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Editorial on the Research Topic

Artificial Intelligence for Medical Image Analysis of Neuroimaging Data

With the development of advanced medical imaging techniques, a huge amount of medical
images have been produced in various healthcare institutes and hospitals. Especially, there is a
growing research interest in a more multidisciplinary approach for investigating brain structure
and function in living humans and animals. In order to better interpret brain images, there is an
increasing demand to introduce artificial intelligence methods such as machine learning, expert
systems, robotics and perception, and evolutionary computation to automatically exploit useful
information besides visual features. It should be pointed out that brain images themselves exhibit
several distinguishing features that add to the difficulties in their analysis. In recent years, there
have been many new research achievements in each aspect of artificial intelligence for brain
image analysis. This Research Topic sought original contributions that address the challenges of
artificial intelligence for brain image analysis and welcomed researchers in this field to share their
experiences and new research achievements.

We were pleased to receive many submissions from authors of their latest research results on
artificial intelligence methods for medical image analysis. Nineteen papers are finally accepted from
a total of 29 submissions after rigorous reviews. They were contributed from different countries
and regions, including China, the United Kingdom, the United States, Germany, South Korea,
Denmark, Canada, and more.

Here, a brief introduction of the 19 accepted papers is given. We refer the readers to the
papers in this topic and the references therein for more details. Lin W. et al. established a
deep learning approach based on convolutional neural networks (CNN) to accurately predict
MCI-to-AD conversion with magnetic resonance imaging (MRI) data. Kazeminejad and Sotero
introduced a new biomarker extraction pipeline for Autism Spectrum Disorder that relies on
the use of graph-theoretical metrics of fMRI-based functional connectivity to inform a support
vector machine. Bi et al. proposed an advanced method, namely an evolutionary weighted random
support vector machine cluster, for analysis of Alzheimer’s disease. Ladefoged et al. focused on the
problem of attenuation correction of PET/MRI in pediatric brain tumor patients based on a deep
learning method. Livne et al. established a U-Net deep learning framework for high-performance
vessel segmentation in patients with cerebrovascular disease. Wang, Sun et al. proposed a 14-layer
convolutional neural network for the identification of multiple sclerosis. Huang C. et al. developed

5
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a new fusion method based on the combination of the shuffled
frog leaping algorithm and a pulse coupled neural network for
the fusion of SPECT images and CT images to improve the
quality of fused brain images. Xin et al. utilized a deep learning
method to find differences between the brains of men and
women. Zhang Y. et al. proposed an improved wavelet threshold
for image de-noising. Lin C. et al. proposed a novel low-rank
method for the simultaneous recovery and segmentation of
pathological MR brain images. Zhang Z. et al. developed a multi-
scale time-series model for the diagnosis of brain diseases. Gupta
et al. proposed a novel machine learning-based framework to
discriminate subjects with AD orMCI, utilizing a combination of
four different biomarkers. Zhao et al. proposed a supervised brain
tumor segmentation method based on gradient and context-
sensitive features. Huang Y. et al. developed a multi-modality 3D
convolutional neural network for the diagnosis of Alzheimer’s
disease. Wang L. et al. presented the use of Nested Dilation
Networks for brain tumor segmentation. Gwo et al. developed
a method to characterize and quantify the shape, texture, and
potential growth of white matter hyperintensity lesions. Xu
et al. introduced a fully automatic framework for Parkinson’s
disease diagnosis. Wang, Xie et al. proposed an AlexNet transfer
learning model for alcoholism identification. Wang, Tang et al.
developed a densely connected neural network for analysis of
cerebral micro-bleeding.

In the end, we strongly hope that this Research Topic will
attract more research attention to artificial intelligence methods
for medical image analysis. We thank the reviewers for their
efforts to guarantee the high quality of this collection. We also
thank all of the authors who have contributed.
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Cerebral Micro-Bleeding Detection
Based on Densely Connected
Neural Network
Shuihua Wang1*†, Chaosheng Tang1†, Junding Sun1* and Yudong Zhang1,2*†

1 School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China, 2 Department of Informatics,
University of Leicester, Leicester, United Kingdom

Cerebral micro-bleedings (CMBs) are small chronic brain hemorrhages that have
many side effects. For example, CMBs can result in long-term disability, neurologic
dysfunction, cognitive impairment and side effects from other medications and
treatment. Therefore, it is important and essential to detect CMBs timely and in an
early stage for prompt treatment. In this research, because of the limited labeled
samples, it is hard to train a classifier to achieve high accuracy. Therefore, we proposed
employing Densely connected neural network (DenseNet) as the basic algorithm for
transfer learning to detect CMBs. To generate the subsamples for training and test, we
used a sliding window to cover the whole original images from left to right and from top
to bottom. Based on the central pixel of the subsamples, we could decide the target
value. Considering the data imbalance, the cost matrix was also employed. Then, based
on the new model, we tested the classification accuracy, and it achieved 97.71%, which
provided better performance than the state of art methods.

Keywords: DenseNet, CMB detection, transfer learning, cost matrix, deep learning

INTRODUCTION

Cerebral micro-bleeding (CMB) are small chronic brain hemorrhages that can be caused by
structural abnormalities of the small vessels of the brain. According to the recent research reports,
the causes of CMBs also can be some other common reasons, including high blood pressure,
head trauma, aneurysm, blood vessel abnormalities, liver disease, blood or bleeding disorders
and brain tumors (Martinez-Ramirez et al., 2014). It also can be caused by some unusual
etiologies, such as cocaine abuse, posterior reversible encephalopathy, brain radiation therapy,
intravascular lymphomatosis, thrombotic thrombocytopenic purpura, moyamoya disease, infective
endocarditis, sickle cell anemia/β-thalassemia, proliferating angio-endotheliomatosis, cerebral
autosomal dominant arteriopathy subcortical infarcts, leukoencephalopathy (CADASIL), genetic
syndromes, or obstructive sleep apnea (Noorbakhsh-Sabet et al., 2017). The patients suffering from
CMBs can have symptoms where the corresponding area that is controlled by the bleeding area
malfunctions, resulting in a rise in intracranial pressure due to the large mass putting pressure
on the brain and so on. CMBs could be easily ignored as the similar symptoms and signs of the
subarachnoid hemorrhages, unless the patients have more obvious symptoms, such as a headache
followed by vomiting. Those symptoms can eventually become worse or occur suddenly, based on
the distribution and intensity of the CMBs. Patients suffering from CMBs can result in cognitive
impairment, neurologic dysfunction and long-term disability. CMBs could also induce side effects
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from medication or treatments. The worse thing is that the death
is possible and can happen quickly. Therefore, the early and
prompt diagnosis of CMBs is essential and helpful in timely
medical treatment.

Due to the paramagnetic susceptibility of the hemosiderin
(Allen et al., 2000), CMBs can be visualized by T2∗-gradient
recalled echo (GRE) imaging or susceptibility weighted imaging
(SWI). Traditionally, CMBs are manually interpreted based on
criteria including shapes, diameters and signal characteristics
after imaging. However, the criteria were varied as reported
in different studies (Cordonnier et al., 2007), until 2009 when
Greenberg et al. (2009) published the consensus on standard
criteria for CMB identification. However, manual detection
methods involve the human interventions, which can bring
biases. Meanwhile, the manual detection is labor intensive, hard
to reproduce and difficult to exclude the mimics, which can lead
to misdiagnosis.

Therefore, the development of automatic CMB detection is
important and essential for the accurate detection and early
diagnosis of CMBs. Due to the benefits of advanced imaging
technologies, massive computer vision aided systems have been
developed for automatic CMB detection. For example, Ateeq et al.
(2018) proposed a system based on an ensemble classifier. Their
system consisted of three steps: first the brain was extracted,
then the initial candidates were detected based on the filter and
threshold, and finally, feature extraction and classification model
were built to remove the false alarms. Fazlollahi et al. (2015)
proposed using a multi-scale Laplacian of Gaussian (msLoG)
technique to detect the potential CMB candidates, followed by
extracting a set of 3-dimensional Radon and Hessian based
shape descriptors within each bounding box to train a cascade
of binary random forests. Barnes et al. (2011) proposed a
statistical thresholding algorithm to recognize the potential hypo-
intensities. Then, a supervised classification model based on
the support vector machine was employed to distinguish true
CMBs from other marked hypo-intensities. van den Heuvel et al.
(2016) proposed an automatic detection system for microbleeds
in MRIs of patients with trauma based on twelve characteristics
related with the dark and spherical characteristics of CMBs and
the random forest classifier. Bian et al. (2013) proposed a 2D
fast radial symmetry transform (RST) based method to roughly
detect the possible CMBs. Then the 3D region growing on
the possible CMBs was utilized to exclude the falsely identified
CMBs. Ghafaryasl et al. (2012) proposed a computer aided system
based on following three steps: skull-stripping, initial candidate
selection and reduction of false-positives (FPs) by a two-layer
classifier. Zhang et al. (2017) proposed voxel-vise detection based
on a single hidden layer feed-forward neural network with
scaled conjugate gradient. Chen (2017) proposed a seven-layer
deep neural network based on the sparse autoencoder for voxel
detection of CMBs. Seghier et al. (2011) proposed a system named
MIDAS for automatic CMB detection.

All above methods have reached great progress in CMB
detection. However, their detection accuracy and robustness are
still in need of improvement.

Therefore, in this paper, we employed the SWI for CMB
imaging, which was because SWI could provide high resolution

as reported in Haacke et al. (2009) and work as the most sensitive
techniques to visualize CMBs. Considering the limited amounts
of labeled images, and knowledge to recognize representative
characters about the medical images, we considered utilizing
the DenseNet as the basic algorithm for transfer learning.
The reason for this is because the amount of labeled CMB
images is typically very limited, and it is hard to effectively
train a classifier to get high detection accuracy. In summary,
we proposed using transfer learning of DenseNet for CMB
detection based on the collected images, which means we use the
knowledges obtained from training the related tasks by DenseNet
for CMB detection.

The remainder of this paper is organized in a structure as
follows: “Materials and Methods” section describes the method
used in this research, “Transfer Learning” section explains why
we employed the transfer learning, “CMB Detection Based on the
Transfer Learning and DenseNet” section describes the research
materials used in this paper, including the training set and test set,
and also offers the experiment results, and finally, “Discussion”
section provides the conclusion and discussion.

MATERIALS AND METHODS

In recent years, Deep Learning (DL) has achieved great progress
in object recognition (Tong et al., 2019; Xie et al., 2019),
prediction (Yan et al., 2018; Hao et al., 2019), speech analysis
(Cummins et al., 2018), noise reduction (Islam et al., 2018),
monitoring (Li et al., 2018; Wang et al., 2018), medicine (Raja
et al., 2015; Safdar et al., 2018), the recommendation system
(Zhang and Liu, 2014), biometrics (Xing et al., 2017) and
so on. Traditionally, DL consists of multiple layers of non-
linear processing units to obtain the features. The cascaded
layers take the output from their previous layer as input. In
order to explore the potential of DL, many researchers tried
to make the network deeper and wider. However, it suffers
from either exploding or the vanishing gradient problem (VGP).
Therefore, multiple different structures of DL were proposed.
For example, AlexNet, the winner of ImageNet Large Scale
Visual Recognition Competition (ILSVRC) 2012, was proposed
by Krizhevsky et al. (2012) and has the same structure as
LeNet but has max pooling and ReLU non-linearity. VGGNet,
proposed by Karen Simonyan (2015), won the second place
in ILSVRC 2014 and consisted of deeper networks (19 layers)
compared to AlexNet. GoogLeNet, the winner of ILSVRC 2014,
provides a deeper and wider network that incorporates 1 × 1
convolutions to reduce the dimensionality of the feature maps
before expensive convolutions, together with parallel paths with
different receptive field sizes to capture sparse patterns of
correlations in the feature map stacks. ResNet, the winner of
ILSVRC 2015, offers a 152-layer network that introduces a skip
at least two layers or shortcut connections (He et al., 2016).
Huang et al. (2017) proposed DenseNet where each layer takes
the output from all previous layers in a feed-forward fashion
and offers L(L+1)/2 connections for L layers, while traditional
convolution networks with L layers provide L connections.
According to the report in Huang et al. (2017), DenseNet
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can beat the state-of-the-art ResNet structure on ImageNet
classification task.

Considering the outstanding performance of DenseNet, we
proposed employing DenseNet for cerebral microbleed detection
in this paper. The detail of DenseNet was introduced as follows.
However, before providing the illustration of the DenseNet,
we would first introduce the traditional convolution neural
network (CNN) and figure out the difference between CNN
and DenseNet later.

Traditional Convolution Neural Network
The traditional CNN usually includes convolution layer, ReLU
Layer, pooling layer, fully connected layer and softmax layer
(Zeng et al., 2014, 2016a,c, 2017a,b). The functions of different
layers are introduced as follows:

Convolution layer works as the core session of a CNN.
The feature maps are generated via the convolution of
the input with different kernels. Mathematically, it can
be expressed as Figure 1, which shows a toy example of
convolution operation.

Then, following the convolution layer, we have non-linear
activation function, named ReLU, which works to obtain the non-
linear features. The purpose of the ReLU layer is to introduce
non-linearity into the network. The mathematic expression of
ReLU is shown as Eq. 1:

f (x) = x+ = max(0, x) (1)

The pooling layer works by resizing the feature maps spatially
to decrease the number of parameters, memory footprint and to
make the computation less intensive in the network. The pooling
function works on each feature map, the main approaches used
for pooling are max pooling as Eq. 2, average pooling as Eq. 3:

aj = max
i∈Rj

(Mi) (2)

aj =
1
|Rj|

∑
i∈Rj

Mi (3)

In which M stands for the pooling region and Rj represents for
the number of elements within the pooling region.

Fully connected layers will calculate the confidential scores,
which are stored in a volume of size 1× 1× n. Here, n means the
number of categories, and each element stands for class scores.

FIGURE 1 | A toy example of convolution operation in CNN with stride size as
1, in which, the left matrix means the input, the second matrix means the
kernel, and the right matrix stands for the generated feature map after
convolution operation. It is different from the convolution defined in purely
mathematic terms.

Every neuron of the fully connected layer is connected to all the
neurons in the earlier layers.

Structure Revision of the CNN
In the traditional CNN, all layers are connected gradually
as in Eq. 4:

xl = Hl(xl−1) (4)

However, as the network becomes deeper and wider,
the networks may suffer from either exploding or gradient
vanishing. Therefore, researchers proposed different network
structures to overcome this problem. For example, ResNet
revised this behavior by short connection, and the equation is
reformulated as (5).

xl = Hl(xl−1)+ xl−1 (5)

Instead of making the sum of the output feature maps of the
layer with the incoming feature maps, DenseNet concatenates
them sequentially. The expression is reformulated into Eq. 6:

xl = Hl([x0, x1, x2, ..., xl−1]) (6)

In which l means the index of the layer number, H stands for a
non-linear operation and xl stands for the output of the lth layer.

DenseNet
As expressed in Eq. 6, DenseNet introduces straight forward
connections from any layers to all following layers. In other
words, the lth layer receives feature-maps from all previous
l – 1 layers. However, if the feature maps’ size changes,
the concatenation operation is not feasible. Therefore, down-
sampling to change the size of the feature maps are introduced.
In order to make the down-sampling in the structure of DenseNet
possible, multiple densely connected dense blocks are introduced
to divide the network. The layers between the blocks are named
as transition layers that have batch normalization, convolution
and pooling operations, as shown in Figure 2. Figure 2 describes
a case of DenseBlock, in which the layer number is 5 and the
growth rate is set as k. Each layer receives feature maps from
all earlier layers.

For each operation Hl, it generates k feature maps, which is
defined as growth rate. Therefore, the lth layer will have k0 +

k(l− 1) feature maps, and k0 is the number of channels in the

FIGURE 2 | Structure of the DenseBlock (5 layers and each layer takes
feature maps from all previous layers).
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FIGURE 3 | The structure of the DenseNet.

FIGURE 4 | Non-CMB samples.
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FIGURE 5 | CMB samples.

input layer. As the network typically has a large number of inputs,
a 1× 1 convolution is employed as the bottleneck layer before the
3 × 3 convolution layer to reduce the feature maps and improve
the computation efficiency.

To further compress the model to improve the model
compactness, the feature maps are further reduced by the
transition layer. For example, if a dense block generates m
feature maps and the compression factor is set as θ ∈ (0, 1],
then the feature maps will be reduced to bθmc via the followed
transition layer. If θ = 1, the number of feature maps will
be the same. Figure 3 shows the structure of DenseNet,
which is composed of three DenseBlocks, an input layer and
transition layers. The cropped samples are used as the input,
the final layer will tell us whether it is CMB or Non-CMB
in this research.

TRANSFER LEARNING

DenseNet has been widely applied in the medical research. For
example, Gottapu and Dagli (2018) proposed using DenseNet
for Anatomical Brain Segmentation. Khened et al. (2019)

proposed cardiac segmentation based on fully convolutional
multi-scale residual DenseNets. Wang H. et al. (2019) offered
a system for recognition of mild cognitive impairment (MCI)
and Alzheimer’s disease (AD), based on the ensemble of
3D densely connected convolution network. Considering the
limited amounts of labeled training samples, it is far way
from enough to retrain the whole network of DenseNet from
scratch to get a high classification accuracy. Therefore, in this
paper, we proposed transfer learning, which means frozen the
earlier layers and retrain the later layers of DenseNet for
CMB detection task. The structure of DenseNet used here
is DenseNet 201.

In order to make the pretrained DenseNet 201 for CMB
detection feasible, which was a binary classification of
CMB or non-CMB, the fully connected (FC) layer with

TABLE 1 | Dividing of the dataset for training and testing.

Train Test

CMB 58, 847 10000

Non-CMB 56, 572, 536 10000
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FIGURE 6 | Images padded for DenseNet.

1000 neuron was replaced by a new FC layer with 2
neurons. The structure of the remaining part of DenseNet
201 was unchanged.

CMB DETECTION BASED ON THE
TRANSFER LEARNING AND DENSENET

Materials
The subjects used in this research are ten healthy controls and
ten patients of CADASIL. Twenty 3D volumetric images were
obtained from the 20 patients. Then, Software Sygno MR B17 was
utilized to rebuild the 3D volumetric image. Each 3D volumetric
image’s size is uniformly set as 364∗448∗48.

In order to mark the CMBs from the subjects manually,
we employed three neuron-radiologists with more than twenty-
years’ experience. The rules were set as follows: (1) via tracking
the neighbor slices, blood vessels were first excluded, (2) lesions
should be smaller than 10 mm in diameter. The potential
CMBs were labeled as either “possible” or “Definite,” Otherwise,
regarded as non-CMB voxels. In case of the conflictions, we
proposed to obey the rule that the minority should be subordinate
to the majority.

The sample images were generated from the original image.
We applied the sliding window whose size is set as 61 by 61 to
the original image. The border pixels were discarded due to the
fat and brain skull. All the pixels located within a sliding window
were used as one input, and the point located in the center of the
sliding window was used as the target value. It means that if the
central pixel is true or 1, then the target value is 1, otherwise, the

Conv+pooling

FCL Softmax

FIGURE 7 | Flowchart of DenseNet 201.
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target label is set as 0. It is expressed in the Eqs 7 and 8:

I =W(p) (7)

Ou =
{

1, Central pixel p is true (CMB)

0, Central pixel p is false (non− CMB)
(8)

Where I stands for the cropped sample images generated via the
sliding window, p represents for the central pixel, W(p) means
the pixels which centered on pixel p and were located inside the
sliding window, and Ou means the label value. Figures 4, 5 show
the sample of CMB and non-CMB centered images.

The sliding window was supposed to cover the image from left
to right and top to bottom with the stride size as 1. Therefore,
we got the total CMB voxels as 68, 847 and non-CMB voxels as
56, 582, 536. The training and test set was divided as Table 1. We
randomly selected 10000 images for each category of the test, and
the remaining images were used for training.

To make the images suitable for DenseNet, which should be
resized as 224 × 224 × 3, we padded the images with zero.
The preprocessed image sample is shown as Figure 6. Then,
Figure 7 shows the flowchart of the DenseNet, including number
of feature maps generated by each layer.

From Table 1, we can find that the Non-CMB training data
dominates the majority type CMB, which will cause the classifier
more bias toward to the Non-CMB. Therefore, it may cause
difficulties in controlling false positives and false negatives, which
means the model is hard to find the CMB samples. Therefore, in
order to overcome this challenge, we introduced cost matrix (Wu
and Kim, 2010). The cost ratio ct was set as 961 via Eq. 9:

ct = Nnon−CMB/NCMB (9)

In which Nnon−CMB means the number of non-CMB training
samples and NCMB stands for number of CMB training samples.
The reason for why we employ the cost matrix instead of
over sampling or down sampling is mainly because we have
more concerns about the false positives and false negatives,
therefore it is better to highlight the imbalanced learning problem
by using cost matrices instead of creating a balanced data
distribution forcefully.

Experiment Design
The goal of this research is to identify the input image as either
CMB or Non-CMB. In order to achieve this goal, we proposed
using DenseNet 201 as the basic algorithm for transfer learning,
based on the excellent performance of DenseNet on ImageNet
classification task. Section “Materials” stated the materials used
in this research. Based on the original images, we created 68, 847
CMB subsamples and 56, 582, 536 Non-CMB subsamples. 10000
samples were randomly selected as test samples. The remaining
sub-samples were used for training. In order to overcome the
problem of data imbalance, we proposed cost matrix to show
the more concerns in false positive and false negatives. The
experiment is carried on by Matlab on the Windows 10 Operation
System with 2.88 GHz processor and 8 GB memory. The
following experiments were carried out: (1) CMB detection based
on DenseNet. The measurements used here include accuracy,

Convolution+Pooling

Dense Block 1

Transition Layer 1

Dense Block 2

Transition layer 2

Dense Block 3

Transition layer 3

Dense Block 4

FC-2 Layer

Softmax

Classification layer

Batch Normalization

Average Pooling

Input

A

B
C

D

FIGURE 8 | Different cases of transfer learning (the original fully connected
layer with 1000 neurons was replaced by a new fully connected layer with
2 neurons).

TABLE 2 | Confusion matrix of detected CMB and Non-CMB.

Predicted

Actual CMBs Non-CMBs

CMBs (10000) 9777 223

Non-CMBs (10000) 236 9764

sensitivity and specificity. The definition of the measurements
can be found in Zhang et al. (2018b). (2) Different cutting points
of transfer learning. (3) In order to show the performance of
proposed methods, we compared with other state of art work.
Considering the measurements provided in other research, we
only used sensitivity, specificity and accuracy.
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In order to provide better illustration of DenseNet, we added
a flowchart with feature map size, learnable weights of each layer.
As we only noted the size of the width, the length should be
same with the width.

CMB Detection Result Based on
DenseNet
The rebuilt network was composed of four DenseBlocks, one
input layer, three transition layers, one fully connected layer
with two neurons, a softmax layer and a classification layer, as
described in Figure 8.

Table 2 provides the detection result. The correctly detected
CMBs were 9777, and for Non-CMB they were 9764. 236 non-
CMBs were incorrectly detected as CMBs, and 223 CMBs were
wrongly detected as non-CMBs. The sensitivity was achieved as
97.78%, the specificity was 97.64%, the accuracy was 97.71% and
the precision was 97.65%. Above measurements were obtained
based on the average of 10 runs as shown in Table 3.

Comparison to the Different Cases of
Transfer Learning
In order to achieve the best performance of transfer learning,
different cutting points for transfer learning were designed as
shown in Figure 8. Due to the limited subjects, we mainly focused
on retraining the later layers of DenseNet. Therefore, in case A,
the DenseNet 201 except for the last three layers, was used as the
feature extractor for this research, and we retrained the newly
added three layers.

In case B, C, and D, we included extra layers for retraining. For
example, case B retrained the DenseBlock 4, Batch normalization,
Average pooling, Fully connected (FC) layer, softmax layer and

TABLE 3 | Measurements value CMB detection based on transfer learning of
DenseNet (Units: %).

Measurements Sensitivity Specificity Accuracy Precision

R 1 96.69 96.73 96.71 96.72

R 2 97.82 97.87 97.84 97.90

R 3 98.71 98.51 98.61 98.52

R 4 96.71 96.27 96.49 96.29

R 5 96.69 96.19 96.44 96.22

R 6 96.93 96.99 96.96 97.00

R 7 98.44 98.40 98.42 98.39

R 8 98.77 98.58 98.67 98.58

R 9 98.71 98.62 98.67 98.62

R 10 98.30 98.22 98.26 98.22

97.78 ± 0.88 97.64 ± 0.94 97.71 ± 0.90 97.65 ± 0.93

TABLE 4 | Comparison of different cases of transfer learning (Unit: %).

Sensitivity Specificity Accuracy Precision

Case A 97.78 ± 0.88 97.64 ± 0.94 97.71 ± 0.90 97.65 ± 0.93

Case B 97.56 ± 0.83 97.65 ± 0.76 97.60 ± 0.79 97.67 ± 0.76

Case C 97.36 ± 1.05 97.66 ± 0.8 97.51 ± 0.92 97.66 ± 0.82

Case D 97.61 ± 0.63 97.54 ± 0.65 97.58 ± 0.64 97.57 ± 0.65

classification layer. It was implemented via setting the learning
rate to 0 for earlier layers and setting learning rate factor to 10 for
layers to be retrained. Table 4 illustrates the comparison results.

From Table 4, we can find that Case A performed slightly
better than the other three cases in the terms of sensitivity and

FIGURE 9 | Error bar.

TABLE 5 | Comparison to the state of art methods.

Method Sensitivity Specificity Accuracy

SNP+SLFN+LReLU (Zhang
et al., 2018c)

93.05 93.06 93.06

4-layer SAE (Zhang et al., 2016) 93.20 ± 1.37 93.25 ± 1.38 93.22 ± 1.37

7-layer SAE (Zhang et al.,
2018d)

95.13 ± 0.84 93.33 ± 0.84 94.23 ± 0.84

CNN + RAP (Wang et al., 2017) 96.94 97.18 97.18

CNN (Lu et al., 2017) 97.29 92.23 96.05

NBC (Bao et al., 2018) 74.53 ± 0.96 74.51 ± 1.05 74.52 ± 1.00

GA-BPNN (Cloutie, 2018) 72.90 ± 1.38 72.89 ± 1.18 72.90 ± 1.28

CNN-SP (Wang S. et al., 2019) 97.22 97.35 97.28

Our method 97.78 ± 0.88 97.64 ± 0.94 97.71 ± 0.90

FIGURE 10 | Comparison of the state of art methods (Blue means the
sensitivity, red means the specificity, and yellow means the accuracy).
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accuracy. Considering that in medical research, we focus more
on the sensitivity and accuracy than on the other two terms,
we thought Case A provided the best performance among all
the cases. Figure 9 shows the error bar of the measurement
values. From the point of storage consuming, all four cases
take about the same RAM as we did when not using the
precomputation method.

Comparison to the State of Art Work
In order to validate our proposed method, we compared different
state of the art methods, including traditional machine learning
methods and DL methods.

From Table 5, we compared our method with single-hidden
layer feed-forward neural-network (SLFN)+ (leaky) rectified
linear unit, 4-layer sparse encoder, 7-layer sparse encoder,
different layers of CNN, Naive Bayesian Classifier and so on. We
can find that our proposed method offers the best performance.
DenseNet works as a logical extension of ResNet but provides
more compact models and fully uses the features.

Figure 10 shows the bar chart of the comparison of the
state of the state of art methods. It shows that our proposed
method performs slightly better than the current best method,
but largely improved compared to the traditional method naïve
Bayes classifier (NBC).

DISCUSSION

In this paper, we proposed to employ DenseNet to detect
CMBs in patients with CADASIL. DenseNet was proposed by
Huang et al. (2017) and competed the other DL methods for
ImageNet classification task because of its model compactness
and fully used features. DenseNet are quite similar with ResNet,
however, instead of the summation, DenseNet proposed the
concatenation of all feature maps from previous layers, which
encourages the feature reuse, the VGP alleviation, and the
decreased number of parameters.

Therefore, in this paper, we proposed using DenseNet for
CMB detection by supposing CMB detection has similarity with
ImageNet classification. However, because of the data imbalance,
we utilized cost matrix to avoid the model bias toward non-
CMB, which means the model would be hard to find CMBs if
trained under the imbalanced dataset. As there are some other

methods for data imbalance, such as over sampling and down
sampling, we have more concerns about the false negatives or
false positives. Therefore, instead of enforcing the data into
balanced distribution, we employed the cost matrix. In order to
check the best cutting point, we test different cases of transfer
learning and the results are shown in Table 4, however, the
difference is not so obvious. On the other hand, training less
layers can help us save time and decrease the computation cost
if we import the strategy of precomputation.

In the future, we will try to collect more samples and test more
different structures for CMB detection. Meanwhile, the training
cost long term is very high (Zeng et al., 2018), therefore it is
necessary to optimize the algorithm to make the training fast
(Zeng et al., 2016b,d). We will consider other precomputation
and some optimization methods (Zhang et al., 2018a).
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Aim: This paper proposes a novel alcoholism identification approach that can assist

radiologists in patient diagnosis.

Method: AlexNet was used as the basic transfer learning model. The global learning rate

was small, at 10−4, and the iteration epoch number was at 10. The learning rate factor

of replaced layers was 10 times larger than that of the transferred layers. We tested five

different replacement configurations of transfer learning.

Results: The experiment shows that the best performance was achieved by replacing

the final fully connected layer. Our method yielded a sensitivity of 97.44%± 1.15%, a

specificity of 97.41 ± 1.51%, a precision of 97.34 ± 1.49%, an accuracy of 97.42 ±

0.95%, and an F1 score of 97.37 ± 0.97% on the test set.

Conclusion: This method can assist radiologists in their routine alcoholism screening

of brain magnetic resonance images.

Keywords: alcoholism, transfer learning, AlexNet, data augmentation, convolutional neural network, dropout, local

response normalization, magnetic resonance imaging

INTRODUCTION

Alcoholism (1) was previously composed of two types: alcohol abuse and alcohol dependence.
According to current terminology, alcoholism differs from “harmful drinking” (2), which is an
occasional pattern of drinking that contributes to increasing levels of alcohol-related ill-health.
Today, it is defined depending on more than one of the following conditions: alcohol is
strongly desired, usage results in social problems, drinking large amounts over a long time
period, difficulty in reducing alcohol consumption, and usage resulting in non-fulfillment of
everyday responsibilities.

Alcoholism affects all parts of the body, but it particularly affects the brain. The size of gray
matter and white matter of alcoholism subjects are less than age-matched controls (3), and this
shrinkage can be observed using magnetic resonance imaging (MRI). However, neuroradiological
diagnosis using MR images is a laborious process, and it is difficult to detect minor alterations in
the brain of alcoholic patient. Therefore, development of a computer vision-based automatic smart
alcoholism identification program is highly desirable to assist doctors in making a diagnosis.

Within the last decade, studies have developed several promising alcoholism detection methods.
Hou (4) put forward a novel algorithm called predator-prey adaptive-inertia chaotic particle swarm
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optimization (PAC-PSO), and applied it to identify alcoholism
in MR brain images. Lima (5) proposed to use Haar wavelet
transform (HWT) to extract features from brain images, and the
authors used HWT to detect alcoholic patients. Macdonald (6)
developed a logistic regression (LR) system. Qian (7) employed
the cat swarm optimization (CSO) and obtained excellent results
in the diagnosis of alcoholism. Han (8) used wavelet Renyi
entropy (WRE) to generate a new biomarker; whereas Chen (9)
used a support vector machine, which was trained using a genetic
algorithm (SVM-GA) approach. Jenitta and Ravindran (10)
proposed a local mesh vector co-occurrence pattern (LMCoP)
feature for assisting diagnosis.

Recently, deep learning has attracted attention in many
computer vision fields, e.g., synthesizing visual speech (11), liver
cancer detection (12), brain abnormality detection (13), etc.
As a result, studies are now focused on using deep learning
techniques for alcoholism detection. Compared to manual
feature extractionmethods (14–18), deep learning can “learn” the
features of alcoholism. For example, Lv (19) established a deep
convolutional neural network (CNN) containing seven layers.
Their experiments found that their model obtained promising
results, and the stochastic pooling provided better performance
than max pooling and average pooling. Moreover, Sangaiah (20)
developed a ten-layer deep artificial neural network (i.e., three
fully-connected layers and seven conv layers), which integrated
advanced techniques, such as dropout and batch normalization,
into their neural network.

Transfer learning (TL) is a new pattern recognition problem-
solver (21–23). TL attempts to transfer knowledge learned using
one or more source tasks (e.g., ImageNet dataset) and uses it to
improve learning in a related target task (24). In perspective of
realistic implementation, the advantages of TL compared to plain
deep learning are: (i) TL uses a pretrained model as a starting
point; (ii) fine-tuning a pretrained model is usually easier and
faster than training a randomly-initialized deep neural network.

The contribution of this paper is that we may be the first to
apply transfer learning in this field of alcoholism identification.
We used AlexNet as the basic transfer learning model and
tested different transfer configurations. Further, the experiments
showed that the performance (sensitivity, specificity, precision,
accuracy, and F1 score) of our model is >97%, which is
superior to state-of-the-art approaches. We also validated the
effectiveness of using data augmentation which further improves
the performance of our model.

DATA PREPROCESSING

Datasets
This study was approved by the ethical committee of Henan
Polytechnic University. Three hundred seventy-nine slices were
obtained in which there are 188 alcoholic brain images and 191
non-alcoholic brain images. We divided the dataset into three
parts: a training set containing 80 alcoholic brain images and
80 non-alcoholic brain images; A validation set containing 30
alcoholic brain images and 30 non-alcoholic brain images; a test
set containing 78 alcoholic brain images and 81 non-alcoholic
brain images. The division is shown in Table 1.

TABLE 1 | Dataset division into training, validation, and test sets.

Alcoholic Non-alcoholic Total

Training 80 80 160

Validation 30 30 60

Test 78 81 159

Total 188 191 379

TABLE 2 | Data augmentation.

Alcoholic Non-alcoholic Total

Original Image 80 80 160

DA_I: Noise Injection 2,400 2,400 4,800

DA_II: Scaling 2,400 2,400 4,800

DA_III: Random Translation 2,400 2,400 4,800

DA_IV: Image Rotation 2,400 2,400 4,800

DA_V: Gamma Correction 2,400 2,400 4,800

Horizontal-flipped Image 80 80 160

DA_I: Noise Injection 2,400 2,400 4,800

DA_II: Scaling 2,400 2,400 4,800

DA_III: Random Translation 2,400 2,400 4,800

DA_IV: Image Rotation 2,400 2,400 4,800

DA_V: Gamma Correction 2,400 2,400 4,800

New Training Data 24,160 24,160 48,320

Data Augmentation
To improve the performance of deep learning, data augmentation
(DA) (25) was introduced. This was done because our deep neural
network model has many parameters, so we needed to show that
our model contains a proportional amount of sample images
to achieve optimal performance. For each original image, we
generated a horizontally flipped image. Then, for both original
and horizontal-flipped images, we applied the following five
DA techniques: (i) noise injection, (ii) scaling, (iii) random
translation, (iv) image rotation, and (v) gamma correction. Each
of those methods produced 30 new images.

Gaussian noise with zero-mean and variance of 0.01 was
applied to every image. Scaling was used with a scaling factor of
0.7–1.3, with an increase of 0.02. Random translation was utilized
with a random shift within [−40 40] pixels. Image rotation with
rotation angle varies from −30o to 30o and a step of 2o was
employed. Gamma correction with gamma value varies from 0.4
to 1.6 with a step of 0.04 was utilized.

The DA result is shown in Table 2. Each image generated
(1+30∗5)∗2= 302 images including itself. After DA, the training
set had 24,160 alcoholism brain images and 24,160 healthy brain
images. Altogether, the new training set consisted of a balanced
160∗320= 48,320 samples.

METHODOLOGY

Fundamentals of Transfer Learning
The core knowledge of transfer learning (TL) is shown in
Figure 1. The core is to use a relatively complex and successful
pre-trained model, trained from a large data source, e.g.,
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FIGURE 1 | Idea of transfer learning.

ImageNet, which is the large visual database developed for
visual object recognition research (26). It contains more than
14,000,000 hand-annotated images and at least one million
images are provided with bounding boxes. ImageNet contains
more than 20,000 categories (27). Usually, pretrained models are
trained on a subset of ImageNet with 1,000 categories. Then we
“transferred” the learnt knowledge to the relatively simplified
tasks (e.g., classifying alcoholism and non-alcoholism in this
study) with a small amount of private data.

Two attributes are important to help the transfer (28): (i) The
success of the pretrained model can promote the exclusion of
user intervention with the boring hyper-parameter tuning of new
tasks; (ii) The early layers in pretrainedmodels can be determined
as feature extractors that help to extract low-level features, such
as edges, tints, shades, and textures.

Traditional TL only retrains the new layers (29). In this study,
we initially used the pretrained model, and then re-trained the
whole structure of the neural network. Importantly, the global
learning rate is fixed, and the transferred layers will have a low
factor, while newly-added layers will have a high factor.

AlexNet
AlexNet competed in the ImageNet challenge (30) in 2012,
achieved a top-5 error of only 15.3%,more than 10.8% better than
the result of the runner-up that used the shallow neural network.
Original AlexNet was performed on two graphical processing
units (GPUs). Nowadays, researchers tend to use only oneGPU to
implement AlexNet. Figure 2 illustrates the structure of AlexNet.
This study only counts layers associated with learnable weights.
Hence, AlexNet contains five conv layers (CL) and three fully-
connected layers (FCL), totaling eight layers.

The details of learnable weights and biases of AlexNet are
shown in Table 3. The total weights and biases of AlexNet are
60,954,656 + 10,568 = 60,965,224. In Matlab, the variable is
stored in single-float type, taking four bytes for each variable.
Hence, in total we needed to allocate 233 MB.

Common Layers in AlexNet
Compared to traditional neural networks, there are several
advanced techniques used in AlexNet. First, CLs contain a set
of learnable filters. For example, the user has a 3D input with a
size of PW×PH×D, a 3D filter with a size of QW×QH×D. As a

consequence, the size of the output activation map is SW×SH .
The value of SW and SH can be obtained by

SW = 1+
PW − QW + 2β

µ
(1)

SH = 1+
PH − QH + 2β

µ
(2)

where µ is the stride size and β represents the margin.
Commonly, there may be T filters. One filter will generate one
2D feature map, and T filters will yield an activation map with
a size of SW×SH×T. An illustration of convolutional procedure
is shown in Figure 3. The “feature learning” in the filters here,
can be regarded as a replacement of the “feature extraction” in
traditional machine learning.

Second, the rectified linear unit (ReLU) function was
employed to replace the traditional sigmoid function S(x) in
terms of the activation function (31). The reason is because the
sigmoid function may come across a gradient vanishing problem
in deep neural network models.

S(x) =
1

1+ exp(−x)
(3)

Therefore, the ReLU was proposed and defined as follows:

Re LU(x) = max(0, x) (4)

The gradient of ReLU is one at all times, when the input is
larger than or equal to zero. Scholars have proven that the
convergence speed of deep neural networks, with ReLU as the
activation function, is 6x quicker than traditional activation
functions. Therefore, the new ReLU function greatly accelerates
the training procedure.

Third, a pooling operation is implemented with two
advantages: (i) It can reduce the size of the feature map, and
thus reduce the computation burden. (ii) It ensures that the
representation becomes invariant to the small translation of the
input. Map pooling (MP) is a common technique that chooses
the maximum value among a 2 × 2 region of interest. Figure 4
shows a toy example of MP, with a stride of 2 and kernel size of 2.

The fourth improvement is the “local response normalization
(LRN).” Krizhevsky et al. (26) proposed the LRNs in order to
aid generalization. Suppose that ai represents a neuron computed
by applying kernel i and ReLU non-linearity, then the response-
normalized neuron bi will be expressed as:

bi =
ai

(

m+ α
min(Z−1,i+z/2)

∑

s=max(0,i−z/2)

a2s

)β
(5)

where z is the window channel size, controlling the number of
channels used for normalization of each element, and Z is the
gross number of kernels in that layer. Hyperparameters are set
as: β = 0.75, α = 10−4,m= 1, and z = 5.
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FIGURE 2 | Structure of AlexNet (5 CLs and 3 FCLs).

TABLE 3 | Learnable layers in AlexNet.

Name Weights Biases

CL1 11*11*3*96 = 34,848 1*1*96 = 96

CL2 5*5*48*256 = 307,200 1*1*256 = 256

CL3 3*3*256*384 = 884,736 1*1*384 = 384

CL4 3*3*192*384 = 663,552 1*1*384 = 384

CL5 3*3*192*256 = 442,368 1*1*256 = 256

FCL6 4096*9216 = 37,748,736 4096*1 = 4,096

FCL7 4096*4096 = 16,777,216 4096*1 = 4,096

FCL8 1000*4096 = 4,096,000 1000*1 = 1,000

CL

Subtotal

2,332,704 1,376

FCL

Subtotal

58,621,952 9,192

Total 60,954,656 10,568

FIGURE 3 | Illustration of convolution operation.

Fifth, the fully connected layers (FCLs) have connections
to all activations in the previous layer, so they can be
modeled as multiplying the input by a weight matrix and
then adds a bias vector. The last fully-connected layer
includes the equal number of artificial neurons as the
number of total classes C. Therefore, each neuron in the

last FCL represents the score of that cognate class, as shown
in Figure 5.

Sixth, the softmax layer (SL), utilizes the multiclass
generalization of logistic regression (32), also known as softmax
function. SL is commonly connected after the final FCL. From
the perspective of the activation function, the sigmoid/ReLU
function works on a single input single output mode, while the
SL serves as a multiple input multiple output mode, as shown
in Figure 6. A toy example can be imagined. Suppose we have a
four input at the final SL layer with values of (1–4), then after a
softmax layer, we have an output of [0.032, 0.087, 0.236, 0.643].

Suppose that T(f ) symbolizes the prior class probability of
class f, and T(h|f ) means the conditional probability of sample h
given class f. Then we can conclude that the likelihood of sample
h belonging to class f is

T(f
∣

∣h ) =
T(h

∣

∣f )× T(f )

F
∑

i=1
T(h |i )× T(i)

(6)

Here F stands for the whole number of classes. Let Ωf equals

�f = ln
[

T(h, f )× T(f )
]

(7)

Afterwards, we get

T(f
∣

∣h ) =
exp

(

�f (h)
)

F
∑

i=1
exp

(

�i(h)
)

(8)

Finally, a dropout technique is used, since training a big neural
network is too expensive. Dropout freezes neurons at random
with a dropout probability (PD) of 0.5. During training phase,
those dropped out neurons are not engaged in both a forward
and backward pass. During the test phase, all neurons are used
but with outputs multiplied by PD of 0.5 (33).

It can be regarded as taking a geometric mean of
predictive distributions, generated by exponentially-many small-
size dropout neural networks. Figure 7A shows a plain neural
network with numbers of neurons at each layer as (2, 4, 8, 10),
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FIGURE 4 | Example of max pooling (stride = 2, kernels size = 2).

FIGURE 5 | Structure of last fully-connected layer (C stands for the number of

total classes).

and Figure 7B shows the corresponding dropout neural network
with PD of 0.5, where only (1, 2, 4, 5) neurons remain active at
each layer.

Transfer AlexNet to
Alcoholism Identification
First, we needed to modify the structure. The last FCL was
revised, since the original FCLs were developed to classify 1,000
categories. Twenty randomly selected classes were listed as: scale,
barber chair, lorikeet, miniature poodle, Maltese dog, tabby,
beer bottle, desktop computer, bow tie, trombone, crash helmet,
cucumber, mailbox, pomegranate, Appenzeller, muzzle, snow
leopard, mountain bike, padlock, diamondback. We observed
that none of them are related to the brain image. Hence, we could

not directly apply AlexNet as the feature extractor. Therefore,
fine-tuning was necessary.

Since the length of output neurons in orthodox AlexNet
(1000) is not equal to the number of classes in our task
(2), we needed to revise the corresponding softmax layer and
classification layer. The revision is shown in Table 4. In our
transfer learning scheme, we used a new randomly-initialized
fully connected layer with two neurons, a softmax layer, and
a new classification layer with only two classes (alcoholism
and non-alcoholism).

Next, we set the training options. Three subtleties were
checked before training. First, the whole training epoch should be
small for a transfer learning. In this study, we set the number of
training epochs to 10. Second, the global learning rate was set to
a small value of 10−4 to slow learning down, since the early parts
of this neural network were pre-trained. Third, the learning rate
of new layers were 10 times that of the transferred layer, since the
transferred layers with pre-trained weights/biases and new layers
were with random-initialized weights/biases.

Third, we varied the numbers of transferred layers and tested
different settings. The AlexNet consists of five conv layers (CL1,
CL2, CL3, CL4, and CL5) and three fully-connected layers (FCL6,
FL7, FL8). As a result, we tested five different transfer learning
settings as shown in Figure 8 in total, in all experiments. For
example, here Setting A means that the layers from the first layer
to layer A are transferred directly with learning rate as 10−4

× 1 = 10−4. The late layers from layer A to the last layer are
randomly initialized with a learning rate of 10−4 × 10= 10−3.

Implementation and Measure
We ran the experiment many times. Each time, the training-
validation-test division was set at random again. The training
procedure stopped when either the algorithm reached maximum
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FIGURE 6 | Two modes of activation function. (A) Single input single output mode. (B) Multiple input multiple output mode.

FIGURE 7 | Dropout neural network. (A) Before dropout. (B) After dropout.

TABLE 4 | Revision of Last three layers of AlexNet.

Layer Original Replaced

23 FCL (1000) with pre-trained

weights and biases

FCL (2) with random

initialization

24 Softmax Layer Softmax Layer

25 Classification Layer

(1,000 classes)

Classification Layer

(two classes: alcoholism

and non-alcoholism)

epoch, or the performance of validation decreased over a preset
training epoch. We repeatedly tuned the hyperparameters and
found those optimal hyper-parameters based on a validation
set. After the hyperparameters were fixed, we ran the final
model on the test set for 10 runs. The test set confusion
matrix across all runs was recorded, and the following five

measures were calculated: sensitivity (SEN), specificity (SPC),
precision (PRC), accuracy (ACC), and F1 score. Assume TP,
TN, FP, and FN stands for true positive, true negative, false
positive, and false negative, respectively, all five measures were
defined as:

SEN =
TP

TP + FN
(9)

SPC =
TN

TN + FP
(10)

PRC =
TP

TP + FP
(11)

ACC =
TP + TN

TP + TN + FP + FN
(12)

F1 considers both the precision and the sensitivity to computer
the score (34). That means, the measure of the “F1 score” is
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FIGURE 8 | Five different settings A-E (Setting A stands for the layers from first

layer till layer A are transferred layers, and the remaining layers are

replaced layers).

the harmonic mean of the previous two measures: precision
and sensitivity.

F1 =

(

SEN−1 + PRC−1

2

)−1

(13)

Using simple mathematical knowledge, we can obtain:

F1 = 2/
(

TP+FN
TP + TP+FP

TP

)

= 2/
(

2TP+FP+FN
TP

)

= 2×TP
2×TP+FP+FN

(14)

Then, the average and standard deviation (SD) of all five
measures of 10 runs of the test set were calculated and used
for comparison. For ease of understanding, a pseudocode of
our experiment is listed below in Table 5. The first block is
to split the dataset into non-test and test sets. In the second
block, the non-test set was split into training and validation
randomly. The performance of the retrained AlexNet model
was recorded and used to select the optimal transfer learning
setting S∗. In the final block, the performance on the test
set via the retrained AlexNet using setting S∗ was recorded
and outputted.

RESULTS

Data Augmentation Results
Figure 9 shows the horizontally flipped image. Here, vertical
flipping was not carried out because it can be seen as a
combination of horizontal flipping with 180-degree rotation.

TABLE 5 | Pseudocode of our experiment.

[NonTest, Test]=split(Dataset);

for S = [A, B, C, D, E]

for i = 1:10

[train(i), valid(i)] = split(NonTest),

Model(S, i) = TrainNetwork(AlexNet, train(i), valid(i), Setting = S),

PerfValid(S, i) = Predict(Model(S, i), valid(i)),

end

PerfValid(S) = mean(PerfValid(S, i)),

End

S* = argmax[Performance(S)],

for i = 1:10

[train(i), valid(i)] = split(NonTest),

Model(S*, i) = TrainNetwork(AlexNet, train(i), valid(i), Setting = S*),

PerfTest(S*, i) = predict(Model(S*, i), Test),

End

PerfTest(S*) = mean(PerfTest(S*, i)),

Output PerfTest(S*),

FIGURE 9 | Data augmentation by horizontal flipping. (A) Original image. (B)

Flipped image.

Figure 10 shows the data augmentation results of five different
techniques: (a) noise injection; (b) scaling; (c) random
translation; (d) image rotation; (e) Gamma correction. Due
to the page limit, the data augmentation results on the flipped
image are not shown.

Comparison of Setting of TL
In this experiment, we compared five different TL settings on
the validation set. The results of Setting A are shown in Table 6,
where the last row shows the mean and standard deviation
value. The results of Setting E are shown in Table 7. Due to
page limit, we only show the final results of Setting B, C, and
D in Table 8.

Here, it can be seen from Table 8 that Setting E, i.e., replacing
the FCL8, achieves the greatest performance among all five
settings with respect to all measures. The reason may be (i)
we expanded a relatively small dataset to a large training
set using data augmentation; and (ii) the dissimilarity of our
data and the original 1,000-category dataset. The first fact
ensures that retraining avoids overfitting; and the latter fact
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FIGURE 10 | Five augmentation techniques of the original image. (A) Noise injection. (B) Scaling. (C) Random translation. (D) Image rotation. (E) Gamma correction.
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TABLE 6 | Ten runs of validation performance of transfer learning using Setting A.

Run SEN SPC PRC ACC F1

1 96.67 93.33 93.54 95.00 95.05

2 100.00 100.00 100.00 100.00 100.00

3 90.00 100.00 100.00 95.00 94.70

4 96.67 90.00 90.63 93.33 93.55

5 90.00 96.67 96.43 93.33 93.10

6 96.67 96.67 96.67 96.67 96.67

7 96.67 96.67 96.88 96.67 96.66

8 96.67 100.00 100.00 98.33 98.28

9 100.00 90.00 90.99 95.00 95.26

10 96.67 93.33 93.54 95.00 95.05

Mean ± SD 96.00 ± 3.27 95.67 ± 3.67 95.87 ± 3.40 95.83 ± 2.01 95.83 ± 2.00

TABLE 7 | Ten runs of validation performance of transfer learning using Setting E.

Run SEN SPC PRC ACC F1

1 93.33 100.00 100.00 96.67 96.55

2 100.00 96.67 96.88 98.33 98.39

3 100.00 100.00 100.00 100.00 100.00

4 100.00 100.00 100.00 100.00 100.00

5 93.33 93.33 93.33 93.33 93.33

6 96.67 100.00 100.00 98.33 98.28

7 100.00 100.00 100.00 100.00 100.00

8 96.67 93.33 93.54 95.00 95.05

9 96.67 93.33 93.54 95.00 95.05

10 100.00 100.00 100.00 100.00 100.00

Mean ± SD 97.67 ± 2.60 97.67 ± 3.00 97.73 ± 2.93 97.67 ± 2.38 97.67 ± 2.37

TABLE 8 | Comparison of different setting.

Setting SEN SPC PRC ACC F1

A 96.00 ± 3.27 95.67 ± 3.67 95.87 ± 3.40 95.83 ± 2.01 95.83 ± 2.00

B 96.33 ± 3.79 96.00 ± 2.49 96.12 ± 2.43 96.17 ± 2.36 96.15 ± 2.43

C 96.33 ± 3.48 96.33 ± 3.14 96.49 ± 2.94 96.33 ± 2.08 96.33 ± 2.11

D 97.00 ± 3.79 97.00 ± 2.77 97.06 ± 2.70 97.00 ± 2.56 96.98 ± 2.62

E 97.67 ± 2.60 97.67 ± 3.00 97.73 ± 2.93 97.67 ± 2.38 97.67 ± 2.37

Bold means the best.

suggests that it is more practical to put most of the layers
initialized with weights from a pretrained model, than freezing
those layers. For clarity, we plotted the error bar and show it
in Figure 11.

Analysis of Optimized TL Setting
The structure of the optimal transfer learning model
(Setting E) is listed in Table 9. Compared to the traditional
AlexNet model, the weights and biases of FCL8 were
reduced from 4,096,000 to 8,192, and from 1,000 to 2,
respectively. The main reason is that we only had two
categories in our classification task. Thus, the whole weight
of the deep neural network reduced slightly from 60,954,656
to 56,866,848.

Nevertheless, we can observe that FCL6 and FCL7 still
constitutes too many weights and biases. For example,
FCL6 occupied 37,748,736/56,866,848 = 66.38% of the
total weights in this optimal model, and FCL7 occupied
16,777,216/56,866,848 = 29.50% of the total weights.
Additionally, the FCL subtotal comprised 95.90% of the
total weights. This is the main limitation of our method.
To solve it, we need to replace the fully connected layers
with 1 × 1 conv layers. Another solution is to choose small-
size transfer learning models, such as SqueezeNet, ResNet,
GoogleNet, etc.

Effect of Data Augmentation
This experiment compared the performance of runs with
data augmentation against runs without data augmentation
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(DA). Configuration of transfer learning was set to Setting
E. All the other parameters and network structures were
the same as the previous experiments. The performance of
the 10 runs without using DA are shown in Table 10. The
results in terms of all measures are equal to or slightly
above 95%.

The comparison of using DA against not using DA is shown
in Table 11. We can discern that DA indeed enhances the
classification performance. The reason is that having a large
dataset is crucial for good performance. The alcoholism image
dataset is commonly of small size, and its size can be augmented
to the order of tens of thousands (48,320 in this study). AlexNet
can make full use of all its parameters with a big dataset. Without
using DA, overfitting is likely to occur in the transferred model.

Results of Proposed Method
In this experiment, we chose Setting E (replace the final block)
as shown in Figure 8. Here, the retrained neural network
was tested on the test set. The results over all 10 runs on

FIGURE 11 | Error bar of five TL settings.

the test set are listed in Table 12 with details of sensitivity,
specificity, precision, accuracy, and the F1 score of each
run. Setting E yielded a sensitivity of 97.44 ± 1.15%, a
specificity of 97.41 ± 1.51%, a precision of 97.34 ± 1.49%,
an accuracy of 97.42 ± 0.95%, and an F1 score of 97.37%
± 0.97%. Comparing Table 12 with Table 7, we can see that
the mean value of test performance is slightly worse than
that of the validation performance, but the standard deviation
of the test performance is much smaller than that of the
validation performance.

Comparison to Alcoholism
Identification Approaches
This proposed transfer learning approach was compared
with seven state-of-the-art approaches: PAC-PSO (4),
HWT (5), LR (6), CSO (7), WRE (8), SVM-GA (9),
and LMCoP (10). The comparison results are shown in
Table 13. The cognate bar plot is shown in Figure 12.
We can observe that our AlexNet transfer learning model
has more than 3% improvement compared to the next
best approach.

The reason is that this proposed model did not need
to find features manually; nevertheless, it only used a
learned feature from a pretrained model as initialization,
and utilized the enhanced training set to fine-tune those
learned features. This has two advantages: First, the
development is quite fast, which can be reduced to <1
day. Second, the features can be fine-tuned to be more
appropriate to this alcoholism classification task than other
manually-designated features.

The bioinspired-algorithm may help retraining our AlexNet
model. Particle swarm optimization (PSO) (35–37) and other
methods will be tested. Cloud computing (38) in particular
can be integrated into our method, to help diagnosis of
remote patients.

TABLE 9 | Learnable layers in optimal transfer learning model.

Name Weights Weights (%) Biases Biases (%)

CL1 (Ours) 11*11*3*96 = 34,848 0.06 1*1*96 = 96 1.00

CL2 (Ours) 5*5*48*256 = 307,200 0.54 1*1*256 = 256 2.68

CL3 (Ours) 3*3*256*384 = 884,736 1.56 1*1*384 = 384 4.01

CL4 (Ours) 3*3*192*384 = 663,552 1.17 1*1*384 = 384 4.01

CL5 (Ours) 3*3*192*256 = 442,368 0.78 1*1*256 = 256 2.68

FCL6 (Ours) 4096*9216 = 37,748,736 66.38 4096*1 = 4,096 42.80

FCL7 (Ours) 4096*4096 = 16,777,216 29.50 4096*1 = 4,096 42.80

FCL8 (AlexNet) 1000*4096 = 4,096,000 1000*1 = 1,000

FCL8 (Ours) 2*4096 = 8,192 0.01 2*1 = 2 0.02

CL Subtotal (AlexNet) 2,332,704 1,376

CL Subtotal (Ours) 2,332,704 4.10 1,376 14.38

FCL Subtotal (AlexNet) 58,621,952 9,192

FCL Subtotal (Ours) 54,534,144 95.90 8,194 85.62

Total (AlexNet) 60,954,656 10,568

Total (Ours) 56,866,848 100 9,570 100
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TABLE 10 | Ten runs without using data augmentation (Setting E).

Run SEN SPC PRC ACC F1

1 83.33 96.67 96.15 90.00 89.29

2 96.67 93.33 93.54 95.00 95.05

3 96.67 93.33 93.54 95.00 95.05

4 96.67 90.00 90.78 93.33 93.54

5 96.67 100.00 100.00 98.33 98.28

6 96.67 96.67 96.67 96.67 96.67

7 96.67 93.33 93.54 95.00 95.05

8 93.33 100.00 100.00 96.67 96.55

9 93.33 96.67 96.67 95.00 94.94

10 100.00 93.33 93.75 96.67 96.77

Mean ± SD 95.00 ± 4.28 95.33 ± 3.06 95.46 ± 2.84 95.17 ± 2.17 95.12 ± 2.32

TABLE 11 | Effect of using data augmentation technique.

DA SEN SPC PRC ACC F1

Not use DA 95.00 ± 4.28 95.33 ± 3.06 95.46 ± 2.84 95.17 ± 2.17 95.12 ± 2.32

Use DA

(ours)

97.67 ± 2.60 97.67 ± 3.00 97.73 ± 2.93 97.67 ± 2.38 97.67 ± 2.37

TABLE 12 | Ten runs of proposed method on the test set (Setting E).

Run SEN SPC PRC ACC F1

1 97.44 96.31 96.22 96.86 96.82

2 98.72 93.81 93.93 96.23 96.25

3 94.87 96.31 96.09 95.61 95.47

4 97.44 98.75 98.72 98.11 98.07

5 98.72 98.75 98.72 98.73 98.72

6 98.72 97.53 97.47 98.11 98.09

7 97.44 98.78 98.72 98.12 98.07

8 97.44 98.75 98.75 98.12 98.05

9 96.15 97.53 97.40 96.84 96.74

10 97.44 97.53 97.44 97.48 97.44

Mean ± SD 97.44 ± 1.15 97.41 ± 1.51 97.34 ± 1.49 97.42 ± 0.95 97.37 ± 0.97

TABLE 13 | Comparison with state-of-the-art approaches.

Approach SEN SPC PRC ACC F1

PAC-PSO (4) 90.67 91.33 91.28 91.00 90.97

HWT (5) 81.71 81.43 81.48 81.57 81.60

LR (6) 84.00 84.86 84.73 84.43 84.36

CSO (7) 91.84 92.40 91.92 92.13 91.88

WRE (8) 93.60 93.72 93.35 93.66 93.47

SVM-GA (9) 88.42 88.93 88.27 88.68 88.34

LMCoP (10) 89.04 90.00 89.35 89.53 89.19

AlexNet (Ours) 97.44 97.41 97.34 97.42 97.37

CONCLUSIONS

In this study, we proposed an AlexNet-based transfer learning
method and applied it to the alcoholism identification

task. This paper may be the first paper using transfer
learning in the field of alcoholism identification. The
results showed that this proposed approach achieved
promising results with a sensitivity of 97.44 ± 1.15%,
a specificity of 97.41 ± 1.51%, a precision of 97.34 ±

1.49%, an accuracy of 97.42 ± 0.95%, and an F1 score of
97.37± 0.97.

Future studies may include the following points: (i) other
deeper transfer learning models, such as ResNet, DenseNet,
GoogleNet, SqueezeNet, etc. should be tested; (ii) other data
augmentation techniques should be attempted. Currently our
dataset is small, so data augmentation may have a distinct effect
on improving the performance; (iii) how to set the learning
rate factor of each individual layer in the whole neural network,
remains a challenge and needs to be solved; (iv) this method is
ready to run on a larger dataset and can assist radiologists in their
routine screening of brain MR images.
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FIGURE 12 | Bar plot of comparison of eight algorithms.
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Background: Parkinson’s disease (PD) is a prevalent long-term neurodegenerative
disease. Though the criteria of PD diagnosis are relatively well defined, current diagnostic
procedures using medical images are labor-intensive and expertise-demanding. Hence,
highly integrated automatic diagnostic algorithms are desirable.

Methods: In this work, we propose an end-to-end multi-modality diagnostic framework,
including segmentation, registration, feature extraction and machine learning, to analyze
the features of striatum for PD diagnosis. Multi-modality images, including T1-weighted
MRI and 11C-CFT PET, are integrated into the proposed framework. The reliability of this
method is validated on a dataset with the paired images from 49 PD subjects and 18
Normal (NL) subjects.

Results: We obtained a promising diagnostic accuracy in the PD/NL classification
task. Meanwhile, several comparative experiments were conducted to validate the
performance of the proposed framework.

Conclusion: We demonstrated that (1) the automatic segmentation provides accurate
results for the diagnostic framework, (2) the method combining multi-modality images
generates a better prediction accuracy than the method with single-modality PET
images, and (3) the volume of the striatum is proved to be irrelevant to PD diagnosis.

Keywords: Parkinson’s disease, multi-modality, image classification, U-Net, striatum

INTRODUCTION

Parkinson’s disease (PD) is the second-most prevalent long-term neurodegenerative disease
characterized by bradykinesia, rigidity and rest tremor (Postuma et al., 2015). At present, PD is
responsible for about 346,000 deaths per year and is thus one of the major concerns of neuroscience
community (Roth et al., 2018). The diagnosis of PD mainly refers to the Movement Disorder
Society Clinical Diagnostic Criteria for Parkinson’s disease (MDS-PD Criteria) (Postuma et al.,
2015). According to the MDS-PD criteria, the motor symptoms of PD are linked with the loss
of dopaminergic neurons, which mainly affects the anatomical regions of the striatum (SARs).
Therefore, SARs, which include the caudate nucleus, the putamen and the pallidum, are commonly
explored (Strafella et al., 2017).
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Functional neuroimaging of the presynaptic dopaminergic
system is highlighted according to the MDS-PD criteria (Liu
et al., 2018). Positron-emission tomography (PET) is one of the
neuroimaging modalities that indicate the regional activity of
the tissues. Accordingly, PET tracers are developed to observe
the activity of the dopamine transporter (DAT) in early stage of
PD, such as 11C-CFT, which is a biomarker of the presynaptic
dopaminergic system with high sensitivity (Kazumata et al., 1998;
Ilgin et al., 1999; Wang et al., 2013). However, due to the low
resolution of the PET images, the anatomical and structural
information related to the brain that PET can provide is limited.
Therefore, the structural neuroimaging methods, such as T1-
weighted magnetic resonance imaging (T1-MRI), are introduced
to assist the multi-modality diagnosis of PD (Ibarretxe-Bilbao
et al., 2011). Bu et al. (2018) worked on the subtypes of multiple
system atrophy (MSA) utilizing T1-MRI and 11C-CFT PET.
Huang et al. (2019) combined these two modalities with 18F-FDG
PET and analyzed Rapid Eye Movement (REM) Sleep Behavior
Disorder research. In both of their studies, T1-MR images were
registered to PET images to identify the region of interest (ROIs)
in the PET images.

Recently, researchers attempt to improve the accuracy in
diagnostic methods with the help of machine learning algorithms,
for example, the support vector machine (SVM) has been widely
used. Long et al. (2012) used SVM to distinguish early PD patients
from NL subjects utilizing resting-state functional MRI, and
obtained an accuracy of 86.96%. Haller et al. (2012) used SVM
and reached an accuracy of 97% when classifying PD from other
atypical forms of Parkinsonism by combining Diffusion Tensor
Imaging (DTI) and 123I ioflupane Single-Photon Emission
Computed Tomography (SPECT). These works combining
multi-modality imaging have proved the reliability of artificial
intelligence (AI)-assisted PD diagnosis, while few works are
reported including 11C-CFT PET, to the best of our knowledge.

In this work, we proposed an end-to-end multi-modality
diagnostic framework for PD combining T1-MR and 11C-CFT
PET images. In the framework, MR images were segmented by a
U-Net (Ronneberger et al., 2015; Wong et al., 2018). The resulting
segmentation was then used to locate the SARs of the PET images
by registration. Finally, features extracted from these SARs were
used to diagnose PD. Our main contributions include:

(1) We have shown that the automatic segmentation
provides accurate results for the proposed diagnostic
framework of PD.

(2) We have shown that MR images provide important
information to obtain the SAR information
in the PET images.

(3) We have demonstrated that the volume feature of the
striatum is irrelevant to PD diagnosis.

METHODOLOGY

The proposed framework is shown in Figure 1. It contains
three major steps: (1) segmentation, (2) registration, and
(3) feature extraction and prediction. In the first two

steps, MRI-assisted PET segmentation is performed by
MRI segmentation and MRI-PET registration, and in the
subsequent step, only information of PET images is considered
for PD diagnosis.

Striatum Segmentation via Deep Neural
Network
To obtain the fine structure of the brain tissues, a 3D deep neural
network, i.e., U-Net (Ronneberger et al., 2015; Wong et al., 2018),
is implemented to segment the striatum in the MR images. The
obtained segmentation is used as a reference for SAR localization
and extraction in the subsequent procedures.

Figure 2 shows the network architecture for the segmentation,
which outputs a mask indicating the segmented labels of the
input image. The network further incorporates the idea of deep
supervision introduced by Mehta and Sivaswamy (2017) for
faster training convergence. Specifically, the network comprises
encoding and decoding paths. The encoding path captures
contextual information by residual blocks and max-pooling
operations at different resolutions, while the decoding path
sequentially recovers the spatial resolution and object boundaries.
Besides, skip connections between the upsampled feature maps
in the decoder and the corresponding feature maps in the
encoder are employed for the combination of local and contextual
information. Moreover, the deep supervision scheme is adopted
to allow more direct backpropagation to the hidden layers for
faster convergence. A final 1 × 1 × 1 convolution layer with
a softmax function produces the segmentation probabilities.
Gaussian blurring and dropout operations are adopted to avoid
overfitting. A loss function is defined to handle the relatively
small anatomical structures of labels for accurate segmentation,
i.e.,

L = wDLDice + wCLCross, (1)

where, wD and wC denote the weights of LDice and LCross,
respectively; LDice denotes the Dice-related loss, and LCross
denotes the cross-entropy. They are respectively, given by

LDice = Ei
[(
− lnDicei

)γ]
, (2)

with

Dicei =
2
(∑

x δil (x) · pi (x)
)∑

x
(
δil (x)+ pi (x)

) , (3)

and
LCross = Ex

[
− ln pl (x)

]
. (4)

In Eq. (3), δil (x) is the Kronecker delta, which equals to 1 if
the segmentation label i (x) equals to the ground-truth label l (x)
at the voxel position x, and 0 otherwise; pi (x) is the probability of
voxel x being labeled as i. In our implementations, we chosewD =

0.8,wC = 0.2 and γ = 0.3 for the loss function and pretrained the
model using an Adam optimizer with a learning rate of 1 × 10−3

for 10 epochs (Kingma and Ba, 2014). Due to the computational
limitations, an ROI of MR images with a size of 96 × 96 × 96
voxels was cropped, which contains the whole structure of SARs.
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FIGURE 1 | The architecture of the proposed framework.

FIGURE 2 | The proposed segmentation network architecture. Each block is represented by (n, k, r), where n, k, and r denote number of channels, number of
layers, and the dropout probability, respectively.

We employ T1-MR brain images from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI1) database for pretraining, for
the size of the clinical data used in this work is far from being
enough for the U-Net training. Note that the information related
to AD or other modality data is not used in this study, namely we
solely employ the 1859 brain T1-MR images to assist the U-Net
training. The ADNI MR images are segmented by the multi-atlas
label propagation with the expectation-maximization (MALP-
EM2) framework (Ledig et al., 2015). The manual segmentation
of the caudate nucleus, the putamen and the pallidum are chosen
to be the gold standards in the pretraining stage.

1adni.loni.usc.edu
2https://biomedia.doc.ic.ac.uk/software/malp-em/

Combining Two-Modality Images via
Image Registration
We propose to combine two-modality images for the
automatic diagnosis of PD, where T1-MRI provides the
morphological information of SARs, and 11C-CFT offers
pathological information related to PD. The extraction of
the SAR information from the MR images is achieved by
the DNN segmentation method, as described in Section
“Striatum Segmentation via Deep Neural Network.” With this
information, one can extract the shape or substructure features
from each of anatomical regions. For the combination of the
two-modality images, we propose to use image registration,
which propagates the anatomical and structural information of
SARs in the MRI to the PET.
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The registration in the multi-modality diagnostic framework
is achieved via the zxhproj3 platform (Zhuang et al., 2011).
Firstly, the image with prior label information is registered to the
target PET image. The resulting transformation is then used to
propagate the prior label information to the PET, which results in
the automatic localization of the SARs for the target PET image.
Since the MRI and PET images are from the same subject at the
same acquisition session, we propose to use a rigid registration.
By registration, the caudate nucleus, the putamen and the
pallidum, as well as the parieto-occipital regions are labeled.

For comparisons, we propose a single-modality diagnostic
framework using solely PET images. To achieve the fully
automated diagnosis, we propose to achieve the anatomical
information in the PET images via the same registration method
used for the multi-modality scheme. In this scenario, the image
with prior label information is defined using a pre-labeled PET
template, and the registration between the template and the
target PET is achieve via an affine registration following a pre-
rigid registration.

Feature Extraction and Prediction
To extract adequate features from the SARs, the caudate nucleus
and the putamen are further divided into three substructures
using a k-means algorithm (Ng et al., 2006). After clustering,
statistics of image intensity are calculated to represent the feature
information in each region, including maximum, minimum,
median, 1st and 3rd quantile, and mean of PET intensity. Several
studies characterize radioactive uptake by the striatal-to-occipital
ratio (SOR), as the parieto-occipital region is widely considered of
lacking CFT uptake (Ma et al., 2002; Carbon et al., 2004; Huang
et al., 2007). In this work, the SOR, which is defined as (striatum-
occipital)/occipital, is calculated with each kind of intensity value.
Meanwhile, the volumes of the six anatomical SARs are included
into the feature set. In all, 90 features are generated (for a list of
specific features, see Supplementary Table S1).

After feature extraction, a t-test is performed to analyze
the significance of each feature. Setting significance level α =

0.01, features with a p-value less than 0.01 are considered as
being statistically significant. Only significant features would be
regarded as the arguments of the machine learning models.

Consequently, the SVM classifier is trained to classify the
subjects (Haller et al., 2012; Long et al., 2012). Furthermore, to
estimate the generalization ability and stability of the method,
the leave-n-out cross-validation strategy is employed to evaluate
the performance of the models. In addition, we implement the
random forest algorithm to calculate the importance of the
features (Gray et al., 2013).

EXPERIMENTS

The following parts in this section are organized as follows.
Section “Data Acquisition” describes the data used in this
work; Section “Evaluation of Automatic Striatum Segmentation”
validates the reliability of the automatic segmentation method;

3http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/zxhproj/

Section “Advantages of Multi-Modality Images” investigates the
advantages of combining multi-modality images; and Section
“Efficacy of Volume Features” explores the efficacy of the volume
features of SARs for the diagnostic of PD.

Data Acquisition
Data used in this study was collected from the Department
of Neurology, Huashan Hospital, Fudan University. It contains
paired 11C-CFT PET and T1-MR images of PD patients and
healthy participants. MR images were acquired by a 3.0-T MR
scanner (DiscoveryTM MR750, GE Healthcare, Milwaukee, WI,
United States). Each MR image was visually inspected to rule
out motion artifacts (Bu et al., 2018; Huang et al., 2019). PET
images were acquired by a Siemens Biograph 64 PET/CT scanner
(Siemens, Munich, Germany) in three-dimensional (3D) mode.
A CT transmission scan was first performed for attenuation
correction. Static emission data were acquired 60 min after the
intravenous injection of 370 MBq of 11C-CFT and lasted for
15 min. All subjects were scanned in a supine position with
a dimly lighted and noise-free surrounding (Bu et al., 2018;
Huang et al., 2019). The synchronous MRI data were acquired
using a T1-weighted 3D inversion recovery spoiled gradient
recalled acquisition (IR-SPGR) with the following parameters:
TE/TR = 2.8/6.6 ms, inversion time = 400 ms, flip angle = 15◦,
matrix = 256 × 256 × 170, field-of-view = 24 cm, and slice
thickness = 1 mm. MR and PET images acquisition for each
subject had a time interval of no more than 3 months.

Forty-nine patients with PD and 18 age-matched normal
control (NL) subjects were recruited. All subjects were screened
and clinically examined by a senior investigator of movement
disorders before entering the study and were followed up for
at least 1 year. The diagnosis of PD was made referring to the
MDS-PD Criteria. The Unified Parkinson’s Disease Rating Scale
(UPDRS) and Hoehn and Yahr scale (HY) were assessed after
the cessation of oral anti-parkinsonian medications (if used) for
at least 12 h. The following exclusion criteria were used for the
NL subjects’ recruitment: (1) being tested positive by the REM
Sleep Behavior Disorder Single-Question Screen (Postuma et al.,
2012), (2) a history of neurological or psychiatric illness, (3) a
prior exposure to neuroleptic agents or drugs, (4) an abnormal
neurological examination. The data are summarized in Table 1.
In this study, gender proportion differences between groups
could be ignored, as previous studies have shown no significant
difference in DAT bindings between genders (Eshuis et al., 2009).
The research was approved by the Ethics Committee of Huashan

TABLE 1 | Summary for the studied dataset.

Subject HY Count Gender (M/F) Age UPDRS

NL 0 18 4/14 64.1 ± 6.7 –

PD 1 15 10/5 61.2 ± 7.6 14.3 ± 5.1

2 26 16/10 62.0 ± 7.9 21.6 ± 7.5

3 8 4/4 58.8 ± 5.9 34.6 ± 7.4

For gender, the expression means Male/Female, and for age and
Unified Parkinson’s Disease Rating Scale, the expression means
mean ± standard deviation.
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TABLE 2 | Average DSCs of the segmentation of each anatomy.

Right caudate Left caudate Right pallidum Left pallidum Right putamen Left putamen

DSCs 88.5 ± 6.3% 90.1 ± 7.2% 89.3 ± 11.4% 86.9 ± 13.0% 92.2 ± 5.0% 91.4 ± 5.5%

FIGURE 3 | Visualization of the segmentation results with slices of the axial view (top row) and the coronal view (bottom row). Case 1 and case 2 are two worst
segmentation results, and case 3, case 4 and case 5 are three median results. Values in the parentheses refer to the corresponding dice similarity coefficients. As for
the legends, the colored contours represent the automatic segmentation boundaries while the colored blocks are the corresponding ground truth masks.

Hospital. All subjects or legally responsible relatives signed
written informed consent in accordance with the Declaration of
Helsinki before the study.

After data acquisition, both sides of the caudate nucleus, the
putamen and the pallidum of each MR image were manually
labeled by an experienced clinician from the Department
of Neurology, Huashan Hospital. To ensure the qualities
of the segmentation results, boundaries of these anatomical
structures were double-checked by another clinician from the
same department.

Evaluation of Automatic Striatum
Segmentation
To test the performance of the segmentation network, three-fold
cross-validation was performed. The whole dataset was split into
three disjoint parts, and the model was fine-tuned for 5 epochs
on the union of every two disjoint subsets. Table 2 illustrates
the average Dice Similarity Coefficient (DSC) of each anatomical
region, and Figure 3 provides a visualization of the segmentation
results of five example cases. One can find that the left pallidum
(colored goldenrod in Figure 3) is worst segmented with the
maximal standard deviation while the right putamen (colored
olive drab in Figure 3) is best segmented with the minimal
standard deviation.

Figure 4 shows the average accuracy (ACC) and the
number of wrong predictions with leave-n-out cross-validation

of the different segmentation methods, i.e., automatically and
manually. Both accuracies reached 100% when n = 1, and
the accuracies and the numbers of wrong predictions of
the two experiments result in no significant difference in a
pairwise t-test (p-value = 0.1017). Furthermore, when training
classifiers using features of manually segmented images and
testing it using features of automatically segmented images,
we still obtained 100% accuracy. All results indicate that
the automatic segmentation provides accurate results for the
proposed diagnostic framework of PD.

Advantages of Multi-Modality Images
To evaluate the influence of multi-modality images, the single-
modality method using solely PET images was compared. In
the multi-modality scheme, the MR images provides accurate
anatomical and structural SAR information of the subject.
By contrast, in the single-modality method this information
is achieved by registering the PET images to a pre-labeled
Automated Anatomical Labeling (AAL) PET template. We
conducted the rest of the pipeline in the same way for
the two methods.

Figure 5 shows the results of the comparative experiments
with leave-n-out cross-validation. The results demonstrate that
with the assistance of MR images, the performance of the multi-
modality group is better than the single-modality PET group in
the PD/NL task. When n = 1, the accuracy of the multi-modality
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FIGURE 4 | The results for the leave-n-out cross-validation of the classification with automatic segmentation and manual segmentation. Panel (A) presents the
average ACC, and panel (B) presents the average number of wrong predictions. The horizontal axes in the two panels represent subjects numbers of the test set,
i.e., the n in the leave-n-out cross-validation.

FIGURE 5 | The results for the leave-n-out cross-validation of the classification by the multi-modality diagnostic method and the single-modality method. Panel (A)
presents the average ACC, and panel (B) presents the average number of wrong predictions. The horizontal axes in the two panels represent subjects numbers of
the test set, i.e., the n in the leave-n-out cross-validation.

TABLE 3 | Feature importance of groups with/without volume.

Feature Group with Volume Group without Volume

mean 0.2030 0.2006

median 0.2024 0.1965

3rd quantile 0.1961 0.1946

1st quantile 0.1825 0.1835

maximum 0.1443 0.1497

minimum 0.0715 0.0751

volume 0.0002 –

The importance values were calculated by the random forest algorithm.

group reached 100% in the PD/NL task, while the accuracy of the
single-modality PET group was 98.51%.

To test the uniformity of the classifiers based on the
different groups, we also trained the classifier using features of
multi-modality images and tested it using features of single-
modality PET, and the accuracy dropped to 88.05%, with 8
subjects misclassified.

TABLE 4 | Feature importance of groups with manual segmentation results and
automatic segmentation results.

Feature Manual segmentation Automatic segmentation

mean 0.2064 0.2031

median 0.2010 0.2025

3rd quantile 0.2008 0.1962

1st quantile 0.1654 0.1825

maximum 0.1660 0.1443

minimum 0.0605 0.0716

The importance values were calculated by the random forest algorithm.

Efficacy of Volume Features
In the feature extraction step, t-tests were performed to evaluate
the significances of all feature, and results indicated that the
features of the volume are not statistically significant with
α = 0.01 (see Supplementary Table S1 for more details). To
further evaluate the effects of the volume of SARs, we compared
the importance of different features based on groups with
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and without volume, as Table 3 shows. One can see that
the importance values of the two groups are similar. Hence,
the effect of volume to the model is negligible. Note that
the volume is calculated based on the original MR images
without downsampling.

DISCUSSION AND CONCLUSION

In this work, we proposed a fully automatic framework for PD
diagnosis. This method utilized two modalities, i.e., 11C-CFT PET
and T1-MR imaging, performed MRI-assisted PET segmentation,

selected features and employed SVM to give the predictions.
To validate the performance of the framework, we applied the
proposed method on the clinical data from Huashan Hospital.

One of the major differences between the proposed method
and the traditional methods is that the SARs are located
according to the labels of the automatic segmentation by U-Net.
To evaluate the performance of the U-Net, we calculated
the DSCs between automatic and manual segmentation. In
addition, we compared the proposed pipeline, whose SARs
were located according to the automatic segmentation, to the
method whose SARs were manually segmented. The leave-n-
out experiment shows the two methods performed comparably,

FIGURE 6 | The comparison of gold standard and wrongly placed SARs of the wrongly predicted subject. Panel (A) shows the segmentation result in gold standard,
and panel (B) shows the segmentation in the wrongly predicted subject. Images are in sagittal plane and have the same cursor position.

FIGURE 7 | The importance of the SARs in the proposed framework. One axial slice, one coronal slice and two sagittal slices (right and left side of the regions,
respectively) of three subjects are chosen to show the importance of the SARs.
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indicating that the automatic segmentation could provide
accurate results for the proposed diagnostic framework of
PD. Further investigation of the feature importance of the
two groups is illustrated in Table 4. It indicates that the
minimum has lower importance than the first five features.
Given that the striatum region has a higher uptake value
compared with its adjacent areas, voxels with minimal intensity
value are more likely to appear on the edge of the SARs.
Therefore, the inaccurate delineation of the anatomical boundary
as a potential result of the automatic segmentation could not
cause a significant decline in the performance of the overall
diagnostic framework.

An alternative way to locate SARs for subsequent feature
extraction is to apply a pre-labeled PET template by registration.
In Section “Advantages of Multi-Modality Images,” AAL
PET template was used as the PET template, and was
registered to PET images for the localization of SARs.
Experiments show that the diagnostic capability of this single-
modality PET group is worse than the proposed multi-modality
framework. Though the single-modality PET approach gives
a favorable prediction, the multi-modality approach performs
better. This is because the localization of the SARs occupies
a significant place in the diagnostic framework, and the
additional structural information from MR images can better
locate SARs. Figure 6 demonstrates that the single-modality
PET approach might be affected by the erroneous delineation
of the SARs. The error could be attributed to the ignored
inter-subject variations in brain structures when defining SARs
from a PET template.

To test the uniformity of the classifiers based on different
segmentation approaches, we trained classifiers using
features of manually segmented multi-modality images,
and tested it using features of other methods. When testing
with features of multi-modality automatic segmentation
method, we still obtained 100% accuracy, indicating
that the features of manual and automatic segmentation
are highly consistent. However, testing with the single-
modality method resulted in an accuracy of 88.05%. The
lower accuracy might be explained by the lack of adequate
extracted features due to the falsely located SARs. Hence,
compared with the multi-modality group, single-modality
PET group naturally needs more feature engineering and
better-designed algorithms.

In the feature extraction, features of volume were rejected
according to the t-test. This could be the reason why the
volume of SARs does not change significantly with the
progression of PD, as concluded from the literature (Ibarretxe-
Bilbao et al., 2011). Figure 7 shows the heatmaps of feature
distribution on the SARs, displaying the influence of each
subregion for the classification in the PD/NL task. The difference
of influence is expressed by the color scale. One can find
that the most relevant region influencing the separation of
PD/NL is localized in the middle and rear of the putamen,
then the pallidum, and the caudate nucleus reveals the least
significance on this task.

Several future studies could be completed explored based
on the current pipeline. Firstly, the classifiers can be trained

with Parkinsonian disorders (PDS) dataset to classify PD and
atypical PDS, such as MSA and Progressive Supranuclear
Palsy (PSP), which has important clinical values but is
with great challenges. Secondly, this framework only contains
medical imaging information currently, while other aspects
of information, such as age, gender, motor ratings and other
biomarkers are not included, which may further improve
the diagnostic accuracy. Future research could be undertaken
to incorporate additional multimodal data for better disease
prediction. Finally, the sample size of subjects in this work
is relatively small, and a bigger dataset is expected to
validate our experiment results and improve the performance
of the framework.

To conclude, we proposed a fully automatic framework
combining the two modalities for PD diagnosis. This framework
obtained a promising diagnostic accuracy in the PD/NL task.
In addition, this work also emphasized the high value of the
11C-CFT PET in the PD diagnosis.
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Prior methods in characterizing age-related white matter hyperintensity (WMH) lesions

on T2 fluid-attenuated inversion recovery (FLAIR) magnetic resonance images (MRI)

have mainly been limited to understanding the sizes of, and occasionally the locations

of WMH lesions. Systematic morphological characterization has been missing. In this

work, we proposed innovative methods to fill this knowledge gap. We developed an

innovative and proof-of-concept method to characterize and quantify the shape (based

on Zernike transformation) and texture (based on fuzzy logic) of WMH lesions. We have

also developed a multi-dimension feature vector approach to cluster WMH lesions into

distinctive groups based on their shape and then texture features. We then developed

an approach to calculate the potential growth index (PGI) of WMH lesions based on the

image intensity distributions at the edge of the WMH lesions using a region-growing

algorithm. High-quality T2 FLAIR images containing clearly identifiable WMH lesions

with various sizes from six cognitively normal older adults were used in our method

development Analyses of Variance (ANOVAs) showed significant differences in PGI

among WMH group clusters in terms of either the shape (P= 1.06× 10−2) or the texture

(P < 1 × 10−20) features. In conclusion, we propose a systematic framework on which

the shape and texture features of WMH lesions can be quantified and may be used to

predict lesion growth in older adults.

Keywords: brain T2 FLAIR hyperintensity, shape, texture, potential growth, morphology

INTRODUCTION

The presence of white matter hyperintensities (WMH) on T2 fluid-attenuated inversion recovery
(FLAIR) magnetic resonance images (MRI) is common in older adults over 65 years old with a
prevalence rate of ∼ 60–80% in the general population (De Leeuw et al., 2001; Wen and Sachdev,
2004). WMH lesions are even more extensive in those with vascular or Alzheimer’s disease (AD)
type of dementia when compared with cognitively normal older adults, suggesting its role in
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dementia pathogenesis and neurocognitive dysfunction
(Bombois et al., 2007; Kloppenborg et al., 2014; Lee et al.,
2016). WMH is also frequently observed in patients with
multiple sclerosis (MS) (Loizou et al., 2015; Newton et al.,
2017). Qualitative and quantitative WMH characterization
has been used as a biomarker to assist cerebrovascular
and neurodegenerative disease diagnosis and to assess
treatment effects (Wardlaw et al., 2013). The pathogenic
mechanisms of WMH are not well-understood, and have
been attributed to cerebral small vessel disease (CSVD), white
matter demyelization, or both, indicating brain white matter
lesions (Greenberg, 2006; Wardlaw et al., 2013). Furthermore,
periventricular and subcortical deep WMHs may have different
pathogenic mechanisms (Schmidt et al., 2011; Poels et al., 2012;
Tseng et al., 2013).

The most commonly used methods for WMH quantification
in brain aging, vascular, and AD type of dementia are to
measure its regional or total volume (i.e., the sum of WMH
voxel size) within the whole brain based on image tissue
segmentation algorithms (DeCarli et al., 2005; Wardlaw et al.,
2013). This method, however, neglects entirely the typological
or morphological features of WMH lesions which may have
important clinical significance as demonstrated in recent studies
in patients with MS (Loizou et al., 2015; Newton et al., 2017).

WMH shape is a basic morphological feature which can
be derived from T2 FLAIR images after tissue segmentation.
Shape feature extraction, recognition, and classification can
be implemented either in the original or the transformed
image space (Khotanzad and Hong, 1990; Mikolajczyk et al.,
2003; Carmichael and Hebert, 2004; Tahmasbi et al., 2011).
Current shape classification methods include mainly the
following: (1) one-dimensional function shape representation
(Kauppinen et al., 1995; Yadav et al., 2007; Zhang and Lu),
(2) polygonal approximation (ShuiHua and ShuangYuan), (3)
spatial interrelation feature (Sebastian et al., 2004; Guru and
Nagendraswamy, 2007; Bauckhage and Tsotsos), (4) moments
(Mukundan, 2004; Celebi and Aslandogan; Taubin and Cooper),
(5) scale-space methods (Zhang and Lu, 2003; Kpalma and
Ronsin, 2006), and (6) shape transform domains (Chen and Bui,
1999; Zhang and Lu). These methods for shape classification may
be suitable for specific applications in various fields but have
major limitations for shape characterization of brain lesions. For
example, method (1) is highly sensitive to noise, and inaccurate
boundary definition can cause large errors; method (2) can
only represent the object appearance but not all shape features;
method (3) may be used to describe the general appearance
of an object, but is limited by the orientation and size of the
object; method (4) contains redundant information in the image
feature vectors and thus unique images cannot be reconstructed
back; method (5) is limited to the shapes which have shallow
concavities/convexities; and method (6) requires the definition
of the shape contour starting point derived from other methods.
In order to characterize the complex shapes of brain lesions, a
technique needs to be invariant to the orientation of a lesion,
be resistant to image noise and be able to define a one-to-one
relationship between feature vector and shape. In this regard,
Zernike transformation can satisfy these criteria (Khotanzad and

Hong, 1990). Similar to Fourier analysis, shape features of an
object captured on MRI can be represented by the coefficients of
shape function of the Zernike polynomial expansion (i.e., Zernike
transform), referred to as Zernike moments (ZMs) (Zernike,
1934). In this study, we applied Zernike transformation to extract
WMH shape features for pattern recognition and classification in
cognitively normal older adults.

Image texture is another morphological feature which can
be categorized through modeling (Chen et al., 1989), structure
(Chow and Rahman, 2007), transformation (Tsai and Hsiao,
2001), and statistics based methods (Haralick et al., 1973;
Iivarinen et al., 1996). Model-based and structure-based methods
work best for repeating texture patterns but are not suitable for
irregular texture patterns such as those in brain lesion images.
The transformation based method works best in identifying sub-
regions with known characteristics, but does not work well on
unknown and potentially complicated patterns such as those
in brain lesion images. Statistical-based methods describe the
texture in the distribution of and relationships between gray-level
values in an image. These statistics-based methods can normally
describe objects better than the structure and transformation
based methods because they are invariant to the orientation,
the size of an object, and also robust to the noise inside the
object (Castellano et al., 2004). Since WMH lesions often have
various sizes, orientations, and locations, and are manifested
across multiple image slices, a statistics-based method is likely to
be the best choice to accommodate these complexities. Therefore,
we adopted a statistical method based on fuzzy logic to construct
the image intensity histogram of WMH lesions for texture
feature extraction.

Finally, we have thought that as a potential imaging biomarker
of brain aging and CSVD, the size, shape, and image texture of
WMH lesion may change with time (Sachdev et al., 2007; Godin
et al., 2011) which may reflect the progression of the underlying
pathological process. In this regard, recent studies have shown
that the immediate surrounding areas of clearly defined WMH
lesions may be at risk for further tissue damage and conversion
to lesions (Maillard et al., 2014; Promjunyakul et al., 2016). These
areas are classified as WMH penumbras (Maillard et al., 2014).
To characterize WMH lesions as well as their penumbras, we
developed a seed-based region-growing algorithm to characterize
WMH boundaries to explore the potential growth of WMH
lesions. We defined this specific WMH boundary characteristic
as potential growth index (PGI). To explore whether the shape
and texture characterization techniques can potentially be used
to predict lesion growth, we assessed whether different shape and
texture patterns are related to PGI.

METHODS AND RESULTS

MRI Acquisition
Full-brain 2D T2 FLAIR images were collected on a Philips
Achieva 3T scanner (Philips Healthcare, Best, the Netherlands)
with the following parameters: axial, time of echo (TE)= 125ms,
time of repetition (TR)= 11 s, time of inversion (TI)= 2,800ms,
field of view (FOV) = 23 cm × 23 cm, slice thickness = 2.5mm,
number of slices = 64 with no gaps, acquisition matrix size =
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352 × 212, and reconstructed matrix size = 512 × 512. All
subjects signed informed consent approved by the Institutional
Review Boards of the UT Southwestern Medical Center and
Texas Health Presbyterian Hospital of Dallas. Six T2 FLAIR brain
image datasets (two male, four female, 75 ± 4 years old and
normal cognition), which contained clearly identifiable white
matter hyperintensity (WMH) lesions with various sizes, were
selected from an healthy aging study we published previously
(Tarumi et al., 2014).

T2 FLAIR Image Segmentation
T2 FLAIR WMH regions were segmented on each 2D image
through the lesion prediction algorithm (LPA) implemented
in the Lesion Segmentation Toolbox (LST) version 2.0.12 for
Statistical Parametric Mapping (SPM12). In LPA, the algorithm
is trained using a logistic regression model on T2 FLAIR brain
images from 53MS patients with severe lesion patterns. LPA was
also validated in other patient populations such as older adults
with diabetes (Maldjian et al., 2013). The fitness of a new T2

FLAIR brain image to this model provides an estimate of lesion
probability for each voxel in the image. In this study, we used
a threshold of 0.5, as suggested by LST, on the obtained lesion
probability maps to identify WMH regions. The segmentation
accuracy was further verified through visual inspection. Figure 1
shows an example of the segmentation.

Lesion Size Distribution
WMH binary masks generated from 2D T2 FLAIR images
(Figure 1) were used to obtain WMH size distribution. To
minimize artifacts, only those masks with more than 10
connected WMH voxels (voxel size: 0.45mm × 0.45mm) on an
image were considered probable lesions and were used for further
characterization, which resulted in a total of 993 WMH lesions.
Fitting each of these lesions within a square, these lesions had a
size range of from 6 × 6 to 176 × 176 voxels. The lesion size
distributions of six subjects are shown in Figure 2. Of note, more
than 93% of these lesions are≤ 60× 60, and only about 1.5% are
≥ 120× 120 voxels.

WMH Shape Feature Extraction and

Classification in 2D
WMH Shape Feature Extraction Using

Zernike Transformation
Zernike transformation has been used extensively in imaging
shape feature extraction and pattern recognition (Papakostas
et al., 2007; Wee and Paramesran, 2007). The coefficients of
Zernike polynomial expansion of an object are referred to as
Zernike moments (ZMs) which are used to represent the shape
features of analyzed objects. In this study, Zernike polynomials
were expressed in polar coordinates defined on a unit disc, which
are a complete set of orthogonal basis functions (Papakostas et al.,
2007;Wee and Paramesran, 2007). The lower-order ZMs describe
global contour and gross shape features, and the higher-order
ZMs describe regional and fine topological details of a shape
(Gwo and Wei, 2016). Of note, the magnitudes of ZMs are not
only rotational invariant but also robust to small perturbations
on the contour of a shape image (Teh and Chin, 1988).

For a 2D image object (a WMH lesion image segmented
from a T2 FLAIR image in this work), using polar coordinates,
the complex Zernike moments of order n with repetition m
can be represented as the inner product of a shape function
f (r, θ)with the basis function of Zernike polynomials,Vnm (r, θ),
specifically as

Znm =
n+ 1

π

2π
∫

0

1
∫

0

f (r, θ)V∗
nm (r, θ) rdrdθ , |r| ≤ 1, (1)

where V∗
nm (r, θ) denotes the complex conjugation of Vnm (r, θ).

The basis function of Zernike polynomial is given by

Vnm (r, θ) = Rnm (r) eimθ , i =
√
−1 (2)

where the radial polynomial, Rnm (r), is defined as follows:

Rnm (r) =

n−|m|
2

∑

k

(−1)k
(

n− k
)

!

k!
(

n+|m|

2 − k
)

!
(
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2 − k
)

!
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where 0 ≤ |m| ≤ n, n− |m| is an even integer, and n ≥ 0.
Since the shape features represented by ZMs at orders

higher than six are usually too small (small ZM magnitude)
to be detected reliably by human eyes (Charman, 2005), the
maximum Zernike transformation order was set to five in this
study (Figure 3). In Zernike transformation,

∣

∣Vn,+m (r, θ)
∣

∣ =
∣

∣Vn,−m (r, θ)
∣

∣, and
∣

∣Zn,+m

∣

∣ =
∣
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∣

∣. The number of distinctive
ZM magnitudes for an expansion up to order n is computed
as follows:

{

(

n+2
2

)2
if ordern is even

(n+3)(n+1)
4 if order n is odd

(4)

Shape feature extraction procedures based on Zernike
transformation are illustrated in Figure 4. In this illustration, we
chose three WMH masks, two with a similar shape but different
sizes, and one with both different shape and size. To simplify
computation complexity, these image masks with different sizes
were first scaled to the same size of 60 × 60 voxels so that the
ZM magnitudes can be compared on a same scale. Each Znmwas
calculated using Equation (1–3). The calculation resulted with 21
ZM complex coefficients with maximum order n = 5. Based on
the magnitudes of the ZM coefficient, only 12 coefficients were
needed to extract shape features since the WMH shape (mask)
generated with tissue segmentation is rotational invariant. As
shown in the right column of Figure 4, the two lesion images
(a) and (b) with a similar shape have similar ZMs magnitudes
at all 12 coefficients. On the contrary, the ZM magnitudes of
WMH lesions with a different shape are different from the
other two.

WMH Shape Classification
We then classified the lesion images to different clusters (groups)
based on the similarity on shape features. Current common
clustering algorithms, such as the K-means clustering algorithm,
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FIGURE 1 | An example T2 FLAIR image from one subject showing multiple white-matter hyperintensity (WMH) lesions; the results of WMH segmentation using the

lesion prediction algorithm (LPA) showing in red, and a WMH binary mask after tissue segmentation, which was used in shape feature extraction.

FIGURE 2 | The histograms of WMH lesion size distributions in two representative subjects. The lesion size bin of 50 represents the lesion size range from 40 × 40 to

50 × 50 voxels. The frequency scale (the left vertical axis) is the counts the number of lesion sizes within a lesion size bin. The cumulative percentage of lesion size

relative to the total lesion counts is labeled on the right vertical axis.

requires data-specific a priori selection on the number of clusters
(Zhao, 2012). For instance, if the number of clusters is too small,
the WMH lesion images with noticeable different shapes may be
grouped inappropriately into a same cluster. On the other hand,
if the number of clusters is too large, lesion images with trivial
differences may be assigned into different clusters, confounding
potential clinical significance. Finding the appropriate number
of clusters using model simulation is one way to resolve this
dilemma (Zhao, 2012). However, this procedure has to be carried
out for all choices of shape feature dimensions. To simplify the
procedures, the estimation of cluster characteristic indices based
on sum of within-cluster dispersions [Wk in Equation (5)] or
its variants were proposed (Ball and Hall, 1965; Calinski and
Harabasz, 1974; Xu, 1997; Tibshirani et al., 2001). For a better
understanding of the influences of the classifiable number of
clusters and the feature dimensions derived from the Zernike
transform onWk, we plottedWk as a function of cluster numbers

and feature dimensions which are equivalent to the numbers
of the distinctive magnitudes of the ZMs (Figure 5). The ZMs
for WMH shapes from one to 10 orders were calculated to
generate 2 to 36 dimensional feature vectors (Equation 4).
Euclidean distance was then calculated to assess the similarity
between the feature vectors. The K-means clustering algorithm
was applied for grouping purpose. Wk was calculated based on
the 2 to 20 cluster groups at each feature dimensions. Wk, in
general, decreases with the increase of the number of clusters but
increases with the increase of the number of feature dimensions
(Figure 5). For a specified feature dimension, a better grouping
result is likely achieved at a lower Wk value by finding a
local minimum. However, in some feature dimensions, a local
minimum cannot be found even after Wk decreases to nearly
constant. For example, when two is selected as the feature
dimension, the Wk value remains small even at small number of
clusters because two-dimensional feature vectors only represents
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FIGURE 3 | (A) The 21 basis functions of Zernike polynomials, Vnm (r, θ), with order n ≤ 5, are illustrated. The polynomials have a radial range of [−1, 1]

(|Vnm (r, θ)| ≤ 1), shown by the color bar on the left column; (B) 12 distinctive magnitude images, which are rotational invariance, are shown, corresponding to the

polynomials in (A).

FIGURE 4 | Three representative white mater hyperintensity masks generated after tissue segmentation with different sizes and shape are shown in the left column.

The images are normalized to the same size of 60 × 60 voxels shown in the middle column. The magnitudes of 12 Zernike moments coefficients based on ZM orders

≤5 of Zernike polynomial expansion are shown in the right column for comparison.

the gross global contour and thus cannot differentiate shapes
with enough details. Therefore, selecting an appropriate feature
dimension is also crucial and will be discussed later. Nevertheless,
once a feature dimension is selected [which was selected to

be 12 in this study based on our exploration of data features
(Figures 4, 5)], the optimal number of clusters can be determined
based on the estimation of cluster characteristics discussed below
(Desgraupes, 2013).
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The distance between two points in a share feature vector
space can be calculated based on Euclidian distance. The overall
distance of all points in a cluster to their mean indicates
the compactness of a cluster, or within-cluster dispersion. To
determine the optimal number of shape clusters for WMH
shape classification, we then employed a gap statistics method
proposed by Tibshirani et al. (2001). This method estimates
the optimal number of clusters by comparing the logarithm
of the sum of within-cluster dispersions of a set of clusters
to that from the reference datasets created through sampling
uniformly at random from the original dataset. The sum of all
within-cluster dispersions decreases gradually with the increase
of number of clusters but becomes nearly constant at some
points as demonstrated in Figure 5. This is so called “elbow”
phenomenon, which has been used to find the optimal number of
clusters (Tibshirani et al., 2001). The algorithm used to estimate
the optimal number of WMH shape clusters based on the gap
statistic is presented below:

1. Group the shape vectors by varying the number of shape
clusters from k = 1, 2, . . . , N (pre-defined as the maximum
to evaluate), and compute the sum of the within-cluster
dispersionWk for each choice k.

Wk =

k
∑

r=1

∑

xi∈Cr

(xi − x̄r)
2 (5)

where xi is a data point, Cr denotes cluster r, and x̄r is the
vector mean of Cr .

Generate reference datasets (total number = B) by
sampling uniformly at random from the original dataset
within its distribution ranges of all dimensions. Although a
better statistically randomness is likely achieved with a large
B, the choice of B is bounded by computation demand. For
each reference dataset b, we can generate k clusters, and we
can calculate the sum of the within-cluster dispersionWkb for
each k based on Equation (5) above, where b= 1, 2, . . . , B; k=
1, 2, . . . , N. The gap statistics for each k is calculated as below:

Gap
(

k
)

=
1

B

B
∑

b=1

log (Wkb) − log (Wk) (6)

2. letl = (1/B)
∑

b

log (Wkb), compute the standard deviation

sdk =

[

1

B

B
∑

b=1

(

log (Wkb) − l
)2

]1/2

(7)

Let sk = sdk
√

(1+ 1/B). Choose the optimal number of shape
clusters kopt by Equation (8)

kopt = smallest k such that Gap
(

k
)

≥ Gap
(

k+ 1
)

− sk+1(8)

In the gap statistic procedure above, N is a pre-selected
number of shape clusters such that kopt can be determined
in the range of [1, N]. B is selected such that the value of
sdk converges. In this study, N and B were set to 20 and
10, respectively.

For the WMH shape datasets in this study, based on the
previous discussion and Figure 5, the “elbow” phenomenon was
sufficiently noticeable when the feature dimension was set to 12.
At this feature dimension, only ZMmagnitudes corresponding to
ZM orders of n= 0 to 5 were used in clustering [cf. Equation (4)].
The Gap values were calculated and displayed in Figure 6; the
optimal number of shape clusters was selected to be six according
to Equation (8).

Figure 7 shows the WMH shape classification results using
the K-means algorithm based on the cluster number of six
and feature dimension of 12. Unique shape difference can be
visualized between the six clusters.

WMH Texture Feature and Classification
Texture Feature Extraction
Image texture characterizes the voxel signal intensity distribution
patterns in a WMH region. Statistics-based methods quantify
the distribution and relationships of voxel signal values in an
image region. These methods often provide better discrimination
indexes than structure and spectral transformation based
methods (Castellano et al., 2004).

WMH lesions often have various sizes, orientations and
locations, andmanifest across multiple image slices. In this study,
the distributions of WMH lesion size measured in the number of
voxels are presented in Figure 8.

Most lesions are small, with 48.64% of lesions ≤40
voxels (8 mm2 on a slice). Therefore, a robust texture
analysis method needs to satisfy three requirements:
(1) Texture feature should be independent of lesion
orientation and location; (2) texture feature should be able
to quantify small lesions, and (3) texture characterization
needs to go beyond a single image slice. A statistics-
based method for WMH texture feature extraction is
described next.

Since WMH lesions manifests across multiple slices, we
used the “WMH3D” term to emphasize the 3D perspective.
Specifically, if a WMH lesion image in a slice connects directly
either above, below, or diagonally to another WMH lesion image
in an adjacent slice, we treat these lesion images belonging
to the same lesion, called it a “WMH3D” for texture analysis.
This treatment also reduces the chance of false positive in
lesion identification. To characterize the voxel signal intensity
distribution, potential voxel spike noise, which is often seen
in images, needs to remove first. This can be accomplished by
setting the voxel intensities within the boundaries of above or
below three standard deviations of the mean values. To reduce
the slice variation in signal intensity, a min-max normalization
was applied to a WMH3D to normalize its voxel intensity based
on the equation,

s
(

x, y, z
)

=
f
(

x, y, z
)

− gMin

gMax− gMin
(9)

where f
(

x, y, z
)

is the intensity of voxel (x, y) at the zth slice and
s∈ [0,1], gMax=Max(voxel intensities of WMH3D) and gMin=
Min (voxel intensities of WMH3D).

For feature extraction, the normalized data were quantized
into one of the pre-selected bins to create a histogram that
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FIGURE 5 | The within-cluster dispersion Wk as a function of the number of shape clusters and feature dimensions. The feature dimensions are the number of

distinctive magnitudes of the ZMs. Wk , in general, tends to decrease with the number of clusters but increase with the number of feature dimensions.

FIGURE 6 | The estimated gap statistic Gap as a function of shape cluster number k (dots and solid curve), error bars are ±sk .

represents voxel intensity distribution of a WMH3D. To
minimize the interference of image noise to the frequency
histogram, we propose a fuzzy logic method (Gwo and Wei,
2013) to allocate voxel intensity values to each of the pre-
selected bins. Specifically, a normalized voxel intensity s is
assigned proportionally two values, called fuzzy values, to
the two neighboring bins according its relative positions
to the bin centers (Figure 9). The fuzzy logic method not
only is able to characterize the local image signal intensity
distribution of a lesion, but also its global distribution,
producing different histogram skewness based on the intensity
mean value.

The fuzzy logic functions used for assigning voxels to the
frequency histogram are presented in Equation (10). The fuzzy
value v[j] at bin j is calculated as:







































v [0] = 1 if s ≤ 1
2n

v
[

j− 1
]

=
2j+1
2 − s× n

v
[

j
]

= s× n−
2j−1
2

}

if s ≤
2j+1
2n

v
[

j
]

=
2j+3
2 − s× n

v
[

j+ 1
]

= s× n−
2j+1
2

}

if s >
2j+1
2n

v [n− 1] = 1 if s ≥ 1− 1
2n

(10)
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FIGURE 7 | WMH shape classification results using the K-means algorithm based on the cluster number of six and feature dimension of 12. The number of lesion

images in each cluster and the six normalized lesion images closest to the cluster mean in each cluster are shown. All lesion images shown in the figure were

normalized to the size of 60 × 60 voxels.

FIGURE 8 | The distributions of WMH lesion size measured in number of voxels from the six subjects. A number shown in a lesion size bin (the horizontal axis)

represents a lesion size range. For example, lesion size bin of 50 represents the lesion size range of 40 × 40 to 50 × 50 voxels. Frequency (the vertical axis) counts

the number of lesion sizes at the lesion size bins.
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FIGURE 9 | The fuzzy logic functions used for assigning voxels to five bins: bin

[0, 0.2] shown in blue, bin [0.2, 0.4] in orange, bin [0.4, 0.6] in black, bin [0.6,

0.8] in green, and bin [0.8, 1.0] in red. A normalized image intensity value is

assigned to its two neighboring bins based on these assignments functions.

For example, s of 0.45 is assigned to a frequency value of 0.25 to the bin [0.2,

0.4], and 0.75 to the bin [0.4, 0.6] as indicated by the vertical and horizontal

dotted lines.

where n = the total number of bins, and j = 0, ..., n-1. To
choose a proper number of bins, there are two considerations:
(1) When the number of bins increases, the accumulated fuzzy
values in some bins become sparse, especially for small size
lesions. Sparsity is problematic for any statistical analysis method
(Hughes, 1968). The amount of data needed to obtain a reliable
statistical result grows exponentially with the number of bins
(Hughes, 1968); (2) conversely, if the number of bins is too small,
image features may not be differentiated effectively. In this study,
to facilitate WMH texture feature classification discussed below,
we selected five bins for texture feature extraction.

Since the sizes of WMH lesions vary in a wide range
(Figure 8), the image intensity frequency distribution
histograms need to be further normalized before they can be
compared. Herein, each histogram is normalized to have a total
accumulative frequency of 1. For example, for a WMH lesion
shown in the first row in Figure 10, the original distributions of
histogram with five bins and 814 voxels would produce a texture
feature vector of (266.6, 240.2, 153.9, 125.3, 28.0). To compare
with other WMH lesions with different sizes, this vector was
divided by 814 to become the normalized distribution of (0.3275,
0.2951, 0.1891, 0.1539, 0.0343).

WMH Texture Feature Classification
Texture feature classification of individual WMH lesion images
was conducted using a feature vector clustering method similar
to those discussed above in the section of “WMH Shape
Classification.” Of note, the texture feature vector is based on
the histogram presented above using the fuzzy logic method.
The influences of different texture feature dimensions (i.e., the
number of bins used to construct the intensity histogram) and
the numbers of clusters on texture feature classification were
explored using the same strategy discussed above for WMH
shape feature classification. Based on prior works (Shapiro and
Stockman, 2001), Manhattan distance is a more preferred choice
over Euclidean distance in accessing the similarity between
feature vectors described in histograms. Thus, Manhattan
distance was used to assess the similarity between the texture
feature vectors in our work. The sum of within-cluster dispersion
Wk value was calculated with the cluster number from 2 to 20 and

FIGURE 10 | WMH texture feature extraction procedures: (A) source WMH

lesion images, (B) WMH lesion mask images, and (C) WMH texture quantized

images using fuzzy logic method.

the feature dimensions from 3 to 15. As illustrated in Figure 11,
Wk tends to decrease with the increase of the cluster numbers.
A noticeable “elbow” phenomenon was seen for a wide range of
texture feature dimensions from 3 to 15.

The gap statistics discussed above was applied to determine
the optimal number of texture feature cluster for pattern
recognition based on the K-means algorithm for grouping
(Hartigan and Wong, 1979). Figure 12 shows that five is the
optimal number of cluster.

Figure 13 shows the texture classification results,
demonstrating five unique clusters.

WMH Potential Growth Index in 2D
We developed a seed-based region-growing algorithm to
characterize WMH boundary conditions in order to explore
potential growth of WMH lesions (Maillard et al., 2014;
Promjunyakul et al., 2016). We hypothesized that the area of
potential growth of WMH lesions has similar signal intensity
as WMH lesions and is located around the boundary of WMH
lesions. With a pre-defined signal intensity threshold, calculated
by the extreme values in the WMH3D [Equation (9)], we can
use a seed-based region-growing algorithm to find the “potential
growth” voxels around theWMH boundary. The region-growing
algorithm is initiated by selecting the WMH mask boundary
voxels as the growing seeds. At each growing seed voxel, the eight
connected neighbor voxels, defined as A8

(

x, y
)

in Equation (11)
below, are examined iteratively until no more voxels meet a given
criterion in signal intensity.

A8
(

x, y
)

=

{(

x− 1, y− 1
)

,
(

x, y− 1
)

,
(

x+ 1, y− 1
)

,
(

x− 1, y
)

(

x+ 1, y
)

,
(

x− 1, y+ 1
)

,
(

x, y+ 1
)

,
(

x+ 1, y+ 1
)

}

(11)

In the study, the stopping criterion used for iterative seed
growing is determined by comparing a neighboring voxel
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FIGURE 11 | The within-cluster dispersion Wk as the function of the number of texture cluster and feature dimension. Note that a noticeable “elbow” phenomenon

presents for a wide range of texture feature dimensions from 3 to 15.

FIGURE 12 | The estimated gap statistic Gap as a function of texture cluster number k (dots and solid curve), error bars are ±sk .

intensity with the highest and lowest signal intensity, gMax and
gMin of a WMH3D. If the voxel intensity difference from the
gMax is less than a threshold, as defined below in Equation (12),
the corresponding voxel is designated to a growth voxel set,
Rg , and assigned to the boundary seed voxel list Sl for further
searching. The pseudo-code of the seed-based region-growing
algorithm is presented in Figure 14A. Note that Mk is the set of
voxels in a WMH lesion mask, and f

(

p
)

is the signal intensity at
neighbor voxel p of a lesion boundary seed voxel, as defined in
Equation (11).

Threshold = γ ×
(

gMax− gMin
)

(12)

where γ is the threshold control coefficient. The choice of γ

represents the user-defined steepness of the edge around the
WMH boundaries. Of note, if the value of γ is too large, the
potential growth region would spread around all boundaries of
the WMH lesions regardless of lesion shape or texture features.
In this study, we chose γ = 1.02 to demonstrate the presence of
potential growth regions of WMH lesions using the seed-based
growing algorithm (Figure 14B).

After all “potential growth” voxels are found, the potential
growth index (PGI) of a WMH lesion can be calculated. To
calculate this index, first a set of four-connected voxels [Equation
(13)] to a voxel (x, y) on the mask boundary is applied to generate
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FIGURE 13 | The WMH lesion images from six subjects were classified to five clusters based on their texture features. The six lesion images closest to their cluster

means based on the Manhattan distance are shown for each cluster.

successively l layers of apparent masks surrounding the lesion
with a layer thickness of one voxel.

A4

(

x, y
)

=

{(

x, y− 1
)

,
(

x− 1, y
)

,
(

x+ 1, y
)

,
(

x, y+ 1
)

}

(13)

The pseudo-code of generating l layers around a WMH lesion
growing algorithm is presented in Figure 14C. The notations Sl
and Mk are the same as in Figure 14A. l is the number of layers
to be generated and the ith layer voxels are kept in the E[i] list.

These apparent layer masks are used to identify the relative
location of a growth voxel. A growth voxel at an outer layers
of these masks weights more in its contribution to the potential
growth index. Specifically, the weight wi at i

th layer, with total l
layers, is given by the following equation:

wi =
i

∑l
j=1 j

(14)

Once the number of growth voxels at each layers were
calculated, the potential growth index Pg for each WMH lesion
is calculated below:

Pg =

∑l
i=1 GViwi

Vl
(15)

where, GVi = number of “growth voxels” found at the ith layer,
and Vl = the total number of voxels in all l layers for a WMH.

To demonstrate the potential application, all lesion images
were evaluated for their potential growth indices with l set
to three (Figure 14D).

The Relationship Between Potential

Growth Index and WMH Shape and

Texture Features
The relationship between PGI and WMH Shape and texture
features was investigated in the study. The K-means algorithm
is the most commonly used clustering algorithm in unsupervised
learning due to its simplicity and efficiency (Hung et al., 2005),
and thus is appropriate for this proof-of-concept development.
However, the initial cluster seeds in K-means algorithm
can generate different clustering results. To demonstrate the
applicability of the K-means algorithm, we performed 1,000 trials
with randomly selected initial cluster seeds from the feature
vectors of shape and then texture of the lesions (a total of 993
lesions) to examine the clustering results. For the shape and
texture clusters classified as shown in Figures 7, 13 above, one-
way Analyses of Variance (ANOVAs) were performed to evaluate
if there were significant differences in potential growth index
generated from each trial among the shape or the texture clusters.
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FIGURE 14 | (A) The pseudo-code of seed-based region-growing algorithm of WMH lesions; (B) a WMH lesion mask and the potential growth voxels marked in red

color which are identified using the seed-based region-growing algorithm. (C) The pseudo-code of layer generating algorithm for WMH lesions; (D) three

one-voxel-thick layers surrounding the WMH lesion, which are used to locate a growth voxel.

Significant growth index differences for all trials were found
among both shape (P = 2.04×10−10 to P = 1.06×10−2) and
texture (P < 1×10−40 to P < 1×10−20) clusters. Table 1 shows
the most conservative results.

DISCUSSION AND CONCLUSION

In this study, we have developed innovative and proof-of-
concept methods to quantitatively characterize the shape (based
on Zernike transformation) and texture (based on fuzzy logic)
of WMH lesions. A multi-dimension feature vector approach
based on these new features was used to cluster WMH lesions
into distinctive groups to assess whether these features can
potentially be used as image biomarkers. We have also developed
an approach to calculate the potential growth index (PGI) of
WMH lesions using a region-growing algorithm along theWMH
boundaries. From preliminary data analyses of six subjects with

a total of 993 lesions, we observed significant differences in PGI
among the clusteredWMH groups in terms of either the shape or
the texture features. These findings, even though only a proof-of-
concept, suggest that the shape and texture features of WMH can
potentially be used as new imaging biomarkers to predict lesion
growth in brain aging, vascular dementia, or AD.

This work demonstrates the feasibility and potential
usefulness of our methods. However, there are several
limitations, which are beyond the scope of this study to
address completely. In WMH lesion segmentation, we adopted
the mid-range point of 0.5 of the lesion probability map as the
cut-off threshold suggested by the authors of the LST Toolbox.
This threshold appears logical for a wide range of populations.
However, different thresholds might be suitable for different
study populations. Maldjian et al. (2013) suggested to use a
0.25 threshold in their study on older adults with diabetes. The
change of segmentation threshold may introduce small change
in the quantification of lesion sizes, which is not the focus of
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TABLE 1 | Potential growth indices (PGIs) for the classified shape and texture clusters.

SHAPE

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Number of images 105 86 176 237 211 178

PGI 0.1535 ± 0.0790 0.1702 ± 0.0818 0.1376 ± 0.1051 0.1399 ± 0.0885 0.1500 ± 0.0700 0.1636 ± 0.1011

Between-cluster difference: P = 1.06×10−2, F = 3.0070

TEXTURE

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Number of images 128 232 265 160 208

PGI 0.1928 ± 0.1023 0.1863 ± 0.0879 0.1037 ± 0.0683 0.1191 ± 0.0751 0.1656 ± 0.0828

Between-cluster difference: P < 1×10−20, F = 48.4009

Results presented are themost conservative case from 1,000 trials with randomly selected initial cluster seeds from the feature vectors of the shape and texture of the white matter lesions.

our work. The effects of change of segmentation threshold on
characterizations of the WMH shape, texture, and potential
growth should be further studied.

In shape feature extraction, all images were proportionally
scaled to the same size of 60 × 60 voxels. This scaling
procedure resulted in blurring the shape contours of small-
size images and losing the contour details of large-size images.
This one-size-fit-all scaling treatment can lead to quantification
inaccuracy at higher orders of ZM. Nevertheless, we have
observed that high ZM orders are not required to represent
primary WMH shape features. In this study, we limit the feature
characteristics at ZM ≤5. Thus, the scaling factor used in
this study should have minimal effects on the shape feature
extraction results. When there is a large number of WMH
lesions, a more proper procedure in shape analysis can be
applied to reduce the influence of this image scaling issue on
shape feature extraction. Specifically, WMH lesion images can
be first divided into several groups based on the size, and
then are scaled appropriately based on their corresponding size
groups. Shape feature analyses can then be carried in each
size group. It should also be mentioned that image shape
feature extraction using the Zernike transform, in theory, is
independent of the image sizes to be analyzed (Teague, 1980).
The purpose of image scaling in this study was to improve
computational efficiency.

In texture analysis, a linear fuzzy logic method was proposed
to quantize the distribution of voxel signal intensity in a
lesion image. This approach is robust in handling the potential
quantization error due to imaging noise (Gwo and Wei, 2013).
We have chosen a linear approach in fuzzy logic and a number
of bins that appeared to work well on our data. However, we
have not devised a method to systematically obtain an optimal
bin number or type of linear or non-linear fuzzy logic function,
which needs to be investigated in studies with large sample
sizes. For both shape and texture analyses, we have selected the
feature dimensions that appeared reasonable to the dataset of
this study. However, selecting appropriate feature dimensions
and cluster numbers is still a challenging problem in the field of
pattern recognition (Steinbach et al., 2004). Common approach

is data-driven trial and error. For a large dataset, a supervised
machine learning via artificial neural network might lead to
identification of optimized feature dimensions as well as the
number of group clusters (Raschka, 2015).

PGI was developed to explore the possibility of predicting
WMH progression by quantification of image characteristics of
WMH penumbras (Maillard et al., 2014). To do this, multiple
layers surrounding a lesion mask was used to calculate PGI
with a linear weighted function based on the layer locations of
the “growth voxels.” The choice of a linear weighted function
is consistent with the probable locations of WMH lesion
development found in recent studies (Maillard et al., 2014;
Promjunyakul et al., 2016). In our study, we used three layers
sounding the WMH lesions to demonstrate the potential growth.
A large dataset with repeated measures in longitudinal studies
is needed to identify a more appropriate number of layers and
devise an optimal weighting function.

We are fully aware that WMH lesion growth is likely affected
by multiple factors besides the shape, texture and PGI. In this
regard, the potential effects of anatomical locations of WMH
on its progression rate have been investigated in prior works
(DeCarli et al., 2005;Wardlaw et al., 2013). Identification of other
key contributors to WMH growth and the underlying biological
mechanisms are warranted for future studies.

The objective of this paper is to formulate concepts and
to demonstrate the feasibility of the methods used to analyze
the WMH shape, texture, and potential growth. To accomplish
this object, we selected high-quality T2 FLAIR images which
contain a large number of lesions with various sizes from six
subjects as sample cases to develop our theoretical framework.
While only small number of subjects was used in this study,
a relatively large number of lesion (a total of 993) was used
in our development and analyses. Nevertheless, the algorithms
and parameters used for texture feature extraction and potential
growth index estimation in this work were empirical based on
trial and error, or were optimized based on the relatively small
dataset. The algorithms and parameters used in this work need
to be optimized based on larger datasets covering various type
of lesions in future studies. Currently, we are working on the
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application of our methods to over 500 subjects with more than 2
years of brain imaging data from the ADNI (Alzheimer’s Disease
Neuroimaging Initiative) database.

Lastly, due to widely available 2D T2 FLAIR images in clinical
practice and research, we decided to develop our concept in 2D
T2 FLAIR first. On the other hand, we have also begun to expand
our work to 3D imaging to capture the lesion shape, texture and
potential growth in all spatial directions, which benefits from the
recent development in 3D high-resolution T2 FLAIR acquisition
technique (Wiggermann et al., 2016).

In summary, our work demonstrated the concept and
the feasibility that shape and texture features of WMH
lesions observed on T2 FLAIR images can be quantitatively
characterized which are related to the potential growth
index of white matter lesions. Future studies of large
datasets and longitudinal studies based on the systematic

framework proposed in this study are warranted to further
optimize the algorithms and parameters used for white
matter lesion shape and texture feature extraction and

classification as well as PGI estimation. Furthermore, our
approaches for image feature extraction and classification can
potentially be generalized to other types of brain lesions and
imaging modalities.
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Aim: Brain tumors are among the most fatal cancers worldwide. Diagnosing and

manually segmenting tumors are time-consuming clinical tasks, and success strongly

depends on the doctor’s experience. Automatic quantitative analysis and accurate

segmentation of brain tumors are greatly needed for cancer diagnosis.

Methods: This paper presents an advanced three-dimensional multimodal segmentation

algorithm called nested dilation networks (NDNs). It is inspired by the U-Net architecture,

a convolutional neural network (CNN) developed for biomedical image segmentation

and is modified to achieve better performance for brain tumor segmentation. Thus,

we propose residual blocks nested with dilations (RnD) in the encoding part to enrich

the low-level features and use squeeze-and-excitation (SE) blocks in both the encoding

and decoding parts to boost significant features. To prove the reliability of the network

structure, we compare our results with those of the standard U-Net and its transmutation

networks. Different loss functions are considered to cope with class imbalance

problems to maximize the brain tumor segmentation results. A cascade training

strategy is employed to run NDNs for coarse-to-fine tumor segmentation. This strategy

decomposes the multiclass segmentation problem into three binary segmentation

problems and trains each task sequentially. Various augmentation techniques are utilized

to increase the diversity of the data to avoid overfitting.

Results: This approach achieves Dice similarity scores of 0.6652, 0.5880, and 0.6682

for edema, non-enhancing tumors, and enhancing tumors, respectively, in which the Dice

loss is used for single-pass training. After cascade training, the Dice similarity scores rise

to 0.7043, 0.5889, and 0.7206, respectively.

Conclusion: Experiments show that the proposed deep learning algorithm outperforms

other U-Net transmutation networks for brain tumor segmentation. Moreover, applying

cascade training to NDNs facilitates better performance than other methods. The findings

of this study provide considerable insight into the automatic and accurate segmentation

of brain tumors.

Keywords: brain tumor segmentation, nested dilation networks, residual blocks nested with dilations,

squeeze-and-excitation blocks, coarse-to-fine
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1. INTRODUCTION

Brain tumors are one of the deadliest cancers worldwide.
Gliomas are the most common primary craniocerebral tumor
and are caused by the carcinogenesis of glial cells in the
brain and spinal cord (Bauer et al., 2013). In pathology,
gliomas can be classified as low-grade or high-grade according
to the malignant degree of the tumor cells (Cho and Park,
2017; Wang et al., 2018b). Low-grade gliomas are mainly
represented by low-speed cell division and proliferation, whereas
high-level gliomas are characterized by rapid cell division
and proliferation accompanied by angiogenesis, hypoxia, and
necrosis (Gerlee and Nelander, 2012; Bogdańska et al., 2017).
Although significant advances have been made in healthcare
so far, the vast majority of gliomas are incurable, except
for a small number of low-grade gliomas, which can be
completely resected surgically. Gliomas can be further divided
into different tumor sub-regions according to the severity
of the tumor cells, such as edemas, non-enhancing tumors,
and enhancing tumors. Magnetic resonance imaging (MRI)
is the most frequently used and most effective noninvasive
auxiliary diagnostic tool (Wen et al., 2010; Yang et al., 2018),
providing a reference for the formulation of treatment programs
(Mazzara et al., 2004). Brain tumors are usually imaged with
different MRI modalities, and these images are interpreted
by image analysis methods (Bauer et al., 2013). The MRI
sequence usually includes four different modalities: T1-weighted,
T2-weighted, post-contrast T1-weighted, and fluid-attenuated
inversion-recovery (FLAIR). Different MRI modalities are
employed for different diagnosis tasks in clinical diagnosis and
treatment. However, it is still a daunting task for clinicians to
diagnose diseases with MRI, because there is a wide variation
in the size, shape, regularity, location, and heterogeneous
appearance of brain tumors (Dong et al., 2017). Therefore,
automatic quantitative analysis and accurate segmentation of
brain tumors are greatly needed clinically to help doctors make
accurate diagnoses.

CNNs have become a prominent deep learning method and
have been used to make a series of breakthroughs in different
tasks, including computer vision (Krizhevsky et al., 2012; Long
et al., 2015; Ren et al., 2015). The success of CNNs is credited
to their ability to independently learn deep features instead
of relying on manual features. With historical opportunities
provided by a strong calculation capability and large numbers
of annotations, the development of CNNs has been explosive.
The original LeNet5 (LeCun et al., 1998) was proposed in
1998 with five layers, establishing the modern structure of
CNNs. Krizhevsky et al. (2012) presented a classical CNN
structure called “AlexNet, and made a historic breakthrough.
The great success of AlexNet stimulated new research on
CNNs. ZFNet (Zeiler and Fergus, 2014), VGGNet (Simonyan
and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), and
ResNet (He et al., 2016) were successively presented with more
layers and better performances. Huang et al. (2017) used a
more radical dense connection mechanism to maximize the
flow of information. Hu et al. (2017) proposed an SE network
that modeled the interdependencies between feature channels,
adaptively learning important information. All of these CNN

studies made it possible to apply neural networks to medical
image processing.

Recent reports have shown that CNNs outperform state-
of-the-art medical image analyses (Li et al., 2017; Lin et al.,
2018). MRI-based brain tumor segmentation is a task that still
requires extensive attention. Extant methods for automatic brain
tumor segmentation are diverse. DeepMedic (Kamnitsas et al.,
2016b) was designed as a dual-pathway three-dimensional (3D)
network with 11 layers, to simultaneously process images at
different scales and combine the results with fully connected
layers. Kamnitsas et al. (2016a) and Castillo et al. (2017) further
improved the architecture of DeepMedic by adding residual
connections and parallel pathways. U-Net (Ronneberger et al.,
2015) was proposed to train an end-to-end network with few
images for the accurate segmentation of biomedical images.
Many architectures similar to U-Net have been widely adopted
for brain tumor segmentation. Kayalibay et al. (2017) and
Isensee et al. (2017) employed deep supervision by combining
segmentation layers from different levels in the localization
pathway. Iqbal et al. (2018) increased the number of U-Net layers
and trained the network with the Dice loss. Le and Pham (2018)
used the U-Net architecture to extract features and put them
into an ExtraTrees classifier. Zhao et al. (2018) integrated fully
convolutional neural network (FCNN) and conditional random
field (CRF) and trained threemodels using two-dimensional (2D)
image patches obtained from axial, coronal, and sagittal views.
A voting-based fusion strategy was used to obtain segmentation
results. To deal with the class imbalance problem, Wang et al.
(2017) proposed a triple-cascaded framework for brain tumor
segmentation. Three similar networks were used to segment
the entire tumor (all lesions, including edema, non-enhancing
tumors, and enhancing tumors), and the tumor core (all lesions
except edema). They then sequentially enhanced tumor core.
Zhou et al. (2018) drew upon lesions with coarse-to-fine medical
image segmentation methods and proposed a single multitask
CNN that could learn correlations between different categories.
Partial model parameters can be shared when different tasks are
being trained according to different sets of training data to utilize
the underlying correlation among classes.

We propose a CNN-based 3D segmentation algorithm, the
NDN, which can handle multimodal images. Instead of simple
convolution layers, residual blocks are stacked in the U-Net
architecture to simplify optimization. The SE blocks used in
NDNs fuse the global information and adaptively learn important
information from each channel. A new block i.e., residual blocks
nested with dilations (RnD) enlarges the receptive fields and
avoids the gridding effect. RnD blocks can enrich information
in shallow layers by using dilation convolutions while retaining
detailed information during the rapid expansion of receptive
fields by using residual connections. The cascade training strategy
is adopted to train three tasks individually to deal with the class
imbalance problem.

2. MATERIALS AND METHODS

This section describes the proposed NDNs algorithm for detailed
brain tumor segmentation, including the data preprocessing,
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network architecture, training strategy, and post-processing
methods. We also concisely describe the experimental design.

2.1. Data Acquisition and Preprocessing
2.1.1. Data Acquisition

Most of the data used in this work are downloaded from
the Medical Segmentation Decathlon (MSD) organized by
the 21st Annual Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI) 2018. A small
number of low-grade glioma data are abstained from MICCAIs
Multimodal Brain Tumor Segmentation (BraTS) Challenge of
the same year. These are used to test the stability of the
proposed algorithm. The images for each patient comprise four
scanning sequences: T1-weighted, T2-weighted, post-contrast
T1-weighted, and FLAIR. Every scan is aligned to the same
anatomical template space and interpolated into 1 × 1 × 1mm3

with an image size of 240 × 240 × 155 voxels. The purpose of
the study is to segment brain tumors (i.e., gliomas) into three
different classes: edemas, non-enhancing tumors, and enhancing
tumors. All data are labeled and verified by an expert human
rater. Efforts were made to mimic the accuracy required for
clinical use.

2.1.2. Data Preprocessing and Augmentation

Training an effective neural network requires thousands or even
tens of thousands of data. However, the quantity of available
medical images is usually well short of that. To avoid overfitting,
more training data need to be generated from the limited
images and annotations. Our method applies the following data
augmentation techniques to make reasonable changes to the
image shapes: flip the x-, y-, or z-axis with a probability of
50%; rotate the images with a rotation angle of −15◦ to 15◦;
apply gamma correction with the gamma value varied randomly
from 0.4 to 1.6; and apply elastic distortion. Figure 1 shows the
data augmentation.

Images from multiple modalities may have varying intensity
ranges. When the intensity values are not standardized, it is
detrimental to the training of the neural network. Normalization
is critical to allow images from different modalities to be trained
with one algorithm. In our study, each modality is normalized
individually by subtracting the mean from the value for each
patient and dividing it by the standard deviation. The useless
black borders in the images along the x- and y-axes are also
removed. On the z-axis, we note that the head and tail of the
image slices are uninformative. Therefore, 70% of the slices used
for the network input are captured from the middle.

2.2. Residual Blocks
He et al. (2016) reformulated the layers as residual blocks
and yielded unusually brilliant results in the 2015 ImageNet
competition. Instead of simply stacking convolution layers to fit a
desired underlyingmapping, they added identitymapping, which
was easier to optimize. The residual blocks depicted in Figure 2A

are achieved by a shortcut connection and element-wise addition
operation, performed on the input and output feature maps of
the blocks, channel-by-channel. The operating principle of the

residual blocks can be defined as

y = F(x,Wi)+ x, (1)

where x and y are the input and output vectors of the relevant
layers; and F(x,Wi) is the mapping function for the residual
path. The results of F(x,Wi) should have the same dimensions
as x. Otherwise, we can perform linear mapping on the shortcut
connection (Figure 2B). This simple algorithm does not add
additional parameters or computations to the network, but it
greatly increases the training speed of the model and improves
the training effect.

The standard convolutional layers of a U-Net are replaced
by the residual structure shown in Figure 2A. The residual path
comprises two convolution layers with a kernel size of 3, followed
by a batch normalization (BN) operation (Ioffe and Szegedy,
2015) and a rectified linear unit (ReLU). The input and output of
the residual path are added element by element. The results of the
residual blocks are fed directly into subsequent network layers.

2.3. SE Blocks
A lot of research has recently been accomplished to strengthen
the learning power of CNNs and to improve their performance.
Hu et al. (2017) introduced the SE blocks to enhance the
representations of features produced by a convolutional network.
SE blocks embed the global spatial information into the
channel vector by encoding each channel dependency with
a fully connected operation. It allows the network to pay
different amounts of attention to each channel according to
the importance of the feature maps. Figure 3A illustrates the
structure of SE blocks. The features are first passed through a
squeeze operation achieved by a global average pooling layer to
aggregate global information per channel for the whole image.
Then, the outputs are fed into an excitation operation to get
the final weights for each channel. The excitation operation is
achieved by using two fully connected layers: one with ReLU
activation and another with a sigmoid. Finally, the weight vectors
are reshaped to (1, 1, 1,C), where C is the number of the feature
maps and are applied to each feature map by the multiply
operation. The SE blocks emphasize useful features and suppress
useless features through weights like an attention mechanism.

SE blocks have a simple structure and can be used directly
in existing state-of-the-art architectures. We draw on experience
with the attention mechanism and nested SE blocks in the
architecture to help the network focus on important feature
maps. As shown in Figure 3B, feature maps with size (X,Y ,Z,C)
are put into SE blocks. Then, the blocks generate a significant
coefficient for each channel, finally gaining outputs with different
weights and the same size as the inputs.

2.4. RnD Blocks
The traditional up-sampling and down-sampling structures lead
to a loss of internal structure, and the information of small
objects cannot be reconstructed. To solve this problem, Yu
and Koltun (2015) presented a model with dilated convolutions
that can increase the receptive fields without reducing the
resolution or increasing the parameters. Chen et al. (2014,
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FIGURE 1 | Data augmentation results. Rows list three samples for different patients. Columns represent different data augmentation operations. (A-C) list three

samples for different patients.

FIGURE 2 | Residual blocks: (A) shortcut connection and (B) shortcut

connection with the convolution layer.

2017, 2018) used dilated convolutions in their networks and
achieved good performance for dense prediction tasks. However,
standard dilated convolution causes a gridding issue that will
harm small objects. Wang et al. (2018a) proposed a hybrid
dilated convolution (HDC) framework, which can not only
expand receptive fields but also mitigate the gridding issue.

Implementing the HDC framework requires two conditions to
be met. First, the dilation rates of a groups dilated convolutions
should not have a common divisor > 1. The maximum distance
between two nonzero values is defined as follows:

Mi = max[Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri], (2)

where ri is the dilation rate in layer i, and Mi is the maximum
dilation rate from layer 0 to layer i. The second condition requires
satisfyingMi < K, where K is the kernel size.

The standard U-Net architecture does not get enough
semantic information in the shallow layers because of the limited
receptive fields. This is harmful to feature fusion in the first
few cross-layer connections. To resolve this issue and avoid the
gridding effect, we draw on an idea from the HDC framework.
RnD blocks (Figure 4) are built to enlarge receptive fields in the
first two layers of the network. This new type of block can obtain
more extensive local information via 3 convolution layers with
different dilation rates (e.g., 1, 2, 5). The kernel size is 3 for all
dilated convolutions, which are followed by a ReLU activation.
The residual connection in RnD blocks helps retain information
and fill details during the rapid expansion of receptive fields.
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FIGURE 3 | SE blocks: (A) architecture and (B) concept map.

FIGURE 4 | Architecture of RnD blocks with different dilation rates.

2.5. NDNs
The structure of our proposed NDNs is shown in Figure 5. The
architecture is inspired by U-Net, which is a stable encoder–
decoder network designed for limited data training, especially
for medical images. Here, we carefully modify the standard U-
Net to make it perform better for the brain tumor segmentation
task. First, we use 3D convolution layers rather than 2D to adapt
images from multiple modalities. The classic encoder–decoder
structure that fuses the lower features in the shallow layers and
higher features in the deep layers is retained to ensure the stability

of the proposed network. The architecture comprises three max-
pooling layers to capture context and three up-sampling layers
to enable precise localization. To obtain enough receptive fields,
the first two encoder modules adopt RnD blocks to enrich
the low-level features. This is followed by an SE block and a
max-pooling layer. In the decoder part, each module comprises
a stack of residual blocks, an SE block, and an up-sampling
layer. The BN is employed immediately after each convolution
and before activation. As shown in Figure 5, the network can
obtain rich information to boost essential features and achieve
a stable effect.

2.6. Cascade Training
The cascade strategy trains different models for each category
sequentially, showing ideal results. Coarse-to-fine medical image
segmentation is becoming increasingly popular because of
the class imbalance problem. Cascaded models decompose
complex problems into simple ones and capitalize on the
hierarchical structure of tumor sub-regions. A single model is
trained repeatedly to segment substructures of brain tumors
hierarchically and sequentially. Each sequence is handled as a
binary segmentation problem. The first task is to segment the
entire tumor including edemas, enhancing tumors, and non-
enhancing tumors. These three classes are regarded as a binary
segmentation problem. Then, NDNs are trained to crop the
target. After the first stage of training, the entire tumor region
is segmented in the 3D volumes of a patient. A cuboid sub-
region, based on the entire tumor, is used as inputs to the network
to segment the enhancing and non-enhancing tumors together.
Similarly, the third training differentiates enhancing tumors from
non-enhancing ones by using the cuboid sub-region produced by
the second stage as input.

In the training, the input of the network is generated based
on the ground truth, as shown in Figure 6A. In the testing, the
results of the previous stage are extended by 32 pixels on the
x- and y-axes, and 8 slices on the z-axis as the input for the
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FIGURE 5 | Architecture of the proposed NDNs with SE blocks and RnD blocks.

next stage. The process is described in Figure 6B. Finally, we
integrate the three binary segmentation tasks to obtain the final
segmentation results of multiple classes. Cascade training offers a
way to adaptively alleviate the class imbalance problem of brain
tumor segmentation.

2.7. Post-processing
Post-processing is further used to improve the segmentation
results of NDNs. During data processing, we noticed that the
brain tumors for all patients in the 3D volumes were of a
single connected domain. Thus, isolated small clusters should be
removed from the results. More specifically, connected domain
analysis should be performed to retain the maximal region
and remove other smaller clusters to better fit the ground
truth. Moreover, some patients are observed to have benign
tumors, which means that the gliomas only comprise edemas
and non-enhancing tumors. Some small clusters are erroneously
classified as enhancing tumors in our task instead of benign
tumors, which harms the segmentation results. To deal with this
issue, we impose volumetric constraints by removing enhancing
tumor clusters in the segmentation that are smaller than a
predefined threshold.

2.8. Dice Similarity Score
In our work, the Dice similarity score is calculated for
quantitative evaluation. This performance metric measures the
similarity between the ground truth and predicted results. The
Dice similarity score is defined as follows:

DSC =
2TP

(FP + 2TP + FN)
, (3)

where TP, FP, and FN are the numbers of true positives, false
positives, and false negatives, respectively.

MSD and BraTS 2018 provide three different tumor regions
that can be described as edemas, enhancing tumors, and non-
enhancing tumors. The Dice similarity scores are calculated for
each tumor region to evaluate the segmentation results, and the
scores are compared with those of other methods.

2.9. Experimental Design
We conduct three groups of experiments according to different
requirements, which we describe in this section.

Experiment 1: We explored the effects of different network
structures on brain tumor segmentation. Ronneberger et al.
(2015) developed a U-Net architecture based on the fully
convolutional network (FCN) (Long et al., 2015), which can
work with very few training images and yield more precise
segmentation. Some new architectures derived from U-Net have
appeared and have been applied to the field of medical image
processing. In Experiment 1, the standard Conv + BN + ReLU
module in U-Net was replaced by frequently used blocks, such as
residual blocks and dense blocks separately for comparison with
the proposed NDNs.

Experiment 2: Different loss functions were attempted with
NDNs to improve segmentation results. The loss function
quantifies the amount by which the predicted value deviates from
the actual value. Choosing a suitable loss function benefits both
the training process and the results of brain tumor segmentation.
In Experiment 2, different loss functions were applied to the brain
tumor segmentation task: the categorical cross-entropy loss, Dice
loss, and focal loss. The Dice similarity scores are calculated for
each task.
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Experiment 3: The proposed method was compared with
other state-of-the-art methods. We implemented several
previously published algorithms and trained the networks
with the same datasets. The brain tumors comprise of edemas,
enhancing tumors, and non-enhancing tumors with very
different volumes, resulting in an imbalanced number of samples
in each class. This category imbalance problem impairs the
performance of a deep network. In Experiment 3, a cascade
strategy was used to train NDNs, which decomposed a multiple
classification problem into multiple binary classification
problems. The segmentation results of the cascaded NDNs were
compared with several state-of-the-art methods according to the
Dice similarity score.

2.10. Implementation Details
All networks were implemented in Keras (Chollet et al., 2015)
2.1.2 using the Tensorflow (Abadi et al., 2016) 1.4.0 backend.
Adaptive moment estimation (Kingma and Ba, 2014) was used as
an optimizer with an initial learning rate of 0.0001, a momentum
of 0.9, and a weight decay of 0.00001. Training was implemented
on an NVIDIA 1080 Ti GPU with a version of CUDA 8.0 for
300 epochs. We did not use a dropout (Hinton et al., 2012) but
rather L2 regularization and BN for the whole network structure.
We cropped 96 × 96 × 48 patches as inputs close to the ground
truth from images and annotations. All networks were trained
from scratch with a batch size of 4.

3. EXPERIMENTS AND RESULTS

In this section, we explain the advantages of the proposed
algorithm with regard to brain tumor segmentation. The Dice

similarity score is adopted as the evaluation criterion for each
model. Edemas, non-enhancing tumors, and enhancing tumors
were trained together with single NDNs in Experiments 1 and 2
for the sake of fairness. In Experiment 3, however, the cascade
training strategy was used to train NDNs for each class, which
was then compared with the state-of-the-art methods.

3.1. Experiment 1
To prove the effectiveness of the NDNs structure, different
U-Net-like networks were trained with the same brain tumor
dataset for comparison. A traditional 3D U-Net with three
down-sampling layers and three symmetric up-sampling layers
was trained first. It consisted of two convolution layers used
repeatedly with a kernel size of 3, similar to the standard 2D
U-Net structure presented by Ronneberger et al. (2015). The

TABLE 1 | Comparison of different U-Net-like architectures: (A) standard 3D

U-Net; (B) U-Net with residual blocks; (C) U-Net with dense blocks; (D) NDNs

without SE blocks; (E) NDNs without RnD blocks; and (F) NDNs network.

Methods

Dice
Edema Non-enhancing tumor Enhancing tumor

A 0.6686 0.4734 0.6169

B

ResNet18 0.6645 0.5022 0.6455

ResNet50 0.6792 0.5314 0.6289

ResNet101 0.6752 0.5617 0.6342

C 0.6734 0.5527 0.6287

D 0.6590 0.5612 0.6305

E 0.6725 0.536 0.638

F 0.6652 0.5880 0.6682

The bold values mean the best result (the highest dice value) for each class.

FIGURE 6 | Cascade strategy applied to NDNs: (A) training and (B) testing.
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FIGURE 7 | Boxplots for each method in Table 1. Dice similarity scores for (A) edema, (B) non-enhancing tumors, and (C) enhancing tumors. The symbol “×” marks

the mean.

FIGURE 8 | Brain tumor segmentation results predicted by different U-Net-like networks. The rows represent three samples from different patients, and the columns

represent results predicted by each U-Net-like network. The organizers provided the ground truth images. (A-C) list three samples for different patients.

filter number was doubled at the end of each down-sampling
layer and halved after each up-sampling layer. Then, the repeated
convolution layers were replaced by residual blocks and dense
blocks to be trained. ResNet18, ResNet50, and ResNet101 were
each employed as an encoder path, and the decoder path was
consistent with the expanding path in 3D U-Net. For the
dense U-Net, dense blocks were used as substitutes for the two
repeated convolution layers, and each dense block had four
dense connected convolution layers. Finally, we studied the effect
of the NDNs architecture with SE blocks or RnD blocks only.
Table 1 lists the Dice similarity scores calculated for brain tumor
segmentation with these networks, and Figure 7 presents the
boxplots for each class. Note that all networks were trained with
the Dice loss in Experiment 1.

We achieved better results for non-enhancing tumor
segmentation and enhancing tumor segmentation with NDNs
than with the other U-Net-like architectures. According to

TABLE 2 | Comparison with different losses: (A) categorical cross-entropy; (B)

weighted categorical cross-entropy loss; (C) focal loss; and (D) Dice loss.

Methods

Dice
Edema Non-enhancing tumor Enhancing tumor

A 0.6708 0.5321 0.6579

B 0.6634 0.5774 0.6604

C 0.5905 0.5721 0.6445

D 0.6652 0.5880 0.6682

The bold values mean the best result (the highest dice value) for each class.

Table 1, the non-enhancing tumor results segmented by NDNs
are about 2.6% better than U-Net with ResNet101, and the
enhancing tumor segmentation results are at least 2.0% better
than the other methods. However, the proposed algorithm lacked
the ability to segment the edema part with a result of 0.6652,
which is worse than the other U-Net-like algorithms. Figure 8
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presents the ground truth and prediction results for different
U-Net-like architectures from different perspectives.

3.2. Experiment 2
Class imbalance is a severe issue in medical image segmentation
and needs to be carefully tackled. The data provided by MSD and
BraTS 2018 are heavily imbalanced, especially the classes of the
non-enhancing tumors and enhancing tumors. To alleviate the
class imbalance, we use a Dice loss function. We also explore
the effects of other loss functions on NDNs for comparison. The
categorical cross-entropy is used as a base loss function:

Crossentropy(p, q) = −
1

N

∑

x,y,z

∑

k

pkx,y,z log q
k
x,y,z , (4)

where pkx,y,z and qkx,y,z correspond to the ground truth and
predicted results for class k, and N is the total number of
samples. Based on previous experience, the class imbalance can
be addressed by associating different weights with individual
classes. Therefore, the weighted categorical cross-entropy is
also used:

W_Crossentropy(p, q) = −
1

N

∑

x,y,z

∑

k

wkpkx,y,z log q
k
x,y,z , (5)

where wk is the weight for class k. Here the weights for
the background, edema, non-enhancing tumors, and enhancing
tumors are defined as (1, 1, 2, 1) respectively. The focal loss
function described by Lin et al. (2017) for dense object detection
is a modified version of binary cross-entropy and is aimed toward
low-confidence labels. We adopt a multiclass focal loss for the
segmentation task:

Focal(p, q) = −

∑

x,y,z

∑

k p
k
x,y,z(1− qkx,y,z)

γ log qkx,y,z
∑

x,y,z

∑

k p
k
x,y,z

, (6)

where (1 − qkx,y,z)
γ is a modulating factor and the value of γ is

set to 2.0 in our algorithm. Finally, our proposed model is trained
with the followingDice loss to segment different parts of the brain
tumors:

Dice(p, q) = 1−
1

N

2
∑

x,y,z

∑

k p
k
x,y,z ∗ q

k
x,y,z

∑

x,y,z

∑

k p
k
x,y,z +

∑

x,y,z

∑

k q
k
x,y,z

. (7)

The Dice similarity scores for the different loss functions
used in NDNs are presented in Table 2 and Figure 9. We obtain
final scores of 0.6652, 0.5880, and 0.6682 for edemas, non-
enhancing tumors, and enhancing tumors, respectively, using
the Dice loss. Normal loss functions like the categorical cross-
entropy may achieve good results for balanced datasets, but
datasets with a massive imbalance among classes require special
attention. We avoid weighted categorical cross-entropy as much
as possible, because it needs additional hyperparameters that may
introduce another difficult problem for network optimization.
The results show that the focal loss may be good for binary

TABLE 3 | Comparison of methods for the same dataset: (A) Isensee et al. (2017);

(B) Iqbal et al. (2018); (C) Wang et al. (2017); (D) Zhou et al. (2018); and (E) our

proposed method training with the cascade strategy.

Methods

Dice
Edema Non-enhancing tumor Enhancing tumor

A 0.6574 0.5418 0.6943

B 0.6808 0.5727 0.6661

C 0.6919 0.5504 0.6793

D 0.6894 0.5376 0.6861

E 0.7043 0.5889 0.7206

The bold values mean the best result (the highest dice value) for each class.

classification problems to solve intra-class imbalance. However, it
is less helpful for inter-class imbalance. The Dice loss is calculated
based on the Dice coefficient and can deal with situations with
large amounts of class imbalance. Figure 10 shows the ground
truth and prediction results for the different loss functions used
in NDNs.

3.3. Experiment 3
We reproduced several state-of-the-art methods for brain tumor
segmentation for comparison with our algorithm. Isensee et al.
(2017) achieved a high Dice score in the BraTS 2017 Challenge by
using a U-Net-like architecture. They employed deep supervision
in the localization pathway to integrate segmentation layers at
different levels of the network and combined them via element-
wise summation to form the final network output. Iqbal et al.
(2018) adopted SE blocks at the end of the decoder part and fused
its output with the output of encoder blocks. These two methods
were chosen for comparison, because they have similarities
with our network structure. Wang et al. (2017) proposed a
triple-cascaded framework to segment the entire tumor, tumor
core, and enhancing tumor core sequentially. They used dilated
convolutions after the down-sampling layers and set the dilation
parameter from 1 to 3. Zhou et al. (2018) presented a one-single
multitask CNN that can learn the correlations between different
categories. These two methods used a cascade or cascade-like
training strategy like our training process, and they both obtained
high Dice scores in the brain tumor segmentation task. In this
experiment, a multiclass segmentation problem was decomposed
into three binary segmentation problems by repeated training
of NDNs with the coarse-to-fine method just like (Wang et al.,
2017). Table 3 and Figure 11 present the quantitative evaluation
according to the Dice similarity scores for the same datasets.

Table 3 indicates that the Dice similarity scores of
our proposed method are 0.7043, 0.5889, and 0.7206 for
edemas, non-enhancing tumors, and enhancing tumors,
respectively, which are higher than those of all comparison
methods for every class. Moreover, the results are 3.9 and
5.2% higher for edemas and enhancing tumors than when
the three classes are trained together, and the results for
the non-enhancing tumors do not worsen. These results
prove that the cascade training strategy can improve
the accuracy for brain tumor segmentation. Figure 12

shows the ground truth and prediction results for different
state-of-the-art methods.
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4. DISCUSSION

4.1. Competitive Segmentation Results
U-Net increases the number of up-sampling and skip

connections compared with FCN, which can supplement

more location information for semantic information.

The U-Net architecture has received increasing attention

recently and has been shown that it is a stable

algorithm for many segmentation tasks. Despite its great

success, however, U-Net still has limitations for some
specialized tasks.

We found that stacking residual blocks instead of simple
convolution layers can improve the brain tumor segmentation
performance. This is because residual blocks can fuse receptive
fields of different sizes and ease the training of the networks.
Attention mechanisms have shown their utility for many
computer vision tasks. SE blocks work as an attentionmechanism
that can explore the relationship between channels to suppress
useless information and enhance useful information by fusing
global information. They can help a network notice essential
features and make correct decisions. Nesting the SE blocks
into our base structure causes the corresponding Dice similarity

FIGURE 9 | Boxplots for each method in Table 2. Dice similarity scores for (A) edemas, (B) non-enhancing tumors, and (C) enhancing tumors. The symbol “×”

marks the mean.

FIGURE 10 | Brain tumor segmentation results predicted by NDNs with different loss functions. The rows represent three samples from different patients, and the

columns represent results predicted by NDNs with different losses. Organizers provided ground truth images. (A-C) list three samples for different patients.
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FIGURE 11 | Boxplots for each method in Table 3. Dice similarity scores for (A) edemas, (B) non-enhancing tumors, and (C) enhancing tumors. The symbol “×”

marks the mean.

FIGURE 12 | Brain tumor segmentation results predicted by the different algorithms. The rows represent three samples from different patients, and the columns

represent algorithms from published papers. Organizers provided the ground truth images. (A-C) list three samples for different patients.

scores of the edemas, non-enhancing tumors, and enhancing
tumors to reach 0.6725, 0.536, and 0.638, respectively. To solve
the problem of insufficient receptive fields and to simultaneously
avoid the gridding issue, we add RnD blocks to the network.

By learning from the HDC framework, RnD blocks can enlarge
receptive fields by using dilated convolutions with different

dilation rates. Based on this, ourmethod obtains results of 0.6652,

0.5880, and 0.6682, respectively.
An extreme imbalance between categories affects the

segmentation results, especially for edemas, and needs to be
addressed. Non-enhancing tumors usually have smaller regions

than the other two classes, as shown in Figure 14, which will have
a negative effect on the segmentation results. In order to alleviate

the class imbalance, twomeasures are taken. First, different losses

are employed by NDNs to determine the best performance, and a
Dice loss function is eventually selected. Moreover, we borrowed
the cascade training strategy adopted by many state-of-the-art
methods for brain tumor segmentation. Cascade training can
balance the quantitative differences among different classes to
some extent. The final results obtained by our proposed method
were 0.7043 for edema, 0.5889 for non-enhancing tumors, and
0.7206 for enhancing tumors. The experimental results are
shown in Figure 13. These reasonable results are attributed to
both the network structure and training strategies.

4.2. Limitations
This study is limited by the class imbalance problem, even
though somemeasures have been taken to alleviate it. Some small
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FIGURE 13 | Histogram for each method. Dice similarity scores for (A) edemas, (B) non-enhancing tumors, and (C) enhancing tumors.

FIGURE 14 | Limitations caused by the class imbalance problem. (A,B)

present two different samples.

regions in brain tumors like non-enhancing tumors could not be
predicted very well. For example, in the two samples in Figure 14,
only 8.5% of the entire tumor is non-enhancing in sample A
and 2.25% in sample B. This huge category imbalance lead to
inaccurate segmentation results of 0.279 and 0.402 for non-
enhancing tumors in samples A and B, respectively. The class
imbalance problem remains a challenge that should be addressed
in the future.

5. CONCLUSION

Clinical applications of computer-aided systems have gained
a great deal of research attention. Supremely accurate brain
tumor segmentation is a tedious but vital task for clinicians
because of various sizes and shapes of tumors. Quantitative
analysis of brain tumors is critical to relieve pressure on doctors

and obtain more accurate segmentation results. We developed
a new deep learning framework based on U-Net, NDNs, for
segmenting brain tumors. Our results showed that NDNs
can extract discriminative features of edemas, non-enhancing
tumors, and enhancing tumors by obtaining large receptive
fields and integrating channel information. Compared with other
state-of-the-art methods, NDNs obtained higher Dice similarity
scores. The proposed method makes it possible to generate
accurate segmentation result for brain tumors without manual
interference and provides considerable insight on the application
of computer-aided systems to clinical tasks.
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Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases. In
the last decade, studies on AD diagnosis has attached great significance to artificial
intelligence-based diagnostic algorithms. Among the diverse modalities of imaging data,
T1-weighted MR and FDG-PET are widely used for this task. In this paper, we propose
a convolutional neural network (CNN) to integrate all the multi-modality information
included in both T1-MR and FDG-PET images of the hippocampal area, for the
diagnosis of AD. Different from the traditional machine learning algorithms, this method
does not require manually extracted features, instead, it utilizes 3D image-processing
CNNs to learn features for the diagnosis or prognosis of AD. To test the performance of
the proposed network, we trained the classifier with paired T1-MR and FDG-PET images
in the ADNI datasets, including 731 cognitively unimpaired (labeled as CN) subjects,
647 subjects with AD, 441 subjects with stable mild cognitive impairment (sMCI) and
326 subjects with progressive mild cognitive impairment (pMCI). We obtained higher
accuracies of 90.10% for CN vs. AD task, 87.46% for CN vs. pMCI task, and 76.90%
for sMCI vs. pMCI task. The proposed framework yields a state-of-the-art performance.
Finally, the results have demonstrated that (1) segmentation is not a prerequisite when
using a CNN for the classification, (2) the combination of two modality imaging data
generates better results.

Keywords: Alzheimer’s disease, multi-modality, image classification, CNN, deep learning, hippocampal

INTRODUCTION

Aging of the global population results in an increasing number of people with dementia. Recent
studies indicate that 50 million people are living with dementia (Patterson, 2018), of whom 60–
70% have Alzheimer’s Disease (AD) (World Health Organization, 2012). Known as one of the
most common neurodegenerative diseases, AD can result in severe cognitive impairment and
behavioral issues.

Mild cognitive impairment (MCI) is a neurological disorder, which may occur as a transitional
stage between normal aging and the preclinical phase of dementia. MCI causes cognitive
impairments with a minimal impact on instrumental activities of daily life (Petersen et al., 1999,
2018). MCI is a heterogeneous group and can be classified according to its various clinical outcomes
(Huang et al., 2003). In this work, we partitioned MCI into progressive MCI (pMCI) and stable MCI
(sMCI), which are retrospective diagnostic terms based on the clinical follow-up according to the
DSM-5 criteria (American Psychiatric Association, 2013). The term pMCI, refers to MCI patients
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who develop dementia in a 36-month follow-up, while sMCI
is assigned to MCI patients when they do not convert.
Distinguishing between pMCI and sMCI plays an important role
in the early diagnosis of dementia, which can assist clinicians
in proposing effective therapeutic interventions for the disease
process (Samper-González et al., 2018).

With the progression of MCI and AD, the structure and
metabolic rate of the brain changes accordingly. The phenotypes
include the shrinkage of cerebral cortices and hippocampi,
the enlargement of ventricles, and the change of regional
glucose uptake. These changes could be quantified with the
help of medical imaging techniques such as magnetic resonance
(MR) and positron-emission tomography (PET) (Correa et al.,
2009). For instance, T1-weighted magnetic resonance image
(T1-MRI) provides high-resolution information for the brain
structure, making it possible to accurately measure structural
metrics like thickness, volume and shape. Meanwhile, 18-Fluoro-
DeoxyGlucose PET (18F-FDG-PET or FDG-PET) indicates
the regional cerebral metabolic rate of glucose, making it
possible to evaluate the metabolic activity of the tissues. Other
tracers, such as 11C-PiB and 18F-THK, are also widely used
in AD diagnosis (Jack et al., 2008b; Harada et al., 2013),
as they are sensitive to the pathology of AD as well. By
analyzing these medical images, one can obtain important
references to assist the diagnosis and prediction of AD
(Desikan et al., 2009).

This work aims at distinguishing AD or potential AD patients
from cognitively unimpaired (labeled as CN) subjects accurately
and automatically using medical images of the hippocampal
area and recent techniques in deep learning, as it facilitates a
fast-preclinical diagnosis. The method is further extended for
the classification between sMCI and pMCI so that an early
diagnosis of dementia would be possible. Data of two modalities
were used. i.e., the T1-MRI and 18F-FDG-PET, as they provide
complementary information.

Numerous studies have been published on diagnosing AD
by utilizing these two methods. Using T1-MRI, Sorensen et al.
segmented the brains and extracted features of thickness and
volumetry in the selected regions of interest (ROIs) (Sorensen
et al., 2017). A linear discriminant analysis (LDA) was used
to classify AD, MCI, and CN. David et al. implemented the
kernel metric learning method in the classification (Cárdenas-
Peña et al., 2017). Another popular machine learning method is
the random forest. Lebedeva et al. (2017) extracted the structural
features of MRI and used mini-mental state examination
(MMSE) as a cognitive measure. Ardekani et al. (2017)
took the hippocampal volumetric integrity of MRI and
neuropsychological scores as the selected features. Both studies
used the random forest. As for 18F-FDG-PET, Silveira and
Marques (2010) proposed a boosting learning method that
used a mixture of simple classifiers to perform voxel-wise
feature selections. Cabral and Silveira (2013) used favorite class
ensembles to form ensembled support vector machine (SVM)
and random forest.

In addition to the single modality classifications, taking both
T1-MRI and 18F-FDG-PET into consideration is also a major
concern for research on AD diagnosis. Gray et al. (2013) took

regional MRI volumes, PET intensities, cerebrospinal fluid (CSF)
biomarkers and genetic information as features and implemented
random-forest based classification. Additionally, Zhang et al.
(2011) conducted a classification based on MRI, PET, and
CSF biomarkers . Moreover, other imaging modalities or PET
tracers can be considered, as Rondina et al. (2018) used T1-
MRI, 18F-FDG-PET and rCBF-SPECT as the imaging modalities
while Wang et al. (2016) used 18F-FDG and 18F-florbetapir
as tracers of PET.

The studies mentioned above mostly follow three basic
steps in the diagnosis algorithms, namely segmentation, feature
extraction and classification. During segmentation, data are
manually or automatically partitioned into multiple segments
based on anatomy or physiology. In this way, the ROIs are
well-defined, making it possible to extract features from them.
Finally, these features will be fed to the classification step so
that the classifiers are able to learn useful diagnostic information
and propose predictions for given test subjects. Among them,
segmentation plays an important role as it is used to measure
the structural metrics in the feature extraction step. However, it
is hard to obtain a segmentation automatically and accurately,
which leads to a low efficiency. As a result, we proposed an
end-to-end diagnosis without segmentation in the following
work. What is more, though highly reliable and explainable,
these steps could be integrated weakly, as different platforms
are used in different steps of these algorithms. The above
considerations lead to our attempt to use a neural network
in AD diagnosis.

Benefited by the rapid development of computer science and
the accumulation of clinical data, deep learning has become
a popular and useful method in the field of medical imaging
recently. The general applications of deep learning in medical
imaging are mainly feature extraction, image classification,
object detection, segmentation and registration (Litjens et al.,
2017). Among the deep learning networks, convolutional neural
networks (CNNs) are common choices. Hosseini-Asl et al. (2016)
built a 3D-CNN based on a 3D convolutional auto-encoder,
which takes functional MRI (fMRI) images as input and gives
the prediction for the AD vs. MCI vs. CN task, while Sarraf and
Tofighi (2016) used a CNN structured like LeNet-5 to classify
AD from CN based on fMRI. Liu et al. (2018) conducted a
T1-MRI and FDG-PET based cascaded CNN, which utilized a
3D CNN to extract features and adopted another 2D CNN to
combine multi-modality features for task-specific classification.
Previous studies showed a promising potential of AD diagnosis,
and thus we propose to use a deep learning framework in
our work to complete the feature extraction and classification
steps simultaneously.

In this work, we propose a multi-modality AD classifier. It
takes both MR and PET images of the hippocampal area as the
inputs, and provides predictions in the CN vs. AD task, the CN vs.
pMCI task and the sMCI vs. pMCI task. The main contributions
of our work are listed below:

(1) We show that segmentation of the key substructures,
such as hippocampi, is not a prerequisite in CNN-
based classification.
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(2) We show that the high-resolution information in the
hippocampal area can make up the gap between ROIs of
different sizes.

(3) We construct a 3D VGG-variant CNN to implement a
single modality AD diagnosis.

(4) We introduce a new framework to combine
complementary information from multiple modalities in
our proposed network, for the classification tasks of CN vs.
AD, CN vs. pMCI and sMCI vs. pMCI.

MATERIALS AND METHODS

Studies of biomarkers for AD diagnosis are of great interest in
the research fields. Among these bio markers, the shrinkage of
the hippocampi is the best-established MRI biomarker to stage
the progression of AD (Jack et al., 2011a), and by now the only
MRI biomarker qualified for the enrichment of clinical trials (Hill
et al., 2014). Therefore, the hippocampi are the most studied
organs for MRI based AD diagnosis, and the hippocampal area
is chosen to be the ROI of MRI in this work. As for PET images,
published studies indicated that AD may cause the decline of
[18]F-FDG uptake in both hippocampi and cortices (Mosconi
et al., 2006; Mosconi et al., 2008; Jack et al., 2011b). Hence, when
dealing with PET images, we tried different ROIs, i.e., containing
only hippocampi, and containing both hippocampi and cortices.

Image Acquisition
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
The ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD).
In this work, we used the T1-MRI and the FDG-PET from the
baseline and follow-up visit in ADNI, as these two modalities
have the greatest number of images. The details about the data
acquisition are interpreted on the ADNI website (Jack et al.,
2008a). We generated two datasets in this work. The Segmented
dataset, containing MR images and corresponding segmentation
results, was chosen to verify the effect of the segmentation, and
the Paired dataset, containing MR and PET images, to verify the
effect of multi-modality images.

In the Segmented dataset, we picked 2861 T1-MR images,
including AD and cognitively unimpaired subjects. Basic
information of the Segmented dataset is summarized in
Table 1. All images in the Segmented dataset were segmented
using multi-atlas label propagation with the expectation-
maximization (MALP-EM) framework2 (Ledig et al., 2015).
MALP-EM is a framework for the fully automatic segmentation
of MR brain images. The approach is based on multi-atlas
label fusion and intensity-based label refinement, using an

1http://adni.loni.usc.edu
2https://biomedia.doc.ic.ac.uk/software/malp-em/

TABLE 1 | Summary of the studied subjects from Segmented dataset.

Diagnosis Number Age Gender(M/F) MMSE

AD 1355 76.13 ± 7.50 772/583 21.89 ± 4.33

CN 1506 76.04 ± 5.81 776/730 29.04 ± 1.20

TABLE 2 | Summary of the studied subjects from the Paired dataset.

Diagnosis Number Age Gender(M/F) MMSE

AD 647 76.36 ± 7.21 361/287 24.84 ± 2.65

pMCI 326 75.00 ± 7.06 212/114 27.22 ± 1.74

sMCI 441 74.37 ± 7.40 297/144 28.15 ± 1.55

CN 731 76.16 ± 6.02 421/310 28.99 ± 1.20

expectation-maximization (EM) algorithm. Through the MALP-
EM framework, we obtained 138 anatomical regions with fixed
boundaries, including the hippocampi of interest.

As for the Paired dataset, we used the following steps to
generate it. For the same subject, we paired the MRI with the PET
with (a) closest acquisition dates, (b) within 1 year since the MRI
scan, and (c) at the time of the scan with the same diagnosis as the
MRI. Among the acquired data, the MCI subjects were classified
into pMCI and sMCI according to the DSM-5 criteria, that is,
MCI should be defined as pMCI if it develops into AD within
3 years, or be defined as sMCI if it does not. Subjects without
follow-up data for more than 3 years were ignored. Finally, we
acquired 647 AD, 767 MCI (326 pMCI and 441 sMCI) and 731
cognitively unimpaired subjects over 1211 ADNI participants. All
the information for these subjects is summarized in Table 2.

Data Processing
The pre-processing of images was implemented by zxhtools3

(Zhuang et al., 2011). In this work, MR images were re-
oriented and resampled to a resolution of 221 × 257 × 221 and
with a 1 mm isotropic spacing using zxhreg and zxhtransform
from zxhtools. Furthermore, in the Paired dataset, each PET
image was rigid-registered to a respective MR image for the
proceeding process.

The hippocampal area was selected to be the region of interest
(ROI) because of its great significance in AD diagnosis. In
addition, due to limited computation ability, we cropped the
ROI centered in the hippocampi. For the Segmented dataset,
which includes the segmentation results, we directly calculated
the center of the hippocampi as it has been shown in the
segmentation results. For the Paired dataset, we acquired the
central points of the MR images as follows. First, we randomly
chose one MR image from the Paired dataset as a template.
Then we registered the images from the Segmented dataset
to the template image by affine-registration, thus calculating
the average indices of the center in the template image. After
that, we registered the template image to other MR images
in the Paired dataset using affine-transformation and used the
corresponding affine matrix to determine the center for each
MR image. Finally, each PET image was rigid-registered to a
respective MR image for the identification of the hippocampi’s

3http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/zxhproj/
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center. After the registration, PET images were transformed into
a uniform isotropic spacing of 1 mm.

After the centers of the ROIs were located, we dilated and
cropped the ROIs to a region of size 96 × 96 × 48 in voxels
from the center of hippocampi for MR images (see the red
rectangles in Figures 1A–C). In the experiment on the Segmented
dataset, we processed the cropped ROI and corresponding labels
in three different ways. Three slightly different groups were
obtained: ImageOnly, MaskedImage and Mask. The ImageOnly
group contains MR raw images and maintains all the imaging
information of the hippocampi and surrounding areas. The
MaskedImage group is made up of MR images masked by binary
labels, it considers both the original images and the segmentation
results for the hippocampi as the inputs. The Mask group is made
up of binary hippocampi segmentation labels, only indicating
information about the shape and volume of the hippocampi.

By comparing the classification performance using these three
datasets, it can be judged whether the segmentation results
have an important effect on AD diagnosis. The information
for the three groups from the Segmented dataset is shown in
Figures 1D–F. When it comes to the Paired dataset, we used
two different methods to generate the patches of PET images.
The group generated using the first method is called the Small
Reception Field (SmallRF) group, which has the same reception
field as the ROI of MR images with 1 mm isotropic spacing.
The group generated using the second method is called the Big
Reception Field (BigRF) group, which has the same orientation
and ROI center but has a 2 mm isotropic spacing for each
dimension, thus having a larger reception field but a lower spatial
resolution. The information for the two groups from the Paired
dataset is shown in Figures 1H,I as a sample of the original PET
image is shown in Figure 1G.

FIGURE 1 | Demonstrations of the datasets and ROIs. (A–C) demonstrate the selected ROI of MR images. (A) is an axial slice, (B) is a sagittal slice, and (C) is a
coronal slice. (D–F) are generated from the same MR image to demonstrate the Mask (D), MaskedImage (E), and ImageOnly (F) groups. (D) is a mask image of the
segmentation of hippocampi. (E) is a image masked by hippocampal segmentation. (F) is a cropped image. (G–I) are generated from the same PET image to
demonstrate the images in the SmallRF (H) and BigRF (I) groups, while (G) is the corresponding PET image. Among them, (H) is cropped from (G), and (I) is
downsampled from (G).
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After the data processing, the datasets were randomly split
into training sets, validation sets, and testing sets according to
the patient IDs to ensure that all subjects of the same patient
only appear in one set. Finally, 70% of a dataset was used as the
training set, 10% as the validation set, and 20% as the testing
set by random sampling. Details of these subsets were shown in
Supplementary Tables S1 and S2.

Methodology
Convolutional neural network (LeCun et al., 1995) is a deep
feedforward neural network composed of multi-layer artificial
neurons, with excellent performance in large-scale image
processing. Unlike traditional methods which use manually
extracted features of radiological images, CNNs are used to
learn general features automatically. CNNs are trained with a
back propagation algorithm while it usually consists of multiple
convolutional layers, pooling layers and fully connected layers
and connects to the output units through fully connected layers
or other kinds of layers. Compared to other deep feedforward
networks, CNNs have fewer connections and a smaller number of
parameters, due to the sharing of the convolution kernel among
pixels and are therefore easier to train and more popular.

With CNNs prospering in the field of computer vision, a
number of attempts have been made to improve the original
network structure to achieve better accuracy. VGG (Simonyan
and Zisserman, 2014) is a neural network based on AlexNet
(Krizhevsky et al., 2012) and it achieved a 7.3% error rate in
the 2014 ILSVRC competition (Russakovsky et al., 2015) as one
of the Top-5 winners. VGGs further deepen the network based
on AlexNet by adding more convolutional layers and pooling
layers. Different from traditional CNNs, VGGs evaluate very deep
convolutional networks for large-scale image classification, which
come up with significantly more accurate CNN architectures and
can achieve excellent performance even when used as a part of
relatively simple pipelines. In this work, we built our network
with reference to the structure of VGG.

EXPERIMENTS

In the Section “Data Type Analysis”, we determined the proper
types of data and ROIs through two experiments. In the Section
“Multi-Modality AD Classifier”, we constructed a set of VGG-like
multi-modality AD classifiers, which considers both T1-MRI and
FDG-PET data as inputs and provides predictions. In the Section
“Classification of sMCI vs. pMCI and CN vs. pMCI Tasks”, we
trained and tested our networks with the pMCI and sMCI data.
Finally, in the Section “Comparison With Other Methods” we
compared our proposed method with state-of-the-art methods.

Implementation Details
All the networks mentioned above were programmed based on
TensorFlow (Abadi et al., 2016). Training procedures of the
networks were conducted on a personal computer with a Nvidia
GTX1080Ti GPU. During the training, batch normalization
(Ioffe and Szegedy, 2015) was deployed in the convolutional
layers and dropout (Hinton et al., 2015) was deployed in fully
connected layers to avoid overfitting. To accelerate the training

process and to avoid local minima, we used an ADAM optimizer
(Kingma and Ba, 2014) to train. The batch size was set to 16
when we trained single modality networks and to eight when we
trained multi-modality networks. The number of epochs was set
to 150, though the loss would generally converge after 30 epochs.
Each training epoch took several minutes. During training, the
parameters of the networks were saved every 10 epochs. The
resulting models were tested using the validation data set. The
accuracies and receiver operating characteristic (ROC) curves
of the classification on the validation data were then calculated,
and the model with the best accuracy was chosen to be the
final classifier.

Data Type Analysis
In order to determine the proper data type for network
training, we designed two experiments and evaluated the
classification performances of models when they were fed with
different data types.

(1) Testing whether segmentation is needed in the MR images.
We used three different groups from the Segmented
Dataset, with or without segmentation, to show that
segmentation is not necessary for a CNN.

(2) Finding a proper PET ROI. Different spacings for PET
images, i.e., the SmallRF and the BigRF groups from
the Paired Dataset, were tested and we found that the
classification model with the SmallRF group is similar to
the model with the BigRF group in performance.

All the models mentioned above were trained in the same
network, as shown in Figure 2. The input resolution is
96 × 96 × 48 in voxels, and the network contains eight
convolutional layers, five max-pooling layers, and three fully
connected layers. The output was given through a softmax layer.

The Influence of Segmentation
As mentioned above, segmentation plays an important role in
traditional classification methods. However, segmentation is also
known to be time-consuming. Additionally, CNN can extract
useful features directly from raw images, as CNNs show a strong
ability to locate key points in object detection tasks for natural
images (Ren et al., 2015; He et al., 2017).

To verify the effect of segmentation, we segmented the AD
and cognitively unimpaired subjects of T1-MR images with
the MALP-EM algorithm (Ledig et al., 2015) and obtained the
Segmented datasets, including 2861 subjects and containing
both MR images and the corresponding segmentation. In our
assumption, segmentation can indicate the shapes, volumes,
textures and relative locations of hippocampal areas. Therefore,
the data obtained from the subjects formed three different groups,
as shown in Figures 1D–F. The ImageOnly group contains
raw MR images only; the Mask group is made up of binary
hippocampal segmentation labels and the MaskedImage group is
made up of MR images masked by the binary labels.

For each model trained from these groups, accuracy and
AUC were evaluated, as listed in Table 3. Among all the three
models, the model trained by the Mask group provided a
favorable prediction, though inferior to those trained by the
ImageOnly and the MaskedImage group. The results indicate

Frontiers in Neuroscience | www.frontiersin.org 5 May 2019 | Volume 13 | Article 50973

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00509 May 31, 2019 Time: 17:10 # 6

Huang et al. Diagnosis of AD via Multi-Modality 3D CNN

FIGURE 2 | The architecture of the single modality classifier.

TABLE 3 | Summary of the models trained from the Mask, MaskedImage, and
ImageOnly groups for CN vs. AD task.

MRI ROI ACC1 SEN SPE AUC

Mask 76.57% 83.87% 71.51% 84.24%

Maskedlmage 79.21% 76.61% 81.01% 84.63%

ImageOnly 84.82% 87.90% 82.68% 87.47%

The Segmented dataset was used. 1ACC, SEN, SPE, AUC denotes accuracy,
sensitivity, specificity and area under curve, respectively. When testing, the numbers
of true positive (TP), true negative (TN), false negative (FP), and false negative (FN)
subjects were counted, as ACC = (TP+TN)/(TP+TN+FP+FN), SEN = TP/(TP+FN),
SPE = TN/(TN+FP). AUC is obtained through calculating the area under the
receiver operating characteristic (ROC) curve. For all four metrics, the values are
between 0 and 100%, the higher, the better.

that segmentation results do contain information needed for the
classification, however, it is not necessary for the classification
task since CNN is able to learn useful features without labeling
the voxels. In addition, features from the region out of the
hippocampi also provide further information to separate AD
patients from normal ones.

ROI Determination for PET Images
Due to the limitation of GPU RAM and its computational ability,
it was difficult to consider the entire image as the network
input, as our proposed network only considered a region of
96 × 96 × 48 in voxels, which was still 2.91 times the input size
of the original VGG (224 × 224 pixels × 3 channels). Hence, the
selection of the ROI was of great importance, as only the features
in the ROI were considered. As for the MR images, the selection
of the ROI was of little doubt, because the hippocampal area was
long enough to be the main concern of AD research (Jack et al.,
2011b; Hill et al., 2014). However, the ROIs of PET images varied,

as studies also attached great significance to metabolic changes in
cortices, e.g., temporal lobes (Mosconi et al., 2006, 2008).

To verify the effects of cortices on the classification, we
generated two groups from all PET images from the Paired
dataset, the SmallRF and the BigRF groups, as shown in
Figures 1H,I. The SmallRF group uses exactly the same reception
field with the MRI ROI; the images in the BigRF group are eight
times the volume of the images in the SmallRF group but have a
lower spatial resolution.

Two models were trained using these two groups, and
their performance was evaluated by some metrics, as listed
in Table 4. The result showed that the two models behaved
similarly. This is because although the SmallRF group has a
higher spatial resolution, the BigRF group contains more features.
Furthermore, in terms of multi-modality classification tasks, the
SmallRF group might be better, because PET images in the
SmallRF group were voxel-wisely aligned with paired MR images,
which could help better locate the spatial features. Therefore, we
chose the same ROI for both MR and PET images in the following
experiments (see the red rectangles in Figures 1A–C).

Multi-Modality AD Classifier
The information a classifier can obtain, by using a single
modality, is limited, as one medical imaging method can only
profile one or several aspects of AD pathological changes, which
is far from being complete. For example, T1-MR images provide a
high-resolution brain structure but give little information about
the functional information of the brain. Meanwhile, FDG-PET
images are fuzzy but are better in revealing the metabolic activity
of glucose in the brain. In order to take as much information of
the brain as possible, we introduced a classification framework to
integrate multi-modality information.
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TABLE 4 | Summary of the models trained from the SmallRF and the BigRF
groups for CN vs. AD task.

PET ROI ACC SEN SPE AUC

SmallRF PET 89.11% 90.24% 87.77% 92.69%

BigRF PET 89.44% 87.20% 92.09% 90.35%

The Paired dataset was used.

To prepare the dataset, we first matched MR with PET images
and transformed them into same world coordinates. After that,
paired images of MR and PET were aligned by rigid registration
to ensure that the voxels of the same indices in the paired images
represent the same part of the brain. After the paired images were
cropped with reference to the center point of MR images, the
Paired dataset was obtained.

To implement the multi-modality classifier, we proposed
two different network architectures, as shown in Figure 3. In
Figure 3A, MR and PET images were used as two parallel

channels, in which paired images were stacked into 4D images.
In these 4D images, the first three dimensions represent the three
spatial dimensions, and the fourth one represents the channels.
In Figure 3B, MR and PET images have separate entrances, as
they are convolved, respectively, in two separate VGG-11s, and
the extracted features are concatenated. This network was trained
in two strategies, denoted by B1 and B2. B1 was to train the model
with weights shared for the convolutional layers. Meanwhile, B2
usedwas to update the weights of two VGG-11s separately.

We trained five models based on the Paired dataset, that is,
two single modality models (for MRI and PET respectively), and
three multi-modality models (A, B1, and B2). The results are
shown in Table 5 and Figure 4A. As shown in Table 5, multi-
modality classifiers had better performance than single modality
classifiers. Additionally, among the three multi-modality models,
the model trained with strategy B1 had the highest accuracy and
sensitivity, while the model trained with strategy B2 had the
highest specificity and AUC.

FIGURE 3 | The architecture of the multi-modality network (A,B).
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TABLE 5 | Summary of the models trained from single modality protocols and
three multi-modality protocols for CN vs. AD task.

Method ACC SEN SPE AUC

MRI 81.19% 79.27% 83.45% 83.67%

PET 89.11% 90.24% 87.77% 92.69%

A 87.79% 85.98% 89.93% 89.42%

B1 90.10% 90.85% 89.21% 90.84%

B2 89.44% 89.02% 89.93% 92.01%

The Paired dataset was used. The best results were indicated in bold.

Classification of sMCI vs. pMCI and CN
vs. pMCI Tasks
Simply classifying AD patients from normal controls is relatively
easy but of little significance, as the development of AD can
be observed easily by the behaviors of the patients. In addition,
there are a lot of alternative indicators in clinical diagnosis.
Therefore, the prediction of AD seems to be more meaningful,
as one of the main concerns is telling pMCI from sMCI and
normal individuals. As pMCI would progress to AD while the
other two would not, identifying pMCI could give a prediction
of the development of MCI, and thus have high reference value
and clinical meaning.

According to Lin et al. (2018), the models that were trained
by the CN vs. AD training set performed better than the models

trained by the sMCI vs. pMCI training set in the sMCI vs. pMCI
task. Therefore, we trained models with the CN vs. AD training
set and tested the models with the CN vs. pMCI testing set and
the sMCI vs. pMCI testing set, with the results shown in Table 6
and Figures 4B,C. Though B1 performed slightly better in CN
vs. AD task, B2 was superior in CN vs. pMCI and sMCI vs.
pMCI tasks. These results indicate that features of MRI and PET
tend to be more consistent when dementia is highly developed,
since convolutional kernels of model B1 shared the weight, while
those of B2 did not.

Comparison With Other Methods
In this part, we compared our method with those that were used
in previous literature. We first compared our method with state-
of-the-art research using 3D CNN-based multi-modality models
as well (Lin et al., 2018). Liu et al. (2015) proposed a multi-
modality cascaded CNN. They used the patch-based information
of a whole brain to train or test their models and they integrated
the information from the two modalities by concatenating the
feature maps(Liu et al., 2015). Table 7 shows the results of the
method in comparison to our work. Note that our models used
the data from multiple facilities and that our models only used
the hippocampal area as the input. These would influence the
behavior of our method.

Moreover, Lin et al. (2018), chose to reduce the amount
of input by slicing the data (in different directions) instead of

FIGURE 4 | ROC curves of different models. (A–C) show the ROC curves for three tasks using different models. (A) shows the ROC curves for CN vs. AD task using
model trained from protocol A, B1, and B2, while (B) shows the ROC curves for CN vs. pMCI task, (C) shows the ROC curves for sMCI vs. pMCI task, respectively.
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TABLE 6 | Summary of the models trained from three multi-modality protocols for CN vs. AD.

Method A B1 B2

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

CN/AD 87.79% 85.98% 89.93% 89.42% 90.10% 90.85% 89.21% 90.84% 89.44% 89.02% 89.93% 92.01%

CN/pMCI 70.49% 73.17% 65.00% 71.63% 79.10% 87.80% 61.25% 76.84% 82.38% 87.20% 72.50% 81.64%

sMCI/pMCI 65.28% 65.63% 65.00% 65.81% 65.28% 54.69% 73.75% 66.82% 72.22% 73.44% 71.25% 77.49%

The best results were indicated in bold.

TABLE 7 | Comparison of our proposed method and Liu’s multi-modality method.

Method Subjects Modality CN vs. AD CN vs. pMCI

ACC SEN SPE AUC ACC SEN SPE AUC

Liu et al., 2018 93 AD + 204 MCI + 100 CN MRI 84.97% 82.65% 87.37% 90.63% 77.84% 76.81% 78.59% 82.72%

PET 88.08% 90.70% 85.98% 94.51% 78.41% 77.94% 78.70% 85.96%

Both 93.26% 92.55% 93.94% 95.68% 82.95% 81.08% 84.31% 88.43%

Proposed method 465 AD + 567 MCI + 480 CN MRI 81.19% 79.27% 83.45% 83.67% – – – –

PET 89.11% 90.24% 87.77% 92.69% – – – –

Both 90.10%1 90.85% 89.21% 90.84% 82.38%2 87.20% 72.50% 81.64%

Both – – – – 87.46%3 90.73% 80.61% 87.61%

1Using B1 protocol, the CN vs. AD training set and the CN vs. AD testing set. 2Using B2 protocol, the CN vs. pMCI training set and the CN vs. pMCI testing set. 3Using
B1 protocol, the CN vs. AD training but the CN vs. pMCI testing set. See Table 9 for reference. The best results were indicated in bold.

TABLE 8 | Comparison of our proposed method and published AD diagnosis methods.

Method Subjects CN vs. AD sMCI vs. pMCI

ACC SEN SPE AUC ACC SEN SPE AUC

Lin et al., 2018 93 AD + 204 MCI + 100 CN 88.79% – – – 73.04% – – –

Tong et al., 2017 37 AD + 75 MCI + 35 CN 88.6% – – 94.8% – – – –

Zu et al., 2016 51 AD + 99MCI + 52 CN 95.95% – – – 69.78% – – –

Liu et al., 2015 85 AD + 168 MCI + 77 CN 91.40% 92.32% 90.42% – – – – –

Jie et al., 2015 51 AD + 99 MCI + 52 CN 95.03% – – – 68.94% – – –

Li et al., 2014 93 AD + 204 MCI + 101 CN 92.87% – – 89.82% 72.44% – – 70.14%

Proposed method 465 AD + 567 MCI + 480 CN 90.10%1 90.85% 89.21% 90.84% 72.22%2 73.44% 71.25% 77.49%

– – – – 76.90%3 68.15% 83.93% 79.61%

1Using B1 protocol, the CN vs. AD training set and the CN vs. AD testing set. 2Using B2 protocol, the CN vs. sMCI training set and the CN vs. sMCI testing set. 3Using
B2 protocol, the CN vs. AD training but the CN vs. sMCI testing set. See Table 9 for reference. The best results were indicated in bold.

TABLE 9 | Comparison of the performance of models trained from the CN vs. AD training set and the tasks’ own training set.

Task Training Set Testing Set B1 B2

ACC SEN SPE AUC ACC SEN SPE AUC

CN/pMCI CN/AD CN/pMCI 87.46% 90.73% 80.61% 87.61% 87.13% 87.80% 85.71% 90.31%

CN/pMCI CN/pMCI CN/pMCI 79.10% 87.80% 61.25% 76.84% 82.38% 87.20% 72.50% 81.64%

sMCI/pMCI CN/AD sMCI/pMCI 73.60% 66.67% 79.17% 75.59% 76.90% 68.15% 83.93% 79.61%

sMCI/pMCI sMCI/pMCI sMCI/pMCI 65.28% 54.69% 73.75% 66.82% 72.22% 73.44% 71.25% 77.49%

The Paired dataset was used.

cropping the hippocampi out as we did. Tong et al. (2017)
used non-linear graph fusion to join the features of different
modalities. In Zu et al.’s (2016) study, the feature selection from
multiple modalities were treated as different learning tasks. Liu

et al. (2015) used stacked autoencoders (SAE) with a masking
training strategy. Jie et al. (2015) used a manifold regularized
multitask feature learning method to preserve both the relations
among modalities of data and the distribution in each modality.
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Li et al. (2014) used a deep learning framework to predict the
missing data. Table 8 compares the previous multi-modality
models with our proposed models. Among all the results listed
below, our results are favorable in the CN vs. AD task and are the
best in the sMCI vs. pMCI task.

DISCUSSION

In this work, we proposed a VGG-like framework, with several
instances, to implement a T1-MRI and FDG-PET based multi-
modality AD diagnosing system. The ROI of MRI was selected
to be the hippocampal area, as it is the most frequently studied
and is thought to be of the highest clinical value. Through
the experiments, we proved that segmentation is not necessary
for a CNN-based diagnosing system, which is different from
the traditional machine learning based methods. However,
registration is still needed, as the images we used were taken from
different facilities and had different spacings and orientations.
Although models obtained from the SmallRF and BigRF groups
had similar performances, the ROI of PET was chosen to be
the same as the MRI’s, because the ROI of SmallRF was voxel-
wisely aligned with the ROI of the paired MRI. In short, only
hippocampal areas were used as ROIs in our proposed methods,
which is the main difference between our study and previous
studies. Thus, we constructed a deeper neural network and fed
it with medical images of higher resolution, as we supposed that
the hippocampal area itself can serve as a favorable reference
in AD diagnosis.

”Since the ROI was selected, we introduced a multi-modality
method to the classifier. Two networks and three types of
models were proposed as listed in Table 6. Among these three
types of models, the model trained using strategy B1, which
means that the MR and PET images were separately input for
the convolutional layers, but with their convolutional kernels
shared, performed the best in the CN vs. AD task. One possible
explanation is that MR and PET images have some common
features, and sharing weight helped the model to extract these
features during the training process. Furthermore, we used
proposed networks to train CN vs. pMCI and sMCI vs. pMCI
classifiers, both of them indicated the potential of preclinical
diagnosis using our proposed methods.

We also followed Lin et al.’s (2018) lead and used the model
trained by CN vs. AD subjects to distinguish sMCI and pMCI.
The results were better than that of the model trained by sMCI
and pMCI themselves, as shown in Table 9. This is reasonable
because the features of sMCI and pMCI are close to each other
in the feature space and are difficult to differentiate, while those
of CN and AD are widely spread making the classification a lot
easier. The same conclusion can be obtained by testing the CN vs.
AD model on the CN vs. pMCI dataset. Specifically, when the CN
vs. AD model was used, the accuracy reached 76.90% for sMCI vs.
pMCI and 87.46% for CN vs. pMCI, which was about 5% higher
than the accuracy obtained using their own models. These results
are also better than those of Lin et al.’s (2018).

As for the future work, we only used two modalities (T1-MRI
and FDG-PET) as inputs for this work. However, new modalities

can easily be implemented based on the proposed networks. The
interested new imaging modalities include T2-MRI (Rombouts
et al., 2005), 11C-PIB-PET (Zhang et al., 2014), and other
PET agents such as amyloid protein imaging (Glenner and
Wong, 1984). Also, the features extracted by CNN are hard for
human beings to comprehend, while some methods like attention
mechanisms (Jetley et al., 2018) are able to visualize and analyze
the activation maps of the model, in which future work could be
done to improve the classification performance and to discover
new medical imaging biomarkers.

CONCLUSION

To conclude, we have proposed a multi-modality CNN-based
classifier for AD diagnosis and prognosis. VGG backbone,
which is deeper than most similar studies, has been used
and explored. The accuracy of models reached 90.10% for
the CN vs. AD task, 87.46% for the CN vs. pMCI task
and 76.90% for the sMCI vs. pMCI task. Our work also
indicates that the hippocampal area with no segmentation can be
chosen as the input.
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Gliomas have the highest mortality rate and prevalence among the primary brain tumors.

In this study, we proposed a supervised brain tumor segmentation method which detects

diverse tumoral structures of both high grade gliomas and low grade gliomas in magnetic

resonance imaging (MRI) images based on two types of features, the gradient features

and the context-sensitive features. Two-dimensional gradient and three-dimensional

gradient information was fully utilized to capture the gradient change. Furthermore,

we proposed a circular context-sensitive feature which captures context information

effectively. These features, totally 62, were compressed and optimized based on an

mRMR algorithm, and random forest was used to classify voxels based on the compact

feature set. To overcome the class-imbalanced problem of MRI data, our model was

trained on a class-balanced region of interest dataset. We evaluated the proposed

method based on the 2015 Brain Tumor Segmentation Challenge database, and the

experimental results show a competitive performance.

Keywords: brain tumor segmentation, gradient, context-sensitive, random forest, mRMR, class-imbalanced

1. INTRODUCTION

Gliomas, the most common brain tumors in adults, have the highest mortality rate and prevalence
among the primary brain tumors (DeAngelis, 2001). They can be classified into high grade
gliomas (HGG) and low grade gliomas (LGG). HGG is more aggressive and infiltrative than LGG,
thus patients with HGG have a shorter life expectancy (Louis et al., 2007). Magnetic resonance
imaging (MRI) with multiple sequences, such as T2-weighted fluid attenuated inversion recovery
(Flair), T1-weighted (T1), T1-weighted contrast-enhanced (T1c), and T2-weighted (T2) provides
detailed and valuable information of the brain, and thus is commonly used to diagnose brain
diseases, plan the medical treatment strategies, and monitor tumor progression (Bauer et al.,
2013; Zeng et al., 2018a). However, gliomas from MRI are difficult to localize as they invade
into almost everywhere in the brain with various shapes and sizes and heterogeneous growth
patterns (Zhao et al., 2018); they have similar appearances with other diseases such as stroke or
inflammation observed in the images; and they are also tangled with surrounding tissues, causing
the boundaries diffusive and blurry (Goetz et al., 2016). Furthermore, the scale of MRI voxels is
not uniform as the X-ray computed tomography (CT) scans, causing the same tumors to have
different gray values, especially when the scans are obtained at different institutions (Sapra et al.,
2013). Manual segmentation requires expertise and manually labeling each voxel is laborious and
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time-consuming (Gordillo et al., 2013). Meanwhile, a variability
of 20% and 28% for intra- and inter-rater respectively has been
reported for manually segmentation of brain tumors (Mazzara
et al., 2004; Goetz et al., 2016). For these reasons, automatic
methods instead of manual segmentation with high accuracy and
less time-consumption is in high demand.

In this paper, our goal is to propose an automatic method
to detect the three different regions of interest (ROI): complete
tumor, tumor core, and enhancing tumor from the brain MRI.
Our main contributions can be summarized as following:

1. A group of features named circular context-sensitive (CCS)
features were proposed. The CCS features fully utilize the
histogram information of rays along various orientations and
with various lengths.

2. Gradient information was fully utilized by extracting two-
dimensional and three-dimensional features. A total of 62
features were extracted to detect and classify the brain tumors.

3. We used an mRMR feature selection algorithm, which could
select features that have minimum redundancy and maximum
relevance with each others. This is used to significantly reduce
the computational cost and increase the efficiency.

The paper is organized as follows: we give a brief literature review
of related work in section 2. Then the methods are described in
details in section 3. We give the experimental results in section 4,
followed by the conclusions in section 5.

2. RELATED WORK

Numerous methods of brain tumor detection and segmentation
including semi-automatic methods and full-automatic
techniques have been proposed (Tang et al., 2017). These
segmentation techniques can be roughly divided into
4 categories: threshold-based techniques, region-based
techniques, model-based techniques, and pixel/voxel
classification techniques.

The threshold-based techniques, region-based techniques,
and pixel classification techniques are commonly used for two-
dimensional image segmentation (Vijayakumar and Gharpure,
2011). Model-based techniques and voxel classification methods
are usually used for three-dimensional image segmentation. We
will review the four types ofmethods in the following subsections.

2.1. Threshold-Based Techniques
Threshold-based method is a simple and computationally
efficient approach to segment brain tumors because only intensity
values need to be considered. The objects in the image are
classified by comparing their intensities with one or more
intensity threshold values (Gordillo et al., 2013). The Otsu
algorithm (Otsu, 1979), Bernsen algorithm (Bernsen, 1986), and
Niblack algorithm (Niblack, 1986) are simple and commonly
used algorithms.

Gibbs et al. proposed an unsupervised approach using a global
threshold to segment. The ROI for the tumor extraction task
from the MRI images (Gibbs et al., 1996). Stadlbauer et al. used
the Gaussian distribution of intensity values as the threshold to
segment tumors in brain T2-weighted MRI (Stadlbauer et al.,

2004). However, if the information in the image is too complex,
the threshold-based algorithm is not suitable. It is also limited to
extract enhanced tumor areas.

2.2. Region-Based Techniques
Region-based methods divide an image into several regions
that have homogeneity properties according to a predefined
criterion (Adams and Bischof, 1994). Region growing and
watershed methods are the most commonly used region-based
methods for brain tumor segmentation.

Ho et al. proposed a region competition method which
modulates the propagation term with a signed local statistical
force to reach a stable state (Ho et al., 2002). Salman et al.
examined the seeded region growing and active contour to be
compared against experts’ manual segmentations (Salman et al.,
2005). Sato et al. proposed a Sobel gradient magnitude-based
region growing algorithm which solves the partial volume effect
problem (Sato et al., 2000). Deng proposed a region growing
method which was based on the gradients and variances along
and inside of the boundary curve (Deng et al., 2010).

Letteboer et al. and Dam et al. described multi-scale
watershed segmentation (Letteboer et al., 2001; Dam et al.,
2004). Letteboer et al. proposed a semi-automatic multi-scale
watershed algorithm for brain tumor segmentation in MR
images (Letteboer et al., 2001). Region-based techniques are
used commonly in brain tumor segmentation. However, region-
based segmentation has the over-segmentation problem and
there is considerable difficulty in marker extraction when using
marker-based watershed segmentation. Li and Wan solved these
problems by proposing an improved watershed segmentation
method with an optimal scale based on ordered dither halftone
and mutual information (Li and Wan, 2010).

2.3. Model-Based Techniques
Model-based segmentation techniques could be divided into
parametric deformable and geometric deformable approaches.
There are a number of studies on image segmentation based
on active contours, which is a popular parametric deformable
method (Boscolo et al., 2002; Amini et al., 2004). Snake is one
of the most commonly used geometric deformable algorithm
for brain tumor segmentation. Luo et al. proposed a deformable
model to segment brain tumors (Luo et al., 2003). This method
combined the adaptive balloon force and the gradient vector
flow (GVF) force to increase the GVF snake’s capture range
and convergence speed. Ho et al. proposed a new region
competition method for automatic 3D brain tumor segmentation
based on level-set snakes which overcome the difficulty in
initialization and the missing boundary problems by modulating
the propagation term with a signed local statistical force (Ho
et al., 2002).

2.4. Pixel/Voxel Classification Techniques
Voxel-based classification usually uses voxel attributes for each
voxel in the image such as gray level and color information. In
brain tumor segmentation, voxel-based techniques are classified
as unsupervised classifiers and supervised classifiers to cluster
each voxel in the feature space (Gordillo et al., 2013).
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Juang and Wu proposed a color-converted segmentation
approach with the K-means clustering technique for MRI which
converts the input gray-level MRI image into a color space
image and the image is labeled by cluster indices (Juang and
Wu, 2010). Selvakumar et al. implemented a voxel classification
method which combined K-means clustering and fuzzy C-
means (FCM) segmentation (Selvakumar et al., 2012). Vasuda
and Satheesh improved the conventional FCM by implementing
data compression including quantization and aggregation to
significantly reduce the dimensionality of the input (Vasuda
and Satheesh, 2010). Comparing to the conventional FCM, the
modified FCM has a higher convergence rate. Ji et al. proposed
a modified possibilistic FCM clustering of MRI utilizing local
contextual information to impose local spatial continuity to
reduce noise and resolve classification ambiguity (Ji et al., 2011).
Autoencoders were used in Vaidhya et al. and Zeng et al. work
for brain tumor segmentation and other imaging tasks (Vaidhya
et al., 2015; Zeng et al., 2018b). Zhang et al. proposed a hidden
Markov random field model and the expectation-maximization
algorithm for brain segmentation on MRI (Zhang et al., 2001).

For the voxel-classification MRI processing techniques,
proper depiction of voxels is required as a criteria to accurately
classify each voxel. In the previous studies, Zulpe et al. used
gray-level co-occurrence matrix (GLCM) textural features to
detect the brain tumors (Zulpe and Pawar, 2012); Context-
sensitive features were used in Meier et al.’s study to classify
tumors and non-tumors (Meier et al., 2014). Meanwhile, a
feature selection algorithm also requires good designs to select
a compact set of features in order to reduce the computation
cost (Zou et al., 2016a,b; Su et al., 2018), considering the huge
data size of the MRI. In our study, one set of informative features
and efficient feature selection algorithm were proposed. The
experimental results have demonstrated that promising brain
tumor segmentation performance can be achieved using the
proposed method.

3. METHODOLOGY

In this paper, we extracted various types of features from the
brain MRI and used for classification. And an mRMR feature
selection method was used to reduce the feature dimension
and select the best feature set. The whole pipeline was depicted
in Figure 1. Firstly, the MRI sequences were pre-processed
with smoothing and normalization operations. Secondly, we
extracted two types of features, gradient-based features and
context-sensitive features. Thirdly, we used an mRMR feature
selection method to select the optimal feature set with minimal
redundancy and maximal relevance. We will explain the whole
process in detail later.

3.1. Data
We used the training data of BraTS 2015 as our training and test
data (Menze et al., 2015). It provides 4 sequences T1, T1c, T2, and
Flair. The image data contains 220HGG (anaplastic astrocytomas
and glioblastoma multiforme tumors) MR scans and 54 LGG
(histological diagnosis: astrocytomas or oligoastrocytomas) cases.

The “ground truth” are labeled by manual annotations with 0-
5 with four types of tumoral structures labeled as the following:
“necrotic (or fluid-filled) core” is labeled 1, “edema” is labeled
2 , “non-enhancing(solid) core” is labeled 3, and “enhancing
core” is labeled 4. The normal tissue is labeled 0. We evaluated
our work within three regions: complete tumor (which contains
necrotic core, edema, non-enhancing core and enhancing core),
tumor core (which contains necrotic core, non-enhancing, and
enhancing core) and enhancing tumor.

3.2. Pre-processing
We carried out smoothing and normalization on the
MRI sequences to reduce the impact of image noise and
to enhance image quality for further processing. As for
smoothing, we chose the Gaussian filter which has been widely
used in image processing and computer vision for noise
suppression (Bergholm, 1987; Deng and Cahill, 1993; Kharrat
et al., 2009; Zeng et al., 2017).

For further processing, MRI sequences are sensitive to all the
acquisition conditions such as MR protocols, MR scanners, and
MR adjustments (Sled et al., 1998). Even for the same tissue
information acquired with the same conditions, there will be a
variation because MRI intensities do not have a tissue specific
value. In order to eliminate the impact of the variation for
further image processing which is based on image intensity, we
normalized the smoothed value to the range from 0 to 1. The
normalization was calculated as in Equation (1)

X∗ =
X − Xmin

Xmax − Xmin
(1)

where X∗ and X are the normalized and raw gray value
respectively; Xmax is the maximal gray value, and Xmin is the
minimal gray values.

3.3. Gradient Based Features
The gradient value represents the rate of change in the direction
of the largest possible intensity change. In our study, we used
the central difference gradient as the gradient operator. For
each voxel p, the derivative at one direction is the mean of the
two voxels adjacent to p in that particular direction. Here we
calculated two sets of gradient-based features within the ROI.
The first set calculated the gradient along each coordinate plane,
which we named as Gradient2D. The Gradient2D of one image in
each coordinate plane has two components: the x-derivative and
the y-derivative. In Equation (2), we take the x-derivative as an
example (I is the input image). The second set, the Gradient3D, is
based on the three-dimensional gradient magnitude. We further
divide the Gradient3D into five subsets, the GM, rMean, rVar,
seqMean, and seqVar, and we show them in Table 1.

The GM feature consists of the three-dimensional gradient
magnitude, which is calculated based on Equation (3). Gx is
the directional gradient along the x-axis, Gy is the directional
gradient along the y-axis and Gz is the directional gradient along
the z-axis. In our study, we also used the central difference
gradient as gradient operator to extract the GM feature for
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FIGURE 1 | The pipeline of our proposed method.

TABLE 1 | The five feature subsets in Gradient3D.

Feature

name

Modality Cube size

GM Flair, T1 , T1c , T2 –

rMean Flair, T1 , T1c , T2 3, 5, 7

rVar Flair, T1 , T1c , T2 3, 5, 7

seqMean all modalities 3, 5, 7

seqVar all modalities 3, 5, 7

each respective MRI image sequence. The operator is given in
Equation (2).

dI/dx =
I(x+ 1)− I(x− 1)

2
(2)

mag(Gx,Gy,Gz) =
√

G2
x + G2

y + G2
z (3)

We further extracted the rMean and rVar features by calculating
the mean and variance of the GM feature over a cube-shaped
neighborhood with sizes 33, 53, 73 for each GM feature of
each respective sequence. Meanwhile, we extracted seqMean and
seqVar by calculating the mean and variance of the GM features
over the sequences in cube-shaped neighborhoods.

3.4. Circular Context-Sensitive Feature
Meier et al. proposed context-sensitive features for brain tumor
segmentation which extracts ray features in plane by calculating
the histogram using intensity values from T1 and Flair-weighted
images after atlas-normalization (Meier et al., 2014). The
rationale of this method is that the intensity range of T1 and
Flair-weightedmodalities is larger than that of the healthy tissues.
Based on this method, we proposed a circular context-sensitive
(CCS) feature to capture more details in various sizes.

In context-sensitive features, every voxel sends out four rays
with radius r ∈ {10, 20} and orienting at ang ∈ {0,π/2,π , 2π/3}.
In order to obtain more information and extract features in
multiple scales, we made several improvements to the original
context-sensitive features. Firstly, instead of utilizing only voxel
information in the horizontal or vertical directions, we used
rays evenly distributed on a circle to swipe all the orientations,

which are denser. The directions are calculated using the
following equation:

ang = β + n ∗ βθ , n ∈ N,

βθ = 2π/Nβ

(4)

where β is the initial angle, βθ is the step size rotating around the
center point, and Nβ is the total number of directions. Secondly,
in order to capture context features with all the scales, we used a
continuous radius to cover the neighboring voxel information as
much as possible. The radius r is defined as:

r = r0 + n ∗ r
θ
, n ∈ N∗,

rθ = (rmax − rmin)/Nr
(5)

where r0 is the initial radius, where rθ is the step size moving
toward the outermost circle, rmin and rmax are the minimum
and maximum of the radius, and Nr is the total number of
rays. We show the comparison between the original context-
sensitive features and the circular context-sensitive features in
Figure 2. The original context-sensitive sends out four rays in
four directions. The CCS features, however, send out rays along
all the orientations and with all the radius, which is supposed to
capture rich context information. In our studies, we used 8 rays
evenly distributed on 45 circles ranging from 10 to 20 with even
numbers to capture the context-sensitive features.

In the MRI, the slice thickness varies considerably which will
affect the feature extraction results so the features are considered
only for the T1 and Flair-weighted in-plane images. In summary,
our CCS feature extraction is summarized as the following:

1. For one voxel i, we calculated r and ang of all the rays, based
on Equations (4, 5).

2. Using T1 and Flair images, we computed the histograms and
obtained the maximal Hmax and minimal Hmin histogram
values.

3. The mean values of each ray was calculated using Hmax and
Hmin as the CCS feature values.

In summary, we extracted 12 Gradient2D features, 34
Gradient3D features, 4 context-sensitive features, and 12
CCS features, as shown in Table 2. In the next section, we will
show the voxel-based classification and feature selection to label
different regions of the brain MR images.
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FIGURE 2 | The original context-sensitive features and the circular context-sensitive (CCS) features. (A) shows the original context-sensitive features. (B) shows the

CCS features. In this example, the center voxel sends out 18 rays of length r+ n ∗ rθ with an angle β + n ∗ βθ . The CCS can fully extract context information instead of

only voxel information in horizontal or vertical directions.

TABLE 2 | Number of features in each feature group.

Feature type Counts

Gradient2D 12

Gradient3D 34

Context-sensitive 4

CCS 12

Total 62

3.5. Feature Selection Based on mRMR
We classified the brain MRI images into five categories: normal
tissue, edema, non-enhancing core, necrotic core, and enhancing
core. Random forests (RF) (Breiman, 2001) is an ensemble
learning method for classification, regression, and other tasks,
and has been widely used in image analysis (Jin et al., 2014;
Liu et al., 2015). It consists of multitude of decision trees and
outputs the votes over each tree. They are able to handle multi-
class problems, and they provide a probabilistic output instead of
hard label separations. However, due to the large volume of MRI
images, direct classification based on the extracted features (as
shown in Table 2) is time-consuming. A proper feature selection
algorithmwill greatly reduce the computational cost and increase
the efficiency.

Minimal Redundancy maximal Relevance(mRMR) was
proposed by Peng et al. which can select features that have
minimum redundancy and maximum relevance with each
other (Peng et al., 2005) . We use Equation (6) to search for
features which have the maximum relevance, and use the
minimal redundancy condition as the Equation (7) to select
mutually exclusive features. Equation (8) gives mRMR features.
xi represents the i− th feature in feature set S with target class c.
8 means the combination of D and R.

maxD(S, c),D =
1

|S|

∑

xiǫS

I(xi; c) (6)

minR(S),R =
1

|S|2

∑

xi ,xjǫS

I(xi, xj) (7)

max8(D,R),8 = D− R (8)

In order to avoid over-learning and under-learning, we evaluated
our RF classifier by 5-fold cross validationwith themeasurements
in section 3.7. In detail, we divided the subcases into 5 roughly
equal parts. For each k = 1, 2, ..., 5, we fit the RF model to the
other 4 parts, and predict the kth part with the fitted RF model.
The final outcome equals to the mean of the results of the 5-folds.
In our study, we used the mRMR feature selection method to
select the minimal feature set which reduces the computational
cost without performance degradation. The raw 62-dimensional
feature set is shown in Table 2. The mRMR feature selection
details are as follows:

1. Train the RF classifier with top f features which are ranked by
mRMR from the raw feature set and test the model with 5-fold
cross validation. Here, we set f = 62− 5n, n = 0, 1, 2, ..., 12.

2. Rank the performance in step 1. Set the final feature set
with fm dimension as the features which achieve the best
performance among all the f -dimensional features. Here, fm
is the dimension of the final feature set.

3.6. Solution to the Class-Imbalance
Problem
The “BraTS” data is seriously unbalanced, with less than 1% of
voxels being tumor voxels. Training on them would result in
problems such as higher mis-classification rate for the minority
class data. Thus, we carried out three steps to overcome the
class-imbalance problem.

1. Detect the boundary of ROI: We used a plane to move along
each axis’s direction until it detected a voxel labeled with none-
zero. Then the plane in the current position was used as the
boundary in that direction.
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FIGURE 3 | Sum of rankings for each feature dimension f . The ranking rules are defined as follows: In each feature set with dimension f , we observed the three

metrics (Dice, sensitivity and specificity) in three ROIs (Complete, enhancing and core) of HGG, LGG and both, totally 32 values in Table 3. We ranked the

corresponding values across all the f . If equal values appeared, we took another metric, the size of the feature set into account. Then we summed all the rankings of

each f and plotted the curve.

2. Split the ROI: After step 1, each raw MR image would have a
total of 6 boundaries in the xyz space. We split out a cuboid as
our ROI using the boundaries. This removed a large number
of zero label voxels and voxels inside each ROI contained all
the categories.

3. Equally select voxels for each category: Within the segmented
ROI, the label with the least number of voxels was recorded.
We randomly picked the equal number of voxels in the ROI to
form a balanced data.

3.7. Performance Measurements
To show the performance of our segmentation approach, we
use Dice, positive predictive value (PPV), Sensitivity, Specificity
to evaluate HGG and LGG tumor regions segmentation. TP
represents the number of “true positive,” where “true positive” is
the event that the test makes a positive prediction, and the subject
has a positive ground truth. FP is the number of “false positive,”
where “false positive” is the event that the test makes a positive
prediction, and the subject has a negative ground truth. FN is the
number of “false negative” and TN indicateds the size of “true
negative” set.

1. Dice

Dice =
TP

((TP + FP)+ (TP + FN))/2

The Dice score normalizes the number of true positives to the
average size of the two segmented areas. It is identical to the
F-score (the harmonic mean of the precision recall curve) and
can be transformed monotonously to the Jaccard score.

2. Positive predictive value (PPV)

PPV =
TP

TP + FP

The PPV represents the proportions of positive results in tests
that are true positive results.

3. Sensitivity

Sensitivity =
TP

TP + FN

Sensitivity measures the proportion of actual positives that are
correctly identified as such.

4. Specificity

Specificity =
TN

FP + TN

Specificity (also called the true negative rate) measures the
proportion of actual negatives that are correctly identified
as such.

4. EXPERIMENTAL RESULTS

In our experiments, we extracted four groups of features
after pre-processing: Gradient2D features, Gradient3D features,
context-sensitive features, and CCS features, including totally
62 features (as shown in Table 2). The Gradient3D set
contains five subsets: the GM, rMean, rVar, seqMean, and
seqVar. We used the mRMR feature selection method to
select a compact set of features and built the random
forest classifier.

Frontiers in Neuroscience | www.frontiersin.org 7 March 2019 | Volume 13 | Article 14487

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhao et al. Supervised Brain Tumor Segmentation

T
A
B
L
E
4
|
P
e
rf
o
rm

a
n
c
e
o
f
d
iff
e
re
n
t
fe
a
tu
re

g
ro
u
p
s.

F
e
a
tu
re

ty
p
e

F
e
a
tu
re

D
im

e
n
s
io
n

M
e
a
s
u
re
m
e
n
ts

D
ic
e

P
P
V

S
e
n
s
it
iv
it
y

S
p
e
c
ifi
c
it
y

R
O
I

C
o
m
p
le
te

C
o
re

E
n
h
a
n
c
in
g

C
o
m
p
le
te

C
o
re

E
n
h
a
n
c
in
g

C
o
m
p
le
te

C
o
re

E
n
h
a
n
c
in
g

C
o
m
p
le
te

C
o
re

E
n
h
a
n
c
in
g

G
ra
d
ie
n
t2
D

1
2

H
G
G
&
L
G
G

0
.8
9

0
.5
4

0
.4
1

0
.8
7

0
.4
7

0
.4
9

0
.9
0

0
.6
3

0
.3
5

0
.5
0

0
.5
6

0
.9
2

H
G
G

0
.8
9

0
.5
5

0
.4
0

0
.8
8

0
.4
8

0
.4
9

0
.9
0

0
.6
4

0
.3
4

0
.5
1

0
.5
7

0
.9
1

L
G
G

0
.8
5

0
.5
4

–
0
.8
4

0
.4
8

–
0
.8
7

0
.6
2

–
0
.4
7

0
.6
2

–

G
ra
d
ie
n
t3
D

3
4

H
G
G
&
L
G
G

0
.9
0

0
.6
1

0
.6
0

0
.9
2

0
.6
0

0
.6
3

0
.8
9

0
.6
2

0
.5
7

0
.7
1

0
.7
5

0
.9
2

H
G
G

0
.9
1

0
.6
2

0
.6
0

0
.9
3

0
.6
1

0
.6
3

0
.9
0

0
.6
3

0
.5
7

0
.7
2

0
.7
6

0
.9
1

L
G
G

0
.8
5

0
.5
1

–
0
.8
8

0
.5
0

–
0
.8
3

0
.5
5

–
0
.6
2

0
.5
5

–

C
o
n
te
xt
-

se
n
si
tiv
e

4
H
G
G
&
L
G
G

0
.8
6

0
.5
1

0
.1
4

0
.8
7

0
.4
4

0
.2
3

0
.8
5

0
.6
0

0
.1
1

0
.5
1

0
.4
8

0
.9
1

H
G
G

0
.8
7

0
.5
1

0
.1
6

0
.8
7

0
.4
4

0
.2
4

0
.8
6

0
.6
0

0
.1
2

0
.5
1

0
.4
7

0
.9
0

L
G
G

0
.7
9

0
.4
5

–
0
.8
3

0
.4
3

–
0
.7
6

0
.4
7

–
0
.5
2

0
.4
7

–

C
C
S

1
2

H
G
G
&
L
G
G

0
.8
6

0
.5
4

0
.1
3

0
.8
9

0
.4
7

0
.2
5

0
.8
4

0
.6
2

0
.0
9

0
.6
2

0
.5
7

0
.9
4

H
G
G

0
.8
7

0
.5
3

0
.1
6

0
.9
0

0
.4
8

0
.2
7

0
.8
5

0
.6
1

0
.1
1

0
.6
2

0
.5
6

0
.9
2

L
G
G

0
.8
0

0
.4
8

–
0
.8
6

0
.4
7

–
0
.7
5

0
.4
8

–
0
.6
4

0
.4
8

–

T
A
B
L
E
5
|
C
o
m
p
a
ris
o
n
b
e
tw

e
e
n
M
e
ie
r
e
t
a
l.’
s
m
e
th
o
d
a
n
d
th
e
p
ro
p
o
se
d
m
e
th
o
d
.

M
e
th
o
d

M
e
a
s
u
re
m
e
n
ts

D
ic
e

P
P
V

S
e
n
s
it
iv
it
y

S
p
e
c
ifi
c
it
y

R
O
I

C
o
m
p
le
te

C
o
re

E
n
h
a
n
c
in
g

C
o
m
p
le
te

C
o
re

E
n
h
a
n
c
in
g

C
o
m
p
le
te

C
o
re

E
n
h
a
n
c
in
g

C
o
m
p
le
te

C
o
re

E
n
h
a
n
c
in
g

M
e
ie
r
e
t
a
l.;
s

m
e
th
o
d

H
G
G
&
L
G
G

0
.8
3

0
.6
6

0
.5
8

0
.8
5

0
.7
4

0
.6
6

0
.8
3

0
.6
6

0
.5
4

–
–

–

H
G
G

0
.8
4

0
.7
3

0
.6
8

0
.8
0

0
.8
0

0
.7
2

0
.8
9

0
.7
0

0
.7
0

–
–

–

T
h
e
p
ro
p
o
se
d

m
e
th
o
d

H
G
G
&
L
G
G

0
.9
1

0
.6
2

0
.6
1

0
.9
3

0
.6
2

0
.6
4

0
.8
9

0
.6
2

0
.5
8

0
.7
5

0
.7
7

0
.9
2

H
G
G

0
.9
1

0
.6
2

0
.6
1

0
.9
3

0
.6
2

0
.6
4

0
.8
9

0
.6
2

0
.5
8

0
.7
5

0
.7
7

0
.9
2

L
G
G

0
.8
7

0
.5
6

–
0
.9
0

0
.5
4

–
0
.8
4

0
.5
8

–
0
.7
1

0
.5
8

–

Frontiers in Neuroscience | www.frontiersin.org 8 March 2019 | Volume 13 | Article 14488

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhao et al. Supervised Brain Tumor Segmentation

Firstly, we built the random forest classifier using the top f
feature set ranked by mRMR respectively. We used f to denote
the dimension of the feature set, where f = 62 − 5n, n =

0, 1, 2, ..., 12. Secondly, we compared the performance of feature
sets with diverse f . The best feature dimension fm is the f which
has the best performance. We recorded this fm-dimensional
feature set as the optimal feature set. Here we present the
performance comparisons between diverse f s; Then we show the
performance comparisons among different feature groups. Next,
we compared our results with Meier et al.’s method (Meier et al.,
2014). Lastly, we show the segmentation results marked with
different colors.

4.1. Comparison Between Feature Sets
With Different Dimensions
In this step, we trained our model with different numbers of
features as shown in Table 3. For the n-th training, we selected
the top f -dimensional feature set ranked by the mRMR feature
selection method according to their relevance and redundancy,
where f = 62 − 5n, n = 0, 1, 2, ..., 12. Here we used random
forest as our classifier and set the number of trees in the forest
to 100. For every n, we evaluated the model by the measurements
in section 3.7 within three regions: complete tumor, tumor core,
and enhancing tumor. The HGG&LGG, HGG, and LGG MR
scans subsets were tested.

As shown in Table 3, the difference between the results of two
adjacent experiments is very small. It is difficult to distinguish
which dimension f has the best performance. In order to obtain
an intuitive feature selection outcome, we provide an overall
ranking of the performances for each f and show the results in
Figure 3. It can be seen that 22-dimensional feature set achieves
the best performance among all the tested feature sets.

4.2. Comparison Between Different Feature
Groups
In our studies, We have tested four different types of features.
In order to learn which feature group is more informative for
classification, we trained the model with each feature group and
compared the performances of each feature group in Table 4.
The table shows that the Gradient3D group performed far better
than the other groups. It obtained a high Dice score (0.91) for
complete tumor in HGG and a high PPV (0.92) for complete
tumor in HGG&LGG datasets. And the CCS features performs
slightly better than the context-sensitive features. However,
compared with using all the 62 features, using a single group
cannot achieve a better performance, which shows that each
group is useful for classification and the integration of all the four
groups is more helpful for classification.

4.3. Comparison With Other Method
We compared our methods with another method which was
proposed by Meier et al. (2014). They extracted appearance-
sensitive and context-sensitive features and also used random
forest as a classifier.

As shown in Table 5, Meier et al. evaluated the classifier
with three ROIs: complete tumor, tumor core, and enhancing

FIGURE 4 | Examples the brain tumor segmentation results using the

proposed method. The rows 1,3,5 are the axial, sagittal, and coronal slices of

the ground truth. Rows 2,4,6 are the axial, sagittal, and coronal slices of our

results. The labels of the tumor structure: enhancing tumor (green), tumor

core(green and red), complete tumor (green, red, and yellow).
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tumor. However, the LGG performance was not mentioned.
In our experiments, we trained the HGG&LGG, HGG, and
LGG models and tested our models with three ROIs. As shown
in Table 3, we had better performance especially for complete
tumor. Compared to Meier et al.’s method, we not only extract
the context-sensitive features, but we also made improvements
and proposed the circular context-sensitive features, which
considered multiple scales and multiple directions.

4.4. Performance of Brain Tumor
Segmentation
In Figure 4, the axial, sagittal, and coronal slices of the
ground truth are shown in rows 1, 3, and 5, respectively. The
corresponding slices of the segmentation results are shown
in rows 2, 4, and 6, respectively. As shown in Figure 4, our
segmentation results are consistent with the ground truth.
And we have good performance in all axial, sagittal, and
coronal directions.

5. CONCLUSIONS

In our study, we proposed a supervised brain tumor
segmentation method for MRI scans. We extracted four

types of feature groups named Gradient2D set, Gradient3D
set, context-sensitive features, and circular context-sensitive
features, totally 62 features. Then we selected a set of
the most informative feature set based on the mRMR
algorithm and used them to build the random forest in
order to distinguish different regions of brain tumors. We
presented the performance comparisons among different
dimensions of feature sets for feature selection, comparisons
among different feature subgroups and comparisons with
other tumor segmentation approaches. The results show
that the proposed method is competitive in segmenting
brain tumors.
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Alzheimer’s disease (AD), including its mild cognitive impairment (MCI) phase that

may or may not progress into the AD, is the most ordinary form of dementia. It is

extremely important to correctly identify patients during the MCI stage because this is

the phase where AD may or may not develop. Thus, it is crucial to predict outcomes

during this phase. Thus far, many researchers have worked on only using a single

modality of a biomarker for the diagnosis of AD or MCI. Although recent studies show

that a combination of one or more different biomarkers may provide complementary

information for the diagnosis, it also increases the classification accuracy distinguishing

between different groups. In this paper, we propose a novel machine learning-based

framework to discriminate subjects with AD or MCI utilizing a combination of four

different biomarkers: fluorodeoxyglucose positron emission tomography (FDG-PET),

structural magnetic resonance imaging (sMRI), cerebrospinal fluid (CSF) protein levels,

and Apolipoprotein-E (APOE) genotype. The Alzheimer’s Disease Neuroimaging Initiative

(ADNI) baseline dataset was used in this study. In total, there were 158 subjects

for whom all four modalities of biomarker were available. Of the 158 subjects, 38

subjects were in the AD group, 82 subjects were in MCI groups (including 46 in

MCIc [MCI converted; conversion to AD within 24 months of time period], and

36 in MCIs [MCI stable; no conversion to AD within 24 months of time period]),

and the remaining 38 subjects were in the healthy control (HC) group. For each

image, we extracted 246 regions of interest (as features) using the Brainnetome

template image and NiftyReg toolbox, and later we combined these features with

three CSF and two APOE genotype features obtained from the ADNI website for

each subject using early fusion technique. Here, a different kernel-based multiclass

support vector machine (SVM) classifier with a grid-search method was applied.

Before passing the obtained features to the classifier, we have used truncated singular

value decomposition (Truncated SVD) dimensionality reduction technique to reduce

high dimensional features into a lower-dimensional feature. As a result, our combined

method achieved an area under the receiver operating characteristic (AU-ROC)

92

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2019.00072
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2019.00072&domain=pdf&date_stamp=2019-10-16
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:grkwon@chosun.ac.kr
https://doi.org/10.3389/fncom.2019.00072
https://www.frontiersin.org/articles/10.3389/fncom.2019.00072/full
http://loop.frontiersin.org/people/822361/overview
http://loop.frontiersin.org/people/652432/overview
http://loop.frontiersin.org/people/669534/overview


Gupta et al. Classification of AD Using Multi-Features

curve of 98.33, 93.59, 96.83, 94.64, 96.43, and 95.24% for AD vs. HC, MCIs vs.

MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIc, and HC vs. MCIs subjects which are

high relative to single modality results and other state-of-the-art approaches. Moreover,

combined multimodal methods have improved the classification performance over the

unimodal classification.

Keywords: Alzheimer’s disease, MCIs (MCI stable), MCIc (MCI converted), sMRI, FDG-PET, CSF, apolipoprotein-E

(APOE) genotype, support vector machine

INTRODUCTION

Alzheimer’s disease (AD) is an age-related neurodegenerative
disorder that is commonly seen in the aging population. Its
prevalence is expected to increase greatly in the coming years
as it affects one out of nine people over the age of 65 years
(Bain et al., 2008). AD involves progressive cognitive impairment,
commonly associated with early memory loss, leading patients to
require assistance for activities of self-care during its advanced
stages. AD is characterized by the accumulation of amyloid-
beta (Aβ) peptide in amyloid plaques in the extracellular brain
parenchyma and by intra-neuronal neurofibrillary tangles caused
by the abnormal phosphorylation of the tau protein (De Leon
et al., 2007). Amyloid deposits and tangles are necessary for the
postmortem diagnosis of AD. A prediction of an AD dementia in
a predictable time-period, i.e., within 1–2 years, appears much
more pertinent in a clinical outlook than a prediction of AD
dementia in the faraway future, e.g., in 10–20 years. Individual
classified to be at “short-term risk” can receive more active
treatment and counseling. Mild cognitive impairment (MCI) is
a prodromal (predementia) stage of AD, and recent studies have
shown that individuals with amnestic MCI tend to progress to
probable AD at a rate of ∼10–15% per year (Braak and Braak,
1995; Braak et al., 1998). Thus, accurate diagnosis of AD, and
especially MCI, is of great size for prompt treatment and likely
delay of the progression of the disease. MCI patients who do
not progress to AD either develop another form of dementia,
retain a stable condition or revert to a non-demented state.
Therefore, predicting which MCI patients will develop AD in
the short-term and who will remain stable is extremely relevant
to future treatments and is complicated by the fact that both
AD and MCI affect the same structures of the brain. In subjects
with MCI, the effects of cerebral amyloidosis and hippocampal
atrophy on the progression to AD dementia differ, e.g., the
risk profile is linear with hippocampal atrophy but reaches a
ceiling with higher values for cerebral amyloidosis (Jack et al.,
2010). In subsequent investigations, biomarkers of neural injury
appeared to best predict AD dementia from MCI subjects at
shorter time intervals (1–2 years) in particular (Dickerson, 2013).
This demonstrates the great importance of developing a sensitive
biomarker that can detect and monitor early changes in the
brain. The ability to diagnose and classify AD or MCI at an early
stage allows clinicians to make more knowledgeable decisions
at a later period regarding clinical interventions or treatment
planning, thus having a great impact on reducing the cost of
longtime care.

Over the past several years, several classification methods
have been implemented to overcome these problems using only
a single modality of biomarkers. For example, many high-
dimensional classification techniques use only the sMR images
for classification of AD and MCI. sMRI captures the disease-
related structure patterns by measuring the loss of brain volumes
and decreases in cortical thickness (Davatzikos et al., 2008;
Cuingnet et al., 2011; Salvatore et al., 2015; Beheshti et al.,
2016, 2017; Jha et al., 2017; Lama et al., 2017; Long et al.,
2017) for the early prediction of AD and MCI. A number of
studies, covering volume of interest, region of interest (ROI),
shape analysis and voxel-based morphometry, have reported
that the amount of atrophy in several sMRI brain regions, such
as the entorhinal cortex, hippocampus, parahippocampal gyrus,
cingulate, and medial temporal cortex (Cuingnet et al., 2011;
Moradi et al., 2015; Beheshti et al., 2016; Gupta et al., 2019),
are sensitive to the disease progression and prediction of MCI
conversion. In addition to the sMRI, another important modality
of biomarkers thoroughly established neuroimaging tool in
the diagnosis of neurodegenerative dementia (AD or MCI) is
18F-FDG-PET image, which mainly measures hypometabolism,
reflecting neuronal dysfunction (Minoshima et al., 1997; Foster
et al., 2007; Li et al., 2008; Förster et al., 2012; Nozadi et al.,
2018; Samper-González et al., 2018). With FDG-PET image,
some recent studies have reported the reduction of glucose
metabolism or an alternations of hypometabolism occurs in the
posterior cingulated cortex, precuneus, and posterior parietal
temporal association cortex (Förster et al., 2012), and it usually
precedes cortical atrophy (Minoshima et al., 1997; Li et al.,
2008) and clinical cognitive symptoms in AD patients. Besides
these neuroimaging biomarkers, there are also some biochemical
(blood-protein level) and genetic (gene-protein level) biomarkers
for the diagnosis of AD and MCI subjects. Biochemical changes
in the brain are reflected in the cerebrospinal fluid (CSF)
(Chiam et al., 2014; Zetterberg and Burnham, 2019), decreased
CSF levels of amyloid-beta (Aβ) 1 to 42 peptide (Aβ1−−42; a
marker of amyloid mis-metabolism) (Blennow, 2004; Shaw et al.,
2009; Frölich et al., 2017), and elevations of total tau (t-tau)
and hyperphosphorylated tau at the threonine181 (p-tau181p)
protein (markers of axonal damage and neurofibrillary tangles)
(Andreasen et al., 1998; Anoop et al., 2010; Fjell et al., 2010),
are considered to be CSF best established predictive biomarkers
of AD dementia in patients with MCI. Recent studies have
shown that alternation or reduction of polymorphism (genetics)
also play a vital role in AD and MCI patients (Gatz et al.,
2006; Spampinato et al., 2011; Dixon et al., 2014). Perhaps,
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the most commonly considered polymorphism in cognitive and
neurodegenerative aging is apolipoprotein E (APOE; rs7412;
rs429358). It involved in lipid transfer, cell metabolism, repair
of neuronal injury due to oxidative stress, amyloid-beta peptide
accumulation, and in elderly process. A gene on chromosome 19
in a locus synthesizes APOE with three alleles (ε2, ε3, and ε4)
and it is expressed in the central nervous system in astrocytes
and neurons. The APOE ε4 allele has been consistently linked
to normal cognitive decline in MCI and AD dementia patients
(Luciano et al., 2009; Brainerd et al., 2011; Alzheimer’s Disease
Neuroimaging Initiative et al., 2016; Sapkota et al., 2017). It is
also said that especially APOE ε4 is the strongest genetic risk
factor that increases the occurrence with a 2-to 3-fold risk for
AD, and it lowers the age of onset AD. These all research focuses
using only a single modality of biomarkers and their proposed
algorithm performance is low compared to a recently published
multimodal method (Zhang et al., 2011; Suk et al., 2014; Ritter
et al., 2015; Frölich et al., 2017; Li et al., 2017; Gupta et al.,
2019). These studies suggest that classification performance will
improve when combining all different modalities of biomarkers
into one form because different biomarkers offer a piece
of different complementary information (or capture disease
information from different outlooks) which are useful for the
early classification of the AD and MCI patients.

Recently, Jack et al. (2016, 2018) proposed the A/T/N system,
as shown in Table 1, in which seven major AD biomarkers are
divided into three binary categories based on the nature of the
pathophysiology that each subject exhibits.

Based on the above system, we propose to combine
four different modalities of biomarkers, fluorodeoxyglucose
positron emission tomography (FDG-PET), structural magnetic
resonance imaging (sMRI), cerebrospinal fluid (CSF) protein
levels, and the apolipoprotein E (APOE) genotype, of each
patient. Over the past few years, several techniques have been
proposed using either a combination of two or three different
biomarker modalities, such as the combination of MRI and CSF
biomarkers (Vemuri et al., 2009; Fjell et al., 2010; Davatzikos
et al., 2011);MRI and FDG-PET biomarkers (Chetelat et al., 2007;
Li et al., 2008, 2017; Shaffer et al., 2013); MRI, FDG-PET, and
CSF (Walhovd et al., 2010; Zhang et al., 2011; Shaffer et al., 2013;
Ahmed et al., 2014; Ritter et al., 2015); and MRI, FDG-PET, and
APOE (Young et al., 2013). Although these published approaches
have utilized a combination of different types of biomarkers to
develop neuroimaging biomarkers for AD, the above methods

TABLE 1 | A/T/N biomarker grouping.

A T N

Aggregated Aβ or

associated pathological

state

Aggregated tau

(neurofibrillary tangles) or

associated pathological

state

Neurodegeneration

or neural injury

CSF Aβ42, or Aβ42/Aβ40

ratio

CSF phosphorylated tau Anatomical MRI

Amyloid PET Tau PET FDG-PET, CSF total

tau

may be limited. They have used brain atrophy from a few
manually extracted regions as a feature for sMRI and PET images
to classify different groups. However, using only a small number
of brain regions as features from any imaging modality may not
be able to reflect the spatiotemporal pattern of structural and
physiological abnormalities in their entirety (Fan et al., 2008).
Furthermore, by only increasing the number of biomarkers, their
combination did not lead to an increase in predictive power.
As Heister et al. (2011) explained, a combination of impaired
learning ability withmedial temporal atrophy was associated with
the greatest risk of developing AD in a group of MCI patients.

In this study, we propose a novel approach for the early
detection of AD with other groups and to differentiate the
most similar clinical entities of MCIs and MCIc by combining
biomarkers from two imaging modalities (sMRI, FDG-PET) with
CSF (biochemical protein level) and APOE genotype biomarkers
obtained from each patient. As the A/T/N system defines that
each modality of biomarkers offers a different complementary
information, which is useful for the early classification of AD
and MCI subjects, so in our study we have used four different
modalities of biomarkers, sMRI, FDG-PET, CSF (biochemical
protein level), and APOE genotype for the early prediction of
AD and MCI subjects. Moreover, using early fusion method we
have combined the measurement from all four (sMRI, FDG-PET,
CSF, and APOE) different biomarkers to discriminate between
AD and HC, MCIc and MCIs, AD and MCIs, AD and MCIc,
HC and MCIs, and HC and MCIc. We compare classification
performance for different groups using typical measures of gray
matter atrophy (from sMR image), average intensity of each
region (from FDG-PET image), t-tau, p-tau181p, and Aβ42 scores
(from biochemical level), and ε3/ε4, ε4/ε4 values from APOE
genotype biomarker. To distinguish between these groups, we
used a different kernel-based multiclass SVM classifier with a
10-fold stratified cross-validation technique that helps to find
the optimal hyperparameter for this classifier. Our experiment
results show that the grouping of different measurements from
four different modalities of biomarkers exhibits much better
performance for all classification groups than using the best
individual modality of the biomarkers.

MATERIALS AND METHODS

Participants
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.usc.edu/ADNI). The ADNI was
launched in 2003 as a public-private partnership led by
Principal Investigator, Michael W. Weiner, MD. The primary
goal of the ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD).
For up-to-date information, see https://www.adni-info.org.

In total, we included 158 different subjects from the ADNI
database. Included subjects were African-American, Asian, and
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white who stay in America and their age were between 50 and 89
years and spoke either Spanish or English. Patients with specific
psychoactive medications have been excluded from the study
while taking scans and the general inclusion/exclusion norms
were as follows: for an HC subject, a Clinical Dementia Rating
(CDR) (Morris, 1993) of 0, Mini-Mental State Examination
(MMSE) score must be between 24 and 30 (inclusive), non-MCI,
non-depressed, and non-demented. MCI subjects had a CDR
level of 0.5, MMSE scores between 24 and 30 (inclusive), a slight
memory complaint, having objective memory loss measured by
education adjusted scores on Wechsler Memory Scale Logical
Memory II (Elwood, 1991), absence of significant levels of
impairment in other cognitive domains, essentially preserved
activities of daily living, and an absence of dementia, and for an
AD patients the MMSE scores between 20 and 26, CDR level
of 0.5 or 1.0, and meets the National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (NINCDS/ADRDA)
criteria for probable AD. We selected all subjects for whom
all four modalities of biomarkers were available. The four
obtained biomarkers were 1.5-T T1-weighted sMRI, FDG-PET,
CSF measures of three protein levels (t-tau, p-tau181p, and Aβ42),
and APOE genotype. Of the 158 subjects, 38 subjects were in the
AD group (MMSE ≤ 24), 82 subjects in the MCI group (46 with
MCIc [converted to AD within 24 months of the time-period]
and 36 with MCIs [patients who did not convert to AD within
24 months of the time-period]) (MMSE≤ 28). The remaining 38
subjects were healthy controls (MMSE ≤ 30).

Table 2 shows the neuropsychological and demographic
information for the 158 subjects. To measure the statistically
important difference in demographics and clinical features,
Student’s t-test was applied using age data, were the significance
value was set to 0.05. No any significant differences were found
for any groups. In all groups, the number of male subjects was
higher than the number of female subjects. Compared to the
other groups, the HC group had higher scores on the MMSE.
Healthy subjects had a significantly lower Geriatric Depression
Scale (GDS) scores than the other groups. The Functional
Activities Questionnaire (FAQ) was higher for the AD group than
the other groups.

MRI and FDG-PET Datasets
MRI Protocol
Structural MRI scans were acquired from all data centers
using Philips, GE, and Siemens scanners. Since the acquisition
protocols were different for each scanner, an image normalization
step was performed by the ADNI. The imagining sequence
was a 3-dimensional sagittal part magnetization prepared of
rapid gradient-echo (MPRAGE). This sequence was repeated
consecutively to increase the likelihood of obtaining at least
one decent quality of MPRAGE image. Image corrections
involved calibration, geometry distortion, and reduction of the
intensity of non-uniformity applied on each image by the
ADNI. More details concerning the sMRI images is available
on the ADNI homepage (http://adni.loni.usc.edu/methods/mri-
tool/mri-analysis/). We used 1.5-T sMRI T1-weighted images
from the ADNI website. Briefly, raw (NIFTY) sMRI scans were

TABLE 2 | Demographical and neuropsychological characteristics of the studied

sample.

Groups AD MCIs MCIc HC

No. of Subjects 38 36 46 38

Male/female 22/16 26/10 29/17 25/13

Age 77.15* ± 6.88 74.22* ± 5.65 76.71* ± 7.71 76.68* ± 5.01

MMSE 21.21* ± 4.45 26.91* ± 2.43 26.19* ± 2.79 29.05* ± 1.23

FAQ 17.42* ± 6.92 3.80* ± 4.06 7* ± 5.90 0.315* ± 1.02

Subject weight 73.90* ± 13.18 78.44* ± 14.64 73.51* ± 13.17 74.43* ± 14.38

GDS 1.68* ± 1.52 1.58* ± 1.58 1.63* ± 1.50 0.86* ± 1.12

*Values are presented as mean ± and standard deviation (SD).

downloaded from the ADNI website. All scans were 176× 256×
256 resolution with 1mm spacing between each scan.

FDG-PET Protocol
The FDG-PET dataset was acquired from the ADNI website.
A detailed explanation of the FDG-PET image acquisition
is available on the ADNI homepage (http://adni.loni.usc.edu/
pet-analysis-method/pet-analysis/). Briefly, FDG-PET images
were acquired from 30 to 60min post-injection. First, images
were averaged and then spatially aligned. Next, these images
were interpolated to a standard voxel size, and later intensity
normalization was performed. Finally, images were smoothed
to a common surface of 8mm (FWHM) full width at half
maximum. First, the FDG-PET images were downloaded in the
Digital Imagining and Communication in Medicine (DICOM)
format. In the second step, we use the dcm2nii (Li et al., 2016)
converter to convert DICOM images into the Nifty format. All
scans were 160 × 160 × 96 resolution with 1.5mm spacing
between each scan.

CSF and APOE Genotype
CSF
We downloaded the required CSF biomarker values for each
selected MRI and FDG-PET image from the ADNI website. A
brief description regarding the collection procedure is available
on the ADNI website. As the manual describes, a 20-ml volume
was obtained from each subject using a lumbar puncture with
a 24 or 25 gauge atraumatic needle around the time of their
baseline scans. Subsequently, all samples were stored on dry ice
on the same day and later they were sent to the University of
Pennsylvania AD Biomarker Fluid Bank Laboratory where the
levels of proteins (Aβ42, total tau, and phosphorylated tau) were
measured and recorded. In this study, the three protein levels,
Aβ42, t-tau, and p-tau181p, were used as features.

APOE Genotype
APOE genotype is known to affect the risk of developing sporadic
AD in carriers. Basically, there are three types of the APOE
gene, called alleles: APOE2, APOE3, and APOE4. Everyone has
two copies of gene and their combination (ε2/ε2, ε2/ε3, ε2/ε4,
ε3/ε3, ε3/ε4, and ε4/ε4) determines our APOE genotype score.
The APOE (ε2) allele is the rarest form of APOE and carrying
even one copy appears to reduce the risk of developing AD by
up to 40%. APOE (ε3) is the most common allele and doesn’t
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seem to influence risk whereas APOE (ε4) allele which present
in ∼10–15% of people, and having one copy of ε4 (ε3/ε4) can
increase the risk of having AD by 2–3 times while having the two
copies (ε4/ε4) of APOE ε4 can increase the risk by 12 times. The
APOE genotype of each subject was recorded as a pair of numbers
representing which two alleles were present in the blood. The
APOE genotype was obtained from 10ml of a blood sample taken
at the time of the scan and sent immediately to the University of
Pennsylvania AD Biomarker Fluid Bank Laboratory for analysis.
The APOE genotype value was available for all subjects for whom
we had imagining data.

Overview of Proposed Framework
The proposed framework consists of three processing stages:
feature extraction and fusion of multiple features into the
single form using early fusion technique, optimal feature subset
selection using truncate SVD dimensionality reduction method,
and classification. Figure 1 illustrates the block diagram of the
proposed framework. The set of participants were randomly split
into two groups in a 75:25 ratios as a training and testing sets,
respectively, before passing them to the kernel-based multiclass
SVM classifier. Moreover, during the training stage, a gray matter
atrophy (from sMR image) and average intensity of each region
(from FDG-PET image) which had automatically extracted using
NiftyReg toolbox, as well as a set of t-tau, p-tau181p, and Aβ42
(from biochemical level) CSF scores, and (ε3/ε4, ε4/ε4) values
from APOE genotype biomarker, were downloaded from the
ADNI website. Here, we have used random tree embedding
(Geurts et al., 2006; Moosmann et al., 2008) method to transform
low dimensional data into a higher dimensional state, to make
sure that the complementary information found across all
modalities is still used while classifying AD subjects. In addition,
we have used an early fusion technique for the combination
of different features into one form before passing them to the
feature selection process. Moreover, a feature selection technique
using truncate SVD was employed to select the optimal subsets
of features from the bunch of features, including the sMRI, FDG-
PET, CSF, and APOE extracted features to train the classifiers to
distinguish between AD andHC,MCIc andMCIs, AD andMCIs,
AD and MCIc, HC and MCIs, and HC and MCIc groups. In
the testing stage, a remaining 25% of the dataset is then passed
to the kernel-based multiclass SVM classifier to measure the
performance of our proposed method.

Image Analysis and Feature Extraction
Image preprocessing was performed for all sMR and FDG-PET
images. First, we performed anterior commissure (AC)–posterior
commissure (PC) correction for all subjects. Afterward, we used
N4 bias field correction using ANTs toolbox (Tustison et al.,
2010) to correct the intensity of inhomogeneity for each image.
In our pipeline, skull striping was not necessary as images were
already preprocessed. Therefore, we reduced the total number of
required pre-processing steps for the original images. Later high-
dimensional data from the images were preserved for the feature
extraction step. For sMR images, we first aligned them to the
MNI152 T1-weighted standard image using SPM12 (Ashburner
and Friston, 2000) toolbox in Matlab 2018b. For the purpose

of anatomical segmentation or parcellation of whole-brain into
anatomic regions and to quantify the features of each specific
regions of interest (ROI) from each sMR image, we have used
NiftyReg toolbox (Modat et al., 2010) with 2-mm Brainnetome
atlas template (Fan et al., 2016) image, which is already
segmented into 246 regions, 210 cortical and 36 subcortical
regions. Moreover, we processed the sMRI image using open
source software, NiftyReg (Modat et al., 2010), which is an
automated registration toolkit that performs fast diffeomorphic
non-rigid registration. After the registration process, we gained
the subject-labeled image based on a 2-mm Brainnetome atlas
template with 246 segmented regions. For the 246 ROI in the
labeled sMR images, we computed the volume of gray matter
tissues in that ROI and used it as a feature. For the FDG-PET
images, the first step was to register the FDG-PET image to its
corresponding sMRI T1-weighted image, using the reg_aladin
command from the NiftyReg software. Once the FDG-PET
images were registered with their respective MR images, we
again used NiftyReg toolbox for non-rigid registration between
processed FDG-PET image and the 2-mm Brainnetome atlas
template image. After registration, we obtained 246 segmented
regions for each FDG-PET image. Again, we computed the
average intensity of each region for the ROI and used it as
a feature for classification. Figure 2 shows the pipeline for
extraction of 246 regions from sMRI and FDG-PET image.

Therefore, for each subject, we obtained 246 ROI’s features for
each sMRI image, another 246 features for each FDG-PET image.
Three features from CSF biomarkers for each subject, and two
feature values from APOE genotype for all selected images.

Combining Multimodality of Biomarkers
After assessing the performance for each individual modality,
we combined different modalities in order to study possible
improvements in classification performance. Here, a general
framework based on an early fusion (or straightforward feature
concatenation) method which use special combination rules to
combine (or to concatenate) complementary information from
different modalities of biomarker into single feature vector is
used, and later we have used kernel-based multiclass SVM
classifier to train that single feature vector. In this context, various
authors have combined sMRI-based features with the features
calculated from FDG-PET, DTI, and fMRI (Zhang et al., 2011,
2012; Young et al., 2013; Schouten et al., 2016; Bron et al.,
2017; Bouts et al., 2018) for early classification of AD subjects.
Moreover, in our case, we have combined four (sMRI, FDG-PET,
CSF, and APOE) modality of biomarkers into one form using
early fusion technique for the early classification of AD and MCI
subjects. Here, the value of the features for the APOE and CSF
are of small dimensional compared to the sMRI and FDG-PET
extracted features values. Therefore, if classification algorithms
trained on (high + low) dimensional combined features then it
may produce prediction models that effectively ignore the low
dimensional features. Moreover, to overcome this problem, we
have transformed low dimensional extracted features into a high
dimensional state using random tree embedding method, which
ensures that the complementary information found across all
modalities is still used while classifying several groups. This step
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FIGURE 1 | Overview of the proposed framework. (A) Selection of four (sMRI, FDG-PET, CSF, and APOE) important biomarkers. (B) Feature extraction using NiftyReg

toolbox for sMRI and FDG-PET image. (C) Feature selection using truncate SVD method. (D) Ten-fold stratified cross-validation method. (E) Kernel-based multiclass

SVM classifier. (F) Diagnosis output.

is followed for every classification problem. Figure 3 shows the
early fusion pipeline. Moreover, here 1st (APOE), 2nd (CSF),
3rd (sMRI), and 4th (FDG-PET) features are concatenated
with each other using early fusion technique before passing
them further. We assessed the classification performance for
individual and combined modalities by calculating the AUC for
each group.

Feature Selection
With the help of automated feature extraction methods, we
extracted 246 ROIs from each sMRI and FDG-PET image.
As in the neuroimaging analysis, the number of features per
subjects is very high relative to the number of patients, a
phenomenon normally referred to as the curse of dimensionality.
Furthermore, because of the computational difficulties of dealing
with high dimensional data, dealing with many features can
be a challenging task, which may result in overfitting. Feature
selection is an additional helpful stage prior to the classification
problem, which helps to reduce the dimensionality of a feature

by selecting proper features and omitting improper features. This
step helps to speed up the classification process by decreasing
computational time for the training and testing datasets and
increases the performance of classification accuracy. At first,
we normalized the extracted features using the standard scalar
function from Scikit-learn library (0.19.2) (Pedregosa et al.,
2011), which transforms the dataset in such way that its
distribution will have a mean of 0 and unit variance of 1
to reduce the redundancy and dependency of the data. After
that, we performed high dimensional transformation of the data
using random tree embedding (Geurts et al., 2006; Moosmann
et al., 2008) from Scikit-learn library (0.19.2) (Pedregosa et al.,
2011) and a dimensionality reduction process using truncated
singular value decomposition (SVD) method. Random tree
embedding system works based on the decision tree ensemble
learning (Brown, 2016) system that execute an unsupervised data
transformation algorithm to solve a random tree embedding
task. It uses a forest of complete random trees, that encodes
the data by the indices of the leaves where a data sample point
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FIGURE 2 | Overview of the feature extraction pipeline for sMRI and FDG-PET image. Here, NiftyReg toolbox is used for the image registration and as well as for the

non-linear registration between the (sMRI and FDG-PET) image with 2mm Brainnetome template image. Above pipeline shows that, we have successfully extracted

246 ROI’s from each (sMRI and FDG-PET) images.

ends up. This index is then encoded in a one-of-k encoder,
which maps the data into a very high-dimensional state which
might be beneficial for the classification process. The mapping
process is completely unsupervised and very efficient for any
dataset. After mapping the dataset into the very high dimensional
state, we applied the truncated SVD function for dimensionality
reduction purposes, which only selects the important features
from the complete set of features. The truncated SVD is similar
to principal component analysis (PCA) but differs in that it
works on the sample matrices X directly instead of working on

their covariance matrices. When performed column-wise (per-
feature), i.e., means of X are deducted from the value of the
feature, the truncated SVD of the resulting matrix corresponds
to PCA. Truncated SVD implements an irregular SVD that only
calculates the k largest singular values, where k is a user-specified
parameter. Mathematically, the truncated SVD can be applied to
train data X, which produces a low-rank approximation of X:

X = Xk = Uk6kV
T
k (1)
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FIGURE 3 | Multimodal fusion pipeline shows the fusion of four modality of biomarkers, from which two biomarkers sMRI and FDG-PET belongs to imaging modality,

CSF biomarker from biochemical, and APOE biomarker from genetics.

After this process,Uk6
T
k
is transformed into the training set with

k features. To transform a test set X, we can multiply it by Vk:

X′ = XVk (2)

In this way, we can perform the truncated SVD method on the
training and testing dataset.

Classification
Support Vector Machine
SVM is a supervised learning method. SVM (Cortes and Vapnik,
1995) works by finding a hyperplane that best separates two data
groups. It is trained by training data in n-dimensional training
space after which test subjects are classified according to their
position in n-dimensional feature space. It has been used in
several neuroimaging areas (Cui et al., 2011; Zhang et al., 2011;
Young et al., 2013; Collij et al., 2016) and is known to be one of the
most powerful machine learning tools in the neuroscience field in
recent research. In mathematical representation, for a 2D space,
a line can discriminate the linearly separable data. The equation
of a line is y = ax + b. By renaming x with x1 and y with x2,
the equation will change to a(x1 − x2) + b = 0. If we stipulate
X = (x1, x2) and w = (a, −1), we get w.x + b = 0, which is an
equation of hyperplane. The linearly separable output with the
hyperplane equation has the following form:

f
(

y
)

= zT∅.(y)+ b (3)

Where y is an input vector, zT is a hyperplane parameter, and
∅(y) is a function used to map feature vector y into a higher-
dimensional space. The parameters z and b are scaled suitably by
the same quantity, the decision hyperplane given by the Equation
(2) remains unchanged. Moreover, in order to make any decision
boundary surface (hyperplane) correspond to the exclusive pair
of (z, b), the following constraints are familiarized:

min
∣

∣

∣
zT∅.(yi)+ b

∣

∣

∣
= 1, i = 1, . . . .,N, (4)

Where y1, y2, y3, . . . ., yN are the given training points. Equation
(4) hyperplanes are known as the canonical hyperplanes. For a

given hyperplane (or decision surface) which is described with
the equation;

zT∅.(y)+ b = 0, which is same as zT∅.
(

y
)

= 0 (which has more dimensions) (5)

And, for a vector x that does not belong to the hyperplane,
the following equation is satisfied (Cortes and Vapnik, 1995,
Madevska-Bogdanova et al., 2004, Cui et al., 2011):

zT∅.(x)+ b = ±s ‖z‖ (6)

Where s is the distance of a point x to the given hyperplane. The
different signs determine the vector’s x side of the hyperplane.
Therefore, the output f

(

y
)

(or predictive value) of the SVM is
truly proportional to the norm of vector z and the distance s(x)
from the chosen hyperplane. Moreover, in our study, we have
used kernel-support vector machine, which is used to solve the
non-linear problem with the use of linear classifier and involved
in exchanging linearly non-separable data into linearly separable
data. The idea behind this concept is linearly non-separated data
in n-dimensional space might be linearly separated in higher
m-dimensional space. Mathematically, the kernel is indicated as,

K
(

a, b
)

= < F (a) , F
(

b
)

> (7)

Where, K is a kernel function and a, b are inputs in n-
dimensional space. F is a mapping function which maps from
n-dimensional to m-dimensional space (i.e., m > n). Moreover,
in our case, we have used three different kinds of kernel function
which is defined as follow:

• Polynomial type: It represents the resemblance of vectors
(training samples) in a feature space over the polynomials
of the original variables, allowing the learning of non-linear
models. A Polynomial kernel is defined as;

K
(

x, y
)

= (x, y)d (8)

Where x and y are vectors in the input space. d is the
kernel parameter.
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• Gaussian radial basis type: Radial basis functions mostly with
Gaussian form and it is represented by;

K
(

x, y
)

= exp(−

∥

∥x− y
∥

∥

2

2σ 2
) (9)

Where, x and y are the two input samples, which represented

as a feature vector in input space.
∥

∥x− y
∥

∥

2
may be seen as a

squared Euclidean distance between two feature vectors. σ is a
kernel parameter.

• Sigmoid type: It comes from the neural networks field, where
the bipolar sigmoid function is often used as an activation
function for an artificial neuron. And, it is represented by;

K
(

x, y
)

= tanh(∝ xTy+ c) (10)

Where, x and y are vectors in the input space and ∝, c are the
kernel parameters.

For our study, we used a different kernel-based multiclass
SVM from Scikit-learn 0.19.2 library (Pedregosa et al., 2011).
Scikit-learn library internally use LIBSVM (Chang and Lin,
2011) to handle all computations. The hyperparameter of the
kernel-based SVM must be tuned to measure how much
maximum performance can be augmented by tuning it. It
is important because they directly control the behavior of
the training algorithm and have a significant impact on the
performance of the model is being trained. Moreover, a good
choice of hyperparameter can really make an algorithm smooth.
Therefore, to find an optimal hyperparameter for the kernel-
based multiclass SVM, C (explains the SVM optimization
and percentage of absconding the misclassified trained data.
For high C values, training data will classify accurately by a
hyperplane; similarly, for low C values, optimizer looks for a
higher margin separating hyperplane while it will misclassify the
more data points) and γ (Gaussian kernel width describes the
impact of specific training data. The high gamma values result
in consideration of datasets that are near to separation line.
Likewise, for low gamma values, datasets that are away from the
separation line, will also be taken into consideration while in the
calculation line) parameters are optimized using a grid search and
a ten-fold stratified cross-validation (CV) method on the training
dataset. This validation technique gives an assurance that our
trained model got most of the patterns from the training dataset.
Moreover, CV works by randomly dividing training dataset into
10 parts, one of which was left as a validation set, while the
remaining nine were used by a training set. In this study, ten-
fold stratified cross-validation was performed 100 times to obtain
more accurate results. Finally, we computed the arithmetic mean
of the 100 repetitions as the final result. Note that, as a different
feature had different scales, so in our case, we linearly ascend
each training feature to imitate to a range between 0 and 1; the
same scaling technique was then applied to the test dataset. As the
number of selected features is small, in our case the RBF kernel
performs better than other kernels.

Measuring the Classification Performance
To assess the classification performance of each group we have
applied two method: (i) ROC-AUC curve analysis and (ii)
Statistical analysis using Cohen’s kappa method.

ROC-AUC Analysis
The ROC-AUC is a fundamental graph in the evaluation of
diagnostic tests and is also often used in biomedical research to
test classification problem performance and prediction models
for decision support, prognosis, and diagnosis. ROC analysis
examines the accuracy of a proposed model to separate positive
and negative cases or distinguish AD patients from different
groups. It is particularly useful in assessing predictive models
since it records the trade-off between specificity and sensitivity
over that range. In a ROC curve, the true positive rate (known
as the sensitivity) is arranged as a function of a false positive
rate (known as the 1-specificity) for different cut-off values of
parameters. Each point’s level of the ROC curve characterizes
a sensitivity/specificity pair, which corresponds to a specific
decision threshold. This is generally depicted in a square box
for convenience and it’s both axes are from 0 to 1. The area
under curve (AUC) is an effective and joint measure of sensitivity
and specificity for assessing inherent validity of a diagnostic test.
AUC curve shows us how well a factor can differentiate between
two binary diagnostic groups (diseased/normal). A result with
perfect discrimination has a 100% sensitivity, 100% specificity
ROC curve. Therefore the closer the ROC curve to the upper left
corner, the higher the overall accuracy of the test as suggested
by Greiner et al. (2000). The AUC is commonly used to visualize
the performance of binary classes, producing a classifier with two
possible output classes. Accuracy is measured using the AUC.
Here, an AUC of one signifies a perfect score, and an area of 0.5
represents a meaningless test.

The AUC plot provides two parameters:

1. True positive rate (TPR): the TPR is a performance measure
of the whole positive part of a dataset.

2. False positive rate (FPR): the FPR is a performance measure
of the whole negative part of a dataset.

Moreover, classification accuracy measures the effectiveness of
predicting the true class label, but in our case, it should be noted
that the number of subjects was not the same in each group, so
only calculating accuracymay result in amisleading estimation of
the performance. Therefore, fourmore performancemetrics have
been calculated, namely specificity, sensitivity, precision, and
F1-score. We have reported the accuracy, specificity, sensitivity,
precision, and F1-score values corresponding to the ideal point
of the ROC curve.

Accuracy =
TP + TN

TP + FP + FN + TN
(11)

F1− score = 2∗

[

precision∗recall

precision+ recall

]

(12)

where,

Precision =
TP

TP + FP
; Recall = Specificity =

TP

TP + FN
(13)
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TABLE 3 | Obtained best CV score for six classification groups.

Group Regularization constant (c) Gamma (g or γ) Best CV score

AD vs. HC 7 0.00316227766017 0.98742

AD vs. MCIs 5 0.01 0.96207

AD vs. MCIc 6 0.004 0.92201

MCIs vs. MCIc 9 0.001 0.94782

HC vs. MCIc 4 0.001 0.94036

HC vs. MCIs 9 0.001 0.93103

With TP, FP, TN, and FN denoting true positive, false positive,
true negative, and false negative, respectively. Specificity (true
negative rate) provides a amount for those not in the class, i.e., it
is the percentage of those not in the class that were found not to be
in the class. Precision [which is also termed as positive predictive
value (PPV)] is the fraction of relevant incidences among the
retrieved incidences, and F1-score (which is also called F-score
or F-measure) is a amount related to a test’s accuracy. Moreover,
in our case, we have repeated the procedure 100 times, the
reported AUC-ROC, accuracy, sensitivity, specificity, precision,
and F1-score are the average over the 10 repetitions of the 10-
fold stratified cross-validation procedure. We have followed this
method for every classification groups.

Statistical Analysis Using Cohen’s Kappa Method
Cohen’s kappa statistic value for each classification problem was
computed. This function calculates Cohen’s kappa score, which
demonstrate the level of agreement between two annotators or
the level of agreement between two dissimilar groups in a binary
classification problem defined as,

k = (po − pe)/(1− pe) (14)

where, po is the empirical probability of an agreement on the
label assigned to any example (the observed agreement ratio),
and, pe is the predictable agreement when both annotators assign
labels randomly. Here, pe was assessed using a per-annotator
empirical prior over the class labels. The kappa statistic value is
always between −1 and 1. The maximum value means complete
agreement between two groups, zero or lower value means a low
probability of agreement.

RESULTS

Here, all classification problems were performed using Ubuntu
16.04 LTS, running python 3.6, and using Scikit-learn library
version 0.19.2. In this study, there were four classes of data,
AD, MCIc, MCIs, and HC, separated using four different types
of biomarker, sMRI and FDG-PET for imaging modalities, and
CSF as a biochemical (or fluid vessel) that show results reflecting
the formation of amyloid plaques inside the brain, and APOE
genotypes as genetic features. Thus, we validated our proposed
method on six different types of classification problem, i.e., six
binary class problem (AD vs. HC, MCIc vs. MCIs, AD vs. MCIc,
HC vs. MCIs, HC vs. MCIc, and AD vs. MCIs). At first, we

FIGURE 4 | CV best score obtained for AD vs. HC and MCIs vs. MCIc groups.

Best CV score is computed by taking the average of 10 folds CV values. CV

score, Cross-validation score; C, regularization constant; and g or γ , gamma,

C and γ are the hyperparameter value for the kernel-based multiclass SVM.

extracted the featured from each sMRI and FDG-PET images by
using the NiftyReg registration process with 2-mm Brainnetome
atlas template image. In total, we obtained 497 features for a
single image, 246 ROI-based features from the sMRI and FDG-
PET images, three feature values from the CSF data, and two
features from the APOE genotype data. Moreover, we have
applied a random tree embedding method which transformed
obtained low dimension features into a higher dimensional state,
after that an early fusion technique is processed to combine the
multiple features into single form before passing them for further
process. Additionally, we have also applied a feature selection
technique using a truncated SVD dimensionality reduction
method, which will select the effective features from all 497
high dimensional features and send these selected features to the
classifier, to measure the performance of identifying each group.
In our case, we used a kernel-based multiclass SVM as a classifier
from a Scikit-learn library (0.19.2).

In order to attain unbiased estimates of performance, the set of
participants were randomly split into two groups in a 75:25 ratios
as training and testing sets, respectively.

In the training set, to find the right values for the
hyperparameter (C and γ ) is very difficult, and their values
influence the classification result. Moreover, we know that the
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parameter C, trades off the misclassification of training samples
against the simplicity of a decision surface, a small C value makes
the decision surface flat, while a high C value aims to classify all
training samples correctly. Moreover, a γ value shows howmuch
influence a single training sample has. The larger γ is, the closer
other samples must be to be affected. Therefore, we have used
cross-validation technique to get good optimal hyperparameter
values for the regularization constant (C) and gamma (γ ). We
can’t know the best value for a model hyperparameter on a
given problem. With the right values of hyperparameters will
eliminate the chances of overfitting and underfitting. Therefore,
to find the optimal hyperparameter values for a kernel-based
SVM, have used a grid-search (which perform a comprehensive
search over the specified parameter values for an estimator) and
ten-fold stratified cross-validation technique on the training set.
The grid search was performed over the ranges of C = 1 to
9 and γ = 1e-4 to 1. For each method, the gained optimized
value of the hyperparameter was then used to train the classifier
using the training set, and later the performance of the resulting
classifier was then evaluated on the remaining 25% of data in
the testing dataset, which was not used during the training
step. The obtained optimized hyperparameter (C and γ ) value
and their best CV accuracy are shown in Table 3. Figure 4 is
a plot of the classifier’s CV accuracy with respect to (C and
γ ) for AD vs. HC and MCIc vs. MCIs groups. In Figure 4,
we can see the impact of having different C and γ values on
the model. Moreover, the best found optimal hyperparameter
combination for an AD vs. HC are C= 7, γ = 0.00316227766017
and for MCIs vs. MCIc are C = 9, γ = 0.001, these tuned
optimal hypermeter values are automatically chosen from the
given range of C = 1 to 9 and γ = 1e-4 to 1 with the help of
grid search and ten-fold CV. In this way, we achieved unbiased
estimates of the performance for each classification problem. In
our experiment, the number of subjects was not the same in
each group. Therefore, only calculating accuracy does not enable
a comparison of the performances of the different classification
experiments. Thus, we have considered five measures. For each
group, we have calculated the accuracy, sensitivity, specificity,
precision, and F1-score performance measure values. Table 4
show the classification results for AD vs. HC, MCIc vs. MCIs, AD
vs. MCIs, AD vs. MCIc, HC vs. MCIc, and HC vs. MCIs.

We conduct the AD vs. HC experiment using extracted
APOE, CSF, FDG-PET, and sMRI features, and the classification
outcome is shown in Table 4. For AD vs. HC classification,
we had 38 AD and 38 HC subjects and only sMRI individual
biomarker performed well while compared to other individual
modalities of biomarkers. Moreover, the early fusion technique
that we used to combine features from different modalities
resulted in an AUC of 98.33, 98.42% of accuracy, 100% of
sensitivity, 96.47% of specificity, 97.89% of precision, and 98.42%
of F1-score. Furthermore, Cohen’s kappa value is 0.93 for the
combined method, which is very close to 1. Likewise, for
the MCIs vs. MCIc classification problem, 82 subjects were
included. Forty-six were in the MCIc group and the remaining
36 patients were in the MCIs group. Table 4 shows the computed
performance measure for this classification problem. Compared
to other classification group problem this classification group

(MCIs vs. MCIc) is difficult to classify because both groups show
similar brain structure; however, there are slight differences in
structure. For this group, APOE genotype individual biomarker
performed well while compared to other individual modalities of
biomarkers.Moreover, our proposedmethod has performed even
better than the best output obtained by individual biomarkers for
this group and the achieved measures are AUC of 93.59%, with
94.86% accuracy, 100% sensitivity, 88.71% specificity, 89.62%
precision, and an F1-score of 91.67% compared to those of the
single modalities. For MCIs vs. MCIc, Cohen’s kappa value was
0.86, which is better than those of the single modalities. Our
proposed method has performed very well when classifying this
group. For AD vs. MCIs group, there were 38 AD and 36 MCIs
subjects. First, we extracted the features from each subject and
then we combined both imaging (PET and MRI) feature values
with the other two (CSF and APOE genotype) feature values to
measure the performance of AD vs. MCIs classification. Table 4
shows the results from passing obtained features to the kernel-
based multiclass SVM classifier. As can be seen from Table 4, our
proposed method to combine all four modalities of a biomarker
for distinguishing between AD and MCIs achieved good results
compared to single modality biomarkers. For this classification
problem, our proposedmethod achieved 96.65% of accuracy with
a Cohen’s kappa of 0.91. For AD vs. MCIc group, there were
38 AD and 46 MCIc. We trained kernel-based multiclass SVM
classifiers using dimensionality-reduced features from truncated
SVD to measures the performance of AD vs. MCIc group. The
best performance was attained using a combination of four
modalities of features, i.e., sMRI, FDG-PET, APOE and CSF,
which had an accuracy of 92.26%, a sensitivity of 91.67%, a
specificity of 92.86%, and an AUC of 94.64% with Cohen’s kappa
of 0.84. For the HC vs. MCIc distinction, our proposed method
achieved 96.43%AUC, 94.13% accuracy, 94.75% sensitivity, 100%
of specificity and precision, and 96.72% of F1-score. Table 4
shows the classification performance result for HC vs. MCIc
classification. In this case, the obtained Cohen’s kappa index
value is 0.88, which is near to themaximum level agreement value
of 1. For the HC vs. MCIs classification problem, 74 subjects were
included. Thirty-six were in the MCIs group and the remaining
38 patients were in the HC group. Table 4 shows the results from
passing obtained features to the kernel-based multiclass SVM
classifier. As can be seen from Table 4, our proposed method
to combine all four modalities of a biomarker for distinguishing
between HC and MCIs achieved good results compared to
single modality biomarkers. For this classification problem, our
proposed method had achieved 95.24% of AUC, and 95.65% of
accuracy with a Cohen’s kappa of 0.90. Therefore, we can say that
for all classification groups our proposed method has achieved a
high level of performance while compared to single modality of
biomarkers, ranging from 1 to 5%, and our proposed method has
also achieved a high level of agreement between each other for
all six classification groups while compared with single modality-
based methods. For AD vs. MCIs, AD vs. MCIc, HC vs. MCIs,
and HC vs. MCIc groups, CSF individual biomarkers performed
very well-compared to other individual modality of biomarkers,
and the CSF achieved AUC for these groups are 94.17, 89.58,
94.05, and 92.5%.
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TABLE 4 | Classification results for AD vs. HC, MCIs vs. MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIc, and HC vs. MCIs groups.

Groups Features Classifier Performance measure

AUC ACC SEN SPEC PRE F1-score Cohen’s kappa

AD vs. HC APOE genotype SVM 90.83 88.96 90.91 89.46 86.92 87.33 0.79

CSF 91.54 91.3 88.48 91.67 90.91 93.15 0.82

sMRI 93.33 92.5 100 89.74 88.47 92.86 0.85

FDG-PET 92.5 92.56 89.74 90 93.62 91.63 0.84

Combined 98.33 98.42 100 96.47 97.89 98.42 0.93

MCIs vs. MCIc APOE genotype SVM 91.21 92 86.67 100 100 92.86 0.83

CSF 87.73 88 85.71 90.91 92.31 88.89 0.75

sMRI 86.54 85.43 84.55 83.92 86.96 81.82 0.69

FDG-PET 90.38 89 100 85 76.92 86.96 0.76

Combined 93.59 94.86 100 88.71 89.62 91.67 0.86

AD vs. MCIs APOE genotype SVM 90 89.96 100 82.73 84 88.89 0.75

CSF 94.17 93.33 91.3 100 86.67 92.86 0.86

sMRI 88.33 87.67 82.61 86.49 73.33 84.62 0.73

FDG-PET 89.17 90 89.96 91.73 89.96 88.89 0.75

Combined 96.83 96.65 100 91.67 93.33 96.55 0.91

AD vs. MCIc APOE genotype SVM 88.89 88.46 77.78 94.12 87.2 82.35 0.71

CSF 89.58 86.39 86.92 90 87.5 88.67 0.73

sMRI 84.52 80.36 80.77 81.82 80 78.26 0.69

FDG-PET 84.03 80.77 66.67 88.24 75 70.59 0.65

Combined 94.64 92.26 91.67 92.86 91.67 91.67 0.84

HC vs. MCIc APOE genotype SVM 87.5 87.12 82.64 87.5 86.67 92.33 0.73

CSF 94.05 92.31 91.67 90.44 92.26 95.22 0.83

sMRI 89.58 88.46 90.91 86.67 83.33 86.96 0.76

FDG-PET 91.07 87.5 88.46 100 82.35 85.71 0.76

Combined 96.43 94.13 94.75 100 100 96.72 0.88

HC vs. MCIs APOE genotype SVM 90.83 87.08 86.96 92.86 86.67 89.66 0.72

CSF 92.5 90.47 100 72.73 80 88.89 0.73

sMRI 91.27 90.16 98.26 86.67 90.91 92 0.71

FDG-PET 89.68 87.3 92.31 80 85.71 88.89 0.73

Combined 95.24 95.65 100 88.89 93.33 96.55 0.90

Figure 5 shows Cohen’s kappa statistics score for six
classification problems, AD vs. HC,MCIs vs. MCIc, AD vs.MCIs,
AD vs. MCIc, HC vs. MCIs, and HC vs. MCIc. From this graph,
we can see that our proposed method has achieved a good level
of agreement between different classification groups.

Here, Figure 6 shows the AUC curve for AD vs. HC, MCIs
vs. MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIs, and HC
vs. MCIc. Total AUC-ROC curve is a single index for measuring
the performance of a test. The larger the AUC, the better is the
overall performance of the diagnostic test to correctly pick up
diseased and non-diseased subjects. For AD vs. HC, our proposed
model achieved 98.33% AUC, showing that our proposed model
performed well when distinguishing positive and negative values.
For MCIs vs. MCIc, our proposed model correctly distinguished
converted patients from stable patients with an AUC of 93.59%,
which is a great achievement for this complex group. Likewise,
for AD vs. MCIs, AD vs. MCIc, HC vs. MCIs, and HC vs.
MCIc, our proposed model achieved AUCs of 96.83, 94.64, 95.24,
and 96.43%. Overall, for all classification methods, our proposed

model performed well and its probabilities for the positive classes
are well-separated from those of the negative classes.

DISCUSSION

In this experiment, we proposed a novel technique to fuse
data from multiple modalities for the classification of AD
from different groups, using a kernel-based multiclass SVM
method. In addition, earlier studies aimed only for AD vs.
HC classification groups. In this paper, we studied six binary
classification problem, AD vs. HC, MCIs vs. MCIc, AD vs. MCIs,
AD vs. MCIc, HC vs. MCIs, and HC vs. MCIc. More importantly,
we combined not only sMRI and FDG-PET images but also their
CSF (biochemical) and APOE (genetic) genotype values. Our
experiment result shows that each modality (sMRI, FDG-PET,
CSF, and APOE) is indispensable in achieving good combination
and good classification accuracy.

Some studies (Zhang et al., 2011, 2012; Young et al., 2013)
have used a small number of features extracted from automatic
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or manual segmentation processes for the classification of AD
from different groups. Their proposed model has achieved
good performance for AD vs. HC; however, for MCIc vs.
MCIs, the performance of their proposed model is poor.

FIGURE 5 | Cohen’s kappa score for AD vs. HC, MCIs vs. MCIc, AD vs. MCIc,

AD vs. MCIs, HC vs. MCIs, and HC vs. MCIc (each experiment obtained

kappa value is shown by different solid color lines). This Cohen’s kappa plot

shows that combined features outperform the single modality features in all

experiments.

Therefore, in our study, we tried to extract as many ROI
from two imaging modalities using the 2-mm Brainnetome
template image. To the best of our knowledge, this is the first
experiment where 246 ROI was extracted from all 158 subjects
and all features were used in the classification of AD and
MCI subjects.

Furthermore, we later fused features from these two imaging
modalities with three CSF and two APOE genotype features
offered by the ADNI website for the distinction of AD from
different groups using early fusion technique. Moreover, we
use a more advanced segmented template image for feature
extraction from both imaging modalities with the NiftyReg
registration toolbox, compared to other studies (Walhovd et al.,
2010; Davatzikos et al., 2011; Zhang et al., 2011; Beheshti et al.,
2017; Li et al., 2017; Long et al., 2017). As we can see that
from Table 4, single modality biomarkers (sMRI and APOE
genotype) achieved a good performance for AD vs. HC andMCIs
vs. MCIc (using all 246 extracted features and as well as with
two APOE genotype feature from each subject) groups, when
compared with the obtained outputs reported before (Zhang
et al., 2011; Young et al., 2013). Likewise, from same Table 4,
we can see that CSF individual modality of biomarkers has
outperformed other individual biomarkers with 94.17, 89.58,
94.05, 92.5% of AUC for AD vs. MCIs, AD vs. MCIc, HC vs.
MCIc, and HC vs. MCIs. Moreover, a lot of studies have shown
that different modalities of biomarkers contain complementary

FIGURE 6 | Comparison of the ROC-AUC curve corresponding with the best performance of combined fusion method in each experiment is displayed by the green

dashed lines. We also compare these ROC-AUC curves with those of single modality features. This comparison shows that combined features outperform the single

modality features in all experiments, which can be seen from above figure (A) AD vs. HC, (B) MCIs vs. MCIc, (C) AD vs. MCIs, (D) AD vs. MCIc, (E) HC vs. MCIc, and

(F) HC vs. MCIs.
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FIGURE 7 | Comparison of single modality results with multi-modality

classification result based on obtained accuracy and AUC score. From above

figure we can see that in every group combined feature (or multimodal

method) has outperformed the single modality results.

information for the discrimination of AD and MCI subjects.
Here, we quantitatively measure the discrimination agreement
between any two different classification groups using the kappa
index. For combined features (for AD vs. HC, AD vs. MCIs,
and AD vs. MCIc), the obtained level of agreement between
each group is 0.93, 0.91, and 0.84, respectively. Likewise,
for HC vs. MCIs and HC vs. MCIc, the obtained level of
agreement between each group are 0.90 and 0.88. Moreover,
for MCIs vs. MCIc group the obtained level of agreement
between each other is the 0.86, respectively. These all scores
are achieved using a 10-fold stratified CV method on combined
dataset. These results indicate that the combined feature
(for AD vs. HC) group has the highest level of agreement
between each other while compared to other groups and as
well as while compared to the individual performance of
each modality.

Recently, many studies have been published using a single
modality of biomarkers (Chetelat et al., 2007; Fjell et al., 2010;
Chen and Ishwaran, 2012; Beheshti et al., 2016; Jha et al., 2017;
Lama et al., 2017; Long et al., 2017), including sMRI, FDG-PET,
CSF, and APOE. Most of these studies used biomarkers from
the sMRI, because it is practically difficult to get biomarkers

from all modalities for the same patients due to the various
reasons, including the availability of imaging equipment, cost,
lack of patient consent, and patient death in longitudinal
studies. Previously proposed models using a single modality
have achieved good performance for AD vs. HC classification,
where for MCIs vs. MCIc their classification accuracy is very low
compared to our proposed multimodal technique. Here, we have
performed an experiment to assess the classification performance
using features from every single modality independently, as well
as with the combination of multimodal biomarkers. A kernel-
based multiclass SVM classifier was utilized, and the comparison
of the obtained single modality results with the multimodal
classification results are shown in Figure 7. In terms of accuracy
and AUC, the classification performance using features from
CSF is generally better than those using genetic and imaging
features, which highlights the importance of Aβ plaques as
biomarkers in the classification of AD, while in comparison to
the performance with multimodal biomarkers, its performance is
slightly lower. In addition, we can see that for the MCIs vs. MCIc
comparison, each modality of biomarker has performed well.
Different methods were used to evaluate the classification of AD
using multimodal data. First, we combine all high-dimensional
features from four modalities into a single feature vector for
classification of AD and MCI subjects. After that, all features
were normalized (to have a zero mean± unit standard deviation)
before using them in the classification process. This combined
multimodal method provides a straightforward method of using
multimodal data. Subsequently, we passed these features to
the kernel-based multiclass SVM classifier for classification
purposes with a 10-fold stratified CV strategy as described above,
and obtained results are shown in Table 4 and Figure 7. As
we can see in Table 4, our early fusion combination method
consistently outperforms the performance of individual modality
of biomarkers.

Recently, several studies have investigated neuroimaging
techniques for the early detection of AD, with the main focus on
MCI subjects, whomay or may not convert to AD, and separating
patients with AD from healthy controls using multimodal data.
However, it is difficult to make direct comparisons with these
state-of-the-art methods since a majority of the studies have used
different validation methods and datasets, which both crucially
influence the classification problem. The first study by Zhang
et al. (2012) obtained an accuracy of 76.8% (sensitivity and
specificity of 79 and 68%) for the classification of converters and
stable MCI subjects within 24 months.

These results were achieved using a multi-kernel SVM on
a longitudinal ADNI dataset. Another study (Young et al.,
2013) used a Gaussian process method for classification of
MCIs vs. MCIc using several modalities. They reported an
accuracy of 69.9% and AUC of 79.5%. Another study by Suk
et al. (2014) used shared features from two imaging modalities,
MRI and PET, using a combination of hierarchical and deep
Boltzmann machines for a deep learning process; their proposed
method achieved 74.66% accuracy and 95.23% AUC when
comparing MCI-C vs. MCI-NC. In another study (Cheng et al.,
2015), the authors introduced domain transfer learning using
multimodal data (i.e., MRI, CSF, and PET) with an accuracy
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TABLE 5 | Classification performance for the proposed method compared with published state-of-the art methods for differentiating between MCIs vs. MCIc.

Method Modality Subjects AUC ACC SEN SPEC

Zhang et al. (2012) Longitudinal (MRI + PET) 88 76.8 78.4 79 68

Young et al. (2013) MRI + PET + APOE 143 79.5 69.9 78.7 65.6

Suk et al. (2014) PET + MRI 204 74.66 75.92 48.04 95.23

Cheng et al. (2015) MRI + PET + CSF 99 84.8 79.4 84.5 72.7

Moradi et al. (2015) MRI + AGE +

Cognitive measure

264 90.20 81.72 86.65 73.64

Beheshti et al. (2017) MRI 136 75.08 75 76.92 73.23

Liu et al. (2017) MRI + PET 234 80.8 73.5 76.19 70.37

Long et al. (2017) MRI (AMYG) 227 93.2 88.99 86.32 90.91

Proposed method MRI + PET + CSF +

APOE genotype

82 93.59 94.86 100 88.71

of 79.4% for MCIs vs. MCIc with an AUC of 84.8%. In
another study (Moradi et al., 2015), the authors employed a
VBM analysis of gray matter as a feature, combining age and
cognitive measures. They reported an AUC of 90.20% with
81.72% accuracy comparing MCIc vs. MCIs sample. Another
study (Beheshti et al., 2017), used feature ranking and a genetic
algorithm (GA) for selection of optimal features for the classifier.
Their method achieved an accuracy of 75%, sensitivity of 76.92%,
specificity of 73.23%, and AUC of 75.08% for pMCI vs. sMCI.
Liu et al. (2017) proposed combining two imaging modalities
using independent component analysis and the Cox model for
prediction of MCI progression. They achieved 80.8% AUC with
73.5% accuracy in comparisons of MCIc vs. MCIs. Recently,
another author (Long et al., 2017) used Free surfer software
to segment 3-T T1 images into many different parts and later
used a multi-dimensional scaling method for feature selection
before sending the selected features to the classifier. Their
proposedmethod achieved an AUC of 93.2%, accuracy of 88.88%,
sensitivity of 86.32, and specificity of 90.91% when differentiating
sMCI from pMCI using only specific amygdala features. As
shown in Table 5, the performance of the proposed system
was highly competitive in performance terms when compared
to the other systems reported in the literature for MCIs vs.
MCIc classification.

CONCLUSION

In this study, we have proposed a novel method that shows
how to extract 246 ROI from two imaging modalities, PET
and sMRI, using a Brainnetome template image and then
combined these features obtained from imaging with CSF
and APOE genotype features from the same subjects. In the
proposed method, we used a random tree embedding method
to transform obtained features to a higher dimensional state
and later we used a truncated SVD dimensionality reduction
method to select only the important features, which increased
the classification accuracy using kernel-based multiclass SVM
classifier. The obtained experimental results prove that a
combination of biomarkers from all four modalities is a reliable
technique for the early prediction of AD or prediction of

MCI conversion, especially with regards to high-dimensional
data pattern recognition. In addition, our proposed method
achieved 94.86% accuracy with 93.59% AUC and a Cohen’s
kappa index of 0.86 when distinguishing between MCIs vs.
MCIc subjects. The performance of the proposed computer-
aided system was measured using 158 subjects from the ADNI
dataset with a 10-fold stratified cross-validation technique.
The experimental results show that the performance of the
proposed approach can compete strongly with other state-of-
the-art techniques using biomarkers from all four modalities
mentioned in the literature.

In future, we plan to combine demographic information of
the studied subjects as features with the proposed model for the
classification of AD and we will also carry out an investigation of
the multimodal multiclass classification of AD using AV-45 and
DTI modality of biomarkers.
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The functional magnetic resonance imaging (fMRI) data and brain network analysis

have been widely applied to automated diagnosis of neural diseases or brain diseases.

The fMRI time series data not only contains specific numerical information, but also

involves rich dynamic temporal information, those previous graph theory approaches

focus on local topology structure and lose contextual information and global fluctuation

information. Here, we propose a novel multi-scale functional connectivity for identifying

the brain disease via fMRI data. We calculate the discrete probability distribution of

co-activity between different brain regions with various intervals. Also, we consider

nonsynchronous information under different time dimensions, for analyzing the contextual

information in the fMRI data. Therefore, our proposed method can be applied to more

disease diagnosis and other fMRI data, particularly automated diagnosis of neural

diseases or brain diseases. Finally, we adopt Support Vector Machine (SVM) on our

proposed time-series features, which can be applied to do the brain disease classification

and even deal with all time-series data. Experimental results verify the effectiveness of our

proposed method compared with other outstanding approaches on Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset and Major Depressive Disorder (MDD) dataset.

Therefore, we provide an efficient system via a novel perspective to study brain networks.

Keywords: functional magnetic resonance imaging, multi-scale time-series, Alzheimer’s disease, major

depressive disorder, functional connection

1. INTRODUCTION

The functional Magnetic Resonance Imaging (fMRI) technique provides an opportunity to
quantify functional integration via measuring the correlation between intrinsic Blood-Oxygen-
Level-Dependent (BOLD) signal fluctuations of distributed brain regions at rest. The BOLD signal
is sensitive to spontaneous neural activity within brain regions, thus it can be used as an efficient
and noninvasive way for investigating neurological disorders at the whole-brain level. Functional
connectivity (FC), defined as the temporal correlation of BOLD signals in different brain regions,
can exhibit how structurally segregated and functionally specialized brain regions interact with
each other. Therefore, the brain network analysis using fMRI data will provide great advantages to
automated diagnosis of neural diseases or brain diseases.

Some researchers model the FC information as a specific network by using graph theoretic
techniques. Differences between normal and disrupted FC networks caused by pathological
attacks provide important biomarkers to understand pathological underpinnings, in terms of
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the topological structure and connection strength. The network
analysis has been becoming an increasingly useful tool for
understanding the cerebral working mechanism and mining
sensitive biomarkers for neural or mental diseases. Zeng
et al. (2018) propose a new switching delayed particle swarm
optimization (SDPSO) algorithm is proposed to optimize the
SVM parameters. Using graph theories, the brain network
analysis provides an effective solution to concisely quantify the
connectivity properties of brain networks, where each node
denotes a particular anatomical element or a brain region, and
each edge represents the relationship between a pair of nodes,
such as anatomical, functional or effective connections (Friston,
2011). The anatomical connection typically corresponds to white
matter tracts betweenmany pairs of brain regions. The functional
connection corresponds to magnitudes of temporal correlations
in activity and occurs between some pairs of anatomically
unconnected regions, which may reflect linear or nonlinear
interactions, as well as interactions within different time scales
(Zhou et al., 2009). The effective connection represents direct
or indirect causal influences of one region on another region,
which may be estimated from observed perturbations whether
synchronous or asynchronous (Friston et al., 2003). As a
brain network analysis approach, the graph theory offers two
important advantages (Tijms et al., 2013). One is that it provides
quantitative measurement, which can preserve the connectivity
information in the network and thus reflect the segregated
and integrated nature of local brain activity. The other is that,
it provides a general framework for comparing heterogeneous
graphs constructed by different types of data, such as anatomical
and functional data.

However, these graph theory approaches have many
drawbacks that must be overcome. First, the graph theory has
many limitations, on the one hand, common graph theory
features such as edge weights, path lengths and clustering
coefficients (Rubinov and Sporns, 2010; Chen et al., 2011)
usually focus on local topology structure and lose their global
topology characteristics (Sanz-Arigita et al., 2010; Jie et al.,
2018); on the other hand, each node in the brain networks
is uniquely corresponding to a specific brain region, mostly
ignoring the label information of each node (Jie et al., 2018).
Second. the functional connectivity is more sensitive to local
information rather than the global topology, but some recent
studies (Hutchison et al., 2013; Leonardi et al., 2013; Zeng
et al., 2013, 2014; Allen et al., 2014) indicate that the FC
network contains rich dynamic temporal information. To
be more concrete, for each brain region, a sliding window
approach is performed to generate a set of BOLD subseries
on schizophrenia disease diagnosis (Damaraju et al., 2014)
and others (Chen et al., 2016; Wee et al., 2016). Third, the
raw functional data is underutilized, building brain network
from raw data may lose the temporal or context information.
For example, Pearson’s Correlation Coefficient (PCC) is the
simplest and most commonly scheme in functional connectivity
estimation, which is the covariance of the two variables
divided by the product of their standard deviations. Clearly,
according to the mathematical definition, the PCC value is
context-independent or order-independent in time series,

not considering nonsynchronous information under different
time dimensions.

In view of the above, the fMRI time series not only contains
specific numerical information, but also involves contextual
information and global fluctuation information. In this paper,
we propose a novel time-series model based on Jensen-Shannon
divergence for identifying the brain disease via fMRI data, and
the flow chart is shown in Figure 1. First, we calculate the
discrete probability distribution of co-activity between different
brain regions with various intervals in multi-scale time series
data. Second, the contextual information is taken into account
in analyzing the correlation and causality among the fMRI
data. Third, we design a novel method based on time-series to
measure the similarity between two object co-activity intensity of
brain functional connectivity. Finally, we adopt Support Vector
Machine (SVM) on our proposed time-series features, which can
be applied to do the brain disease classification and even deal with
all time-series data. Experimental results verify the effectiveness
of our proposed method compared with other outstanding
approaches on Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset and Major Depressive Disorder (MDD) dataset.
The rest of this paper is organized as follows. We start by a brief
review of dataset and pre-processing. Then, we formulate the
problem and present our proposedmethod. Finally, experimental
results are reported, followed by the conclusion of this work.

2. MATERIALS AND METHODS

In this section, we introduce the flow of our method. First,
we preprocessed the original data, removed the noise from the
original data, and segmented the fMRI image data through the
brain region template. Next, we extract information or features
from the perspective of functional connection between brain
regions. To overcome the shortcoming of traditional Pearson
Correlation Coefficient (PCC) methods, we propose a novel
framework for feature extraction of brain functional connection.
Then, through feature selection, we use the classification model
for predicting brain disease. Finally, we discuss parameter
settings in the model.

2.1. Dataset
We carry out experiments on two different datasets. One is
a public Alzheimer’s Disease Neuroimaging Initiative database
(Jack et al., 2010), and another one is a volunteer experiment
of Major Depressive Disorder (Geng et al., 2018). In the data
pre-processing, we deal with the raw data by a widely used
software package (SPM12), and then divide one brain into 116
brain regions.

2.1.1. ADNI
In Alzheimer’s Disease Neuroimaging Initiative database, we
emply a total of 169 subjects, including 87 Alzheimer’s patients
(49 females and 38 males) and 82 normal controls (46 females
and 36 males). We download the ADNI data from website http://
adni.loni.usc.edu/.
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FIGURE 1 | The framework of our proposed multi-scale time-series model for

brain diseases diagnosis.

2.1.2. MDD
In volunteer experiment, we use a total of 60 subjects, including
31 volunteers with Major Depressive Disorder (MDD) (22
females and 8 males, aged 60.5 ± 11.2 years, range 25 − 65
years) and 29 healthy volunteers (18 females and 11 males, aged
50.1 ± 10.6 years, range 25 − 65 years). Those major depressive
disorder subjects without comorbidity had a minimum duration
of illness more than 3 months. Each participant provided written
informed consent and the study was conducted in accordance
with the local Ethics Committee.

2.2. Pre-processing
We perform image pre-processing for the fMRI data using
a standard pipeline, carried out via the statistical parametric
mapping (SPM12, www.fil.ion.ucl.ac.uk/spm/software/spm12/)
software package on Matlab. The data pre-processing procedure
includes slice timing, realign, segment, normalization and band-
pass filtered. For more detailed data pre-processing procedure,
please refer to website.

The whole brain of each subject in fMRI space is parcellated
into 116 brain regions of interest (ROI) according to the
Automated Anatomical Labeling (AAL) template. This atlas
divided the brain into 78 cortical regions, 26 cerebellar regions
and 12 subcortical regions according to anatomy, details in
literature (Tzourio-Mazoyer et al., 2002). For each of the
116 ROIs, the mean time series was calculated by averaging
the Blood-Oxygen-Level-Dependent (BOLD) signals among all
voxels within the specifically ROI. There exist many similar
templates such as Brainnetome template (Fan et al., 2016) and
Harvard-Oxford template.

2.3. Feature Extraction
After pre-processing, how to excavate the location and cause
of lesions is the focus of our research and attention. The most
commonmethod is to calculate the correlation between two brain
regions through Pearson Correlation Coefficient (PCC), and
analyze lesions by observing the changes of correlation. However,
the PCC value is context-independent or order-independent, that
is not considering nonsynchronous information at different time
intervals. Here, we first give a basic introduction to PCC, and
then elaborate on our approach.

2.3.1. Pearson Correlation Coefficient
Pearson’s correlation coefficient (PCC) is the simplest and most
commonly scheme in functional connectivity estimation. For any
two brain regions, the coordination degree of blood-oxygen-level
dependent fluctuation is calculated as the functional connection
strength between these two brain regions. Typically, in the case
of the AAL template, this step extracts the 6,670-dimensional
features. Mathematical definition is the covariance of the two
variables divided by the product of their standard deviations,
as follows:

PCCX,Y =
E[(X − µX)(Y − µY )]

σXσY
(1)

Clearly, according to the formula, the value of the Pearson’s
correlation coefficient is context-independent or order-
independent in time series, which it only limits alignment at the
same time, so information about the time dimension or context
is missing.

2.3.2. Multi-Scale Functional Connectivity of Brain

Regions
We extract the discrete probability distribution of co-activity
in time series data. First, we use the function φ(·) to evaluate
temporal dynamic property of the time series data. In addition,
we convert φ(·) to g(·), defined as follows:

φ(tk1i1 ,j1 , t
k2
i2 ,j2

) = g(fϕ(t
k1
i1 ,j1

), fϕ(t
k2
i2 ,j2

)) (2)

where f (·) represents a mapping function that makes use of prior
knowledge in order to map the original time series into another
specific form, g(·) represents the function to evaluate temporal
information after the mapping operation.
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We utilize the prior knowledge in order to map the original
multivariate time series data into another specific form, such as a
mapping of numeric, state and character. The mapping function
is defined as follows:

fϕ(Ak) = fϕ{T
k
1 ,T

k
2 , · · · ,T

k
i , · · · ,T

k
N}

= {fϕ(T
k
1), fϕ(T

k
2), · · · , fϕ(T

k
N)}

(3)

where Ak denotes the original time series data, and ϕ denotes the
prior knowledge.

In the multivariate time series data Ak, the correlation value
between Tk

i and Tk
j is defined as follows:

Ck
φ(·)(i, j) =

M
∑

m = 1

φ(tki,m, t
k
j,m) (4)

In addition, the correlation value between Tk
i and Tk

j in interval

It = [rt , st] is defined as follows:

Ck
φ(·)(i, j, It) =

M
∑

m=1

st
∑

l=rt

φ(tki,m, t
k
j,m+l) (5)

Notably, it is obvious that Ck
φ(·)

(i, j, It) 6= Ck
φ(·)

(j, i, It).

Generally, we explore the correlation of time series data in
multiple intervals. Let Ck

φ(·)
∈ R

N×N×T denotes the multi-scale

weighted correlation coefficient in multivariate time series data
Ak. Here, Ck

φ(·)
is a 3-order tensor, N is the number of time series

data, T is the number of intervals.
Next, we transform the tensor Ck

φ(·)
into a discrete probability

distribution Pk
φ(·)

for analyzing co-activity in multi-scale time

series data, as follows:

Pk
φ(·) = {pk

φ(·)(i, j, It)|i, j ∈ [1,N], It ∈ I} (6)

where pk
φ(·)

(i, j, It) represents the proportion of correlation value

between i-th time series data and j-th time series data based on
function φ(·) in interval It , defined as follows:

pk
φ(·)(i, j, It) =

Ck
φ(·)

(i, j, It)
∑N

i=1

∑N
j=1

∑T
t=1 C

k
φ(·)

(i, j, It)
(7)

2.4. Classification Model for Predicting
Brain Disease
In disease prediction, the number of samples is limited, but the
feature dimension is usually large, so we need to both compress
the feature space to improve the accuracy and analyze the
etiology with more meaningful features. We use t-test for feature
selection, and then we use Support Vector Machine (SVM) as the
learning model, which is described in detail as follows.

2.4.1. Feature Selection
We use the two-sample t-test as the feature selection method.
We assume that one feature of positive and negative samples
is subject to the distribution of the same mean, and we set the
significance parameter p = 0.05.

2.4.2. Support Vector Machine
We adopt Support Vector Machine (SVM) technique developed
by Cortes and Vapnik (1995) for solve the binary classification
problem. Also, various kinds of binary classification model can
be applied in many other biomedical prediction problems (Guo
et al., 2014, 2015, 2016; Ding et al., 2016a,b, 2017a,b; Liu et al.,
2016; Zeng et al., 2016; Shen et al., 2017a,b; Xuan et al., 2017; Pan
et al., 2018). The decision function is shown as follows:

γ (Ak) = sign{

K
∑

i=1

αiyi ·K(Ak,Ai)+ b} (8)

whereK(Ak,Ai) represents our proposed novel time-series kernel
function, and αi is calculated as follows:

Maximize

K
∑

i=1

αi −
1

2

K
∑

i=1

K
∑

j=1

αiαj · yiyj ·K(Ai,Aj)

s.t. 0 ≤ αi ≤ C

K
∑

i=1

αiγi = 0

(9)

where C is a regularization parameter that controls the tradeoff
between margin and misclassification error.

2.5. Model Parameter
In practice, we make more detailed discussion for parameters in
our method. We discuss some prior knowledge and assumptions
in our problem of Alzheimer’s disease and Major Depression
Disorder diagnosis, and some details need to be clarified. The
time series data not only carry specific numerical information,
but also include contextual and fluctuation trend information.

Here, due to the BOLD imaging principle, we pay more
attention to the time points of high activity state, that is, time
points with high values in time series. We define a dynamic or
soft threshold to distinguish whether a time point is active or not,
that is, converting a numeric sequence into a state sequence or
0/1 sequence.

For all active time points in one set of time series, we
count the number of time points of simultaneous responses in
other sets of time series. Moreover, we analyze the co-active
between two sets of time series in asynchronous. As we get
more details with asynchronous analysis, we’ll get more essential
information. In the experiments, it is also proved by the higher
classification accuracy.

2.5.1. Time Series Mapping
We adopt a empirical rule to indicate the dynamic threshold,
called three-sigma method (WalterA, 1986). This method
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converts a numeric sequence into a state sequence, the dynamic
threshold represented as follows:

th(Tk
i ) = µ(Tk

i )+ η · σ (Tk
i ) (10)

where

µ(Tk
i ) =

∑M
m=1 t

k
i,m

|Tk
i |

(11)

and

σ (Tk
i ) =

∑M
m=1(t

k
i,m − µ(Tk

i ))
2

|Tk
i | − 1

(12)

In a multivariate time series Ak, we calculate a corresponding
dynamic threshold th(Tk

i ) for each set of time series Tk
i . Then,

for a set of time series Tk
i , we convert a numeric sequence into a

0/1 sequence according to mapping function f (·), as follows:

f (tki,m) =

{

1, tki,m ≥ th(Tk
i )

0, else
(13)

The magnitude of η indicates the sensitivity of our method to the
active state. In our experiment, η is set to 1.

2.5.2. Correlation Function φ

The correlation function represents the relationship between a
couple of time points in time series. In disease diagnosis, we only
focus on co-activity, that is, both brain region i in time point m
and brain region j in time point n are in active states. To be more
concrete, tki,m and tkj,n are greater than the threshold th(Tk

i ) and

th(Tk
j ), respectively.

g(f (tki,m), f (t
k
j,n)) =

{

1, f (tki,m) = f (tkj,n) = 1

0, else
(14)

Corresponding to Formula 2 above, φ(·) in our experiment is:

φ(tki,m, t
k
j,n) =

{

1, tki,m ≥ th(Tk
i ) & tkj,n ≥ th(Tk

j )

0, else
(15)

2.5.3. Interval Set I
For a collection of multiple intervals I, we extract local
information by the element of interval, that is, greater element,
more detailed information. Easy to be over-fit and sparse; if the
element of interval is little, we may lose some key information.
Also, for a interval It ∈ I, if It is close to zero, it means
that two time points that we’re interested in are very close; if
It is far from zero, it indicates that we extract long-distance
asynchronous information.

In our experiments, the interval collection I is set to
{[0, 0], [1, 1], [2, 2], [3, 12]}. Here, [0, 0] represents information
for synchronization, [1, 1] and [2, 2] represent short-distance
correlation for asynchronism, [3, 12] represents a loose interval
for asynchronism. Empirically, it is sensitive to close interval of
zero and loose for long distances.

3. RESULTS

Our experiment consists of three parts. To proof the effectiveness
of our approach, we perform on automated diagnoses of
Alzheimer’s disease and Major Depressive Disorder, respectively.
We evaluate the classification performance using the leave-one-
out cross-validation (LOOCV). And also, we adopt Accuracy,
Sensitivity, Specificity and AUC as evaluation standards. First,
we compare the results of the traditional PCC method
and our feature extraction method in the two data sets of
AD and MDD. Then, we compare the effects of different
classifiers. Finally, we compare our approach with some recent
research works.

3.1. Comparison of Different Features
Here, we compare the performance of traditional PCC
method and our feature extraction method to analyze fMRI
data. In addition to feature extraction, we use the same
experimental steps and parameters, including preprocessing,
feature selection and classifier. The results are shown
in Table 1.

On Alzheimer’s disease and major depressive disorder
database, we compare our method to traditional PCC method,
and classification results are summarized in Table 1. The
information extracted by our multi-scale functional connection
(Multi-Scale FC) method is used for predicting brain disease,
which is obviously higher than the traditional PCC method. On
Alzheimer’s disease dataset, our method achieves best specificity
of 0.9268. Moreover, by combining PCC and our method, we
achieve better results, with ACC of 0.8935 and AUC of 0.8748.
On MDD dataset, our method also achieve the best results, but
the difference is that PCC and multi-scale functional connection
are actually lower when combined. The experimental results
indicate that our approach is more effective than traditional PCC
or graph theory feature-based methods. Combining different
methods will yield better results, but there is also a risk of
over-fitting.

3.2. Comparison of Different Classifiers
In this part, we use the feature extraction model in the
previous step to compare the performance of different
classifiers. Specifically, we compare three classifiers:
random forest (RF), logistic regression (LR) and
support vector machine (SVM). The results are shown
in Table 2.

TABLE 1 | Comparison of different features.

Method Data set Accuracy Sensitivity Specificity AUC

PCC AD 0.5858 0.5747 0.5976 0.5612

Multi-Scale FC AD 0.8876 0.8506 0.9268 0.8562

Multi-Scale FC + PCC AD 0.8935 0.8850 0.9024 0.8748

PCC MDD 0.6167 0.6129 0.6207 0.6514

Multi-Scale FC MDD 0.9000 0.8710 0.9310 0.9295

Multi-Scale FC + PCC MDD 0.8667 0.8065 0.9310 0.8961
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TABLE 2 | Comparison of different classifiers.

Method Data set Accuracy Sensitivity Specificity AUC

LR AD 0.8579 0.7931 0.9268 0.8347

RF AD 0.8343 0.8276 0.8415 0.8284

SVM AD 0.8935 0.8850 0.9024 0.8748

LR MDD 0.8333 0.8387 0.8276 0.8684

RF MDD 0.8833 0.9032 0.8621 0.8921

SVM MDD 0.8667 0.8065 0.9310 0.8961

TABLE 3 | Comparison of different existing methods on ADNI.

Method Accuracy Sensitivity Specificity AUC

Baseline 0.5858 0.5747 0.5976 0.5612

FON 0.8580 0.8161 0.9024 0.8195

Shortest-path 0.7396 0.8161 0.6585 0.6938

WL-edge 0.6272 0.6437 0.6098 0.6084

WL-subtree 0.7811 0.7816 0.7805 0.7645

WL-Shortestpath 0.6095 0.5977 0.6220 0.5735

SKL 0.8462 0.8046 0.8902 0.8166

Our method 0.8876 0.8506 0.9268 0.8562

In this part, we use our proposed multi-scale functional
connection method to extract features, and compare the results
of different classifiers. Comparing these three classifiers, SVM
can achieve the highest AUC in both AD dataset and MDD
dataset, the best ACC can also be obtained on the AD data set,
which is generally a stable classifier. In addition, RF can obtain
the best ACC on the MDD dataset, and LR can obtain the best
Spe on the AD dataset. Overall, all three classifiers can achieve
good accuracy, indicating that the information extracted by our
method is effective and stable.

3.3. Comparison of Different Existing
Methods
We compare our proposed method to recent outstanding
studies. Baseline represents the traditional graph theory feature-
based method. Moreover, the state-of-the-art methods represent
three major groups of graph kernels on edge, subtree and
shortest-path, respectively. These graph kernel belong to
the Weisfeiler-Lehman graph kernel framework (Shervashidze
et al., 2011), denoted as WL-edge, WL-subtree and WL-
shortestpath, respectively. In addition, in the Alzheimer’s disease
diagnosis, we also compare with the graph kernel method with
shortest-path (Shortest-path) (Borgwardt and Kriegel, 2006),
the sliding window method (FON: 70-length sliding window
with 1-step) (Chen et al., 2016) and the sub-network kernel
method (SKL) (Jie et al., 2018). In the Major Depressive
Disorder classification problem, we compare to the method of
Geng et al. (2018).

On Alzheimer’s Disease Neuroimaging Initiative database,
we compare our method to seven existing methods, and
classification results are summarized in Table 3. Our method
achieves best accuracy of 0.8876 and best AUC of 0.8562.

TABLE 4 | Comparison of different existing methods on MDD.

Method Accuracy Sensitivity Specificity AUC

Baseline 0.6167 0.6129 0.6207 0.6514

Shortest-path 0.7833 0.8065 0.7586 0.8135

Xu et al. 0.8667 0.8710 0.8621 0.9103

Our Method 0.9000 0.8710 0.9310 0.9295

However, the accuracy values for Baseline, FON, Shortest-path,
WL-edge, WL-subtree, WL-Shortestpath and SKL are 0.5858,
0.8580, 0.7396, 0.6272, 0.7811, and 0.6095, respectively. Also, the
AUC values for these seven methods are 0.5612, 0.8195, 0.6938,
0.6084, 0.7645, and 0.5735, respectively. Comparing to these
methods, our method achieves accuracy improvement of 0.0296
and AUC improvement of 0.0367, respectively. The experimental
results indicate that our approach is far better than traditional
graph theory feature-based methods, and slightly better than the
state-of-the-art graph kernel-based methods.

On the volunteer experiments of Major Depressive Disorder,
we compare our method to three existing methods, and
classification results are summarized in Table 4. Our method
achieves best accuracy of 0.9000 and best AUC of 0.9295.
However, the accuracy values for Baseline, Shortest-path
and method of Xu et al. are 0.6167, 0.7833, and 0.8667,
respectively. Also, the AUC values for these three methods
are 0.6514, 0.8135, and 0.9103, respectively. Comparing to
these methods, our method achieves accuracy improvement
of 0.0333 and AUC improvement of 0.0192, respectively. The
experimental results indicate that our approach is far better than
traditional graph methods, and slightly better than the current
outstanding methods.

4. CONCLUSIONS

The fMRI time series data not only contains specific
numerical information, but also involves rich dynamic
temporal information. However, those previous graph
theory approaches focus on local topology structure and
lose contextual information and global fluctuation information.
Here, we propose a novel multi-scale functional connectivity
for identifying the brain disease via fMRI data. We calculate
the discrete probability distribution of co-activity between
different brain regions with various intervals. Also, we
consider nonsynchronous information under different time
dimensions, for analyzing the contextual information in
the fMRI data. Therefore, our proposed method can be
applied to more disease diagnosis and other fMRI data,
particularly automated diagnosis of neural diseases or brain
diseases. Experimental results verify the effectiveness of our
proposed method, so we provide an efficient system via a novel
perspective to study brain networks.In the future, parallel
computing (Zou et al., 2017), computational intelligence (Xu
et al., 2017; Zou et al., 2017) and neural networks (Song
et al., 2018; Xu et al., 2018) can be considered with the
growing of dataset.
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The presence of pathologies in magnetic resonance (MR) brain images causes

challenges in various image analysis areas, such as registration, atlas construction

and atlas-based segmentation. We propose a novel method for the simultaneous

recovery and segmentation of pathological MR brain images. Low-rank and sparse

decomposition (LSD) approaches have been widely used in this field, decomposing

pathological images into (1) low-rank components as recovered images, and (2) sparse

components as pathological segmentation. However, conventional LSD approaches

often fail to produce recovered images reliably, due to the lack of constraint between

low-rank and sparse components. To tackle this problem, we propose a transformed

low-rank and structured sparse decomposition (TLS2D) method. The proposed TLS2D

integrates the structured sparse constraint, LSD and image alignment into a unified

scheme, which is robust for distinguishing pathological regions. Furthermore, the well

recovered images can be obtained using TLS2D with the combined structured sparse

and computed image saliency as the adaptive sparsity constraint. The efficacy of the

proposed method is verified on synthetic and real MR brain tumor images. Experimental

results demonstrate that our method can effectively provide satisfactory image recovery

and tumor segmentation.

Keywords: MR brain images, image recovery, tumor segmentation, structured sparsity, low-rank, matrix

decomposition

1. INTRODUCTION

Automated image computing routines (e.g., segmentation, registration, atlas construction) that can
analyze the magnetic resonance (MR) brain tumor scans are of essential importance for improved
disease diagnosis, treatment planning and follow-up of individual patients (Iglesias and Sabuncu,
2015; Mai et al., 2015; Menze et al., 2015; Chen et al., 2018). Lately, a wave of deep learning is taking
over traditional computer aided diagnosis techniques, by learning abundant multi-level features
from large amount of training repository for image representation and analyzing (Litjens et al.,
2017; Shen et al., 2017). Various architectures of deep convolutional neural networks have been
developed and employed for brain tumor segmentation (Pereira et al., 2016; Havaei et al., 2017;
Kamnitsas et al., 2017; Zhao et al., 2018). Despite achieving satisfactory performance, deep learning
based approaches require enormous amount of labeled images to train a segmentation model.
Collecting and labeling useful training samples may last a lengthy duration thus sometimes is
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clinically impractical. In addition, the presence of pathologies
in MR brain images causes difficulties in most of other image
analyses, such as image registration, atlas construction and atlas-
based anatomical segmentation. The recovery of pathological
regions with normal brain appearances can facilitate subsequent
image computing procedures. For example, the recovered images
could further be used for atlas construction and specific patient’s
follow-up (Joshi et al., 2004; Liu et al., 2014; Zheng et al., 2017;
Han et al., 2018). However, there is lack of deep learning based
methods developed for pathological medical image recovery. In
contrast, the low-rank and sparse decomposition (LSD) (Wright
et al., 2009; Candès et al., 2011) scheme, learning normal
image appearance from unlabeled population data, has been
widely employed to decompose pathological MR brain images
into recovered normal brain appearances and pathological
regions (Liu et al., 2015; Tang et al., 2018).

Although the low-rank and sparse analyses of computational
brain tumor segmentation has attracted considerable attention
during last decade, it remains several challenges. First,
conventional LSD methods have to be computed on a series of
aligned images (Otazo et al., 2015; Tang et al., 2018), because
the image misalignment causes undesired structure differences
that would interfere the representation of sparse component.
Thus, the image alignment should be conducted before/during
the LSD computation; however, the image alignment itself is a
challenging task. Second, specific spatial constraint should be
imposed on sparse component to restrict the structured sparsity
of the tumor region in the whole image. Third, LSD methods
often produce recovered images (i.e., low-rank component) with
distorted pathological regions (Liu et al., 2015), due to the lack
of effective constraint between low-rank and sparse components.
Thus it is essential to adaptively balance the low-rank and
sparse components to reliably recover tumor regions meanwhile
retaining normal brain regions.

To address aforementioned issues, this paper presents a
novel method for the simultaneous recovery and segmentation
of pathological MR brain images (see Figure 1). Specifically,
we propose a transformed low-rank and structured sparse
decomposition (TLS2D)method. The proposed TLS2D integrates
the structured sparsity constraint, LSD and image alignment into
a unified framework, which is robust for extracting pathological
regions. Furthermore, the well recovered images can be obtained
using TLS2Dwith the combined structured sparse and computed
image saliency as the adaptive sparsity constraint. Experimental
results on synthetic and realMR brain tumor images demonstrate
that the proposed TLS2D can effectively extract and recover
tumor regions.

2. METHODS

The proposed recovery and segmentation framework is shown
in Figure 2. Our TLS2D first iteratively aligns all images
and decomposes aligned images into low-rank and structured
sparse components. Then the structured sparse components are
combined with the computed saliency maps to generate tumor
probability maps as the adaptive sparsity constraint. The final

FIGURE 1 | The proposed TLS2D method can decompose (A) the MR brain

tumor image into (B) the recovered MR image with quasi-normal brain

appearances, and (C) the extracted tumor region. The red contour in (A)

indicates the manually delineated tumor boundary. The yellow box in

(B) indicates the reliably recovered region.

recovery and segmentation is obtained by imposing the adaptive
sparsity constraint on the TLS2D.

The following subsections present a brief review of classical
LSD, the details of our method and elaborate the novel TLS2D.

2.1. Review of Low-Rank and Sparse
Decomposition (LSD)
Suppose we are given n previously aligned MR brain images
A1,A2, ...,An ∈ R

w×h, wherew and h denotes width and height of
the image, respectively.We can vectorize each imagematrixAn to
form the column of A = [vec(A1), vec(A2), ..., vec(An)] ∈ R

m×n,
wherem = w× h.

The conventional LSD method decomposes A into a low-
rank matrix L and a sparse matrix S, where L indicates the
linearly correlated normal images, and S represents sparse tumor
regions. The decomposition can be solved by the following
convex optimization:

min
L,S

‖L‖∗ + λ ‖S‖1 s.t. A = L+ S, (1)

where ‖L‖∗ is the nuclear norm of L (i.e., the sum
of its singular values), ‖S‖1 is the ℓ1 norm of S, and
regularizing parameter λ weights the relationship between low-
rank and sparse components. The optimization in Equation (1)
can be solved by augmented Lagrangian multiplier (ALM)
method (Lin et al., 2010).

To realize practical and reliable recovery and segmentation
of pathological MR images, the LSD remains three issues to be
addressed: (1) all images shall be aligned in the same spatial
domain; (2) S shall be structured sparse to better represent
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FIGURE 2 | The illustration of the whole recovery and segmentation framework using the proposed transformed low-rank and structured sparse decomposition

(TLS2D) method.

the structured sparsity of the contiguous tumor region in the
whole image; (3) as illustrated in Figure 3, as the parameter λ

becomes smaller, the low-rank images can recover tumor regions
more reliably, but also generate more blurred appearances in
originally normal regions. Therefore, regularizing parameter
λ shall be different regarding to normal and tumor regions,
thus to adaptively balance the low-rank and sparse components
to reliably recover tumor regions meanwhile retaining normal
brain regions.

2.2. Transformed Low-Rank and Structured
Sparse Decomposition (TLS2D)
To tackle the issues in LSD, we propose a transformed low-
rank and structured sparse decomposition. Firstly, considering
the tumor region usually occupies a contiguous portion of the
brain image, thus it is reasonable to model the tumor region
using the structured sparsity norm. Inspired by the structured
sparsity in Jia et al. (2012), we introduce a structured sparsity
norm �(S) to model tumor region, and define low-rank and
structured sparse decomposition (LS2D) as:

min
L,S

‖L‖∗ + λ�(S) s.t. A = L+ S, (2)

where

�(S) =

n
∑

i=1

∑

g∈G

∥

∥mat(Si)g
∥

∥

∞
. (3)

In Equation (3), Si ∈ R
m is the ith column in S;mat(Si) ∈ R

w×h is
the matrix form of Si. We define 3× 3 overlapping-patch groups
G inmat(Si), and g ∈ G represents each 3× 3 group. Each group
overlaps 6 pixels with its neighbor group. ‖·‖∞ is the ℓ∞ norm
(i.e., the maximum value in a group g). The structured sparsity
norm �(S) in Equation (2) can constrain S to be structured
distribution thus better representing tumor region.

During the decomposition, the spatial mismatch between
different images may cause undesired sparse noise. To alleviate
the spatial mismatch, we perform image alignment in our
decomposition procedure (Zheng et al., 2017). The proposed
TLS2D is defined as follows:

min
L,S,τ

‖L‖∗ + λ� (S) s.t. A ◦ τ = L+ S, (4)

where τ denotes a set of n affine transformations τ1, τ2, ..., τn that
warps A to align all images; A ◦ τ = [vec(A1 ◦ τ1), vec(A2 ◦

τ2), ..., vec(An ◦ τn)] ∈ R
m×n.

The optimization of our TLS2D in Equation (4) is non-convex
and difficult to solve directly due to the nonlinearity of the τ. To
tackle this issue, we can iteratively linearize about the estimate
of τ according to Boyd et al. (2011) and Wang et al. (2018).
Specifically, we linearize the constraint by using the local first
order Taylor approximation for each image as A ◦ (τ + ∆τ ) ≈

A ◦ τ +
∑n

i=1 Ji∆τiǫiǫ
T
i , where ∆τ = [∆τ1,∆τ2, ...,∆τn] ∈

R
p×n, and each ∆τi ∈ R

p is defined by p parameters of the
transformation; Ji =

∂
∂ζ
vec(Ai ◦ ζ )|ζ=τi ∈ R

m×p is the Jacobian

of the image Ai with respect to the transformation τi, and {ǫi}

denotes the standard basis for R
n. Thus, Equation (4) can be

relaxed into the following optimization:

min
L,S,1τ

‖L‖∗ + λ�(S) s.t. A ◦ τ +

n
∑

i=1

Ji∆τiǫiǫ
T
i = L+ S. (5)

Then the resulting convex programming in Equation (5) can
be solved by ALM method (Lin et al., 2010). We formulate the
following augmented Lagrangian function:

L(L, S,∆τ,Y;µ) = ‖L‖∗ + λ�(S) +
〈

Y , h(L, S,∆τ)
〉

+
µ

2

∥

∥h(L, S,∆τ)
∥

∥

2

F
, (6)

where h(L, S,∆τ) = A ◦ τ+
∑n

i=1 Ji∆τiǫiǫ
T
i − L− S; Y ∈ R

m×n

is the Lagrangian multiplier and µ is a positive hyperparameter;
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FIGURE 3 | The original MR images (bottom row), and corresponding recovered low-rank components (middle row) and sparse components (top row) given by

conventional LSD method, with different values of regularizing parameter λ.

〈·, ·〉 denotes the matrix inner product, and ‖·‖F is the Frobenius
norm. The ALM algorithm then estimates both the optimal
solution and the Lagrange multiplier by iteratively solving the
following four subproblems:

Lt+1 = argmin
L

L(L, St ,∆τt ,Y t;µt),

St+1 = argmin
S

L(Lt+1, S,∆τt ,Y t;µt),

∆τt+1 = argmin
1τ

L(Lt+1, St+1,∆τt ,Y t;µt),

Y t+1 = Y t + µth(Lt+1, St+1,∆τt+1),

(7)

where superscript t denotes the iteration. In each iteration, the
first problem in Equation (7) can be expressed as

Lt+1 = argmin
L

{

‖L‖∗ +
µt

2
‖HL − L‖2F

}

, (8)

where HL = A ◦ τ +
∑n

i=1 Ji∆τtiǫiǫ
T
i − St + Y t/µt . The

problem in Equation (8) has a simple closed-form solution by soft
thresholding operator (Parikh et al., 2014). Suppose the singular
value decomposition of HL is (U,6,V) = svd(HL), then Lt+1 =

US 1
µt
[6]VT , where S 1

µ
(x) = {[x− 1

µ
]+− [−x− 1

µ
]+} is the soft

thresholding operator and [·]+ = max(·, 0).
The second problem in Equation (7) can be rewritten as

St+1 = argmin
S

{

µt

2
‖HS − S‖2F + λ�(S)

}

, (9)

where HS = A ◦ τ +
∑n

i=1 Ji∆τ ti ǫiǫ
T
i − Lt+1 + Y t/µt . The

problem in Equation (9) is the proximal operator associated with
the structured sparsity norm, which can be calculated by solving
a quadratic min-cost flow problem (Mairal et al., 2010).

Then given the current estimated Lt+1 and St+1, the solution
of the third problem in Equation (7) can be calculated as

∆τt+1 =

n
∑

i=1

J†
i (L

t+1 + St+1 − A ◦ τ − Y t/µt)ǫiǫ
T
i , (10)

where J†
i denotes the Moore-Penrose pseudoinverse of Ji. We

summarize the solver for Equation (4) in Algorithm 1.

2.3. Recovery and Segmentation
Framework
In our recovery and segmentation framework, at the first step
we employ the proposed TLS2D to align all MR images and
meanwhile obtaining low-rank and structured sparse images (see
Figure 2). The low-rank images at this step blur the tumor region
and yet cannot reliably recover the normal image appearances.
To address this problem, we propose to leverage the obtained
structured sparse component to adjust the regularizing parameter
λ in Equation (4) for the adaptive sparsity constraint.

Specifically, we compute the saliency maps of the MR images
using (Perazzi et al., 2012). The saliency map indicates the
saliency of each pixel to catch the human attention, with value
1 denoting the highest attention and 0 denoting no attention.
According to (Perazzi et al., 2012), in order to calculate the
saliency of an image, we first abstract this image into perceptually
homogeneous elements using (Achanta et al., 2012). We then
employ a set of high-dimensional Gaussian filters (Adams et al.,
2010) to calculate two contrast measures (i.e., the uniqueness
and spatial distribution of elements), and use these two measures
to predict the final saliency of each pixel. In pathological MR
images, the most salient part shall be the tumor regions. We then
obtain the tumor probability map of an image by computing
the dot product between its binary structured sparse image
and its corresponding saliency map, as shown in Figure 2.
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FIGURE 4 | Recovery and segmentation of (A) synthetic MR brain tumor images: (B) the segmented tumors, (C) the recovered images with normal brain

appearances, (D) the corresponding original MR images from LPBA40 (Shattuck et al., 2008). Yellow boxes illustrate the reliably recovered regions.

FIGURE 5 | The structural similarity index (SSIM) between each of the original MR images and the corresponding recovered images by different methods. The “Initial”

indicates the SSIM between the synthetic tumor images and the corresponding original images.
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Algorithm1:Transformed Low-Rank and Structured Sparse
Decomposition (TLS2D)

Input : A = [vec(A1), vec(A2), ..., vec(An)] ∈ R
m×n, the

regularizing parameter λ, the penalty constant ρ,
the tolerance ǫ, and maximal iterationmaxIter.

Output: Solution (L, S,∆τ) to the problem in Equation (5)
1 Initialize: L0 = S0 = 0 ∈ R

m×n, Y0 = A, ∆τ0 = 0 ∈ R
p×n,

λ = 1√
max(m,n))

, µ0 = 1, ρ = 1.25, ǫ = 10e−7,

maxIter = 1000
while t ≤ maxIter do

2 Update L: HL = A ◦ τ +
∑n

i=1 Ji∆τtiǫiǫ
T
i − St + Y t/µt ;

3 (U,6,V) = svd(HL);

4 Lt+1 = US 1
µt
[6]VT .

5 Update S:HS = A ◦ τ+
∑n

i=1 Ji∆τtiǫiǫ
T
i − Lt+1 + Y t/µt ;

6 St+1 = prox λ

µt
(HS).

7 Update ∆τ:

∆τt+1 =
∑n

i=1 J
†
i (L

t+1 + St+1 − A ◦ τ − Y t/µt)ǫiǫ
T
i .

8 Update Y : Y t+1 = Y t + µth(Lt+1, St+1,∆τt+1).

9 Update µ: µt+1 = ρµt .

10 if ||h(Lt+1, St+1,∆τt+1)||2 ≤ ǫ then

11 Converge and break
12 end

13 end

14 return L = Lt+1, S = St+1, ∆τ = ∆τt+1 and Y = Y t+1

The tumor probability map indicates the probability of each
pixel being tumor region. We denote tumor probability map
P = [vec(P1), vec(P2), ..., vec(Pn)] ∈ R

m×n.
Finally, we use the tumor probability map to adaptively adjust

the regularizing parameter λ in Equation (4). We define the
adaptive TLS2D to obtain the final tumor segmentation and well
recovered quasi-normal images:

min
L,S,τ

‖L‖∗ + λ(1− P)⊙ �(S) s.t. A ◦ τ = L+ S, (11)

where 1 ∈ R
m×n, with each element equals to 1. λ(1 − P) is the

adaptive regularizing matrix. ⊙ denotes dot product. In such a
way, the sparse constraints for tumor and normal regions are set
differently, thus our TLS2D can reliably recover tumor regions
meanwhile retaining normal regions.

3. EXPERIMENTS AND RESULTS

The proposed TLS2D method was evaluated on both synthetic
and real MR brain tumor images. We also extensively
compared our method with state of the art, including Robust
Principal Component Analysis (RPCA) (Candès et al., 2011),
Robust Alignment by Sparse and Low-rank decomposition
(RASL) (Peng et al., 2012), and Spatially COnstraint LOw-
Rank (SCOLOR) (Tang et al., 2018). Specifically, the RPCA
method is one of the most classical and successful low-rank
and sparse decomposition schemes; the RASL method considers

TABLE 1 | Dice values of different methods on synthetic and real MR brain tumor

images.

Data type RPCA RASL SCOLOR TLS2D (Ours)

Synthetic tumor images 0.54± 0.25 0.62± 0.26 0.70± 0.26 0.80 ± 0.28

Real tumor images 0.46± 0.20 0.51± 0.20 0.63± 0.30 0.75 ± 0.26

Best results are highlighted in bold.

spatial mismatch between different images and hence adds image
alignment into the low-rank based decomposition procedure;
the SCOLOR method imposes spatial constraint on sparse
component to restrict its structured sparsity.

The metrics employed to quantitatively evaluate recovery
and segmentation performance was structural similarity index
(SSIM) (Wang et al., 2004) and Dice index (Chang et al.,
2009), respectively. The SSIM index is the most popular metric
to evaluate the similarity of two images by using structural
information. The SSIM of two images x and y is:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
, (12)

where µx and µy is the average of x and y; σx and σy is the
variance of x and y, respectively; σxy is the covariance of x and
y; c1 and c2 are two constants to stabilize the division. The Dice
index is used for comparing the similarity of two regions, and can
be calculated as:

Dice =
2|G ∩ T|

|G| + |T|
, (13)

where T and G denotes the segmented tumor region and ground
truth, respectively.

3.1. Validation on Synthetic MR Brain
Tumor Images
We first quantitatively evaluated the recovery performance of
our method on synthetic tumor images. The synthetic MR
brain tumor images are based on images from a public dataset
LPBA40 (Shattuck et al., 2008). The LPBA40 dataset includes 40
T1-weighted MR normal brain images. Some example normal
images from LPBA40 are shown in Figure 4D. We generated the
synthetic tumor images by fusing tumor regions derived from a
real MR tumor image dataset BRATS2018 (Menze et al., 2015)
(see Figure 4A).

Figure 4 visualizes some recovery and segmentation results
obtained by our method. It can be observed that our method
can reliably extract the tumor regions, and recover these regions
with normal brain appearances. Figure 5 further illustrates the
quantitative SSIM values between the original MR images and
the recovered images by different methods. Our TLS2D method
consistently achieves the most similar image appearance to the
original images from LPBA40. In addition, Table 1 lists the Dice
indices of the segmented tumor regions by different methods.
Our TLS2D achieves the best segmentation performance.
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FIGURE 6 | Recovery and segmentation of (A) real MR brain tumor images from BRATS2018 (Menze et al., 2015); (B) the recovered images with normal brain

appearances, (C) the tumor segmentation results. Red arrows indicate well recovered brain structures.

3.2. Evaluation on Real MR Brain Tumor
Images
We further evaluated the efficacy of our method on 124 real
T2-weighted FLAIR MR brain tumor images from the dataset
BRATS2018 (Menze et al., 2015). Table 1 demonstrates that our
TLS2D method achieves the best tumor segmentation results.
Figure 6 illustrates some example recovery and segmentation
results obtained by our method. It can be seen from Figure 6 that
our method can achieve satisfactory recovery and segmentation
performance. The recovered images by our method could infer
the plausible brain structures, see red arrows in Figure 6B.

3.3. Application to Multi-Atlas
Segmentation
The recovery of pathological regions with normal brain
appearances is beneficial for other image computing tasks, such

asmulti-atlas segmentation (MAS). TheMAS attempts to register
multiple normal brain atlases to a new brain image, thus to
map their corresponding anatomical labels to the new brain
image for the brain segmentation. Conventional MAS methods
may not perform well when images are with tumor regions,
because the appearance change induced by these regions cause
difficulties in registering multiple atlases to the brain tumor
image. We conducted multi-atlas segmentation based on the
recovered images to demonstrate the benefit of our method on
image recovery.

We used 40 T1-weighted MR images and their corresponding
segmentation labels from LPBA40 (Shattuck et al., 2008) to
conduct MAS. For each time of MAS, we chose one image to
generate synthetic tumor image, and employed the remaining
39 images as multiple atlases. As shown in Figure 7, we then
used the proposed TLS2D method to obtain the recovered
image, and utilized an intensity-based non-rigid registration
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FIGURE 7 | The illustration of the multi-atlas segmentation framework.

FIGURE 8 | Multi-atlas segmentation results: (A) brain tumor images, (B) the recovered images by SCOLOR method, (C) our recovered images with quasi-normal

brain appearances, (D) the MAS results by using original tumor images, (E) the MAS results by using the recovered images from SCOLOR, (F) the MAS results by

using our recovered images, and (G) the segmentation ground truth.

method (Myronenko and Song, 2010) to map multiple atlases to
the recovered image for the brain segmentation via majority vote
based label fusion. Figure 8 shows some MAS results obtained
by using the recovered images and original images, respectively.
It can be observed that the brain segmentations using our
recovered images outperform those using original tumor images,
especially in the regions tumor occupied. It also can be observed
from Figure 8 that compared to SCOLOR method, our method
can produce much clearer recovered images. Figure 9 further
illustrates the average Dice indices of different brain regions of
40 segmented brain tumor images using MAS+original images,

MAS+SCOLOR recovered images and MAS+our recovered
images, respectively. The MAS using our recovered images
consistently achieve better Dice indices compared to the MAS
using original images and recovered images from SCOLOR,
which demonstrates our method is potentially useful to improve
the MAS when images are with pathological regions.

4. DISCUSSION AND CONCLUSION

In this study, we have proposed a novel low-rank based
method, called transformed low-rank and structured sparse
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FIGURE 9 | The average Dice indices of different brain regions of 40 segmented brain tumor images using MAS+original images, MAS+SCOLOR recovered images,

and MAS+our recovered images, respectively.

decomposition (TLS2D), for the reliable recovery and
segmentation of pathological MR brain images. By integrating
the structured sparsity, image alignment, and adaptive spatial
constraint into a unified matrix decomposition framework, our
method is robust for extracting pathological regions, and also
is reliable for recovering quasi-normal MR appearances. The
recovered image is beneficial for subsequent image computing
procedures, such as atlas-based segmentation. We have
compared the proposed TLS2Dmethod with several state-of-the-
art low-rank based approaches on synthetic and real MR brain
images. Regarding these compared methods, the RPCA method
is a conventional low-rank and sparse decomposition method;
the RASL method embeds image alignment into LSD framework;
the SCOLOR method imposes spatial constraint on sparse
component. Experimental results show our method consistently
outperforms all compared methods, which demonstrates
the contribution of the proposed transformed low-rank and
structured sparse decomposition with adaptive sparse constraint
on simultaneous recovery and segmentation.

Computer aided methods that can assist clinicians to analyze
the MR brain tumor scans are of essential significance for
improved diagnosis, treatment planning and patients’ follow-
up. Automated tumor segmentation is the primary research
task for analyzing the pathological images, and has been
extensively investigated in the literature (Gordillo et al., 2013;
Menze et al., 2015; Zhou et al., 2017). However, in addition
to tumor segmentation task, the presence of pathologies in
MR images poses challenges in other image computing tasks,
such as intensity-/feature-based image registration (Sotiras et al.,
2013) and atlas-based segmentation of brain structures (Cabezas
et al., 2011), due to the structure and appearance changes of

pathological brain images. Thus the recovery of pathological
regions with normal brain appearances is beneficial for most
image computing procedures. To this end, we consider to
integrate the registration, segmentation and recovery procedures
into a unified decomposition framework. The proposed TLS2D
is a generic method for analyzing the MR brain tumor scans.
It is worth noting that although our method is able to provide
recovered images with quasi-normal brain appearances, the
recovered regions may have some artifacts, located in the region
around original tumor boundary, as shown in Figure 8. This
is mainly due to the distinction of sparse constraints between
inner boundary (tumor region) and outer boundary (normal
region). Even so, compared to the original pathological images,
our recovered images are more similar to the normal brain
images, thus are more convenient to be used for other image
computing tasks, such as multi-atlas segmentation shown in
section 3.3.

The tumor region usually occupies a contiguous portion in
the MR brain image, thus the distributions of tumor pixels are
not pixel-wised sparse but structurally sparse. This motivates
us to model the tumor region using the structured sparsity
norm. Considering that the structured sparsity norm described
in Jia et al. (2012) can effectively encourage sparse component
to distribute in structured patterns and also its facility to
be implemented in the low-rank and sparse decomposition
scheme, we employ this structured sparsity norm (Jia et al.,
2012) to model tumor region in this study. Note that the
structured sparsity (Jia et al., 2012) could be replaced by
sparsity in a different basis (e.g., a wavelet basis), but such
sparsity needs to take into account the spatial connection of the
sparse pixels.

Frontiers in Neuroscience | www.frontiersin.org 9 April 2019 | Volume 13 | Article 333126

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lin et al. Pathological MRI Segmentation and Recovery

The tumor segmentation performance of our method still
could be improved, especially compared with the state-of-
the-art deep learning based segmentation models (Pereira
et al., 2016; Havaei et al., 2017). However, these deep learning
based methods typically require enormous amount of high-
quality labeled images to train a model for medical image
segmentation. Although some recent approaches (Mlynarski
et al., 2018; Shah et al., 2018) proposed a mixed-supervision
scheme, which employed a minority of images with high-quality
per-pixel labels and a majority of images with coarse-level
annotations (bounding boxes, landmarks or image-level
annotations) to train the deep neural networks; preparing
annotations such as bounding boxes and landmarks is still
laborious. Compared with deep learning based methods,
our advantage is that the proposed TLS2D does not require
labeled images to train a segmentation model; it extracts tumor
regions by analyzing normal MR image appearances from
unlabeled population data. What’s more, the segmentation
results of our method can alleviate the image labeling
procedure by the clinicians. Our segmentation results

could further be used as label information for the semi-
supervised training of deep learning based segmentation
models (Papandreou et al., 2015; Bai et al., 2017).
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With the development of communication technology and network technology, as

well as the rising popularity of digital electronic products, an image has become an

important carrier of access to outside information. However, images are vulnerable

to noise interference during collection, transmission and storage, thereby decreasing

image quality. Therefore, image noise reduction processing is necessary to obtain

higher-quality images. For the characteristics of its multi-analysis, relativity removal,

low entropy, and flexible bases, the wavelet transform has become a powerful tool in

the field of image de-noising. The wavelet transform in application mathematics has

a rapid development. De-noising methods based on wavelet transform is proposed

and achieved with good results, but shortcomings still remain. Traditional threshold

functions have some deficiencies in image de-noising. A hard threshold function is

discontinuous, whereas a soft threshold function causes constant deviation. To address

these shortcomings, a method for removing image noise is proposed in this paper.

First, the method decomposes the noise image to determine the wavelet coefficients.

Second, the wavelet coefficient is applied on the high-frequency part of the threshold

processing by using the improved threshold function. Finally, the de-noised images are

obtained to rebuild the images in accordance with the estimation in the wavelet-based

conditions. Experiment results show that this method, discussed in this paper, is better

than traditional hard threshold de-noising and soft threshold de-noising methods, in

terms of objective effects and subjective visual effects.

Keywords: wavelet threshold, wavelet transform, image de-noising, MSE, PSNR

INTRODUCTION

The transmission, detection and collection of signals are subject to pollution of varying degrees
of random noise, influenced by the environment and due to the nature of the work. Thus, the
implementation of signal de-noising is necessary. How to filter out the noise in the real signal to
obtain effective information, is a current research hotspot. Wavelet transform has a time-frequency
local analysis function, and its de-noising results are relatively good. Thus, its application is also
very extensive.

In recent years, with the deepening of the intersection and research, along with the application
of mathematics and other disciplines, the application of fuzzy mathematics, mathematical
morphology, intelligent optimization, neural network, and wavelet theory and technology in image
processing, as well as some new methods of noise resistance have emerged. In the early stage, the
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traditional de-noising method has a low pass filter method,
which mainly includes median filtering, linear filtering and
adaptive filtering.

During image collection, coding and transmission, all images
are visible or invisible to varying degrees of noise. The image
noise is divided into three main categories. The first is Gauss
noise, which belongs to the category of electronic noise that is
produced by a sensitive element caused by the random thermal
motion of the electronic components. The second is Poisson
noise, which is produced during the process of photoelectric
conversion; it has an apparent effect under a weakened light.
The third is particle noise, which is produced during the process
of photography and can be found under a microscope. The
smooth images that can be seen in the photo will display random
particle images under the microscope (Auber and Kornprobst,
2006). The purpose of image processing is to perform some
operations or processing on the digitized image information,
in order to improve the image quality or to achieve a desired
effect. For example, the non-uniformity of the sensitivity of
sensitive components in photoelectric conversion, transmission
error and human factors during the digitization diminishes the
quality of an image, which contains various random noises.
Sometimes, this random noise will greatly affect the image
quality. The noise image affects not only the visual effect of
the viewed image, but also affects image processing. Image
de-noising aims to retain useful information and reduce or
eliminate the interference of noise in the image. De-noising is
a key link in image processing. In practical applications, this
process is often used as a pretreatment of image processing
and recognition, which is the basis of subsequent high-level
image processing. Thus far, all studies on image de-noising
have focused on this effect and has achieved great progress.
However, with the emergence of new problems, people have
higher standards of image quality. The traditional image noise
removal algorithm is based on the spectrum distribution. In
frequency, wavelet de-noising is the commonly used method to
separate useful information and noise from images (Johnstone
and Silverman, 2005, Othman and Qian, 2006). Other methods
include the Markov field model, partial differential equation and
LP regularization method (Baske, 2011). This method is also a
drawback on regularizing noise. The convergence rate is slow in
regions with minimal changes. Sinha and Dougherty (Thomas
Asaki and Kevin Vixie, 2010) combined fuzzy mathematics with
mathematical morphology and applied it to image processing. In
recent years, the feed forward BP neural network was proposed
as a filter to de-noise (Noh et al., 2011; Swami et al., 2017).
Wavelet transform has also greatly contributed to image de-
noising (Michal et al., 2006; Apotsos et al., 2008; Patil, 2015).
The correlation coefficient method is based on the correlation
between the wavelet coefficients at the corresponding positions
for each scale, whereas the noise is neither correlated nor has
a weak correlation on each scale to remove the noise. Noise is
mainly concentrated in high frequencies, provided that high-
frequency processing can achieve the effect of noise reduction.
In 2006, Elad and Aharon (2006) proposed a de-noising method
on the basis of sparse representation and KSVD dictionary

learning. The dictionary learned by the KSVD algorithm (Oey
et al., 2013) was used for image de-noising. However, the KSVD
algorithm ignores the similarity of the image, and the KSVD
algorithm cannot use the detailed information of the image
when learning the dictionary on a single scale. At present, the
popular multi-scale directional transformation mainly includes:
curved wave transformation (Palakkal and Prabhu, 2012),
contour wave trans-formation and non-sub sampling contour
wave transformation (Amisha et al., 2013). The multi-scale
transformation methods can use the inherent geometric features
of the natural image data, and all relative wavelet transforms
have remarkably improved in direction selection. The 3D block
matching algorithm (BM3D) (Lebrun, 2012) is an effective de-
noising method for Gauss noise. This algorithm can preserve
information such as edge and texture. BM3D comprehensively
utilizes non-locality, linear transformation threshold, Wiener
filtering, and sparse representation. BM3D also reveals details of
different sub-block classes and retains the basic characteristics
of each sub-block. This method can improve the resolution in
noisy images, however the computation is very large, as each
similar block needs to be computed. Pizarro et al. (2010) selected
non-local constraints as fidelity items. In similarity measure, the
error of noise image and real images was minimal. Moreover,
the high-order smoothing of the de-noised image was used as
a regularization term, and a non-local data smoothing model
was proposed. The model was applied to the similarity between
images to obtain a further general model. A selected unsuitable
threshold can easily present a Gibbs phenomenon (Huang et al.,
2005, Chen et al., 2005). Mallat presented alternating projection
(AP) for de-noising. The AP (Mallat and Hwang, 1992; Zhu et al.,
2017) method obtains the modulus maxima at each scale after the
signal is differentiated on each scale. Then, the non-propagating
modulus maxima should restore the signal. The disadvantage
of the alternating projection method is that the computation is
very large and, the iteration is prone to instability. Li proposed
a novel hybrid model based on an extreme learning machine,
k-nearest neighbor regression and wavelet de-noising (Li et al.,
2017).Using the linear mode to reduce noise will lead to the
loss of detail in textured images. The static wavelet transforms
(SWT) use time invariance to achieve image de-noising (Wang
et al., 2003). Some researchers (Zou et al., 2015; Liu et al., 2017)
proposed an approach that searches for candidate matching
blocks along the edges that are well-adapted to image details.
All similar blocks form a 3D group. De-noising is performed
by shrinking the coefficients of the 3D transform applied on
these groups. The non-linear diffusion filtering method based on
PDE, is a non-linear anisotropic de-noising method (Lee et al.,
2005). A non-linear model for de-noising can be excessive in the
smoothing of images. Scholars have also studied how to improve
the speed of de-noising. The Non-linear Diffusion techniques
and PDE-based variational models are very popular in image
restoring and processing. The researchers proposed (Fazli et al.,
2010; Zeng et al., 2012, 2018) that a heuristic method such as
Particle Swarm Optimization (PSO), be used for Complex PDE
parameter tuning byminimizing the Structural SIMilarity (SSIM)
measure. Tasdizen (2009) enhanced the algorithm efficiency by
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clustering the blocks with PCA, selecting the similarity between
block features as the measurement of block similarity, and
optimally estimating the parameters. Mahmoudi and Sapiro
(2005) proposed to accelerate the algorithm by eliminating
irrelevant neighborhoods in the weighted averaging process.
Currently, many researchers have proposed a combination
of ways for de-noising. For example, machine learning and
random walks are combined with traditional noise removal
methods (Huang et al., 2006; Jieru et al., 2016; Liu et al.,
2018). Zeng et al. (2017), proposed de-noising and de-
blurring gold immune chromatographic strip images via gradient
projection algorithms.

Presently, details of images and how to remove noise
from them has received increased attention. In this paper, we
present an improved threshold to de-noising of MRI images.
Experimental results show that the de-noising effect is better than
the hard and soft threshold.

PRINCIPLE OF WAVELET DE-NOISING
MEDTHOD

In current research, there are numerous ways to eliminate noise
from images. The application of wavelet de-noising is very
extensive. The wavelet method for removing noise has numerous
advantages. Not only is the algorithm simple to implement, but
it also has a particularly superb effect of de-noising. This method
has therefore achieved great results in practical applications. The
main principle of wavelet threshold de-noising is based on the
strong correlation of the wavelet. The energy concentration of the
signal after wavelet transform is often concentrated on the large
wavelet coefficient. The noise energy after wavelet transform does
not have concentrated characteristics, because the noise does not
have the correlation of wavelets. Wavelet coefficients with large
amplitude values are mostly signals, whereas the coefficients with
small amplitude values are largely noise. The threshold is set on
the basis of this property. The hard and soft threshold function
method was proposed by Donoho (Donoho, 1995) et al.

The hard threshold is expressed as follows:

ŵj,k =

{

wj,k, |wj,k| >= λ

0, |wj,k| < λ
(1)

The soft threshold is calculated as follows:

ŵj,k =

{

sgn (wj,k)(|wj,k| − λ), |wj,k| >= λ

0, |wj,k| < λ
(2)

The Semi-threshold function is expressed as follows:

ŵj,k =











0, |wj,k| <= λ

sgn (wj,k)
λ2(|wj,k|−λ1)

λ2−λ1

wj,k, |wj,k| > λ

, λ1 < |wj,k| < λ2 (3)

Although the soft, hard thresholds and semi- thresholds have
achieved some results, they all still have drawbacks. The hard
threshold function can better preserve boundary information

however, the hard threshold function is discontinuous at closed
values, thus removing the noise cancellation effect remains
rough. Furthermore, its application has some limitations; this
function only processes wavelet coefficients smaller than the
threshold and does not manage wavelet coefficients larger than
the threshold. Therefore, the de-noising result is relatively
different. The resulting estimated signal produces additional
oscillations. Furthermore, the interference of the noise signal
is often mixed in with the wavelet coefficients greater than the
closed value function. The soft threshold function has improved
overall continuity, and the de-noising result is relatively
smooth. However, after noise cancellation, the signal is easily
overwhelmed by noise, thereby resulting in difficulties at higher-
order derivatives, causing de-noising distortion. Moreover, the
soft threshold function performs constant value compression on
the wavelet coefficients rather than the threshold. This function
directly affects the degree of approximation of the reconstructed
signals. The semi-threshold function not only retains a large
coefficient, but also has continuity.

The calculation of complexity through this function is higher.
In the semi-threshold function, determining the threshold is a
difficult point. Therefore, the traditional threshold function has
its own defects and has certain limitations in its application,
which affects the effect of de-noising.

In this article, we proposed a new threshold function. We
improved the threshold to compensate for the deficiency of
soft and hard thresholds. In our experiment, we analyzed the
experimental results of subjective and objective experiments and
concluded that the improved threshold function de-noising effect
is better than the hard and soft threshold de-noising.

IMPROVED WAVELET THRESHOLD
DE-NOISING METHOD

For the method of threshold de-noising, using hard and soft
closed-valued functions, the basic idea is to remove relatively
small wavelet coefficients as much as possible. When a hard
threshold function is used to de-noise, although it can save
the effective part of the original signal relatively well, the
reconstructed signal after the noise processing will be very
rough. When de-noising with a soft threshold function, the
reconstructed signal will easily lose useful signals.

The key to threshold shrinkage is the determination of
threshold and threshold functions. If the threshold is selected
as large, details will be lost. If the threshold is selected small,
then the noise still exists. Although a hard threshold de-noising
is simple and easy to implement, it will generate a pseudo-
Gibbs phenomenon at the image boundary. In comparison
with hard thresholds, soft thresholds are continuous, and the
structure of wavelet coefficients is maintained, thereby effectively
reducing the pseudoGibbs phenomenon. However, whenwavelet
coefficients with an absolute value greater than the threshold
value are processed, the image edges will become blurred. To
achieve improved results for de-noising, we have enhanced the
threshold functions.
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Improved Threshold Functions
The improved threshold function is as follows:

ŵj,k =







wj,k −
wj,k

2 . 1

100
|wj,k |λ−99

, |wj,k| > λ
wj,k

2 . 1

1−log
|wj,k |/λ

100

, |wj,k| <= λ
(4)

The threshold function after adding an adjustment factor is as
follows:

ŵj,k =







wj,k −
wj,k .m

2 . 1

100
|wj,k |λ−99

, |wj,k| > λ
wj,k .m

2 . 1

1−log
|wj,k |/λ

100

, |wj,k| <= λ
(5)

Wherem ∈ Z.
When|wj,k| −→ λ+, the first inequality of Equation (4) can be

written as:

lim
|wj,k|−→λ+

(
wj,km

2
.

1

100|wj,k|λ − 99
) =

λ

2
(6)

When|wj,k| −→ λ−, the second inequality of formula (4) can be
written:

lim
|wj,k|−→λ−

(
wj,k.m

2
.

1

1− log
|wj,k|/λ

100

) =
λ

2
(7)

The threshold is continuous at the ±λ point and has high-order
derivatives. The threshold function is continuous, and the high
order is steerable. The second inequality slowly approaches zero.
Here in adjusts the shape of the threshold function;m adjusts the
variation of wavelet coefficient; k determines the asymptote of the
threshold function. When k = 1,we proposed that the threshold
function approaches the hard threshold function. When k = 0,
the threshold function approaches the soft threshold function.
Thus, the parameter k was adjusted; we proposed that the
threshold function can vary between the interval values of soft
threshold function and hard threshold function.

The new threshold function proposed in this paper combines
the advantages of soft and hard threshold functions. This
approach enables the smooth transition of the wavelet threshold
curve. The same continuity is achieved in the wavelet domain
as the traditional soft threshold function, which improves
the shortcomings of hard threshold function discontinuity.
Moreover, pseudo-Gibbs phenomenon can be avoided. The
new threshold function is a high-order steerable between the
intervals of |wj,k| > λ and |wj,k| <= λ . This type of
conductivity enables the elimination of the generated oscillation
phenomenon in threshold de-noising and the improves the
suppression of overkill of the detail coefficient. Thus, the signal
after reconstruction can be made smoother.

Improved Threshold Selection
The threshold is vital in image threshold de-noising, and Donoho
(1995) proposed a unified threshold method.

λ = δ
√

2 log(M ∗ N) (8)

However, this method is not ideal in practical applications and
causes over-segmentation (Grace et al., 2000). Through analysis,
it was found that the decomposition of the image by wavelet
increases with the number of decomposition layers. The energy
of noise will become smaller and smaller, and the energy of
image information will become increasingly larger. Wavelet
decomposition is performed in accordance with the high and low
frequency characteristics of a wavelet. This method proposes the
following hierarchical threshold estimation.

λ = δ
√

2 logM ∗ N ∗ (1− α∗j) (9)

Where j is the resolution scale. M × N represents image size.
0 < α < 1, and α denotes the adjustment parameter.
When we calculate the high-frequency threshold, α is a
smaller value, resulting in a slightly larger threshold. When we
calculate the low-frequency, α is a larger value, resulting in
a slightly smaller threshold. By adjusting α to the threshold
parameter α, the accuracy of the threshold estimation is
microscopically improved.

EXPERIMENT ANALYSIS

In this paper, the experimental analysis consists mainly of two
parts. The objective and subjective evaluation.

Objective Evaluation
To illustrate the effectiveness of the wavelet threshold algorithm
in medical image de-noising, the traditional threshold method
and the proposed method was compared. Objective evaluation
index is described by peak signal-to-noise ratio (PSNR) andmean
square error (MSE).

The PSNR is expressed as follows:

PSNR = 10 ∗ lg(
2552

MSE
) (10)

The MSE is calculated as follows:

MSE =
1

M ∗ N





M
∑

i=1

M
∑

j=1

((g(i, j)− ĝ(i, j)))2



 (11)

Where M ∗ N is the size of image; g(i, j)denotes original
image, and ĝ(i, j)represents the restoration image. Our data
were obtained from the Chinese People’s Liberation Army
118 Hospital. The results shown in Table 1 compare the hard
threshold method, the soft threshold method and the proposed
method.

Through simulation experiments, the data in Tables 1–3 show
that the proposed method obtains a large peak signal-to-noise
ratio and a smaller mean square error. Thus, our improved
wavelet de-noising effect is better.

Subjective Evaluation
The experiment was programmed in MATLAB2014 (b). MRI
brain images were used to prove the effectiveness of the
improved threshold function in medical image de-noising. After

Frontiers in Neuroscience | www.frontiersin.org 4 February 2019 | Volume 13 | Article 39132

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. MRI Brain Image De-noising

TABLE 1 | De-noising results in different ways of MRI 1.

MSE 0.01 0.03 0.05 0.1 PSNR 0.01 0.03 0.05 0.1

Hard threshold 310 603 643 1,495 23.21 20.33 20.05 16.49

Soft threshold 386 765 771 1,627 22.64 19.29 19.26 16.01

Proposed 147 311 341 625 26.46 23.20 23.20 20.17

TABLE 2 | De-noising results in different ways of MRI 2.

MSE 0.01 0.03 0.05 0.1 PSNR 0.01 0.03 0.05 0.1

Hard threshold 624 780 910 1,136 20.18 19.21 18.54 16.49

Soft threshold 740 952 1080 1,530 22.64 19.29 19.26 16.01

Proposed 206 338 483 668 24.99 22.84 21.29 19.83

TABLE 3 | De-noising results in different ways of MRI 3.

MSE 0.01 0.03 0.05 0.1 PSNR 0.01 0.03 0.05 0.1

Hard threshold 387 350 549 1,022 22.53 22.67 20.74 17.77

Soft threshold 465 422 647 1,308 21.46 21.88 20.02 16.96

Proposed 180 133 287 631 25.58 26.89 23.55 20.13

FIGURE 1 | MRI 1 of subjective results.

decomposition, the threshold was calculated using Equation (9)
and processed by the corresponding threshold. Finally, the image
was reconstructed to obtain the image after de-noising. The
subjective experimental results show that the method proposed
in this paper can achieve improved de-noising effects. De-noising
effects are achieved when the mean value is 0 and the variance is
as follows: 0.01, 0.03, 0.05, and 0.1. The experimental results are
shown in Figures 1–3

FIGURE 2 | MRI 2 of subjective results.

After adding noise, the original image was almost drowned
by noise. Using soft and hard thresholds to remove noise,
considerable noises remained in the image. Given the increase
in noise, the image appears smoother by using soft and hard
thresholds to remove noise. The method in this paper, removed
all the noise in the image, and the image was relatively clear.
By contrasting the experiments, we suggest that the proposed
method has a better effect than hard and soft threshold methods.
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FIGURE 3 | MRI 3 of subjective results.

CONCLUSION

In this study, we analyzed the shortcomings of traditional hard
and soft threshold functions for medical image de-noising. We
proposed an improved threshold function for de-noising. The
mediation factor was increased to find the best estimate of
the wavelet coefficient function. The wavelet coefficients were

smoothed by the soft threshold function. Thus, the image looks
smooth when noise is removed via soft threshold. Through
subjective and objective evaluations, the results show that the
effect of the hard threshold function is better than that of
the soft threshold. However, the signal will produce jumping
points when generating additional shocks and the original
signal will not be the smooth. The hard threshold method
will predict the ringing effect. Improved threshold selection
based on the multi-layer wavelet transform, overcomes the
disadvantages of soft and hard thresholds. Experimental results
showed that the proposed method in this paper can effectively
improve the de-noising performance of both soft and hard
threshold functions.
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Do men and women have different brains? Previous neuroimage studies sought to

answer this question based on morphological difference between specific brain regions,

reporting unfortunately conflicting results. In the present study, we aim to use a deep

learning technique to address this challenge based on a large open-access, diffusion

MRI database recorded from 1,065 young healthy subjects, including 490 men and

575 women healthy subjects. Different from commonly used 2D Convolutional Neural

Network (CNN), we proposed a 3D CNN method with a newly designed structure

including three hidden layers in cascade with a linear layer and a terminal Softmax

layer. The proposed 3D CNN was applied to the maps of factional anisotropy (FA) in

the whole-brain as well as specific brain regions. The entropy measure was applied

to the lowest-level image features extracted from the first hidden layer to examine the

difference of brain structure complexity between men and women. The obtained results

comparedwith the results from using the Support Vector Machine (SVM) and Tract-Based

Spatial Statistics (TBSS). The proposed 3D CNN yielded a better classification result

(93.3%) than the SVM (78.2%) on the whole-brain FA images, indicating gender-related

differences likely exist in the whole-brain range. Moreover, high classification accuracies

are also shown in several specific brain regions including the left precuneus, the left

postcentral gyrus, the left cingulate gyrus, the right orbital gyrus of frontal lobe, and the

left occipital thalamus in the graymatter, andmiddle cerebellum peduncle, genu of corpus

callosum, the right anterior corona radiata, the right superior corona radiata and the left

anterior limb of internal capsule in the while matter. This study provides a new insight into

the structure difference between men and women, which highlights the importance of

considering sex as a biological variable in brain research.

Keywords: gender difference, deep learning, neural network, diffusion MRI, entropy

INTRODUCTION

Recent studies indicate that gender may have a substantial influence on human cognitive functions,
including emotion, memory, perception, etc., (Cahill, 2006). Men and women appear to have
different ways to encode memories, sense emotions, recognize faces, solve certain problems, and
make decisions. Since the brain controls cognition and behaviors, these gender-related functional
differences may be associated with the gender-specific structure of the brain (Cosgrove et al., 2007).
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Diffusion tensor imaging (DTI) is an effective tool for
characterizing nerve fibers architecture. By computing fractional
anisotropy (FA) parameters in DTI, the anisotropy of nerve fibers
can be quantitatively evaluated (Lasi et al., 2014). Differences
in FA values are thought to associate with developmental
processes of axon caliber, myelination, and/or fiber organization
of nerve fibers pathways. By computing FA, researchers has
revealed subtle changes related to normal brain development
(Westlye et al., 2009), learning (Golestani et al., 2006), and
healthy aging (Kochunov et al., 2007). Nevertheless, existing
studies are yet to provide consistent results on exploring
the difference of brain structure between men and women.
Ingalhalikar et al. (2014) argued that the men have greater
intra-hemispheric connection via the corpus callosum while
women have greater interhemispheric connectivity. However,
other studies reported no significant gender difference in brain
structure (Raz et al., 2001; Salat et al., 2005). A recent critical
opinion article suggested that more research is needed to
investigate whether men and women really have different brain
structures (Joel and Tarrasch, 2014).

Most existing DTI studies used the group-level statistical
methods such as Tract-Based Spatial Statistics (TBSS) (Thatcher
et al., 2010; Mueller et al., 2011; Shiino et al., 2017). However,
recent studies indicated that machine learning techniques may
provide us with a more powerful tool for analyzing brain images
(Shen et al., 2010; Lu et al., 2017; Tang et al., 2018). Especially,
deep learning can extract non-linear network structure, realize
approximation of complex function, characterize distributed
representation of input data, and demonstrate the powerful
ability to learn the essential features of datasets based on a
small size of samples (Zeng et al., 2016, 2018a; Tian et al.,
2018; Wen et al., 2018). In particular, the deep convolutional
neural network (CNN) uses the convolution kernels to extract
the features of image and can find the characteristic spatial
difference in brain images, which may promise a better result
than using other conventional machine learning and statistical
methods (Cole et al., 2017).

In this study, we performed CNN-based analyses on the FA
images and extracts the features of the hidden layers to investigate
the difference between man and woman brains. Different from
commonly used 2D CNN model, we innovatively proposed a 3D
CNN model with a new structure including 3 hidden layers, a
linear layer and a softmax layer. Each hidden layer is comprised
of a convolutional layer, a batch normalization layer, an activation
layer and followed by a pooling layer. This novel CNN model
allows using the whole 3D brain image (i.e., DTI) as the input
to the model. The linear layer between the hidden layers and the
softmax layer reduces the number of parameters and therefore
avoids over-fitting problems.

MATERIALS AND METHODS

MRI Data Acquisition and Preprocessing
The database used in this work is from the Human Connectome
Project (HCP) (Van Essen et al., 2013). This open-access database
contains data from 1,065 subjects, including 490 men and 575
women. The ages range is from 22 to 36. This database represents

a relatively large sample size compared to most neuroimaging
studies. Using this open-access dataset allows replication and
extension of this work by other researchers.

We performed DTI data preprocessing includes format
conversion, b0 image extraction, brain extraction, eddy current
correction, and tensor FA calculation. The first four steps were
processed with the HCP diffusion pipeline, including diffusion
weighting (bvals), direction (bvecs), time series, brain mask, a
file (grad_dev.nii.gz) for gradient non-linearities during model
fitting, and log files of EDDY processing. In the final step we
use dtifit to calculate the tensors to get the FA, as well as mean
diffusivity (MD), axial diffusivity (AD), and radial diffusivity
(RD) values.

The original data were too large to train the model and it
would cause RESOURCE EXAUSTED problem while training
due to the insufficient of GPU memory. The GPU we used
in the experiment is NVIDIAN TITAN_XP with 12G memory
each. To solve the problem, we scaled the size of FA image
to [58 × 70 × 58]. This procedure may lead to a better
classification result, since a smaller size of the input image
can provide a larger receptive field to the CNN model. In
order to perform the image scaling, “dipy” (http://nipy.org/
dipy/) was used to read the .nii data of FA. Then “ndimage”
in the SciPy (http://www.scipy.org) was used to reduce the
size of the data. Scaled data was written into the TFRecord
files (http://www.tensorflow.org) with the corresponding labels.
TFRecord file format is a simple record oriented binary
format that is widely used in Tensorflow application for the
training data to get a high performance of input efficiency.
The labels were processed into the format of one-hot. We
implemented a pipeline to read data asynchronously from
TFRecord according to the interface specification provided by
Tensorflow (Abadi et al., 2016). The pipeline included the reading
of TFRecord files, data decoding, data type conversion, and
reshape of data.

CNN Model
We did the experiments on a GPU work station, which has
four NVIDIA TITAN Xp GPUs. The operation system of the
GPU work station was Ubutnu16.04. We used FSL to preprocess
the data. The CNN model was designed using the open source
machine learning framework Tensorflow (Abadi et al., 2016).

Model Design

The commonly used CNN structures are based on 2D images.
When using a 2D CNN to process 3D MRI images, it needs
to map the original image from different directions to get 2D
images, which will lose the spatial structure information of
the image. In this study, we designed a 3D CNN with 3D
convolutional kernels, which allowed us to extract 3D structural
features from FA images. Besides, traditional CNNmodel usually
uses several fully connected layers to connect the hidden layers
and the output layer. The fully connected layer may be prone to
the over-fitting problem in binary classification when the number
of samples is limited (like our data). To address this problem, we
used a linear layer to replace the fully connected layer. The linear
layer integrates the outputs of hidden layers (i.e., a 3D matrix
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comprised of multiple featuremaps) into the inputs (i.e., a 1D
vector) of the output layer which is a softmax classifier. Moreover,
we performed a Batch Normalization (Ioffe and Szegedy, 2015)
after each convolution operation. The Batch Normalization is
used to avoid internal covariate shift problem in training the
CNN model. Therefore, our designed model is a 3D “pure”
CNN (3D PCNN). The architecture of the 3D PCNN model
is shown in Figure 1. The 3D PCNN consists of three hidden
layers, a linear layer and a softmax layer. Each of the hidden
layer contains a convolutional layer, a Batch Normalization layer,
an activation layer, a pooling layer with several feature maps as
the outputs.

Convolutional layer
The process of convolutional layer is to convolve the input vector
I with the convolution kernelK, represented by I

⊗

K. The shape
of the input vector in our 3D PCNN model was [n, d, w, h, c],
where d, w, h, c represent the depth, width, height and channel
numbers (which is 1 for a grayscale image) of the input vector,
respectively, and n is the batch size which is a hyperparameter
that was set to 45 (an empirical value) in this paper. In the
first layer, the input size was 58 × 70 × 58 × 1, which was
the 3D size (58 × 70 × 58) of the input image plus a single
channel (grayscale image). The shape of the convolution kernel
was [dk,wk, hk, cin, cout], where dk,wk, hk represents the depth,
width, and height of the convolution kernel, respectively. In all
three hidden layers, the kernel size was set to3 × 3 × 3, which
means that dk = wk = hk = 3. The cin is the number
of input channels which is equal to the channel number of the
input vector. The cout is the number of output channels. As each
kernel has an output channel, cout is equal to the number of
convolution kernels, and is also the same as the number of input
channels for the next hidden layer. In all convolution layers, the
moving stride of the kernel was set to 1 and padding mode was
to “SAME.”

Batch normalization layer
Batch normalization was performed after the convolutional layer.
Batch normalization is a kind of training trick which normalizes
the data of each mini-batch (with zero mean and variance of one)
in the hidden layers of the network. To alleviate the gradient
internal covariate shift phenomenon and speed up the CNN
training, an Adam Gradient Decent method was used to train the
model (Kingma and Ba, 2015).

Activation layer
After the batch normalization operation, an activation function
was used to non-linearize the convolution result. The activation
function we used in the model was the Rectified linear unit,
ReLU (Nair and Hinton, 2010).

Pooling layer
Pooling layer was added after the activation layer. Pooling layers
in the CNN summarize the outputs of neighboring groups of
neurons in the same kernel map (Krizhevsky et al., 2012). Max-
pooling method was used in this layer.

The outputs of each hidden layer were feature maps, which
were the features extracted from the input images to the

hidden layer. The outputs from the previous hidden layer
were the inputs to the next layer. In our model, the first
hidden layer generated 32 feature maps, the second hidden
layer produced 64 feature maps, and the third hidden layer
yielded 128 feature maps. Finally, we integrated the last 128
feature maps into the input of the softmax layer through a
linear layer, and then got the final classification results from the
softmax layer.

In our model, the input X ∈ {x(1), x(2), . . . , x(n)}, x(i)

was the ith subject’s FA value. Y ∈ {y(1), y(2), . . . , y(n)},
y(i) was the ith subject’s label that were processed to one-
hot vector where [1 0] represents man and [0 1] woman. We
used h(θ , x) to represent the proposed 3D PCNN model.
Then we had:

ŷ = h(θ , x) (1)

where ŷ represents the predicted value obtained using the 3D
PCNN on a sample x.

Parameters Optimization
The initial values of the weights of the convolution kernels were
random values selected from a truncated normal distribution
with standard deviation of 0.1. We defined a cost function
to adjust these weights based on the softmax cross entropy
(Dunne and Campbell, 1997):

J (θ , x) = −

n
∑

i=1

ŷ(i) log P
(

ŷ(i) = y(i)
∣

∣

∣
x = x(i) ) (2)

As such, the task of adjusting the weight value became an
optimization problem with J (θ , x) as the optimization goal,
where a small penalty was given if the classification result was
correct, and vice versa. We used the Adam Gradient Descent
(Kingma and Ba, 2015) optimization algorithm to achieve this
goal in the model training. All parameters in the Adam algorithm
were set to the empirical values recommended by Kingma and
Ba (2015), i.e., learning rate was α = 0.001, exponential
decay rates for the moment estimates were β1 = 0.9, β1 =

0.999, ε = 10− 8.

Cross-Validation
To ensure the independent training and testing in the cross-
validation. The process of cross-validation is shown in Figure 2.
We implemented a two-loop nested cross-validation scheme
(Varoquaux et al., 2017). We divided the data set into three parts,
i.e., 80% of the data as the training set for model training, 10%
as the verification set for parameter selection, and 10% as the
testing set for evaluating the generalization ability of the model.
To eliminate the random error of model training, we run 10
fold cross validation and then took the average of classification
accuracies as the final result.

Features in First Hidden Layer
CNN has an advantage that it can extract key features by itself
(Zeng et al., 2018c). However, these features may be difficult to
interpret since they are highly abstract features. Thus, in this
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FIGURE 1 | 3D PCNN architecture.

FIGURE 2 | Model training and nested cross validation. (A) General overview. (B) 10 fold cross validation.

study, we only analyzed the features obtained in the first hidden
layer, since they are the direct outputs from the convolution on
the grayscale FA images. In this case, the convolution operation
of the first layer is equivalent to applying a convolution kernel
based spatial filter on the FA images. The obtained features are
less abstractive than those from the second and three hidden
layers. There are totally 32 features in the first hidden layer. These
features are the lowest-level features which may represent the
structural features of FA images. We firstly computed the mean
of voxel values across all subjects in each group (man vs. woman)

for each feature and then evaluated their group-level difference
using a two-sample t-test. Besides, we also computed the entropy
on each feature for each individual:

H = −

255
∑

i=0

pi log pi (3)

where pi indicates the frequency of pixel with value i appears
in the image. The entropy of each feature likely indicates
the complexity of brain structural encoded in that feature.
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We also performed a two-sample t-test on entropy results
to explore the differences between men and women. A strict
Bonferroni correction was applied for multiple comparisons
with the threshold of 0.05/32 = 1.56 × 10−3 to remove
spurious significance.

Discriminative Power of Brain Regions
In order to determine which brain regions may play important
role in gender-related brain structural differences, we repeated
the same 3D PCNN-based classification on each specific
brain region. We segmented each FA image into 246 gray
matter regions of interests (ROIs) according to the Human
Brainnetome Atlas (Fan et al., 2016) and 48 white matter
ROIs according to the ICBM-DTI-81 White-Matter Labels
Atlas (Mori et al., 2005). The classification accuracy was then
obtained for each ROIs. A higher accuracy indicates a more
important role of that ROI in gender-related difference.
A map was then obtained based on the classification
accuracies of different ROIs to show their distribution in
the brain.

Comparisons With Tract Based Spatial

Statistics and Support Vector Machine
To justify the effectiveness of our method, the Tract Based
Spatial Statistics (TBSS) and Support Vector Machine
(SVM) were applied to our dataset as comparisons,
since these are two popular methods for data analysis in
neuroimaging studies (Bach et al., 2014; Zeng et al., 2018b).
We compared the results in following two conditions: (1)
We used the SVM as the classifier while keeping the same
preprocessing procedure in order to compare its results
with our 3D PCNN method. We flatten each sample from
the 3D FA matrix into a vector, and then fed the SVM
with the vector. (2) We used the TBSS to identify the
brain regions where are shown the statistically significant
gender-related difference.

RESULTS

Classification Results on the Whole-Brain

FA Images
Using our 3D PCNN methods on the whole-brain FA images,
we can well-distinguish men and women with the classification
accuracy of 93.3%. This result is much better than using the SVM,
whose classification accuracy is only 78.2%.

As comparisons, we also used MD, AD, and RD to repeat
the same analysis. The classification accuracy of MD is 65.8%,
AD is 69.9%, and RD is 67.8%. All of them are lower than the
classification accuracy obtained by using FA.

Feature Analysis in the First Hidden Layer

of 3D PCNN
The result of two-sample t-test of 32 features of men and women
shows that there are 25 features had significant gender differences
including 13 features that women have larger values and 12
features that men have larger values (see Figure 3). Interestingly,

men have significantly higher entropy thanwomen for all features
(see Figure 4).

Classification on Each Specific ROI
TBSS could not detect any statistically significant gender-related
difference in this dataset. However, using 3D PCNN, we did
find gender-related differences in all ROIs in the both gray
and white matters, as the classification accuracies (>75%) are
much higher than the chance level (50%) for all ROIs. The
maps of classification accuracies for different ROIs are shown
in Figure 5. The detail classification results are provided in
the supplement (see Table S1 for gray matter and Table S2

for white matter). In the gray matter, the top 5 regions with
highest classification accuracies are the left precuneus (Broadman
area, BA 31, 87.2%), the left postcentral gyrus (BA 1/2/3 trunk
region, 87.2%), the left cingulate gyrus (BA 32 subgenual area,
87.2%), the right orbital gyrus of frontal lobe (BA 13, 87.1%)
and the left occipital thalamus (86.9%). In the white matter, the
top 5 regions with highest classification accuracies are middle
cerebellum peduncle (89.7%), genu of corpus callosum (88.4%),
the right anterior corona radiata (88.3%), the right superior
corona radiata (86%), and the left anterior limb of internal
capsule (85.4%).

DISCUSSIONS

Classification on the Whole-Brain FA
The proposed 3D PCNN model achieved 93.3% classification
accuracy in the whole-brain FA. The high classification accuracy
rate indicates that the proposed model can accurately find the
brain structure difference between men and women, which is
the basis of subsequent feature analysis and subreginal analysis.
Most existing classification, regression, and other machine
learning methods are shallow learning algorithms, such as the
SVM, Boosting, maximum entropy, and Logistic Regression.
When complex functions need to be expressed, the models
obtained by these algorithms will then have a limitation with
small size of samples and limited computational resources.
Thus, the generalization ability will be deteriorated as we
demonstrated in the results from the SVM. The benefit of
deep learning algorithms, using multiple layers in the artificial
neural network, is that one can represent complex functions
with few parameters. The CNN is one of the widely used
deep learning algorithms. In compared to the method like
SVM, which is just a classifier, 3D CNN is a method that can
extract the 3D spatial structure features of the input image.
Through constructing the 3D PCNN model, we extracted highly
abstract features from FA images, which may, thusly, improve
the classification accuracy. FA describes the partial anisotropy
index, which indicates the difference between one direction
and others (Feldman et al., 2010). It can reflect alterations in
various tissue properties including axonal size, axonal packing
density, and degree of myelination (Chung et al., 2016). In this
study, we also run the same analysis using MD, AD, and RD
images for comparisons. All their results are lower than that
of FA, indicating that using FA is more effective to find the
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FIGURE 3 | Between-group differences of 32 features in voxel values. The mean (bar height) and standard deviation (error bars) of voxel values across all subjects in

each group were evaluated for each feature. Their group-level difference was examined using a two-sample t-test. Bonferroni correction was applied for multiple

comparisons with the threshold equal to 0.05/32 = 1.56 × 10−3 to remove spurious significance. The features with significantly larger mean voxel values for men are

marked out with*, while features with significantly larger mean voxel values for women are indicated by +.

structure difference between men and women’s brain than using
other images.

Feature Analysis in the First Hidden Layer

of 3D PCNN
The degree of the macroscopic diffusion anisotropy is often
quantified by the FA (Lasi et al., 2014). Previous studies found
that wider skeleton of white matter in woman’s brain but wider
region of gray matter in man’s brain (Witelson et al., 1995;
Zaidi, 2010; Gong et al., 2011; Menzler et al., 2011). These
mean that men appear to have more gray matter, made up
of active neurons, while women may have more white matter
for the neuronal communication between different areas of the
brain. Furthermore, a recent study found that men had higher
FA values than women in middle aged to elderly (between
44 and 77 years old) people by using a statistical analysis
(Ritchie et al., 2018). This study focuses on the young healthy
individuals with the age range between 22 and 36 years old.

The structural features extracted from 3D PCNN reflect the
brain structure difference between men and women. In the first
hidden layer of 3D PCNN model, we found 25 features that have
significant difference between men and women in voxels value.
Moreover, using entropy measure, we found that men’s brains
likely have more complex features as reflected by significantly
higher entropy. These results indicated that the gender-related
differences likely exist in the whole-brain range including both
white and gray matters.

Most Discriminative Brain Regions
Using FA images from each specific brain region as the input to
the 3D PCNN, we found all tested brain regionsmay have gender-
related difference, though the TBSS analysis cannot detect these
differences. The brain regions with high classification accuracies
include the left precuneus (Broadman area, BA 31, 87.2%), the
left postcentral gyrus (BA 1/2/3 trunk region, 87.2%), the left
cingulate gyrus (BA 32 subgenual area, 87.2%), the right orbital
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FIGURE 4 | Between-group differences of 32 features in entropy values. The mean (bar height) and standard deviation (error bars) of entropy value were computed

across all subjects in each group for each feature. Their group-level difference was evaulated using a two-sample t-test. Bonferroni correction was applied for multiple

comparisons with the threshold equal to 0.05/32 = 1.56 × 10−3 to remove spurious significance. The entropy values are significantly larger in men than in women

for features.

gyrus of frontal lobe (BA 13, 87.1%), and the left occipital
thalamus (86.9%) in the gray matter, and middle cerebellum
peduncle (89.7%), genu of corpus callosum (88.4%), the right
anterior corona radiata (88.3%), the right superior corona radiata
(86%), and the left anterior limb of internal capsule (85.4%).

The gender-related morphological difference at the corpus
callosum has been previously reported, which may be associated
with interhemispheric interaction (Sullivan et al., 2001; Luders
et al., 2003; Prendergast et al., 2015). However, likely due to
the limitation of applied methods, not all previous studies have
reported this difference (Abe et al., 2002). Those likely results in
the inconsistent findings were across different studies. Through
3D PCNN model, our results confirm that there is likely a
morphological difference at the genu of corpus callosum between
man and women.

The middle cerebellum peduncle is the brain area connected
to the pons and receiving the inputs mainly from the pontine
nuclei (Glickstein and Doron, 2008), which are the nuclei of
the pons involved in motor activity (Wiesendanger et al., 1979).

Raz et al. (2001) found larger volume in the cerebellum of men
than women. The cerebellar cells release diffusible substances
that promote the survival of thalamic neurons (Tracey et al.,
1980; Hisanaga and Sharp, 1990). Previous studies have reported
gender-difference differences in the basic glucose metabolism
in the thalamus of young subjects between the ages of 20 and
40 (Fujimoto et al., 2008). Beside the thalamus and cerebellum,
the postcentral gyrus was also found in our results as the
brain region with high classification accuracy. Thus, there is
very likely a gender-related difference in the cerebellar-thalamic-
cortical circuitry. This difference may also be related to the
reported gender differences in neurological degenerative diseases
such as Parkinson’s Disease (Lyons et al., 1998; Dluzen and
Mcdermott, 2000; Miller and Cronin-Golomb, 2010), where
the pathological changes are usually found in the cerebellar-
thalamic-cortical circuitry.

The findings of the current study also indicated the gender-
related difference in the limbic-thalamo-cortical circuitry.
Anterior corona radiata is part of the limbic-thalamo-cortical
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FIGURE 5 | Maps of classification accuracies for different ROIs in the gray and white matter of the brain. (A) Results in 246 gray matter regions of interests (ROIs)

according to the Human Brainnetome Atlas (B) Results in 48 white matter ROIs according to the ICBM-DTI-81 White-Matter Labels Atlas.

circuitry and includes thalamic projections from the internal
capsule to the prefrontal cortex. White matter changes in the
anterior corona radiata could result in many of the cognitive and
emotion regulation disturbances (Drevets, 2001). The orbital
gyrus of frontal cortex gray matter areas and cingulate gyrus have
also been reported to be associated with the emotion regulation
system (Fan et al., 2005). Thus, the gender-related difference
in the limbic-thalamo-cortical circuitry may explain the
gender differences in thalamic activation during the processing
of emotional stimuli or unpleasant linguistic information
concerning interpersonal difficulties as demonstrated by
previous fMRI (Lee and Kondziolka, 2005; Shirao et al., 2005).

In summary, by using the designed 3D PCNN algorithm, we
confirmed that the gender-related differences exist in the whole-
brain FA images as well as in each specific brain regions. These
gender-related brain structural differences might be related to
gender differences in cognition, emotional control as well as
neurological disorders.
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Recent research has reported the application of image fusion technologies in medical
images in a wide range of aspects, such as in the diagnosis of brain diseases, the
detection of glioma and the diagnosis of Alzheimer’s disease. In our study, a new
fusion method based on the combination of the shuffled frog leaping algorithm
(SFLA) and the pulse coupled neural network (PCNN) is proposed for the fusion
of SPECT and CT images to improve the quality of fused brain images. First, the
intensity-hue-saturation (IHS) of a SPECT and CT image are decomposed using a non-
subsampled contourlet transform (NSCT) independently, where both low-frequency and
high-frequency images, using NSCT, are obtained. We then used the combined SFLA
and PCNN to fuse the high-frequency sub-band images and low-frequency images. The
SFLA is considered to optimize the PCNN network parameters. Finally, the fused image
was produced from the reversed NSCT and reversed IHS transforms. We evaluated our
algorithms against standard deviation (SD), mean gradient (Ḡ), spatial frequency (SF)
and information entropy (E) using three different sets of brain images. The experimental
results demonstrated the superior performance of the proposed fusion method to
enhance both precision and spatial resolution significantly.

Keywords: single-photon emission computed tomography image, computed tomography image, image fusion,
pulse coupled neural network, shuffled frog leaping

INTRODUCTION

In 1895 Rontgen obtained the first human medical image by X-ray, after which research of medical
images gained momentum, laying the foundation for medical image fusion. With the development
of both medical imaging technology and hardware facilities, a series of medical images with
different characteristics and information were obtained, contributing to a key source of information
for disease diagnosis. At present, clinical medical images mainly include Computed Tomography
(CT) images, Magnetic Resonance Imaging (MRI) images, Single-Photon Emission Computed
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Tomography (SPECT) images, Dynamic Single-Photon Emission
Computed Tomography (DSPECT) and ultrasonic images, etc.
(Jodoin et al., 2015; Hansen et al., 2017; Zhang J. et al., 2017).
It is necessary to fuse different modes of medical images into
more informative images based on fusion algorithms, in order to
provide doctors with more reliable information during clinical
diagnosis (Kavitha and Chellamuthu, 2014; Zeng et al., 2014).
At present, medical image fusion has been considered in many
aspects, such as the localization of brain diseases, the detection of
glioma, the diagnosis of AD (Alzheimer’s disease), etc. (Huang,
1996; Singh et al., 2015; Zeng et al., 2018).

Image fusion is the synthesis of images into a new image
using a specific algorithm. The space-time relativity and
complementarity of information in fused images can be fully
used in the process of image fusion, contributing to a more
comprehensive expression of the scene (Wu et al., 2005; Choi,
2006). Conventional methods of SPECT and CT fusion images
mainly include component substitution and multi-resolution
analysis (Amolins et al., 2007; Huang and Du, 2008; Huang and
Jiang, 2012). Component substitution mainly refers to intensity-
hue-saturation (IHS) transform, with the advantage of improving
the spatial resolution of SPECT images (Huang, 1999; Rahmani
et al., 2010). The limitation of transform invariance leads to
difficulty in extracting both image contour and edge details. In
order to solve this problem, contourlet transform was proposed
by Da et al. (2006), Zhao et al. (2012), Xin and Deng (2013).
Moreover, non-subsampled contourlet transform (NSCT) was
also proposed to fully extract the directional information of
SPECT images and CT images to be fused, providing better
performance in image decomposition (Da et al., 2006; Wang and
Zhou, 2010; Yang et al., 2016).

The Pulse Coupled Neural Network (PCNN) was discovered
by Eckhorn et al. (1989) in the 1990s while studying the imaging
mechanisms of the visual cortex of small mammals. No training
process is required in the PCNN and useful information can
be obtained from a complex background through the PCNN.
Nevertheless, the PCNN has its shortcomings, such as the
numerous parameters and the complicated process of setting
parameters. Thus, novel algorithms to optimize the PCNN
parameters has been introduced to improve the calculation speed
of PCNN (Huang, 2004; Huang et al., 2004; Jiang et al., 2014;
Xiang et al., 2015). SFLA is a new heuristic algorithm first
presented by Eusuff and Lansey, which combines the advantages
of the memetic algorithm and particle swarm optimization. The
algorithm can search and analyze the optimal value in a complex
space with fewer parameters and has a higher performance and
robustness (Samuel and Asir Rajan, 2015; Sapkheyli et al., 2015;
Kaur and Mehta, 2017).

In our study, a new fusion approach based on the SFLA
and PCNN is proposed to address the limitations discussed
above. Our proposed method not only innovatively uses SFLA
optimization to effectively learn the PCNN parameters, but also
produces high quality fused images. A series of contrasting
experiments are discussed in view of image quality and
objective evaluations.

The remaining part of the paper is organized as follows.
Related work is introduced in Section “Related Works.”

The fusion method is proposed in Section “Materials and
Methods.” The experimental results are presented in Sections
“Result” and “Conclusion” concludes the paper with an
outlook on future work.

RELATED WORKS

Image fusion involves a wide range of disciplines and can be
classified under the category of information fusion, where a series
of methods have been presented. A novel fusion method, for
multi-scale images has been presented by Zhang X. et al. (2017)
using Empirical Wavelet Transform (EWT). In the proposed
method, simultaneous empirical wavelet transforms (SEWT)
were used for one-dimensional and two-dimensional signals, to
ensure the optimal wavelets for processed signals. A satisfying
visual perception was achieved through a series of experiments
and in terms of objective evaluations, it was demonstrated
that the method was superior to other traditional algorithms.
However, time consumption of the proposed method is high,
mainly during the process of image decomposition, causing
application difficulties in a real time system. Noised images
should also be considered in future work where the process of
generating optimal wavelets may be affected (Zeng et al., 2016b;
Zhang X. et al., 2017).

Aishwarya and Thangammal (2017) also proposed a fusion
method based on a supervised dictionary learning approach.
During the dictionary training, in order to reduce the
number of input patches, gradient information was first
obtained for every patch in the training set. Second, both
the information content and edge strength was measured
for each gradient patch. Finally, the patches with better
focus features were selected by a selection rule, to train
the over complete dictionary. Additionally, in the process of
fusion, the globally learned dictionary was used to achieve
better visual quality. Nevertheless, high computational costs
also exist in this proposed approach during the process
of sparse coding and final fusion performance, which may
be affected by high frequency noise (Zeng et al., 2016a;
Aishwarya and Thangammal, 2017).

Moreover, an algorithm for the fusion of thermal and visual
images was introduced by M Kanmani et al. in order to
obtain a single comprehensive fused image. A novel method
called self tuning particle swarm optimization (STPSO) was
presented to calculate the optimal weights. A weighted averaging
fusion rule was also used to fuse the low frequency- and high
frequency coefficients, obtained through Dual Tree Discrete
Wavelet Transform (DT-DWT) (Kanmani and Narasimhan,
2017; Zeng et al., 2017a). Xinxia Ji et al. proposed a new
fusion algorithm based on an adaptive weighted method in
combination with the idea of fuzzy theory. In the algorithm,
a membership function with fuzzy logic variables were designed
to achieve the transformation of different leveled coefficients
by different weights. Experimental results indicated that the
proposed algorithm outperformed existing algorithms in aspects
of visual quality and objective measures (Ji and Zhang, 2017;
Zeng et al., 2017b).
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MATERIALS AND METHODS

The Image Fusion Method Based on
PCNN and SFLA
The algorithm 3.1 represents an image fusion algorithm based
on the PCNN and SFLA, where SPECT and CT images are
fused. In our proposed algorithm, a SPECT image is first
decomposed on three components using IHS transform, which
include saturation S, hue H and intensity I. Component I is
then decomposed to a low-frequency and high-frequency image
through NSCT decomposition. Additionally, a CT image is
decomposed into a low-frequency and high-frequency image
through NSCT decomposition. Moreover, the two low-frequency
images obtained above are fused in a new low-frequency image
through the SFLA and PCNN combination fusion rules, while
the two high-frequency images obtained above are fused into
a new high-frequency image through the SFLA and PCNN
combination fusion rules. Next, the new low-frequency and new
high-frequency images are fused to generate a new image with
intensity I’ using reversed NSCT. Finally, the target image is
achieved by using reversed IHS transform to integrate the three
components S, H and I’.

Algorithm 1: An image fusion algorithm based on PCNN
and SFLA

Input: A SPECT image A and a CT image B
Output: A fused image F
Step 1: Obtain three components of image A using IHS
transform; saturation S, hue H and intensity I.
Step 2: Image decomposition
(1) Decompose the component I of image A to a
low-frequency image AL and high-frequency image AH
through NSCT decomposition.
(2) Decompose image B to a low-frequency image BL and
high-frequency image BH through NSCT decomposition.
Step 3: Image fusion
(1) Fuse the low-frequency images AL and BL to a new
low-frequency image CL through the SFLA and PCNN
combination fusion rules.
(2) Fuse the high-frequency images AH and BH to form a
new high-frequency image CH through the SFLA and
PCNN combination fusion rules.
Step 4: Inverse transform
Fuse the low-frequency image CL and high-frequency image
CH to a new image with intensity I’ using reversed NSCT.
Step 5: Reversed IHS transform
Through the reversed IHS transform, integrate the three
components S, H and I’, then obtain the target image F.

The overall method of the proposed algorithm for the fusion
of a SPECT and CT image is outlined in Figure 1.

Decomposition Rule
In our proposed method, the SPECT image and CT image
are decomposed into a low-frequency and high-frequency
image using NSCT.

Non-subsampled contourlet transform (Huang, 1999;
Rahmani et al., 2010) is composed of a non-subsampled pyramid
filter bank (NSPFB) and a non-subsampled directional filter
bank (NSDFB). The source image is decomposed into a high-
frequency sub-band and a low-frequency sub-band by NSPFB.
The high-frequency sub-band is then decomposed into a sub-
band of each direction by NSDFB. The structure diagram of the
two-level decomposition of NSCT is shown in Figure 2.

An analysis filter {H1 (z) ,H2 (z)} and a synthesis filter
{G1 (z) ,G2 (z)} are used when using NSCT to decompose images
and the two filters satisfy H1(z)G1(z)+H2(z)G2(z) = 1. The
source image can generate low-frequency and high-frequency
sub-band images when it is decomposed by NSP. The next level of
NSP decomposition is performed on low-frequency components
obtained by the upper-level decomposition. An analysis
filter {U1 (z) ,U2 (z)} and synthesis filters {V1 (z) ,V2 (z)} are
contained in the design structure of NSDFB with the requirement
of U1(z)V1(z)+ U2(z)V2(z) = 1. The high-pass sub-band image
decomposed by J-level NSP is decomposed by L-level NSDFB,
and the high-frequency sub-band coefficients can be obtained
at the number of 2n, where n is an integer higher than 0.
A fused image with clearer contours and translation invariants
can be obtained through the fusion method based on NSCT
(Xin and Deng, 2013).

Fusion Rule
Fusion rules affect image performance, so the selection of fusion
rules largely determines the quality of the final fused image.
In this section, the PCNN fusion algorithm based on SFLA
is introduced for low-frequency and high-frequency sub-band
images decomposed by NSCT.

Pulse Coupled Neural Network
The PCNN is a neural network model of single-cortex feedback,
to simulate the processing mechanism of visual signals in the
cerebral cortex of cats. It consists of several neurons connected
to each other, where each neuron is composed of three parts: the
receiving domain, the coupled linking modulation domain and
the pulse generator. In image fusion using the PCNN, the M ∗ N
neurons of a two-dimensional PCNN network correspond to the
M ∗ N pixels of the two-dimensional input image, and the gray
value of the pixel is taken as the external stimulus of the network
neuron. Initially, the internal activation of neurons is equal to
the external stimulation. When the external stimulus is greater
than the threshold value, a natural ignition will occur. When
a neuron ignites, its threshold will increase sharply and then
decay exponentially with time. When the threshold attenuates
to less than the corresponding internal activation, the neuron
will ignite again, and the neuron will generate a pulse sequence
signal. The ignited neurons stimulate the ignition of adjacent
neurons by interacting with adjacent neurons, thereby generating
an automatic wave in the activation region to propagate outward
(Ge et al., 2009).
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FIGURE 1 | The proposed method for the process of fusion.

FIGURE 2 | The structure diagram of the two-level decomposition of NSCT.

The parameters of the PCNN affect the quality of image
fusion, and most current research uses the method of regressively
exploring the values of parameters, which is subjective to a certain
degree. Therefore, how to reasonably set the parameters of the
PCNN is the key to improving its performance. In our paper,
SFLA is used to optimize the PCNN network parameters.

Shuffled Frog Leaping Algorithm
Shuffled frog leaping algorithm is a particle swarm search method
based on groups to obtain optimal results. The flowchart of
SFLA is shown in Figure 3. First, the population size F, the
number of sub populations m, the maximum iterations of local
search for each sub population N and the number of frogs in
each sub population n were defined. Second, a population was
initialed, and the fitness value of each frog was calculated and
sorted in a descending order. A memetic algorithm is used in the
process of the search, and the search is carried out in groups. All
groups are then fused, and the frogs are sorted according to an
established rule. Moreover, the frog population is divided based
on the established rules, and the overall information exchange
is achieved using this method until the number of iterations are
equal to the maximum iterations N (Li et al., 2018).

F(x) is defined as a fitness function and� is a feasible domain.
In each iteration, Pg is the best frog for a frog population,
Pb represents the best frog for each group and Pw is the worst
frog for each group. The algorithm adopts the following update
strategy to carry out a local search in each group:{

Sj = rand() · (Pb − Pw), −Smax ≤ Sj ≤ Smax

Pw,new = Pw + Sj
(1)

where Sj represents the updated value of frog leaping, rand () is
defined as the random number between 0 and 1, Smax is described
as the maximum leaping value, and Pw,new is the worst frog of
updated group. If Pw,new ∈ � and F(Pw,new) > F(Pw), Pw can be
replaced by Pw,new, otherwise, Pb will be replaced by Pg. At the
same time, if P′w,new ∈ � and F(P′w,new) > F(Pw), Pw can be
replaced by P′w,new, otherwise Pw can be replaced by a new frog
and then the process of iteration will continue until the maximum
iterations is reached.

PCNN Fusion Algorithm Based on SFLA
Three parameters αθ, β and Vθ in PCNN are essential for the
results of image fusion. Therefore, as it is shown in Figure 4,
in our study, the SFLA is used to optimize the PCNN in order
to achieve the optimal solution of the PCNN parameters. Each
frog is defined as a spatial solution X(αθ, β,Vθ) and the optimal
configuration scheme of the PCNN parameters can finally be
obtained by searching for the best frog Xb(αθ, β,Vθ).

In our proposed method, possible configuration schemes of
parameters are defined, which constitute a solution space for the
parameter optimization. After generating an initial frog solution
space, F frogs in the population are divided into m groups, and
each group is dependent on one another. Starting from the initial
solution, the frogs in each group first carry out an intraclass
optimization by a local search, thereby continuously updating
their own fitness values. In N iterations of local optimization,
the quality of the whole frog population is optimized with the
improvement of the quality of frogs in all groups. The frogs
of the population are then fused and regrouped according to
the established rule, and local optimization within the group is
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FIGURE 3 | The flowchart of the shuffled frog leaping algorithm.

carried out until reaching the final iteration conditions. Finally,
the global optimal solution of the frog population is defined as the
optimal PCNN parameter configuration. The final fusion image is
thus obtained using the optimal parameter configuration above.

RESULTS

In order to verify the accuracy and preservation of the edge
details in our proposed method, three sets of CT and SPECT
images were fused based on our method. The results of each
set were compared with four fusion methods; IHS, NSCT+FL,
DWT, NSCT+PCNN. In the method of NSCT+FL, images are
first decomposed by NSCT to obtain high-frequency and low-
frequency coefficients, and then fusion images are obtained by
taking large value high-frequency coefficients and taking average
value low-frequency coefficients. In NSCT+PCNN, images are
decomposed by NSCT and fused by the PCNN.

Subjective Evaluations of
Experimental Results
Experiments were implemented on the image database from the
Whole Brain Web Site of Harvard Medical School (Johnson and
Becker, 2001) which contains two groups of images including CT
and SPECT images. Each group has three examples including
normal brain images, glioma brain images and brain images of
patients diagnosed with Alzheimer’s disease. The testing images
have been used in many related papers (Du et al., 2016a,b,c) and
the platform is MATLAB R2018a.

A series of fusion results of SPECT and CT images,
based on different methods including IHS, NSCT+FL,
DWT, NSCT+PCNN, and our proposed method is shown
in Figures 5–7. The fusion results of a set of normal brain images
are shown in Figure 5, the fusion results of a set of glioma
brain images are presented in Figure 6, while a set of brain
images of patients diagnosed with Alzheimer’s disease are shown
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FIGURE 4 | The process of PCNN parameter optimization based on SFLA.

FIGURE 5 | A series of contrasting experiments for normal brain images on fusion images based on different fusion methods (set 1). (A,H,O) are source CT images;
(B,I,P) are source SPECT images; (C,J,Q) are fused images based on IHS; (D,K,R) are fused images based on NSCT+FL; (E,L,S) are fused images based on DWT;
(F,M,T) are fused images based on the combination of NSCT+PCNN; (G,N,U) are fused images based on the proposed method.
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FIGURE 6 | A series of contrasting experiments for glioma brain images on fusion images based on different fusion methods (set 2). (A,H,O) are source CT images;
(B,I,P) are source SPECT images; (C,J,Q) are fused images based on IHS; (D,K,R) are fused images based on NSCT+FL; (E,L,S) are fused images based on DWT;
(F,M,T) are fused images based on the combination of NSCT+PCNN; (G,N,U) are fused images based on the proposed method.

FIGURE 7 | A series of contrasting experiments for brain images of patients diagnosed with Alzheimer’s disease on fusion images based on different fusion methods
(set 3). (A,H,O) are source CT images; (B,I,P) are source SPECT images; (C,J,Q) are fused images based on IHS; (D,K,R) are fused images based on NSCT+FL;
(E,L,S) are fused images based on DWT; (F,M,T) are fused images based on the combination of NSCT+PCNN; (G,N,U) are fused images based on the proposed
method.
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in Figure 7. In Figures 5–7, (a), (h) and (o) are source CT images;
(b), (i), (p) are source SPECT images; (c), (j) and (q) are fused
images based on IHS; (d), (k) and (r) are fused images based
on NSCT+FL; (e), (l) and (s) are fused images based on DWT;
(f), (m) and (t) are fused images based on the combination of
NSCT+PCNN; (g), (n) and (u) are fused images based on the
proposed method. It can be seen that the fusion results based
on our proposed method are more accurate and clearer than
those based on various other methods. Our proposed method
contributes to a higher brightness of fusion images and more
information on the edge details.

Objective Evaluations of
Experimental Results
A set of metrics is used to compare the performance of the fusion
methods including IHS, DWT, NSCT, PCNN, a combination of
NSCT and the PCNN, and our proposed method. The evaluation
metrics including standard deviation (SD), mean gradient (Ḡ),
spatial frequency (SF) and information entropy (E) are entailed
as follows (Huang et al., 2018):

(1) Standard deviation
Standard deviation is used to evaluate the contrast of the
fused image, which is defined as

σ =

√√√√ M∑
i=1

N∑
j=1

(Z(i, j)− Z̄)2/(M × N) (2)

where Z(i, j) represents the pixel value of the fused image
and Z̄ is the mean value of the pixel values of the image.
The SD reflects the discrete image gray scale relative to
the mean value of gray scale. And a higher value of SD
demonstrates the performance of a fused image.

(2) Mean gradient (Ḡ)
Ḡ corresponds to the ability of a fused image to
represent the contrast of tiny details sensitively. It can be
mathematically described as

Ḡ =
1

(M − 1)(N − 1)

M−1∑
i=1

N−1∑
j=1

×

√
((
∂Z(xi, yj)
∂xi

)2 + (
∂Z(xi, yj)
∂yi

)2)/2 (3)

The fused image is clearer when the value of mean gradient
is higher.

(3) Spatial frequency (SF)
Spatial frequency is the measure of the overall activity in
a fused image. For an image with a gray value Z(xi, yj) at
position (xi, yj), the spatial frequency is defined as

SF =
√
RF2 + CF2 (4)

Where row frequency

RF =

√√√√ 1
M × N

M∑
i=1

N∑
j=2

[Z(xi, yj)− Z(xi, yj−1)]2 (5)

Column frequency

CF =

√√√√ 1
M× N

M∑
i=2

N∑
j=1

[Z(xi, yj)− Z(xi−1, yj)]2 (6)

The higher the value of frequency, the better the
fused image quality.

(4) Information entropy (E)
Information entropy is provided by the below equation

E = −
L−1∑
i=0

pi log2 pi (7)

TABLE 1 | Performance evaluations on normal brain fused images based on
different methods.

Metric IHS NSCT+FL DWT NSCT+PCNN Proposed

Set 1 Standard deviation 51.6141 55.2178 42.5312 57.1188 57.2258

Mean gradient 8.8561 8.714 6.2027 8.8568 8.8071

Spatial frequency 33.5851 33.2324 22.0093 33.7566 33.6546

Information entropy 2.6859 2.7565 3.0483 2.7729 3.0621

Set 2 Standard deviation 43.278 49.5989 43.0915 52.9246 53.1691

Mean gradient 6.686 6.6633 4.5622 6.5672 6.7489

Spatial frequency 20.3855 19.9558 12.7416 19.8214 20.0956

Information entropy 3.6325 3.9243 4.2501 3.8386 3.9424

Set 3 Standard deviation 50.0926 55.7124 47.4476 57.1246 57.1268

Mean gradient 6.2153 6.1775 4.1822 6.086 6.1796

Spatial frequency 19.244 18.9682 12.0096 18.7269 18.7335

Information entropy 3.6226 3.7122 4.0074 3.7139 3.7399

TABLE 2 | Performance evaluations on glioma brain fused images based on
different methods.

Metric IHS NSCT+FL DWT NSCT+PCNN Proposed

Set 1 Standard deviation 41.7514 55.2055 39.8132 58.0374 58.3122

Mean gradient 5.2953 5.5442 3.8166 5.459 5.5678

Spatial frequency 16.2064 16.5277 10.1649 16.466 16.4776

Information entropy 3.9255 4.1433 4.6303 4.08 4.1788

Set 2 Standard deviation 44.154 55.5879 42.436 57.7284 57.775

Mean gradient 6.2881 6.6316 4.595 6.535 6.7276

Spatial frequency 17.6675 17.9369 11.359 17.9359 17.9095

Information entropy 4.3966 4.7513 5.1901 4.6312 4.837

Set 3 Standard deviation 48.6572 54.0708 41.78 56.2065 56.3546

Mean gradient 6.8855 6.8515 4.8166 6.774 6.7977

Spatial frequency 27.8964 27.8583 17.8725 27.7365 27.7654

Information entropy 2.4852 2.5749 2.8442 2.5239 2.658

TABLE 3 | Performance evaluations on fused brain images of patients diagnosed
with Alzheimer’s disease, based on different methods.

Metric IHS NSCT+FL DWT NSCT+PCNN Proposed

Set 1 Standard deviation 66.1357 65.3766 51.0336 69.5392 66.5782

Mean gradient 9.9938 10.0303 6.509 10.0089 10.2068

Spatial frequency 26.7087 26.7329 16.1614 26.6568 27.1771

Information entropy 4.7735 4.834 5.4105 4.8036 4.8966

Set 2 Standard deviation 59.1931 59.2093 52.0837 61.4981 60.6457

Mean gradient 6.7482 7.0266 4.5756 7 7.0461

Spatial frequency 19.0263 19.3264 11.8249 19.3257 19.512

Information entropy 3.9901 4.1834 4.5922 4.0985 4.2156

Set 3 Standard deviation 56.0974 58.787 47.6032 56.0943 57.7578

Mean gradient 7.9023 8.111 5.4579 7.9592 7.966

Spatial frequency 22.2846 22.4084 13.907 21.9421 22.0022

Information entropy 3.895 4.1058 5.1943 4.2228 4.2897
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where L is image gray scale and Pi is the proportion of
the pixel of the gray value i in whole pixels. A higher
value of entropy indicates more information contained in
the fused image.

Experiment results on fused images of SPECT images and CT
images are shown in Tables 1–3. The fusion results of a set of
normal brain images are shown in Table 1, the fusion results of
a set of glioma brain images are presented in Table 2, while a set
of brain images of patients diagnosed with Alzheimer’s disease
are shown Table 3. It can be seen that compared to other fusion
methods, our proposed method generally has higher values in
SD, Ḡ, SF and E. The experimental results demonstrate that
information of fusion images obtained by our proposed method
is more abundant, the inheritance of detail information performs
better, while the resolution is significantly improved.

CONCLUSION

In this paper, a new fusion method for SPECT brain and CT brain
images was put forward. First, NSCT was used to decompose the
IHS transform of a SPECT and CT image. The fusion rules, based
on the regional average energy, was then used for low-frequency
coefficients and the combination of SFLA and the PCNN was
used for high-frequency sub-bands. Finally, the fused image was
produced by reversed NSCT and reversed IHS transform. Both
subjective evaluations and objective evaluations were used to
analyze the quality of the fused images. The results demonstrated
that the method we put forward can retain the information
of source images better and reveal more details in integration.
It can be seen that the proposed method is valid and effective in

achieving satisfactory fusion results, leading to a wide range of
applications in practice.

The paper focuses on multi-mode medical image fusion.
However, there is a negative correlation between the real-
time processing speed and the effectiveness of medical image
fusion. Under the premise of ensuring the quality of fusion
results, how to improve the efficiency of the method should be
considered in the future.
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Aim:Multiple sclerosis is a severe brain and/or spinal cord disease. It may lead to a wide

range of symptoms. Hence, the early diagnosis and treatment is quite important.

Method: This study proposed a 14-layer convolutional neural network, combined

with three advanced techniques: batch normalization, dropout, and stochastic pooling.

The output of the stochastic pooling was obtained via sampling from a multinomial

distribution formed from the activations of each pooling region. In addition, we used data

augmentation method to enhance the training set. In total 10 runs were implemented

with the hold-out randomly set for each run.

Results: The results showed that our 14-layer CNN secured a sensitivity of

98.77 ± 0.35%, a specificity of 98.76 ± 0.58%, and an accuracy of 98.77 ± 0.39%.

Conclusion: Our results were compared with CNN using maximum pooling and

average pooling. The comparison shows stochastic pooling gives better performance

than other two pooling methods. Furthermore, we compared our proposed method with

six state-of-the-art approaches, including five traditional artificial intelligence methods

and one deep learning method. The comparison shows our method is superior to all

other six state-of-the-art approaches.

Keywords: multiple sclerosis, deep learning, convolutional neural network, batch normalization, dropout,

stochastic pooling

INTRODUCTION

Multiple sclerosis (abbreviated as MS) is a condition that affects the brain and/or spinal cord
(Chavoshi Tarzjani et al., 2018). It will lead to a wide range of probable symptoms, likely with
balance (Shiri et al., 2018), vision, movement, sensation (Demura et al., 2016), etc. It has two main
types: (i) relapsing remitting MS and (ii) primary progressive MS. More than eight out of every ten
diagnosed MS patients are of the “relapsing remitting” type (Guillamó et al., 2018).
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MS diagnosis may be confused with other white matter
diseases, such as neuromyelitis optica (NMO) (Lana-Peixoto
et al., 2018), acute cerebral infarction (ACI) (Deguchi et al.,
2018), acute disseminated encephalomyelitis (ADEM) (Desse
et al., 2018), etc. Hence, accurate diagnosis of MS is important
for patients and following treatments. In this study, a preliminary
study that identifies MS from healthy controls with the help
of magnetic resonance imaging (MRI) was investigated and
implemented.

Recently, researchers tend to use computer vision and image
processing ( Zhang and Wu, 2008, 2009; Zhang et al., 2009a,b,
2010a,b) techniques to accomplish MS automatic-identification
tasks. For instances, Murray et al. (2010) proposed to use
multiscale amplitude modulation and frequency modulation
(AM-FM) to identify MS. Nayak et al. (2016) presented a novel
method, combining AdaBoost with random forest (ARF). Wang
et al. (2016) combined biorthogonal wavelet transform (BWT)
and logistic regression (LR).Wu and Lopez (2017) used four-level
Haar wavelet transform (HWT). Zhang et al. (2017) proposed a
novel MS identification system based on Minkowski-Bouligand
Dimension (MBD).

Above methods secured promising results. Nevertheless, their
methods need to extract features beforehand, and they need to
validate their hand-extracted features effective (Chang, 2018a,b,c;
Lee et al., 2018). Recently, convolutional neural network (CNN)
attracts the research interest of scholars, since it can mechanically
develop the features by its early layers. CNN has already been
applied tomany fields, such as biometric identification (Das et al.,
2019), manipulation detection (Bayar and Stamm, 2018), etc.
Zhang et al. (2018) is the first to apply CNN to identify MS, and
their method achieved an overall accuracy of 98.23%.

This study is based on the CNN structure of Zhang
et al. (2018). We proposed two other improvements: batch
normalization and stochastic pooling. In addition, we used
dynamic learning rate to accelerate the convergence. Learning
rate is a parameter to control how quickly the proposed
model converge to a local minimal. Low learning rate means
a slow speed toward the downward slope. However, it can
certain that we won’t miss the local minimum but a long time
to converge. Therefore, in our research, we set the learning
rate a large value and reduce it by every given number of
epochs instead of the fixed small learning rate until achieve
convergence.

The rest of this paper is organized as follows: section
Data Preprocessing described the data processing including
data sources and data preprocessing. Section Methodology
illustrates the method used in our research. Section Experiments,
Results, and Discussions provided the experiment result and
discussion.

DATA PREPROCESSING

Two Sources
The dataset in this study were obtained from Zhang et al.
(2018). First, MS images were obtained from the eHealth
laboratory (2018). All brain lesions were identified and delineated
by experienced MS neurologists, and were confirmed by

radiologists. Second, the healthy controls were used from 681
slices of 26 healthy controls provided in Zhang et al. (2018).
Table 1 shows the demographic characteristics of two datasets.

Figure 1A shows the original slice, and Figure 1B shows the
delineated results with four plaques, Areas surrounded by red
line denotes the plaque. Figures 1C,D presents two slices from
healthy controls.

Contrast Normalization
The brain slices are from two different sources; hence, the
scanner machines may have different hardware setting (scanning
sequence) and software settings (reconstruction from k-space,
the store format, etc.). It is necessary to match the two sources
of images in terms of gray-level intensities. This is also called
contrast normalization, with aim of achieving consistency in
dynamic range of various sources of data.

Histogram stretching (HS) method (Li et al., 2018) was chosen
due to ease of implementation. HS aims to enhance the contrast
by stretching the range of intensity values of two sources of

TABLE 1 | Demographic characteristics of two datasets.

Dataset Source # Subjects Number

of Slice

Age Gender

(m/f)

Multiple sclerosis

(2018)

eHealth 38 676 34.1 ± 10.5 17/21

Healthy control (Zhang

et al., 2018)

private 26 681 33.5 ± 8.3 12/14

FIGURE 1 | Samples of our dataset. (A) Original MS image. (B) MS image with

plaque delineated. (C) Healthy control image I. (D) Healthy control image II.
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FIGURE 2 | Pipeline of convolutional neural network.

FIGURE 3 | Pipeline of conv layer.

FIGURE 4 | A toy example of max pooling and average pooling.

images to the same range, providing the effect of inter-scan
normalization.

The contrast normalization is implemented in following way.
Let us assume µ is the original brain image, and ϕ is the contrast-
normalized image, the process of HS can be described as

ϕ(x, y) =
µ(x, y)− µmin

µmax − µmin
(1)

where (x, y) represents the coordinate of pixel, µmin and µmax

represents the minimum and maximum intensity values of

FIGURE 5 | Structure of FC layer.

original brain image µ.

µmin = min
x

min
y

(

µ(x, y)
)

(2)

µmax = max
x

max
y

(

µ(x, y)
)

(3)
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We do contrast normalization for both two data of different
sources, and finally combine them together, forming a 676+681
= 1,357-image dataset.

METHODOLOGY

Convolutional neural network is usually composed of
conv layers, pooling layer, and fully connected layers.
Figure 2 gives a toy example that consists of two conv
layers, two pooling layers, and two fully connected layers.
CNN can achieve comparable or even better performance
than traditional AI approaches, while it does not need
to manual design the features (Zeng et al., 2014, 2016a,b,
2017a,b).

FIGURE 6 | An example of dropout neural network.

TABLE 2 | Variables used in batch normalization.

Parameter Meaning

z The output of a layer

znorm The normalization of z

∼li Input of the non-linearity layer

α Mean value of the minibatch

δ2 Variance of the minibatch

l Layer index

i ith data in the mini batch

ε A small constant

m The number of samples of the minibatch

Conv Layer
The conv layers performed Two-dimensional convolution along
the width and height directions (Yu et al., 2018). It is
worth noting that the weights in CNN are learned from
backpropagation, except for initialization that weights are given
randomly. Figure 3 shows the pipeline of data passing through a
conv layer. Suppose there is an input with size of

Input :HI ×WI × D (4)

whereHI , WI , and C represent the height, width, and channels of
the input, respectively.

Suppose the size of filter is

Filter 1 :HF ×WF × D
...
Filter Z :HF ×WF × D

(5)

where HF and WF are height and width of each filter, and the
channels of filter should be the same as that of the input. Z
denotes the number of filters. Those filters move with stride of
M and padding of N, then the channels of output activation map
should be Z. The output size is:

Output :HO ×WO × Z (6)

where HO andWO are the height and width of the output. Their
values are:

HO = 1+

⌊

2N +HI −HF

M

⌋

(7)

WO = 1+

⌊

2N +WI −WF

M

⌋

(8)

where ⌊⌋ denotes the floor function. The outputs of conv layer are
usually passed through a non-linear activation function, which
normally chooses as rectified linear unit (ReLU) function.

TABLE 3 | Hold-out validation setting.

Training Test

MS 350 326

HC 350 331

Total 700 657

FIGURE 7 | A toy example of stochastic pooling.
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Pooling Layer
The activation map contains too much features which can lead
to overfitting and computational burden. Pooling layer is often
used to implement dimension reduction. Furthermore, pooling
can help to obtain invariance to translation. There are two
commonly-used pooling methods: average pooling (AP), max
pooling (MP).

The average pooling (Ibrahim et al., 2018) is to calculate the
average value of the elements in each pooling region, while the
max pooling is to select the max value of the pooling region.
Suppose the region R contains pixelsχ , the average pooling and
max pooling are defined as:

AP:{yj = χi/
∑

i∈Rj

χi } (9)

MP:{yj = max
i∈Rj

χi} (10)

Figure 4 shows the difference, where the kernel size equals 2 and
stride equals 2. The max pooling finally outputs the maximum
values of all four quadrants, while the average pooling outputs
the average values.

Softmax and Fully-Connected Layer
In fully connected (FC) layer, each neuron connects to all neurons
of the previous layer, which makes this layer produce many
parameters in this layer. The fully connected layer multiplied the
input by a weight matrix and added to a bias vector. Suppose
layer k containsm neurons, layer (k+1) contains n neurons. The
weight matrix will be of size ofm× n, and the bias vector will be
size of 1× n. Figure 5 shows the structure of FC layer.

Meanwhile, fully connected layer is often followed by a
softmax function used to convert the input to a probability
distribution. Here the “softmax” in this study only denotes
the softmax function. While some literature will add a fully-
connected layer before the softmax function and call the both
layers as “softmax function.”

Dropout
Deep neural network provides strong learning ability even for
very complex function which is hard to understand by human.
However, one problem often happened during the training of the
deep neural network is overfitting, which means the error based

on the training set is very small, but the error is large when the
test data is provided to the neural network. We name it as bad
generation to new dataset.

Dropout was proposed to overcome the problem of
overfitting. Dropout works as randomly set some neurons
to zero in each forward pass. Each unit has a fixed probability p
independent of the other units to be dropped out. The probability
p is commonly set as 0.5. Figure 6 shows an example of dropout
neural network, where the empty circle denotes a normal neuron,
and a circle with X inside denotes a dropout neuron. It is obvious
using dropout can reduce the links and make the neural network
easy to train.

Batch Normalization
As the change of each layer’s input distribution caused by the
updating of the parameter in the previous layer, which is called as
internal covariate shift, can result the slow training. Thus, to solve
this problem, we employ the batch normalization to normalizes
the layer’s inputs over a mini batch to make the input layer have a
uniform distribution. All the variables are listed in Table 2, then
the batch normalization can be implemented as follows:

αl =
1

m

∑

i

zli (11)

σ l2 =
1

m

∑

i

(zli − αl)
2

(12)

zlinorm =
zli − αl

√

δl2 + ε
(13)

z̃li=λlzlinorm + β l (14)

Here, ε is employed to improve numerical stability while the
mini-batch variance is very small. Usually is set as default value
e−5. However, the offset β and scale factor γ are updated during
training as learnable parameters.

Stochastic Pooling
The stochastic pooling is proposed to overcome the problems
caused by the max pooling and average pooling. The average
pooling has a drawback, that all elements in the pooling region
are considered, thus it may down-weight strong activation due to
many near-zero elements. The max pooling solves this problem,

FIGURE 8 | Pipeline of data preprocessing.
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FIGURE 9 | Results of data augmentation. (A) Rotation. (B) Scaling. (C) Noise injection. (D) Random translation. (E) Gamma correction.
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but it easily overfits the training set. Hence, max pooling does not
generalize well to test set.

Instead of calculating the mean value or the max value of each
pooling region, the output of the stochastic pooling is obtained
via sampling from a multinomial distribution formed from the
activations of each pooling region Rj. The procedure can be
expressed as follows:

(1) Calculate the probability p of each element χ within the
pooling region.

pi =
χi

∑

k∈Rj
χk

(15)

in which, k is the index of the elements within the pooling region.

TABLE 4 | Hyperparameters of Conv layers.

Layer Filter size # Channel # Filters Stride

Conv_1 3 × 3 1 8 2

Pool_1 3 × 3 2

Conv_2 3 × 3 8 8 2

Pool_2 3 × 3 2

Conv_3 3 × 3 8 16 1

Conv_4 3 × 3 16 16 1

Conv_5 3 × 3 16 16 1

Pool_3 3 × 3 2

Conv_6 3 × 3 16 32 1

Conv_7 3 × 3 32 32 1

Conv_8 3 × 3 32 32 1

Conv_9 3 × 3 32 64 1

Conv_10 3 × 3 64 64 1

Conv_11 3 × 3 64 64 1

Pool_4 3 × 3 2

TABLE 5 | Hyperparameters of Fully-connected layers.

Layer Weights Bias Probability

FCL_1 20 × 1024 20 × 1

DO_1 0.5

FCL_2 10 × 20 10 × 1

DO_2 0.5

FCL_3 2 × 10 2 × 1

(2) Pick a location l within the pooling region according to the
probability p. It is calculated by scanning the pooling region from
left to right and up to bottom.

Aj = χl, l ∼ P(p1, ..., p|Rj|) (16)

Instead of considering the max values only, stochastic pooling
may use non-maximal activations within the pooling region.
Figure 7 shows a toy example of using stochastic pooling. We
first output the probabilities of the input matrix, then the roulette
wheel falls within the pie of 0.2. Hence the location l is finally
chosen as 2, and the output is the value at second position.

EXPERIMENTS, RESULTS, AND
DISCUSSIONS

Division of the Dataset
Hold-out validation method (Monteiro et al., 2016) was used to
divide the dataset. In the training set, there are 350MS images
and 350 HC images. In the test set, we have 326MS images and
331 HC images. Table 3 presents the setting hold-out validation
method.

The dataset is divided into two parts without validation dataset
for our research: training dataset and test dataset as shown
in Table 3. The missing of validation set is mainly because of
following reasons: First, according to the past research, validation

TABLE 6 | Statistical analysis of 10 runs.

Run Sensitivity Specificity Precision Accuracy

1 98.77 98.19 98.17 98.48

2 98.47 97.58 97.57 98.02

3 98.47 98.79 98.77 98.63

4 98.16 98.79 98.77 98.48

5 99.08 98.79 98.78 98.93

6 98.77 98.79 98.77 98.78

7 99.39 99.40 99.39 99.39

8 99.08 98.49 98.48 98.78

9 98.77 99.40 99.38 99.09

10 98.77 99.40 99.38 99.09

Average 98.77 ± 0.35 98.76 ± 0.58 98.75 ± 0.58 98.77 ± 0.39

FIGURE 10 | Activation map of proposed CNN model.

Frontiers in Neuroscience | www.frontiersin.org 7 November 2018 | Volume 12 | Article 818162

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. MS by 14-Layer CNN-DO-BN-SP

FIGURE 11 | Confusion matrixes of each run.

TABLE 7 | Ten random runs of MP and AP methods.

Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

MP

R1 97.87 97.87 97.89 97.87

R2 98.63 98.63 98.66 98.63

R3 98.18 98.18 98.20 98.17

R4 96.04 96.04 96.11 96.04

R5 96.80 96.80 96.86 96.80

R6 98.78 98.78 98.81 98.78

R7 98.63 98.63 98.65 98.63

R8 97.86 97.86 97.88 97.87

R9 99.24 99.24 99.25 99.24

R10 98.63 98.63 98.64 98.63

Average 98.07 ± 0.93 98.07 ± 0.98 98.10 ± 0.96 98.07 ± 0.98

AP

1 97.41 97.41 97.55 97.41

2 96.65 96.66 96.67 96.65

3 98.33 98.32 98.37 98.33

4 97.41 97.41 97.42 97.41

5 96.65 96.65 96.65 96.65

6 97.87 97.87 97.88 97.87

7 97.56 97.57 97.58 97.56

8 97.87 97.87 97.92 97.87

9 98.48 98.48 98.52 98.48

10 98.48 98.47 98.51 98.48

Average 97.67 ± 0.64 97.67 ± 0.67 97.71 ± 0.68 97.67 ± 0.67

set error rate may tend to overestimate the test error rate for the
model fit on the entire data set (Bylander, 2002; Whiting et al.,
2004). Second, as in order to avoid the overfitting, in addition of
the training and test datasets, the validation dataset is necessary
to tune the classification parameters. However, in this paper, we
employed the drop out to overcome the problem of overfitting.
The experiment result showed that there is no overfitting existing.
Therefore, validation dataset is not used in our research.

Data Augmentation Results
The deep learning usually needs a large amount of samples.
However, ass it is a well-known challenge to collect biomedical
data so as to generate more data from the limited data.
Meanwhile, data augmentation has been shown to overcome

TABLE 8 | Pooling method comparison and p-values of singed-rank test.

Pooling Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

MP 98.33 ± 0.75 98.33 ± 0.79 98.34 ± 0.79 98.33 ± 0.80

p-value

(SP-MP)

0.0645 0.0469 0.0605 0.0430

AP 97.67 ± 0.64 97.67 ± 0.67 97.71 ± 0.68 97.67 ± 0.67

p-value

(SP-AP)

0.0020 0.0020 0.0020 0.0020

SP (Ours) 98.77 ± 0.35 98.76 ± 0.58 98.75 ± 0.58 98.77 ± 0.39

Bold means the p-values are less than 0.05.

TABLE 9 | Comparison of the approach with and without data augmentation.

Approach Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

No

augmentation

98.22 ± 0.71 98.19 ± 1.03 98.18 ± 1.01 98.20 ± 0.77

Data

augmentation

98.77 ± 0.35 98.76 ± 0.58 98.75 ± 0.58 98.77 ± 0.39

the overfitting and increase the accuracy of classification tasks
(Wong et al., 2016; Velasco et al., 2018). Therefore, in this study,
we employed five different data augmentation (DA) methods to
enlarge the training set (Velasco et al., 2018). First, we used image
rotation. The rotation angle θ was set from −30 to 30◦ in step
of 2◦. The second DA method was scaling. The scaling factors
varied from 0.7 to 1.3 with step of 0.02. The third DA method
was noise injection. The zero-mean Gaussian noise with variance
of 0.01 was added to the original image to generate 30 new
noise-contaminated images due to the random seed. The fourth
DA method used was random translation by 30 times for each
original image. The value of random translation t falls within the
range of [0, 15] pixels, and obeys uniform distribution. The fifth
DA method was gamma correction. The gamma-value r varied
from 0.4 to 1.6 with step of 0.04.

The original training is presented in Figures 1A, 8 shows the
pipeline of the data preprocessing, where the augmented training
set is used to create a deep convolutional neural network model,
and this trained model was tested over the test set, with final
performance reported in Table 6. Figure 9A shows the results
of image rotation. Figure 9B shows the image scaling results.
Figures 9C–E shows the results of noise injection, random
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TABLE 10 | Comparison to traditional AI approaches.

Approach Sensitivity (%) Specificity (%) Precision(%) Accuracy (%)

Multiscale AM-FM

(Murray et al.,

2010)

94.08 93.64 91.91 93.83

ARF (Nayak et al.,

2016)

96.23 ± 1.18 96.32 ± 1.48 N/A 96.28 ± 1.25

BWT-LR (Wang

et al., 2016)

97.12 ± 0.14 98.25 ± 0.16 N/A 97.76 ± 0.10

4-level HWT (Wu

and Lopez, 2017)

N/A N/A N/A 87.65 ± 1.79

MBD (Zhang et al.,

2017)

97.78 ± 1.29 97.82 ± 1.60 N/A 97.80 ± 1.40

CNN-DO-BN-SP

(Ours)

98.77 ± 0.35 98.76 ± 0.58 98.75 ± 0.58 98.77 ± 0.39

TABLE 11 | Comparison to deep learning approaches.

Approach Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

CNN-PReLU-DO

(Zhang et al.,

2018)

98.22 98.24 N/A 98.23

CNN-DO-BN-SP

(Ours)

98.77 ± 0.35 98.76 ± 0.58 98.75 ± 0.58 98.77 ± 0.39

FIGURE 12 | Comparison plot.

translation, and Gamma correction, respectively. As is shown,
one training image can generate 150 new images, and thus, the
data-augmented training image set is now 151x size of original
training set.

Structure of Proposed CNN
We built a 14-layer CNN model, with 11 conv layers and 3 fully-
connected layers. Here we did not the number of other layers
as convention. The hyperparameters were fine-tuned and their
values were listed in Tables 4, 5. The padding values of all layers
are set as “same.” Figure 10 shows the activation map of each

layer. It is obvious that the height of width of output of each layer
shrinks as going to the late layers.

Statistical Results
We used our 14-layer CNN with “DO-BN-SP.” We ran the test
10 times, each time the hold-out division was updated randomly.
The results over 10 runs are shown in Table 6. The average of
sensitivity, specificity, and accuracy are 98.77 ± 0.35, 98.76 ±

0.58, and 98.77 ± 0.39, respectively. The confusion matrix of all
runs are listed in Figure 11.

Pooling Method Comparison
In this experiment, we compared the stochastic pooling (SP)
with max pooling (MP) and average pooling (AP). All the other
settings are fixed and unchanged. The results of 10 runs of MP
and AP are shown in Table 7.

We performed Wilcoxon signed rank test (Keyhanmehr et al.,
2018) between the results of SP and those of MP, and between the
results of SP and those of AP. The results are listed in Table 8. It
shows SP are significantly better than MP in terms of specificity
and accuracy. Meanwhile, SP are significantly better than AP in
all four measures.

In this section, Wilcoxon signed rank test was utilized
instead of two-sample t-test (Jafari and Ansari-Pour, 2018)
and chi-square test (Kurt et al., 2019) based on following
reasons: two-sample t-test supposes the data comes from
independent random samples of normal distributions, the
same for chi-square goodness-of-fit test. However, our
sensitivity/specificity/precision/accuracy data do not meet
the condition of gaussian distribution.

Validation of the Data Augmentation
We compared the training process with and without data
augmentation to explore the augmentation strategies. The data
augmentation methods including: image rotation, scaling, noise
injection, random translation and gamma correction as stated in
section Data Augmentation Results. The respective performance
is shown in Table 9. Training with data augmentation could
provide better performance, particularly reducing the range of
standard deviation.

Comparison to State-Of-The-Art
Approaches
In this experiment, we compared our CNN-DO-BN-SP method
with traditional AI methods: Multiscale AM-FM (Murray et al.,
2010), ARF (Nayak et al., 2016), BWT-LR (Wang et al., 2016),
4-level HWT (Wu and Lopez, 2017), and MBD (Zhang et al.,
2017). The results were presented in Table 10. Besides, we
compared our method with a modern CNN method, viz., CNN-
PReLU-DO (Zhang et al., 2018). The results were listed in
Table 11. We can observe that our method achieved superior
performance than all six state-of-the-art approaches, as shown in
Figure 12.

The reason why our method is the best among all seven
algorithms lies in four points. (i) We used data augmentation,
to enhance the generality of our deep neural network. (ii) The
batch normalization technique was used to resolve the internal
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covariate shift problem. (iii) Dropout technique was used to
avoid overfitting in the fully connected layers. (iv) Stochastic
pooling was employed to resolve the down-weight issue caused
by average pooling and overfitting problem caused by max
pooling.

The bioinspired-algorithm may help the design or
initialization of our model. In the future, we shall
try particle swarm optimization (PSO) (Zeng et al.,
2016c,d) and other methods. The hardware of our model
can be optimized using specific optimization method
(Zeng et al., 2018).

In this paper, we employed data augmentation, the main
benefits mainly as follows: As it is a well-know challenge to collect
biomedical data so as to generate more data from the limited
data. Second, data augmentation has been shown to overcome the
overfitting and increase the accuracy of classification tasks (Wong
et al., 2016; Velasco et al., 2018).

CONCLUSION

In this study, we proposed a novel fourteen-layer convolutional
neural network with three advanced techniques: dropout, batch
normalization, and stochastic pooling. The main contributes are
list as follows:

(1) In this paper, we first applied CNN with stochastic pooling
for the Multiple sclerosis detection whose early diagnosis is
important for patients’ following treatment.

(2) In order to overcome the problems happened in the
traditional CNN, such as the internal co shift invariant and
overfitting, we utilized batch normalization and dropout.

(3) Considering the size of the dataset, data augmentation was
employed in our research for the train set.

(4) The proposed method has the best performance compared
to the other state of art methods in terms of sensitivity,
specificity, precision and accuracy.

The results showed our method is superior to six state-of-the-
art approaches: five traditional artificial intelligence methods and
one deep learning method. The detail explanation is provided
in section Comparison to State-of-the-art approaches. In the
future, we shall try to test other pooling variants, such as pyramid
pooling. The dense-connected convolutional networks will also
be tested for our task. Meanwhile, we will also work on finding
more ways to accelerate convergence (Liao et al., 2018).
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Brain vessel status is a promising biomarker for better prevention and treatment in

cerebrovascular disease. However, classic rule-based vessel segmentation algorithms

need to be hand-crafted and are insufficiently validated. A specialized deep learning

method—the U-net—is a promising alternative. Using labeled data from 66 patients

with cerebrovascular disease, the U-net framework was optimized and evaluated with

three metrics: Dice coefficient, 95% Hausdorff distance (95HD) and average Hausdorff

distance (AVD). The model performance was compared with the traditional segmentation

method of graph-cuts. Training and reconstruction was performed using 2D patches. A

full and a reduced architecture with less parameters were trained. We performed both

quantitative and qualitative analyses. The U-net models yielded high performance for

both the full and the reduced architecture: A Dice value of ∼0.88, a 95HD of ∼47

voxels and an AVD of ∼0.4 voxels. The visual analysis revealed excellent performance

in large vessels and sufficient performance in small vessels. Pathologies like cortical

laminar necrosis and a rete mirabile led to limited segmentation performance in few

patients. The U-net outperfomed the traditional graph-cuts method (Dice ∼0.76, 95HD

∼59, AVD ∼1.97). Our work highly encourages the development of clinically applicable

segmentation tools based on deep learning. Future works should focus on improved

segmentation of small vessels and methodologies to deal with specific pathologies.

Keywords: cerebrovascular disease, deep learning, medical imaging, segmentation, U-net

INTRODUCTION

Stroke is a world disease with extreme impact on patients and healthcare
systems. Approximately 15 million people suffer from an ischemic stroke each year worldwide1. A
third of the patients die, making stroke a leading cause of death. Since stroke is a cerebrovascular
disease, more detailed information about arterial vessel status may play a crucial role for both the

1WHO EMRO Stroke, Cerebrovascular Accident | Health Topics. Available online at: http://www.emro.who.int/health-

topics/stroke-cerebrovascular-accident/index.html (Accessed July 14, 2018).
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prevention of stroke and the improvement of stroke therapy. It
thus has potential to become a biomarker for new personalized
medicine approaches for stroke prevention and treatment
(Hinman et al., 2017). Considering that vessel imaging is a
routine procedure in the clinical setting, vessel information could
be easily integrated in the clinical workflow, if segmentations are
available and processed.

Currently, however, vessel imaging is only visually—
qualitatively—assessed in the clinical routine. Technical
challenges of extracting brain arteries and quantifying their
parameters have prevented this information from being applied
in the clinical setting. If done at all, segmentations of brain
vessels are to date still done predominantly manually or semi-
manually and are not quantified. Additionally, (semi-) manual
vessel segmentation is very time-consuming and has proven
to be fairly inaccurate owing to high interrater-variability
making it unfeasible for the clinical setting (Phellan et al., 2017).
Consequently, research has focused on developing faster and
more accurate automatic vessel segmentation methods. Many
different rule-based methods exploiting various features of
vessel images, such as vessel intensity distributions, geometric
models, and vessel extraction schemes have been proposed
for this purpose in the previous decades (Lesage et al., 2009;
Zhao et al., 2017). These methods, however, are predominantly
manually engineered in nature utilizing hand-crafted features
and are—additionally—insufficiently validated (Lesage et al.,
2009; Phellan et al., 2017). In fact, due to lack of validation and
the necessary performance none of the suggested methods has
found any broad use in the clinical setting or in research so
far. Thus, crucial information about arterial vessel status and
subsequent personalized treatment recommendation are not
available. The doctor on site lacks a tool to assess this information
for the potential benefit of cerebrovascular disease patients.

Deep neural network architectures are a natural choice to
overcome this technological roadblock (Zhao et al., 2017).
They have shown tremendous success in the last 5 years for
image classification and segmentation tasks in various fields
(LeCun et al., 2015; Chen et al., 2016; Badrinarayanan et al.,
2017; Krizhevsky et al., 2017), and particularly in neuroimaging
(Zaharchuk et al., 2018). In the peer reviewed literature for
arterial brain vessel segmentation, Phellan et al. (2017) explored
a relatively shallow neural net in magnetic resonance images
of 5 patients (Phellan et al., 2017). While showing promising
preliminary results, the small sample size and shallow net
led to limited performance. Here, one of the most promising
deep learning frameworks for segmentation tasks is the U-net
(Ronneberger et al., 2015). It is a specialized convolutional neural
net (CNN) with an encoding down-sampling path and an up-
sampling decoding path similar to an autoencoder architecture.
It was specifically designed for segmentation tasks and has shown
high performance for the segmentation of biomedical images
(Fabijanska, 2018; Huang et al., 2018; Norman et al., 2018).

In this context our central contribution is a modified
U-net architecture for fully automated arterial brain vessel
segmentation evaluated on a dataset of 66 magnetic resonance
(MR) images of patients with cerebrovascular disease. We
performed a thorough qualitative and quantitative assessment
to assess performance with a special focus on performance

for pathological cases. Lastly, we compared our results to
a traditional standard method of the graph cut approach
(Chen and Pan, 2018).

METHODS

Patients
We retrospectively used data from patients from the PEGASUS
study that enrolled patients with steno-occlusive cerebrovascular
disease [at least 70% stenosis and/or occlusion of one middle
cerebral artery (MCA) or internal carotid artery (ICA)]. The
study details have been published previously (Mutke et al., 2014;
Martin et al., 2015). As additional test-sets to assess generalization
we included patients with cerebrovascular disease from the 7UP
study. Both the 7UP study as well as the PEGASUS study were
carried out in accordance with the recommendations of the
authorized institutional ethical review board of the Charité-
Universitätsmedizin Berlin with written informed consent from
all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the authorized institutional ethical review board of
the Charité-Universitätsmedizin Berlin.

Of 82 patients in total, 4 did not have vessel imaging and
6 patients were not yet processed at the time of the study.
Of the 72 patients remaining, 6 were excluded due to low
quality vessel images owing to patient motion leading to 66
patient scans available for our study. The test-sets from the
7UP study comprised 10 patients each with cerebrovascular
disease (stroke in the past) with Time-of-Flight (TOF)-
angiography from a different scanner and different parameters,
and a different angiographymodality, i.e. MPRAGE-angiography
(Dengler et al., 2016).

Data Accessibility
At the current time-point the imaging data cannot be made
publicly accessible due to data protection, but the authors
will make efforts in the future, thus this status might change.
Researchers interested in the code and/or model can contact the
authors and the data will be made available (either through direct
communication or through reference to a public repository).

Imaging
For the PEGASUS patients, scans were performed on a clinical
3T whole-body system (Magnetom Trio, Siemens Healthcare,
Erlangen, Germany; in continuation referred to as Siemens
Healthcare) using a 12-channel receive radiofrequency (RF) coil
(Siemens Healthcare) tailored for head imaging.

Time-of-Flight (TOF) vessel imaging was performed with the
following parameters: voxel size = (0.5 × 0.5 × 0.7) mm3;
matrix size: 312 × 384 × 127; TR/TE = 22 ms/3.86ms; time of
acquisition: 3:50min, flip angle= 18 degrees.

For the additional 7UP test-sets, scans were performed on
a clinical 3T whole-body system (Magnetom Verio, Siemens
Healthcare) and a 12 channel RF receive coil (Siemens
Healthcare) for TOF-imaging and a 7T whole-body system
(Magnetom 7.0 T, Siemens Healthcare) with a 90 cm bore magnet
(Magnex Scientific, Oxfordshire, United Kingdom), an avanto
gradient system (Siemens Healthcare) and a 1/24 channel
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transmit/receive coil (NovaMedical,Wakefield,MA)was used for
MPRAGE-angiography.

The parameters were:
TOF imaging: voxel size= (0.6× 0.6× 0.6) mm3; matrix size:

384 × 384 × 160; TR/TE = 24 ms/3.60ms; time of acquisition:
5:54min, flip angle= 18 degrees.

MPRAGE imaging: voxel size= (0.7× 0.7× 0.7) mm3; matrix
size: 384 × 384 × 240; TR/TE = 2,750 ms/1.81ms; time of
acquisition: 5:40min, flip angle= 25 degrees.

Data Postprocessing
The raw PEGASUS study TOF images were denoised
using the oracle-based 3D discrete cosine transform filter
(ODCT3D) implemented in matlab (Manjón et al., 2012).
Non-uniformity correction (NUC) was performed with the
mri_nu_correct.mni tool integrated in freesurfer (website:
Freesurfer mri_nu_correct.mni)2. Corresponding whole-brain
masks were automatically generated using the Brain Extraction
Tool (BET) of FSL (website: BET/UserGuide-FslWiki)3. Both
NUC and FSL-BET post-processing were performed with the
Nipype wrapper implemented in Python4. The post-processing
parameters were as follows: ODCT Filter: Patch size 3 × 3
× 3 voxels, Search volume size: 7 × 7 × 7 voxels, Rician
noise model; Freesurfer mnibias correction: iterations = 6,
protocol_iterations = 1,000, distance = 50; FSL BET:
frac= 0.05.

The additional 7UP TOF and MPRAGE imaging test-
set image pipeline differed in these points: non-local means
denoising implemented in Nipype (patch radius = 1, block
radius = 5, and Rician noise model) and MPRAGE-BET
parameters (frac 0.15).

Data Labeling
For PEGASUS TOF data, ground-truth labels of the brain vessels
were generated semi-manually using a standardized pipeline.
Pre-labeling of the vessels was performed by a thresholded
region-growing algorithm using the regiongrowingmacromodule
implemented inMeVisLab (website: MeVisLab)5. To tackle inter-
rater variability in label generation, these pre-labeled data were
thoroughly manually corrected by either OUA and EA (both
junior raters) and then cross-checked by the other rater. These
labels were then checked subsequently both by VIM (9 years
experience in stroke imaging) and DF (11 years experience
in stroke imaging). Thus, each ground-truth was eventually
checked by 4 independent raters, two of them senior raters. The
total labeling time with this framework amounted to 60–80min
per patient.

Additional test-set label data (TOF and MPRAGE imaging)
was generated using the U-net model in a first step instead of the
regiongrowingmacro framework, followed by the above described

2https://surfer.nmr.mgh.harvard.edu/fswiki/mri_nu_correct.mni (Accessed

February 7, 2019).
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide (Accessed July 14, 2018).
4Neuroimaging in Python-Pipelines and Interfaces-Nipy Pipeline and Interfaces

Package. Available online at: https://nipype.readthedocs.io/en/latest/ (Accessed

July 14, 2018).
5https://www.mevislab.de/ (Accessed July 14, 2018).

thorough manual correction steps. Images were reviewed in the
final step by VIM.

Data Splitting
For U-net training, both PEGASUS TOF images and ground-
truth labels were skull-stripped using the whole-brain masks.
The data was split into training, validation, and test-sets with
41, 11, and 14 patients-scans, respectively. For illustration of the
extracted data see Figure 1.

Random Patch Extraction
In order to successfully train our deep neural network we needed
to consider two challenges. First, the brain slices, with 312 ×

384 voxels, are very large and cannot processed at once due to
the limited GPU memory. Second, the distribution of vessels
within a slice is largely skewed as only 0.9% of brain voxels are
vessels. To solve these problems we extracted 1,000 quadratic
patches per patient: 500 random patches with a vessel in the
center and 500 random patches without a vessel in the center.
The model was trained using 4 different patch sizes (16 × 16,
32 × 32, 64 × 64, 96 × 96 voxels) and was later tested for
best results against the validation set as part of the optimization
process. Due to computational limitation the maximal patch
size was set to 96 × 96 voxels. Testing the effect of different
patch sizes on the model performance would reveal important
information about the relevant spatial scope for a reliable vessel
detection. The data was normalized patch-wise using zero-mean
and unit-variance normalization.

Network Architecture and Training
Network Architecture
The U-net CNN model architecture was adapted from the
framework presented by Ronneberger et al. (2015). The U-
net model architecture is shown in Figure 2. The network is
based on a convolutional neural network (CNN) and consists
of an encoding and a decoding part. The contracting path,
i.e., encoding part (left side) repeatedly applies two (padded)
3 × 3 convolutional layers with stride 1, each followed by a
rectified linear unit (ReLU) and a 2 × 2 max-pooling operation
with stride 2 on 4 levels. A dropout layer is applied following
the first convolutional layer. At each down-sampling step the
dimensions of the input image is reduced by half and the
number of feature channels is doubled. The bottom level includes
two 3 × 3 convolutional layers without pooling layer. The
expansive path, i.e., decoding part (right side) recovers the
original dimensions of the input images by up-sampling the
feature map, a concatenation with the corresponding feature
channels from the contractive path and two 3 × 3 convolutional
layers, the first followed by ReLU and a dropout-layer and the
second followed by ReLU. The final layer is a 1 × 1 convolution
for mapping the feature vector to the binary prediction (i.e.,
vessel vs. non-vessel).

A variation of the U-net model architecture was applied,
where the number of channels in each layer was consistently
reduced to half. For simplicity, the additional architecture is
therefore termed throughout this work as “half U-net.”
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FIGURE 1 | Illustration of the dataset for a representative patient. The Figure shows an illustration of the denoised TOF image of a representative patient (A), the

corresponding masked brain image (B) and the corresponding ground-truth image of the brain vessels (C).

FIGURE 2 | Illustration of the U-net architecture. The figure illustrates the U-net architecture with the largest patch-size of 96 × 96 voxels. The displayed U-net is an

encoder-decoder network with a contracting path (encoding part, left side) that reduces the height and width of the input images and an expansive path (decoding

part, right side) that recovers the original dimensions of the input images. Each box corresponds to a multi-channel feature map. The dashed boxes stand for the

concatenated copied feature maps from the contractive path. The arrows stand for the different operations as listed in the right legend. The number of channels is

denoted on top of the box and the image dimensionality (x-y-size) is denoted on the left edge. The half U-net is constructed likewise, with the only difference given by

the halved number of channels throughout the network.

The network is fed with 2D image patches and returns the 2D
segmentation probability map for each given patch.

Model Training
The skull-stripped denoised TOF input images and the
corresponding ground-truth segmentation maps were used to
train the U-net using the Keras implementation of Adam
optimizer (Kingma and Ba, 2014).

In the model, the energy function is computed by a pixel-
wise sigmoid over the final feature map combined with the Dice
coefficient loss function. The sigmoid is defined as p (x) =

1/
(

1+ exp (a (x))
)

Where a (x) denotes the activation in the

final feature channel at the voxel position x ∈ Ω with Ω ∈ Z2

and p (x) is the approximated probability of a voxel x to be
a vessel. The Dice coefficient D between two binary volumes

is officially defined as D = 2TP
2TP+FP+FN Where TP is the

number of true-positive voxels, FP is the number of false positive
voxels and FN is the number of false negative voxels. Using the
following derivation:

D =
2TP

2TP + FP + FN

=
2
∑

x∈Ω pxgx

2
∑

x∈Ω pxgx +
∑

x∈Ω

(

p2x − pxgx
)

+
∑

x∈Ω

(

g2x − pxgx
)

The Dice coefficient can be written as:

D =
2
∑

x∈Ω pxgx + s
∑

x∈Ω p2x +
∑

x∈Ω g2x + s
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Where px ∈ P :Ω → {0, 1} is the predicted binary segmentation

volume, gx ∈ G :Ω → {0, 1} is the ground-truth binary volume and

s = 1 is an additive smoothing factor (i.e., Laplace smoothing). The

Dice coefficient then penalizes at each position j the deviation of px
from the true label gx using the differentiated gradient:

∂D

∂pj
= 2

[

gj
(
∑

x∈Ω p2x +
∑

x∈Ω g2x
)

− 2pj
(
∑

x∈Ω pxgx
)

(
∑

i∈Ω p2x +
∑

x∈Ω g2x + s
)

]

(Milletari et al., 2016)

The choice of the Dice coefficient as the loss function allows to handle

the skewed ground-truth labels without sample weighting.

A constructive initialization of the weights is necessary to ensure

gradient convergence, while preventing the situation of “dead

neurons,” i.e., parts of the network that do not contribute to the

model at all. This is particularly true for the case of deep neural

networks with many convolutional layers and many different paths

through the network. Here we applied the commonly used heuristic

with ReLU activation function, the Glorot uniform initializer where

the initial weights are drawn from a uniform distribution within the

range [−L, L] where L=
√

6/
(

fin + fout
)

, fin is the number of input

units in the weight tensor and fout is the number of output units in

the weight tensor (Glorot and Bengio, 2010).

The models were tuned in the validation process to optimize

the hyperparameters learning-rate, batch-size, and dropout-rate in

addition to the optimization of the patch-size as described above.

Data Augmentation
Augmentation methods introduce variance to the training

data which allows the network to become invariant to certain

transformations. While CNNs and U-net in specific are very good

in integration of spatial information which is essential to imaging

segmentation tasks, they are not equivariant to transformations such

as scale and rotation (Goodfellow et al., 2016). Data augmentation

methods like rotations and flips yield the desired invariance and

robustness properties of the resulted network. Additionally to flips

and rotations, the data augmentation included shears as a derivative

TABLE 1 | Model parametrization.

Optimized performance

measure/

Hyperparameter

Dice coefficient 95%

Hausdorff

distance

Averaged

Hausdorff

distance

U-NET MODEL PARAMETRIZATION

Learning rate 1e-4 1e-4 1e-5

Batch size 16 64 8

Dropout rate 0 0 0

HALF U-NET MODEL PARAMETRIZATION

Learning rate 1e-4 1e-4 1e-4

Batch size 64 32 32

Dropout rate 0.1 0.2 0.1

GRAPH CUT PARAMETRIZATION

Hyperparameter Value

Weights 10

of elastic deformations which are recommended as general best

practice for convolutional neural networks (Ronneberger et al.,

2015). The augmentation was applied on-the-fly on the patch-level

using the ImageDataGenerator function implemented in Keras.

Method Comparison
For comparison we used the graph cut implementation in the

PyMaxFlow Python library in Version 1.2.11 (Neila, 2018). This

method is tailored for binary segmentation problems, where the

combination of Markov Random Fields (MRF) with Bayesian

maximum a posteriori (MAP) estimation turns the segmentation

task into a graph based minimization problem. Then, the graph cut

methodology provides a computationally efficient solution to the

minimization problem (Chen and Pan, 2018). We tuned the weights

hyperparameter, representing the uniform capacity of the edges, on

the validation set to determine the optimal setting. With this setting

the algorithmwas applied on the 14 patients of the test-set to produce

segmentation images.We applied both patch wise segmentation with

a patch size of 96 as well as segmentation whole slice by slice.

Performance Assessment
Quantitative Assessment
The model performance was assessed based on three different

measures: The Dice coefficient, 95HD and the AVD. While the Dice

coefficient serves as a general common measure for segmentation

tasks, the 95HD and AVD metrics allow to capture more accurate

estimation of performance with relation to the boundary error of the

branched and complex structure of brain vessels. In contrast to the

Hausdorff distance which relates to the maximum of the distance

metrics, the 95HD and AVD are calculated as the 95% percentile-

and the average distance, respectively.

Therefore, 95HD and AVD are stable and not sensitive to outliers

which is typically an important quality measure in medical images

analysis. While the Dice coefficient ranges from [0,1] unitless values

where the larger the value, the better performance it indicates, the

units of 95HD and AVD represent real distances with voxels as a

unit, hence the smaller the value is, the better the performance is.

The measures were calculated using the EvaluateSegmentation tool

provided by Taha and Hanbury (2015), Taha (2018). We identified

three final models for performance comparison: Since we based

our assessment on three different metrics—the Dice coefficient, the

95HD and the AVD—we chose a model that optimized each of the

metrics based on the validation set. The performance was assessed as

an average of the measures of all fully reconstructed vasculatures of

the patients in the test-set as well as on the segmentations resulting

from the graph cut approach.

Qualitative Assessment
For qualitative assessment the predicted segmentation masks as

well as the graph cut results of the 14 patients in the test-set

were transformed by an in-house python code where true positives

(TP), false positives (FP), and false negatives (FN) were assigned

different voxel values (True negatives (TN) remained labeled with

0). The images were then visualized by overlaying these new masks

with the original scans using ITK-Snap (website: ITK-SNAP)6. By

adjusting the opaqueness, it was possible to qualitatively assess which

structures were correctly identified and which anatomical structures

6http://www.itksnap.org/pmwiki/pmwiki.php (Accessed July 14, 2018).
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FIGURE 3 | Exemplary patches used for training. Five pairs of random patches with increasing patch size from left to right are shown. “A” columns indicate the

MRA-TOF-scans, whereas “B” columns indicate the ground truth label.

dominated with errors. For each architecture and each model (2

architectures× 3 models= 6) VIM visually assessed per patient the

images based on a predefined scheme. Large vessels were defined as

the all parts of the ACA and theM1, A1, and P1 segments of the three

large brain arteries. All other parts were considered small vessels.

The results of the visual analysis are summarized qualitatively in the

results section. The scheme was the following:

Large vessels, overall impression (bad, sufficient, good); Small

vessels, overall impression (bad, sufficient, good); Large vessels,

errors (FP or FN dominating); Small vessels, errors (FP or

FN dominating); Pathology detected (yes/no); Other tissues type

segmentation errors (yes/no).

Generalization Assessment
All 6 models were applied on the additional 10 7UP patients with

different TOF parameters as well as 10 patients with a different

angiography modality (7T MPRAGE angiography). Segmentation

quality was compared vs. the semimanual gold-standard labels

as described above quantitatively with the EvaluateSegmentation

framework using as metrics Dice, 95HD and AVD.

Hardware
All trainings ran on a GPU workstation with 16 GB RAM, Intel(R)

Xeon(R) CPU E3-1231 v3 @ 3.40GHz and a NVidia TITAN X

(Pascal) GPU with 12 GB VRAM.

RESULTS

The U-net model was trained on 81,000 extracted and augmented

patches of 41 patients, validated using 11 full patient volumes and

assessed for performance using the test-set of 14 full patient volumes.

The U-net architecture resulted in 31,377,793 parameters, while the

half U-net resulted in 7,846,081 parameters. For the U-net and half

U-net, respectively, model training ran for ∼100 and 50min, while

TABLE 2 | Summary of test-set performance measures.

Model

architecture/Performance

measure

U-net Half

U-net

Graph cut

(patch/whole

slice)

Dice coefficient 0.891 0.892 0.758/0.758

95% Hausdorff distance (voxels) 47.277 47.099 58.79/59.24

Averaged Hausdorff distance (voxels) 0.342 0.385 1.965/1.974

Detailed performance measures of the two Dice-optimized U-net model architectures

and the baseline graph-cuts segmentation model as the averaged value over the 14 test

patients. For the detailed models parametrization, see Table 1.

segmentation of a previously unseen volume took about 20 and 10 s.

The optimal patch-size was identified as 96 × 96 voxels for both

suggested architectures. The model parametrization can be found in

Table 1. Exemplary patches used for training can be seen in Figure 3.

The U-net model yielded high performance in terms of the

three measures that were comparable for both the full and the

half architecture: The models optimized for the Dice coefficient

had a Dice value of 0.89. The 95HD value was 47 voxels and

the AVD models yielded results around 0.35 voxels. The detailed

performance assessment of the finalized models is presented in

Table 2. A representative overview of the visual analysis can be found

in Figure 4.

The visual analysis of the three full models showed that

consistently in all 14 patients the large vessels were segmented

excellently. Only very few false positive voxels in the border zones

of the vessels were present (see Figure 5). Small vessels were

segmented well in half of the patients, in the other patients small

vessels were segmented less well (see Figure 6). In 12 patients,

we found false positive labeling of small parts of meningeal

arteries present in the image or of venous structures (sinus and

central veins) (see Figures 4, 6). In one patient, tissue in an old
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FIGURE 4 | 3D projections of segmentation results. The figure illustrates exemplary segmentation results as 3D projections for two representative patients (A,B).

Labels are shown in the first column and exemplary segmentation results are shown in the second column. The third column shows the error map, where red voxels

indicate true positives, green voxels false positives, and blue voxels false negatives. Overall a high performance segmentation could be achieved. In the error maps it

can be seen that false positives mainly presented as central venous structures and parts of meningeal arteries. (3D view is meant for an overall overview. Due to 3D

interpolation, very small structures may appear differently in the images. This does not translate to real voxel-to-voxel differences. For direct voxel-wise comparison

please use the 2D-images in Figures 5–8).

infarct presented as cortical laminar necrosis with hyperintense

elongated tissue against the dark cerebrospinal fluid. These parts

were partially labeled as vessels (see Figure 7A). In another patient,

a rete mirabile, a vessel network of small arteries developing due

to occlusion, was present. The rete mirabile was only partially

segmented (see Figure 7B).

A comparison of the three models showed comparable

performance and consistent artifacts as described above. There

was a tendency, however, for 95HD and AVG models to have less

false positively labeled meningeal and venous structures than the

Dice-optimized model. The visual comparison of the full and the half

architecture showed comparable performance in the large vessels.

We saw a tendency for slightly worse performance in smaller vessels

in the half architectures. Vessel pathologies (stenosis/occlusion)

were depicted in all patients and all models.

Graph cut results showed inferior performance to the U-net

models with the following results (patch/whole slice): Dice 0.76/0.76,

95 HD 58.8/59.2, and AVD 1.97/1.97 (Detailed results can be found

in Table 2 and a visual example in Figure 8).

Generalization assessment showed a very good performance of

the Dice optimized models for the intra-modal comparison with 3T

TOF images with a Dice of 0.86 / 0.92, 95 HD of 64.5 / 50.0, and

AVD of 1.591 / 0.650 for the full U-net and half U-net, respectively.

We found insufficient performance for inter-modal comparison with

7TMPRAGE angiography (Dice around 0.60, 95 HD around 50, and

AVD around 3.5). Detailed results can be found in Table 3.

DISCUSSION

We present in the current work a U-net deep learning framework

for fully automated brain arterial vessel segmentation from TOF-

images of patients with cerebrovascular disease. Our framework

demonstrated a very high quantitative performance based on

three validation metrics. A lighter architecture—half U-net—

achieved comparable quantitative performance. Visual inspection

showed excellent performance in large vessels and sufficient

to good performance in small vessels as well as comparable

performance between the full architecture and the half-net. Special

cerebrovascular pathologies presented challenges for the network

and need to be addressed in the future.

Applying a modified U-net framework as suggested by

Ronneberger et al. (2015), we achieved a very high quantitative

performance for the segmentation of arterial brain vessels in patients

with cerebrovascular disease. To the best of our knowledge, our

work is the first study to show the value of a U-net architecture for

fully automated arterial brain vessel segmentation in cerebrovascular

disease. Our results are therefore highly encouraging for the
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FIGURE 5 | Segmentation results for large vessels. The figure illustrates exemplary segmentation results for large vessels for two representative patients (A,B). Labels

are shown in the first column and exemplary segmentation results are shown in the second column. The third column shows the error map, where red voxels indicate

true positives, green voxels false positives, and blue voxels false negatives. Only few false positive voxels can be seen in the border zones of the vessels.

further development of automated clinical vessel segmentation

tools for cerebrovascular disease. In contrast to the so called

“rule-based” non-neural-net attempts of the past, deep learning

based networks do not require hand-crafted features or prior

feature selection (Lesage et al., 2009; Zhao et al., 2017). The main

reason for this is the inherent ability of U-nets to efficiently extract

the relevant features in the training process. Confirming the

broad consensus that deep learning based approaches constitute

the new state-of-the-art in medical segmentation, the U-Net

architecture clearly outperformed the traditional graph-cut based

segmentation method.

Next to a quantitative assessment, an experienced medical

professional also visually assessed the quality of the segmentations.

We found that also in the visual analysis the performance of

the networks was very high. However, while we saw excellent

performance for large vessels, the performance in smaller vessels

was less pronounced. While future networks should be improved

regarding small vessel segmentation, the clinically most relevant

vessels are the large vessels. Thus, we present evidence that

already a relatively simple U-net architecture shows clinically

highly relevant performance. Even higher performance can be

expected using newer segmentation architectures, e.g., the MS-

net (Shah et al., 2018). Also, when confronted with pathological

cases, like cortical laminar necrosis and a rete mirabile, the

performance of the network was limited. Here, there is a need

for specifically tailored datasets being incorporated in the training

samples. Taken together, the high quantitative and qualitative

performance of the U-net are very promising for the development

of new individualized precision medicine tools for stroke and

cerebrovascular disease in the clinical setting. Vessel parameters

could augment predictive models in cerebrovascular disease

(Feng et al., 2018; Livne et al., 2018; Nielsen et al., 2018).

Our results confirm previous works in the field of vessel

segmentation. Recently, pre-prints on ArXiv.org have explored deep

neural nets architectures for brain vessel segmentation in healthy

subjects (Chen et al., 2017; Tetteh et al., 2018). The reported

performancemeasures were comparable to our results. This confirms

the advantages of deep learning approaches for vessel segmentation

tasks. A current limitation, however, is the lack of a standardized

labeled vessel imaging dataset. For other segmentation tasks, labeled

datasets have been published in the past, usually within public

competitions (website: grand-challenges)7. A big advantage of such

datasets and the competition framework is that it makes models

comparable. If different datasets and especially different types of

labeling are used, results can be roughly compared qualitatively,

but a direct quantitative comparison cannot be performed. If,

however, models cannot be compared, the translation of these new

methodologies into clinically usable tools is strongly hampered.

Thus, the medical machine learning community needs to address

this issue by providing standardized datasets of vessels both with and

without pathology for segmentation tasks in the established form of

7https://grand-challenge.org/All_Challenges/ (Accessed July 14, 2018).
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FIGURE 6 | Segmentation results for small vessels. The figure illustrates exemplary segmentation results for small vessels for two representative patients (A,B). Labels

are shown in the first column and exemplary segmentation results are shown in the second column. The third column shows the error map, where red voxels indicate

true positives, green voxels false positives and blue voxels false negatives. In 7 patients (50%) also small vessels were segmented well, with only few false negatives

(B). In the other patients, the small vessels were segmented only sufficiently, with both false positives and false negatives (A).

competitions to allow proper benchmarking ofmethods. The authors

of this study would happily contribute to such an effort.

We chose a simple architecture that closely followed the suggested

U-net by Ronneberger et al. This resulted in roughly 30 million

parameters. Promisingly, we found that a U-net with half of

the convolution channels—coined half U-net—showed comparable

performance, and yet consisted of only roughly 8 million trainable

parameters. Naturally, the training of the half U-net can be done

much faster, in our case in 50% of the time. This might be

attributable to a limited variability of brain vessels as captured

by the dataset that allows less complex architectures to perform

comparably. This is also shown by the fact that we used a simple

2D-patch approach with success. It seems that certain segmentation

tasks do not necessarily need complex models and 3D approaches

to reach sufficient performance. However, a systematic assessment of

the necessary model complexity, particularly the number of feature

channels, and 2.5D and 3D approaches is warranted in future studies

to find the optimal approach for vessel segmentation. Especially for

small vessels detection, such approaches might be promising. The

optimal patch-size was identified for both architectures as the largest

tested value of 96 × 96 voxels. This may imply that a larger patch-

size may be more beneficial for the segmentation task. Such future

optimization could be potentially done using advanced hardware or

by increasing the patch-size on the expanse of the batch-size.

An important part of the model training is the augmentation

of the data. CNNs—and the encoder part of the U-net utilizes

convolutional layers—are not equivariant to certain transformations,

especially not rotations. It is thus absolutely essential to perform

augmentations, especially when (relatively) few training examples

are available (Ronneberger et al., 2015). The main principle of

augmentation is that the newly generated data represents new

information that would occur in the same domain where the original

images stem from. We chose in our work the ImageDataGenerator

implemented in Keras. It is a multi-purpose augmentation tool,

that on one hand will generate helpful new training examples with

high likelihood, but on the other hand will be naturally less specific

than individually tailored augmentation strategies. Here, a highly

promising approach is the application of Generative Adversarial

Networks (GANs) for data augmentation, e.g., by Antoniou et al.

(2017). The adversarial generative and discriminative networks

ensure—if mode collapse can be avoided—that a large variety of

new data is generated which all lie in the same domain as the

original data. Such images would allow ideal augmentation for any

segmentation task.

Generalization of our findings to other vessel segmentation tasks

signifies an important implication of our work. While it is possible to

achieve high performance for vessel segmentation with hand-crafted

features and parameters optimized for a special case, e.g., for CT-

angiographies (Meijs et al., 2017), the development of such methods

is time-consuming and a transfer of these results to images from

other sources and other organs is hard to perform. In the case of a

well-trained U-net, the convolutional layers have already learned the
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FIGURE 7 | False labeling of specific cerebrovascular pathologies. (A) The error map of a 3D projection on the left shows falsely labeled structures in the posterior

part of the brain (arrow). On a transversal slice (on the right) false labeling of parts of cortical laminar necrosis can be identified as the cause (arrow). (B) The rete

mirabile network of small vessels was only partially depicted (false negative labeling in blue in the error map). A rete mirabile is a relatively rare occurrence, only 3

patients of 66 in our study presented with one (2 in the training set and one in the test-set).

features necessary for the detection of vessels. Thus, it is possible to

train new highly performant models for so far unseen vessel images

by freezing the convolutional layers and by focusing the training

on the rest of the model. This method is called “transfer learning”

(Oquab et al., 2014) and requires only a few labeled datasets for each

new source. Consequently, potential new tools can easily be adapted

to various scanner settings, imaging modalities and even new organs,

which is necessary for broad clinical adaptation and multicenter

imaging studies.

We assessed model performance based on three different

measures: First, the Dice coefficient. Mathematically it is equivalent

to the F1 measure and thus the harmonic mean of precision and

recall (Taha and Hanbury, 2015). It is a widely used measure

for segmentation tasks and its popularity is explained by its

insensitivity to background voxels, its easy interpretability and its

customizability to improve learning in hard-to-segment regions

(Shah et al., 2018). Together with patch extraction, the use of

the Dice coefficient allowed us to alleviate the imbalanced sample

distribution in our dataset, as only 0.9% of all voxels in the brain

depict vessels. However, based on theoretical considerations, the

Dice coefficient is limited when assessing the validity of vessel

segmentations (Taha and Hanbury, 2015). For example, since vessels

are narrow and elongated, segmentations errors can quickly lead

to loss of overlap. However, once no overlap exists, the Dice

coefficient cannot distinguish whether a segmented vessel is closer

(better segmentation) or further away (worse segmentation) from

the ground truth. Here, distance based measures are better suited

(Taha and Hanbury, 2015), as they take into account the spatial

position of voxels. Thus, we used two additional distance-based

measures, the 95HD and the AVG. The plain Hausdorff distance

was avoided due to its sensitivity to outliers. Promisingly, we saw

a tendency that the models optimized by distance-based measures

show improved results. It can thus be anticipated that customized

loss functions incorporating distance-based measures will improve

the performance of deep learning models for segmentation. Thus,

future works should first systematically assess which metrics are best

suited for brain vessel segmentation and then develop a customized

loss function for vessel segmentation.

A special focus of our work was the selection of the dataset.

First, we used patients with pathology, in our case cerebrovascular

disease. The vessels of such patients are more challenging to

segment owing to stenoses and occlusions, old infarcts and small

vascular networks (“rete mirabile”). Thus, our results are more

representative of the clinical challenges than the results of works

using the data of healthy patients. And indeed, we found that

special pathological cases like cortical laminar necrosis and a rete

mirabile were challenging for the network and need to be focused

in future works. In summary, our work serves as the starting point

to develop new pathology-tailored models which are applicable in

the clinical setting. In their training, random patch extraction should

Frontiers in Neuroscience | www.frontiersin.org 10 February 2019 | Volume 13 | Article 97176

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Livne et al. U-Net Vessel Extraction in Cerebrovascular Disease

FIGURE 8 | Comparison of U-net and graph cut segmentations. (A) 2D comparison and (B) 3D comparison of labels, U-net error maps and graph cut error maps. The

quantitative results are confirmed by visual inspection. The graph cut segmentation shows more false negatively (blue) and false positively (green) segmented voxels.

be avoided, and patch selection should be focused on the special

cases identified in our study. Second, we labeled 66 patients, which

is—in medical imaging—a large number of patients. This number

is roughly double to triple of the number of the datasets used

by Ronneberger et al. in their original U-net paper (Ronneberger

et al., 2015). Since the U-net is tailored for use with limited data,

our number of patients should allow for strong generalization and

this is reflected by our high performance. Lastly, we invested a

large effort into the labeling of the dataset. Every patient scan was

labeled by a medical researcher and independently checked by 3

others medical researchers, 2 amongst them expert readers. It is very

encouraging that two-digit numbers of high-quality labeled medical

imaging data are sufficient to achieve very strong segmentation

results with modern deep learning architectures. Labeling of such

a number of patient scans is achievable in a justifiable time

and opens the door for the development of high-performance

models for the clinical setting for any medical segmentation task.

It is to be expected that such models will soon be translated

into applicable tools and will be available for research and the

clinical setting.

Our study has several limitations. First, we used a monocentric

dataset. Thus, imaging parameters and scanner parameters were

fixed. In an intra-modal analysis, i.e., TOF-images from a different

scanner with different parameters, the generalization performance

was very good. In the inter-modal analysis, however, applying

the models on MPRAGE-angiography images, the performance

was considerably inferior. For the applicability in the clinical

setting, two different strategies can be envisioned: (1) Since

TABLE 3 | Summary of generalization assessment results.

U-net Half U-net

3T TOF ANGIOGRAPHY:

Dice coefficient 0.858 0.921

95% Hausdorff distance (voxels) 64.535 50.015

Averaged Hausdorff distance (voxels) 1.591 0.650

7T MPRAGE ANGIOGRAPHY:

Dice coefficient 0.594 0.661

95% Hausdorff distance (voxels) 54.598 48.414

Averaged Hausdorff distance (voxels) 3.467 3.489

Detailed performance measures of the two tested model architectures as the averaged

value over 10 test patients each for 3T TOF and 7T MPRAGE angiography. The results

for the two Dice optimized models are shown. The half U-net architecture exhibited better

generalization performance.

clinical on-site postprocessing is tied to the scanner-vendor and

software, segmentation products tuned for vendor-specific sequences

and parameter-ranges are possible and lack of generalization is

unproblematic. (2) For development of a vendor-independent

pipelines, clinical segmentation algorithms need to cover a much

broader range of image variability. Here, a large number of

varied datasets needs to be used for training of single models

or model zoos in the future. Second, we reconstructed the

images on the patch level and did not perform an algorithm-

based optimization of the whole reconstructed vessel tree. Here,

future works can explore for example recurrent neural networks,
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especially architectures with long short-term memory (LSTM)

layers. Applying these techniques, an increase of small vessel

segmentation performance might be possible. Third, also, the

patch size was limited due to hardware constraints potentially

reducing the performance of the network where more context is

needed. Fourth, we performed an exploratory qualitative visual

analysis by one medical expert. Future clinical assessments of

different models should include a systematic quantitative rating by

multiple medical expert readers, which exceeded the scope of the

present work.

CONCLUSION

In conclusion, a U-net deep learning framework yielded

high performance for vessel segmentation in patients with

cerebrovascular disease. Future works should focus on improved

segmentation of small vessels and removal of artifacts resulting from

specific cerebrovascular pathologies.
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Aim: Positron emission tomography (PET) imaging is a useful tool for assisting in correct
differentiation of tumor progression from reactive changes. O-(2-18F-fluoroethyl)-L-
tyrosine (FET)-PET in combination with MRI can add valuable information for clinical
decision making. Acquiring FET-PET/MRI simultaneously allows for a one-stop-shop
that limits the need for a second sedation or anesthesia as with PET and MRI in
sequence. PET/MRI is challenged by lack of a direct measure of photon attenuation.
Accepted solutions for attenuation correction (AC) might not be applicable to pediatrics.
The aim of this study was to evaluate the use of the subject-specific MR-derived AC
method RESOLUTE, modified to a pediatric cohort, against the performance of an
MR-AC technique based on deep learning in a pediatric brain tumor cohort.

Methods: The modifications to RESOLUTE and the implementation of a deep learning
method were performed using 79 pediatric patient examinations. We analyzed the 36
of these with active brain tumor area above 1 mL. We measured background (B), tumor
mean and maximal activity (TMEAN, TMAX), biological tumor volume (BTV), and calculated
the clinical metrics TMEAN/B and TMAX/B.

Results: Overall, we found both RESOLUTE and our DeepUTE methodologies to
accurately reproduce the CT-AC clinical metrics. Regardless of age, both methods
were able to obtain AC maps similar to the CT-AC, albeit with DeepUTE producing the
most similar based on both quantitative metrics and visual inspection. In the patient-by-
patient analysis DeepUTE was the only technique with all patients inside the predefined
acceptable clinical limits. It also had a higher precision with relative %-difference to the
reference CT-AC (TMAX/B mean: −0.1%, CI: [−0.8%, 0.5%], p = 0.54) compared to
RESOLUTE (TMAX/B mean: 0.3%, CI: [−0.6%, 1.2%], p = 0.67) and DIXON-AC (TMAX/B
mean: 5.9%, CI: [4.5%, 7.4%], p < 0.0001).

Conclusion: Overall, we found DeepUTE to be the AC method that most robustly
reproduced the CT-AC clinical metrics per se, closely followed by RESOLUTE modified
to pediatric cohorts. The added accuracy due to better noise handling of DeepUTE,
ease of use, as well as the improved runtime makes DeepUTE the method of choice for
PET/MRI attenuation correction.

Keywords: pediatric, deep learning, PET/MRI, attenuation correction, brain tumors, bone density, RESOLUTE

Frontiers in Neuroscience | www.frontiersin.org 1 January 2019 | Volume 12 | Article 1005180

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.01005
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2018.01005
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.01005&domain=pdf&date_stamp=2019-01-07
https://www.frontiersin.org/articles/10.3389/fnins.2018.01005/full
http://loop.frontiersin.org/people/423376/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-01005 December 24, 2018 Time: 16:50 # 2

Ladefoged et al. Deep Learning AC for Pediatrics

INTRODUCTION

Positron emission tomography/Magnetic Resonance Imaging
with the combination of MRI and radiolabeled amino acid
analog tracers such as O-(2-18F-fluoroethyl)-L-tyrosine (FET)
PET offer complimentary information when imaging cerebral
brain tumors (Watanabe et al., 1992; Buchmann et al., 2016),
especially when estimating the true tumor extent both in low-
and high-grade gliomas (Kracht et al., 2004; Vander Borght
et al., 2006). The combined information from the two modalities
can help to discriminate post-operative changes or radiation
damage from true tumor relapse presenting with a contrast-
enhanced region (Mullins et al., 2005; Vander Borght et al.,
2006; Galldiks et al., 2015a,b). The experience with FET-PET
in pediatric and adolescent patients is limited, but it has
been shown that FET-PET can add valuable information for
clinical decision making (Dunkl et al., 2015). For pediatric
patients, there is a clear advantage of acquiring FET-PET
simultaneously with conventional MRI, as it offers a one-stop-
shop examination, limiting the need for a second sedation or
anesthesia as with PET and MRI in sequence, as well as improves
co-registration (Henriksen et al., 2016). The advantage of a
simultaneous PET/MRI comes with the challenge of accurate
attenuation correction (AC) in order for the FET-PET images to
be quantitatively correct (Vander Borght et al., 2006).

The initial shortcomings of the vendor-provided AC have
been solved for examinations of adult brains without abnormal
anatomy to a clinically acceptable precision (Ladefoged et al.,
2016), whereas MR-based brain AC methods targeted toward
pediatric subjects are scarce. Traditional atlas-based methods are
likely to fail, since they are based on a database of adult subjects
with normal anatomy (Spick et al., 2016). A database of pediatric
age-matched subjects (Bezrukov et al., 2015) is difficult to obtain
and might not be sufficient to model anatomical deformations
following surgical intervention. An obvious alternative, the MR-
based segmentation methods, is often challenged by the fact that
traditional MR sequences are not able to distinguish bone and
air due to the short relaxation time in bone. However, with
special sequences such as ultra-short echo time (UTE) and zero
echo time (ZTE), cortical bone can have a high signal despite
its very short spin-spin relaxation time (Robson et al., 2003).
Unfortunately, the use of these sequences is often hampered
by incorrect representation of tissues at air/tissue interfaces
(Ladefoged et al., 2015; Sekine et al., 2016) that needs to be
specially addressed if a bias is to be avoided. We have recently
introduced a PET/MRI-AC method, RESOLUTE (Ladefoged
et al., 2015), that makes use of UTE images to calculate an
attenuation map with continuous bone representation, and
overcomes the air/tissue interface challenges by using anatomical
regional masks defined on an aligned template in MNI space.
Within these masks, possible bias from the bone surrogate signal
is limited. We have shown that RESOLUTE led to the same
clinical diagnosis as the reference CT-AC in a challenging cohort
consisting of adult post-surgical brain tumor patients with severe
anatomical deformations (Ladefoged et al., 2017). A prerequisite
for successful application of RESOLUTE to pediatric cohorts is
that these masks should be defined on pediatric templates.

Recently, deep learning using convolutional neural networks
have demonstrated that they are able to handle complex signals,
including noise, while maintaining a high level of accuracy (Han,
2017; Liu et al., 2017; Gong et al., 2018; Leynes et al., 2018). Using
this technique, it could therefore be possible to limit the air/tissue
interface noise without regional masks, thereby avoiding the need
for any registration, as well as benefitting from the improved
inference speed usually associated with deep learning. Several
techniques using deep learning for MR-AC have been proposed
(Han, 2017; Liu et al., 2017; Gong et al., 2018; Leynes et al., 2018),
but none have been evaluated on a challenging cohort such as
pediatrics.

The aim of this study was to modify the original RESOLUTE
method to a pediatric cohort, and implement an MR-AC
technique based on deep learning, that takes the UTE images as
input and returns an attenuation map without any registration
steps or need for regional masks. In a pediatric brain tumor
cohort, we evaluated the attenuated FET-PET images of the
modified RESOLUTE method, the proposed deep learning
method and the vendor-provided DIXON-AC method using CT-
AC as reference standard, with the methods evaluated regionally,
as well as with metrics used clinically for diagnosis and follow-up
examinations.

MATERIALS AND METHODS

Patients
We included children with suspected brain tumor examined
with FET-PET using our PET/MRI system (Siemens Biograph
mMR, Siemens Healthcare, Erlangen, Germany) (Delso et al.,
2011) between February 2015 and October 2017, and 86 FET-
PET examinations in total were identified of children under the
age of 14. Seven examinations were removed due to missing or
corrupt data, resulting in 79 scans used to develop the method
(average age: 8 years, min: 2 months, maximum 14 years). For
evaluation of the four AC-methods, we included patients with
an active tumor area above 1 mL. Patients were part of a larger
study of FET-PET/MRI in primary CNS tumors in children and
adolescents approved by the regional ethical committee (ID: H-6-
2014-095) and registered at clinicaltrials.gov (NCT03402425) and
their parents gave written informed consent for participation.

Acquisition of CT
A reference low-dose CT image (120 kVp, 36 mAs, 74 slices,
0.6 mm × 0.6 mm × 3 mm voxels) of the head using a whole-
body PET/CT system was used (Biograph TruePoint 40 and 64,
Siemens Healthcare) (Jakoby et al., 2009). The CT images were
acquired either on the same day as the PET/MRI examination, or
at a previous PET/MRI+CT examination with no brain altering
surgery in-between. The longest time for any patient between
PET/MRI and low dose CT was 8 month.

Acquisition of MRI
The scan protocol included two vendor-provided AC methods: a
two-point DIXON-VIBE AC sequence with repetition time (TR)
2,300 ms, echo time 1 (TE1) 1.23 ms, echo time 2 (TE2) 2.46 ms,
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flip angle 10◦, coronal orientation, 19 s acquisition time, voxel
size of 2.6 mm × 2.6 mm × 3.12 mm, and a UTE AC sequence
with TR/TE1/TE2 = 11.94/0.07/2.46 ms, a flip angle of 10◦, axial
orientation, 100 s acquisition time, software version VB20P, field
of view (FOV) of 300 mm2, reconstructed on 192 × 192 × 192
matrices (1.6 mm× 1.6 mm× 1.6 mm voxels).

Acquisition of FET-PET
Patients were positioned head first with their arms down on
the fully integrated PET/MRI system. Data were acquired for
40 min immediately following injection of 3 MBq/kg (86 ± 37)
MBq FET (Langen et al., 2006) over a single bed position of
25.8 cm covering the head and neck. For the purpose of this
study, the summed PET data 20–40 min after injection from
the PET/MRI acquisition were reconstructed offline (E7tools,
Siemens Medical Solutions, Knoxville, TN, United States) using
3D Ordinary Poisson-Ordered Subset Expectation Maximization
(OP-OSEM) with 4 iterations, 21 subsets, zoom 2.5 and 5 mm
Gaussian post-filtering on 344× 344 matrices (0.8× 0.8× 2 mm3

voxels) in line with the clinical protocol used at our institution.
For all images, default random, scatter and dead time correction
were applied.

Attenuation Correction Methods
Four methods for AC were applied to the data. First, the CT image
was co-registered to the UTE TE2 image, and was used as our
gold standard AC reference following conversion of Hounsfield
Units as implemented on the Siemens PET/CT system. Second,
vendor-provided MR-based attenuation map were derived using
the DIXON VIBE sequence (Martinez-Möller et al., 2009). Third,
our recently proposed AC method, RESOLUTE, was updated to
process the pediatric cohort on two areas: (1) the regional masks
were re-drawn on pediatric templates in MNI space (Fonov et al.,
2011) spanning the ages: 0–2 m, <1 year, 1–2, 2–4, 4–8, 8–
11, and 11–14 years, and (2) the R∗2-CT bone mapping was
calculated for the pediatric patients by the use of a sigmoid fit
rather than a polynomial (Juttukonda et al., 2015). RESOLUTE
was derived for each pediatric patient, where we used 2-fold
cross validation to ensure that the mapping was not performed
on the same patients used to recalibrate the mapping. Lastly,
we implemented an MR-AC method based on deep learning
convolutional neural networks, denoted DeepUTE. The network
was based on a modified version of the U-net architecture
(Ronneberger et al., 2015; Çiçek et al., 2016), where the max
pool operations were replaced with convolutions with stride 2
(Springenberg et al., 2014), and each convolution, initialized
using He normal initializer (He et al., 2015), is followed by a batch
normalization, a rectified linear unit (ReLU) activation function,
and a dropout layer with increasing fraction from 0.1–0.3 in
the encoding part, and vice versa in the decoding part of the
network (Supplementary Figure 1). The network takes as input
3D volumes consisting of 16 neighboring slices for each of the
three UTE images, the echo images and the derived R2

∗-map (16
slices × 192 voxels × 192 voxels × 3 channels), and outputs the
corresponding CT slices (16 slices× 192 voxels× 192 voxels× 1
channel). We used the HU-converted co-registered CT image as
our target. We trained the 3D-network in Keras (Chollet, 2015)

with TensorFlow backend (Abadi et al., 2016) using the Adam
optimizer (learning rate = 10−4) (Kingma and Ba, 2014), mean-
squared-error as loss function, batch size of 2 for 100 epochs. The
35 million parameters that were determined during the training
process took 2 days on a Titan V (NVIDIA Corporation, Santa
Clara, CA, United States) graphics processing unit. From our
cohort of 79 scans, we did a 4-fold cross validation, effectively
training 4 networks on approximately 60 scans and evaluation on
the remaining. During testing, we predicted the 3D pseudo-CT
volumes around each slice, and computed the average voxel value
for each of the overlapping volumes.

Since the CT coverage were usually less than the PET/MRI
coverage, we added the DIXON-AC attenuation map outside
the CT field-of-view. This was also done for the subsequently
generated RESOLUTE and DeepUTE attenuation maps to allow
for a fair comparison to the reference.

Image Processing and Analysis
Image processing and analysis were performed similar to our
previous analysis of adult post-operative brain tumor FET-
PET patients (Ladefoged et al., 2017). First, a background (B)
region of interest was delineated in healthy appearing gray and
white matter at a level above the insula in the contralateral
hemisphere to the tumor. The biological tumor volume (BTV)
of FET-PET was measured using a 3D auto-contour using
Mirada XD software (Mirada Medical, Oxford, United Kingdom)
defining tumor tissue at a threshold above 1.6 of the mean
standardized uptake value (SUV) in the background ROI (Floeth
et al., 2005) for each AC method separately. Extratumoral
areas with high FET uptake, e.g., vascular structures, pineal
body and skin, were identified on either the T1w or FET-
PET image and removed from evaluation. The delineation
was performed by a nuclear medicine specialist experienced in
pediatric neurooncology (LM).

We assessed the different AC methods ability to produce
accurate FET-PET images on a patient-by-patient basis using
the most commonly semi-quantitative clinical metrics in the
diagnostic workflow. We measured the biological tumor volume
(BTV), mean (TMEAN) and max (TMAX), and the ratios TMEAN/B
and TMAX/B were calculated. For the BTV we analyzed the
tumor contours relative to the CT-AC reference using the Jaccard
similarity metric, and a measurement of shape deviations. The
calculated ratios were compared to the ratios calculated with
the reference CT-AC. These metrics are commonly used as a
criterion to identify active tumor tissue from reactive changes.
As described previously (Ladefoged et al., 2017), we defined
acceptance criteria of < ± 0.05 and 0.1 or 5% for the TMEAN/B
and TMAX/B ratios, respectively, and ± 2mL or 10% for the
BTV. These were based on differences in clinical practice that
may be considered clinically relevant in identifying biologically
active tumor tissue or treatment related change in activity (Piroth
et al., 2011). The mix of both an absolute and relative cut-
off reflects that larger absolute change is acceptable in large or
very active tumors. For each clinical metric we calculated the
mean difference, 95% confidence intervals (CI) and limits of
agreement on the log-transformed data, as the data was found
to have log normal distribution. Exponentiation was applied to
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these results to express the differences as ratios on the original
scale and report them as percentage differences. We corrected for
repeated measurements from the repeated examinations (Bland
and Altman, 1999).

RESULTS

A total of 28 patients met the inclusion criteria of 1 mL
active tumor area, 6 of which had one or more follow up
examination, resulting in a total of 36 examinations used for
evaluation (Supplementary Table 1). Both RESOLUTE and
DeepUTE were able to derive attenuation maps for all pediatric
patients regardless of the age. Ten of the 28 patients (35%)
had titanium implants present. Overall, DeepUTE had improved
accuracy over RESOLUTE: the Jaccard index was 0.57/0.62 in
air, 0.74/0.79 in soft tissue and 0.53/0.70 in bone tissue for
RESOLUTE/DeepUTE, respectively. The improved accuracy was
also apparent in a direct visual comparison of the estimation of
regional attenuation values in the nasal cavities, the skull base
and the mastoid processes, and can be appreciated in Figure 1,

where two patients with challenging anatomy are shown for
RESOLUTE-AC, DeepUTE-AC and CT-AC, and the relative
difference PET image in Supplementary Figure 2. Another
example of a typical patient is given in Figure 2. There was also
a significant improvement in AC runtime with values of 4 s for
DeepUTE and ∼3 min for of RESOLUTE, which although small,
improves the overall imaging workflow.

Across all pediatric patients, the Jaccard index of the tumor
delineation was 0.73 ± 0.20 for DIXON-AC, 0.90 ± 0.07
for RESOLUTE and 0.92 ± 0.07 for DeepUTE. The tumor
configuration did not change for any of the patients when using
RESOLUTE or DeepUTE compared to CT-AC but for DIXON-
AC this was found in 4 examinations (mean difference: 1.6 mL),
and was completely missed for an additional examination (BTV
with CT-AC: 2 mL).

The comparison of the clinical metrics can be seen in Figure 3,
together with the defined acceptable limits. Across all metrics,
using DeepUTE, none of the patients were outside the acceptable
limits, whereas two patients fall short of the TMAX/B limit and a
single patient in the TMEAN/B limit when using RESOLUTE. In
these patients, the largest difference was TMAX/B overestimation

FIGURE 1 | Sample cases for two pediatric patients with irregular anatomy. (A) show the T1w MPRAGE, (B) CT-AC, (C) RESOLUTE-AC, and (D) DeepUTE-AC. The
top rows show a 5-year-old patient with post-operative subcutaneous soft tissue swelling in the occipital region. RESOLUTE erroneously fills in a dual layer bone
layer on both sides of the swelling, along skin and bone. The bottom rows show a 6-year-old patient with air pockets anteriorly in the lateral ventricles that appeared
after surgical intervention, and are not imaged in RESOLUTE. Also in this case RESOLUTE crafts a dual layered skull in the occipital region. For both patients,
RESOLUTE is challenged in the definition of facial and skull base attenuation value. DeepUTE captures the morphology more confidently.
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FIGURE 2 | Comparison of CT (A), RESOLUTE (B), and DeepUTE (C) attenuation maps in the sagittal, axial and coronal orientation, respectively. (D,E) shows (B,C)
subtracted (A), respectively, and (F,G) shows the resulting relative difference in the PET images between RESOLUTE and DeepUTE relative to CT-AC, respectively.
The improved accuracy in the nasal cavities, the skull base and the mastoid processes, leads to a clear reduction of the errors in the surrounding regions, e.g., in the
medulla. It also appears that, for this patient, a small underestimation of the densities within the brain in DeepUTE leads to a small underestimation globally within the
brain. The tumor delineation is show on the sagittal view in (D–G).

of 0.13 a.u. due to overestimated bone area in the skull base.
In comparison, DIXON-AC gave a TMAX/B difference over the
acceptable limit in 23/36 (64%) examinations, and 13/36 (36%)
examinations had changes to BTV over the acceptable limit.

The relative %-difference in the diagnostic measures was
similar between RESOLUTE and DeepUTE, again with DeepUTE
with the reduced error and variation (Table 1). BTV measured
using DeepUTE was underestimated by 2% on average (95%
CI: −5 to 1%) compared to −1% (95% CI: −5 to 4%) with
RESOLUTE. None of the metrics had statistically significant
differences compared to the reference CT-AC. In comparison,
DIXON-AC had statistically significant differences in all three
clinical metrics (p < 0.001).

DISCUSSION

Magnetic resonance imaging is the method of choice to diagnose
brain tumor patients, but FET-PET can add valuable information
for clinical decision making (Dunkl et al., 2015). Examining
pediatric and adolescent patients on a hybrid PET/MRI can be

preferred over PET/CT to reduce the number of examinations,
which is especially relevant when anesthesia is required, and
is important for both child and parents. A prerequisite for a
confident clinical evaluation of the cohort with PET/MRI is an
accurate AC. The skull shape, density, thickness, and composition
change considerably during development in childhood especially
the first three years after which the sutures and fontanelles
gradually calcify and close (Li et al., 2015). Especially the rapid
growth of skull thickness and bone density will highly influence
attenuation leading to errors in atlas-based methods that cannot
account for the thin, low-density infant cranium.

In designing the clinical study, we were acutely aware of
these unresolved AC issues and choose to include a separate
low-dose CT acquisition. This could be performed safely in
all children, although it involved moving sensitive patients to
a different scanner for additional radiation exposure and, for
some children, extending anesthesia. This additional stress on
the patients was regarded ethically acceptable so that future use
of hybrid PET/MRI in pediatric brain tumors, which could be
one of the most important applications, could be performed with
the best possible assessment of risk to the patient caused by
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FIGURE 3 | Bland-Altman plot of TMEAN/B (top), TMAX/B (middle) and BTV (bottom) for the two AC-methods RESOLUTE and DeepUTE against the reference
standard CT-AC. The black lines indicate the acceptance criteria of TMEAN/B of ± 0.05 or 5%, TMAX/B of ± 0.1 or 5%, and BTV of ± 2mL or 10%, respectively.
Points that exceed the criteria have been colored. The age of the children exceeding the threshold using RESOLUTE are 7, 7, and 11 years, respectively. Note the
difference on the axes. The dashed gray line indicates the mean value.

quantitative inaccuracies using accepted standard metrics within
the field.

We modified the already thoroughly evaluated RESOLUTE
method to be applied on pediatric patients, as well as introduced
an MR-AC method based on a deep learning convolutional
neural network, and also included DIXON-AC. The novelty
of DeepUTE does not lie in the chosen type of architecture,
but rather in the data that went into training the model. This
manuscript is, to the best of our knowledge, the first of its kind to

train a deep learning network for MR-AC purposes on a pediatric
cohort of this size. The included patients in the evaluated cohort
are well suited to test the method’s ability to adapt to anatomy
changes across different ages.

Pediatric patients are a challenging cohort to examine due to
motion, often leading to sedation or anesthesia of the patients.
The patients included in this study had, as expected, a larger
amount of noise in the MR images than adult patients, leading
to increased amount of noise in the bone surrogate signal. The
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TABLE 1 | Summary of the relative %-difference∗ to the reference CT-AC of each
clinical metric for the MR-AC methods.

Measured
parameter
values

Mean % difference 95% lower
limits of

agreement

95% upper
limits of

agreementMean 95% CI p

DIXON-AC

TMEAN/B 2.2 1.5 to 2.8 < 0.001∗∗ −1.6 6.0

TMAX/B 5.9 4.5 to 7.4 < 0.001∗∗ −2.2 14.7

BTV 32 21 to 45 < 0.001∗∗ −22 124

RESOLUTE

TMEAN/B 0.2 −0.3 to 0.7 0.38 −2.6 3.1

TMAX/B 0.3 −0.6 to 1.2 0.54 −4.9 5.8

BTV −1 −5 to 4 0.77 −21 25

DeepUTE

TMEAN/B −0.1 −0.2 to 0.5 0.38 −1.7 2.0

TMAX/B −0.1 −0.8 to 0.5 0.67 −3.7 3.6

BTV −2 −5 to 1 0.15 −19 17

∗Exponentiation was applied to results from analysis on log scale, and results were
expressed as percentages. ∗∗ Indicates a statistical significant (p < 0.05) found by a
paired t-test. CI = 95% confidence interval for mean difference. BTV is measured in
mL. A single examination without BTV with DIXON-AC was left out of this analysis.

strength of the DeepUTE method is that it is able to robustly
handle this noise, which the deep learning methods are known
for. An example of the improved noise handling is evident in
Figure 1, where DeepUTE better models both the thin bone and
noise at the posterior part of the head.

Titanium alloy clamps, that were present in 33% of the patients
to fix the craniotomy, showed up as small signal voids in the MR
images with a size similar to the implants seen on CT. Visual
reading showed that both RESOLUTE and DeepUTE filled the
signal void with a density similar to dense bone, similar to what
has previously been observed (Ladefoged et al., 2017). This meant
that a valid attenuation map without artifacts could be calculated
in all scans using RESOLUTE and DeepUTE.

Overall, we found both RESOLUTE and our DeepUTE
methodology to accurately reproduce the CT-AC clinical metrics
with similar accuracy as was seen for RESOLUTE when
evaluating adult FET-PET brain tumor patients (Ladefoged et al.,
2017). Regardless of age, both methods were able to obtain AC
maps similar to the CT-AC, albeit with DeepUTE producing
the most similar based on both quantitative metrics and visual
inspection. In the patient-by-patient analysis, all patients were
inside the predefined acceptable clinical limits with DeepUTE,
where three patients (7–11 years old) were outside the limits
in the TMAX/B or TMEAN/B metrics when using RESOLUTE
(Figure 3). A similar result was obtained with RESOLUTE
for the adult FET-PET brain tumor patients (Ladefoged et al.,
2017) where 5/68 studies exceeded the predefined limit. The
errors from RESOLUTE were due to an overestimation of bone
density in known “problem” areas near the skull base, but none
of the errors impacted the clinical reading of the images. In
comparison, the same patients obtained with DeepUTE-AC had
a higher precision in the skull base, leading to more accurate
measurements. The confidence interval was narrower when using
DeepUTE compared to RESOLUTE (Table 1). This indicates that

there is a smaller variation of the errors in DeepUTE compared
to RESOLUTE.

The processing in RESOLUTE was the same for all patients,
except for the combination of the segmented tissue maps within
regional masks, as these are different depending on the patient
age. In DeepUTE, the same method was applied regardless of
patient age. Further dividing the training patients into smaller
groups depending on age might further reduce the variance, but
requires more data, as training a deep learning network with
too few patients leads to overfitting. We did not apply transfer
learning in this study, as it has been shown that training a deep
learning network using less than 30 patients is feasible (Han,
2017; Liu et al., 2017; Gong et al., 2018; Kläser et al., 2018; Leynes
et al., 2018). However, using transfer learning, e.g., from a larger
adult cohort might further improve the results presented here, as
the low-level information are to be expected similar between the
cohorts.

In software version VB20P on the Siemens mMR, two
vendor-provided solutions for AC is available – DIXON-AC and
UTE-AC, that both have been used in the published pediatric
neuro-oncology PET/MRI literature (Garibotto et al., 2013;
Preuss et al., 2014; Fraioli et al., 2015), however, encompassing
only 6 and 12 patients, respectively. This small patient sample
may reflect hesitation from the clinical community to use
PET/MRI routinely in this difficult patient group because of the
well-documented systematic underperformance of particularly
DIXON-AC (Andersen et al., 2014; Ladefoged et al., 2017), which
is also apparent from our study. DIXON-AC was the only vendor-
provided method capable of producing attenuation maps for the
full pediatric cohort. In four patients, UTE-AC was not able to
produce an attenuation map of patients, aged 0–2 years, which is
why we chose to exclude UTE-AC from the comparison.

In this study, we only had 6 patients with repeat examinations.
We found that the change of TMEAN/B, TMAX/B and BTV
between two examinations with RESOLUTE or DeepUTE were
in congruence with the change when measured with CT-AC, as
none of the differences were outside the acceptable limit. A larger
number of repeat examinations should confirm this.

Limitations
We did not have pediatric data available after the software
upgrade to VE11P, which adds a model-based AC method (Paulus
et al., 2015; Koesters et al., 2016), but we speculate that the
method would be unsuccessful for the younger pediatric cohort
since the method was developed for adults.

Both RESOLUTE and DeepUTE are based on the UTE
sequence, so while we expect DeepUTE to be directly transferable
to any Siemens mMR, which is the case for RESOLUTE, neither
method is able to produce attenuation maps from PET/MRI data
from other vendors. The fundamental idea behind DeepUTE is
not limited to UTE data, and retraining the network on other MR
sequences such as the T1w MPRAGE or ZTE could allow for a
multi-vendor method. However, it would require a large pediatric
dataset across several vendors to confirm this.

Although, the limits of agreement using RESOLUTE and
DeepUTE are encouragingly narrow (Table 1), the number of
patients in each age category is still small. Thus, we cannot
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rule out artifacts caused by other combinations of anatomy and
pathology.

CONCLUSION

The present study performed on FET-PET/MRI examinations
of pediatric patients revealed that both RESOLUTE and our
deep learning method DeepUTE are able to robustly produce
attenuation maps similar to the reference CT-AC. The clinical
metrics were within acceptable limits of the reference CT-AC,
making either method suitable for imaging of pediatric brain
tumor patients – a cohort that is especially challenging for atlas-
based methods. For clinical use of any MR-AC map, however,
we recommend visually inspection for artifacts with particular
attention to areas close to the skull base, anatomically distorted
tissue and metal implants. The added accuracy due to better noise
handling of DeepUTE, ease of use without the need for regional
masks, as well as the improved runtime makes DeepUTE the
method of choice for PET/MRI AC. Further refinement of the
deep learning method with age-specific data input is likely to
improve the performance.
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Alzheimer’s disease (AD) could be described into following four stages: healthy control
(HC), early mild cognitive impairment (EMCI), late MCI (LMCI) and AD dementia. The
discriminations between different stages of AD are considerably important issues for
future pre-dementia treatment. However, it is still challenging to identify LMCI from EMCI
because of the subtle changes in imaging which are not noticeable. In addition, there
were relatively few studies to make inferences about the brain dynamic changes in
the cognitive progression from EMCI to LMCI to AD. Inspired by the above problems,
we proposed an advanced approach of evolutionary weighted random support vector
machine cluster (EWRSVMC). Where the predictions of numerous weighted SVM
classifiers are aggregated for improving the generalization performance. We validated
our method in multiple binary classifications using Alzheimer’s Disease Neuroimaging
Initiative dataset. As a result, the encouraging accuracy of 90% for EMCI/LMCI
and 88.89% for LMCI/AD were achieved respectively, demonstrating the excellent
discriminating ability. Furthermore, disease-related brain regions underlying the AD
progression could be found out on the basis of the amount of discriminative information.
The findings of this study provide considerable insight into the neurophysiological
mechanisms in AD development.

Keywords: Alzheimer’s disease progression, functional connectivity, classification, disease-related brain regions,
evolutionary weighted random support vector machine cluster

INTRODUCTION

Alzheimer’s disease (AD) is a devastating neuro-cognitive disorder of the human brain
(Keren-Shaul et al., 2017; Kodis et al., 2018), which is characterized by the progressive
loss of cognition and memory in elderly adults (Roy et al., 2016). Along with the aging
of global population, the number of individuals suffering from AD will increase (Novak
et al., 2017). It is predicted that there will be more than 100 million elderly people
worldwide affected by AD by 2050 (Cortes-Canteli et al., 2015; Branca and Oddo, 2017).
Therefore, the identification of AD and particularly its transitional phase, namely mild cognitive
impairment (MCI), have received increasingly growing attentions in recent years (Cui et al.,
2018). The individuals diagnosed with MCI could be further subdivided into the early MCI
(EMCI) and late MCI (LMCI) (Lee et al., 2017) and the distinguishing criterions for EMCI
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and LMCI have been previously depicted in Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort (Nuttall et al., 2016). At
present, there is still no therapy to prevent or reverse the AD
pathological process (Forster et al., 2017). It is hence important
to develop a new approach that could identify different stages
of AD to enhance the understanding of AD pathophysiological
progression, which is helpful to the preclinical AD studies.

A great deal of neuroimaging techniques could be utilized
to image human brain function and structure, e.g., diffusion
tensor imaging (DTI), magnetic resonance spectroscopy (MRS),
electroencephalogram (EEG), functional magnetic resonance
imaging (fMRI), and so on (Busato et al., 2016; Thanh Vu
et al., 2017). Due to the advantages of high temporal and spatial
resolutions, fMRI especially resting-state fMRI have gained
increasingly growing popularities in the investigation of the
whole-brain neural connectivity recently (Goense et al., 2016).
As an advanced brain imaging technology, resting-state fMRI has
shown a great potential in providing comprehensive information
to achieve a high level of identification of the neurological
diseases (Phillips, 2012; Rosa et al., 2015). Accordingly,
the application of non-invasive resting-state fMRI is highly
advantageous to unfold the complexity of brain connectivity
network and examine the brain dynamic changes from EMCI to
LMCI to AD.

Machine learning (ML) technologies were extensively used
in automatic pattern recognition based on imaging data (dos
Santos Siqueira et al., 2014; Moradi et al., 2015; Wang et al.,
2018; Zeng et al., 2018). In existing literature, there has been a
widespread interest to utilize ML methods to classify different
stages of AD. Nozadi et al. (2018) employed a random forest
(RF) algorithm based on the whole-brain approach to achieve
the accuracies of 72.5 and 81.7% for 164 EMCI versus 189 LMCI
and 189 LMCI versus 99 AD respectively. Goryawala et al. (2015)
reported the accuracies of 73.6 and 90.1% for 114 EMCI versus 91
LMCI and 91 LMCI versus 55 AD using the linear discriminant
analysis (LDA). Jie et al. (2018) utilized the multi-kernel SVM and
displayed a high accuracy of 78.8% classifying 56 EMCI from 43
LMCI. It is noteworthy that the discrimination between EMCI
and LMCI is more challenging in comparison to LMCI and AD.

In order to improve the classification performances especially
of EMCI and LMCI, and enhance the understanding of
neuropathology in the AD progression, a new method of
evolutionary weighted random SVM cluster (EWRSVMC) was
presented in this paper to diagnose different stages of AD.
The EWRSVMC combined multiple weighted SVM classifiers to
make the final decision, which was believed to be considerably
stable and robust compared to other individual classifiers such
as artificial neural network and decision tree. In addition, the
EWRSVMC employed a method of evolution to guide feature
selection to explore the optimal feature set for better classification
performance. We performed the experiment 1 for EMCI/LMCI
classification and the experiment 2 for LMCI/AD classification,
yielding high accuracies of 90 and 88.89% respectively using
this new framework. Furthermore, the disease-related brain
regions were ranked according to the corresponding optimal
features’ frequencies and the top-ranked brain regions could
be found out. On the one hand, several high-frequency brain

regions [e.g., superior temporal gyrus (STG.R), insula (INS.L)
and middle temporal gyrus (MTG.L)] are presented in the
two groups of experiments at the same time, which suggested
that these brain regions play crucial roles in the progression
of AD. On the other hand, some brain areas displayed high
frequencies only in one group of experiment [e.g., superior
frontal gyrus (SFGmed.L) and olfactory cortex (OLF.R) in the
experiment 1, and parahippocampal gyrus (PHG.L) and posterior
cingulate gyrus (PCG.L) in the experiment 2], which facilitated
to understand differences in disease progression. These findings
are in agreement with the claims of the previous studies on
AD (Douaud et al., 2013; Xiang et al., 2013; Zhu et al.,
2014) and provide a novel perspective to AD progression’s
neurophysiological mechanisms.

MATERIALS AND METHODS

Subjects
The neuroimaging data we utilized in this study came from the
ADNI cohort1 (Morris et al., 2014). We collected the resting-
state fMRI data of 105 participants, which contained 42 EMCI
patients (18 male, average age 72.34 years), 38 LMCI patients
(23 male, average age 72.99 years) and 25 AD subjects (12 male,
average age 74.59 years). Every participant had clinical dementia
rating (CDR) scores and mini-mental state examination (MMSE)
scores to ensure that the data was homologous. Chi-squared
test was utilized for gender comparisons and two-sample t-test
was utilized for age, MMSE and CDR comparisons. The detailed
demographic information for the patient cohorts was listed in
Table 1.

All participants were asked to lie still in a Siemens
TRIO 3 Tesla machine using the same scanning parameters
as follows: 64 × 64 acquisition matrix; flip angle = 80◦;
echo time (TE) / repetition time (TR)=30/3000 ms; pixel spacing
Y/pixel spacing X = 3.3/3.3mm; 140 image volumes; 48 axial
slices; 3.313 mm slice thickness with no gap. During the scan, all
participants should close eyes but keep awake with thinking of
nothings (Liu et al., 2018).

Data Preprocessing
The same image preprocessing for EMCI, LMCI and AD
patients was performed by utilizing the Data Processing

1http://adni.loni.usc.edu/

TABLE 1 | Demographic information.

Variable
(Mean ± SD)

EMCI LMCI AD P-value

Male/Female 18/24 23/15 12/13 0.11a/0.33b

Age 72.34 ± 6.87 72.99 ± 7.79 74.59 ± 7.03 0.69a/0.41b

MMSE 28.10 ± 1.57 27.11 ± 2.44 21.24 ± 3.44 0.03a/0.00b

CDR 0.45 ± 0.22 0.54 ± 0.14 0.92 ± 0.31 0.04a/0.00b

aThe P-value of the comparison between the EMCI and LMCI. bThe P-value of the
comparison between the LMCI and AD.
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Assistant for Resting State fMRI (DPARSF) toolbox (Dan
et al., 2017). Briefly, the data was preprocessed in nine steps:
converting the data into NIFTI format; exclusion of the
first 10 volumes; slice-timing correction; realignment for head
movement compensation; normalization; smoothing (utilizing
a Gaussian kernel); removing linear trend; temporal band-pass
filtering; 9) regressing out the nuisance signals.

Functional Connectivity Features
The brain is a dynamic system constructed by large-scale complex
networks comprised of the connections between different brain
regions (Braun et al., 2015). In this paper, we employ a popular
automated anatomical labeling template (Rolls et al., 2015) to
divide the cerebrum into 90 brain areas (45 for left and right
hemisphere respectively). A representative resting-state fMRI
signal for each brain region is generated by averaging the time
series of voxels within each of 90 brain regions. The Pearson
correlation coefficient between the representative signals of each
pair of the brain regions is computed and treated as a proxy
of functional connectivity (FC) (Noble et al., 2017). As a result,
a total of 4005 (80 × 90/2) FCs are obtained for each subject
and served as predictor features for the proposed EWRSVMC
algorithm, which is considered to be a promising approach.

The Evolutionary Weighted Random SVM
Cluster
EWRSVMC Design
Machine learning techniques are widely used for pattern
recognition (Zeng et al., 2017), among which the SVM model has
received increasing popularities in the analysis of neurological
disease based on the high-dimensional imaging data recently.
Nevertheless, utilizing the single SVM classifier is too challenging
to achieve excellent diagnostic performance due to the noise
of brain imaging data. Bi et al. (2018) put forward a random
SVM cluster (RSVMC) in which multiple SVM classifiers are
combined for a final decision-making, which outperforms an
individual SVM classifier. But, it could not be ignored that the
diagnostic power of each individual classifier in the ensemble
classifier may be greatly differential from others. The previous
method of RSVMC ignores the fact that the individual SVM
classifier with relatively high training error is likely to perform
wrong voting on the new samples, which is likely to degrade the
discriminative ability. Accordingly, there still remains room for
the improvement with respect to the RSVMC method.

This paper presents a novel algorithm of EWRSVMC with two
successive steps, i.e., the construction and evolution of weighted
ensemble of SVMs respectively. First, in order to reduce the
influence of the weak classifiers on the voting, the classification
accuracy of each SVM classifier is calculated using the validation
set, which is regarded as a proxy of weight of every SVM classifier.
The output of EWRSVMC is a weighted average of the outputs of
multiple SVMs, which could further reduce classification error
rate. Second, in order to select out the most discriminative
features from a large-scale feature vector, the method of evolution
is introduced to dynamically eliminate the redundant features for
further improving final classification performance. The idea of

our proposed architecture is showed in Figure 1, where each row
and column corresponds to a subject and feature respectively in
the left data matrixes.

We suppose X = {x1, ...xk, ...xn} ∈ RN× d as the
connectivity features vectors where N and d are the numbers
of all subjects and features. yi ∈ {+1, −1} is the response class
label representing two different states (e.g., EMCL or LMCI). The
construction of the weighted random SVM cluster is performed
using the following steps:

(1) Step1: The available dataset X is divided into two data
subset, i.e., a “training and validation” set and a test set
respectively.

(2) Step2: Then, the training subset and feature subset are
respectively obtained by randomly selecting partial samples
from above “training and validation” set and partial features
from total features to build an individual SVM model.

(3) Step3: The remaining validation subset is utilized for the
estimation of diagnostic accuracy Wl of l-th SVM, which
is considered as a proxy of weight of the SVM.

Wl =
Tcorrect

l
TL

(1)

where Tcorrect
l denotes the number of validation samples

correctly classified by l-th SVM classifier, TL represents the
number of validation samples.

(4) Step4: The step 2 to step 4 are repeated for n times to build
a weighted ensemble of n SVM classifiers.

Following the above steps, a weighted ensemble of multiple
SVM classifiers could be constructed and then an approach of
evolution is applied to the ensemble classifier to guide feature
selection.

FIGURE 1 | The idea of our proposed EWRSVMC.
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Specifically, the SVM classifiers whose classification accuracies
are lower than 0.5 are first picked out from the weighted random
SVM cluster and considered as weak classifiers. Similarly, the
remaining SVM classifiers are regarded as strong classifiers due
to the good performance. Then the features selected by these
weak classifiers are found out and the weights corresponding to
the common features are accumulated. The total weight of each
feature in weak classifiers is denoted asTwj:

Twj =
∑p

l= 1
wl,j (2)

where p is the number of weak classifiers; wl,j represents the
weight of the j-th feature corresponding to l-th weak classifier.

Next, we remove the features whose total weight Twj exceeds
a certain threshold q, because these features play crucial roles
in the weak classifiers and are likely to make few contributions
to the excellent performance of the overall system. As a result,
we obtain the remaining features with lower total weights in
the weak classifiers and all the features determined by the
strong classifiers as an evolutionary feature set, leading to the
reduced dimensionality of total feature space. Finally, the above-
obtained evolutionary feature set is employed to rebuild a
weighted random SVM cluster for the further reduction of feature
dimensionality. This procedure is repeated iteratively until it
reaches the times of evolutions we set. The optimal EWRSVMC
with the highest accuracy during the evolution process could

be found out and the features determined by this optimal
EWRSVMC are considered as the optimal feature set. The feature
selection procedure of the EWRSVMC is exhibited in Figure 2.

The Evaluation of the EWRSVMC
The EWRSVMC perform a weighted average of the outputs
of multiple SVM classifiers, which could predict the class label
of each new testing sample. To be specific, a new sample is
firstly input into a EWRSVMC system and each individual
SVM classifier performs a weighted vote in accordance with its
accuracy dealing with the validation samples. Then the weighted
voting values belonging to the same predicted label are added up.
Lastly, the label having the highest voting value represents new
sample’s final predicted label.

In this paper, we employ the three metrics, i.e., accuracy,
sensitivity and specificity to estimate our proposed EWRSVMC’s
final performances. The diagnostic accuracy Ac stands for a
fraction of correctly identified samples (Schröder et al., 2015):

Ac =
TP + TN

TP + FP + FN + TN
(3)

where TP, FP, FN, and TN respectively represents the number of
true positives, false positives, false negatives and true negatives.

Sensitivity (Sn) stands for a proportion of actual positive
samples which are correctly identified (Mondal and Pai, 2014):

FIGURE 2 | Feature selection procedure of the EWRSVMC.
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Sn =
TP

TP + FN
(4)

Specificity (Sp) stands for a proportion of actual negative
samples which are correctly identified (Kumar and Helenprabha,
2017):

Sp =
TN

TN + FP
(5)

The Application of the EWRSVMC
In the current study, we conducted multiple binary classifications,
including EMCI vs. LMCI and LMCI vs. AD to confirm the
performance of our proposed EWRSVMC using 4005 FCs as the
raw features. In addition to optimizing the classification accuracy
as with most existing studies, we also paid great attentions to
exploring and analyzing the alterations of the brain in patients
with different cognitive stages of AD. Accordingly, another sub-
procedure for the exploration of the disease-related brain regions
using the optimal features set was carried out. First, we detected
the brain regions which are relevant to the optimal features in
the EWRSVMC with the highest classification accuracy. Then,
disease-related brain regions were sorted in a descending mode,
which is consistent with their occurrence frequencies. The higher
the frequencies are, the greater the abnormal degrees of the brain
regions are.

Experiment Design
In this paper, we conducted the experiment 1 for EMCI vs.
LMCI classification and the experiment 2 for LMCI vs. AD
classification. Each group of experiment could be mainly divided
into four parts:

(1) Division of data sets. A 3:1 ratio is set to divide entire
resting-state data set into the “training and validation” set for
training the EWRSVMC and the test set for examining the
generalization ability of the overall system. Furthermore, a 2:1
ratio is set to subdivide the “training and validation” set into the
training set for training the SVM classifier and the validation set
for obtaining the weight corresponding to the SVM classifier.

(2) Building an ERWSVMC. Firstly, we randomly select
√

4005 ≈ 62 features from all 4005 features based on the training
set to build a radial basis function (RBF) kernel SVM classifier.
The kernel bandwidth σ and penalty parameter C for each SVM
model are primarily set as 3 and Inf respectively. The number of
initial base classifiers is set to 500 to get the weighted ensemble
of SVMs. Then, we make the ensemble classifier evolves for 50
times. In each evolution, we find out the features selected by
the weak classifiers and remove the features whose total weight
Twj exceeding the certain threshold q = 7. As a result, the
EWRSVMCs with different evolution times are obtained.

(3) Finding out the optimal subset of features. We compute the
diagnostic accuracies of the EWRSVMCs with different evolution
times. The features selected by the optimal EWRSVMC having
the lowest diagnostic error rate form the optimal features subset.

(4) Exploring the abnormal brain regions. We seek out
the features with high discriminative ability in the optimal
EWRSVMC, and then investigate the corresponding disease-
related brain regions associated with these features.

RESULTS

The Experiment 1
We investigated the performance of classification between
EMCI and LMCI in the experiment 1. According to Section
“Experiment Design,” we conducted 50 evolutions for the
EWRSVMC. Consequently, the EWRSVMC yielded a maximum
accuracy of 90% in the 32nd evolution (as shown in Figure 3),
which suggested that 32 was the optimal times of evolutions.
Meanwhile, a sensitivity of 90.9% and a specificity of 88.89%
were achieved based on the optimal feature set. The experiment
results showed that the novel framework could significantly
enhance diagnostic performance for EMCI/LMCI classification
in compared with some other existing algorithms.

Feature selection was a crucial stage in our EWRSVMC
algorithm classifying LMCI from EMCI and the process was
shown in Figure 4. On the one hand, the number of removed
features increased rapidly and exceeded 100 after two evolutions.
Then it became gradually stable and fluctuated around 120. On
the other hand, the number of remained features showed a trend
of linear decline. There were 248 features left after completing
the 32nd evolution, which constituted the optimal feature set
and were utilized for subsequent study on the exploration of
disease-related brain regions.

By counting the high-frequency FCs, we could detect the
most discriminative brain regions which were ranked in the
Table 2. The brain regions exceeding the frequency of 10
comprise inferior temporal gyrus (ITG.R), temporal pole: middle
temporal gyrus (TPOmid.L), temporal pole: superior temporal
gyrus (TPOsup.R), middle temporal gyrus (MTG.L) and insula
(INS.L). As seen from Table 2, some sub-regions of the temporal
lobe showed higher frequencies compared to other regions,
indicating the temporal lobe made an essential contribution
to the evolution from EMCI to LMCI. The locations of brain
regions were mapped in Figure 5 and the size of the red node

FIGURE 3 | Finding the optimal times of evolutions in the experiment 1.
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FIGURE 4 | The number of features after each evolution in the experiment 1.

TABLE 2 | The frequencies of the most discriminative brain regions in the
experiment 1.

Frequency Brain region

15 ITG.R

14 TPOmid.L

12 TPOsup.R MTG.L

11 INS.L

10 SFGmed.L PAL.R

9 OLF.R ITG.L

FIGURE 5 | The locations of abnormal brain regions in the experiment 1.

represented the degree of abnormality of the corresponding brain
regions.

The Experiment 2
The classification of patients with LMCI and AD was carried out
in the experiment 2. Similarly, 50 evolutions were performed and

the EWRSVMC reported the highest accuracy of 88.89% in the
34nd evolution (please see Figure 6), which indicated that 34
was the optimal times of evolutions in LMCI/AD classification.
At the same time, the optimal EWRSVMC achieved 85.71%
sensitivity and 90.9% specificity. The encouraging performances
demonstrated the potential of our new framework for the
diagnosis of AD dementia.

The process of feature selection in LMCI/AD classification was
plotted in Figure 7. The number of removed features showed
an overall upward trend, while the number of remained features
exhibited a trend of linear decline. There were 293 features left
after finishing the 34th evolution, which formed the optimal
feature set for the further analysis of progression from LMCI
to AD.

We were able to explore the most discriminative brain
regions by counting the high-frequency FCs. The disease-related

FIGURE 6 | Finding the optimal times of evolutions in the experiment 2.

FIGURE 7 | The numbers of features after each evolution in the experiment 2.
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brain regions in LMCI/AD classification were ranked in the
Table 3 and the ones exceeding the frequency of 10 were listed
as follows: superior temporal gyrus (STG.R), parahippocampal
gyrus (PHG.L), middle frontal gyrus, orbital part (ORBmid.R),
calcarine fissure and surrounding cortex (CAL.R), insula (INS.L),
temporal pole: middle temporal gyrus (TPOmid.R), and posterior
cingulate gyrus (PCG.L). Similarly, some subregions of the
temporal lobe and insula showed higher frequencies than other
brain regions, suggesting the temporal lobe and insula made
greater contributions to the evolution of AD. Figure 8 described
the locations of brain regions.

DISCUSSION

Classification Effect
In this paper, we propose an advanced framework of EWRSVMC
based on resting-state fMRI data to accurately classify different
stages of AD. Resting-state fMRI is an effective tool for exploring
the dynamical changes in human brain because of the high
temporal and spatial resolutions (Lee M.H. et al., 2016). In
addition, to the best of our knowledge, no investigation is
available about the EWRSVMC in AD studies using brain
imaging data. The EWRSVMC is able to efficiently perform
EMCI/LMCI and LMCI/AD classifications with the high
accuracies of 90 and 88.89%, sensitivities of 90.9 and 85.71%,
specificities of 88.89 and 90.9% respectively. The results of two

TABLE 3 | The frequencies of the most discriminative brain regions in the
experiment 2.

Frequency Brain region

14 STG.R

13 PHG.L

12 ORBmid.R

11 CAL.R INS.L TPOmid.R PCG.L

10 ACG.R FFG.L TPOsup.L MTG.L

FIGURE 8 | The locations of brain regions in the experiment 2.

groups of experiments demonstrate the availability of novel
EWRSVMC algorithm for early detection of AD and the potential
of resting-state fMRI for identification of the transition from
EMCI to LMCI to AD.

The ML techniques have received increasingly growing
attentions recently in imaging data (Zeng et al., 2014; Wang
et al., 2017), and have been shown to be a reliable method to
diagnose different cognitive stages of AD using neuroimaging
data. Jiang et al. (2014) achieved a high accuracy around 80%
for 56 EMCI versus 44 LMCI combining a sparse learning with
the SVM classifier. Prasad et al. (2015) reported the accuracy of
63.4% for 74 EMCI vs. 38 LMCI using the SVM classifier with
the feature set of the fiber network measures (FIN) and the flow
network measures (FLN). Mahjoub et al. (2018) combined the
proposed deep similarity network architectures with the single
SVM classifier utilizing the cross-validation method to classify
41 AD from 36 LMCI with a classification accuracy peaking at
77.92%.

The majority of ML methods had the slightly lower
classification performances especially classifying EMCI from
LMCI because of image noise and small-sample size of
data. In addition, a great deal of studies have paid more
attention to the classification but rarely explored disease-related
brain regions underlying the AD evolution. To address these
issues, a new framework of EWRSVMC using the FCs as
the raw features was presented in this paper. The output of
EWRSVMC is a weighted average of the outputs of SVMs,
which could further reduce classification error rate compared
to some previous methodologies. Additionally, Due to the
high dimensionality of feature space, the complexity of the
algorithm is likely to be increased and the performance of model
estimation is degraded. Accordingly, a method of evolution
is employed to dynamically eliminate the redundant features
and the features in the optimal EWRSVMC are regarded as
the optimal features. Moreover, disease-related brain regions
could be found out by identifying these features with high
discriminative ability, which provides new insights in the
pathology of AD.

The issue of overfitting is a major concern in the training
process of our EWRSMC algorithm and more details about it
are discussed here. In order to building an individual SVM
classifier in EWRSVMC, the training set was randomly chosen
out from the all experimental dataset and 62 FCs was randomly
chosen out from total 4005 FCs as input features. Because
of the randomness of samples and features, each SVM base
classifier is greatly different from others, which could reduce the
effects of overfitting. Furthermore, the EWRSVMC shows a good
classification performance in the test set, suggesting a low risk of
overfitting phenomenon.

In our proposed EWRSVMC, two hyperparameters, namely
the penalty parameter C and the kernel bandwidth σ, need
to be determined. Initially, we set parameter C and σ to
Inf and 3 to train the individual RBF-SVM classifier. For
comparison, we tested different values for C and σ and found no
considerable changes in terms of the classification performances
of the EWRSVMC, suggesting that the proposed EWRSVMC is
considerably robust and universal.
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Analysis of Higher-Frequency Brain
Regions
In this part, we mainly discussed about four abnormal brain
regions, i.e., temporal lobe, insula, superior frontal gyrus, and
parahippocampal gyrus respectively.

The Temporal Lobe
Some subregions of the temporal lobe had relatively greater
frequencies in both EMCI/LMCI and LMCI/AD classifications,
indicating that the temporal lobe is likely to play a crucial role in
AD progression. The temporal lobe is situated beneath the lateral
sulcus on both hemispheres of the human cerebrum (Kiernan,
2012), which is known to be associated with visual memory,
language comprehension, emotion association and executive
function (Riley et al., 2010; Bell et al., 2011).

Several previous studies have reported the abnormal temporal
lobe in AD progression. Younes et al. (2014) found that the
volume of medial temporal lobe structures were relevant to
time of progress from MCI to AD. Davatzikos et al. (2011)
observed the positive baseline Spatial Pattern of Abnormalities
for Recognition of Early AD in temporal lobe in patients
with MCI who progressed to AD dementia. Stein et al.
(2010) observed the temporal lobe volume differences in brain
MRI scans of AD patients, MCI patients and healthy elderly
participants. Douaud et al. (2013) found that the cerebral
atrophy in medial temporal lobe was vulnerable to the AD
progression. Blasko et al. (2008) reported the changes of
medial temporal lobe atrophy (MTA) through the evolution
from cognitive health to MCI and to AD in a prospective
cohort of subjects aged 75 years. The discovery of abnormal
temporal lobe may help to improve the understanding of AD
progression.

The Insula
The insula had a relatively higher frequency than other brain
regions in both EMCI/LMCI and LMCI/AD classifications as
well, indicating that the insula may make a great contribution
in the progression of AD. The insula is a crucial hub of the
human brain networks and is folded deep in the floor of lateral
sulcus (Cauda et al., 2011). It is reported that the human insula
is involved in perception, motor control, general cognition and
self-awareness (Kang et al., 2011; Chang et al., 2013).

The insula abnormality was reported in numerous previous
literatures in AD pathology. Xie et al. (2012) found out
the altered functional integration of the insula networks in
AD development. Zhu et al. (2014) observed the significantly
greater gray matter volume loss in the bilateral insula in the
progression of conversion from HC to MCI to AD with a
linear trend. Sojkova et al. (2008) reported the longitudinal
alterations in regional cerebral blood flow which involved insula
and superior temporal regions in AD progression. Hafkemeijer
et al. (2012) mentioned that the patients diagnosed with AD
exhibited extensive decreases in gray matter volume in insula
and temporal lobe. Patel et al. (2013) reported that the default
mode network (DMN) regions, e.g., insula and superior temporal
gyrus, were significantly affected by AD pathology. The discovery

of the insula abnormality may help to illuminate the underlying
neuromechanism of AD disorder.

The Superior Frontal Gyrus
The superior frontal gyrus possessed a relatively higher
frequency compared to other brain regions in the EMCI/LMCI
classification, suggesting that the superior frontal gyrus made
an important contribution to the evolution from EMCI to
LMCI. The superior frontal gyrus (SFG) is situated at the
frontal lobe’ superior part and makes up about one third of
the prefrontal cortex of the human brain (Li et al., 2013). It
has been reported that the superior frontal gyrus is associated
with motor functions and cognitive control especially execution
within working memory (Chiao et al., 2009; Van den Stock et al.,
2011).

We have reviewed a great deal of previous literature about
EMCI and LMCI, and found that there were relatively few
studies to make inferences about the brain dynamic differences
in the cognitive process from EMCI to LMCI. Accordingly, the
discovery of abnormal superior frontal gyrus could be clinically
helpful for early detection of AD evolution at MCI stage. Lee E.S.
et al. (2016) showed the decreased FC in the right superior frontal
gurus in patients with LMCI compared with EMCI, which was
agreement with our finding.

The Parahippocampal Gyrus
The parahippocampal gyrus obtained a higher frequency in 90
brain regions in the LMCI/AD classification, indicating that the
parahippocampal gyrus acted a crucial part in the evolution from
LMCI to AD. The parahippocampal gyrus is a part of the limbic
system (Enatsu et al., 2015; Arnone et al., 2016), which is involved
in the memory encoding and retrieval (Puri et al., 2012; Monti
et al., 2018).

Several previous studies have reported the parahippocampal
gyrus abnormality in AD pathology. Liang et al. (2014) found
out the altered amplitude of low-frequency fluctuations in
right parahippocampal gyrus from LMCI and AD. Xiang et al.
(2013) reported that AD patients showed less activity than MCI
patients in the right parahippocampal gyrus during a visual
memory task. Yetkin et al. (2006) mentioned that the AD
group had less activation in bilateral parahippocampal gyri than
the MCI group in a memory-encoding task. Echávarri et al.
(2011) found out the significant differences of volumes of the
parahippocampal gyrus between the groups with the following
order: AD < aMCI < healthy. The discovery of parahippocampal
gyrus abnormality may provide assistant for clinical diagnosis of
early AD.

Limitations
The current study is limited by the following two factors. Firstly,
we utilized one modality, i.e., RS-fMRI for multiple binary
classifications. Nevertheless, there exist other modalities
[e.g., cerebrospinal fluid (CSF) and positron emission
tomography (PET)] which may also contain commentary
information for better classification performance. Secondly, it
is crucial to visualize the learned decision process for better
understanding the classification approach and gaining clinical
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insights. However, as with most previous AD classification
algorithms, the visualization of the learned decision process in
our proposed EWRSVMC is not informative, which is still a
limitation which is expected to be addressed in the future.
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Automatic algorithms for disease diagnosis are being thoroughly researched for use in

clinical settings. They usually rely on pre-identified biomarkers to highlight the existence of

certain problems. However, finding such biomarkers for neurodevelopmental disorders

such as Autism Spectrum Disorder (ASD) has challenged researchers for many years.

With enough data and computational power, machine learning (ML) algorithms can be

used to interpret the data and extract the best biomarkers from thousands of candidates.

In this study, we used the fMRI data of 816 individuals enrolled in the AutismBrain Imaging

Data Exchange (ABIDE) to introduce a new biomarker extraction pipeline for ASD that

relies on the use of graph theoretical metrics of fMRI-based functional connectivity to

inform a support vector machine (SVM). Furthermore, we split the dataset into 5 age

groups to account for the effect of aging on functional connectivity. Our methodology

achieved better results than most state-of-the-art investigations on this dataset with the

best model for the >30 years age group achieving an accuracy, sensitivity, and specificity

of 95, 97, and 95%, respectively. Our results suggest that measures of centrality provide

the highest contribution to the classification power of the models.

Keywords: graph theoiy, SVM–support vector machine, machine learing, fMRI, ABIDE, brain connectitvity

INTRODUCTION

Autism Spectrum Disorder (ASD) is a neurodevelopmental disease which manifests in early
childhood and persists into adulthood. Recent studies show that 1 in 45 children is diagnosed
with autism (Zablotsky et al., 2015). While there is no cure for ASD (Brentani et al., 2013), early
diagnosis of autistic individuals is proven to improve quality of life (Fernell et al., 2013). To better
detect ASD, biomarkers characterizing the disorder need to be identified. It has been shown that
by using topological biomarkers extracted from the brain functional network, machine learning
(ML) algorithms can be trained to aid in ASD diagnosis (Plitt et al., 2015). However, there are
many variables, such as different methods to construct the functional network and carry out the
topological measurements that can affect the extraction of these biomarkers. One goal of this study
was to find the best combination of these variables to tackle the task of ASD classification. For
this goal, we used 5 different network extraction pipelines with 12 graph theoretical topological
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measurements and preformed a statistical analysis to compare
the classification results between the pipeline. The second goal
was to identify the top topological measures in each pipeline and
investigate their relation to ASD in order to attempt and further
understand the disorder.

Our brains can be viewed as a network of functionally
interconnected regions. To measure the strength of these
connections, the temporal dynamics of brain activity is
needed. Modalities such as Electroencephalography (EEG)
and magnetoencephalography (MEG) provide this information,
however, they suffer from poor spatial resolution when compared
to Functional Magnetic Resonance Imaging (fMRI). In fMRI,
brain activity is usually monitored by the changes in blood
oxygenation which changes the magnetic properties of blood.
The resulting signal is called the Blood-oxygen-level dependent
(BOLD) signal. At the turn of the century, researchers provided
evidence that fMRI can be used to identify functional connections
of the brain while the subject was in a “resting-state” and not
doing any specific task (Lowe et al., 2000). Later studies found
many different functional networks can be identified using the
resting-state connectivity derived from fMRI (van den Heuvel
and Hulshoff Pol, 2010). Information from these networks can be
extracted and used as an input to ML algorithms to automatically
identify the best biomarkers distinguishing between healthy and
diseased networks (Nielsen et al., 2013; Plitt et al., 2015; Hazlett
et al., 2017; Heinsfeld et al., 2018).

ML has proven to be a powerful tool for automatic
disease diagnosis in neurodegenerative disorders such as
Alzheimer’s Disease (AD) (Chen et al., 2011) and Parkinson’s
Disease (Kazeminejad et al., 2017; Talai et al., 2017). In
recent years, researchers began investigating how the same
principles can be used for automatic ASD diagnosis. Promising
results with accuracies over 90% were observed using invasive
methods and blood analysis (Howsmon et al., 2017). However,
the classification studies conducted using non-invasive data
acquisition such as brain imaging, while above chance levels,
generally report lower accuracies. By using fMRI data acquired
in the Autism Brain Imaging Data Exchange (ABIDE) (Nielsen
et al., 2013) extracted the pairwise functional connectivity of
7,266 Regions of interest (ROI) using Pearson correlation and
used a leave-one-out general linear model classifier to achieve
a ASD vs. Healthy Controls (HC) classification accuracy of
60%. More recently, by applying and comparing different ML
algorithms to the same dataset, the accuracy has reached 70%.
Heinsfeld et al. used the Pearson correlation of fMRI activity of
region pairs in CC200 atlas (Craddock et al., 2012) as the inputs
to a multi-layer perceptron to achieve this result (Heinsfeld
et al., 2018). Other research groups using their own datasets have
reported higher accuracies. One study using cortical thickness,
total brain volume, and surface area of different brain regions was
able to achieve an accuracy of 81% using a neural network as their
classifier (Hazlett et al., 2017).

Another emerging methodology in understanding different
neurological disorders is graph theory, a mathematical tool used
to explain network characteristics that can also be applied to
the human brain network (Iturria-Medina et al., 2008; Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010; Sotero, 2016;

Sanchez-Rodriguez et al., 2018). Graph theory can be used to
measure the brain network segregation (clustering coefficient
and transitivity), integration (characteristic path length and
efficiency), and centrality (betweenness centrality, eigenvector
centrality, participation coefficient and within module z-score).
Recent brain imaging studies have found topological differences
between ASD and normal brains which can be quantified using
graph theory, such as global alterations of characteristic path
length and efficiency in ASD (Rudie et al., 2013; Itahashi et al.,
2014; Zeng et al., 2017; Qin et al., 2018) as well as alterations to
segregation measures (Barttfeld et al., 2011; Rudie et al., 2013;
Leung et al., 2014; Keown et al., 2017; Zeng et al., 2017) and
centrality measures(Di Martino et al., 2013; Leung et al., 2014;
Balardin et al., 2015).

Previous studies in AD patients have used topological
properties of brain networks as features for a ML algorithm,
achieving classification accuracies of 85% (Dyrba et al., 2015).
However, this methodology hasn’t been tested in ASD. With the
emergence of the ABIDE dataset, large amounts of imaging and
clinical data has become available to researchers (Di Martino
et al., 2014). More than 1,000 datasets are available for individuals
with ASD and HC each. This data is collected from multiple
sites with slightly varying machinery and imaging parameters.
Therefore, a well-developed preprocessing pipeline is essential to
minimize the effects of site and imaging parameter changes, but
further datamanipulationsmay be needed to standardize the data
from different sites.

One explanation for the lower accuracies of studies using
the ABIDE dataset is that it covers a large age range (5–65).
Age has been proposed as a factor attributing to the different
results reported on resting-state fMRI analysis of ASD (Hull
et al., 2016). Another study focusing on using multi-scale image
textures to study neuroanatomical texture features in autism has
found correlations between age and texture features (Chaddad
et al., 2017). Therefore, any study that uses all this data will
have to take aging effects into consideration. If these issues
are correctly addressed, the ABIDE initiative will provide a
suitable database for ML centered research on ASD. Another
limitation that can be associated with the previously mentioned
studies is that they use a simple connectivity matrix such as
one computed by Pearson correlation as their features for the
classification algorithms. The connectivity matrix is interpreted
as the strengths of the connection between ROIs and the changes
in these connection strengths are used to classify between ASD
and HCs. We hypothesize that by applying graph theoretical
measurement of network segregation (clustering coefficient
and transitivity), integration (characteristic path length and
efficiency), and centrality (betweenness centrality, eigenvector
centrality, participation coefficient and within module z-score)
for extracting features from the connectivity matrix, the
performance of ML algorithm on this dataset will be improved.

In this study, we use fMRI BOLD signals to estimate
functional connectivity matrices using different network
extraction methods. Using these matrices, we construct a brain
network modeling the functional connectivity of a subject’s
brain. Topological properties such as integration, segregation,
and centrality of the obtained networks are then used as features
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(for a total of 817 features for each network extraction method)
fed to a gaussian kernel Support Vector Machine (SVM) to
classify whether a subject is suffering from ASD or not. We then
use a sequential feature selection technique to choose the top 10
features that contribute to this classification. To control for the
effects of aging, we separated our data into 5 age groups. Our best
model, for the >30 age range achieved a classification accuracy,
sensitivity, and specificity of∼95, 97, and 95%, respectively. Most
regions that the features were extracted from had been previously
shown to undergo structural and/or functional changes in ASD.

MATERIALS AND METHODS

Dataset and Preprocessing
In order to ensure replicability, we used the preprocessed version
of ABIDE I (DiMartino et al., 2014) data publicly available via the
Preprocessed Connectome Project (Cameron et al., 2013b). The
preprocessing pipeline we used for this study is the Configurable
Pipeline for the Analysis of Connectomes (CPAC) (Cameron
et al., 2013a). Regions of interests (ROIs) were defined as the
116 regions in the automatic anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002).

The preprocessing included the following steps. AFNI was
used for removing the skull from the images. The brain was
segmented into three tissues using FSL. The images were then
normalized to the MNI 152 stereotactic space using ANTs.
Functional preprocessing included motion and slice-timing
correction as well as the normalization of voxel intensity.
Nuisance signal regression included 24 parameters for head
motion, CompCor with 5 principal components for tissue signal
in CSF, and white matter, linear and quadratic trends for Low-
frequency drifts and a global bandpass filter (0.01–0.1Hz). These
images where then co-registered to their anatomical counterpart
by FSL. They were then normalized to the MNI 152 space
using ANTs. The average voxel activity in each ROI was then
extracted as the time-series for that region. Any subject that had
a consistently 0 time-series was omitted from the dataset. To
minimize the effects of age on the results, the dataset was split
into 5 age ranges with 5-year increments for the first three step
and a 10 year and unlimited increment for the final two. This was
done in order to ensure that no age range will have a very small
number of subjects. The distribution of the subjects in each age
range can be seen in Table 1. Further breakdown of the subject’s
demographics is shown in Supplementary Table A.

Creating the Functional Connectivity

Network
To extract the whole-brain functional connectivity network of
each subject, each ROI is seen as a network node and a measure
of connectivity is used to connect these nodes (Bullmore
and Sporns, 2009). This connectivity measure

(

wij

)

must be
able to quantify the relationship between the time-series of
ROI i and j. Correlation and mutual information metrics
have been extensively used for this purpose (Rubinov and
Sporns, 2010). We have used spearman’s rank correlation
coefficient, the percentage-bend correlation (Wilcox, 1994;
Pernet et al., 2012) and partial correlation (Marrelec et al.,

TABLE 1 | Distribution of the data.

Site (# Samples in

fMRI time series)

5–10 10–15 15–20 20–30 30–65 All

years years years years years

CALTECH (146) 0 0 3 13 5 20

CMUA (236) 0 0 0 1 0 1

KKI (152) 20 18 0 0 0 38

LEUVEN1 (246) 0 0 8 21 1 29

LEUVEN2 (246) 0 24 7 0 0 31

MAXMUNA (116) 0 0 1 3 7 11

MAXMUNB (116) 0 0 0 2 5 6

MAXMUNC (116) 0 0 0 13 3 14

MAXMUND (196) 2 5 1 0 2 9

NYU (176) 35 66 26 34 5 166

OHSU (78) 7 15 1 0 0 23

OLIN (206) 0 9 14 7 0 25

PITT (196) 0 16 4 7 5 32

SBL (196) 0 0 0 3 6 8

SDSU (176) 1 17 9 0 0 27

STANFORD (176–236) 21 15 0 0 0 36

TRINITY (146) 0 14 20 9 0 43

UCLA1 (116) 3 38 14 0 0 55

UCLA2 (116) 1 18 1 0 0 20

UM1 (296) 9 42 32 0 0 82

UM2 (296) 0 13 16 2 0 31

USM (236) 0 6 21 22 12 61

YALE (196) 10 26 12 0 0 48

All Sites 109 342 190 137 51 816

Number of participants from each site for each age group as well as the overall number

of participants in a site that were used for this study. Last row shows the total number of

subjects in each age-range. The number of MRI samples per fMRI time-series is annotated

in brackets in the first column. The Stanford time-series did not have a consistent number

of samples thus the number is presented as a range.

2006) as our correlation based measures of connectivity. We
also used Sparse Inverse Covariance Estimation (SICE) (Huang
et al., 2010) and mutual information as alternative measures
of connectivity. More details on each method can be found
in the Supplementary Material. The implementations used
in the open source GraphVar Matlab toolbox (Kruschwitz
et al., 2015) was used to compute these connectivity
measures.

Graph Extraction
Once the whole-brain network is available, numerous methods
can be used to express it in terms of a graph. The easiest way
is to treat each ROI as a node and the connectivity matrix as
connection weights. Another approach is to define a threshold
T and disregard any edges with values wij < T by changing them
to 0. One can then either keep the edge weights for wij > T
or change them to 1 to construct a binary graph. It has been
shown that binary graphs are easier to characterize using graph
theoretical metrics and usually have better defined null models
for statistical analysis (Rubinov and Sporns, 2010). As there is no
proved way to calculate the value of T for a specific application,
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a proportional approach is usually used in its place. In this paper,
the highest 20% of the weights were changed to 1 and the rest
were disregarded as 0.

Graph Metrics
Graph theoretical analysis was performed on the extracted
brain graph for each subject. The calculated graph properties
consisted of measures of segregation (Clustering Coefficient,
Transitivity), integration (Characteristic Path Length, Efficiency),
and centrality (Betweenness centrality, within module degree Z-
score, Participation coefficient) of the brain network. Formulas
for each metric are presented in Table A1 (Rubinov and Sporns,
2010). This resulted in a feature space of 817 variables for
each subject. More information on this step is available in the
Supplementary Material.

All steps from Graph extraction to this point were done using
the openly available MATLAB toolbox GraphVar (Kruschwitz
et al., 2015).

Classification, Validation, and Comparison
In this study, we used the python Scikit-learn implementation
of the gaussian SVM as our classifier. Features were selected
using a sequential forward floating algorithm (Pudil et al., 1994).
This was done over 10 successive iterations. In the first iteration,
all features in the feature space were individually used for
classification and the best performing feature was added to a
feature subset while being removed from the feature space. In
each consecutive iteration, individual components of the feature
space are added to feature subset and the best performing feature
in combination with previous results is kept for future use.
This resulted in 10 features being chosen as the best graph
characteristics that distinguish between ASD and HC.

All classification metrics were acquired using a
10-fold stratified cross validation test with the data
folds being the same for all algorithms. To further
validate our results, the confusion matrix of each
model was evaluated to determine model sensitivity and
specificity.

FIGURE 1 | Graphical framework of the experiment. (A) Raw fMRI images of subjects; (B) After preprocessing the brain is divided into 116 regions of interest (ROI);

(C) By averaging the BOLD activity in each ROI, a time-series is extracted representing brain activity in that region; (D) Using different measures of connectivity, a

connectivity matrix is generated from the ROI time-series quantifying the connectivity level between individual ROIs; (E) By treating the ROIs as graph nodes and the

connectivity matrix as graph weights the brain network is expressed in graph form; (F) A threshold is applied to keep only the strongest connections; (G) Graph

theoretical analysis is applied to the resulting graph from part F to obtain a feature vector for each subject; (H) A wrapper method called sequential feature selection is

applied to choose a handful of features that contribute to the highest classification accuracy; (I,J) The resulting feature subset is passed to a linear SVM which trains a

model to distinguish between ASD and HC.
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FIGURE 2 | Comparison of Model Performance; Left Column: Accuracy of the models trained using features extracted from the pipeline specified on the X axis for the

age range specified on the far left (in years). Y axis labels specify the chance level for the classification task. Top preforming model is highlighted in dark blue; Middle

Column: p-values of the Welch’s t-test preformed on the models trained on different pipelines. Statistical significance (p < 0.05) is highlighted in dark blue; Right

Panel: FDR corrected p-values based on the Benjamini, Hochberg method (Benjamini and Hochberg, 1995). The corrected p-values were capped at 1 therefore any

value over that threshold was set to 1.
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We minimized the risk of overfitting by using three limiting
approaches. First, the simplest kernel (linear) was used for the
SVM. Second, only 10 features were used to learn to classify
between 104 subjects. Finally, using 10-fold cross validation
ensured the model is only evaluated on data points that it has
not experienced before.

As cross validation is inevitably dependent on how the data
was randomly separated, we used a 10 × 10 Welch’s t-tests to
compare our models. The null hypothesis for these tests was that
the two models have equal accuracies. To address the issue of
multiple comparisons, we also reported the false discovery rate
(FDR) corrected p-values for these tests.

Figure 1 presents a graphical depiction of the methodology
proposed here.

RESULTS

Performance of the Classifiers
Our models were able to consistently perform better than the
chance level calculated for their respective age ranges. Chance
level was evaluated by assuming the model always chooses the
most populous group. The left panel of Figure 2 compares the
performance of the different pipelines in each age range. The best
preforming model for each age-range is highlighted.

The top preforming pipeline model was generally shown to
have a statistically higher (p < 0.05) mean than most of the other
pipelines. The only exception occurs in the case of the 10–15
age range in which the concatenation pipeline’s accuracy fails
to achieve a statistically significance difference with three other
pipelines: mutual information, covariance, and bend correlation.
The details of this statistical analysis are illustrated on the middle
and right panels of Figure 2.

To further analyze the performance of the best models, we
calculated their respective sensitivity and specificity (Table 2). All
models exhibited a specificity of > = 80%. The 10–15 age range
showed relatively low sensitivity. Specificity shows the percentage
of times that a Negative prediction (in this case HC is correct
while sensitivity shows the percentage of times that a Positive
prediction (ASD) is correct.

Analysis of Selected Features
To further understand the results, we plotted the regions from
which the selected features were derived (Figure 3). The results
for the top-preforming pipeline for each age range will be
presented in the main body of this article. More details about
the performance of all other pipelines for a given age range
is given in the Supplementary Material. The size of the nodes
in Figure 3 correspond to the rank at which that feature was
selected. The abbreviations of the node labels can be found in the
Supplementary Table B. Supplementary Table B also tabulates
the exact features for each age range as well as the p-value
corresponding to the between group difference of that feature.
The top group of measures as well as the top measure based
on repetition is as follows: Measures of segregation, specifically
clustering coefficient for the 5–10 years range. Measures of
centrality for all other age ranges, with the most repeated
measure being betweenness centrality for the 10–15 years range,

TABLE 2 | Classification performance of the best models.

Age range

(years)

Best

pipeline

Accuracy% Specificity% Sensitivity%

5–10 Concatenation 86 91 79

10–15 Concatenation 69 80 55

15–20 Spearman 78 80 76

20–30 Mutual

information

80 87 69

>30 Covariance 95 91 97

eigenvector centrality for the 15–20 years range, within module
degree z-score for the 20–30 years range and betweenness
centrality for the >30 years range.

DISCUSSION

Comparison With Previous Literature
In this study, we examined several different pipelines for ASD
classification. These included 6 different network extraction
techniques over 5 age ranges. Furthermore, we used 10-fold cross
validation to examine the accuracy of the algorithm for each
pipeline which is shown to be better than the leave-one-out cross
validation used in previous studies (Kohavi, 1995). In addition,
10-fold cross validation may be used as a substitute for having a
separate testing set because the model is evaluated on datapoints
it has not seen before. Because of not having the exact models
trained in previous studies, we compare our findings with them
only by using the reported accuracy, specificity, and sensitivity.
All models trained in this study were statistically compared with
each other using a 10 by 10 cross validation t-test.

Previous studies were not able to report high prediction
accuracies for the ABIDE dataset relative to similar studies
on other neurological diseases such as AD. This can be
related to the fact that this dataset consists of recordings
conducted over multiple sites, some with slightly different image
acquisition parameters. Moreover, the whole dataset covers a
wide age range (5–64 years). To minimize the effects of age,
we separated the dataset into 5 age ranges and trained separate
models on each range. To allow for easier reproducibility
and thus more meaningful comparisons, we chose to use a
publicly available preprocessed version of the data through
the Preprocessed Connectomes Project (http://preprocessed-
connectomes-project.org/).

Table 3 shows a detailed comparison with previously reported
ASD classification models. It is necessary to state all of the
mentioned papers other than Chen et al. (2015) used the
complete dataset to train their model while in this study separate
models where trained for different age ranges. The cross-
validation results in this study provide an estimate of how the
models would perform if data from their respective age ranges
were fed to them. Therefore, it can be hypothesized that the
performance over the entire dataset would not be worse than
the worst preforming age-range if, based on the subject’s age, the
correct model is used for a previously unseen dataset. Additional
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FIGURE 3 | Visualization of the top 10 selected features for each Age range. Two age-ranges show only 9 features. This is because in the 5–10 range PreCG.L was

selected two times. In the >30 group the last selected feature was the global Characteristic path length. The full region names along with the abbreviations can be

found in Supplementary Table B.
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TABLE 3 | Previous model performance on the ABIDE dataset.

Accuracy

%

Sensitivity

%

Specificity

%

Algorithm References

69 72 67 Linear SVM Plitt et al.,

2015

66 60 72 Gaussian SVM Chen et al.,

2015

90.8 89 93 Random forest Chen et al.,

2015

67 NA NA SVC Abraham

et al., 2017

70 74 63 Deep neural network Heinsfeld

et al., 2018

data is needed to confirm this hypothesis. Our worst preforming
model, the model for the 10–15 age range, outperformed almost
all the previous models in specificity while having an accuracy
comparable to that of the other SVMmodels. All other age ranges
showed higher accuracy than all previousmodels except the Chen
et al. random forest. This could be attributed to the fact that the
performance metrics for the random forest model were assessed
using a different scheme called out of bag prediction errors as
opposed to the cross validation used in our models and all other
previously reported studies mentioned here.

Comparison Between Pipelines
While in all age ranges except the 10–15 range, the top model
showed a statistical significance in performance than most of the
other models, our results do not reach a consensus about what
network creation pipeline preforms best in all cases. However, the
bend correlation pipeline’s model was the second best model over
all age range but the >30 range. Furthermore, it did not show
any statistically significant difference in model performance from
the top preforming model for the 10–15, 15–20, and 20–30 age
ranges. Based on this, we would suggest bend correlation to be the
first network construction pipeline for graph theoretical analysis
of the ABIDE dataset if computational time is limited.

A possible explanation for the relatively lower performance of
the 10–15 range compared to other age ranges is that the larger
number of subjects in this group translated into higher between
site variability in the data. Therefore, even though our model
achieved higher specificity than most previous studies, further
steps are needed to address the inherent heterogeneity of the
ABIDE dataset.

Analysis of the Selected Features
Centrality measures were shown to be most operative in
providing features for the classification tasks in the top 10
selected features. This also held true when selecting the top
5 features. Centrality measures have been shown to undergo
changes in ASD. A previous study on the structural network
of the brain found that autism is accompanied by centrality
alterations in regions relevant for social and sensorimotor
processing (Balardin et al., 2015). Another study found changes
in hubness of ASD brain networks using resting-state fMRI

(Itahashi et al., 2014). Our results suggest that the changes in
centrality measures play a key role in being able to differentiate
between ASD and HC. The only exception was observed for the
5–10 years age range where clustering coefficient, a measure of
segregation, was chosen more times than the rest. This also held
true when only looking at the top 5 features. This suggests that
at a young age, there may not be many changes to the hubs
of the brain network but the organization of the network into
sub-networks is altered.

LIMITATIONS

There are several limitations in the current study. First, ABIDE
I data was used in different age ranges to investigate the
prediction accuracy of our pipelines while minimizing the effects
of aging on the resting-state networks. Furthermore, although
to the best of our knowledge ABIDE is the most comprehensive
database for ASD functional imaging, further analyses are needed
to confirm its representability of the whole ASD population.
Second, we relied on a single preprocessing pipeline for the sake
of easier comparison between our work and previous studies. It
is entirely possible that another preprocessing pipeline is better
suited to this graph theoretical approach. Future studies will
need to investigate this limitation. Additionally, the comparison
between our models and previous studies only used three metrics
(accuracy, sensitivity, and specificity). A statistical test may
be needed to further analyze the significance of our findings.
However, this is not possible without access to the exact cross
validation folds or out of bag sample errors of those studies.
Nevertheless, due to the observed improvement, we suspect that
our algorithm has reached a statistically significant improvement
over previous results.

Another shortcoming that is not limited to this study is related
to how the classification task is formulated. To the best of our
knowledge, all research in this field including the present study
have focused on distinguishing HCs from ASDs. However, as the
name suggests, ASD is a spectrum and individual cases can vary
greatly in how the disorder affects them. To address this issue,
databases such as ABIDE will play a vital role. Extensive detailed
clinical analysis data will be needed to correctly approximate the
position of an individual on the spectrum.

Finally, variability present in the ABIDE dataset, such as
different imaging parameters and devices, due to it being a multi-
site initiative may lead to uncontrolled variations in the data
or model being biased toward better represented sites. While
the normalization steps in the preprocessing help reduce the
variations, further investigations will be needed to confirm if
they have been eliminated to a sufficient degree. Our results
show better overall performance over previous investigations
which suggests these limitations may have been addressed in a
satisfactory manner.

CONCLUSION

In this study we utilized graph theory and ML to propose a
novel pipeline for automatic diagnosis of ASDwhich significantly
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improved performance over previously proposed models. The
relative strength of our method suggests graph theoretical
analysis paired with the right preprocessing pipeline can nullify
the effects of multi-site and multi-device image acquisition to
a good degree and is more robust than previous methods.
Our pipeline automatically selected 10 biomarkers for each
age range being investigated. Measures of centrality were
shown to be most operative in distinguishing between ASD
and HC.
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Mild cognitive impairment (MCI) is the prodromal stage of Alzheimer’s disease (AD).
Identifying MCI subjects who are at high risk of converting to AD is crucial for effective
treatments. In this study, a deep learning approach based on convolutional neural
networks (CNN), is designed to accurately predict MCI-to-AD conversion with magnetic
resonance imaging (MRI) data. First, MRI images are prepared with age-correction and
other processing. Second, local patches, which are assembled into 2.5 dimensions,
are extracted from these images. Then, the patches from AD and normal controls (NC)
are used to train a CNN to identify deep learning features of MCI subjects. After that,
structural brain image features are mined with FreeSurfer to assist CNN. Finally, both
types of features are fed into an extreme learning machine classifier to predict the AD
conversion. The proposed approach is validated on the standardized MRI datasets from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. This approach achieves
an accuracy of 79.9% and an area under the receiver operating characteristic curve
(AUC) of 86.1% in leave-one-out cross validations. Compared with other state-of-the-art
methods, the proposed one outperforms others with higher accuracy and AUC, while
keeping a good balance between the sensitivity and specificity. Results demonstrate
great potentials of the proposed CNN-based approach for the prediction of MCI-to-AD
conversion with solely MRI data. Age correction and assisted structural brain image
features can boost the prediction performance of CNN.

Keywords: Alzheimer’s disease, deep learning, convolutional neural networks, mild cognitive impairment,
magnetic resonance imaging

Frontiers in Neuroscience | www.frontiersin.org 1 November 2018 | Volume 12 | Article 777210

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00777
http://creativecommons.org/licenses/by/4.0/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.3389/fnins.2018.00777
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00777&domain=pdf&date_stamp=2018-11-05
https://www.frontiersin.org/articles/10.3389/fnins.2018.00777/full
http://loop.frontiersin.org/people/583479/overview
http://loop.frontiersin.org/people/556226/overview
http://loop.frontiersin.org/people/145114/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00777 November 5, 2018 Time: 14:30 # 2

Lin et al. Prediction of AD Using CNN

INTRODUCTION

Alzheimer’s disease (AD) is the cause of over 60% of dementia
cases (Burns and Iliffe, 2009), in which patients usually
have a progressive loss of memory, language disorders and
disorientation. The disease would ultimate lead to the death
of patients. Until now, the cause of AD is still unknown, and
no effective drugs or treatments have been reported to stop or
reverse AD progression. Early diagnosis of AD is essential for
making treatment plans to slow down the progress to AD. Mild
cognitive impairment (MCI) is known as the transitional stage
between normal cognition and dementia (Markesbery, 2010),
about 10–15% individuals with MCI progress to AD per year
(Grundman et al., 2004). It was reported that MCI and AD were
accompanied by losing gray matter in brain (Karas et al., 2004),
thus neuropathology changes could be found several years before
AD was diagnosed. Many previous studies used neuroimaging
biomarkers to classify AD patients at different disease stages or to
predict the MCI-to-AD conversion (Cuingnet et al., 2011; Zhang
et al., 2011; Tong et al., 2013, 2017; Guerrero et al., 2014; Suk et al.,
2014; Cheng et al., 2015; Eskildsen et al., 2015; Li et al., 2015;
Liu et al., 2015; Moradi et al., 2015). In these studies, structural
magnetic resonance imaging (MRI) is one of the most extensively
utilized imaging modality due to non-invasion, high resolution
and moderate cost.

To predict MCI-to-AD conversion, we separate MCI patients
into two groups by the criteria that whether they convert to
AD within 3 years or not (Moradi et al., 2015; Tong et al.,
2017). These two groups are referred to as MCI converters and
MCI non-converters. The converters generally have more severe
deterioration of neuropathology than that of non-converters.
The pathological changes between converters and non-converters
are similar to those between AD and NC, but much milder.
Therefore, it much more difficult to classify converters/non-
converters than AD/NC. This prediction with MRI is challenging
because the pathological changes related to AD progression
between MCI non-converter and MCI converter are subtle and
inter-subject variable. For example, ten MRI-based methods for
predicting MCI-to-AD conversion and six of them perform
no better than random classifier (Cuingnet et al., 2011). To
reduce the interference of inter-subject variability, MRI images
are usually spatially registered to a common space (Coupe et al.,
2012; Young et al., 2013; Moradi et al., 2015; Tong et al., 2017).
However, the registration might change the AD related pathology
and loss some useful information. The accuracy of prediction
is also influenced by the normal aging brain atrophy, with the
removal of age-related effect, the performance of classification
was improved (Dukart et al., 2011; Moradi et al., 2015; Tong et al.,
2017).

Machine learning algorithms perform well in computer-aided
predictions of MCI-to-AD conversion (Dukart et al., 2011; Coupe
et al., 2012; Wee et al., 2013; Young et al., 2013; Moradi
et al., 2015; Beheshti et al., 2017; Cao et al., 2017; Tong et al.,
2017). In recent years, deep learning, as a promising machine
learning methodology, has made a big leap in identifying and
classifying patterns of images (Li et al., 2015; Zeng et al., 2016,
2018). As the most widely used architecture of deep learning,

convolutional neural networks (CNN) has attracted a lot of
attention due to its great success in image classification and
analysis (Gulshan et al., 2016; Nie et al., 2016; Shin et al., 2016;
Rajkomar et al., 2017; Du et al., 2018). The strong ability of CNN
motivates us to develop a CNN-based prediction method of AD
conversion.

In this work, we propose a CNN-based prediction approach
of AD conversion using MRI images. A CNN-based architecture
is built to extract high level features of registered and age-
corrected hippocampus images for classification. To further
improve the prediction, more morphological information is
added by including FreeSurfer-based features (FreeSurfer,
RRID:SCR_001847) (Fischl and Dale, 2000; Fischl et al.,
2004; Desikan et al., 2006; Han et al., 2006). Both CNN
and FreeSurfer features are fed into an extreme learning
machine as classifier, which finally makes the decision of
MCI-to-AD. Our main contributions to boost the prediction
performance include: (1) Multiple 2.5D patches are extracted
for data augmentation in CNN; (2) both AD and NC are
used to train the CNN, digging out important MCI features;
(3) CNN-based features and FreeSurfer-based features are
combined to provide complementary information to improve
prediction. The performance of the proposed approach was
validated on the standardized MRI datasets from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI – Alzheimer’s Disease
Neuroimaging Initiative, RRID:SCR_003007) (Wyman et al.,
2013) and compared with other state-of-the-art methods
(Moradi et al., 2015; Tong et al., 2017) on the same
datasets.

MATERIALS AND METHODS

The proposed framework is illustrated in Figure 1. The MRI
data were processed through two paths, which extract the CNN-
based and FreeSurfer-based image features, respectively. In the
left path, CNN is trained on the AD/NC image patches and then
is employed to extract CNN-based features on MCI images. In the
right path, FreeSurfer-based features which were calculated with
FreeSurfer software. These features, which were further mined
with dimension reduction and sparse feature selection via PCA
and Lasso, respectively, were concatenated as a features vector
and fed to extreme learning machine as classifier. Finally, to
evaluate the performance of the proposed approach, the leave-
one-out cross validation is then used.

ADNI Data
Data used in this work were downloaded from the ADNI
database. The ADNI is an ongoing, longitudinal study designed
to develop clinical, imaging, genetic, and biochemical biomarkers
for the early detection and tracking of AD. The ADNI study
began in 2004 and its first 6-year study is called ADNI1. Standard
analysis sets of MRI data from ADNI1 were used in this work,
including 188 AD, 229 NC, and 401 MCI subjects (Wyman
et al., 2013). These MCI subjects were grouped as: (1) MCI
converters who were diagnosed as MCI at first visit, but converted
to AD during the longitudinal visits within 3 years (n = 169);
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FIGURE 1 | Framework of proposed approach. The dashed arrow indicates the CNN was trained with 2.5D patches of NC and AD subjects. The dashed box
indicates Leave-one-out cross validation was performed by repeat LASSO and extreme learning machine 308 times, in each time one different MCI subject was
leaved for test, and the other subjects with their labels were used to train LASSO and extreme learning machine.

(2) MCI non-converters who did not convert to AD within
3 years (n = 139). The subjects who were diagnosed as MCI
at least twice, but reverse to NC at last, are also considered as
MCI non-converters; (3) Unknown MCI subjects who missed
some diagnosis which made the last state of these subjects was
unknown (n = 93). The demographic information of the dataset
are presented in Table 1. The age ranges of different groups are
similar. The proportions of male and female are close in AD/NC
groups while proportions of male are higher than female in MCI
groups.

Image Preprocessing
MRI images were preprocessed following steps in Tong et al.
(2017). All images were first skull-stripped according to Leung
et al. (2011), and then aligned to the MNI151 template using
a B-spline free-form deformation registration (Rueckert et al.,
1999). In the implementation, we follow the Tong’s way to
register images (Tong et al., 2017), showing that the effect of
deformable registration with a control point spacing between
10 and 5 mm have the best performance in classifying AD/NC
and converters/non-converters. After that, image intensities of

TABLE 1 | The demographic information of the dataset used in this work.

AD NC MCIc MCInc MCIun

Subjects’ number 188 229 169 139 93

Age range 55–91 60–90 55–88 55–88 55–89

Males/Females 99/89 119/110 102/67 96/43 60/33

MCIc means MCI converters. MCInc means MCI non-converters, MCIun means MCI unknown.
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the subjects were normalized by deform the histogram of each
subject’s image to match the histogram of the MNI151 template
(Nyul and Udupa, 1999). Finally, all MRI images were in the same
template space and had the same intensity range.

Age Correction
Normal aging has atrophy effects similar with AD (Giorgio et al.,
2010). To reduce the confounding effect of age-related atrophy,
age correction is necessary to remove age-related effects, which
is estimated by fitting a pixel regression model (Dukart et al.,
2011) to the subjects’ ages. We assume there are N healthy
subjects and M voxels in each preprocessed MRI image, and
denote ym∈R1 × N as the vector of the intensity values of N
healthy subjects at mth voxel, and α∈R1 × N as the vector of the
ages of N healthy subjects. The age-related effect is estimated by
fitting linear regression model ym = ωmα+ bm at mth voxel. For
nth subject, the new intensity of mth voxel can be calculated as
y′mn = ωm(C−αn) + ymn, where ymn is original intensity, αn is
age of nth subject. In this study, C is 75, which is the mean age of
all subjects.

CNN-Based Features
A CNN was adopted to extract features from MRI Images of
NC and AD subjects. Then, the trained CNN was used to
extract image features of MCI subjects. To explore the multiple
plane images in MRI, a 2.5D patch was formed by extracting
three 32 × 32 patches from transverse, coronal, and sagittal
plane centered at a same point (Shin et al., 2016). Then, three
patches were combined into a 2D RBG patch. Figure 2 shows
an example of constructing 2.5D patch. For a given voxel point,
three patches of MRI are extracted from three planes and then
concatenated into a three channel cube, following the same way
of composing a colorful patch with red/green/blue channels that
are commonly used in computer vision. This process allows
us to mine fruitful information form 3D views of MRI by
feeding the 2.5D patch into the typical color image processing
CNN network. Data augmentation (Shin et al., 2016) was used
to increase training samples, by extracting multiple patches at
different locations from MRI images. The choice of locations has
three constraints, (1) The patches must be originated in either
left or right hippocampus region which have high correlation
with AD (van de Pol et al., 2006); (2) There must be at least
two voxels distance between each location; (3) All locations
were random chosen. With these constraints, 151 patches were
extracted from each image and the sampling positions were fixed
during experiments. The number of samples was expanded by a
factor of 151, which could reduce over-fitting.

Typically extracted patches are presented in Figure 3.
Figure 3A shows four 2.5D patches obtained from one
subject. These patches are extracted from different positions
and show different portions of hippocampus, which means
these patches contain different information of morphology of
hippocampus. When trained with these patches that spread
in whole hippocampus, CNN learns the morphology of whole
hippocampus. Figure 3B shows patches extracted in same
position from four subjects of different groups, demonstrating
that the AD subject has the most severe atrophy of hippocampus

and expansion of ventricle. This implies that obvious differences
are existed between AD and NC. However, the MCI subjects have
the medium atrophy of hippocampus, and non-converter is more
like NC rather than AD, and converter is more similar to AD. The
difference between converter and non-converter is smaller than
the difference between AD and NC.

The architecture of the CNN is summarized in Figure 4. The
network has an input of 32 × 32 RGB patch. There are three
convolutional layers and three pooling layers. The kernel size of
convolutional layer is 5× 5 with 2 pixels padding, and the kernel
size and stride of pooling layers is 3 × 3 and 2. The input patch
has a size of 32× 32 and 3 RBG channels. The first convolutional
layer generates 32 feature maps with a size of 32 × 32. After max
pooling, these 32 feature maps were down-sampled into 16× 16.
The next two convolutional layers and average pooling layers
finally generate 64 features maps with a size of 4 × 4. These
features are concatenated as a feature vector, and then fed to full
connection layer and softmax layer for classification. There are
also rectified linear units layers and local response normalization
layers in CNN, but are not shown for simplicity.

The CNN was trained with patches from NC and AD subjects,
and there are 62967 (subject number 417 times 151) patches
which are randomly split into 417 mini-batches. Mini-batch
stochastic gradient descent was used to update the coefficients
of CNN. In each step, a mini-batch was fed into CNN, and then
error back propagation algorithm was carried out to computer
gradient gj of jth coefficient θj, and update the coefficient as
θ′j = θj + Oθn j, in which Oθn j = mOθn−1 j− η(gj + λθj) is the
increment of θj at nth step. The momentum m, learning rate η

and weight decay λ are set as 0.9, 0.001, and 0.0001, respectively,
in this work. It is called one epoch with all mini-batches used
to train CNN once. The CNN was trained with 30 epochs. Once
the network was trained, CNN will be used to extract high level
features of MCI subjects’ images. The 1024 features output by the
last pooling layer were taken as CNN-based features. Thus, CNN
generates 154624 (1024× 151) features for each image.

FreeSurfer-Based Features
The FreeSurfer (version 4.3) (Fischl and Dale, 2000; Fischl et al.,
2004; Desikan et al., 2006; Han et al., 2006) was used to mine
more morphological information of MRI images, such as cortical
volume, surface area, cortical thickness average, and standard
deviation of thickness in each region of interest. These features
can be downloaded directly from ADNI website, and 325 features
are used to predict MCI-to-AD conversion after age correction.
The age correction for FreeSurfer-based features is similar as
described above, but on these 325 features instead of on intensity
values of MRI images.

Features Selection
Redundant features maybe exist among CNN-based features,
thus we introduced the principle component analysis (PCA)
(Avci and Turkoglu, 2009; Babaoğlu et al., 2010; Wu et al., 2013)
and least absolute shrinkage and selection operator (LASSO)
(Kukreja et al., 2006; Usai et al., 2009; Yamada et al., 2014) to
reduce the final number of features.
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FIGURE 2 | The demonstration of 2.5D patch extraction from hippocampus region. (A–C) 2D patches extracted from transverse (red box), coronal (green box), and
sagittal (blue box) plane; (D) The 2.5D patch with three patches at their spatial locations, red dot is the center of 2.5D patch; (E) Three patches are combined into
RGB patch as red (red box patch), green (green box patch), and blue (blue box patch) channels.

FIGURE 3 | (A) Four random chosen 2.5D patches of one subject (who is normal control, female and 76.3 years old), indicating that these patches contain different
information of hippocampus; (B) The comparison of correspond 2.5D patches of four subjects from four groups, the different level of hippocampus atrophy can be
found.
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FIGURE 4 | The overall architecture of the CNN used in this work.

PCA is an unsupervised learning method that uses an
orthogonal transformation to convert a set of samples consisting
of possibly correlated features into samples consisting of linearly
uncorrelated new features. It has been extensively used in data
analysis (Avci and Turkoglu, 2009; Babaoğlu et al., 2010; Wu et al.,
2013). In this work, PCA is adopted to reduce the dimensions
of features. Parameters of PCA are: (1) For CNN-based features,
there are 1024 features for each patch. After PCA, PC features
were left for each patch, since there are 151 patches for one
subject, there are still PC × 151 features for each subject; (2)
For FreeSurfer-based features, PF features were left for each MCI
subject.

LASSO is a supervised learning method that uses L1 norm in
sparse regression (Kukreja et al., 2006; Usai et al., 2009; Yamada
et al., 2014) as follows:

min
α

0.5||y −Dα||22 + λ||α||1 (1)

Where y∈R1 × N is the vector consisting of N labels of training
samples, D∈RN × M is the feature matrix of N training samples
consisting of M features, λ is the penalty coefficient that was set
to 0.1, and α∈R1 × M is the target sparse coefficients and can
be used for selecting features with large coefficients. The LASSO
was solved with least angle regression (Efron et al., 2004), and
L features are selected after L iterations. Parameters of LASSO
are: (1) For CNN-based features, LC features were selected from
PC × 151 features for each MCI subject; (2) For FreeSurfer-based
features, LF features were selected from PF features. After PCA
and LASSO, there were LC + LF features.

Figure 5 shows more details of CNN-based features. 151
patches are extracted from all MRI images, including AD,
NC, and MCI. First, the CNN is trained with patches of all
AD and NC subjects. After that, the trained CNN is used to
output 1024 features from each MCI patch. The 1024 features

of each patch are reduced to PC features by PCA, and then
features of all 151 patches from one subject are concatenated,
and Lasso is used to select LC most informative features from
them.

Extreme Learning Machine
The extreme learning machine, a feed-forward neural network
with a single layer of hidden nodes, learns much faster than
common networks trained with back propagation algorithm
(Huang et al., 2012; Zeng et al., 2017). A special extreme learning
machine, that adopts kernel (Huang et al., 2012) to calculates the
outputs as formula (2) and avoids the random generation of input
weight matrix, is chosen to classify converters/non-converters
with both CNN-based features and FreeSurfer-based features. In
formula (2), the � is a matrix with elements Ωi,j = K(xi, xj),
where K(a, b) is a radial basis function kernel in this study,
[x1,. . ., xN ] are N training samples, y is the label vector of training
samples, and x is testing sample. C is a regularization coefficient
and was set to 1 in this study.

f (x) =

 K (x, x1)
...

K (x, xN)


T

(�+ 1/C)T y (2)

Implementation
In our implementation, CNN was accomplished with Caffe1,
LASSO was carried out with SPAMS2, and extreme learning
machine was performed with shared online code3. The
hippocampus segmentation was implemented with MALPEM

1http://caffe.berkeleyvision.org/
2http://spams-devel.gforge.inria.fr/
3http://www.ntu.edu.sg/home/egbhuang/
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FIGURE 5 | The workflow of extracting CNN-based features. The CNN was trained with all AD/NC patches, and used to extract deep features from all 151 patches
of MCI subject. The feature number of each patch is reduced to PC (PC = 29) from 1024 by PCA. Finally, Lasso selects LC (LC = 35) features from PC × 151 features
for each MCI subject.

4(Ledig et al., 2015) for all MRI images. Then all hippocampus
masks were registered as corresponding MRI images, and then
overlapped to create a mask containing hippocampus regions.
All image features were normalized to have zero mean and
unit variance before training or selection. To evaluate the
performance, Leave-one-out cross validation was used as (Coupé
et al., 2012; Ye et al., 2012; Zhang et al., 2012).

RESULTS

Validation of the Robustness of 2.5D
CNN
To validate the robustness of the CNN, several experiments
have been performed with the CNN. In experiments, the binary
decisions of CNN for 151 patches were united to make final
diagnosis of the testing subject. We compared the performance
in four different conditions: (1) The CNN was trained with
AD/NC patches and used to classify AD/NC subjects; (2) The
CNN was trained with converters/non-converters patches and
used to classify converters/non-converters; (3) The CNN was

4http://www.christianledig.com/

trained with AD/NC patches and used to classify converters/non-
converters; (4) The condition is similar with (3), but with
different sampling patches in each validation run.

The results are shown in Table 2. The CNN has a poor
accuracy of 68.49% in classifying converters/non-converters
when trained with converters/non-converters patches, but CNN
has obtained a much higher accuracy of 73.04% when trained
with AD/NC patches. This means that the CNN learned
more useful information from AD/NC data than that from
converters/non-converters data. And the prediction performance
of CNN is close when different sampling patches are used.

Effect of Combining Two Types of
Features
In this section, we present the performance of CNN-based
features, FreeSurfer-based features, and their combinations. The
PC, PF , LC, and LF parameters were set to 29, 150, 35, and 40,
respectively, which were optimized in experiments. Finally, 75
features were selected and fed to the extreme learning machine.

Performance was evaluated by calculating accuracy (the
number of correctly classified subjects divided by the total
number of subjects), sensitivity (the number of correctly
classified MCI converters divided by the total number of
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TABLE 2 | The performance of the 2.5D CNN.

Classifying: AD/NC
Trained with: AD/NC

Classifying: MCIc/MCInc
Trained with: MCIc/MCInc

Classifying: MCIc/MCInc
Trained with: AD/NC

Different patch
Sampling

Accuracy 88.79% 68.68% 73.04% 72.75%

Standard deviation 0.61% 1.63% 1.31% 1.20%

Confidence interval [0.8862, 0.8897] [0.6821, 0.6914] [0.7265, 0.7343] [0.7252, 0.7299]

MCIc means MCI converters. MCInc means MCI non-converters. The results were obtained with 10-fold cross validations, and averaged over 50 runs.

TABLE 3 | The performance of different features used, and the performance without age correction.

Method Accuracy Sensitivity Specificity AUC

Proposed method (both features) 79.9% 84% 74.8% 86.1%

Only CNN-based features 76.9% 81.7% 71.2% 82.9%

Only FreeSurfer-based features 76.9% 82.2% 70.5% 82.8%

Without age correction 75.3% 79.9% 69.8% 82.6%

Bold values indicate the best performance in each column.

MCI converters), specificity (the number of correctly classified
MCI non-converters divided by the total number of MCI
non-converters), and AUC (area under the receiver operating
characteristic curve). The performances of the proposed method
and the approach with only one type of features are summarized
in Table 3. These results indicates that the approaches with
only CNN-based features or FreeSurfer-based features have
similar performances, and the proposed method combining both
features achieved best accuracy, sensitivity, specificity and AUC.
Thus, it is meaningful to combine two features in the prediction
of MCI-to-AD conversion. The AUC of the proposed method
reached 86.1%, indicating the promising performance of this
method. The receiver operating characteristic (ROC) curves of
these approaches are shown in Figure 6.

Impact of Age Correction
We investigated the impact of age correction on the prediction
of conversion here. The prediction accuracy in Table 3 and
the ROC curves in Figure 6 implied that age correction can
significantly improve the accuracy and AUC, Thus, age correction
is an important step in the proposed method.

Comparisons to Other Methods
In this section, we first compared the extreme learning
machine with support vector machine and random forest. The
performances of three classifiers are shown in Table 4, indicating
that extreme learning machine achieves the best accuracy and
AUC among three classifiers.

Then we compared the proposed method with other state-
of-the-art methods that use the same data (Moradi et al., 2015;
Tong et al., 2017), which consists of 100 MCI non-converters
and 164 MCI converters. In both methods, MRI images were
first preprocessed and registered, but in different ways. After that,
features selection was performed to select the most informative
voxels among all MRI voxels. Moradi used regularized logistic
regression algorithm to select a subset of MRI voxels, and
Tong used elastic net algorithm instead. Both methods trained
feature selection algorithms with AD/NC data to learn the most

discriminative voxels and then used to selected voxels from MCI
data. Finally, Moradi used low density separation to calculate
MRI biomarkers and to predict MCI converters/non-converters.
Tong used elastic net regression to calculate grading biomarkers
from MCI features, and SVM was utilized to classify MCI
converters/non-converters with grading biomarker.

For fair comparisons, both 10-fold cross validation and
leave-one-out cross validation were performed on the proposed
method and method of Tong et al. (2017) with only MRI data was
used. Parameters of the compared approaches were optimized
to achieve best performance. Table 5 shows the performances of
three methods in 10-fold cross validation and Table 6 summarizes
the performances in leave-one-out cross validations. These two
tables demonstrate that the proposed method achieves the best
accuracy and AUC among three methods, which means that the
proposed method is more accurate in predicting MCI-to-AD
conversion than other methods. The sensitivity of the proposed
method is a little lower than the method of Moradi et al.
(2015) but much higher than the method of Tong et al. (2017),
and the specificity of the proposed method is between other
two methods. Higher sensitivity means lower rate of missed
diagnosis of converters, and higher specificity means lower
rate of misdiagnosing non-converters as converters. Overall, the
proposed method has a good balance between the sensitivity and
specificity.

DISCUSSION

The CNN has a better performance when trained with AD/NC
patches rather than MCI patches, we think the reason is that
the pathological changes between MCI converters and non-
converters are slighter than those between AD and CN. Thus,
it is more difficult for CNN to learn useful information directly
from MCI data about AD-related pathological changes than from
AD/NC data. The pathological changes are also hampered by
inter-subject variations for MCI data. Inspired by the work in
Moradi et al. (2015) and Tong et al. (2017) which use information
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FIGURE 6 | The ROC curves of classifying converters/non-converters when different features used or without age correction.

TABLE 4 | Comparison of extreme learning machine with other two classifiers.

Method Accuracy Sensitivity Specificity AUC

SVM 79.87% 83.43% 75.54% 83.85%

Random forest 75.0% 82.84% 65.47% 81.99%

Extreme learning machine 79.87% 84.02% 74.82% 86.14%

Implementation of SVM was performed using third party library LIBSVM (https://www.csie.ntu.edu.tw/~cjlin/libsvm/), and the random forest was utilized with the third
party library (http://code.google.com/p/randomforest-matlab). Both classifiers used the default settings.

TABLE 5 | Comparison with others methods on the same dataset in 10-fold cross validation.

Method Accuracy Sensitivity Specificity AUC

MRI biomarker in Moradi et al., 2015 74.7% 88.9% 51.6% 76.6%

Global grading biomarker in Tong et al., 2017 78.9% 76.0% 82.9% 81.3%

Proposed method 79.5% 86.1% 68.8% 83.6%

The performances of MRI biomarker and global grading biomarker are described in Moradi et al. (2015) and (Tong et al., 2017). The results are averages over 100 runs,
and the standard deviation/confidence intervals of accuracy and AUC of the proposed method are 1.19%/[0.7922, 0.7968] and 0.83%/[0.8358, 0.8391]. Bold values
indicate the best performance in each column.

TABLE 6 | Comparison with others methods on the same dataset in leave-one-out cross validation.

Method Accuracy Sensitivity Specificity AUC

MRI biomarker in Moradi et al., 2015 – – – –

Global grading biomarker in Tong et al., 2017 78.8% 76.2% 83% 81.2%

Proposed method 81.4% 89.6% 68% 87.8%

The global grading biomarkers was download from the web described in Tong et al. (2017) and the experiment was performed with same method as in Tong et al. (2017).
Bold values indicate the best performance in each column.
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TABLE 7 | The 15 most informative FreeSurfer-based features for predicting
MCI-to-AD conversion.

Number FreeSurfer-based feature

1 Cortical Thickness Average of Left FrontalPole

2 Volume (Cortical Parcellation) of Left Precentral

3 Volume (Cortical Parcellation) of Right Postcentral

4 Volume (WM Parcellation) of Left AccumbensArea

5 Cortical Thickness Average of Right CaudalMiddleFrontal

6 Cortical Thickness Average of Right FrontalPole

7 Volume (Cortical Parcellation) of Left Bankssts

8 Volume (Cortical Parcellation) of Left PosteriorCingulate

9 Volume (Cortical Parcellation) of Left Insula

10 Cortical Thickness Average of Left SuperiorTemporal

11 Cortical Thickness Standard Deviation of Left PosteriorCingulate

12 Volume (Cortical Parcellation) of Left Precuneus

13 Volume (WM Parcellation) of CorpusCallosumMidPosterior

14 Volume (Cortical Parcellation) of Left Lingual

15 Cortical Thickness Standard Deviation of Right Postcentral

of AD and NC to help classifying MCI, we trained the CNN
with the patches from AD and NC subjects and improved the
performance.

After non-rigid registration, the differences between all
subject’s MRI brain image are mainly in hippocampus (Tong
et al., 2017). So we extracted 2.5D patches only from
hippocampus regions, that makes the information of other
regions lost. For this reason, we included the whole brain
features calculated by FreeSurfer as complementary information.
The accuracy and AUC of classification are increased to 79.9
and 86.1% from 76.9 to 82.9% with the help of FreeSurfer-
based features. To explore which FreeSurfer-based features
contribute mostly when they are used to predict MCI-to-
AD conversion, we used Lasso to select the most informative
features, and the top 15 features are listed in Table 7, in
which the features are almost volume and thickness average of
regions related to AD. The thickness average of frontal pole
is the most discriminative feature. The quantitative features
of hippopotamus are not listed, indicating they contribute less
than these listed features when predicting conversion. The

CNN extract the deep features of hippopotamus morphology,
rather than the quantitative features of hippopotamus, which
are discriminative for AD diagnosis. Therefore, The CNN-based
features and FreeSurfer-based features contain different useful
information for classification of converters/non-converters, and
they are complementary to improve the performance of classifier.

Different from the two methods used in Moradi et al. (2015)
and Tong et al. (2017), which directly used voxels as features,
the proposed method employs CNN to learn the deep features
from the morphology of hippopotamus, and combined CNN-
based features with the globe morphology features that were
computed by FreeSurfer. We believe that the learnt CNN features
might be more meaningful and more discriminative than voxels.
When comparing with these two methods, only MRI data was
used, but the performances of these two methods were improved
when combined MRI data with age and cognitive measures, so
investigating the combination of the propose approach with other
modality data for performance improvement is also one of our
future works.

We have also listed several deep learning-based studies in
recent years for comparison in Table 8. Most of them have
an accuracy of predicting conversion above 70%, especially the
last three approaches (including the proposed one) have the
accuracy above 80%. The best accuracy was achieved by Lu et al.
(2018a), which uses both MRI and PET data. However, when
only MRI data is used, Lu’s method declined the accuracy to
75.44%. Although an accuracy of 82.51% was also obtained with
PET data (Lu et al., 2018b), PET scanning usually suffers from
contrast agents and more expensive cost than the routine MRI.
In summary, our approach achieved the best performance when
only MRI images were used and is expected to be improved by
incorporating other modality data, e.g., PET, in the future.

In this work, the period of predicting conversion was set to
3 years, that separates MCI subjects into MCI non-converters and
MCI converters groups by the criterion who covert to AD within
3 years. But not matter what the period for prediction is, there
is a disadvantage that even the classifier precisely predict a MCI
non-converters who would not convert to AD within a specific
period, but the conversion might still happen half year or even
1 month later. Modeling the progression of AD and predicting the
time of conversion with longitudinal data are more meaningful

TABLE 8 | Results of previous deep learning based approaches for predicting MCI-to-AD conversion.

Study Number of MCIc/MCInc Data Conversion time Accuracy AUC

Li et al., 2015 99/56 MRI + PET 18 months 57.4% –

Singh et al., 2017 158/178 PET – 72.47% –

Ortiz et al., 2016 39/64 MRI + PET 24 months 78% 82%

Suk et al., 2014 76/128 MRI + PET – 75.92% 74.66%

Shi et al., 2018 99/56 MRI + PET 18 months 78.88% 80.1%

Lu et al., 2018a 217/409 MRI + PET 36 months 82.93% –

Lu et al., 2018a 217/409 MRI 36 months 75.44% –

Lu et al., 2018b 112/409 PET – 82.51% –

This study 164/100 MRI 36 months 81.4% 87.8%

MCIc means MCI converters. MCInc means MCI non-converters. Different subjects and modalities of data are used in these approaches. All the criteria are copied from
the original literatures. Bold values indicate the best performance in each column.
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(Guerrero et al., 2016; Xie et al., 2016). Our future work would
investigate the usage of CNN in modeling the progression of AD.

CONCLUSION

In this study, we have developed a framework that only use
MRI data to predict the MCI-to-AD conversion, by applying
CNN and other machine learning algorithms. Results show that
CNN can extract discriminative features of hippocampus for
prediction by learning the morphology changes of hippocampus
between AD and NC. And FreeSurfer provides extra structural
brain image features to improve the prediction performance as
complementary information. Compared with other state-of-the-
art methods, the proposed one outperforms others in higher
accuracy and AUC, while keeping a good balance between the
sensitivity and specificity.
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