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Editorial on the Research Topic

Multiscale Lattices and Composite Materials: Optimal Design, Modeling and Characterization

The Research Topic “Multiscale lattices and composite materials:” (MLCM) is focused on
the optimal design, modeling, and characterization of novel lattices, composite materials, and
structures at different scales, through the control of the internal architecture of the system.

A fundamental goal of this article collection is the study of mechanical metamaterials that are
able to form next-generation-generation cellular solids; lattice materials, multiscale composites;
and structural-scale systems. The collection took inspiration from the peculiar behaviors exhibited
by structured materials at multiple scales (Bosia et al., 2018). The latter include, for example, high
stiffness, strength, and toughness at extremely low densities (Meza et al., 2014), phononic band-
gaps (Lu et al., 2009), sound control ability (Cummer et al., 2016); negative effective mass density
(Liu et al., 2000); localized confined waves (Theocharis et al., 2013), to name but a few examples.
The research reported devoted special attention to the creation of complex mechanical systems
with properties derived mainly from their geometric design rather than their chemical composition
(Cummer et al., 2016; Bertoldi et al., 2017). Also investigated was the use of multiscale lattices to
optimally design reinforcing elements for novel composite materials (Fleck et al., 2010; Li et al.,
2014). The chosenmodeling and experimental approaches were able to predict and characterize the
intrinsically complex mechanical behavior of the analyzed systems through multiscale techniques.

The papers forming the MLCM collection can be grouped into two basic categories. The first
of these is centered around the design, modeling, and characterization of lattice structures at
different scales, through the maximization of the frequency bandgap width at suitable center
frequencies (Arretche andMatlack; Bacigalupo et al.); the optimal design andmechanical modeling
of tensegrity metamaterials (De Tommasi et al.), superstable pre-stressed networks (Kelly et al.),
graphene sheets (Genoese et al.); dome-shaped auxetic metamaterials (Easey et al.); and solar
façades that employ dynamic sunscreens with tensegrity architecture (Babilio et al.). This first
group of papers also includes contributions dealing with the development of non-destructive
testing and structural health monitoring techniques that make use of guided elastic waves (Miniaci
et al.), as well as the experimental characterization of the microstructure of the Nephila dragline
silk (Stehling et al.).
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A second category focuses on the modeling and
characterization of novel composite materials, with emphasis
on the mechanical properties, for example, of bamboo
fiber-reinforced composites (Javadian et al.); the effects of
defects, porosity, and damage on the mechanical properties of
metallic materials to be employed in additive manufacturing
processes (Goodall et al.); the macroscopic response of
micropolar continua with anisotropic microstructure
(Fantuzzi et al.); the addition of lattice-shaped inclusions
to metaconcretes (Briccola et al.); and the propagation of
pressure waves in three-dimensional arrangements of coated
spheres (Dupont et al.).

Our hope is that the research presented in this collection
will stimulate new and exciting research in the fields of
mechanical metamaterials and multiscale composite materials
and structures, through an integrated approach that includes the
design and the mechanical modeling of real-scale, or reduced-
scale prototypes; the optimal control of suitable design variables;
and the experimental validation of the theoretical predictions.
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On the Interrelationship Between
Static and Vibration Mitigation
Properties of Architected
Metastructures
Ignacio Arretche and Kathryn H. Matlack*

Department Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States

Continuous demand for improvement of material performance in structural applications

pushes the need for materials that are able to fulfill multiple functions. Extensive work

on effective static properties of different architected materials have shown their ability to

push the modulus-density design space, in terms of high effective moduli at low relative

density. On the other hand, variations in geometry allow for these materials to manipulate

mechanical wave propagation, producing band gaps at certain frequency ranges. The

enhanced static and vibration properties of architected metamaterials make them ideal

candidates for multi-functional purposes. In this paper, we take inspiration from the

mass-efficient static behavior of different lattice geometries to fully explore the capabilities

of a periodic and locally resonant metastructure design platform. We numerically study

the influence of four different lattice topologies on the dynamic and static behavior of

metastructures that combine a periodic lattice geometry with locally resonant inclusions.

We analyze the influence of lattice geometry on band gap frequencies in terms of the

lattice effective static properties. We show that vibration mitigation over a wide range

of frequencies is achieved by tailoring the lattice geometry for constant unit cell mass

and size. Specifically, by selectively placing material inside the unit cell, we achieve up

to a 6-fold change of lower edge band gap frequency and up to an 8-fold change of

normalized band gap width, for metastructures with low-density lattices. We introduce

multi-functional performance parameters to evaluate the metastructures in terms of their

effective static stiffness and band gap properties. These parameters can inform the

design of tailored materials that have desired mechanical and dynamic properties for

applications in e.g., aerospace and automotive components, and energy infrastructure.

Keywords: metamaterials, multifunctionality, vibration mitigation, architected materials, band gaps

INTRODUCTION

Modern engineering continuously pushes the need for higher levels of mass efficiency. Light, load
bearing materials on aerospace, aircraft, and automotive components are fundamental for the
pursuit of higher performing systems. In addition, vibration propagation control is not only crucial
for customer satisfaction, especially in aircraft, and automotive systems, but also for the safety of the
components such us protecting satellites or electronic equipment from their dynamic environment
during satellite launch. In many cases, suppressing vibrations typically require
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additional damping material or active control mechanisms. A
stiff, mass efficient material that additionally includes vibration
control capabilities can avoid the need to add alternative
vibration attenuation mechanisms.

Architected materials have shown enhanced static properties
as well as the ability to control elastic wave propagation, making
them ideal for multifunctional applications. On one hand, they
have opened up new areas of the material property space. This,
in addition to evolving 3D printing techniques that enable their
manufacturing, have motivated researchers to explore a variety
of architectures (Schaedler and Carter, 2016) ranging from lattice
topologies (Gibson and Ashby, 1997; Deshpande et al., 2001b;
Luxner et al., 2004; Moongkhamklang et al., 2010; Vigliotti and
Pasini, 2012; Zheng et al., 2014), foam-like metamaterials (Berger
et al., 2017) triply periodic minimal surface geometries (Wang
et al., 2011; Dalaq et al., 2016), hierarchical structures (Doty
et al., 2012; Meza et al., 2015), honeycomb structures (Gibson
and Ashby, 1997; Wadley, 2006; Fleck et al., 2010), and woven
topologies (Erdeniz et al., 2015; Ryan et al., 2015; Zhang et al.,
2015).

On the other hand, through Bragg scattering and local
resonance phenomena, architected materials have shown to
support band gap formation (Deymier, 2013; Hussein et al., 2014
and references therein; Bayat and Gaitanaros, 2018). Particularly,
recent efforts have been made targeting low and broadband band
gaps. Wang et al. (2015) demonstrated that locally resonant
band gaps can be achieved in 2D periodic lattices by tuning
their connectivity; D’Alessandro et al. (2016) and D’Alessandro
et al. (2018) developed a 3D single-phase phononic crystal that
shows ultra-wide complete band gaps. Taniker and Yilmaz (2015)
use inertial amplification mechanisms to obtain wide and low
frequency band gaps in an octahedron lattice.

These enhanced dynamic and static properties make
architected materials promising for multifunctional applications.
For example, previous investigations have explored architected
materials with static, thermo-mechanical and energy absorption
properties (Evans et al., 1998, 2001; Wadley, 2006; Valdevit
et al., 2011; Wang et al., 2011, 2017; Dou et al., 2018), tunable
Poisson’s ratio and vibration mitigation (Chen et al., 2017),
and honeycomb sandwich panel structures that are stiff and
can attenuate noise (Han et al., 2017; Tang et al., 2017).
The relationship between static and band gap properties of
architected materials has also been studied in the literature
(Phani et al., 2006; Nemat-Nasser et al., 2011).

Here we build on this prior work, and we present a systematic
comparison of static elastic properties to band gap properties in
metastructures, and a way to interpret the band gap frequencies
in terms of local static effective properties of their constituents.
To do this, we expand the design space of metastructures that
combine geometric lattices with embedded resonators, originally
introduced in Matlack et al. (2016). We study this metastructure
design because it has numerically and experimentally shown
to support tailorable band gaps through small manipulations
of its lattice geometry. Band gaps in these metastructures are
bounded between acoustic modes and optical modes, which
makes them particularly suitable for achieving low frequency
band gaps. Further, it is a 3D structure so it could conceivably be

incorporated into structural components, and a straightforward
manufacturing procedure was previously introduced to fabricate
these metastructures (Matlack et al., 2016). The main objectives
of this paper are to show how this metastructure design platform
can achieve band gaps across different frequency ranges, to
understand why different metastructures have different band
gaps, and to understand the trade-offs between their band gap
frequencies and widths and their static stiffness.

In this article, we analyze four different lattice-resonator
metastructures with different lattice topologies: cubic, Kelvin,
octet and idealized foam. We use finite element methods (FEM)
to numerically analyze their static and dynamic behaviors. We
analyze the effective static properties of both the individual
lattices and the metastructures, for lattice relative densities
ranging from 1% to 28%. We analyze wave propagation through
metastructures with 1D periodicity, to understand the influences
of lattice geometry and relative density on their band gaps.
Modal analysis is used to qualitatively explain the differences in
the dispersion curves in terms of the interaction between the
lattice and resonators, as well as lattice effective properties. We
calculate vibration transmission through finite metastructures
to study the efficiency of wave mitigation. Finally, we compare
the metastructure’s dynamic performance in terms of their
broadband and low-frequency band gap characteristics and
introduce multifunctional performance parameters that evaluate
themetastructures in terms of their vibrationmitigation behavior
and static stiffness.

METASTRUCTURE GEOMETRIES

The metastructures studied combine a periodic lattice geometry
with embedded local resonators, introduced previously (Matlack
et al., 2016). These metastructure unit cells (Figure 1B)
are composed of an array of lattice unit cells modeled as
polycarbonate (Figure 1A) with an embedded solid steel cube
resonator. Four different lattice unit cells are studied: idealized
foam (Gibson and Ashby, 1982), Kelvin or tetrakaidekahedron,
cubic, and octet (Figure 1A). Themetastructure unit cells studied
contain a 5L x 5L x 6L array of the lattice (Figure 1B). Note the
6L dimension along the length is to accommodate the idealized
foam geometry configuration.

The idealized foam lattice is based on the geometry originally
proposed by Gibson and Ashby (Gibson and Ashby, 1982). It is
designed to contain 3 struts at each node in order to introduce
bending deformations in a cubic unit cell, which results in a
modified cubic unit cell of 2L to maintain a cube side length
of L. All other lattices geometries contain a unit cell length of
L. Finite metastructures explored in the multifunctional analysis
are configured as 6 metastructure unit cells in length (Figure 1C)
since it has been shown that this is enough to approximate band
gaps of an infinitely periodic medium (Matlack et al., 2016).

The static properties of the lattice geometries and the static
and dynamic properties of the metastructures are evaluated in
terms of the relative density of their lattice unit cells (ρrel). We
hold the lattice unit cell length (L) constant and vary the thickness
(t) to achieve lattice relative densities from 1% to 28% without

Frontiers in Materials | www.frontiersin.org November 2018 | Volume 5 | Article 688

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Arretche and Matlack Multifunctionality of Architected Metamaterials

FIGURE 1 | Metastructure geometries. (A) Lattice unit cells. (B) Metastructure unit cells. (C) Finite metastructures.

TABLE 1 | Dimensions of the metastructures studied.

t (mm) ρrel (%) L (mm) a (mm)

swept 1→ 28 4 24

changing the metastructure periodicity constant (a). Geometry
dimensions of the lattices are given in Table 1.

We must explicitly point out that ρrel does not include
the resonator, whose mass and size remains constant across
all metastructures presented here. Including the resonator, the
metastructure relative densities studied here range from 61% to
72%, where 100% relative density represents the steel resonator
embedded in bulk polycarbonate. We present results in terms of
lattice relative density to highlight the differences in band gaps
that can be achieve due only to differences in geometry, while
keeping the total mass constant. This treatment also allows us to
confirm the lattice unit cell static results to those in the literature
(e.g., Gibson and Ashby, 1982; Deshpande et al., 2001b; Luxner
et al., 2004; Zheng et al., 2014), and to interpret band gaps of
the metastructures in terms of the lattice unit cell properties.
However, a fair comparison with other vibration mitigation
materials should be done in terms of the metastructure relative
density, and not the lattice relative density. To address this, we
include metastructure relative density as a reference in figures
related to metastructure properties.

STATIC PROPERTY RESULTS

Lattice Static Properties
Prior work has shown the ability to open new areas of the
stiffness-relative density space through lattice materials, e.g.,
(Gibson and Ashby, 1982; Deshpande et al., 2001b; Luxner et al.,
2004; Zheng et al., 2014). Furthermore, at low relative densities

where the strut cross section is small compared to its length and
the effects of vertex stiffness do not play a major role, the scaling
laws of static effective properties of the lattice material can be
described by the following power-law approximations (Gibson
and Ashby, 1997):

Elattice

Es
= Cρrel

n (1)

Glattice

Es
= Dρrel

r (2)

where ρrel is the lattice relative density, C, D, n, and r are
proportionality constants and scaling exponents that depend
on the lattice geometry, Es is the Young’s modulus of the
bulk material and Elattice and Glattice are the lattice effective
Young’s and shear moduli, respectively. Lattice materials can be
further classified into bend- and stretch-dominated structures,
depending on the predominant deformation of their struts when
exposed to external loading (Deshpande et al., 2001a). Effective
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FIGURE 2 | Lattice effective mechanical properties in terms of lattice relative

density. Effective (A) Young’s modulus and (B) shear modulus.

TABLE 2 | Scaling exponents and proportionality constants for power-law

approximations of Elattice and Glattice for the four lattice geometries.

Geometry n r C D

Idealized foam 2.1 2.1 1.1 0.1

Kelvin 2.1 2.3 1.2 0.9

Cubic 1.1 2.2 0.5 0.2

Octet 1.1 1.1 0.2 0.1

moduli of bend-dominated lattices have a quadratic dependence
on relative density (n = 2, r = 2) while effective moduli of
stretch-dominated lattices have a linear dependence (n = 1, r =
1).

Here, we characterize the effective moduli of the four lattice
geometries (without an embedded resonator) presented in
Figure 1A. We will use these lattice properties to understand the
static and dynamic behavior of the metastructures. Results are
plotted in double logarithmic scale in Figure 2 and calculated
scaling exponents n and r and proportionality constants C and
D are presented in Table 2.

We observe a stretch-dominated behavior of the octet lattice
and bend-dominated behaviors of Kelvin and idealized foam
lattices, consistent with many prior works (Gibson and Ashby,
1982; Deshpande et al., 2001b; Luxner et al., 2004; Zheng et al.,
2014). The cubic lattice exhibits a mixed behavior. Under tension
or compression, its behavior is stretch-dominated since the struts
parallel to the applied force compress while the perpendicular
ones have a negligible deformation. However, under shear
deformation, struts perpendicular to the load direction bend, and
struts parallel to the load direction have negligible deformation,
thus its behavior is bend-dominated.

This behavior applies to the low relative density range (up to
about 15%). At larger lattice relative densities, the rigidity of the
vertex has a larger influence, i.e., bending deformation in stretch-
dominated structures and axial deformation in bend-dominated
structures cease to be negligible. The moduli at higher relative
densities gradually deviate from the presented approximations.

Metastructure Static Properties
We calculate the static stiffness, Kstatic, of finite metastructures
shown in Figure 1C. The finite metastructures have a beam

TABLE 3 | Scaling exponents for power-law approximations of axial, bending, and

torsional stiffness of finite metastructures.

Geometry Kaxial Kbend Ktors

Idealized foam 2.1 2.2 2.2

Kelvin 2.1 2.1 2.3

Cubic 1.1 1.6→ 1.3 2.2

Octet 1.1 1.1 1.1

like geometry, thus we can numerically calculate effective axial
(Kaxial), bending (Kbend) and torsional (Ktors) stiffnesses using
the force-displacement relations that define static stiffness of a
conventional cantilever beam (see section Finite Metastructure
Static Stiffness). We characterize Kstatic for metastructures to
(1) understand the influence of Elattice and Glattice (lattice
static properties) on Kstatic (metastructure static properties),
and (2) to characterize the multifunctional properties of finite
metastructures in terms of their static and dynamic (band gap)
properties. We focus on stiffness properties of metastructures
(as opposed to modulus values) because due to their beam-like
geometry, we can characterize the metastructure static behavior
in terms of well-known concepts of beam axial, bending and
torsional stiffness.

The calculated Kstatic of the metastructures as a function
of lattice relative density (Figure 3) follow the power-law
approximation in Equation 1 for lattice effective properties. We
observe that the scaling exponents of Kaxial (Table 3) agree with
those of Elattice (Table 2). Thus, we infer that Kaxial ∝ Elattice. In
the same way, agreement of scaling exponents of Ktors (Table 3)
with those of Glattice (Table 2) suggest that Ktors ∝ Glattice. For
Kbend, both Elattice and Glattice seem to be involved. The transition
in slope in the double logarithmic scale of the cubicmetastructure
(Figure 3B) from 1.6 to 1.3 suggests a stronger dependence on
Elattice with increasing lattice relative density. This is consistent
with shear deformations observed at lower lattice relative density
(Figure 3D) that decrease in magnitude at higher lattice relative
density values (Figure 3E). Note the transition is not present in
other lattices due to the similar scaling exponents of their Elattice
and Glattice.

While we keep the resonator size constant throughout all
static analyses of finite metastructures in this work, it should
be noted that the size of the resonator changes Kstatic. The
resonator stiffens the lattice within the metastructure at the
lattice-resonator interface, resulting in an overall increase in
Kstatic. An increase in resonator surface area increases Kstatic, and
an increase in resonator volume also increases Kstatic since the
resonator material is significantly stiffer than that of the lattice.
As we decrease resonator size, Kstatic asymptotically approaches
values ofKstatic for ametastructuremade purely of latticematerial
without a resonator.

WAVE PROPAGATION IN
METASTRUCTURES

Band Gaps
The dispersion relations and modal displacements of the four
different metastructures for a lattice relative density of 8.3% are
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FIGURE 3 | Finite metastructures mechanical properties. (A) Kaxial (B) Kbend (C) Ktors (D) Deformation of cubic finite metastructure with 1% relative density under

bending. (E) Deformation of cubic finite metastructure with 28% relative density under bending. Metastructure relative densities are shown for comparison.

presented in Figure 4. In order to achieve the same lattice relative
density and constant unit cell size across all geometries, we
use different lattice thicknesses for the different metastructures.
Dispersion curves show that the selective placement of the
material inside the lattice unit cell space results in considerable
differences in band gaps of the metastructures. The lower edge
of the band gap ranges from 1,099Hz in the idealized foam
metastructure to 2579Hz in the octet metastructure. This is about
a 2-fold difference without any change in total mass. In the same
manner, normalized band gap widths range from 101% in the
octet metastructure to 37% in the cubic metastructure (about a 3-
fold change in normalized band gapwidth). Thesemetastructures
show a large range of their band gap properties while keeping
the total mass constant, solely due to the difference in lattice
geometry.

Analyzing Band Gaps in Terms of Lattice
Static Properties
Analysis of the modal displacements presented in Figure 4 shows
that the band gaps are generated between lower frequency
resonator modes, where most of the modal mass is concentrated
in the resonator, and higher frequency lattice modes, where
modal mass is concentrated in the lattice. We observe four low-
frequency resonator modes: two bending modes, one torsional
mode, and one axial mode. As an example, we analyze these
modes and their dependence on lattice static properties through
the example of the octet metastructure (Figure 5). However,
this analysis can be extended to other metastructure geometries
since, as we observe in Figure 4, they show analogous modal
displacements to that of the octet.

Resonator Modes

The first bending resonator mode (Figures 4a1,b1,c1,d1) is
characterized by a translation of the resonator perpendicular to

the axis of wave propagation. In this dispersion branch, there
are actually two degenerate bending modes due to symmetry
and material isotropy. The modal displacements reveal that the
transverse motion of the resonator produces shearing of the
lattice units to the left and right of the resonator (Figure 5d1).
From this observation, we infer that the modal stiffness of this
mode will be proportional to Glattice. This is consistent with the
fact that the frequency at the band edge increases with increasing
Glattice (in ascending order: idealized foam, cubic, Kelvin, octet).

The second resonator bending mode (Figures 4 a4,b4,c3,d4)
is characterized by a rotation of the resonator about an axis
perpendicular to the axis of wave propagation. Like the first
bending mode, there are two of these modes (rotation about the
y and z-axis), which are degenerate. Because of its higher order
nature, this mode does not start from the origin of the dispersion
diagram, thus it is interesting to inspect its evolution along the
wavenumber spectrum. At ka/π=0 (long wavelength regime) the
Floquet boundary conditions (see section Dispersion Relations)
impose equal displacement fields on the two faces of periodicity.
As a result, the rotation of the resonator generates shearing
of the lattice units that surround it (Figure 5d4 (ka/π=0)).
The deformation of the unit cells suggest that the modal
stiffness of this mode is dominated by Glattice. At ka/π=1,
the Floquet boundary condition impose displacement fields of
the periodic faces to be equal in magnitude and opposite in
sign. Here, we observe relative displacement in the y-direction
(or z for the analogous mode) between lattice units in front
of and behind the resonator as it rotates. These units now

stretch or compress (depending on their location) and the shear
deformation of top and bottom lattice units seems to be reduced
(Figure 5d4). From analyzing the mode shapes, we predict
that modal stiffness will transition from being proportional to
Glattice to being proportional to Elattice, as wavenumber increases.
We observe that as Glattice increases so do the frequencies
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FIGURE 4 | Dispersion relations and modal displacement for the different metastructures with lattice relative density equal to 8.3%. (A) Idealized foam. (B) Kelvin.

(C) Cubic (D) Octet. (Modal displacements are taken at ka/π=1).

of this mode at the long wavelength edge (idealized foam,
cubic, Kelvin, octet in ascending order). Frequencies at the low
wavelength edge increase with Elattice (idealized foam, Kelvin,
octet, cubic in ascending order). Cubic and idealized foam
metastructures exhibit a positive slope of this mode whereas octet
and Kelvinmetastructures have a negative slope. The relationship
between Elattice and Glattice of individual lattices does not solely
explain why the sign of the slope of this mode varies among

metastructures, so there must be additional influences related to
how strongly the lattice properties contribute to modal stiffness
and differences in modal mass at ka/π=0 compared to ka/π=1.

The torsional resonator mode (Figures 4a2,b2,c2,d3) consists
of the rotation of the resonator about the axis of wave
propagation. This mode involves shear deformation of the
lattice unit cells (Figure 5d3). The modal displacement increases
with x-distance from the resonator, and the lattice units
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FIGURE 5 | Detailed view of octet modal displacements, according to Figure 4. Geometries are cross-sectioned for a better description of motion. Modal

displacements are taken at ka/π=1 unless specified.

immediately surrounding the resonator simply rotate without
any deformation. We look once more at the dispersion diagram
and confirm that the frequency of this mode increases withGlattice

(in ascending order: idealized foam, cubic, Kelvin, octet).
In the axial resonator mode (Figures 4a3,b3,c4,d2) the

resonator translates in the direction of wave propagation. The
lattice deforms under both shear and compression/tension
depending on their location (Figure 5d2). While lattice unit cells
to the left and right of the resonator compress and stretch, unit
cells located at the top and bottom of the resonator shear. The
modal stiffness of this mode is thus dictated by both Elattice
and Glattice. We inspect the dispersion relations and observe
that frequencies of this mode increase with Elattice + Glattice (in
ascending order: idealized foam, Kelvin, octet, and cubic). Note
this mode was used in prior work to change the number of beams
undergoing stretch, to preferentially lower the band gap (Matlack
et al., 2016).

We gather further supporting evidence of the effects of lattice
effective properties on the metastructure band gaps by observing
how modal stiffness of each mode evolves with lattice relative
density. Following the form of lattice and metastructure static
properties, we predict that themodal stiffness will follow a power-
law behavior with respect to the lattice relative density. We
calculate the scaling exponents of the best-fit curve of modal
stiffness vs. lattice relative density and present them in Table 4.
We observe that scaling exponents of the 1st bending mode agree
quite well with those of Glattice (Table 2) for all metastructures.
Thus, the modal stiffness 1st bending mode is proportional to
Glattice. Similarly, we find agreement between scaling exponents
of 2nd bending (ka/π=0) modal stiffness and Elattice, 2nd bending
(ka/π=1) modal stiffness andGlattice, 1st torsional modal stiffness
and Glattice. The 1st axial modal stiffness depends on both Elattice
and Glattice and so it requires special attention. For all lattices
except the cubic, their scaling exponents are the same for both
Elattice and Glattice and they agree with that of 1st axial modal

stiffness. In the cubic case, we observe agreement between cubic
Elattice and 1st axial modal stiffness scaling exponent. This is
because the cubic Elattice is large compared to its Glattice and the
effects of Glattice become negligible.

By analyzing the mode shapes, we conclude that the modal
stiffness of the resonator modes depends strongly on the effective
properties of the lattice. The first bending modes are dominated
by the Glattice, the second bending modes transition from being
dominated by Glattice to being dominated by Elattice, the axial
mode is dominated by a combination of Elattice andGlattice and the
torsional mode is dominated by the Glattice. Since the lower edge
of the band gap in these metastructures are generally dominated
by the resonator modes, this gives us a way to estimate the lower
edge frequency range or inform the design of the metastructure
to tune the lower edge of the band gap to the desired frequency
range.

Lattice Modes

In the metastructure’s high frequency range, the resonator’s
displacement is negligible, and themodal displacement is isolated
in the lattice units (Figures 4a5-6,b5-6,c5-6,d5-6). Since the
modal mass is much smaller than that of the resonator modes,
these modes are generated at higher frequencies. As observed in
Figure 4 there are numerous upper lattice modes. Since we are
interested in low frequency band gaps, we will only analyze those
that define the upper edge of the first full and polarized band
gaps (see section Performance Parameters for polarized band gap
definition).

Torsional and full band gaps upper edge is defined by the
second torsional mode (Figures 4a5,b5,c5,d5). Taking a closer
look at the modal displacements it can be observed that since the
resonator has small movement so do the faces of the lattice units
attached to it (Figure 5d5). The displacement of the rest of the
unit cell is parallel to the resonator’s face and increases further
away from it. The displacement visually approximates shearing
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TABLE 4 | Scaling exponents for power-law approximations of modal stiffness vs. relative density.

Geometry 1st

bending

2nd bending (ka/π=0) 2nd bending 1st torsional 1st axial 2nd torsional 2nd axial

(ka/π=0)

Idealized foam 2.1 2.1 2.1 2.2 2.4 2.2 2.2

Kelvin 2.3 2.3 2.1 2.3 2.2 2.2 2.3

Cubic 2.2 2.2 1.2 2.2 1.2 2.1 2.2

Octet 1.1 1.1 1.1 1.1 1.2 1.2 1.3

Modal stiffnesses are calculated at ka/π=1 unless otherwise specified.

FIGURE 6 | Dispersion relations for the Kelvin metastructure with lattice relative density of 8.3% and resonator side length equal to (A) 3L, (B) 2L, and (C) L. The

lowest band gaps are indicated by gray boxes. Markers indicate the edge frequencies of modes of interest: 1st bending resonator mode (blue-square), torsional

resonator mode (orange-asterisk), axial resonator mode (purple-circle), 2nd bending resonator mode (green-diamond), torsional lattice mode (red-cross), and axial

lattice mode (gray-star).

of the lattice unit cells, so we hypothesize that this upper mode
modal stiffness should primarily depend on Glattice. We inspect
the dispersion diagrams and find that the uppermode frequencies
increase with Glattice (idealized, cubic, Kelvin, octet in ascending
order). This is further supported by the good agreement, for all
topologies, between scaling exponents of the modal stiffness of
the 2nd torsional mode (Table 4) and Glattice (Table 2).

Upper edge of the axial band gaps is defined by the second
axial mode in the long wavelength region (Figures 4a6, b6,
c6,d6). As in the second torsional mode, we observe shearing
of the units that surround the resonator (Figure 5d6 (ka/π=0)).
Thus, we predict that the modal stiffness of this mode at small
wavenumber will depend on Glattice. We inspect the dispersion
curves and observe that the frequencies increase with Glattice

(in ascending order: idealized, cubic, Kelvin, octet). We gain
further evidence from the good agreement in scaling exponents
of 2nd axial mode (ka/π=0) modal stiffness (Table 4) and Glattice

(Table 2) for cubic, idealized foam, and Kelvin metastructures.
In the octet metastructure, a slight difference between scaling
exponents is observed (about 16%). This may be due to the
higher frequency nature of this mode. Dynamic effects seem to
introduce bending deformation of the lattice struts, raising the
scaling exponent. Like the 2nd bending mode, we observe a
transition on lattice property dependence of the 2nd axial mode
as wavenumber increases. In the long wavelength region, the
modal stiffness seems to depend on a combination of Elattice and
Glattice. However, since this side of the k-space does not define any
of the band gaps of interest, we will not go into further detail.
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FIGURE 7 | Frequency-dependent transmission for the cubic (blue solid), idealized foam (red dashed), Kelvin (yellow dotted) and octet (purple dashed-dotted)

metastructures with lattice relative density equal to 8.3%. (A) Transmission vs. frequency. (B) Transmission vs. normalized frequency.

It is important to mention that at densities lower than
about 3%, the octet metastructure upper modes deviate from
the power-law approximation. At these lower densities, bending
stiffness of the lattice struts of this metastructure is low
compared to the Glattice (due to increasing slenderness ratio
of the struts with decrease in relative density). Thus, waves
propagate through the outermost struts and no shear like
deformation is observed on the unit cells surrounding the
resonator.

It is not straightforward to realize a quantitative model
that predicts the modal frequencies based on lattice effective
properties presented in section Lattice Static Properties, however
we present a general form to represent these frequencies in
section Dynamic Performance Parameters. This is because in
the effective properties calculations, the lattice unit is assumed
to be periodic in all three dimensions, but the local boundary
conditions of each lattice unit inside the metastructure depends
on its location, i.e., some lattice unit cells have one face attached
to the resonator, some lattice unit cells have one face that is
traction free, while other lattice unit cells are connected to
the surrounding lattice. The difference in boundary conditions
changes the behavior of the lattice units inside the metastructure.
Furthermore, because of the difference in geometry of the
lattices, the effects of boundary conditions may be different
for the different geometries. Predicting modal frequencies from
static properties becomes even more challenging for lattice
modes due to their higher frequency. It has been shown
that a frequency-dependent elasticity is necessary to fully
capture the dynamic behavior at the high frequency range
(Nemat-Nasser et al., 2011; Srivastava, 2015). Instead, here we
present a qualitative understanding of the physical differences
among dispersion curves of different metastructures. These
results motivate exploring more deeply the lattice-resonator
metastructure framework due to its rich variety of wave
propagation behaviors.

Influence of Resonator Size
To understand the influence of resonator size on band gaps, we
calculate dispersion relations for the Kelvin metastructure for
three different resonator sizes, at 8.3% lattice relative density
(Figure 6). We observe differences in the dispersion relations for
both resonator and lattice modes. A decrease in the resonator’s
side length, Lreso, causes two competing effects on the lower
resonator modes. One is that the stiffness of the lattice and thus
the modal stiffness decreases with decreasing Lreso, due to an
increase in distance between the resonator and the metastructure
outer surface. Note that we refer here to the stiffness of the lattice
(dependent on length), as opposed to the modulus of the lattice
(independent of length) discussed in earlier sections. The second
effect is that the modal mass decreases, causing an increase in
frequency of lower resonator modes: this effect dominates, since
overall the resonator mode frequencies increase with a decrease
in resonator size (Figure 6).

The quantitative effect of resonator size on resonator mode
frequency depends on the mode shape. In the limit where the
lattice has a negligible contribution to modal mass, the modal
mass of resonator modes that involve translation of the resonator,
Mt (1st bending resonator mode and axial resonator mode) is
proportional to the resonator’s mass, mreso, and thus volume
of the cube resonator, such that Mt ∝ L3reso. The modal mass
of resonator modes that involve rotation of the resonator, Mr

(2nd bending resonator mode and torsional resonator mode)
is proportional to the resonator’s moment of inertia about its
center of mass, Ireso = 1

6mresoL
2
reso, such that Mr ∝ L5reso. This

explains why the 2nd bending resonator mode and torsional
resonator mode frequencies increase at a faster rate with a
decrease in resonator size, compared to the 1st bending resonator
mode and axial resonator mode frequencies. This is evident
in the comparison of mode edge frequencies indicated with
markers in Figures 6A,B. Note that when the resonator size
decreases so much so that the lattice contribution to modal
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mass is non-negligible, e.g., Figure 6C, these relationships must
include an additional term that accounts for the lattice modal
mass.

Upper lattice mode frequencies decrease with a decrease in
the resonator side length: lattice length between the resonator
and exterior surface of the metastructure increases, decreasing
the modal stiffness. In addition, the total lattice mass increases,
increasing the modal mass of the lattice modes. Both of these
effects result in an overall decrease in upper lattice mode
frequencies.

Overall, a decrease in resonator size increases the frequencies
of resonator modes and decreases the frequencies of lattice
modes. This decreases the band gap width, and eventually the
band gap closes (Figure 6C).

Finite Metastructure Transmission Analysis
To understand the attenuation efficiency of the proposed
metastructures, we simulated the frequency-dependent
transmission for a harmonic axial excitation through 6-unit cell
finite metastructures at the same relative density as the presented
dispersion curves in Figure 4. Results (Figure 7A) show that
the efficiency strongly depends on the metastructure’s geometry.
In general, wider band gaps result in stronger attenuation.
Interesting comparisons arise when the transmission is
normalized on the frequency axis by the frequency of the lower
edge of the band gap (Figure 7B). The structural peaks (lattice-
resonator “acoustic” modes) at low frequency almost align, and
the initial slope of the transmission into the band gap is the same
for all metastructures. This highlights that in the low frequency
range of the resonatormodes, all metastructures behave similarly,
and are simply scaled with their lattice effective properties.
Beyond the band gap lower edge frequency, all metastructures
have very different frequency-dependent behaviors, indicating
that the dynamics of the lattice geometries dominate. The Kelvin
metastructure has a sharp, deep attenuation dip, though it does
not have the widest band gap. The octet metastructure has
the widest band gap with a large range of deep attenuation.
Localized modes appear in the band gap of the octet and Kelvin
metastructures. In all cases, the attenuation regions in the
transmission curves correspond well to the axially-polarized
band gap frequencies (see section Performance Parameters). We
expect similar behavior in the other polarizations, as seen in prior
work (Matlack et al., 2016).

PERFORMANCE PARAMETERS

It is our final objective to evaluate the metastructures in terms of
their static and dynamic properties. Here, we analyze standard
band gap properties and introduce multifunctional (dynamic
and static) performance parameters to compare the different
metastructures over the range of lattice relative densities. We
use the concept of polarized band gaps (Matlack et al., 2016)
meaning band gaps bounded by modes of a specific polarization,
i.e., axial, bending, and torsional modes. The metastructure’s
modal displacements reveal the mode’s polarization, which we
use to determine the axial, bending, and torsional polarized
band gaps. We use polarized band gaps because it clarifies to

which static stiffness we should compare the band gaps. Further,
in most structural applications, it is typical to treat stiffness
requirements in terms of the deflection direction, such that
requirements are imposed on well-studied concepts of axial,
bending and torsional stiffness. The mode of vibration that
propagates through the component is typically the same as
the static stiffness requirement. This approach allows us to
systematically compare the band gaps to the static behavior of
the metastructures, by comparing the polarized band gaps to
the corresponding Kaxial, Kbend, and Ktors (section Metastructure
Static Properties). It can also aid in the selection of architected
materials for structural components that must comply with a
minimum static stiffness while providing vibration mitigation in
the corresponding polarization.

For complex load conditions and cases where mode
conversion occurs, the corresponding band gaps occur in the
overlapping region of the polarized band gaps involved, and
the relevant static properties would depend on the specific
application. The full band gap of these metastructures (Figure 4)
is simply the overlap of all the polarized band gaps.

It is important to highlight that since the major interest lies
in achieving low band gap frequencies, we analyze only the
first band gap of each metastructure for each polarization. Our
objective with the performance parameters is to evaluate for
low frequency and wide bands gaps, and high static stiffness,
all of which are highly relevant for most structural applications.
Further, it should be noted that the load carrying capabilities of
metastructures at low relative densities has not been considered
here, which is beyond the scope of the paper but crucial in
applications. However, stress analysis of metastructure unit cells
at the lowest lattice relative density shows a maximum von
Mises stress of about 5 MPa due to weight of the resonator,
which is well-below the ultimate strength of 3D printable stiff
polycarbonate materials.

Dynamic Performance Parameters
We evaluate themetastructures in terms of two standard dynamic
performance parameters: lower edge band gap frequency (flow)
and normalized band gap width (∆f ), defined as:

1f =
2(fhigh − flow)

fhigh + flow
(3)

where fhigh is the upper edge band gap frequency. Since we
want to achieve low frequency and broadband mitigation,
metastructures with lower flow and higher ∆f are considered
more efficient.

We present these parameters in terms of lattice relative density
for full, axial, bending, and torsional polarizations in Figure 8.

The results show a large variation in band gap parameters that
strongly depends on geometry and lattice relative density. At
lower relative densities, we achieve a 6-fold change in full flow
and up to an 8-fold change in full ∆f, only by changing the lattice
geometry and keeping mass constant. As density increases, the
difference in dynamic behavior of the metastructures decreases.
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FIGURE 8 | Dynamic performance parameters for all polarizations. (A) Full flow. (B) Axial flow. (C) Bending flow. (D) Torsional flow. (E) Full ∆f. (F) Axial ∆f. (G) Bending

∆f. (H) Torsional ∆f. Metastructure relative densities are shown for comparison.

This is expected since as we increase the relative density, we
approach the bulk material.

We observe that Kelvin and idealized foam metastructures
are the “best performing” in terms of full dynamic parameters
since they support the lowest and close to the widest band
gaps. For axial polarization, the idealized foam and Kelvin
metastructures have the lowest band gaps and the octet and
the Kelvin metastructures have the widest band gaps, and for
bending and torsional polarizations, the cubic and idealized foam
metastructures have the lowest and widest band gaps.

Full band gaps are defined between mode numbers 4 and
5 (see Figure 4) for most relative densities studied. This only
changes for the idealized foam geometry at relative densities
above 25% where mode a3 becomes stiffer than mode a4

redefining the lower band gap edge. The lower edge modes of
the full band gaps are resonator modes (see d1–d4 in Figure 5).
Thus, the change in lattice relative density has a negligible effect
on modal mass. We can thus approximate flow as proportional to
the square root of the static effective properties of the lattices:

flow ∝
√

aElattice + bGlattice (4)

where a and b are participation factors that account for the
dependence of the modal stiffness of the mode that defines flow on

lattice static properties (section Analyzing BandGaps in Terms of
Lattice Static Properties).

The polarization of the full band gap lower edge mode
is different for each metastructure. For Kelvin and octet
metastructures, the lower edge is defined by the second bending
mode in the long wavelength region. The stiffness of this mode is
proportional to Glattice and Equation 4 is reduced to:

flow ∝
√

bGlattice ≈
√

(bEsD)ρrel
r/2 (5)

For the idealized foam metastructure, the mode defining the
lower edge is the second bending mode at high wave number,
where modal stiffness is proportional to Elattice. We can then
express flow as:

flow ∝
√

aElattice ≈
√

(aEsC)ρrel
n/2 (6)

The cubic metastructure lower edge mode is an axial mode
that depends on both Glattice and Elattice. However, as mentioned
before, the cubic lattice has a large Elattice compared to Glattice, so
we neglect the Glattice dependence and assume its behavior can
be represented by Equation 6. Lower edge frequencies for full
band gaps are plotted in double logarithmic scale in Figure 8A.
There is good agreement between these results and Equations 4–
6, especially in the low relative density range. As lattice relative

Frontiers in Materials | www.frontiersin.org November 2018 | Volume 5 | Article 6817

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Arretche and Matlack Multifunctionality of Architected Metamaterials

FIGURE 9 | Multifunctional performance parameters for all polarizations. (A) Axial ηlower edge. (B) Bending ηlower edge. (C) Torsional ηlower edge. (D) Axial ηband gap

width. (E) Bending ηband gap width. (F) Torsional ηband gap width.Metastructure relative densities are shown for comparison.

density increases, we observe a slight decrease in slope because of
increasing significance of lattice mass on total modal mass of the
metastructure.

The upper edge mode of the full band gaps is defined by
the 2nd torsional mode (Figure 5d5). Coming up with a simple
power expression that describes the behavior of the frequencies
of this mode is far more challenging than for the lower modes
and escapes the scope of this article. However, the modal mass
of this mode increases with increase in lattice relative density
(since displacement is mostly concentrated in the lattice) while
modal mass of lower modes remains approximately constant
(sincemost modal mass is in the resonator). An increase inmodal
mass causes a decrease in modal frequency; thus, fhigh grows at
a slower rate than flow. This is why, for most metastructures
we observe a decrease in ∆f (Figure 8E) with increasing lattice
relative density. The cubic metastructure is an exception to this
trend. The reason behind this is the mixed nature (in terms of
stretch and bend dominated behavior) of this lattice geometry.
As mentioned in section Wave Propagation in Metastructures,
the modal stiffness of the 2nd torsional mode is proportional to
Glattice, where Glattice ∝ ρ2

rel
for the cubic lattice, while the cubic

metastructure lower edgemode is dominated by Elattice (Equation
6), where Elattice ∝ ρrel for the cubic lattice. The larger scaling
exponent of Glattice seems to prevail over the increase in modal
mass. The result is that fhigh grows at a faster rate than flow,
causing an increase in ∆f with increasing lattice relative density.

In contrast to the other polarizations, the bending
band gaps are generated between two resonator modes
(Figures 4a1,a4,b1,b4,c1,c3,d1,d4). Thus, we expect the general
form presented in Equation 4 to hold for both upper and
lower edge modes. The lower edge modal stiffness was shown
to be proportional to Glattice, so Equation 5 can be applied.
However, the upper edge mode is more complex, since the
location in wavenumber spectrum that bounds the band
gap varies with geometry. For cubic and idealized foam
metastructures, fhigh is bounded at ka/π=0, where modal
stiffness is proportional to Glattice (Equation 5). However, for
octet and Kelvin metastructures, fhigh is bounded at ka/π=1,
where modal stiffness is proportional to Elattice (Equation 6).
The scaling exponents of the lattice properties that dominate
the lower edge modes are equal to the ones that dominate
the upper edge modes for the cubic, octet, and idealized foam
metastructures. Thus, we predict a relatively small change in ∆f
across the relative density range. This is confirmed by results
presented in Figure 8G. The Kelvin lattice has a slightly higher
Glattice scaling exponent compared to its Elattice, which supports
the fact that ∆f decreases with relative density.

A similar analysis can be done for both axial and torsional
dynamic parameters (Figures 8B,D,F,H). In both cases, the lower
edge is defined by a resonator mode and the upper edge by a
lattice mode. Similar to the full band gaps, the axial parameters
show the mixed behavior of the cubic lattice produces an
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increase in ∆f with relative density. This does not occur in the
torsional polarization since both lower and upper edge modes are
dominated by Glattice.

Multifunctional Performance Parameters
Here, we evaluate the metastructures in terms of their
multifunctional properties of static deformation and band gap
properties. We analyze three different static stiffnesses: Kaxial,
Kbend, and Ktors, which we can compare to the axial, bending,
and torsional polarized band gaps.We define twomultifunctional
parameters that relate these properties:

ηlower edge =
Kstatic

flow
(7)

ηband gap width = Kstatic∆f (8)

where values of Kstatic are presented in section Metastructure
Static Properties and values of flow and ∆f are presented in
the section Dynamic Performance Parameters. For simplicity,
we choose to weight stiffness and frequency parameters equal
in our evaluation. We evaluate the metastructures in terms of
these performancemetrics compared to lattice andmetastructure
relative densities in Figure 9.

Incorporating static properties into performance metrics
changes the way the metastructures are evaluated. For example,
for axial deformations, the cubic metastructure has the lowest
performance in terms of flow. This changes completely in the
multifunctional analysis. The cubic metastructure axial ηlower

edge is the highest for all relative densities. Similarly, the octet
metastructure has a poor torsional flow but the highest torsional
ηlower edge. In bending, the cubic metastructure is the “best
performing” for both dynamic and multifunctional parameters.

“Best performing” metastructures in terms of ηband gap width

are also different than those of ∆f for axial and torsional
polarization. For axial ηband gap width, the highest values of
performance are achieved by the octet metastructure at low lattice
densities and the cubic metastructure at higher ones. The octet
metastructure has the highest torsional ηband gap width. In bending,
the cubic metastructure shows the highest values similar to the
dynamic analysis.

The differences in the outcome of the dynamic and
multifunctional performance metrics show the importance of a
multifunctional analysis. The stiffness or frequency parameters
could be weighted differently if the specific application requires
better performance of one parameter compared to another. One
could redefine these parameters to include other mechanical
properties such as energy absorption, heat transfer, or yield
strength to fit certain criteria. Defining multifunctional metrics,
can aid the design process, and achieve higher levels of
performance of multifunctional architected materials.

Static Stiffness vs. Lower Band Gap Edge
Frequency
As another metric of performance, we directly compare Kstatic of
the metastructures with their flow for axial, bending and torsional
polarizations (Figure 10). The idealized foam metastructure
shows slightly higher values of Kaxial relative to flow for

axial polarizations (Figure 10A), and the idealized foam and
cubic metastructures show slightly higher Ktors relative to
flow for torsional polarization (Figure 10C). However, overall
there is not much difference in the metastructure’s axial and
torsional behavior, mainly because in these polarizations, the
metastructure’s Kstatic and the modal stiffness associated with flow
are proportional to the same lattice effective property.

More significant differences between metastructure
geometries are observed for Kbend vs. flow for bending
(Figure 10B). This is because Kbend is proportional to both
Elattice and Glattice, while the modal stiffness associated with
flow (1st bending mode) is proportional to only Glattice. Higher
ratios of Elattice to Glattice for the cubic and idealized foam lattices
compared to that of the octet and Kelvin lattices (Figure 2)
explain the significantly higher values of Kbend that can be
achieved at a given flow with the cubic and idealized foam
metastructures. Furthermore, the mixed behavior of the cubic
lattice allows us to break the typical quadratic relationship
between Kstatic and flow for the bending polarization. While
all other stiffness-frequency curves follow the well-established
quadratic relationship between stiffness and frequency, this
relationship is instead approximately linear for the cubic
metastructure under bending. This is due to the mixed behavior
of the cubic lattice (section Lattice Static Properties), i.e., it has
different scaling exponents of Elattice and Glattice (Table 2). In
general, Kbend is proportional to both Elattice and Glattice such
that for the cubic metastructure Kbend ∝ ρ1.

rel
45 (on average, see

Table 3), and flow ∝

√
Glattice ∝ ρrel

1.1 (Figure 8C), which results
in an approximately linear relationship between Kbend and flow
for bending.

CONCLUSION

In this article, we studied static properties and vibration
mitigation behavior of metastructures that consist of different
lattice geometries with embedded resonators. Through
calculations of the static stiffness of finite metastructures,
we show that metastructure stiffness is closely related to the
effective static moduli of the lattice materials that compose
them. The band gaps of these metastructures with iso-density
lattices show that we can achieve large differences in band gaps
by selectively placing the mass inside the lattice unit cell. By
inspecting the modal displacements and the dispersion curves,
we developed a qualitative understanding of the differences in
band gap parameters in terms of the effective static properties
of the lattices. We compared the exponential dependence on
relative density of the modal stiffnesses of each metastructure
mode, in the vicinity of the lowest band gap, to the static effective
properties of the lattices to further support this point. We
analyzed the transmission of the metastructures and found that
the attenuation efficiency strongly depends on lattice topology.
Our results show that the lattice effective properties drive the
band gap frequencies, which is interesting since the lattice is
extremely finite with various boundary conditions: there are only
a few lattice unit cells in between each resonator, and only a few
lattice unit cells in the other dimensions.
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FIGURE 10 | Kstatic vs. flow. (A) Axial polarization. (B) Bending polarization (C) Torsional polarization.

TABLE 5 | Material properties used for finite element simulations.

Material Density (kg/m3) Young’s modulus

(GPa)

Poisson’s

ratio

Polycarbonate 1,097 1 0.35

Steel 7,850 215 0.31

We evaluated themetastructures over a range of lattice relative
densities from 1% to 28% (corresponding to metastructure
relative densities from 61% to 72%). Dynamic parameters
of lower edge band gap frequency and band gap width
show the ability to tailor the band gap to a wide range of
frequencies, especially at lower relative density values. We
introduce multifunctional performance metrics to evaluate the
metastructures in terms of their band gap properties and
static stiffness, for general structural application considerations.
In both cases, performance of the metastructure strongly
depends on the polarization considered, and on whether
only dynamic or both static and dynamic properties are
considered. This type of evaluation can be used to formulate
performance metrics that more accurately describe certain
applications and could be modified to preferentially weight
certain parameters more than others. Finally, we directly
compare metastructure static stiffness to polarized lower band
gap edge frequency. A particularly interesting behavior is
observed in the bending polarization for the cubic metastructure,
where the relationship between static stiffness and lower edge
frequency approaches a linear behavior. This is primarily due to
the mixed behavior of the cubic lattice unit cell under shear and
compression.

While these metastructures may have application-specific
drawbacks of additional resonator mass, we show that this
metastructure design can be used to obtain a wide range of
static and band gap properties by simply changing the lattice
geometry. Further, our presented approach of understanding
the dynamic properties of metastructures in terms of the
effective properties of the lattice could be used to evaluate and
interpret other designs, where optimal performance may be
obtained.

MATERIALS AND METHODS

Dispersion Relations
We obtain the dispersion relations by 3D Finite Element
simulations in COMSOL Multiphysics V5.3 software. We
model a single metastructure unit (Figure 1B) and use 10-
node tetrahedral elements. Mesh size was chosen to ensure
convergence of results. We impose Floquet boundary conditions
in the external faces perpendicular to the x-direction to account
for x-axis periodicity. The wave number, k, is swept in the first
irreducible Brillouin zone and the eigenfrequency problem is
solved to obtain the dispersion relations. The relative density of
the lattice unit cells is varied by keeping unit length constant and
sweeping the thickness of the struts that compose it. We calculate
modal stiffness as:

K(i) = u(i)
T
[K] u(i) (9)

where K(i) is the modal stiffness of mode i, u(i) is the vector
containing the modal displacements of mode i and [K] is the
stiffness matrix.

Finite Metastructure Transmission Analysis
We obtain the transmission curves by 3D Finite Element
simulations in COMSOL Multiphysics V5.3 software. We model
a six-unit one-dimensional finite metastructure (Figure 1C) and
use 10-node tetrahedral elements.Mesh size was chosen to ensure
convergence of results. We fix one end of the metastructure and
we apply a harmonic displacement (δx) parallel to the direction
of periodicity to the opposite end. We perform a frequency
sweep analysis over a range of frequencies from 0 to 13,000Hz.
We define transmission as the ratio of output to input force
amplitudes.

Lattice Effective Properties
We calculate lattice effective properties (Elattice and Glattice) using
3D Finite Element simulations in COMSOL Multiphysics V5.3
software. We model a single lattice unit cell (Figure 1A) and use
10-node tetrahedral elements. Mesh size was chosen to ensure
convergence of results. We perform a series of static linear
analysis where appropriate displacement boundary conditions
and periodic boundary conditions (Wallach and Gibson, 2001;
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Dalaq et al., 2016) are imposed to calculate the effective
stiffness matrix considering the cubic symmetry of the lattice
unit cells. We then calculate effective Young’s modulus and
effective shear modulus from the effective stiffness matrix. We
vary the relative density of the lattice cells by keeping unit
length constant and sweeping the thickness of the struts that
compose it.

Finite Metastructure Static Stiffness
We obtain finite metastructure static stiffness (Kstatic) properties
from 3D Finite Element simulations in COMSOL Multiphysics
V5.3. We model a six-unit one-dimensional finite metastructure
(Figure 1C) and use 10-node tetrahedral elements. Mesh size
was chosen to ensure convergence of results. We numerically
calculate the force and displacement profiles of the finite
metastructure under static loading, and then use force-
displacement relations of a conventional cantilever beam to
calculate the axial, bending, and torsional stiffnesses of the
metastructures. For axial stiffness (Kaxial), we fix one end of the
metastructure and we apply a displacement (δx) parallel to the
direction of periodicity to the opposite end. We calculate Kaxial

as:

Kaxial =
Fx

δx
(10)

where Fx is the total reaction force at the fixed end parallel to
the direction of periodicity. For bending stiffness (Kbend), we fix
one end of the metastructure and we apply a displacement (δy)
perpendicular to the direction of periodicity to the opposite end.
We calculate Kbend as:

Kbend =
Fy

δy
(11)

where Fyis the total reaction force at the fixed end perpendicular
to the direction of periodicity. For torsional stiffness (Ktors), we
fix one end of the metastructure and we apply a rigid connector
to the opposite end.We apply an angular displacement (θx) about
the direction of periodicity to this face. We calculate Ktors as:

Ktors =
Mx

θx
(12)

where Mxis the total reaction moment at the fixed end about
to the direction of periodicity. The relative density of the lattice
cells is varied by keeping unit length constant and sweeping the
thickness of the struts that compose it.

Material Properties
For all simulations, materials are based on prior 3D printed
metastructures (Matlack et al., 2016) but chosen to be isotropic.
Even though 3D printing methods do not achieve isotropy due
to the material properties dependence on printing direction, it is
the main objective of the paper to identify effects due to geometry
changes and not due to material anisotropy. We use a linear
elastic material model with no damping. Material properties used
in all models are given in Table 5.

AUTHOR CONTRIBUTIONS

IA performed the research, analyzed the data, developed the
performance parameters, and wrote the paper. KM designed
the research, analyzed the data, developed the performance
parameters, and wrote the paper.

ACKNOWLEDGMENTS

This work was partially supported by a University Research
Program from Ford Motor Company.

REFERENCES

Bayat, A., and Gaitanaros, S. (2018). Wave directionality in three-dimensional

periodic lattices. J. Appl. Mech. 85:011004. doi: 10.1115/1.4038287

Berger, J. B., Wadley, H. N. G., and McMeeking, R. M. (2017). Mechanical

metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543,

533–537. doi: 10.1038/nature21075

Chen, Y., Li, T., Scarpa, F., and Wang, L. (2017). Lattice metamaterials with

mechanically tunable poisson’s ratio for vibration control. Phys. Rev. Appl.

7:024012. doi: 10.1103/PhysRevApplied.7.024012

Dalaq, A. S., Abueidda, D. W., Abu Al-Rub, R. K., and Jasiuk, I. M. (2016). Finite

element prediction of effective elastic properties of interpenetrating phase

composites with architectured 3D sheet reinforcements. Int. J. Solids Struct. 83,

169–182. doi: 10.1016/j.ijsolstr.2016.01.011

D’Alessandro, L., Belloni, E., Ardito, R., Corigliano, A., and Braghin, F.

(2016). Modeling and experimental verification of an ultra-wide bandgap

in 3D phononic crystal. Appl. Phys. Lett. 109:221907. doi: 10.1063/1.49

71290

D’Alessandro, L., Zega, V., Ardito, R., and Corigliano, A. (2018). 3D auxetic single

material periodic structure with ultra-wide tunable bandgap. Sci. Rep. 8:2262.

doi: 10.1038/s41598-018-19963-1

Deshpande, V. S., Ashby, M. F., and Fleck, N. A. (2001a). Foam topology:

bending versus stretching dominated architectures. Acta Mater. 49, 1035–1040.

doi: 10.1016/S1359-6454(00)00379-7

Deshpande, V. S., Fleck, N. A., and Ashby, M. F. (2001b). Effective properties

of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769.

doi: 10.1016/S0022-5096(01)00010-2

Deymier, P. A. (ed.). (2013). Acoustic Metamaterials and Phononic Crystals. Berlin;

Heidelberg: Springe

Doty, R. E., Kolodziejska, J. A., and Jacobsen, A. J. (2012). Hierarchical

polymer microlattice structures. Adv. Eng. Mater. 14, 503–507.

doi: 10.1002/adem.201200007

Dou, N. G., Jagt, R. A., Portela, C. M., Greer, J. R., and Minnich, A. J.

(2018). Ultralow thermal conductivity and mechanical resilience of architected

nanolattices. Nano Lett. 18, 4755–4761. doi: 10.1021/acs.nanolett.8b01191

Erdeniz, D., Levinson, A. J., Sharp, K. W., Rowenhorst, D. J., Fonda, R. W.,

and Dunand, D. C. (2015). Pack aluminization synthesis of superalloy 3D

woven and 3D braided structures. Metall. Mater. Trans. A 46, 426–438.

doi: 10.1007/s11661-014-2602-9

Evans, A. G., Hutchinson, J. W., and Ashby, M. F. (1998).

Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171–221.

doi: 10.1016/S0079-6425(98)00004-8

Frontiers in Materials | www.frontiersin.org November 2018 | Volume 5 | Article 6821

https://doi.org/10.1115/1.4038287
https://doi.org/10.1038/nature21075
https://doi.org/10.1103/PhysRevApplied.7.024012
https://doi.org/10.1016/j.ijsolstr.2016.01.011
https://doi.org/10.1063/1.4971290
https://doi.org/10.1038/s41598-018-19963-1
https://doi.org/10.1016/S1359-6454(00)00379-7
https://doi.org/10.1016/S0022-5096(01)00010-2
https://doi.org/10.1002/adem.201200007
https://doi.org/10.1021/acs.nanolett.8b01191
https://doi.org/10.1007/s11661-014-2602-9
https://doi.org/10.1016/S0079-6425(98)00004-8
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Arretche and Matlack Multifunctionality of Architected Metamaterials

Evans, A. G., Hutchinson, J. W., Fleck, N. A., Ashby, M. F., and Wadley, H. N. G.

(2001). The topological design of multifunctional cellular metals. Prog. Mater.

Sci. 46, 309–327. doi: 10.1016/S0079-6425(00)00016-5

Fleck, N. A., Deshpande, V. S., and Ashby, M. F. (2010). Micro-architectured

materials: past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci. 466,

2495–2516. doi: 10.1098/rspa.2010.0215

Gibson, L. J., and Ashby, M. F. (1982). The mechanics of three-dimensional

cellular materials. Proc. R. Soc. Lond. A. Math. Phys. Sci. 382, 43–59.

doi: 10.1098/rspa.1982.0088

Gibson, L. J., and Ashby, M. F. (1997). Cellular Solids: Structure and Properties, 2nd

Edn. Cambridge, UK: Cambridge University Press.

Han, B., Zhang, Z.-J., Zhang, Q.-C., Zhang, Q., Lu, T. J., and Lu,

B.-H. (2017). Recent advances in hybrid lattice-cored sandwiches for

enhanced multifunctional performance. Extrem. Mech. Lett. 10, 58–69.

doi: 10.1016/j.eml.2016.11.009

Hussein, M. I., Leamy, M. J., and Ruzzene, M. (2014). Dynamics of phononic

materials and structures: historical origins, recent progress, and future outlook.

Appl. Mech. Rev. 66:040802. doi: 10.1115/1.4026911

Luxner, M. H., Stampfl, J., and Pettermann, H. E. (2004). “Linear and nonlinear

numerical investigations of regular open cell structures” in Proceedings of ASME

2004 International Mechanical Engineering Congress and Exposition (Anaheim,

CA: ASME), 469–475. doi: 10.1115/IMECE2004-62545

Matlack, K. H., Bauhofer, A., Krödel, S., Palermo, A., and Daraio, C. (2016).

Composite 3D-printed metastructures for low-frequency and broadband

vibration absorption. Proc. Natl. Acad. Sci.U.S.A. 113, 8386–8390.

doi: 10.1073/pnas.1600171113

Meza, L. R., Zelhofer, A. J., Clarke, N.,Mateos, A. J., Kochmann, D.M., andGreer, J.

R. (2015). Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad.

Sci. U.S.A. 112, 11502–11507. doi: 10.1073/pnas.1509120112

Moongkhamklang, P., Deshpande, V. S., and Wadley, H. N. G. (2010). The

compressive and shear response of titaniummatrix composite lattice structures.

Acta Mater. 58, 2822–2835. doi: 10.1016/j.actamat.2010.01.004

Nemat-Nasser, S., Willis, J. R., Srivastava, A., and Amirkhizi, A.V. (2011).

Homogenization of periodic elastic composites and locally resonant sonic

materials. Phys. Rev. B 83:104103. doi: 10.1103/PhysRevB.83.104103

Phani, A. S., Woodhouse, J., and Fleck, N. A. (2006). Wave propagation

in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119, 1995–2005.

doi: 10.1121/1.2179748

Ryan, S. M., Szyniszewski, S., Ha, S., Xiao, R., Nguyen, T. D., Sharp, K. W., et al.

(2015). Damping behavior of 3D woven metallic lattice materials. Scr. Mater.

106, 1–4. doi: 10.1016/j.scriptamat.2015.03.010

Schaedler, T. A., and Carter, W. B. (2016). Architected cellular materials. Annu.

Rev. Mater. Res. 46, 187–210. doi: 10.1146/annurev-matsci-070115-031624

Srivastava, A. (2015). Elastic metamaterials and dynamic

homogenization: a review. Int. J. Smart Nano Mater. 6, 41–60.

doi: 10.1080/19475411.2015.1017779

Tang, Y., Ren, S., Meng, H., Xin, F., Huang, L., Chen, T., et al. (2017). Hybrid

acoustic metamaterial as super absorber for broadband low-frequency sound.

Sci. Rep. 7:43340. doi: 10.1038/srep43340

Taniker, S., and Yilmaz, C. (2015). Design, analysis and experimental investigation

of three-dimensional structures with inertial amplification induced vibration

stop bands. Int. J. Solids Struct. 72, 88–97. doi: 10.1016/j.ijsolstr.2015.

07.013

Valdevit, L., Jacobsen, A. J., Greer, J. R., and Carter, W. B. (2011).

Protocols for the optimal design of multi-functional cellular structures: from

hypersonics to micro-architected materials. J. Am. Ceram. Soc. 94, s15–s34.

doi: 10.1111/j.1551-2916.2011.04599.x

Vigliotti, A., and Pasini, D. (2012). Stiffness and strength of tridimensional

periodic lattices. Comput. Methods Appl. Mech. Eng. 229–232, 27–43.

doi: 10.1016/j.cma.2012.03.018

Wadley, H. N. G. (2006). Multifunctional periodic cellular metals. Philos. Trans. R.

Soc. A Math. Phys. Eng. Sci. 364, 31–68. doi: 10.1098/rsta.2005.1697

Wallach, J. C., and Gibson, L. J. (2001). Mechanical behavior of a

three-dimensional truss material. Int. J. Solids Struct. 38, 7181–7196.

doi: 10.1016/S0020-7683(00)00400-5

Wang, L., Lau, J., Thomas, E. L., and Boyce, M. C. (2011). Co-continuous

composite materials for stiffness, strength, and energy dissipation. Adv. Mater.

23, 1524–1529. doi: 10.1002/adma.201003956

Wang, P., Casadei, F., Kang, S. H., and Bertoldi, K. (2015). Locally resonant band

gaps in periodic beam lattices by tuning connectivity. Phys. Rev. B 91:020103.

doi: 10.1103/PhysRevB.91.020103

Wang, Y., Gao, J., Luo, Z., Brown, T., and Zhang, N. (2017). Level-set

topology optimization for multimaterial and multifunctional mechanical

metamaterials. Eng. Optim. 49, 22–42. doi: 10.1080/0305215X.2016.11

64853

Zhang, Y., Ha, S., Sharp, K., Guest, J. K., Weihs, T. P., and Hemker, K. J. (2015).

Fabrication and mechanical characterization of 3D woven Cu lattice materials.

Mater. 85, 743–751. doi: 10.1016/j.matdes.2015.06.131

Zheng, X., Lee, H., Weisgraber, T. H., Shusteff, M., DeOtte, J., Duoss, E. B., et al.

(2014). Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377.

doi: 10.1126/science.1252291

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Arretche and Matlack. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Materials | www.frontiersin.org November 2018 | Volume 5 | Article 6822

https://doi.org/10.1016/S0079-6425(00)00016-5
https://doi.org/10.1098/rspa.2010.0215
https://doi.org/10.1098/rspa.1982.0088
https://doi.org/10.1016/j.eml.2016.11.009
https://doi.org/10.1115/1.4026911
https://doi.org/10.1115/IMECE2004-62545
https://doi.org/10.1073/pnas.1600171113
https://doi.org/10.1073/pnas.1509120112
https://doi.org/10.1016/j.actamat.2010.01.004
https://doi.org/10.1103/PhysRevB.83.104103
https://doi.org/10.1121/1.2179748
https://doi.org/10.1016/j.scriptamat.2015.03.010
https://doi.org/10.1146/annurev-matsci-070115-031624
https://doi.org/10.1080/19475411.2015.1017779
https://doi.org/10.1038/srep43340
https://doi.org/10.1016/j.ijsolstr.2015.07.013
https://doi.org/10.1111/j.1551-2916.2011.04599.x
https://doi.org/10.1016/j.cma.2012.03.018
https://doi.org/10.1098/rsta.2005.1697
https://doi.org/10.1016/S0020-7683(00)00400-5
https://doi.org/10.1002/adma.201003956
https://doi.org/10.1103/PhysRevB.91.020103
https://doi.org/10.1080/0305215X.2016.1164853
https://doi.org/10.1016/j.matdes.2015.06.131
https://doi.org/10.1126/science.1252291
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


ORIGINAL RESEARCH
published: 25 January 2019

doi: 10.3389/fmats.2018.00084

Frontiers in Materials | www.frontiersin.org January 2019 | Volume 5 | Article 84

Edited by:

Fernando Fraternali,

University of Salerno, Italy

Reviewed by:

Francesco Colangelo,

Università degli Studi di Napoli

Parthenope, Italy

Rupinder Singh,

Department of Production

Engineering, Guru Nanak Dev

Engineering College, India

*Correspondence:

Cornelia Rodenburg

c.rodenburg@sheffield.ac.uk

Specialty section:

This article was submitted to

Mechanics of Materials,

a section of the journal

Frontiers in Materials

Received: 30 November 2018

Accepted: 31 December 2018

Published: 25 January 2019

Citation:

Stehling N, Abrams KJ, Holland C and

Rodenburg C (2019) Revealing Spider

Silk’s 3D Nanostructure Through Low

Temperature Plasma Etching and

Advanced Low-Voltage SEM.

Front. Mater. 5:84.

doi: 10.3389/fmats.2018.00084

Revealing Spider Silk’s 3D
Nanostructure Through Low
Temperature Plasma Etching and
Advanced Low-Voltage SEM
Nicola Stehling, Kerry J. Abrams, Chris Holland and Cornelia Rodenburg*

Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom

The excellent mechanical properties of spider dragline silk are closely linked to its

multiscale hierarchical structuring which develops as it is spun. If this is to be understood

andmimicked, multiscale models must emerge which effectively bridge the length scales.

This study aims to contribute to this goal by exposing structures within Nephila dragline

silk using low-temperature plasma etching and advanced Low Voltage Scanning Electron

Microscopy (LV-SEM). It is shown that Secondary Electron Hyperspectral Imaging (SEHI)

is sensitive to compositional differences on both the micro and nano scale. On larger

scales it can distinguish the lipids outermost layer from the protein core, while at smaller

scales SEHI is effective in better resolving nanostructures present in the matrix. Key

results suggest that the silks spun at lower reeling speeds tend to have a greater

proportion of smaller nanostructures in closer proximity to one-another in the fiber, which

we associate with the fiber’s higher toughness but lower stiffness. The bimodal size

distribution of ordered domains, their radial distribution, nanoscale spacings, and crucially

their interactions may be key in bridging the length scale gaps which remain in current

spider silk structure-property models. Ultimately this will allow successful biomimetic

implementation of new models.

Keywords: spider silk, biopolymer, protein, hierarchical structure, multiscale material, natural materials, low

voltage scanning electron microscopy

INTRODUCTION

Spider silk is of great interest to a range of scientific communities due to its high-performance
and unique mechanical properties (Vollrath and Porter, 2009; Walker et al., 2015; Koeppel and
Holland, 2017; Holland et al., 2018b). These properties are attributed to a hierarchical arrangement
of ordered and disordered protein structures within a single fiber (Vollrath and Porter, 2009;
Vollrath et al., 2011; Porter et al., 2013). This nanostructure has been extensively explored by bulk
and space-averaging techniques such as calorimetry (Cebe et al., 2013; Vollrath et al., 2014; Holland
et al., 2018a), spectroscopy (Dicko et al., 2007; Boulet-Audet et al., 2015) small angle scattering
X-ray and neutron diffraction (Termonia, 1994; Riekel et al., 2000; Greving et al., 2010; Wagner
et al., 2017) and solid state nuclear magnetic resonance (NMR) (Willis et al., 1972; Hijirida et al.,
1996; Kümmerlen et al., 1996; Yang et al., 2000; Holland et al., 2008; McGill et al., 2018), which
together have provided the fuel for a range of modeling approaches (Giesa et al., 2011; Cranford,
2013; Ebrahimi et al., 2015; Rim et al., 2017). In comparison, spatially resolved techniques are yet
to be fully explored, but have already hinted at a diverse set of rich nano- and microscale features
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such as micelles (Lin et al., 2017; Oktaviani et al., 2018; Parent
et al., 2018), nanofibrils (Wang and Schniepp, 2018), elongated
cavities (Frische et al., 2002), and an overall radial variation
of composition and structure (Li et al., 1994; Knight et al.,
2000; Frische et al., 2002; Sponner et al., 2007; Brown et al.,
2011). Therefore, in order to uncover the secret of spider silk’s
mechanical response, the precise spatial distribution of structural
elements inside the fiber needs to be better understood.

Investigations of the radial distribution of structures within
spider dragline silk show that the composition of the shell,
comprising of the lipid, and glycoprotein coating and protein
skin, is substantially different compared to that of the
core. In a typical dragline fiber of 5µm diameter, the
coating is approximately 100 nm in thickness and can be
further differentiated into a waxy lipids and a glycoprotein
layer, which together are attributed with the control of
moisture content, antimicrobial properties, and pheromonal
communication (Augsten et al., 2000; Sponner et al., 2005, 2007).
Although it is chemically diverse, the contribution of the coating
to the fiber’s overall tensile behavior has been proposed to be
very small (Yazawa et al., 2018). The underlying skin is of similar
thickness to the coating and has been found to compose mostly
of minor ampullate spidroin protein (MiSp) which is the main
component of minor ampullate fibers (Sponner et al., 2007).

Remarkably, there is a further differentiation of structure
within the radial profile of the spider silk’s core: below the thin
(∼100 nm) proteinous skin lies the β-sheet rich outer-core and
finally the proline-rich and more structurally disordered inner
core (Li et al., 1994; Knight et al., 2000; Vollrath andKnight, 2001;
Sponner et al., 2007). The greatest contribution to the mechanical
properties of the fiber arise from these core layers as they make
up the bulk of the fiber’s volume. The core contains the ordered
β-sheet structures but also the disordered amorphous phases.
The β-sheet structures have been of intense interest to structural
analysis (McGill et al., 2018) and mechanical modeling (Keten
et al., 2010; Giesa et al., 2011) whereas the disordered amorphous
components have attracted less scientific attention, in part due to
the difficulty of structurally characterizing them.

Currently, mechanical models do not consider this radial
structure present in themost extensively studiedNephila dragline
silk, which is at odds with the widespread agreement that multi-
scale organization is integral to the fiber’s characteristic tensile
response (Nova et al., 2010; Giesa et al., 2011; Skelton andNagase,
2012; López Barreiro et al., 2018; Yarger et al., 2018). A better
dataset concerning the 3D mechanical properties and spatial
distribution of different structural units within the silk will allow
for better multi-scale mechanical models and will be important in
successfully designing spider-silk mimicking fibers and polymers
with tailored properties (Koeppel and Holland, 2017).

In this study a controlled variation of reeling speed is utilized
to produce silk of varying mechanical and structural properties.
To elucidate the differences in structure, the fibers are analyzed
unstained and uncoated in the secondary electron microscope
(SEM) by Secondary Electron Hyperspectral Imaging (Wan et al.,
2017) and structures are revealed by low temperature plasma
etching. The ultimate goal is to spatially characterize the 3D
distribution of nanostructure radially and longitudinally and

presenting results which will aid in the parameterization ofmulti-
scale mechanical models.

MATERIALS AND METHODS

Collection of Single Fiber Dragline Silk
All spider silk samples used in the Secondary Electron
Hyperspectral Imaging (SEHI) and the mechanical testing stem
from one continuous thread of a single mature Nephila inaurata
female. The spider was kept in a lab environment and was fed
crickets and waxworms ad libidum. To obtain single fiber major
ampullate dragline silk, the spider was anesthetized using carbon
dioxide and subsequently immobilized on a polystyrene block
with its underside facing upward. The spider was left to regain
consciousness for 30min to eliminate any effect of the carbon
dioxide on the spinning process (Riekel et al., 2004). Under an
optical stereo microscope (Leica MZ6), a single major ampullate
dragline thread was separated from other silks and taken up
onto the reeling device. The reeling device was designed in-
house to allow simultaneous control over rotational and lateral
translational speeds of the reel, allowing the collection of single
fibers with approximately 1 cm lateral spacing at well-defined
speeds of 5, 20, and 40mm s−1 and facilitating further sample
preparation.

Mechanical Testing
While ensuring that the tension of the fibers was maintained,
the N. inaurata fibers were applied to stiff paper frames as
is common protocol for tensile testing spider silk (Kitagawa
and Kitayama, 1997) and were glued above and below the
tensile testing window to ensure good adhesion and a gauge
length of 5mm. 18 tensile samples were prepared for each
reeling speed. After the glue was left to set for at least 24 h the
paper frames were loaded into a Zwick tensile tester equipped
with a 5N loading cell using crocodile clamps, and the frame
was cut using nail clippers to obtain the free-standing fiber.
Tensile tests of all samples were performed in a controlled
lab environment and within 6 h to minimize variability arising
from differences in temperature and humidity. The tests were
strain controlled at 10mm min−1 and were simultaneously
videoed. A sample video the tensile test is available to watch
in the Supplementary Information. Mechanical properties were
extracted from the tensile curves applying cross-sectional areas
derived from diameter measurements of each reeling speed
obtained by LV-SEM imaging.

SEM and Image Data Processing
All SEM imaging and measurements were performed on a FEI
Helios NanoLab SEM.

Imaging
Images were collected at a working distance of 4.1mm, and a
current of 13 pA. The scan preset was chosen to obtain minimum
spatiotemporal electron exposure: the dwell time was set to the
minimum 50 ns, a scan interlace of 8 was used and 32 scans were
integrated using drift correction to obtain the image. Accelerating
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voltages of 500 eV or 1 keV were used and are further specified in
the figure caption.

Spectral Acquisition
The FEI Helios NanoLab SEM is equipped with a through-
lens detector with a voltage controlled mirror electrode, which
deflects the SE signal into the detector. By scanning the voltage
on the mirror electrode over a range and generating an image
each, the energy range of collected SEs is controlled and spectra
and hyperspectral images are obtained through post-processing
of the spectral image series. The energy calibration of this process
is performed through stage bias experiments, as described
elsewhere (Kazemian et al., 2007). For a detailed discussion of the
method please refer to (Stehling et al., 2018). When considering
the SE signal originating from a cylindrical object such as spider
silk, the effect of the SE emission angle must be considered. In
all spectra and hyperspectral images presented this effect has
been corrected for by taking two spectra, the second of which
was taken with a stage rotation of 180◦ relative to the initial
spectrum. For each energy the spectral images were averaged
to cancel out angular effects and detector shadowing in post-
processing to yield geometrically corrected results. The success
of this correction was confirmed by the comparison of the non-
corrected to the corrected hyperspectral images of a Si calibration
standard sample of known geometry.

Image Processing
Image processing was performed using Fiji software (Schindelin
et al., 2012). All images presented have been optimized for their
brightness and contrast using histogram normalization.

The Voronoi tessellation was performed by assigning the
8-bit greyscale values 255–141 to the nanostructure in the
hyperspectral images of the given energy range. The resulting
binary image was subsequently skeletonized to represent the
bright nanostructure as a one-pixel line using Zang and Suen’s
algorithm (Zhang and Suen, 1984) and this was used as input
for the Voronoi tessellation. A color look-up-table was applied
to better illustrate the distances between particles along the
tessellation lines and is displayed adjacent to the tessellation
maps.

Low Temperature Plasma Treatment
Plasma treatment was performed in a Diener Electronic Zepto
plasma cleaner at 40 kHz, 100W, and 0.3 mbar air for the
specified total times. Samples were exposed to the plasma for
no longer than 3min at a time to exclude the effects of sample
heating which have been shown to lead to surface modification
of a different kind (Yip et al., 2002). For treatment times of more
than 3min, the sample was treated for 3min, then left to cool for
5min before a subsequent treatment was performed to make up
the total treatment time.

RESULTS

To gain a complete understanding of the structural mechanical
make-up of spider dragline silk, the radial as well as the
longitudinal structures present within silk need to be considered.

Generally, analysis techniques used for the characterization of
structures on different scales are either space-averaging, such
as nuclear magnetic resonance spectroscopy (NMR) and X-ray
diffraction (XRD), or surface sensitive, such as atomic force
microscopy (AFM) and electron microscopy (EM). This poses a
practical challenge if 3D information with high spatial resolution
in all dimensions is sought. If differences in nanostructure
alignment and distribution, such as those proposed in literature
are to be spatially resolved, the internal structure’s 3D distribution
must be revealed.

Plasmas are reactive environments in the gas phase and
thus modify surfaces in response to the underlying structural
composition (Yip et al., 2006). The use of a low temperature
plasma for defined periods of time has previously been shown
to lead to selective etching of fiber surfaces, with the treated
surface morphology being a result of the fiber’s crystallinity and
its strain history (Wakida and Tokino, 1996; Yip et al., 2002,?,
2006; Stehling et al., 2018). In our experiments, plasma treatment
was used to firstly etch away layers of the fiber radially to obtain
images showing structure in the fiber axis at a given depth, and
secondly to expose any nanostructure which may be influenced
by the reeling speed and multi-scale organization of the fiber.
Diameter measurements performed in the SEM after plasma
treatment confirm that this process etches more material with
increased treatment time at a rate of approximately 100 nm
min−1 (Figure 1). Thus, this process opens a pathway to exposing
selected radial layers through etching, giving insights into the
core of the fiber and the nanostructure within.

After 10min of plasma treatment, a fiber with an original
diameter of 5.02µm was etched by 0.98µm (0.49µm either
side) to its outer-core, where β-sheet crystals are thought to
characterize the nanostructure and the mechanical response
(Knight et al., 2000; Sponner et al., 2007). The nanostructures
evident in Figure 1 inset are most likely a result of the presence
of β-sheet rich and ordered nano-domains which etch at a
slower rate compared to the disordered amorphous phases. Their
appearance is consistent with structures observed in dragline
silk by SEM after the shell has been washed away by phosphate
buffered saline (Augsten et al., 2000) and are similar to those
observed in silkworm silk (Wan et al., 2017).

In order to confirm the effects of the etching process and
describe the features revealed, a range of reeling speeds was used
to generate different order/disorder ratios (Liu et al., 2005). For
each reeling speed, the fibers were treated for 4 and 10min and
the comparison of the resulting nanostructures with reeling speed
and plasma treatment are presented in Figure 2.

To the naked eye, there is no evident trend in the change
in nanostructure with reeling speed. However, there are clear
differences across all samples in response to plasma treatment
time. Based on predictions from Figure 1, the images shown in
Figure 2 for both plasma etching times result in the lipid and
glycoprotein coating being etched away to expose the outer core
of the fiber—at 4min the outer core just beneath the skin is
exposed, while the 10min etch predictably exposes the outer core
close to the inner core.

The observed differences in nanostructure size may be
explained by irregularities in the boundary between the skin
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FIGURE 1 | (A)Reduction of diameter with increasing plasma treatment time. Different layers relative to the overall diameter are indicated according to Sponner et al.

(2007). Insets: Regular secondary electron images of Nephila inaurata dragline silk before and after 10min plasma treatment, imaged at 500 eV. Scalebars measure

3µm (B) Schematic of radial structure of spider silk, scalebar shows 500 nm. Adapted (labels omitted, rotated, and color coded) from Sponner et al. (2007) under a

CC BY 2.0 license (https://creativecommons.org/licenses/by/2.0/uk/), ©2007 Sponner et al.

FIGURE 2 | Nanostructures revealed by plasma etching for 4min (blue) and 10min (purple) for the different reeling speeds obtained by regular SE imaging at 1 keV.

Scalebars measure 2µm.

and the outer-core which have previously been observed in
AFM and immunostaining studies (Li et al., 1994; Sponner
et al., 2005), leading to the 4min treated surface being more
skin-like in composition, whereas the 10min treated surface is
characteristic of the proline devoid and β-sheet crystal rich outer
core. The reduced etching rate of the β-sheet crystals may also
play a role in the increased size of nanostructure features after
10min treatment, if after etching through the outer-core more β-
sheet-rich ordered domains remain and protrude topographically
in the image to appear brighter due to the SEM’s edge effect
prevalent in regular SE imaging.

The predominance of topographical contrast in regular SE
images, specifically the edge effect, can pose a problem to image
analysis as it exaggerates the size of the nanostructures and
could obscure any contrast arising from material differences
between the ordered nanostructures and the surrounding

disordered matrix. Thus, the influence of topography is
a significant impairment in any attempt to quantifiably
characterize differences between the visible structures when using
standard Low Voltage SEM.

To better separate the compositional information from the
topographical information present in the untreated and plasma
treated fiber surfaces we used Secondary Electron Spectroscopy
in conjunction with Secondary Electron Hyperspectral Imaging
(SEHI) in the SEM under the same conditions. SEHI makes
use of the fact that the secondary electron signal from which
SEM images are commonly generated incorporates energy
information as well as spatial information. It has previously
been shown that depending on the SE energy window selected,
topography can be excluded and energy ranges can be assigned
to different compositions or phases with sensitivity to elemental
composition, hybridization state, degree of order and crystallinity
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(Masters et al., 2015; Kumar et al., 2017; Wan et al., 2017; Dapor
et al., 2018; Stehling et al., 2018).

SEHI was performed on the silk surface to compare the
secondary electron energy signatures of the skin of the as-spun
fiber with those of plasma etched fiber. The resulting secondary
electron signal arises from the surface of the sample, which in
the case of the as-spun fiber is the lipid layer, and in the case
of the 10 min plasma treated fiber is the outer-core. Indeed, the
difference between the spectrum of the as-spun (Figure 3A, blue
line) and the etched fiber (Figure 3D) is the increased spectral
emission intensity of the as-spun surface at lower secondary
electron energies of 0–3 eV, so that this energy window may be
assigned to the very outer lipid and glycoprotein layer, in the
following referred to as the coating. Thus, the 0–3 eV energy
window may be characterized as “coating-like.”

This hypothesis is further validated by the fact that the
“coating-like” energy-window 0–3 eV, indicated by the dashed
orange line, has increased intensity toward the edges of the as-
spun fiber, where a higher fraction of the escaping secondary
electrons have escaped from the electron-thin coating rather than
the layers closer to the core (Figure 3A red line). Conversely, the
higher energy range of 3–5 eV which exhibits higher intensity in
the treated fiber can be characterized as the “core-like” window,
as marked by the green dashed lines.

While SE information is generally considered to be from
the very top surface, information depths of secondary electrons
can range up to 100 nm in insulators (Seiler, 1983; Hessel
and Gross, 1992). According to Sponner et al. the very outer
coating containing lipid and glycoprotein layers around Nephila
dragline silk only measure approximately 10–20 and 60 nm,
respectively (Sponner et al., 2007), resulting in a contribution of
the lower proteinous skin layer to the SE signal and spectrum
in the untreated fiber—that is, the SE signal arising from
the underlying protein layer shines through the coating and
is collected by the detector. Note that the fibers investigated
in this work are neither sputter coated nor stained, as is
common practice for other electron imaging techniques (Yarger
et al., 2018). Thus, the difference between the “coating-like”
and “core-like” energy windows can be observed and is likely
to arise from the different compositional make-ups of the
layers, with the “coating-like” spectrum reflecting its lipid
composition and the “core-like” region responding to proteinous
layers.

This correlation between layer composition and emission
energy can be exploited using SEHI to obtain spatially resolved
compositional information in the form of hyperspectral images,
which map the emission intensity of a certain energy range with
increased brightness of a pixel translating to increased emission

FIGURE 3 | (A) Spectra of untreated Nephila inaurata dragline silk highlighting differences between the coating-like spectrum arising from the edge (red lines) and the

core-like spectrum arising form the middle (blue lines). (B) Hyperspectral image of the untreated fiber representing the energy range of 0–3 eV highlighting the

coating-like emissions and (C) 3–5 eV energy range hyperspectral image highlighting the core-like emissions. (D) Spectrum of Nephila inaurata dragline silk after the

removal of the coating and skin via a 10min plasma etch. (E) and (F) as (B) and (C) for the 10min treated sample. The hyperspectral energy ranges of 0–3 and 3–5 eV

are represented by orange and green dashed lines in the spectra of (A,D), respectively. All spectral images acquired with 500 eV primary beam energy. Scalebars

measure 3µm.
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TABLE 1 | Summary of energy ranges used to isolate compositions on different

scales.

Energy range/eV Dominant SE signal response

0–3 Coating

1.5–4 Ordered nanostructure in core

3–5 Core with contribution from nanostructure

4–6 Disordered matrix in core

intensity (Wan et al., 2017). Note that these hyperspectral images
are geometrically corrected to eliminate any potential image
artifacts arising from angular dependencies of SE emission (for
details please refer to the materials and methods section). As
expected, the edges of the untreated fiber appear bright in the
“coating-like” hyperspectral image (Figure 3B) and dark in the
“core-like” hyperspectral image (Figure 3C), illustrating how the
fraction of SEs emerging from the electron-thin coating gradually
increases toward the fiber edge due to the cylindrical profile of
the fiber. For the treated fiber, where the skin has been etched
away, the “coating-like” hyperspectral image does exhibit bright
edges, although this is readily explained by the fact that this
energy range also responds to the nanostructures revealed by
the plasma etching both at the edges and in the middle of the
fiber, as seen clearly in the hyperspectral image (Figure 3E). The
“core-like” hyperspectral image shows a uniform distribution
of the gray levels across the fiber and especially at the edges
in the treated fiber, illustrating how all SEs originate from the
core layer (Figure 3F), whereas the “core-like” energy window
in the untreated fiber shows a gradual reduction in gray levels
as the number of SEs originating from the proteinous skin
and core diminishes toward the edges (Figure 3C). Note how
this energy window is not only insensitive to the difference
in composition between the nanostructure and the matrix
(Figure 3F), but also represses the topography arising from the
different etching rates of the β-sheet crystals and amorphous
regions.

Analogously to the way the coating and the core energy
signatures have been compared in Figure 3, the energy signature
of the nanostructures present in the plasma treated fiber can be
compared to that of the matrix by spatially separating the two
phases using thresholding of the greyscale values (Figure 4). It is
clear from the spectra that the nanostructure and the matrix are
best distinguished in the energy ranges from 1.5 to 4 eV, where the
nanostructure dominates, and from 4 to 6 eV, where the matrix
dominates.

The energy ranges isolated for the different components
are summarized in Table 1. These energy range assignments
overlap and are not absolute, so that a quantification in this
way using spectral intensities would be problematic. However,
the assignment of energy ranges in this fashion allows the
determination of optimal energy windows in which the contrast
between two components will be amplified compared to a regular
SE image.

Thus, the energy windows selected using the spectra in
Figure 4 were used to generate hyperspectral images to isolate
the nanostructure, by adding the 1.5–4 eV hyperspectral image

FIGURE 4 | Secondary electron spectral differences between the ordered

nanostructure and the disordered matrix present after 10min plasma

treatment for reeling speeds of (A) 5 (B) 20, and (C) 40mm s−1. Spectra

acquired at 500 eV primary beam energy.

to the inverse of the 4–6 eV hyperspectral image, as shown in
Figure 5. The detailed images d-f illustrate how an isolation
based on energy can yield a hyperspectral image with pinpointed
information: The nanostructure appears less diffuse in the
hyperspectral image compared to the regular SE images and
resolves multiple smaller features which appear as one larger
feature in the regular SE image (Figure 5e blue arrow).
Importantly, besides increasing the apparent resolution of the
energy-selected nanostructures, the selected energy range also
reveals smaller scale structures present within the matrix, such
as structures linking the larger particles highlighted in the yellow
circle (Figure 5d) and sub 10 nm structures present in between
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FIGURE 5 | Comparison of regular SE (top with black border) and contrast-optimized hyperspectral images (bottom with green border) of 10min plasma etched

spider dragline silk reeled at 5, 20 and 40mm s−1. (a–c) View across fiber, scalebars measure 3µm (d–f) Detailed representation showing higher resolution and

increased detail in the hyperspectral images, scalebars measure 500 nm. All images acquired at 500 eV primary beam energy.

the larger nanostructures highlighted by the green arrow in
Figure 5f.

Currently these structures are barely resolved in the
presented images and difficult to separate from noise. However,
their presence in the nanostructure optimized image and
absence in the corresponding regular SE image suggests their
compositionmay lie in between themore ordered and disordered
components. Higher resolution hyperspectral images of targeted
energies may give a clearer picture of the nature of these
structures.

The differences in nanostructure with varying reeling
speed are not readily seen with the naked eye in the
hyperspectral images in Figure 5. To characterize and quantify
the nanostructure, different image analysis tools were applied to
the hyperspectral images in Figure 5, with the results presented in
Figure 6. Firstly, the bright nanostructures were isolated from the
darker matrix using thresholding. The resulting binary images
presented in Figure 6A were analyzed for the area fraction of the
nanostructure and for its size distribution. The area fraction of
the particles in the total sampled area decreased from 35 to 31 to
29% for the reeling speeds of 5, 20, and 40mm s−1, respectively.
Interestingly, plotting the area distributions of the nanostructure
as a histogram shows indications of a bi-modal distribution
of nanostructure sizes consistent with literature (Trancik et al.,
2006) (see Figure S1). However, there are limits to the area data
recorded; Firstly, objects smaller than 6.5 nm cannot be resolved
with the given image resolution, and secondly the total area
is subject to error introduced by differences in brightness and
contrast between images.

To eliminate the sensitivity to differences in brightness and
contrast of the source images, a Voronoi tessellation was chosen
as a processing tool because it considers only the center of
the particle (in this case the nanostructure) and not its entire

area (Voronoi, 1908). Furthermore, it not only considers the
properties of the structures, but also characterizes their location
relative to one another. In a Voronoi tessellation as shown in
Figure 6B, the tessellation lines run along where one particle
center is equidistant to its nearest neighbor. The color value
simultaneously encodes the magnitude of the distance of the
Voronoi tessellation boundary to the center of either particle. The
increased occurrence of higher distance values with increased
reeling speed is evident from the Voronoi diagrams (Figure 6B)
and the frequency histogram of the Voronoi tessellation was
(Figure S1). This result is consistent with the indication of a
bimodal size distribution of the area distribution, that is, the
smaller reeling speeds have an increased number of particles
smaller than 20 nm, which in turn results in the higher number
of smaller particle distances seen in the Voronoi diagrams.
Conversely, at higher reeling speeds the nanostructures are
further apart from one another.

It seems then that it is not only the size and size distribution
of nanostructures that matters, but also their distances from one-
another within the matrix. This would imply that the interaction
between the nanostructures and the matrix play an important
role in the tensile properties of the outer core. To get a better
understanding of the absolute numbers associated with particle
distances (i.e., considering the size of the particles as well), the
distance map of the binary images presented in Figure 6A were
generated and analyzed (Figure 6C). The population of distances
shows the same trend as the Voronoi tessellation distributions:
at higher reeling speeds the smaller distances become less
frequent while the larger distances become more frequent. This
confirms that the trend is not only influenced by the size of
a nanostructure, but also by the distribution of the matrix in
between the particles. The result is a larger fraction of the matrix
further away from any nanostructures at higher reeling speeds,
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FIGURE 6 | (A–C) Particle analysis of nanostructure in 10min plasma treated spider dragline silk performed on hyperspectral images shown in Figure 5. The images

show a sample of a total sample area of 4 µm2. (D) Frequency of larger (33–52 nm) and smaller (6.5–20 nm) nanostructure Voronoi distances with reeling speed (E)

Modulus and toughness with reeling speed of the same spider silk thread.

resulting in less scope for matrix-nanostructure interactions and
more prominent matrix-matrix interactions. The critical distance
between nanostructures where the trend reverses is 20 nm, which
may indicate that a bi-modal size distribution and thus a multi-
scale organization is present not only within the crystalline
nanostructure but also in the disordered domains.

Voronoi tessellation distances of 6.5–20 and 33–52 nm have
been grouped to plot this trend in Figure 6D. The tensile
results of the same silk thread (Figure 6E) are shown next to
the results of the nanostructure analysis in an attempt to link
nanoscale structure to macroscale properties. Assuming that the
distribution of the ordered nanostructure within the fiber directly
affects mechanical properties of the material, the data suggest
that shorter distances between the ordered β-sheet crystals beget
toughness, while larger distances contribute to a higher modulus.
Potential explanations for this relationship are proposed in the
Discussion section.

DISCUSSION

The size and orientation of the ordered domains and especially
the β-sheet crystals within spider silk have been subject to
intense experimental interest with regards to their contribution
to the desirable tensile properties of spider silk (Yang et al.,
1997; Riekel and Vollrath, 2001; Sampath et al., 2012; McGill
et al., 2018). Thus, modeling studies have focused on their
tensile behavior in isolation from the matrix on length scales

of atomistic to nanoscale models (Thiel et al., 1997; Keten
et al., 2010; Giesa et al., 2011). The idea that the crystallinity
alone is responsible for the dragline fiber’s renowned mechanical
response is in direct conflict with the fact that both minor
ampullate spider silk of the same species and Bombyx mori silk
have a substantially larger crystalline fraction and less desirable
tensile properties (Riekel and Vollrath, 2001; Sampath et al.,
2012). The results in this study suggest that the matrix and
specifically the matrix-nanostructure interactions are key in the
tensile response of the fibers. Although there are promising
developments in elucidating the secondary structure and general
organization of the amorphous phase (McGill et al., 2018), its
inherent lack of order has posed a challenge to the structural
analysis community as it cannot be readily described using most
methods applied to the crystalline fractions of the fiber. This
gives us a possible explanation why there is an underappreciation
for its role in spider silk’s mechanical response. Although this
hypothesis requires further validation, our results suggest that

the modulus is governed though the matrix-matrix interactions,

whereas matrix-nanocrystal interactions supply a toughening

mechanism especially at lower reeling speeds. Through their
X-ray and NMR work, Grubb and Jelinski have come to a

similar conclusion; that is that spider silk is best described on
the macroscale as a filled elastomer, with the β-sheets acting
as fillers to enhance the mechanical properties of the rubber-
like amorphous and ordered amorphous matrix (Simmons et al.,
1996; Grubb and Jelinski, 1997).
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To link the parameters given by atomistic models to a
larger scale, spider silk fiber has been modeled as a bundle of
nanofibrils with diameters of 20–150 nm (Giesa et al., 2011).
Initially thought to be cylindrical and spatially confined like
those observed in Bombyx mori silk, more recent AFM and TEM
studies have shown more diffuse structures which are oriented
in the fiber direction, with some models considering spider
silk thread as a bundle of fibrils (Giesa et al., 2011; Xu et al.,
2014) or globules (Cranford, 2013). A directional anisotropy of
structures on such length scales were not evident in this work,
with the orientation of the exposed nanostructure in the outer-
core being broadly isotropic. The size of the revealed structures is
however consistent with accounts of a bi-modal size distribution
of the higher-order fractions (Trancik et al., 2006). In our
current work we see indications of the smaller size population,
especially using hyperspectral imaging, although it is still below
the resolution limit. Our dominant observed nanostructure is
consistent with the larger population of ordered structures of
20–150 nm extension transverse to the fiber direction. The use
of SEHI in combination with low temperature plasma etching
provides access to a larger number of particles compared to data
published in previous AFM (Miller et al., 1999; Du et al., 2006;
Schäfer et al., 2008; Brown et al., 2011; Wang and Schniepp,
2018) and TEM (Thiel et al., 1997; Trancik et al., 2006) studies.
This is essential to build a quantitative picture of nano- and
microstructure distribution, especially considering that spider
silk modeling approaches have yet to incorporate our knowledge
of these multi-scale structures (Yarger et al., 2018). The various
approaches taken to date in the mechanistic modeling of spider
silk have been summed up in a recent review (López Barreiro
et al., 2018). Various modeling approaches have had some
success in reproducing spider silk’s mechanical behavior but the
incorporation of multiscale structures and their interactions into
mechanistic models is yet to be realized in part due to the
practical difficulty of liking atomistic approaches to micron scale
models.

A complete 3D model of spider silk with its multi-scale
organization is additionally hampered by the difficulties of
revealing its internal make-up. The largest single fiber silk from a
large spider only measures around 5µm in diameter to start with,
and provenly exhibits structures down to 2 nm in size (Trancik
et al., 2006). Furthermore, the structures under investigation
are sensitive to strain, thermal and chemical treatment and
can undergo undesired and unknown structural modification
through sample preparation. Thus, it cannot simply be cut
or sectioned without potentially manipulating the structures
of interest. Previously reported sample preparation procedures
employ epoxy embedding, which cures exothermically and may
result in thermal modification of fibers, and wax embedding
involving solvent dehydration, embedding in molten wax, and
rehydration steps. While the results contributed from these
studies supply important pieces to the puzzle, such as the
observation of a differential inmechanical properties between the
inner and the outer core (Brown et al., 2011), it must be kept
in mind that the fiber may have been substantially chemically
transformed.

In this work we have used low-temperature plasma etching
as a non-thermal, surface-acting technique. Previous work

considering the surface modifications of polyamide(6,6) fibers in
low temperature plasma establish that the surface morphology
after plasma treatment is a result of the sample’s crystallinity
content and strain history (Yip et al., 2006), which makes
this approach especially suitable for the analysis of spider silk
force reeled at different speeds. While the methodology requires
further optimization, we were able to identify differences in the
resulting morphology with reeling speed exposed in the outer-
core of the fiber. We show that comparably, plasma treatment
may be a mild preparation method to uncover certain layers
within the radial structure of spider silk.

Compared to conventional spatially resolved techniques such
as conventional SEM, TEM and AFM our secondary electron
hyperspectral imaging (SEHI) has key advantages when imaging
spider silk and associated nanostructures. The Low-Voltage SEM
imaging requires no sample preparation besides the plasma
treatment, and thus eliminates potentially damaging or obscuring
processes such as coating or staining. Our comparison of
SE spectra and hyperspectral images illustrates how powerful
this method is in distinguishing natural organic materials and
compositions, such as lipids and proteins, while simultaneously
enabling the suppression of topographical information of SEs.
Secondly, through the systematic selection of energy ranges,
we have increased the compositional contrast between the
nanostructures and thematrix, revealing structures which are not
visible in a conventional SE image. In future studies this approach
will be further developed to resolve the sub 10 nm features
prevalent in the matrix in between the larger nanostructures,
especially in the lower reeling speeds.

We present low temperature plasma etching as a novel tool
to uncover layers along the radial profile of Nephila spider silk.
The use of Secondary ElectronHyperspectral Imaging (SEHI) has
allowed high resolution mapping of the different compositions of
the components contributing to themulti-scale design of dragline
silk, with distinct energy signatures arising from the skin and
core on the microscale, and the nanostructures and matrix on
the nanoscale. The use of these energy ranges in hyperspectral
images has revealed smaller scale structures than those evident in
regular SE images. While there were no significant differences in
nanostructure area fraction and orientation with reeling speed,
the spatial situation of the >20 nm nanostructures is shown to
change, with larger distances between nanostructures prevalent
at higher reeling speeds.

The combination of plasma etching, LV-SEM, and SEHI
provides a top-down approach for the structural analysis of
spider silk which bridges multiple length scales and supplies
compositional and spatial information simultaneously. Further
work will involve varying etching times and thus exposing fiber
layers systematically to obtain an extensive dataset illustrating the
radial evolution of nanostructures within the fiber. Specifically,
such a dataset will serve to bridge the length scale gaps between
the current molecular and larger scale models and will help
to map out the yet poorly defined disordered domains and
the situation of the ordered domains within. A multiscale
mechanical model capable of incorporating this information
and reproducing silk’s complex tensile behavior will be a large
step forward in engineering structure-property relationships for
bio-inspired man-made materials.
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Schäfer, A., Vehoff, T., Glišovi,ć, A., and Salditt, T. (2008). Spider silk

softening by water uptake: an AFM study. Eur. Biophys. J. 37, 197–204.

doi: 10.1007/s00249-007-0216-5

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,

et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat.

Methods 9:676. doi: 10.1038/nmeth.2019

Seiler, H. (1983). Secondary electron emission in the scanning electronmicroscope.

J. Appl. Phys. 54, R1–R18. doi: 10.1063/1.332840

Simmons, A. H., Michal, C. A., and Jelinski, L. W. (1996). Molecular orientation

and two-component nature of the crystalline fraction of spider dragline silk.

Science 271, 84–87. doi: 10.1126/science.271.5245.84

Skelton, R. E., and Nagase, K. (2012). Tensile tensegrity structures. Int. J. Sp. Struct.

27, 131–137. doi: 10.1260/0266-3511.27.2-3.131

Sponner, A., Unger, E., Grosse, F., and Weisshart, K. (2005). Differential

polymerization of the two main protein components of dragline silk during

fibre spinning. Nat. Mater. 4, 772–775. doi: 10.1038/nmat1493

Sponner, A., Vater, W., Monajembashi, S., Unger, E., Grosse, F., and Weisshart, K.

(2007). Composition and hierarchical organisation of a spider silk. PLoS ONE

2:e998. doi: 10.1371/journal.pone.0000998

Stehling, N., Masters, R., Zhou, Y., O’Connell, R., Holland, C., Zhang, H.,

et al. (2018). New perspectives on nano-engineering by secondary electron

spectroscopy in the helium ion and scanning electron microscope. MRS

Commun. 8, 226–240. doi: 10.1557/mrc.2018.75

Termonia, Y. (1994). Molecular modeling of spider silk elasticity.Macromolecules

27, 7378–7381. doi: 10.1021/ma00103a018

Thiel, B. L., Guess, K. B., and Viney, C. (1997). Non-periodic

lattice crystals in the hierarchical microstructure of spider

(major ampullate) silk. Biopolym. Orig. Res. Biomol. 41, 703–719.

doi: 10.1002/(SICI)1097-0282(199706)41:7&<;703::AID-BIP1&>;3.0.CO;2-T

Trancik, J. E., Czernuszka, J. T., Bell, F. I., and Viney, C. (2006). Nanostructural

features of a spider dragline silk as revealed by electron and X-ray diffraction

studies. Polymer 47, 5633–5642. doi: 10.1016/j.polymer.2005.01.110

Vollrath, F., Hawkins, N., Porter, D., Holland, C., and M., Boulet-Audet (2014).

Differential scanning fluorimetry provides high throughput data on silk protein

transitions. Sci. Rep. 4:5625. doi: 10.1038/srep05625

Vollrath, F., and Knight, D. P. (2001). Liquid crystalline spinning of spider silk.

Nature 410, 541–548. doi: 10.1038/35069000

Vollrath, F., and Porter, D. (2009). Silks as ancient models for modern polymers.

Polymer 50, 5623–5632. doi: 10.1016/j.polymer.2009.09.068

Vollrath, F., Porter, D., andHolland, C. (2011). There aremanymore lessons still to

be learned from spider silks. Soft Matter 7, 9595–9600. doi: 10.1039/c1sm05812f

Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des

formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres

primitifs. J. Für Die Reine Und Angew. Math. 134, 198–287.

Wagner, J. A., Patil, S. P., Greving, I., Lämmel, M., Gkagkas, K., Seydel, T., et al.

(2017). Stress-induced long-range ordering in spider silk. Sci. Rep. 7:15273.

doi: 10.1038/s41598-017-15384-8

Wakida, T., and Tokino, S. (1996). Surface modification of fibre and polymeric

materials by discharge treatment and its application to textile processing.

Indian J. Fibre Textile Res. 21, 69–78.

Walker, A. A., Holland, C., and Sutherland, T. D. (2015). More than one way to

spin a crystallite: multiple trajectories through liquid crystallinity to solid silk.

Proc. R. Soc. B 282:20150259. doi: 10.1098/rspb.2015.0259

Wan, Q., K. J., Abrams, K. J., R. C., Masters, R. C., Talari, A. C. S., Rehman

I. U., Claeyssens, F., et al. (2017). Mapping nanostructural variations in

silk by secondary electron hyperspectral imaging. Adv. Mater. 29:1703510.

doi: 10.1002/adma.201703510

Wang, Q., and Schniepp, H. C. (2018). Strength of recluse Spider’s

silk originates from nanofibrils. ACS Macro Lett. 7, 1364–1370.

doi: 10.1021/acsmacrolett.8b00678

Willis, R. F., Fitton, B., and Skinner, D. K. (1972). Study of carbon-fiber surfaces

using Auger and secondary electron emission spectroscopy. J. Appl. Phys. 43,

4412–4419. doi: 10.1063/1.1660936

Xu, G., Gong, L., Yang, Z., and Liu, X. Y. (2014). What makes spider silk fibers so

strong? From molecular-crystallite network to hierarchical network structures.

Soft Matter 10, 2116–2123. doi: 10.1039/C3SM52845F

Yang, Z., Grubb, D. T., and Jelinski, L. W. (1997). Small-angle X-ray scattering of

spider dragline silk.Macromolecules 30, 8254–8261. doi: 10.1021/ma970548z

Yang, Z., Liivak, O., Seidel, A., LaVerde, G., Zax, D. B., and Jelinski, L. W. (2000).

Supercontraction and backbone dynamics in spider silk: 13C and 2H NMR

studies. J. Am. Chem. Soc. 122, 9019–9025. doi: 10.1021/ja0017099

Yarger, J. L., Cherry, B. R., and A., Van Der Vaart (2018). Uncovering the

structure–function relationship in spider silk. Nat. Rev. Mater. 3:18008.

doi: 10.1038/natrevmats.2018.8

Yazawa, K., Malay, A. D., Masunaga, H., and Numata, K. (2018). Role of skin

layers on mechanical properties and supercontraction of spider dragline silk

fiber. Macromol. Biosci. 1800220. doi: 10.1002/mabi.201800220. [Epub ahead

of print].

Yip, J., Chan, K., Sin, K. M., and Lau, K. S. (2002). Low temperature

plasma-treated nylon fabrics. J. Mater. Process. Technol. 123, 5–12.

doi: 10.1016/S0924-0136(02)00024-9

Yip, J., Chan, K., Sin, K. M., and Lau, K. S. (2002). Study of plasma-

etched and laser-irradiated polyamide materials. Mater. Res. Innov. 6, 44–50.

doi: 10.1007/s10019-002-0169-3

Yip, J., Chan, K., Sin, K. M., and Lau, K. S. (2006). Formation of periodic structures

by surface treatments of polyamide fiber: part II. Low temperature plasma

treatment. Appl. Surf. Sci. 253, 2493–2497. doi: 10.1016/j.apsusc.2006.05.004

Zhang, T. Y., and Suen, C. Y. (1984). A fast parallel algorithm for thinning digital

patterns. Commun. ACM 27, 236–239. doi: 10.1145/357994.358023

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Stehling, Abrams, Holland and Rodenburg. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Materials | www.frontiersin.org January 2019 | Volume 5 | Article 8433

https://doi.org/10.1002/marc.201800390
https://doi.org/10.1016/S0141-8130(99)00024-0
https://doi.org/10.1021/nl101341w
https://doi.org/10.1038/s41467-018-04570-5
https://doi.org/10.1073/pnas.1810203115
https://doi.org/10.1002/adma.201204158
https://doi.org/10.1021/bm000047c
https://doi.org/10.1007/s00114-003-0482-8
https://doi.org/10.1016/S0141-8130(01)00166-0
https://doi.org/10.1021/acsbiomaterials.7b00292
https://doi.org/10.1039/c2sm25373a
https://doi.org/10.1007/s00249-007-0216-5
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1063/1.332840
https://doi.org/10.1126/science.271.5245.84
https://doi.org/10.1260/0266-3511.27.2-3.131
https://doi.org/10.1038/nmat1493
https://doi.org/10.1371/journal.pone.0000998
https://doi.org/10.1557/mrc.2018.75
https://doi.org/10.1021/ma00103a018
https://doi.org/10.1002/(SICI)1097-0282(199706)41:7&<
https://doi.org/10.1016/j.polymer.2005.01.110
https://doi.org/10.1038/srep05625
https://doi.org/10.1038/35069000
https://doi.org/10.1016/j.polymer.2009.09.068
https://doi.org/10.1039/c1sm05812f
https://doi.org/10.1038/s41598-017-15384-8
https://doi.org/10.1098/rspb.2015.0259
https://doi.org/10.1002/adma.201703510
https://doi.org/10.1021/acsmacrolett.8b00678
https://doi.org/10.1063/1.1660936
https://doi.org/10.1039/C3SM52845F
https://doi.org/10.1021/ma970548z
https://doi.org/10.1021/ja0017099
https://doi.org/10.1038/natrevmats.2018.8
https://doi.org/10.1002/mabi.201800220
https://doi.org/10.1016/S0924-0136(02)00024-9
https://doi.org/10.1007/s10019-002-0169-3
https://doi.org/10.1016/j.apsusc.2006.05.004
https://doi.org/10.1145/357994.358023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


ORIGINAL RESEARCH
published: 31 January 2019

doi: 10.3389/fmats.2019.00002

Frontiers in Materials | www.frontiersin.org January 2019 | Volume 6 | Article 2

Edited by:

Fernando Fraternali,

University of Salerno, Italy

Reviewed by:

Georgios Theocharis,

UMR6613 Laboratoire d’Acoustique

de l’Universite du Maine (LAUM),

France

Anastasiia O. Krushynska,

Department of Civil, Environmental

and Mechanical Engineering,

University of Trento, Italy

Giuseppe Zurlo,

National University of Ireland Galway,

Ireland

*Correspondence:

Luigi Gambarotta

luigi.gambarotta@unige.it

Specialty section:

This article was submitted to

Mechanics of Materials,

a section of the journal

Frontiers in Materials

Received: 23 October 2018

Accepted: 07 January 2019

Published: 31 January 2019

Citation:

Bacigalupo A, Lepidi M, Gnecco G,

Vadalà F and Gambarotta L (2019)

Optimal Design of the Band Structure

for Beam Lattice Metamaterials.

Front. Mater. 6:2.

doi: 10.3389/fmats.2019.00002

Optimal Design of the Band Structure
for Beam Lattice Metamaterials
Andrea Bacigalupo 1, Marco Lepidi 2, Giorgio Gnecco 1, Francesca Vadalà 2 and

Luigi Gambarotta 2*

1 IMT School for Advanced Studies Lucca, Lucca, Italy, 2DICCA, University of Genoa, Genoa, Italy

Sonic or acoustic metamaterials may offer a mechanically robust and highly customizable

solution to open large band gaps in the low-frequency dispersion spectrum of

beam lattice materials. Achieving the largest possible stop bandwidth at the lowest

possible center frequency may be a challenging multi-objective optimization issue.

The paper presents a first effort of analysis, systematization and synthesis of some

recent multi-disciplinary studies focused on the optimal spectral design of beam lattice

materials and metamaterials. The design parameter vector is a finite set including all the

microstructural properties characterizing the periodic material and the local resonators.

Numerical algorithms are employed as leading methodology for solving various instances

of the optimization problem. Methodological alternatives, based on perturbationmethods

and computational modeling, are also illustrated. Some optimal results concerning

the dispersion spectrum of hexachiral, tetrachiral and anti-tetrachiral materials and

metamaterials are summarized. The concluding remarks are accompanied by preliminary

ideas to overcome some operational issues in solving the optimization problem.

Keywords: architectured materials, wave propagation, dispersion properties, band gaps, local resonators,

acoustic metamaterials

1. INTRODUCTION

An increasing research attention is being currently paid to the characterization of the acoustic
properties of periodic materials with beam lattice microstructure. In particular, several studies have
been developed to parametrically assess the dispersion relations governing the free propagation of
elastic waves (Phani et al., 2006; Spadoni et al., 2009; Paggi, 2010; Tee et al., 2010; Colquitt et al.,
2011; Tie et al., 2013; Reda et al., 2016; Amendola et al., 2018; Bordiga et al., in press), as well
as the associated transfer of mechanical energy (Langley, 1994, 1995, 1996; Bacigalupo and Lepidi,
2018). An objective of major theoretical interest for engineering applications, including for instance
wave trapping, vibration shielding, noise silencing and invisibility cloaking, is the realization of
phononic filters by designing and optimizing the stop bands of the frequency spectrum. Specifically,
since the intrinsic dissipation of conventional materials is inherently weak in the low-frequency
range, the achievement of a spectral band gap with the highest amplitude at the lowest center
frequency motivates several scientific studies focused on beam lattice materials (Martinsson and
Movchan, 2003; Ruzzene et al., 2003; Spadoni et al., 2009; Celli and Gonella, 2014; Wang et al.,
2015; Ronellenfitsch et al., 2018).

Sonic or acoustic metamaterials offer a mechanically robust and highly customizable solution
to open band gaps in the dispersion spectrum of beam lattice materials, without compromising
the load bearing capacity given by the microstructural stiffness. The working principle of an
acoustic metamaterial (also known as elastic or inertial metamaterial) is the dynamic interaction

34
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between the periodic material and auxiliary oscillators (local
resonators) elastically connected to the cellular microstructure
(Liu et al., 2000, 2005; Huang et al., 2009; Mei et al., 2012;
Zhu et al., 2012; Krushynska et al., 2014, 2017). The band
gap is opened by a localized mode and is approximately
centered around the natural frequency of the local resonator.
Although tuning the oscillator frequency with the desired center
frequency may appear a straightforward operation, targeting
the lowest possible center frequency and achieving the largest
possible bandwidth is a challenging multi-objective optimization
issue. The optimal solution must be sought for in a properly-
bounded multi-dimensional space of the mechanical parameters
describing the periodic microstructure and the resonators.
In this respect, extra difficulties can be actually represented
by the boundaries imposed to the admissible ranges of the
mechanical parameters by geometrical and physical constraints.
The parametric optimization is usually tackled by numerically
maximizing a multi-variable multi-objective function defined to
the purpose (Wang et al., 2015, 2016; Bacigalupo et al., 2016b,
2017). Alternative approaches can be based on the analytical—
although asymptotically approximate—solution of an inverse
spectral problem (Lepidi and Bacigalupo, 2018b).

The present paper represents a first effort of multi-disciplinary
analysis, systematization and synthesis of several analytical
formulations and numerical results achieved by the authors in
recent studies on the optimal spectral design of beam lattice
materials and metamaterials. The mechanical formulations are
primarily based on lagrangian models, while the methodologies
range from the asymptotic techniques and computational
approaches commonly used in structural and solid dynamics
to the numerical algorithms typically employed in operational
research, non-linear programming and passive control theory.
First, a dynamic linear model suited to parametrically describe
the free propagation of elastic waves in non-dissipative beam
lattice materials and acoustic metamaterials is presented (section
2). Second, an optimization problem for the search of full
and partial band gaps with the largest amplitude and lower
center frequency is stated. A solution strategy based on an
iterative algorithm and a quasi-random initialization is outlined
(section 3). Therefore, some optimal results concerning the
dispersion spectrum of hexachiral, tetrachiral and anti-tetrachiral
materials and metamaterials are summarized (section 4). Some
complementary findings achievable by means of perturbation
methods and computational modeling are also illustrated, as
design alternatives to numerical optimization for specific targets
(section 5). Concluding remarks and some possible future
developments are finally pointed out.

2. BEAM LATTICE MODEL

Focusing on the microscopic scale, cellular metamaterials
characterized by a periodic cell, fully tiling a two-dimensional
infinite domain, are considered. A beam lattice model is
formulated to describe the linear elasto-dynamic response of the
periodic cell, which can be featured by either chiral or antichiral
topologies (Figure 1). The internal structure, or microstructure,

of the elementary cell is typically composed by circular rings
connected by tangent ligaments (upper part of Figure 2). The
rolling-up mechanism, responsible for the auxetic behavior,
consists in the same-sign (chiral) or opposite-sign (antichiral)
rotations developed by any pair of adjacent disks, if the cell is
stretched along certain directions.

A rigid body model is adopted for all the massive and highly-
stiff rings, possessing mean diameter D. The small ring width
S is considered a free parameter, allowing the independent
assignment of the rigid body mass M and moment of rotational
inertia J. A linear, extensible, unshearable model of massless
beam is employed for all the light, flexible, and slender ligaments,
in the small-deformation range. The beam-ring connections
are ideally supposed to realize perfectly-rigid joints. By virtue
of the geometric periodicity, the cell boundary usually crosses
the midspan—and halves the natural length—of all the inter-
cellular ligaments. Assuming the same linear elastic material
(with Young’s modulus E) and cross-section shape (with area
A and second area moment I) for each ligament, all the beams
have identical extensional rigidity EA and flexural rigidity EI. The
effects of a homogeneous soft matrix, whichmay likely embed the
microstructure, are neglected as first approximation.

Moving from this general microstructural layout, acoustic
metamaterials can be realized by supplying each ring with a light
soft annular filler, hosting a central heavy circular inclusion,
serving as inertial resonator with adjustable mechanical
properties. All the inclusions are modeled as rigid disks, co-
centered with the respective housing rings, with body mass Mr

and moment of rotational inertia Jr . As long as the internal
(local) coupling provided by the filler can be assumed linearly
elastic, the ring-resonator differential displacements are affected
by equivalent translational and rotational stiffnesses (Bacigalupo
and Gambarotta, 2016). Therefore, the local (translational and
rotational) motion of each resonator is essentially characterized
by its natural frequencies Ωr and Ωθ .

Introducing certain quantities as known dimensional
references for the space (i.e., the characteristic length L of
the periodic cell), a suited minimal-dimension vector µs of
independent non-dimensional parameters, sufficient to describe
the inertial, elastic and geometric properties of the periodic
cell, can be introduced. Together with these microstructural
parameters, the acoustic metamaterials are further characterized
by a vector µr of additional non-dimensional parameters,
describing the dynamic properties of the local resonators.
Therefore, the vector µ = (µs,µr) can be defined to collect all
the mechanical parameters. In the absence of resonators, it is
understood that µ = µs.

2.1. Equations of Motion
According to the mechanical assumptions, the linear dynamics
of the elementary cell is governed by a multi-degrees-of-freedom
lagrangian model, referred to a set of N configurational nodes,
pointed by the position vectors xi (with i = 1, ...,N) in
the natural configuration (see the lower part of Figure 2).
The actual configuration of the i-th node is described by
three time-dependent non-dimensional components of motion,
corresponding to the horizontal displacement ui, the vertical
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FIGURE 1 | Acoustic metamaterials characterized by periodic microstructure and different cell topologies: (A) hexachiral, (B) tetrachiral, (C) anti-tetrachiral.

FIGURE 2 | Periodic microstructures and beam lattice models for different cell topologies: (A) hexachiral, (B) tetrachiral, (C) anti-tetrachiral.

displacement vi and the in-plane rotation φi. All the non-
dimensional configuration variables can be collected in the 3N-
by-one displacement column-vector q = (q1, ..., qi, ..., qN), where
the i-th nodal subvector is qi = (ui, vi,φi).

Depending on the centroid position for the massive rings
and the midspan position for the inter-cellular beams, the
configurational nodes can conveniently be distinguished into
three subsets:

i. Na internal nodes located at the massive ring centroids
(internally to the elementary cell), whose 3Na active
displacements can be collected in the subvector qa;

ii. Np external nodes located at the inter-cellular ligament
midspans (lying exactly on the cell boundary), whose 3Np

passive displacements can be collected in the subvector qp;
iii. Nr inner nodes located at the disk centroids, whose 3Nr active

resonant displacements can be collected in the subvector qr .
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The distinction remarks that the internal and inner nodes develop
both elastic (σ a, σ r) and inertial forces (fa, fr), which actively
participate in the dynamic cell equilibrium. On the contrary,
the external nodes can develop only elastic forces σ p, which
quasi-statically balance the reactive forces fp transferred by the
adjacent cells. Due to the geometric assumptions, the positions
of the internal and inner node sets coincide in the undeformed
configuration.

According to the partition of the displacement vector q =
(qr , qa, qp) and partitioning the force vectors consistently, the
non-dimensional equilibrium equation governing the undamped
free oscillations of the discrete model has the matrix form





fr
fa
0



+





σ r

σ a

σ p



 =





0

0

fp



 (1)

or, making explicit the force dependence on the nodal
acceleration or displacements









Mr O O

O Ma O

O O O

















q̈r

q̈a

q̈p









+









Kr −Kr O

−Kr Kaa + Kr Kap

O Kpa Kpp

















qr

qa

qp









=









0

0

fp









(2)

where the dot indicates differentiation with respect to the non-
dimensional time andO are matrices with all-zero entries.

Focusing on the micro-structural matrices, the global mass
submatrix Ma is diagonal, as far as a lumped mass description
is assumed. The symmetric submatrices Kaa and Kpp account for
the global stiffness of the internal and external nodes, respectively.
The rectangular submatrix Kap = K⊤

pa expresses the elastic global
coupling among the internal and external nodes. Focusing on
the resonators, both the local mass and stiffness submatrices Mr

and Kr are diagonal. The submatrix Kr accounts also for the
global-local coupling between the inner and internal nodes.

2.2. Free Wave Propagation
The free wave propagation along the bi-dimensional cellular
domain can be studied according to the Floquet-Bloch theory
(Brillouin, 2003). In this respect, the active, resonant and passive
displacement/force vectors can be mathematically related to
their transformed counterparts q̃a, f̃a, q̃r , f̃r , q̃p, f̃p according to
the Floquet-Bloch decomposition

qa = Faq̃a, fa = Fa f̃a, qr = Frq̃r ,

fr = Fr f̃r , qp = Fpq̃p, fp = Fp f̃p (3)

where the block diagonal matrices Fa, Fr , Fp have j-th block

I ei k·xj (with I standing for the three-by-three unit matrix and
j = 1, ...,Na, j = 1, ...,Nr , j = 1, ...,Np respectively). In each block,
i denotes the imaginary unit and k = (k1, k2) is the (dimensional)
wavevector.

The cell boundary Γ can be separated into the complementary
negative and positive sub-boundaries Γ − and Γ +, where
the external nodes are linked by the periodicity vectors d.
Accordingly, the passive displacement and force vectors can be
ordered and partitioned as qp = (q−p , q

+
p ), fp = (f−p , f

+
p ) to

separate the variable pairs (q−p , f
−
p ) belonging to the negative sub-

boundary Γ − from the corresponding variable pairs (q+p , f
+
p )

belonging to the positive sub-boundary Γ +. Extending the same
partition to the respective transformed variables, the Equation (3)
can be written as

q−p = F−p q̃
−
p , q+p = F+p q̃

+
p ,

f−p = F−p f̃
−
p , f+p = F+p f̃

+
p (4)

where, based on the decomposition, the block diagonal matrices
F−p and F+p include the blocks related to the external nodes lying

on the sub-boundaries Γ − and Γ +, respectively.
Imposing the periodicity conditions on the transformed

variables (q̃+p = q̃−p and f̃+p = −f̃−p ), the free wave propagation
throughout the cell domain between the two complementary
boundaries is governed by the quasi-periodicity conditions on the
anti-transformed variables

q+p = Lq−p , f+p = −Lf−p (5)

where, following from the Equations (4), the block diagonal
transfer matrix L has generic block I ei k·dij where dij = xj −
xi represents the vector connecting the i-th external node
(belonging to the sub-boundary Γ −) and the j-th external node
(belonging to the sub-boundary Γ +).

Consistently with the passive displacement and force
decomposition, and imposing the quasi-periodicity conditions
(5), the lower (quasi-static) part of Equation (2) reads

[

K−
pa

K+
pa

]

qa +

[

K=
pp K∓

pp

K±
pp K#

pp

][

I

L

]

q−p =

[

I

−L

]

f−p (6)

where I is a unit matrix of proper dimensions. This equation can
be solved to express the passive variables as slave functions of the
master active displacements, yielding

q−p = R
(

K+
pa+ LK−

pa

)

qa,

f−p =
(

K−
pa +

(

K=
pp + K∓

ppL
)

R
(

K+
pa+ LK−

pa

))

qa (7)

where the k-dependent auxiliary matrix R = −
(

LK∓
ppL+LK=

pp+

K#
ppL+ K±

pp

)−1
.

Similarly, the enforcement of the quasi-periodicity conditions
to the upper (dynamic) part of the Equation (2) leads to a coupled
equation that, after condensation of the passive variables by virtue
of the enslaving relations (7), depends on the active variables
only:

[

Mr O

O Ma

](

q̈r

q̈a

)

+

[

Kr −Kr

−Kr Kr + Ka

](

qr

qa

)

=

(

0

0

)

(8)

where the condensed stiffness matrix Ka = Kaa + (K−
ap +

K+
apL)R(K

+
pa + LK−

pa) is known to be Hermitian by virtue of the

symmetries K−
ap = (K−

pa)
⊤ and K+

ap = (K+
pa)

⊤.
As brief discussion, the upper part of Equation (8) governs

the local dynamics of the resonator, whereas the lower part
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governs the global dynamics of the cell microstructure. It is
worth noting that the passive variable condensation, including
the enforcement of the quasi-periodicity, is not mathematically
affected by the resonator presence. Indeed, the condensed global
stiffness matrix Kg = (Kr + Ka) of the metamaterial is
not formally different from the matrix Ka governing the wave
propagation in the resonator-free material, apart for the mere
addition of the local stiffness term Kr . Conversely, the uncoupled
global dynamics of the resonator-free material can be restored
by simply zeroing the local matrices Mr and Kr . Physically,
this remark can immediately be justified by the absence of any
internal coupling between the resonant active variables qr and
the condensed passive variables qp.

Introducing the unknown non-dimensional frequency ω, the
harmonic solutions qa = Faψa e

iωτ and qr = Frψ r e
iωτ can

be imposed in the Equation (8). Eliminating the dependence on
time, an eigenproblem in the unknown eigenvalues λ = ω2 and
eigenvectors ψ =

(

ψ r ,ψa

)

can be stated in the non-standard
form (K− λM) Fψ = 0, or more explicitly

([

Kr −Kr

−Kr Ka

]

− λ

[

Mr O

O Ma

])(

Frψ r

Faψa

)

=

(

0

0

)

(9)

where the diagonal block matrices Fr = Fa have generic block
I ei k·xj , where xj is the position vector pointing the active internal
and inner nodes.

The eigenproblem solution gives Na + Nr real-valued
eigenvalues λi (or frequencies ωi). It is worth remarking that,
owing to the Hermitian property, the K-matrix is certainly
non-defective, that is, possesses a complete eigenspace spanned
by Na + Nr proper eigenvectors. Therefore, each eigenvalue
λi has coincident algebraic and geometric multiplicity mi and
corresponds to a complex-valued eigenvector ψ i, collecting the
sub-eigenvectors ψ ri and ψai. The passive sub-eigenvectors
depend on the active sub-eigenvectors through the quasi-static
relations ψ−

pi = R
(

K+
pa+ LK−

pa

)

ψai and ψ
+
pi = Lψ−

pi .

Fixed an admissible vector µ of mechanical parameter
values for the beam-lattice and the resonators, the eigenvalues
(or frequencies) and the corresponding eigenvectors can be
determined under variation of the non-dimensional wavevector
b = (β1,β2), composed of the wavenumbers β1 = k1L and
β2 = k2L ranging in the non-dimensional first Brillouin domain
B (Figure 3). The frequency loci vs. the varying wavevector
constitute the Floquet-Bloch spectrum, composed of Na + Nr

dispersion surfaces for the metamaterial or Na dispersion curves
for the resonator-free material. In the spectrum, the two loci
attaining zero value at the B-origin (β1 = β2 = 0) are referred
to as acoustic surfaces. The other loci are referred to as optical
surfaces.

3. BAND-GAP OPTIMIZATION PROBLEM

Parametric analyses can be performed by considering the
dispersion functions ω(b,µ), where µ plays the role of multi-
dimensional variable. These parametric analyses of the dispersion
spectrum typically reveal that resonator-free materials possess

FIGURE 3 | Non-dimensional first Brillouin domain B associated to: (A)

hexachiral periodic cell, (B) tetrachiral and anti-tetrachiral periodic cell.

a highly-dense spectrum, with persistent absence of full band-
gaps in the low-frequency range (where only partial band gaps
are usually obtainable). Introducing inter-ring resonators is
an efficient technique to enforce the opening of stop bands
in the closeness of the resonator frequency. Nonetheless, the
resonator frequency cannot be reduced without recurring to
high mass-to-stiffness ratio. Therefore, even in the presence
of resonators, searching admissible parameter combinations
that open low-frequency band-gaps—and hopefully maximize
their bandwidth—is a challenging task, which can seldom be
successfully approached manually. More efficient approaches
can be represented by analytically inverting the eigenvalue
problem, under acceptable asymptotic approximations (Lepidi
and Bacigalupo, 2018b), or by numerically stating and solving
optimization problems, under suited mechanical constraints
(Bacigalupo et al., 2016a,b, 2017).

Within this context, the detection, quantification and—as
a final target—design of metamaterials showing desiderable
properties of mechanical filtering by virtue of low-frequency
band-gap remains a research issue of major interest
(D’Alessandro et al., 2016, 2018).

3.1. Problem Formulation
The bandwidth maximization of low-frequency band-gaps can
be based on the definition of a suited µ-dependent objective
function, which simultaneously accounts for the gap amplitude
and the band center-frequency, hence qualifying in this respect
as a multi-objective function. To this purpose, the following
non-dimensional ratio can be defined:

∆ωkh(µ) =
min
b∈B

(ωk (b,µ)) −max
b∈B

(ωh (b,µ))

1
2

[

min
b∈B

(ωk (b,µ)) +max
b∈B

(ωh (b,µ))

] (10)

where, supposing that the frequencies are sorted in ascending
order, the numerator stands for the typically positive (even
if possibly zero) gap amplitude between the k-th and h-th
consecutive dispersion surfaces (where k = h + 1), while the
denominator stands for the band center-frequency. When the
numerator is negative, no band gap is present between the two
surfaces.
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Therefore, the optimization problem essentially consists in
searching for the parameter vectorµ that maximizes the objective
function in the admissible parameter region. Consequently,
the optimization issue can be mathematically formulated as a
constrained maximization problem:

maximize
µ

∆ωkh(µ) (11)

s.t. µmin ≤ µ ≤ µmax

g(µ) ≤ 0

where µmin and µmax fix the boundaries of admissibility for the
parameter vector, and g(µ) denotes a vector function defining
additional relations, introduced—if necessary—to constrain a
certain slave parameter as a known function of the other master
parameters (Bacigalupo et al., 2016a, 2017). Altogether, the
constraints define a properly-bounded space for the parameter
vector.

Due to its mathematical formulation, the optimization
problem turns out to be a challenging task in non-linear
programming. Moreover, since the multi-variable objective
function is not concave in the general case, the function
maximization cannot be treated as a concave maximization
problem. Multiple solutions associated to local maxima
can co-exist. Therefore, the global maximum is necessarily
approximated by the highest among several local maxima
obtained numerically. If no full band gaps are found, then the
optimization problem is re-formulated to search for partial
band-gaps, by considering only certain directions of wave
propagation.

Following a well-established methodology adopted for similar
issues in material design (Sigmund and Jensen, 2003; Diaz et al.,
2005), the optimization problem (11) can be solved by employing
the Globally Convergent Method of Moving Asymptotes, or
GCMMA (Svanberg, 1987, 2002). Loosely speaking, this solution
method consists in tackling a sequence of concave-maximization
subproblems, locally approximating the original non-linear
optimization problem (a different approximation at each
sequence iteration). In each subproblem, both the objective
function and the constraints of the original optimization problem
are approximated by separable functions, i.e., sums of functions
depending each on a single different variable. This property
simplifies solving the associated dual optimization subproblem.
The moving asymptotes, which characterize the method, are
asymptotes of the functions used in the approximations, and
typically change from one subproblem to the successive one.
Finally, the GCMMA method is globally convergent in the
sense that, for every initial choice of the vector of optimization
variables, it is proved to converge to a stationary point of the
original optimization problem.

In Bacigalupo et al. (2016a,b, 2017), a quasi-Monte Carlo
multi-start technique is also used in conjunction with the
GCMMA, to increase the probability of finding a good
approximation of the global maximum by virtue of a set of
quasi-random initializations of the sequence. Indeed, the quasi-
Monte Carlo initialization has the advantage—in comparison
with theMonte Carlo initialization—of generating more uniform

sequences of initial points (Figure 4). Furthermore, the quasi-
Monte Carlo initialization, obtained at first generating a quasi-
random Sobol’ sequence (then keeping only elements of the
sequence that satisfy the constraints of the original optimization
problem), has the complementary advantage of being exactly
replicable (Sobol, 1998).

For the sake of clarity, it is worth remarking that the present
issue differs from other band gap maximization problems, which
specifically deal with the topological optimization of phononic
materials. Indeed, although pursuing the same objective (the
largest gap amplitude), the topological optimization seeks for
the optimal distribution of two or more material phases in a
sufficiently-fine pixelation of the periodic cell (Cox and Dobson,
2000; Shen et al., 2003; Sigmund and Jensen, 2003; Kaminakis
and Stavroulakis, 2012; Bruggi et al., 2017). On the contrary,
here, for both the beam lattice material and metamaterial, the
topology of the periodic cell is fixed a priori, whereas the
parametric optimization is limited to the cellular micro-structural
parameters, whose values allow to distinguish among different
materials belonging to the same topological class. To some
extent, the present analyses are aligned with the search for the
maximum stop bandwidth achievable by varying the connection
number and the joint rigidity in periodic lattices made of beam
frameworks, in the absence of resonators (Wang et al., 2015).

4. RESULTS AND DISCUSSION

The general mathematical form (11) of the optimization problem
has been specialized for different chiral and anti-chiral topologies
of materials and metamaterials. In particular, the maximal gap
amplitude at the lowest center frequency has been searched for
the hexachiral case (section 4.1), the tetrachiral case (section 4.2)
and the anti-tetrachiral case (section 4.3).

4.1. Hexachiral Material and Metamaterial
The hexachiral material is characterized by a periodic cell
with hexagonal shape and non-orthogonal periodicity vectors.
Each cell contains one central ring connected to six tangent
inter-cellular ligaments (Figure 2A). The beam lattice model is
featured by three active degrees-of-freedom (Na = 3). The
dispersion spectrum is composed by three frequency surfaces,
defined over a hexagonal first Brillouin zone. The hexachiral
metamaterial is realized by introducing a single local resonator
in the central ring. Consequently, the beam lattice model is
enriched by three active resonant degrees-of-freedom (Nr =
3). The corresponding dispersion spectrum is composed by
three frequency surfaces in addition to those of the resonator-
free material. The mass and stiffness matrices governing the
eigenproblem (9) can be found in Bacigalupo and Gambarotta
(2016) and Bacigalupo et al. (2016b).

The optimization problem for the hexachiral material
can be formulated as the constrained maximization of
a three-variables objective function defined according to
Equation (10). Thus, the search for the optimal solution is
performed in a properly-bounded three-dimensional space
of the non-dimensional mechanical parameters expressing
the ligament slenderness, the ring-to-cell aspect ratio and
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FIGURE 4 | Initialization of a 2-dimensional admissible region of the parameter domain: (A) Montecarlo sampling and (B) quasi-Montecarlo sampling.

FIGURE 5 | Dispersion spectrum for the optimized beam lattice model of the hexachiral material: (A) 3D view and (B) 2D view.

the chirality angle. The optimization problem is found not
to admit solutions corresponding to full band gaps in the
admissible parameter space. If the problem is reformulated
to search for partial band-gaps, the largest stop bandwidth
at the lowest center frequency is found between the second
acoustic surface and the optical surface along the three
propagation directions connecting two opposite-side vertices
of the hexagonal cell (Bacigalupo et al., 2016b). The dispersion
spectrum of the optimized hexachiral material is shown in
Figure 5.

The optimization problem for the hexachiral metamaterial
can again be formulated as the constrained maximization of
an enriched objective function, defined in an enlarged space
of the non-dimensional mechanical parameters describing the
hexachiral cell and the auxiliary resonator. The four extra
non-dimensional parameters account for the resonator-to-cell
aspect ratio, the resonator-to-ring mass ratio, and the two

coefficients (Young modulus and Poisson ratio) of the elastic
ring-to-resonator coupling. The optimization problem is found
to admit a solution corresponding to a full band gap between the
second acoustic surface and the optical surface (Bacigalupo et al.,
2016b). The dispersion spectrum of the optimized hexachiral
metamaterial is illustrated in Figure 6, where a second full band
gap can be recognized to occur in the high-frequency range,
between the fifth and sixth optical surfaces.

From a qualitative viewpoint, it can be remarked that the
largest amplitude of the full band gap can reach nearly half the
maximum value of the lowest frequency in the spectrum of the
hexachiral metamaterial. From a design perspective, it is worth
pointing out that the optimized full band gaps can be obtained for
small-radius rings and highly-slender, inclined but non-tangent
ligaments. Correspondingly, the optimized resonators are found
to possess nearly half the radius of the rings and be embedded in
a highly-soft matrix.
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FIGURE 6 | Dispersion spectrum for the optimized beam lattice model of the hexachiral metamaterial: (A) 3D view and (B) 2D view.

FIGURE 7 | Dispersion spectrum for the optimized beam lattice model of the tetrachiral material: (A) 3D view and (B) 2D view.

4.2. Tetrachiral Material and Metamaterial
The tetrachiral material is characterized by a periodic cell
with square shape and orthogonal periodicity vectors. Each cell
contains one central ring connected to four tangent inter-cellular
ligaments (Figure 2B). The beam lattice model is featured by
three active degrees-of-freedom (Na = 3). The dispersion
spectrum is composed by three frequency surfaces, defined over
a square first Brillouin zone. The tetrachiral metamaterial is
realized by introducing a single local resonator in the central
ring. Consequently, the beam lattice model is enriched by three
active resonant degrees-of-freedom (Nr = 3). The corresponding

dispersion spectrum is composed by three frequency surfaces in
addition to those of the resonator-free material. The mass and
stiffness matrices governing the eigenproblem (9) can be found
in Bacigalupo et al. (2016a) and Vadalà et al. (2018).

The optimization problem for the tetrachiral material can
be formulated as the constrained maximization of a four-
variables objective function defined according to Equation (10).
Therefore, the search for the optimal solution is performed
in a properly-bounded four-dimensional space of the non-
dimensional mechanical parameters expressing the ligament
slenderness, the ring-to-cell aspect ratio, the chirality angle and
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the ring-to-ligament width ratio. Similarly to the hexachiral case,
the optimization problem for the tetrachiral material is found
not to admit solutions corresponding to full band gaps in the
admissible parameter space. If the problem is reformulated to
search for partial band-gaps, the highest amplitude stop band
at the lowest center frequency is found between the second
acoustic surface and the optical surface along the two orthogonal
propagation directions connecting the centroids of adjacent
rings (Bacigalupo et al., 2016b). The dispersion spectrum of the
optimized tetrachiral material is illustrated in Figure 7.

The optimization problem for the tetrachiral metamaterial
can again be formulated as the constrained maximization of
an enriched objective function, defined in the enlarged space
of the non-dimensional mechanical parameters describing the
tetrachiral cell and the auxiliary resonator. Similarly to the
hexachiral case, the four extra non-dimensional parameters
account for the resonator-to-cell aspect ratio, the resonator-
to-ring mass ratio, and the two coefficients (Young modulus
and Poisson ratio) of the elastic ring-to-resonator coupling.
The constrained optimization problem is found not to have an
admissible solution corresponding to a full band gap between the
acoustic and optical surfaces. Instead, an admissible solution can
be found for a full band gap separating the first and second optical
surfaces. This solution preserves the ring-resonator interaction,
by virtue of a weighting multiplier (proportional to the fourth
pass bandwidth), properly applied to the stop bandwidth in the
definition of the objective function (Bacigalupo et al., 2016a). The
dispersion spectrum of the optimized tetrachiral metamaterial is
illustrated in Figure 8.

From a qualitative viewpoint, it can be remarked that the
largest amplitude of the full band gap can be twice the maximum
value of the lowest frequency in the spectrum of the tetrachiral
metamaterial. From a design perspective, it is worth pointing
out that the optimized full band gaps can be obtained for large-
radius rings and highly-slender, non-tangent ligaments with
quasi-negligible inclination (corresponding to a nearly-vanishing
chirality angle). Similarly to the hexachiral case, the optimized
resonators are found to possess nearly half the radius of the rings
and be embedded in a highly-soft matrix.

4.3. Anti-tetrachiral Material and
Metamaterial
The anti-tetrachiral material is characterized by a periodic cell
with square shape and orthogonal periodicity vectors. Each cell
contains four rings, each connected to four tangent (two inter-
cellular and two intra-cellular) ligaments (Figure 2C). The beam
lattice model is featured by 12 active degrees-of-freedom (Na =
12). The dispersion spectrum is composed by twelve frequency
surfaces, defined over a square first Brillouin zone. The anti-
tetrachiral metamaterial is realized by introducing a single local
resonator in each ring. Consequently, the beam lattice model is
enriched by twelve active resonant degrees-of-freedom (Nr =
12). The corresponding dispersion spectrum is composed by
twelve frequency surfaces in addition to those of the resonator-
free material. The mass and stiffness matrices governing the
eigenproblem (9) can be found in Bacigalupo et al. (2017).

The optimization problem for the anti-tetrachiral material
can be formulated as the constrained maximization of a three-
variables objective function defined according to Equation (10).
Since the chirality angle is not defined in the anti-chiral
microstructural topology, the search for the optimal solution
is performed in a properly-bounded three-dimensional space
of the non-dimensional mechanical parameters expressing the
ligament slenderness, the ring-to-cell aspect ratio and the ring-
to-ligament width ratio. Similarly to the previous cases, the
optimization problem for the anti-tetrachiral material is found
not to admit solutions corresponding to full band gaps in the
admissible parameter space. If the problem is reformulated to
search for partial band-gaps, then the highest amplitude stop
band at the lowest center frequency is found between the
second and third optical surfaces along the two orthogonal
propagation directions connecting diagonally two vertices of the
square cell (Bacigalupo et al., 2017). The dispersion spectrum
of the optimized anti-tetrachiral material is illustrated in
Figure 9.

The optimization problem for the anti-tetrachiral
metamaterial can again be formulated as the constrained
maximization of an enriched objective function, defined in the
enlarged space of the non-dimensional mechanical parameters
describing the tetrachiral cell and the auxiliary resonator.
Similarly to the previous cases, the four extra non-dimensional
parameters account for the resonator-to-cell aspect ratio, the
resonator-to-ring mass ratio, and the two coefficients (Young
modulus and Poisson ratio) of the elastic ring-to-resonator
coupling. Furthermore, since the anti-tetrachiral material is
characterized by a multi-ring cell, the number (ranging from
one to four) and placement of the resonators can be considered
additional unknowns to be optimized. The constrained
optimization problem is found not to have an admissible
solution corresponding to a full band gap between the acoustic
and optical surfaces. Instead, an admissible solution can be
found for a full band gap separating the fourth and fifth optical
surfaces. This solution corresponds to two resonators placed
into the ring pair located along one of the two diagonals of the
square cell (Bacigalupo et al., 2017). It is worth noting that other
solutions, maximizing the same objective function for a different
number and placement of the resonators, correspond to full band
gaps at higher center frequencies and lower stop bandwidth.
The dispersion spectrum of the optimized anti-tetrachiral
metamaterial is illustrated in Figure 10 (the lowest twelve
dispersion surfaces are reported), where a second full band gap
can be recognized to occur in the high-frequency range.

From the qualitative viewpoint, the anti-tetrachiral
metamaterial has been systematically found to offer the
largest band gap amplitudes when the resonators are placed
along one of the cell diagonals. From a design perspective, it
is worth pointing out that the optimized full band gaps can be
obtained by a strong ring-to-ligament compositeness of the cell
microstructure (maximum admissible ring radius). Differently
from the previous cases, the optimized resonators are found to
be large and heavy (maximum admissible resonator inertia), but
also weakly coupled with their hosting rings (minimum elastic
resonator stiffness).
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FIGURE 8 | Dispersion spectrum for the optimized beam lattice model of the tetrachiral metamaterial: (A) 3D view and (B) 2D view.

FIGURE 9 | Dispersion spectrum for the optimized beam lattice model of the anti-tetrachiral material: (A) 3D view and (B) 2D view.

5. BAND DESIGN AT TARGET FREQUENCY

The numerical approaches to the spectral optimization can
present two major applicative drawbacks. First, the admissible
parameter space cannot overcome a certain dimension without
compromising the computational feasibility (in terms of times
and costs) of the optimal solution search. In this respect,
different alternatives can turn out to be more convenient,
if some simplifying hypotheses of the beam lattice model
are relaxed (for instance, the lumped mass assumption).
The consequent enlargement of the free parameter space

offers more design possibilities, that can be explored by
formulating continuous solid models. Their governing
equations can be solved through numerical approaches
(section 5.1). Second, the simplest numerical approaches to
the optimization problem do not return an analytical form
of the optimal solution (design parameters) as an explicit
function of suitable objective variables. This shortcoming
could be by-passed by analytically inverting and solving
the spectral problem, provided that the designer accepts
reasonable approximations. In this respect, perturbation-
based techniques may offer a flexible mathematical tool to
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FIGURE 10 | Dispersion spectrum for the optimized beam lattice model of the anti-tetrachiral metamaterial: (A) 3D view and (B) 2D view.

FIGURE 11 | Dispersion spectrum of the tetrachiral material: (A) full band gap amplitude A and (B) center frequency ̟ vs. the ligament-to-ring mass ratio αb for

different filler-to-ring mass ratios αi .

asymptotically approximate the inverse problem solutions
(section 5.2).

5.1. Tetrachiral Material
Focusing on the reference lagrangian model for the tetrachiral
material, a mechanical enrichment can be introduced by
removing the strong hypothesis of massless ligaments.
Furthermore, a heavy elastic material can be considered to fill the
central rings of the periodic cell. According to these enrichments,
the parameter space is enlarged by the ligament-to-ring mass
ratio αb and the filler-to-ring mass ratio αi.

The admissible range of the enlarged parameter space—
spanned by the additional mass ratios—has been investigated to

check if some (αb,αi)-combinations realize a full band gap in
the low-frequency pass band of the reference lagrangian model.
The investigation results confirm that a low-frequency band gap
with amplitude A and center frequency ̟ can be achieved.
The achievable amplitude A vs. the mass ratio αb is shown in
Figure 11A for different mass ratios αi. It is worth noting that
the band gap amplitudeA decreases monotonically for increasing
values of the ligament-to-ring mass ratio αb. Larger amplitudes
A can be obtained for higher filler-to-ring mass ratios αi. The
center frequency ̟ shows a similar dependence on the mass
ratio parameters, as illustrated is Figure 11B, where the pink zone
embraces the frequency ranges included in the stop band for
αi = 10. The figure could be used for design purposes by—for
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instance—fixing a target center frequency ̟ ∗ (dashed line) to
extract the corresponding design points (dots) in the αi and αb

ranges. Further details can be found in Vadalà et al. (2018).

5.2. Anti-tetrachiral Material
Focusing on the lagrangian models of beam lattice materials,
a local sensitivity analysis of the dispersion spectrum can be
performed by virtue of multi-parameter perturbation methods.
This mathematical approach has been systematically formulated
to achieve analytical—although asymptotically approximate up
to the desired order—expressions for the dispersion relations,
as explicit functions of the mechanical parameters and the
wavenumbers. Within the limits of the local approximation,
these analytical expressions have been found to closely fit the
exact dispersion functions of the direct spectral problem for the
anti-tetrachiral material, among the others.

The approximate analytical solutions of the direct spectral
problem can properly be inverted to state convenient formulas
to determine the design parameters as explicit functions of
the inverse problem data. These target data may include—for
instance—a desired frequency ̟ ∗ at a certain wavenumber
β∗ in the anti-tetrachiral material spectrum. Figure 12 shows
how the fourth dispersion curve ω4(β) can be designed to
include the desired frequencies ̟ ∗

− (slightly lower that unity
- softer material) or ̟ ∗

+ (slightly higher that unity - stiffer
material) at different assigned wavenumbers β∗. The design
target pairs (̟ ∗,β∗) can be obtained for different anti-tetrachiral
materials featured by low-density or high-density, to be selected
according to extra design requirements. Further details can be
found in Lepidi and Bacigalupo (2018b). Other achievable design
targets are the stop bandwidth and the center frequency in the

dispersion spectrum of anti-tetrachiralmetamaterials (Lepidi and
Bacigalupo, 2018a).

6. CONCLUSIONS AND FUTURE
DEVELOPMENTS

The dynamic response of composite materials with periodic
microstructure can be analytically described by lagrangian beam
lattice models. The free propagation of elastic waves in these
low-dimensional models can be studied according to the Floquet-
Bloch theory. The dispersion spectrum is composed of pass
and stop bands that can be customized to let the material
functionally behave as mechanical waveguide, filter or directional
filter. Among the other functional features, low-frequency, high-
amplitude band gaps are desirable spectral properties for many
technological applications. To this purpose, the microstructural
properties of the periodic cell can be employed as design
parameters to optimize the band structure.

The optimization problem has been systematically formulated
as a non-linear maximization problem by defining a non-concave
multi-objective function, targeted at achieving the largest stop
bandwidth at the lowest center frequency. The numerical search
for the optimal solution has been opportunely constrained to
focus on the admissible range of the design parameters. The
optimization procedure can be applied to material and acoustic
metamaterials governed by lagrangian models depending on a
few mechanical parameters, including the number, placement
and properties of local resonators.

Different cellular topologies have been optimized. Low-
frequency high-amplitude full band gaps have been designed
as outcome of the optimization process applied to hexachiral,

FIGURE 12 | Dispersion spectrum of the anti-tetrachiral material: dispersion curves ω4(β) designed to include the target frequencies ̟∗
± (for different wavenumbers

β∗ = 0, 1/4π , 1/2π , 3/4π ,π ): (A) low-density material, (B) high-density material.

Frontiers in Materials | www.frontiersin.org January 2019 | Volume 6 | Article 245

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Bacigalupo et al. Optimal Spectral Design of Acoustic Metamaterials

tetrachiral and anti-tetrachiral metamaterials. According to the
peculiar properties of microstructural symmetry assumed for the
periodic cell, only partial band gaps for different propagation
directions have been obtained in the absence of resonators. For
each topology, design recommendations have been synthesized
about the optimal inertial, elastic and geometric ratios among the
microstructural parameters and the resonator properties.

As final achievements, alternative approaches to the spectral
design have been summarized. First, the augmented design
possibilities offered by an enlargement of the parameter space,
resulting from the removal of some simplifying mechanical
assumptions, have been explored. Second, the actual potential
of perturbation methods to provide analytical, although
asymptotically approximate, solutions of the inverse spectral
problem has been successfully verified.

As outlook for future developments, the optimization strategy
could be applied to the Rayleigh-Lamb wave propagation in
heterogeneous macrostructures like multilayered beams or plates
(Nayfeh et al., 1999; Chen et al., 2007; Pelassa andMassabò, 2015;
Massabò, 2017). Furthermore, some shortcomings in the classical
iterative algorithms for solving the optimization problem could
be addressed. Specifically, a major improvement would be
to reduce the time-consumption required to complete each
iteration, depending on the model dimension, the wavevector
discretization and the precision requirements. In this respect,
a feasible countermeasure could be to replace the objective
function with a more-easily computable approximation,
exploiting techniques from surrogate optimization (Koziel
and Leifsson, 2013). In this respect, the approximation can be
based on a mesh-free method for interpolation, employing a
finite number of strictly positive-definite Gaussian Radial Basis
Functions (Fasshauer, 2007). According to this alternative, a
two-phase procedure can be established, in which a suboptimal
solution is, first, found via a ultra-fast global search based on
the approximate objective (first phase) and, second, locally

re-optimized using the original objective (second phase).
Preliminary results have been obtained for the maximization
of a specific partial band gap in the tetrachiral metamaterial
(Bacigalupo and Gnecco, 2018). The findings are promising
since, in each repetition, the values of the surrogate and original
objective functions evolve in a similar way during the various
iterations of the Sequential Linear Programming algorithm
applied therein. Besides the reduction of the computational
costs, a further advancement could be to merge parametric
and topological optimization issues. Indeed, the techniques
developed in this work could be applied also to topology
optimization. A promising idea is the employment of level set
methods (Sethian, 1999; Gibou et al., 2018) to represent the
topology, since these methods allow for merging and splitting
of contours during the optimization. The reduction of such a
problem to a finite number of optimization parameters could
be carried out by approximating the level set function by a
neural network, perhaps composed by a single hidden layer and
sigmoidal computational units (Haykin, 1994).
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This paper presents a mechanical study on the use of tensegrity lattices for the design

of energy efficient sun screens, inspired by the dynamic solar façades of the Al Bahar

Towers in Abu Dhabi. The analyzed screens tassellate origami modules formed by 12-bar

and 3-string tensegrity systems. The actuation of each module is controlled through

the stretching of the perimeter strings, which form macro-triangles moving parallel to

the building, while all the bars and the fabric mesh infills form micro-triangles that are

allowed tomove rigidly in space. We developed an analytic formulation of the deformation

mapping associated with such an actuation motion, giving rise to a morphing-type

behavior. We also estimated the energy required to activate the analyzed shading system,

and established a comparison between its weight and that of the original screens of the

Al Bahar Towers. The proposed tensegrity design concept leads to the realization of

shading screens that are markedly lightweight, operate on very low energy consumption

and can be usefully employed to harvest solar and wind energies.

Keywords: tensegrity structures, dynamic solar façades, energy efficient buildings, foldable structures, morphing

lattices

1. INTRODUCTION

Sustainable engineering and architecture aim at designing buildings with limited environmental
impact and improved energy efficiency, comfort and indoor air quality, through appropriate
construction techniques (refer, e.g., to Schittich, 2003; Quesada et al., 2012a,b and references
therein). A sustainable design approach looks at the optimal design and control of natural
ventilation systems, building orientation and shading, through passive and/or active techniques.
The latter calls for the incorporation of home automation systems and renewable energy supplies
within the building, typically in correspondence with the buildings “skin” (Kuhn et al., 2010;
Balduzzi et al., 2012; Bai et al., 2018).

The European Union (EU) requires Member States to develop long-term national plans to
encourage efficient re-development of buildings and reduction of CO2 emissions by between 80%
and 85% compared to 1990 Directive UE (2018/844). The EU policy for the energy efficiency
of buildings is aimed at formulating long-term strategies that facilitate the transformation of
residential and non-residential buildings, into efficient and decarbonised structures by 2050, with
the aim of achieving almost zero net energy consumption (Lombard et al., 2010). The demand
for energy savings and the reduction of CO2 emissions has called for the use of new interactive
building envelopes. Such active façades must respond to the variations of the external climatic
conditions through automatic control devices, with the aim of significantly optimizing the energetic
performance of the building.
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Recent research has proposed the use of tensegrity structures
for the construction of renewable energy supplies forming
dynamic envelopes of energy efficient buildings, due to the special
ability of such structures to act as deployable systems, which
can also convert the strain energy stored in cables, into electric
power (Skelton and de Oliveira, 2010; Fraternali et al., 2015;
Cimmino et al., 2017). Tensegrity systems are truss structures
whose compressive members (or bars) can be described as rigid
of partially deformable bodies, while the tensile members (cables
or strings) exhibit high compliance. The strings are usually pre-
stretched, and are inserted into the structure in order to stabilize
the compressed members (Skelton and de Oliveira, 2010).

This paper continues and significantly expands the study
initiated in Fraternali et al. (2015), on the use of tensegrity
systems for the actuation of dynamic sun screens. We design
tensegrity screens that mitigate air conditioning consumption
resulting from direct exposure to solar rays of an energy
efficient building, and derive the exact kinematics of such
structures under operating conditions. We also study the stress
response of the examined tensegrity systems to wind loading,
and quantify their lightweight nature and the energy cost
required for their activation. The geometry of the solar façade
analyzed in this work is inspired by that of the sun screens
protecting the Al Bahar Towers in Abu Dhabi, United Arab
Emirates, designed by Aedas Architects-UK (now AHR) in
2007, in collaboration with the Arup Group (Karanouh and
Kerber, 2015; Attia, 2017). These towers are 29-story skyscrapers
that host the headquarters of the Abu Dhabi Investment
Council’s and the Al Hilal Bank. The screens of the Al Bahar
Towers mimic the shading lattice-work “ashrabiya” through
“origami” panels that are dynamically opened at night, and
are progressively closed during daylight hours (Karanouh and
Kerber, 2015). We refer to the shading façade designed by
Aedas architects as the “Al Bahar Screen” (ABS) throughout this
paper.

The tensegrity solution that we propose for the re-design
of the ABS controls the tension in selected cables forming the
shading structure. It is aimed at demonstrating that the use of
tensegrity concepts for the design of active solar façades leads
to lightweight morphing systems that require minimal storage
of internal energy and reduced operation costs. Such a design
can easily be generalized to dynamic skins of energy efficient
buildings featuring different topologies, upon retaining the use
of morphing architectures (Fleck et al., 2010), and deployment
mechanisms controlled through cable stretching and relaxation
(Fraternali et al., 2015). We label the sun screen designed in the
present work as the “Tensegrity Al Bahar Screen” (TABS).

The structure of the paper is as follows. We begin by
reviewing the AHR design of the ABS in section 2. Next,
we move on to design a basic TABS module, by developing
an analytic formulation of the kinematics of such a structure.
We prove that the employed actuation mechanism requires
the deformation of a limited number of members, and
exhibits a morphing-type response (section 3). The stress
analysis of the TABS module is conducted in section 4,
while an estimate of the energy costs associated with its
actuation is presented in section 5. We highlight the main

advantages of the TABS technology in section 6, where
we also draw potential future extensions of the present
research.

2. A REVIEW OF THE ABS DESIGN

The biggest challenge that contemporary architecture has to
address, in order to make progress in sustainability, is to
optimize natural resources and minimize energy consumption.
To provide the best answer to this need it is necessary to
design flexible and reconfigurable building envelopes able to
dynamically react on the base of the evolution of weather and
environmental conditions (Figure 1). The adaptive architecture
of the Al Bahar tower façade by AHR develops a new design
approach based on structural systems that can change their
shape by reacting to the surrounding environment. The heart
of the Al Bahar tower project consists of a modern-day re-
interpretation of the traditional “mashrabiya” shading system.
The latter is a passive shading technology typical of the Arab
world, which consist of perforated wooden screens forming
wonderful geometric patterns, which reduce solar gain and
mitigate air conditioning consumption resulting from direct
exposure to solar rays (Armstrong et al., 2013).

The peculiarity of the adaptive ABS consists in no longer
interpreting the mashrabiya as a static and two-dimensional
system, but rather as a façade design approach generating
three-dimensional origami shapes (Figure 1B), whose motion
in space can be controlled by sensors and actuators during
daylight hours (typically, from 9 a.m. through 5 p.m.) (Al-
Kodmany, 2016). The evaluation of the insulation property of
a façade, the so-called U-value (defined as the amount of heat
passing per unit of surface of the screen, under one Kelvin
temperature gradient between indoor and outdoor), is a topic of
paramount interest for the architects and engineers operating in
the field. Energy studies conducted on the ABS lead to conclude
that the overall U-value of this building envelope is equal to
2.0 W/m2K, which corresponds to that of a solid brick wall
(Designing BuildingsWiki)1. The origami panels are covered by a
polytetrafluoroethylene (PTFE) coated fiber mesh, which reduces
the G-value of the façade more than 50% (i.e., the ratio between
the total solar heat gain and the incident solar radiation), as
compared to a glazed envelope (Karanouh and Kerber, 2015).
The activation of the ABS is driven by a centrally positioned
electric screw-jack linear actuator (piston-actuated computer-
controlled technology) that operates on low energy consumption.
The linear actuator stroke reaches up to 1,000 mm, which folds
the panels and provides up to 85% clear opening area (Armstrong
et al., 2013) (Figure 1C). The structural elements of the ABS
are made of duplex (austenitic-ferritic) stainless steel supporting
frames and Aluminum dynamic frames, with each triangle of
the screen covered by a glass fiber panel (Figure 1B) (Karanouh
and Kerber, 2015; Attia, 2017). The umbrella-like module of the
ABS has a height of 4,200 mm, and a width ranging between
3,600 and 5,400 mm. In total, each tower has 1,049 shading

1Available online at: https://www.designingbuildings.co.uk/wiki/U-values.
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FIGURE 1 | (A) Illustration of the Al Bahar towers in Abu Dhabi. (B) detail of a module of the ABS (picture taken during the mounting of the screens). (C) ABS

actuation mechanism (reproduced with permission from Karanouh and Kerber, 2015).

modules, each weighing a 1.5 tons (Armstrong et al., 2013; Attia,
2017).

3. KINEMATICS OF A TABS MODULE

The TABS concept is illustrated in Figure 2, with reference
to a basic module of the structure. The analyzed module is
composed of six “micro-triangles,” and is such that its boundary
forms a “macro-triangle” when projected onto a plane parallel
of the building façade (umbrella-like module). The activation
mechanism of the TABS module is driven by a linear actuator,
which stretches the perimeter strings, by pushing against a
vertex of the macro-triangle along its bisector, in parallel to
the building façade. The mechanism is guided by two linear
springs controlling the in-plane displacements of the other two
vertices of the macro-triangle, and a telescopic collar guiding the
out-of-plane displacement of the center of mass of the module
(Figure 2). It is worth remarking that such a “tangentially”
activated mechanism substantially differs from that driving the
ABS module, since the latter pushes orthogonally to the building
façade, against the center of mass of the module (Armstrong
et al., 2013; Karanouh and Kerber, 2015; Attia, 2017) .We study
in section 3.1 the existence of a deformation mapping of the
TABS module, which corresponds to the described actuation
mechanisms and ensures that all the micro-triangles move rigidly
in space. Such a morphing-type behavior (Hutchinson and Fleck,
2006; Fleck et al., 2010) induces minimal storage of internal
energy during the actuation phase, and ensures high stiffness
and stability when the actuation mechanism is not triggered (cf.
Sections 4, 5).

The model of the TABS adopted in following analytical
and numerical developments is reported in Figure 3, to
which we refer for notation. The module is described as
a tensegrity system formed by 3 strings parallel to the
building façade and aligned with the edges of the macro-
triangle (red-colored members), and 12 bars forming the
edges of the micro-triangles (black-colored members). Figure 3

depicts the completely folded configuration (Figure 3A) of
the tensegrity model, which we assume as reference, and
the unfolded, perfectly flat configuration (Figure 3B). The
TABS model is formed by seven nodes (numbered from 0
to 6 in Figure 3), for a total of 21 degrees of freedom
(ndof = 21). The adopted Cartesian frame is reported in
Figure 3.

In agreement with the activation mechanism described above,
the boundary conditions (BCs) of the TABSmodule are as follows

on node 0 : u0(x) = 0 , u0(y) = 0 ,

on node 2 : u2(x) = 0 , u2(z) = 0 ,

on node 4 : u4(y) =
u4(x)√

3
, u4(z) = 0 ,

on node 6 : u6(y) = −
u6(x)√

3
, u6(z) = 0 ,

(1)

where ui(x), ui(y) and ui(z) are the Cartesian components of the
nodal displacement vector ui exhibited by the generic node i. The
BCs (1) must be complemented by three additional equations,
respectively associated with the linear actuator acting on node
2, and the two springs acting on nodes 4 and 6 (actuation

constraints, cf. Section 3.1).

3.1. Rigid Body Transformation
Let us investigate on the existence of a rigid body transformation
of the TABS deprived of external constraints, which cause
stretching (positive) strains only in the perimeter strings
connecting nodes 2, 4, and 6 (cf. Figure 3), measured from the
fully-folded configuration (rest configuration), while keeping all
the bars undeformed.

The rigid-body deformation mapping under investigation
is constrained by the 11 BCs defined above, plus 12 rigidity
constraints associated with the bars forming the module. In
agreement with BCs (1), the displacement vector of node 2
attached to the linear actuator of the TABS module is given by

u2 = U ey , U ≥ 0 , (2)
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FIGURE 2 | Schematic views of the TABS concept: top view and mid-plane sections (in two different configurations): A, linear actuator; B, bars; C, telescopic collar;

R, elastic restraints; S, perimeter strings. Restraints are idealized and not reported in scale.

FIGURE 3 | Reference (A) and deformed (B) configurations of a tensegrity model of the TABS module. (A) shows the folded configuration of the structure

corresponding to the fully opened screen. (B) depicts the flat configuration (fully closed screen), where the module reduces to an equilateral triangle with side L. Nodes

2, 4, and 6 are mutually connected through deformable strings (red-colored members), which are at rest in the reference configuration, and fully stretched in the flat

configuration. The strings are superimposed to the perimeter bars in the flat configuration (B).

U denoting the time-dependent norm of such a displacement,
which is measured from the fully folded configuration. Due to
constructive needs, we require that the researched rigid body
transformation is such that the displacements of nodes 4 and

6 exhibit the same norm U of u2 (due to symmetry), and
nodes 5, 3, and 1, respectively move along the y-axis (i.e., the
projected 5–2 edge onto x, y-plane, see Figure 3), the projected
3–6 edge (aligned with the y-axis rotated of π/3), and the
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projected 1–4 edge (aligned with the y-axis rotated of −π/3).
Our next developments will show that such assumptions are
equivalent to the enforcement of the actuation constraints at the
vertices of the TABS module. Overall, the deformation mapping
associated with the researched rigid body transformation of the
TABS is described by Equation (2), and the following additional
displacement laws

u0 = −αez , (3)

u1 =

√
3β

2
ex −

β

2
ey + γ ez , (4)

where α, β , and γ are unknown functions ofU, to be determined
on enforcing rigidity constraints on all the bars. In the completely
folded and flat configurations it trivially results

α = 0 , β = 0 , and γ = 0 for U = 0 , (5)

and

α =
L
√
3

6
, β = 1 , and γ = 0 , for

U = U =
2
√
3− 3

6
L . (6)

Let us label the position vectors of the generic point i in reference
and deformed configurations as Xi and xi, respectively. The rest
and deformed lengths of the eth element attached to nodes i and j
are given by

Le =
√

(

Xi − Xj

)

·
(

Xi − Xj

)

, (7)

ℓe =
√

(

xi − xj
)

·
(

xi − xj
)

, (8)

where dot symbol (·) denotes the scalar product between vectors.
The rigidity constraints to be considered require that it results

L2e = ℓ2e , (9)

in correspondence to all the bars (here, squared lengths are
used for algebraic convenience). It is easily shown that the
enforcement of such constraints leads us to the following system
of three independent (nonlinear) equations

3α2 −
√
3Lα + 3LU + 3U2 = 0 ,

3(α + γ )2 −
√
3L(α + γ )+ 3β2 = 0 , (10)

2β2 + 2γ 2 − Lβ − 2Uβ + 2LU + 2U2 = 0 ,

which admit four distinct sets of solutions for α, β and γ , as
it can be verified through the use of the Solve function of
Mathematica R© . Three of such solutions violate Equations (5)

and (6), while the unique admissible solution has the following
expression

α =
L−

√
L2 − 12LU − 12U2

2
√
3

,

β =
2LU

L− 6U
, (11)

γ = −

√
3U

√
L2 − 12LU − 12U2

L− 6U
.

We are therefore led to the following expression of the 7 × 3
matrix x̂(U) that collects the deformed coordinates of nodes from
0 to 6 of the TABS module,

x̂ =















































0 0

√

L2 − 12LU − 12U2

2
√
3

√
3LU

L− 6U
LU

L− 6U −
√
3U

√

L2 − 12LU − 12U2

L− 6U

0 U + L
2 0

−
√
3LU

L− 6U
LU

L− 6U −
√
3U

√

L2 − 12LU − 12U2

L− 6U

−
√
3
4 (L+ 2U) −1

4 (L+ 2U) 0

0 − 2LU
L− 6U −

√
3U

√

L2 − 12LU − 12U2

L− 6U√
3
4 (L+ 2U) −1

4 (L+ 2U) 0















































.

(12)
Equation (12) gives the analytic description of the researched
actuation motion of the TABS module. Graphic illustrations of
such a transformation are provided in Figures 4–6, on assuming
L = 4.55 m, as in the ABS (Karanouh and Kerber, 2015), and
the displacement U of the actuated node as order parameter. It
is worth noting that the elongation (i.e., the change in length)
exhibited by the perimeter strings is equal to

√
3U, which

corresponds to the engineering strain ε = 2U/L. For U = U
(perfectly flat configuration) the engineering strain exhibited by
the perimeter strings is considerably high, and approximately
equal to 15%. In correspondence to the examined value of L, it
is immediate to verify that it results that U = 0.352 m, and that
the norm u0 of the out-of-plane displacement of node 0 is equal
to 1.313 m (unfolding displacement of the umbrella module).

Figure 4 shows that the mid nodes 1, 3, and 5 of the edges
of the macro triangle exhibit negative z-displacements, which
implies that such nodes move toward the building façade during
the actuation of the TABS (cf. also Figure 6). It is useful to
compute the minimum value of the z displacement of such nodes
during the TABS actuation, with aim of sizing the gap to be
allowed between such a structure and the building façade.Making
use of Equation (12) and the Solve function ofMathematica R© ,
it is not difficult to verify that it results du1(z)/dU = 0 for
U = U◦ = 0.059 L, and u1(z)min = −0.079 L. In particular, for
L = 4.55 m, one gets U◦ = 0.268 m, and u1(z)min = −0.359 m.
We therefore conclude that the TABS module must be placed at
least at∼ 36 cm from the building façade. It is worth noting that
the Aedas design of the Al Bahar Towers places the ABS at 2.8 m
from the façade of the towers, for window cleaning and shading
system maintenance (Armstrong et al., 2013; Attia, 2017).
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FIGURE 4 | Nodal displacements from the fully folded configuration exhibited by the non-actuated nodes of the TABS module, assuming L = 4.55 m. The Cartesian

components of the nodal displacements along the x-axis are marked in blue, while the components along the y-axis are marked in red, and those along the z-axis are

marked in black.

4. STRESS ANALYSIS OF TABS

The present Section is devoted to the computation of the
axial forces carried by the members of the TABS model under
the actuation motion (section 4.1), and wind-induced forces
(section 4.2). For the sake of simplicity, and considering the
common operation times of the analyzed sun screens (Armstrong
et al., 2013; Karanouh and Kerber, 2015; Attia, 2017), we assume
that the TABS structure reacts to such loading conditions through
a quasi-static deformation process, by neglecting inertial and
damping (i.e., dynamical) effects.

Upon extending the mechanical theory presented in Modano
et al. (2018) and Mascolo et al. (2018) to the TABS model
under consideration, we describe the generic member of such a
structure as a linear spring that carries an axial force te obeying
the following constitutive law

te = ke (ℓe − Le) , (13)

where it results

ke =
EeAe

Le
, (14)

Ee denoting the Young’s modulus of the material, and Ae

denoting the cross section area.
Our physical model of the TABS assumes L = 4, 550 mm (cf.

Section 3.1), and makes use of Aluminum alloy hollow tubes for
the bars and nylon-fiber ropes for the strings, whose properties
are given inTables 1, 2, respectively. Aluminum bars were chosen
because of their lightweight nature and high corrosion resistance
(Mazzolani, 1994), while nylon-fiber ropes were selected due to
the fact that such elements combine a considerably low Young’s
modulus, elastic elongation to failure (or yield strain) slightly
greater than the deformation needed for actuation purposes
(≈ 15%, cf. Section 3.1), and considerably high tensile strength
(see Table 2, where the given mechanical properties have been
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FIGURE 5 | Top views of different frames of the TABS actuation motion. (see

the Supplementary Video for an animation of the TABS actuation).

imported from a web source, 20182; refer, e.g., to Nylonrope,
2018 for fabrication information). Other possible choices for the
strings of the TABS may employ suitable natural or artificial
fibers (see Naveen et al., 2018 and references therein), or rubber
materials (Soru, 2014). The adopted physical model adequately
approximates the rigid-elastic response analyzed in section 3.1
(rigid bars and flexible strings), since it includes bars exhibiting
axial stiffness much greater than the axial stiffness of the strings
(EbAb = 493.625 EsAs, subscripts b and s denoting bars and
strings, respectively, see Tables 1, 2).

The total potential energy of the TABS model under
consideration is given by

5 =
1

2

n
∑

e=1

te(ℓe − Le)+
K

2

(

u24(x) + u26(x)

)

, (15)

where K denotes the stiffness of the actuation springs applied to
nodes 4 and 6 (cf. Figure 2) that we assume equal to 67 kN m−1

2http://publica.fraunhofer.de/documents/N-161087.html.

(K = EsAs/L). The equilibrium equations of the TABS model
under arbitrarily large nodal displacements ûj (j = 1, ..., ndof) are
obtained by imposing stationarity of the total potential energy
(Equation 15) with respect to such quantities, which leads us the
following system of equations

rj =
∂5

∂ ûj
=

m
∑

e=1

te
∂ℓe

∂ ûj
− λ̂wj = 0, j = 1, ..., ndof . (16)

Here, the index e runs from one to the total number of members
m, which include bars, perimeter strings and actuation springs,
while the quantity λ̂ denotes a scalar multiplier of the nodal forces
wj (j = 1, ..., ndof).

We computed the solution of the nonlinear system
(Equation 16) through the path-following algorithm described
in Mascolo et al. (2018), with reference to two distinct
deformation processes. The first process is aimed at estimating
the mechanical response of the examined physical model under
the actuation motion studied in section 3.1 (cf. Section 4.1).
In the second process, the structure is deployed from the
fully-folded configuration to the almost closed configuration
corresponding to U = 0.95U , and next is subject to wind-forces
acting on such a configuration (cf. Section 4.2). The reason for
applying wind forces on the configuration with U = 0.95 U
(instead of the fully flat configuration corresponding to U = U )
is two-fold, technological and aesthetic. From a technological
point of view, we note that the fully flat configuration of the
TABS module is not completely deployable, due to the finite
size of the bars forming such a system, which unavoidably get
in touch before the configuration with U = U is reached
(see Figures 1, 5). Regarding aesthetic issues, we observed that
having a “technologically closed” configuration of the TABS
module, which is not perfectly flat, ensures that such a structure
has an origami shape in correspondence to all the steps of
the actuation motion (cf. Figures 5, 6), as in the original ABS
design (Karanouh and Kerber, 2015; Attia, 2017).

4.1. Forces and Stresses Induced by the
Actuation Process
Let us focus our attention on the forces carried by the perimeter
strings in correspondence with the fully-flat configuration with
U = U , and the almost closed configuration with U = 0.95U ,
alongside the actuation motion of the TABS. It is an easy task
to compute such quantities using the path-following algorithm
described in Mascolo et al. (2018), or, alternatively, by simply
observing that the elongation of the perimeter strings is equal
to

√
3U in the generic, deformed configuration of the TABS

(cf. Section 3.1). The forces, strains and stresses carried by the
perimeter strings in the above configurations of the TABS are
shown inTable 3. It is immediate to verify that the stresses carried
by the strings in correspondence to the analyzed configurations,
are slightly lower than the tensile strength of 616 MPa of the
adopted nylon-fiber ropes (cf. Table 2).

The use of the path-following procedure outlined in section 4
leads us to obtain the nodal forces acting on the TABS module
for U = U and U = 0.95 U , which are shown in Table 4.
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FIGURE 6 | Side views of different frames of the TABS actuation motion (see the Supplementary Video for an animation of the TABS actuation).

TABLE 1 | Geometric and mechanical data of 6082-T5 Aluminum bars.

Width Height Thickness Material Young’s modulus Density Yield stress Yield strain

w h t E ρ σ ǫb

(mm) (mm) (mm) (GPa) (kg m−3) (MPa) (%)

150 70 5 6082-T5 72 2.70× 103 260 0.2

The force acting on the node 2 will be employed in section 5 to
select the linear actuator to be applied to the TABS module under
consideration.

4.2. Effects of Wind Loading
Relevant external loads for the stress analysis of the TABS
are those induced by the action of positive and negative (i.e.,
suction) wind pressures on the closed configuration of the
structure (Karanouh and Kerber, 2015). It is known that wind
induces dynamic, intrinsically random, and time-dependent

loads on wind-exposed structures, whose direction is variable in
time and influenced by a number of different factors (refer, e.g.,
to the European standard for wind actions EN 1991-1-4, 2005).

By addressing a dynamical treatment of wind forces on the
TABS to future work, in the present study we focused our
attention on the equivalent static wind load analysis, which is
contemplated by technical standards (EN 1991-1-4, 2005; Blaise
andDenoël, 2013).We considered a fixed direction of wind forces
parallel to the z-axis of the adopted Cartesian frame (Figure 3).
Making use of the results of wind tunnel tests on full-scale
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TABLE 2 | Geometric and mechanical (effective) data of (nylon-fiber ropes).

Diameter Material Young’s

modulus

Density Tensile

strength

Yield

strain

d Es ρs σs ǫs

(mm) (GPa) (kg m−3) (MPa) (%)

10 Nylon

filaments

3.9 1.14× 103 616 15.8

TABLE 3 | Strain, stress and axial force carried by the generic perimeter string in

the almost fully-flat (U = 0.95 U ) and fully-flat (U = U ) configurations.

U = 0.95 U U = U

Strain Stress Axial force Strain Stress Axial force

ε σs N ε σs N

(%) (MPa) (kN) (%) (MPa) (kN)

14.6 568.657 44.662 15.4 598.255 46.987

TABLE 4 | Nodal forces acting in the almost fully-flat (U = 0.95 U ) and fully-flat

(U = U ) configurations.

U = 0.95 U U = U

Node Rx Ry Rz Rx Ry Rz

(kN) (kN) (kN) (kN) (kN) (kN)

0 0 −297.975 0 0 −313.723 0

2 0 276.167 −25.318 0 290.759 −11.024

4 19.286 10.904 12.659 20.304 11.482 5.512

6 −19.286 10.904 12.659 −20.304 11.482 5.512

prototypes of the ABS presented in Attia (2017) and Karanouh
and Kerber (2015), we assumed the wind pressure λ̂ = 3.5 kPa
over the projection of the screen onto the x, y-plane. Said || · ||
the Euclidean vector norm, × the vector product symbol, and
introduced two vectors ap and bp lying along the edges of the
generic micro-triangle (or panel) forming the TABS, the surface
area Ap of such an element was computed as follows

Ap =
1

2
||ap × bp|| , (17)

while its unit normal is given by

np =
ap × bp

||ap × bp||
. (18)

The wind force acting over the generic panel p, along its normal
vector, was computed through (EN 1991-1-4, 2005; Blaise and
Denoël, 2013)

ωp = λ̂ Ap(np ⊗ np)ez , (19)

ez denoting the unit vector along the z-axis, and ⊗ denoting the
tensor product symbol. The wind force acting on the generic node

TABLE 5 | Strains, stresses and axial forces produced by the application of

positive wind pressure forces on the TABS configuration corresponding to

U = 0.95 U .

Element Strain Stress Axial force Buckling load

ε σs N Nb

(%) (MPa) (kN) (kN)

1− 0 0.000 0.105 0.221 −728.031

2− 0 0.080 57.462 120.669 −182.008

2− 1 0.025 17.758 37.292 −242.677

3− 0 0.000 0.105 0.221 −728.031

2− 3 0.025 17.758 37.292 −242.677

4− 0 −0.110 −78.954 −165.803 −182.008

4− 3 0.025 17.757 37.290 −242.677

5− 0 0.000 0.091 0.192 −728.031

4− 5 0.023 16.786 35.250 −242.677

6− 0 −0.110 −78.954 −165.803 −182.008

6− 5 0.023 16.786 35.250 −242.677

6− 1 0.025 17.757 37.290 −242.677

2− 6 14.586 568.868 44.680 0

6− 4 14.476 564.569 44.341 0

4− 2 14.586 568.868 44.680 0

TABLE 6 | Strains, stresses and axial forces produced by the application of

negative wind pressure forces on the TABS configuration corresponding to

U = 0.95 U .

Element Strain Stress Axial force Buckling load

ε σs N Nb

(%) (MPa) (kN) (kN)

1− 0 0.000 −0.247 −0.519 −728.031

2− 0 0.177 127.276 267.279 −182.008

2− 1 −0.025 −18.285 −38.399 −242.677

3− 0 0.000 −0.247 −0.519 −728.031

2− 3 −0.025 −18.285 −38.399 −242.677

4− 0 −0.021 −15.435 −32.414 −182.008

4− 3 −0.025 −18.284 −38.394 −242.677

5− 0 0.000 −0.226 −0.475 −728.031

4− 5 −0.024 −17.143 −36.000 −242.677

6− 0 −0.021 −15.435 −32.414 −182.008

6− 5 −0.024 −17.143 −36.000 −242.677

6− 1 −0.025 −18.284 −38.396 −242.677

2− 6 14.581 568.665 44.663 0

6− 4 14.466 564.163 44.309 0

4− 2 14.581 568.665 44.663 0

of the TABS was finally obtained as follows

wi =
1

3

ni
∑

p=1

ωp , (20)

ni denoting the number of panels attached to node i.
As already anticipated, we applied both positive and negative

wind pressure forces on the almost flat configuration of the
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TABLE 7 | Main parameters of Rolaram® linear actuators.

Config. Product code Dynamic load Linear speed Power Energy consumption Weight

(kN) (mm/min) (kW) (Wh) (kN)

P R2501190 294.0 1190 7.5 35 4.23

RA R2250340 300.0 340 2.2 36 3.01

P R2500790 327.0 790 5.5 39 4.09

RA R2501140 329.0 1140 7.5 37 4.74

RA R2500670 386.0 670 5.5 46 4.74

P R2500470 402.0 470 4.0 47 3.97

The drive is a brake motor, mounted either at right angles (configuration RA) or parallel (configuration P) to the actuator ram.

TABS corresponding to U = 0.95 U . An application of the
path-following algorithm described in Mascolo et al. (2018) lead
us to the results reported in Tables 5, 6, which show the axial
strains, stresses and forces carried by all themembers of the TABS
module under such loading conditions, assuming tensile strains,
stresses and forces as positive. The results shown in Tables 5,
6 highlight that the stresses carried by the strings and bars are
lower than the corresponding yield strengths, and that the axial
forces carried by the bars, when negative, are lower than the local
Eulerian buckling loads. In particular, the axial stresses carried
by the bars are significantly lower than the yield stress of 260
MPa.We accept that the bars can be loaded either in compression
(negative bar forces) or in tension (positive bar forces), while we
requite that the strings must always work in tension. Tables 3, 5,
and 6 show that the strings of the TABS module (members 2–
6, 6–4, and 4–2) always carry positive forces. This is due to the
actuation mechanism of the module, which leads the strings to
be fully stressed under a tensile strain of the order of 15% in
the (theoretically) fully closed configuration of the screen. It is
worth remarking that the marked stretching of the strings in the
closed configuration of the system, confers significant geometric
stiffness (Fraternali et al., 2015) to such elements, preventing
them from going slack, e.g, under the action of suction wind
forces.

5. ENERGY COST AND WEIGHT

The present Section is primarily devoted to estimate the energy
cost associated with the operation of the linear actuator applied
to node 2 (see Figure 3) of the system illustrated in Figure 2. We
begin by sizing such an actuator, using a commercially available,
electro-mechanical actuator of the Rolaram R© series by Power
Jacks (2018). The activation force (or dynamic load) prescribed to
the actuator is assumed coincident with the nodal force computed
at node 2 of the configuration with U = 0.95 U , which is
equal to Fa = 290.759 kN (cf. Table 4). Table 7 shows different
Rolaram R© actuators ensuring dynamic load capacity of the same
order of magnitude of Fa. The activation time of such actuators
have been computed through the product of the inverse of the
actuation speed by the stroke U = 0.95 U ≈ 334 mm, while
the corresponding energy consumptions have been computed by
multiplying the activation time by the power requested by the
actuator.

FIGURE 7 | Graphical comparison between ABS (left) and TABS (right)

modules.

The device that is most suited for our scopes in Table 7 is
the actuator Rolaram R© R2501190, which shows 294 kN dynamic
loading capacity and maximum stroke of 3,500 mm (Power
Jacks, 2018). The activation time of such an actuator, which is
required to take the TABS module from the fully folded to the
almost flat configuration (U = 0.95 U ), can be rather short,
and approximately equal to 17 s. The corresponding energy
consumption is markedly low, equal to that needed to keep a light
bulb of 35 W lit for 1 h. Obviously, such an activation time can
be suitably relaxed for operational purposes, as a function of the
programmed opening and closure times of the screen. We wish
to remark that the “parallel” actuation mechanism of the TABS
module analyzed in the present work contemplates a stroke that
is equal to 33 % of that needed to actuate the analogous module of
the ABS via a central piston (1,000 mm, cf. Karanouh and Kerber,
2015; Attia, 2017).

We close the present section by presenting a comparison
between the weight of the examined physical module of the
TABS and that of the ABS module designed by Aedas architects
(Alotaibi, 2015). Figure 7 shows a graphical comparison of ABS
and TABS umbrella modules, highlighting the different sizes
of the structural members that form such systems. It is useful
to observe that the ABS solution presents different families of
bars: primary bars placed behind the screens supporting the
actuation mechanism; Aluminum frames supporting the panels;
stabilizers connecting the first two sets of bars; and cantilever
struts separating the screens from the façade of the towers (see
Figure 1C, and Figure 17 of Karanouh and Kerber, 2015). The
total weight of the ABS module is reported as approximately

Frontiers in Materials | www.frontiersin.org February 2019 | Volume 6 | Article 757

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Babilio et al. Dynamic Sunscreens With Tensegrity Architecture

equal to 1.5 tons (14.71 kN) in Attia (2017) and Armstrong et al.
(2013).

The TABS module is instead formed by 12 bars placed along
the perimeters of the six micro-triangles forming the system
(Figures 2, 3). The weight of the structural part of the TABS
module equippedwith Aluminumbars and nylon-fiber ropes (see
data in Tables 1, 2) is easily computed, and amounts to 1.43 kN.
We safely doubled such a weight, in order to grossly account
for the additional weights of joints, rails, springs and secondary
elements. The weight of the infill panels amounts to about
0.13 kN, on using PTFE panels, as in the original ABS design
(Armstrong et al., 2013; Karanouh and Kerber, 2015; Attia, 2017),
which have self weight per unit area of 0.015 kN m−2 and cover
an area of about 9 m2 per module (see e.g., Structurflex, 2018
for fabrication information). The total weight of the actuator is
4.41 kN, by summing the weight of the selected device (4.23 kN,
see Table 7) to the weight of 0.18 kN of the roller screw (Power
Jacks, 2018). By summing the above weights, we finally estimate
the total weight of the TABS module approximately equal to 7.40
kN. It is worth observing that such weight is 50% lower than
the ABS weight per module reported in Armstrong et al. (2013).
The greater lightness of the TABS module vs. the corresponding
ABS module can be visibly appreciated in Figure 7. We don’t
have numerical data on the energy consumption required by the
deployment of the ABS module, which nevertheless is reported
to work “on very low energy consumption,” too (Karanouh and
Kerber, 2015). It is worth noting that the significant reductions
of the stroke of the linear actuator and the weight of the
TABS module, over the ABS design, are expected to further
reduce operation costs and the environmental impact of the
system.

6. CONCLUDING REMARKS

Today’s technological development of active solar façades is
strictly tied to the production of new technologies that permit
the realization of lightweight building envelopes featuring
sufficiently high stiffness and stability. The lightness is a
fundamental prerequisite to guarantee easy deployability of the
active modules of a solar façade, in order to reduce overall
costs, and to favor easy installation and transportation of the
structure.

We have shown in the present study that tensegrity concepts
can be profitably employed to design dynamic sun screens
that exhibit a morphing-type response, with limited use of
materials and very low energy consumption. A tensegrity
design of dynamic sun screens that replicate the well-known,
origami screens of the Al Bahar towers in Abu Dhabi has been
presented, by deriving the exact kinematics of the modules
forming such screens, conducting the stress-analysis of the
investigated structures under the actuation motion and wind
loading, and estimating their weight and activation energy.
We have shown that the tensegrity design formulated in the
present work leads us to approximately obtain a 50% weight
reduction over the ABS design reported in Armstrong et al.
(2013). Such a result leads to marked improvements of the

system performance in terms of the environmental impact
of the construction process, due to a significant reduction
of construction materials (cf. Section 5), which is known to
greatly influence the building’s carbon emissions over its lifetime
(Construction, 2018), while keeping the U-value (the insulation
characteristics) and the G-value (the shading coefficient) of
the façade unchanged with respect to the ABS design (as a
consequence of the use of identical geometry and materials of the
infill panels).

The structures presented in this work allows us to create
“tensegrity skins” of energy efficient buildings, which can serve
as lightweight shading envelopes and are, at the same time,
able to harvest solar and wind energies. Since the units of
such skins are controlled by stretching or relaxing selected
cables, suitably designed tensegrity systems can indeed be used
not only as shading barriers, but also as actuators orienting
solar panels toward the sun, and/or as novel micro-eolic power
generators converting the wind-excited strain energy of the
cables into electrical power (Skelton and de Oliveira, 2010). We
address such generalizations and extensions of the tensegrity
systems analyzed in the present study to future work, with
the aim of designing solar façades featuring various geometries
and deployment schemes, and understanding the versatility
of the tensegrity architectures across different scales of the
unit cells. Such studies will make use of fractal geometry
(Skelton et al., 2014), parametric design concepts (Pottman
et al., 2007) and advanced computational models (Infuso
and Paggi, 2015). Additional future research lines will be
oriented to investigate the application of 3D- and 4D-printing
technologies for the fabrication of reduced-scale mockups of
active tensegrity façades (Amendola et al., 2015). We plan to
tackle the technological challenge related to the application
of the internal prestress by recourse to multimaterial 3D
printing technologies that use materials with different thermo-
hygroscopic properties (see e.g., the polyjet technology described
in Stratasys, 2018).
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Bamboo fibers with high mechanical properties can be a sustainable alternative to

synthetic fibers for application in fiber reinforced polymer composites. The first aim of

this study is to evaluate the dependence of mechanical properties of Dendrocalamus

asper, known as bamboo Petung from Indonesia, on physical properties of the culm,

including culm diameter, wall thickness, height, moisture content and specific density.

Correlations between mechanical properties including tensile strength, modulus of

rupture and modulus of elasticity in flexure and tension and culm physical properties

have been studied. The results demonstrate that specific density is directly correlated

with all these mechanical properties of bamboo while the moisture content values are

correlated only with value of modules of rupture. Although wall thicknesses value of the

culm are correlated with all of the mechanical properties studied, the culm diameter was

only correlated with modulus of rupture and modulus of elasticity in flexure. Therefore,

measurements of the culm geometry and specific density of raw bamboo have the

potential for rapid, non-destructive evaluations of the quality of the bamboo, particularly

in nurseries and forests where there is limited access to testing facilities. The second

aim of this study is to evaluate whether such tests allow for an evaluation of the

mechanical potential of the bamboo for production of high performance bamboo fiber

reinforced polymer composites. Use of these formulas is illustrated through a case study

of bamboo composite reinforcement for structural concrete. Pull-out tests and beam

testing using this composite successfully validate the usefulness of this strategy for

sustainable construction.

Keywords: bamboo, natural fiber reinforced polymer, mechanical properties, culm geometry, correlation study,

statistical analysis

INTRODUCTION

The demand for constructionmaterials is increasing worldwide as populations and their aspirations
are growing. Developing countries in Africa and Asia are struggling to meet this demand due
to missing infrastructures and industries. To satisfy the demands for housing and infrastructure
for the increasing population in new cities, countries, such as Indonesia, Thailand, Vietnam, and
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Myanmar have to rely on mostly imported building materials,
for example sand, cement, steel and also timber for construction.
However, in the long-term, this could be problematic since
these construction materials are either finite for local supply
(sand or timber) or they are only available through import
(copper, iron ore, steel, or other metals). Without alternatives,
many nations may no longer be able to satisfy the rising
demands for construction materials. Fortunately, proposals are
emerging to replace timber and steel with renewable, low-cost
and sustainable forms of construction materials that are found
locally in developing regions.

Fiber reinforced composite materials have enabled much
industrial innovation. Currently composites reinforced by
glass fibers and carbon fibers are being used extensively for
many structural applications. However, there are economic
and environmental challenges. Most of the synthetic fibers
are difficult to recycle and are produced from chemicals
made from refined petroleum. Furthermore, their fabrication
procedures are energy-intensive. Composite materials based on
synthetic inorganic fibers are thus expensive and environmentally
unsuitable. A promising alternative is to employ natural
fibers instead of the synthetic inorganic fibers. Advantages,
in comparison with synthetic fibers, are their abundance,
renewability, biodegradability and lower cost. Among various
natural fibers, bamboo has shown to be a sustainable yet
affordable alternative.

Bamboo is one of the locally available natural materials
that has gained attention in recent years for fabrication of
new category of sustainable bamboo-fiber-reinforced composite
materials. Bamboo is a fast growing, inexpensive and available
natural resource in most developing countries and it has
outstanding material qualities. The cultivation and industrial
processing of bamboo offers a huge potential for a new generation
of building materials fabricated through embedding natural
bamboo fibers into a resin matrix for applications in architecture
and construction (Faruk et al., 2014; Hebel et al., 2014; Yu et al.,
2014; Javadian et al., 2016; Javadian, 2017; Rahman et al., 2017;
Archila et al., 2018).

Bamboo is a natural hierarchical cellular material which
has good mechanical properties, including tensile and flexural
strength, along its fiber direction. Since bamboo is a functionally
graded natural composite the interfaces between its different
ingredients including the fibers, parenchyma cells, and lignin
matrix can have significant impact on its mechanical properties
(Wegst and Ashby, 2004). The hierarchical microstructure of
bamboo arises from the vascular bundles in the parenchyma
matrix being surrounded by supporting cellulose fibers. These
fibers provide the main mechanical properties of bamboo.
Furthermore, the cellulose fibers act as reinforcement to
strengthen the ligninmatrix, similarly to fiber reinforced polymer
matrix composites. This structure creates the crystalline and
amorphous regions within the microstructure of bamboo where
linear chains of glucose with hydrogen bonds form the crystalline
regions while irregular hydrogen bonds create amorphous
regions (Gibson, 2012; Youssefian and Rahbar, 2015).

Bamboo has higher mechanical properties along its fiber
direction than across it. The unique microstructural properties

of natural bamboo with respect to its mechanical properties
make it a suitable renewable material for composites in high
performance applications.

Usually, the density of bamboo is higher on the outer surface
and decreases toward the inner layers of the wall cross section
(Lakkad and Patel, 1981; Murphy and Alvin, 1992; Ray et al.,
2004; Zou et al., 2009; Wahab et al., 2010; Kaur et al., 2016).
Therefore, the outer layers of bamboo culms are supposed to
have better mechanical properties (Liese, 1985; Lo et al., 2008; Yu
et al., 2008). However, to date, no comprehensive and systematic
studies of properties of bamboo in terms of density and culm
geometry—including wall thickness, culm diameter and culm
height—have been found. The identification of sections with
higher fiber densities and therefore possible superior quality in
terms of physical and mechanical properties has the potential
to have a significant impact on the performance of fabricated
composite materials.

Previous studies of bamboo Guadua angustifolia from
Columbia have shown that the top portion of the culm has
the highest strength and modulus of elasticity compared with
lower portions, since top portion of the culm has higher density
(Correal et al., 2010). However, this study did not include top
culm sections and thus, correlations of the culm position with
mechanical and physical properties have not been studied.

Similar studies were carried out in Bangladesh on mechanical
properties, moisture content and density of four indigenous
bamboo species in relationship to the respective culm height
(Kamruzzaman et al., 2008). In this study Bambusa balcooa,
Bambusa tulda, Bambusa salarkhanii and Melocanna baccifera
were tested to determine the modulus of elasticity and the
modulus of rupture. However, no correlation between the culm
height and the mechanical properties has been found.

Bamboo Gigantochloa levis (buluh beting) of Malaysia was
studied for the variation of density, modulus of rupture and
modulus of elasticity with height and age of the culm (Nordahlia
et al., 2012). The study showed that although the modulus of
rupture did not change significantly with the culm height, the
modulus of elasticity increased with increases in culm height.
However, no information has been provided on values for tensile
strength and modulus of elasticity in bending along with their
effects on wall thickness or culm height.

Wakchaure and Kute have studied moisture content, specific
gravity, water absorption, dimensional changes, tensile and
compressive strength of bamboo Dendrocalamus strictus from
India at several heights (Wakchaure and Kute, 2012). They found
no significant difference between bottom andmiddle portions for
tensile, compressive strength and modulus of elasticity. Moisture
content decreased from bottom to top sections while specific
density increased. Unfortunately, the effect of culmwall thickness
and culm diameter on the physical andmechanical properties has
not been studied.

Moisture content (MC) is an important property of raw
bamboo, especially in building and construction applications and
for composite fabrication. MC may adversely affect the bonding
strength of bamboo fibers in composite products and bamboo
laminates as has been shown in studies carried out by Okubo
et al. (2004), Chen et al. (2009), Kushwaha and Kumar (2009).
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Therefore, the MC is expected to have a major impact on the
performance and service life of new bamboo compositematerials.

In addition to MC influence on mechanical properties of
raw bamboo, such as tensile strength and flexural strength,
it also affects geometrical properties of raw bamboo, such as
dimensional stability. Although several studies have included the
effect of water absorption on dimensional stability of raw bamboo
and bamboo composite specimens, they did not examine the
correlation between water absorption of green bamboo and its
mechanical properties (Rowel and Norimoto, 1988; Nugroho and
Ando, 2000, 2001). Rapid moisture changes can result in severe
shrinkage or expansion of bamboo layers, which may, especially
in laminates or composites, result in layer-bond failure (Lee et al.,
1996; Zaidon et al., 2004; Malanit et al., 2011). Therefore, it
is important to determine the MC of various sections of raw
bamboo and classify the MC according to the location within
the culm length before processing the raw bamboo fibers into
composites or laminates.

The specific density (SD) is the oven-dry weight of a given
volume of raw bamboo divided by the weight of an equal volume
of water. SD values are closely related to MC values. A standard
method formeasuring SD andMC is needed to ensure that results
are comparable with other studies. The SD of raw bamboo is a
potential indicator of properties of bamboo-based products, such
as laminates and bamboo composite materials and therefore, it is
important to measure both SD and MC values and relate them to
the mechanical properties of raw bamboo.

As the fiber density changes over the wall thickness, SD values
will differ from the outer to inner section of the wall cross section.
Therefore, for any application of raw bamboo, it is important to
know which part of the wall cross section is processed and what
are the corresponding MC and SD of that part. Measuring MC
and SD values to correlate them with values for wall thickness
and mechanical properties provides an affordable and valuable
method for selecting the best bamboo sections for the production
of bamboo-based products having pre-defined qualities.

Research into the mechanical properties of hierarchical
structures of raw bamboo should lead to better control of
fabrication and quality of the novel bamboo-based composites.
Since bamboo is a grass, which reaches its full height of 20–
30m within an extremely short period of only a few months, the
mechanical properties along culm lengths may vary substantially
(Liese, 1998).

Similar variation of properties may be encountered in all
three principle directions e.g., longitudinal, radial and tangential
(Liese, 1987). Studies have been carried out on various species
of bamboo to investigate differences in mechanical properties
(Limaye, 1952; Liese and Jackson, 1985; Rao et al., 1988;
Hidalgo-Lopez, 2003; Janssen, 2012). However, neither the
effects of wall thickness nor culm geometry on the mechanical
properties was investigated or correlated to bamboo’s natural
hierarchical structure.

Some studies investigated the mechanical properties
of laminates and composites made from Dendrocalamus
asper (Malanit et al., 2009, 2011; Febrianto et al., 2012).
The results show that composites and boards made from
Dendrocalamus asper have high mechanical properties compared

with commercial products made from wood. However, these
studies also did not take into account variations of mechanical
properties of various sections of Dendrocalamus asper and
various culm diameters.

In this paper, a comprehensive and systematic study of
Moisture Content (MC), Specific Density (SD), Tensile Strength
(TS) along the fiber direction, modulus of Elasticity in tension
(Et), flexural strength or Modulus of Rupture (MOR), and
modulus of Elasticity in flexure (Ef) is presented. These properties
are then correlated with the respective culm geometry of bamboo
to have a better understanding of its hierarchical structure
which then can be considered for synthesis of novel bamboo-
fiber-reinforced composite materials fabricated from bamboo
Dendrocalamus asper. Finally, the use of these relationships is
examined through a case study involving the development of a
bamboo composite for use in reinforced concrete. Mechanical
test results are then used to validate this new approach.

MATERIALS AND METHODS

Bamboo Species
Dendrocalamus asper or Petung Putih bamboo was selected from
a bamboo forest on the Java island of Indonesia. This bamboo is
widely available in Java and mostly being used for construction
of small housing in local villages. The Dendrocalamus asper from
Java had an average culm length of 15m. The outer diameter of
the selected culms were between 80 and 150mm. The selected
culms had wall thicknesses between 6 and 20mm. The initial MC
of the culms ranged between 12 and 15%. The culms were cut
into three sections and labeled as top, middle and bottom. Each
section was 5m in length. Samples for this study were obtained
only from the middle and bottom sections as the top portion of
the culms were not available for this study.

Sample Preparation
Fifteen culms of 15m length were chosen for this study. The
bottom and middle sections were eventually divided into five
subsections with a length of 1m. The 1m section was then split
lengthwise and samples of varying thicknesses were cut randomly
for the physical and mechanical tests. The subsections have been
classified into seven groups according to culm diameter and wall
thickness as shown in Table 1.

Sections with bigger diameters typically have larger wall
thicknesses as compared with sections of smaller diameter. For
class 6 and 7, the samples with larger wall thicknesses of up to
20mm were used for testing to evaluate the effect of thicker than
15mm wall section on culm properties.

Moisture Content
The MC was measured for samples taken from the 1m
subsections. From each subsection, 10 samples were prepared.
The ASTM D4442-07 standard test method for direct moisture
content determination of wood and wood-based materials was
followed (ASTM International, 2015). The sample size was (10)
mm × (10) mm × (thickness of the section). Once the samples
were cut from the culms, they were weighed using a Shimadzu
BL320H balance with an accuracy of 0.001 g. The samples were
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TABLE 1 | Classification of the samples used in this study according to culm

diameter and wall thickness.

Culm diameter

(mm)

Wall thickness (mm)

80–90 Class 1 6–7

7–8

8–9

90–100 Class 2 6–7

7–8

8–9

9–10

10–11

100–110 Class 3 6–7

7–8

8–9

9–10

10–11

110–120 Class 4 6–7

7–8

9–10

120–130 Class 5 8–9

9–10

10–11

11–12

130–140 Class 6 10–11

11–12

12–13

14–15

140–150 Class 7 11–12

12–13

16–17

19–20

then dried using a convection oven that could maintain 103◦C
for 24 h. MC was calculated from Equation (1):

MC, % =
A− B

B
× 100 (1)

where, A is the original weight in gram and B is the dried weight
in grams.

Specific Density
Samples for SD measurement were prepared according to ASTM
D2395-14 standard test method for density and specific gravity of
wood and wood-based materials (ASTM International, 2014a).
From each subsection, 10 samples were prepared randomly.
For each sample, the width, the length and the thickness were
determined for the volume (V) calculation. The initial mass
(m) of each sample was measured with the Shimadzu BL320H
balance with an accuracy of 0.001 g. The density (ρ) and SD were
calculated using the following formulae:

ρ =
m

V
(2)

SD = K.ρ (3)

where K = 1,000 mm3/g, (m) is in grams and (V) is in mm3.

Tensile Strength Along the Fiber
The tensile strength of the samples was measured with reference
to the ASTM D143-09 standard test method for small clear
specimens of timber using a Shimadzu AG-IC 100 kN tensile-
testing machine (ASTM International, 2014b). Samples were cut
from the 1m sections of bamboo culms and were chosen from
various radial locations along the sections and then prepared into
dog-bone shapes. The average width and length of the sample
grips was 25 and 50mm, respectively. The average gauge length
was 130mm.

The samples prepared from thick culms were first split into
sections with the same thickness along the length. Subsequently
each section was papered according to ASTM D143-09 into
dog-bone shapes and tested.

Average values from the tensile tests of the two sections were
then used for analysis and evaluation. Five samples were taken
from the internodes of 1m subsections. The loading rate was set
to 1 mm/min. All tests were carried out at room temperature and
65% relative humidity. The tensile strength (σt) was calculated
by measuring the ultimate load at failure of the test (Fult) and
then dividing it by the cross section of the sample across the
gauge length (A). The following formula was used to determine
the tensile strength.

σt =
Fult

A
(4)

Modulus of Elasticity in Tension (Et)
The modulus of elasticity in tension was measured using a
Shimadzu AG-IC 100 kNmachine according to the ASTMD143-
09 standard test method for small clear specimens of timber
(ASTM International, 2014b). Dog-bone shape tensile strength
samples were used for this test. The gauge length was adjusted for
modulus of elasticity test to 80mm and the grip width and length
remain unchanged. An Epsilon axial extensometer with a gauge
length of 80mm was used to measure the sample deformation
during the test. The loading rate was set to 1 mm/min. Load-
deformation curves were obtained from each test to measure the
modulus of elasticity in tension. The modulus of elasticity has
been calculated from the slope of the initial linear portion of the
stress-strain curve derived from the load-deformation curves.

Modulus of Rupture (MOR)
MOR or flexural strength was measured according to ASTM
D3043-00(2011) standard test method for structural panels in
flexure (ASTM International, 2011). A two-point flexural test was
carried out in this study. The advantage of a two-point flexure test
over a center-point flexure test is that a larger area of the sample
is subjected to peak stress—unlike the center-point flexure test,
where the peak stress is applied to an isolated location. Therefore,
the probability that any crack or flaw exists between two loading
supports will be higher and the results will be more reliable
in a two-point flexure test. Five Samples without nodes were
prepared from 1m subsections of each culm. The loading rate
was calculated according to ASTM D3043 with respect to sample
thickness and width.
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Modulus of Elasticity in Flexure (Ef)
The modulus of elasticity in flexure was measured by obtaining
the load-deformation curve in the flexural strength test. An
Epsilon extensometer with a travel gauge of 25mm was used
to measure the mid-span deflection of the samples during the
flexural strength test. The measurement and calculation of the
modulus of elasticity were carried out according to ASTM
D3043-00(2011) at room temperature and 65% relative humidity.
Multiple comparisons between several wall thicknesses and culm
diameters were conducted in this study.

Statistical Analysis
Statistical analysis was performed on the data obtained in this
study by using SPSS version 22 (SPSS Inc., Chicago, IL). Pearson’s
correlation coefficients (r) were calculated to find the relationship
between the culm geometry, SD, MC and the mechanical
properties of bamboo. Three levels of correlation were defined
(i.e., strong, r > 0.5; moderately strong, 0.3 < r < 0.5; and
weak, r < 0.3). To further examine the relationships between
the culm geometry and mechanical properties of hierarchical
structure of natural bamboo, stepwise multiple linear regressions
were performed. The model performance was assessed with
an adjusted r2 value, which represents the percentage of the
variations that are described by independent variables. The r2 in
general is a statistical parameter to demonstrate that the results
of the study are close to the model obtained through multiple
regression analysis. The values of r2 are normally between 0 and
1; however, if the values of r2 are closer to 1, it indicates that the
model obtained can represent more of the data points.

RESULTS AND DISCUSSION

Moisture Content (MC)
Themoisture content has beenmeasured at two relative humidity
conditions: one at 20◦C with 65% relative humidity and one at
45◦C with 80% relative humidity. The results for the samples
from various categories of bamboo Dendrocalamus asper are
shown in Table 2.

At a relative humidity of 80%, the MC increases for all classes
equally. This condition has been achieved after 6 days for wall
thicknesses of more than 13mm and after only 3 days for wall
thickness of <13mm. The increase in MC for all classes are in
the range of 25–35%. The change in MC for class 4–7 is not
significant at 80% relative humidity condition. Figure 1 shows
the comparison of averageMC values together with the error bars
for each class.

Although, the average MC under both relative humidity
conditions for class 4–7 does not vary considerably, for class 1–
3 the MC increases with increasing culm diameter. Culms with
100mm or less in diameter and with thinner wall sections have
lower percentage of ligninmatrix and higher presence of cellulose
fibers compared with culms larger than 100mm in diameter, as
shown in other studies (Alvin and Murphy, 1988; Murphy and
Alvin, 1992; Mohmod et al., 1993).

Since bamboo has a hierarchical structure, its lignin matrix
establishes hydrogen bonds with water, thus large culms are more
stable when exposed to relative humidity variations compared

TABLE 2 | Moisture content of bamboo Petung at two relative humidity conditions

for different classes.

Culm

diameter

(mm)

Wall

thickness

(mm)

MC(%) at 20◦C

with 65%

relative humidity

MC(%) at 45◦C

with 80%

relative humidity

80–90 Class 1 6–7 9.8 13.2

7–8 9.0 11.7

8–9 8.7 11.5

90–100 Class 2 6–7 10.7 13.6

7–8 10.6 13.7

8–9 10.7 13.4

9–10 8.4 11.5

10–11 10.9 14.2

100–110 Class 3 6–7 10.0 13.5

7–8 10.7 14.2

8–9 10.7 14.1

9–10 11.2 15.0

10–11 9.2 12.2

110–120 Class 4 6–7 9.8 12.9

7–8 9.6 13.0

9–10 10.4 13.7

120–130 Class 5 8–9 9.5 12.7

9–10 9.8 12.7

10–11 9.7 13.0

11–12 10.8 14.6

130–140 Class 6 10–11 9.4 12.8

11–12 10.3 14.0

12–13 10.0 13.6

14–15 9.9 13.3

140–150 Class 7 11–12 9.6 13.1

12–13 10.1 13.6

16–17 10.1 13.8

19–20 10.5 13.8

with small culms with thinner wall sections. The thinner wall
section in culms with smaller diameter has a higher fiber
density and therefore, a lower percentage of lignin matrix when
compared with large culms (Zou et al., 2009). As a result, the
relative humidity variation will have a greater impact on MC
of small culms with thin wall sections compared with large
culms with thick wall sections. Despite the trend observed in
MC variation with culm diameter and culm wall thickness, the
differences in MC values of various classes of bamboo Petung for
each relative humidity condition are not substantial.

For processing the raw bamboo culms into sections suitable
for bamboo-based composite fabrication, it was essential to
carefully analyze the hierarchical structure of natural bamboo
with respect to the change in MC with various culm diameters
and wall thicknesses. The average MC of the raw bamboo culms
selected for processing should fall below 10% to reduce the effect
of excessive delamination or long-term environmental impacts
through the degradation of the final composite product. By
measuring the moisture content of chosen bamboo culms for
composite production, a preliminary estimation of the required
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FIGURE 1 | Average MC comparison for all classes of bamboo petung under two relative humidity conditions with error bars at two standard deviations.

time to achieve a certain MC percentage suitable for processing
of the raw bamboo and fabrication of composite became possible.

Specific Density (SD)
The results of SD measurement are presented in Table 3 for
various classes of bamboo culms.

One-way ANOVA (Analysis of Variance) test shows that there
is no significant difference between SD values of wall thicknesses
within class 1–3. SD for class 5–7 decreases with increasing culm
diameter. The common wall thickness category between class 5,
6, and 7 is 11–12mm. The SD for this category of wall thickness
and for class 5, 6, and 7 was 0.741, 0.738, and 0.735, respectively.
With increasing culm diameter for culms with diameter of 120–
150mm, the SD decreases.

The reduction in SD of larger culms is attributed to fiber
density characteristics. Larger culm diameters with thicker walls
are usually found at the bottom of the culm where the fiber
density is lower. Generally, bamboo culms have higher fiber
density at top parts where the fibers are closely packed as has
been shown by other studies on microstructure of bamboo culm
of different species (Alvin andMurphy, 1988; Ray et al., 2004). As
a result, the SD will be lower in the bottom parts where the culm
diameter and wall thickness are much greater as compared to the
middle and top parts.

Tensile Strength Along the Fiber
The results of the tensile strength tests of the bamboo Petung
samples along the fiber direction are provided in Table 4. The
maximum tensile strength of class 1 samples is 295 MPa for
a wall thickness of 7–8mm. In the same class, wall thickness
categories of 6–7mm and 8–9mm have similar tensile strength.
In class 2, the samples with a wall thickness of 7–8mm have
the highest tensile strength of 298 MPa. Other categories of

wall thickness have similar tensile properties and there is no
significant difference between the values.

As Figure 2 displays, there is no significant difference between
average tensile strength of class 1–3 samples. However, the
average tensile strength for class 4–7 decreases with increasing
culm diameter. A relationship between the culm diameter,
specific density and tensile strength is revealed when comparing
the results from SD and tensile strength measurement. For
class 1–3, there is no significant change in SD and tensile
strength while increasing the culm diameter. For class 4–7,
by increasing the culm diameter, both tensile strength and
SD decreases.

For culm diameters above 110mm the tensile strength is
influenced by the fiber density of bamboo. Larger culms are
likely to have lower cellulose fibers and higher lignin content.
Therefore, the tensile strength of the raw bamboo, which mainly
comes from the tensile capacity of the cellulose fibers, is largely
reduced. This is in line with the trend observed for the SD
of bamboo Petung. As mentioned earlier, SD is principally
influenced by the fiber density, therefore declining the fiber
density, results in lower SD as shown also in previous study
(Ray et al., 2004). The correlation between SD, tensile strength
and fiber density is important when selecting the bamboo culms
for composite processing. Being able to distinguish culms with
diverse tensile strengths by measuring only their SD is a valuable
method for choosing the most appropriate culms for bamboo
composite materials.

Modulus of Elasticity in Tension (Et)
The modulus of elasticity in tension of bamboo Petung was
measured for different classes of bamboo Petung with varying
culm diameters and wall thicknesses according to ASTM
D143-14. The results are summarized in Table 5.
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TABLE 3 | Oven-dry SD for various culm diameters and wall thicknesses of

bamboo Petung.

Culm diameter

(mm)

Wall thickness

(mm)

Specific density

80–90 Class 1 6–7 0.878

7–8 0.842

8–9 0.896

90–100 Class 2 6–7 0.837

7–8 0.782

8–9 0.794

9–10 0.882

10–11 0.837

100–110 Class 3 6–7 0.889

7–8 0.848

8–9 0.858

9–10 0.869

10–11 0.856

110–120 Class 4 6–7 0.940

7–8 0.860

9–10 0.920

120–130 Class 5 8–9 0.789

9–10 0.772

10–11 0.754

11–12 0.741

130–140 Class 6 10–11 0.749

11–12 0.738

12–13 0.724

14–15 0.720

140–150 Class 7 11–12 0.735

12–13 0.720

16–17 0.717

19–20 0.711

The modulus of elasticity of bamboo is a measure of the
stiffness of the bamboo matrix and its resistance to elastic
deformation. The highest modulus of elasticity is observed for
class 4 samples with 9mm to 10mm wall thickness with 28,230
MPa while the lowest modulus of elasticity is found for class 7
samples with wall thicknesses of 19mm to 20mm at 18,140 MPa.

The one-way ANOVA test showed no significant difference
between modulus of elasticity of various wall thicknesses within
class 1 samples. The modulus of elasticity of the samples in class
4 has shown an increase compared with the samples from class
1, 2 and 3. In class 4, the modulus of elasticity increases with
increasing wall thickness.

Within the seven classes of bamboo Petung, class 4 exhibits
the highest average modulus of elasticity. In classes 5 to 7, the
modulus of elasticity reduces with increasing wall thickness.
Similar trends are observed for class 6 and 7 samples. This is in
line with the trend observed for tensile strength of the samples
from class 5 to class 7 where an increasing wall thickness lowered
the tensile strength. ComparingTable 5 toTable 4 reveals that for
class 5, 6, and 7, both tensile strength and modulus of elasticity
decrease with increasing wall thickness.

TABLE 4 | Tensile strength of bamboo Petung for various culm diameters and wall

thicknesses.

Culm diameter

(mm)

Wall thickness

(mm)

Tensile strength

(MPa)

80–90 Class 1 6–7 281

7–8 295

8–9 285

90–100 Class 2 6–7 260

7–8 298

8–9 292

9–10 280

10–11 294

100–110 Class 3 6–7 288

7–8 290

8–9 285

9–10 287

10–11 301

110–120 Class 4 6–7 324

7–8 320

9–10 326

120–130 Class 5 8–9 340

9–10 318

10–11 303

11–12 268

130–140 Class 6 10–11 310

11–12 282

12–13 263

14–15 247

140–150 Class 7 11–12 244

12–13 224

16–17 203

19–20 193

As mentioned earlier, the high tensile capacity of bamboo
is largely influenced by the tensile capacity of the cellulose
fibers within the natural hierarchical structure of bamboo.
This is also true for the modulus of elasticity of the bamboo.
The modulus of elasticity may be estimated through taking
the sum of the modulus of the cellulose fibers and the
modulus of the lignin matrix weighted by their volumetric
fractions. Culms with diameters of<110mm, have nearly similar
volumetric ratios of cellulose fibers and lignin, therefore they
have shown similar modulus of elasticity in all categories of
wall thicknesses.

By increasing the culm diameter, the wall thickness also
increases. With increasing wall thickness in larger culms, the
volumetric ratio of cellulose fibers to lignin is also reduced as
has been observed in other studies (Alvin and Murphy, 1988;
Murphy and Alvin, 1992). As a result, a higher percentage
of lignin as compared with the cellulose fibers is expected
in thicker wall sections. This leads to lower modulus of
elasticity of larger bamboo culms compared to smaller culms
in which the volumetric ratio of cellulose fibers to lignin
is higher.
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FIGURE 2 | Average tensile strength of bamboo Petung with error bars at two standard deviations.

Modulus of Rupture (MOR)
Table 6 summarizes the results of the MOR tests for varying
wall thicknesses and culm diameters of bamboo Petung. Class
1 samples have the highest MOR with 209 MPa while class 7
samples have the lowest MOR with 121 MPa. For class 1 samples,
increasing the wall thickness from 6 to 9mm results in the
reduction of the MOR from 209 to 198 MPa. For class 2 and
3 samples, no significant relationship is found between the wall
thickness and the MOR. In class 4 samples, increasing the wall
thickness from 6 to 10mm, reduces the MOR from 166 to 155
MPa, which corresponds to a reduction of 6.7%. For class 5, the
MOR for wall thickness of 10–11mm is the lowest with 149 MPa.
The MOR in class 5 is in the same range as for wall thickness of
9–12mm with a standard deviation of 5%. For class 6 samples,
similar trend is observed as compared with the classes 1, 4, and 5
of bamboo Petung.

The standard deviation of these samples in class 6 was <4%.
The MOR for class 7 samples is reduced with an increase in wall
thickness.Wall thicknesses between 19 and 20mmhad the lowest
MOR of 121 MPa. Figure 3 shows the average MOR for seven
classes of bamboo Petung.

Culms with larger diameters have thicker walls particularly
at bottom sections. The thicker wall thickness leads to a
higher percentage of lignin and lower proportion of cellulose
fibers. As observed earlier regarding the tensile capacity and its
relationship with the fiber density, similar conclusions can be
made concerning MOR. The cellulose fibers are densely packed
at the top sections of the hierarchical structure of bamboo culms
where a smaller diameter prevails. The MOR increases with
decreasing culm diameter. Except for class 2 samples, the MOR
decreases with increasing wall thickness within a class. This

underlines the importance of the fiber density on the mechanical
properties of raw bamboo. Cellulose fibers contribute to high
mechanical properties of natural bamboo. The cellulose fiber
density is higher at the outer layer of the wall sections and at
the top portions of the culms. Therefore, the MOR increases
with increasing fiber content and decreasing lignin content at the
surroundings of the fibers.

Modulus of Elasticity in Flexure (Ef)
The modulus of elasticity in flexure is taken from the load

deflection curve that has been obtained with the help of an

extensometer. The effect of wall thickness and culm diameter on
the modulus of elasticity in flexure is studied for all seven classes

of bamboo Petung.
Table 7 presents the result of this test for the range of wall

thicknesses and culm diameters that were tested according to
ASTM D3043-00(2011).

The highest modulus of elasticity of 14,279 MPa was observed
for class 2 samples with a wall thickness in the range of 9–10mm.
The lowest modulus of elasticity of 9,375 MPa was observed
in samples of class 7 with wall thicknesses between 19 and
20mm. This finding is comparable to the results of MOR tests
where class 7 samples show the lowest MOR of all samples.
When the results of various wall thicknesses were compared,
random variations in modulus of elasticity with increasing the
wall thickness were observed. However, as displayed in Table 7,
bamboo Petung shows a decrease in the average modulus of
elasticity in flexure with increasing culm diameter from 80 to
150mm. Samples with culm diameters of <120mm show less
significant changes in the modulus of elasticity with varying the
culm diameters. Nevertheless, for samples with culm diameters
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TABLE 5 | Modulus of elasticity in tension of bamboo petung for different culm

diamters and wall thicknesses.

Culm diameter

(mm)

Wall thickness

(mm)

Modulus of

elasticity (MPa)

80–90 Class 1 6–7 21,570

7–8 22,780

8–9 21,240

90–100 Class 2 6–7 19,360

7–8 20,180

8–9 20,340

9–10 21,670

10–11 20,560

100–110 Class 3 6–7 23,970

7–8 23,380

8–9 22,370

9–10 22,280

10–11 21,750

110–120 Class 4 6–7 24,460

7–8 25,660

9–10 28,230

120–130 Class 5 8–9 23,890

9–10 22,820

10–11 21,510

11–12 20,300

130–140 Class 6 10–11 22,150

11–12 21,540

12–13 21,920

14–15 19,470

140–150 Class 7 11–12 20,710

12–13 20,330

16–17 19,450

19–20 18,140

of 120mm and larger, the modulus of elasticity drops with
increasing the culm diameter.

The effect of the culm diameter on the modulus of elasticity
in flexure is similar to MOR. With increasing culm diameter,
the average modulus of elasticity decreases. This observation
can be attributed to the culm hierarchical microstructure. With
increasing culm diameter, mainly at the bottom and middle
sections of bamboo, the fiber density decreases due to the higher
lignin content as compared with the fiber content.

As described earlier, the top sections of a culm exhibit higher
fiber densities as compared with the bottom sections. Such high
fiber density is responsible for the strong mechanical features of
the bamboo culm—especially themodulus of elasticity,MOR and
the tensile strength.

Within one class of bamboo, the change in modulus of
elasticity with varying wall thicknesses is not linear for all the
samples. This is due to the spatially varying microstructure of
the bamboo culm walls. Samples tested in this study have been
randomly collected at different cross sections and varying height
locations. Therefore, the variation in modulus of elasticity with
wall thickness was expected from culm to culm.

TABLE 6 | MOR of bamboo petung for seven classes.

Culm diameter

(mm)

Wall thickness

(mm)

MOR (MPa)

80–90 Class 1 6–7 209

7–8 207

8–9 198

90–100 Class 2 6–7 172

7–8 180

8–9 162

9–10 190

10–11 161

100–110 Class 3 6–7 172

7–8 168

8–9 158

9–10 160

10–11 168

110–120 Class 4 6–7 166

7–8 159

9–10 155

120–130 Class 5 8–9 159

9–10 153

10–11 149

11–12 150

130–140 Class 6 10–11 165

11–12 162

12–13 160

14–15 151

140–150 Class 7 11–12 138

12–13 127

16–17 125

19–20 121

Comparing the mechanical properties of bamboo Petung
with available local timber species that are commonly used in
structural applications in Indonesia, demonstrates the superior
properties that bamboo Petung offers as compared with timber.
Table 8 presents the range of specific density, tensile strength
along the fiber, modulus of elasticity in tension and MOR of
timber species used commonly in structural applications as
well as composite products (Green et al., 1999). Timber species
commonly used in Indonesia are Balau, Sumatran Pine and
Indonesian Rosewood.

The mean tensile strength of bamboo Petung is higher than
Balau, Sumatran Pine, and Indonesian Rosewood. In terms
of modulus of elasticity, bamboo Petung is stiffer than all
timber species specified in Table 8 except for the top range
of Balau, which is close to the modulus of elasticity of the
bamboo Petung. The Indonesian Rosewood has a low modulus
of elasticity compared with bamboo Petung and other common
timber species in Indonesia. Balau has the highest range of
MOR among the common timber species. However, bamboo
Petung has higher values of MOR compared with all timber
species. Sections of bamboo Petung with the lowest mechanical
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FIGURE 3 | Average MOR of bamboo Petung.

properties are still superior to some of the most common
structural grade timber species found in Indonesia as shown
in Table 8.

Correlation Studies and Statistical
Modeling of Physical and Mechanical
Properties
To measure the strength of any possible relationship between
mechanical properties, culm diameter, wall thickness, specific
density and moisture content, Pearson’s correlation coefficients
(r) are calculated. Table 9 summarizes the correlation coefficients
for only statistically significant correlations with a p-value of
<0.05 by a two-tailed t-test between mechanical and physical
properties measured in this study. As it is shown in Table 9, wall
thickness of the culms and specific density (SD) have moderate to
strong negative and positive correlations with all the mechanical
properties, respectively. Culm diameter shows strong negative
correlation with all the mechanical properties except modulus
of elasticity in tension (Et). This finding is in accordance with
the results of the modulus of elasticity tests presented in Table 5.
Moisture Content (MC) has only moderately negative correlation
with Modulus of Rupture (MOR) in this study. Therefore, it is
not viable to estimate mechanical properties including tensile
strength and modulus of elasticity by only measuring the MC
of the bamboo culm sections. The highest Pearson correlation
coefficient is observed between tensile strength andwall thickness
(r = −0.742) of the bamboo Dendrocalamus asper. Therefore,
larger culm diameters would show lower tensile strength.

Among all the mechanical properties measured in this study,
only Modulus of Rupture (MOR) showed strong correlation

with the physical properties under study [culm geometry,
Moisture Content (MC) and Specific Density (SD)]. The Pearson
correlation coefficients show that by increasing either of the culm
diameter, wall thickness and MC, MOR reduces and increasing
the Specific Density (SD) will have a positive impact on MOR. As
it is expected, Specific Density (SD) has positive correlation with
all the mechanical properties. This is in agreement with previous
studies carried out on other bamboo species regarding the effect
of density on mechanical properties (Lakkad and Patel, 1981; Lo
et al., 2004). SD represents the fiber density of the culm cross
sections. Therefore, the higher the fiber density of bamboo cross
sections, the larger is the SD and as a result, those sections show
better mechanical properties. Furthermore, mathematical models
and equations were suggested for estimating the mechanical
properties of bamboo Petung by only measuring the culm
diameter and wall thickness. Table 10 displays linear-model
parameter values created with the data obtained in this study. In
Table 14, all mechanical properties have units of MPa while D
and t are in mm andMC is in percentage. The empirical relations
between MOR, Ef, Et, CS, TS, and culm physical properties
are developed and summarized here. These equations should
be considered to provide only preliminary estimation of the
mechanical properties for bamboo Dendrocalamus asper. For
other species of bamboo and bamboo from other regions around
the world, the model coefficients and constants could differ.

MOR = −0.78D+ 250 (5)

Ef = −33D+ 14300 (6)

Et = −362t + 25300 (7a)
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TABLE 7 | Modulus of elasticity in flexure for bamboo Petung.

Culm diameter

(mm)

Wall thickness

(mm)

Modulus of

elasticity (MPa)

80–90 Class 1 6–7 11,517

7–8 12,892

8–9 13,091

90–100 Class 2 6–7 12,247

7–8 12,463

8–9 12,756

9–10 14,279

10–11 12,509

100–110 Class 3 6–7 11,951

7–8 12,588

8–9 13,267

9–10 12,776

10–11 11,878

110–120 Class 4 6–7 12,217

7–8 12,903

9–10 12,787

120–130 Class 5 8–9 11,695

9–10 11,574

10–11 12,752

11–12 12,922

130–140 Class 6 10–11 12,517

11–12 11,520

12–13 11,842

14–15 10,993

140–150 Class 7 11–12 10,427

12–13 10,255

16–17 10,103

19–20 9,375

Et = 18550SD+ 6874 (7b)

Et = 33600SD+ 70.4D+ 13075 (7c)

Et = 27200SD+ 95.1D− 364.6t − 7180 (7d)

TS = −8.5t + 363 (8)

Furthermore, SD of the bamboo culms can also be estimated
through measuring only the culm diameter and wall thickness by
using Equation 9.

SD = −0.002D− 0.009t + 1.075 (9)

APPLICATION OF BAMBOO FOR
COMPOSITE FABRICATION FOR
REINFORCED CONCRETE

Concrete is currently being used widely around the world for
major projects in building and construction industry. However,
concrete has a major drawback; it has low tensile strength.
Therefore, when it is used in applications where it has to sustain
tensile forces, large cracks and premature failure are unavoidable.

To overcome this limitation, reinforcement bars with high
tensile strength are used in structural concrete. Currently steel
reinforcement is being used in a wide range of structural concrete
buildings and infrastructure. However, a challenge associated
with using steel reinforcement in concrete is the corrosion and
the corrosion-related degradation of the reinforced concrete
member. Corrosion of the steel reinforcement in concrete is
initiated by either concrete carbonation or exposure of the
concrete element to chloride ions as discussed in various works
(Slater, 1983; Macias and Andrade, 1987). Therefore, in the
presence of oxygen and moisture, the corrosion of rebar results
in dissolution of iron in the form of ferrous hydroxide [Fe(OH2)]
which subsequently forms a layer of rust surrounding the
reinforcement bar. As a result of rust occupying a volume larger
than the reinforcement bar, large tensile forces are generated
in the concrete in the form of tensile stress. The tensile forces
initiate the cracking of the concrete layers around the steel bars
in the form of concrete delamination, or the debonding of the
reinforcement bars from the concrete (Bertolini et al., 2013).

Alternative reinforcement materials including Fiber
Reinforced Polymers (FRP) that do not corrode since the
polymer matrix protects the fibers. They have comparable
mechanical properties to steel reinforcement. There has been
much interest in the application of natural fibers in the
production of FRP composites to replace synthetic fibers, such
as glass and carbon fibers. Natural fibers are widely available in
nature and therefore require relatively low energy for production.
When natural fibers are used in FRP composite production,
they can result in high-performance composites which could
potentially replace all, if not many, of the synthetic composite
materials at lower prices for applications in the building and
construction sector, where weight savings have significant impact
on lowering energy consumption and overall cost of the building
or infrastructure.

The application of natural fiber reinforced polymer
composites in the building and construction industry has
been successful in recent years, but mainly as non-structural
elements applied as an insulation element for structural
members, for floor and wall covers, in door and window frames,
for fitting elements, such as door and window handles and for
fencing. Among the various high-strength natural materials,
bamboo is considered one of the oldest natural construction
materials used in buildings particularly in South America, Africa
and, in particular, in Southeast Asia.

The variation in the properties of bamboo FRP composites
fabricated by various groups around the world is mainly
associated with the species of bamboo, the length of bamboo
fiber used in fabrication, fiber orientation, the type of epoxy/resin
used and the type of treatment carried out on raw bamboo
fibers (Ichhaporia, 2008). So far, no investigation has been
carried out on utilizing bamboo for the fabrication of FRP
composites for structural and load-bearing elements in the
construction and building sector. Much of the work on bamboo
FRP composites is dedicated to non-load-bearing elements, e.g.,
fencing or flooring in buildings where the structural properties
and mechanical capacities are far lower than for any structural
member, such as beams and columns (Jindal, 1986; Nugroho

Frontiers in Materials | www.frontiersin.org February 2019 | Volume 6 | Article 1570

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Javadian et al. Mechanical Properties of Bamboo for Composite Fabrication

TABLE 8 | Comparison of properties between common timber species in Indonesia and bamboo Petung (Green et al., 1999).

Bamboo/timber Mean specific

density

Mean tensile

strength along

the fiber (MPa)

Mean modulus

of elasticity

(MPa)

Mean modulus

of rupture (MPa)

Timber species Bamboo Petung 0.72–0.91 216–323 19,600–26,110 130–205

Balau 0.85–1.15 75–180 18,000–22,000 115–125

Sumatran Pine 0.57–0.71 57–94 12,800–16,000 85–100

Indonesian Rosewood 0.63–0.77 65–85 8,000–13,000 63–116

TABLE 9 | Pearson correlation between mechanical and physical properties.

Correlations (r)

Parameters Culm diameter

(mm)

Wall thickness

(mm)

MC SD

Modulus of elasticity

in flexure (MPa)

−0.689 −0.668 0.614

MOR (MPa) −0.721 −0.615 −0.427 0.43

Modulus of elasticity

in tension (MPa)

−0.530 0.62

Tensile strength (MPa) −0.451 −0.742 0.573

Only the correlation coefficients that are statistically significant with a P-value of <0.05 by

two-tailed t-test are shown.

and Ando, 2000; Okubo et al., 2004). This research aims to
fill this gap by providing a novel approach to enhance the
properties of bamboo FRP composites through new processing
and fabricating techniques for bamboo FRP composites and
subsequently, through using the new material as reinforcing for
structural-concrete elements.

Bamboo Composite Fabrication Using
Material Correlation Relationships
In this study bamboo Dendrocalamus asper or Petung bamboo
was used for fabrication of the high performance bamboo-fiber-
reinforced polymer composite. In a detailed study carried out
recently by the research team, patented processing tools were
developed to process bamboo culms into bamboo fiber bundles
of varying thicknesses, width and length (Hebel et al., 2014; Hebel
and Heisel, 2016; Javadian et al., 2016; Javadian, 2017).

The processed bamboo fibers were first dried, in an air-
circulated oven at 80◦C until the moisture content was <10%.
The moisture content was measured according to the ASTM
D4442-07 standard test method. Subsequently processed bamboo
fibers were sorted according to their thickness. The raw bamboo
fiber bundles used in the study represented an average fiber
collection from upper, middle and lower sections of the bamboo
culm in nearly equal ratios.

Before processing the bamboo culms into fiber bundles, tensile
and flexural properties of the raw materials were assessed only
based on the correlation relationships established in section
Correlation Studies and Statistical Modeling of Physical and
Mechanical Properties assuming no testing devices available. The
average culm diameter and wall thickness of bamboo used in

this study were 90 and 8mm, respectively. By using the material
property relationships, the respective mechanical properties of
bamboo culms can be found as below;

MOR = −0.78D+ 250 = −0.78 (90) + 250 = 179.8MPa

Ef = −33D+ 14300 = −33 (90) + 14300 = 11330MPa

Et = −362t + 25300 = −362 (8) + 25300 = 22404MPa

TS = −8.5t + 363 = −8.5 (8) + 363 = 295MPa

These values were used as the basis for the fabrication of bamboo-
fiber-reinforced polymer composite in this study. Further
evaluation of these numbers were carried out by measuring the
mechanical properties of the final bamboo composite samples
and comparing the results with the raw bamboo properties found
based on the material relationships.

A two-component epoxy system with a resin and a hardener
was employed as matrix. Once the resin and hardener of
the epoxy system were mixed, each bamboo fiber bundle was
impregnated with the epoxy matrix and aligned along the
fiber direction. The impregnated fiber bundles were stacked
on one another to form a layered structure. Subsequently, the
impregnated bamboo fiber bundles were subjected to different
pressures (between 15 and 25 MPa) and temperatures (between
80 and 140◦C) at various press/hold times to achieve densely
compressed composites. The boards were finally post-cured for
another 48 h at a temperature of 55◦C and then prepared into
the suitable shapes to measure their mechanical properties. The
post-curing curing time was to ensure that the optimal cross-link
networks were fully developed at the recommended temperature
by providing the essential energy to give the epoxy molecules
the flexibility needed to move, and to fully form the networks
within themicrostructural cross sections of the epoxymatrix. The
average specific density of the bamboo composite reinforcements
was 1.33. This procedure provides sufficient environmental
protection for the fibers, thus ensuring that their properties do
not degrade over time (Javadian, 2017).

Figure 4 shows a bamboo composite reinforcing bar after it
was removed from the hot-press machine.

Tensile properties of the bamboo composite sample, including
tensile strength and modulus of elasticity in tension, were
measured according to ASTMD3039-08, “Standard Test Method
for Tensile Properties of Polymer Matrix Composite Materials”
while flexural properties, including Modulus of Rupture (MOR)
and modulus of elasticity in flexure, were measured according
to ASTM D7264, “Standard Test Method for Flexural Properties
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TABLE 10 | Multiple linear regression models for mechanical properties of bamboo Dendrocalamus asper (bamboo Petung).

Model r2 Model significance Parameter Coefficient Significance Constant

MOR

1 0.50 <0.001 D −0.78 <0.001 250.40

2 0.63 <0.001 D −0.75 <0.001 363.56

MC −11.70 0.004

Ef

1 0.46 <0.001 D −33.15 <0.001 14,375.91

Et

1 0.36 <0.001 SD 18,550.28 <0.001 6,874.06

2 0.25 0.004 t −362.70 0.004 25,303.91

3 0.54 <0.001 SD 33593.88 <0.001 −13,074.99

D 70.44 0.002

4 0.65 <0.001 SD 27,236.26 <0.001 −7,178.92

D 95.10 <0.001

t −364.57 0.008

TS

1 0.53 <0.001 t −8.46 <0.001 362.56

FIGURE 4 | Bamboo composite sample.

of Polymer Matrix Composite Materials through a four-point
bending test.” All the tests were carried out by using a Shimadzu
AG-IC 100 kN machine. At least five specimens have been
tested for each mechanical property and results exceeding
a 10% standard deviation range, which was statistically set
as confidence interval, were discarded. Table 11 displays the
mechanical properties of bamboo composite samples fabricated
in this study.

As shown in Table 11 the average mechanical properties
of bamboo composite samples are higher than the average
mechanical properties of raw bamboo fiber bundles. The results
show that the novel techniques for processing the bamboo into
fiber bundles together with new production methods used in this
study improved the mechanical properties of the final bamboo
composite. This has also been observed by Hebel et al. (2014),

TABLE 11 | Mechanical properties of bamboo composite samples.

MOR Modulus of

elasticity in

flexure (Ef)

Tensile strength

(TS)

Modulus of

elasticity in

tension (Et)

Sample (MPa) (MPa) (MPa) (MPa)

1 290 24,880 333 32,176

2 282 22,777 308 32,597

3 277 20,271 309 31,308

4 297 21,746 319 32,925

5 301 25,757 310 31,224

Average 289 23,086 316 32,046

Javadian (2017), and Rahman et al. (2017). When the modulus of
elasticity in flexure of the bamboo composite board is compared
to the raw bamboo properties, an improvement of up to two
times the raw bamboomodulus of elasticity in flexure is observed.
Similarly, MOR, tensile strength and modulus of elasticity in
tension of the bamboo composite boards are enhanced compared
with the raw material by 30, 2, and 39%, respectively.

The correlation relationships helped to save the time
needed for preliminary testing of the raw material before
composite fabrication. Furthermore, through this study it is
demonstrated that by employing novel techniques based on only
mechanical processes, naturally available raw materials (such
as bamboo) can be turned into high performance composite
materials with applications in building industry for reinforcing
structural concrete.

Reinforced Concrete Design Using
Bamboo Composite Reinforcement
There are two types of reinforcement used in reinforcing
the concrete beams: longitudinal and transverse (shear)
reinforcement. The longitudinal reinforcements are placed
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parallel to the long axis of the beam to provide the required
tensile capacity, while shear reinforcement is used to provide
sufficient shear strength perpendicular to the long axis of the
concrete beam.

All the bamboo composite reinforcement produced in this
study have square cross sections of 10 × 10mm. The square
cross section is the result of the production process of the
bamboo composite materials as explained earlier. The most
common reinforcement currently being used for structural
concrete have round cross sections with and without ribs on
the surface, including steel and Glass Fiber Reinforced Polymer
reinforcement (GFRP) systems. However, in this study, for
simplicity only square cross sections are studied (Javadian,
2017). According to American Concrete Institute (ACI) 318
“Building Code Requirements for Structural Concrete and
Commentary” (American Concrete Institute, 2008), to provide
sufficient confinement to the longitudinal reinforcement of the
beam, the shear reinforcement has a closed-loop shape in which
it stays intact before failure is initiated from the longitudinal
tension reinforcement. Furthermore, by having closed loop
shape the failure of the concrete beam does not begin by
the failure of the shear reinforcement. Instead, failure of the
longitudinal reinforcement is observed. Figure 5 displays the
bamboo composite reinforcement system developed in this study
for reinforcing concrete beam samples.

The bent portion of the shear reinforcement has lower
mechanical properties compared with the straight parts of the
shear reinforcements. Earlier study on the different types of Fiber
Reinforced Polymer (FRP) shear reinforcements, including Glass
Fiber Reinforced Polymer (GFRP) reinforcements, had shown a
tensile strength reduction of up to 45% of the strength parallel
to the fibers’ direction for the bent sections, due to the localized
stress concentration as a result of the curvature which introduced
radial stresses within the bent portions (Javadian, 2017).

In an earlier study carried out by the research team,
bonding mechanism of bamboo composite reinforcement
system to the surrounding concrete matrix was investigated
in detail (Javadian et al., 2016). A sufficient bond mechanism
between concrete and bamboo composite reinforcements has
contributed to a higher ultimate load-bearing capacity of
the reinforced concrete member. It was shown that by
providing an interfacial microstructure (coating system) which
ensured smooth tensile stress transfer between concrete and
reinforcement system the maximum mechanical capacities of
the bamboo composite reinforcement could be activated thus
resulting in a higher ultimate load-bearing capacity compare to
non-coated reinforcement.

A series of pull-out tests were designed to find a suitable
technique which enhanced the bonding between the two
materials. To enhance the bond mechanism between the bamboo
composite reinforcement and concrete matrix, four types of
coatings and two bonding lengths of 200mm (20 × thickness)
and 100mm (10 × thickness) were considered in the earlier
study. A waterproof vapor barrier membrane system, a bio-based
epoxy resin system, a two-part epoxy resin general coating and a
two-part epoxy resin based surfacing system with and without
sand particles were among the coatings used to investigate

the bond mechanism. The average bond strength of bamboo
composite reinforcement coated with waterproof vapor barrier
membrane system and sand particles with an embedment length
of 200mm was similar to the bond strength of the plain Glass
Fiber Reinforced Polymer (GFRP) reinforcement in normal

FIGURE 5 | Bamboo composite reinforcement system used for reinforcing

concrete beam.

FIGURE 6 | Cross section of bamboo composite reinforced concrete beam.

TABLE 12 | Details of the bamboo composite reinforced concrete beams.

Beam

label

Number of

bottom

reinforcement

bars

Number and spacing of

the shear reinforcement

at each side of beam

(mm)

Distance

between load

introduction

points (mm)

A 2 6@70 350

B 2 4@115 350

C 4 8@50 350
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strength concrete. Therefore, to evaluate the bamboo composite
reinforcement within concrete beam samples, firstly they were
coated with a coating and secondly an embedment length of
20 times the thickness of bamboo composite refinement was
included as part of the beam design (Javadian et al., 2016).

The coating applied to the surface of the bamboo-composite
reinforcement provides long-term resistance to alkaline
environments and water ingress from the concrete matrix.
Therefore, in concrete having an alkaline environment, the
addition of coating on the surface of reinforcement bars provides
supplementary protection for the reinforcement (in addition to
the epoxy matrix) against long-term degradation and ensures the
required bonding with the concrete matrix.

The American Concrete Institute’s (ACI) guide for the design
and construction of structural concrete reinforced with Fiber
Reinforced Polymer (FRP) bars (ACI 440.1R-15) was used
as the primary guideline during the design and evaluation
of the bamboo composite reinforced concrete beams in this
study (American Concrete Institute, 2015). ACI 440.1R-15 has
provided the necessary design guides for the application of
FRP materials as reinforcement in concrete to justify the lower
ductility of the FRP (e.g., GFRP) reinforced concrete elements
as compared with steel reinforced concrete members. The size
of the bamboo composite reinforcement and the concrete beam
in this study were designed in a way such that the loading
capacity of the testing machine was not exceeded. All the
longitudinal reinforcement in this study had similar cross-
sectional dimensions of 10 × 10mm, while the thickness of the
shear reinforcement was 6mm. Figure 6 displays the schematic
view of the concrete-beam cross-section reinforced with bamboo
composite reinforcement.

In this study, all bamboo composite reinforced concrete beams
had cross sections of 160× 160mm and total length of 1,300mm

while their loading span (L) was kept at 1,050mm according to
four-point (or so-called third-point loading) flexural test set-up.
The four-point loading set-up allowed for a zero shear zone along
the middle section of the bamboo composite reinforced concrete
beam. The zero shear zone permits the elimination of the shear
reinforcement in this study, thus the longitudinal reinforcement
is loaded completely in tension and flexure and the calculation of
the ultimate load-bearing capacity of the concrete beams became
simplified. The longitudinal reinforcement had cross sections of
10 × 10mm. A total of 15 concrete beams with a compressive
strength of 20 MPa were prepared and tested in this study. The
arrangement of the reinforcement and the loading distance are
summarized in Table 12.

A total of three design scenarios were considered in this
study by either changing the number of bottom reinforcement

FIGURE 7 | Bamboo composite reinforced concrete beam after failure.

TABLE 13 | Summary of results obtained in four-point flexural test of concrete beam samples.

Beam label Specimen Reinforcement

ratio (%)

Initial cracking

load (P/2) (kN)

Ultimate failure

load (P/2) (kN)

Initial cracking

MOR (MPa)

Ultimate

MOR (MPa)

A 1 0.93 9.8 28.8 2.5 7.4

2 11.1 29.8 2.8 7.6

3 11.6 33.8 3.0 8.7

4 10.8 33.6 2.8 8.6

5 12.1 32.5 3.1 8.3

B 1 0.93 9 30.1 2.3 7.7

2 10 21.2 2.6 5.4

3 10.2 29.9 2.6 7.7

4 9.8 18.8 2.5 4.8

5 9.9 20.9 2.5 5.4

C 1 1.86 14.8 42.5 3.8 10.9

2 15.6 41.2 4.0 10.6

3 14.9 40.9 3.8 10.5

4 14.3 43.5 3.7 11.2

5 15.7 42.9 4.0 11.0
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TABLE 14 | Comparison between ACI 440.1R-15 design values and experimental results obtained in this study.

ACI 440.1R Experiment ACI 440.1R Experiment

Beam design Design cracking

load (P/2)

(kN)

Initial cracking

load (P/2)

(kN)

Nominal ultimate

failure load (P/2)

(kN)

Design ultimate

failure load (P/2)

(kN)

Ultimate failure

load (P/2)

(kN)

A 5.4 11.08 17.1 9.4 31.7

B 5.4 9.78 17.1 9.4 24.18

C 5.4 15.06 30.3 9.7 42.2

or number and spacing of the shear reinforcement as displayed
in Table 12. For each design scenario, five samples were prepared
and tested. Two reinforcement bars were used as top compression
reinforcement for all the beams tested in this study. The
concrete beams were tested until failure and for each test,
ultimate failure load, ultimate flexural capacity (MOR), load
corresponding to first crack, and flexural capacity at the time
of first crack were obtained. Table 13 contains the results of the
flexural tests.

Figure 7 displays one of the beams tested in this
study after ultimate failure. To evaluate the results
obtained in this section on the ultimate failure load
with respect to the recommendations and calculations
specified in ACI 440.1R-15, a series of computations
based on ACI 440.1R-15 were carried out to estimate the
failure load.

Table 14 shows the comparison of the cracking loads,
nominal and design ultimate failure loads between the
values measured during the tests and design values obtained
according to ACI 440.1R-15 standard recommendations.
The values presented for the experimental results were
the average values obtained for each beam series shown
in Table 13.

The bamboo composite reinforcement showed better
initial cracking load and much higher ultimate load-bearing

capacity compared to the design values obtained through
calculations according to ACI 440.1R-15. The estimated

design cracking loads based on ACI 440.1R-15 were lower

than the values obtained by testing the bamboo composite
reinforced concrete beams. The cracking loads measured

during the four-point flexural test of the beams on average

was 2–5 times larger than the design values of the ACI

440.1R-15 standard, confirming the superior performance
of the bamboo composite reinforcement in comparison to
the estimates according to the ACI standard. Beam samples

with only two bamboo composite reinforcement bars at
the tension side of the concrete beam cross section failed
mainly due to the rupture of the reinforcement, while beam
samples with 4 bamboo composite tensile reinforcement
bars had a tendency to fail due to concrete crushing at the
compression side of the beam. In both cases, the bamboo-
composite reinforcement performed well, showing that it
is a suitable alternative to steel and GFRP reinforcement
for concrete structures in terms of mechanical capacity and
technical feasibility.

CONCLUSION

Bamboo Dendrocalamus asper locally known as bamboo
Petung from Indonesia was selected to correlate its
mechanical properties with physical properties of the
culm including culm geometry, specific density and
moisture content for composite fabrication for use in
structural concrete. Based on the results obtained from
the first part of this study, the following conclusions
are relevant:

• Physical properties of the bamboo culm can be used
to estimate the mechanical potential of bamboo for use
in production of novel bamboo-based composite material
applications in the building and construction sector.

• Mechanical properties of bamboo sections often decrease with

increasing the wall thickness of the culm. This is associated
with the reduced volumetric ratio of cellulose fibers to lignin
as culm diameter increases.

• This study provides a simple method that allows estimation
of the mechanical properties of bamboo through non-
destructive measurement of only wall thickness and
diameter. This capability is particularly useful in contexts
of nurseries and in forests where there is limited access to
testing facilities.

These findings are then used for the selection process
of the raw bamboo for structural composite production
when specific mechanical properties are required. A case
study and independent mechanical testing of the novel
bamboo-based composite reinforcement in concrete successfully
validates the relationships proposed in this paper. Further
work involves investigation of compressive and shear strength
of bamboo, such as Dendrocalamus asper and evaluating
the dependence on culm geometry including culm diameter,
wall thickness and height. Further studies on microstructural
analysis of bamboo-based composite reinforcement and the
correlation with mechanical properties of bamboo will also be
carried out.
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We study the elastic response of a class of optimal planar metamaterials designed as

periodic patterns of tensegrity cells. Specifically, we consider an infinite slab constituted

by prismatic cells whose sections on the middle plane are regular hexagons, squares or

equilateral triangles subjected to a uniform normal stress. An attracting property of the

proposed metamaterial is a very small tangential stiffness compared with the normal one.

This property suggests the design of innovative isolation devices with extreme properties.

Keywords: metamaterials, global stability, tensegrities, optimization, isolation devices

1. INTRODUCTION

Metamaterials represent an innovative approach to the problem of obtaining unusual or extreme
physical responses for advanced applications. Since their extreme macroscopic responses depend
primarily on the internal low scale pattern, the understanding of how the microstructure
topology influences the macroscopic properties is the key-point in the design of new
advanced metamaterials.

The growing scientific and technological interest on these new designed materials is due to
the possibility of getting electromagnetic and optical properties (Chen et al., 2010) or mechanical
responses unreached by standard materials. Metamaterials can exhibit extreme static or dynamical
behaviors, such as negative effective dynamic modulus (Fang et al., 2006), vanishing macroscopic
shear modulus (Schittny et al., 2013) or selective buckling under external stresses (Paulose et al.,
2015). Recently, the possibility of harnessing the postbuckling response of cellular materials for
auxetic and dissipative properties has been analyzed by Bertoldi (2017). Based on these specific
mechanical properties also the design of tensegrity-based metamaterials has been oriented to
produce extreme or controllable behaviors. In particular, extreme behaviors in the propagation
of mechanical waves have been considered by Amendola et al. (2018) and Fraternali et al. (2012,
2014), whereas elastic responses controllable by adjusting the level of self-equilibrated forces
have been studied by Sabouni-Zawadzka and Gilewski (2019). Further, it has been recognized
that the transmission and the control of forces in biological systems is diffusely achieved by
means of systems based on tensegrity schemes (see e.g., Volokh et al., 2000; Ingber et al., 2014;
Fraldi et al., 2019).

Metamaterials are usually classified into three-dimensional and surface (planar) materials and
are frequently based on elementary geometric patterns (see e.g., Koohestani, 2017; Salahshoor
et al., 2018; Zhang et al., 2018). Many studies approaching these periodic materials by means
of lattice theory have been carried out. Within this research line, Hutchinson and Fleck (2006)
studied the structural performance of periodic planar trusses. Buckling of a planar periodic
frame was considered by Triantafyllidis and Schnaidt (1993). More recently, Thomsen et al.
(2018) performed a topological optimization of 2D periodic materials undergoing buckling type
instabilities. Moreover, the non-linear response of planar periodic materials has been analyzed by
Vigliotti et al. (2014).
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This paper is focused on the elastic response of a planar
metamaterial made up of a pattern of equal tensegrity units,
where each unit cell is a three dimensional T-bar (Skelton et al.,
2017). In particular, we consider an infinite slab undergoing a
uniform compressive macro stress. Based on a well-known result
on planar tessellation, we consider systems with three different
periodic patterns of identical prismatic cells filling the space,
whose sections on the middle plane of the slab are equilateral
triangles, squares, and regular hexagons (see Figures 1, 2). The
mass optimization of this metamaterial was discussed in a
previous paper (DeTommasi et al., 2017b). Here we determine
the overall (macro) elastic properties of these optimal slabs as
functions of both design and actual applied loads. Interestingly,
the proposed metamaterial exhibits a low shear stiffness coupled
with a high extensional stiffness. This property suggests the
possibility of obtaining isolation devices with extreme properties.

2. MORPHOLOGICAL OPTIMIZATION

As already stated, in our optimization problem we consider only
slabs made up of periodic sequences of tensegrity cells having
equilateral triangular, square, or regular hexagonal shapes, which
are the unique shapes allowing us to tessellate the plane into
identical regular polygons. On the external plane surfaces of the
slab a normal compression macro stress 6 is applied, so that

P = Acell6. (1)

is the load applied to the single tensegrity cell (see Figure 1).
Here, the cross section area Acell for a cross section having p sides

FIGURE 1 | The three tensegrity-type unit cells (equilateral triangles, squares,

regular hexagons).

(p = 3, 4, 6) is given by

Acell =
pH2

8
sin

(

2π

p

)

tan2 α, p = 3, 4, 6, (2)

where H is the height of a cell and α is the angle formed
by the principal struts and the principal cables (see Figure 1).
Once the cell shape is defined, α represents the optimization
geometrical parameter of the described metamaterial. The
following assumptions are introduced:

(i) A prestress must be assigned such that both in the
loaded and unloaded states only traction forces are exerted
on cables;

(ii) Both in the loaded and unloaded states, cables respect
material failure condition and struts both material failure
and local Euler buckling conditions;

(iii) Equilibrium is globally stable.

For a fixed 6, we aim to minimize the metamaterial
volume density

ρ : =
tensegrity volume

AcellH
, (3)

FIGURE 2 | Scheme of the slab composed of hexagonal cells.
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where tensegrity volume is the global volume of all members of a
tensegrity cell and Acell is given by (2). We remark that, since we
assume that all tensegrity units are made of the samematerial, the
minimum value of ρ corresponds to the slab of minimal mass.
Furthermore we observe that neighboring tensegrity units (see
Figure 2) share the same transversal cables. Thus the areas of
these cables considered for a singular unit are the half of the total
ones. The above statements lead to the constrained minimum
problem already discussed in DeTommasi et al. (2017b).

2.1. Elastic Equilibrium of Tensegrity Cells
Due to periodicity and symmetry properties of the
metamaterial introduced above, any cell is two-degrees statically
indeterminate. In the loaded state (P = 6Acell) two parameters
β and τ are introduced to describe the internal forces















β =
N

P
> 1

τ =
Tt

P
> 0

. (4)

Here N is the compression force in the struts orthogonal to the
middle plane and Tt is the traction force in the cables laying in
themiddle plane. Then the internal axial forces in the loaded state
can be written as







































N = βP

Nt =
2

p
(β − 1)P tanα + 2τP sin

π

p

T =
(β − 1)P

p sinα

Tt = τP

, (5)

where T denotes the traction force in the cables out of the middle
plane and Nt the compression force in the transversal struts
laying on the middle plane.

Similarly, in the unloaded state (P = 0) we can describe the
distribution of the internal forces by the parameters β̄ and τ̄ ,
defined as β and τ and given by

{

β = β̄ + N[1]

τ = τ̄ + Tt[1]
. (6)

HereN[1] is the compression force induced in the principal struts
by a unitary compression force (P = 1) and Tt[1] is the traction
force induced in the tranversal cables by the same external force.
In the unloaded state we have



































N̄ = β̄P

N̄t =
2

p
β̄P tanα + 2τ̄P sin

π

p

T̄ =
β̄P

p cosα

T̄t = τ̄P

. (7)

Though, as already discussed in DeTommasi et al. (2017b),
a complete stability analysis should be carried out in the

context of lattice theory (Triantafyllidis and Schnaidt, 1993),
here, for sake of simplicity we assume that all cells undergo
identical critical displacements. We deem that this assumption
is satisfactory within the present analysis. Moreover, precritical
displacements are assumed to be small with the deformed lengths
of the members identified with the natural ones. Under these
hypotheses the total potential energy (set equal to zero in the
unloaded state) of the system can be written as

V(u, P) =
2+3p
∑

j=1





EA(j)

2

(

1l(j)

l(j)

)2

l(j) + N(j)1l(j)



− 2Pu1, (8)

where

1l(j) = ||1x
(j) + T

(j)
u|| − l(j).

Here u is the vector of generalized incremental displacements
(see Figure 3); 2u1 is the contraction orthogonal to the middle
plane; l(j), 1l(j), and A(j) are the length, the elongation and the
area of the (j)-th member, respectively; 1x(j) is the length vector
and T(j)

u is the relative incremental displacement vector between
the end joints of the (j)-th member. Furthermore, the Young
modulus E has a unique value for all the bars and cables, made
up of the same material. In particular, we have

A(j) =















A, j = 1, 2
At , j = 3, 4, ..., p+ 2
Ac, j = p+ 3, p+ 4, ..., 2p+ 2
Act , j = 2p+ 3, 2p+ 4, ..., 3p+ 2

, (9)

where A and At are the areas of the cross sections of the principal
and transversal struts, respectively, and Ac and Act the cross
section areas of the principal and traversal cables, respectively.

The lengths l(j) of the members are given by

l(j) =



















































H

2
, j = 1, 2

H tanα

2
, j = 3, 4, .., p+ 2

H

2 cosα
, j = p+ 3, p+ 4, ..., 2p+ 2

H sin
π

p
tanα, j = 2p+ 3, 2p+ 4, ..., 3p+ 2

. (10)

The axial forces N(j) (numbered with the same index of the
lengths and the areas of the correspondingmembers) are given by
(5). The tangent stiffness matrix K is the 10 × 10 Hessian matrix
of the total potential energy in the loaded configuration:

K =
∂2V

∂u∂u
|

u = 0
, (11)

that, for stable or critical equilibrium states, must be
semidefinite positive

K � 0. (12)

Frontiers in Materials | www.frontiersin.org February 2019 | Volume 6 | Article 2480

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


De Tommasi et al. Elastic Response of an Optimal Tensegrity-Type Metamaterial

FIGURE 3 | Generalized displacements considered in the stability analysis for

the three tensegrity cells. (A) Triangular cell. (B) Quadrangular cell.

(C) Hexagonal cell.

Based on the symmetry properties of the tensegrity cell, in
our numerical analysis we choose the generalized displacements
shown in Figure 3. Thanks to this approach, the Hessian matrix
K is a block diagonal matrix, with maximum dimension of the
submatrices equal to 2 × 2. This choice significantly simplifies
the numerical analysis of positiveness in the following described
optimization procedure. In particular, the above positivity
condition is imposed by requiring that its leading principal
minors are all non-negative.

3. MACRO ELASTIC CONSTANTS

In this section the elastic constants of the slabs are evaluated. The
tangent Young modulus Em in the direction orthogonal to the

middle plane is determined as

Em =
6̇

ǫ̇1
= H

6̇

2u̇1
(13)

where ǫ̇1 = 2u̇1/H is the normal strain of the slab and 2u̇1
is the incremental contraction of the thickness H of the slab
(see Figure 3). In order to determine Em, we determine the
incremental contraction induced by a unitary incremental value
of the compressive macrostress 2u̇1 = 2Acell{K−11E}1, where the
column vector 1E has all components equal to zero, except the
first one, set equal to 1. Then (13) becomes

Em =
H

2Acell

{

K−11E
}

1

. (14)

Analogously, the effective shear modulus of the slab is
determined as

Gm =
Ṫ

γ̇

= H
Ṫ

2u̇9
(15)

where γ̇ = 2u̇9/H is the incremental shear strain, 2u̇9 is the
incremental tangential relative displacement between the two end
faces of the slab (see Figure 3) and Ṫ is the incremental effective
shear stress applied to the two end faces. As in the previous case,
Gm is evaluated by determining the incremental displacement
vector induced by a unitary incremental shear stress AcellK

−11G,
where the column vector 1G has all components are equal to zero,
except the ninth one, set equal to 1. Then (15) becomes

G =
H

2Acell

{

K−11G
}

9

. (16)

It must be noted that for the three cells here considered the two
last diagonal blocks of K are equal scalars. In other words, the
only non-zero elements of the two last rows and columns are
always the diagonal elements K9,9 and K10,10, which are identical.
Then (16) can be also written as

G = H
K9,9

2Acell
= H

K10,10

2Acell
. (17)

The two last expressions (17) show that the elastic modulus G is
independent from the direction of incremental shearmacro stress
Ṫ, so that the slabs exhibits a transversely isotropic type behavior.

4. NUMERICAL RESULTS

To discuss previous results, consider a slab with thickness H =
100 mm and struts with thin annular sections, whose ratio
between the average radius and the thickness is equal to 10. The
Young modulus is fixed to E = 200 GPa and the yield stress
to σy = 200 MPa. The minimum volume density (3) has been
determined for values of the design monoaxial macrostress 6d in
the range [10−5, 10−1] MPa.

In Figure 4, the optimal density is shown vs. 6d for the
three tensegrity shapes considered here. As the figure shows,

Frontiers in Materials | www.frontiersin.org February 2019 | Volume 6 | Article 2481

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


De Tommasi et al. Elastic Response of an Optimal Tensegrity-Type Metamaterial

the hexagonal shape is the most convenient. Interestingly we
find an almost linear log-log dependence. This “scale invariant”
behavior has been previously observed for similar tensegrities in
DeTommasi et al. (2015) and had been used in DeTommasi et al.
(2017a) to obtain optimal fractal like tensegrity structures.

This is coherently reflected in the observation that the optimal
value of the geometrical parameter α, which describes the cell
geometry, varies only very slightly in the considered range of the
design macro stress 6d. In particular, for all the three different
shapes we have tanα ∈ [0.10, 0.11]. Interestingly also the optimal
prestress parameters β and τ change only very slightly in the
considered range of the design macro stress: β ∈ [1.18, 1.20],
τ ∈ [0.04, 0.05]. We then deduce that our solution identifies
an optimal shape which is almost independent from the design

macro stress in the considered range. Of course, on the contrary
the optimal cross section areas strongly depend on the design
macro stress.

Figure 5 shows the dependence of the macro elastic moduli
Em and Gm of the optimal slabs from the design macro stress
6d. Also here we notice that the log-log graph is almost linear.
Due to the small values of the shear modulus, we argue that
the small deviations from the power law regime of graph can
be ascribed to numerical reasons. A very important property
of the considered metamaterial is that it is characterized by a
difference of several orders of magnitude (from 2 to 5) between
the Young’s modulus Em and the tangential elastic modulus
Gm, especially for low values of the design macro stress. This
feature can be explained by observing that, in the considered

FIGURE 4 | Optimal volume density.

FIGURE 5 | Em and Gm (MPa) vs. design macro stress.
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FIGURE 6 | Young modulus vs. the actual macrostress 6 at different values of the design macrostress 6d . The symbols △,�, *, refer to triangular, quadrangular, and

hexagonal cells, respectively.

FIGURE 7 | (A) Tangent shear modulus Gm vs. the actual macrostress 6 for different values of the design macrostress 6d . The symbols △,�, * refer to triangular,

quadrangular and hexagonal cells, respectively. (B) Tangent shear modulus vs. the actual macrostress 6 at (6d = 0.1MPa) .
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range of the design data, the cross sections of the struts are
always determined by the local buckling constraints and are
much greater than those of the cables, especially for low values
of the design macrostress. Furthermore, as we already stated, the
optimal value of the angle between the principal cables and the
struts is always small (tanα ⋍ 0.10).

In Figure 6, we represent the variation of the tangent Young
modulus Em with respect to both the actual applied macrostress
6 and the design macrostresses 6d. In particular, for each value
of 6d it is shown that the tangent macro elastic modulus Em is
almost independent from 6, which is varying from the unloaded
state (6 = 0) to the loaded state (6 = 6d). Therefore we argue
that the proposed metamaterial has a linear behavior with respect
to the axial load 6.

Similarly, in Figure 7A, we represent the tangent shear
modulus Gm (MPa) of the optimal slabs. As in the previous
figure, for different fixed design macrostresses 6d we analyze its
dependence on the actual applied macrostress 6, with 6 ranging
from the unloaded state (6 = 0MPa) to the loaded state (6 =
6d). We point out that, differently from the previous case, for
each value of 6d the tangent shear modulus Gm varies with the
applied macro stress, even if its decrease (softening) with respect
increasing values of the actual macro stress is quite limited. This
is shown in detail in Figure 7B for a single fixed value of the
design macro stress (6d = 0.1MPa). Observe that the tangent
shear modulus Gm decreases linearly as the applied macrostress
grows, showing the same slope for the three geometries. A
similar softening behavior has been also observed in the
non-linear elastic analysis for laminated rubber bearings (see
D’Ambrosio et al., 1995). Several augmentations of the obtained
interesting behavior of these tensegrity slabs should be obtained
by extending the optimization to multiscale tensegrity structures
(see e.g., DeTommasi et al., 2015, 2017a) and by considering
multilayer slabs.

CONCLUSIONS

In this paper he have optimized a planar metamaterial made
up of periodically patterned tensegrity-type unit cells. With
reference to different values of the design macro stress we
have compared the mechanical responses of three different
geometries of unit cells. Further, for each value of the design
macro stress the optimal densities are compared, showing that
the minimal density metamaterial is made up by hexagonal cells
(see Figure 2). As already found previously, the optimal density
of these slabs exhibits a log-log dependence on the applied
macrostress. Here this result has been extended to the elastic
macroscopic response, showing again a power law dependence
of the macroscopic elastic moduli on the design macro stress.
Interestingly, for each adopted geometry we have found shapes
of the optimal tensegrity cells almost independent by the design
macro stress. These results suggest a scale-invariant behavior
of the proposed metamaterial. Finally, we remark that the
optimal proposed metamaterial is characterized by a shear elastic
modulus which is up to five orders of magnitude smaller than
the Young modulus. This indicates that the proposed scheme of
metamaterial is suitable for the design of new isolation devices.
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The paper presents a nonlinear buckling analysis of single-layer graphene sheets using

a molecular mechanics model which accounts for binary, ternary, and quaternary

interactions between the atoms. They are described using a geometrically exact setting

and by the introduction of Morse and cosine potential functions, equipped with an

appropriate set of parameters. We examine the critical and post-critical behaviors of

graphene, under compression in the zigzag and in the armchair directions, and shear.

Our findings show the suitability of standard thin-plates theory for the prediction of simple

critical behaviors under various edge constraint conditions.

Keywords: graphene, molecular mechanics, out-of-plane buckling, DREIDING potential, arc-length strategy

1. INTRODUCTION

Graphene is a two-dimensional hexagonal lattice of carbon atoms with unique physical and
mechanical properties (Young et al., 2012), such as high room-temperature carrier mobility, high
thermal conductivity, high tensile strength and stiffness and weak optical absorptivity. Owing
to these remarkable properties, graphene has attracted considerable attention for applications in
many fields (Choi et al., 2010; Li et al., 2014; Aïssa et al., 2015; Sun et al., 2015; Nguyen and
Nguyen, 2016; Kumar et al., 2018; Mohan et al., 2018), including energy generation and storage
(e.g., photovoltaic cells, hydrogen storage, supercapacitors), sensoring and actuating systems (e.g.,
gas sensors), electronics (e.g., conductive inks and flexible films), biotechnologies (e.g., membranes
for water filtration, gas separation, DNA sequencing), composites.

The understanding and the control of the mechanical behaviors of graphene are crucial issues
(Young et al., 2012; Akinwande et al., 2017) for many applications such as composites, membranes
for water filtration, hydrogen storage and electronic devices. In this regard, it is worth emphasizing
also that chemical-physical properties of any material at the nanoscale depend on the relative
atomic positions. Tuning these properties in specific devices through deformation control is
therefore possible, in principle.

The importance for these applications has motivated continuously increasing research efforts to
understand the details of the mechanical response of graphene.

However, the technical difficulties and the costs of nanoscale experiments combine to make
theoretical modeling approaches preferable. Among them, ab-initio simulations (Kudin et al.,
2001; Baumeier et al., 2007; Liu et al., 2007) are the most accurate tools available to investigate
the behavior of nanomaterials, including their mechanics, but they demand a lot of computer
power and so they are not always feasible for systems with very many atoms. For this reason,
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increasing attention has been given tomolecular dynamics/statics
formulations (Liew et al., 2004; Lu et al., 2009; Xiao et al., 2009;
Zhao et al., 2009; Georgantzinos et al., 2012; Silvestre et al.,
2012; Berinskii and Borodich, 2013; Davini, 2014; Theodosiou
and Saravanos, 2014; Gamboa et al., 2015; Korobeynikov et al.,
2015, 2018; Budarapu et al., 2017; Davini et al., 2017; Genoese
et al., 2017, 2018a,b, 2019; Hossain et al., 2018; Sgouros et al.,
2018; Singh and Patel, 2018b) or their structural-mechanical
approximations (e.g., nanoscale equivalent beam and truss
models; Sakhaee-Pour, 2009a,b; Georgantzinos et al., 2010;
Alzebdeh, 2012; Giannopoulos, 2012; Tserpes, 2012; Firouz-
Abadi et al., 2016; Rafiee and Eskandariyun, 2017; Savvas
and Stefanou, 2018) and to continuum models (Chang, 2010;
Aminpour and Rizzi, 2016; Ghaffari et al., 2018; Singh and Patel,
2018a; Zhang et al., 2018).

Most of the research on graphene has focused on its rigidities,
the frequencies of free vibration, and tensile failure properties
and this has produced also a refinement of the parameters of
simple bonding potentials (Genoese et al., 2017; Hossain et al.,
2018; Korobeynikov et al., 2018), such as the DREIDING, the
Stillinger-Weber or the modified Morse potentials. Currently,
molecular statics formulations based on these potentials are
considered to be the best compromise at the atomistic scale in
non-linear contexts, where the simplicity of the models is a major
requirement. Nevertheless, studies on out-of-plane buckling
behaviors of graphene are not numerous (Sakhaee-Pour, 2009a;
Duan et al., 2011; Giannopoulos, 2012; Korobeynikov et al., 2015;
Firouz-Abadi et al., 2016; Sgouros et al., 2018). Duan (Duan et al.,
2011) has investigated the development of wrinkles in rectangular
graphene sheets under increasing in-plane shear displacements
using the COMPASS potential. Modes jump phenomena have
been reported, with sudden changes of the number of wrinkles as
the displacements increase. Similar trends have been observed by
Huang and Han (2017) through molecular dynamics simulations
performed using the AIREBO potential. Sakhaee-Pour (2009a),
Giannopoulos (2012), and Firouz-Abadi et al. (2016) have studied
the linearised buckling of compressed graphene sheets and
ribbons described as assemblages of Bernoulli-like beams and
truss elements. Korobeynikov et al. (2015) have studied the
buckling and the initial post-buckling of compressed graphene

A B C

FIGURE 1 | The interatomic kinematics: (A) bond length, (B,C) valence, and dihedral angles.

using the DREIDING potential. Very recently, Sgouros et al.
(2018) have investigated compressed ribbons under various
temperatures via molecular dynamics simulations incorporating
the LCBOP potential.

In the present study, we propose a buckling analysis of
single-layer graphene sheets through a molecular mechanics
model which extends those used in our previous works
(Genoese et al., 2017, 2018a,b, 2019) in order to account for
binary, ternary and quaternary interactions between the atoms.
They are described using a geometrically exact setting and
introducing Morse and cosine potential functions, equipped
with a proper set of parameters. To this regard, following the
reasoning already proposed in Genoese et al. (2017, 2018a,
2019), a constitutive problem is solved only for purposes of
giving a new parametrization of the dihedral potential. Then,
by solving the equilibrium equations of the atomistic system
through the arc-length strategy, we obtain the critical and post-
critical behaviors of graphene under compression in the zigzag
and in the armchair directions and shear. Case by case, the
equilibrium paths are shown and the critical behaviors are
discussed in comparison with available solutions for thin-plates
(Timoshenko and Gere, 1963).

2. MATERIALS, MODEL, AND METHODS

2.1. The Molecular Mechanics Model
We assume that the reference configuration of the sheet
is planar and stress free and that the atoms are point-
particles in Euclidean space. Their interactions are usually
separated into bonding interactions and long-range ones.
Long-range interactions are considered to be negligible with
respect to the bonding ones. In turn, bonding interactions are
usually distinguished between binary, ternary and quaternary
interactions, measured in terms of the bond length rij, valence
angle θijk and dihedral angle ϕijkl (see Figure 1). The bonding
interactions are derived from a potential U, here expressed in the
additive form

U =
∑

b

Ur
b +

∑

a

Uθ
a +

∑

d

U
ϕ

d
, (1)
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where Ur
b
, Uθ

a , and U
ϕ

d
are the energy contributions related to the

bth bond length, to the ath valence angle and to the dth dihedral
angle, respectively. In this paper, we use Morse and cosine energy
functions (Mayo et al., 1990), which are defined to be

Ur
b = Ū

{

[

1− e−β(rij−r̄)
]2

− 1

}

, (2a)

Uθ
a =

C

2

(

cos θijk − cos θ̄
)2
, (2b)

U
ϕ

d
=

V

2

{

1− cos
[

p
(

ϕijkl − ϕ̄ijkl

)]}

. (2c)

In Equations (2), r̄ ≈ 0.142 nm, θ̄ =
2π

3
and ϕ̄ijkl ∈ {0,π}, are

the length and angles in the resting configuration, Ū is the bond

breaking energy, β , C and V are parameters which we define

below and p = 2.
We denote by xn and un the initial position vector of the

nth atom and its displacement vector. Then, its current position

vector is given by rn = xn+un. Similarly, xij = xj−xi, rij = rj−ri,
and uij = uj − ui are the relative position vectors and the relative

displacement vector of the atom j with respect to the atom i.
Vector rij can be expressed as rij = xij + uij.

A

C

B

FIGURE 2 | Schemes of the compression and shear tests of the nearly square graphene sheet: (A,B) geometry and details of the applied loads for the compression

tests in the zigzag and in the armchair directions, (C) geometry, and details of the applied loads for the shear test.

Frontiers in Materials | www.frontiersin.org February 2019 | Volume 6 | Article 2688

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Genoese et al. Buckling Analysis of Graphene

The bond length is given by

rij = ||rij|| =
√

rij · rij. (3)

For what follows, r̃ij = rij/rij is the direction vector defined by
a pair of atoms i-j. In addition, ñijk and ñjil are, respectively, the
unit vectors perpendicular to the plane determined by the current
positions of the atoms i, j and k and to the plane determined by
the current positions of the atoms j, l and i, given by:

ñijk =
nijk

nijk
, nijk = r̃ij × r̃ik, nijk = ||nijk||,

ñjil =
njil

njil
, njil = r̃jl × r̃ij, njil = ||njil||.

The valence angle and the dihedral angle are defined as follows:

cos θijk = r̃ij · r̃ik, (4)

cosϕijkl = ñijk · ñjil, sinϕijklr̃ij = (ñjil × ñijk). (5)

This said, the variations of rij, cos θijk and ϕijkl are given by

δrij = r̃ij · δuij, (6a)

δ cos θijk = n
θ
ij · δuij + n

θ
ik · δuik, (6b)

δϕijkl = n
ϕ
ij · δuij + n

ϕ

ik
· δuik + n

ϕ

jl
· δujl, (6c)

where

n
θ
ij =

1

rij
(r̃ik − cos θijkr̃ij), n

θ
ik =

1

rik
(r̃ij − cos θijkr̃ik),

n
ϕ
ij =

1

rij

[

cos θjil

njil
ñjil −

cos θijk

nijk
ñijk

]

,

n
ϕ

ik
=

1

riknijk
ñijk, n

ϕ

jl
=

1

rjlnjil
ñjil.

We refer to Blondel and Karplus (1996), Korobeynikov et al.
(2015), and Genoese et al. (2019) for more details. The
equilibrium configurations of the system are sought through the
stationarity condition of its total potential energy

5 = U −
∑

n

pn · un, (7)

where U, defined in Equations (1, 2), is a function of the
displacements of the atoms by means of Equations (3–5), and
pn is the force applied to the nth atom. Recalling Equation (6),
the variation of the potential U is

δU =
∑

b

δuij · srij +
∑

a

(

δuij · sθij + δuik · s
θ
ik

)

+
∑

d

(

δuij · s
ϕ
ij + δuik · s

ϕ

ik
+ δujl · s

ϕ

jl

)

,
(8a)

FIGURE 3 | Graphene sheet with two supported edges under compression in the zigzag direction: (A) equilibrium path, (B,C) deformed configurations at the points A

and B, and (D) energies trends.
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where

s
r
ij =

dUr
b

d rij
r̃ij,

s
θ
α =

dUθ
a

d cos θijk
n

θ
α , α ∈

{

ij, ik
}

,

s
ϕ
β =

dU
ϕ

d

d ϕijkl
n

ϕ
β , β ∈

{

ij, ik, jl
}

(8b)

are the binary, ternary and quaternary interatomic force vectors.
Finally, the equilibrium equations assume the following form

∑

b

s
r
ij · (δuj − δui)+

∑

a

[

s
θ
ij · (δuj − δui)+ s

θ
ik · (δuk − δui)

]

+
∑

d

[

s
ϕ
ij · (δuj − δui)+ s

ϕ

ik
· (δuk − δui)+ s

ϕ

jl
· (δul − δuj)

]

=
∑

n

pn · δun

(9)
for any δun.

2.2. Nanoscale Material Parameters
The potential functions given in Equation (2) are characterized by
four parameters, Ū,β , C and V . In this work, we use β = 21.671

1/nm, Ū = 0.79 aJ, and C = 1.893 aJ, which provide the force
constants kr = 742 nN/nm and kθ = 1.42 aJ, since these values
have shown to well describe the in-plane strength and rigidity of
graphene (Genoese et al., 2017). In order to properly define V ,
we associate the potential related to the dihedral angle to that of
a plate with thickness tending to zero in linearized elasticity. By
doing this, it can be shown that the following equality holds1:

D =
14
√
3

3
V ,

whereD is the bending stiffness of the plate. Then,V is calculated
from the ab-initio result D = 0.234 aJ in Kudin et al. (2001), and
it results to be V = 0.029 aJ. Last but not least, we obtain the
value of the corresponding force constant kϕ , given by

kϕ =
d2 U

ϕ

d

d ϕ2
ijkl

∣

∣

∣

∣

ϕijkl=ϕ̄ijkl

= 2V = 0.058 aJ. (10)

2.3. Numerical Methods
The model has been implemented in the MATLAB” language.
By using FEM standard assembly procedures the equilibrium

1Analytical developments will be given in a forthcoming paper.

FIGURE 4 | Graphene sheet with two supported edges under compression in the armchair direction: (A) equilibrium path, (B,C) deformed configurations at the points

A and B, and (D) energies trends.
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equations are recast in the global form

s[u]− p = 0, (11)

where u collects all the kinematic variables, s is the inner force
vector and p collects all the external loads which we express in the
form p = λp̂, λ being a scalar load multiplier and p̂ the nominal
loads vector. The pairs (u, λ) that satisfy Equation (11) define the
equilibrium path of the graphene sheet. In this work it is obtained
through the Riks arc-length method (Riks, 1979, 1984).

As opposed to the traditional step-by-step procedures based
on a parametrization of the equilibrium path in terms of the
load multiplier λ or of any displacement variable, the arc-length

TABLE 1 | Comparison between critical multipliers.

Zigzag Armchair

λE λcr λE λcr

First Mode 0.0209 0.02003 0.0227 0.0224

method describes the equilibrium path in terms of the variable ξ

related to the arc-length. This implies adding a new constraint
equation ξ = g[u, λ]. The equilibrium points of the path are
then obtained by solving a non-linear extended system, using
the Modified Newton-Raphson method and condensing the
constraint equation in order to assemble and decompose only

the stiffness matrix K =
∂s

∂u
. The modified set of equations

become singular only at a bifurcation point that, however, can be
transformed into a simple fold by introducing small imperfection
loads spending work on the critical direction.

The numerical analysis becomesmore complex whenmultiple
simultaneous or nearly simultaneous modes are found on the
fundamental equilibrium path. Using a step-by-step numerical
algorithm based on Riks arc-length strategy, the presence
of simultaneous or nearly simultaneous modes manifests
itself in the form of abrupt changes of the equilibrium
configurations, named as mode jumping in the literature (Duan
et al., 2011). In these cases, the prior knowledge of such
critical modes is necessary in order to understand which of
these directions (or linear combination thereof) are actually

FIGURE 5 | Graphene sheet with four supported edges under compression in the zigzag direction: (A) equilibrium path, (B–D) deformed configurations at the points

A, B and C, and (E) energies trends.
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FIGURE 6 | Graphene sheet with four supported edges under compression in the armchair direction: (A) equilibrium path, (B–D) deformed configurations at the

points A, B and C, and (E) energies trends.

TABLE 2 | Comparison between critical multipliers.

Zigzag Armchair

λE λcr λE λcr

First Mode 0.0908 0.088 0.0837 0.082

reachable in post-critical analysis and which, instead, are
geometrical loci of secondary bifurcations. For this purpose,
any step of the analysis has been accompanied by the updating
of the tangent stiffness matrix and determination of its
kernel, by eigenvalue analysis, at very close values of the
load parameter λ.

3. RESULTS

Numerical benchmark examples regarding graphene sheets
under compression and shear are solved.

3.1. Square Graphene Under Compression
and Shear
Figure 2 shows the geometrical configuration of a nearly square
graphene sheet (a = 10.508 nm and b = 10.084 nm) and, in
some detail, the loading conditions for the compression tests,
in both zigzag and armchair directions, and for the pure shear
test. The compression tests are carried out considering constraint
conditions of simple support for the only loaded sides and for
all the sides. The shear test is carried out considering conditions
of simple support for all the sides. In all cases, N = 1 nN/nm is
assumed. In addition, small imperfection forces, perpendicular to
the plane of the sheet, are applied in correspondence to the atoms
evidenced in red that are assumed to be control points to give the
equilibrium paths.

In Figures 3, 4 the results of the compression tests in the
case of two supported edges are shown. The equilibrium paths,
very far beyond the first critical point, and the deformed
configurations, at the points A and B, respectively, are depicted,
revealing a typical stable behavior from Euler compressed rods.
The comparison between critical multiplier values λcr and those
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obtained analytically by the Eulerian formula λEN = π2D/a2

for the zigzag case, and λEN = π2D/b2 for the armchair case is
shown in Table 1 which, on one hand, shows a good agreement
between numerical and analytical results and, on the other hand,
highlights the very low influence of chirality in the out-of plane
nonlinear behavior of these nanostructures as already noticed in
Sgouros et al. (2018). The small numerical differences found in
the values calculated for zigzag and armchair cases are mostly
related to the different values of a and b.

In the same Figures 3, 4 the trends of the potential energy of
the sheet are shown, in the range of the equilibrium path between
the initial undeformed configuration and that immediately
successive to the critical one. Also, the energy contributions
are shown as decoupled, separating the contribution due to
membrane deformation, that is, the sum of binary and ternary
energies, from the quaternary contribution, which is inherently
flexural. All the energies are measured with respect to the resting
state of the sheet and divided by its reference surface a × b,
while the deformation of the sheet is given in terms of the non-
dimensional relative displacements 1u/a = (ū4 − ū3)/a and
1v/b = (v̄2 − v̄1)/b, ūk and v̄k being the mean values of the
displacements along x and y on the side k.

Diagrams show that in these two cases pre-critical
behavior employs purely membranal energy, while post-
critical behavior uses bending energy. Moreover, it is worth
noting that energy is quadratic in the pre-critical behavior,
which coincides with what was reported in the literature

(Liew et al., 2004; Silvestre et al., 2012) for compressed
carbon nanotubes.

In Figures 5, 6 the results of the compression tests in the case
of four supported edges are shown. The equilibrium paths and the
deformed configurations, in the points A, B, and C are reported.
The sheet presents a similar behavior, both with regard to the
equilibrium path and the deformed configurations regardless of
the direction of the compression. After an initial stable post-
critical behavior (point A), the equilibrium paths present a limit
load configuration (point B), followed by an unstable branch. The
deformed configurations are similar, corresponding to the three
points A, B, and C, which turn out first bubble-shaped and then
increasingly wrapped.

Once again, the comparison is positive between the numerical
critical multiplier values λcr , and those obtained analytically by
the formulas of buckling of Timoshenko (Timoshenko and Gere,
1963) for fully supported thin plates, namely λEN = kπ2D/b2

for the zigzag case and λEN = kπ2D/a2 for the armchair
case, with k = 4. The comparison is given in Table 2, which
highlights the very low influence of chirality in the nonlinear
behavior of these nanostructures. In the same Figures 5, 6,
the energy diagrams reveal that the pre-critical behavior of the
sheets is likewise purely membranal and characterized by a linear
behavior. However, unlike in the previous examples, in the post-
critical behavior, membranal and flexural energies coexist. The
same considerations can be made for the shear test, whose results
are shown in Figure 7, where 1u = ū2 − ū1 and 1v = v̄4 − v̄3.

FIGURE 7 | Graphene sheet under shear: (A) equilibrium path, (B,C) deformed configurations at the points A and B, and (D) energies trends.
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A

B

FIGURE 8 | Schemes of the compression tests of the graphene strips: (A) geometry and details of the applied loads for the compression test in the zigzag direction,

(B) geometry, and details of the applied loads for the compression test in the armchair direction.

FIGURE 9 | Supported graphene strips under compression in the zigzag direction: first three buckling modes and their interaction.

The equilibrium path, after an initial stable post-critical
behavior (point A), presents a limit load (point B). The
critical multiplier estimated numerically λcr agrees well with

the analytical value predicted by the theory of Timoshenko
(Timoshenko and Gere, 1963) for thin plates subjected to shear,
that is λEN = kπ2D/b2 where k = 5.35+ 4(b/a)2 = 9.0337. The
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comparison is as follows:

λE = 0.205 λcr = 0.194.

The initial post-critical configuration (point A) has the shape of a
bubble elongated toward the direction of the principal traction,
already highlighted in the literature (Huang and Han, 2017).
At the limit load configuration (point B) the deformation is
accentuated and, in addition to the diagonal crest, two lateral
troughs arise.

3.2. Graphene Strips Under Compression
Figure 8 shows the geometry and the nodal loads of the strips
under compression in the zigzag (a = 20.306 nm and b = 5.91
nm) and in the armchair (a = 19.676 nm and b = 5.822 nm)
directions. In both cases only conditions of simple support for

TABLE 3 | Comparison between critical multipliers.

Zigzag Armchair

λE λcr λE λcr

First Mode 0.2701 0.255 0.2764 0.270

Second Mode 0.2712 0.260 0.2803 0.271

Third Mode 0.3039 0.290 0.3165 0.310

the entire boundary are imposed and N = 1 nN/nm is assumed.
The analyses have turned out to be more complex than in the
case of the nearly square sheet, due to the presence of nearly
simultaneous modes.

In that regard, Figures 9, 11 show that in both cases,
the fundamental equilibrium path presents three nearly
simultaneous modes, two of them almost coincident and the
third one at a small distance from the first two. The critical
multipliers determined by numerical analyses λcr show a good
agreement with the analytical solution provided by Timoshenko
for the first three critical modes for the same problem, whose
expressions are λEN = kπ2D/b2, where k = (mb/a+ a/(bm))2,
m is the number of the half-waves of the critical mode. The
comparison between numerical and analytical results is shown
in Table 3.

As can be seen in Figures 9, 11many post-critical equilibrium
paths are obtained when small imperfection loads are added,
which are chosen to be a linear combination of the critical
modes, and are projected onto the modal subspace (ξ1, ξ2, ξ3)
(Salerno and Casciaro, 1997). The number of overall analysis
is 114, and each of them is characterized by a different
shape (or direction) of the imperfection. In agreement
with the literature (Salerno and Casciaro, 1997), the 114
equilibrium paths cluster around only two directions, the
first two modes, whichever is the initial imperfection to
which the path is initially pushed, creating the typical zone

FIGURE 10 | Supported graphene strips under compression in the zigzag direction: (A) equilibrium path and (B–D) deformed configurations at the points A, B, and C.
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FIGURE 11 | Supported graphene strips under compression in the armchair direction: first three buckling modes and their interaction.

FIGURE 12 | Supported graphene strips under compression in the armchair direction: (A) equilibrium path and (B–D) deformed configurations at the points A,

B, and C.
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of post-critical attractiveness, with sudden post-critical
bifurcations, shown in Figures 9, 11, when moving in
the direction of the third mode, which are usually called
mode jumping.

That said, if we focus our attention just on the imperfection in
the direction of the first mode, we get only one equilibrium path,
characterized by the smallest limit load value, by the parity of the
norm of the additional imperfection.

Figures 10, 12 show the paths relative to this imperfection
with reference to the zigzag and the armchair case, respectively.
In both cases, the displacement in abscissa is the transversal one
of the control points evidenced in red in Figure 8. The paths
share the same features: after an initial stable bifurcation, a limit
load point is reached, followed by an unstable behavior. For both
cases three successive configurations, in the points A, B, and C of
the equilibrium path, are depicted. After an initial configuration
characterized by three half-waves (point A), similarly to the
selected critical mode, the successive configurations (points B and
C) take a more wrapped form, also characterized by an approach
of the edges of the strip left free to move horizontally. Both in
terms of equilibrium path and of deformed configurations, the
chirality has very little influence.

4. CONCLUSIONS

In the present paper, the critical and post-critical behaviors of
graphene, under compression in the zigzag and in the armchair
directions, and shear have been investigated. A molecular
mechanics model that takes into account binary, ternary and
quaternary interactions has been implemented extending our
previous works (Genoese et al., 2017, 2018a,b, 2019) in which

only the in-plane behavior of graphene has been addressed.
A geometrically exact setting and Morse and cosine potential
functions, equipped with a proper set of parameters have been
used to model the interatomic interactions and, at the same time,
a new parametrization of the dihedral potential has been given.
For each case study, the equilibrium path has been reconstructed
in the advanced post-critical behavior through the arc-length
strategy and some deformed configurations, deemed to be the
most significant, have been displayed. This adds significantly to
the existing literature, as this type of behavior has so far been
little investigated. Our findings show the suitability of standard
thin-plates theories to predict simple critical behaviors both for
nearby square sheets, under various edge constraint conditions,
and strips. Moreover, they highlight the very low influence
of chirality in the nonlinear behavior of these nanostructures.
The research work carried out in this paper could be the
first step toward investigating the nonlinear behavior of 2D
nanomaterials other than graphene or of more complex 3-
dimensional nanostructures, such as tubes.
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The attenuation performance of metaconcrete specimens characterized by a lattice-like

pattern of bi-material resonant inclusions was verified through nondestructive

transmission tests spanning the sonic range of frequencies. Seven cubic specimens

of metaconcrete with regularly disposed resonant inclusions have been cast from a

standard concrete matrix. Inclusions were regularly spaced and symmetrically arranged

in a three-dimensional setting. Specimens differ in terms of inclusion spacing, controlled

by varying the number of inclusions (0, 8, 27, and 64) and the cement cover.

Three-month cured specimens have been tested along the three symmetry axes, under

a sinusoidal excitation with four linearly variable frequency sweeping ranges centered

at the eigenfrequencies of the inclusions, to assess the relevance of inclusion packing

and arrangement on the dynamic behavior of metaconcrete. With respect to the plain

concrete specimen, all engineered specimens showed a marked attenuation of the

transmitted signal at a frequency close or very close to the theoretical eigenfrequency

of the resonant inclusion. The attenuation was weakly dependent on the density of the

inclusions and apparently not affected by interspacing, cement cover, and direction of the

excitation along the axes of the specimen. Experimental results confirmed the behavior

of metaconcrete as predicted by theoretical investigations, and further proved that the

attenuation properties of metaconcrete are due to the resonant behavior of the inclusions.

Keywords: metaconcrete, engineered resonant inclusions, lattice-like pattern, linear swept-frequency sinusoidal

excitation, signal attenuation, sonic range

1. INTRODUCTION

Metaconcrete is a new type of concrete where engineered inclusions, made of heavy spherical
(e. g., steel) cores coated by a compliant (e. g., polymeric) layer, replace part of the traditional
stone and gravel aggregates embedded into a standard Portland cement matrix. Because of the
unconventional mechanical behavior exhibited under dynamic excitation,metaconcrete is regarded
as a metamaterial. Specifically, it has been demonstrated theoretically in Mitchell et al. (2014) and
numerically in Mitchell et al. (2015) that, when the frequency range of a dynamic load approaches
one of the resonance frequencies of the metaconcrete inclusions, aggregates sequester part of the
mechanical energy of the system to activate their resonant behavior, thus reducing the mechanical
engagement of the concrete matrix. An explanation of the observed energy sequestration resides in
the opposition of phase of the motion of the heavy core with respect to the motion of the matrix.
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The dominant resonant oscillation frequency f TI of the
inclusions is estimated with a simple analytical expression
derived from a mass-spring one-dimensional model. A targeted
frequency can be tuned by a suitable choice of core and coating
materials, core diameter, and coating thickness, cf. Mitchell et al.
(2014). The elastic modulus of the coating is the design parameter
most influent on the value of f TI , thus the coating material
is the key design parameter, although the choice might be
restricted by all important considerations concerning fabrication
and durability issues.

Numerical modal analysis conducted on a metaconcrete unit
cell revealed the presence of lower and higher eigenfrequencies
associated to deformative modes, Mitchell et al. (2014). The
brittle behavior of metaconcrete under dynamic load has
been investigated numerically modeling fracture within an
eigenerosion approach proposed in Pandolfi and Ortiz (2012),
revealing a slower propagation of the fracture front and an
overall behavior comparable to the one of the standard plain
concrete, see Mitchell et al. (2016). The attenuation properties of
metaconcrete in the supersonic range (frequencies f > 20 kHz)
have been verified in an experimental program conducted
on cylindrical samples with randomly disposed inclusions,
fabricated according to the ASTM C192/C 12M-06 (Standard
Practice for Making and Curing Concrete Test Specimens in the
Laboratory), see Briccola et al. (2017).

The concept of metaconcrete is becoming familiar in the
literature on metamaterials. An experimental investigation on
an epoxy-matrix metaconcrete has been recently described in
Kettenbeil and Ravichandran (2018), documenting a reduction
of the dynamic strain in the matrix up to 70% with respect to
the homogeneous material. The scarce relevance of the stiffness
of the matrix where the resonant inclusion is embedded had been
pointed out in El Sherbiny and Placidi (2018).

In the broader field of acoustic metamaterials, several recent
works investigated the possibility to reduce the amplitude of
mechanical waves by playing with the combination of materials
and geometries. Khan et al. (2018) demonstrated that a one-
dimensional array of resonating cells impacted by a pendulum
demonstrated that the arrangement of different local resonators
has negligible influence on wave attenuation, while a good
design of the system can enhance the performance of elastic
metamaterials. By varying the contact interaction between three-
component resonant particles disposed in one-dimensional
arrays, Bonanomi et al. (2015) proved theoretically and
experimentally that is possible to tune the acoustic transmission.

Numerical studies conducted within a two-dimensional
setting documented in An et al. (2018) indicated that the
vibration attenuation properties of acoustic metamaterials
consisting of discrete masses and springs is enhanced by
increasing the number of the unit-cells. Numerical investigations
discussed in Hu and Oskay (2018) considered transient shear
wave propagation in two-dimensional domains characterized
by periodic elastic and viscoelastic microstructures using
spatial-temporal homogenization procedures. Multiscale
nonlocal homogenization that accounts for dispersion and
attenuation due to Bragg scattering was presented in Hu and
Oskay (2019), and more complex techniques that account

for the micro-inertia effects of the inclusions are reported in
Sridhar et al. (2016). Multi-layered metamaterials have been
also proposed theoretically and numerically (Wang et al., 2017).
More in general, investigations on locally resonant acoustic
metamaterials are becoming more and more appealing, in the
view of producing materials with specific attenuation properties,
see Krushynska et al. (2014), or of showing negative properties,
see Li et al. (2018), within well defined frequency bands.

Theoretical and numerical studies in the field of civil
engineering, where metaconcrete is likely employable, have been
reported in Cheng et al. (2018): the dynamic performance of
a multi-story frame building structure has been investigated by
playing with material and geometrical parameters. Innovative
tensegrity structures share the concept of combining materials
and geometry to enhance the dynamic performance of the
system, cf. Fabbrocino and Carpentieri (2017). Currently, a large
part of the civil engineering research in metamaterials focuses
in the definition of combinations of materials and geometry
that can provide protection against seismic actions, see Krödel
et al. (2015). As an additional example, the performance of a I-
Girder metamaterial under dynamic excitation has been analyzed
numerically in Zhong et al. (2018). Applications of metamaterials
in soils have been also investigated in Maleki and Khodakarami
(2017) and Dertimanis et al. (2016).

Yet, an accurate experimental investigation of metaconcrete
to verify the presence of deformation eigen-modes in the sonic
range (frequencies f < 20 kHz) is missing. Furthermore,
all numerical tests described in previous works have been
conducted using an ideal metaconcrete with a regular disposition
of inclusions Mitchell et al. (2014, 2015) and no verification
has been done to check whether numerical results are
affected by the Bragg scattering. Finally, no investigations have
been conducted considering multiple spatial directions of the
transmitted signal.

With the objective to verify the observations of previous
numerical studies, and to quantify the differences between the
theoretical prediction and the actual performance of regularly
manufactured specimens, a new experimental program has been
planned. The main goals of the present study are to address
specifically the presence of eigenfrequencies within the sonic
range, to assess the relevance of the regular disposition of
the inclusions on the attenuation performance along different
directions, and to identify the anisotropy of the resonant behavior
due to possible stratification of the components during the
casting of the material. The results of this investigation are
reported in the present work.

The paper is organized as follows. Section 2 describes the
structure of the specimens, the experimental setup, and the
experimental program. Section 3 illustrates the outcomes of the
experiments. Section 4 collects considerations about the results
and draws some conclusions and perspectives.

2. MATERIALS AND METHODS

Nondestructive tests on metaconcrete specimens loaded with
waves spanning the sonic range (400 Hz–12.2 kHz) have been
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set up at the Laboratory of Materials Testing (LPM) at the
Politecnico di Milano, Italy. The test layout was inspired by
the specifications in ASTM C215-14 (Standard test method
for fundamental transverse, longitudinal, and torsional resonant
frequency of concrete specimens).

In the view of the goals of the investigation, specimens
were cast in a cubic shape allowing the application of an
electro-mechanical mass vibration exciter (transmitting unit)
along the three symmetry axes in turn. Two receiving units

(piezoelectric transducers), measuring the output signals on the
two faces normal to the excited axis, allowed the recording of
the frequency-response function of the samples. Details of the
specimen casting and of the experimental setup are provided in
the following.

2.1. Metaconcrete Specimens
To facilitate the comparison of the attenuation properties of
metaconcrete along three mutually orthogonal directions (the

FIGURE 1 | Specimens used in the experiments. (A) S0: specimen without inclusions. (B) S8C-S8V: specimens with 8 inclusions (constant and variable cement cover

and interspacing, respectively). (C) S27C-S27V: specimens with 27 inclusions (constant and variable cement cover and interspacing respectively). (D) S64C-S64V:

specimens with 64 inclusions (constant and variable cement cover and interspacing respectively).

FIGURE 2 | Lattice-like patterns of the two batches of specimens with 8/27/64 inclusions and constant or variable cement cover. (A) Axonometric view of the two

batches. (B) Top view of the specimens of batch 1 (S8C/S27C/S64C) with constant cement cover. (C) Top view of the specimens of batch 2 (S8V/S27V/S64V) with

variable cement cover.
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casting and other two perpendicular to it), a cubic shape was
chosen instead of the prismatic shape recommended by ASTM
C215-14. The choice allowed the arrangement of the inclusion
in a regular lattice with the same geometrical structure along the
three symmetry axes.

Cubic prototypes of metaconcrete (edge d = 15 cm)
with regularly disposed inclusions have been cast according
to UNI EN 206:2016 (Concrete-Specification, performance,
production and conformity) and UNI EN 12390-1:2002 (Testing
hardened concrete-Shape, dimensions, and other requirements
for specimens and molds).

Specimens were cast using cubic disposable plastic
molds using a mortar paste made of a mix of Portland
cement, sand, and water. As done in previous experiments
documented in Briccola et al. (2017), old-fashion
mouse balls have been utilized as resonant inclusions.
Commercially available mouse balls made of 10 mm
radius steel spheres covered with a 1 mm thickness
polydimetilsyloxhane (PDMS) coating matched the fundamental
requirement of showing a primary resonance within the
sonic range.

A neutral specimen with no inclusions was cast first to be
taken as a reference for the estimate the attenuation properties
of metaconcrete, see Figure 1A. Metaconcrete specimens were
obtained from two batches of cubic specimens with different
lattice length and cement cover. Each batch consisted of three
specimens with a three-dimensional grid of 2×2×2, 3×3×3, and
4×4×4 inclusions respectively, see Figures 1B–D. The inclusion
patterns are shown in Figure 2.

The particular arrangement of inclusions in the mortar matrix
imposed to adopt a specific casting procedure by layers, that
required the use of plastic jigs with equi-spaced holes. Once the
cement, sand, and watermix was prepared, the first concrete layer
(with the thickness of the cover) was poured in the plastic molds.
The subsequent layer containing the inclusions was arranged
using the plastic jig. A new layer with the thickness of the
interspacing was poured. The top surface of the interspacing
layer was flattened as much as possible with the aid of a flat
plastic jig with no holes. After the setting, each layer was
compacted by means of a small tamping rod with rounded ends.
To avoid the presence of cavities the external surface of the mold
was tapped with a mallet. A lapse of a proper time after the
casting of each layer was necessary to avoid the segregation of
the inclusions.

Mechanical features of the specimens could be affected by
the casting, therefore the casting direction was marked. Next,
specimens were moved into the curing room and stored for 24 h.
After one day, specimens were removed from molds, polished,
and kept in a water storage tank for curing for 28 days. The weight
of each specimen is shown in Table 1.

According to the theoretical derivation in Mitchell et al.
(2014), by considering each inclusion as an ideal mass-spring
system the first natural frequency f TI of the inclusion can be
estimated as

f TI =
1

2π

√

3

2

Es

Rctsρc
(1)

where Rc = 10 mm is the core radius, ρc = 7, 850 kg/m3 is
the core density, ts = 1 mm is the coating thickness, and Es =
750 kPa is the coating elastic modulus, leading to f TI = 600 Hz.

The values of the first four eigenfrequencies and eigen-modes
of a unit cell of metaconcrete, geometrically similar to the one
used here, were numerically computed by a finite element modal
analysis in Mitchell et al. (2014), considering 10 mm radius lead
spheres coated with 1 mm or 3 mm thickness rubber or nylon
layer. The expected eigenfrequencies of the actual mouse balls,

TABLE 1 | Characteristics of the specimens.

Specimen NN W [kg] Vm (%) Vcore(%) Vcoating(%) Fa(%)

S0 0 7.35 100.00 0.00 0.00 0.00

S8C 8 7.50 98.68 0.99 0.33 3.73

S8V 8 7.53 98.68 0.99 0.33 3.73

S27C 27 7.86 95.54 3.35 1.11 12.59

S27V 27 7.71 95.54 3.35 1.11 12.59

S64C 64 8.47 89.43 7.94 2.63 29.85

S64V 64 8.50 89.43 7.94 2.63 29.85

Identification acronym (SNNX, NN, number of inclusions; X, constant (C) / variable (V)

cover), W, weight; Vm, volume fraction of mortar; Vcoating, volume fraction of the soft

coating; Vcore, volume fraction of the heavy core and Fa, inclusion mass fraction.

FIGURE 3 | Experimental setup, showing a metaconcrete specimen, the two

transducers, and the vibration speaker pressurized with a weight to increase

adherence.
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where lead is replaced with steel and rubber or nylon are replaced
with PDMS, have been estimated from the values reported in
Mitchell et al. (2014) through linear regression, obtaining fI =
735 ± 83 Hz, fII = 1, 960 ± 117 Hz, fIII = 5, 715 ± 315 Hz and
fIV = 9, 120± 467 Hz.

2.2. Experimental Setup
The experimental setup is shown in Figure 3. The driving circuit
included a variable frequency audio oscillator, an amplifier, and
a driving unit. The electric signal was triggered by a stand-alone
audio oscillator driven by an engineering workbench (LabVIEW)
and transformed into a mechanical wave by the driving unit.
The driving unit consisted into an electro-mechanical mass
vibration exciter (a commercially available VibeTribe Troll 2.0
characterized by 0.38 kg mass, 54 mm diameter, and 54 mm
length), featuring a high signal-to-noise ratio. In each test, the
vibration speaker was applied to one of the specimen surfaces
normal to the excitation direction.

Two accelerometers (contact piezoelectric shear type
transducers-PCB 353B15 SN) were mounted at the center of two
opposite faces of the cubic specimens, see Figure 2, and made
adherent by a thin layer of wax. The two transducers were used
as pickup units for the acceleration at the opposite faces of the
specimens. A data acquisition system (4 Channel, 24-Bit Analog
Input Modules - NI USB-9239) transformed the accelerations
into electric signals. The time-domain electric waveforms labeled
Channel 1 represented the signals received at the face opposite
to the vibration speaker. The waveforms labeled Channel 2
represented the signals received at the face where the vibration
speaker was applied to.

From the geometrical point of view, specimens were
characterized by a regular arrangement of inclusions and were
expected to show an orthotropic behavior along the symmetry
axes. The regularity of the distribution of the in-plane inclusion
obtained by means of equi-spaced hole jigs guaranteed that the
in-plane behavior along the x and y directions was very similar.
Contrariwise, the behavior in the casting direction (the one
marked) was expected to differ from the in-plane behavior in the
view of possible segregation of the components due to the layered
casting procedure. Therefore, specimens were tested dynamically
in two directions, x and z.

Linear swept-frequency sinusoidal excitations with constant
amplitudeA = 2Vppwere applied to each specimen along both x
and z axes. Specimens were regularly rotated as so as the direction
of propagation of the signal was always vertical, from top side
to bottom side. Measurements were taken for signals transmitted
in two opposite directions of each axis by flipping the specimen
upside-down, and repeated three times for each specimen.

The range of experimental frequencies spanned by the
swept-sine excitation were defined by taking into account
both the inclusion eigenfrequencies, estimated theoretically and
numerically, and the operative bandwidth of the transducers (±%
10 0.7–18,000 Hz). The width of the interval centered at the
eigenfrequency fr was set equal to 0.8fr , obtaining the interval

1fr = f endr − f
begin
r where

f
begin
r = (1− 0.4)fr f endr = (1+ 0.4)fr . (2)

According to Gloth and Sinapius (2004), the attainment of a
quasi-steady state response of the specimen within the frequency
range 1fr imposes an upperbound (in Hz/min) to the sweep rate

ḟmax = 54
f 2r
Q2

, Q =
1

2ζ
(3)

where fr is the targeted eigenfrequency, Q the dynamic
amplification at the resonant frequency, and ζ a characteristic
damping value, that for standard concrete can be assumed
ζ = 5.0%. The maximum sweep rate defines, in turn, a minimum
experimental time for each frequency range 1fr as

1Tr min = 2π
1fr

ḟmax

(4)

The actual experimental time was incremented by 40% above
the minimum, by setting 1Tr = 1.41Tr min. The operative
parameters of the linear swept-frequency sinusoidal excitations
used in the experiments are listed in Table 2.

TABLE 2 | Parameters adopted for each frequency range during a linear sweep.

fr [Hz] f
begin
r [Hz] fendr [Hz] 1Tr [s]

fT
I

600 400 1,200 40

fI 735±83 400 1,200 40

fII 1,960±117 1,000 3,000 5

fIII 5,715±315 3,300 8,000 5

fIV 9,120±467 5,000 12,200 5

fr , theoretically or numerically estimated resonant frequency of the inclusion; fr
begin; r,

lowest frequency; fr
end , highest frequency; ∆ Tr ,time duration of the signal.

FIGURE 4 | Example of time history recorded by the transducer located at the

opposite face with respect to the vibration speaker for tests performed on the

specimen without inclusions. A linear swept-sine excitation with a start

frequency of 1,000 Hz and an end frequency of 3,000 Hz has been applied

in 10s.
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At the beginning of each linear swept-sine excitation, a sine
wave with frequency equal to the initial frequency of the sweep
was applied for 2 s.

3. RESULTS

Acquired data were stored in sequential files and post-processed
with a data-signal processing software. The electric signals were
transformed in acceleration time histories through the sensitivity
s = 10/9.81 mV s2/m of the piezoelectric transducers. Figure 4
shows an example of the acceleration signal recorded by the
transducer located at the face opposite to the vibration speaker.
The accelerations signals were characterized by an average value
not large enough to become dominant with respect to all the
other frequencies considered.

All acceleration records were analyzed by means of the Fast
Fourier Transform (FFT) algorithm using a tracking low-pass
filter in order to reduce noise at high frequencies. A feature
of tracking filters, applied only to the frequency domain, is the
preservation of the phase of the signal, thus the behavior of
metaconcrete at resonance is expected to be captured.

The FFT has been evaluated on specific time domain windows
covering the time intervals of interest. The time windows were set
on the basis of the lowest and highest estimated eigenfrequencies
that were expected to occur within the frequency band of the
input signal reported in Table 2.

The operative procedure for the calculation of the time
interval is explained with reference to the acceleration signal
reported in Figure 4 referring to the zero inclusion specimen.
After the initial 2 s sine-wave signal, a linear swept-sine excitation
in the range 1,000–3,000 Hz has been applied in a 5 s time
interval. The second eigenfrequency was estimated as fII =
1, 960 Hz, thus the frequency bounds for the definition of the
time interval were 1,843 and 2,077 Hz respectively, cf. Table 2.
Therefore, the activation of the resonance of the inclusions was

expected to occur within a time window comprised between 4.10
and 4.68 s, visualized with two broken vertical lines in Figure 4.
Interestingly, although the specimen was normal concrete, the
plot pointed out a resonance of the standard concrete.

Due to a linear swept-sine excitation, the FFT power-spectra
are characterized by continuous plots between the frequency
bounds of each eigenfrequency of the material. An example
of FFT is visualized in Figure 5, with reference to Figure 4.
The left graph represents the acceleration signal windowed
in the bounded time interval (note that the time scale has
been reset with respect to Figure 4). The right plot visualizes
the corresponding amplitude of the FFT, which appears as a
continuous line within the frequency limits 1,843 and 2,077 Hz.

The value of the power-spectrum within the frequency bands
of interest for the first four expected eigenfrequencies has been
considered as indicative of the dynamic behavior of the material.
Thus, the comparison between the behavior of plain concrete
specimen and metaconcrete specimens has been conducted in
terms of power-spectrum amplitude. The comparison includes all
the tests conducted on all the metaconcrete samples, differing by
number of inclusions and by cement cover.

For each specimen and each direction of excitation (x or
z), the amplitude |A|N of the power-spectrum corresponding to
each frequency band was evaluated as the average of the power-
spectra values falling within the band in the three corresponding
time-history accelerations. The response of the seven specimens
measured in linear swept-sine excitations along the x-axis,
backward and forward, is reported in Table 3. The columns
labeled ηN contain the efficiency ratio, defined as

ηN =
|A|N − |A|0

|A|0
(5)

where |A|0 is the amplitude referred to the zero inclusion
specimen. Figure 6A visualizes the average amplitudes |A|N for
all the specimens considering the two direction of excitation.

FIGURE 5 | Example of the windowed time history and the corresponding FFT. A linear swept-sine excitation with a start frequency of 1,000 Hz and an end frequency

of 3,000 Hz has been applied in 10 s. Frequency limits of about 1,800 and 2,000 Hz have been imposed for the FFT.
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TABLE 3 | Attenuation performance of specimens characterized by different both inclusion spacings and cement cover for linear swept-sine excitations along the x-axis,

backward and forward.

1fr fbegin Specimen backward x forward x

Hz Hz |A|N [m/s2] ηN [%] |A|N [m/s2] ηN [%]

400–1,200 749 S0 0.014241 0.0 0.014255 0.0

8C 0.012441 12.6 0.012751 10.6

8V 0.010710 24.8 0.009859 30.8

27C 0.009210 35.3 0.010768 24.5

27V 0.013628 4.3 0.013976 2.0

64C 0.010576 25.7 0.010762 24.5

64V 0.011374 20.1 0.012168 14.6

1,000–3,000 1,699 S0 0.047505 0.0 0.047801 0.0

8C 0.043266 8.9 0.044827 6.2

8V 0.042138 11.3 0.036794 23.0

27C 0.033734 29.0 0.036627 23.4

27V 0.052640 -10.8 0.051047 -6.8

64C 0.039625 16.6 0.036999 22.6

64V 0.037095 21.9 0.043223 9.6

3,300–8,000 4,000 S0 0.089994 0.0 0.076733 0.0

8C 0.054305 39.7 0.052492 31.6

8V 0.056054 37.7 0.081951 -6.8

27C 0.092723 -3.0 0.097101 26.5

27V 0.002522 97.2 0.001008 98.7

64C 0.025531 71.6 0.080936 -5.5

64V 0.049667 44.8 0.096245 -25.4

5,000–12,200 9,000 S0 0.037292 0.0 0.037899 0.0

8C 0.029785 20.1 0.030578 19.3

8V 0.022334 40.1 0.030233 20.2

27C 0.034257 8.1 0.028600 24.5

27V 0.036171 3.0 0.032474 14.3

64C 0.018919 49.3 0.025625 32.4

64V 0.025231 32.3 0.022420 40.8

Figure 6B plots the corresponding efficiency ηN. Figures 6C,D
report the same plots for the tests in direction z.

4. DISCUSSION

The experimental program conducted on metaconcrete samples
newly casted was planned with the aim of exploring the sonic
range of frequency, and of revealing whether the regularity
and the symmetry of the pattern of the inclusion may cause
reductions or differences in the efficiency of waves attenuation,
with respect to the behavior observed in the first experimental
validation of metaconcrete, see Briccola et al. (2017).

Because of the different specimen geometry, the experimental
setup differed from the one used in Briccola et al. (2017).
First, a transient signal in the form of a linear swept-frequency
sinusoidal excitation was chosen instead of a discretely dwelled-
frequency sinusoidal waveform. This choice was done to exclude
the possibility to miss the actual resonant behavior of the
inclusions. Second, four windows of frequencies were defined
centered at the numerically estimated resonance frequencies, to
offer the opportunity to explore in larger detail the region where
resonant is expected to occur. This choice was suggested by the
observation that a linear sweep in the frequency range of interest

may represent a good compromise between the amplitude of
excitation needed and time necessary to perform all the tests
on the seven specimens and to post-process the signals, cf.
Gloth and Sinapius (2004).

The results, averaged over six (three forward and three
backward), of the linear swept-sine excitation tests in direction
x are collected in Table 2. The ratio ηN can be considered as a
measure of the attenuation properties of the metaconcrete within
each eigenfrequency band. The experimental values indicated
that, with respect to the plain concrete, metaconcrete specimens
reduce the average amplitude of the acceleration power-spectra
up to 60%. The beneficial behavior was observed in particular
for higher eigenfrequencies and more densely packed specimens,
while at the lowest eigenfrequency the average reduction of the
amplitude lowered to 20–30%.

In general, results indicated that the efficiency of metaconcrete

increased with the density of the inclusions, while tests did not
show a marked dependence on the cement cover. Table 2 shows

that the first two experimental eigenfrequencies, estimated with
a numerical analysis, were very close to the theoretical estimate
f TI , Equation (1). In general, the third and fourth eigenvalues
are not predictable from the composition and microstructure
of metaconcrete and there is not any theoretical suggestion of
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FIGURE 6 | Values of the FFT acceleration amplitude |A|N and efficiency ηN averaged in the eigenfrequency bands (visualized by the horizontal bars) for the seven

specimens. Signal transmitted in x and z directions. (A) Average FFT acceleration amplitude for signal in x direction. (B) Efficiency for x direction. (C) Average FFT

acceleration amplitude for signal in z direction. (D) Efficiency for z direction.

their values. The two highest eigenvalues were related to a higher
attenuation of the transmitted signal. Regrettably, the tackled
frequencies were in the high side of the range of interest of this
research, although still within the sound spectra.

The tests in x direction conducted on the specimen labeled
27 V gave contradictory results and were not considered
in the subsequent analyses. The anomalous behavior was
probably related to the imperfect casting of the specimen,
which exhibited several holes and gaps on the surface. In fact,
the abnormal average attenuation observed for this specimen
(98%) was probably due to the presence of voids that activated
a mechanism of wave attenuation different from the energy
trapping typical of metaconcrete. The tests in y direction were
perfectly corresponding to the test in the x direction. Also in this
case, specimen 27 V did not behave in the expected manner.

The tests conducted in z direction did not provide uniform
results. Also in this case, the anomalies could be attributed to the
sub-segregation of the components due to the casting procedure.
A refined casting technique can be implemented to avoid this
problem before performing other tests.

A direct comparison with the results obtained in Briccola
et al. (2017) was not possible, since in the present analysis
attenuation ratios averaged over frequency intervals, instead of
single values, have been considered. The type of attenuation
parameter considered is necessarily less marked than the one
introduced in the previous study (direct comparison of the
output signal magnitude). In the present setup, where the
vibration was originated by a speaker, there was no the possibility
to measure an input signal that could be used to define the
attenuation of the single specimen. Therefore, the choice was
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to compare the behavior of metaconcrete specimens and the
behavior of the plain concrete specimen.

In this terms, the conclusion on the results of the experimental
program can be drawn as follows. Tests confirmed that
metaconcrete provides attenuation of the acceleration signal
within a limited range of frequencies centered at one of the
numerically predicted resonant frequencies. The attenuation in
lattice-like patterned specimens was not affected by the direction
of the signal along the horizontal symmetry axis, while the
behavior in vertical direction was rather different, suggesting
the possible segregation of the inclusions. No differences were
observed in the inversion of the direction of the signal.

As far as the attenuation due to Bragg scattering was
concerned, tests were not able to reveal an evidence of the
phenomenon and the influence of it on the global attenuation
properties. Probably the small size of the specimens, with respect
to the size of the inclusions, was not sufficient to establish the
quantitative contribution of the phenomenon.
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Non-destructive testing and structural health monitoring (SHM) techniques using elastic

guided waves are often limited by material inhomogeneity or geometrical irregularities

of the tested parts. This is a severe restriction in many fields of engineering such as

aerospace or aeronautics, where typically one needs to monitor composite structures

with varying mechanical properties and complex geometries. This is particularly true in

the case of multiscale composite materials, where anisotropy and material gradients may

be present. Here, we provide an impact localization algorithm based on time reversal

and laser vibrometry to cope with this type of complexity. The proposed approach

is shown to be insensitive to local elastic wave velocity or geometrical features. The

technique is based on the correlation of the measured impact response and a set of

measured test data acquired at various grid points along the specimen surface, allowing

high resolution in the determination of the impact point. We present both numerical

finite element simulations and experimental measurements to support the proposed

procedure, showing successful implementation on an eccentrically stiffened aluminum

plate. The technique holds promise for advanced SHM, potentially in real time, of

geometrically complex composite structures.

Keywords: impact localization, guided waves, numerical simulations, structural health monitoring, time reversal,

laser vibrometer measurements

1. INTRODUCTION

Assessment of the integrity of structural components is of great importance for aerospace vehicles
and systems, for land andmarine transportation, for civil infrastructures, for the oil industry as well
as for other biological and mechanical applications (Grandt, 2004). It is well-known that accidental
impacts may generate hidden damage in structures, which can develop under cyclic loading, until
it endangers the integrity of the whole structure. In some cases, propagation of undetected damage
can be the cause of the structural failure. One of the most well-known cases of this occurred when
the composite tile on the leading edge of the wing of the Space Shuttle Columbia fractured due to
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impact with a piece of foam insulation, leading to a catastrophic
failure of the whole vehicle on February 1, 2003 (NASA, 2003).

In order to prevent this scenario, the capability to identify
impacts and then to monitor potential damage evolution in
the neighborhood of the impact is of crucial importance. With
this in mind, the use of Structural Health Monitoring (SHM)
approaches based on guided elastic waves driven by a network
of piezoelectric transducers has attracted the interest of several
researchers in recent decades (Ostachowicz et al., 2011).

For isotropic plates, several techniques, known as hyperbolic
approaches, have been proposed for impact localization over
the years, the majority of which locate the point of impact
after detecting the acoustic emission signal generated by the
impact event using at least three sensors and applying standard
or modified triangulation techniques (De Marchi et al., 2011).
When the assumption of isotropy is removed, the standard
triangulation technique fails and alternative methods need to
be used. Various approaches for anisotropic (Kundu et al.,
2012) and inhomogeneous plate-like (Hajzargerbashi et al.,
2011) structures have been proposed, including threshold-based
procedures (Kundu et al., 2009), peak detection techniques
(Tracy and Chang, 1998; Seydel and Chang, 2001) and cross-
correlation schemes (White, 1969). However, these methods
are predictive on regular geometries whereas the presence of
stiffeners, rivets, and other geometrical irregularities, reduce their
diagnostic potential.

To overcome these difficulties, other approaches based
on direct strategies and inverse methods have recently been
proposed. While the first type requires ad-hoc designed
transducers (Salamone et al., 2010; Senesi et al., 2010; Baravelli
et al., 2013; De Marchi et al., 2018), the second makes use
of a database of responses generated by impacts (Staszewski
et al., 2000; Coverley and Staszewski, 2003; Park J. et al.,
2009; Ciampa and Meo, 2012). In this context, Park et. al.
recently proposed a new impact localization algorithm based
on time reversal (TR) and scanning laser Doppler vibrometer
(SLDV) measurements applied to Lamb waves (Park et al.,
2012). The use of TR in Lamb wave applications was first
explored by Ing and Fink (1988, 1996) and later extensively
used both for damage detection in plates (Wang et al., 2004;
Park et al., 2007; Gliozzi et al., 2015; Miniaci et al., 2017) and
for impact localization (Sohn et al., 2011; Park et al., 2012).
Lamb waves are extensively involved in plate-like structures for
non-invasive inspection because of their guided nature allowing
for large area inspection. However, their dispersion often limits
their use because of the complex waveform of acquired signals
since pulse distortion occurs due to the variation of modal
group velocities. Because of this the received signals are often
difficult to interpret (Ostachowicz et al., 2011) and TR becomes
an attractive tool to overcome the problem of dispersion in
guided elastic waves. This technique only requires minimal
prior knowledge of the monitored structures and no specific
information relative to the properties of the propagating medium
(Ing and Fink, 1988; Park et al., 2007).

In this work, the procedure proposed in Park et al. (2012) is
applied to locate simulated impacts in a reinforced aluminum
plate. Although in general, the larger the number of transducers

used for the collection of the training data, the smaller the
variation in the localization performance is, we show that in
our case a single piezoelectric transducer is sufficient to achieve
adequate training data capable of unambiguously providing the
impact location with good accuracy. This is possible thanks
to the relatively small irregularity of the location surrounding
the transducer and to the possibility of thoroughly cleaning
the bonding surface and thus properly gluing the transducer to
the specimen.

2. A TIME-REVERSAL BASED
PROCEDURE FOR IMPACT LOCATION

2.1. Time-Reversal Basic Principles
The concept of TR applied to Lamb waves is here briefly
recalled with the support of Figure 1. Elastic guided waves
are excited into a plate-like structure by means of a tone
burst signal UD(t) at point A (the subscript D is used to
distinguish the signal in the direct propagation phase from the
reconstructed one, named D, r, in a time reversal experiment).
This elastic wave propagates from A to B in the plate where
it is recorded as Uacq(t). This signal can be then time
inverted Uacq(−t) and used as the input signal in B. The
final stage is to acquire the corresponding signal UD,r(−t)
in A again.

If the source is point-like, TR allows to focus back to the
source irrespective of the medium complexity (Cassereau and
Fink, 1992; Fink, 1992; Wu et al., 1992). Spatial reciprocity is
not broken by velocity dispersion, multiple scattering, mode
conversion, anisotropy, refraction or attenuation, as long as the
latter is linear with respect to the wave amplitude. This remains
true even if the propagation medium is inhomogeneous with
variations of density and stiffness which reflect, scatter, and
refract the acoustic waves. On the contrary, non-linear elastic
effects may break spatial reciprocity (and therefore focusing
through TR), as do those effects that lead to wave velocity
variations along the direct and inverse propagation paths (Park
H.W. et al., 2009). Contrary to the case of bulk waves, TR of Lamb
waves is complicated by their dispersion and multi-modal nature
(Park H.W. et al., 2009).

2.2. Procedure Description
In what follows the impact localization algorithm originally
proposed by Park et al. (2012) is briefly recalled.

First, Lamb guided waves are excited in the specimen
under test by means of a surface-mounted piezoelectric (PZT)
transducer (red circle in Figure 2A) reproducing an impact-
like time-history (a square signal, for instance). A training data
set of signals gi(t), with i = 1, 2, ...,m (Figure 2B), is then
collected recording the out-of-plane velocity at the desired m
points with a Scanning Laser Vibrometer, denoted in Figure 2A

with black dots within the target scanning area bounded by the
red dashed line.

Now let us suppose that the structure is subjected to an
impact within the scanned area (Figure 2C) and that the guided
waves response f (t) is recorded by the same piezoelectric
used to generate the training dataset (Figure 2D). At this
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FIGURE 1 | (A) Schematic representation of time reversal (TR) procedure for Lamb waves in a plate-like structure. (B) A tone burst excitation UD(t) is provided at point

A, generating elastic guided waves in the plate that are recorded as Uacq(t) in B. This acquired signal is then time-inverted as Uacq(−t) and used as the input signal in

B. The acquired signal at point A is the inverted reconstruction UD,r (−t) of the original signal.

FIGURE 2 | Schematics of the proposed technique for impact localization: (A) scanning area; (B) training data set acquisition; (C) actual impact event; (D) actual

impact Impulse Response Function (IRF).

point, the correlations between the actual impact response
f (t) and the responses of the training data set gi(t) are
computed. Because of the dispersion of Lamb waves, without
any numerical manipulation the correlation is very poor, since
the compared signals are completely different. However, it can
be mathematically shown that if the correlation is written as a

function of inverted signal f (T − t) = f̃ (t) (being T the duration
of the acquired signal), the gi(t) with maximum correlation
to the actual impact response f (t) can be used to identify the
impact location. The correlation correlation between f (t) and
g(t) is defined as follows (see Park et al., 2012; Miniaci, 2014 for

further details):

(f ⋆ g)(τ ) =
∫ +∞

−∞
f (t)g(τ + t)dt (1)

where ⋆ denotes the correlation operation. On the other hand, the
convolution of two functions is defined as:

(f ⊗ g)(τ ) =
∫ +∞

−∞
f (t)g(τ − t)dt (2)
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FIGURE 3 | A schematic representation of the tested specimen: (A) isometric

view and (B) cross-section. The drawings are not to scale, for sake of clarity.

The light gray rectangle indicate the scanning area. (C) Time history (top panel)

and its frequency content (bottom panel) of the excitation signal (chosen as a

square pulse to simulate an actual impact event).

where ⊗ is the convolution operation. Comparison between
Equations (1, 2) reveals that the correlation and convolution are
related to each other as follows:

f ⋆ g = f̃ ⊗ g =
∫ +∞

−∞
f̃ (t)g(τ − t)dt (3)

Equation (3) shows that the correlation between two signals
is mathematically equivalent to the convolution between
one and the time-reversed version of the other one. By
applying the Fourier transform, the convolution in the time

FIGURE 4 | Three snapshots of the guided wave propagation in terms of

normalized Von Mises stress at different time steps t1 = 0.5 ms, t2 = 0.75 ms

and t3 = 1 ms after the simulated impact is applied. It is possible to observe

how the stiffeners confine and guide much of the energy, and thus of the

available information to determine the impact. This is due to the much higher

rigidity of the stiffeners with respect to the plate.

domain is transformed into a simple multiplication in the
frequency domain:

F{f ⊗ g} = F{f } · F{g} (4)

where F denotes the Fourier transform operator. The
convolution is reconstructed by taking the inverse Fourier
transform of Equation (4):

f ⊗ g = F
−1{F{f } · F{g}} (5)
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FIGURE 5 | Numerical results. (A,C,E) Normalized correlation values between the signal registered at each grid point and the signal of the actual impact points (1-D

plots). (B,D,F) The estimated points of impact are then derived and highlighted in a 2-D visualization. The gray dots denote the scanning points, the red circle the

acquisition point, the green spot the real impact positions and the blue crosses the estimated ones.

Since this new expression involves only Fourier and inverse
Fourier transforms and point-wise multiplications, the
correlation or convolution can be computed effectively:

f ⋆ g = f (−t)⊗ g = F
−1{F{f (−t)} · F{g}} (6)

The maximum correlation value, obtained using Equation (6) is
designated as the most likely impact point (Park et al., 2012).

3. IMPACT LOCALIZATION: NUMERICAL
AND EXPERIMENTAL RESULTS

3.1. Description of the Tested Specimen
The reviewed impact localization algorithm is tested on
a reinforced aluminum plate, schematically shown in

Figures 3A,B. The specimen is 1, 000 mm in length and
1, 000 mm in width. It is composed of a flat aluminum 1-mm
thick plate reinforced by two unidirectional eccentric stiffeners
with L cross-section. The width of both the web and the flange
of the stiffeners is 3 mm. The stiffeners are parallel to the
specimen edges and are attached to the plate along their full
length. Material properties are the following: Young’s modulus
E = 68 GPa, Poisson’s ratio 0.32 and density ρ = 2, 700 kg/m3

(Miniaci, 2014).

3.2. Numerical Application
The reliability of the proposed technique is first tested
numerically by means of a transient Finite Element (FE)
analysis simulating the propagation of guided waves in the
aforementioned specimen. The implemented model is shown in
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FIGURE 6 | Numerical results. (A) Representation of the 2D finite element model under plane strain assumption. The black arrow shows the position where elastic

waves have been excited into the specimen (through an imposed out-of-plane displacement of the corresponding mesh node) in phase 1. It also represents the

collecting position during phase 2 (i.e., after the actual impact has occurred). The location of the acquisition points composing the training data are indicated with red

arrows. (B,C) Normalized correlation values between the signal registered at each grid point and the signal of the actual impact points (1-D plots) for the aluminum II

and steel cases, respectively. Additional numerical simulations showing the effectiveness of the TR-based technique regardless of the material properties of

the specimen.

TABLE 1 | Young’s modulus, density and Poisson’s ratio of the stiffened plate used for additional numerical simulations in order to prove the effectiveness of the technique

regardless the material properties of the sample.

Material Young’s modulus E [GPa] Density ρ [kg·m−3] Actual impact point x-coordinate [mm] Estimated impact point and x-coordinate [mm]

Aluminum (II) 70.5 2,750 390 12–387.5

Stainless steel 210 7,850 390 12–387.5

The following case studies are considered: aluminum (with slightly different properties with respect to those initially considered in the manuscript) and stainless steel. The Table also

reports the actual impact point x-coordinate [mm] and the estimated ones (along with the grid point number).

Figure 3A. A full 3D propagation field is calculated by using
linear hexahedral brick elements of C3D8R type for a total
number of 2, 686, 684 nodes. To ensure accuracy to the time-
transient FE simulations, the plate domain is discretized with
elements of maximum side length Lmax = 1 mm and the
time integration step kept as tint ≤ 1e − 8 s (De Marchi
et al., 2013). To reproduce the experimental conditions, wave
reflection, generated by both plate edges and stiffeners, as well
as geometrical attenuation, due to wave radiation, are taken
into account. Impact is simulated by imposing an out-of-plane
displacement in the form of a sharp square pulse (see Figure 3C),
which reproduces the kind of excitation that may occur in an
impact event. In the FE analysis only 81 scanning points covering
a square scanning area of 900× 900 mm are considered.

Figure 4 shows three snapshots of the simulated guided wave
propagation in terms of normalized Von Mises stress at different
time steps t1 = 0.5 ms, t2 = 0.75 ms, and t3 = 1 ms after
the simulated impact is applied. It is possible to observe how

the stiffeners confine and guide much of the energy, and thus
of the available information to determine the impact. This is
due to the much higher rigidity of the stiffeners with respect
to the plate.

The following impact cases are considered:

(i) Impact location corresponding to a grid point (results are
shown in Figures 5A,B);

(ii) Impact location corresponding to a random point within
the area delimited by the stiffeners (results are shown in
Figures 5C,D);

(iii) Impact location almost equidistant from two grid points
(results are shown in Figures 5E,F);

Corresponding signals are collected and processed as explained
in section 2.2. Results are presented in Figure 5, confirming
the reliability of the method. Figure 5 reports the normalized
correlation values between the signal registered at each grid point
and the signal of the actual impact points (1-D plots) as well as
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FIGURE 7 | Numerical simulations showing the effectiveness of the TR-based technique regardless of the geometrical properties of the specimen. (A) Representation

of the 2D finite element model under plane strain assumption. The stiffeners have been replaced by tapers of half the plate thickness h = 0.5; H = 0.5 mm. All the other

parameters are left unaltered with respect to Figure 6. (B) The impact location still is predicted with good accuracy.

the estimated points of impact derived in a 2-D visualization.
The gray dots denote the scanning points, the red circle the
acquisition point, the green spot the real impact positions and
the blue crosses the estimated ones. Specifically, it appears that
when the impact point coincides with an acquisition point
(Figure 5B), the correlation presents a higher value (Figure 5A)
than for a random point (Figures 5C,E) and the impact location
can be predicted extremely accurately (Figure 5B). Therefore,
numerical simulations show that the farther the impact point
is from a scanning point, the smaller the correlation value is.
The minimum is achieved when an impact occurs at a location
equidistant between scanning points (Figures 5E,F).

3.3. Additional Numerical Considerations
In what follows, we verify the effectiveness of the TR-based
technique regardless of thematerial and geometrical properties of
the specimen. To do this, additional numerical simulations have
been carried out (without loss of generality and for the sake of a
reduction in computation time, a 2D plane strain model has been
implemented see Figure 6A). First, two additional numerical
simulations, in which the material properties of the specimen
have been changed by small and large amounts with respect to
those considered initially, have been performed (refer to Table 1

for the adopted properties), in the case of an impact occurring
inside the area delimited by the stiffeners (in #12) and training
data collected in #15 (see Figure 6A). In order to verify that
the TR-based procedure is not dependent on the local elastic
wave velocity, exactly the same configuration is maintained
for the two study cases, but with different material properties

(aluminum II in Figure 6B and steel Figure 6C, respectively).
Figures 6B,C report the normalized correlation values between
the signal calculated at each grid point and the signal of the actual
impact points (1-D plots), clearly proving the independence of
the procedure from wave velocity. This is in accordance with
a fundamental symmetry principle of TR (Fink et al., 2000),
if the geometry and excitation/acquisition conditions are left
unaltered (Miniaci et al., 2017).

Secondly, the stiffeners have been replaced by tapers running
through half of the thickness of the plate, as shown in Figure 7,
in order to show the effectiveness of the TR-based technique
regardless of the geometrical properties of the specimen. In this
case, too, the possibility to correctly locating the impact is fully
supported by the numerical simulations.

Finally, we performed additional numerical simulations to
check the reliability of the TR-based technique in the case of
an impact occurring outside the area delimited by the stiffeners
(for instance in #23 with respect to Figure 8) and training data
collected through a transducer still bonded between the two
stiffeners (in #15). Here too, without loss of generality and to
reduce computation time, a 2D plane strain model has been
implemented, as shown in Figure 8A. Black and red arrows
have the same meaning as in the previous cases. We found
that the accuracy of the technique in detecting impacts outside
the area delimited by the stiffeners is strongly correlated to
the quantity of energy the geometrical irregularity (i.e., the
stiffeners) allow to reach the detection point. Indeed, since the
thickness of the stiffeners is three times that of the plate, they
confine and guide most of the energy (the amplitude of the wave
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FIGURE 8 | (A) Representation of the 2D finite element model under plane strain assumption in the case of an impact occurring outside the area delimited by the

stiffeners (#23) and transducer for the training data collection bonded between the stiffeners (#15). The black arrow shows the position where elastic waves are

excited into the specimen in phase 1. It also represents the collecting positions of the training data during phase 2, i.e., after the actual impact has occurred (in #23).

The location of the acquisition points composing the training data are indicated with red arrows. (B–D) Numerical results show the accuracy of the technique in terms

of normalized correlation values between the signal registered at each grid point and the signal of the actual impact point (1-D plots) as the ratio of the maximum of

the wave amplitudes registered outside (Aout ) and inside (Ain) the area delimited by the stiffeners increases : (B) Aout/Ain = 0.283, (C) Aout/Ain = 0.415, and (D)

Aout/Ain = 0.511. (E) Calculated and extrapolated values of the grid point error as a function of the wave amplitude outside and inside the region delimited by

the stiffeners.

beyond the stiffeners is more than 3 times smaller than that
inside the stiffeners), strongly limiting the information reaching

the transducer in #15 (in the case of impact occurring outside

the area delimited by the stiffeners and training data collected
from a transducer bonded between the stiffeners). Therefore,
in this specific case with huge impedance mismatch, another
map of training data would be required to correctly identify
the impact location (see Figure 8B). This condition corresponds
to a small ratio between the maximum of the wave amplitudes
calculated outside (Aout) and inside (Ain) the area delimited by
the stiffeners (0.283). However, if the rigidity of the stiffeners
is decreased, a larger wave amplitude is allowed to pass beyond
them and the accuracy of the technique increases, as for instance
in the case reported in Figures 8C,D, corresponding to the cases
of Aout/Ain = 0.415 and Aout/Ain = 0.511, respectively.

Thus, it emerges that the method can still be applied insofar as
sufficient wave amplitude is guaranteed beyond the geometrical
irregularities (quantitatively a zero-grid point error is reached for
a ratio of 0.5 see Figure 8D).

3.4. Experimental Application
The tested specimen is shown in Figure 9A. The red circle
represents the position of both the piezoelectric transducers used
as actuator for the data training acquisition and of the SLDV
acquisition point in impact tests. The testing region (768 × 803
mm), represented as the yellow rectangular box, is composed
of a regular grid with 93 × 91 acquisition points. Impacts
are simulated in correspondence of the three points shown in
Figure 9A, that were randomly chosen within the area delimited
by the stiffeners, and denoted by black stars.
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FIGURE 9 | (A) Photograph of the tested specimen. The red circle represents the position of both the PZT transducer used as actuator for the data training

acquisition and the SLDV acquisition in impact tests. The yellow rectangle represents the scanned portion of the plate (testing region) during the training acquisition

phase and consists of a 93× 91 grid of acquisition points (green dots) in the horizontal and vertical directions, respectively. The unknown impact points - #1,#2, and

#3 - are represented by means of black stars and chosen within the area delimited by the stiffeners. (B) SLDV experimental setup.

Elastic guided waves are excited in the specimen using a
ceramic piezoelectric disk of diameter 10 mm made of Sonox R©

by CeramTec R© glued to the surface of the investigated sample
using commercial super-glue. A scanning measurement head
(PSV 400 by Polytec R©) connected to a data acquisition system
and a steering circuit (Figure 9B) is used to perform the
out-of-plane measurements of the velocities over the target
area. The pulse excitation is fed from a TGA1241 function
generator by Thurlby Thandar Instruments and amplified
through an EPA-104 amplifier by Piezo Systems R© Inc, inducing
a 20 Vpp signal. In order to improve measurements accuracy,
the investigated specimen is covered with self-adesive retro-
reflective film by ORALITE R©. This allows to improve the laser
vibrometer signal level at each measurement point regardless of
the incidence angle of the measurement beam on the surface
(Ostachowicz et al., 2011).

The training data collection process is realized using the
square pulse shown in Figure 3C applied to the piezoelectric
transducer. For each scanning point, 16, 384 samples are
collected over 8 ms by the SLDV at a sampling rate of 256 kHz,
and signals are averaged 128 times to improve the signal-to-noise

ratio. Intervals of 50 ms are provided between two consecutive
pulse excitations to allow signals to decay close to the background

noise level before a new data collection. Measurement of all time
signals from 8, 463 scanning points takes 8 h.

The results are shown in Figure 10, where the normalized
correlation values between the signal registered at each grid point
and the signal of the actual impact points (Figures 10A,C,E)
are presented. The estimated point of impact is then derived
and highlighted in Figures 10B,D,F. The gray dots denote all

the scanning points, the red circle the acquisition point whereas
the green spot the real impact position and the blue cross the
estimated one. It clearly emerges that the algorithm is able to
precisely identify the impact point for all the three considered
cases. A very good accuracy, within 0.5 cm, is obtained regardless
of the impact position (Miniaci, 2014).

4. CONCLUSIONS

This work presents an impact localization algorithm based
on TR and laser-vibrometry. The main idea is to locate an
impact event by simply comparing the actual impact response
with IRFs obtained from a grid of training points. This
technique is shown to be very powerful particularly in the case
of irregular waveguides or complex structures since it does
not require the knowledge of the local wave velocity or the
structural geometry. Its main advantages over existing techniques
are thus that: (a) it can be applied to complex structures
with additional structural features such as ribs, stiffeners, and
rivet connections; (b) only simple correlation calculations are
required for impact localization, making it attractive for real-
time automated monitoring; (c) high spatial resolution in
impact localization can be achieved. A significant advantage
of the present approach compared to previous realizations
of the technique is the use of a single instead of multiple
transducers, thus simplifying its experimental realization in
applications considerably.

Both numerical and experimental results confirm the
capability of the method to identify unknown impact positions
without a priori knowledge of the tested specimen. The described

Frontiers in Materials | www.frontiersin.org March 2019 | Volume 6 | Article 30116

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Miniaci et al. Time-Reversal Algorithm for Impact Localization

FIGURE 10 | Experimental results. (A,C,E) Normalized correlation values between the signal registered at each grid point and the signal of the actual impact points

(1-D plots). (B,D,F) The estimated points of impact are then derived and highlighted in a 2-D visualization. The gray dots denote the scanning points, the red circle the

acquisition point, the green spot the real impact positions and the blue crosses the estimated ones.

procedure is here validated using only a single acquisition point.
Tests also show that the localization of trial impacts can be
successfully achieved regardless of the impact position (near the
sensor, far from the sensor, near a plate edge, near a stiffener).

Although many methods are already available, the present
method is particularly well-suited to impact localization in
complex structures, such as parts fabricated using multiscale
composite materials, thanks to its unique potential to treat
in the same manner different kinds of waveguides, both
isotropic and anisotropic, homogeneous and inhomogeneous
with simple or irregular geometries. In this work, the training
data was obtained over a grid of square points. However,
a more complex disposition of the SLDV acquisition

points minimizing their distance (such as for instance
a triangular disposition) may reduce the training data
acquisition time.

Future developments may include the optimal grid point
disposition for the training data and additional tests in order
to examine the robustness of the proposed approach under
temperature variations.
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The strength and stiffness of prestressed lattices, and their mechanical behavior, depend

strongly on the underlying graph and the nodal conformation geometry. A special class

of structures is that of superstable frameworks, that is, prestressed frameworks which

are stable independently of material properties and level of prestress. After reviewing

the main related notions and results in rigidity theory, we exploit the characterization

of superstability for generic configurations to establish a construction for superstable

systems on a given number of nodes generically placed in two or three dimensions.

Keywords: universal rigidity, superstability, generic configuration, Grünbaum polygon, tensegrity frameworks

1. INTRODUCTION

Themechanical behavior of latticed structures is greatly affected by the properties of the underlying
graph and the geometrical conformation of nodal positions. The simplest and most commonly
adopted model is that of bar-and-joint framework, i.e., a graph together with a spatial placement
of its vertices, or nodes. In Figure 1 different types of framework are shown (cf. e.g., Gortler et al.,
2010; Connelly, 2013). If a set of edge lengths is compatible with a finitemotion, then the framework
is flexible (Figure 1A). When a framework is rigid at a given configuration, there is no other
configuration close to it with same edge lengths (Figure 1B). If the edge lengths are compatible
with just one configuration in d dimensions, then the framework is globally rigid (Figure 1C). If
that configuration is unique even if embedded in a higher dimensional space, then the framework
is universally rigid (Figure 1D).

A distinction can bemade between generic configurations, those for which the nodal coordinates
are algebraically independent, and nongeneric ones, which do not satisfy this condition (cf. e.g.,
Gortler et al., 2010; Connelly, 2013). As we will see in the next section, in case of a generic
configuration on n nodes, the minimum number of edges required for universal rigidity is equal
to e = dn− d(d + 1)/2+ 1, that is, e = 2n− 2 for d = 2 and e = 3n− 5 for d = 3.

Universal rigidity is strictly connected to superstability, the property of prestressed frameworks
for which they are stable independently of the constitutive material properties and level of prestress.
(Connelly, 1982; Zhang and Ohsaki, 2007; Micheletti, 2013). In particular, in the generic case,
universal rigidity and superstability are equivalent (Connelly, 1982; Gortler and Thurston, 2014).

After reviewing the relevant notions and results in rigidity theory, we provide a specific
construction to determine minimal generically universally rigid frameworks, i.e., generically
universally rigid frameworks with the minimum number of edges, for an assigned set of nodal
positions in two or three dimensions. The frameworks obtained with such a construction can be
seen as a generalization of Grünbaum polygons (Figure 2) (Grünbaum and Shephard, 1978; Roth
and Whiteley, 1981). In case of nongeneric configurations, it is possible to decrease the number of
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FIGURE 1 | Frameworks in two-dimensions belonging to different rigidity classes: flexible (A), rigid (B), globally rigid (C), and universally rigid (D).

FIGURE 2 | A Grünbaum polygon (A), and its nonconvex generalizations in two (B) and three dimensions (C). Center nodes and neighboring nodes (as defined in

Section 3.1) are depicted in black and gray, respectively.

edges further (Figure 3); however, limited theoretical results are
available for nongeneric systems, and we plan to consider this
case in a future study. Our main results (Theorems 9 and 10) are
presented in Section 3. Basic definitions and supporting results
are reviewed in Section 2.

2. BASIC RIGIDITY DEFINITIONS AND
RESULTS

Different classes of rigidity can be defined for frameworks,
and in each of them the generic and nongeneric cases
can be distinguished. Prestressed (or prestressable) systems
naturally comes into play when characterizing globally rigid and
universally rigid frameworks. In writing the present section,
we borrowed some of the notation, terminology, and examples
from the cited literature and in particular from Connelly (2013)
and Gortler et al. (2010).

2.1. Rigidity Classes
Let Ed be the d-dimensional Euclidean space and Vd the
associated vector space. A graph G = (N , E) is given by a setN of
n nodes together with a set E of e edges connecting pairs of ‘ nodes.
The edge connecting nodes i, j ∈ N is denoted by ij ∈ E . Graphs
are finite and undirected, without loops or multiple edges. A
configuration in Ed for the graph G is an assignment of a position
vector pi ∈ Vd to each node i ∈ N , so that a corresponding point
Pi ∈ Ed is determined by its position with respect to a chosen

origin O ∈ Ed. We denote by p ∈ Vnd the vector grouping all
nodal position vectors. A framework is given by a graph together
with a configuration, that is, F = (G, p) is a framework with
graph G and configuration p.

Associated to a framework is the setL(G, p) of the half-squared
edge-lengths,

L(G, p) = {λij ∈ R
+, ij ∈ E : λij =

1

2
|pi − pj|2} .

A configuration q is admissible for (G, p) if L(G, q) = L(G, p).
Two configurations p and q are congruent, and we write p ≡ q, if
|pi − pj| = |qi − qj| for every choice of i and j inN . Equivalently,
two configurations are congruent if they differ by an isometry of
Ed, i.e., a composition of translations, rotations and reflections. A
framework (G, p) is rigid if there is an ε > 0 such that any other
admissible configuration q for which |p−q| < ε is congruent to p.

The jacobian of L(G, p), which is an e-by-dn matrix, is the
rigidity matrix, R. A framework is infinitesimally rigid if the rank
of R is equal to nd − d(d + 1)/2, or equivalently, if the only
solutions to the system of equations Rṗ = 0 are rigid velocities,
i.e., nodal velocities in a rigidmotion (Figure 4). For example, the
equation corresponding to the edge ij in this system is given by

(pi − pj) · (ṗi − ṗj) = 0

which is obtained by setting equal to zero the first derivative of
λij. The solutions of Rṗ = 0 which are not rigid velocities are
calledmechanisms.
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FIGURE 3 | Examples of nongeneric minimal systems. All these frameworks have less than 2n− 2 edges and are universally rigid in two dimensions. In (A) all nodes

need to stay aligned; (B) a cable net is attached to a triangle; (C) a system which we call Snelson polygon.

FIGURE 4 | An infinitesimally rigid framework (A) and a rigid framework which

is not infinitesimally rigid (b). The horizontal nodal velocity vector shown in

(B), when all the other nodes are fixed, cause null changes in length but it is

not a rigid velocity.

A framework (G, p) is globally rigid if any admissible
configuration q is congruent to p (Figure 5). A framework
is universally rigid if it is globally rigid in all dimensions
(Figure 6). Universal rigidity implies global rigidity, which
implies infinitesimal rigidity, which implies rigidity.

2.2. Generic Rigidity
A configuration is generic if the coordinates in p are algebraically
independent over the integers, i.e., if the nodal coordinates
do not satisfy any nontrivial polynomial equation with integer
coefficients. Intuitively, if the configuration is nongeneric, then it
is special in some way. For example the framework in Figure 7A

is globally rigid, while the one in Figure 7B, where three nodes
are aligned on a diagonal, is not. Another example is given in
Figure 4, with configurations Figures 4A,B being respectively
generic and nongeneric.

A framework (G, p) is generically rigid if it is rigid and p is
generic. Rigidity is a generic property, i.e., it is a property of the
graph, not the configuration: if a framework is rigid at a generic
configuration then it is rigid at every other generic configuration.
Moreover, at generic configurations, rigidity and infinitesimal
rigidity are equivalent.

The minimum number of edges necessary for generic rigidity
are 2n− 3 in 2D and 3n− 6 in 3D. Intuitively, in 2D, we can start
with an edge connecting two nodes, then iteratively adding one
node connected to the other nodes by two noncollinear edges.

In 3D, we can start with a nondegenerate triangle (three vertices
and three edges), then iteratively adding one tripod, i.e., a node
connected to the other nodes by three noncoplanar edges. These
constructions constitute particular Henneberg sequences (Eren
et al., 2004b): sequences of operations which preserve minimal
generic rigidity.

2.3. Stresses and Tensegrities
The characterization of global rigidity has been given in the
literature in terms of stress. A stress ω is an assignment of a
real number ωij to each edge ij of the framework. A selfstress
for (G, p) is a stress satisfying at every node i the nodal
equilibrium equation

∑

j

ωij(pj − pi) = 0 ,

where the summation is extended to every node j connected to
node i by an edge. The equilibrium equations can be written in
matrix form as

Aω = 0 ,

with A the dn-by-e equilibrium matrix. Selfstresses belong to the
nullspace of the equilibrium matrix. One classic result is that
A = RT , so that the number of independent selfstresses s and
mechanismsm are related to n and e by the following rule

dn− d(d + 1)/2− e = m− s , (1)

where d(d + 1)/2 is the number of independent rigid motions in
Ed. This rule follows from the orthogonality of the fundamental
subspaces (nullspace and image of the transposed) of R and A.

A fundamental object is the stress matrix, �, a n-by-n matrix
whose entries are defined as follows:

�ij =







0 , i 6= j, ij 6∈ E

−ωij , i 6= j, ij ∈ E
∑

h ωih , i = j

where ω is a selfstress. The stress matrix is equal to the weighted
Laplacian of the graph, with weights given by the selfstress values
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FIGURE 5 | The rigid frameworks (A), in two dimensions, and (D), in three dimensions, are not globally rigid: there exist more than one non-congruent admissible

configurations, for example, (B,C) for (A), and (E) for (D).

FIGURE 6 | Globally rigid (A) and universally rigid (B) frameworks. When these

are considered in three dimensions, the framework (A) can flex out of plane, as

in (C), the one in (B) can only stay in a plane (D).

on the edges. Notice that the weights can be either positive or
negative, so that classic results on positively-weighted Laplacians
do not apply.

A useful characterization has been given as follows (Connelly,
1982, 2013). A framework in Ed with the affine span of p1, . . . , pn
being all Ed and a nonzero selfstress is superstable if the following
conditions hold:

1. � is positive semidefinite;
2. � has rank n− d − 1;
3. there are no affine admissible motions.

Theorem 1. Connelly (1982), see also Connelly (2013) A
superstable framework is universally rigid.

FIGURE 7 | globally rigid framework (A), which loses this property in the

nongeneric configuration (B), where three nodes are aligned on a diagonal. For

the latter framework the configuration (C) is also possible.

FIGURE 8 | This framework for d = 3 satisfies conditions (1) and (2), but not

condition (3) of Theorem 1, there is an affine motion changing the angle

between the highlighted planes, preserving all bar lengths.

Condition (1) implies that if there is another admissible
configuration, then it has the same selfstress; condition (2) then
implies that this other configuration is an affine image of the
original one, and condition (3) implies that the affine image is
actually congruent to the original configuration (cf. Figure 8).
A particular class of superstable frameworks is that of cablenets,
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i.e., externally anchored frameworks where each edge has positive
stress (Figure 9A).

Now we turn to generic configurations. A simplex in Ed

is a framework on the complete graph on d + 1 nodes, e.g.,
triangles in E2 or tetrahedra in E3. Simplices (and all frameworks
on complete graphs) are universally rigid by definition, since
admissible configurations must be congruent to each other. Every
generic globally rigid framework in Ed which is not a simplex
(i.e., it has at least d + 2 nodes) admits at least one independent
selfstress. This follows from the next theorem. A framework is
redundantly rigid if it is rigid after the removal of an edge. A
graph is c-connected if at least c nodes have to be removed from
the graph to disconnect it.

Theorem 2. Hendrickson (1992). If a framework with n ≥ d + 2
is generically globally rigid in Ed then it is redundantly rigid and
(d + 1)-connected.

For d = 2 the theorem holds with an “if and only if ”
condition (Berg and Jordan, 2003, cf Connelly, 2013). Since
generic redundant rigidity implies that there exist at least a
selfstress, s ≥ 0 and that there are no mechanisms, m = 0, it

FIGURE 9 | A cablenet (A) can be anchored to a universally rigid framework

(B) to obtain another universally rigid framework (C).

follows from (1) that in a generically globally rigid framework the
number of edges is equal to or higher than

e = dn− d(d + 1)/2+ 1 , (2)

e.g., 2n− 2 in 2D or 3n− 5 in 3D.
A complete characterization of generic global rigidity has been

given in the following theorem.

Theorem 3. A framework with n ≥ d + 2 is generically globally
rigid in Ed if and only if there is a nonzero selfstress whose stress
matrix has rank n− d − 1.

The “if” part is due to Connelly (1982), the “only if ” part to
Gortler et al. (2010).

The next theorem provide the converse of Theorem 1 in the
generic case.

Theorem 4. Gortler and Thurston (2014). A universally rigid
framework (G, p) with p generic and n ≥ d + 2 is superstable.

It is worth noticing that while global rigidity is a generic
property, universal rigidity is not: if framework is universally
rigid in a certain generic configuration, it can lose this property
in a different generic configuration (compare cases (c) and (d)
in Figure 1).

A less strict condition consists in requiring a configuration to
be general. A configuration in Ed is general if no d + 1 nodes
are affinely dependent, e.g., there are no three collinear nodes in
d = 2, or there are no three collinear nodes and no four coplanar
nodes in d = 3. In this case we have the following result.

Theorem 5. Alfakih and Ye (2013). A framework (G, p) with
p general and n ≥ d + 2 is universally rigid if there is a nonzero
selfstress whose stress matrix is positive semi-definite with rank
n− d − 1.

It has been shown in Alfakih et al. (2013) that the converse
of this theorem holds for (d + 1)-lateration graphs, i.e., graphs
obtained from a simplex by applying a sequence of (d + 1)-
valent node additions, i.e., the addition of a node connected by
d + 1 edges to the other nodes. An analogous result regarding
global rigidity has been obtained previously in Anderson et al.

FIGURE 10 | Polygons satisfying Theorem 6: (A) a Grünbaum polygon; (B) a Cauchy polygon; (C) a Snelson polygon. Thin and thick lines corresponds respectively to

cables and struts.
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FIGURE 11 | A centrally symmetric framework with the shape of a pentagonal

antiprism (with highlighted bases), see Theorem 7.

(2006). The number of edges of frameworks obtained in
this way is

e = (d + 1)n− (d + 2)(d + 1)/2 ,

that is e = 3n− 6 for d = 2 and e = 4n− 10 for d = 3.
For n large, these values of e are 50% and 33% higher than the

minimum value given by (2), respectively for d = 2 and d = 3.
By considering frameworks with a stress, the notion of

tensegrity framework naturally comes into play. Indeed, many
results have been first obtained for tensegrity frameworks, and
then applied to the particular case of bar-frameworks.

A tensegrity framework is a framework where each edge
can be labeled as a bar, a cable, or a strut: bars cannot
change length, cables cannot increase in length, and struts
cannot decrease in length. It turns out that a tensegrity
framework is globally/universally rigid if the corresponding
bar-framework is and the stress is proper, that is, cables
have positive stress, and struts negative (Connelly, 2013).
In other words, there is no difference between a bar-
framework with a stress satisfying the theorems above and
a tensegrity framework, with same graph and configuration,
whose edges are labeled accordingly: cables if the stress
is positive, struts if the stress is negative. Bars can be
placed anywhere.

We conclude this section by reporting three results
about known classes of frameworks. The first one is about
convex polygons.

Theorem 6. (Tensegrity polygons, Connelly, 1982). A tensegrity
framework with the shape of a convex polygon, with cables on
the outside, struts inside, and a proper a selfstress, is universally
rigid (Figure 10).

In the next section we will focus on the polygons
like those in Figures 2A, 10A, first described by
Grünbaum and Shephard (1978).

The second result is about three-dimensional frameworks.

FIGURE 12 | Construction of a nonconvex Grünbaum polygon starting from a

set of points in 2D: (A) three nodes corresponding to three consecutive

vertices on the boundary of the convex hull of the set, the middle node is the

center (in black), the other two nodes are its neighbors (in gray); (B) all the

nodes are connected to the center by edges; (C) edges added to form

adjacent triangles, so as to obtain a fan; (D) one of the admissible

configurations of this fan, obtained by reversing the triangle shown (in light

gray); (E) the completely unfolded configuration of the fan maximize the angle

shown; (F) universal rigidity is obtained by adding the last edge between the

two neighbors of the center.

Theorem 7. (Central symmetric tensegrity polyhedra, Lovász,
2001; Bezdek and Connelly, 2006). Every tensegrity framework
with the shape of a centrally symmetric polyhedron, with cables
outside, bars connecting diametrically opposite pairs of vertices,
and a proper selfstress, is universally rigid (Figure 11).

The third result is about combining different
frameworks together.

Theorem 8. (Attachments, Ratmanski, 2010). Given two
universally rigid frameworks in general position, it is possible to
combine them into a universally rigid assembly if they have d + 1
nodes in common.

Analogous results for globally rigid frameworks are presented
in Eren et al. (2004a) and Connelly (2011).
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FIGURE 13 | Two phases, (A) and (B), of the Construction of a three-dimensional Grünbaum framework, and the corresponding projection onto a nonconvex

Grünbaum polygon (see description in Section 3.2).

3. CONSTRUCTION OF MINIMAL GENERIC
UNIVERSALLY RIGID FRAMEWORKS

In this section we show that it is always possible to construct
frameworks on n given nodes in E2 or E3 with the minimum
number of edges (2), irrespective of the generic/nongeneric
property of the configuration. Such frameworks belong
to a new class which generalizes that of Grünbaum
polygons (Grünbaum and Shephard, 1978).

3.1. Generalized Grünbaum Polygons
Grünbaum polygons are frameworks obtained by placing nodes
and edges at the vertices and the sides of a convex polygon, then
by choosing one node, the center node (in black in Figure 2A),
and by connecting all the other nodes to it with an edge,
except the two neighboring nodes (in gray in Figure 2A). The
construction is completed by adding one edge connecting the two
neighboring nodes.

We provide here a similar construction to assign (2n−2) edges
to a given a set of nodes in E2 in order to obtain a universally rigid
framework. We will call the resulting framework a nonconvex
Grünbaum polygon (Figure 12).

First, the convex hull of the nodes is constructed and
three consecutive vertices on its boundary coinciding with
three nodes are chosen (Figure 12A), the middle one becomes
the center to which all the other nodes are connected
(Figure 12B). Then, additional edges are added to form a
contiguous sequence of triangles sharing the center as a vertex
(Figure 12C), plus the last edge connecting the two neighboring
nodes (Figure 12F).

Theorem 9. Every nonconvex Grünbaum polygon is
universally rigid.

Proof. Up to the addition of the last edge, the framework can
be viewed as forming a kind of fan shape which “unfold” from the
center node (Figure 12C). This incomplete framework admits a
number of configurations equal to 2f , where f is the number
of internal edges or folds of the fan (Figure 12D). The distance
between the two neighboring nodes will reach a maximum only
when the fan is completely unfolded. It follows that by adding
the last edge between the two neighboring nodes, the unfolded
configuration is unique.

By embedding this framework in a higher dimensional
Euclidean space, the situation does not change. Since each
triangle of a fan is universally rigid by itself and it can only rotate
about a fold, relative to its neighboring triangles, the triangle
inequality ensure that the distance between the two neighboring
nodes has a global maximum when the fan is flat, therefore the
Grümbaum polygon is universally rigid. 2

Notice that this proof is valid for both convex and nonconvex
Grünbaum polygons. Notice also that the construction works
even if the center is aligned with its neighbors, or if two or more
fold are collinear. The result holds even if the configuration is
nongeneric, the main requirement being that the center and its
neighbors are on the boundary of the convex hull.

3.2. Three-Dimensional Grünbaum
Frameworks
In three dimensions we can obtain a perfectly analogous result
for assigning (3n− 5) edges red to a given set of nodes in E3. We
construct the convex hull of this set. There will be at least four
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vertices of the hull forming two adjacent triangles, sharing one
edge of the convex hull. The shared edge is the central edge of the
framework, the two nodes on this edge are the central nodes, while

FIGURE 14 | (Top) Two universally rigid frameworks obtained from the same

randomly generated nodal positions in E2. The one on the top right is

composed of two fans. Thin and thick edges correspond respectively to

positive and negative stresses. (Bottom) Two constructions for the same

randomly generated nodal positions in E3. The one on the bottom right is

composed by two fans. Black circles locate the central edges, gray circles

locate the neighboring nodes. Thin and thick edges correspond respectively to

positive and negative stresses.

the other two are the neighboring nodes. Now, we can add edges
connecting each of the neighboring nodes to the central nodes.
We do the same with the remaining nodes, by connecting them
to the central nodes. In this way, we obtain a set of triangles in
space, all sharing one edge (Figure 13A). Then, for each couple
of neighboring triangles, we add an edge between the nodes so as
to form a tetrahedron. Finally, the last edge of this construction
is added between the two neighboring nodes (Figure 13B).

An easy way of visualizing this framework is to project it
along the direction of the central edge onto a plane, resulting in a
fan-like framework, a nonconvex Grünbaum polygon. Similarly
to what we have done before, we can consider the incomplete
framework obtained by removing the last edge and argue that this
admits a number of configuration equal to 2f , with f defined for
the projected framework as in the two-dimensional case. Among
all these configurations, the one which is completely “unfolded”
gives the maximum distance between the neighboring nodes, still
using this term in analogy with the two-dimensional case. Once
we add the last edge in this configuration, we obtain a globally
rigid structure, which, by the triangle inequality is also universally
rigid. We call frameworks obtained in this way 3D Grünbaum
framework and state the following theorem.

Theorem 10. Every 3D Grünbaum framework is
universally rigid.

Notice that we can view these kind of frameworks, both in 2D
and in 3D, as obtained by anchoring the nodes to a simplex, in
the same way as we can anchor a cable-net to a (universally) rigid
structure (Figure 9).

Notice also that we can find other generalized Grünbaum
frameworks. For example, the one shown in Figure 14 (top
right) has two centers, corresponding to two fans with
one side in common. It is easy to see that, in order

FIGURE 15 | (Top) A modular universally rigid framework in E2 obtained by repetition of a universally rigid module. (Bottom) Construction of a modular universally

rigid framework in E3 for randomly generated nodal positions. The framework is composed by three universally rigid subframeworks (depicted in different color), each

sharing four nodes with the adjacent one.
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for multiple-fans frameworks to be universally rigid the
centers should be on opposite sides of the edge connecting
the neighbors. Analogous constructions exist also in three
dimensions (Figure 14, bottom right).

In Figure 15 we present two examples of application of
Theorems 9, 10 in combination with Theorem 8. These examples
shows how to avoid the occurrence of bars of excessive length
by considering modular frameworks. In Figure 15 (top), a
universally rigid framework in E2 is obtained by repetition of
a universally rigid module, with adjacent modules having three
nodes in common. In Figure 15 (bottom), a universally rigid
framework on randomly generated nodal positions in E3 is
composed by three universally rigid subframeworks, each sharing
four nodes with the adjacent one. Space-filling universally rigid
assemblies can be obtained in analogous fashion.

4. CONCLUDING REMARKS

After reviewing the main concepts and results in rigidity theory,
we have given a construction for generic universally rigid
frameworks in two and three dimensions with the minimum
number of edges, with a significant improvement over existing
methods. All together, these notions provide a set of useful
tools that engineers can use to design superstable structural
and mechanical systems, with guaranteed strength and stiffness
properties. Additional applications include sensor networks,
multi-agent systems, and protein conformation analysis. Our

constructions relies on the computation of the convex hull of
the set of nodes, a relatively quick operation, even if performed
dynamically, i.e., if nodes are sequentially added and removed
(see Hert and Schirra, 2018). For nongeneric configurations the
number of edges can be further reduced, with the limitation
that any change of configuration must happen on a lower-
dimensional nongeneric manifold. The problem of constructing
minimal nongeneric universally rigid frameworks will be the
subject of future work.
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We analyse the propagation of airborne pressure waves through a three-dimensional

array of rigid coated spheres (shells) in air. When we dig a channel terminated by an

air cavity in each rigid shell we observe the appearance of a low frequency stop band.

Each shell with a hole acts as a Helmholtz resonator supporting a low frequency localized

mode. Isofrequency surfaces and contours reveal the strong anisotropy of the periodic

structure at the edge of the stop band. A simple mechanical model of springs andmasses

allows for asymptotic estimates of the low frequency stop band for elongated channels.

Increasing the radius of an air channel shifts up the position, and enlarges, the low

frequency stop band. Adding holes in shells also shifts up the frequency of the stop

band, and embedded shells lead to additional stop bands. Localization effect induced

by a large defect in a periodic macrocell of Helmholtz resonators is finally investigated.

Keywords: finite elements, bloch waves, acoustic metamaterials, Helmholtz resonators, multiscale asymptotic,

stop band, localized mode

1. INTRODUCTION: ACOUSTIC METAMATERIALS

In the tracks of photonic crystals, phononic crystals (Dowling, 2008) have provided a fillip
for research in acoustic stop band structures (Kushwaha et al., 1993; Kafesaki and Economou,
1999) within which light or sound is prohibited to propagate due to multiple scattering between
periodically spaced inclusions. In 2000, Liu et al. provided the first numerical and experimental
evidence of frequency dispersive elastic parameters of locally resonant structures for elastic waves
in three-dimensional arrays of thin coated spheres (Liu et al., 2000): The effective parameters were
shown to turn negative where low frequency stop bands occur. This important work paved the way
toward acoustic analogs of electromagnetic meta-materials, such as fluid-solid composites for the
control of pressure waves (Auriault and Bonnet, 1985; Auriault, 1994; Liu et al., 2000; Goffaux et al.,
2002; Ho et al., 2003; Elford et al., 2004; Hirsekorn et al., 2004; Li and Chan, 2004; Movchan and
Guenneau, 2004; Fang et al., 2006; Mei et al., 2006; Guenneau et al., 2007b; Hou et al., 2007; Wang
et al., 2008; Chalmers et al., 2009; Norris, 2009; Lemoult et al., 2011; Auriault and Boutin, 2012;
Boutin, 2013; Boutin and Becot, 2015). Using asymptotic methods for fields in multi-structures
(Kozlov et al., 1999; Movchan et al., 2002), it has been proposed to use arrays of cylinders with a
split ring cross section as building blocks for two-dimensional localized resonant acoustic structures
displaying negative refraction (Movchan and Guenneau, 2004; Guenneau et al., 2007a), based on
analogies with split ring resonators (SRRs), introduced by Pendry in the context of electromagnetic
waves almost 20 years ago (Pendry et al., 1999). Magnetic activity of metamaterials occurs near
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resonances of SRRs, which was essential for instance in the
design of the first electromagnetic cloak (Schurig et al., 2006),
and similar designs have been proposed for acoustic cloaks
(Craster et al., 2013).

In a series of articles, the research group of Auriault developed
asymptotic models of locally resonant structures (Auriault and
Bonnet, 1985; Auriault, 1994; Auriault and Boutin, 2012), some
of which predate the birth of acoustic metamaterials with the
seminal work of the research group of Ping Shen (Liu et al.,
2000). Low frequency stop bands in arrays of 2D Helmholtz
resonators with elongated necks have been studied in (Movchan
and Guenneau, 2004; Guenneau et al., 2007a) as mentioned
above, with further predictions and measurements of sound
transmission in elastic shells in air in Krynkin et al. (2010).
However, 3D Helmholtz resonators with elongated neck position
inside the cavity and periodically distributed in a fluid have been
introduced in (Boutin, 2013; Boutin and Becot, 2015). Therein,
Boutin and coauthors have shown that the macroscopic fields
(pressure P and velocityV) satisfy the following equation of mass
conservation and generalized Darcy Law:

∇ · V =
iω8

K
P +

Q

| Y |
, V =

−T

η
∇P (1)

where K is the effective bulk modulus (including thermal effects)
of the matrix, ω the resonant frequency, i2 = −1, 8 and T

are the porosity and dynamic permeability tensor (including
viscosity effects) when considering the resonators as perfectly
rigid spheres, η is the viscosity of the fluid-matrix, | Y | is the
volume of the 3D unit cell Y and Q is the flux emitted by the
resonator into the fluid matrix in response to the pressure acting
on it. The case of the Helmholtz resonator with a single elongated
neck has been not only derived, but also experimentally tested, in
Boutin (2013) and Boutin and Becot (2015). And the fluid need
not be inviscid.

There is a vast amount of literature on the role of the neck
in such Helmholtz resonators (Groeneweg, 1969; Alster, 1972;
Orris et al., 1974; Gaunaurd and Uberall, 1982; Lim et al.,
1990; Hinders et al., 1995; Selamet and Dickey, 1995; Mead,
1996; Aberg et al., 1997; Selamet et al., 1997; Chen et al., 1998;
Baird et al., 1999; Seo et al., 2005; Ivansson, 2006; Duan et al.,
2007; Zhao et al., 2007; Zhou et al., 2010; Wang and Mak,
2012; Li et al., 2013). Recently, periodic structures consisting
of SRRs have been revisited thanks to refined homogenization
techniques, which allow to rigorously link the geometrical
parameters to frequency dependent effective parameters (Mercier
et al., 2017). Analogs of SRRs have been proposed for in-plane
elastic waves (Guenneau et al., 2007b), that allows for bending
and rotational vibrations having lower resonant frequencies than
compressional vibrations, and thus make good candidates for
building blocks of mechanical metamaterials, which might make
possible some mechanical cloak, see Kadic et al. (2013) for a
review of metamaterials beyond electromagnetics. Milton, Briane
and Willis provided a thorough mathematical frame for cloaking
for certain types of elastodynamic waves in structural mechanics,
in the framework of modified Willis equations (Milton et al.,
2006). On the other hand, coupled in-plane pressure and shear

waves were numerically shown to be detoured around a finite
size obstacle by a specially designed cloak with an anisotropic
heterogeneous elasticity tensor without the minor symmetries
(Brun et al., 2009) without resorting toWillis media. Nonetheless,
SRRs like in Guenneau et al. (2007b) make an interesting
candidate to achieve such Cosserat-type metamaterials. Actually,
a similar type of resonant elastic structure already led to a
negatively refracting medium (Zhu et al., 2014), where the elastic
chirality (which is a hallmark of a Cosserat medium) was put
forward in conclusive experiments. The need for mechanical
metamaterials with elasticity tensor without the minor symmetry
motivates the extension of homgenization results of Mercier
et al. (2017) to the Navier system. Importantly, the acoustic wave
equation is invariant under coordinate changes (Norris, 2008,
2009), so acoustic metamaterials via geometric transform can
thus achieve enhanced control of pressure waves via a simpler
route. A simple example of a periodic system is a periodic
lattice, whose dynamic response is well defined by Green’s
functions. Dynamic Green’s functions in periodic lattices and
their asymptotics were analyzed in Movchan and Slepyan (2014)
and Vanel et al. (2016). Localization of electromagnetic waves
within a two-dimensional grating of spheres embedded in the
three-dimensional space and the high-frequency homogenisation
approximations were studied in Maling et al. (2017).

A downfall of SRRs is that they do not allow for doubly
negative acoustic parameters, so one would need a second type of
inclusion within the periodic cell to achieve a goal of a negative
refractive index in order to design a super lens like Pendry
proposed in his seminal paper (Pendry, 2000). In 2004, Li and
Chan proposed a design of negative acoustic metamaterial based
on a multiple scattering theory approach (Li and Chan, 2004),
which has been revisited recently by applied mathematicians
using homogenization theory for bubbly fluids (Ammari et al.,
2017a,b) with hybridization of Minnaert resonances (Minnaert,
1933). This is somewhat related to homogenization of high-
contrast periodic structures (Figotin and Kuchment, 1998).
Potential applications of bubbly media in super lensing and total
absorption have been experimentally shown (Lanoy et al., 2015;
Leroy et al., 2015). Such soft metamaterials (Brunet et al., 2015)
are currently investigated by many groupings in the world, but
they might not always be compatible with industrial processes.

Although SRRs might not achieve double negative acoustic
parameters, they seem to be quite straightforward to engineer
for ultrasonic waves. Fang et al. experimentally demonstrated
a dynamic effective negative stiffness in a chain of air filled
Helmholtz’s resonators for ultrasonic waves (Fang et al., 2006).
Moreover, it has been also shown using asymptotic techniques
that surface water waves propagating within an array of
fluid filled SRRs display a negative effective density (Farhat
et al., 2009). A focussing effect through a finite array of
such resonators was numerically achieved, with a resolution
of a third of the wavelength. The negative effective density,
reinterpreted as a negative effective gravity, has been further
confirmed theoretically and experimentally (Hu et al., 2011,
2017). Fluid filled SRRs have been experimentally tested in a
17 meter long water channel for filtering effects with a dike
using grooved vertical cylinders (Dupont et al., 2017). Similar
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FIGURE 1 | Three-dimensionnal phononic crystal, periodic cell Y with a rigid sphere � in physical space and irreducible Brillouin zone ŴXMU of the periodic cell Y∗ in

reciprocal space with the three components of the Floquet-Bloch vector k = (kx , ky , kz ).

filtering effects have been experimentally demonstrated for sound
waves interacting with a doubly periodic array of Helmholtz’s
resonators shaped as soda cans (Lemoult et al., 2011). However,
we note that in that case, there is no neck, just a hole, as soda
cans are thin shells. In the present paper, we would like to revisit
the concepts of SRRs in the case of pressure waves propagating
in a three-dimensional array of 3D Helmholtz resonators with
elongated necks. In order to simplify the mathematical setup,
we shall consider airborne acoustic waves, in which case rigid
(Neumann type) boundary conditions can be considered on
resonant elements. Compared to problems of linear elasticity, the
present study does not deal with dynamic degeneracies at low
frequencies, which may occur for certain type of geometries of
elastic systems, resulting in a group of very small eigenvalues
being separated from the remaining spectrum.

2. MOTIVATION: SPECTRAL PROPERTIES
OF A PERIODIC ARRAY OF RIGID
SPHERES

Let us start with an illustrative numerical result for a spectral
problem for the Helmholtz operator within a periodic cubic
array of rigid spheres: the unknown is a pressure wave field,

here sound in air (wave speed c = 340 m.s−1). Neumann
boundary conditions are prescribed on the contour of each defect
and standard Floquet-Bloch conditions are set on an elementary
cell of the periodic structure. The finite element formulation
was implemented in the COMSOL Multiphysics Package to
compute the eigenvalues and to generate the corresponding
eigenfields. We present in Figure 1 the periodic structure we
want to study and in Figure 2 the corresponding dispersion
diagram for eigenfrequencies ω (in unit of rad.s−1) as a function
of the Floquet-Bloch parameter k (in unit of m−1): along the
horizontal axis we have the values of modulus of k, where k
stands for the position vector of a point on the contour ŴXMU
within the irreducible Brillouin zone. We note the absence of
bandgaps with the presence of rigid spheres. This lack of intervals
of forbidden frequencies motivates the present study: how can
one create a stop band without further increasing the size of the
rigid spheres?

3. SETUP OF THE SPECTRAL PROBLEM:
THE CONTINUUM MODEL

Let us first recall the finite element set-up. We consider the
Helmholtz equation:
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FIGURE 2 | Dispersion diagram for a periodic array (pitch d = 1 m) of

spherical rigid inclusions (R = 0.4 m) representing the frequency ω (rad.s−1) of

pressure waves in air, vs. the wavenumber |k| (m−1), projection of the Bloch

vector k along the edges of ŴXMU.

∇ .

(

1

ρ(x, y, z)
∇p(x, y, z)

)

+
ω2

K(x, y, z)
p(x, y, z) = 0 (2)

where ρ (kg.m−3), K (Pa) are the density and bulk modulus of
the medium and ω (rad.s−1) is the angular wave frequency of the
pressure field p.

Due to the periodicity of the lattice, we look for solutions of
(2) in terms of Floquet-Bloch waves (Floquet, 1883; Bloch, 1928;
Bensoussan et al., 1978; Brillouin, 1978; Wilcox, 1978; Kittel,
1986). So, for a cubic array of unit cells Y ,

p(x+ 1, y+ 1, z + 1) = p(x, y, z)ei(kx+ky+kz) (3)

where kx, ky and kz are components of the Bloch vector k within
the Brillouin zone Y∗ = [0,π]3 (Joannopoulos et al., 1995;
Gazalet et al., 2013).

The implementation in the finite element package is fairly
straightforward (Hladky-Hennion et al., 1991; Nicolet et al.,
2004). We first multiply equation (2) by a smooth test function
v and using integration by parts, we obtain the so-called weak
form of the time-harmonic acoustic equation

−
∫

Y
ρ−1∇p·∇vdxdydz+

∫

∂Y
ρ−1 ∂p

∂n
vds+ω2

∫

Y
K−1pvdxdydz = 0

(4)

where ∂f /∂n = ∇f · n with n the unit outward normal to
the boundary ∂Y of Y , and ds the infinitesimal surface element
on ∂Y .

We note that the weak formulation holds for heterogeneous
fluids as ρ and K can be spatially varying. In particular, this
model works for domains such as a homogeneous fluid filled
with a periodic array of rigid obstacles. For the finite element

implementation, (4) is discretised using test functions taking
values on nodes of a tetrahedral mesh of the basic cell (first
order tetrahedral elements), see e.g., (Nicolet et al., 2004) for
further details. From (4), we note that setting rigid boundary
conditions on an inclusion amounts to assuming Neumann
(natural) homogeneous data, whereas transmission conditions at
the interface between various fluid phases mean that the quantity
ρ−1∂p/∂n is preserved across the interface. We note that in the
case of airborne pressure waves, the contrast in density between
air and inclusions made of metal or even polymer is sufficiently
large to assume Neumann data, but this simplification does not
hold if we replace air by water.

Let us now consider a periodic array of defects �1, ...,�N

embedded in an elementary cell Y =]0; 1[3. Let p(x, y, z)
satisfy the Helmholtz equation in Y \

⋃N
j=1 �j. We also assume

that p satisfies Neumann boundary conditions on the contours
of defects, where n denotes the unit outward normal to the
boundary ∂�j of a defect �j:

∂p

∂n

∣

∣

∣

∣

∂�j

= 0 , j = 1, ...,N (5)

We would like to consider a particular case when the defects
�1, ...,�N are spherical shells with thin air channels connecting
an air-filled interior cavity to the exterior surrounding air. These
defects can be modeled as multistructures (Kozlov et al., 1999) in
the following way,

�(N) =
{

a(N) <

√

x2 + y2 + z2 < b(N)

}

\
N
⋃

j= 1

5
(j)

ε(N)
(6)

where a(N) and b(N) are given constants and 5
(j)

ε(N)
is the

thin channel.

4. ASYMPTOTIC APPROXIMATION: A
DISCRETE SPRING-MASS MODEL

In this section, we derive an asymptotic approximation of the

field in thin channels 5
(j)
ε , see Figure 3,

5
(j)
ε =

{

(x, y, z) ∈ R3 : 0 < x < lj,
√

y(t)2 + z(t)2 < εhj(t), (0 ≤ t ≤ 2π)

}

(7)

where lj is the length of the jth bridge, εhj(t) the radius of its
varying cross-sectionDε (parametrized by a positive real t). Here,
ε is a small positive non-dimensionnal parameter. To derive
the asymptotic expansions, we introduce the scaled variables
ξ = (y/ε, z/ε).

Without loss of generality, and for the sake of simplicity, we
drop the superscript j. In 5ε , the time-harmonic wave equation
takes the rescaled form
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FIGURE 3 | Geometry of the inclusions and the Helmholtz oscillator consisting

of one spring connected to a mass at one end and fixed at the other end.

{

1

ρ

(

1

ε2
1ξ +

∂2

∂x2

)

+
ω2

K

}

p = 0 , (8)

with the Neumann boundary conditions

∂p

∂n

∣

∣

∣

∣

∂Dξ

= 0 (9)

The field p is approximated in the form

p ∼ p(0)(x, y, z)+ ε2p(1)(x, y, z) (10)

To leading order, we obtain

{

1ξp
(0) = 0 on Dξ

∇ξp
(0) = 0 on ∂Dξ

(11)

Hence, p(0) = p(0)(x) (it is ξ − independent). Assuming that p(0)

is given, we derive that the function p(1) satisfies the following
model problem on the scaled cross-section of 5ε







1ξp
(1) = −

1

ρ

∂2p(0)

∂x2
+

ω2

K
p(1) in Dξ

∇ξp
(1) · n = 0 on ∂Dξ

(12)

The condition of solvability for the problem has the form:

1

ρ

d2p(0)

dx2
+

ω2

K
p(0) = 0 , 0 < x < lj (13)

Hence, we have shown that to the leading order we can
approximate the field p in the thin channel5ε by the function p

(0)

which satisfies the Helmholtz’s equation in one-space dimension.
We now assume that the field is periodic over the cell since
it is localized. This shows that the average of the eigenfield
over the macro-cell vanishes. Indeed, let χ1 denote the value
of the field in the large body 6 of the multi-structure �

and let χ2 (which we normalize to 1) denote the value of
the field within the complementary area of the macro-cell

Y \ � excluding the thin channels. Taking v = 1 in (4), we
deduce that

ω2

∫

Y
ρpdxdydz = −

∫

∂Y∪∂�

K
∂p

∂n
dS = 0 (14)

This shows that the average of the field p over Y vanishes,
hence by neglecting the small volume of the thin channels,
we obtain

χ1meas6 + χ2measY\� = O(ε) (15)

where meas6 and measY\� denote, respectively the volumes of
6 and Y \ �.

We now consider two cases. The first one is the study
of an array of simple spherical shells with either one or six
thin channels, and the other one is the study of an array of
double spherical shells with one thin channel in each shell. Since
we have q thin channels, we have q separate eigensolutions
Vj, (j = 1, ..., q), corresponding to the vibrations of thin

domains 5
(j)
ε

ρ−1V ′′
j (x)+ K−1ω2Vj(x) = 0 , 0 < x < lj , (16)

Vj(0) = χ2 = −χ1
meas(4)

meas(Y \ �)
. (17)

We note that Vj(0) is equal to a non-zero constant and also
that Vj(lj) = χ1. Next, we need to take into account that some
boundary layers occur at the end regions of thin ligaments. These
boundary layers are characterized by exponential decay when the
boundary conditions for the functionsV0 (the leading term in the
asymptotic expansion of the thin bridge solutions) are chosen in a

specific way. In our case, integrating (2) over6∪5
(1)
ε ∪· · ·∪5

(q)
ε

and applying the divergence (or Gauss) theorem, we obtain to
order O(ε)

K−1IjV
′
j (lj) = Mjω

2Vj(lj) , (18)

where

Ij =
∫ 2π

0
εhj(t) dt . (19)

All the channels are connected to 4, hence, V1(l1) = ... =
Vq(lq) = V . We note that the boundary layer condition (18) can
be interpreted as Newton’s second law.

The solution of the problem (16)−(18) (that one can interpret
in terms of a spring-mass model like in Figure 3) has the form

Vj(x) = −
χ2[cos((ω/c)lj)− 1]

sin((ω/c)lj)
sin

(ω

c
x
)

+ χ2 cos
(ω

c
x
)

(20)

where c =
√
K/ρ and the frequency ω is given as the solution of

the following equation:

n
∑

j=1

(

Ij cot

(

ωlj

c

))

=
mjc

K
ω (21)
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where we invoked (18). Looking at a first low frequency, we
deduce an explicit asymptotic approximation

ω ∼

√

√

√

√

n
∑

j=1

(

Ij

lj

)

√

K

M

(

1+
meas(4)

meas(Y \ �)

)

(22)

This estimate actually holds for the frequency ω2 of the upper
edge of the phononic band gap. We note that if we take V(0) =
0 instead of V(0) = meas(4)/meas(Y \ �), we estimate the
frequency of the lower-edge of the phononic band gap. We also
notice that the boundary layer condition (18) is only valid at
order 0(ε), so it needs to be refined if one wants to improve the
frequency estimate in (22).

4.1. Eigenfrequency Estimate in the Case
of a Single Spherical Shell With one or six
Thin Channels
We report in Figures 4, 5 finite element computations for a
periodic cell of sidelength d = 1 m with a simple spherical shell
with one thin channel. We then proceed with the same shell
with six thin channels. The geometry of the elementary cell and
associated spring-mass model are given in Figure 6 and finite
element computations are shown in Figures 7, 8. The interior
and exterior radii of the shell are respectively 0.3 and 0.4 m,
the thin channels have the same length 0.1m and radii 0.01 m.
Therefore, the frequency estimates are (in rad.s−1):

ω1 ∼ 52.1107 , ω2 ∼ 54.0796 (23)

for one thin channel, which are in good agreement with the finite
element values

ω∗
1 = 51.4250 , ω∗

2 = 55.2638 (24)

FIGURE 4 | Dispersion diagram for a periodic array (pitch d = 1m) of spherical

rigid shells (inner radius 0.3 m and outer radius 0.4 m) with one thin channel

(length 0.1 m and radius 0.01 m) representing the frequency ω (rad.s−1) of

pressure waves in air vs. the wavenumber k = |k| (m−1), projection of the

Bloch vector k along the edges of the irreducible Brillouin zone ŴXMU shown

in Figure 1. We note the appearance of a frequency stop band for

ω ∈ [51.4250, 55.2638] rad.s−1.

for one thin channel, and

ω1 ∼ 127.6447 , ω2 ∼ 132.4676 (25)

for six thin channels, which are in good agreement with the finite
element values

ω∗
1 = 125.6586 , ω∗

2 = 134.8155 (26)

for six thin channels.
This demonstrates that the discrete model provides accurate

estimates for the lower and upper edges of the ultra-low
frequency stop band. This is therefore a useful tool which can
be used in the design of acoustic metamaterials. Importantly,
we note that the spring-mass counterpart of the shell with 6
holes, is like in Figure 6, which corresponds to an LC electrical
circuit with one capacitance C and six inductances L in series
corresponding to the mass and springs, respectively, see e.g.,
Guenneau et al. (2007a) for an analysis of two-dimensional
acoustic metamaterials.

4.2. Dependence of low Frequency Stop
Band on Radius of Thin Channel
Before we move to more complex geometries, we would like
to investigate the case of Helmholtz resonators with thicker
channels, that would prevent viscous effects for pressure waves
entering the thin channels in manufactured prototypes. We
note that there is an obvious limitation of the asymptotic
model. Indeed, the accuracy of the eigenfrequency estimate relies
heavily on the smallness of the parameter ǫ, which essentially
requires elongated channels (in other terms ligaments or necks).
We have checked the lack of robustness of the asymptotic
estimates with respect to the elongation of channels, when
we changed the radius of the thin channel for a Helmholtz
resonator with a single channel like in Figure 3. We therefore
focus on finite element results which are shown in Table 1,
and one can see that although the low frequency stop band
is preserved for increasing values of the radius, its position is
shifted up and it is enlarged. These results are good news for
forthcoming experiments.

4.3. Eigenfrequency Estimate in the Case
of a Double Spherical Shell With One Thin
Channel
Let us now consider the case of and LC circuit withmore than one
capacitance. The simplest model of interest is that of an LC circuit
with two capacitances and two inductors. This corresponds to a
mechanical model like in Figure 10.

In the numerical example we now have ε2h22 = 3.14×10−4m2,
ε2h21 = 7.85 × 10−5m2, l2 = 0.1m, l1 = 0.05m, and the masses
(in kilogram)

m1 = ρV1 =
4000

3
πr31

m2 = ρV2 =
4000

3
π

(

r31 + (b32 − a32)
)

+ 103ε2h21l1 (27)
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FIGURE 5 | The eigenfunction corresponding to the eigenfrequency ω∗
1 = 51.4250 rad.s−1 for one thin channel. Blue color corresponds to nearly vanishing amplitude

of the eigenmode u, while red color corresponds to it maximum value. The pressure field p is constant inside the inner cavity and outside the shell, but it varies rapidly

inside the thin channel: it is a localized eigenmode responsible for the stop band in Figure 4, which is well approximated by a spring mass model.

FIGURE 6 | Geometry of the inclusions and the Helmholtz oscillator consisting of six springs connected to a mass at one end and fixed at the other end.
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FIGURE 7 | Dispersion diagram for a periodic array (pitch d = 1 m) of

spherical rigid shells (inner radius R = 0.3 m and outer radius R = 0.4 m) with

six thin channels (length 0.1 m and radius 0.01m) representing the frequency ω

(rad.s−1) of pressure waves in air vs. the wavenumber |k| (m−1), projection of

the Bloch vector k along the edges of the irreducible Brillouin zone ŴXMU. We

note the appearance of a frequency stop band for ω ∈ [125.6586, 134.8155]

rad.s−1 which is wider and at higher frequencies than the stop band in

Figure 4: the more identical thin channels, the higher the resonant frequency

of the localized mode.

where ρ is the density of air (∼ 1.225kg.m−3), V1 and V2 the
volumes air occupies in41 and42, r1 is the interior radius for the
domain 41 and a2, b2 are respectively the interior and exterior
radii for the domain 42. In our case, r1 = 0.1m, a2 = 0.15m
and b2 = 0.2m. The formula (22) gives the following values
for the first eigenfrequencies (in rad.s−1) of the multistructures
5ε(1)

⋃

4(1) and 5ε(2)

⋃

4(2):

ω1 ∼ 124.2641 , ω2 ∼ 208.4109 (28)

The corresponding angular frequencies (in rad.s−1) associated
with the standing waves in the periodic structure were obtained
numerically, and from the band diagram in Figure 11 they are

ω∗
1 = 55.2128 ,ω∗

2 = 118.9750 (29)

Formula (22) leads to frequency estimates in (28) that do
not capture the eigenfrequency ω∗

1 , that corresponds to the
localized eigenmode shown in the left part of Figure 12, but
we observe a good agreement between frequency estimate ω1

and ω∗
2 , associated with the eigenmode shown in right part

of Figure 12. The estimate for the eigenfrequency ω∗
1 can be

found if the domain 5ε(2)

⋃

4(2) is replaced by the domain
5ε(2)

⋃

�(2)

⋃

5ε(1)

⋃

�(1). In this case, the eigenfrequency ω∗
1

FIGURE 8 | The eigenfunction corresponding to the eigenfrequency ω∗
1 = 125.6586 rad.s−1 for six thin channels responsible for the stop band in Figure 7. This

frequency is well approximated by the spring mass discrete model which provides us with the frequency estimate ω1 = 127.6447 rad.s−1.
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TABLE 1 | Values of the extrema of the gap with respect to the radius of the thin channel, for the Helmholtz resonator like in Figure 3.

r (m) 0.010 0.012 0.014 0.016 0.018 0.020 0.025

ωmin 51.4250 62.9523 72.5144 81.8465 90.9279 99.7964 120.9971

ωmax 55.2638 67.6568 77.9375 87.9765 97.7465 107.2948 130.1329

r (m) 0.030 0.035 0.040 0.045 0.050

ωmin 141.3007 160.7574 179.3317 197.2263 214.4251

ωmax 152.0110 173.1273 193.0588 212.4465 231.0001

See also Figure 9 for a graphical representation of the Table.

FIGURE 9 | Modification of the gap width and position with respect to the

radius of the thin channel of the Helmholtz resonator with a single shell like in

Figure 3. The eigenfrequency estimates ω1 ∼ 52.1107 and ω2 ∼ 54.0796

compare well with finite element results ω∗
1 ∼ 51.4250 and ω∗

2 ∼ 55.2638 for

r = 0.01m, see Table 1. Note the non linear scale for r.

is approximated by the first positive eigenvalue of the problem

ρ−1V ′′
1 (x)+ K−1ω2V1(x) = 0 , 0 < x < l1 (30)

V1(0) = 0 , (31)

K−1I1V
′
1(l1)− K−1I2V

′
2(0) = m1ω

2V1(l1) , (32)

ρ−1V ′′
2 (x)+ K−1ω2V2(x) = 0 , 0 < x < l2 (33)

λ−1I2V
′
2(l2) = m2ω

2V2(l2) , (34)

V2(0) = V1(l1) , (35)

where V1(x), V2(x) are the eigenfunctions defined on (0, l1)
and (0, l2), respectively, and the masses m1, m2 are defined by
(in kilogram)

m1 =
4000

3
πr31 , m2 =

4000

3
π

(

b32 − a32
)

(36)

Taking into account that ω0 = O(ε), we deduce that it can
be approximated as the first positive solution of the following
algebraic equation:

m1m2l1l2ω
4−Kω2

(

l2I1m1 + I1l2m2 + I2m1l1
)

+K2I1I2 = 0
(37)

so that ω0 ∼ 82.76057 rad.s−1, which provides a reasonably
accurate approximation of ω1∗ = 55.2128 rad.s−1. However,
a further refinement of this asymptotic estimate would require
adding higher order corrections and thus solving boundary layer
type problems as discussed in Kozlov et al. (1999), and this falls
beyond the scope of the present paper.

5. ISOFREQUENCY SURFACES, DYNAMIC
EFFECTIVE ANISOTROPY AND
LOCALIZED MODES

Thus far, we have only analyzed dispersion curves, but it has
been known for over 80 years that one needs to be extra careful
regarding analysis of say electronic band structures (Bouckaert
et al., 1936), as there are examples showing that stop band edges
might be reached strictly within the Brillouin zone, and so it is not
enough to describe its edges to characterize the band spectrum
(Harrison et al., 2007). We would like to investigate dynamic
effective anisotropy effects near the edge of the low frequency
stop band, and localization effects induced by local resonators
such as in Movchan et al. (2006),Bigoni et al. (2013),Craster et al.
(2013), and Llewellyn Smith and Davis (2010) for a frequency on
the acoustic band.

Here, we provide representation for isofrequencies near the
lower edge of the first stop band for the case of a Helmholtz
resonator with one thin channel as in Figure 4. However, we
observed very similar features in all other cases. We first note
in Figure 13 that the distortion of the isofrequency surfaces
increases when we move toward the lower edge of the stop
band. A small change in the frequency leads to a dramatic
change in the isofrequency surface. Besides, the observation
of isofrequency (or slowness) contours in Figure 13 confirms
that anisotropy increases near the edge of the stop band
as contours become more and more elongated. Researchers
in photonics used vanishing group velocity near stop band
edges to achieve self-guiding of light in 2D photonic crystals
in the past 20 years (Kosaka et al., 1999; Witzens et al.,
2002; Chigrin et al., 2003). Such an effect is known in the
applied mathematics and waves literature as a dynamic effective
anisotropy (Slepyan et al., 1987; Ayzenberg-Stepanenko and
Slepyan, 2008; Craster et al., 2009, 2010; Colquitt et al., 2012;
Schnitzer, 2017) : for an isotropic medium, the isofrequency
surface is spherical, and the corresponding isofrequency contours
are circular. On the edge of the stop band, the extreme
elongation of isofrequency contours reveals an extreme dynamic
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FIGURE 10 | Geometry of the inclusions and the Helmholtz oscillator consisting of two masses connected by a spring, with one of them connected to a fixed domain.

FIGURE 11 | Dispersion diagram for a periodic array (pitch d = 1m) of double

spherical rigid shells (radius of spheres from inner to outer are 0.1, 0.15, 0.3,

and 0.4 m) with one thin channel in each shell (respectively of lengths 0.05 and

0.1 m and radii 0.005 and 0.01 m) representing the frequency ω (rad.s−1) of

pressure waves in air vs. the wavenumber k = |k| (m−1), projection of the

Bloch vector k along the edges of the irreducible ŴXMU. We note the

appearance of two frequency stop bands for ω ∈ [55.2128, 58.5863] rad.s−1

and ω ∈ [118.9750, 119.0959] rad.s−1.

anisotropy. We note that some dynamic effective anisotropy
of 3D dynamic lattices displays similar isofrquency surfaces to
ours near stop band edges (Vanel et al., 2016). This could be
used to achieve as aforementioned highly directive phenomena,
in a way similar to what was demonstrated experimentally
for transverse electromagnetic waves (Ceresoli et al., 2015).
Another striking effect is that of wave localization, when one
creates one or more defects in a periodic structure. Usually,
this is achieved in high frequency stop bands, when the wave
wavelength is on the same order as the periodicity. Here, the
wave localization is achieved either at resonances of resonators,

see upper panel in Figure 14, or as shown in the lower panel
of the same figure, at a frequency ω∗

1 = 559.2042 rad.s−1

located in a part of the acoustic band sandwiched between
the low frequency stop band and another region of vanishing
group velocity near the X symmetry point in Figure 4, so this
has the additional feature of being below the Bragg frequency
regime. We note that from Figure 14, this localized mode can
be approximated as a monopole given by the first derivative of
the spherical Bessel function of the first kind jn(ωr/c), where
r is the radial position. The lowest root corresponding to the
lowest frequency of the cavity is the frequency given by the root
of the transcendental equation (simply derived by separation
of variables in Helmholtz’s equation (2) written in spherical
coordinates and assuming that ∂p/∂n = 0 on the boundary of
the defect) :

j′1(ωa/c) = 0 . (38)

Bearing in mind that the first root of j′1 is 2.0816 and
taking a = 1.25m as the radius of a dashed circle
within which the defect mode seems to be mostly
confined in Figure 14, (38) leads to the frequency estimate
ω1 = 566.19 rad.s−1, which is in good agreement with
the finite element computation ω∗

1 = 559.2042 rad.s−1.
This method of the effective sphere is the analogous
concept to effective disk in doubly periodic structures with
defects (Movchan et al., 2007).

6. CONCLUSION

In this paper, we have seen that it is possible to sculpt
the Bloch spectrum of three-dimensional phononic crystals
almost ad libitum simply by digging some holes and adding
cavities in rigid spheres periodically arranged along a cubic
lattice. One of the main achievements of our numerical study is
the appearance of ultra-low frequency stop bands at frequencies
predicted quantitalively by an asymptotic model, that can be
viewed as a 3D counterpart of (Movchan and Guenneau, 2004).
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FIGURE 12 | Eigenfunctions for embedded resonators corresponding to the eigenfrequency ω∗
1 = 55.2128 rad.s−1 (left panel) and corresponding to the

eigenfrequency ω∗
2 = 118.975 rad.s−1 (right panel). In left panel both canals vibrates, while in right panel only the inner canal does. The second eigenfrequency

ω∗
2 = 118.975 rad.s−1 is reasonably well approximated by the first eigenfrequency of the spring mass model which gives and ω1 = 124.2641 rad.s−1 and

ω2 = 208.4109 rad.s−1.

FIGURE 13 | Representative isofrequency surfaces kz (kx , ky ) in the first Brillouin zone (upper panel) and associated isofrequency contours in the plane (kx , ky ) for

kz ∈ (0,π ) (lower panel) at frequency ω = 51.42 rad.s−1 (left panel), ω = 51.4215 rad.s−1 (middle panel) and ω = 51.423 rad.s−1 (right panel); The surfaces

and contours flatten when the frequency moves toward the lower edge of the stop band in Figure 4. and thus dynamic effective anisotropy increases.

We also conducted some elementary shape optimization (by
varying the size, diameter and number of channels in a rigid
sphere of constant radius) in order to enhance the control
of the location and the number of low frequency stop bands,
thanks to our asymptotic estimates. Our asymptotic results
could be further used for a homogenization study in the
spirit of the 2D analysis conducted in Mercier et al. (2017)
to address the effective parameters of our acoustic system.

However, the acoustic metamaterial we have analyzed would
allow only frequency dependent effective bulk modulus, and in
order to achieve a frequency dependent effective density and
thus double negative acoustic parameters near resonances, one
needs to introduce a second type of resonator in the periodic
cell. Therefore, achieving a design of an acoustic superlens
through negative refraction requires a more complex design.
However, a cubic array of rigid spheres does not support any
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FIGURE 14 | Representative eigenfunctions for a macrocell of 26 resonators as in Figures 4, 5 with a defect (air instead of resonator) in the middle. Upper panel:

Eigenfunctions corresponding to an eigenfrequency ω∗
0 = 52.3545 rad.s−1 in the ultra-low frequency stop band of Figure 4. Lower panel: Eigenfunction

corresponding to an eigenfrequency ω∗
1 = 559.2042 rad.s−1 above the low frequency stop band of Figure 4, which is approximated by the first root of (38) i.e., the

fundamental resonance of an effective spherical cavity (marked by dashed circle) of radius a = 1.25 m.

complete stop band, even in the densely packed configuration,
so the acoustic metamaterial which we studied has markedly
different filtering properties compared with phononic crystals
with rigid spheres: multistructures make possible tunable ultra-
low frequency stop bands (associated with very flat dispersion
curves i.e., localized eigenmodes). Finally, we illustrate in
Figure 14 a possible application of the ultra-low frequency stop
band in order to localize a mode of a wavelength larger than the
pitch of the array of resonators. One can also envisage sculpting
a line defect thanks to the removal of a few resonators in a
larger macrocell, that would make a low frequency waveguide.

We further note that considering shells of same diameter with
holes of varying diameters, or spheres with varying diameters
and identical or varying holes would make possible graded
phononic crystals with a larger low frequency stop band, thanks
to the overlap of numerous low frequency stop bands. This
could lead to a three dimensional counterpart to the acoustic
rainbow put forward in Zhu et al. (2013). Indeed, many
embedded spheres would make this possible, since the band
diagram 11 suggests N embedded spheres would lead to N low
frequency stop bands that might hybridize. Similarly, one could
envisage to reflect, detour, or focus, pressure waves using the
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low frequency stop band within which effective parameters are
expected to take negative values as it is now well-established
for the two-dimensional counterpart of such kind of acoustic
metamaterials. We hope our work will foster experimental efforts
toward 3D acoustic metamaterials for airborne and underwater
sound filtering effects. At first sight, the implementation
of the former seems more straightforward, since the latter
would require further theoretical and numerical investigation
of conversion of pressure waves propagating in the fluid into
pressure and shear waves propagating in the shells. For instance,
in the derivation of the asymptotic estimates, the boundary layer
analysis will be more involved. Nevertheless, it might be easier
to perform underwater experimental characterization of the
sonic metamaterial.

AUTHOR CONTRIBUTIONS

GD performed all numerics, AM derived the asymptotic
formulae, SG wrote the manuscript and SE participated in
the physical interpretation of results. All authors reviewed the
manuscript and contributed to the study.

FUNDING

This research has been funded in part by ERC (SG received
funding from ERC as a PI of an ERC starting grant 279673 during
the period 2011–2016, with GD a postdoc on that grant in 2014-
2015) and by EPSRC (AM received funding from EPSRC as a
co-PI of research grant EP/L024926/1 during the period 2015-
2018 and SG is a named collaborator who is currently hosted in
the group of Prof. R. Craster at Imperial College who is the PI on
that grant).

ACKNOWLEDGMENTS

AM acknowledges funding of the EPSRC as a co-
investigator on program grant EP/L024926/1 on Mathematical
fundamentals of Metamaterials for multiscale Physics and
Mechanics. SG is thankful for a visiting position in the
department of mathematics at Imperial College London
and support from EPSRC as a named collaborator on grant
EP/L024926/1. Insightful discussions with Prof. R.V. Craster
are acknowledged.

REFERENCES

Aberg, M., and Gudmundson, P. (1997). The usage of standard finite element

codes for computation of dispersion relations in materials with periodic

microstructure. J. Acoust. Soc. Am. 102, 2007–2013.

Alster, M. (1972). Improved calculation of resonant frequencies of helmholtz

resonators. J. Sound Vib. 24, 63–85.

Ammari, H., Fitzpatrick, B., Lee, H., Yu, S., and Zhang, H. (2017b). Double-

negative acoustic metamaterials. arxiv:1709.08177v2.

Ammari, H., and Zhang, H. (2017a). Effective medium theory for acoustic waves

in bubbly fluids near Minnaert resonant frequency. SIAM J. Math. Anal. 49,

3252–3276. doi: 10.1137/16M1078574

Auriault, J. L. (1994). Acoustics of heterogeneous media: macroscopic behavior by

homogenization. Curr. Top. Acoust. Res. 1, 63–90.

Auriault, J. L., and Bonnet, G. (1985). Dynamique des composites élastiques

périodiques, Arch. Mech. 37, 269–284.

Auriault, J. L., and Boutin, C. (2012). Long wavelength inner-resonance cut-off

frequencies in elastic composite materials. Int. J. Solids Struct. 49, 3269–3281.

doi: 10.1016/j.ijsolstr.2012.07.002

Ayzenberg-Stepanenko, M., and Slepyan, L. I. (2008). Resonant-frequency

primitive waveforms and star waves in lattices. J. Sound Vib. 313, 812–821.

doi: 10.1016/j.jsv.2007.11.047

Baird, A. M., Kerr, F. H., and Townend, D. J. (1999). Wave propagation in a

viscoelastic medium containing fluid-filled microspheres. J. Acoust. Soc. Am.

105, 1527–1538.

Bensoussan, A., Lions, J., and Pananicolaou, G. (1978). Asymptotic Analysis for

Periodic Structures. North Holland: Springer Verlag.

Bigoni, D., Guenneau, S., Movchan, A. B., and Brun, M. (2013). Elastic

metamaterials with inertial locally resonant structures : application

to lensing, high-directivity and localisation. Phys. Rev. B 87, 174303.

doi: 10.1103/PhysRevB.87.174303

Bloch, F. (1928). Uber die quantenmechanik der elektronen in kristallgittern. Z.

Phys. 52, 555–600.

Bouckaert, L.P., Smoluchowski, R., Wigner, E. (1936). Theory of brillouin zones

and symmetry properties of wave functions in crystals. Phys. Rev. 50, 58–67.

Boutin, C. (2013). Acoustics of porous media with inner resonators. J. Acoust. Soc.

Am. 134, 4717–4729. doi: 10.1121/1.4824965

Boutin, C., and Becot, F. X. (2015). Theory and experiments on poro-acoustics

with inner resonators. Wave Motion 54, 76–99. doi: 10.1016/j.wavemoti.2014.

11.013

Brillouin, L. (1978).Wave Propagation in Periodic Structures. NewYork, NY: Dover

Publications.

Brun, M., Guenneau, S., and Movchan, A. B. (2009). Achieving control of in-plane

elastic waves. Appl. Phys. Lett. 94:061903. doi: 10.1063/1.3068491

Brunet, T., Merlin, A., Mascaro, B., Zimny, K., Leng, J., Poncelet, O., et al.

(2015). Soft 3D acoustic metamaterial with negative index. Nat. Mater. 14:384.

doi: 10.1038/nmat4164

Ceresoli, L., Abdeddaim, R., Antonakakis, T., Maling, B., Chmiaa, M., Sabouroux,

P. et al. (2015). Dynamic effective anisotropy: asymptotics, simulations,

and microwave experiments with dielectric fibers. Phys. Rev. B 92, 174307.

doi: 10.1103/PhysRevB.92.174307

Chalmers, L., Elford, D. P., Kusmartsev, F. V., and Swallowe, G. M. (2009).

Acoustic band gap formation in two-dimensional locally resonant sonic crystals

comprised of helmholtz resonators. Int. J. Mod. Phys. B 23, 4234–4243.

doi: 10.1142/S0217979209063390

Chen, K. T. Chen, Y. H., Lin, K. Y., and Weng, C. C. (1998). The improvement of

the transmission loss of a duct by adding Helmholtz resonators. Appl. Acoust.

57, 71–82.

Chigrin, D. N., Enoch, S., Torres, C. M. S., Tayeb, G. (2003). Self-

guiding in two-dimensional photonic crystals. Opt. Express 11, 1203–1211.

doi: 10.1117/12.463861

Colquitt, D. J., Jones, I. S., Movchan, N. V., Movchan, A. B., McPhedran, R.

C. (2012). Dynamic anisotropy and localization in elastic lattice systems.

Waves Random Complex Media 22, 143–159. doi: 10.1080/17455030.2011.

633940

Craster, R. V., and Guenneau, S. (eds.). (2013). Acoustic Metamaterials : Negative

Refraction, Imaging, Lensing and Cloaking. Springer Series in Materials Science

Vol. 166.

Craster, R. V., Kaplunov, J., and Postnova, J. (2010). High-frequency asymptotics,

homogenisation and localisation for lattices. Q. J Mech. Appl. Math. 63, 497–

519. doi: 10.1093/qjmam/hbq015

Craster, R. V., Nolde, E., and Rogerson, G. A. (2009). Mechanism for slow

waves near cutoff frequencies in periodic waveguides. Phys. Rev. B 79, 045129.

doi: 10.1103/PhysRevB.79.045129

Frontiers in Materials | www.frontiersin.org April 2019 | Volume 6 | Article 50141

https://doi.org/10.1137/16M1078574
https://doi.org/10.1016/j.ijsolstr.2012.07.002
https://doi.org/10.1016/j.jsv.2007.11.047
https://doi.org/10.1103/PhysRevB.87.174303
https://doi.org/10.1121/1.4824965
https://doi.org/10.1016/j.wavemoti.2014.11.013
https://doi.org/10.1063/1.3068491
https://doi.org/10.1038/nmat4164
https://doi.org/10.1103/PhysRevB.92.174307
https://doi.org/10.1142/S0217979209063390
https://doi.org/10.1117/12.463861
https://doi.org/10.1080/17455030.2011.633940
https://doi.org/10.1093/qjmam/hbq015
https://doi.org/10.1103/PhysRevB.79.045129
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Dupont et al. Cubic Arrays of Holey Shells

Dowling, J. P. (2008). Photonic and Sonic Band Gap Metamaterial Bibliography.

Available online at: https://web.archive.org/web/20070726070938/http://phys.

lsu.edu/%7Ejdowling/pbgbib.html

Duan, Y. T., Koch, W., Linton, C. M., and Mciver, M. (2007). Complex

resonances and trapped modes in ducted domains. J. Fluid Mech. 571, 119–147.

doi: 10.1017/S0022112006003259

Dupont, G., Remy, F., Kimmoun, O., Molin, B., Guenneau, S., and Enoch, S.

(2017). Type of dike using C-shaped vertical cylinders. Phys. Rev. B 96, 180302.

doi: 10.1103/PhysRevB.96.180302

Elford, D. P., Chalmers, L., Kusmartsev, F. V., and Swallowe, G. M. (2004).

Matryoshka locally resonant sonic crystal. J. Acoust. Soc. Am. 130, 649–655.

doi: 10.1121/1.3643818

Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., et al.

(2006). Ultrasonic metamaterials with negative modulus. Nature 5:452.

doi: 10.1038/nmat1644

Farhat, M., Guenneau, S., Enoch, S., and Movchan, A. B. (2009). Negative

refraction, surface modes, and superlensing effect via homogenization near

resonances for a finite array of split-ring resonators. Phys. Rev. E 80, 046309.

doi: 10.1103/PhysRevE.80.046309

Figotin, A., and Kuchment, P. (1998). Spectral properties of classical waves in

high-contrast periodic media. SIAM J. Appl. Math. 58, 683–670.

Floquet, G.(1883). Sur les équations différentielles linéaires a coefficients

périodiques, Ann. l’Ecole Normale Supérieure 12, 47–88.

Gaunaurd, G. C., and Uberall, H. (1982). Resonance theory of the effective

properties of perforated solids. J. Acoust. Soc. Am. 71, 282–295.

Gazalet, J., Dupont, S., Kastelik, J. C., Rolland, Q., and Djafari-Rouhani, B. (2013).

A tutorial survey on waves propagating in periodic media: electronic, photonic

and phononic crystals. Perception of the Bloch theorem in both real and Fourier

domains.Wave Motion 50, 619–654. doi: 10.1016/j.wavemoti.2012.12.010

Goffaux, C., Sánchez-Dehesa, J., Levy Yeyati, A., Lambin, P. H., Khelif,

A., Vasseur, J. O., et al. (2002). Evidence of Fano-like interference

phenomena in locally resonant materials. Phys. Rev. Lett. 88:225502.

doi: 10.1103/PhysRevLett.88.225502

Groeneweg, J. F. (1969). Current Understanding of Helmholtz Resonator Arrays

as Duct Boundary Conditions, in a Conference Held at NASA Headquarters.

Washington, DC: NASA.

Guenneau, S., Movchan, A. B., and Movchan, N. V. (2007b). Localized bending

modes in split ring resonators. Physica B 394, 141.

Guenneau, S., Movchan, A. B., Petursson, G., and Ramakrishna, S. A. (2007a).

Acoustic meta-materials for sound focussing and confinement. New J. Phys.

9:399. doi: 10.1088/1367-2630/9/11/399

Harrison, J. M., Kuchment, P., Sobolev, A., Winn, B. (2007). On occurrence of

spectral edges for periodic operators inside the Brillouin zone. J. Phys. A 40,

7597. doi: 10.1088/1751-8113/40/27/011

Hinders, M. K., Rhodes, B. A., and Fang, T. M. (1995). Particle-loaded composites

for acoustic anechoic coatings. J. Sound Vib. 185, 219–246.

Hirsekorn, M. (2004). Small-size sonic crystals with strong attenuation

bands in the audible frequency range. Appl. Phys. Lett. 84, 3364–3366.

doi: 10.1063/1.1723688

Hladky-Hennion, A. C., and Decarpigny, J.-N. (1991). Analysis of the scattering of

a plane wave by a doubly periodic structure using the finite element method:

application to Alberich anechoic coatings. J. Acoust. Soc. Am. 90, 3356–3367.

Ho, K. M., Cheng, C., Yang, Z., Zhang, X., and Sheng, P. (2003). Broadband locally

resonant sonic shields. Appl. Phys. Lett. 83, 5566–5568. doi: 10.1063/1.1637152

Hou, Z. L., Liu, J., Kuang, W., Liu, Y., and Wu, S. (2007). Sonic crystal with open

resonant cavities. Phys. Rev. E 75, 026608. doi: 10.1103/PhysRevE.75.026608

Hu, X., Chan, C. T., Ho, K.-M., and Zi, J. (2011). Negative effective gravity

in water waves by periodic resonator arrays. Phys. Rev. Lett. 106:174501.

doi: 10.1103/PhysRevLett.106.174501

Hu, X., Zi, J., Chan, C. T., and Ho, K.-M. (2017). Experimental

observation of negative effective gravity in water waves. Sci. Rep. 3:1916.

doi: 10.1038/srep01916

Ivansson, S. (2006). Sound absorption by viscoelastic coatings with periodically

distributed cavities. J. Acoust. Soc. Am. 119, 3558–3567. doi: 10.1121/1.

2190165

Joannopoulos, J., Meade, R., and Winn, J. (1995). Photonic Crystals: Molding the

Flow of Light. Princeton University Press.

Kadic, M., Buckmann, T., Schittny, R., and Wegener, M. (2013).

Metamaterials beyond electromagnetism Rep. Progr. phys. 76:126501.

doi: 10.1016/j.physb.2006.12.064

Kafesaki, M., and Economou, E. N. (1999). Multiple-scattering theory for three-

dimensional periodic acoustic composites. Phys. Rev. B 60, 11993.

Kittel, C. (1986). Introduction to Solid State Physics. New York, NY: JohnWiley and

Sons.

Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T.,

et al. (1999). Self-collimating phenomena in photonic crystals. Appl. Phys. Lett.

74:1212.

Kozlov, V. A., Mazya, V. G., and Movchan, A. B. (1999). Asymptotic Analysis

of Fields in Multi-Structures. Oxford: Oxford Research Monographs; Oxford

University Press.

Krynkin, A., Umnova, O., Yung, A., Chong, B., Aherzadeh, T. S., and

Attenborough, K. (2010). Predictions andmeasurements of sound transmission

through a periodic array of elastic shells in air. J. Acoust. Soc. Am. 128,

3496–3506. doi: 10.1121/1.3506342

Kushwaha, M.S., Halevi, P., Dobrzynski, L., and Djafari-Rouhani, B. (1993).

Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71,

2022–2025.

Lanoy, M., Pierrat, R., Lemoult, F., Fink, M., Leroy, V., and Tourin, A. (2015).

Subwavelength focusing in bubbly media using broadband time reversal. Phys.

Rev. B 91, 224202. doi: 10.1103/PhysRevB.91.224202

Lemoult, F., Fink, M., and Lerosey, G. (2011). Acoustic Resonators for Far-

Field Control of Sound on a Subwavelength Scale Phys. Rev. Lett. 107:064301

doi: 10.1103/PhysRevLett.107.064301

Leroy, V., Strybulevych, A., Lanoy, M., Lemoult, F., Tourin, A., and Page, J. H.

(2015). Superabsorption of acoustic waves with bubble metascreens. Phys. Rev.

B 91, 020301. doi: 10.1103/PhysRevB.91.020301

Li, J., and Chan, C. T. (2004). Double negative acoustic metamaterial. Phys. Rev. E

70, 055602. doi: 10.1103/PhysRevE.70.055602

Li, J. B., Wang, Y. S., and Zhang, C. H. (2013). Tuning of acoustic bandgaps

in phononic crystals with Helmholtz resonators. J. Vib. Acoust. 135:031015.

doi: 10.1115/1.4023812

Lim, R., and Hackman, R. H. (1990). A parametric analysis of attenuation

mechanisms in composites designed for echo reduction. J. Acoust. Soc. Am. 87,

1076–1103.

Liu, Z. Y., Zhang, X. X., Mao, Y. W., Zhu, Y. Y., Yang, Z. Y., Chan,

C. T., et al. (2000). Locally resonant sonic materials. Science 289:1734.

doi: 10.1126/science.289.5485.1734

Llewellyn Smith, S. G., and Davis, A. M. J. (2010). The split ring resonator. Proc. R.

Soc. A 466, 3117–3134. doi: 10.1098/rspa.2010.0047

Maling, B. J., Colquitt, D. J., Craster, R. V. (2017). The homogenisation ofMaxwell’s

equations with applications to photonic crystals and localised waveforms on

gratings.Wave Motion 69, 35–49. doi: 10.1016/j.wavemoti.2016.11.003

Mead, D. (1996). A general theory of harmonic wave propagation in linear periodic

systems with multiple coupling. J. Sound Vib. 27, 429–438.

Mei, J., Liu, Z., Wen, W., and Sheng, P. (2006). Effective

Mass Density of Fluid-Solid Composite. Phys. Rev. Lett. 96:024301.

doi: 10.1103/PhysRevLett.96.024301

Mercier, J. F., Marigo, J. J., and Maurel ,A. (2017). Influence of the neck shape for

Helmholtz resonators. J. Acoust. Soc. Am. 142:3703. doi: 10.1121/1.5017735

Milton, G. W., Briane, M., and Willis, J. R. (2006). On cloaking for elasticity and

physical equations with a transformation invariant form. New J. Phys. 8:248.

doi: 10.1088/1367-2630/8/10/248

Minnaert, M. (1933). Onmusical air-bubbles and the sounds of running water, The

London, Edinburgh, Dublin Philos.Mag. J. Sci. 16, 235–248.

Movchan, A. B., and Guenneau, S. (2004). Split-ring resonators and

localized modes. Phys. Rev. B 70, 125116. doi: 10.1103/PhysRevB.70.

125116

Movchan, A. B., Movchan, N. V., Guenneau, S., and McPhedran, R.

C. (2007). Asymptotic estimates for localized electromagnetic modes in

doubly periodic structures with defects. Proc. R. Soc. A 463, 1045–1067.

doi: 10.1098/rspa.2006.1800

Movchan, A. B., Movchan, N. V., and Haq, S. (2006). Localised vibration modes

and stop bands for continuous and discrete periodic structures.Mater. Sci. Eng.

A 431, 175–183. doi: 10.1016/j.msea.2006.05.145

Frontiers in Materials | www.frontiersin.org April 2019 | Volume 6 | Article 50142

https://web.archive.org/web/20070726070938/http://phys.lsu.edu/%7Ejdowling/pbgbib.html
https://web.archive.org/web/20070726070938/http://phys.lsu.edu/%7Ejdowling/pbgbib.html
https://doi.org/10.1017/S0022112006003259
https://doi.org/10.1103/PhysRevB.96.180302
https://doi.org/10.1121/1.3643818
https://doi.org/10.1038/nmat1644
https://doi.org/10.1103/PhysRevE.80.046309
https://doi.org/10.1016/j.wavemoti.2012.12.010
https://doi.org/10.1103/PhysRevLett.88.225502
https://doi.org/10.1088/1367-2630/9/11/399
https://doi.org/10.1088/1751-8113/40/27/011
https://doi.org/10.1063/1.1723688
https://doi.org/10.1063/1.1637152
https://doi.org/10.1103/PhysRevE.75.026608
https://doi.org/10.1103/PhysRevLett.106.174501
https://doi.org/10.1038/srep01916
https://doi.org/10.1121/1.2190165
https://doi.org/10.1016/j.physb.2006.12.064
https://doi.org/10.1121/1.3506342
https://doi.org/10.1103/PhysRevB.91.224202
https://doi.org/10.1103/PhysRevLett.107.064301
https://doi.org/10.1103/PhysRevB.91.020301
https://doi.org/10.1103/PhysRevE.70.055602
https://doi.org/10.1115/1.4023812
https://doi.org/10.1126/science.289.5485.1734
https://doi.org/10.1098/rspa.2010.0047
https://doi.org/10.1016/j.wavemoti.2016.11.003
https://doi.org/10.1103/PhysRevLett.96.024301
https://doi.org/10.1121/1.5017735
https://doi.org/10.1088/1367-2630/8/10/248
https://doi.org/10.1103/PhysRevB.70.125116
https://doi.org/10.1098/rspa.2006.1800
https://doi.org/10.1016/j.msea.2006.05.145
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Dupont et al. Cubic Arrays of Holey Shells

Movchan, A. B., Movchan, N. V., and Poulton C. G. (2002). Asymptotic Models

of Fields in Dilute and Densely Packed Composites. London: Imperial College

Press.

Movchan, A. B., and Slepyan, L.I. (2014). Resonant waves in elastic

structured media: dynamic homogenisation versus Green’s functions.

Int. J. Solids Struct. 51, 2254–2260. doi: 10.1016/j.ijsolstr.2014.

03.015

Nicolet, A., Guenneau, S., Geuzaine, C., and Zolla, F. (2004). Modeling of

electromagnetic waves in periodic media with finite elements. J. Comp. Appl.

Math. 168, 321–329. doi: 10.1016/j.cam.2003.07.002

Norris, A. N. (2008). Acoustic cloaking theory. Proc. R. Soc. A 464, 2411–2434.

doi: 10.1098/rspa.2008.0076

Norris, A. N. (2009). Acoustic metafluids. J. Acoust. Soc. Am. 125, 839–849.

Orris, R. M., and Petyt, M. (1974). A finite element study of

harmonic wave propagation in periodic structures. J. Sound Vib. 33,

223–236.

Pendry, J. B. (2000) Negative refraction makes a perfect lens, Phys. Rev. Lett. 85,

3966–3969. doi: 10.1103/PhysRevLett.85.3966

Pendry, J. B., Holden, A. J., Robbins, D. J., and Stewart, W. J. (1999). Magnetism

from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave

Theory Tech. 47:2075.

Schnitzer, O. (2017).Waves in slowly varying band-gapmedia. SIAM J. Appl. Math.

77, 1516–1535. doi: 10.1137/16M110784X

Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F.

(2006). Metamaterial electromagnetic cloak at microwave frequencies. Science

314, 977–980. doi: 10.1126/science.1133628

Selamet, A., andDickey, N. S. (1995). Theoretical, computational and experimental

investigation of Helmholtz resonators with fixed volume: lumped versus

distributed analysis. J. Sound Vib. 187, 358–367.

Selamet, A., Radavich, P. M., Dickey, N. S., and Novak, J. M. (1997). Circular

concentric Helmholtz resonator. J. Acoust. Soc. Am. 101, 41–51.

Seo, S. H., and Kim, Y. H. (2005). Silencer design by using array resonators

for low-frequency band nose reduction. J. Acoust. Soc. Am. 118, 2332–2338.

doi: 10.1121/1.2036222

Slepyan, L. I., and Tsareva, V. (1987). Energy flux for zero group velocity of the

carrying wave. Sov. Phys. Dokl. 32, 522–524.

Vanel, A. L., Craster, R. V., Colquitt, D. J., Makwana, M. (2016).

Asymptotics of dynamic lattice Green’s functions. Wave Motion 67, 15–31.

doi: 10.1016/j.wavemoti.2016.05.010

Wang, X., and Mak, C.-M. (2012). Wave propagation in a duct with a periodic

Helmholtz. J. Acoust. Soc. Am. 131:1172. doi: 10.1121/1.3672692

Wang, Z. G., Lee, S. H., Kim, C. K., Park, C.M., Nahm, K., andNikitov, S. A. (2008).

Acoustic wave propagation in one-dimensional phononic crystals containing

helmholtz resonators. J. Appl. Phys. 103:064907. doi: 10.1063/1.2894914

Wilcox, C. (1978). Theory of bloch waves. J. d’Analyse Mathématique 33, 146–167.

Witzens, J., Loncar, M., Scherer, A. (2002). Self-collimation in planar

photonic crystals. IEEE J. Select. Top. Quant. Electron. 8, 1246–1257.

doi: 10.1109/JSTQE.2002.806693

Zhao, H. G., Liu, Y. Z., Yu, D. L., Wang, G., Wen, J. H., and Wen, X. S. (2007).

Absorptive properties of three-dimensional phononic crystal. J. Sound Vib. 303,

185–194. doi: 10.1016/j.jsv.2007.01.004

Zhou, X. Z., Wang, Y. S., and Zhang, C. (2010). Three-dimensional sonic

band gaps tuned by material parameters. Appl. Mech. Mater. 29, 1797–1802.

doi: 10.4028/www.scientific.net/AMM.29-32.1797

Zhu, J., Chen, Y., Zhu, X., Garcia-Vidal, F. J., Yin, X., Zhang, W., et al. (2013).

Acoustic rainbow trapping. Sci. Rep. 3:1728. doi: 10.1038/srep01728

Zhu, R., Liu, X. N., Hu, G. K., Sun, C. T., and Huang, G. L. (2014).

Negative refraction of elastic waves at the deep-subwavelength scale

in a single-phase metmaterial. Nat. commun. 5:5510. doi: 10.1038/

ncomms6510

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Dupont, Movchan, Enoch and Guenneau. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Materials | www.frontiersin.org April 2019 | Volume 6 | Article 50143

https://doi.org/10.1016/j.ijsolstr.2014.03.015
https://doi.org/10.1016/j.cam.2003.07.002
https://doi.org/10.1098/rspa.2008.0076
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1137/16M110784X
https://doi.org/10.1126/science.1133628
https://doi.org/10.1121/1.2036222
https://doi.org/10.1016/j.wavemoti.2016.05.010
https://doi.org/10.1121/1.3672692
https://doi.org/10.1063/1.2894914
https://doi.org/10.1109/JSTQE.2002.806693
https://doi.org/10.1016/j.jsv.2007.01.004
https://doi.org/10.4028/www.scientific.net/AMM.29-32.1797
https://doi.org/10.1038/srep01728
https://doi.org/10.1038/ncomms6510
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


ORIGINAL RESEARCH
published: 18 April 2019

doi: 10.3389/fmats.2019.00059

Frontiers in Materials | www.frontiersin.org April 2019 | Volume 6 | Article 59

Edited by:

Chiara Daraio,

California Institute of Technology,

United States

Reviewed by:

Francesco Dal Corso,

University of Trento, Italy

Cesare Davini,

International Centre for Mechanical

Sciences, Italy

*Correspondence:

Patrizia Trovalusci

patrizia.trovalusci@uniroma1.it

Specialty section:

This article was submitted to

Mechanics of Materials,

a section of the journal

Frontiers in Materials

Received: 08 December 2018

Accepted: 25 March 2019

Published: 18 April 2019

Citation:

Fantuzzi N, Trovalusci P and

Dharasura S (2019) Mechanical

Behavior of Anisotropic Composite

Materials as Micropolar Continua.

Front. Mater. 6:59.

doi: 10.3389/fmats.2019.00059

Mechanical Behavior of Anisotropic
Composite Materials as Micropolar
Continua
Nicholas Fantuzzi 1, Patrizia Trovalusci 2* and Snehith Dharasura 1

1Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Bologna, Italy, 2Department

of Structural and Geotechnical Engineering, Sapienza University of Rome, Rome, Italy

The macroscopic behavior of materials with anisotropic microstructure described as

micropolar continua is investigated in the present work. Micropolar continua are

characterized by a higher number of kinematical and dynamical descriptors than

classical continua and related stress and strain measures, namely the micro-rotation

gradient (curvature) and the relative rotation with their work conjugated counterparts,

the micro-couple, and the skew-symmetric part of the stress, respectively. The presence

of such enriched strain and stress fields can be detected especially when concentrated

forces and/or geometric discontinuities are present. The effectiveness of the micropolar

model to represent the mechanical behavior of materials made of particles of prominent

size has been widely proved in the literature, in this paper we focus on the capability

of this model to grossly capture the behavior of anisotropic solids under concentrated

loads for which the relative strain, that is a peculiar strain measure of the micropolar

model, can have a salient role. The effect of material anisotropy in the load diffusion

has been investigated and highlighted with the aid of numerical parametric analyses,

performed for two dimensional bodies with increasing degrees of anisotropy using a finite

element approach specifically conceived for micropolar media with quadratic elements

implemented within Comsol Multiphysics© framework. The present studied cases show

that a significant diffusion and redistribution of the load is due to an increasing in the level

of material anisotropy.

Keywords: cosserat continua, anisotropic media, relative rotation, composites/masonry, finite element method

INTRODUCTION

A material can be defined complex due to the presence of an internal structure and to its
complex constitutive behavior. As well-known, in the description of complex materials,
such as composites, the discrete, and heterogeneous nature of matter must be taken into
account, because interfaces and material internal phases dominate the gross behavior. The
presence of material internal structure can be accounted by direct discrete modeling, with
generally high computational cost (Suzuki et al., 1991; Baggio and Trovalusci, 2000; Rapaport
and Rapaport, 2004; Yang et al., 2010; Godio et al., 2017; Baraldi et al., 2018; Reccia et al.,
2018) or by adopting multiscale or coarse-graining techniques for deriving homogenized
continua (Budiansky, 1965; Sanchez-Palencia, 1987; Nemat-Nasser et al., 1996; Blanc et al., 2002;
Curtin and Miller, 2003; Jain and Ghosh, 2009; Trovalusci and Ostoja-Starzewski, 2011;
Nguyen et al., 2012; Sadowski et al., 2014; Altenbach and Sadowski, 2015; Greco et al.,
2016. However, the classical Cauchy model (Grade 1) is not reliable in the presence

144

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2019.00059
http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2019.00059&domain=pdf&date_stamp=2019-04-18
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://creativecommons.org/licenses/by/4.0/
mailto:patrizia.trovalusci@uniroma1.it
https://doi.org/10.3389/fmats.2019.00059
https://www.frontiersin.org/articles/10.3389/fmats.2019.00059/full
http://loop.frontiersin.org/people/654676/overview
http://loop.frontiersin.org/people/527095/overview


Fantuzzi et al. Mechanical Behavior of Anisotropic Micropolar Continua

of problems dominated by the microstructure size, both in the
non-linear, such as in the case of strain localization phenomena,
and linear regimes (de Borst, 1991; Sluys et al., 1993; Masiani and
Trovalusci, 1996; Trovalusci and Masiani, 1999, 2003).

In the framework of a multiscale modeling aimed at
deriving homogenized continua suitable for representing the
material microstructure, avoiding physical inadequacies and
theoretical/computational problems—such as: ill-conditioning
in the field equations and mesh-dependency in numerical
solutions—the “non-local” character of the description is
crucial. Non-locality, by definition, implies the presence of
internal lengths and spatial dispersion properties in wave
propagation (Kunin, 1982), which allow to bypass the above
mentioned drawbacks. Besides the so-called explicit/strong non-
local theories (Eringen, 1972, 1999; Maugin, 1993), implicit/weak
non-local formulations, referred to continua with extra degrees of
freedom of various kind (Mindlin, 1964; Capriz, 1989; Eringen,
1999; Gurtin, 2000; Trovalusci, 2014), have been proposed in
order to deal with problems in which a characteristic internal
length, l (material length), is comparable to the macroscopic
length, L (structural length). This continua, also namedmultifield
continua, reveal the hidden microstructure, which affects the
macroscopic mechanical properties, by means of the additional
kinematic and work-conjugated dynamic descriptors (Trovalusci
and Augusti, 1998; Forest, 2009; Trovalusci et al., 2010; Capecchi
et al., 2011; Forest and Trinh, 2011; Trovalusci, 2014; Trovalusci
and Pau, 2014). In particular, in the works (Trovalusci and
Augusti, 1998; Trovalusci et al., 2010; Trovalusci, 2014) the
presence of a microstructure made of different kind of inclusions
(fibers, microcracks/pores) and the ability of multifield continua
to represent dispersion phenomena with particular reference
to microcraked bars under free and forced oscillations has
been investigated.

Among this latter kind of non-local models, many papers
showed the advantages of micropolar models (e.g., formulated
in Nowacki, 1970; Stojanović, 1972; Eringen, 1999, and
widely investigated also from the experimental point of view
Lakes and Benedict, 1982; Yang and Lakes, 1982; Lakes,
1983, 1986; Bauer et al., 2012; Rueger and Lakes, 2016) for
investigating problems with general heterogeneities and/or
discontinuities within the context of multiscale/coarse-
graining approaches, which allow to preserve memory of
the original organization of materials with periodic or
random microstructure (Forest and Sab, 1998; Forest et al.,
1999; Stefanou et al., 2008; Trovalusci et al., 2015, 2017).
Moreover, special attention to the micropolar continua with
constrained rotations (Toupin, 1962; Sokolowski, 1972),
always referring to multiscale descriptions (Bouyge et al.,
2001; Leonetti et al., 2018) has been reserved. In particular,
the micropolar modeling has been effectively adopted for
solving problems wherein the solid is made of an assembly
of rigid particles undergoing displacements and rotations
and interacting with each other via forces and couples, as
masonry-like materials or fiber-reinforced composites, both in
the linear and non-linear frameworks (Masiani and Trovalusci,
1996; Trovalusci and Masiani, 1999; Sansalone et al., 2006;
Pau and Trovalusci, 2012; Trovalusci and Pau, 2014).

In the present work, we want to focus on the behavior
of anisotropic composite assemblies, that can be polycrystals
with grain boundaries or thin interfaces as well as brick/block
masonry, and in particular on material parameters with
different degrees of anisotropy. To this regard, it is worth
noting that the micropolar continuum, differently from the
couple-stress continuum, that is a micropolar continuum with
constrained rotations (Sokolowski, 1972;Masiani and Trovalusci,
1996 Appendix), and also from second gradient continuum
(Bacigalupo and Gambarotta, 2011; Trovalusci and Pau, 2014),
presents the peculiar strain measure of the relative rotation
between the local rigid rotation (macrorotation) and the
microrotation that is related to the skew symmetric part of strain
and then, in terms of work expended, to the skew symmetric
part of the stress, whose contribution has significant role in
anisotropic media (Pau and Trovalusci, 2012; Trovalusci and
Pau, 2014). It is worth noting that, the different behavior
between micropolar without and with constrained rotations
media, for which the relative rotation is null, is also of interest
for investigating the loss of ellipticity of problems leading to
strain localization phenomena (Bigoni and Gourgiotis, 2016;
Gourgiotis and Bigoni, 2016). Such effects are expected to be
governed by both material size (de Borst, 1991; Sluys et al., 1993)
and also the degree of anisotropy.

In a recent work (Leonetti et al., 2019), by adopting
the coarse-graining procedure presented in Masiani and
Trovalusci (1996); Trovalusci and Masiani (1999), the behavior
of orthotropic brick/block masonry panels under compressive
loads at the top, described as equivalent micropolar continua,
has been investigated by varying the brick size and the load
footprint, showing the capability of the micropolar model
to distribute the load depending on the brick size. In the
present work, the effect of the degree of anisotropy of the
(coarse) continuum micropolar model on the strain/stress
diffusion is studied. The same coarse-graining procedure is
used which can be shown to be actually dependent both
on the brick size, shape and texture of the original (fine)
lattice model. The simulations have been carried out for a
panel under localized loads, using a standard finite element
approach based on a micropolar finite element implementation,
with quadratic and linear interpolation functions for the
displacement and rotation fields, developed in Fantuzzi et al.
(2018) following the approach in Providas and Kattis (2002)
and implemented within Comsol Multiphysics© framework
(Comsol, 2017). The results are presented in terms of
contour plots of displacement, stress and relative rotation, the
significant strain measure related to the non-symmetrical part of
the strain.

The present work is structured as follows. After the
introductory section, the mechanics of anisotropic micropolar
continua is illustrated with particular emphasis on anisotropic
composite assemblies in section Mechanics of Anisotropic
Micropolar Continuum. Section Finite Element Formulation
is dedicated to the finite element implementation. Section
Numerical Simulations presents the numerical applications and
discussions about the novel results presented in this work. Finally
some conclusions and remarks are given.
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MECHANICS OF ANISOTROPIC
MICROPOLAR CONTINUUM

The micropolar continuum is a well-known model equipped by
theoretical, numerical, and experimental studies in the literature
(Nowacki, 1970; Stojanović, 1972; Lakes and Benedict, 1982; Yang
and Lakes, 1982; Lakes, 1983, 1986; Bauer et al., 2012; Rueger
and Lakes, 2016). This continuum is made of particles which can
undergo independent displacements and rotations and belongs to
a class of generalized continua of the so-called implicit non-local
type (Eringen, 1999; Trovalusci, 2014). Reducing the description
to two-dimensional (2D) media, each material particle in the
2D frame has 3 degrees of freedom: the (macro) displacements
components, u1, u2 , and rotation, φ (micro-rotation). The local
linearized kinematic compatibility relations take the form:

ε11 = u1,1, ε22 = u2,2, ε12 = u1,2 + φ,

ε21 = u2,1 − φ,χ31 = φ,1, χ32 = φ,2, (1)

where εij (i, j = 1, 2) indicate the components of the strain tensor,
while χ31,χ32 indicate the only independent components of the
curvature tensor. The term θ = (u2,1 − u1,2)/2 is the local rigid
rotation (macro-rotation) in such a way that:

ε12 = u1,2 − θ + φ, ε21 = u2,1 + θ − φ (2)

Interaction among particles is described by stresses and micro-
couples as:

ti = σijnj, m3 = µ3jnj. (3)

where σij and µij (i, j = 1, 2) are the components of the
non-symmetric stress and couple-stress tensors, respectively, nj
being the components of the outward normal to the continuum
boundary. Equilibrium equations can be carried out, in the case
of body micro-couple neglected, as:

σij,j + bi = 0, µ3j,j − eij3σij = 0, (4)

bi being the components of the body force.
Linearly anisotropic stress-strain relations of the micropolar

two-dimensional continuum assume the following matrix form:


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


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







. (5)

By considering hyperelastic materials, the following major
symmetries hold:Aijhk=Ahkij,Bijh=Bhij,Dij=Dji (i, j, h, k=1, 2).

FINITE ELEMENT FORMULATION

The two-dimensional problem of micropolar continua is solved
through the finite element implementation proposed in Leonetti
et al. (2019), where displacement/rotation components are

ordered in the vectors u =
[

u1 u2
]T

, φ = [φ], and the stress

and strain components in the vectors σ =
[

σ11 σ22 σ12 σ21
]T
,

µ =
[

µ31 µ32

]T
, ε =

[

ε11 ε22 ε12 ε21
]T
, χ =

[

χ31 χ32

]T
.

FIGURE 1 | (A) Sketch of the present problem with (B) present finite element mesh.
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The weak form of the present problem has to be formulated
in order to carry out the finite element implementation, and,
considering a domain � with boundary ŴN , writes:

∫

�

δεTσdA+
∫

�

δχT
µdA =

∫

�

δuTbdA+
∫

ŴN

δuTtdl+

∫

ŴN

δφT
mdl ∀δu, δφ, (6)

with δ denoting the variation operator, b the body force vector,
t̄ and m̄ the traction and couple-traction vectors applied on the
boundary ŴN . Note that, the curvature vector χ is due to the
first-order partial derivatives of the micro-rotation, thus C0 finite
elements are adopted.

Finite element approximation though interpolation functions
Nu and Nφ is given by u = Nuũ,φ = Nφ φ̃, where the over
tilde vectors indicate the kinematic parameters correspondent
to in-plane displacements and rotations at the nodes. Quadratic
interpolation functions for the displacements and linear ones for
the rotations have been assumed, as it was introduced in Leonetti
et al. (2019). Thus, displacements are modeled with nine nodes,
whereas micro-rotation are related to the four corner nodes.

TABLE 1 | Constant mechanical properties used in all computations.

A1111 3.75 · 104MPa

A2222 1.5 · 104MPa

A1212 0.75 · 104MPa

A2121 3 · 104MPa

D11 1.125 ·MN

D22 0.375 ·MN

TABLE 2 | Mechanical properties used in Configuration 1.

Material#1 Material#2 Material#3 Material#4

A1121 104MPa 1.5 · 104MPa 2 · 104MPa 2.5 · 104MPa

A2212 0.25 · 104MPa 0.375 · 104MPa 0.5 · 104MPa 0.625 · 104MPa

TABLE 3 | Mechanical properties used in Configuration 2.

Material#1 Material#2 Material#3 Material#4

A1122 0MPa 0.5 · 104MPa 104MPa 1.5 · 104MPa

D12 0MN 0.5MN 1MN 1.5MN

TABLE 4 | Mechanical properties used in Configuration 3.

Material#1 Material#2 Material#3 Material#4

A1112 0.25 · 104MPa 0.30 · 104MPa 0.35 · 104MPa 0.40 · 104MPa

A2221 104MPa 1.2 · 104MPa 1.4 · 104MPa 1.6 · 104MPa

Interpolation function vectors are given in matrix form as:

Nu =
[

Nu
1 0
0 Nu

1
· · ·

Nu
9 0
0 Nu

9

]

, Nφ =
[

N
φ
1 · · · Nφ

4

]

, (7)

Thus, the micropolar strains given by Equation (1) can be
written as:

ε = Lu+Mφ, χ = ∇φ, (8)

where the matrix operators L andM are defined as:

L =

[

∂
∂x1

0 ∂
∂x2

0

0 ∂
∂x2

0 ∂
∂x1

]T

, M =
[

0 0 1 −1
]T
. (9)

Then Equation (8) becomes:

ε = LNuũ+MNφ φ̃ =
[

LNu MNφ

]

{

ũ

˜φ

}

= Bεd,χ = ∇

(

Nφ φ̃

)

=
[

0 ∇Nφ

]

{

ũ

φ̃

}

= Bχd, (10)

Where d indicates the unknown vector of nodal displacements.
The matrices Bε and Bχ collect the derivatives of the
interpolation functions matrices Nu and Nφ . Therefore, the
constitutive relations (5) become:

σ = DεεBεd + DεχBχd, µ = D
T
εχBεd + DχχBχd, (11)

where:

Dεε =









A1111 A1122 A1112 A1121

A2211 A2222 A2212 A2221

A1211 A1222 A1212 A1221

A2111 A2122 A2112 A2121









,

Dεχ =









B111 B112
B221 B222
B121 B122
B211 B212









, Dχχ =
[

D11 D12

D21 D22

]

. (12)

Note that coupling between classical and micro-polar effects are
considered by matrix Dεχ . Finally, the algebraic finite element
problem (without body forces) reads:

δdT
∫

�

(

B
T
ε DεεBε + B

T
ε DεχBχ + B

T
χD

T
εχBε + B

T
χDχχBχ

)

dA

︸ ︷︷ ︸

K

d

= δdT
∫

ŴN

[

NT
u t̄

NT
φ m̄

]

dl

︸ ︷︷ ︸

F

∀δd, (13)
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FIGURE 2 | Configuration 1, vertical displacement component, u2, contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy

degree).

FIGURE 3 | Configuration 1, vertical stress component, σ22, contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

where K and F indicate the stiffness matrix and the nodal
force vector of the adopted finite element for describing 2D
linearly elastic anisotropic micropolar bodies. A classical Gauss-
Legendre integration is considered for computing the integral
terms appearing in Equation (13).

The present model has been implemented within the
framework of Comsol Multiphysics R© software (Comsol, 2017).

NUMERICAL SIMULATIONS

The present study aims at investigating the mechanical
behavior of two-dimensional anisotropic micropolar media
under localized loads by varying the degree of anisotropy,
through the change in the material properties identified using the
coarse-graining procedure described in Masiani and Trovalusci
(1996), Trovalusci and Masiani (1999), considering at the
(fine) micro-level anisotropic brick/block assemblies of different

textures and related aspect and ratios, and at the macroscopic
(coarse) level an energy equivalent micropolar continua.

It has been widely shown that homogenized micropolar
models prove to be suitable of retaining memory of the behavior
of the actual composite microstructure in the presence of high
gradients of deformation, that occur even in the elastic range
when load or geometrical singularities are present (Masiani and
Trovalusci, 1996; Trovalusci and Masiani, 1999; Sansalone et al.,
2006). In particular, due to the presence of the relative strain
measure, it has been shown that micropolar continua perform
better than classic and other generalized continua when non-
symmetric shear effects have to be accounted for, as in the case of
strongly orthotropic media (Pau and Trovalusci, 2012; Trovalusci
and Pau, 2014).

The role of scale effects in orthotropic media under the
action of a load applied on portions of variable size of the
boundary of the body and the consequences in terms of strain
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FIGURE 4 | Configuration 1, relative rotations, θ − φ , contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

FIGURE 5 | Configuration 2, vertical displacement component, u2, contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy

degree).

and stress diffusion have been highlighted by the parametric
analyses performed in the recent work (Leonetti et al., 2019). The
present work, does not accounts for size effects but focuses on
the response of anisotropic micropolar media, under localized
loads, in the presence of an increasing degree of anisotropy.
The strain/stress diffusion has been numerically investigated
according to the constitutive relations considered, that couple the
effect of normal and shear stress/strain, as well as couple stress
and curvature in orthogonal direction. This study highlights
aspects that, in the Authors’ knowledge, have not been previously
investigated in materials with anisotropies. These aspects can
be also interesting in the perspective of dealing with significant
problems of loss of ellipticity followed by strain localization
phenomena, with folding and/or fracture for instance, that
affect both classical and constrained micropolar materials (Sluys
et al., 1993; Nguyen et al., 2012; Bigoni and Gourgiotis, 2016;
Gourgiotis and Bigoni, 2016).

The problem numerically investigated is a square domain of
width L = 4m, only fixed at the bottom edge and subjected
to a top load acting on length size a/L = 0.25 (Figure 1A)
and pressure q = 10 MPa. Due to the symmetry of the
problem only half of the domain has been analyzed and the
correspondent finite element mesh is depicted in Figure 1B.
Parametric analyses have been performed by increasing the
coefficients representing material anisotropy according to the
following three different configurations that have been selected
in order to investigate separately the role of different cases
of anisotropy.

Table 1 reports the independent material coefficients
that are considered constant in the simulations. The other
coefficients increase according to a constant parameter allowing
to represent four different degrees of anisotropy from a
minimum (defined as Material #1) to a maximum (Material
#4) value.
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FIGURE 6 | Configuration 2, vertical stress component, σ22, contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

FIGURE 7 | Configuration 2, relative rotations, θ − φ , contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

Configuration 1:
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, (14)

accounts for the increment of the constitutive elastic coefficients
(reported in bold in Equation (14)) coupling the normal
stresses σ11, σ22 with the non-symmetric shear strains ε21, ε12,
respectively, and the non-symmetric shear stresses σ12, σ21 with
the normal strains ε22, ε11, respectively: A1121 = A2111 and
A2212 = A1222. The implemented values are listed in Table 2

and their values for the four materials configurations considered
(ranging fromMaterial#1, with the lower degree of anisotropy, up
to Matrerial#4 with the higher degree of anisotrpoy) are obtained

by considering the increase through a parameter corresponding
to (A1212 − A2212) /4 and (A2121 − A1121) /4, respectively. This
choice is arbitrary, but it allows us to define an increasing degree
of material anisotropy obtaining plausible results, as the elastic
constants on the main diagonal are generally predominant with
respect to the out-of-diagonal terms, suitable to highlight the
effects of interest.

Configuration 2:
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, (15)

considers a micropolar orthotropic material, where the variable
elastic coefficients (reported in bold in Equation (15)) are:
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FIGURE 8 | Configuration 3, vertical displacement component, u2, contour plots for four material cases (Material#1/Material#4 minimum/

maximum anisotropy degree).

FIGURE 9 | Configuration 3, vertical stress component, σ22, contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

A1122 = A2211 and D12 = D21, respectively concerns the classical
“Poisson effect” and a corresponding micropolar out-of-diagonal
effect in the model. The values provided are listed in Table 3.
Also in this case the increase from Material#1 (with no Poisson’s
effect) to Material#4 (with the higher Poisson’s effect) has been
put constant.

Configuration 3:
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, (16)

takes into account the increment of the material coefficients
(reported in bold in Equation (16)) that couple the normal
stresses σ11, σ22 with the correspondent non-symmetric
shear strains ε12, ε21, respectively, and the non-symmetric

shear stresses σ12, σ21 with the normal strains ε11, ε22,
respectively: A1112 = A1211 and A2221 = A2122. The
implemented values are listed in Table 4, and their values
for the four materials configurations considered are obtained
by considering the increase of a parameter corresponding to

(A1212 − A1112) /10 and (A2121 − A2221) /10, respectively. This
arbitrary choice was due on the observed strongly coupling
(normal/transversal) effects on the micropolar response. As for
Configuaration 1, it allows us to define an increasing degree of
material anisotropy obtaining results suitable to highlight the
relevant effects.

Figures 2–4 represent the contour lines of the vertical
component of displacement, u2, the vertical stress component,
σ22, and relative rotation, θ − φ , for Configuration 1, in
which the coupling material properties between normal stresses
and the correspondent shear strains, and vice-versa, increase
(Equation (14)) as above described. In terms of displacements
(Figure 1) it can be observed that, due to the normal stress/shear
strain/ coupling, the more the anisotropic degree, and the related
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FIGURE 10 | Configuration 3, relative rotations, θ − φ , contour plots for four material cases (Material#1/Material#4 minimum/maximum anisotropy degree).

coupling, increases, from Material#1 to Material#4, the more
the load distributes affecting the panel in its bottom part.
Correspondingly, in terms of vertical stresses (Figure 3) the
coupling due to anisotropy increases the stress diffusion. This
effect is highlighted also by the relative rotation plot (Figure 4),
wherein themicropolar effect of θ−φ increases inMaterial#4 case
due to the presence of a strongly anisotropy/coupling between
normal and shear components.

Figures 5–7 show the results obtained for Configuration
2, characterized by the orthotropic material symmetry, which
considers the classical and, in a sense, micropolar “Poisson’s
effect” through the terms A1122, D12. The first material case
(Material#1) corresponds to the one with null Poisson’s effect
(A1122 = D12 = 0), whereas the others have increasing
coefficients through a constant value as shown in Table 3.
In Figure 5 the contour lines of the vertical component of
displacement field, u2, diffuse depending on the degree of
anisotropy. Analogously, for the vertical stress component, σ22,
in Figure 6 we can observe the same phenomenon. In both cases
the curves are more distributed in the case of higher degrees of
orthotropy. Figure 7 shows that the relative rotation, θ −φ , map
does not change, as this component is not affected by the elastic
coefficients involved. For pointing out the correspondences
between classical and micropolar elastic moduli the reader may
refer to the work [Trovalusci and Masiani (1999), section 4].

Finally, Figures 8–10 are related to Configuration 3, which
couples normal and shear stress/strain components as described
in Equation (16). The present condition influences more the
solution as it can be seen in Figure 8, where the vertical
displacement component, u2, changes homogeneously showing
a wider diffusion related to the increasing of the degree of
anisotropy. The same can be said for the vertical stress in
Figure 9, where the reaction stresses at the bottom increases as
the coupling effect increases. The most interesting representation
is due to the relative rotation (Figure 10) where a strong
boundary effect is shown. The field becomes distorted at the
top (where the vertical load is applied) and at the bottom (even
though an homogenous boundary condition has been applied) as

the coupling mechanical properties are increased. The contour
plot distortion at the bottom is due to the strong discontinuity
between a clamped horizontal boundary condition and a free one
on the left vertical edge.

FINAL REMARKS

This work proposes a numerical finite element solution of
an anisotropic micropolar panel subjected to a concentrated
pressure on a small portion of the top boundary, and the effect
on the mechanical behavior of this body has been investigated
for particular cases of material anisotropy. The stress diffusion
under concentrated load in masonry assemblies has been widely
investigated also from the experimental point of view (Bigoni
and Noselli, 2010). In earlier works it has been shown that while
the micropolar model is able to distribute the load depending
on the element size, the classical continuum lacking in material
internal lengths does not entail such effect. Moreover, the
micropolar model, differently from the couple stress (micropolar
with microtation constrained to be equal to the local rigid
rotation) and second gradient model, presents the peculiar strain
measure of relative rotation suitable to take into account the non-
symmetries in strain and stress that are predominant in strongly
anisotropic assemblies (Pau and Trovalusci, 2012; Trovalusci,
2014; Trovalusci and Pau, 2014).

In the present work, attention has been given to the effect
of different degrees of material anisotropy, not only orthotropy,
for micropolar bodies subjected to localized loads, particularly
focusing on the strain measure of the relative rotation. It
has been highlighted that the anisotropic elastic coefficients of
the micropolar continuum, which couple normal stresses with
non-symmetric shear strains and vice-versa, have the effect of
distributing the load according to the degree of anisotropy of
the reference material. The coefficients that relate normal stress
to normal strain components in the orthogonal directions, as
well as the coefficients relating the couple-stress to the curvature
components in the orthogonal direction, governing the classical
and, in a sense, micropolar Poisson’s effect, instead, does not
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significantly affect the response of the micropolar continuum. All
the analyzed cases showed that an increasing level of anisotropy
corresponds to a significant distribution of the load in terms of
stresses within the continuum.

It can be concluded that when dialing with materials
made of particles assembled according to strong anisotropies
it is advisable to resort to micropolar theories. As further
development, we expect to investigate the ability of
unconstrained anisotropic micropolar models to detect strain
localization phenomena.
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We present in this work the manufacturing, modeling, and testing of dome-shaped

cellular structures with auxetic (negative Poisson’s ratio) behavior. The auxetic

configurations allow the creation of structures with synclastic (i.e., dome-shaped)

curvatures, and this feature is used to evaluate the performance of cellular metamaterials

under quasi-static indentation conditions. We consider here different cellular geometries

(re-entrant, arrow-head, tri-chiral, hexagonal) and the implications of their manufacturing

using 3D printing techniques with PLA material. The dome-shaped configurations are

modeled using full-scale non-linear quasi-static and explicit dynamic FE models that

represent both the geometry and approximate constitutive models of the PLA filament

material derived from tensile tests on dogbone specimens. The cellular metamaterials

samples are subjected to indentation tests, with maps of strains obtained through

DIC measurements. The correlation between experimental and numerical simulations

is good, and shows the peculiar indentation behavior of these cellular structures. We

also perform a comparative analysis by simulation of the force/displacement, strain and

fracture history during quasi-static loading, and discuss the performance of the different

cellular topologies for these dome-shape metamaterial designs.

Keywords: auxetic domes, snap-through, buckling, re-entrant, arrow-head, tri-chiral, non-linear FE, digital image

correlation

1. INTRODUCTION

A mechanical metamaterial is a multiscale system of materials with engineered mechanical
properties that can vary dramatically from those of the base material. Mechanical materials can
therefore exhibit some global unusual deformation mechanisms. Lattice structures are a popular
example of mechanical metamaterials because of their high strength to density ratio, compared to
traditional structural materials (Ashby, 2006). Another important aspect of lattice structures is their
tailorable mechanical response, both at global and hierarchical scale (Sun and Pugno, 2013).

A subset of mechanical metamaterials is represented by auxetics. While conventional cellular
foams and rubber-like materials have a Poisson’s ratio varying from ν ≈ 0.5 (incompressible)
to ν = 0 (e.g., cork) with decreasing density, auxetics possess instead a negative Poisson’s ratio.
Negative ν means that the elongation in one direction is accompanied by an elongation in the
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transverse direction. On the opposite, the auxetic material will
shrink under compression. Auxetic structures can be deployed to
provide a required indentation resistance (Evans and Alderson,
2000), high compressive and shear stiffness (Sanami et al., 2014),
and high energy absorption (Mohsenizadeh et al., 2015). In
biomedical applications of auxetics have been sought in bone
implants (Warmuth et al., 2017; Kolken et al., 2018). Auxetics
can be also developed by applying patterns of cuts and holes
(Grima et al., 2005). Perforated auxetic composite plates have
been used in a hybrid flexible cushioning support for multiple
sclerosis patients (Mohanraj et al., 2016).

The mechanical properties of lattices can be changed
dramatically (Ashby, 2006) by varying the connectivity of the
struts and the angles between the same struts at joints, therefore
creating auxeticity in essentially bending-dominated lattices
(Grima et al., 2010; Bouakba et al., 2012; Saxena et al., 2016).
Auxetic structures exhibit synclastic behavior when bent, i.e.,
they deform into dome shapes (Alderson and Alderson, 2007),
rather than saddle ones, which are typical of structures with
positive ν. This makes auxetics useful in applications such as
pressure vessels (Adachi, 1968) and anti-blast protections (Sahu
and Gupta, 2015). Auxetic domes designs could therefore be
suitable for protective equipment applications. A lower cell
density in an auxetic lattice also leads to lower stiffness and higher
bending and rotation motion of the struts (Scarpa et al., 2000;
Carneiro et al., 2016), and this increases the effective negative
effective Poisson’s ratio νa (Carneiro et al., 2016). The energy
absorption of chiral auxetic topologies is greater than that of
the re-entrant dome as the strut thickness increased and the
νa reduced (Scarpa et al., 2000). This suggests that there is a
smaller dependence on cell geometry configurations like the
tri-chiral lattice.

The energy absorption of a foam increases with density,
because the indenter/impactor force is distributed over a larger
number of cells (Lakes and Elms, 1993; Fleck and Qiu, 2007). The
increase of the cell density in a structure like an auxetic dome
should therefore lead to a greater amount of strut deformation,
and thus to higher energy absorption.

In the arrow-head topology νa grows from a negative value to
zero with increasing strain (Yang et al., 2018). The arrow-head
and re-entrant topology has higher energy dissipation than the
hexagonal lattice due to the negative in-plane νa. The re-entrant
topology has the highest energy absorption (Yang et al., 2018).
Both re-entrant and arrow-head topologies are significantly
anisotropic (Zied et al., 2015).

Plasticity and non-linear geometry have a significant
effect on FE modeling of deformation of auxetic structures
(Zhang et al., 2018). Structures ranging from a unit
cell to full scale geometrical models have been modeled
successfully with beam elements and 3D solid elements
(Blachut and Galletly, 1988).

Although auxetic foams have received a lot of attention (Lakes
and Elms, 1993; Zied et al., 2015; Yang et al., 2018), little
research has been done on auxetic dome-shaped structures. The
work presented in this paper focuses on the buckling and post-
buckling behavior of novel auxetic lattice domes, such as those
shown in Figure 1.

2. DOMES AND THE EFFECT OF THE
POISSON’S RATIO

In 1946 Reissner showed that the term (1− ν2)1/2, where ν is the
Poisson’s ratio of the material, appears in the linear differential
equations for normal displacements, w, in thin shallow spherical
shells (Reissner, 1946). Reissner considered a spherical shell
segment being shallow if the ratio of its height to the base
diameter did not exceed 1/8. Ashwell extended Reissner’s theory
to large deflections w and showed that a spherical shell segment
loaded by an inward point load, F, does not exhibit instability
(Ashwell, 1960). Ashwell also demonstrated that the linear theory
predicts a linear relationship between F and w, while his non-
linear theoretical model predicts a non-linear F(w) response, but
still with no loss of elastic stability. A snap-through instability
(buckling) is predicted when distributed load (external pressure),
p, is applied to a spherical shell, with the same term (1 −
ν2)1/2 appearing in the expression for the critical pressure, pc
(Budiansky, 1960), see Equation (1), where E is the Young’s
modulus, and R and t are the shell radius of curvature and
thickness respectively.

pc =
2E

√

3(1− ν2)

(

t

R

)2

(1)

Leckie showed that a snap through instability does indeed
occur under the application of an inward radial force thorough
a rigid “boss” of a finite diameter, if plastic deformation
is allowed (Leckie, 1969). However, as a plastic deformation
is incompressible, no dependence of the critical load on ν

was found. This aspect is reinforced also by the particular
case we consider in the following example. The loading case
is somewhat intermediate between an inward radial force
and external pressure on a simply supported spherical shell
segment (hereafter–a dome) compressed between a pair of
rigid plates. A preliminary non-linear elastic FE study using
full 3D solid theory and an isotropic elastic homogeneous
material shows that, although a snap-through behavior is clearly
present, no sensitivity to ν is also apparent (see Figure 2).
In this figure w has been scaled by the dome thickness t;
F∗ is the applied load scaled as shown in Equation (2). The
parameters h and b correspond to the dome height and the base
radius, respectively.

F∗ =
F

ERt

h

b
(2)

In this particular example the following dimensions have
been considered: R = 50 mm, b = 40 mm, h =
20 mm, t = 2 mm. The Young’s modulus E =
2, 774 MPa represents a polymeric material (typical PLA
used in 3D printing). The elements considered in this
simulations were 2nd order tetra elements C3D10 (Dassault
Systèmes, 2014). The models feature 4 elements through
the thickness. The Abaqus eigenvalue (Dassault Systèmes,
2014) results for the “boss” loading of a simply supported
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FIGURE 1 | The four cellular topologies considered here (Left): (a) hexagonal, (b) re-entrant, (c) arrow, and (d) tri-chiral. An arrow-head dome PLA specimen (Left)

and the spherical dome dimensions (Right). The sphere radius is 50 mm. The dome height is 20 mm and the dome base radius is 40 mm.

FIGURE 2 | FE snap-through response in the plate compression of a solid dome, showing: (Left) a snap through response, and the maximum principal logarithmic

strain, ǫ1, at (Middle) buckling and (Right) after snap-through.

dome are shown in Figure 3. Note that the predicted critical
loads are 3 order of magnitude higher than from plate
compression. However, the shape of the curve is the one
given by Equation (1).

Figures 2, 3 suggest that the issue of the stability of domes with
different Poisson’s ratio values is complex, and cannot be simply
resolved by using existing analytical solutions. In this work we
tackle this particular problem with a program of experimental
and numerical experiments on lattice domes, which possess
different lattice geometries that mimic varying Poisson’s ratios.

3. EXPERIMENTS

3.1. PLA Mechanical Properties
The domes were manufactured from PLA using a Raise3D N1
system with fused filament fabrication (FFF) to extrude the
filament into layers, with a single nozzle. The CAD model was
converted to the stereolithography (STL) format, compatible
with the 3D printer “slicing” software IdeaMaker. IdeaMaker
eventually translates the model into a G-code file that contains
commands of tool path and amount of extruded material for

the printer to execute and produce the domes. The “slicing”
process involves applying internal support structures to the
model to prevent the dome from collapsing, as the struts can
overhang at angles greater than 35◦ (Baumann et al., 2016).
A photo of the 3D printer used for this work is provided as
Supplementary Material.

The domes were manufactured with the following topologies:
hexagonal, tri-chiral, re-entrant, and arrow-head. A 0.2 mm
turquoise colored filament was used with 100% infill ratio,
extruder temperature of 235◦, 0.2 mm layer height, and 65◦ print
bed temperature. The strut thickness and width were 2 mm.

FFF 3D printing is known to induce mechanical anisotropy in
finished components due to its method of material deposition.
To reduce the printed material anisotropy, the “slicing” software
changes printer’s tool path by 90◦ at every layer by default. Thus,
it had to be edited manually to enforce specific direction at all
the layers. To measure this anisotropy, dog-bone specimens of 6
configurations were made, see Figure 4.

The tensile tests were carried out at a rate of 2 mm/min using
a clip gauge, according to ASTM D638-14 (2014) valid for 3D
printed polymers. The clip gauge, with a resolution of 0.5%, was
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FIGURE 3 | Eigenvalue analysis for “boss” loading of a solid dome, showing: (Left) the buckling load, (middle) the prescribed displacement of the “boss” area and

(Right) the 1st buckling mode.

FIGURE 4 | Six layouts for printing dog-bone specimens: (A) 90◦ with support walls, (B) 90◦ without support walls, (C) ±45◦ with support walls, (D) 0◦ with support

walls, (E) 0◦ without support walls, and (F) 0◦/90◦ with support walls.

chosen over the strain gauges because it allows quicker placement
on the samples and less time for the experimental set up (Motra
et al., 2014). The load cell uncertainty was also 0.5% The cross
section area (for stress calculations) was measured with Vernier
calipers with 0.02 mm resolution.

The measured PLA Young’s modulus was E = 2742 ± 129
MPa, which agrees with the published data (E = 2852± 88 MPa;
Innofil3D, 2017). The mean yield stress is 15 MPa and the mean
flow curve is provided as a Supplementary Material.

3.2. Compression Testing of Domes
The compression tests have been carried out with a Shimadzu
Universal testing equipped with a 10 kN load cell. A very low
displacement rate (3 mm/min) was used to avoid strain rate
effects, as the PLA properties are severely affected by the strain
rate (Richeton et al., 2006). The tests were performed at room
temperature, well below the PLA glass transition temperature of
59◦C (Narladkar et al., 2008).

The use of Digital Image Correlation (DIC) required that the
top and/or the bottom surfaces of the domewere visible. A rig was
designed to allow cameras to view the dome through transparent
acrylic plates, while being out of the way, Figure 5. A steel plate
was used at the base. Three 8 mm diameter steel threaded rods
were used to attach 10 mm thick acrylic plates. The base diameter
was 250 mm.

Given the relatively low stiffness of the acrylic, it was
important to measure the compliance of the rig, to subtract from
the measured dome displacement. Equation (3) expresses the rig
compliance as displacement δ, in mm, vs. applied force F, in N.

δ = 0.02849F0.545 (3)

The DIC and load/displacement data were captured at 10 Hz.

3.3. Digital Image Correlation (DIC)
A LaVision portable 3D StrainMaster DIC system was used, with
two illumination sources and two M-Lite 5 Megapixel cameras,
20mm lenses and polarizing filters (LaVision, 2017). The kit was
mounted on a leveled stand and placed within the experimental
rig, see Figure 5.

A zeromean normalized sum of squared difference correlation
function (ZNSSD) has been shown to be the most effective for 3D
DIC, because it compensates for errors associated with intensity
change along the deformation (Pan et al., 2010). For an image
subset with dimensions 2M + 1 × 2M + 1 pixels, the ZNSSD
correlation function is given in Equation (4).

C =
∑





f (xi, yj)− fm
√

∑

(f (xi, yj)− fm)2
−

g(x′i, y
′
j)− gm

√

∑

(g(x′i, y
′
j)− gm)2





2

(4)

where all summation is for i and j from −M to M, fm =
1

(2M+1)2

∑

f (xi, yj) and gm = 1
(2M+1)2

∑

g(x′i, y
′
j); and f and

g are pixel intensities in the reference and the target subsets
respectively (Pan et al., 2010).

The DIC method is inherently subjective. Numerous
parameters affect the quality of DIC results, such as the lighting,
the camera exposure (Zhu et al., 2018), the focal length (Reu et al.,
2015), the surface pattern (Lecompte et al., 2006; Sutton et al.,
2009; Reu et al., 2015), as well as the accuracy of the calibration.

A subset size of 13 × 13 pixels was used, as it allows
approximately three dominant features within a single subset.
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FIGURE 5 | The loading rig for the DIC application (Left) and a schematic of the positioning of the cameras (Right).

FIGURE 6 | Schematic of the FE dome compression test.

This was found to be the optimum value in this work and
consistent with best practice in literature (McGinnis et al., 2005).
To increase the spatial resolution, the step between the subsets
was 3 pixels, giving a 10 pixel overlap. A moving average
smoothing kernel of 9 × 9 pixels was used for the strain data.
The main purpose of smoothing in this work is to reduce the
noise produced at the strut edges. The kernel size was chosen to
reduce areas of outlying high strains without noticeably reducing
the accuracy of the displacements.

The refraction effects due to imaging through the acrylic
plates were measured by varying the angle between the camera
optical axis and the normal to the plate. The maximum

difference was 0.6%, i.e., the effects of refraction could be
considered negligible.

The DIC displacement agrees to within 1% with the Shimadzu
displacement, which was validated to within 0.02 mm using
Vernier calipers, 0.03% of the dome height. This comparison is
provided as a Supplementary Material.

4. FE MODELING OF THE EXPERIMENTS

The Abaqus FE package was used (Dassault Systèmes, 2014)
to model the compression of the auxetic cellular domes. Both
implicit and explicit solvers were used, depending on the analysis.
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FIGURE 7 | FE vs. experimental load/displacement results for (A) arrow-head and (B) re-entrant topologies.

FIGURE 8 | DIC vs. FE vertical displacements (DIC on the left and FE on the right), showing (A,B) at the onset of buckling, and (C,D) when the dome center touches

the bottom plate.

Continuum 3D 10-node quadratic tetrahedral elements (Abaqus
type C3D10) were used and isotropic homogeneous material
properties were assumed, with isotropic hardening. An analysis
of the material’s Poisson’s ratio concluded that it has a negligible
effect on the buckling load or post-buckling behavior. Therefore,
the reference value of ν = 0.3 was used in all simulations (Farah
et al., 2016). While a mesh sensitivity analysis (provided as a
Supplementary Material) shows that a global mesh size of 1.5
mm was acceptable for post-buckling analysis.

The static analysis was performed using Newton-Raphson
and Riks methods. The Riks method is typically used to
model the snap through buckling in solid domes. However,
since lattice domes (and auxetic domes in particular) exhibit
a much weaker snap through effect, the Newton-Raphson
method with displacement control was found in this work
to be sufficiently stable. Element deletion was used for
modeling fracture propagation with the explicit dynamic solver
(Abaqus/Explicit). Fracture simulations used the Johnson-Cook
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FIGURE 9 | DIC vs. FE displacement at 3 points on the domes, showing: (A) arrow-head, (B) re-entrant, and (C) tri-chiral topologies.

FIGURE 10 | DIC vs FE engineering strain on struts belonging to the central cell, for (Left) re-entrant topology (axial strut), (Middle) re-entrant topology (diagonal

strut), and (Right) tri-chiral topology (single strut).
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FIGURE 11 | FE (Left) vs. DIC (Right) ǫ1 at buckling for 3 topologies: arrow-head in the top row, re-entrant in the middle row and tri-chiral in the bottom row. The

most interesting features have been circled.

(JC) hardening and the JC failure criterion (Johnson and
Cook, 1985) due to their simplicity and ready availability in
the Abaqus explicit dynamic solver (tuning JC is described
in Supplementary Material).

Schematics of the FE compression test is shown in Figure 6,
where the bottom plate was fixed and the top plate was moved
vertically down under displacement control. Both plates were
modeled as rigid bodies and the interaction between them
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FIGURE 12 | FE (Left) vs. DIC (Right) ǫ23 at buckling for 3 topologies: arrow-head in the top row, re-entrant in the middle row and tri-chiral in the bottom row.

and the dome was defined as friction contact. the friction
coefficient, µ, of the interaction was found to have a significant
affect on buckling in the FE simulations, with higher friction
increasing the buckling load and the post-buckling stiffness. It
was found that µ = 0.4 gives the best agreement between

the FE results and the DIC data regarding the change in dome
base diameter.

Once the FE model was calibrated, several parametric studies
were performed (presented as a Supplementary Material)
showcasing their affect on the dome performance.
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TABLE 1 | Mean values and uncertainty of the Poisson’s ratio, for 2D lattices, and

of anisotropy for the domes.

2D lattices Domes

Topology ν Uncertainty [%] a Uncertainty [%]

Re-entrant –0.425 3.1 –0.499 12.8

Arrow-head –0.315 9.8 –0.285 6.5

Tri-chiral –0.72 11.1 –0.987 3.1

Hexagonal 0.8–1 (Ashby,

1983)

N/A –0.95 6.7

5. RESULTS

Figure 7 shows a very good agreement between the FE and the
experimental results for the arrow-head and re-entrant domes.
The experimental data error bars represent here the standard
deviation from 5 experiments. For the FE, the error bars represent
the mean and the upper and the lower bounds of the flow
curve. Note that the re-entrant topology exhibits virtually no snap
through behavior, and even the arrow-head topology shows a
much lower snap though compared to the one exhibited by a solid
dome (Figure 2).

The 3D printing using PLA produces struts of uneven
thickness. Our measurements showed that the mean strut
thickness was 2.14mmwith a standard deviation of 0.07mm. The
FE strut also thickness varied due to the limitations of converting
a CADmodel into a FE mesh. The mean thickness of the struts in
the Finite Element models was in reality equal to 2.12 mm, with a
standard deviation of 0.14 mm. This small systematic error might
explain the higher experimental loads observed in Figure 7.

The Finite Element results have been computed by
considering both large geometric deformations and the non-
linear mechanical properties of the PLA material. A question
may arise about the importance in the mechanical response of
the architecture of the domes vs. the core material behavior.
To this end we have performed simulations related to arrow,
re-entrant and trichiral configurations under large geometric
deformations, but with linear elastic material only (see Figure S5
right). The equivalent Young’s modulus of the PLA has also
been varied to assess any material scaling effect on the response.
The results clearly show that up to a scaled displacement of
0.4–0.5 the response of the dome is negligibly dependent of the
mechanical properties (both linear and non-linear—Figure 7).
The first post-buckling occurrence in the response is scarcely
dependent upon the linearity or non-linearity of the core
materials properties, and appear at the same scaled displacement
value. These are clear indications that the force/displacement
behavior of these cellular domes under indentation is essentially
governed by the architecture of the lattice.

Figure 8 shows a very good qualitative agreement of the
displacement contour plots between DIC and FE, and an
excellent quantitative agreement is seen in Figure 9, which shows
vertical (z) displacement at the center of the dome (G1), and
points located 2 struts away from the top (G2), and 4 struts away
from the top (G3). The DIC error bars are standard deviations
from 5 experiments.

Figure 10 shows a very good match between the DIC and FE
engineering strains in the struts of the central cell, up to the end
of the simulation/experiment, (Figure 7). The time variable in
the graphs corresponds to the displacement steps of the indentor
surface. One can also notice a dramatic change in the strain
histories between the 3 different auxetic topologies.

Figure 11 compares FE vs. DIC ǫ1 and Figure 12 compares
FE vs. DIC ǫ13, or ǫxz , where z is the vertical direction.
Note that the LaVision’s “normal” in Figure 11 means principal
(LaVision, 2017). All contour plots show the onset of buckling,
and the matching color bars are used for FE and DIC for
ease of comparison. Regions of particular interest are circled in
these figures.

Two-dimensional (flat) lattice specimens were also printed
and tested under tension to measure the lateral contraction
and determine an equivalent Poisson’s ratio, ν for the lattice
structures (Table 1). Analytical models of 2D tri-chiral lattices
report ν = −1 (Prall and Lakes, 1997), whereas our 2D tests
give ν = −0.72. However, Prall and Lakes (1997) assumed zero
specimen thickness; for higher thicknesses or lower slenderness
ratios of the struts the shear deformation of the cross section
becomes important (Scarpa et al., 2000).

The coefficient a for the domes is defined as the ratio between
the diameter extension along x to the diameter contraction in
y under a compression along z. Thus, a is an indicator of
anisotropy, as well as of the Poisson’s ratio of the dome lattices.
The hexagonal lattice has a ≈ −1, because it is an isotropic
topology, which expands equally in x and y under compression.
Note that the 3 auxetic lattices show similar trends for ν and a.

Fracture was observed experimentally during the testing of
the re-entrant, hexagonal, and tri-chiral domes. An example is
shown in Figure 13B, which is a DIC shear strain map. The
region circled in red, on the outer rim of the dome, was where the
ductile fracture first appeared. Soon after, the fracture propagated
fast toward the center of the dome along the path indicated by the
black dashed line. These later fractures were all brittle.

Explicit dynamic FE simulations of fracture were then carried
out using the JC failure criterion, on the 3 topologies (Figure 13).
In all cases the fracture initiation was predicted at the outer
rim. Fracture propagation was simulated using the element
removal technique. The solid and the arrow-head domes showed
a significant plastic strain prior to fracture, whereas, the tri-chiral
dome fractured with little plasticity. This could be attributed
to the rotation of the tri-chiral cells, which represents another
deformation mechanism to absorb energy, aside from the
bending/stretching/shear of the struts.

The SEM images of the PLA fracture surfaces are provided as
Supplementary Material. The amount of plastic deformation in
the 3D printed PLA depends on the print direction. Voids and
coalescence are signs of ductile fracture in 3D printed polymers
(Torrado Perez et al., 2014; Gao and Qiang, 2017). Brittle fracture
is seen as the presence of “river lines,” which are a sign of two
surfaces being rapidly torn apart, like those on a cleavage fracture
in crystalline materials. There is evidence of both ductile and
brittle fractures in the SEM images.

Figure 14 compares compression response of domes with
4 lattice topologies (3 auxetic and hexagonal). The tri-chiral
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FIGURE 13 | FE vs. DIC fracture initiation, showing: (A) FE re-entrant, (B) DIC re-entrant, (C) hexagonal, and (D) tri-chiral topologies. FE data is the value for the JC

fracture criterion. DIC data is the maximum shear strain.

FIGURE 14 | FE (Left) and experimental (Right) load/displacement curves from buckling tests for 4 dome topologies.
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topology shows a load which is monotonically increasing (within
the data uncertainty), with little indication of buckling. The other
3 topologies show similar response, even though the hexagonal
lattice is not auxetic.

6. CONCLUSIONS

An accurate and optimized DIC method was produced and
used to successfully validate the FE models of auxetic cellular
domes. Very good agreement was achieved between DIC and
FE for the onset of buckling and post-buckling response,
including strain, displacement, and loads. Experimental
results are highly dependent on the errors and inaccuracies
in 3D printing.

Auxetic cellular domes offer less indentation resistance under
compressive loading than solid domes. They also show reduced
snap-through in comparison with conventional lattices and
solid domes. Tri-chiral topologies show higher resistance to
compression than conventional lattices, which in turn show
marginally higher resistance than the re-entrant topologies. The
smallest snap-through effect is observed with the re-entrant
topology. The cell density and dome curvature (contact size)
were shown to affect the compressive resistance and the severity
of snap-through.

We are currently working on assessing the dynamic response
of auxetic lattices, using a similar experimental and modeling
setup. These results will be presented in a follow-up publication.
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With recent advances in manufacturing methods for metals with defined, complex

shapes, the investigation of metallic lattice materials (metals containing significant

porosity with a regular arrangement of the solid, frequently in the form of thin structural

members or struts) has become more common. These materials show many interesting

properties, and may have the capacity to be more highly engineered and optimized

for a given application than the random structures of other microcellular metals, such

as metallic foams and sponges, permit. However, the novel structure brings new

structure-properties correlations to bear on the mechanical behavior of the materials.

This paper examines one type of lattice, made from titanium alloy (Ti6Al4V) and

fabricated by Electron Beam Melting (EBM), a material which typically shows only

limited plasticity on deformation. The overall mechanical response is governed by the

cooperative deformation of a very large number of individual struts that make up the

lattice, and thus there is great potential for significant impact from damage arising

due to defects in individual struts in the assembly. We explore the effect of simulated

processing defects (missing struts) on the lattice properties, and how deformation and

failure is distributed across the lattice after the onset of failure. To gain knowledge of

how lattices deform, samples of various geometries, designed to probe compression,

indentation-compression and tension (in the form of bending) are produced and tested

under Digital Image Correlation (DIC) mapping. The understanding gained here will be of

great use in designing new metallic lattice structures with greater damage tolerance and

resistance to failure.

Keywords: Ti6Al4V, lattices, additive manufacture, mechanical properties, digital image correlation

INTRODUCTION

Advances in novel manufacturing methods, such as Additive Manufacturing (AM) techniques
(Murr et al., 2012; Frazier, 2014), have led to the ability to create porous metal structures with
great control over the form the material takes. Porous metals can be desirable to achieve specific
behaviors, such as the ability to be crushed, to permit fluid transport or to allow an extra level of
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tailorability (that of the structure) to obtain the desired properties
of the material (Goodall, 2013). AM, with the ability to leave
spaces or retain regions of unmelted powder that can be
removed from the structure after processing, is well-adapted to
the needs of porous metal production, especially those based
on regular structures (although stochastic structures may also
be produced (Hernandez-Nava et al., 2015); while production
of such lattices is possible without AM (e.g., by using sheet
metal manufacturing techniques, for example; Kooistra and
Wadley, 2007; Queheillalt and Wadley, 2009), or only using
AM to assist with creating investment and molds used in
processing (Chiras et al., 2002), it is much facilitated by the
direct use of the technique. Nevertheless, it has to be recognized
that AM methods impose certain constraints over the physical
structure of the material processed, both at the level of the
part geometry, and also on the microstructure and the defect
population (Tammas-Williams et al., 2015).

There is scope for much exploration of different possible
porous forms. While not without limits, the range of structures
with the potential to be made by metal AM is much wider
than the examples already reported. Complex lattices with
highly engineered designs have been produced (for example
Amendola et al., 2015, 2016; Dumas et al., 2017), and
relatively well-characterized forms such as the diamond structure
(where the position of the struts replicates the tetrahedral
orientations of the atomic bonds in the structure of the
diamond form of carbon) are the more common. This type
of structure has also been adapted to make more complex
designs, such as density-graded lattices (Grunsven et al.,
2014), and similar lattices can be designed to be elastically
isotropic (Xu et al., 2016). Lattices have the potential to
be highly engineered, creating materials with combinations
of mechanical properties and density that are not found in
other materials, as indicated by several theoretical studies
of lattice geometries [see e.g., (Fleck et al., 2010; Berger
et al., 2017)] and the review in Schaedler and Carter (2016).
As well as forming parts which can be exploited for their
good weight-specific properties, AM manufactured lattices
could serve in specialized applications, such as biomedical
implants (Wally et al., 2015; Elahinia et al., 2016).

Analysis of mechanical performance of as-manufactured AM
parts is however vital; in particular, it is important to know more
about how the behavior of lattices is influenced bymicrostructure
and defects. These are dependent on the processing conditions
of the AM methods used, but also potentially the interaction of
these with the lattice geometry being made. For example, it is
known that such lattices contain porosity as a defect [see for
example (Hernandez-Nava et al., 2016)]. Here the effect of severe
defects of this type is probed by testing diamond and simple
cubic lattices (where the struts are oriented along the edges of
a cube) made with the deliberate removal of struts from the
build file. The diamond structure lattice is then further tested
in a range of loading conditions, combined with Digital Image
Correlation (DIC) (Pan et al., 2009) to examine deformation
fields and the failure modes, and how they correlate with the
structure of the lattices and mechanical properties of the material
within them.

FIGURE 1 | (A) an undefected diamond lattice compression sample

with integrated solid block on the upper and lower faces and a magnified view

of the speckle pattern used for DIC and subsets used to analyze the images

compared with the diameter of struts, (B) an example of the input file used in

the EBM process, this time showing a simple cubic structure lattice, and (C) a

bend sample consisting of diamond lattice structure and dense metal,

designed so the neutral axis lies on the interface.

METHODS

Lattice Design
Lattices created were based on either a “diamond” lattice (an
arrangement where the struts are positioned as the interatomic
bonds in the unit cell of diamond), or a “simple cubic”
arrangement (where struts lie along the edges of a cube, and cubes
are arranged adjacently to each other) of struts (see Figure 1).
In each case the struts were designed to be cylinders with 1mm
diameter, and each sample was a cube composed of 6 unit cells
in each direction (5 in the case of the simple cubic structure),
making them well above the limit found for consistent properties
in metallic lattices (Morrish et al., 2017). Each side length of
the lattice sample was 25mm, and solid blocks of material with
a dimension of 27 × 27 × 5mm were also incorporated into
these lattices (at the top and bottom edges) to make a sandwich
structures; this was done in order to improve the contact at the
test machine anvil surface and the samples. The blocks were
manufactured simultaneously with the lattice in the form of the
same part. One set of samples was made without the blocks for
assessment in compression with DIC observation, to ensure the
failure mode was not affected by the blocks.
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These basic lattice designs were taken and in some cases
defects were deliberately introduced. These took the form of
struts within the lattice deleted manually from the CAD file,
representing the effect of a serious defect essentially removing
the load supporting capacity of the strut. Such samples were
produced with various percentages of the struts removed at
random (by a random number generation method and manual
deletion of corresponding struts); 1, 5, and 10% for the diamond
structure and 1, 3, 5, and 7% for the simple cubic. A single unit
cell of the diamond structure contains 16 struts, so the samples
contained 3,456 struts. Samples with 1, 5, and 10% levels of
defects therefore have 35, 173, and 346 struts removed (rounding
up to the nearest whole number of struts), respectively. A simple
cubic unit cell has only three struts, and so the actual number
removed was in this case lower to achieve comparable percentage
reductions. At even the lowest levels, this is likely to represent a
much higher defect concentration that would occur in realistic
processing of such lattices by additive manufacturing methods
like EBM (it should be noted that in all the samples processed
in this work, no observations of fully missing or broken struts
on building were made), but the high level will ensure that
measureable effects are generated within a tractable number of
test samples, and allow the overall trends to be identified.

Two different sets of defected samples were created for each
defect concentration, where in each case the defects were placed
in random locations as determined by the random number
generation process, with first the structure for 1% missing struts
being made, and then further struts being removed from this
structure to create 5% and subsequently 10%. Three identical
samples of each structure at each defect level were made. The
simple cubic lattices were further produced in a series of different
strut thicknesses (an effective way to change the density), with
nominal strut diameters of 0.8, 1.0, 1.2, and 1.5mm. When
produced these gave lattices with average porosity of 94.4, 92.6,
89.0, and 83.8%, respectively. The stress-strain curves produced
on mechanical testing were analyzed to identify the Young’s
modulus and the 0.2% offset yield strength as characteristics of
the elastic and plastic response.

The next part of the investigation was concerned with
the distribution of deformation in lattices during mechanical
deformation under different loading arragements, particularly
once permanent deformation and damage had occurred, and
the failure modes shown. Samples consisting of lattice cubes of
the diamond structure were made to the same dimensions as
those used for the defect investigation (see Figure 1). Additional
test samples where the upper dense plate extended only half
way across the specimen were also manufactured to introduce
an unequal compressive load and an indentation-compression
deformation situation, as shown in Figures 6A1,2. The whole
section of the top plate is loaded in the former while in the
latter the section where the plate was not present is not directly
loaded. It was also desired to explore lattice behavior under
tension. In order to implement a tensile stress field to the
lattice structure, bespoke bending specimens were designed and
produced. Bending beams (Figures 1B, 7, 8) were designed in
such a way to ensure the lattice structure is in the tensile stress
mode, attached to a solid dense layer that would experience the

compressive stresses due to bending and provides the required
support for the loading mechanism. This was done by using
the modulus data determined for the lattice under compression
(without defects) and the data of the known modulus of the
dense material, then calculating the thicknesses of the two layers
(when combined in a bi-material beam) that would result in the
neutral axis being positioned at the interface between them when
they were loaded in bending. Thus, the dense material would be
entirely in compression, and the lattice entirely in tension, albeit
with a non-uniform distribution of magnitude.

Lattice Manufacture
Lattice samples were built from Ti6Al4V powder using the
standard build settings on an Arcam AB R© A2 machine
(commercially available EBM equipment). The Ti6Al4V preheat
for 50µm layers was followed by the standard Arcam Ti6Al4V
50µm layer net theme, comprised of three contour passes
followed by a hatch.

Lattice Characterization
Samples were mechanically tested in compression. A Zwick
Roell Z050 test rig supporting a 50 kN load cell was used to
run compression tests under a displacement-controlled regime,
ensuring an initial strain rate of 10−3 s−1. The displacement of
the end plates wasmeasured with a Zwick Roell VideoXtens video
extensometer with a data capture rate of 25 frames per second.
The plates were prepared in order to reduce the AM building
surface roughness and generate smooth, flat surfaces to contact
the loading rig.

The full field planar strain distribution was also measured
for the samples of diamond lattices in the form of compression
cubes, cubes which were loaded on only half of their thickness
(indentation-compression) and bend samples (Figure 1) during
testing using a 2D-DIC to measure the local strain field. The
consecutive images recorded using the DIC systemwere also used
to observe the damage mechanisms and identify the local strain
values at the observed damage initiation sites. Speckle patterns
were painted onto the surface of the samples in order to provide
random features for the DIC analysis. The Least Square search
algorithm provided by LaVision was used to analyse images using
32 pixels subsets with a step size of 19 pixels. Figure 1A shows the
selected subset size in relation to the strut dimensions.

RESULTS AND DISCUSSION

Effect of Missing Strut Defects
The samples designed and produced to address the magnitude
of the effect of severe defects which might arise during building
(building errors, surface roughness related defects, or the
concentration of significant levels of porosity) were tested, and
the variation in Young’s modulus and yield strength with defect
concentration for the diamond structure is shown in Figure 2.
As well as establishing the potential role of defects in lattice
mechanics, this understanding is important for the design of
components with lattices, to understand how such defects as
might arise statistically during processing will affect performance.
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FIGURE 2 | The variation in (A) Young’s modulus and (B) 0.2% offset yield

strength for diamond structure lattices made with various proportions of

missing struts. Defected 1 and Defected 2 represent the two different

structures produced by randomly removing struts from the CAD model. The

fine dotted trend lines shown represents the best least square fit to the

average of all samples at a particular concentration of missing struts. The

larger dotted lines represent the predictions of a simple model for the impact

of the missing struts, as discussed in the text.

From Figure 2A it can be seen that the effect of the removal
of struts, even up to a relatively high level, does not apparently
have a consistent effect on the Young’s modulus. The trend line
for these data is almost horizontal, and there is significant scatter
in the data. This indicates that there are factors other than the
overall number of missing struts that have a significant effect on
the Young’s modulus, at least up to the maximum (and relatively
elevated compared to the likely occurrence in processing) level
of defects explored. The identity of one of these factors is
suggested by the observation that the two different random
structures formed have a significant, and roughly consistent,
difference between their modulus values at all levels of defects.
This indicates that for elastic behavior the location of struts
removed may be especially significant, with the removal of struts
from key areas (which could exist due to irregular strut shape at
the microscale and non-uniform load distribution arising from
the previously-removed struts) affecting the behavior muchmore

than from others (e.g. those at the surface). This in turn would
imply that within the structure some struts could be more heavily
loaded than others, and that the diamond lattice (at least in
the as-manufactured form, if not in the geometrically perfect
version of the original CAD model design) is not optimally
mechanically efficient.

In order to make an assessment of the impact of the defects
which would be expected theoretically, we begin by treating
the lattice as an array of separate volume elements, each with
effective mechanical properties. For a perfect lattice, each of these
elements has the same response to load, which has an identical
stress-strain response to that of the whole lattice. Where a defect
is present we assume that the resistance to load is zero, reflecting
the binary nature of the defects introduced in this work (i.e.,
struts are either present or are entirely removed).

The volume elements can be combined in numbers equivalent
to the unit cells used, to allow the correct ratio of defects to be
introduced. Cells in columns along the loading direction can be
combined using a Reuss (equal stress) model, which, under the
simple assumption that the defected cell supports no load, gives a
zero modulus for the column. Columns can be combined with
a Voight (equal strain) model, giving simply that the Young’s
modulus of the defectedmaterial should be equal to (1-f )E, where
f is the fraction of defects and E is the Young’s modulus of the
perfect lattice.

This allows the penalty of different defect concentrations to
be estimated, and a line of slope -E is plotted on Figure 2A,
starting at the mean value of the complete lattice modulus, to
show this effect. This line shows that there would be expected to
be a negative trend, which is not clearly seen in the data, however,
over the range examined, the magnitude of this trend is actually
rather small, and is within both the experimental error range
and the range of results produced from the different, random
structures. Therefore, the results obtained are consistent with a
penalty to the elastic properties of defects of the range predicted.

On the other hand, the plastic deformation results show a
clear trend for decreasing strength when an increasing number
of struts is removed (see Figure 2B), and the scatter between the
different structures, and within repeat tests on the same structure,
is much less. This in turn suggests that removing struts has a
much greater effect on plastic behavior. The same, simplistic
argument can be applied as was used to understand the elastic
properties. This indicates that, under an equal stress model, the
penalty for defects should be the same, i.e. that the yield stress
of defected material should be (1-f )σy, where f is the fraction of
defects and σ y is the yield strength of the lattice in the undefected
condition. A line of this slope is also plotted on Figure 2B.

In the case of strength, it is clearly seen that the penalty for
defects in the material is higher than predicted, with the slope
being closer to −3σy than –σy. The reason for this departure is
that the mechanics of deformation are more complex than for the
simple model in the case of permanent deformation. It is known
(e.g., Gibson and Ashby, 1997) that missing cell walls or struts
in porous materials can also affect the mode of deformation,
with the tendency for defects to contribute to the nucleation and
propagation of deformation bands in ordered structures (Silva
and Gibson, 1997). Finite element analysis could be one way of
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further analyzing this effect, though this is likely to be affected by
underlying anisotropy of material response, such as that which
could arise in titanium alloys where the microstructure has a
preferential orientation, and may require specific definitions of
the properties of different struts (Rashed et al., 2016). Such
modeling may also be rendered more complex by the uneven
surface shown by real additively manufactured lattices, which
has been suggested previously to be responsible for real lattices
not achieving the same level of strength as predicted by FE
simulations (Ozdemir et al., 2017), though there has been recent
work toward developing advanced FE approaches to incorporate
these kinds of structural variations (Lozanovski et al., 2019).

Lattice samples based on a simple cubic lattice, with defects
incorporated have also been produced, and, unlike the diamond
lattices, have been created at various densities. Testing of these
samples gave the results in Figure 3, showing the variation in
the offset yield strength with inclusion of artificial defects. Data
points plotted are the averages for different defect structures and
repeats. As the lattices evidently show very different strength
with density variations, the data are normalized here to the
offset yield strength of the artificial defect-free lattice of the
corresponding density. These data show several things in relation
to the defect tolerance of lattices. Firstly, taking the cubic
samples of different density collectively, the trend in behavior
seems the same in each, indicating that it is the nature of the
structure, rather than the amount of porosity or metal, which
influences the behavior with regard to defects of this type.

This is logical, as in each case a complete strut is removed;
if defects of uniform size were used it might be expected
that the higher density material would be affected to a lesser
extent, by having more remaining metal to support load. The
second observation is a striking difference between the trend
for the diamond lattice structure and that for cubic. Diamond
lattices show a continual, relatively gradual decline in strength
with increasing concentration of defects. Cubic lattices on the
other hand display an initial sharp fall in strength to less than
half the initial value, which is followed by continued gradual
decline, with a slope similar to the decline in strength in
diamond lattices. Note that the lines in Figure 3 correspond
to a linear fit of all points for the diamond lattice data,
but just the points for samples with introduced defects for
cubic data.

The large decrease in compressive strength seen with cubic
samples containing a low percentage of defects, contrary to the
behavior of the diamond lattices, must relate to the geometrical
differences between these structures. In a cubic lattice tested in
compression along the axis of one of the cube edges, removal of
struts may remove struts in the column orientation (i.e., lying
along to loading direction), which would previously have been
supporting significant load (indeed, for a sample of 5 × 5 × 5
unit cells, removal of 1% of the struts makes it slightly more
likely that a strut aligned with the compression direction is
removed than that one is not). The effect of this will be to change
the mode of failure; rather than depending on the buckling of

FIGURE 3 | The variation in 0.2% offset yield strength for cubic structure lattices, normalized by defect-free structures, made with various proportions of missing

struts, for different densities. Data points are the averages of results from different structures and repeats with the same defect fraction. The trend line shown

represents the best fit to the average of all samples at a particular concentration of missing struts.
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FIGURE 4 | Deformation and damage development in compression (a) undeformed structure, (b) initial buckling mode that shows barrelling effect (vertical lines added

to aid observation, (c) damage initiation at the highlighted nodal position, (d) final fracture at the nodes. The video from which these stills were taken is available online.

FIGURE 5 | Local strain distribution in y (A1,A2) and x (B1,B2) directions, relative to the test, for samples under compression, (A1,B1) at the maximum compressive

force and (A2,B2) at the point of final fracture. The load was applied in the same direction as the build, y direction in the figure (vertical).

columns, the mode of the initial permanent deformation will
change to the failure of cantilever beams. This change of failure
mechanism between artificial defect-free and the lowest level
of defects tested could explain the large fall in strength seen.
For a diamond lattice, because of the multiple connectivity at
nodes along the direction of load transmission, the removal of
random struts is less likely to cause such a significant change in
the operating failure mechanism. This greater defect dependence
of the cubic lattice compared to diamond also agrees with
earlier findings (Hernandez-Nava et al., 2016) that the cubic
lattice is stronger for a given density, i.e., that it is more
mechanically efficient.

The strength of lattice materials of different types therefore
seems to be highly dependent on defects. While a theoretical
description of the exact influence of defects on mechanisms
of deformation is complex, worthy of further study, in this
investigation we proceeded to explore the phenomena of the
deformation mechanics of lattices in more detail.

Damage Mechanisms and Strain

Distribution
In order to explore the mechanisms of deformation and damage
in the lattices, a set of samples, including both compression and
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FIGURE 6 | (A1–A4) deformation and damage development in unequal compression samples. Strain distribution in directions y (B1–B4), and x (C1–C4), relative to

the test, and (D1–D4) von-Mises strain distribution at various stages of deformation. The load was applied in the same direction as the build, y direction in the

figure (vertical).

bending geometry, was made for mechanical testing combined
with DIC analysis to measure the developing strain field. The
bending samples were tested at the same displacement rate as the
compression samples to satisfy the consistency requirements.

Deformation and damage development in samples subjected
to compressive loading is shown in Figure 4 (also available as
a video online). It has been found that the solid block (which
is connected to the struts at the surface nodes) restricts the
deformation of the samples at the interface nodal positions.
This forces the material to experience a barrelling deformation
up to the maximum applied load, where damage initiates.
The implemented restriction prevents failure from initiating
at the upper or lower contact points, and ensures failure
occurs within the body of the structure. Otherwise, the mode
of failure and the failure path appear to be comparable to
samples tested without the solid block. Damage starts by

crack initiation at the nodal position, highlighted in red in
Figure 4; however, no sign of catastrophic failure was observed
at the struts. Similar deformation patterns were observed in the
samples subjected to unequal compression experiments (where
the loading is a combination of compression and indentation)
wherein the compressive stress was followed by local shear
deformation within the structure (Figure 5). Several deformation
mechanisms, including tensile, compression and shear, were
activated in the latter experimental setup, as the samples passed
beyond the uniform compressive state. Although tensile and
compressive deformation fields were observed in different parts
of the samples, the failure occurred at the nodal positions located
inside the localized shear zone.

The strain distributions in Figure 6 show that the applied
forces were transferred to the structure with the maximum
equivalent strains measured at nodal positions in contact
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FIGURE 7 | Bending test sample (A) at early stages of the experiment and (B) just before the final failure.

FIGURE 8 | Distribution of (A1–A3) axial strain Exx, (B1–B3) axial Eyy and (C1–C3) von-Mises equivalent strain during the bending experiment showing the maximum

local strain of about 5% at the onset of crack initiation and propagation within the structure.

with solid blocks (Figure 6C1). This is followed by further
deformation localization in the regions directly below the upper
block. Figures 6A3,4 indicate that struts are bending toward the
end of the experiment, leading to higher strain values in x and y
directions (in plane directions in the test) at the nodes. According
to the strain distributions, failure occurs at about 45◦ with respect
to the loading direction. This shows that the sample does not
undergo failure under compressive stress directly (i.e., the failure
does not initiate directly under the loaded plate), rather it is a
mixed-mode failure, initiated at the interface between the half

plate and the struts (the loaded and unloaded regions). This is in
accordance with what would be expected, with failure initiating
where stress concentration occurs.

Figure 7 shows the test setup for the bending experiments
before and after failure. This setup is critically important, as
the lattice structure is subjected to a tensile stress field (which
is difficult to engineer in samples of lattices that can be tested
without risk of interface failure) and damage is observed to
start from the lower set of cells where maximum tensile stress
is expected. A very limited amount of plastic deformation was
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FIGURE 9 | Scanning Electron Microscope images of the post-test failure surfaces in samples deformed by compression (A), and in tension (B), the latter using the

bending beam sample approach.

observed at the solid layer in contact with the loading roller. It
should be noted that in this case the samples are imaged in the
plane of the build, with the test direction being in plane.

Strain distribution within the lattice structure during the
bending experiment is shown in Figure 8 for three different
times during the loading cycle which correspond to the start
of the test, middle of the test and just before the failure of the
sample. According to the results, the in-plane longitudinal strain
(Exx, Figures 8A1–3), representative of uni-axial stress at the
tensile side of the sample, increases from the start of loading and
reaches a maximum value of 5% (measured by DIC) just before
fracture. The results show the strain is localized directly below

the contact point with the roller where the maximum tensile
stress occurs. Additionally, the distribution of the Eyy strain
component indicates that the lattice structure is absorbing the
applied deformation as the strain concentration point is shifted
toward the center of the structure, away from the stress free
boundaries. This may indicate that the internal layers of the
structure are taking more compressive deformation compared to
the free surfaces at the boundaries.

The distribution of equivalent von-Mises strain for the
bending samples is shown in Figures 8C1–3. The equivalent
strain is throughout localized at the outer layer of the structure
and reaches a critical value of 5% just before failure. This
value is almost identical to the Exx strain; tensile deformation is
considered to be the dominant mode of deformation. Therefore,
the investigated lattice structures show very different mechanical
behavior dependent on the nature of the applied external load,
with higher resistance to failure in compression, where a total
deformation of about 10% is reached, compared with tension,
where the total deformation is about 5%. These measured values
could be used to develop a strain-based failure criterion for more
complex loading scenarios, as well as in predicting the damage
tolerance of structures made from such lattices.

The presence of the different modes of deformation observed
is confirmed, and their effects demonstrated, by examination
of the fracture surfaces in the samples (Figure 9). Looking
across many broken struts, failure is most frequently observed
to occur at the nodes where struts interconnect, where, if the

struts are imagined as bending beams [a common description
in theoretical models of the deformation of porous materials
(Gibson and Ashby, 1997)], the maximum equivalent strains
would be expected.

The failure point is typically where a strut meets a node
(the root of the strut), and not through the node itself, as
this is the site of stress concentration, in a similar way to any
macrostructure. Observation of the broken surfaces (such as
those in Figure 9) shows limited local plastic deformation under
both tensile and compressive loading, with cracking sometimes
observed in regions of the strut away from the failure point,
though this is difficult to identify consistently and with high

confidence, due to the surface roughness. This effect means
that struts fail before buckling, which would be theoretically
predicted to be the failure mode for many lattice structures
(Fan et al., 2009). The high degree of surface roughness is
evident (as typically observed in EBM struts in the absence of
post-processing treatment (Lhuissier et al., 2016). A significant
contribution to this roughness comes from a large number of
spherical features of around 50µm in size, almost certainly
particles of the original powder, which were not fully molten and
have been incorporated into the strut surface.

The higher surface to volume ratio in lattice materials (i.e.,
more material in a lattice is within a small number of beam
passes of the surface of the struts) may be expected to have an
influence on the behavior. This could happen due to the surface
roughness, which results in a significant amount of material
that is not directly load-bearing. Furthermore, in Figure 9

several regions can be seen where there are canyon-like surface
features (similar to the type II surface defects as defined in
Lhuissier et al. (2016), most likely formed as material becomes
molten with incomplete melting of the solid below, leading to
differences in volume and difficulty in the material producing a
fully solid continuous strut (Hernandez-Nava et al., 2016). The
form of such features could easily develop into cracks, either
during cooling due to thermal stresses, or on loading. A high
concentration of available crack-like defects could contribute
to reduced failure strains in material with limited ductility, as
observed here.
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A further effect of the surface can be described as a skin effect.
The surface region is usually formed by a contour pass that tracks
the outline in the layer, while interior spaces are melted in a
hatching pattern. This difference in heat input and melt pool
shape, combined with additional nucleation points on unmelted
powder particles, produces a finer grain structure and weaker
texture at the surface, dominating where sections are < 2mm
thick (Antonysamy et al., 2013); true of the entire structure of
the lattices examined here. This layer may be more prone to the
propagation of cracks and would act to constrain and reduce the
ductility of the interior material, in an effect similar to surface
hardening. The observation from testing is, as is commonly seen
in mechanical tests of EBM titanium lattices, that the ductility
of the individual struts is low, and both of the effects described
above (surface roughness leading to cracking and the skin effect)
would promote the kinds of low-ductility failures seen.

CONCLUSIONS

This work investigates the impact of defects, in the form
of engineered missing struts, on the mechanical properties
of Additively Manufactured (EBM) titanium lattices with the
diamond and cubic structures under compressive and tensile
loading conditions.

The presence of high levels of missing strut defects, up to 10%,
is not found to reduce the elastic modulus of the diamond lattices
in a consistent manner; the effect appears sensitive to the precise
location of such defects. On the other hand, there is a systematic
decrease in strength as defect populations are increased. As
shown by the comparison with cubic lattices, this decrease
appears not to be influenced by the lattice density (at least when
the defects comprise whole struts) but the connectivity of the

lattice along the loading direction and the potential for removal
of key struts to change the failure mechanism can have a large
impact. This further suggests that the diamond lattice structure,
which shows greater defect tolerance than the simple cubic lattice,
is less mechanically efficient.

It is seen that locally failure occurs at the stress concentration
at the interface between strut and node under all conditions
explored, and that the failure is brittle, possibly resulting
from localized tensile loading due to localized bending.
The position of the failures correlating with the observed
regions of highest strains indicates that a strain-based failure
criterion could be applied with good accuracy for these
materials. For the diamond lattice explored, the critical total
deformation is about 5% for tensile conditions and about
10% for compression.
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