviewed in Grummt, 2013).
The start of rRNA transcription has long been thought to be
the initiating event for nucleolar reformation at the end of
mitosis. This view was challenged by Dousset et al. (2000),
who’s work indicate that postmitotic nucleologenesis results
from direct recruitment of processing factors and pre-rRNAs
to UBF-associated NORs before or at the onset of rDNA
transcription. This is followed by fusion of prepackaged
prenucleolar bodies into the nucleolus, suggesting that
pre-ribosomal ribonucleoproteins synthesized in the previous
cell cycle may contribute to nucleolar formation at the end of
mitosis (Dousset et al., 2000).

NUCLEOLAR CONTENTS AND LLPS

The nucleolus is packed with protein – protein density in
nucleoli is approximately double of that of the nucleoplasm
(Handwerger and Gall, 2006). Although very dense, the
nucleolus is also very dynamic: many nucleolar proteins are
constantly moving between the nucleolus and the nucleoplasm
(Leung and Lamond, 2003; Hernandez-Verdun, 2006; Sirri
et al., 2008). The proteome of the nucleolus before and
after stress is well described (Andersen et al., 2005; Moore
et al., 2011). Most nucleolar molecules function in transcription
and different maturation steps of rRNA (Andersen et al.,
2005). However, there are at least dozens, if not hundreds,
of nucleolar proteins with no apparent role in the formation
of ribosomes (Andersen et al., 2005). Recently, it has become
clear that the nucleolus contributes to biogenesis of multiple
ribonucleoprotein particles, and the regulation of cellular
events such as mitosis, the cell-cycle, and responses to several
types of stress (Boisvert et al., 2007; Boulon et al., 2010;
Lindström and Latonen, 2013).

RNA content of the nucleoli is not fully described. The
well-recognized components, such as rRNA and snoRNA, are
well known for their functions in ribosome production, but other
non-coding components are not comprehensively described.
In addition to the traditionally viewed roles in processing
pre-rRNA and formation of ribosomal particles, nucleolar RNA
is increasingly seen to have a role through contributing to
nucleolar formation through promoting LLPS (Sawyer et al.,
2018). MLOs typically harbor specific RNAs and intrinsically
disordered, multivalent hub proteins, both contributing to
the LLPS characteristics (Sawyer et al., 2018). It has been
shown that the disordered domains in FBL and NPM (key
components of DFC and GC, respectively) are required for
droplet formation, and that RNA recognition motifs are required
for maintaining phase separation (Brangwynne et al., 2011;
Mangan et al., 2017). The sequence-encoded features of these
proteins influencing their LLPS behavior also lie behind nucleolar
compartmentalization, driven by different biophysical properties
of the droplets, especially surface tensions (Feric et al., 2016).
While specific RNAs themselves may be capable of phase
separation as in the case of e.g., extended repetitive RNA motifs
in clinical disorders, LLPS for MLOs is viewed to be driven
more by RNA-protein interactions than RNAs as such (Sawyer
et al., 2018). Long RNA molecules may potentially interact with
several other proteins and RNAs simultaneously, favoring and
strengthening the interactions between droplet-forming proteins.
In addition, RNA-protein ratio and RNA multivalency may also
be critical factors for MLO LLPS (reviewed in Sawyer et al.,
2018). Interactions between NPM and rRNA promote LLPS in
the nucleolar formation and supports the idea of active rDNA
transcription spatially and temporally coordinating with critical,
intrinsically disordered region (IDR)-containing LLPS drivers
(Mitrea et al., 2018; Sawyer et al., 2018). It is likely that, in
addition to rRNA, there are other contributing RNA species
for LLPS in nucleolar formation yet to be identified. Likely
candidates are at least the lncRNAs coded by the DJ regions
(Mangan et al., 2017).
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FIGURE 1 | Nucleolar formation and stress responses involve phase separation and transition events. After cell division in late mitosis, nucleoli start to reform by
reactivated rRNA transcription and liquid-liquid phase separation events. By early interphase, each individual NOR containing the rDNA repeats are surrounded by a
functional nucleolus. Later during the interphase, the small nucleoli fuse to typically form 1–2 mature nucleoli in diploid, non-transformed cells. Nucleolar cavities can
be detected in S-phase cells or upon cellular stress, such as DNA damage. When cells are exposed to severe proteotoxic or e.g., heat stress, nucleolar
aggressomes and amyloid bodies are formed within one or more nucleoli of a nucleus, involving liquid-solid transition of aggregate contents.

Changes in relative levels of the RNA components, likely
to have profounding effects of nucleolar activity as well as
organization in terms of LLPS, are not well known. Nucleolar
rRNA is so abundant compared to other RNA species in the
cell in general that rRNA sequences are often excluded in
sequencing assays. The sequence repetitivity and lack of the
reference genomes for rDNA areas makes it currently infeasible to
align rRNA sequences for most quantitative expression analyses
via next generation sequencing approaches. Most importantly,
the lack of NORs and adjacent regions from genomic assemblies
hampers the expression analyses of these areas and studies for the
roles of the ncRNA expressed from these.

NUCLEOLAR ALTERATIONS UPON DNA
DAMAGE AND TRANSCRIPTIONAL
STRESS

Nucleolar structure changes significantly in response to several
types of stress (Figure 2). If and when the rRNA production
is halted resulting from e.g., double strand break-inducing
DNA damage by ionizing radiation (IR) or RNA pol I
inhibition by actinomycin D, nucleolar segregation occurs
and so called nucleolar caps are formed. Nucleolar caps are
bipartite structures containing FCs and DFCs which surround
the GC components (Puvion-Dutilleul et al., 1992). A different
structural reorganization, the nucleolar necklace, is formed
under certain conditions where RNApolI transcription remains
active, but rRNA processing is impaired (Figure 2). This is

evident upon treatment of cells with doxorubicin (DRB), a
DNA intercalating agent and inhibitor of DNA topoisomerase II
(Louvet et al., 2005).

DNA damage in the form DNA bulges, by e.g., various
cytotoxic drugs or UV radiation, cause inhibition of rDNA
transcription by RNApolI, resulting in nucleolar disruption. The
dispersal of the nucleolus releases proteins to nucleoplasm that
normally do not reside in there, a mechanism by which certain
stress responses are induced. E.g., p53 nucleolar and ribosomal
proteins binds to the MDM2 protein following disruption of
ribosome biogenesis. This leads to inhibition of MDM2 E3 ligase
activity and thus to p53 activation (reviewed in Lindström and
Latonen, 2013). It is interesting that the nucleolar responses to
UV and IR differ (Moore et al., 2011). In addition to the different
DNA damage types, these insults induce also damage to other
macromolecules and partly different cellular responses (Laiho
and Latonen, 2003; Goldstein and Kastan, 2015). Currently, it
is unclear which other cellular events are involved in dictating
the differential nucleolar stress responses upon these stresses
(Moore et al., 2011).

It is well established that disruption of the nucleolus triggers a
p53-dependent cellular stress response referred to as “nucleolar
stress” (Zhang and Lu, 2009; Lindström and Latonen, 2013).
This is frequently called also “ribosomal stress,” although not
all abnormalities in ribosome biogenesis lead to dispersal of
the nucleolus. Nucleolar and/or ribosomal stress, mediated
to a large extent by interactions of translocated ribosomal
and other nucleolar proteins and rRNA, activates signaling
pathways leading to cell cycle arrest, apoptosis, differentiation or
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FIGURE 2 | Nucleolar reorganization upon stress. The nucleolus reacts to different types of stress by structural deformations. (A) A normal interphase nucleolus
under homeostasis shows tripartite structure composed around rDNA. (B) Upon DRB treatment, when RNApolI transcription remains active but rRNA processing is
impaired, so called nucleolar necklaces are formed. (C) Nucleolar segregation, or nucleolar caps, are formed when RNApolI transcription is inactivated, e.g., with
Actinomycin D. (D) Nucleolar aggresomes are formed within the nucleolus, in the nucleolar detention centers, upon proteotoxic insults such as proteasome inhibition
and heat schock. This may or may not involve inhibited RNApolI activity.

senescence, in a cell type and stress severity-dependent manner
(reviewed in Lindström and Latonen, 2013).

Translocation to the nucleolus is also a regulatory
mechanism under several cellular conditions. Initially, nucleolar
sequestration as a concept was introduced by Bachant and
Elledge (1999) based on work showing that exit from mitosis in
budding yeast is regulated by detention of Cdc14 in the nucleolus
(Shou et al., 1999; Visintin et al., 1999). The concept was further
supported by the notion that, in mammalian cells, tumor
suppressor Arf sequesters Mdm2 in the nucleolus to ensure
activation of p53 during oncogene activation and replicative
senescence (Weber et al., 1999). Detention in the nucleolus has
been described for many proteins especially under different stress
conditions. For example, MDM2, which is a ubiquitin ligase for
tumor suppressor p53 among others, localizes to the nucleolus
also upon transcriptional inhibition by Actinomycin D and
possesses lower mobility there (Lohrum et al., 2003; Kurki et al.,
2004; Mekhail et al., 2005). MDM2 is also transferred to nucleoli
upon DNA damage by PML in an ARF-dependent manner
(Bernardi et al., 2004). DNA damage induces translocation of
also other proteins to nucleoli. For example, IR restores the
disturbed association of telomerase protein with the nucleoli
in transformed cells (Wong et al., 2002). Acidosis triggers
pH-dependent interaction von Hippel-Lindau tumor suppressor
protein (VHL) with rDNA, a phenomenon which is promoted
by activation of hypoxia inducible factor HIF (Mekhail et al.,
2004a,b, 2006). The authors suggest that this is a way for
oxygen-starved cells to maintain energy equilibrium by gauging
the environmental H+ concentration to statically retain VHL in
nucleoli to restrict ribosomal production (Mekhail et al., 2006).

NUCLEOLAR DETENTION UNDER
PROTEIN STRESS – AGGRESOMES,
AMYLOIDOGENESIS AND RELEVANCE
TO DISEASE

Different from insults directly affecting rRNA transcription
and processing, protein stress causes extranucleolar proteins
and RNA to be detained in the nucleolus. Initially, certain

stress-responsive proteins, such as p53, Mdm2 and PML
body proteins, were described to translocate to nucleoli
stress-signal-dependently (Klibanov et al., 2001; Mattsson et al.,
2001; Xirodimas et al., 2001; Latonen et al., 2003). Later, this
phenomenon was described to apply to a number of nuclear UPS
client proteins and represent formation a de novo stress response
organelle (Latonen, 2011; Latonen et al., 2011).

This foci formation takes place in nucleolar cavities, and
intranucleolar bodies (INBs) can already be detected in S-phase
cells and even after certain types of DNA damage (Abella et al.,
2010; Hutten et al., 2011). Upon severe protein stress upon
e.g., heat shock, chemical inhibition of proteasome activity, and
acidosis, an expanded organelle is formed (Latonen et al., 2011;
Audas et al., 2012a, 2016). The intranucleolar stress-responsive
macromolecular collections have also been called to occur in
so called detention centers, and intranucleolar macromolecular
collections showing amyloid properties have been termed
amyloid bodies (A-bodies) (Jacob et al., 2013; Audas et al., 2016).

Currently it is not clear how these structures relate to each
other, but they share striking similarities: (1) they all form in the
nucleoli but are clearly not belonging to normal components of
the nucleoli, (2) they involve accumulation of protein which are
not normal components of the traditional nucleolar structures,
and many of these deposits have been shown to contain at least
some of the same proteins, (3) often there is also RNA, which
does not belong to normal nucleolar components, accumulating,
and (4) formation of many of these structures has been shown to
depend on intactness of the nucleoli, with the help experiments
utilizing Actinomycin D-mediated nucleolar disruption. Thus,
although INBs, nucleolar aggresomes and A-bodies have not
been proven to represent same structures, with such striking
similarities it seems plausible that they represent a range of sizes
and states resulting from same phenomena.

The initial papers describe events occurring upon different
cellular stresses (proteasome inhibition, acidosis, heat stress,
DNA damage), and certain differences exist in the contents of
the organelles. Thus, cellular context- and stress-dependency
of RNA and protein recruitment remains to be investigated
in future studies. The common denominator seems to be to
clear nuclear proteins from the nucleoplasm to regulate cellular
activities for the duration of the stress situation, and at least upon
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certain insults, the formation of the intranucleolar collections
can be transient. For certain proteins, there is evidence for
functional impact in the localization to nucleolar aggressomes,
such as for TTRAP, which regulates rRNA processing during
cellular response to proteasome inhibition (Vilotti et al., 2012).
Considering, however, that nucleolar aggresomes can form even
as a result of overexpression of exogenous proteins or increased
protein synthesis due to a viral infection (reviewed in Latonen,
2011), the role of the nucleolar aggresomes may be, at least at
times, to protect the nucleoplasmic environment from excess
proteins. In fact, the formation of A-bodies has been suggested
as a form of so called protective or functional amyloidosis (Lyons
and Anderson, 2016; Woodruff et al., 2018). Amyloid-bodies are
solid condensates (Woodruff et al., 2018), and as such, resemble
Balbiani-bodies in Xenopus oocytes, forming by amyloid-like
assembly of a disordered protein Xvelo (Boke et al., 2016).
Proteins in nucleolar aggresomes exhibit decreased mobility
(Latonen et al., 2011), while INBs are likely soluble, exhibiting
liquid-like spherical appearance (Hutten et al., 2011).

Thus, a plausible, yet speculative, sequence of events
(Figure 2) in nucleolar aggresome formation involves an initial
liquid phase in the nucleolar cavity or detention center (Wang M.
et al., 2018). With prolonged accumulation of macromolecules
to the structure, the proteins turn immobile (Latonen et al.,
2011), liquid-solid phase transition occurs, and may proceed to
amyloidogenesis (Audas et al., 2016). RNA seeding is involved in
the seeding, at least for the amyloidogenic phase (Audas et al.,
2016; Lyons and Anderson, 2016). It is possible that amorphous
gel like intermediate states also exist to maturate concentrates
of initially liquid state (Woodruff et al., 2018), although this is
currently purely speculative. Thus, the exact material properties
in each condition, and the mechanisms leading to the possible
phase transitions remain to be investigated.

It seems that the composition of the nucleolar aggresomes is
somewhat dependent on the stress insult. In general, the proteins
are collected to the nucleolar aggresome along with RNA, and
most often the aggresomes contain conjugated ubiquitin, SUMO,
and heat shock factors (reviewed in Latonen, 2011). Although
nucleolar aggresomes bare similarities with cytoplasmic
aggresomes especially in the presence of ubiquitin conjugates,
heat shock factors and links to hampered protein degradation,
they are clearly different structures from cytoplasmic aggresomes
(Latonen, 2011). Furthermore, inhibition of lysosomal proteases
does not affect nucleolar aggresomes (Latonen et al., 2011;
Salmina et al., 2017), indicating that nucleolar aggresome
formation is separate from general protein degradation defects.
Nucleolar aggresomes can, however, be released to the cytoplasm
during mitosis and processed through the autophagocytosis
pathway (Salmina et al., 2017). Nucleolar aggresomes can
occur in several cell types, their prominence being greatest
in normal diploid cells (Latonen et al., 2011). It is possible
that the proliferative activity and transformation status of the
cells affecting nucleolar activity and organization also affects
formation of nucleolar aggresomes.

The roles and identities of the RNA components in nucleolar
aggresomes remain to be investigated fully. Non-coding RNA
transcribed from rDNA (IGS16RNA, IGS22RNA and IGS28RNA)

has been shown to recruit proteins to aggresomes upon
hypoxia/acidosis and heat shock (Audas et al., 2012a; Jacob et al.,
2012, 2013). Nucleolar aggresomes formed after proteasome
inhibition contain polyA-tailed RNA, suggestive of either
mRNA, lncRNA or both (Latonen et al., 2011). Due to lack
of comprehensive extraction and sequencing studies, the full
range of RNA species localized in nucleolar aggresomes is yet
to be discovered.

While nucleolar aggresomes formed upon proteasome
inhibition or protein overexpression have not yet been shown
to be reversible, this has been reported for acidosis and heat
shock-induced events (Audas et al., 2016). In addition, certain
nucleolar aggresome-inducing stress events seem to inhibit
rDNA transcription (Jacob et al., 2013) while others do not
(Latonen et al., 2011). Thus, inhibition of rDNA transcription
may not be necessary for nucleolar aggresomes to form, but a
co-occuring or a following event under certain stress conditions.

Nucleolar Aggresomes and
Neurodegeneration
The formation of nucleolar aggresomes in cultured
cells resembles – and models – the situation in certain
neurodegenerative disorders where proteins and RNA
accumulate and aggregate to nuclei of cells, such as Huntington’s
disease (HD) and spinocerebellar ataxias (SCA). A hallmark of
numerous neurodegenerative diseases is ubiquitin, SUMO- and
RNA-containing inclusion bodies that link to expression of
aggregation-prone mutant forms of disease-related proteins
or RNA and to impairment of UPS (Dorval and Fraser, 2007;
Lehman, 2009; Huang and Figueiredo-Pereira, 2010). The
nuclear inclusions in HD in vivo resemble nucleolar aggresomes
in vitro, although they localize adjacent to the nucleoli and
not similarly within the nucleolus (Davies et al., 1997). Upon
treatment of sensory ganglion neurons with proteasome
inhibitors, and in motor neurons with severe dysfunction of
proteostasis in a mouse SMA model, nuclear poly(A) RNA
granules are formed frequently adjacent to the nucleolus, but
not within it (Palanca et al., 2014; Narcís et al., 2018). These
data may indicate differences in the in vivo vs. in vitro nucleolar
state, as in post-replicative cells the nucleoli have adhered
to a fully mature form. On the other hand, SUMO1-positive
intranucleolar spots lacking nascent RNA and associated with
a nucleolar reorganization of fibrillar centers have been found
in vivo in motor neurons in the spinal muscular atrophy
(SMA) (Tapia et al., 2017). Furthermore, nucleolar aggresomes
have been shown to occur in ex vivo prostate tissue (Latonen
et al., 2011) and in human breast and prostate cancer tissue
(Audas et al., 2016).

Although the focus on the nucleoli with respect to
neurodegeneration has been on effects of diseased mutants on
ribosomal production and activity, several neurodegeneration
relevant proteins have been shown to localize to nucleoli.
A specific form of mutant Htt localizes to the nucleolus
in mouse neuronal progenitor cells (Trettel et al., 2000). In
addition, artificial β-sheet proteins known to form prefibrillar
and fibrillar aggregates have been shown to accumulate
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to nucleoli in cultured cells (Woerner et al., 2016). The
most compelling in vitro evidence for nucleolar aggresome
relevance for neurodegenerative disease exists for C9orf72.
Expansion of the a GGGGCC hexanucleotide repeat in the
first intron of this gene is the most common genetic alteration
leading to hereditable amyotrophic lateral sclerosis (ALS).
Glycine/arginine and proline/arginine repeats resulting from
non-ATG translation of these repeats are recruited to nucleoli
and hamper ribosome biogenesis, resulting in cell death (Kwon
et al., 2014). Accumulating evidence shows that these dipeptide
repeats locate to the GC where they phase-separate with NPM,
disrupting nucleolar function (Haeusler et al., 2014; Lee et al.,
2016; Lin et al., 2016). These repeats in fact interact with
several IDR-containing proteins, many being RNA binding
proteins (RBPs) and/or MLO proteins (Lee et al., 2016). While
many repeat-expanded proteins accumulate to ribonucleoprotein
(RNP) granules (Van Treeck and Parker, 2018), it is not
clear what dictates accumulation of C9orf72 repeat peptides
to nucleoli. Interestingly, the dipeptide repeats of C9orf72
have been shown to function as polyamines and promote
intermolecular RNA-RNA interactions (Van Treeck et al., 2018).
Although the functional significance of this in the toxicity
of the mutant remains to be shown, it seems likely that
these interactions affect the LLPS and/or nucleolar interactions
of these peptides.

Nucleolar Aggresomes, Cancer and p53
In general, the nucleolus and interactions with nucleolar proteins
and rRNA species is central in regulation of certain tumor
suppressor and oncogene activities, the most recognized being
p53 and c-myc, respectively (Ruggero and Pandolfi, 2003;
Boisvert et al., 2007). As nucleolar aggresomes have been detected
in human breast and prostate cancer tissues (Audas et al., 2016),
and they can be induced by proteasome inhibition in ex vivo
prostate tissue (Latonen et al., 2011), nucleolar aggresomes may
also be relevant for cancer. Dozens of cancer-related nuclear
factors can be targeted to nucleolar aggresomes (Latonen, 2011;
Latonen et al., 2011). While some of these have implications in
regulation of nucleolar activity and ribosome production, such as
c-Myc (reviewed in Lindström and Latonen, 2013), most have no
identified function in the nucleoli and are likely regulatory targets
of the aggresomes under stress.

p53 was one of the first proteins showed to exhibit
stress-responsive nucleolar localization (Klibanov et al., 2001;
Xirodimas et al., 2001; Latonen et al., 2003). p53 is a tumor
suppressor and the most often mutated gene in human cancers
(Muller and Vousden, 2013), and it has several connections
to nucleolar-related proteins such as NPM, ARF and MDM2
(Mayer and Grummt, 2005). p53 and p53-derived fragments
have been shown to aggregate in vitro (Silva et al., 2014), and
several p53 mutants have been found as amyloid aggregates
in tumor cell lines (Xu et al., 2011) and breast cancer
biopsies (Levy et al., 2011). These aggregates inactivate p53 by
sequestering the protein, thus blocking its transcriptional activity
and pro-apoptotic function (Xu et al., 2011). A cell-penetrating
peptide, ReACp53, designed to inhibit p53 amyloid formation,
rescues p53 function in cancer cell lines and in organoids

derived from high-grade serous ovarian carcinomas (HGSOC)
(Soragni et al., 2016).

Tumor suppressor p53 translocates to nucleolus upon
treatment of cells by proteasome inhibitors in cultured cells
and ex vivo tissue (reviewed in Latonen, 2011). In addition, the
chemical compounds PRIMA1 and PRIMA-1MET have been
reported to induce nucleolar translocation of p53 (Rökaeus
et al., 2007; Russo et al., 2010), although contradicting evidence
also exists (Rangel et al., 2019). PRIMA1 is a mutant p53
reactivating compound (Bykov et al., 2002) which has been
shown to reactivate unfolded p53 mutants to native, functional
conformation and, recently, to prevent mutant p53 aggregate
accumulation in cancer cells (Rangel et al., 2019). Thus, PRIMA-1
can rescue amyloid state of mutant p53, which has implications
for future cancer treatment strategies (Rangel et al., 2019).

Signals Behind Nucleolar Localization of
Proteins
Signals in amino acid sequence that target proteins to the
nucleolus are referred to as nucleolar localization signals
(NoLS). They are arginine/lysine rich and range from seven to
approximately 30 aa residues, but they are relatively rare and
not a requirement for nucleolar localization. In fact, nucleolar
localization of a protein is viewed to most often result from
either direct or indirect interaction with nucleolar molecules,
either rDNA, its transcripts, or protein components (reviewed in
Emmott and Hiscox, 2009).

It is not clear what signals direct the localization and detention
of extranucleolar proteins to nucleoli and nucleolar aggregates
under stress. These likely depend on molecular interactions and
involve changes in phase separation and transition balance due
to presence of new molecules, but which specific molecules
function in the seeding of the detention remain an open
question for several conditions. Recently, using FUS family of
proteins as an example it was shown that tyrosine residues
in prion-like domains and arginine residues on RNA-binding
domains govern the saturation concentration of phase separation
(Wang J. et al., 2018). Interestingly, Mekhail et al. (2007)
identified a common peptide motif in the proteins detained
in the nucleoli during acidosis, including VHL, HSC70, RNF8
and cIAP2. This so called nucleolar detention signal regulated
by H+ (NoDSH+) is different from the canonical nucleolar
localization signal (NoLS) and is composed of an arginine
motif combined to several hydrophobic repeats (Mekhail et al.,
2007; Jacob et al., 2012). Up to 9% of all proteins harbor a
NoDS, indicating that a substantial amount of the proteome
may potentially be regulated in a similar fashion (Jacob et al.,
2012). Thus, arginine rich motifs seem as a recurrent event
in MLO and nucleolar targeting. The species of ncRNA
expressed upon stress signals also have a role in recruiting
the proteins to nucleolar aggresomes (discussed below), as
specific RNAs, e.g., extended repetitive RNA motifs in clinical
disorders, are capable of phase separation (Jain and Vale, 2017;
Sawyer et al., 2018).

Post-translational modifications, especially ubiquitin family
conjugates, may have a key role in localizing extranucleolar
proteins to nucleolar aggresomes. In addition to ubiquitin and
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SUMO found in the physiological disease-relevant inclusion
bodies (as discussed above), the nucleolar aggresomes have
revealed several family members to be relevant for nucleolar
aggresomes. The structures contain conjugated ubiquitin,
indicating that at least some of the accumulated proteins
harbor this modification (Latonen et al., 2011). Especially
interesting is the role of SUMO-proteins, which are found
in INBs and nucleolar aggresomes (Hutten et al., 2011;
Latonen et al., 2011; Souquere et al., 2015). UBC9, the
E2 SUMO-conjugating enzyme is also located in INBs, it’s
depletion reduces INB size, and SUMO-1 mutant unable to
conjugate proteins does not localize to INBs, indicating that
SUMO conjugation is relevant for INB biology (Brun et al.,
2017). Yet another ubiquitin homolog, NEDD8, was recently
shown to localize to nucleolar aggresomes formed upon heat
shock and proteasome inhibition (Maghames et al., 2018).
Similarly to SUMO, this localization was linked to NEDD8
conjugation and even NEDD8/ubiquitin hybrid chain formation
(Maghames et al., 2018). Thus it seems that nucleolar localization
and aggregation of extranucleolar proteins is regulated by
ubiquitin family of protein conjugation, requiring further
investigation to understand the exact underlying mechanisms
and functional consequences.

EMERGING ROLES OF NON-CODING
TRANSCRIPTS IN THE NUCLEOLUS

The nucleolus is packed with non-coding RNA. After
the 8S, 18S and 5.8S rRNAs have been transcribed by
RNApolI and cleaved from their 47S precursor, they are
post-transcriptionally modified through interaction with
small nucleolar ribonucleoproteins (snoRNPs) and additional
processing factors. For a long time, other rRNA sequences
have been neglected as garbage sequences or non-specific
degradation products. Recently, it has become clear that
many non-coding RNA species in addition to the classical
rRNA and snoRNA contribute to nucleolar biology. For
example, rDNA is transcribed in antisense orientation to
produce RNA contributing to epigenetic silencing of rDNA
(Bierhoff et al., 2010).

Perhaps the most interesting resource of ncRNA in the
rDNA sequence to be fully explored is the intergenic spacer
(IGS). This sequence differs considerably from the rRNA
coding sequences and has a high variability in nucleotide
composition and length. Mayer et al. (2006) showed that
some of these transcripts are required for establishing and
maintaining a specific heterochomatic configuration at the
promoter of a subset of rDNA arrays via NoRC, a chromatin
remodeling complex. The transcripts here are 150–300 nt long
and are complementary to the sequences in rDNA promoter
(pRNA). During mid-S phase in the cell cycle, these pRNAs
increase by 2-fold to repress rRNA synthesis in late replication
(Santoro et al., 2010). Interestingly, the pRNA-dependent
establishment of heterochromatin condensation of rRNA genes
initiates highly condensed chromatin structures outside the
nucleolus (Savic et al., 2014). This promotes transcriptional

activation of differentiation genes, and is a mechanism shown
to be inactivated in pluripotent embryonic stem cells (Savic
et al., 2014). Thus, pRNA regulates chromatin plasticity
and pluripotency.

Intergenic spacer also produces several stimuli-specific
ncRNAs. Stress conditions such as heat shock and acidosis
induce transcription of IGS to produce several transcripts shown
to be involved in nucleolar aggresome formation, including
IGS16RNA, IGS22RNA and IGS28RNA (Audas et al., 2012b;
Jacob et al., 2012, 2013). These transcripts are produced from
stimuli-specific loci (Audas et al., 2012a). Whether there are
more IGS transcripts that are relevant for protein detention in
the nucleolus and nucleolar aggresome formation remains to
be investigated.

Although most lncRNAs are processed like typical mRNAs to
be 5′ capped and 3′ polyadenylated, other lncRNAs are stabilized
by alternative mechanisms. One mechanism for this adaptation
of snoRNA processing to produce snoRNA-ended lncRNAs
(sno-lncRNAs) and 5′ snoRNA-ended and 3′-polyadenylated
lncRNAs (SPAs). Some sno-lncRNAs and SPAs have been shown
to be involved in the regulation of pre-rRNA transcription
and alternative splicing of pre-mRNAs (Xing and Chen,
2018). For example, a box H/ACA small nucleolar RNA
(snoRNA)-ended long non-coding RNA (lncRNA) was
described to enhance pre-rRNA transcription (SLERT)
(Xing et al., 2017). SLERT requires box H/ACA snoRNAs
at both ends for its biogenesis and translocation to the
nucleolus. SLERT interacts with DEAD-box RNA helicase
DDX21 via a 143-nt non-snoRNA sequence, following which
DDX21 forms ring-shaped structures surrounding multiple
RNApolI complexes and suppresses pre-rRNA transcription
(Xing et al., 2017).

In C. elegans, there was recently a new class of antisense
ribosomal siRNAs (risiRNAs) identified that downregulate
pre-rRNA through the nuclear RNAi pathway (Zhou et al., 2017).
risiRNAs exhibit sequence characteristics similar to 22G RNA
while being complementary to 18S and 26S rRNA. risiRNAs
induce translocation of the nuclear Argonaute protein NRDE-3
from the cytoplasm to nucleus and nucleolus, in which the
risiRNA/NRDE complex binds to pre-rRNA and silences rRNA
expression. Interestingly, exposing Caenorhabditis elegans to
cold shock or UV radiation, risiRNAs accumulate, turning
on the nuclear RNAi-mediated gene silencing pathway
(Zhou et al., 2017). Whether similar mechanisms exist in
mammalian cells and contribute to nucleolar stress responses
remains to be explored.

CONCLUDING REMARKS

It has become clear that, likely due to its phase separating
propensities, the nucleolus can serve as a protective site for
proteins following several environmental stimuli and stress
signals. This detention may lead to formation of nucleolar
aggresomes, and targets varying species of RNA and differential
pools of proteins dependently on the cellular context and stress
signal. What remains to be determined is the general mechanisms
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that dictates these responses. The requirements for the phase
transition steps are to be studied in detail, and surely more
RNA effectors are to be found. Investigation of protein amino
acid sequence signals, regulation by conjugation of ubiquitin
protein family members, and interactions between RNA-protein
and protein-protein domains promoting aggregation and
amyloid formation in the nucleolus may enlighten the
cellular and molecular routes to target in pathological
nuclear aggregation.
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Emerging Role of the Nucleolar
Stress Response in Autophagy
Astrid S. Pfister*

Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Ulm University, Ulm, Germany

Autophagy represents a conserved self-digestion program, which allows regulated
degradation of cellular material. Autophagy is activated by cellular stress, serum
starvation and nutrient deprivation. Several autophagic pathways have been uncovered,
which either non-selectively or selectively target the cellular cargo for lysosomal
degradation. Autophagy engages the coordinated action of various key regulators
involved in the steps of autophagosome formation, cargo targeting and lysosomal
fusion. While non-selective (macro)autophagy is required for removal of bulk material
or recycling of nutrients, selective autophagy mediates specific targeting of damaged
organelles or protein aggregates. By proper action of the autophagic machinery,
cellular homeostasis is maintained. In contrast, failure of this fundamental process is
accompanied by severe pathophysiological conditions. Hallmarks of neuropathological
disorders are for instance accumulated, mis-folded protein aggregates and damaged
mitochondria. The nucleolus has been recognized as central hub in the cellular stress
response. It represents a sub-nuclear organelle essential for ribosome biogenesis and
also functions as stress sensor by mediating cell cycle arrest or apoptosis. Thus,
proper nucleolar function is mandatory for cell growth and survival. Here, I highlight
the emerging role of nucleolar factors in the regulation of autophagy. Moreover, I discuss
the nucleolar stress response as a novel signaling pathway in the context of autophagy,
health and disease.

Keywords: ribosome biogenesis, rRNA processing, nucleoli, nucleolar stress, autophagy, neuron,
mitochondria, aggregates

INTRODUCTION

Various high quality reviews are available on principles of ribosome biogenesis, nucleolar stress,
apoptosis and autophagy, respectively. Given their essential role, it is well accepted that a mis-
regulation of each is tightly linked to pathogenic conditions (Levine and Kroemer, 2008; Boulon
et al., 2010; Freed et al., 2010; Ghavami et al., 2014; Schneider and Cuervo, 2014). In this review, the
emerging connection of nucleolar stress to autophagic processes serves as a basis to discuss novel
concepts and cure of diseases connected to nucleolar stress.
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The Nucleolus as a Stress Sensor
The Nucleolus: Place for Ribosome Biogenesis
Nucleoli represent membrane-free, sub-nuclear compartments,
where transcription and processing of rRNA takes place. Nucleoli
can be considered as an assembly platform. They host several
hundreds of essential rRNA binding and processing factors,
which are involved in the highly complex process of ribosome
biogenesis. Nucleoli form around repetitive rDNA clusters in
a dynamic and cell cycle-dependent manner during G1 phase
(Potmesil and Goldfeder, 1977; Mangan et al., 2017).

The rDNA clusters are transcribed into their respective
large precursor rRNA by RNA polymerase I (RNA pol I);
RNA polymerases II and III are as well essential for ribosome
biogenesis, by driving the expression of ribosomal proteins (RNA
pol II) and 5S rRNA (RNA pol III) (Eichler and Craig, 1994;
Fatica and Tollervey, 2002). The complex mechanism of pre-
rRNA processing involves the action of a multitude of ribosome
biogenesis factors. These are assembled in pre-ribosomal
complexes involved in cleavage and chemical modification of the
maturating transcript (Fatica and Tollervey, 2002; Granneman
and Baserga, 2004; Mullineux and Lafontaine, 2012).

The nucleolar size correlates with the rRNA transcription, cell
growth and the metabolic rate of a cell (Boulon et al., 2010).
Importantly, nucleolar size and function is changed during aging
(Tiku et al., 2016; Buchwalter and Hetzer, 2017; Zlotorynski,
2017). Thus, the nucleolus emerges as critical regulator of cellular
aging (Tiku and Antebi, 2018).

Large amounts of ribosomes are especially needed in highly
proliferating cells, such as during embryonic development
or cancer (Montanaro et al., 2008). Therefore, a lack of
functional ribosomes impairs cellular growth and survival and is
incompatible with life.

The Nucleolar Stress Response
Nucleoli are highly dynamic structures, closely connected to
growth and survival (Mangan et al., 2017). The nucleolus is being
recognized as a key hub in the cellular stress response by sensing
and reacting to various stimuli.

Perturbation of the nucleolar structure and/or function
ultimately impairs ribosome biogenesis and triggers the so-called
nucleolar stress response (Boulon et al., 2010). A key mechanism
involves the release of ribosomal proteins (RPs) from the nucleoli
into the nucleoplasm. As a consequence of nucleoplasmic RP
accumulation, the E3-ubiquitin ligase MDM2 is inhibited (Dai
et al., 2004). MDM2 keeps the levels of the tumor suppressor
protein p53 low by earmarking p53 for proteasomal degradation.
Upon nucleolar stress, RPs are released and inhibit MDM2, which
results in p53 accumulation. Finally, stabilized p53 induces cell
cycle arrest and/or apoptosis (Pestov et al., 2001; Rubbi and
Milner, 2003; Yuan et al., 2005; Fumagalli et al., 2012). The
nucleolar stress response is further connected to the induction
of senescence and DNA damage, by commonly engaging the
classical p53 pathway (Rubbi and Milner, 2003; Lindstrom et al.,
2018). A simplified model of the classical p53 nucleolar stress
response is given in Figure 1.

More recently, novel pathways have been added to the
increasing list, which demonstrate that nucleolar stress can also

be propagated in the absence of functional p53 (Holmberg
Olausson et al., 2012; James et al., 2014; Lindstrom et al., 2018).

In summary, nucleolar integrity reflects a general prerequisite
for normal cellular function. Given that many tumor types
are characterized by inactivation of p53, p53-independent
pathways open novel avenues toward more customized anti-
cancer therapies (Burger and Eick, 2013).

Autophagy Pathways
Macroautophagy
(Macro)autophagy is essential for cellular homeostasis by
mediating destruction and recycling of bulk cytoplasmic material,
defective organelles or proteins via lysosomal degradation
(Mizushima, 2007; Marx, 2015). A mis-regulation of autophagy
is tightly linked to the formation of diverse pathological
conditions (Levine and Kroemer, 2008; Jiang and Mizushima,
2014; Schneider and Cuervo, 2014).

Autophagy can be induced by various cellular stresses, such
as lack of nutrients, low energy or oxidative stress. As an
upstream signaling pathway the conserved mTOR pathway
plays an influential role in the regulation of autophagy (see
section “mTOR Signaling Couples Autophagy and Ribosome
Biogenesis”) (Pattingre et al., 2008).

A central structure implicated in the process of
(macro)autophagy is the double-membranous autophagosome,
which mediates cellular cargo sequestration. Autophagy-
related proteins (ATGs) govern autophagosome formation at
different levels. Beclin1, the mammalian homologue of yeast
Atg6, is mandatory for the initial steps of autophagosome
formation (Pattingre et al., 2008). Originally, Beclin1 has been
identified as an interaction partner of the anti-apoptotic
factor Bcl-2 (B cell lymphoma 2) (Liang et al., 1998).
Beclin1 is part of phosphoinoside 3 kinase (PI3K) complexes
and functions in diverse membrane trafficking processes
(Levine et al., 2015). Furthermore, Beclin1 interacts with
kinases, de-/ubiquitinating enzymes and multiple other
factors, among them p53 (Levine et al., 2015). Certain
ATGs are necessary for the engulfment of cargo destined
for lysosomal degradation in the autolysosome. Members
of the Atg8 protein family are directly conjugated to the
autophagosomal membrane by phosphaditylinositol lipidation.
Hence, Atg8/LC3 (light chain 3) represents a key marker of
autophagosomes. Atg8/LC3s are essential for autophagosome
maturation and cargo sequestration. They can be sub-divided
into LC3 and GABARAP proteins and fulfill critical tasks
(Nguyen et al., 2016).

Note that intracellular Atg8/LC3-positive autophagosome
accumulation is central for autophagy flux induction as well
as inhibition. Opposing mechanisms result in the accumulation
of autophagosomes, thereby requiring careful interpretation
of experimental results. An increased rate of autophagosome
formation (increase of autophagic flux), as well as decreased
autophagosome clearance in the lysosome (impaired autophagic
flux), resembles autophagosome accumulation under basal
conditions. Thus, care has to be taken when interpreting
results on “active” or “inhibited” autophagy. Meanwhile, several
excellent reviews are available, which help to unravel these
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FIGURE 1 | The classical p53-dependent nucleolar stress response pathway. Nucleolar stress is caused by e.g., mutation of ribosomal proteins (RP), impaired
transcription of rDNA into rRNA, abrogated rRNA processing, disrupted nucleolar integrity as well as by genotoxic stressors, such as UV irradiation. As a
consequence, RPs are released and bind and inhibit the E3-ubiquitin ligase MDM2. In turn, p53 is no longer degraded in the proteasome and is stabilized. Given the
p53 accumulation, p53-mediated effects are propagated, such as cell cycle arrest, senescence, apoptosis or genotoxic stress. Note that also p53-independent
routes exist, which are not indicated in this scheme.

issues (Mizushima and Yoshimori, 2007; Mizushima et al., 2010;
Klionsky, 2011; Gottlieb et al., 2015; Klionsky et al., 2016).
So-called autophagic flux studies have become detrimental for
understanding mechanisms of autophagy. Experts agree on
combining various independent methods to allow solid data
interpretation (Klionsky et al., 2016).

In general, autophagy is noticed as a protective mechanism by
lowering the cellular stress.

Apoptosis and autophagy are both stimulated by similar
stressors. However, they can be seen as opposing signaling
events. Whereas autophagy acts in an anti-apoptotic manner and
precedes apoptosis (Boya et al., 2005), apoptosis induction can
block autophagy for instance by removing pro-autophagy
proteins by caspases. However, this can even generate
pro-apoptotic fragments of ATG autophagy regulators

thereby triggering a fast forward response (Marino et al.,
2014). Therefore, obviously a tight crosstalk exists, which goes
into both directions, depending on the context. As a proof
of principle, low sub-lethal levels of stress favor autophagy
induction as a protective mechanism, whereas sustained stress
beyond a certain threshold induces apoptosis. For instance,
over-activation of autophagy can be a pro-death signal for
autophagic cell death, and autophagy inducers can trigger
apoptosis (Marino et al., 2014). Likewise, many stimuli that
activate apoptosis can also stimulate autophagy. Extrinsic stress
factors include chemotherapeutics, ionizing irradiation, lack
of growth factors or nutrients. Intrinsically, p53 (see below),
oncogenes (e.g., Myc), BH3-only proteins (Bcl-2 homology3)
or serine/threonine kinases (such as JNK or AKT/PKB) are
involved in the regulation of autophagy/apoptosis pathways
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FIGURE 2 | Simplified model of cargo targeted by bulk autophagy or mitophagy. The phagophore forms around bulk material, such as proteins and organelles
during bulk (macro)autophagy. The phagophore is a double-membranous structure, which forms around the cargo and gives rise to the autophagosome. In
contrast, mitophagy reflects selective recruitment of ubiquitinated (yellow) mitochondria (red/orange) by the mitophagy receptors (blue) to LC3-II (green) located at
the phagophore.

(Marino et al., 2014). For instance, the pro-apoptotic Beclin1 and
anti-apoptotic Bcl-2 are commonly affected. Both interact with
each other and thereby regulate the balance between autophagy
or apoptosis. Also, mitochondrial integrity, caspase and ATG
activation, mTOR signaling and multiple others are implicated
(Marino et al., 2014).

Collectively, a mis-regulation of autophagy in either direction
is connected to numerous pathophysiological conditions, and the
same holds true for apoptosis (Maiuri et al., 2007; Jiang and
Mizushima, 2014; Marino et al., 2014).

Selective Autophagy
Specific cellular cargo can be selectively targeted by autophagy
(Kirkin et al., 2009). The pathways have been named according
to their type of cargo, for instance mitophagy for specialized
autophagy of mitochondria (Ding and Yin, 2012; Hamacher-
Brady and Brady, 2016; Khaminets et al., 2016), nucleophagy for
removal of the nucleus (Park et al., 2009; Mijaljica and Devenish,
2013), ribophagy for ribosomes (Beau et al., 2008; Kraft and Peter,
2008; Frankel et al., 2017), and aggrephagy for protein aggregates
(Yamamoto and Simonsen, 2011).

Mitophagy is fundamental for the mitochondrial homeostasis
and a mis-regulation of mitophagy is clearly implicated in
the development of neurodegeneration (see section “Distinct
Neurodevelopmental Pathologies, Common Concepts – A Short
Overview”). The key players of mitophagy, Parkin and PINK1
[tumor suppressor phosphatase and tensin homolog (PTEN)-
induced putative kinase 1], are mutated in patients with
Parkinson’s disease (Pickrell and Youle, 2015). Parkin functions

as an E3-ubiquitin ligase, which is recruited to impaired
mitochondria (Narendra et al., 2008). Parkin is required for
ligation of ubiquitin marks to defective mitochondrial cargo
(Ding and Yin, 2012; Harper et al., 2018). Parkin depends on the
proper function of PINK1 (Vives-Bauza et al., 2010), an ubiquitin
kinase located at the mitochondrial outer membrane (MOM)
(Chin et al., 2010).

Mitophagy and apoptosis are both characterized by similar
upstream events (Mukhopadhyay et al., 2014). Induction of
mitophagy, for instance, is accompanied by activation of Bcl-
2-associated X protein (BAX). This induces MOM perforation
(MOMP), depolarization and release of cytochrome c from
the mitochondrial intermembrane space (IMS) into the cytosol.
As a consequence, PINK1 becomes stabilized at depolarized
mitochondria and Parkin is subsequently translocated from the
cytosol into the MOM (Vives-Bauza et al., 2010). By concerted
action of both, mitochondria become decorated by ubiquitin
marks (Lazarou et al., 2015) and can then be recognized by
autophagy/mitophagy receptors such as the ubiquitin adaptor
protein p62/sequestosome (Lamark et al., 2009; Geisler et al.,
2010). In fact, autophagosome formation is mediated by different
key mitophagy receptors such as optineurin and NPD52, which
promote the recruitment of the autophagy initiating kinase ULK1
(Wong and Holzbaur, 2014; Heo et al., 2015; Lazarou et al.,
2015). Nguyen et al. (2016) found that the GABARAP subfamily
is essential for mitophagy. Meanwhile, the number of novel
players involved in the complex process of selective autophagy
is constantly expanding. Note that accumulation of damaged
mitochondria, which are eliminated by mitophagy to a certain
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FIGURE 3 | Removal of protein aggregates by selective autophagy. Aggregated proteins (red) are bound by the autophagy receptor p62 (blue), which itself has
interaction domains for autophagosomal LC3 (green, lipidated LC3-II) and ubiquitin (yellow). The cargo is engulfed by the mature autophagosome and subsequently
fuses with the lysosome to form the autolysosome, in which the cellular material is degraded by acidic hydrolases (orange).

point, sets the threshold for apoptosis as a point of no return
(Marino et al., 2014).

The autophagy receptor p62/sequestosome contains (i)
interaction domains for ubiquitin, but at the same time also a LIR
(LC3 interacting region) domain capable of binding to (ii) LC3,
which itself is a key component of autophagosomal membranes.
As a result, p62 recruits autophagosomal membranes to
its selective, autophagosomal cargo (Lamark et al., 2009;
Knaevelsrud and Simonsen, 2010).

The same principle of autophagy receptor (e.g.,
p62)/ubiquitin/LC3 cargo sequestration accounts also for
removal of mis-folded protein aggregates, by a selective
process termed aggrephagy (Lamark et al., 2009; Knaevelsrud
and Simonsen, 2010; Yamamoto and Simonsen, 2011;
Lamark and Johansen, 2012). Aggrephagy is also central to
neurodegeneration (see section “Distinct Neurodevelopmental
Pathologies, Common Concepts – A Short Overview”).
A schematic for aggrephagy, bulk autophagy and mitophagy is
depicted in Figures 2, 3.

mTOR Signaling Couples Autophagy and
Ribosome Biogenesis
The mammalian target of rapamycin (mTOR) pathway couples
the intake of to nutrients, growth factors, energy and stress to
the regulation of cell metabolism, growth, survival and autophagy
(Pattingre et al., 2008). Deregulation is linked to various diseases
and cancer formation.

Mammalian target of rapamycin signaling is recognized
as essential pathway for proper neuronal development,
neuronal survival and morphogenesis. Consequently, changes
in mTOR signaling have been correlated with a spectrum of
neuropathologies, such as epilepsy, intellectual disability, autism,
brain injury, brain tumor formation and neurodegeneration
(Crino, 2016; Switon et al., 2017). Likewise, mTOR inhibitors
such as the bacterial macrolide rapamycin and its analogs are
growingly used as therapeutic drugs and tested in clinical trials
for effects in diverse neuropathological conditions (Laplante and
Sabatini, 2009; Crino, 2016).

Mammalian target of rapamycin is a conserved serine-
threonine kinase, which belongs to the phosphoinoside 3
kinase (PI3K) family. It assembles two large protein complexes,

mTORC1 and mTORC2. The mTORC1 complex is considered
as rapamycin sensitive complex (Pattingre et al., 2008).
Rapamycin binds to FKBP12 and mTOR, thereby inhibiting
mTORC1. mTORC1 signaling affects cell growth, metabolism
and autophagy: Upon favorable conditions, mTOR is activated
to allow cell growth by anabolic processes, such as rRNA
biogenesis and protein translation. Upon nutrient deprivation
and lack of growth factors, mTOR signaling is inhibited and
cell growth is suppressed, whereas catabolic processes such as
autophagy are induced to allow cell survival under unfavorable
conditions. mTORC1 controls autophagy by regulating ULK1,
ATG13 and FIP200, as well as by a reported rapamycin-
insensitive mechanism (Laplante and Sabatini, 2009).

mTORC1 also regulates mitochondrial metabolism
and biogenesis: mTORC1 inhibition impairs the MOM
potential, reduces oxygen consumption and ATP levels.
mTORC1 inhibition further decreases mitochondrial
DNA levels and hampers mitochondrial biogenesis by
affecting the transcriptional activity of the nuclear factor
PGC1α (PPARγ co-activator 1) (Cunningham et al., 2007;
Laplante and Sabatini, 2009).

Also p53 can regulate mTOR: DNA damage-induced p53
stabilization activates AMPK, which is a sensor of energy status
and in turn results in mTORC1 inhibition. p53 also negatively
controls mTORC1 by increasing PTEN expression, which
functions as mTORC1 inhibitor. Inhibition of mTOR signaling
diminishes nucleolar size and function and promotes longevity in
different model organisms (Tiku and Antebi, 2018). However, the
precise mechanisms regulating the crosstalk between ribosome
biogenesis and autophagy remain to be determined.

A simplified model of mTORC1 signaling and the role of p53
is given in Figure 4.

NUCLEOLAR STRESS AND
AUTOPHAGY: A TIGHT REGULATION
BETWEEN HEALTH AND DISEASE

Defective ribosome biogenesis on the one hand and impaired
autophagy on the other hand are largely contributing to several
diseases. In the following, an overview is provided on common
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FIGURE 4 | A simplified model of mTOR signaling, and effect of nucleolar stress on p53. Growth factors, energy status, amino acid availability, oxygen levels and
genotoxic stress can result in mTORC1 activation. p53 is stabilized either by genotoxic stress and/or nucleolar stress. p53 inhibits mTORC1 by activation of AMPK
and TSC1/TSC2 (Tuberous sclerosis proteins 1 and 2). mTORC1 further activates autophagy by inhibitory effects on the ULK1 complex, composed of ULK1, ATG13
and FIP200. mTORC1 promotes protein synthesis by (i) S6K activation, which stimulates phosphorylation of S6 and thereby ribosome biogenesis, as well as by (ii)
inhibitory effects on 4E-BP1 and eIF-4E. As a consequence, translation is activated. Furthermore, mTORC1 influences mitochondrial biogenesis and metabolism.

concepts of three key classes of diseases, classically or recently
connected to nucleolar stress and autophagy with specific focus
on neurodegeneration, cancer and ribosomopathies. For a more
detailed overview see for instance (Parlato and Kreiner, 2013;
Ghavami et al., 2014; Danilova and Gazda, 2015; Woods et al.,
2015; Hetman and Slomnicki, 2019).

Distinct Neurodevelopmental
Pathologies, Common Concepts –
A Short Overview
The nervous system is vulnerable to intrinsic and extrinsic
factors, which can give rise to distinct neurodevelopmental
pathologies such as microcephaly, psychiatric disorders, autism,
intellectual disability, epilepsy and neurodegeneration (please, be
referred to review Hetman and Slomnicki, 2019). Causes include,

for instance, gene mutations, infections or neurotoxins. As
common concepts, gene expression, quality control mechanisms,
cell proliferation, differentiation and apoptosis are mis-
regulated. Apoptosis might give rise to microcephaly by
eliminating, e.g., neuronal stem cells or post-mitotic neuronal
cells (Hetman and Slomnicki, 2019). Likewise Zika virus
infection, as an extrinsic factor for neurodevelopmental
disorders, is tightly coupled to microcephaly. It has recently
been demonstrated that it decreases mTOR signaling and
over-activates autophagy (Liang et al., 2016). At the same
time, ribosome biogenesis defects are emerging (reviewed in
Hetman and Slomnicki, 2019).

Given the striking role of the nucleolus in coordinating
mentioned neuropathological routes, deregulation of ribosome
biogenesis rises as a potent upstream mechanism. In addition,
also autophagy is activated in this context.
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Neurodegeneration and Aging
Aging represents a general risk factor for the formation
of neurodegenerative diseases and consequently,
neurodegeneration accumulates within our society. Despite
the rapid advances made in medicine, not all negative aspects
of aging can simultaneously be addressed. Along these lines,
increasing the society’s age has to go together with improving
anti-aging therapies. Our scientific knowledge on distinct
neurodegenerative diseases has uncovered several common
mechanisms, among them loss of neurons (Parlato and Kreiner,
2013; Parlato and Liss, 2014) and a prominent contribution
of aggregate accumulation, induction of apoptosis and a mis-
regulation of autophagy (Yamamoto and Simonsen, 2011;
Ghavami et al., 2014). More recently, nucleolar stress has been
connected to the induction of various types of neurodegenerative
diseases, like Alzheimer’s, Parkinson’s, and Huntington’s Disease
(see below) (Hetman and Pietrzak, 2012). In line, aging functions
as susceptibility factor for neurodegeneration. It is characterized
by a loss of rDNA and is accompanied by reduction of nucleolar
size and a decline in rRNA processing (Garcia Moreno et al.,
1997; Hetman and Pietrzak, 2012; Parlato and Kreiner, 2013).
Therefore, the nucleolus is tightly connected to lifespan
regulation (Tiku and Antebi, 2018).

As both routes of apoptosis and autophagy are interwoven and
not yet fully understood, mechanistic research is essential as a
basis for development of therapeutic approaches. As a mandatory
goal, novel drugs have to be tested for specificity and efficacy.

Neurodegeneration – Underlying Concepts
In protein mis-folding diseases, also known as proteopathies,
proteins loose their normal structure and/or function. As
a result, mis-folded proteins accumulate and cause a toxic
intracellular environment. Normally, proper cellular homeostasis
is maintained by several machinery: the ubiquitin-proteasome
system (UPS) degrades proteins, whereas autophagy is capable of
removing proteins and whole organelles by the lysosome. Hence,
both routes are essential for a healthy cell and both have been
implicated in the development of neurodegenerative diseases
(Levine and Kroemer, 2008; Ghavami et al., 2014). Note that
increased apoptosis induction plays a crucial role in eliminating
these damaged cells. In addition, chronic inflammation and
oxidative stress are observed in neurodegenerative disorders.

Several neurodegenerative disorders, such as PD, AD, and HD
are characterized by accumulation of mis-folded, ubiquitinated
proteins, which damage the affected cell (Yamamoto and
Simonsen, 2011). The accumulating proteins form inclusion
bodies, which can differ between the distinct pathologies. The
formation of inclusion bodies/aggresomes/amyloid structures
represents a double-edged sword: aggregate formation is not
only toxic, it can actually be considered as beneficial and
neuroprotective mechanism by reducing the toxic nature of
mis-folded ubiquitin-containing protein aggregates (Rubinsztein,
2006; Yang et al., 2007).

With increasing age the autophagic program looses efficiency,
thereby increasing the likelihood of aggregate accumulation.

Neurons are highly sensitive to accumulation of protein
aggregates and require proper autophagy mechanisms to keep

the intracellular toxicity low. Supporting data demonstrating the
significant implication of the autophagic machinery were, for
instance, obtained in mice lacking ATG7 in the central nervous
system. ATG-deficient mice, which fail to perform autophagy,
display an accumulation of inclusion bodies followed by neuronal
loss (Komatsu et al., 2006).

However, autophagy might have dual functions with respect
to neurodegeneration: On the one hand functional autophagy
is neuroprotective, by removing defective mitochondria via
mitophagy. On the other hand pro-death autophagy is considered
to induce neuronal cell death.

Massive inhibition of autophagy can trigger apoptosis, which
is observed by loss of neurons in neurodegeneration. Interfering
with autophagy regulators and blocking autophagy, results in
accumulation of cargo-filled autophagosomes and lysosomes,
again being toxic for the cell. As a consequence, lysosome-
mediated cell death occurs (Kroemer and Jaattela, 2005).
Impairment of mitophagy causes accumulation of defective
mitochondria, which in turn induces reactive oxygen species
(ROS) formation and mitochondrial apoptosis (Seo et al., 2010).

Induction of apoptosis by the chemotherapeutic agent
staurosporine is accompanied by mitophagy and autophagy
induction in dopaminergic cells. Additional block of autophagy
by Bafilomycin or inhibition of mitophagy in PINK null
mice sensitizes cells to staurosporine-induced apoptosis.
Autophagy and mitophagy seems to be neuroprotective upon
staurosporine-mediated apoptosis induction in dopaminergic
neurons (Ha et al., 2014). However, with respect to loss of
dopaminergic neurons, it is not fully resolved whether autophagy
is beneficial or pathogenic.

Keeping mitochondria healthy is a prerequisite for
counteracting neurodegenerative diseases. Concepts include
for instance maintaining mitochondrial membrane integrity
and functionality. Mitochondrial membrane permeabilization
is tightly coupled to apoptosis induction (Kroemer et al., 2007).
Also anti-oxidants and ROS scavenging appear as beneficial
strategies. Inhibitors of apoptosis are used as therapeutic
drugs to inhibit neuronal loss. Anti-apoptotic drugs prevent
mitochondrial apoptosis by blocking release of cytochrome c
from the mitochondria or activation of pro-apoptotic BAX
(Westphal et al., 2014). Alternatively, the activity or abundance
of anti-apoptotic factors can be elevated.

Alzheimer’s Disease
Alzheimer’s disease is the most common neurodegenerative
disorder and has both sporadic and hereditary origin. Mostly,
AD is diagnosed as sporadic form by the age of 65 years and
represents the primary cause of dementia within the elderly
generation (Seshadri et al., 1997; Ding et al., 2005).

Classically, prominent accumulation of defective
mitochondria, increase of ROS, and apoptosis induction are
found in patient’s neurons. A decline in autophagy during aging
further promotes the mitochondrial release of cytochrome c,
which serves as pro-apoptotic stimulus.

Also decreased nucleolar volume has been detected in
AD patients (Iacono et al., 2008; Pietrzak et al., 2011).
Mechanistically, inhibition of rDNA transcription by rDNA
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promoter methylation, reduced 28S/18S ratio, reduced tRNA
abundance and increased rRNA oxidation has been linked to
AD (Payao et al., 1998; da Silva et al., 2000; Ding et al., 2005;
Pietrzak et al., 2011). In a similar manner, a decline of 28S rRNA
was found in elderly healthy probes when compared to younger
control groups (Payao et al., 1998; da Silva et al., 2000). The
patient data suggest that impairment of ribosome biogenesis and
protein synthesis is one of the earliest events observed in the
pathogenesis of AD characterized by mild cognitive impairment
(Ding et al., 2005).

Parkinson’s Disease
Parkinson’s disease is the second most common
neurodegenerative disease after AD (Parlato and Liss, 2014).
PD is characterized by loss of dopaminergic neurons in the
brain stem. Patients display tremor, dementia and depression.
Also in PD, most cases are sporadic. Typical risk factors are
aging and exposure to (mitochondrial) toxins. A key feature of
PD is deposition of Lewy bodies, which reflects deposition of
α-Synuclein oligomers (Ghavami et al., 2014). These oligomers
trigger mitochondrial damage. Hereditary forms of PD involve
mutation of the key mitophagy regulators PINK and Parkin.
Mutations of both result in impaired mitophagy. Given that
α-Synuclein serves as a substrate of the E3-ubiquitin ligase
Parkin, accumulation of α-Synuclein is also detected in a
Parkin mutated background. Also ER stress is implicated in PD.
However, mild ER stress is attributed to function rather in a
neuroprotective manner by inducing pro-survival autophagy. PD
is mimicked by treating neuronal cells with chemicals, such as
MPP+ and rotenone, which trigger mitochondrial dysfunction
and cell death (Nicklas et al., 1987).

More recently, disruption of nucleolar integrity has been
observed in human post mortem samples of patients with PD
(Rieker et al., 2011). In support of a nucleolar contribution,
the ribosome biogenesis factor Nucleolin interacts with
α-Synuclein. Consequently, damaged mitochondria, ROS,
as well as autophagosomes accumulate and cause apoptosis
(Rieker et al., 2011).

Disruption of nucleoli, cell cycle arrest and p53-mediated
apoptosis is observed by depletion of the transcription initiation
factor IA (TIF-1A), required for the recruitment of RNA pol
I, in mouse embryonic fibroblasts (Yuan et al., 2005). Ablation
of TIF-1A in DA neurons of mice results in Parkinsonism
and progressive loss of DA neurons (Rieker et al., 2011) and
likewise, reduced expression of TIF-1A is detected in PD patient
samples (Evsyukov et al., 2017). Treatment with the neurotoxin
MPTP worsens the effect of nucleolar stress. In this model, also
p53 is stabilized and mTOR signaling decreased. Finally, ROS-
mediated oxidative stress is induced and defects are detected
in mitochondria, such as impaired mitochondrial transcription
and COX (cytochrome c oxidase) activity (Rieker et al., 2011).
Therefore nucleolar stress, by inhibiting mTOR signaling, can
impair mitochondrial function, which represents a key hallmark
of several neurodegenerative diseases.

To determine effects of specific PD mutations on nucleolar
function irrespective of neuronal loss, pre-symptomatic, digenic
PD models were analyzed. Mild overexpression of mutant

human α-Synuclein in PINK1 null background (hA53T-
SNCA/PINKKO) revealed differential nucleolar activity: On the
one hand, reduced nucleolar activity and impaired nucleolar
integrity was found in a subset of DA neurons, whereas others
showed elevated nucleolar function, thereby suggesting possible
compensatory mechanisms. In contrast, inactivation of PINK1
and DJ-1 showed no alterations, pointing to mutated α-Synuclein
as the main contributor of nucleolar stress in the hA53T-
SNCA/PINKKO model (Evsyukov et al., 2017).

Hemoglobin (Hb) is strongly expressed in dopaminergic
neurons in the substantia nigra and is found in patient samples
of AD and PD. Hb has recently been connected to mitochondrial
function and apoptosis. Hb can form toxic aggregates in the
nucleolus after stimulation with MPP+ and rotenone in a
cellular model of PD. In turn, Hb overexpression impairs
pre rRNA processing, induces nucleolar stress and sensitizes
cells to apoptosis (Codrich et al., 2017). The authors further
demonstrate decreased phosphorylation of the mTOR target 4E-
BP1, decreased numbers of lysosomes in neurons and decreased
levels of LC3-II following rotenone treatment, being indicative
for inhibition of autophagy.

Huntington’s Disease
Huntington’s disease is caused by autosomal dominant mutation
of the Huntingtin gene (Htt) and the onset of the disease
is in average much earlier than AD and PD. Patients with
HD display uncontrolled chorea movements and cognitive
impairment (Ghavami et al., 2014). The onset of age also inversely
correlates with the increasing number of repetitive Glutamine
motifs present in mutated Huntingtin. Interestingly, capture
of mutant Htt inside inclusion bodies was shown to be less
toxic in comparison to accumulating free mutant Htt (Zuccato
et al., 2010). Also in HD patients, apoptosis and mitochondrial
damage is detected. Additionally, studies have demonstrated
that rRNA transcription is affected in HD (Parlato and Kreiner,
2013). Triggering autophagy in mice models of HD can remove
aggregates and increases their life span (Zheng et al., 2010).

Targeted disruption of nucleoli by conditional knockout of
TIF-1A essential for the recruitment of RNA pol I in striatal
neurons results in striatal degeneration and typical HD-like
phenotypic alterations in mice (Kreiner et al., 2013). TIF-1A
loss induces nucleolar disruption and nucleolar stress, which
precedes neurodegeneration. Nucleophosmin (NPM) represents
a multifunctional, nucleolar key factor involved in ribosome
biogenesis, which fulfills a plethora of pro-survival processes
(Colombo et al., 2011; Lindstrom, 2011). A down-regulation
of NPM serves as readout for nucleolar stress induction and
can be linked to neurodegeneration in several models of
neurodegeneration (Marquez-Lona et al., 2012). In line, as a
key marker for nucleolar stress (Colombo et al., 2002), NPM is
reduced and p53 is stabilized in this model (Kreiner et al., 2013).
As an early and p53-dependent pro-survival response, the p53
target PTEN (Stambolic et al., 2001) is induced in neurons. Given
that the tumor suppressor PTEN counteracts the mTOR pathway,
downstream targets of mTOR were analyzed for phosphorylation.
It was found that p-S6 and p-4E-BP1 are reduced in the model.
Inhibition of mTOR is connected to activation of autophagy and
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the same holds true in the HD model (Kreiner et al., 2013).
Thus, transient over-activation of autophagy seems to be induced
as initial, neuroprotective mechanism in response to impaired
ribosome biogenesis. However, after sustained nucleolar stress,
apoptosis of striatal neurons is inevitable (Kreiner et al., 2013;
Parlato and Liss, 2014).

Cockayne Syndrome
DNA damage and impaired rRNA transcription are connected to
Cockayne Syndrome (CS), which is a rare, congenital, autosomal-
recessive neurodegenerative disorder (Karikkineth et al., 2017;
Hetman and Slomnicki, 2019). Patients are characterized by
premature aging, dwarfism, microcephaly, and have an average
life expectancy of 12 years. Commonly mutated genes are CSA
(20% of cases) and CSB (80% of cases), which are both, besides
their key role in nucleotide excision repair, also required for
RNA pol I transcription (Lebedev et al., 2008; Koch et al., 2014).
CSB was found to localize to mitochondria and bind to mtDNA
(Aamann et al., 2010; Kamenisch et al., 2010). CSB-deficient
cells show increased ROS production, increased mitochondrial
content and accumulation of damaged mitochondria, in line with
impaired mitophagy (Scheibye-Knudsen et al., 2012). Further,
CSB promotes acetylation of α-tubulin (Majora et al., 2018),
which is a modification involved in cargo transport along
microtubules to facilitate autophagosome/autolysosome fusion
and aggresome clearance (Xie et al., 2010; Li et al., 2011). CSB
deficiency abrogates autophagy and results in increased number
of dilated lysosomes with impaired function (Majora et al.,
2018). In human CS cells, translational infidelity is observed,
most likely due to accumulation of error-prone ribosomes as a
consequence of impaired ribosome replacement. CS cells exhibit
ER stress and an over-activated unfolded protein response, which
can be counteracted by addition of pharmacological chaperones
(Alupei et al., 2018).

Epilepsy – A Disease Related to Neurodegeneration
Epilepsy is characterized by recurrent seizures and represents a
disease related to neurodegeneration. Abrogated morphogenesis
and synaptic function is observed upon nucleolar stress and
could be connected to epilepsy (reviewed in Hetman and
Slomnicki, 2019). For example, pharmacologically induced short-
term seizures in mice transiently affect RNA Pol I activity in
hippocampi and result in decreased de novo synthesized 18S and
28S rRNAs. In contrast, long-term seizures were associated with
increased ribosome biogenesis (Vashishta et al., 2018). Epilepsy is
further tightly linked to mTOR hyper-stimulation and autophagy
over-activation (Cao et al., 2009; Zeng et al., 2009). Strikingly,
administration of the mTOR inhibitor rapamycin counteracts
seizures and thus functions in an anti-epileptogenic manner
(Zeng et al., 2009).

Rare, Pediatric Neurodegenerative Diseases –
A Short Outlook
Also rare, pediatric neurodegenerative diseases are characterized
by alterations in autophagy. As an example, the multisystemic
Vici syndrome is neurologically characterized by microcephaly
and cognitive impairment. Accumulation of ubiquitinated

autophagic cargo, p62 and damaged mitochondria is observed,
reminiscent of neurodegeneration (Ebrahimi-Fakhari et al.,
2014). However, whether also ribosome biogenesis is also altered
here, remains to be determined.

Cancer and Cancer Treatment
Key hallmarks of cancerous cells involve for instance mis-
regulation of signaling pathways, rapid cell proliferation,
accelerated tumor growth and inhibition of apoptosis (Hanahan
and Weinberg, 2000, 2011). Large amounts of ribosomes are
essential for cancerous cell growth and large nucleoli serve as
prognostic marker in many tumor types (Montanaro et al., 2008;
Penzo et al., 2019).

The nucleus arises as an essential target for cancer therapy
(Woods et al., 2015; Pfister and Kuhl, 2018). Anti-tumor therapies
utilize the high demand of cancer cells for the production
of ribosomes by inhibiting RNA pol I. Inhibiting nucleolar
structure/function and RNA pol I function has been characterized
as beneficial in terms of triggering apoptotic cell death of cancer
cells (Burger and Eick, 2013). Classical chemotherapeutics used
in the clinics are for instance actinomycin D, 5-fluorouracil and
metotrexat, which interfere with the nucleolar function (Boulon
et al., 2010; Burger and Eick, 2013).

Novel drugs, which specifically impair rRNA transcription, are
currently tested in clinical trials. The small molecule drug CX-
5461 specifically inhibits transcription of RNA pol I and stabilizes
p53, whereas RNA pol II is not affected. Also, translation
and DNA replication is not impaired in human cancer cell
lines (Drygin et al., 2011). The drug is further reported to
impair proliferation in a p53-independent manner in cancer
cell lines, whereas the effect on normal cell lines is minimal
(Drygin et al., 2011).

Selective inhibition of RNA pol I by CX-5461 also robustly
stimulates pro-death autophagy. Nucleolar stress and autophagy
seem to be tightly coupled in distinct models and setups.
Recently, CX-5461 was loaded on a nanoplatform to enrich for
nucleolar accumulation of the drug in order to enhance the anti-
cancer effect, without causing significant side effects. In vivo
and in vitro assays confirm induction of pro-death autophagy
in HeLa cells, as well anti-proliferative and anti-tumor effects
(Duo et al., 2018).

Besides autophagy, CX-5461 induces also senescence in a
p53-independent manner. In U2OS osteosarcoma cells, CX-5461
induces G2 arrest, but not apoptosis (Li et al., 2016). In response
to CX-5461, p53 accumulates and p21 is induced. In addition,
increased levels of LC3-II are detected under basal conditions.
Using TEM analysis, the authors noticed expanded vacuole-like
structures filled with organelles, however, they report lack of clear
identification of autophagosomal character. Knockdown of p53
by siRNA rescues p21 up-regulation and LC3-II accumulation
and increases cell survival. The authors conclude that CX-5461
triggers p53-dependent autophagy. Autophagy occurs via the
AMPK/mTOR pathway in U2OS cells, as evidenced by reduced
p-mTOR and increased p-AMPK levels (Li et al., 2016). The p53
target p21 is shown to be up-regulated during autophagy and a
p53-independent increase of p21 is reported in MNNG cells with
mutant p53 (Li et al., 2016).
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Taken together, autophagy induction as a response to
nucleolar stress seems to be an initial surveillance mechanism
in several models. However, also in terms of cancer, autophagy
induction can have two modes of action: Autophagy induction
is clearly beneficial for cells by preventing genotoxic stress and
DNA damage. It removes cellular sources of ROS, such as
defective mitochondria or proteins (Mrakovcic and Frohlich,
2018). In contrast, inhibition of autophagy represents an
oncogenic event. At later stages over-activation of autophagy
facilitates oncogenic drug-resistance. Autophagy inhibitors
chloroquine and hydroxychloroquine have therefore been tested
in clinical trials for cancer therapy (Yang et al., 2011;
Marino et al., 2014).

Ribosomopathies
Impairment of ribosome biogenesis is connected to a diverse class
of human diseases collectively termed ribosomopathies (Freed
et al., 2010; Narla and Ebert, 2010; Danilova and Gazda, 2015;
Yelick and Trainor, 2015). Patients exhibit either mutations
and/or haploinsufficiency of RPs or ribosome biogenesis factors.
Several players associated with ribosomopathies have been
described (see also below). Classically, the nucleolar stress
response and the tumor suppressor p53 are activated (Freed
et al., 2010; James et al., 2014). Despite a common mechanism
of interfering with ribosome biogenesis, the patient’s phenotypes
differ among the distinct syndromes. Intriguingly, though,
some phenotypes are common and include defects of the
craniofacial cartilage, anemia and increased cancer susceptibility.
The elevated cancer risk appears paradoxical, given the great need
of tumor cells for large amounts of ribosomes (Montanaro et al.,
2008). Accordingly, pathways and mechanisms might well exist,
which let both co-exist (Pfister and Kuhl, 2018). For example,
specialized onco-ribosomes have recently been uncovered to
increase the cellular fitness by mediating preferential translation
of anti-apoptotic Bcl-2, as observed for the ribosome mutant
RPL10-R98S in leukemia cells (Xue and Barna, 2012; Sulima
et al., 2017; Kampen et al., 2018). However, the question on cause
and consequence of ribosomopathy-induced cancer formation is
still under debate.

Recently, examination of murine hepatocellular carcinoma
and hepatoblastoma has revealed ribosomopathy-like features
of nucleolar stress, such as deregulated expression of RPs
and accumulation of unprocessed rRNA precursors. Despite
the fact that p53 is stabilized, no growth inhibition occurs
(Kulkarni et al., 2017). Therefore, compensating mechanisms
might counteract apoptosis, involving up-regulation of anti-
apoptotic Bcl-2, silencing of p19 ARF or cytosolic sequestration
of p53. Those events would in turn inhibit the tumor suppressive
mechanisms of cell cycle arrest and apoptosis in these cancers
(Kulkarni et al., 2017).

Clearly, ribosome biogenesis is a highly energy-consuming
process. An implication of autophagy comes in mind, which
might compensate for the low levels of functional ribosomes
observed in ribosomopathies. Many important questions arise.
Is there a connection to bulk autophagy or selective autophagy
of ribosomes (ribophagy) in ribosomopathy patients? Until
now broad studies are lacking, which precisely address their

implication in these issues. However, first data are collected,
which indeed unravel involvement of autophagy in these
processes (see section “Nucleolar Factors and Nucleolar Stress in
the Regulation of Autophagy and Vice Versa”).

An overview summarizing the emerging connection between
nucleolar stress and autophagy in the diseases presented here is
given in Table 1.

NUCLEOLAR FACTORS AND
NUCLEOLAR STRESS IN THE
REGULATION OF AUTOPHAGY AND
VICE VERSA

Recently, inhibition of RNA pol I has been connected to
autophagy, revealing that nucleolar stress functions upstream
of autophagy. In the following, evidence is collected, which
links the ribosome biogenesis machinery and the nucleolus to
autophagy, and vice versa. As a common principle, different
groups suggest implication of mTOR signaling in nucleolus-
mediated autophagy (see below). Also here, p53-dependent and
-independent pathways are being identified.

The p53 Family
Besides the classical role of p53 as guardian of the genome, by
mediating cell cycle arrest and apoptosis, p53 has been reported

TABLE 1 | The role of nucleolar stress in mentioned diseases and
effects on autophagy.

Condition/
Disease1

Effects related to
nucleolar stress1

Effects related to
autophagy1

Aging Loss of rDNA
rRNA processing impaired
Nucleolar size reduced

Autophagy impaired

Alzheimer’s
Disease

rDNA transcription impaired
Nucleolar volume decreased

Autophagy impaired
Defective mitochondria

Parkinson’s
Disease

Nucleolar disruption
Altered nucleolar function

mTOR pathway inhibition
Autophagy altered
Mitophagy impaired
Defective mitochondria

Huntington’s
Disease

rDNA transcription impaired
NPM reduced

mTOR pathway inhibition
Autophagy transiently
over-active
Defective mitochondria

Cockayne
syndrome

rDNA transcription impaired Autophagy impaired
Defective mitochondria

Epilepsy RNA pol I altered mTOR pathway activation
Autophagy over-active

Ribosomopathies rRNA processing impaired
mutated RPs

mTOR over-activation
Autophagy over-active
ROS

Cancer Need for ribosomes
Large nucleoli
Ribosomopathy-like

Autophagy conveys drug
resistance
Autophagy has dual roles

Zika virus
infection

Nucleolar NPM displacement mTOR pathway inhibition
Autophagy over-active

1Please, see text for references and details.
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to exert distinct roles in autophagy (Wang et al., 2014). This
depends on its subcellular localization: nuclear, cytosolic or
mitochondrial, respectively.

The effect of nuclear p53 as an inducer of autophagy mostly
depends on its role as transcription factor. Nuclear p53 induces
expression of ATGs thereby driving autophagy. In line, many
promoters of autophagy related factors, such as ATGs or Parkin,
are occupied by p53 (Zhang et al., 2011; Fullgrabe et al., 2016).
Induction of pro-apoptotic target genes implicated in mTOR
activation, such as TCS2, AMPK/PTEN and Sestrin, result in
autophagy activation. The p53 target DRAM is directly involved
in autophagosome formation. P53 further induces BAX and
Bcl-2 or DAPK, which in turn induce Beclin1 (Mrakovcic and
Frohlich, 2018). Moreover, the p53 family members p63 and p73
induce expression of the autophagy regulators ATG5 and ATG7.
Also E2F, an important co-regulator of p53, is involved in the
transcriptional regulation of autophagy related genes (Polager
and Ginsberg, 2009; Fullgrabe et al., 2016). Note that other p53
family members p63 and p73 can, in principal, compensate for a
loss of p53 (Kenzelmann Broz et al., 2013; Fullgrabe et al., 2016).
However, it remains to be determined, whether p53-independent
pathways actually depend on the role of p63 and p73 or whether
they are unrelated.

Cytosolic p53 counteracts autophagy by transcription-
independent mechanisms. P53 inhibits AMPK and activates
mTOR, p53 further interacts with Beclin and induces Beclin
ubiquitination and degradation (Mrakovcic and Frohlich, 2018).
Cytosolic p53 interacts with Parkin, which is the key regulator
of mitophagy. It was reported that p53 counteracts Parkin
recruitment to mitochondria, thereby impairing mitophagy
(Hoshino et al., 2013).

Mitochondrial p53 has a plethora of functions: it triggers
MOM permeabilization, ROS production, mitophagy and
autophagy and is therefore implicated in neuropathological
conditions (Marino et al., 2014; Wang et al., 2014).

mTOR Inhibition by Rapamycin
mTORC1 inhibition by rapamycin abrogates the nucleolar
stress response induced by low, cytostatic doses of the
chemotherapeutic actinomycin D (Goudarzi et al., 2014). As
a result, p53 stabilization and p21 induction is impaired. The
authors observe decreased interaction of RPL11 with MDM2
upon rapamycin and actinomycin D co-treatment and suggest a
mechanism related to the classical RPL11-MDM2-p53-pathway.
Also, they detected decreased RPL11 levels, as well as MDM2
stabilization, which might in part contribute to the rapamycin-
mediated effects on p53. Interestingly, inhibition of mTOR by
caffeine at physiologically relevant doses is capable of abrogating
the actinomycin D-induced p53 response (Goudarzi et al., 2014).
Thus, a complex network between mTOR inhibitors/autophagy,
nucleolar stress and cancer treatment is established.

RNA pol I Inhibition and NPM
RNA pol I inhibition by actinomycin D or adriamycin is well
known to trigger nucleolar disruption. Recently, the observation
has been made that also autophagy can be induced with
these drugs (Katagiri et al., 2015). The same holds true for

knocking down the RNA pol I transcription factors TIF1A
and POLR1A. Induction of autophagy has been monitored in
flux experiments by counting LC3 punctae (being indicative for
autophagosomal number) and determining levels of lipidated
LC3-II (representing the autophagosome-bound form of LC3).
At the same time the autophagy substrate p62/sequestosome is
reduced, indicating increased turnover by autophagy. Autophagy
induction can be rescued by treating cells with autophagy
inhibitors or knocking down key autophagy regulators ATG5
and Beclin1. In contrast, nucleolar disruption is not rescued
(Katagiri et al., 2015). Together, this finding places nucleolar
disruption upstream of autophagy. As nucleolar stress is
generally characterized by redistribution of nucleolar factors
(such as NPM), or p53 stabilization, Katagiri et al. (2015)
have determined, which accounts for the effects observed. They
found that induction of autophagy by TIF1A knockdown is
independent of p53, but depends on NPM. The induction
of autophagy can be rescued by NPM knockdown, without
reducing p53 levels. In contrast, neither the depletion of
NPM affects starvation-induced autophagy; nor does nutrient
deprivation have an impact on nucleolar integrity. This
suggests that NPM might rather play a role in a specialized
form of nucleolar stress-induced autophagy, than starvation-
induced bulk autophagy.

The Nucleolar Factor – PICT-1
The nucleolar factor PICT-1/GLTSCR2 is considered a tumor
suppressor, as it binds and stabilizes PTEN. In contrast, PICT-1
deletion is linked to cancer formation and functions as oncogenic
regulator of the E3-ubiquitin ligase MDM2 by preventing
nucleolar release of RPL11 (Sasaki et al., 2011; Suzuki et al.,
2012). Consequently, p53 stabilization, G1 cell cycle arrest and
apoptosis are observed, thereby counteracting tumor growth
(Sasaki et al., 2011). Homozygous PICT1 deletion in mice is
lethal and impairs survival of mouse ES cells. PICT-1 binds
to rDNA and the RNA pol I transcription factor upstream
binding factor-1 (UBF-1). It inhibits transcription of rRNA,
which depends on its localization to nucleoli (Chen et al., 2016).
With respect to autophagy, it has been shown that PICT-1
overexpression induces GFP-LC3 punctae and reduces p62 levels,
and that it inhibits the AKT/mTOR/p70S6K pathway (Chen
et al., 2016). As the autophagy inhibitor 3-MA (3-methyladenine)
enhances cell death upon PICT-1 overexpression, the authors
suggest induction of pro-death autophagy. Together, the
authors conclude that PICT-1 overexpression triggers pro-
death autophagy, without inducing the classical nucleolar stress
response, such as p53 stabilization and nucleolar disruption
(Chen et al., 2016).

The Ribosomopathy Factor – SBDS
Recent findings suggest that autophagy might be affected in
patients with ribosomopathies. mTOR signaling regulates a
variety of essential cellular processes, among them autophagy.
In leukocytes derived from patients with the ribosomopathy
syndrome Shwachman Bodian Diamond Syndrome (SBDS),
a hyper-activation of mTOR phosphorylation is observed
(Bezzerri et al., 2016). Also in intestinal epithelial cells autophagy
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is over-activated. In this context, autophagy is independent
of mTOR or p53 and is induced as a consequence of
nucleolar/ribosomal stress (Bezzerri et al., 2016).

The Ribosomopathy Factor – RPS19
Disrupted ribosome biogenesis by knocking down RPS19
(ribosomal protein S19) is connected to the ribosomopathy
syndrome Diamond Blackfan Anemia (DBA). RPS19 knockdown
further affects autophagy in patient cells, and autophagy
induction is also observed in red blood cells of zebrafish embryos
(Heijnen et al., 2014).

RP-deficiency also recapitulates these effects in cells derived
from SBDS. An increase in P-S6 as well as ROS is observed,
whereas anti-oxidant treatment reverses p-S6, autophagy and p53
stabilization (Heijnen et al., 2014). Thus, the observed effects turn
out to be ROS-dependent and suggest a contribution of oxidative
stress in ribosomopathies.

The Ribosomopathy Factor – pwp2h
The zebrafish titania mutant (ttis450) harbors a recessive, lethal
mutation of the pwp2h gene encoding a factor of the small
ribosomal subunit (Boglev et al., 2013). In this mutants reduced
18S rRNA, impaired ribosome biogenesis and p53 stabilization
is observed. pwp2h is highly expressed in intestinal, epithelial
cells, but also in the brain retinal pigmented epithelium, liver and
pancreas, which are rapidly dividing tissues. Also here, defects
in craniofacial formation, typical hallmarks of ribosomopathies,
can be detected.

Intestinal epithelial cells of the mutant larvae display
accumulation of autophagosomes. In autophagic flux
experiments using the autophagy inhibitor chloroquine and
activator rapamycin, increased accumulation of LC3-II is
observed in the mutants, indicating autophagy induction
(Boglev et al., 2013). Also p-RP-S6, reflecting mTORC1 activity,
is increased. Inhibiting autophagy by morpholino-mediated
knockdown of ATG5 triggers apoptosis of intestinal epithelial
cells specifically in the mutants, whereas the wildtype is not
affected. This suggests that autophagy induction counteracts
apoptosis as survival mechanism in response to nucleolar
stress. Also, no signs of apoptosis are detected in the
mutants, ruling out toxic levels of autophagy activation.
Interestingly, autophagy induction in the zebrafish mutants
occurs in mTOR and p53-independent manner (Boglev et al.,
2013). However, the molecular mechanisms and pathways
affected remain elusive.

The Drosophila Nopp140
Nopp140 is in structure and function related to Treacle,
representing an essential gene in the ribosomopathy syndrome
Treacher Collins syndrome (TCS) (Valdez et al., 2004; Sakai
and Trainor, 2009; Dai et al., 2016). Depletion of the nucleolar
phosphoprotein Nopp140 in the imaginal wing disks of
Drosophila results in nucleolar stress, loss of ribosomes and p53-
independent apoptosis (James et al., 2013). Since there are no
detectible levels of MDM2, NPM/B23 and ARF in Drosophila,
the authors conclude that an alternative nucleolar stress response
might exist. They consider JNK as an interesting link, which

has earlier been shown to induce autophagy in response to
oxidative stress and induce transcription of ATG genes (Wu et al.,
2009; Zhou et al., 2015). In addition, oxidative stress induces
accumulation of the autophagy marker GFP-LC3 and lysosomes
in the intestinal epithelium, which is dependent on JNK signaling
(Wu et al., 2009). As also in larval polyploidy midgut cells
mCherry-ATG8a is accumulated after Nopp140 depletion, the
authors conclude an accumulation of autophagosomes and a
premature induction of autophagy regulated by loss of Nopp140
(James et al., 2013).

NAT10 and Glucose Deprivation Stress
NAT10 drives ribosome biogenesis by mediating acetylation
of the RNA pol I transcription factor UBF-1 and facilitating
processing of the 18S rRNA (Kong et al., 2011; Ito et al.,
2014). Under normal conditions, NAT10 is auto-acetylates and
promotes recruitment of PAF53 and RNA pol I to mediate rRNA
biogenesis (Cai et al., 2017), whereas autophagy is inhibited
(Liu et al., 2018).

The mechanisms, which link inhibition of rRNA biogenesis
to induction of autophagy in response to energy stress were
determined by Liu et al. (2018). They demonstrate that NAT10
binds and acetylates the autophagy regulator Che1 (AATF) in a
p53-independent manner. As a consequence of acetylation, the
transcriptional activation of target genes Redd1 and Deptor is off.
Thus, Che1 enhances autophagy by activating the transcription
of Redd1 and Deptor, two critical inhibitors of mTOR signaling
(Desantis et al., 2015a).

Interestingly, Che-1 is also important for RNA pol II, the DNA
damage response (DDR) and drives p53 expression. Upon DDR,
Che1 increasingly interacts with p53 and drives the expression
of genes implicated in cell cycle regulation, for instance p21
(Desantis et al., 2015b).

Upon energy stress and glucose deprivation, Sirt1 deacetylates
NAT10. ChIP analysis has demonstrated that deacetylated NAT10
does not bind to rDNA upon glucose deprivation and thus
NAT10-mediated ribosome biogenesis is inhibited. Under this
condition, the inhibition of Che1 is released (Liu et al., 2018).

In HCT116 cells, LC3-II levels are increased both in presence
or absence of chloroquine, showing that NAT10 knockdown
increases basal autophagic flux. Also, p62 is reduced upon NAT10
depletion. Strikingly, the effects observed are independent of p53,
as demonstrated in HCT116 p53−/− cells. In rescue experiments
with HCT116-NAT10-Cas9 knockout clones, overexpression of
NAT10 reverses the effects observed on p62 and LC3-II, whereas
acetylation mutants fail to do so (Liu et al., 2018). Glucose
withdrawal triggers release of NAT10 from nucleoli. Treatment
of cells with RNAseA also leads to a loss of NAT10 from nucleoli
and impairs binding to UBF-1, suggesting that rRNA binding
is essential for nucleolar accumulation of NAT10. In contrast,
the acetylation status does not matter as determined by use
of a NAT10 mutant.

Together, Sirt1 mediated deacetylation of NAT10 impairs
rRNA biogenesis and results in release of NAT10 from nucleoli.
Therefore, both regulate the switch between ribosome biogenesis
and autophagy as a response to energy stress to maintain
cellular survival.
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The Autophagy Regulator LC3/Atg8 –
Present in the Nucleolus
Besides its localization in the autophagosomal membranes
and the cytosol, LC3 can rapidly shuttle into and out of
the nucleus. Endogenous and overexpressed LC3 has been
found to be associated with nucleoli. However, the authors
point out a weak signal being indicative for a low degree
of enrichment (Kraft et al., 2016). A triple arginine motif
is essential for the nucleolar targeting of LC3. The arginine
motif mediates protein-protein interaction and binding to
RNAs, suggesting accumulation at nucleoli by interaction
with rRNAs and/or nucleolar RNA binding proteins (Zhou
et al., 1997; Behrends et al., 2010). Likewise, LC3 has been
connected to interaction with the 60S ribosomal subunit (Kraft
et al., 2016). In addition, a hydrophobic binding interface
contributes to nucleolar localization. In contrast, the lipidation
site of LC3 is dispensable for nucleolar targeting. Interestingly,
several 40S RPs such as S27, S5, S18, and S20, have been
identified as interaction partners of LC3 by MS analysis. The
authors speculate that nucleolar LC3 might counteract p53
stabilization by preventing interaction of RPs with MDM2
(Kraft et al., 2016).

TP53INP2/DOR
TP53INP2/DOR (tumor protein p53 inducible protein nuclear
protein 2) is a nuclear protein, which interacts with the
LC3-related GABARAP, GABARAP-like2, as well as with LC3
via its N-terminus. TP53INP2/DOR also binds to VMP1, a
transmembrane protein of autophagosomes. Upon starvation by
rapamycin or EBSS incubation, TP53INP2-EGFP translocates
from nuclei to the cytoplasm where it co-localizes with
LC3 family proteins, indicating autophagosomal recruitment
(Nowak et al., 2009). Knockdown of TP53INP2 in HeLa
cells reduces rapamycin-induced accumulation of LC3-II, as
well as the number of RFP-LC3 punctae per cell. Also, less
Beclin1 is recruited to the autophagosomes upon knockdown of
TP53INP2. The rapamycin-induced recruitment of TP53INP2
to autophagosomes is dependent of autophagy: it depends
on ATG5, as demonstrated in ATG5−/− MEFs, and it is
stimulated by rapamycin. Further, it depends on PI3K as
revealed by inhibition by the PI3K inhibitor wortmannin
(Nowak et al., 2009).

Huang and Liu (2015) determined the molecular mechanisms
underlying recruitment of LC3 from the nucleus to the
cytoplasm (Liu and Klionsky, 2015). By use of an NES mutant
of TP53INP2/DOR, which cannot exit the nucleus, LC3 is
captured in the nucleus under starvation. This data suggest
that TP53INP2/DOR mediates export of nuclear LC3 during
autophagy (Huang and Liu, 2015). Also, loss of Beclin1 and
ATG14 inhibits the exit (Huang and Liu, 2015). Upon nutrient
deprivation, SIRT1 deacetylates nuclear LC3 at K49 and K51.
SIRT1 is activated by metabolic stress and functions as essential
activator of autophagy by deacetylating its substrates, among
them p53 and ATGs (Vaziri et al., 2001; Lee et al., 2008; Lapierre
et al., 2015). This increases the interaction of TP53INP2/DOR
with deacetylated LC3 and mediates cytosolic export of LC3.

The authors show that LC3 derived from the nucleus is the
primary source of membrane-bound LC3. As a consequence, LC3
is lipidated and autophagosome biogenesis is initiated. Therefore,
TP53INP2/DOR has a key role as a scaffold for LC3, by mediating
LC3 lipidation. SIRT1 is essential for deacetylation, which is
required for the interaction with ATG7 (Huang and Liu, 2015).

The autophagy regulator TP53INP2/DOR has recently
been found in nucleoli. TP53INP2/DOR-RFP co-localizes with
Nucleophosmin-GFP and Fibrillarin in HeLa cells. Upon
co-expression of a dominant negative NPM mutant, the
double leucine mutant NPMdL, which cannot exit the nucleus
(Maggi et al., 2008), TP53INP2/DOR is still able to perform
nucleo-cytoplasmic shuttling. However, on longer term its
localization to the nucleolus is impaired (Mauvezin et al.,
2012). Localization of TP53INP2/DOR is mediated by a
C-terminal nucleolar localization signal (NoLS) (Xu et al., 2016).
ChIP analysis identified binding to rDNA, and a nucleolar
exclusion of TP53INP2/DOR led to impaired rRNA synthesis.
TP53INP2/DOR is capable of directly binding to the RNA pol I
pre initiation complex.

In summary, TP53INP2/DOR has a dual function
by mediating ribosome biogenesis in the nucleolus and
regulating autophagy.

Drosophila – RPD3
Rpd3 represents a Drosophila homologue of histone deacetylase
1 (HDAC1). At early stages of starvation, Rpd3 accumulates
in the nucleolus and co-localizes with the nucleolar factor
Fibrillarin in Drosophila. Following starvation, 18S rRNA
and Rpd3 mRNAs increases transiently. ChIP analysis has
demonstrated that Rpd3 binds to the rDNA promoter. Rpd3
upregulates rRNA synthesis, whereas a Rpd3 knockdown
reduces the number of polysomes during starvation (Nakajima
et al., 2016). Also, knockdown flies die faster in response
to starvation. In the knockdown flies, reduced levels of
Atg9 mRNA are detected, which is induced in response
to starvation in controls, revealing decreased tolerance to
starvation-mediated stress.

Drosophila – Nucleostemin-Like 2
In Drosophila, nucleostemin-like protein NS2, which is a
homologue of human NGP1/GNL2, localizes to nucleoli. Loss
of NS2 results in ribosomal stress and block of nucleolar
release of 60S subunits as evidenced by increased GFP-RPL11
in nucleoli (Wang and DiMario, 2017). In polyploid midgut
cells, mCherry-Atg8a positive autophagosomes are detected
by immunofluorescence analysis, as well as autophagosomes
containing mitochondria by TEM analysis. In contrast, in
larval imaginal disks induction of apoptosis is observed
(Wang and DiMario, 2017).

CLIP – Nucleophagy of Nucleolar Factors
in Yeast
In budding yeast, nutrient deprivation and TORC inhibition
triggers nucleophagy, the selective degradation of the nuclear
compartment. In particular, nucleolar factors are degraded,
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FIGURE 5 | Model: Nucleolar stress in apoptosis, autophagy and disease. Nucleolar stress triggers either the classical p53 response or p53-independent
mechanisms. In turn, transcriptional programs and/or transcription-independent mechanisms are induced, which finally cause mitochondrial changes, autophagy or
apoptosis. As a consequence of nucleolar stress, not only apoptosis but also autophagy is emerging as a tightly coupled stress response pathway for the formation
or cure of pathological conditions.

whereas rDNA is excluded (Mostofa et al., 2018). The authors
establish that autophagy induction by rapamycin triggers
the redistribution of nucleolar proteins and rDNA, thereby
separating rDNA from nucleophagy. CLIP and cohibin, which are
essential for tethering rDNA to the inner nuclear membrane, are
responsible for the repositioning of rDNA and nucleolar proteins
in yeast. They are also required for the nucleophagic degradation
of nucleolar factors. In contrast, rDNA is not degraded by macro-
nucleophagy (Mostofa et al., 2018).

Thus, starvation-mediated autophagy, at least in yeast,
removes specifically nucleolar factors. It seems likely that
autophagy allows inhibition of the energy-consuming
process of ribosome biogenesis by selectively removing the
processing machinery.

A simplified model summarizing the emerging connection
between nucleolar stress and autophagy presented in this review
is given in Figure 5.

CLOSING REMARKS AND
PERSPECTIVES

Despite the recent advances made in uncovering the relationship
between nucleolar stress and autophagy, our understanding is far
from being complete. A critical need to elucidate the underlying
causes is apparent.

On a mechanistic level it seems likely that p53-dependent as
well as -independent effects account for the induction of the
autophagic nucleolar stress response.

It might well be that reduced ribosome biogenesis, by
reducing protein synthesis, triggers autophagy as a general
stress response. Nevertheless, extra ribosomal functions might
as well coincide.

As precise underlying mechanisms are currently missing,
many questions and possibilities rise: How are both signaling
pathways integrated with each other? Which effects are cell
type and context dependent? Under which conditions is
autophagy either beneficial or a contributor to the pathology?

Is there a p53 or compensatory p63/p73 autophagy response
triggered in nucleolar stress? Does selective autophagy and
other forms of autophagy such as micro-autophagy play a
fundamental pathogenic role in other diseases connected to
nucleolar stress?

The initial and common concepts of nucleolar stress
and autophagy open novel avenues for investigating specific
therapeutic approaches. Many autophagy inhibitors and
activators might be contemplated as therapies for nucleolar-
stress mediated diseases. They might well be combined with, e.g.,
RNA pol I inhibitors and tested for synergy to increase selectivity
but simultaneously reduce toxicity for patients.

To get a deeper understanding of the underlying events,
a challenge will be to elaborate state of the art autophagy
methods on monitoring the autophagy flux in cellular models
of diseases, patient tissues and blood samples (Jiang and
Mizushima, 2014). Research on the autophagic transcriptome
and spatio-temporal expression patterns of regulators of the
autophagic machinery or nucleolar response will advance
our knowledge on mechanisms coupling the nucleolar stress
response to autophagy.
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Essential to development, primary cilia are microtubule-based cellular organelles that
protrude from the surface of cells. Acting as cellular antenna, primary cilia play central
roles in transducing or regulating several signaling pathways, including Sonic hedgehog
(Shh) and Wnt signaling. Defects in primary cilia contribute to a group of syndromic
disorders known as “ciliopathies” and can adversely affect development of the brain and
other essential organs, including the kidneys, eyes, and liver. The molecular mechanisms
of how defective primary cilia contribute to neurological defects, however, remain poorly
understood. In this mini review, we summarize recent advances in understanding of
the interactions between primary cilia and signaling pathways essential to cellular
homeostasis and brain development.

Keywords: primary cilia, Wnt, MTOR, autophagy, ciliopathy, FMCD

INTRODUCTION

Primary cilia are microtubule-based cellular organelles that aid in sensing and transducing
environmental signals during development (Goetz and Anderson, 2010): primary cilia transduce
or regulate several signaling pathways, including Sonic hedgehog (Shh) and Wnt signaling (Corbit
et al., 2005; Rohatgi et al., 2007; Gerdes and Katsanis, 2008; Goetz et al., 2009). This antenna-like
structure was first observed using electron microscopy at the lumen of kidney tubules in 1898
and has since been intensively studied (Zimmermann, 1898). Emanating from the apical surface of
basal body, the axoneme structure of primary cilium comprises a radial array of nine microtubule
doublets lacking a central pair (9+0 structure) (Figure 1A; Davenport and Yoder, 2005). At the
base of primary cilium, protein entry and exit are regulated via a transition fiber that anchors
the axoneme to the ciliary membrane, compartmentalizing this distinct organelle from the cytosol
while remaining continuous with the plasma membrane (Gherman et al., 2006; Marshall, 2008;
Reiter et al., 2012).

Leading to defective primary cilia, mutations in genes necessary for ciliogenesis and ciliary
structure and function are known to cause a group of human genetic disorders described
as “ciliopathies.” To date, 187 mutated genes in 35 known ciliopathies and 241 ciliopathy-
associated genes essential to ciliary structure and function that could potentially be causative for
ciliopathies have been documented (Reiter and Leroux, 2017). These ciliopathies affect the body’s
essential organs, including the kidneys, eyes, brain, liver, and skeleton, during development and
tend to share clinical phenotypes (Hildebrandt et al., 2011): for example, as primary cilia are
critical to development of the central nervous system (CNS), many ciliopathies, such as Joubert
syndrome (JBTS), Meckel syndrome (MKS), and orofaciodigital syndrome (OFD), commonly
exhibit neurological defects of CNS malformation, intellectual disability, ataxia, and retina
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FIGURE 1 | Primary cilia and signal transduction. (A) Structure of primary cilium. Microtubules extend from the centriole constituting the basal body and form the
axoneme. The surrounding membrane is called the ciliary membrane, distinct from other membranes. Unlike motile cilium with a 9+2 structure, primary cilium has a
9+0 structure. Only ciliary proteins are allowed to access the cilium, and the transition zone performs the filtering function. (B) In the absence of Shh, Patched (Ptch)
inhibits the translocation of Smoothened (Smo), a membrane G protein-coupled receptor (GPCR)-like protein. Suppressor of Fused (SUFU) in the tip of the cilium
represses Gli, causing Gli to be present in an inactive form. In the presence of Shh, Shh binds to Ptch, making it no longer able to suppress Smo. Smo, relieved from
suppression, translocates into the cilium and represses SUFU. Gli is then converted to its active form and translocates from the cilium to the nucleus and transcribes
target genes. (C) Primary cilia in Wnt signaling. In the absence of Wnt ligand, the β-catenin destruction complex, comprising glycogen synthase kinase 3β (GSK3β),
adenomatous polyposis coli (APC), and Axin, phosphorylates β-catenin, leading to its proteasomal degradation, which occurs near the basal body. Wnt signaling is
activated by binding extracellular Wnt ligand to the membrane-bounded receptor family, frizzled and low-density lipoprotein receptor-related protein (LRP). Then, the
β-catenin destruction complex is destabilized by anchoring Axin to the plasma membrane through Dishevelled (Dvl), which leads to stabilization and nuclear
localization of β-catenin for transcriptional activation of target genes under T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) promoters (van Amerongen and
Nusse, 2009). Inversin, for which ciliary localization has been reported, mediates proteasomal degradation of Dvl to regulate Wnt signaling.

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 May 2019 | Volume 13 | Article 21875

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00218 May 11, 2019 Time: 14:10 # 3

Park et al. Roles of Primary Cilia in the Developing Brain

dystrophy (Valente et al., 2014). Here, we summarize our recent
understanding of the interactions between primary cilia and
several signaling pathways essential for cellular homeostasis and
for brain development.

SIGNALING PATHWAYS AND
BIOLOGICAL PROCESSES MEDIATED
BY PRIMARY CILIA

Shh Signaling
Sonic hedgehog signal transduction is accomplished through
binding of Shh to the transmembrane receptor Patched (Ptch).
In the absence of Shh, Ptch inhibits the ciliary localization of
Smoothened (Smo), a membrane G protein-coupled receptor
(GPCR)-like protein. When present, Shh binds to Ptch to
alleviate the suppression of Smo, which, in turn, translocates
to the primary cilium to repress Suppressor of Fused (SUFU)
(Rohatgi et al., 2007; Tukachinsky et al., 2010; Sasai and Briscoe,
2012). This initiates the activation of Gli transcriptional factors
(Figure 1B; Alcedo et al., 1996): Gli regulates the transcription
of target genes that regulate the Shh signaling (e.g., Ptch1, Gli1),
proliferation (e.g., cyclin D1, MYC), and apoptosis (e.g., Bcl-2)
(Scales and de Sauvage, 2009). Shh, Ptch, Smo, and Gli are
expressed in the developing and adult brain (Echelard et al., 1993;
Ekker et al., 1995).

Sonic hedgehog signaling is critical to spatial patterning
of the neuroepithelium, cellular identity in CNS, axonal
guidance, wiring of the neural network, and neuronal activity.
As Shh signaling-related proteins are located within primary
cilium, Shh signaling is not properly achieved in mice with
defective cilia, resulting in several defects in brain development
such as defective neural patterning, cerebellar hypoplasia, and
defective hippocampal neurogenesis (reviewed in Ferent and
Traiffort, 2015). For example, mice with mutation in Kinesin
family member 3A (Kif3a), which is important for ciliogenesis,
show reduced Gli1 expression, thereby leading to defects in
hippocampal neurogenesis and formation of neural stem cells
(Han et al., 2008). Stumpy mutant mice exhibit defective
ciliogenesis leading to prenatal hydrocephalus and severe
polycystic kidney disease. The Stumpy gene, located on mouse
chromosome 7, encodes B9 protein domain 2 (B9D2), which is
localized with basal bodies along ciliary axonemes and appears
to play a role in ciliogenesis in association with intraflagellar
transport proteins (IFTs) (Town et al., 2008). Conditional Stumpy
mutant mice (driven by Nestin-Cre) have been found to show
abrogated Shh signaling and Gli processing in the hippocampus
(Breunig et al., 2008).

Wnt Signaling
Wnt signaling is another developmental signaling pathway
mediated by primary cilia (Figure 1C; May-Simera and Kelley,
2012). Wnt signaling can be divided into (1) β-catenin dependent
(canonical) and (2) β-catenin independent (non-canonical)
signaling (reviewed in Berbari et al., 2009; Oh and Katsanis,
2013). Several studies have shown that perturbation of ciliary

genes aberrantly activates canonical Wnt signaling and disrupts
non-canonical Wnt signaling (Lin et al., 2003; Cano et al., 2004;
Ross et al., 2005; Simons et al., 2005; Gerdes et al., 2007; Corbit
et al., 2008). In particular, Inversin, which is localized in cilium,
mediates the proteasomal degradation of Dishevelled (Dvl)
to regulate both canonical and non-canonical Wnt signaling
(Simons et al., 2005). Perturbations in several ciliopathy-related
genes have been found to elicit de-regulated canonical Wnt
signaling in fibroblasts and in the forebrain (Willaredt et al.,
2008; Abdelhamed et al., 2013; Wheway et al., 2013). Also, ciliary
ablation in adult-born dentate granule cells in the hippocampus
has been shown to aberrantly activate canonical Wnt signaling,
concomitant with severe defects in dendritic refinement and
synapse formation (Kumamoto et al., 2012). Additionally,
researchers have recently demonstrated that defective neuronal
ciliogenesis caused by hyperactivating mutation in MTOR elicits
abnormal activation of canonical Wnt signaling and inactivation
of non-canonical Wnt signaling, resulting in defective neuronal
migration due to disrupted neuronal polarization (Park et al.,
2018). Notwithstanding, several studies have reported that ciliary
dysfunction does not affect Wnt signaling, as evidenced by
constant activity of Wnt signaling reporter and expression of
Wnt target genes (Huang and Schier, 2009; Ocbina et al., 2009).
Interestingly, however, deregulated canonical Wnt signaling via
deletion of adenomatous polyposis coli (APC) was found to
cause a loss of primary cilia in association with radial progenitor
malformation in the neocortex (Nakagawa et al., 2017). In these
regards, the interaction between primary cilia and Wnt signaling
may be context-dependent, and more thorough studies will be
necessary to elucidate it.

MTOR Signaling
MTOR is a serine/threonine kinase essential for protein
translation, lipid synthesis, and autophagy, and plays an
essential role in neural differentiation, neuronal migration,
and synaptic formation, all of which are crucial to brain
development. Disruption of MTOR signaling has been
documented in numerous pathological conditions, including
cancer, neurological disorder, and metabolic disorder (Lipton
and Sahin, 2014; Saxton and Sabatini, 2017) Polycystic kidney
disease (PKD) patients with inherited mutations in ciliary
genes show deregulation of the MTOR signaling pathway
(Shillingford et al., 2006; Wahl et al., 2006). In particular,
polycystin-1, which is recurrently mutated in PKD, has been
shown to inhibit MTOR through interaction with TSC2,
a component of the TSC complex that inhibits MTOR
(Shillingford et al., 2006). Studies have also identified that,
by bending stimulus via fluid flow, primary cilia downregulate
AMPK-MTOR signaling, which, in turn, induces autophagy
to control cell size via LKB1 localized at primary cilia in the
kidneys (Boehlke et al., 2010; Orhon et al., 2016). Recently,
research has demonstrated that, during brain development,
mice with defective cilia present abnormal increases in MTOR
signaling, leading to enlarged apical domains of radial glial
cells (RGCs) and subsequent dilatation of brain ventricles
(Foerster et al., 2017). Conversely, in TSC1- or TSC2-null
fibroblasts, TSC1 and TSC2 have been found to positively

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 May 2019 | Volume 13 | Article 21876

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00218 May 11, 2019 Time: 14:10 # 4

Park et al. Roles of Primary Cilia in the Developing Brain

regulate ciliogenesis without using the TSC-MTOR signaling
axis (i.e., rapamycin-insensitive) (Hartman et al., 2009).
Nevertheless, a recent independent study which also performed
with TSC1- or TSC2-null fibroblasts reported different ciliary
phenotypes marked by a longer ciliary length in TSC1-null
cells and a shorter ciliary length in TSC2-null cells, and there
was a discrepancy between the two cell types in that only
the elongated ciliary phenotype in TSC1-null cells could be
rescued by rapamycin treatment (Rosengren et al., 2018). In
focal malformations of cortical developments (FMCDs), such
as hemimegalencephaly (HME) and focal cortical dysplasia
(FCD), which are highly associated with intractable epilepsy and
autism-spectrum disorders, brain somatic activating mutations
in MTOR eliciting blockage of autophagy have been described
as disrupting neuronal ciliogenesis in brain tissues from FMCD
patients (Wegiel et al., 2010; Lim and Crino, 2013; Park et al.,
2018; Figures 2A,B). Given the complex reciprocal interaction
between primary cilia and MTOR signaling, further mechanism
studies are yet needed.

Autophagy
Autophagy is a cellular degradative process by which a cell
gains nutrients to maintain homeostasis (Mizushima, 2007). Two
independent studies have provided evidence of links between
ciliogenesis and autophagy: In serum-nutrient conditions, basal
autophagy degrades the ciliary protein IFT20, while OFD1
protein at centriolar satellites inhibits ciliogenesis. Upon serum-
withdrawal, the centriolar satellite pool of OFD1 is degraded
by inducible autophagy, while IFT20 initiates ciliary trafficking,
leading to ciliogenesis (Pampliega et al., 2013; Tang et al., 2013).
Cilia-mediated Shh signaling has been found to assemble several
proteins needed for autophagy at the periciliary region, thus
activating Shh signaling induces autophagy flux. Interestingly,
one study described defects in serum-withdrawal-induced
autophagy and biogenesis of autophagosome among Ift20- or
Ift88-compromised cells (Pampliega et al., 2013). In line with
this, others have found that treatment of Shh to cultured-
hippocampal neurons upregulates several autophagy-related
genes and enhances autophagy (Petralia et al., 2013).

Meanwhile, dysregulated ciliogenesis in relation to defective
autophagy has been described in several diseases. Previous studies
have reported suppressed autophagic flux in ciliary dysfunctional
PKD mouse models and impairment of autophagosome
formation in cells derived from PKD patients (Belibi et al., 2011;
Zhu et al., 2017). Interestingly, Hürthle cells found in thyroid
cancer were found to show defective ciliogenesis, and this
defect in Hürthle cells eliciting high basal autophagic flux was
restored by autophagy inhibition (Lee et al., 2016). Dysregulated
ciliogenesis has also been reported in Huntington’s disease
(HD), for which defective autophagy has been well recognized
(Keryer et al., 2011; Kaliszewski et al., 2015). Although
Huntingtin, which is mutated in HD, is known to regulate
autophagy, it also participates in trafficking pericentriolar
material 1 (PCM1) to the centrosome. When Huntingtin is
mutated, aberrant accumulation of PCM1 occurs, which, in
turn, causes dysregulated ciliogenesis (Keryer et al., 2011;
Rui et al., 2015). Further studies, however, are required to

elucidate the direct interaction between ciliary abnormality and
defective autophagy in HD. Finally, as stated in the previous
section on MTOR signaling, defective autophagy and resultant
disruption of ciliogenesis have been demonstrated in FMCDs
(Park et al., 2018). Brain somatic activating mutations in MTOR,
which are causative for FMCDs, block autophagy, resulting in
defective neuronal ciliogenesis due to aberrant accumulation
of OFD1 (Figure 2C; Park et al., 2018). Although defective
autophagy has been implicated in many neurodevelopmental
and neurodegenerative disorders, much more studies are needed
to elucidate the pathophysiological role of primary cilia in
these disorders (Levine and Kroemer, 2008; Lee et al., 2013;
Marsh and Dragich, 2018).

DEVELOPMENTAL FUNCTIONS OF
NEURONAL CILIA

Patterning and Morphogenesis of the
Forebrain
One of the well-established developmental functions of primary
cilia is to control forebrain patterning, which is severely defected
in human ciliopathies (Vogel et al., 2012). Patterning in the
neural tube of the CNS occurs through progressive subdivisions
along the dorsal to ventral and the rostral to caudal axes
(Dessaud et al., 2008). Cobblestone mice (Ift88cbs/cbs), which
show severe disorganization of the telencephalon, have been
found to exhibit an ambiguous dorsal-ventral forebrain boundary
and dorsal telencephalic-diencephalic boundary, concomitant
with increased levels of full-length Gli3 (Willaredt et al.,
2008). Meanwhile, mice lacking primary cilia as a result of
mutation in the ciliopathy gene Rpgrip1l exhibited defective
phenotypes associated with MKS and JBTS. In these mice, a
mislocalized olfactory bulb-like structure and ambiguous dorsal-
ventral patterning were observed, both of which were rescued
upon introduction of constitutively active repressor form of Gli3
(Besse et al., 2011). Other mice with defective cilia through loss
of Ttc21b (encoding retrograde Ift139) have also been shown
to display defects in dorsal–ventral patterning and rostral–
caudal patterning. Researchers have reported that Ttc21b-null
mice exhibit normal anterograde transport that permits entry
of Shh signaling components into cilium but partially defective
retrograde transport. Overactivation of GLI2 and GLI3A in these
mice could accounts for activation of Shh signaling and abnormal
patterning, suggesting a periciliary role for retrograde IFT in
GLI3 processing and GLI2 activity (Huangfu and Anderson,
2005; May et al., 2005; Tran et al., 2008; Stottmann et al., 2009).
Crossing Ttc21b-null mice with mice heterozygous for a null
allele of Shh to reduce levels of Shh ligand was found to partially
rescue their defective phenotypes (Tran et al., 2008; Stottmann
et al., 2009). This paradoxical effect of retrograde IFT mutants on
Shh signaling (i.e., activation of Shh signaling) was well reviewed
by Pal and Mukhopadhyay (2015) and Bangs and Anderson
(2017). In line with the importance of primary cilia in cortical
patterning, mice with mutant Slb (encoding anterograde Ift172)
that possess very short axonemes with no visible microtubules
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FIGURE 2 | Defective ciliogenesis due to brain somatic mutations in MTOR accounts for cortical dyslamination in FMCDs. (A) Representative brain MRIs of patients
with FMCDs, including hemimegalencephaly (HME) and focal cortical dysplasia (FCD) type II. Arrows indicate the affected region of the brain. Adapted from Park
et al. (2018), with permission. (B) Immunostaining for Arl13b, a marker for primary cilia, and NeuN, a marker for neurons, with DAPI co-staining in brain tissue from
FMCD patients. While primary cilium normally forms at each neuron in brain tissue from non-FMCD, FMCD patients with brain somatic mutations in MTOR exhibit
defective neuronal ciliogenesis. Scale bars, 30 µm. Adapted from Park et al. (2018), with permission. (C) Autophagic degradation of the centriolar satellite pool of
OFD1 induces primary ciliogenesis. However, brain somatic activating mutation in MTOR, which blocks autophagy, disrupts ciliogenesis in brain tissues with FMCDs.
(D) Cortical dyslamination with ciliary defective dysmorphic neurons in the cerebral cortex of a FMCD patient. Somatic activating mutations in MTOR, causative for
FMCDs, disrupt neuronal ciliogenesis through blockage of autophagy, resulting in cortical dyslamination.

in their cilia have also been found to exhibit a global brain-
patterning defect along the dorsal–ventral and rostral–caudal
axes (Gorivodsky et al., 2009). Collectively, these studies suggest
the importance of Gli3 processing, which could be mediated by
primary cilia, in forebrain patterning.

The establishment of polarized radial glial scaffold formation
during cortical development has been shown to be regulated by
Arl13b, a small GTPase enriched in primary cilia (Higginbotham
et al., 2013). Arl13b mutant mice (Arl13bhnn/hnn), which
display defective cilia, surprisingly exhibit dramatic inversion
of the apicobasal polarity of the radial glial scaffold, which,
in turn, changes the location of the progenitor zone to the
outer part of the cortex. This defect is also observed when
Arl13b is removed just before the formation of radial glia
from neuroepithelial cells using Foxg1-driven Cre. However,
Arl13b removal after establishment of the radial glial scaffold
using Nestin- or GFAP-driven Cre has not been found to

generate this intriguing phenotype, suggesting that the role of
Arl13b in polarization is temporally restricted to the period
during which the radial glial scaffold develops (Higginbotham
et al., 2013). This reversed apicobasal polarity seen in Arl13b
mutant mice has not been reported in mice deficient of other
ciliary genes. In line with this temporally restricted role of
a ciliary gene during development, a recent study performed
conditional knockout (KO) of Kif3a, Ift88, and Ttc21b in
a series of specific spatiotemporal domains. Intriguingly, the
observed neurological defects, including forebrain expansion,
cortical malformations, impaired olfactory bulb development,
and ventriculomegaly, were significantly different across four
different Cre transgenic alleles (Foxg1-Cre, Emx1-Cre, Wnt1-
Cre, and AP2-Cre), indicating that the roles of cilia in cortical
development are discretely spatiotemporal. For example, the
deletion of Ift88 at earlier stages of development, driven by
Foxg1-Cre, was found to increase brain size; however, when
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deleted at later stages, driven by Emx1-Cre, there were no
significant differences in brain size (Snedeker et al., 2017).
Taken together, these experimental studies of perturbations of
primary cilia in mice support the crucial role of primary cilia
in forebrain development, which, when disrupted, lead to severe
morphological malformations in the brain.

Neuronal Migration
During brain cortical development, newly born neurons follow
one of two main migratory routes to reach their final destination,
known as radial and tangential migration (Hatten, 1999). The role
of primary cilia in radially migrating pyramidal neurons remains
unclear. In a previous study, cerebral cortical lamination was
not apparently affected in Arl13b-conditional KO mice driven
by Nex-Cre or in Stumpy-, Kif3a-, and Ift88-conditional KO
mice driven by Nestin-Cre (Arellano et al., 2012; Higginbotham
et al., 2012; Tong et al., 2014). However, a recent in vivo
systemic study revealed that genes linked to ciliopathies affect
cortical development, including neuronal radial migration,
neural progenitor development, neuronal differentiation, and
early neuronal connectivity (Guo et al., 2015). In this study,
knockdown of 17 ciliopathy genes in the developing neocortex
resulted in delayed neuronal radial migration in association with
transient multipolar stage, multipolar-to-bipolar transition, and
glial-guided radial migration (Guo et al., 2015). Meanwhile,
others have suggested that the defective phenotypes seen in
ciliary conditional KO mice driven by Nestin-Cre, the expression
of which is broad and is also seen in non-RGCs at later
developmental stages, may be partly attributable to non-cell-
autonomous effects (Foerster et al., 2017; Chen et al., 2018).
Accordingly, the cell-autonomous function of primary cilia in
neural stem cells at the late developmental stage was investigated
via acute knockdown of ciliary genes (Kif3a or Ift88) in
the developing cortex, which resulted in defective neuronal
differentiation and migration; this was accompanied by delays
in neural stem cell cycle progression and failures in interkinetic
nuclear migration (Chen et al., 2018). In FMCDs, the molecular
mechanism of how somatic mutations in MTOR lead to focal
cortical dyslamination appears to be related to defective neuronal
ciliogenesis by MTOR mutation, which affects the multipolar
to bipolar transition essential for neuronal radial migration
(Figures 2C,D; Park et al., 2018).

Interneurons originating from the medial ganglionic
eminence migrate along a tangential path in the cortical
plate, either at the marginal zone or intermediate zone. These
neurons change their orientation from a tangential to radial
path to colonize the cortical plate and to differentiate into
GABAergic neurons (Guo and Anton, 2014). Recent studies have
demonstrated that disruption of primary cilia at interneurons
affects the interneuronal migratory process, suggesting the
importance of primary cilia in neuronal migration (Baudoin
et al., 2012; Higginbotham et al., 2012). In a previous study,
mice with conditional KO of Arl13b genes driven by Dlx5/6-Cre
showed disruption of interneuron placement at Arl13b-deleted
cortices caused by defects in interneuron migration and
branching. However, when the Arl13b gene was disrupted in
post-migratory interneurons driven by PV-Cre, there was no

significant difference in the morphology of dendritic arbors
during neuronal differentiation. Such defective interneuron
migration may be a potential pathophysiological mechanism
underlying neurological defects in JBTS with Arl13b mutations
(Higginbotham et al., 2012). Meanwhile, a recent study showed
that disruption of cilia in interneurons using Nkx2.1-Cre to ablate
Ift88 or Kif3a genes led to defective migration of interneurons,
marked by an aberrant accumulation of interneurons at their
first tangential path, not radial streams in the cortical plate, as
well as abnormal positioning and density of interneurons in the
postnatal cortex (Baudoin et al., 2012). Taken together, these
studies emphasize that primary cilia in immature interneurons
are crucial to interneuron migration in the developing cortex
and the underlying mechanisms thereof (Baudoin et al., 2012).
Nevertheless, the role of primary cilia in neuronal migration
needs further study, especially in regards to which other cilia-
mediated signaling pathways are involved. These future studies
on neuronal migration should shed light on the pathophysiology
of ciliopathies presenting with cognitive deficits, which may
be attributable to defective neuronal migration and disrupted
neural connectivity.

Cerebellum Development
Ataxia due to cerebellar malformation is one major symptom
of ciliopathies, particularly JBTS. During development of the
cerebellum, Purkinje cells secrete Shh, which regulates the
proliferation of cerebellar neuronal precursor (Wechsler-Reya
and Scott, 1999; Haldipur et al., 2012): Shh signaling mediated
by primary cilia occurs in late embryonic stages of cerebellum
development, during which Shh is required for expansion of the
granule neuron precursor population, but not for the subsequent
differentiation of these cells (Lewis et al., 2004). Primary cilia
control cerebellar morphogenesis by promoting the expansion of
the granule progenitor pool. Loss of either Ift88 or Kif3a causes
severe cerebellar hypoplasia and inhibits the expansion of the
granule cell progenitor population. Although Ift88 and Kif3a are
not required for the specification and differentiation of cerebellar
cell types, they affect granular cell progenitor proliferation.
Researches have shown that the expression of Gli1 at the external
granule cell layer in Kif3a mutant mice is lower than that in
controls (Chizhikov et al., 2007; Spassky et al., 2008). These
studies demonstrate that ablation of primary cilia impairs Shh
signaling, which regulates the development of the cerebellum,
particularly expansion of cerebellar progenitors. This mechanism
could explain the hypoplasia of the cerebellum and cerebellar
ataxia seen in patients with ciliopathies such as JBTS.

Learning and Memory
Patients with ciliopathies commonly present with intellectual
disability (ID) as a neurological deficit. Although there are not
enough studies to explain the mechanism underlying ID as a
result of defects in primary cilia, several studies have shown
that depletion of primary cilia leads to hippocampal-dependent
learning and memory deficits (Breunig et al., 2008; Han et al.,
2008; Amador-Arjona et al., 2011). Hippocampal neurogenesis
plays a role in fear conditioning, recognition, spatial memory,
and pattern separation (Cameron and Glover, 2015). Also, Shh
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signaling mediated by primary cilia controls the proliferation of
neural progenitor cells (NPCs). As evidence thereof, Emx1-Cre-
dependent Shh-conditional KO mice were found to show smaller
dorsal telencephalons at E18.5 and decreased proliferation and
increased apoptosis of neural stem cells (NSCs) and NPCs in
the dorsal pallium (Komada et al., 2008). Meanwhile, Nestin-
Cre- and hGFAP-Cre-dependent Smo KO mice exhibited smaller
postnatal dentate gyruses and fewer proliferating cells than those
in controls (Machold et al., 2003; Han et al., 2008). In Kif3a
mutant and Ift88 mutant mice, neuronal proliferation in the
subgranular zone (SGZ) and subventricular zone (SVZ) was
decreased, and Gli1 expression was abolished (Han et al., 2008;
Tong et al., 2014; Gazea et al., 2016) These demonstrate that Shh
signaling is involved in the proliferation and survival of NSCs and
NPCs. Hypomorphic Ift88-mutant mice, in which Ift88 mRNA
and protein are reduced by 70–80%, showed disorganization of
the midbrain dopominergic neuron (mDA) progenitors domain,
and the number of mDA neurons was severly reduced (Gazea
et al., 2016). Considering that primary cilia regulate neurogenesis
by mediating Shh signaling, defects in learning and memory and
ID might be caused by decreased neurogenesis due to aberrant
Shh signaling. Expanding on the above research, additional
studies are needed to determine how defective neuronal cilia lead
to learning and memory impairment and ID.

CONCLUDING REMARKS

In this review, we briefly summarized the interaction between
primary cilia and several signaling pathways, including Shh,
Wnt, MTOR, and autophagy, all of which are essential to
cellular homeostasis. Given that neurological disorders are typical
symptoms of ciliopathies, the importance of primary cilia during
brain development cannot be emphasized enough. At present,
however, we are unable to fully understand the underlying
mechanisms by which defective neuronal cilia contribute the
pathogenesis of neurological defects in ciliopathies. Future
studies of neuronal cilia in relation to signaling pathways may
provide better understanding of the functions of neuronal cilia
and may help to develop novel treatments for ciliopathies by
targeting neuronal cilia-mediated signaling pathways. Compared

with considerable studies on neuronal cilia, there is a lack of
research on the role of primary cilia in glial cells, another
major component of the brain. Glial cells, such astrocytes
and oligodendrocytes, also possess a single primary cilium
(Berbari et al., 2007; Bishop et al., 2007; Kasahara et al., 2014).
Recently, studies reported defective ciliogenesis in glioblastoma
(GBM), a high-grade astrocytic malignancy, and demonstrated
the potential role of primary cilia on GBM progression (Moser
et al., 2014; Hoang-Minh et al., 2016a,b; Loskutov et al., 2018).
Further studies on the role of primary cilia in glial cells, as well as
neurons, will advance our understanding of the role of primary
cilia in brain development.

To help achieve a better understanding of human ciliopathies
resulting from mutations in ciliary genes, CRISPR/Cas9 genome
editing of identified mutations in human ciliopathies or 3D
culture of brain organoids derived from pluripotent stem
cells from ciliopathy patients can be used to generate more
pathophysiologically relevant models for ciliopathy, thereby
overcoming the gap between animal models and human subjects.
Also, increasing studies on interactions between primary cilia and
other signaling pathways may uncover a previously unknown role
for cilia in the pathogenesis of human neurological diseases that
are not considered classical ciliopathies, such as FMCD, brain
cancer (medulloblastoma and GBM), and neurodegenerative
diseases (Alzheimer’s disease and HD) (Sotthibundhu et al., 2009;
Keryer et al., 2011; Eguether and Hahne, 2018). Future studies
of these disorders may help us to further the molecular basis of
human diseases characterized by defects in primary cilia.
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The Niemann-Pick type C1 (NPC1) is a rare genetic disease characterized by the
accumulation of endocytosed cholesterol and other lipids in the endosome/lysosome
compartments. In the brain, the accumulation/mislocalization of unesterified cholesterol,
gangliosides and sphingolipids is responsible for the appearance of neuropathological
hallmarks, and progressive neurological decline in patients. The imbalance of
unesterified cholesterol and other lipids, including GM2 and GM3 gangliosides, alters
a number of signaling mechanisms impacting on the overall homeostasis of neurons.
In particular, lipid depletion experiments have shown that lipid rafts regulate the
cell surface expression of dopamine transporter (DAT) and modulate its activity.
Dysregulated dopamine transporter’s function results in imbalanced dopamine levels at
synapses and severely affects dopamine-induced locomotor responses and dopamine
receptor-mediated synaptic signaling. Recent studies begin to correlate dopaminergic
stimulation with the length and function of the primary cilium, a non-motile organelle that
coordinates numerous signaling pathways. In particular, the absence of dopaminergic
D2 receptor stimulation induces the elongation of dorso-striatal neuron’s primary cilia.
This study has used a mouse model of the NPC1 disease to correlate cholesterol
dyshomeostasis with dorso-striatal anomalies in terms of DAT expression and primary
cilium (PC) length and morphology. We found that juvenile Npc1nmf164 mice display a
reduction of dorso-striatal DAT expression, with associated alterations of PC number,
length-frequency distribution, and tortuosity.

Keywords: Niemann-Pick C1, mouse model, striatum, primary cilium, dopamine

INTRODUCTION

Niemann-Pick type C1 (NPC1) is a rare lysosomal lipid storage disorder caused by mutations in the
NPC1 gene, whose protein mediates the egress of cholesterol from lysosomes/endosomes (Peake
and Vance, 2010). NPC1 patients develop severe neurological-neurovisceral disorders, including
cerebellar ataxia, dysarthria, dysphagia, seizures, and progressive dementia (Vanier, 2010, 2013).
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Niemann-Pick type C1 cells display defective synthesis
and mobilization of endocytosed cholesterol to the plasma
membrane, which affects the functions of neurotransmitters, and
their receptors (Fiorenza et al., 2013, 2018).

Dopamine transporter (DAT) regulates the spatio/temporal
dynamics of dopamine (DA) neurotransmission by regulating
the reuptake of extracellular DA into presynaptic terminals. DAT
localization and function are directly regulated by cholesterol
(Jones et al., 2012). For instance, cholesterol depletion studies
have shown that lipid rafts regulate DAT cell-surface expression
(Foster et al., 2008; Gabriel et al., 2013), and modulate its
activity (Adkins et al., 2007). In addition, cholesterol has been
shown to stabilize DAT conformation and DA binding (Hong
and Amara, 2010). A number of G protein-coupled receptors
including dopaminergic D2-receptors (D2R) are localized to the
primary cilium (PC) of mammalian neurons and the lack of D2
dopaminergic input increases striatal PC length (Marley and von
Zastrow, 2010; Miyoshi et al., 2014).

We have recently reported an impairment of Sonic hedgehog
(Shh) signaling and PC density and length, in hippocampal
neurons of Npc1−/− mice and fibroblasts of NPC1 patients
(Canterini et al., 2017). PC is a non-motile organelle that plays
critical roles in coordinating numerous neuronal/developmental
signaling pathways. Alterations of PC morphology and
localization are responsible for ciliopathies, disorders that
manifest, like the NPC1 disease, a constellation of clinical
features including ataxia, retinal degeneration, behavioral
disturbance, and intellectual disability (Waters and Beales, 2011;
Guo et al., 2015).

In this study we investigate DA signaling and reception in
the striatum of mouse of the Npc1nmf 164 strain, that bears a
point mutation in the Npc1 gene (D1005G), resulting in a milder,
and late-onset form comparable to the most part of human
cases (Maue et al., 2012). In this study, we show that juvenile
Npc1nmf 164 mice display a reduction of DAT expression and
alteration of PC number and length-frequency distribution in the
dorsal striatum.

Our findings identify early and subtle anomalies in striatal
dopaminergic neurotransmission that might contribute to the
subsequent appearance of NPC1 disease manifestations.

MATERIALS AND METHODS

Animals and Treatments
Homozygous Npc1nmf 164 mice maintained on BALB/cJ
background were derived from heterozygous matings.
Genotypes were identified by PCR analysis of tail DNA
(Palladino et al., 2015).

Animal experimental protocols and related procedures were
approved by the Italian Ministry of Health-General Directorate
of Animal Health (995/2016; D.Igs. 26/2014). All efforts were
made to minimize animal suffering, according to European
Directive 2010/63/EU.

Tissue Dissection
Brains of postnatal (PN) day 30 Npc1nmf 164 mice and wild-type
(wt) littermates (5 mice/genotype) (Supplementary Table S1)

were collected on ice-cold PBS and cut along the mid-sagittal
plane. For Western Blotting, punches of the dorsal striatum (DS)
were obtained from coronal slices of one hemisphere using a
steel needle (1.5 mm diameter) (Colelli et al., 2010; Campus
et al., 2017). The other hemisphere was fixed overnight in 4%
paraformaldehyde and cut on Leica-Vibratome (S1000, Leica), for
immunohistochemistry (IHC).

Western Blot Analysis
Tissue punches of DS were processed for protein extraction
and Western blot analysis as previously described (Di Pietro
et al., 2017). Primary and secondary antibodies used are listed
in Supplementary Table S2. Band intensity was normalized to
α-tubulin signal. The average values were expressed in arbitrary
units, as a ratio to wt mean values.

IHC of Primary Cilium Markers
and Measurements
Double IHC staining on free-floating sections (30 µm)
was performed as previously described (Canterini et al.,
2012). Primary and secondary antibodies data are listed in
Supplementary Table S2.

Only striatal PC “clearly” double-stained for γ-tubulin (basal-
body) and ACIII (PC-shaft) were selected for morphological
analysis using Neurolucida analysis system (MBF Bioscience,
Williston, VT, United States), connected to Olympus BX53
microscope (100X/1.25 numerical aperture) with 40X/100X
immersion objective lens. An average of 6 PC was measured from
10 random fields per mice (n = 318 PC/genotype).

Statistics
A Mann-Whitney U-test was used to determine the difference
in protein levels (GraphPad Software, Inc). The D’Agostino
& Pearson omnibus normality test was used to assess the
distribution of values. Differences in PC distribution were
determined by Chi-squared test, whereas PC lengths and related
parameters were analyzed by non-parametric Mann-Withney
U-test and Spearman’s correlation analysis. P-values < 0.05 were
considered significant.

RESULTS

Reduction of Striatal DAT Expression
Without Alteration of D2R and TH Levels
in Npc1nmf164 Mice
It is know the functional relation between DAT and TH
expression in the striatum (Salvatore et al., 2016) and the
physical association between D2R and DAT proteins at striatal
presynaptic terminals (Lee et al., 2007). To examine whether the
dysregulation of cholesterol homeostasis in Npc1-mutant mice
affects dopaminergic signaling in DS, Western blot analysis for
the mature form of DAT (mDAT), D2R, TH was performed
on protein extracted from tissue punches of PN30 Npc1nmf 164

mice, and wt littermates (Figure 1A). Only striatal mDAT levels
were found significantly reduced in Npc1nmf 164 mice compared
to control littermates (P < 0.01; Figure 1B).
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FIGURE 1 | Npc1nmf164 mice display reduction of striatal mDAT expression. (A) Western blot analysis of DAT, D2R, TH, and α-tubulin in representative dorsal
striatum (DS) samples of wt or Npc1nmf164 juvenile littermate mice. Boxed areas highlight bands of interest. (B) Densitometric quantification of immunostained mDAT,
D2R, and TH proteins in DS extracts prepared from juvenile wt or Npc1nmf164 littermate mice are shown as median ± SEM (n = 5 mice per group), ∗∗P < 0.01,
Mann-Withney U-test. Arrowhead indicates likely immature form of DAT.

3D Analysis of Striatal PC: Novel
Measurement Method Displays
Comparable Average Length of PC but a
Different Length Frequency Distribution
Npc1nmf 164 mice show a reduction of mDAT expression that
is likely associated to increased dopaminergic stimulation,
which controls PC length through the cAMP pathway (Neve
et al., 2004; Ou et al., 2009). To study possible variations of
PC morphology in striatal sections from Npc1nmf 164 and wt
mice, we performed a double IHC labeling with antibodies
against γ-tubulin (as basal body marker) and ACIII (as
neuronal ciliary shaft marker) (Figure 2A) coupled to the
Neurolucida acquisition system. The latter allows the application
to PC analysis of standard tools used for neuron tracing, as
simultaneous and precise 3D measurements (±0.5 µm) of length,
diameter, and tortuosity.

The experimental results revealed no significant difference
between the two genotypes in the mean length of neuronal PC
(Figure 2B), as well as in other parameters, including ciliary
area, volume, tortuosity, and diameter (Figure 2C). InNpc1nmf 164

mice, however, significant differences were observed in the
number of ACIII-positive PC (P = 0.03) and distribution of PC
lengths (P = 0.02), with an increment of PC with very short
(2 µm), or very long length (17 µm and over), compared to
control mice (Figure 2D).

Finally, Spearman’s correlation analysis was used to investigate
the relationships between three major PC morphological
parameters: length, diameter, and tortuosity. The analysis
between ACIII-positive PC length and tortuosity, defined as
greater bends or kinks in the ciliary axoneme, surprisingly
demonstrated a perfect Spearmann’s correlation in Npc1nmf 164

mice, in contrast to wt mice. In mutant mice, in fact, the
tortuosity progressively rises with increasing length, whereas in
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FIGURE 2 | Npc1nmf164 mice show an altered number and length distribution of striatal neuronal primary cilia. (A) Detection of primary cilia (PC) in the DS of PN30
wt and Npc1nmf164 mouse by double IHC with antibodies against γ-tubulin (basal body) and adenylyl cyclase III (ACIII, PC shaft) as indicated by arrowheads and
asterisks, respectively. Scale bar: 5 µm. (B) Histograms represent (median ± SE) the quantification of PC length and number in wt (empty bars) and Npc1nmf164 (full
bars) mice (n = 5 animals/genotype). Asterisks indicate statistically significant differences (∗P < 0.05, Mann-Withney U-test and Student’s t-tests). (C) Summary of
ciliary morphological features and corresponding average values, indicated as median ± SE. No significant differences were found. (D) Histograms show the
significant difference in the distributions of ACIII-positive ciliary length values in the dorsal striatum, between wt and Npc1nmf164 mice (P = 0.02). (E) Scatter plot and
Spearman’s correlation coefficients between three morphological features (ciliary length, tortuosity and diameter) for each genotype (∗∗∗P < 0.0005). The upper right
panel shows a representative 3D Neurolucida reconstruction of dorsal striatal PC. Scale bar: 1 µm.

wt mice a considerable tortuosity variability is observed both in
long and short cilia. Concerning length-diameter and diameter-
tortuosity relationships, similar positive Spearman coefficients
were found in both wt and mutant samples (Figure 2E).

DISCUSSION

The prominent feature of the NPC1 disease is a distinctive
progressive neurodegeneration, with cerebellum and Purkinje

neurons being particularly vulnerable (Higashi et al., 1993; Nusca
et al., 2014). Some clinical features, however, overlap between
lysosomal storage disorders as NPC1 and Parkinson’s disease,
suggesting that the two disorders may be pathogenically linked
(Storch et al., 2004; Deng et al., 2015).

To characterize the likely contribution of striatal component
in the etiology of NPC1 disease, we analyzed the expression of
effectors of DA signaling, including mDAT, D2R, and TH by
Western Blot analysis of striatal samples from Npc1nmf 164 mice
at a juvenile, asymptomatic age in comparison to wt littermates.
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The reduction of mDAT protein levels in PN30 Npc1nmf 164 mice
is in agreement with the marked symmetrical loss of striatal
DAT, especially in the putamen, observed in NPC1 patients by
DAT-scan analysis (Terbeek et al., 2017; Tomic, 2018).

The absence of D2R-mediated stimulation increases
cAMP level, which in turn leads to neuronal PC elongation
(Besschetnova et al., 2010; Miyoshi et al., 2014). It is also
known that PC length and density exhibit brain region-
specific changes (Sipos et al., 2018) and ciliary D1-receptor
translocates to and from cilia in response to environmental
cues (Domire et al., 2011). In addition, DAT, TH, and
D2R proteins colocalize in nigrostriatal terminals and
their expression levels are often affected in neurological/
neurodegenerative disorders. The distribution of D1R and D2R
varies along the rostro-caudal axis of the DS (Gangarossa
et al., 2013), whereas DAT and D2R directly interact to
facilitate the recruitment of DAT to the plasma membrane
(Lee et al., 2007).

We have recently reported that there is a reduction of PC
density and length in hippocampal neurons of Npc1−/− mice
as well as in fibroblasts of NPC1 patients, with associated
dysregulation of expression/subcellular localization of Shh
pathway components (Canterini et al., 2017). As no previous
information was available on Npc1 deficiency-dependent
morphological changes of striatal PC, we performed a 3D analysis
of ciliary images for understanding structural determinants of
normal and pathological PC function.

The remarkable length of PC of striatal neurons of either
wt or Npc1nmf 164 mice is in agreement with a previous study
that reported the presence in the striatum of a large number
of long ACIII-positive PC (Bishop et al., 2007). The absence
of statistically significant differences between the two genotypes
in the average values of ACIII-, γ tubulin-positive PC length,
and related parameters indicates that the mild alteration of
DAT expression that we found does not lead to a structural
remodeling of dorsal striatal PC in mutant mice. However, a
more detailed analysis showed that Npc1nmf 164 mice display
an increased number of ACIII-, γ-tubulin-positive PC and a
different distribution of their lengths, together with increased
tortuosity in a length-dependent manner, suggesting anomalies
of ciliary functions.

The wider range of lengths and the positive correlation
between length and tortuosity observed in Npc1nmf 164 suggest
that mutant cilia are “unstable.” Such instability possibly reflects
a mis-regulation of axonemal length. Mutant cilia could undergo
excessive elongation and fragmentation that would explain the
increment of either very short or very long PC, which is observed
in mutant mice. Similar ciliary instability was reported in Kdm3a
mutants (Yeyati et al., 2017).

The reason of regional difference of PC expression in NPC1
disease is still unclear. It could be attributable to multiple
factors such as regional changes in dopaminergic signaling or
projections, spatial regulation of Shh released from dendrites and
axons of dopaminergic neurons or to differences in intracellular
cAMP levels that positively regulate the length of PC through the
modulation of protein kinase A activity.

In conclusion, our findings identify for the first time subtle
changes occurring in the striatum of juvenile asymptomatic
Npc1nmf 164 mice that could contribute to NPC1 disease
neurological manifestations. This is in agreement with: (i) our
previous studies that demonstrated early developmental defects
which occur postnatally in the cerebellum of Npc1-deficient
mice and largely anticipate motor deficits, typically observed
during adulthood (Nusca et al., 2014; Caporali et al., 2016);
(ii) reported embryonic abnormalities in the metabolism of
cholesterol in striatal neurons of Npc1-deficient mice (Henderson
et al., 2000); (iii) DAT KO-mice display ataxic symptoms,
tremors, dystonia and saccade-failure (Cyr et al., 2003), typical
of related-dopamine-transporter-deficiency syndrome (Ng et al.,
2014) and late-onset NPC1 disease (Vanier, 2010).

Although the anomalies in DAT expression and PC of Pn30
Npc1 mice we report in this study appear mild, we expect
later stages of the disease to be landmarked by more robust
alterations, with a decrement of DAT expression and PC length,
as consequence of a progressive worsening of the perturbations
of plasma membrane lipid content (Peake and Vance, 2010).
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Multiple pathomechanisms triggered by mutant Huntingtin (mHTT) underlie progressive
degeneration of dopaminoceptive striatal neurons in Huntington’s disease (HD). The
primary cilium is a membrane compartment that functions as a hub for various pathways
that are dysregulated in HD, for example, dopamine (DA) receptor transmission and the
mechanistic target of rapamycin (mTOR) pathway. The roles of primary cilia (PC) for
the maintenance of striatal neurons and in HD progression remain unknown. Here, we
investigated PC defects in vulnerable striatal neurons in a progressive model of HD, the
mHTT-expressing knock-in zQ175 mice. We found that PC length is affected in striatal
but not in cortical neurons, in association with the accumulation of mHTT. To explore
the role of PC, we generated conditional mutant mice lacking IFT88, a component
of the anterograde intraflagellar transport-B complex lacking PC in dopaminoceptive
neurons. This mutation preserved the expression of the dopamine 1 receptor (D1R), and
the survival of striatal neurons, but resulted in a mild increase of DA metabolites in the
striatum, suggesting an imbalance of ciliary DA receptor transmission. Conditional loss
of PC in zQ175 mice did not trigger astrogliosis, however, mTOR signaling was more
active and resulted in a more pronounced accumulation of nuclear inclusions containing
mHTT. Further studies will be required of aged mice to determine the role of aberrant
ciliary function in more advanced stages of HD.

Keywords: primary cilium, dopamine system, Huntington’s disease, mTOR, p62

Abbreviations: ACIII, adenylate cyclase III; AD, Alzheimer’s disease; DA, dopamine; DAPI, 4′,6′-diamidino-2-
pheylindol; DOPAC, 3,4-dihydroxyphenylacetic acid; D1R, dopaminoceptive D1-receptor; GFAP, glial fibrillary acidic
protein; HD, Huntington’s disease; HPLC-EC, High-performance liquid chromatography-electrochemical detection;
5-HT, 5-hydroxytryptamine; HVA, homovanillic acid; IF, immunofluorescence; IFT-B, intraflagellar transport B; IHC,
immunohistochemistry; mHTT, mutant Huntingtin; MSNs, medium spiny neurons; mTOR, mechanistic target of rapamycin;
NeuN, neuronal nuclei; NPC1, Niemann-Pick type C1; PC, primary cilia; PD, Parkinson’s disease; PFA, paraformaldehyde;
phospho-S6, phosphorylated ribosomal protein S6; p62/SQSTM1, p62/sequestosome 1; TH, tyrosine-hydroxylase.

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 December 2019 | Volume 13 | Article 56591

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2019.00565
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2019.00565&domain=pdf&date_stamp=2019-12-20
https://creativecommons.org/licenses/by/4.0/
mailto:rosanna.parlato@uni-ulm.de
https://doi.org/10.3389/fncel.2019.00565
https://www.frontiersin.org/articles/10.3389/fncel.2019.00565/full
https://www.frontiersin.org/articles/10.3389/fncel.2019.00565/full
https://www.frontiersin.org/articles/10.3389/fncel.2019.00565/full
https://www.frontiersin.org/articles/10.3389/fncel.2019.00565/full
https://loop.frontiersin.org/people/770512/overview
https://loop.frontiersin.org/people/96102/overview
https://loop.frontiersin.org/people/868010/overview
https://loop.frontiersin.org/people/105279/overview
https://loop.frontiersin.org/people/58471/overview
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Mustafa et al. Primary Cilia in Dopaminoceptive Neurons

INTRODUCTION

Huntington’s disease (HD) is an autosomal dominant
progressive neurodegenerative disorder caused by the toxic
expansion of CAG trinucleotide repeats at the N-terminus of
the Huntingtin gene. The mechanisms underlying selective
vulnerability of dopaminoceptive medium spiny neurons
(MSNs), resulting in impaired control of voluntary movement in
HD, remain elusive (Ghosh and Tabrizi, 2018). The variability
of disease onset and progression depends on the CAG number,
and on genetic modifiers interacting with the Huntingtin
mutation [Genetic Modifiers of Huntington’s Disease (GeM-
HD) Consortium (2015)]. Multiple signaling pathways and
cellular functions are affected by mutant Huntingtin (mHTT),
including protein aggregate degradation, which results in the
accumulation of toxic proteins (Saudou and Humbert, 2016).

Primary cilia (PC) are single, non-motile microtubule-based
organelles resembling a cellular antenna that represents a hub
for receptors and components of numerous signaling pathways
(Malicki and Johnson, 2017). Lack of HTT results in reduced and
aberrant PC growth, and increased mHTT results in increased
ciliogenesis (Keryer et al., 2011). Notably, longer PC have been
observed in immortalized cellular models of HD in culture, and
ependymal cilia in the lateral ventricles are disorganized in a
mouse model of HD and in HD human post-mortem brains
(Keryer et al., 2011). Another study showed that photoreceptor
cilia pathology accounts for their degeneration in the retina of
R6/2 transgenic mice overexpressing exon 1 of the humanmHTT
(Karam et al., 2015). It has been previously proposed that PC
altered structure might affect the function of signaling pathways
whose components are localized in the PC (Maiuri et al., 2013;
Kaliszewski et al., 2015).

Interestingly, increased PC length results in the induction
of autophagy by inhibition of the mechanistic target of
rapamycin (mTOR) kinase activity (Kaliszewski et al., 2015),
and components essential for ciliogenesis are degraded by
autophagy (Pampliega et al., 2013; Tang et al., 2013). Because
autophagy is altered in HD (Ravikumar et al., 2004), as well
as dopamine (DA)-mediated signaling (Chen et al., 2013), it
is possible that HD pathophysiology depends, at least in part,
on defective cilia. These previous studies investigated neither
PC dysfunction in the most vulnerable striatal neurons, nor the
impact of defective PC on HD pathogenesis in the striatum. A
deeper understanding of the role of PC in mHTT-dependent
neurotoxicitymight help to identify new determinants modifying
HD progression.

To this end, wemonitored neuron- and stage-specific changes
of PC structure in a full-length progressive mouse model of HD,
called zQ175 (Menalled et al., 2012; Carty et al., 2015). This
knock-in model carries a chimeric human/mouse HTT exon
1 containing expanded CAG repeats within the murine htt gene
and recapitulates several hallmarks of HD pathology (Menalled
et al., 2012; Farrar et al., 2014; Carty et al., 2015; Ma et al., 2015).
Moreover, we generated a new genetic mouse model of defective
ciliary function in striatal neurons, as a tool to investigate the
specific impact of PC loss on striatal neuron maintenance and
on HD neuropathological hallmarks.

MATERIALS AND METHODS

Mice
To generate a mutant mouse in which the Ift88 gene is
conditionally ablated by the Cre-LoxP system in MSNs, we
employed the B6.FVB/N-Tg(D1RCre)Gsc (D1R:Cre) transgene,
which expresses the Cre recombinase under the control of the
dopamine 1 receptor (D1R) promoter (Lemberger et al., 2007).
The D1R:Cre mice were crossed to Ift88tm1.1Bky mice carrying the
Ift88 floxed allele (Ift88flox/flox; Haycraft et al., 2007) to generate
Ift88flox/flox; D1R:Cre mice (Ift88D1RCre; here abbreviated Ift88
cKO mice) that lack PC in MSNs. Htttmtm1Mfc/190tChdi
(zQ175 knock-in) mice were received courtesy of the CHDI
Foundation from the Jackson Laboratory. The analysis of the
genotype was performed by PCR of tail snips as previously
described (Levine et al., 1999). For the experiments reported
here, male and female mice were used and wild-type and
mutant littermates were analyzed. The zQ175 knock-in mice
carry ca. 190 CAG repeats in a chimeric human/mouse exon 1
of the murine huntingtin gene (Menalled et al., 2012). The
zQ175 mutation was kept in heterozygosity, to limit toxicity and
mimic a genetic situation more relevant for the disease, as it is
autosomal dominant (Menalled et al., 2012). These mutant mice
were born at the expected Mendelian ratio; they showed normal
lifespan and no gross abnormalities (monitored until 1-year-old).

For genotyping of D1R:Cre and floxed Ift88 alleles by PCR the
following primer pairs was used: forward-primer/Cre (5′-GGA
AAT GGT TTC CCG CAG AAC-3′) and reverse-primer/Cre
(5′-ACG GAA ATC CAT CGC TCG ACC-3′), BY919 (5′-
GGTCCTAACAAGTAAGCCCAGTGTT-3′) and BY598 (5′-
GCCTCCTGTTTCTTGACAACAGTG-3′), respectively. For the
zQ175 we used forward-primer/Neo: 5′-GAT CGG CCA TTG
AACAAGATG– 3′ and reverse-primer/Neo: 5′-AGAGCAGCC
GAT TGT CTG TTG– 3′.

Brain Dissection and Tissue Preparation
For histological analysis, brains were either transcardially
perfused or post-fixed in 4% paraformaldehyde (PFA; pH 7.2)
overnight at 4◦C. After washing in PBS (pH 7.2) the brains
were cryoprotected by incubating them in 10%, 20%, and 30%
sucrose for 3 days at 4◦C. The brains were embedded in a
coronal orientation (Tissue freezing medium, Leica), frozen by
a mixture of liquid nitrogen and dry ice, and stored at −80◦C
until sectioning (Leica CM3050S cryostat). For the analysis
of adult brains, we have used coronal sections from striatum
collected serially on Superfrost Ultraplus glass slides (12µm) and
free-floating striatum (30 µm). We analyzed the striatum in the
region comprised between Bregma +1.18 mm and −0.34 mm
based on the adult mouse brain Atlas (Franklin, 2008). For
immunofluorescence on paraffin sections, one brain hemisphere
was fixed in 4% PFA in PBS, pH 7.2 overnight at 4◦C and
paraffin-embedded.

Immunofluorescence
Immunofluorescence (IF) on cryosections was performed
according to established protocols (Gazea et al., 2016).
Cryosections (12 µm) were pre-incubated with 5% normal pig
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serum in PBS for 30 min at room temperature before overnight
incubation at 4◦C with the primary antibodies appropriately
diluted in the blocking solution. After washing in PBS the
sections were incubated with the secondary antibodies (diluted
in 5% pig serum in PBS) for 30 min at room temperature. After
further washes in PBS the sections were stained for 10 min with
4′,6′-diamidino-2-pheylindol (DAPI, Thermoscientific) diluted
in PBS.

Free-floating cryosections (30 µm) were treated in a similar
way; however, PBST (0.2% Triton X-100 in PBS) was used
for washing steps and blocking solution. After staining the
sections were placed on glass slides. Paraffin sections (7 µm)
containing the striatum comprised between Bregma +0.14 mm
and −0.98 mm were incubated with primary antibodies
overnight at 4◦C. Visualization of antigen-bound primary
antibodies was carried out following antigen retrieval (HK086-
9K, Biogenex). The following primary antibodies were used:
EM48 (1:100, MAB5374, Millipore), NeuN (1:100, MAB377,
Millipore), adenylate cyclase III (ACIII; 1:500, SC588, Santa
Cruz Biotechnology, Dallas, TX, USA), TH (1:500, AB1542,
Millipore), D1R (1:500, D2944, Sigma), glial fibrillary acidic
protein (GFAP; 1:300, G-3893, Sigma), phospho-S6 (S235/236;
91B2; 1:100, 4857S, Cell Signaling), p62/SQSTM1 (1:100, P0067,
Sigma). Incubation with the appropriate secondary antibodies
marked with the fluorophores Alexa 594 or Alexa 488 (1:100,
Thermoscientific) was followed by DAPI staining.

Confocal Microscopy Imaging and Image
Analysis
Images were acquired by a Leica SP8 confocal and a Leica
LASX software. For PC number and length quantification, we
used a 63× oil-immersion objective maximal intensity projection
z-stacked images (1 µm interval). To determine the number of
striatal NeuN positive neurons showing PC stained by ACIII
antibody eight non-consecutive free-floating cryosections per
mouse were analyzed (one every fourth section, each 30 µm
thick) in control and mutant mice. Either the number or the
length of PC per microscopic field at 63× magnification was
counted. In general, about 80 cells per mouse were measured by
the ImageJ software after tracing the ACIII signal in line with
established protocols (Miyoshi et al., 2014; Parker et al., 2016).
For semi-quantitative analysis of D1R and TH immunoreactivity,
and of GFAP and phosphoS6 positive cells, we used a 20×
oil-immersion objective for single planes. For p62 positive cells,
we used a 63× and for the EM48 a 100× oil-immersion objective.
To determine D1R and TH immunoreactivity the optical fiber
density was measured in cryosections (12 µm) at different ages
by ImageJ software. The quantification was performed in eight
coronal serial sections per mouse on 8-bit images (grayscale). To
measure the mean optical intensity the ‘‘Mean Gray Value’’ was
determined. The respective immunoreactivity was measured by
subtracting the mean gray value of the respective background
from the mean gray value of dorsal striatum. The measurements
were limited to the drawn region of interest and the same area
was selected in all sections (0.05 mm2). The number of GFAP,
pS6 and p62 and EM48 positive cells per microscopic field
was counted in at least four independent paraffin sections per

mouse in the dorsolateral striatal region. The EM48 signal area
is calculated in µm2. We used the Quick LUT view to avoid the
acquisition of images with under- and over-saturated pixels. The
quantification and counting were performed blind to genotype
and age.

HPLC Analysis of Dopamine Content
The tissue levels of DA, 3,4-dihydroxyphenylacetic acid
(DOPAC), homovanillic acid (HVA) and 3-methoxytyramine
(3-MT), were measured using high-performance liquid
chromatography with electrochemical detection (HPLC-
EC). The concentrations of endogenous DA and its metabolites
(DOPAC, HVA) were measured using HPLC-EC, according
to a previously described method (Sikora et al., 2016). Briefly,
the striatum was isolated by the adult mouse brain matrix
(coronal slices, World Precision Instruments) in the 2 mm
region comprised between Bregma +1.42 mm and −0.58 mm.
After weighing the tissue samples were deep-frozen in dry ice
and stored at −80◦C until further use. Prior to analysis, the
samples were homogenized in ice-cold 0.1 M HClO4 and were
centrifuged at 10,000 g for 10 min at 4◦C. The supernatant (5
µl) was injected into the HPLC system. The chromatography
system consisted of an LC-4C amperometric detector with a
cross-flow detector cell (BAS, IN, USA), an Ultimate 3000 pump
(Thermoscientific, USA) and a Hypersil Gold analytical column
(3 µm, 100 × 3 mm, Thermoscientific, USA). The mobile
phase consisted of 0.1 M KH2PO4, 0.5 mM Na2EDTA, 80 mg/L
sodium 1-octane sulfonate, and a 4% methanol, adjusted to
pH 3.8 with an 85% H3PO4. The flow rate was 1 ml/min.
The potential of a 3-mm glassy carbon electrode was set at
0.7 V with a sensitivity of 5 nA/V. The temperature of the
column was maintained at 30◦C. The Chromax 2007 program
(Pol-Lab, Warszawa, Poland) was used for data collection and
analysis. The external standard consisted of noradrenaline (NA),
DA, 5-hydroxytryptamine (serotonin; 5-HT) and 5-hydroxy
indole acetic acid (5-HIAA; SIGMA) at a concentration
of 50 ng/ml.

Statistical Analysis
All data are expressed as mean ± SEM. Two-tailed unpaired
Student’s t-test was used for single comparisons. Multiple
comparisons were performed either by one-way ANOVA or by
two-way ANOVAwith post hoc analyses as indicated in the figure
legends (GraphPad Prism Software Inc.).

RESULTS

Altered Primary Cilia Length in the
Striatum but Not in Cortex of zQ175 Mice
By IF and confocal analysis of brain sections, we observed
the presence of sporadic mHTT inclusions at 4 months in the
striatum. From 8 months mHTT accumulated mostly in the
striatum but also in the cortex, in agreement with previous results
(Carty et al., 2015; Figures 1A–F). To test the hypothesis that
altered PC impacts HD neuropathology, we first investigated PC
alterations in the heterozygous zQ175 knock-in model of HD.
We measured the stage-specific alterations of PC length in both
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FIGURE 1 | Context-specific changes in primary cilia (PC) length in the zQ175 Huntington’s disease (HD) mouse model are concomitant with mutant Huntingtin
(mHTT) accumulation. (A–F) Representative confocal images of mHTT identified by the EM48 antibody (red) and of PC by adenylate cyclase III (ACIII), as a marker of
PC (green) on cryosections from control and zQ175 mice in the dorsolateral striatum and cortex. Nuclei are visualized by 4′,6′-diamidino-2-pheylindol (DAPI) staining
(blue). Scale bar: 25 µm. (G–N) Representative confocal images of immunofluorescent stainings on cryosections by NeuN, as a neuronal marker (red), ACIII (green),
in the striatum (G,J) and cortex (K,N) to identify PC that protrudes from NeuN labeled neurons. Scale bars: 25 µm (G–J, M,N), 12 µm (K,L), 8 µm (insets, I and J).
Arrows point to the area in the inset. (O,P) Diagrams showing the analysis of PC average length in striatal and cortical neurons at 4 and 8 months in control and
zQ175 mice; N = 3, 5 control, and N = 4, 4 zQ175. Values represent means ± SEM. ∗p < 0.05, ∗∗∗p < 0.0005, two-way ANOVA followed by Tukey’s post hoc test
for multiple comparisons.

striatum and cortex at 4 and 8months in control and zQ175mice,
focusing on cells labeled by the neuronal nuclei marker NeuN
(Figures 1G–P). PC were identified by ACIII, a major PCmarker
in many regions of the adult mouse brain (Bishop et al., 2007).

We found that PC in dorsolateral striatum of zQ175 mice were
shorter than their littermate controls at 4 months, while they
were longer than respective controls at 8 months (Figure 1O).
Notably, PC length in the striatum of controls, decreased between

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 December 2019 | Volume 13 | Article 56594

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Mustafa et al. Primary Cilia in Dopaminoceptive Neurons

4 and 8 months, but this age-dependent decrease did not
occur in the zQ175 mice (Figure 1O). Next, we analyzed the
cell-specificity of this phenotype by measuring the average PC
length in cortical cells (Figures 1K–N). Interestingly, cortical
cells of zQ175 mice did not show changes in PC length at any
of the considered stages (Figure 1P).

Hence, mHTT accumulation either directly or indirectly
affects PC length in a stage- and region-specific fashion,
suggesting that altered PC function might contribute to striatal
vulnerability in HD.

Conditional Ablation of the Ift88 Gene in
Dopaminoceptive Neurons Leads to a Mild
Increase of Dopamine Metabolite Levels in
the Striatum
To investigate the effects of PC loss on HD neuropathology,
we first generated inducible mutant mice conditionally lacking
Ift88, a gene encoding a microtubular component essential for
the formation of the PC (Haycraft et al., 2007). These mice are
characterized by the expression of Cre recombinase under the
control of dopaminoceptive D1-receptor (D1R; Lemberger et al.,
2007; Figures 2A–D). The conditional ablation of the Ift88 gene
resulted in D1R:Cre;Ift88flox/flox (abbreviated as Ift88 cKO) mice
lacking PC in most of the striatal neurons stained for neuronal
nuclei (NeuN; Figure 2E). The Ift88 cKO mice did not show
any gross abnormalities. We monitored changes in body weight
(g) over time and we found evidence of increased weight in
the Ift88 cKO at 1 year (eight male control, 34.4 ± 6.1 vs.
six male mutants, 44.9 ± 4.9; p = 0.004 two-tailed Student’s
t-test). This conditional model enabled us to mimic a condition
of loss of PC in dopaminoceptive neurons to identify their
context-specific function. Next, we analyzed D1R expression
as a read-out of the survival of positive neurons in control
and Ift88 cKO at different ages (1, 3, 6, and 12 months;
Figures 2F–H). To investigate the impact of PC loss on
neuronal survival, we analyzed the immunoreactivity of D1R
in dorsolateral striatum at different ages in control and Ift88
cKO mice by IF and semi-quantitative analysis of D1R mean
signal intensity upon confocal imaging (Figure 2H). This analysis
showed no significant differences in D1R immunoreactivity at
any of the considered ages in control and Ift88 cKO mutant
mice, if at all a tendency to higher D1R immunoreactivity,
suggesting that PC is not required for survival of D1R MSNs
under basal conditions.

To further characterize the phenotype of the Ift88 cKO,
we investigated dopaminergic input to dopaminoceptive striatal
neurons (Figure 3). To this end, we focused on young (1 month)
and older (1 year) mice. We measured tyrosine-hydroxylase
(TH) immunoreactivity by IF (Figures 3A,B). Interestingly, TH
immunoreactivity increased in the mutant at 1 year (Figure 3C).
Next, we asked whether the loss of PC in D1R neurons affects
DA content in the striatum (Figures 3D–G). High performance
liquid chromatography followed by electrochemical detection
(HPLC-EC) showed that 1-year-old Ift88 cKO mutant mice are
characterized both by a tendency to increased levels of total
DA content in the striatum as well as by a mild but significant

increase of the twomost important DAmetabolites DOPAC, and
HVA (Figures 3D–F).

These observations indicate subtle PC-dependent
crosstalk between PC-depleted dopaminoceptive neurons
and dopaminergic neurons to cope with a potentially altered
dopaminergic neurotransmission.

Loss of PC in the zQ175 HD Mice Results
in mTOR Activation and in Larger mHTT
Nuclear Inclusions
To study the impact of PC loss on HD neuropathology, we
generated zQ175 heterozygous mice lacking PC in striatal but
not in cortical neurons in an Ift88 cKO background (double
mutants, dm; Supplementary Figure S1). To establish whether
PC loss is toxic in combination with the zQ175 mutation
and whether the combination of these mutations results in
a more severe HD phenotype, we analyzed control, Ift88
cKO, zQ175, and dm at 8 months (Supplementary Figure
S2 and Figure 4). We found no significant difference in the
number of GFAP positive cells, as a marker of astrogliosis,
associated with neurodegeneration, suggesting that there is no
induction of massive degeneration at least until this stage
(Supplementary Figures S2A–D,I). To monitor the clearance
of protein aggregates, we quantified changes in the number of
sequestosome 1 (SQSTM1/p62) protein immunopositive cells
in the dorsolateral striatum by IF in the four experimental
groups above (Supplementary Figures S2E–H,J). p62 is a cargo-
binding protein associated with proteotoxic stress (Johansen
and Lamark, 2011). As shown in Supplementary Figures
S2G,H, the localization of p62 in the zQ175 and in the dm
mice was intra-nuclear rather than cytoplasmic, as in controls
and Ift88 cKO, however, the number of p62 positive cells
was comparable between all groups. Next, we investigated
mTOR kinase activity by IF based on the levels of one of its
targets, phosphorylated ribosomal protein S6 (phospho-S6, pS6;
Figures 4A–E). Interestingly, zQ175 and dm mice showed a
higher number of pS6 positive cells in comparison to controls,
and this was significantly higher in the dm in comparison to the
zQ175 (Figure 4E), suggesting that PC loss in the zQ175 mice
promotes mTOR activation. Moreover, we analyzed mHTT
nuclear inclusions that are absent in controls and Ift88 cKO, and
visible in the zQ175 and dm (Figures 4F–I). At the age examined
(8 months), the number of mHTT positive cells was similar in
the zQ175 and dm mice (Figure 4J). The area of the mHTT
signal in the dm is ca. Thirty percent larger in comparison to the
zQ175mice, indicating that PC limit mHTT accumulation in this
model (Figure 4K).

DISCUSSION

In the present study, we addressed the following three questions:
(1) whether PC is specifically altered in different neuronal
types and HD stages; (2) what are the consequences of PC
disruption in striatal neurons for their survival; and (3) to what
extent these contribute to HD neuropathology in a neuronal
population vulnerable in HD such as the striatum. We showed
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FIGURE 2 | PC is dispensable for the maintenance of dopaminoceptive D1-receptor (D1R) expression in the striatum. (A–D) Representative images of
immunofluorescent stainings showing PC stained with ACIII (green) and NeuN (red) in control and Ift88 cKO mice at 1 month. (E) Diagram shows the percentage of
NeuN positive cells showing ACIII staining in control and Ift88 cKO at 1 month (N = 3). Error bars represent SEM, ∗∗∗p < 0.001 based on two-tailed unpaired
Student’s t-test. Scale bars represent 30 µm in (A,C) and 12 µm in (B,D). (F,G) Examples of D1R immunostaining (green) on cryosections showing dorsolateral
striatum in control and Ift88 cKO at 6 months; str, striatum; cx, cortex. (H) Diagram showing semi-quantitative analysis of D1R immunoreactivity (ir) in dorsolateral
striatum at different ages; N = 3–5 controls, N = 3–5 Ift88 cKO. Values represent means ± SEM. Scale bar in (F,G): 100 µm. No significant differences with
respective controls by unpaired Student’s t-test.

that PC length is affected in the striatum in association with
mHTT accumulation. PC disruption in MSN does not affect
neuronal survival. Subtle compensatory mechanisms might be
activated by dopaminergic neurons in response to PC loss on
dopaminoceptive neurons; however, a detailed characterization
awaits future experiments. PC disruption in striatal neurons of
an HD mouse model results in increased mTOR activation and
larger mHTT nuclear inclusions, suggesting that PC is required
in a pathological context.

Changes in PC length have been reported in previous animal
and cellular models expressing mHTT; however, this is the first
study focusing on PC pathology in the striatal neurons that
are pathologically affected in HD and addressing the impact
of loss of PC in a progressive mouse model of HD. Here, we
identified changes in PC length that are concomitant withmHTT

accumulation: PC length is altered in striatal but not in cortical
neurons in the zQ175 mice. Previous work has indicated that
HTT is important for the transport of proteins required for
ciliogenesis (Keryer et al., 2011). Ciliogenesis is a tightly regulated
process, and it is crucial for its proper function that PC is
produced in the right size and time (Avasthi andMarshall, 2012).
Given the time- and cell-specific impact of mHTT on PC, it will
be important to better understand how differences in mHTT
state differentially modulate PC maintenance.

Interestingly, various HD models show altered levels of DA
and its metabolites (Smith et al., 2014; Koch and Raymond,
2019), and lack of dopaminergic inputs results in longer
PC in the striatum (Miyoshi et al., 2014). Hence changes
of DA input in the zQ175 mice might alter PC length.
Because DA receptors are located in the PC membrane
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FIGURE 3 | Loss of striatal PC results in a mild increase of dopamine (DA) metabolites in the striatum. (A,B) Examples of tyrosine-hydroxylase (TH)
immunofluorescence (IF), as a marker for dopaminergic projections, in cryosections from the dorsolateral striatum of control and Ift88 cKO mice (1-year-old). Scale
bar: 100 µm. (C) Semi-quantitative analysis of TH immunoreactivity (ir) at 1 and 12 months; N = 5 per group. (D–G) Levels of DA and its major metabolites
[3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyramine (3-MT)] in the striatum by HPLC-EC; N = 5 per group. Values represent
means ± SEM. ∗p < 0.05, ∗∗∗p < 0.001 by unpaired Student’s t-test with respective controls.

(Marley and von Zastrow, 2010; Domire et al., 2011; Leaf and
Von Zastrow, 2015), it will be important to investigate striatal
synaptic transmission, and motor and psychiatric phenotypes
in the HD mice lacking PC. Future studies should address the
behavioral implications of the mild increase in DA metabolite
levels and increased TH expression in the striatum. These studies
might help to understand the impact of current DA-based
symptomatic HD treatments on PC physiology and homeostasis.

The generation of tools enabling targeting of PC function
independently of changes in their structural integrity might
be necessary to define subtle regulatory functions. The Ift88
cKO approach, in which both PC function and structure
are affected, does not allow us to dissect out the specific
role of PC signaling from PC structure, however, it does
allow us to identify cell-autonomous effects as well as
non-cell autonomous responses to ciliary impairment. In

aged homozygous zQ175 mice mTOR activity increases (Abd-
Elrahman and Ferguson, 2019). We found in the zQ175 and
in the dm mice increased phospho-S6 positive cells. Hence,
another possible mechanism to explain changes in PC length
might be linked to a block of autophagy by mTOR activation
(Pampliega et al., 2013). Together, it will be important to analyze
older zQ175 and dm mice. Conditional ablation of Ift88 in
neural progenitors by the Nestin-Cre transgenic line revealed a
significant increase in mTOR pathway activity and phospho-S6
ribosomal protein levels, resulting in hydrocephaly at late
embryonic stages (Foerster et al., 2017). In the D1R-Cre driven
conditional Ift88 knock-out, phospho-S6 does not increase in
comparison to controls. These results indicate the cell-type,
developmental stage and age-specific function of PC alterations,
and support the need to further address this question in a mature
and aging brain.
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FIGURE 4 | Impact of PC loss in medium spiny neurons (MSNs) of zQ175 HD mice on the mechanistic target of rapamycin (mTOR) pathway and mHTT nuclear
inclusions. (A–D) Representative confocal images of phopsho-S6 (pS6) IF (green) and DAPI staining (blue) on paraffin sections showing dorsolateral striatum in
control, Ift88 cKO, zQ175, and dm at 8 months. Scale bar: 25 µm. (E) Quantification of the pS6 positive cells expressed as mean values of the number of counted
cells per microscopic field. Control vs. zQ175 ∗p < 0.05; control vs. dm ∗∗∗p < 0.0001 Ift88 cKO vs. dm ∗∗∗p < 0.001, zQ175 vs. dm ∗∗p < 0.01 by one-way
ANOVA followed by Dunnett’s post hoc test for multiple comparisons. Values represent means ± SEM. pS6: control (N = 5), Ift88 cKO (N = 5), zQ175 (N = 6) and dm
(N = 5) mice. (F–I) Representative confocal images of mHTT immunostaining (green) by EM48 antibody and DAPI (blue) on paraffin sections from dorsolateral
striatum in control, Ift88 cKO, zQ175, and dm at 8 months. Scale bar: 10 µm. (J,K) Quantification of the EM48 positive cells expressed as a percentage of DAPI
positive cells and of the mean EM48 signal area (in µm2) per microscopic field. Values represent means ± SEM. ∗p < 0.05 (p = 0.019) based on two-tailed unpaired
Student’s t-test; zQ175 (N = 8) and dm (N = 6) mice.

Diseases primarily caused by ciliary dysfunctions are
commonly referred to as ciliopathies. As of yet, we cannot ascribe
HD among the primary ciliopathies, nevertheless, PC structure
and function are altered in association with a more severe
phenotype. Notably, the role of PC in neuronal homeostasis,

and in the control of the cellular stress response signaling
cascades is emerging in other neurodegenerative disorders. PC
pathology has been described for example in Alzheimer’s disease
(AD), in Parkinson’s disease (PD) and in spinocerebellar ataxias,
another polyglutamine disease, although distinctmechanisms are
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probably involved (Steger et al., 2017; Bowie et al., 2018; Dhekne
et al., 2018; Vorobyeva and Saunders, 2018). Interestingly, PC
were elongated in the hippocampus of the APP/PS1 mouse
models of AD compared with wild-type mice, and serotonin
5-HT6 receptors playing a critical role in AD development
regulate the morphology and function of neuronal PC (Hu et al.,
2017). Moreover, in mouse models of PD expressing mutant
LRRK2 R1441C, PCwas affected in cholinergic neurons while the
overall ciliation of neurons in the striatum was not significantly
different from wild type (Steger et al., 2017; Dhekne et al.,
2018). Nevertheless, defective ciliogenesis in striatal cholinergic
neurons might impair a protective mechanism involving
non-cell autonomous Sonic hedgehog between cholinergic
and dopaminergic neurons (Gonzalez-Reyes et al., 2012).
The Spinocerebellar ataxia type 11-associated mutation of
the serine/threonine kinase Tau tubulin kinase 2 dominantly
interferes with ciliogenesis and cilium stability (Bowie et al.,
2018). Shortened primary cilium length and dysregulated Sonic
hedgehog signaling were also reported in Niemann-Pick type C1
(NPC1) disease, a neurodegenerative lysosomal storage disorder
caused by mutations in the NPC1 gene (Canterini et al., 2017).

In summary, although we obtained similar mean PC length
as previously reported for striatum and cortex in mice (Sipos
et al., 2018), a systematic quantitative comparison of PC
marker expression and length in various neurodegenerative
disease models and in human tissues will benefit from the
use of automatized segmentation approaches (Vorobyeva and
Saunders, 2018), and high content automated image acquisition.
These future studies will be important to determine in other
disease models which cells and tissues display the cilia defects
and at what stages, and try to understand when, whether and how
those changes lead to specific neuronal loss in the brain.
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