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Editorial on the Research Topic

Neutrophil-Mediated Skin Diseases: Immunology and Genetics

Neutrophils are involved in the effector phase of the host defense against micro-organisms
and have a major role in the innate immune response but they also act in the modulation
of the adaptive immunity as well as in orchestrating the response of the immune system to
other triggers such as severe injury and trauma (Mortaz et al.). The deregulation of neutrophil
function and their hyperactivity can lead to inflammation and tissue damage as seen in
neutrophilic dermatoses that are a group of diseases due to accumulation of neutrophils in the
skin and less frequently in internal organs (Marzano et al.). The systemic involvement, which
may be sometimes severe, has led to coining the term “neutrophilic diseases.” The prototype
of neutrophilic diseases are pyoderma gangrenosum and Sweet’s syndrome (Marzano et al.;
Heath and Ortega-Loayza) but some authors suggest to include hidradenitis suppurativa as
well (Tricarico et al.; Vossen et al.; Frew), though there is no full agreement on this point;
for all these entities an important autoinflammatory component has been demonstrated in
their pathogenesis. Moreover, the spectrum of neutrophilic diseases is broad; it comprises
truly systemic diseases such as Behçet’s disease (Leccese and Alpsoy), but also psoriasis where
neutrophils play an important role in the pathophysiology (Le et al.; Wannick et al.) or the
inflammatory immunological response of leprosy (Schmitz et al.). The present issue is focused
on the interplay between immunology and genetics in neutrophil-mediated diseases, highlighting
the close links with the group of autoinflammatory diseases. The latter are characterized by
recurrent episodes of sterile inflammation in the affected organs with neutrophils involved as
leading cells, and are due to mutations in genes regulating the innate immunity. The recognition
of several monogenic diseases which can present with neutrophilic skin diseases, such as
CAPS (cryopyrin-associated periodic syndromes), DIRA (deficiency of IL-1 receptor antagonist),
DITRA (deficiency of IL-36 receptor antagonist), and PAPA (pyogenic sterile arthritis, pyoderma
gangrenosum, acne), has led to an improved understanding of the possible mechanisms of
polygenic non-mendelian inherited neutrophilic skin diseases (Marzano et al.; Heath and
Ortega-Loayza; Tricarico et al.; Vossen et al.). An increasing body of evidence supports the
role of pro-inflammatory cytokines like interleukin (IL)-1-beta, IL-17, and tumor necrosis
factor (TNF)-alpha in the pathophysiology of neutrophilic diseases similarly to classic
monogenic autoinflammatory diseases, suggesting common physiopathological mechanisms.
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Moreover, mutations of several genes involved in
autoinflammatory diseases are likely to play a role in the
pathogenesis of sporadic neutrophilic diseases, giving rise to
regarding them as a spectrum of polygenic autoinflammatory
conditions (Marzano et al.; Heath and Ortega-Loayza; Tricarico
et al.; Vossen et al.). Indeed, mutations of PSTPIP1 (proline-
serine-threonine phosphatase interacting protein 1), the
gene involved in PAPA, as well as of a number of other
genes involved in classic autoinflammatory diseases have
been demonstrated in both isolated and syndromic forms of
pyoderma gangrenosum, whose prototype is PASH (pyoderma
gangrenosum, acne, suppurative hidradenitis), as well as in
neutrophilic diseases in general. At present, classic regimens such
as systemic glucocorticosteroids and immunosuppressants are
the mainstay of treatment while biologic drugs are reserved for
refractory cases. We can thus hope that the precise elucidation
of the immunology and genetics of neutrophil-mediated
diseases will pave the way to pathogenesis-driven

treatments and the development of new drugs specifically
targeting the inflammatory pathways involved in
those entities.
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The immunometabolomic interface 
receptor hydroxycarboxylic acid 
receptor 2 Mediates the Therapeutic 
effects of Dimethyl Fumarate in 
autoantibody-induced skin 
inflammation
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Detlef Zillikens3, Christian D. Sadik3 and Markus Schwaninger1*
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The drug dimethyl fumarate (DMF) is in clinical use for the treatment of psoriasis and mul-
tiple sclerosis. In addition, it has recently been demonstrated to ameliorate skin pathology 
in mouse models of pemphigoid diseases, a group of autoimmune blistering diseases of 
the skin and mucous membranes. However, the mode of action of DMF in inflammatory 
skin diseases has remained elusive. Therefore, we have investigated here the mechanisms 
by which DMF improves skin pathology, using the antibody transfer model of bullous 
pemphigoid-like epidermolysis bullosa acquisita (EBA). Experimental EBA was induced 
by transfer of antibodies against collagen VII that triggered the infiltration of immune cells 
into the skin and led to inflammatory skin lesions. DMF treatment reduced the infiltration 
of neutrophils and monocytes into the skin explaining the improved disease outcome in 
DMF-treated animals. Upon ingestion, DMF is converted to monomethyl fumarate that 
activates the hydroxycarboxylic acid receptor 2 (HCA2). Interestingly, neutrophils and 
monocytes expressed Hca2. To investigate whether the therapeutic effect of DMF in 
EBA is mediated by HCA2, we administered oral DMF to Hca2-deficient mice (Hca2−/−) 
and wild-type littermates (Hca2+/+) and induced EBA. DMF treatment ameliorated skin 
lesions in Hca2+/+ but not in Hca2−/− animals. These findings demonstrate that HCA2 is 
a molecular target of DMF treatment in EBA and suggest that HCA2 activation limits skin 
pathology by inhibiting the infiltration of neutrophils and monocytes into the skin.

Keywords: pemphigoid disease, g protein-coupled receptor, immunomodulatory therapy, autoimmune blistering 
skin disease, neutrophils

inTrODUcTiOn

Dimethyl fumarate (DMF) is an oral, immunomodulatory drug licensed for the treatment of multiple 
sclerosis (MS) and for moderate-to-severe plaque psoriasis. Upon oral ingestion, DMF is converted 
in the gut to monomethyl fumarate (MMF), which is the active principle of oral DMF treatment (1). 
Because of its overall favorable safety profile and its high efficacy, DMF has substantially improved 
the treatment of both MS and plaque psoriasis and has become a mainstay in the treatment of 
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both diseases (2, 3). The mode of action of DMF in both plaque 
psoriasis and MS is only poorly understood.

Diverse biochemical actions of DMF have been uncovered, 
indicating that DMF may exert multiple immunomodulatory 
effects possibly contributing to its therapeutic effects. Among 
others, MMF was demonstrated to covalently modify cysteinyl 
residues of proteins by addition of a 2-monomethyl succinyl 
group, thereby activating the antioxidant nuclear factor eryth-
roid 2-related factor 2 (NRF2) and inhibiting the glycolytic 
enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
(4, 5). In addition, MMF is an agonist of the G protein-coupled 
receptor hydroxycarboxylic acid receptor 2 (HCA2/GPR109A) 
(6). Recently, the agonism of MMF at HCA2 has been revealed 
to contribute to its therapeutic effects in murine experimental 
autoimmune encephalitis (EAE), a model for MS (7). In this 
study, oral DMF treatment reduced the number of infiltrating 
neutrophils in the spinal cord, and MMF impaired the migra-
tion and adhesion of neutrophils in a HCA2-dependent manner, 
indicating that the therapeutic effect of DMF in MS may be 
partially due to an inhibition of neutrophil recruitment into the 
CNS. The latter is a mechanism that has recently been suggested 
to be a key process in EAE and MS (8–11). HCA2 is expressed on 
neutrophils, monocytes, macrophages, and Langerhans cells (12). 
Its natural ligands are butyrate, hydroxy butyrate, and nicotinic 
acid. Thus, it belongs to the group of G protein-coupled receptors 
for short chain fatty acids, which have been uncovered to modify 
the course of disease of several autoimmune, autoinflammatory, 
and allergic diseases (13).

Pemphigoid diseases are a group of autoimmune blistering 
skin diseases caused by autoantibody formation against different 
proteins at the dermal–epidermal junction and the consequent 
recruitment of neutrophils into the skin (14). A recent study 
showed that DMF is beneficial in a preclinical model of bullous 
pemphigoid-like epidermolysis bullosa acquisita (EBA) (15), a 
variant of pemphigoid disease caused by autoantibodies directed 
to type VII collagen in the dermal–epidermal adhesion complex 
(14). This finding has led to a currently running clinical trial 
examining the efficacy of DMF in the most common pemphigoid 
disease bullous pemphigoid. However, the mode of action of 
DMF in pemphigoid diseases has remained elusive. Therefore, we 
have investigated here the contribution of HCA2 activation to the 
therapeutic effects of DMF in the antibody transfer mouse model 
of EBA (“experimental EBA”). Our study confirms the therapeutic 
effect of DMF in that model. Furthermore, we reveal that this 
therapeutic effect largely depends on the activation of HCA2, 
thus, highlighting HCA2 activation as new potential therapeutic 
principle in the treatment of pemphigoid diseases.

resUlTs

DMF reduces the antibody-induced 
inflammatory cell infiltration in 
experimental eBa
To investigate the mode of action of DMF in inflammatory skin 
diseases, we induced EBA by transferring anti-collagen VII 
antibodies to mice. This mouse model reflects specifically the 

effector phase of the autoantibody-mediated skin disease. First, 
we set out to reproduce the protective effect of DMF that had 
been reported previously (15). We administered vehicle or DMF 
(50 mg/kg, twice daily, p.o.) to C57BL/6 mice starting 2 days prior 
to EBA induction. DMF significantly inhibited the precipitation 
of inflammatory skin lesions, thus, reducing disease severity at its 
peak by approximately 60% (Figures 1A,B).

To uncover the mode of action of DMF in EBA, we next char-
acterized its effects on immune cell numbers in the lesional skin, 
peripheral blood, and lymphoid tissues by flow cytometry. In this 
profiling, we distinguished neutrophils as CD45+CD11b+Ly6G+ 
cells and monocyte-derived cells as CD45+CD11b+Ly6C+ cells. 
The latter are a heterogeneous population in skin comprised 
of monocyte-derived Langerhans cells, dendritic cells, and 
macrophages (16, 17). At disease onset (day 5 after EBA induc-
tion), the relative numbers of neutrophils and CD11b+Ly6CLo 
monocyte-derived cells were similar in the skin of vehicle- and 
DMF-treated mice (Figures 1C,D). However, at a more advanced 
disease stage (day 11 after EBA induction), DMF treatment 
diminished the relative number of neutrophils. In addition, the 
lesional skin of DMF-treated animals showed a trend toward 
lower relative numbers of CD11b+Ly6CLo monocyte-derived 
cells at day 11 after the first antibody transfer (Figures 1C,D). In 
blood, neither neutrophils nor CD11b+Ly6CLo monocytes were 
affected by DMF treatment (Figures S1 and S2 in Supplementary 
Material). While DMF treatment had no significant effect on 
relative numbers of CD11b+Ly6CHi monocytes in the peripheral 
blood and of CD11b+Ly6CHi monocyte-derived cells in the skin, 
it reduced CD11b+Ly6CHi monocytes in the spleen and in lymph 
nodes by day 11 after the induction of EBA (Figures  2A,C; 
Figure S2 in Supplementary Material). The relative numbers of 
CD11b+Ly6CLo monocytes and neutrophils were not affected by 
DMF treatment in lymphoid tissue (Figures 2B,D; Figure S1 in 
Supplementary Material).

In contrast to the partial reduction of myeloid cells, the rela-
tive number of CD3-NK1.1+ natural killer cells that could not be 
detected in skin was unchanged upon EBA induction and not 
affected by DMF treatment in blood and lymphoid tissue (Figure 
S3 in Supplementary Material). Regarding the lymphoid cells, the 
relative numbers of CD45+γδTCR+ T cells in the skin was higher 
in DMF-treated than in vehicle-treated animals on day 11 after 
EBA induction (Figure 1E). In secondary lymphoid tissues and 
in blood, DMF treatment had no effect on γδT cells (Figure S4 
in Supplementary Material). Interestingly, the relative number of 
CD3+ γδTCR− αβT cells was increased in DMF-treated mice in 
spleen, but not in lymph nodes, blood, and skin (Figure S5 in 
Supplementary Material). The increased numbers of αβT  cells 
in spleen could represent regulatory T cells that were shown to 
dampen disease progression in EBA (18). Overall, the data indicate 
that DMF modulates the numbers of neutrophils, CD11b+Ly6CLo 
monocyte-derived cells, and γδT cells in the skin.

DMF Treatment increases cD62l levels on 
neutrophils and cD11b+ly6clo Monocytes
Having established that DMF treatment decreases the numbers 
of neutrophils and CD11b+Ly6CLo monocyte-derived cells in 
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FigUre 1 | Dimethyl fumarate (DMF) treatment diminishes disease severity of experimental epidermolysis bullosa acquisita (EBA) by reducing elevated numbers of 
pro-inflammatory cells in the skin. (a) Clinical course of antibody transfer EBA in wild-type mice that were treated with DMF (50 mg/kg, p.o., twice per day) or vehicle. 
Two-way ANOVA, F(1/51) = 8.85, **p < 0.01; ***p < 0.001 (n = 9–14 mice, Bonferroni post hoc test). (B) Disease severity, calculated as area under the curve of the data 
in (a), and clinical presentation. **p < 0.01 (Mann–Whitney test). (c–e) Quantification of immune cell populations in ear skin of naive mice or of animals on day 5 (d5) and 
11 (d11) after first antibody injection. The numbers of cells are shown in percent of viable cells for (c) CD45+CD11b+Ly6CLo monocytes, (D) CD45+CD11b+Ly6G+ 
neutrophils, and (e) CD45+CD3+γδTCR+ γδT cells. Representative dot plots of day 11 are shown. *p < 0.05 (n = 9–14 mice, Mann–Whitney test).
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FigUre 2 | Dimethyl fumarate (DMF) treatment of mice inhibits trafficking of Ly6CHi monocytes to secondary lymphoid tissues. Quantification of CD45+CD11b+Ly6CHi 
and CD45+CD11b+Ly6CLo monocyte populations in spleen (a,B) and lymph nodes (c,D) of naive mice or of animals on day 5 (d5) and 11 (d11) after first antibody 
injection. The animals received either vehicle or DMF (50 mg/kg, p.o., twice per day). The numbers of cells are shown in percent of viable single cells. Representative 
dot plots of day 11 are shown. *p < 0.05 (n = 9–14 mice, Mann–Whitney test).

4

Wannick et al. Role of HCA2 in DMF Treatment

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1890

skin lesions, we addressed whether these effects may be due 
to an inhibition of recruitment into the skin. Non-activated 
neutrophils and monocytes express high levels of CD62L 
(L-selectin) on their surface that is cleaved during activation and 
trans-endothelial migration. Consequently, low levels of CD62L 
are a marker of activated or migrating cells (19). Therefore, we 
determined the CD62L levels on immune cells in the blood on 
day 11 of the EBA model by flow cytometry. Neutrophils and 
CD11b+Ly6CLo monocytes but not CD11b+Ly6CHi monocytes 
(Figure  3) expressed higher levels of CD62L, thus being not 
activated or transmigrating, upon DMF treatment. This 
indicates that DMF lowers the infiltration of neutrophils and 
CD11b+Ly6CLo monocytes and ameliorates EBA pathology 
by impairing the trans-endothelial migration. Furthermore, 
CD62L is essential for migration through high endothelial 
venules of secondary lymphoid organs (20). Indeed, upon DMF 
treatment, neutrophils and monocytes that entered lymphoid 
tissue had similar level of CD62L (Figure S6 in Supplementary 
Material).

experimental eBa increases hca2 
expression in the Blood and the skin
To determine whether DMF may exert its therapeutic effects in 
EBA through activation of HCA2 on infiltrating cell populations, 
we profiled the spatiotemporal dynamics of Hca2 expression in 
the peripheral blood and in the skin in the course of experimental 
EBA. For this purpose, we employed the Hca2mRFP (Gpr109amRFP) 
reporter mouse line, in which the Hca2 locus directs the expres-
sion of the monomeric red fluorescent protein (mRFP) (21), and 
assayed mRFP expression by FACS. This approach revealed that 
significantly more immune cells in blood were mRFP+ after EBA 

induction than in naïve mice (Figure 4A). In parallel, the relative 
numbers of mRFP+ cells increased in the skin upon induction 
of EBA (Figure 4B). Nearly all neutrophils and CD11b+Ly6CLo 
monocytes expressed the receptor, whereas only 5–20% of 
CD11b+Ly6CHi monocytes were mRFP+ (Figure  4C). Among 
T cells, we detected a small subpopulation of γδT cells that were 
mRFP+, thus, providing a possible explanation for their respon-
siveness to DMF treatment. The increase of mRFP+ cells in the 
blood and the skin in response to EBA induction is probably due 
to a rise of mRFP+ neutrophils and CD11b+Ly6CLo monocytes in 
blood (Figure S1 in Supplementary Material) and their infiltra-
tion into skin lesions (22). The percentage of mRFP+ cells among 
immune cells in the blood and the skin remained stable even 
under DMF treatment (Figures 4A,B).

The Therapeutic effect of DMF in eBa is 
hca2-Dependent
After oral ingestion, DMF is converted to MMF that activates 
HCA2 (6). The finding that HCA2 is expressed by neutrophils and 
CD11b+Ly6CLo monocyte-derived cells that respond to oral DMF 
treatment (Figure 1) is compatible with the idea that the receptor 
is required for the therapeutic efficacy of DMF. To directly test this 
concept, we investigated whether the therapeutic effect of DMF 
in EBA depends on HCA2. For this purpose, we induced EBA in 
Hca2−/− mice and analyzed the course of disease in comparison 
to Hca2+/+ littermates. While DMF treatment again reduced skin 
lesions in Hca2+/+ mice throughout the entire period of obser-
vation (area under the curve, AUC) and on individual days, it 
lacked a therapeutic effect in Hca2−/− littermates (Figures 5A–D). 
Statistical analysis revealed that the effect of DMF depended on 
HCA2 expression.
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FigUre 3 | Dimethyl fumarate (DMF) treatment of mice inhibits activation of blood neutrophils and Ly6CLo monocytes. Quantification of CD62L on immune cell 
populations in blood of wild-type mice on day 11 after first antibody injection. CD62L levels are decreased during activation and tissue infiltration. The numbers of 
CD62L+ cells are shown in percent of (a) CD45+CD11b+Ly6G+ neutrophils, (B) CD45+CD11b+Ly6CLo monocytes, and (c) CD45+CD11b+Ly6CHi monocytes. 
Representative histograms show isotype controls (gray) as well as anti-CD62L stained samples of vehicle- (red) and DMF-treated mice (blue). *p < 0.05 (n = 4 mice, 
Mann–Whitney test).
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Interestingly, we also found that the severity of skin inflamma-
tion was significantly reduced in vehicle control-treated Hca2−/− 
mice compared to their vehicle-treated Hca2+/+ littermates when 
compared as AUC of diseases activity (Figure  5C), suggesting 
that long-term HCA2 deficiency could have an additional effect. 
However, at the end of the experiment (day 16 after EBA induc-
tion) the clinical score was similar between the genotypes in 
vehicle-treated groups (Figure 5D).

In fully developed lesions, histopathological inspection 
showed thickening of the inflamed epidermis and split formation 
in all groups (Figure 5E). Moreover, depositions of the injected 

anti-collagen VII-IgG and activated C3 factor of the complement 
cascade could be detected at the dermal–epidermal junction in 
all experimental groups providing evidence for the successful 
EBA induction (Figure 5F; Figure S7 in Supplementary Material).

In addition to activating HCA2, DMF and its metabolite 
MMF stimulate the anti-oxidative transcription factor NRF2 (4). 
In lesional skin of Hca2+/+ and Hca2−/− mice, DMF treatment 
increased the expression of Nqo1, a known target gene of NRF2 
(Figure S8 in Supplementary Material), excluding the possibility 
that the lack of efficacy of DMF in Hca2−/− mice is due to differ-
ences in the tissue distribution of the active agent.
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FigUre 4 | HCA2 expression increases in blood and skin upon induction of experimental epidermolysis bullosa acquisita. Quantification of monomeric red 
fluorescent protein (mRFP)+ cells in blood and ear skin of Hca2mRFP mice. The numbers of RFP+ cells are shown in percent of viable cells for (a) blood and (B) skin of 
naive mice or of animals on day 5 (d5) and 11 (d11) after first antibody injection. Mice were treated with vehicle of dimethyl fumarate (DMF) (50 mg/kg, p.o., twice 
per day). *p < 0.05; **p < 0.01 (n = 5 mice, Kruskal–Wallis Test with Dunn’s post hoc test). (a) Representative dot plots from naïve mice and animals at d5 
(vehicle-treated group) are shown. (c) Quantification of mRFP+ cells in immune cell populations of DMF- and vehicle-treated mice at d11. The numbers of mRFP+ 
cells are expressed as percent of CD45+CD11b+Ly6G+ neutrophils, CD45+CD11b+Ly6CLo monocytes, CD45+CD11b+Ly6CHi monocytes, CD45+CD3+γδTCR+ 
γδT cells, CD45+CD3+γδTCR− αβT cells, and CD45+CD3−NK1.1+ NK cells. Means ± SEM are depicted (n = 5 mice).
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DiscUssiOn

In this study, we have addressed the mode of action of DMF in 
pemphigoid diseases, a group of prototypical organ-specific, 
autoantibody- and neutrophil-driven disorders (14). Using the 
antibody transfer EBA mouse model, a bullous pemphigoid-like 
disease, we first confirmed the therapeutic effect of DMF in experi-
mental pemphigoid diseases and then profiled the therapeutic 
effect of DMF in these diseases on the cellular and molecular level. 
On the cellular level, DMF treatment curbed the infiltration of the 
skin with neutrophils and monocytes. On the molecular level, we 
show that HCA2 is required for the therapeutic effect of DMF in 
experimental EBA. Upon DMF ingestion, HCA2 is activated by 
MMF, the active metabolite of DMF (6, 21). Our data corroborate 
previous reports that neutrophils and CD11b+Ly6cLo monocyte-
derived cells express Hca2 (23, 24). Interestingly, the numbers of 
these two cell populations in EBA skin lesions were reduced by 
DMF treatment. Apparently, this is due to a lower infiltration into 
the diseased skin because DMF treatment reduced the cleavage of 
CD62L that occurs during tissue infiltration of blood neutrophils 
and CD11b+Ly6CLo monocytes. Indeed, by activating HCA2 MMF 
is able to inhibit the adhesion and migration of neutrophils (7).

Could the inhibition of neutrophil and monocyte infiltra-
tion into the diseased skin be the mode of action by which 
DMF ameliorates EBA manifestations? In EBA and pemphi-
goid disease autoantibodies bind to the dermal–epidermal 
junction and trigger a complement activation that leads to the 
infiltration of neutrophils and monocytes (14, 25). Specifically, 
the complement factor C5a stimulates release of leukotriene 
B4 that seems to be a key chemoattractant of neutrophils in 
EBA (22). Ablating neutrophils or reducing leukotriene B4 
synthesis ameliorated skin lesions in EBA. After infiltrating 
the skin, neutrophils release reactive oxygen species and seem 
to degrade the adhesion between dermis and epidermis (15, 
26). Evidence for a functional role of monocyte-derived cells 
in EBA is still more circumstantial. Comparing the effect of 
two antibodies that deplete monocytes and neutrophils (anti-
Ly6C/G) or only neutrophils (anti-Ly6G) suggests that the 
depletion of monocytes has an additional beneficial effect on 
experimental EBA (22, 26). Moreover, monocytes are able to 
execute subepidermal cleft formation in an in vitro model of 
the disease (25, 27). The roles of neutrophils and monocytes 
in pemphigoid diseases suggest that therapeutic principles 
targeting, like DMF, the recruitment of both neutrophils and 
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FigUre 5 | Therapeutic dimethyl fumarate (DMF) effects in experimental epidermolysis bullosa acquisita (EBA) depend on HCA2. (a) Clinical course of antibody 
transfer EBA in Hca2+/+ and Hca2−/− mice that received oral vehicle or DMF treatment (50 mg/kg, p.o., twice per day). (B) Representative clinical presentation in the 
four experimental groups. (c) Clinical severity, calculated as area under the curve of the data in (a). Two-way ANOVA, interaction between genotype and treatment 
F(1/113) = 4.94, *p < 0.05; ***p < 0.001 (n = 28–31 mice, Bonferroni post hoc test) (D) Affected body surface area on day 16. ANOVA, interaction between 
genotype and treatment F(1/113) = 5.75, **p < 0.01 (n = 28–31 mice, Bonferroni post hoc test). (e) Representative pictures of hematoxylin- and eosin-stained skin 
sections. Scale bar = 100 µm. (F) Representative immunohistochemical staining of anti-collagen VII-IgG and C3 depositions at the dermal–epidermal junction. Scale 
bar = 20 µm.
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monocytes into the skin may be superior to strategies solely 
targeting neutrophils.

In our study, the number of γδT cells in skin was significantly 
higher in DMF-treated animals. γδT cells have previously been 
described to promote disease development. Ablating these cells 
with an anti-γδTCR antibody led to a reduced disease severity in 
EBA (28). In contrast, mice treated with DMF showed a milder 
clinical course at the time when γδT cells were elevated in the 
skin. Importantly, γδT cells are a heterogeneous cell population. 
Although some γδT cells produce pro-inflammatory cytokines, 
such as IL-17 and IFN-γ, other subpopulations, including IL-10 
expressing γδT  cells, have been described as regulatory cells 
required for the differentiation of Treg cells (29, 30). HCA2

+ 
γδT cells have not been reported previously. Thus, a future study 
thoroughly characterizing this subpopulation and the effect of 
HCA2 activation in these cells is warranted.

A key finding of our study is that in EBA the therapeutic DMF 
effect depends on HCA2 as has previously been reported in a mouse 
model of MS (7). In addition to neutrophils, monocyte-derived cells, 
γδT cells, and some other cell types in the skin express HCA2 and have 
been shown to be affected by HCA2 activation. Unexpectedly, vehicle-
treated Hca2-deficient mice showed reduced disease activity when the 
AUC was analyzed (Figure 5C). A basal phenotype of Hca2-deficient 
mice has not been described so far in other models of (skin) autoim-
mune diseases. Considering the fact that endogenous compounds, 
such as butyrate, nicotinic acid, and β-hydroxybutyrate, function as 
agonists of HCA2, a basal activation of HCA2 in some body compart-
ments is possible, even in the absence of DMF treatment. Why such a 
basal HCA2 activation should have the opposite effect of activation by 
DMF is unclear so far.

Apart from HCA2 activation, DMF has been shown to act on 
the anti-oxidative NRF2 signaling pathway and on the glycolytic 
enzyme GAPDH (4, 5). By stimulating NRF2, DMF treatment 
induces a range of anti-oxidative and anti-inflammatory genes, 
an effect that is independent of HCA2 (7). Whether HCA2-
independent effects contribute to the therapeutic effects of DMF 
in pemphigoid disease is unclear so far. In any case, identification 
of HCA2 as an essential molecular target for EBA treatment sug-
gests a strategy how to expand the therapeutic armamentarium 
for the treatment of autoimmune skin diseases. As a druggable 
G protein-coupled receptor, HCA2 is activated by numerous 
compounds that await testing in pemphigoid disease and other 
autoimmune disorders (31).

MaTerials anD MeThODs

Mice
Hca2−/− mice were generated on the C57BL/6 background, which 
is highly susceptible to the induction of passive EBA (32, 33). 
Hca2−/− and their respective littermate controls (Hca2+/+) used for 
experiments were 8- to 12-week-old and all experimental groups 
were age- and sex-matched. To control for cage-specific effects, 
Hca2−/− and Hca2+/+ mice and both treatment groups were housed 
together in individually ventilated cages on a 12–12 h light cycle 
with ad libitum access to food and water. All animal experiments 
were performed in accordance with Animal Protection Law 

and were approved by the Animal Research Ethics Board of the 
Ministry of the Environment, Kiel, Germany [Ethics approval V 
242-79898-2015 (110-8-15)].

generation of anti-collagen Vii
To generate antibodies directed to murine collagen VII (“anti-
collagen VII”), New Zealand White rabbits were immunized 
with 200  µg of a protein mixture containing three different 
recombinant proteins (“Col7A, B, and C”) derived from the 
non-collagenous 1 domain of type VII collagen together with 
incomplete Freund’s adjuvant, as described previously (33). IgGs 
were isolated from the serum of immunized rabbits by use of 
protein G, and afterward IgGs affinity purified with his-COL7 
to specifically obtain rabbit anti-collagen VII IgG. To control for 
batch effects, all experiments were conducted using anti-COL7 
IgG from at least two different batches.

induction of autoantibody Transfer 
(“Passive”) eBa
Passive EBA was induced by i.p. injections of 75–100 µg affinity-
purified anti-collagen VII IgG on day 0, 2, and 4 of the experi-
ments. Disease severity was scored in a blinded fashion every 
3 days for 16 days starting on day 4. The percentage of “affected 
skin” of the total body surface area of mice was assessed as 
described previously (18).

DMF Treatment
Dimethyl fumarate (Sigma-Aldrich) was prepared daily and sus-
pended in 0.8% Methocel™/H2O. Mice were treated with vehicle 
or DMF (50 mg/kg body weight) every 12 h by gavage.

Flow cytometry
For the flow cytometric analysis of cells from blood, skin, spleen, 
and inguinal lymph nodes during EBA, mice were deeply anes-
thetized with ketamine (0.1  mg/g)/xylazin (0.015  mg/g) and 
killed. Blood was drawn from the right ventricle of the heart 
before spleen, inguinal lymph nodes, and ear skin were collected 
and stored on ice for further processing.

Cells were isolated from blood using the erythrocyte lysing 
buffer (Qiagen) in compliance with the manufacturer’s instruc-
tions. Spleens and lymph nodes were homogenized using a 70-µm 
cell strainer (BD). Then, spleen cells underwent erythrocyte lys-
ing as described above. Small pieces of ear skin were digested with 
liberase™ TL (1.2  mg/ml, Sigma) diluted in Iscove’s Modified 
Dulbecco’s Medium (Gibco) for 90  min at 37°C with constant 
agitation and subsequently ground on a 70-µm cell strainer. 
Single cells were resuspended in FACS buffer.

Using 2  ×  106 cells per staining, blocking was performed 
with an anti-CD16/32 antibody (1:100, Mouse BD Fc Block). 
Surface antigens were stained with the appropriate antibodies 
(see Table 1) and a viability dye (eBioscience™ Fixable Viability 
Dye eFluor™ 780 or 660). Stained cells were analyzed using a 
FACS LSRII system and FACS DIVA software (BD Biosciences). 
Analysis was performed using FlowJo 10.3 software. For the gat-
ing strategy of viable and CD45 expressing cells, see Figure S9 in 
Supplementary Material.
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TaBle 1 | Antibodies used for the flow cytometric analysis of immune cells.

antibody clone supplier

Brilliant Violet 510™ anti-mouse CD45 30-F11 Biolegend
Brilliant Violet 650™ anti-mouse/human CD11b M1/70 Biolegend
PE/Cy7 anti-mouse Ly-6C HK1.4 Biolegend
PerCP/Cy5.5 anti-mouse Ly-6G 1A8 Biolegend
Brilliant Violet 421™ anti-mouse NK-1.1 PK136 Biolegend
FITC anti-mouse CD3 145-2C11 Biolegend
PerCP/Cy5.5 anti-mouse γδTCR REA633 Miltenyi
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immunohistochemistry
For the detection of skin-bound complement factor C3 and anti-
collagen VII antibodies, cryosections (10  µm) were fixed with 
acetone for 20 min at −20°C, washed and subsequently blocked 
with 1% BSA in PBS for 1 h. The sections were incubated with an 
anti-C3 antibody (1:400, clone 11H9, Hycult Biotech) overnight 
at 4°C. After 3 washing steps with PBS, the appropriate secondary 
antibodies (Alexa 488-labeled anti-rat IgG, 1:400, ThermoFisher; 
Cy3-labeled anti-rabbit IgG, 1:400, Jackson ImmunoResearch) 
and DAPI (2 µg/ml) were added and incubated for 1 h at room 
temperature. Then, the sections were embedded in Mowiol-
DABCO. Images were acquired using a Leica DMI6000B fluores-
cence microscope.

histology
Paraffin-embedded tissue sections (5  µm) were prepared on a 
microtome (Leica), dried overnight at room temperature and 
de-paraffinized using xylene and a descending alcohol dilution. 
The sections were incubated in 1% (v/v) acetic acid for 20 s before 
staining with hematoxylin (modified after Gill, Merck) for 10 min. 
Counter-staining with eosin Y (Merck) was carried out after two 
consecutive washes with warm tap water for 2 min. Then, the sec-
tions were dehydrated using an ascending alcohol series and two 
incubations with xylene before embedding in Eukitt embedding 
medium (Merck).

Quantitative real-Time Pcr
RNA of frozen lesional skin was isolated using the Navy Bullet 
Lysis Kit (Next Advance) in compliance with the manufac-
turer’s instructions. cDNA synthesis was performed as previously 
described (7). The following primer sets were used: Ppib sense 5′-
GGC TCC GTC GTC TTC CTT TT-3′, antisense 5′-ACT CGT 
CCT ACA GAT TCA TCT CC-3′, Nqo1 sense 5′-ATT CTC TGG 

CCG ATT CAG AGT G-3′, and antisense 5′-AGA CGG TTT 
CCA GAC GTT TCT T-3′.

statistical analysis
All data showing time courses of disease development are repre-
sented as the mean ± SEM. Bar graphs are shown as Box-Whisker 
plots according to Tukey. The statistical analysis was carried out 
using Prism (version 5.0, GraphPad Software, San Diego, USA) 
*p < 0.05, **p < 0.01, and ***p < 0.001.
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Neutrophils are main players in the effector phase of the host defense against

micro-organisms and have a major role in the innate immune response. Neutrophils

show phenotypic heterogeneity and functional flexibility, which highlight their importance

in regulation of immune function. However, neutrophils can play a dual role and besides

their antimicrobial function, deregulation of neutrophils and their hyperactivity can lead

to tissue damage in severe inflammation or trauma. Neutrophils also have an important

role in the modulation of the immune system in response to severe injury and trauma.

In this review we will provide an overview of the current understanding of neutrophil

subpopulations and their function during and post-infection and discuss the possible

mechanisms of immune modulation by neutrophils in severe inflammation.

Keywords: neutrophils, infection, CD64, innate immunity, severe inflammation, trauma

INTRODUCTION

Neutrophils are polymorphonuclear and phagocytic leukocytes that comprise the first line of host
immune response against invading pathogens (1). They are also important effector cells during
tissue injury-induced inflammation (2). Neutrophils have a high potency and efficacy to sense and
eradicate microbial infections, and individuals with a neutrophil deficiency (such as neutropenia)
are more susceptible to microbial and fungal infections (3).

Infections and their associated inflammatory mechanisms are accompanied by a rapid influx
of neutrophils from the peripheral blood to the inflammatory site. There they engage and kill
microorganisms and clear infections via a number of different mechanisms including chemotaxis,
phagocytosis, release of reactive oxygen species (ROS), and granular proteins and the production
and liberation of cytokines (4, 5). In addition to these well-established mechanisms, several reports
have demonstrated the importance of neutrophil extracellular traps (NETs) in this process.

In addition to the pivotal role of neutrophils in innate immunity a large body of evidence has
indicated the importance of neutrophils in the modulation of the adaptive immune response (6).
Neutrophils are involved in immune regulation during both the innate and adaptive immune
responses and are, therefore, considered as therapeutic targets in several diseases such as
atherosclerosis (7, 8).
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Although neutrophils have long been considered as a
homogenous population with a conserved phenotype and
function, recent evidence has demonstrated the presence of
neutrophil heterogeneity with the identification of different
functional phenotypes especially in cancer and inflammation
(3, 9–11). Neutrophils show a spectrum of phenotypes and/or
functional states. These are characterized by the expression
of a wide range of cell-surface receptors that determine their
function. These phenotypes seem to rapidly adapt to changes in
environmental signals or triggers (12) and the expression profiles
of neutrophil receptors can reflect the type and severity of the
inflammatory response after severe injury (12). Since neutrophils
are the main effector cells during the systemic inflammatory
response (SIRS) to severe injury, neutrophil sub-phenotyping
may provide both insight into diseasemechanisms and be a useful
risk assessment tool (12).

Although several neutrophil phenotypes exist with specialized
functions, phenotypically homogenous populations with
functional heterogeneity can be found in health and disease (10).
However, it is unclear whether these cells originate from distinct
bone marrow lineages or have undergone local differentiation
(12, 13). These emerging properties of neutrophils provide us
with new insight for further understanding of their roles in
homeostasis and disease. We review here the roles and function
of neutrophils in modulating the immune response during
inflammation and summarize the mechanisms behind these
processes.

DEFINITION, PROPERTIES, AND LIFE

CYCLE OF NEUTROPHILS

Neutrophils are the most abundant circulating leukocyte
population in the human immune system contributing
about 50–70% of all circulating leukocytes in healthy adults
(14). Neutrophils not only kill microorganisms through
phagocytosis, degranulation, and the generation of NETs,
but they also modulate the immune response by interacting
with other immune cells such as lymphocytes and antigen
presenting cells (APC) (6, 15). In addition, recent studies
indicate that neutrophils show plasticity characterized by e.g.,
transdifferentiation to neutrophil-dendritic cell hybrids (16).

Neutrophil Life Cycle
Neutrophil generation from committed hemopoietic progenitor
cells in the bone marrow is a highly controlled process that is
regulated by different transcriptional factors such as C/EBP (17,
18). At the start of this process, a self-renewing hematopoietic
stem cell (HSC) differentiates into a multipotent progenitor cell
(MPP) which then, in turn, transforms into lymphoid-primed
multipotent progenitor cells (LMPPs). LMPPs can finally give
rise to granulocyte–monocyte progenitors (GMPs) (17). GMPs
undergo neutrophil generation under the influence of various
growth factors such as granulocyte colony-stimulating factor (G-
CSF). This occurs in a step-wise process involving progression
through promyelocyte, myelocyte, metamyelocyte, and finally
band neutrophil stages during which developing neutrophils

gradually acquire their mature phenotype [(16); Figure 1].
During these steps, it is thought that the expression of integrin
α4β1 (VLA4) and CXCR4 (at least in mice) is downregulated
and that expression of CXCR2 and Toll-like receptor 4 (TLR4)
is increased. During this maturation neutrophils also attain their
nuclear lobular morphology (19). The formation of granules
inside the developing neutrophils starts between the myeloblast
and promyelocyte stage and different granules are formed at
different steps of the maturation process (20). A large pool
of mature neutrophils is present in bone morrow from where
they can be rapidly released into the circulation in response to
infectious, inflammatory or tissue damage associated stimuli (21).

The number of neutrophils in the circulating blood is
regulated by the CXCL12/CXCR4 axis in the mouse (22).
Under normal conditions it is estimated that approximately
1011 mature neutrophils leave the bone marrow and enter
the circulation each day (17, 21). Bone marrow stromal cells
express the chemokine CXCL12, a ligand for CXCR4 which
is thought to be expressed on bone marrow neutrophils and
keeps them within the bone marrow (23). Although direct
evidence of CXCR4 expression on human neutrophils in the bone
marrow is lacking, the CXCR4 receptor antagonist plerixafor
results in the mobilization of neutrophils into the blood (23,
24). Disruption of the CXCR4/CXCL12 balance such as that
found in WHIM syndrome (Warts, Hypogammaglobulinemia,
Immunodeficiency, and Myelokathexis syndrome) leads to
deregulated neutrophil release into the circulation (24, 25).
CXCR2 signaling can act as a functional CXCR4 antagonist to
control neutrophil egress from the bone marrow into blood in
mice (24, 25). This needs to be confirmed in man.

Neutrophil Access to Inflammatory Sites
Neutrophils quickly respond to inflammatory cues following
infection or tissue damage and migrate to the inflamed/damaged
area (26). Migration of neutrophils into the inflamed tissue,
requires several steps that starts with adhesion to the endothelial
surface followed by intravascular migration, extravasation and
migration in the interstitium [(27); Figure 2].

Intravascular migration begins with neutrophil “tethering to”
and “rolling on” the endothelium of blood vessels which is
mediated by selectin molecules (21). Neutrophils then become
activated by chemokines such as CXCL8 which trigger G-
protein coupled receptors leading to a conformational change
and activation of neutrophil integrin molecules such as
VLA-4 (CD49D/CD29), MAC-1 (CD11b/CD18), and LFA-1
(CD11a/CD18) (21). This leads to an enhanced affinity for Ig-
superfamily cell adhesion ligands (such as ICAM-1) expressed
on the endothelium, which enables firm adherence of neutrophils
to endothelial cells under flow conditions (17). Neutrophils then
patrol the endothelial surface or migrate along a chemokine
gradient to seek out the site of inflammation where they
cross the endothelial layer in a processes generally referred to
transendothelial migration or TEM (17).

Neutrophil extravasation through the endothelium occurs via
either the paracellular or the transcellular route. The paracellular
route involves leukocytes moving through endothelial cell
junctions whilst the transcellular route involves neutrophil
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FIGURE 1 | Neutrophils generation. Granulopoiesis or neutrophil generation occur in the bone marrow. At the first step, a self-renewing hematopoietic stem cell (HSC)

differentiate to a multipotent progenitor (MPP) cell. Then MPP differentiate to lymphoid-primed multipotent progenitors (LPMP), which give rise into

granulocyte-monocyte progenitors (GMP). After that, GMP cells turn in to myeloblast and posses through a maturation process including promyelocyte, myelocyte,

metamyelocyte, band cell, and finally will commit to generate the mature neutrophils.

FIGURE 2 | Schematic review of neutrophil extravasation cascade. The process of neutrophil migration begins with neutrophil “tethering to” the endothelium of blood

vessels in steps (1) rolling, (2) adhesion, and (3) crawling, firm adhesion and patrolling. (4) Trans endothelial migration occurs after approaching the site of inflammation

where they cross the blood vessel wall in an extravasation step in which neutrophils travel along the endothelial basement membrane until finding a small gap between

pericytes. They start migrating through the space by forming a protruding uropod which allows neutrophils to access to the inflamed area. Microparticle formation

occurs following uropod formation which is shown to have pivotal role in controlling vascular permeability.

passage directly through the endothelial cell body (28). The
paracellular route predominates in the majority of cases of
neutrophil extravasation (29). Neutrophils travel along the
endothelial basement membrane until they find a small gap
between pericytes (27). Pericytes are contractile cells located

at the abluminal site of microvessels and are responsible
for controlling capillary permeability. Pericytes wrap around
endothelial cells and cover 22–99% of the endothelial subcellular
surface (30). These cells are also rich in pattern recognition
receptors (PRRs) that enables them to sense inflammatory cues
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and act accordingly (31). The cells facilitate the extravasation
process of the neutrophils to the tissues.

Once the neutrophil finds a gap between pericytes, it
starts migrating through the space by forming a protruding
lamellapodium (32). Elongation and passage of the
lamellapodium through the pericyte/endothelial membrane
is mediated by integrins such as MAC1, LFA-1, and VLA-3,
respectively (26, 33). In the last step, extravasating neutrophils
shed their CD18 integrins via vesicles from their extended tail
or uropod at the subendothelial layer enabling retraction of
their extended tail (26). This allows access to the inflamed area
where the activated neutrophil will initiate engagement with
micro-organisms and the clearance of cell debris.

Extracellular Matrix Proteins and

Neutrophils Activation
Neutrophils are strongly affected by their microenvironment
including the presence of extracellular matrix (ECM). The effect
of the ECM proteins such as collagen, laminin, fibronectin, and
fibrinogen on inflammation has recently been explored and it is
now evident that these proteins play a crucial role in providing
signals that regulate different stages in neutrophil recruitment,
transmigration and activation (1, 34–36).

The cytokine-induced respiratory burst in human neutrophils
is dependent upon the interaction of ECM proteins with
CD11/CD18 integrins (37). Subsequent studies have shown
that the bovine neutrophil responses to IL-8 and platelet-
activating factor (PAF) including intracellular calcium, actin
polymerization, degranulation, adhesion, and oxidative burst
changed dramatically after selective adhesion to different ECM
proteins (38). Furthermore, the interaction between CD11b on
neutrophils and the ECM protein fibrinogen, provided signals
that enhanced the life span of neutrophils (39). ECM proteins
also control neutrophil apoptosis indirectly by modulating
tumor necrosis factor-alpha (TNF-α) expression within the local
inflammatory milieu (39, 40). In contrast, the ECM proteolytic
activity of neutrophils is critical for transmigration through the
basement membrane (41).

Tissue damage can occur as a result of the neutrophils
response to ECM protein signals in the inflammatory
microenvironment (35). For example, in atherosclerosis the
release of matrix modifying mediators such as neutrophil
elastase (NE), myeloperoxidase (MPO), and defensins by
activated neutrophils leads to the formation and development of
atherosclerotic plaques (8, 42, 43). In the lung, the production
and release of oxidants that results from the interaction of
neutrophils with ECM proteins leads to injury and remodeling
of the surrounding tissue matrix in COPD (44).

The interaction of ECM proteins with neutrophils also
contributes to tumormetastasis. Chemokines produced by tumor
cells activate microvascular endothelial cells inducing neutrophil
adhesion and activation which is followed by the release of
neutrophil oxidants and other matrix remodeling mediators.
This results in a remodeling of the local microenviroment
which facilitates the access of tumor cells to premetastatic
sites (45). Greater research endeavors in this area may provide

new therapeutic opportunities for the neutrophil-mediated
inflammatory disorders.

Neutrophil Extracellular Traps (NETosis)
Neutrophils as the first line of immune defense against pathogens
and they utilize various mechanisms to eliminate microbes
include phagocytosis, ROS production as well as the generation
and release of microbicidal molecules following degranulation
(6). More recently, another distinct antimicrobial activity of
neutrophils has been described called NETosis (46). In 2004
it was reported that neutrophils could eject nuclear chromatin
that was decorated with antimicrobial peptides and enzymes
including defensins and cathelicidins as well as NE and MPO
(47). This externalized chromatin structure or NETs was capable
of killing or suppressing fungal and bacterial proliferation (46).
There is much evidence to support the role of NETs in blocking
microbial dissemination. In addition, mice deficient in MPO
production and with an absence of NETs are susceptible to
greater fungal dissemination (48). Furthermore, bacterial strains
with mutations in a NET-degrading nuclease do not disseminate
(48, 49).

The importance of NETs in immune defense is highlighted
by their conservation across vertebrate species (50–53).
Lipopolysaccharide (LPS) or protein kinase C activators can
rapidly trigger (within minutes) the formation of NETs under
extreme conditions such as severe sepsis (54). NET formation is
categorized as an innate immune process and can be triggered by
downstream intracellular mediators such as ROS which activate
MPO and NE leading to chromatin decondensation (46).

NETs are associated with several pathological and infectious
conditions and have the potential to prime other immune cells
leading to sterile inflammation (46). There is also evidence for a
role in autoimmune and inflammatory disorders (46). However,
the beneficial or detrimental role of NETs in immune defense
is controversial and several factors in the local infectious or
sterile microenvironment can determine the impact of NETs to
potentiate or suppress inflammation (48).

There is debate regarding the concept that NETosis be
considered as a specific form of programmed cell death.
Malachowa et al suggest that formation of NETosis is an
incidental phenomenon rather than a result of programmed
cell death (55). Indeed, NETosis may be considered as a
beneficial effect of neutrophil suicide or cellular death. Leben and
colleagues showed that phagocytosis of S. aureus pHrodoTM beads
by human neutrophil granulocytes correlated with NETosis
process and was dependent on NADPH oxidase activation in
contrast to other pathways of cell death (56). However, there
are contradictory results regarding the induction of NETosis
according to the stimuli used (57).

It is unlikely that NETosis is the major mechanism by which
neutrophils control infection as this cytolytic process involves the
release of numerous DAMPs which would prolong and intensify
the inflammatory response (55, 57). In recent years the concept
of NET formation without neutrophil cell death, referred to as
non-cytolytic or “vital NETosis,” has been introduced (57). This
occurs via a ROS-independent mechanism (58) and is likely to be
the normal manner by which NET factors are released.
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NEUTROPHIL PHENOTYPES AND

HETEROGENEITY

The hematopoietic system consists of different subsets of myeloid
and lymphoid cells with different phenotypes and functions (11).
Beyond the differences in embryonic origin, this heterogeneity
can be dictated by several elements including ontogenic
and environmental factors (59). The presence of neutrophil
heterogeneity was considered controversial for a long time
because of their limited transcriptional activity, limited lifetime,
and inability for reverse transmigration (RT) to peripheral
blood after tissue homing. These did not match features of
other heterogeneous cell populations (11). However, neutrophils
acquire distinct phenotypes within their local microenvironment
depending upon the physiological and pathological cues present
(60).

Neutrophil heterogeneity is has been linked to survival
time, function, density, NET-releasing capability and receptor
expression profiles (61). Furthermore, distinct neutrophil subsets
have been described based on the expression of cell surface
markers (15). For example, CD66b/CD33 represents low-density
neutrophils (LDNs) within the neutrophilic myeloid-derived
suppressor cell (MDSC) population (62, 63) and CD49d positive
neutrophils have been found in atopic individuals (64). The
roles of these neutrophil subtypes in disease pathophysiology
is unknown although some subtypes may be harmful whereas
other neutrophil subsets may be beneficial at the sites of chronic
inflammation. The next section will describe some receptor
molecules and properties that characterize neutrophil subsets
present in homeostasis and under pathologic conditions.

Olfactomedin 4 (OLFM4) Positive Cells
The neutrophil granule protein olfactomedin 4 (OLFM4)
defines two subtypes of neutrophils (OLFM4+ and OLFM4−)
(11). These subtypes show no differences in apoptosis or
antibacterial function in vitro and have an equal tendency for
migration toward an inflamed area in response to inflammatory
signals (65). OLFM4 gene knock-out mice exhibit reduced
colonization of the gastric mucosa by Helicobacter pylori
(H. pylori) which is associated with increased inflammatory
cell infiltration, enhanced production of pro-inflammatory
cytokines/chemokines such as IL-1β, IL-5, IL-12 p70, and MIP-
1α and increased inflammatory response to H. pylori in gastric
mucosa (66). It is speculated that OLFM4+ neutrophils localize
to the NET of its parent cell during NETosis rather than increase
NET formation per se and further studies are required to define
the role of OLFM4+ neutrophils (39).

CD177 (NB1) Expressing Neutrophils
CD177 is a 55 kDa glycosyl-phosphatidylinositol-anchored
receptor that is expressed on human circulating neutrophils
(67). CD177 has an important role in neutrophil transmigration
through the endothelium as it has a high affinity for the adhesion
molecule, platelet endothelial cell adhesionmolecule-1 (PECAM-
1) (68, 69). CD177 activation also modulates human neutrophil
migration in a β2 integrin-dependent manner (70).

CD177 is also associated with the expression of the serine
protease PR3 (68, 69). In human neutrophils, CD177 is co-
expressed with PR3 on the surface of neutrophils and together
these promote extravasation of circulating neutrophils (69).
In severe bacterial infection the circulating levels of CD177+
neutrophils is augmented probably due to the elevated co-
expression of PR3 which facilitates increased neutrophil tissue
infiltration (71).

The circulating levels of CD177+ neutrophils are increased
in patients with anti-neutrophil cytoplasmic antibodies (ANCA)-
dependent vasculitis (70). Enrichment of these cells was
associated with an increased risk of relapse (72). However,
in ANCA-dependent vasculitis the expression of membrane
bound PR3 is enhanced in primed CD177 negative neutrophils
suggesting that anti-PR3-mediated neutrophil recruitment is
independent of the role of CD177 (71). Interestingly, CD177+
neutrophils are the functionally activated neutrophil population
in inflammatory bowel disease and negatively regulate disease
(73). The role of CD177 in neutrophil migration and IBD
currently seems to be more consensual than in the airways.

CD63+ Neutrophils
Single-cell analysis identified a subset of neutrophils in the airway
of cystic fibrosis (CF) patients that appeared to have undergone
functional reprogramming and acquired profound differences
to circulating neutrophils including reduced intracellular
glutathione and augmentation of lipid raft assembly (74). These
neutrophils expressed CD63+, a marker of NE-rich granules,
on their cell surface. In addition, expression of key phagocytosis
receptors including CD16 and CD14 was enhanced (75). This
was in contrast to the reduced levels of CD80 and of the
prostaglandin receptor CD294 on these cells. This subset of
neutrophils may represent an important future therapeutic target
for airways disease (74).

ICAM-1-Expressing Neutrophils
ICAM-1 (CD54) expressing neutrophils represent a population
of tissue-experienced neutrophils that have migrated in a
retrograde direction across endothelial cells and emerged
again in the peripheral blood by reverse transmigration (75).
This subpopulation of neutrophils are associated with chronic
systemic inflammation (62). The function of these cells as well
as their fate remain elusive.

CD16brightCD62Ldim Population and

Immune Suppressive Neutrophils
A CD16brightCD62Ldim population of neutrophils was first
described by Pillay and colleagues as a unique circulating
population of myeloid derived suppressor cells (MDSC) (74,
76). MDSCs were originally identified in a murine model of
cancer as a population of heterogeneous immature myeloid cells
that suppress immune responses (77–79). Gabrilovic et al. in
2007 subsequently coined the term MDSCs to emphasis their
heterogeneity (80).

The CD16brightCD62Ldim population of neutrophils can
mimic MDSCs and exhibit a suppressive function and suppress
T-cell proliferation in vitro while remaining remarkably poor at
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eliminating bacteria such as Staphylococcus aureus (S. aureus)
(81). This suppressive immunophenotype of mature neutrophils
is also detected in peripheral blood samples of cancer patients
suggesting their involvement in antitumor immunity (82). The
CD16brightCD62Ldim population will be discussed in greater
detail in section Neutrophil Phenotypes After Trauma.

Pro-angiogenic Neutrophils
A subpopulation of CD11b+/Gr-1+ neutrophils in the mouse
was first described in 2012 as being recruited to transplantation
sites and having the ability to promote re-vascularization of the
transplanted tissue (83). This population of neutrophils at least in
the mouse express high levels of CXCR4 (CXCR4hi). In an in vivo
model they can deliver large amounts of MMP-9 to transplanted
islets of Langerhans. This in turn, induced VEGF-dependent
angiogenesis at the site of recruitment (84). These cells have yet
to be found in humans in vivo.

Low Density Neutrophils (LDNs)
Low-density neutrophils (LDNs) comprise a population of
neutrophils with a low buoyant density that are typically found
in the mononuclear fraction upon density centrifugation. These
cells include cells both segmented and banded nuclei as well as
myelocyte-like progenitor cells (85). LDNs were first reported
in systemic lupus erythematosus (SLE), rheumatoid arthritis
and rheumatic fever (86). They are now also recognized as
being elevated in cancer and are in some studies associated
with tumor progression (87). The cells are responsible for the
down-regulation of T-cell function via an arginase dependent
mechanism such as found during the induction of materno-fetal
tolerance (87).

In sepsis, LDNs are present and play a pivotal role
in sepsis-induced immune suppression. In patients with
sepsis, granulocyte-like MDSC which include a low density
granulocyte (LDG) population, help drive T-cell dysfunction
by the production of arginase 1 that enables the subsequent
development of nosocomial infections (88).

LDNs from patients with SLE have a higher propensity to form
NETs in a process referred to as NETosis (89) and to release pre-
formed NETs. NETs can present auto-antigens to the immune
system suggesting that LDNs, from SLE patients at least, can
promote chronic inflammation leading to autoimmunity (89, 90).
High CD66b+ LDN counts were also reported in the peritoneal
cavity of patients with gastric cancer following abdominal surgery
(91). These CD66b+ LDNs have the ability to form NETs and to
selectively capture disseminated tumor cells (91).

The function of LDNs is dependent on the local
microenvironment and the associated pathology (92). For
example, in cancer LDNs have an immunosuppressive activity
(93) whilst they generally possess a pro-inflammatory phenotype
in autoimmunity disease (94, 95). In SLE, activated LDNs
produce high levels of type 1 interferons (INFs) (95). LDNs
with an activated phenotype have also been reported during
leishmania infection (94, 96). However; LDNs play a major
immunosuppressive role in sepsis which is associated with higher
incidence of nosocomial infections (88). The characterization of

these cells in vivo is difficult due to the lack of specific cell surface
or molecular markers (97).

Tumor Associated Neutrophils (TANs)
Mature neutrophils that leave the bone marrow and are released
into the circulation may migrate into tumors where they
can be found as tumor associated neutrophils (TANs) (98).
After infiltration to tumor sites, these neutrophils undergo
profound phenotypic changes compared to their circulating
counterparts (99).

In murine models of cancer, TANs showed two distinct
populations referred to as N1 and N2 with pro- and anti-tumoral
roles, respectively (100). Transcriptomic analysis showed that
N1 and N2 neutrophils have distinct gene expression profiles
and functional properties which are likely induced by the local
tumor microenvironment (101). The role(s) of TANs in the
tumor microenvironment in man remains unclear although
TANs isolated from human lung tumors possess an activated
phenotype (CD62LowCD54hi) with increased pro-inflammatory
cytokine production. These TANs also induce T-cell proliferation
and the production of IFN-γ (98).

In contrast, in colorectal cancer TANs produce arginase I
and ROS thereby inhibiting proliferation and IFN-γ production
by T-cells (102). These data suggest that these cells exhibit
LDN-like properties (102). The numbers and functions of TANs
are regulated by chemotherapy in human colorectal cancer
which supports the hypothesis that they have a role in cancer
progression (103). However, the degree to which TAN subsets are
present in human cancers or whether different human cancers
include different TAN subsets is unclear.

Despite the current consensus around the existence of
neutrophil heterogeneity, there are still some challenges to be
met. It is possible that the different observed properties of the
neutrophil populations merely reflect the response to the local
environment and differences result from their innate plasticity
(93). Further studies are required to link the various phenotypic
characteristics with cellular/tissue functions.

THE IMPORTANCE OF NEUTROPHILS IN

INFLAMMATORY COMPLICATIONS

FOUND AFTER TRAUMA

Trauma is the main case of mortality worldwide in people under
the age of 50 (12). In 5% of cases, patients suffer from severe
trauma. This clinical condition can ultimately lead to multiple
organ dysfunction syndrome (MODS) in which the functionality
of some organs such as liver, lung or kidney is markedly reduced
(104). The main cause of post-traumatic complications is due to
hyperactivation of the immune response (105). For example, a
localized inflammatory reaction after trauma can be provoked by
alarm signals (alarmins and other damage associated molecular
patterns/DAMPS) which are secreted by healthy, damaged or
necrotic cells (106).

Neutrophils are important effector cells in managing and
regaining tissue homeostasis and in the maintenance of immune
surveillance. Activation of neutrophils after trauma by alarm
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signals evokes the development of a local inflammatory response.
If this local inflammatory response becomes excessive this may
lead to a SIRS and MODS.

MODS has a mortality rate of up to 50–80% (106). To
control this disproportionate pro-inflammatory reaction and
to restore the equilibrium, a compensatory anti-inflammatory
response (CARS) may occur (105, 107). Alternatively, the
pro-inflammatory and anti-inflammatory responses may
counteract each other leading to a mixed antagonist response
(MARS) (108, 109). Both CARS and MARS tune down the
disproportionate immune activation (110) making the patient
extremely susceptible to infection by microorganisms. This
results in serious complications such as sepsis, septic shock and
organ failure [(105); Figure 3].

Neutrophils play an important role in the pathophysiology
of the deregulated immune response found in patients with
trauma (111). Tissue damage leads to neutrophil activation and
the production of ROS due to various triggers such as hypoxia
and reperfusion injury in damaged tissue and the release of
neutrophil chemoattractants and activators (112). The presence
of neutrophil priming agents such as granulocyte-macrophage
colony-stimulating factor (GM-CSF) or TNF-α in the peripheral
blood, enhances neutrophil chemotaxis, extravasation and
oxidative burst production (113). The spontaneous production
of ROS by neutrophils is elevated in trauma patients and the
uncontrolled ROS production by accumulated neutrophils in the
vascular bed increases vascular permeability promoting organ
failure (112).

Selectins and integrins mediate neutrophil transmigration
toward the inflamed and/or damaged tissue. Neutrophils release
L-selectin during migration and serum levels of L-selectin (sL-
selectin) are associated with the degree of neutrophil activation.
Maximum sL-selectin levels were observed 6 h after trauma
(113, 114). The destructive effects of neutrophils within tissue is
limited by neutrophil apoptosis. However, this process is delayed

after trauma (115). Delayed neutrophil apoptosis leads to the
accumulation of neutrophils, increased release of their cytotoxic
products and the promotion of local tissue damage (105, 116).

Although neutrophils are activated during SIRS post-trauma,
their responsiveness to the innate stimulus fMLP decreases.
This is illustrated by the decreased expression of active FcγRII
(CD32) induced by fMLP on neutrophils in poly trauma patients.
Consequently, the low functionality of this most important
Fcγ receptor on neutrophils probably involves the decrease of
antibacterial function during CARS over the following days (117,
118). This may be due to the production of CD16low immature
neutrophils (118). The recruitment of immature band forms
of neutrophils from the bone marrow into the circulation is
typically found in sepsis and SIRS (119). It is yet to be determined
whether these young cells are dysfunctional or whether these cells
are fully functional as is seen after LPS challenge (81). On the
other hand, these immature neutrophils show lower expression
of antibacterial receptors such as CD14 and MD-2 and have a
reduced transmigration ability (118).

The endocrine system also modifies neutrophil changes after
severe injury. Both trauma-induced cortisol and epinephrine
strongly increase neutrophil release into circulating blood (120).
Cortisol is also thought to extend the half-life of circulating
neutrophils (120). Together with the reduced chemotaxis found
after cortisol and epinephrine infusion these combined effects
could account for increased susceptibility to infection observed
after major trauma (120).

Neutrophil Phenotypes After Trauma
Acute inflammation is accompanied by the recruitment of
neutrophils with different phenotypes into the circulation that are

not present during homeostasis (12, 121). These “inflammatory”
neutrophils have distinct characteristics such as enhanced
expression of CD124 (IL-4Rα), CD15 (3- fucosyl-N-acetyl-
lactosamine), and arginase in addition to a lower buoyant

FIGURE 3 | Activation of immune response after trauma. Activation of neutrophils after trauma evokes the development of a local inflammatory response. If this local

inflammatory response becomes excessive this may lead to a systemic inflammatory response (SIRS) and multiple organ dysfunction syndrome (MODS). To restore

the equilibrium to a favorable state, a compensatory anti-inflammatory response (CARS) may occur or, alternatively, the pro-inflammatory and anti-inflammatory

responses may counteract leading to a mixed antagonist response (MARS).
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density and immunomodulatory properties (3). In 2012, Pillay
et al. observed neutrophil subtypes in the circulation during
experimental acute systemic inflammation evoked by systemic
administration of 2 ng/kg LPS in human healthy volunteers
(3). Based on the expression level of CD16 (FcγRIII) and
CD62L (L-selectin), three different subsets of “inflammatory”
neutrophils were observed: neutrophils with a conventional
segmented nucleus (CD16bright/CD62Lbright), neutrophils with
a banded nucleus (CD16dim/CD62Lbright), and CD62Ldim
neutrophils (CD16bright/CD62Ldim) with a higher number of
nuclear lobes (hyper-segmented).

Banded neutrophils observed in acute inflammation are fully
functional and are superior in killing S. aureus (81). In contrast,
CD62Ldim neutrophils were enriched by proteins involved in
immune regulation (122) as these cells have immunosuppressive
properties and inhibit T-cell proliferation (123). CD16Ldim

neutrophils also showed lower cell adhesion capacity and an
extremely low capacity to contain bacteria in comparison to the
two other subtypes (124). Chemotaxis toward end target chemo-
attractants was also decreased in this group which might result in
reduced endothelial binding and extravasation to inflammatory
sites (124). The origin of CD62Ldim cells after trauma in humans
is not clear but these cells do not represent aged cells (3).

Although it is commonly believed that increased nuclear
segmentation occurs with increasing cellular age this is not really
supported by experimental data. For example, in humans the
hyper-segmented neutrophils seen in pernicious anemia result
from defects in the DNA replication machinery. These hyper-
segmented neutrophils appear in the circulation simultaneously
with normal neutrophils (124). In addition, a study applying
proteome profiling and in vivo kinetics of neutrophils following
LPS challenge showed that hyper-segmented neutrophils have a
similar age as normal segmented cells and take the same time
to reach maturity and, as such, cannot be considered as aged
cells (125). Furthermore, these hyper-segmented CD62Ldim cells
do not seem to originate from mature neutrophils but might be
produced by a separate pathway compared to banded and normal
segmented neutrophils in response to inflammation (123). These
cells enter the bloodstream only during inflammation as a distinct
neutrophil subset. It is, therefore, tempting to speculate that
these cells have a specific goal of fine-tuning the acute immune
response (96).

The Role of Neutrophils in Immune

Dysfunction After Trauma and

Inflammation
Neutrophils are involved in the deregulation of immune
responses during trauma by several mechanisms including
cleavage of essential cell surface receptors, modulation of the
function of immune receptors, control of peripheral blood
neutrophil numbers, and modulation of the adaptive immune
response.

Cleavage of Essential Cell Surface Receptors
Neutrophil-derived serine proteases released by degranulation
can mediate proteolytic cleavage of receptors on immune
cells (126). During acute inflammation NE can cleave and

downregulate the expression of the IL-8 receptors CXCR1
and 2 (127, 128). This, in turn, decreases the responsiveness
to IL-8 and enhances the risk of pneumonia in trauma
patients (129). Complement receptors may also be targeted by
neutrophil proteases. Decreased levels of CR1/CD35 (130) and
of C5aR/CD88 have been reported during inflammation which
might result in a failure of neutrophil engagement with micro-
organisms (131). Cleavage of CD14 on the surface of monocytes
can also be affected by NE which can lead to impaired TLR4-
mediated recognition of lipopolysaccharide by monocytes (132).
On the other hand, NE can also modulate adaptive immune
responses by enhancing the shedding of the IL-2 and IL-6
receptors on T lymphocytes (133).

Desensitization of Immune Receptors
After severe injury and trauma, suppression of immune function
may occur due to the desensitization of immune receptors on
neutrophils (133). Trauma/severe injury leads to the release
of endogenous danger signals (danger-associated molecular
patterns; DAMPs) from necrotic tissue cells that can bind to PRRs
on neutrophils (134). DAMPs, which alert the immune system
in response to stress, resemble pathogen-associated molecular
patterns (PAMPs) and can bind to their receptors on neutrophils
(135). Finally, DAMPs released during trauma can induce
both homologous and heterologous desensitization of immune
receptors via internalization of PPRs which limit subsequent
responses to microbial signals (136).

Regulation of Neutrophil Numbers
The number of neutrophils in the circulating blood is regulated
by the CXCL12/CXCR4 axis in the mouse (24). Expression of
the chemokine CXCL12 by bone marrow stromal cells provide
a signal for neutrophils expressing the CXCL12 receptor CXCR4
to remain in the bone marrow (22). Conversely, attenuation
of CXCR4 signaling leads to the release of neutrophils into
the circulation. Disruption of the CXCR4/CXCL12 balance
by inflammatory stimuli can increase neutrophil release into
peripheral blood (24) or can lead to leukostasis in the bone
marrow such as found in WHIM syndrome.

In human experimental endotoxemia, peripheral neutrophils
exhibit a functional heterogeneity and different degrees of
priming (122). Similar variations in neutrophil phenotypes
are seen in the peripheral blood of patients during severe
inflammation (137). A large number of immature or banded cells,
suppressive neutrophils, myeloid-derived suppressor cells, and
neutrophil progenitor cells can be detected (119). The presence of
immature or banded neutrophils may be either a compensatory
response due to depletion of mature neutrophils in bone marrow
or it may be induced by the bacterial stimulus itself (123).

Modulation of the Adaptive Immune Response
Neutrophils play the major role in the paralysis of the immune
system during CARS that may occur because of systemic
inflammation (138). Immune paralysis is an immunosuppressed
state in which immune responses are unable to recover despite
the clearance of pathogens. This leads to a failure in the ability
to control the primary infection and increased susceptibility to
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secondary infections. Immune paralysis is the main cause of
death in most sepsis patients (139).

Apart from their roles in innate immunity and direct anti-
microbial defense, neutrophils can also modulate adaptive
immune cells in severe inflammation (119). Neutrophils can
modulate T-cell responses via different mechanisms. A T-cell
found in an inflammatory microenvironment may be affected
by neutrophil-derived chemokines and cytokines or by their
released granular contents (140). NE can directly cleave receptors
on the T-cell surface such as those for IL-2 and IL-6 (133). NE
can also reduce the level of co-stimulatory molecules on dendritic
cells and subsequently decrease T-cell maturation (141).

Macrophages shift toward an anti-inflammatory phenotype
after phagocytosis of apoptotic neutrophils (142). MDSCs are
a heterogonous population consisting of myeloid progenitors,
immature neutrophils, macrophages and dendritic cells that
expand during a wide range of pathological conditions such
as cancer and inflammation (143). These cells are potent
suppressors of various T-cell functions in mouse models. These
cells can produce arginase-1 and thereby deplete arginine from
the local microenvironment (144). Arginine is an essential amino
acid and its depletion leads to cell cycle arrest of T-cells in the G0–
G1 phase (145). A subset of neutrophils have been identified in
the peripheral blood of patients with septic shock that can secrete
arginase-1 and function as MDSCs (146).

In man, a systematic LPS challenge induced the release
of a subtype of mature CD62Ldim neutrophils with a hyper-
segmented nuclear morphology into the circulation (123). These
cells suppressed T-cell function via a Mac-1/(αMβ2)-dependent
(CD11b/CD18-dependent) mechanism and delivery of hydrogen
peroxide into the immunological synapse (123). A similar subset
has been found after systemic treatment with G-CSF (147).
However, the latter cells employ arginase rather than oxidants to
suppress T-cell function in vitro.

Proteome profiling of L-selectin/CD62L low neutrophils
showed that this subtype is enriched in proteins involved
in immune regulation and exhibited a marked decrease in
ribosomal proteins compared to immature banded neutrophils
(3). This implied that the L-selectin low cells lost a significant part
of their protein translational machinery (3).

INF-γ induces the expression PD-L1 by neutrophils which
enables them to suppress lymphocyte proliferation and induce
lymphocyte apoptosis (148). Blocking this PD-1/PD-L1 axis in
a murine model of sepsis reversed immune dysfunction and
improved survival (149). INF-γ also induced the expression of
Fc gamma receptor (CD64) by induction of transcription factor
STAT1 [(150); Figure 4].

Neutrophil subgroups also play a role in cancer immunity.
CD16highCD62Ldim cells are more common in patients with
head and neck squamous cell carcinoma (HNSCC). These
cells produce NETs, displayed an activated phenotype and, in
comparison to other subtypes, were more prone to migrate to
tumor sites and perform anti-tumor immune functions including
inhibition of proliferation and the induction of apoptosis in
cancer cells. An increase in circulating CD16highCD62Ldim

neutrophils was associated with increased NET formation and
increased survival in HNSCC patients (151).

FIGURE 4 | INF-gamma induced the expression of Fc gamma receptor

(CD64). IFN-γ induces its receptor and the downstream signaling pathways

including JAKs and the STAT family of transcription factors. STAT dimers

enhance the transcription of CD64 gene and the translated CD64 will be

targeted in to the plasma membrane bilayer lipid.

THE APPLICATION OF NEUTROPHILS AS

BIOMARKERS IN INFECTIOUS DISEASES

The neutrophil Fcγ-receptor I (FcγRI, CD64) has long been
considered as a biomarker for infectious disease. It is a high
affinity receptor that binds to the Fc part of the IgG heavy
chain (152). CD64 is normally expressed at a very low level on
the surface of resting neutrophils in healthy individuals (153)
but its expression is markedly elevated within a few hours of
bacterial infections (154). The expression can be elevated >10-
fold which allows differentiation between resting and activated
neutrophils (155, 156). This property of CD64 has been utilized
as a diagnostic marker of infection (156) particularly in sepsis.
The expression of this marker is very stable after blood collection
and it requires only a small volume for assessment (156) making
this a very attractive marker for infection monitoring.

The level of CD64 is moderately elevated in preterm newborn
infants before changing to normal levels in the first month of
life (157). However, a meta-analysis of the diagnostic accuracy
of neutrophil CD64 in neonatal sepsis suggests that this alone
cannot be used as a satisfactory marker for neonatal sepsis due
to its relatively low sensitivity and specificity (158). However,
neutrophil CD64 levels are a very sensitive diagnostic marker
for early-onset clinical infection and pneumonia in newborns
and can guide antibiotic therapy (159). In addition, circulating
neutrophils in Erythema nodosum leprosum (ENL) patients
expressed CD64 on their cell surface and this expression was
correlated with disease severity (160).

Neutrophil gelatinase-associated lipocalin (NGAL) is another
neutrophilic marker important for the early diagnosis of acute
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kidney injury (161). NGAL is also used as a biomarker for
inflammation in cardiovascular disease including atherosclerosis,
heart failure as well as acute myocardial infarction (161).

A novel neutrophil derived inflammatory biomarker
in CF patients has been recently introduced (162). This
is a protein complex containing alpha-1 antitrypsin and
CD16b (AAT:CD16b) that is released into the bloodstream
from membranes of pro-inflammatory primed neutrophils.
The plasma level of AAT:CD16b complex correlates with
inflammatory status in CF patients and has been proposed
as a biomarker for the diagnosis of CF exacerbations (162).
In ulcerative colitis (UC), the presence of human neutrophil
lipocalin (HNL), and MPO in colorectal perfusion fluids
indicates intestinal neutrophil activation in UC (163).

CONCLUSION

Neutrophils are main players in the context of inflammatory
complications during and after infections and tissue injury.
The neutrophil compartment is heterogeneous and neutrophils
with distinct properties have been identified. These cells
exhibit a high plasticity and easily adapt to changes in
microenvironment. Newly identified human neutrophil
subsets can suppress T-cell activation and proliferation
and their presence may provide a novel therapeutic and/or
diagnostic avenue in chronic and acute infection as well
as in cancers. In contrast, neutrophils also play the central

role in the immune paralysis after severe inflammation
and have a detrimental role in organ failure in post-injury
events.

The paradox regarding the role of neutrophils in health and
disease dictates that therapy should be targeted to the correct
phenotypes to prevent off-target effects. It is now of paramount
importance to identity the site of origin of different neutrophil
phenotypes present in severe inflammation. The potential of
neutrophil cell surface markers or their products to be used in
diagnosis or in therapy has great potential but requires further
study. In addition, the mechanism(s) by which neutrophils drive
immune paralysis and subsequent tissue damage post-trauma are
an important therapeutic target as there is great unmet medical
need to control neutrophil activation in most inflammatory
diseases.
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Hidradenitis Suppurativa: A
Systematic Review Integrating
Inflammatory Pathways Into a
Cohesive Pathogenic Model

Allard R. J. V. Vossen, Hessel H. van der Zee and Errol P. Prens*

Department of Dermatology, Erasmus University Medical Center, Rotterdam, Netherlands

Background: The pathogenesis of hidradenitis suppurativa (HS) is not fully understood.

This systematic review examined the latest evidence for molecular inflammatory

pathways involved in HS as a chronic inflammatory skin disease.

Methods: A systematic literature search was performed in PubMed/Medline and

EMBASE from January 2013 through September 2017, according to the preferred

reporting items for systematic reviews and meta-analyses (PRISMA). Findings on HS

pathogenesis were also compared with those of other immune-mediated inflammatory

diseases (IMIDs) in a non-systematic review. In addition, current therapeutic options for

HS are briefly discussed on the basis of the findings for the inflammatory pathways

involved in HS.

Results: A total of 32 eligible publications were identified by the systematic search; these

were supplemented with three additional publications. The extracted data indicated that

four key themes underlie the pathogenesis of HS and related syndromic conditions. First,

nicastrin (NCSTN) and PSTPIP1mutations are directly associated with auto-inflammatory

disease. Secondly, the up-regulation of several cytokines including tumor necrosis

factor-α and T helper-17/interleukin-23 are connected to auto-inflammatory mechanisms

in the pathogenesis of HS. Thirdly, the microbiome of lesional skin differs significantly

vs. normal-appearing skin. Fourthly, HS risk is enhanced through physiological and

environmental factors such as smoking, obesity, and mechanical friction. There is

significant overlap between the pathogenesis of HS, its syndromic forms and other IMIDs,

particularly with respect to aberrations in the innate immune response.

Conclusions: The evidence presented in this review supports HS as an

auto-inflammatory skin disorder associated with alterations in the innate immune

system. Based on these most recent data, an integrative viewpoint is presented

on the pathogenesis of HS. Current management strategies on HS consist of

anti-inflammatory therapies, surgical removal of chronic lesions, and lifestyle changes

such as smoking cessation and weight loss. As large gaps remain in the understanding

of the pathogenesis of HS, further research is warranted to ultimately improve the

management and treatment of patients with HS and related syndromic conditions.

Keywords: acne inversa, pyoderma gangrenosum and acne, immune-mediated inflammatory disease,

inflammatory bowel disease, auto-inflammation, nicastrin, PSTPIP1, obesity
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INTRODUCTION

Hidradenitis suppurativa (HS) is a chronic, recurrent,
inflammatory follicular occlusive disease, that usually presents
after puberty with painful, inflamed lesions, predominantly at
inverse body sites such as the axillae, inguinal and anogenital
regions (1). The physiological and psychological consequences
of HS can profoundly reduce a patient’s quality of life (1, 2).
Prevalence estimates in North America and Europe range from
<1 to 4% (3, 4).

The pathogenesis of HS is not fully understood. Current
evidence highlights a complex multifactorial pathogenesis (5).
A key triggering factor is the occlusion of the hair follicle,
caused by keratosis and hyperplasia of the follicular epithelium
leading to cyst development (6, 7). Subsequently, the cyst will
rupture, causing a fierce immune response and inflammation
that, depending on the severity, may progress to abscess and
sinus tract development and scarring (6, 7). The name of
the disease implies that sweating and bacterial infection are
a fundamental part of the disease process. This is misleading
and now considered a misnomer: no evidence has been found
showing that HS is triggered by events in the apocrine or
eccrine glands. Environmental risk factors reported to contribute
to HS development include smoking and obesity (8). In
addition, HS can occur with several co-morbid immune-
mediated inflammatory diseases (IMIDs), notably inflammatory
bowel disease (IBD) (9).

Clear evidence suggests the involvement of pro-inflammatory
cytokines in immune dysregulation in HS, with elevated levels
of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-17 and
interferon (IFN)-γ observed in HS lesions (5, 10, 11). Data also
indicate the involvement of T helper (Th) cells, which accumulate
in HS lesions, in the pathogenesis of HS (11, 12). In addition,
studies have shown that antimicrobial peptides (AMPs) like
cathelicidin (LL-37) and human β-defensin are increased in HS
lesions compared with normal skin of HS patients (13). The use
of TNF-α inhibitors such as adalimumab and infliximab have
been associated with improvements in immune dysregulation in
HS and support the importance of local molecular drivers in the
pathogenesis of HS (1, 14, 15).

Furthermore, mutations in γ-secretase genes, whose gene
products act on many substrates including Notch (16), suggest
that Notch or other substrates of γ-secretase may play a role in
the pathogenesis of HS. Interestingly, γ-secretase knock-out mice
are characterized by a phenotype of multiple cutaneous cysts, a
key feature of HS (17). To date it remains unclear whether the
effects of Notch on follicle development or its immune role play
a significant role in HS pathogenesis.

Rapidly evolving understanding in the auto-inflammatory
arena is needed to improve awareness of HS, disease
management, and ultimately improve patient outcomes.
The aim of this systematic literature review was to
summarize recent findings on the pathogenesis of HS and
its syndromic forms, and to identify common pathways
involved in HS pathogenesis and other IMIDs. Ultimately, we
integrate the molecular pathways into a cohesive pathogenic
model.

METHODS

A systematic review of recent original research was conducted
according to the Preferred Reporting Items for Systematic review
and Meta-Analyses Protocols (PRISMA-P) 2009 statement to
identify the factors involved in the pathogenesis of HS (18).

A two-stage review process of PubMed/Medline and EMBASE
databases was conducted using search strings designed to
recognize studies reporting on auto-inflammatory disorders
within the scope of HS (see Supplementary Tables 1, 2).
The initial screening review identified studies published in
English language from January 2007 through September 2017.
After removing duplicate records, two reviewers independently
screened the titles and abstracts in a double-blind manner and
excluded those that did not meet the screening review inclusion
criteria (Supplementary Table 3). Results were reviewed by a
senior analyst for authentication and resolution of disagreements
between the reviewers. Identified publications were reassessed
according to the full-text review inclusion criteria; at this
stage, the publication period was narrowed to January 2013
through September 2017 on the basis of the number of
publications identified during screening; this was to ensure
focus on the most recent data (Supplementary Table 3). Two
reviewers, overseen by a senior analyst, independently assessed
the remaining full-text copies of all relevant publications
and any duplicate, low-quality or outdated publications were
excluded. The bibliographies for all publications selected in
the full-text review were also manually checked for relevant
references.

Data were extracted from each relevant publication on
study design (study setting, data source, study period), patient
characteristics (sample size, mean age, sex, HS severity, disease
location, notable comorbidities, smoking status), immunogenetic
factors (genes, mutations or proteins involved), environmental
factors (microbiological pathways, obesity, smoking, mechanical
stress, sex, hormones), inflammatory pathway and cytokine
status (pro-inflammatory, anti-inflammatory, proliferation, and
growth factors).

In addition to the systematic review process, two informal
literature searches were performed using the same databases, to

facilitate discussion of the data. First, immunogenetic factors of
HS are compared with other IMIDs such as Crohn’s disease (CD),
ulcerative colitis (UC), ankylosing spondylitis (AS), psoriasis
and psoriatic arthritis (PsA), pyoderma gangrenosum (PG), and
Behçet’s disease. Second, actual therapeutic options for HS are
briefly discussed on the basis of the inflammatory pathways
involved in the pathogenesis of HS.

RESULTS

The initial search in PubMed and EMBASE identified a total
of 3,580 records. Of these, 230 publications were screened
for full-text review and 32 publications were selected for data
extraction (Figure 1). Data from an additional three publications
were also reviewed as they were considered to provide relevant
information; two had been excluded during the systematic search
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FIGURE 1 | PRISMA flow diagram of included studies. To supplement the 32 publications identified through the systematic process, data from three additional

publications were also reviewed as they were considered to provide relevant information; two had been excluded during the systematic search on the basis of their

publication type (editorial/letter) (19, 20) and one was published subsequently to the search end date (21).

on the basis of their publication type (editorial/letter) (19, 20) and
one was published subsequently to the search end date (21).

The data extracted from these 35 publications were largely
derived from four main lines of investigation in patients with
HS and its syndromic forms: (1) genetic analyses (covered
by 16 studies); (2) inflammatory marker levels (12 studies);
(3) microbe analyses in lesions/expression of antimicrobial
peptides (6 studies); and (4) contribution of physiological and
environmental risk factors (11 studies) (Table 1).

Genetics
Loss of Function Mutations in γ-Secretase Complex

Genes
Three studies identified by our review evaluated NCSTN gene
mutations for the nicastrin protein subunit of γ-secretase in
connection with HS pathogenesis (25, 26, 31). Genetic analyses

in Chinese and Japanese families identified mutations in the
NCSTN gene (c.647A>C, c.223G>A and c.582+1delG) carried
by affected family members but not unaffected family members
or healthy controls (25, 26). Meanwhile, an in vitro study
in familial HS identified that mutations in NCSTN affect
downstream signaling through Notch and/or phosphoinositide
3-kinase (PI3K) (31). However, NCSTN mutations in HS did not
enhance cytokine production in LPS-stimulated peripheral blood
mononuclear cells (20).

Mutations of Proline-Serine-Threonine Phosphatase

Interacting Protein 1
Proline-serine-threonine phosphatase interacting protein 1
(PSTPIP1) is a cytoskeleton-associated adaptor protein, highly
expressed in hemopoietic cells (29). The protein manifests its
immunomodulatory effects through downregulation of CD2

Frontiers in Immunology | www.frontiersin.org 3 December 2018 | Volume 9 | Article 296532

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vossen et al. Immunopathogenesis of Hidradenitis Suppurativa

TABLE 1 | Characteristics of included studies.

Factors associated

with HS

Studies Patients Study location (n) References

Total, n Per condition (n) Per condition (n)

Genetics 16 HS/AI (8)

PG (2)

PAPA (2)

PAC (1)

PASH (2)

PAPASH (1)

SAPHO, RA, AS, SPA (1)

HS/AI (368)

PG (15)

PAPA/PAPA-like (∼12)α

PAC (1)

PASH (8)

PAPASH (1)

SAPHO (71), RA (125), AS

(67), SPA (35)

Europe (7)

Asia (5)

Middle East (2)

North America (2)

(3, 19, 20, 22–34)

Inflammatory markers 12 HS/AI (10)

PG (2)

PASH (1)

HS/AI (351)

PG (15)

PASH (7)

Europe (9)

North America (2)

Asia (1)

(5, 28, 31, 33, 35–42)

Microbiome 6 HS/AI (6) HS (297) Europe (6) (43–48)

Physiological and

environmental risk

11 HS/AI (11) HS (738) Europe (10)

Asia (1)

(21, 26, 43, 45–52)

αMarcos et al. (27) used donated cell cultures (n= 2). Note that three publications were included in addition to the 32 identified by the systematic review (see text for details) (19, 20, 52). AI,

acne inversa; AS, ankylosing spondylitis; HS, hidradenitis suppurativa; PAPA, pyogenic arthritis, pyoderma gangrenosum, and acne; PAC, pyoderma gangrenosum, acne and ulcerative

colitis; PASH, pyoderma gangrenosum, acne and suppurative hidradenitis; PG, pyoderma gangrenosum; RA, rheumatoid arthritis; SAPHO, synovitis, acne, pustulosis, hyperostosis,

and osteitis; SPA, seronegative spondyloarthropathy.

(-triggered adhesion, regulation of c-Abl tyrosine kinase activity,
and interaction with other immunity-related proteins including
the Wiskott–Aldrich syndrome protein (WASp) (28) and pyrin,
the familial Mediterranean fever (FMF) protein (29).

There is now evidence of mutations to the PSTPIP1 gene
in cases of pyoderma gangrenosum, acne and suppurative
hidradenitis (PASH) and pyogenic arthritis, pyoderma
gangrenosum, acne and suppurative hidradenitis (PAPASH)
syndromes (19, 24). A p.E277D missense mutation was detected
in the PASH case (24), whilst the patient with PAPASH had a
heterozygous missense mutation (c.1213 C>T [p.Arg405Cys])
in exon 15 of PSTPIP1. Variations have also been reported in the
PSTPIP1 gene in other related syndromic conditions (22, 28, 29).
First, a genetic analysis in a patient with a PAPA-like syndrome
revealed a recessive inheritance pattern with a homozygous
PSTPIP1mutation (c.773G>C and p.Gly258Ala), in contrast to a
previously reported heterozygous polymorphism (22). Secondly,
a patient with aggressive PG was found to have a novel PSTPIP1-
R405C mutation (28). Data from this case study indicated
that endogenous PSTPIP1 negatively regulates macrophage
podosome formation and extracellular matrix degradation.
Thirdly, a novel mutation in the PSTPIP1 gene resulted in a
case of pyoderma gangrenosum, acne and ulcerative colitis
(PAC). The associated elevated IL-1β levels were responsive
to the IL-1R antagonist anakinra (29). It is worth noting,
however, that findings from a biochemical study suggested that
PSTPIP1 mutations associated with PAPA syndrome do not
alter the negative regulatory role of PSTPIP1 in T-cell activation
(27).

Other Genes Implicated in HS
In a study of 139 unrelated patients with HS, single nucleotide
polymorphisms of the IL-12Rb1 gene coding for the IL-
12Rb1 receptor subunit did not genetically predispose to HS

(23). However, their carriage was directly associated with the
phenotype of HS, indicating the importance of the IL-12/IL-
23 pathway for the pathogenesis of HS. Findings from a case-
control study of two independent and genetically diverse cohorts
of patients with HS fromGreece (n= 163) and Germany (n= 98)
suggested that the copy number of the β-defensin gene cluster
(DEFB) both confers susceptibility for HS and modulates the
disease phenotype (30).

In a study involving 298 Han Chinese patients with a
range of auto-inflammatory diseases (Synovitis, Acne, Pustulosis,
Hyperostosis and Osteitis [SAPHO], rheumatoid arthritis,
AS and seronegative spondyloarthropathy), an AS-associated
single-nucleotide polymorphism (rs6908425 in CDKAL1) was
associated with the risk of developing SAPHO syndrome (32).

A genetic analysis of auto-inflammation in PG (13 patients)
and the syndromic form PASH (7 patients) identified mutations
in a range of auto-inflammatory genes (MEFV, NLRP3, NLRP12,
NOD2, LPIN2, and PSTPIP1), suggesting the involvement of
inflammatory pathways such as NLRP inflammasomes, cystolic
pattern recognition sensors, the innate immune system, and
IL-1β signaling (33).

In addition to the genetic analyses, two biochemical studies
implicated other proteins in the pathogenesis of HS. Microarray
data from one study suggested altered sphingolipid metabolism
in HS skin lesions compared with normal skin (3).

In a study of surgically excised skin or skin punch biopsies,
HS skin lesions showed on average 25-fold higher lipocalin 2
(LCN2) mRNA expression levels compared with the skin of
healthy donors (34).

Inflammatory Markers
There is increasing interest regarding the role markers of
inflammation in patients with HS or other syndromic forms.
A study in 14 patients with HS reported TNF-α-positive
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inflammatory cells in the dermis of patients but not in healthy
controls (35). A study comparing the presence of different
inflammatory cytokines in wound fluid specimens demonstrated
elevated levels of IFN-γ and TNF-β in HS lesions compared with
samples from age-matched chronic wound patients (5).

A retrospective study of HS outpatient medical files found a
significant association between C-reactive protein (CRP) levels
and neutrophil count with HS disease severity (36). A second
study reported elevated serum CRP levels in patients with HS
compared with healthy volunteers (38). A number of studies have
reported elevated mRNA and/or protein levels of interleukins in
the skin or serum. Alterations in the skin have been reported
for IL-1β (33), CXCL-8/IL-8 (33, 37), IL-17/IL-17A (33), IL-32
(42), and IL-36/IL-36α/IL-36β/IL-36γ (37, 41). Alterations in the
serum have been reported for IL-1β (38), IL-6 (38), CXCL-8/IL-8
(38), IL-10 (38), IL-12p70 (38), and IL-17/IL-17A (38, 39).

Keratinocytes isolated from non-lesional skin of patients
with HS exhibited a pro-inflammatory profile in addition to
an enhanced production of AMPs such as hBD-2, psoriasin
(S100A7), and calgranulin (S100A8) (44), indicating that the skin
immune system is already activated in the steady state.

Microbiome
A number of studies investigated bacterial cultures from HS
lesions and generated evidence implicating the involvement
of microbes in disease pathogenesis. A histologic study of 42
patients with chronic HS identified bacterial aggregates (biofilms)
in 67% of chronic lesion samples and in 75% of perilesional
samples (47). The same author group conducted a case-control
study of punch biopsy specimens and demonstrated that the
microbiome in patients with HS differs significantly from that
in healthy controls in both lesional and non-lesional skin (48).
A microbial analysis of lesional vs. unaffected skin from 65
patients with HS identified anaerobic microbes in 83% lesions

vs. 53% control samples, and the microbiome varied with
disease severity (45). These bacteria were associated with low
pathogenicity. An extensive prospective microbiological study
identified two opportunistic bacterial pathogens associated with
HS lesions (S. lugdunensis and anaerobic actinomycetes) (43).
These pathogens can cause abscesses and severe infections.
A cross-sectional study of 50 patients reported that bacterial
colonization was correlated with severity and localization of
HS lesions (46). Over two-thirds (68.8%) of patients with both
aerobic and anaerobic bacteria had the most severe grade of HS
(Hurley stage III).

Physiological and Environmental Risk

Factors
Findings from the literature review supported the involvement
of previously suggested physiological and environmental risk
factors, such as smoking and obesity, in HS (36, 49, 51). A
postal follow-up survey study (n = 212) found the chance
of remission from HS may be improved in non-smokers vs.
smokers, and in non-obese (body mass index [BMI] <30)
vs. obese patients (49). In contrast, a retrospective study of
inflammatory serum markers in HS outpatients found no
association between smoking status and HS severity but smoking

was associated with increased neutrophil counts (36). This study
did find an association between increased BMI and HS severity,
whereas there was no correlation between BMI and neutrophil
counts.

Related to obesity, an analysis of 14 obese patients with
HS described the role of mechanical stress (for example on
the abdomen at the level of the waistband) in promoting the
“Koebner phenomenon” in HS (51). The development of lesions
at sites of traumatized but previously uninvolved skin highlights
the importance of localized environmental factors in HS
development. A hospital-based cross-sectional study conducted
in the Netherlands reported a significantly higher average BMI
in 106 patients with HS vs. 212 general dermatological patients
(21). Among those patients identified as obese, bodyweight
distribution was more peripheral in patients with HS than those
without, consistent with enhanced friction due to overlapping
skin folds.

Kromann and colleagues reported no clear effect of pregnancy
or menopause on HS symptoms (49). However, in a cross-
sectional survey based study, a substantial subset of women
did experience HS-related alterations, with deterioration of HS
around menses and amelioration of symptoms during pregnancy
reported in 43% (n = 80) and 30% (n = 29) of the respondents,
respectively (52).

Evidence for Shared Pathology With Other

IMIDs
To consider the above findings in relation to the pathogenesis
of other established IMIDs, an informal literature review was
conducted. Inflammatory bowel disease (CD and UC), AS,
psoriasis, PsA, PG and Behçet’s disease are characterized
by different pathogeneses but they also share common
immunological, genetic and risk factors (Table 2).

Several cytokines are systemically-raised in many of these
IMIDs, particularly those implicated in the Th1 and Th17
responses, including TNF-α, IL-12/23, IL-17, IL-12, IFN-γ, IL-
1β, and the IL-1 family including IL-36 (33, 37, 60, 67, 73).
Several of the inflammatory cytokines have also been shown to be
upregulated inHS [e.g., IFN-γ (5), IL-2, TNF-α (33, 35) and TNF-
β (5)] are produced by Th1 cells, implicating the Th1 response in
the pathogenesis of HS. Furthermore, the IL-36 family, also found
to be upregulated in HS (37, 41), plays an important role in the
modulation of Th1 and Th17 immune responses.

Data also support the notion of shared genetic pathways
of inflammation. For example, NOD2 mutations in CD are
identified in PG and PASH (33) but conflicting evidence
concerns their association with psoriasis and PsA (63, 75).
MEFV mutations are found in FMF as well as PG and PASH;
co-occurrence of FMF and HS is not uncommon (33, 76).
Other genes conferring susceptibility in CD, such as OCTN, are
associated with PsA (63).

In addition to shared genetic factors, the overlap in risk
factors observed for different IMIDs also highlights the similar
mechanisms that account for them. For example, smoking may
confer a protective role in the pathogenesis of UC, PG and
Behçet’s disease but increases susceptibility in CD, AK, psoriasis
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TABLE 2 | Pathogenesis of established immune mediated inflammatory diseases in relation to hidradenitis suppurativa.

Disease Disease overview Keyα genetic factor(s) Keyα cytokine

profile

Biologics Risk factors References

HS Inflammatory skin disease

with genetic, immunological,

and environmental

background

γ-secretase (NCSTN),

PSTPIP1

Th1, Th17

IL-1β, 6,

CXCL/IL-8,12, 17,

23, IFN-γ, TNF-α

Anti-TNF-α

inhibitors

Smoking, obesity,

mechanical friction

(5, 19, 24–

26, 31, 33, 36–

38, 41, 49, 51)

IBD

CD Imbalance between gut

microbiome and host

immune system with genetic

background

NOD2 (CARD15), ATG16L1,

IRGM, FUT2, OCTN,

TNFSF15, IL10, IL12B,

IL23R, HLA, STAT3, JAK2,

TNFSF15, MUC1

Th1, Th17 IL-1β,

6, 12, 17, 23,

IFN-γ, TNF-α

Anti-TNF-α

inhibitors

Smoking, diet, vitamin D

deficiency, medications,

enteric infections

(53–55)

UC Imbalance between gut

microbiome and host

immune system with genetic

background

HNF4A, CDH1, LAMB1,

GNA12, SLC9A, TNFSF14,

ECM1, IL10, IL12B, IL23R,

HLA, STAT3, JAK2,

TNFSF15, MUC1

Th2, Th17

IL-1β, 6, 12, 13,

17, 23 TNF-α

Anti-TNF-α

inhibitors

Non-smoking,

appendectomy, diet, vitamin

D deficiency, medications,

enteric infections

(55)

AS Imbalance between gut

microbiome and host

immune system with genetic

background

HLA-B27, HLA-B40,

ERAP1/2, CARD9, IL12B.

IL23R, IL27, STAT3, JAK2,

TYK2

Th17 IL-6, 17, 22,

23, 26, IFN-γ,

TNF-α

Anti-TNF-α

inhibitors

Infection, smoking,

testosterone

(56–62)

Psoriasis Inflammatory skin disease

with genetic and

immunological background

PSOR1, HLA-C, ERAP1,

LCE3D, IL12B, IL23R,

TNFAIP3, ZNF313, TYK2,

Th1, Th17

IL-2, 17, 22, 23,

26, TNF-α, IFN–γ

Anti-TNF-α

inhibitors, T cell

targeted therapies

Obesity, infection (63–68)

PsA Inflammatory arthritis

associated with psoriasis

with genetic, immunological,

and environmental

background

HLA-B. HLA-C, OCTN

IL12B, IL23R

Th1, Th17

IL17, 23, TNF-α

Anti-TNF-α

inhibitors

Physical trauma, smoking,

obesity, infection, heredity

PG Inflammatory, ulcerating,

neutrophilic skin disease

with genetic, immunological,

and environmental

background

MEFV, NLRP3, NLRP12,

NOD2, LPIN2, PSTPIP1

IL-1β, 17, TNF-α Anti-TNF-α

inhibitors

Physical trauma,

non-smoking, metabolic

syndrome

(33, 69–71)

Behçet’s

disease

Multi-systemic,

inflammatory, vasculitis with

genetic, immunological, and

environmental background

HLA-B5, ERAP1

IL10, IL12RB2,

IL-23R,STAT4,

CCR1-CCR3, KLRC4,

TNFAIP3, FUT2

Th1, Th17 IL-6,

11, 17, 21, 22, 26,

TNF-α,

Chitinase3-like1,

gp130/sIL−6Rb,

sTNF-R1,

sTNF-R2

Anti-TNF-α

inhibitors, anti-IL1,

INF-α

Non-smoking, obesity,

infection

(69, 72–74)

αData summarize key genes and cytokines involved in the pathogenesis of these diseases but many other genes, cells types and mediators are involved. AS, ankylosing spondylitis;

CD, Crohn’s disease; HS, hidradenitis suppurativa; PG, pyoderma gangrenosum; PsA, psoriasis and psoriatic arthritis; UC, ulcerative colitis.

and PsA (Table 2). With the exception of AK and conflicting
evidence for Behçet’s disease (56, 74), the pathogenesis of most
IMIDs appears unrelated to sex-specific factors. Understanding
the distinct and shared genetic, immunologic and risk factor
profiles of IMIDs will aid the development of effective treatments
to target the pathogenic mechanisms involved and modify the
disease course.

It has previously been proposed that the link between HS
and other conditions with demonstrated systemic pathology
may be attributed to common genetic or environmental factors

and/or shared inflammatory pathways (77).The data identified
in this review demonstrate the significant overlap between the
pathogenesis of HS and the aforementioned IMIDs. The most
striking similarity among these diseases is that of aberrations
in the innate immune response, particularly the IL-23/Th17
pathway (Table 2).

Integrated Viewpoint on HS Pathogenesis

“Sequence of Events”
By identifying the latest publications on the pathogenesis of HS

and evaluating it in the context of more established pathogenic
mechanisms for known IMIDs, this review has collated

substantial evidence that HS is a chronic immune-mediated

auto-inflammatory disease with a multifactorial pathogenesis.
Four key themes have emerged from this review. First,

genetic factors play a key role in causing HS. Mutations in a
range of genes, including NCSTN mutations in the γ-secretase

complex and PSTPIP1 mutations, are directly associated with
auto-inflammatory disease (26, 27, 29, 31). However, the majority
of HS cases appear to be non-familial, suggesting the existence

of separate subsets and the need for stratification within patients
diagnosed with HS (25). Secondly, the up-regulation of cytokines
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including TNF-α and a range of cytokines (predominantly
Th17-related) are connected to auto-inflammatory mechanisms
in the pathogenesis of HS (5, 35, 38). Thirdly, there is an
alteration in the local microbiome of normal-appearing vs.
lesional skin (43, 45, 47, 48). Data also suggest that bacterial
aggregates are associated with inflammation of chronic HS
lesions, and it is proposed that they most likely occur as a
secondary event, possibly due to predisposing local anatomical
changes such as sinus tracts (tunnels), keratinous detritus and
dilated hair follicles (47). Finally, enhancement of HS risk
occurs via a range of physiological and environmental factors

such as smoking, obesity and mechanical friction (21, 36, 49,
51).

On the basis of the evidence reviewed here, we are able to
take a cohesive view and to propose a three-stage sequence of
events that contribute to the pathogenesis of HS. This integrated
viewpoint is illustrated schematically in Figure 2.

The first event is follicular occlusion with subsequent dilation.
This may be driven by endogenous factors in individuals
harboring a genetic predisposition for an enhanced risk of
infundibular keratinisation and cyst formation. Exogenous
factors such as smoking, mechanical friction and metabolic

FIGURE 2 | Schematic diagram to illustrate postulated sequence of events underlying HS pathophysiology. AMP, antimicrobial protein; HBD, human beta-defensin;

IFN, interferon; IL, interleukin; MMP, matrix metalloproteinase; TIMP, tissue inhibitor of metalloproteinase; TNF, tumor necrosis factor.

FIGURE 3 | Schematic diagram illustrating activation of the inflammasome in HS and related syndromes, which ultimately results in an auto-inflammatory immune

response. CXCL, chemokine ligand; DAMP, danger-associated molecular pattern; IL, interleukin; IFN, interferon; PAMP, pathogen-associated molecular pattern; Th, T

helper cell; TLR, toll-like receptor; TNF, tumor necrosis factor.
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changes such as obesity—which is associated with acanthosis—
also contribute to occlusion of the follicular isthmus.
Furthermore, occlusion of the hair follicle may lead to a
dysregulation of the homeostatic keratinocyte symbiosis and
microbial dysbiosis, making the skin prone to a Th1/Th17-driven
inflammatory disease.

The second event is rupture of the dilated follicle. The
scattering of follicle content in the dermis including keratin
fibers, commensal flora or pathogen- and damage-associated
molecular patterns (PAMPs/DAMPs) triggers an acute and
severe immune response. The anatomical location, i.e., the
inverse body areas, and enhanced mechanical friction at these
predilection sites facilitates the inward rupture and extension
of inflammation. We argue that release of the follicular debris
into the dermis results in simultaneous activation of multiple
inflammatory pathways, particularly Th17/IL-23, the (NLRP)
inflammasomes and innate receptors (toll-like receptors, TLRs
such as TLR2). Activation of the inflammasome in HS and
related syndromes including PASH and PAPA(SH) is illustrated
schematically in Figure 3. This is accompanied by histological
alterations with a diverse cell infiltrate characterized by themixed
participation of monocytes, neutrophils, multinucleated giant
cells, B-cells, plasma cells, T-cells, and natural killer cells, leading
to an erythematous nodule or fluctuating abscess.

The third event is chronic inflammation with sinus tract
or tunnel formation. Following follicular rupture, sequestered

proliferating Ki-67+ epithelial strands promote continuous
activation of the immune system. The presence of epithelial
strands in the dermis, in addition to an imbalance in
matrix metalloproteinases (MMPs) and tissue inhibitors of
metalloproteinase (TIMPs), and increased activity of fibrotic
factors such as tissue growth factor (TGF)-ß 1-2-3, may
lead to scarring and the development of sinuses/tunnels or
fistulae, a hallmark of chronic HS. These intracutaneous (partly)
epithelialized cavities provide an excellent habitat for biofilm-
producing bacteria, which are able to continuously trigger
inflammation with associated purulent drainage. Furthermore,
we hypothesize that circulating pro-inflammatory cytokines and
chemokines from chronic lesions may activate the immune
system of the hair follicle in distant predilection sites.

Current Therapeutic Options for HS
HS management usually consists of the combination of both
medical therapies and surgical interventions. Themain treatment
goal, to improve patients’ quality of life, can be achieved by
reducing the inflammation-related pain and purulent discharge,
limiting the incidence and duration of flares, and removing
chronic lesions using surgical techniques (78). A short overview
of current treatment options including the therapeutic target
and/or the suggested pathophysiological link(s) is depicted in
Table 3. These data summarize anti-inflammatory therapies in
addition to surgery and lifestyle changes such as smoking

TABLE 3 | Short overview of actual treatment options for hidradenitis suppurativa, based on Van Straalen et al. (78).

Treatment optionsα Therapeutic target or suggested pathophysiological link Referencesß

LIFESTYLE CHANGES

Smoking cessation Reduction of follicular acanthosis; less xenobiotic metabolism, e.g., via the aryl

hydrocarbon receptor, with potential restoration of alterations in the immune response

(8, 49)

Weight loss Improvement of the metabolic state, thereby reducing follicular acanthosis; less

mechanical friction as a result of less overlapping skin folds with potential restoration

of the local microbiome

(79)

LOCALLY ADMINISTERED AGENTS

Clindamycin 1% lotion Anti-inflammatory and antibacterial properties; for acute lesions (80)

Resorcinol 15% cream Removal of follicular plugging (prophylactic effect) and early rupture of an abscess

due to its keratolytic properties; antiseptic properties

(81, 82)

Intralesional triamcinolone Pan-cell inhibitor; for acute lesions to eradicate the inflammatory cell infiltrate (83)

SYSTEMIC ANTIBIOTICS

Tetracyclins; clindamycin and rifampicin;

moxifloxacin, rifampicin, and metronidazole

Various modulations in the immune response, e.g., inhibition of neutrophilic migration

and chemotaxis, inhibiting IL-1ß and TNF-α secretion, upregulation of IL-10, inhibition

of the angiogenesis, and suppressing T-cell function; antibacterial effects

(80, 84–88)

BIOLOGICS

Adalimumab, infliximab; ustekinumab;

anakinra; MABp1

Monoclonal antibodies targeting TNF-α, IL-12/23p40, IL-1R, and IL-1α, respectively (14, 89–92)

SMALL MOLECULE DRUGS

Apremilast Inhibits PDE-4 in various inflammatory cell types, thereby modulating several pro- and

anti-inflammatory cytokines

(93, 94)

SURGERY

Deroofing, excision Removal of irreversibly damaged skin, i.e., sinus tracts or nodules/cysts recurring on

fixed locations

(95, 96)

αData summarize the most important medical and surgical therapeutic options in addition to lifestyle changes. The majority of the remaining evidence to guide management decisions is

based on case reports, case series with fewer than 10 patients, small cohort studies, and expert opinion, which are all not included in this overview. ßBased on highest level of evidence

or largest cohort for each intervention. IL, interleukin; PDE-4, phosphodiesterase-4; TNF, tumor necrosis factor.
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cessation and weight loss. First-line treatment options include
the use of antibiotics with anti-inflammatory properties, e.g.,
the tetracyclins and the combination of clindamycin and
rifampicin (80, 87). The anti-TNF-α agents adalimumab and
infliximab should be considered, respectively, as first- and
second-choice biologics for moderate-to-severe HS after failure
of systemic antibiotics (14, 90). Ustekinumab (anti-IL-12/23p40)
is potentially effective in the treatment of HS (89), whereas
the results of two randomized controlled trials investigating
IL-17 antagonists are awaited (ClinicalTrials.gov Identifiers
NCT02421172 and NCT03248531). Other promising treatment
options are MABp1, targeting IL-1α for HS patients not eligible
for adalimumab, and apremilast for patients with moderate HS
(92, 94).

LIMITATIONS

This review was subject to certain limitations. PubMed/Medline
and EMBASE were the only two databases used to identify
eligible studies. Any studies published in journals not listed
in PubMed/Medline and EMBASE are omitted from this
review. The extent of recent published evidence relating to the
pathogenesis of HS and related syndromic conditions is limited.
Finally, the review of other IMIDs for comparison with HS was
not systematic, and conclusions drawn from this informal review
must be interpreted with this methodology in mind.

FUTURE RESEARCH

Large gaps still remain in the understanding of the pathogenesis
of HS. Therefore, further research is warranted to ultimately
improve the management and treatment of patients with this
disease. Genetic research should aim to add more detail to the
proposed mechanism by which loss of function of NCSTN or
of other γ-secretase proteins causes familial HS and to better
stratify patients with HS. Immunologic studies should focus

on molecular drivers of tissue inflammation and injury in HS
and the relationship between HS cytokine profile and disease
activity. Microbiome research is needed to better characterize the
disruption to the microbial ecosystem and to elucidate whether
the disruption causes the disease or whether the disease causes
the dysbiosis. High-throughput metagenomic methods can make
this work possible. Finally, it will be important to focus research
on the interaction of environmental factors and immunogenetic
factors.
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A Commentary on

Hidradenitis Suppurativa: A Systematic Review Integrating Inflammatory Pathways Into a

Cohesive Pathogenic Model

by Vossen, A. R. J. V., van der Zee, H. H., and Prens, E. P. (2018). Front. Immunol. 9:2965.
doi: 10.3389/fimmu.2018.02965

We read with great interest the article “Hidradenitis Suppurativa: A Systematic Review Integrating
Inflammatory Pathways Into a Cohesive Pathogenic Model” by Vossen et al. (1). The authors have
admirably integrated data from genetic, cytokine, and microbiological studies in Hidradenitis
Suppurativa (HS) into a three-phase pathogenic model of disease.

However, we have concerns that inherent bias in the collated data may introduce inaccuracies
into the proposed model, and that highlighting the “known unknowns” in the pathogenesis of HS is
needed to advance our knowledge of this disease.

CRITICAL EVALUATION OF GENETIC POLYMORPHISMS IN HS

USING ACGM CRITERIA

Evidence for the role of gamma secretase sequence variants and notch signaling in HS is
strong but incomplete (2). Critical evaluation of known sequence variants (2) has highlighted a
“likely pathogenic” role for two of the three variants reported by Vossen et al. (1) (c.223G>A,
c.582+1delG) and “uncertain significance” to the remaining variant (c.647A>C) as defined by
American College of Genetic Medicine (ACGM) criteria (2). A recent systematic review (2)
identified 17 of 41 variants in HS as of “uncertain significance.” Genome Wide Association Studies
(GWAS) as well as functional and proteomic data linking identified sequence variants to the
inflammatory mechanisms driving HS are currently not available. Both areas of research are vital
in further evaluating the role of genetic variants in HS pathogenesis. It remains plausible that
a complex polygenic model better describes observations in some cases of familial HS (2). This
further emphasizes the importance of undertaking GWAS in this disorder.

DIFFERENCES IN NOTCH SIGNALING, THE TH17 AXIS AND

EPIDERMAL DIFFERENTIATION IN HUMAN AND MURINE

MODELS

Vossen et al. (1) correctly remark that the “many substrates” (1) of gamma secretase imply that
Notch signaling may not be the sole causative pathway resulting in active disease in HS (2). In light
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of this, one must heed caution in extrapolating the results of
gamma secretase knockout mouse models to human disease,
particularly given the known differences in Notch-AhR-IL-22-
Th17 pathways between mice and humans (3, 4). This is
especially pertinent given the role of the Th17 axis in HS
(1, 5). Murine models of AhR stimulation demonstrate a
concomitant elevation of IL-22 and IL-17A production whereas
human IL-22 production is accompanied by IL-17A reduction
due to expansion of IL22+ IL-17- CD4+ T cells (4). This
additional layer of complexity may explain discrepancies in
studies of lesional IL-17 levels in HS, but also highlights
the caution required in interpreting immunological data from
animal models in HS (6). Additionally, gamma-secretase-
Notch pathway knockout mouse models demonstrate disturbed
epidermal differentiation (both delayed and premature spinous
differentiation), barrier function (leading to lethal phenotypes)
and alopecia (7). Such manifestations are not seen in human
cases of loss-of-function variants in the gamma-secretase-Notch
pathway (2, 5, 6) implying the possibility of important differences
in the roles of the gamma-secretase-Notch pathway in epidermal
differentiation between murine and human models as previously
discussed by van der Zee et al. (6).

MECHANICAL FRICTION AND BODY-FOLD

OCCLUSION MAY INDIRECTLY DRIVE HS

VIA INCREASING LOCALIZED MOISTURE

AND PH ENCOURAGING PROTEOLYTIC

ACTIVITY OF PORPHYROMONAS SP.

The follicular occlusion paradigm and the role of mechanical
friction has been a long-standing component of HS
pathophysiology (1). However, in other diseases such as
acne, evidence is emerging that microcomedone formation
may be secondary to inflammation (8) (mediated by IL-1α)
bringing into question whether follicular occlusion is a primary
or secondary phenomenon in HS (9). The role of occlusion
and friction can be re-examined in light of insights into the
microbiological contribution to HS pathogenesis. Obesity,
heat and occlusion all have direct alterations to the cutaneous
microbiome through elevation in pH and increases in moisture
(10), both conditions which favor the proteolytic activity of
implicated bacteria including porphyromonas sp. (10, 11), as
well as the aberrant innate immune response to such bacteria
hypothesized to be an inflammatory driver in select cases of
HS (9, 11).

TREATMENT, SELECTION, AND

ANALYTICAL BIAS IN HS CYTOKINE

STUDIES

In examining the evidence from studies regarding inflammatory
pathways in HS, many published studies suffer from treatment,

selection, and analytical bias (12). The studies reporting
alterations in serum IL-1β, IL-6, IL-8, IL-10, IL-12p70, TNF-
α, and IL-17A were conducted on patients undergoing active
treatment (including Adalimumab), whilst measurement of
lesional IL-32 and IL-36, TNF-α and IL-17A was conducted 3–
8 weeks after withdrawal of active treatment (11). Variations in
the ratio of disease severity (measured by Hurley staging), BMI
and proportion of smokers may also influence the results of
these studies. Also, differences in analytical techniques (ELISA vs.
electrochemiluminescence) may influence the accuracy of data
(11). Future studies need to control or stratify for these potential
confounders, or at a minimum acknowledge the potential
influence upon results.

THE NEED FOR FURTHER MECHANISTIC

STUDIES IN HS

Our understanding of the pathogenesis of HS is far from
complete. Critical evaluation of mechanistic studies in HS is
necessary in order to compile an accurate, reproducible model
of disease. Identifying the major areas in which knowledge is
deficient or mechanisms unclear is the only method or rectifying
these areas of deficiency. For example, a major unknown in
the pathogenesis of HS are the mechanism(s) underlying the
development of sinus tracts. Vossen et al. (1) discuss the roles
of proliferating epithelial strands, matrix metalloproteinases
and TGF-B, however the exact mechanisms remain unclear. It
is also unknown why some patients develop aggressive tract
and scar formation and others do not (1, 9). The histologic
features of early tract formation in HS are reminiscent of
impaired wound healing and epithelial-mesenchyme transition
(demonstrated by levels of TGF-β, MMP2, and ICAM-
1) (9). Investigating these molecular mechanisms may help
in the identification of patient at risk for aggressive tract
formation or identify new therapies to prevent or ameliorate
existing disease.

Vossen et al. (1) are to be commended for their efforts in
synthesis of their pathogenic model for HS, however we wish
to highlight the “known unknowns” in our understanding of this
disease and the impact that bias in existing data may have in our
current understanding of HS pathogenesis.
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Insights Into the Pathogenesis of
Sweet’s Syndrome

Michael S. Heath* and Alex G. Ortega-Loayza

Oregon Health and Science University, Department of Dermatology, Portland, OR, United States

Sweet’s syndrome, also known as Acute Febrile Neutrophilic Dermatosis, is a rare

inflammatory condition. It is considered to be the prototype disease of neutrophilic

dermatoses, and presents with acute onset dermal neutrophilic lesions, leukocytosis,

and pyrexia. Several variants have been described both clinically and histopathologically.

Classifications include classic Sweet’s syndrome, malignancy associated, and drug

induced. The cellular and molecular mechanisms involved in Sweet’s syndrome have

been difficult to elucidate due to the large variety of conditions leading to a common

clinical presentation. The exact pathogenesis of Sweet’s syndrome is unclear; however,

new discoveries have shed light on the role of inflammatory signaling, disease induction,

and relationship with malignancy. These findings include an improved understanding of

inflammasome activation, malignant transformation into dermal infiltrating neutrophils,

and genetic contributions. Continued investigations into effective treatments and

targeted therapy will benefit patients and improve our molecular understanding of

inflammatory diseases, including Sweet’s syndrome.

Keywords: acute febrile neutrophilic dermatosis, neutrophilic dermatoses, malignancy, drug induced,

autoinflammation, clonality, hematology

INTRODUCTION

Sweet’s syndrome (SS) was originally described as “acute febrile neutrophilic dermatosis” by Sweet,
(1). His original report was based on the clinical-pathologic presentation of 8 womenwho presented
with acute onset fever, leukocytosis and erythematous, tender plaques with dense neutrophilic
infiltration in the dermis. These patients had no evidence of infection and had rapid response to
systemic corticosteroids. As additional reports of this newly described pathologic entity surfaced,
the syndrome was renamed to recognize Dr. Sweet (2). Subsequent to these initial accounts,
thousands of cases have been described in literature. This led to a better understanding and
recognition of a multitude of clinical variants and SS classifications. Unfortunately, due to the rarity
of SS, epidemiologic information including incidence is unknown.

The traditional description of tender erythematous plaques and nodules remains the
prototypical presentation. However, clinical variants including localized neutrophilic dermatosis
of the dorsal hands, bullous, subcutaneous, cellulitic, and necrotizing lesions have been reported
(3–7). Extracutaneous manifestations have also been reported including involvement with the
central nervous system, internal organs and musculoskeletal system (8–10). Histopathologic
variants include histiocytoid SS and SS with vasculitis which has been hypothesized to be a
secondary reaction (11, 12).
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SS is one pathologic entity within the broader neutrophilic
dermatoses classification. Neutrophilic dermatoses include SS,
pyoderma gangrenosum, neutrophilic eccrine hidradenitis,
and Behçet’s disease among others. Each disease has some
overlapping pathophysiology with an autoinflammatory
component made up of predominately neutrophilic infiltrate.
Each entity is distinguished by disease chronicity, tissue
involvement, and clinical appearance. Understanding the
pathogenesis of SS is important from a diagnostic and therapeutic
perspective. In a time of revolution in immunology and targeted
therapy the pathways discovered in SS can have broader
implications in additional autoinflammatory diseases as well
as malignancy.

DISEASE CLASSIFICATIONS AND

ASSOCIATIONS

SS has been associated with a multitude of diseases, malignancies
and medications at varying frequencies (Table 1). Given the
unpredictable nature of the disease, it has been difficult to reach
conclusions regarding true associations and causations. The
temporal relationships and frequency of concurrent processes
has led to the recognition of several pathologic relationships.
Some authors agree that there are three distinct variants which
are important to distinguish, given differential work up and
management recommendations. These three subtypes are Classic
SS, Malignancy Associated SS, and Drug Induced SS and will be
discussed individually and are summarized in Table 1.

Classic Sweet’s Syndrome (Idiopathic

Sweet’s Syndrome)
Classic SS is responsible for most SS cases and has a predilection
for women. Initial presentation most frequently occurs between
age 30 and 60 years (517), but has been reported in multiple
pediatric patients including neonates in the first 10 days of life
(518). Although considered idiopathic, it has been reported in
association with infections, pregnancy, and inflammatory and
autoimmune disorders among others (Table 1) (13, 30, 330, 435).

Diagnostic criteria for classic SS was proposed by Su and Liu
and updated by von den Driesch (254, 519). Diagnosis is based
on fulfilling both major criteria and two of the four minor criteria
which are presented in Table 2.

Drug Induced Sweet’s Syndrome
Themost commonly reported drug associations are Granulocyte-
colony stimulating factor (G-CSF), Azathioprine, and All-trans
retinoic acid (ATRA). Most other etiologies are infrequent
(Table 1). Diagnostic criteria for drug induced SS was suggested
by Walker and Cohen (250). It requires all five criteria
summarized in Table 3 be met to establish the diagnosis.

Malignancy-Associated Sweet’s Syndrome
It has been suggested that the first reported case of malignancy
associated SS was published by Costello 9 years prior to Sweet’s
disease defining paper (520). Malignancy, both solid tumor and
hematologic, have been reported in a large proportion of SS
cases (Table 1) (521). Specific SS characteristics may represent

an increased risk of malignancy, including subcutaneous and
histiocytoid histopathologic variants (522, 523). Diagnostic
criteria for malignancy associated SS is the same as classic SS,
except for the substitution of “an underlying malignancy” as a
minor criterion rather than “an inflammatory disease, pregnancy,
vaccination or infection” (254, 519).

PATHOGENESIS

Neutrophil Proliferation and Maturation
Just as the associated condition and etiology of SS varies
considerably, the pathogenesis is multifactorial and likely non-
uniform between subtypes of the disease. The inciting activator of
SS, especially classic SS, has not been determined, although cases
of hematologic malignancy and initiation of granulocyte colony
stimulating factors (G-CSF), all-trans retinoic acid (ATRA), and
fms-like tyrosine kinase-3 (FLT3) inhibitors offer a glimpse into
one mechanism. G-CSF acts within the bone marrow, serum
and tissue, causing neutrophil differentiation, maturation and
activation. As a response to pathogens, G-CSF is a part of the
innate immune system signaling which is maladaptively elevated
in inflammatory states (524). In cases of classic SS, patients with
an underlying infection or autoimmunity, the pathologic increase

in colony stimulating factors may be the causative agent (525,
526). Endogenously elevated G-CSF levels have been reported
in multiple cases of SS, with elevations in serum concentrations
correlating with clinical disease severity (127, 524). In vitro,
SS neutrophils have high rates of apoptosis when isolated.
Conversely, when cultured with serum from SS patients, the
apoptosis rate is significantly decreased and neutrophil survival is
significantly greater (524). This serum enhanced survival suggests
elevated G-CSF among other circulating factors contribute to
the disease. Both solid tumor and hematologic malignancies can
produce colony stimulating factors. In malignancy-associated
SS, this paraneoplastic phenomenon might represent an inciting
factor in disease progression (127, 527–529). The frequency
of drug-induced SS from the exogenous use of G-CSF further
reinforces the causative role of G-CSF in SS (517, 530–533). After
initiation of G-CSF therapy in SS associated with hematologic
malignancies, it is theorized that G-CSF induces differentiation
and maturation of leukemic cells which then home to the
skin (55, 534). Similarly, ATRA induces the differentiation of
promyelocytes in acute promyelocytic leukemia (APL). ATRA
has been associated with developing SS in APL and the
mature dermal neutrophils may be progeny from differentiated
malignant cells. This is evidenced by sequential SS lesional
biopsies showing gradual maturation of neutrophils in the dermis
mirroring neutrophil maturation in the peripheral blood (181).

Malignant Transformation
Investigations have shown neutrophilic clonality within
SS lesions suggestive of either hematologic malignancy
transformation into mature dermal neutrophils or localized
non-malignant neutrophil stemming from a common
dysfunctional progenitor (535, 536). Analysis with fluorescent
in situ hybridization have shown the SS lesional neutrophils
exhibit the same genetic abnormalities as the underlying
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TABLE 2 | Diagnostic Criteria for Classic Sweet’s Syndrome.

MAJOR CRITERIA

1. Abrupt onset of painful erythematous plaques or nodules

2. Histopathologic evidence of a dense neutrophilic infiltrate without

evidence of leukocytoclastic vasculitis

MINOR CRITERIA

1. Fever >38◦C

2. Associated with inflammatory disease or pregnancy or preceded by

upper respiratory infection, gastrointestinal infection, or vaccination

3. Excellent response to treatment with systemic glucocorticoids or

potassium iodide

4. Abnormal laboratory values at presentation (three of four of the following):

a. Erythrocyte sedimentation rate >20 mm/h

b. Positive C-reactive protein

c. >8,000 leukocytes per microliter

d. >70% neutrophils

malignant myeloblasts in serum and bone marrow, suggesting a
clonal transformation into dysplastic neutrophils in the dermis
(49, 55, 534, 537, 538). Recently, examination of the bonemarrow
and SS lesional tissue in a patient with concurrent acute myeloid
leukemia (AML) with single nucleotide polymorphism array and
next generation sequencing revealed FLT-3 gene mutations in
infiltrating mature neutrophils and neoplastic progenitor cells
(539). In one case series, FLT-3 mutations have been detected
in 39% of patients with AML and SS and FLT-3 inhibitors
are a known SS inducer (49, 540, 541). This gene encodes a
receptor tyrosine kinase normally present on hematopoietic
stem cells within the bone marrow and regulates myeloid
progenitor cell proliferation, survival, and differentiation (542).
In AML the FLT-3 mutations result in persistent activation.
The identification of this mutation in dermal neutrophils and
leukemic cells suggests a common progenitor origin.

Induction and Stimulus
Given the variety of underlying conditions including
medications, infections, and malignancy associated with a
similar clinicopathologic presentation in SS, one unifying
hypothesis is that SS is a hypersensitivity reaction. Immune
reaction to drugs, bacterial, viral, or tumor antigens
may initiate a cytokine cascade resulting in SS (3). The
efficacy of systemic corticosteroids and resolution of SS
with treatment of underlying disease with antibiotics or
chemotherapy supports this hypothesis, but there is a lack
of evidence showing immune-complexes, immunoglobulins
or changes in complement consistent with a hypersensitivity
reaction (11, 519, 543).

Photoinduction and Koebner phenomenon have also been
suggested as possible inciting etiologies in SS andmay explain the
distribution and localization to the skin (544). Photoinduction
of SS has been documented and confirmed in select patients
with experimental phototesting re-challenge (464, 545–549).
While not fully elucidated, a proposed mechanism is founded
on the immunomodulating effects of light. The most notable
concept involves the pro-inflammatory potential of ultraviolet B

TABLE 3 | Diagnostic Criteria for Drug Induced Sweet’s Syndrome.

1. Abrupt onset of painful erythematous plaques or nodules

2. Histopathologic evidence of a dense neutrophilic infiltrate without

evidence of leukocytoclastic vasculitis

3. Fever >38◦

4. Temporal relationship between drug ingestion and clinical presentation,

or temporally-related recurrence after oral challenge

5. Temporally-related resolution of lesions after drug withdrawal or

treatment with systemic corticosteroids

in activating neutrophils and inducing the production of TNF-α
and interleukin-8 (548, 550, 551). The formation of SS lesions in
response to localized trauma has been demonstrated by lesions
developing at sites of radiation therapy, surgery, burns, tattoos,
and lymphedema (442–445, 454–457, 472, 474).

Cutaneous Localization
Localization of neutrophils to the dermis in SS is complex and
theorized mechanisms are dependent on underlying etiology.
Normal neutrophils require TNF-α activated endothelium which
leads to neutrophil rolling and attachment via interdependent
interactions with selectins, intercellular cell adhesion molecules
(ICAM), and integrins (552). These surface linking molecules
in concert with inflammatory molecules, including TNF-α
and IL-1β, result in normal neutrophil extravasation into
tissue. In hematologic malignancy, myeloid blast cells have
increased expression of surface adhesion receptors and can
induce non-activated endothelial cell adhesion to express
receptors leading to accumulation of leukemic cells (553).
These cells further promote recruitment, accumulation and
tissue invasion by secreting inflammatory cytokines including
TNF-α and IL-1β (553). Leukemia cutis, a paraneoplastic tissue
invasion of leukemic cells, is well-recognized and has been
coexistent in patients with SS and within SS lesions (554–
556). Potential mechanisms include dysfunctional malignant
cells activating adhesions and creating an inflammatory
environment suitable for innocent bystander neutrophils
to extravasate, creating SS lesions. Alternatively, cancer
therapy, or paraneoplastic stimulatory factors may result in the
maturation of leukemia cutis cells into the mature neutrophils
within SS lesions. In non-malignant SS associated with other
inflammatory conditions, a similar pathologic inflammatory
environment could be responsible for localization and infiltration
of neutrophils.

Dysfunctional Immune Mediators
The role of a dysfunctional innate immune response in SS
is well-established, but evidence is emerging that the adaptive
immune system has a significant role. In classic SS, lymphocytes,
specifically Type 1 helper T cells (Th1), have been theorized to
be responsible for neutrophil activation and localization. This is
evidenced by elevated serum levels of Th1 cytokines including
IL-1α, IL-1β, IL-2, and IFN-γ (557). Further investigation
utilizing immunohistochemical stains has shown a significant
presence of these Th1 cytokines and a relative reduction of
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Type 2 helper T cell (Th2) markers in SS dermal lesions.
This suggests hyperexpression of Th1 cells and a comparative
suppression of Th2 cells (137, 558, 559). Th1 cells secrete
TNF-α and INF-γ, which are potent neutrophil recruiters
and activators. Proinflammatory T helper 17 (Th17) cells and
related cytokines have also been identified as a pathologic
agent in SS (559–562). The role of Th17 cells is most well
studied in one of the most prevalent autoinflammatory diseases:
psoriasis (563). Th17 produces multiple inflammatory molecules,
including interleukin 17 (IL-17). IL-17 works synergistically
with TNF α, IL-1β, and IFN-γ to create an inflammatory
response and recruits and localizes neutrophils by inducing
adhesion molecules, and chemoattractants such as IL-8 (564).
Interactions with TNF α and IL-17 induces basement membrane
remodeling via pericytes and neutrophils (565). In this SS
driven remodeling process, matrix metalloproteinases (MMPs)
are significantly upregulated. Upon inhibition of MMP-3, there
is a reduction of neutrophil chemotaxis and extracellular matrix
degradation (565). The production of G-CSF and GM-CSF are
enhanced by IL-17, which leads to activation and proliferation
of neutrophils (566, 567). Additional pro-inflammatory markers
elevated in SS include: CD40/CD40 ligand, CD56, G-CSF,
myeloperoxidase, IL-5, IL-8 IL-12, IL-13, L-selectin, MMP-
2, MMP-9, Sialic acid-binding immunoglobulin-type lectin
(Siglec) 5, Siglec 9, Transforming growing factor β (TGF-
β), TIMP-1, TNF α, and VEGF (127, 524, 558–560, 562,
568, 569). Significant levels of CD56, a Natural killer cell
marker, CD40/CD40 ligand, and IFN-γ may indicate the role
of antigen presenting cells, as well as a cross-link between
the robust innate and adaptive immune response in SS (570).
Further evidence of adaptive immunity involvement is suggested
by SS remission following treatment with therapies targeting
adaptive cell processes including corticosteroids, cyclosporine,
IVIG, rituximab, and vedolizumab (121, 132, 571–576). Table 4
summarizes cytokines and inflammatory markers documented
in SS. Figure 1 shows the proposed multifactorial mechanism
of disease.

Genetic Contributions
There is a growing body of knowledge regarding the genetic
contributions in neutrophilic dermatoses including SS. Genetic
susceptibility to the SS variant, neutrophilic dermatosis of
the dorsal hands, in HLA-B54 positive Japanese individuals
has been reported (577). Additional evidence of genetic co-
susceptibility and possible mechanisms of SS have been described
in synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO)
syndrome, chronic recurrent multifocal osteomyelitis (CRMO),
and Majeed syndrome (289, 506, 578, 579). There have
been several links between SS and Familial Mediterranean
fever (FMF) (425, 580). FMF is an inherited disease in
which mutations in the MEFV gene. The MEFV gene is
the causative defect identified in FMF, and it is responsible
for the expression of pyrin (581). In a non-pathologic state,
pyrin, an intracellular pattern recognition receptor, forms the
inflammasome complex in response to infections or changes
in cellular homeostasis, leading to splicing and secretion of
IL-1β (581, 582). Mutations to MEFV as seen in FMF and

TABLE 4 | Inflammatory and signaling molecules elevated within lesional dermis

and serum.

Elevated in dermis References Elevated in serum References

Interleukin-1β (137, 559) Interleukin-1α (557)

Interleukin-4 (558) Interleukin-1β (557)

Interleukin-5 (558) Interleukin-2 (557)

Interleukin-8 (559, 560, 562) Interleukin-6 (127, 568)

Interleukin-10 (561) Interferon γ (557)

Interleukin-12 (558) G-CSF (127, 524,

568, 569)

Interleukin-13 (558) TNF-α (568)

Interleukin-17 (559, 560, 562)

Interferon γ (558)

MMP-2 (559, 560, 562)

MMP-9 (560, 562)

Myeloperoxidase (560, 562)

Siglec 5 (559)

Siglec 9 (559)

TGF-β (561)

TNF-α (559, 560, 562)

TIMP-1 (559)

VEGF (560, 562)

G-CSF, Granulocyte-colony stimulating factor; MMP, Matrix metalloproteinase; Siglec,

Sialic acid-binding immunoglobulin-type lectin; TGF-β, Transforming growth factor-β;

TNF-α, Tumor necrosis factor-α; VEGF, Vascular endothelial growth factor.

neutrophilic dermatoses leads to a pathogenic inflammatory
response. FMF and SS have coexisted in the same patients and
genetic analysis has revealed heterozygous mutations of MEFV
in SS (425, 580).

Mutations in isocitrate dehydrogenase 1 (IDH1) have
been identified as a possible connection to SS pathogenesis
in malignancy (583). IDH1 catalyzes reactions leading to
alterations in histones and DNA, causing differential gene
expression (584). In myeloproliferative diseases mutations
to IDH1 leads to epigenetic chaos as a result of DNA
hypermethylation, which leads to abnormal transcription
of numerous genes (583). Protein tyrosine phosphatase
non-receptor type 6 (PTPN6) plays an essential role in the
proliferation and signaling of cells within the immune system
(585). Mutations leading to the disruption of normal function
of PTPN6 have been identified in hematologic malignancies
and neutrophilic dermatoses in mice models (586–590).
Alteration of PTPN6 has also been identified in SS patients
through DNA sequencing analysis (591). The evidence to
date suggests that SS is a polygenic process but dysfunctional
activation of the inflammasome and IL-1β pathway offers a
unifying mechanism.

Model of Pathogenesis
The pathogenesis of SS is complex and multifactorial,
the different components discussed do not provide a
unifying pathway. The most complete model is within
the subset of SS patients with hematologic malignancies.
The pre-existing myeloid dysfunction and disruption
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FIGURE 1 | Summary of the hypothesized of Sweet’s Syndrome Pathogenesis. Inciting event leads to inflammatory state in which neutrophils mature and proliferate.

Lymphocytic cytokine response leads to dermal localization.

in normal cytokine and stimulating factors provide the

environment necessary for aberrant neutrophil activation and
inflammation. When patients with hematologic malignancies
undergoing treatment develop SS a proposed mechanism
is transformation and maturation of dysfunction leukemic
cells which continue to exhibit inappropriate activity.
In classic SS and drug-induced SS, an inciting stimulus
such as an antigen in an individual with a genetical
predisposition likely creates a similar pro-inflammatory
state resulting in SS. The rarity of SS and the lack of robust
experimentation is a major restraint in understanding the
disease pathogenesis.

TREATMENT APPROACHES

Management of SS is partially reliant on the underlying
association, but given the severe presentation and possibility of
non-modifiable etiology, prompt treatment is usually warranted
(592). In drug induced SS, identification and removal of the
offending agent is beneficial but does not negate the need for
treatment. First line treatments for SS include corticosteroids
and other agents such as potassium iodide or colchicine.
Second line agents for SS include indomethacin, clofazimine,
cyclosporin, and dapsone (592, 593). The effectiveness of these
medications with differential mechanisms of action highlights
the role of both adaptive and innate cells in the pathogenesis
of SS (594–596). With advances in our understanding of the
pathophysiology of neutrophilic dermatoses, especially the role
of TNF-α and IL-1β, the use of targeted therapy with IL-1 and
TNF-α inhibitors has been effective (323, 593, 597–603). There
have been reports of several novel treatments for SS, including
granulocyte and monocyte adsorption apheresis, but due to
the rarity of SS and the effectiveness of established treatments
there have been limited investigations into these alternative
treatments (604).

CONCLUSIONS AND FUTURE

DIRECTIONS OF RESEARCH

Over the last half century, SS has retained its defining
characteristics while medical advances and scientific discovery
have led to a better understanding of disease mechanisms
and associations. The clinical similarity of SS with other
neutrophilic driven autoinflammatory entities is challenging in
clinical grounds as the diagnostic criteria is not applicable
in atypical presentations or overlapping autoinflammatory
dermatoses. Relations with medications, inflammatory diseases,
and malignancy have been established and expanded on.
Dermal neutrophil clonality and transformation of malignant
myeloid progenitors into infiltrating neutrophils provides
evidence for an etiology in myeloproliferative disease and
offers insight into future directions of research. Investigations
into immunologic signaling pathways have improved our
understanding of the interrelationships between inflammation
and disease pathogenesis. The involvement of IL-17, IL-1β, and
inflammasome activation are of great interest in neutrophilic
dermatoses including the utilization of targeted therapies. As
this pathway is ubiquitous throughout inflammatory processes,
an emphasis on better understanding its mechanism will
be paramount to advances in not only SS but throughout
medicine. As genetic analysis and gene profiling techniques are
revolutionized and optimized, new discoveries on the role of
genetic susceptibility, heritability, and more specific markers of
neutrophilic dermatoses will be on the horizon
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Leprosy is an infectious disease caused by the intracellular bacillusMycobacterium leprae

that mainly affects the skin and peripheral nerves. One of the most intriguing aspects

of leprosy is the diversity of its clinical forms. Paucibacillary patients are characterized

as having less than five skin lesions and rare bacilli while the lesions in multibacillary

patients are disseminated with voluminous bacilli. The chronic course of leprosy is often

interrupted by acute episodes of an inflammatory immunological response classified

as either reversal reaction or erythema nodosum leprosum (ENL). Although ENL is

considered a neutrophilic immune-complex mediated condition, little is known about

the direct role of neutrophils in ENL and leprosy disease overall. Recent studies have

shown a renewed interest in neutrophilic biology. One of the most interesting recent

discoveries was that the neutrophilic population is not homogeneous. Neutrophilic

polarization leads to divergent phenotypes (e.g., a pro- and antitumor profile) that are

dynamic subpopulations with distinct phenotypical and functional abilities. Moreover,

there is emerging evidence indicating that neutrophils expressing CD64 favor systemic

inflammation during ENL. In the present review, neutrophilic involvement in leprosy is

discussed with a particular focus on ENL and the potential of neutrophils as clinical

biomarkers and therapeutic targets.

Keywords: leprosy, Mycobacterium leprae, erythema nodosum leprosum, inflammation, neutrophils

INTRODUCTION

Leprosy is a millennial disease that continues to adversely impact the public health systems
of endemic countries. The most commonly affected sites are the dermis and the peripheral
nerves. Permanent disabilities are the direct consequence of the neurological damage caused by
the Mycobacterium leprae infection, especially when the damage is left untreated in its early
stages. During 2017, 150 countries reported 210,671 new cases of leprosy at a detection rate of
2.77/100,000 (1).

Leprosy severity is determined by the regulation of cell-mediated immunity, ranging anywhere
from mild, presenting with a single, well-demarcated lesion (termed tuberculoid: TT), to
severe, involving widespread, poorly-demarcated, raised, or nodular lesions (termed lepromatous
lepromatous: LL). Biopsies of TT lesions reveal well-developed granulomatous inflammation
associated with the marked presence of Langerhans cells (CD1a+) and rare acid-fast bacilli. LL
dermal lesions are characterized by the presence of numerous heavily-infected foamymacrophages,
a sparse infiltrate of lymphoid cells, and the number of Langerhans cells is consistently low (2–4).
The so-called borderline patients (BT, BB, and BL) are situated between the extremes of the TT and
LL poles. These patients display a mixed unstable immune response whose characteristics are in
accordance with their proximity to one pole or the other (5).
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During disease evolution, 50% of LL and 5–10% of BL patients
present a variety of dermatological inflammatory phenomena
with systemic symptoms (6, 7), referred to as erythema nodosum
leprosum (ENL, or Type 2 reaction). ENL together with
reversal reaction are core aspects of leprosy that profoundly
impact both the course of the disease and the development
of nerve damage (8). Clinically, ENL patients demonstrate
painful subcutaneous nodules on the apparently normal skin
(Figure 1). More severe cases display systemic inflammation
accompanied by neutrophilic leukocytosis, fever, and malaise
similar to sepsis (9).

Histologically, ENL lesion has prominent neutrophilic
infiltrate mainly lodged inside the deep layers of the dermis and
subcutaneous tissue superimposed on chronic multibacillary
leprosy (Figure 2). A cluster of foamy macrophages containing
fragmented bacilli and a high number of Langerhans cells
in dermis and epidermis are usual (4, 10–14). Eosinophils,
lymphocytes and plasmocytes are also found together with
neutrophils. It seems that with the evolution of the ENL
lesions, the number of lymphocytes and plasmocytes increases,
while the number of neutrophils and eosinophils decreases
(11, 15–18). Vascular abnormalities (endothelial swelling, edema,
and angiogenesis) are consistently observed in acute stage
of ENL lesions and reduced after anti-reactional treatment
(11, 18–20). The ulcerated form, called necrotizing ENL,
demonstrates similar, though more intense, histological findings
and leukocytoclastic vasculitis is observed (17, 21, 22) (Figure 2).

Currently, ENL is often designed as a neutrophilic immune
complex-mediated disease (23). The cause of ENL is eminently
complex. Immune complex deposits have been implicated in
the cutaneous lesions of ENL (13, 24). It is primarily driven
by an aberrant dermal immune response that is modified by
genetic susceptibility (25) and various environmental stimuli
(e.g., pregnancy, lactation, puberty, intercurrent infections,
vaccination, and psychological stress) (26). Elevated levels of
tumor necrosis factor (TNF)-α and other pro-inflammatory

FIGURE 1 | Skin lesions of ENL patient. Image from Leprosy Laboratory

collection.

FIGURE 2 | (A) Histopathological aspects of ENL skin lesions. (B) High power

showing foamy macrophages and neutrophil infiltrate. (C) High power showing

a collection of neutrophils (microabscess) in deep dermis. (D) Necrotizing ENL,

Epidermal ulceration with vasculitis. Hematoxylin and eosin staining (scale

bars: 100µm). Images from Leprosy Laboratory collection.
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cytokines have been associated with ENL episodes while,
in the opposite direction, TNF suppression leads to clinical
improvement (27, 28). Learning more about the factors that
ultimately trigger and/or sustain ENL could lead to the
identification of strategies to control and, most importantly,
prevent the associated inflammation.

A case can be made that the role played by neutrophils
in leprosy has been largely overshadowed by several studies
dedicated to the macrophages and Schwann cells targeted by M.
leprae (29). In the blood of multibacillary leprosy patients (LL
and BL), neutrophils and monocytes are loaded with the bacilli
(30) and their clearance will only effectively occurs after 2–3
months of multidrug therapy (31). Novel aspects of neutrophilic
biology reported in recent papers strongly indicate that, in
ENL, neutrophils are active and not neutral, thus providing
new insights into their participation in the disease. In the
present review, we tried to highlight some of the potential gaps
in knowledge among neutrophils in leprosy. Our focus was
on attempting to identify the possible ways neutrophils might
contribute to ENL-linked systemic inflammation. As a final
concern, the potential of these cells as clinical biomarkers and
therapeutic targets was highlighted.

SOME OLD AND NEW FINDINGS ON

NEUTROPHIL BIOLOGY

Neutrophils have always been considered effector cells of
innate immunity with a limited biosynthetic capacity. The
primary role ascribed to these cells was as warriors against
extracellular pathogens and in acute inflammation. These cells
were classically characterized by their phagocytic ability, the
release of lytic enzymes from their granules, and the production
of reactive oxygen intermediates with a microbicidal potential.
In the 1990s, however, this limited view was challenged
by evidence that neutrophils actually survive much longer
than initially believed (32) and have added ability to express
genes encoding proinflammatory key mediators as components
of the complement system, Fc receptors, chemokines, and
cytokines (33).

Neutrophils are continuously generated in the bone marrow
from its myeloid precursor. Daily production approximates 2
× 1011 cells. In humans, 50–70% of circulating leukocytes
are neutrophils whereas, in mice, they range from 10 to
25%. This process is largely controlled by the granulocytic
colony stimulating factor (G-CSF), produced in response to
interleukin 17A (IL-17A). IL-17A is primarily synthesized
by Th17 cells. But, innate immune cells, including γδ T
cells, neutrophils, macrophages, innate lymphocyte cells (ILC),
mast cells, and keratinocytes, have recently been found to
be involved in IL-17 secretion (34). Other molecules—such
as granulocytic–macrophage-colony stimulating factor (GM-
CSF), IL-6, and KIT ligand (KITL, also known as KITLG)—
likewise induce granulopoiesis. The production of this cytokine
storm during the inflammatory responses results in overactive
granulopoiesis and neutrophilia. During maturation, neutrophils
undergo a number of stages referred to as either myeloblasts,
pro-myelocytes, myelocytes, metamielocytes, band neutrophil,

or, lastly, polymorphonuclear cells (segmented). Neutrophilic
granules are formed sequentially during maturation of the pro-
myeloid stage (35).

In the circulation, mature neutrophils have an average
diameter of 7–10µm, segmented nucleus, and enriched
cytoplasmic granules and secretory vesicles. Three types of
granules are formed during neutrophilic maturation, as follows:
(i) azurophilic (or primary) containing myoloperoxidase
(MPO); (ii) specific (or secondary) containing lactoferrin; and
(iii) gelatinase (or tertiary) containing metalloproteinase 9
(MMP9, or gelatinase B). In humans, azurophilic granules are
differentiated into defensin-poor and -rich ones (36).

Neutrophils have long been considered short, half-life cells in
the circulation that normally survive approximately 1.5 h in mice
and 8 h in humans (37, 38). Pillay et al. demonstrated that, under
baseline conditions, the average life span of neutrophils in the
circulation is 12.5 h in mice and 5.4 days in humans (37). During
inflammation, neutrophils become activated and longevity
increases, ensuring the presence of these cells at the inflammation
site (32, 39). Endogenous products such as cytokines and growth
factors together with bacterial products activate neutrophils.
This increased half-life may allow neutrophils to perform more
complex activities in the tissue. Examples may include: resolution
of inflammation through the production of lipid mediators,
modulation of the adaptive response, and reverse transmigration,
which could involve the ability to exit the initial injury site and
migrate to other tissues such as bone marrow (40).

Neutrophils eliminate pathogens through various intra-
and extracellular mechanisms. When neutrophils encounter
microorganisms, phagocytosis occurs followed by the formation
of phagosomes. Microorganisms could be killed by NADPH
oxygenase-dependent pathways (reactive oxygen species, ROS)
or antimicrobial proteins (cathepsins, defensins, lactoferrin, and
lysozyme) (35). These microbial proteins are released into either
the phagosomes or the extracellular environment, acting against
intra- or extracellular pathogens, respectively.

ROS production, i.e., oxidative burst, is considered a key
component of the innate immune defense against bacterial and
fungal infections (41). To the best of our knowledge the literature
hasn’t shown yet oxidative burst in leprosy neutrophils. However,
oxidative stress was evaluated by measuring serum levels of
malondialdehyde (MDA) and superoxide dismutase (SOD)
activity and the results showed that leprosy patients present
increased serum levels of MDA, MDA/SOD ratio together with
a decreased SOD activity when compared to healthy controls
suggesting oxidative stress in leprosy (42). In addition, it was
demonstrated that the oxidative stress gradually increased along
the spectrum from TT to LL (43).

An elegant strategy was used to measure the antimicrobial
capacity of neutrophils to contain methicillin-resistant
Staphylococcus aureus (MRSA). Leliefeld et al. (44) used a long-
term neutrophil bacterial interaction in a 3D scaffold reminiscent
of the in vivo environment. In such condition it was possible to
evaluate the capacity for long-term intracellular containment
of live bacteria. Neutrophils from chronic granulomatous
disease (CGD) patients who lack a functional NADPH oxidase
and healthy neutrophils under hypoxic conditions did not
exhibit impaired bacterial containment and in that way this
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containment was independent of ROS (44). Conversely, failure
of the phagosomal acidification led to impaired intracellular
containment of MRSA (44).

Activated neutrophils have the capacity to eliminate
extracellular microorganisms after releasing neutrophilic
extracellular traps (NETs) (45). NETs are composed of nuclear
DNA in association with histones and granular proteins such
as antimicrobial proteins and enzymes (MPO and neutrophil
elastase). The functions of NETs include immobilizing pathogens
to prevent them from disseminating and facilitating the
subsequent phagocytosis of trapped microorganisms. Many
pathogens, namely viruses, bacteria, parasites, and fungi
can induce NETs. For this reason, the mechanisms for both
the initiation and evasion of NETs by pathogens have been
intensively studied (46). To our knowledge, no report exists
in the literature regarding the ability or inability of M. leprae
to induce NETs. In addition, there are two open questions:
(1) Is there a connection between NET formation, neutrophil
infiltration and ENL systemic inflammation? (2) Does the
massive presence of neutrophils in the ENL lesions could
generate necrotic areas? It is possible to observe a collection of
neutrophils in ENL lesions forming a microabscess (Figure 2).
The NETosis role in limiting the spread of necrotic tissues
was demonstrated in acute abdominal inflammation where
netting neutrophils create a barrier between necrotic and viables
areas (47).

Although ROS production by neutrophils during infections
is an important antimicrobial mechanism, the exacerbated
production of ROS due to themassive involvement of neutrophils
can lead to oxidative stress accompanied of cell death and
necrosis (47). The large amounts of neutrophil-released enzymes
could degrade cytokines but also modify glycan on the
surrounding tissues (48). Alteration of glycan residues on
IgG molecules is associated with high lupus disease activity
(49). Moreover, the incomplete clearance of DNA-released
material leads to systemic inflammation and autoantibody
production (50).

Dias et al. (51) demonstrated that ENL patients displayed
higher levels of human DNA–histone complexes than either
BL/LL patients or healthy individuals. The increased levels of
TLR-9 ligands and the TLR-9 per se in peripheral mononuclear
cells was considered by the authors as a major innate immunity
pathway activated during ENL (51). Meanwhile, the source of the
DNA-histone complex has yet to be identified.

There is much evidence in support of the existence of
neutrophilic subpopulations and their role in inflammation,
infection, and tumor immunology. The neutrophils subsets
have been characterized according to their phenotypic,
functional, morphological, and physical characteristics under
both homeostatic and pathophysiologic conditions (Table 1). A
detailed description of all neutrophils subsets is beyond the scope
of this work, but additional reviews can be found elsewhere (58).
Nonetheless, it is not yet known whether these subpopulations
are distinct subsets or rather represents the plastic development
of their neutrophilic precursor.

Recruitment of leukocytes at a site of blood vessel growth
is a crucial event for proper angiogenesis and subsequent

TABLE 1 | Studies of neutrophil subpopulations.

Neutrophil subsets Findings References

MRSA MOUSE MODEL OF INFECTION

PMN-I (MRSA - resistant

host)

CD49d+/CD11b− (52)

IL-12 and CCL3 production

Classically activated macrophages

Expression of TLR2, TLR4, TLR5,

TLR8

Multi-lobular nucleus

PMN-II (MRSA-sensitive

hosts)

CD49d−/CD11b+

IL-10 and CCL2 production

Alternatively activated macrophages

Expression of TLR2, TLR4, TLR7,

TLR9

Ring-shaped nucleus

PMN-N (normal host) CD49d−/CD11b−

No production of cytokines and

chemokines

No effect on macrophage activation

Expression of TLR2, TLR4, TLR9

Round nucleus

HEALTHY VOLUNTEERS CHALLENGE WITH I.V. LPS

CD16bright/CD62Ldim Not found in healthy donors (53)

Hypersegmented neutrophils (54)

Rapid apoptosis rate (similar to

normal)

(44)

Higher expression of CD11b, CD11c

and CD54

Inhibit T cell proliferation

Normal phagocytosis

Poor capacity to contain intracellular

bacteria

Less chemotactic rate

Decreased adhesion

CD16dim/CD62Lbright Not found in healthy donors

Banded neutrophils

Higher rate of survival

Higher NADPH oxidase activity

Higher acidification of phagosome

Contain intracellular bacteria

Enhanced adhesion

Higher chemotactic rate

CD16bright/CD62Lbrigh Phenotypically mature (normal)

TUMOR ASSOCIATED NEUTROPHILS (TANS)

N1 Pro-inflammatory properties (55)

TNF production (56)

High tumoral cytotoxicity (57)

High NET production

ICAM1high

Hypersegmented nucleus

N2 Anti-inflammatory

High production of arginase

Immature-like or segmented nuclei

Proangiogenic profile

Higher production of MMP-9 and

VEGF

MRSA, methicillin-resistant Staphylococcus aureus.
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tissue perfusion. Pro-angiogenic neutrophils CD11b+/GR-
1+/CXCR4high producing high levels of MMP9 were recruited
into the tissue in response to VEGFA in a mouse model of non-
vascularized transplant (59). These pro-angiogenic neutrophils
have been shown to be essential in promoting neovascularization
of transplanted pancreatic islands (59) and may be the same cells
that are known to promote cancer cell survival (60).

Neutrophils with regulatory function were identified in several
models. Lung neutrophils isolated from both bronchoalveolar
lavage fluid and parenchyma of infected mice produced IL-
10 and negatively regulating local lung inflammation during
chronic phase of M. tuberculosis infection (61). Secreting IL-
10 neutrophils reported in Trypanosoma cruzi-infected mice
showed an IL-10-dependent suppressive phenotype in vitro
inhibiting T-cell proliferation and IFN-γ production (62).
However, these anti-inflammatory neutrophils may change
into pro-inflammatory phenotypes (IL-10low/IL-12high) after
interacting with Natural Killer T cells in a CD1d-dependent
manner (63). It was showed that neutrophils (G-neutrophils)
from G-CSF–treated human and mice donors could inhibit T cell
activation both in vitro and in vivo in a model of experimental
acute graft-versus-host disease (64, 65). The disease inhibition
induced by G-Neutrophils is dependent on neutrophil IL-10
competence (66).

During infection with MRSA, distinct types of neutrophils
have been identified in association with resistance and
susceptibility to MRSA. Neutrophilic populations isolated
from both resistant and susceptible MRSA, PMN-I, and PMN-II,
respectively—were distinct from neutrophils isolated from
healthy mice, PMN-N (Table 1). It is possible that these pro-
and anti-inflammatory neutrophils may alter the course of
the adaptive response by inducing M1 or M2 macrophages,
respectively. It cannot be ruled out that these neutrophils may
change their phenotypes during the course of inflammation to fit
a particular aggressor and do not necessarily represent distinct
lineages (52). To date, no work in the literature has identified any
neutrophilic subpopulations in leprosy that might correlate with
the TT leprosy-resistant or LL susceptible leprosy polar forms,
TT vs. LL.

A myriad of neutrophilic subpopulations (CD16bright/
CD62Ldim, CD16dim/ CD62Lbright, CD16bright/CD62Lbright) has
been identified in the circulation of human volunteers receiving
lipopolysaccharide in contrast to the number in untreated
individuals (53, 54) (Table 1). The subset CD16bright/CD62Ldim

hypersegmented neutrophils displayed normal phagocytosis
associated with a remarkably poor capacity to contain bacteria
intracellularly. This defect in bacterial containment was
associated with failure of acidification in the phagosomal
compartment. On the other hand, CD16dim/CD62Lbright banded
neutrophils were the only neutrophil subset that adequately
contained MRSA (44).

Fridlender et al. (55) were the first to describe the existence of
additional neutrophilic subsets nominated N1 e N2. The former
is pro-inflammatory and the latter, anti-inflammatory (55). Via a
murine model of cancer, the authors demonstrated the presence
of tumor associated neutrophils (TANs), characterized by
differential activation and phenotypical states. Neutrophils with

an N1 phenotype possess a hypersegmented nucleus with pro-
inflammatory and antitumor properties due to increased tumoral
cytotoxicity, high NETs production, high ICAM1 expression,
and production of inflammatory cytokines and chemokines like
TNF. On the other hand, the N2 phenotype plays an opposite
role and is classified as immunosuppressive and pro-tumoral
mostly due to the elevated production of arginase like G-MDCs.
These neutrophils usually possess an immature nucleus although
some works have described them as being segmented. Another
interesting fact about N2 neutrophils is their proangiogenic
profile, which is driven by their capacity to produce elevated
levels of MMP-9 and VEGF (57). Furthermore, it has been shown
that TGF-β plays a critical role in neutrophilic polarization as
a result of its ability to induce plasticity between a N1 subset
into a N2 profile (55, 56). Other factors, namely angiotensin-
II and type I IFNs, have recently been to shown to promote
N1/N2 polarization too (58). Beyond phenotypic differences, it
became clear by way of the transcriptomic approach that the
N1 and 2 subsets represent distinct populations with diverse
transcriptional signatures (56).

Interestingly, a new neutrophil subset with different densities
has been the focus of several research projects. Associated
with disease severity in some inflammatory disorders, a
subset of low-density neutrophils (LDN) that co-localizes with
peripheral blood mononuclear cells (PBMC) after density
gradient separation has been reported (67). It is also noteworthy
that, in cancer, this population was found to increase within
tumor growth and be characterized by a morphologically
homogeneous population that may contain band and segmented
neutrophils (68, 69). Even though the origin and role of
this subpopulation remain somewhat nebulous, some works
have reported that LDNs display diverse profiles. The analyses
of PBMC preparations from patients with Systemic Lupus
Erythematous reveals that LDNs have an activated phenotype.
In this scenario, LDN produce higher levels of such pro-
inflammatory mediators as type I IFNs, IFN-γ, and TNF and are
capable of modulating endothelial cell functions and increasing
vascular damage (70). In addition, they are more disposed to
form NETs that favor the chronic inflammation and disease
severity (71, 72). While LDN have also been detected in many
other pathologies like sepsis, HIV infection, malaria and also
in tuberculosis (73–76), increasing our understanding of their
surfacemarker patterns, cytokine expression, transcription factor
regulators, and other trademarks of activation is of prime
importance. Despite the uptick of studies describing the diversity
of neutrophilic subpopulations, their distinct origins and plastic
capacity remain unknown. New data need to be put forward
that corroborate the existence of neutrophilic subpopulation
in leprosy.

Under certain physiological conditions, the death of
circulating neutrophils takes place in the liver, spleen, and
bone marrow. Observed in old neutrophils, increased CXCR4
expression helps to direct them back to the bone marrow and
subsequent elimination. CXCR4 is also involved in the down
regulation of the newly-formed neutrophilic release into the
marrow (39). Some studies suggest that terminal neutrophilic
trafficking inside the intestinal tract also takes place to help
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FIGURE 3 | ENL skin lesions present neutrophils expressing CD64. The protein expression of CD64 on neutrophil (MPO+ cells) was evaluated by

immunofluorescence. Skin lesion was stained for CD64 (red), myeloperoxidase (MPO; green), and nuclei (DAPI; blue). Images are representative of three independent

samples of ENL patients. Co-localized areas of MPO+CD64+ cells were identified with arrows. The regulation of neutrophil CD64 expression has the potential to be

useful in the ENL treatment, as well as to prevent ENL reactional episodes. Scale bars: 10µm. Images from Leprosy Laboratory collection.

regulate the commensal flora (77). Both senescent neutrophils
and those that die after fighting infection may also expire within
the vasculature and be removed by Kupffer cells (resident liver
macrophages) (78). Removal of neutrophils by both Kupffer and
dendritic cells is mainly regulated by the IL-23/IL17/G-CSF axis.
This cytokinetic axis stimulates neutrophilic production in the
bone marrow and is down regulated by liver X receptor (LXR)
(79). The mechanisms involved in the clearance of NETotic cells
are not yet known. On the other hand, clearance of apoptotic
cells is well-studied (50). Different cell types participates in
the uptake of apoptotic bodies by employing different types
of receptors. This process can be amplified or suppressed by
different types of plasma proteins (80). The complement system,
pentraxins, and collectins have been implicated in apoptotic cell
clearance in circulation or in injured tissue (81, 82).

NEUTROPHILS IN LEPROSY

A number of studies in the 1970’s addressed the neutrophilic
functions in the different forms of leprosy (83–86). These studies
used the nitro blue tetrazolium that measures neutrophilic
activation through reduction of in vitro. Goihman-Yahr et al.
(83, 85) found that, during reaction, there is spontaneous
neutrophilic activation not witnessed in LL leprosy (83, 85).
Moreover, neutrophils are equally well-activated by endotoxin
and M. leprae in vitro (87) in all forms of leprosy. In sharp
contrast, Sher et al. (86) found no spontaneous activation rate
in neutrophils of TT, LL, or ENL patients. Even so, ENL sera
activated neutrophils of healthy donors in vitro, suggesting
that ENL sera contain a neutrophilic activation inductor (86).
Another parameter assessed of neutrophilic activation was cell
motility that was measured by three different assays (random
migration, chemotaxis, and chemokinesis), all of which were

defective in LL neutrophils whether in the absence or presence
of ENL (86). Drutz et al. (88) reported no important differences
among TT and LL patients and normal control subjects in the
bactericidal and fungicidal functions of their phagocytic cells,
including monocytes, macrophages, and neutrophils (88).

Circulating neutrophils from leprosy patients are loaded

with M. leprae (30, 31) and there is apparently no sign of
systemic inflammation. It remains unclear whether neutrophils

are capable of killing the bacilli. Our group has reported

that neutrophils isolated from LL patients with or without
ENL released TNF and IL-8 subsequent to stimulation with
M. leprae ex vivo (89). Besides, the apoptotic rate of ENL
neutrophils is higher in comparation to that found in
BL/LL patients and healthy volunteers (89). It has been
previously demonstrated that apoptotic neutrophils infected or
not with M. tuberculosis trigger a proinflammatory response
in M. tuberculosis-infected macrophages through a caspase-
1- and IL-1β-dependent mechanism (90). The biological
responses of macrophages included an enhanced production
of proinflammatory cytokines as well as an enhanced capacity
to control the intracellular growth of M. tuberculosis. The
interaction of apoptotic neutrophils and macrophages in leprosy
has yet to be determined with certainty.

Our group has demonstrated that, during ENL, circulating
and lesional neutrophils exclusively expresses CD64 (FcγRI)
while leprosy patients without reaction, such as BL/LL, BT,
and RR individuals, do not (9) (Figure 3). Besides, the higher
CD64 levels on circulating neutrophils have been correlated
with disease severity, pointing to CD64 as an early biomarker
for ENL as well as a marker of severity (9). Since neutrophils
function as biosensors, the proinflammatory microenvironment
and/or fragments of the bacillus could induce the expression
of CD64 on the neutrophil surface. The biological impact of
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surface expression of CD64 in neutrophils needs to be better
evaluated. Upregulation of CD64 in vivo has likewise been
associated with enhanced neutrophilic functionality (91–93).
At the onset of sepsis or septic shock, the CD64 expression
rate in neutrophils is augmented (94). Fadlon et al. showed
that the CD64+ neutrophils bound to endothelial monolayers
and CD64+enriched neutrophils were 7 times more strongly
adherent to endothelial monolayers than were CD64-depleted
neutrophils (95).

Pentraxin-3 (PTX3), a protein present in the secondary
neutrophilic granule, was originally identified as being induced
by such primary inflammatory signals as TNF and interleukin
1β (IL-1β) (96, 97). Our group has shown evidence that PTX3
is released systemically and at the site of ENL lesions (98). Our
research has also demonstrated that PTX3 serum levels correlated
to the surface expression of CD64 in circulating neutrophils and
that thalidomide treatment of ENL down regulated PTX3 levels
(98). Interestingly, PTX3 serum levels were high in MB patients
without reaction yet persistent in patients who developed ENL.
In contrast, MB patients who developed RR had low levels of
PTX3 prior to and at the onset of the event. These results indicate
that high and persistent levels of PTX3 in MB patients may be
associated with the occurrence of ENL while also identifying
PTX3 as a potentially predictive ENL biomarker capable of
differentiating it from an RR episode.

In recent years, several large-scale gene expression studies
have been conducted to monitor the host response to pathogen.
These study results could potentially serve as diagnostic
tool to either distinguish disease-afflicted patients from
healthy individuals or classify different forms of the same
disease. Via microarray analyses, Lee et al. (99) compared LL
-reaction free skin lesions to those of ENL patients. Their
global gene expression profiles revealed the up-regulation of
genes involved in cell-movement, including E-selectin and
its ligands, both key molecules in mediating neutrophilic
recruitment to inflammatory sites (99). Transcriptome
profiles derived from ENL skin lesions have also recently
detailed the participation of neutrophilic and endothelial
cell-gene networks in the vasculitis resulting in tissue
damage (100).

To date, no study has yet reported a gene expression
signature based on leprosy whole blood. However, via the
microarray, the global transcriptional profiles of PBMC revealed
that there were 275 genes differentially expressed in RR and 517
differentially expressed in ENL (101). In addition, a granulocytic
gene signature was identified in gene-expression arrays derived
from ENL PBMCs (101). These data suggest that PBMC
fractions of ENL patients may be contaminated with LDN
subpopulation, as has been similarly described in autoimmune
diseases. Nonetheless, the presence of LDN in light of their

functional capacity and potential to contribute to the clinical

manifestations of ENL remain basically unexplored.
Naranbhai et al. have recently mapped the quantitative trait

loci (eQTL) expression in peripheral blood CD16+ neutrophils
from 101 healthy Europeans (102). The analyses found that
leprosy and Crohn’s disease, an autoimmune inflammatory bowel
illness, showed a profound overlap in genetic architecture. The
ancestral T allele of rs1981760 was associated with an increased
susceptibility to MB leprosy. The authors observed a strong
link between rs1981760-T and a reduced NOD2 expression in
neutrophils in conjunction with a conversely elevated expression
in monocytes. In addition, neutrophils stimulated with a NOD2
ligand, muramyl dipeptide supplemented with Pam3-CSK4, a
synergistic agonist, express significantly higher levels of mRNA
for IFNβ (102). These data demonstrate that rs1981760 affects
NOD2 expression and the subsequent IFNβ responses to its
ligand. Interestingly, eQTL in neutrophils are enriched for genes
in the IFNβ network. These data suggest that type-1 interferons
and neutrophils may be involved in leprosy such as has been
previously shown in tuberculosis (103).

CONCLUSION

There are still large gaps in our understanding of the role
of neutrophils in ENL and leprosy disease despite the large
number of studies examining their immunological functions.
Future works should aim to further determine the roles of
neutrophils in host–mycobacterial interactions, particularly as
relates to their early defensive posture and possible contribution
to disease progression. The identification of subpopulations
of neutrophils associated with the clinical forms of leprosy
could provide novel insights of neutrophil function and reveal
new targets in leprosy. The present review suggests the roles
performed by neutrophils as both migratory and, for the first
time, effector cells following chemo-attractants in the context
of leprosy.
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The present paradigm of psoriasis pathogenesis revolves around the IL-23/IL-17A axis.

Dual-secreting Th17 T cells presumably are the predominant sources of the psoriasis

phenotype-driving cytokines, IL-17A and IL-22. We thus conducted a meta-analysis of

independently acquired RNA-seq psoriasis datasets to explore the relationship between

the expression of IL17A and IL22. This analysis failed to support the existence of dual

secreting IL-17A/IL-22 Th17 cells as amajor source of these cytokines. However, variable

relationships amongst the expression of psoriasis susceptibility genes and of IL17A, IL22,

and IL23A were identified. Additionally, to shed light on gene expression relationships

in psoriasis, we applied a machine learning nonlinear dimensionality reduction strategy

(t-SNE) to display the entire psoriasis transcriptome as a 2-dimensonal image. This

analysis revealed a variety of gene clusters, relevant to psoriasis pathophysiology but

failed to support a relationship between IL17A and IL22. These results support existing

theories on alternative sources of IL-17A and IL-22 in psoriasis such as a Th22 cells and

non-T cell populations.

Keywords: IL17, IL22, machine learning, neutrophil, psoriasis, RNA-seq, T cell, transcriptome

INTRODUCTION

Psoriasis is a chronic inflammatory skin condition with nail and systemic manifestations that
affects ∼3% of the general United States population. It is commonly associated with psoriatic
arthritis and is likely linked to other comorbidities, such as cardiovascular disease and metabolic
syndrome (1–4).

Of the many clinical variants, plaque psoriasis (psoriasis vulgaris) is the most common,
accounting for ∼80–90% of cases (1, 5). It is also the most well-characterized histologically and
genetically. Plaque psoriasis was initially proposed to be driven by hyperproliferative keratinocytes.
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However, in 1890, neutrophil involvement was suggested after
histologic evaluation revealed early neutrophil accumulation
within the dermis and epidermis (i.e., microabscesses of Munro
and pustules of Kogoj, respectively) (6).

Despite the clear existence of neutrophils in lesional skin, the
role of the adaptive immune system in psoriasis pathophysiology
became the main focus of the field after the T cell-targeting
agent, cyclosporine, was shown to be an effective treatment (7–
9). Thus, psoriasis researchers became very quickly focused on
characterizing CD4+ and CD8+ T cell responses in normal
and diseased human skin (10–12). Subsequently, experiments
performed in animal models were also developed that supported
the T cell-centric view of psoriasis. For example, it was
demonstrated that a psoriasis-like phenotype could be induced
following adoptive transfer of dysregulated CD4+ T cells
(13). With this knowledge came the development of the next
generation of T cell-targeting therapeutics (alefacept, efalizumab)
(14–17), which further corroborated the essential role of T cells
in psoriasis pathophysiology.

FIGURE 1 | (A) The expression of IL17A does not strongly correlate with the expression of IL22 (rs = 0.04). (B) Meta-analysis of four datasets further supports that

IL17A and IL22 expression do not strongly correlate [rs = 0.18, with a confidence interval that crosses 0 (−0.05, 0.41)].

At the time T cells became the focus of psoriasis, adaptive
immune responses were typically divided into two types, T helper
type 1 (Th1) and T helper type 2 (Th2) responses. In psoriasis,
the absence of Th2-defining cytokines [interleukin (IL)-4, IL-
5, and IL-10] (18) and the increased presence of Th1 cytokines
(interferon gamma (IFN-γ), tumor necrosis factor (TNF) and IL-
12) prompted researchers to classify psoriasis as a Th1-mediated
disease (18). Soon thereafter, however, it became increasingly
apparent that IL-17-secreting T cells (Th17 cells) played a major
role in disease pathogenesis, not only in psoriasis, but also across
a wide spectrum of animal models of autoimmunity (19–22).

Psoriasis is now thought to be a predominantly Th17-driven
disease (23, 24) that is maintained by the key Th-17-supporting
cytokine, IL-23 (25, 26). The dominant role of the IL-23/IL-
17A axis in psoriasis is also evident by the overwhelming
clinical success of newly developed IL-23/IL-17A axis-targeting
biologics, which could induce near complete resolution of
psoriasis, even in the most severely affected individuals (27–29).
IL-22 is also a highly investigated cytokine involved in psoriasis
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pathophysiology. It is thought to be the primary promoter of
keratinocyte hyperproliferation (30, 31). The predominant view
is that this cytokine is secreted by IL-17A/IL-22 dual-secreting
Th17 cells (32).

However, the observed pathogenicity of IL-17A/IL-22 dual-
secreting Th17 cells has never been formally demonstrated in
vivo. In fact, the vast majority of evidence in support of these cells
have come from animal studies and in vitro analysis of human
T cells cultured under extreme polarizing conditions (32–35).
Even when studied directly ex vivo, the dual secretion is usually
seen only after non-physiologic T cell stimulation (36, 37). Since
naturally processed autoimmune epitopes are difficult to identify
(38), it is challenging to study cytokine secretion using more
physiologic stimuli.

Thus, we sought evidence for the existence of dual secreting
IL-17A/IL-22 Th17 cells within the psoriasis transcriptome.
Weighted gene co-expression networks analysis (WGCNA) (39)
have previously been used to analyze gene-gene correlations
within RNA-Seq datasets. While this strategy has certain
advantages, it is not ideally suited to explore gene relationships

across multiple RNA-Seq datasets. Herein, we conduct meta-
analyses of RNA-seq datasets to directly evaluate the current
hypothesis that dual-secreting IL-17A/IL-22 Th17 cells are the
dominant effector population in psoriasis. We also used this
strategy to correlate the expression of IL17A, IL22, and IL23A
with genes linked to psoriasis susceptibility identified through
genome-wide association studies (GWAS). Finally, to explore the
gene expression profile of IL17A, IL22, and IL23A in relation to
other genes expressed in psoriatic plaques, we utilized a machine
learning nonlinear dimensionality reduction strategy to visualize
the entire psoriasis transcriptome as a 2-dimensional (2D) image.
This allowed us to clearly visualize the relationship between
IL17A, IL22, and IL23A and all other genes that are expressed in
psoriatic skin.

MATERIALS AND METHODS

Human RNA-Seq
RNA-Seq FASTQ files of human normal and psoriasis lesional
skin were downloaded from the NCBI Sequence Read Archive

FIGURE 2 | (A) IL22 gene expression does not correlate with IL23A (rs = 0.11). (B) Meta-analysis confirms that IL22 and IL23A do not strongly correlate [rs = 0.13,

with a confidence interval that crosses 0 (−0.03, 0.29)].
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(http://www.ncbi.nlm.nih.gov/Traces/sra). Four total datasets
were used: Three datasets (Accession numbers: SRP165679,
SRP026042, SRP057087) and one dataset comprised of two
combined experimental datasets published by the same research
group (Accession numbers: SRP035988, SRP050971) (40–42).

Correlations
Correlation analyses of gene expressions were performed on
read counts of each identified gene normalized with DESeq2
package (43). Values were subsequently log transformed and
winsorized when necessary. Spearman’s correlation coefficients
were calculated (rs) using the cor.test function in R (44). P values
of the correlations were estimated by algorithm AS 89.

2D Visualization of the Psoriasis

Transcriptome
We computed the gene pairwise distance using a formula,
1-r2, where r represents Pearson’s correlation. A visual
representation of the gene co-expression network was created
using a dimensionality reduction technique, t-Distributed

Stochastic Neighbor Embedding (t-SNE), calculated with Rtsne
package (45).

Gene Selection
A Pubmed search was performed to identify genes linked to
psoriasis through GWAS.

Genes selected for mapping included: BTK, CD3E, CD4,
CD8a, CD8b, CD19, CTSG, CXCL1, CXCL2, CXCL5, ELANE,
ICAM1, IGH, IGK, IGL, IL1B, IL8, IL17A, IL22, IL23A, IL36A,
IL36B, IL36G, IFNG, ITK, MPO, MS4A1 (CD20), TNF, TRA
(TCRα), TRB (TCRβ), TRD (TCRδ) TRG (TCRγ).

Genes selected for meta-analysis included: B3GNT2, CARD14,
CARM1, CDKAL1, CTSG, CXCL1, CXCL5, CXCR2, DDX58,
DEFB4A, ELANE, FBXL19, GJB2, HLAC, IFIH1, IL12B, IL17A,
IL22, IL23A, IL36RN, IL4R, KLF4, KRT1, KRT5, KRT6A,
KRT6B, KRT6C, KRT10, KRT14, KRT16, KRT17, KRT37, LCE3A,
LCE3B, LCE3D, MPO, NFKBIA, NOS2, NOS3, PTPN22, RELB,
RUNX3, SOCS1, STAT3, STAT5A, TNFAIP3, TNFRSF9, TNIP1,
TRAF3IP2, TYK2, UBE2L3, VDR, VEGFA, VEGFB.

FIGURE 3 | (A) A significant Spearman correlation (rs = 0.23, p = 0.017) is seen between IL17A and IL23A gene expression. (B) Meta-analysis supports a strong

correlation between IL17A and IL23A [rs = 0.31, (0.12, 0.51); p = 0.0014].
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Meta-Analysis
Meta-analysis was completed using the R package “metafor”
(46). A weighted random-effects model was used to estimate
a summary effect size. To estimate between-study variance,
a restricted maximum-likelihood estimator was applied. A
weighted estimation with inverse-variance weights was used to
fit the model.

RESULTS

The Expression of IL17A and IL22 Do Not

Strongly Correlate With One Another in

Psoriatic Plaques
We hypothesized that if a significant amount of IL-17A and
IL-22 is produced by IL-17A/IL-22 dual secreting Th17 cells in
psoriasis, then the gene expression of these two cytokines should
correlate with one another. In theory, their expression would be
directly linked to the number of dual-secreting Th17 cells in a

psoriasis plaque. Their gene expression should also correlate with
IL23A, which activates and maintains Th17 cells.

To test this hypothesis, gene expression of IL17A vs. IL22

was graphed and the Spearman’s correlation coefficient (rs) was
calculated (Figure 1A). These correlative studies demonstrated

that the expression of IL22 does not strongly correlate with
the expression of IL17A (rs = 0.04, p = 0.67). To obtain a
weighted average across all four independently acquired psoriasis
datasets, a meta-analysis was performed and the resulting
Forest plot (Figure 1B) demonstrated again that IL17A and
IL22 do not strongly correlate with one another [rs = 0.18,
with a confidence interval that crosses 0 (−0.05, 0.41)]
(Supplemental Figure 1).

Similarly, IL22 gene expression did not correlate well with
IL23A (Figures 2A,B). In contrast, the expression of IL17A
did correlate very well with IL23A (Figure 3A), a result that
was consistent amongst a majority of datasets. The weighted
average of this correlation across all psoriasis datasets was

highly significant, [rs = 0.31 (0.12, 0.51); p = 0.0014], with no

FIGURE 4 | 2D gene coexpression network illustrates gene expression relationships of the psoriasis plaque. Points closer together represent genes that have higher

correlation coefficients, while genes at further distances generally do not correlate well. Gene clusters appear to correspond to neutrophil-recruiting cytokines,

neutrophil effector molecules, T cell, B-cell, and psoriasis-associated genes in lesional psoriatic skin.

Frontiers in Immunology | www.frontiersin.org 5 April 2019 | Volume 10 | Article 58981

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Le et al. 2D Visualization of the Psoriasis Transcriptome

FIGURE 5 | IL22 is located at a relatively great distance away from IL17A and IL23A in the psoriasis transcriptome, as illustrated in the 2D gene expression network

map of psoriasis. These results suggest that IL22 is not highly linked to either IL17A or IL23A in psoriasis pathophysiology.

evidence (p = 0.33) of any substantial residual heterogeneity
(i.e., there was no remaining variability in effect sizes that
was unexplained) (Figure 3B). Our data confirms the well-
characterized dependency of IL-17A on IL-23A. However, IL-22
was not found to have a similar dependency on IL-23A, casting
doubt on the theory that IL-17A and IL-22 are secreted mainly
by the same dual-secreting cell.

2D Visualization of the Psoriasis

Transcriptome Reveals T Cell, B Cell,

Inflammatory Cytokines,

Neutrophil-Recruiting, and Neutrophil

Gene Clusters
To determine how genes expressed in psoriatic plaques are
related to one another, correlation coefficients were calculated
for all pairwise comparisons. The distances between each
gene pair was calculated as described in the methods. The
resulting distance matrix was then used to construct a 2D image
using t-SNE.

In the 2D plot (Figure 4), genes that highly correlate
with one another tend to be located in the same

region, known as a cluster. Genes that do not cluster
near each other do not correlate well. Figure 4 clearly
demonstrates that genes associated with B cells [BTK,
CD19, IGH, IGK, IGL, MS4A1 (CD20)], T cells (CD3E,
CD4, CD8a, CD8b, ICAM1, ITK, TRA TRB, TRD, TRG),
neutrophils (CTSG, ELANE, MPO), neutrophil-recruiting
(CXCL1, CXCL2, CXCL5, IL8), and psoriasis-associated
inflammatory cytokines (IL1B, IL17A, IL23A, IL36A, IL36B,
IL36G) cluster well together in distinct groups, which
supports this method as a means to visualize the entire
psoriasis transcriptome.

IL22 Does Not Cluster With Other

Inflammatory Cytokines Involved in

Psoriasis, Including IL17A
With respect to other cytokines and chemokines involved in
psoriasis pathophysiology, IL22 is located peripherally at a
relatively great distance away on the 2D plot of the psoriasis
transcriptome (Figure 5). This supports our results from the
meta-analyses and suggests that IL22 does not correlate well
with IL23A. Interestingly, IL22 does not cluster well with
any of the most commonly implicated cytokines in psoriasis
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FIGURE 6 | Correlative studies demonstrate that IL22 strongly correlates with

commonly psoriasis-associated keratin genes (KRT6A, KRT6B, KRT6C,

KRT16, KRT17), a finding that was not true for IL17A.

pathophysiology. In contrast, IL17A clusters together with
IL23A and the other cytokines thought to be involved in
psoriasis pathophysiology.

IL22 Correlates With Keratins
Several studies have demonstrated that IL-22 stimulates
keratinocytes. There is a variety of evidence, including data
obtained from in vitro studies with skin-like organoid cultures,
that support IL-22 as themain cytokine responsible for epidermal
hyperplasia, a hallmark of psoriasis (47, 48).

Because IL22 failed to strongly correlate with IL17A and
IL23A (Figures 1A, 2A), the relationships between IL22 and
keratin genes were explored across the four independently
acquired RNA-Seq psoriasis datasets. Again, Spearman’s
correlation coefficients (rs) were calculated for each keratin
gene’s relationship with IL17A, IL22, and IL23A. These
correlative studies demonstrate that the expression of IL22 did
indeed strongly correlate with the expression of the different
keratin genes (Figure 6), especially KRT6C (keratin 6C)
(rs = 0.32, p = 0.0011). To obtain a weighted average across
all four independent psoriasis datasets, a meta-analysis was
performed and the resulting Forest plots (Figure 7) confirm
the close relationship between IL22 expression and keratin
gene expression [KRT6C: rs = 0.34, with a confidence interval
that did not cross 0 (0.18–0.50)]. The weighted average of this
correlation across all psoriasis datasets was highly significant
(p = 0.000025), with no evidence (p = 0.56) of any substantial
residual heterogeneity (i.e., there was no remaining variability
in effect sizes that was unexplained). Additional genes that were
found to positively correlate with IL22 expression are listed in
Supplemental Figure 2.

In contrast to IL22’s relationship with keratin gene expression,
IL17A did not correlate well with the keratins (Figure 6), a
finding that was confirmed by a meta-analysis across all four
RNA-Seq datasets.

IL23A Correlates With Other Genes

Besides IL17A
IL-23A is known for its ability to support Th17 T cells but it
likely has a variety of functions independent of this role. To
investigate this, IL23A’s ability to independently correlate with
other immune-relevant genes was explored. Figure 8 reveals
that IL23A correlates with several genes unrelated to IL17A, a
finding confirmed by meta-analyses across all psoriasis RNA-Seq
datasets. Included in the analysis were genes identified by GWAS
to be linked to psoriasis. Of these genes, CARM1, KRT14, KRT37,
TNFAIP3, UBE2L3 are elevated in psoriasis plaques compared
to control healthy skin (Table 1). Thus, IL23A appears to be
linked to other genes putatively involved in the pathophysiology
of psoriasis that are unrelated to IL17A.

IL17A, IL22, and IL23A Expression

Correlates With Psoriasis Susceptibility

Genes
A variety of genes have been linked to psoriasis susceptibility
through GWAS (49–55). Table 2 demonstrates that many
of these genes are differentially regulated in the setting of
psoriasis. We thus sought to determine how the expression
of genes located at psoriasis susceptibility loci correlated with
the expression of IL17A, IL22, and IL23A, genes known to be
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FIGURE 7 | Meta-analysis confirms a close relationship between IL22 expression and keratin (KRT6A, KRT6B, KRT6C, KRT16, KRT17) expression.

linked to the pathophysiology of psoriasis. For this analysis, the
expression of IL17A, IL22, and IL23A was plotted against the
expression of each of the genes identified through GWAS studies.
Spearman’s correlation coefficients (rs) were then calculated,
which demonstrated a variety of significant correlations (Table 2)
between GWAS-identified genes and IL17A, IL22, and IL23A.
Correlation values between atopic dermatitis GWAS-identified
genes and IL17A, IL22 and IL23A expression in psoriasis samples
were also obtained for comparison (Table 3). To obtain a
weighted average across all four independent psoriasis data
sets, meta-analysis was performed. The resulting Forest plots
are depicted in Figure 9, which confirm the close relationship
between IL17A, IL22, and IL23A and the different genes linked
to psoriasis susceptibility. These results support a direct or
indirect link between IL17A, IL22, and IL23A and these genes.
Of note, the genes that significantly correlated with IL17A, IL22,
and IL23A varied for each cytokine. These results will hopefully
help investigators better understand the pathophysiology
of psoriasis.

DISCUSSION

Investigators have employed numerous genetic strategies to
characterize the immune response in the setting of psoriasis.
Microarray and RNA-Seq have provided insight into the
psoriatic transcriptome, identifying thousands of differentially
expressed genes (40). However, differential expression alone
does not necessarily mean that the gene is involved in
psoriasis pathogenesis. For example, a gene that is normally
downregulated in psoriatic T cells may actually appear falsely
upregulated in psoriasis simply because there are more T cells
in a psoriatic plaque. With the rising popularity of single cell
sequencing, investigators are now focused on re-characterizing
the psoriasis transcriptome at a greater cellular resolution,
not previously obtained with whole tissue transcriptomics.

However, single cell sequencing is also not without its drawbacks.
Purifying immune cell populations from skin biopsy specimens
can alter their transcriptome, especially for cells isolated by
positive selection or flow cytometry. Furthermore, immune cells
within the skin will undoubtedly have different purification
yields. T cells in particular are especially difficult to analyze
because once purified, they require additional non-physiologic in
vitro stimulation with lectins or anti-CD3/anti-CD28 antibodies
to identify their cytokine secretion profiles. How closely the
garnered information from these studies will relate to in vivo
cellular function remains unclear. Although each technique will
yield important discoveries, none can perfectly decipher the in
vivo pathogenic immune response.

With these limitations in mind, we have focused on
developing new methods to characterize immune responses
from whole tissue RNA-Seq (12, 62). We view this strategy to be
an important complement to work currently being conducted by
other investigators. The main advantage being that the data is not
subject to experimentally-induced changes in gene expression.
Its main disadvantage, however, is that it cannot discriminate
between direct or indirect correlations between genes
of interest.

In our current study, we utilize a machine-learning 2D
visualization strategy, t-SNE, to characterize IL17A, IL22, and
IL23A gene expression in the context of the entire psoriatic
transcriptome. The 2D map of the psoriatic transcriptome
revealed distinct gene clusters corresponding to common
immune cell types (e.g., B cells, T cells, neutrophils).

Our data did not support the existence of a dual-secreting
IL-17A/IL-22 Th17 cell as the major source of these cytokines
in psoriasis. In fact, in the 2D model, these genes are located
far from one another. As such, IL22 correlated with several
genes that did not appear to have a relationship with IL17A.
In addition, a set of genes identified to be involved in psoriasis
pathophysiology (CARD14, CXCL5, CXCR2, DDX58, IFIH,
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FIGURE 8 | Spearman correlations reveal that IL23A correlates with several

genes that do not seem to be strongly related to IL17A.

PTPN22, and TNFRSF9) correlated with IL17A and IL23A, but
did not correlate with IL22.

Though, IL-22 is commonly considered a hallmark Th17
cytokine (63), our results are in line with studies demonstrating

TABLE 1 | Expression of genes linked to psoriasis identified through GWAS and

associated IL23A Spearman correlation and p-value and fold change increase in

lesional skin and p-value.

Gene IL23A

Spearman

correlation

IL23A

Spearman

P-value

Fold change

increase in

lesional skin

Fold change

increase

P-value

B3GNT2 −0.16 0.10537 1.001155781 0.979956721

CARD14 0.27 0.00682 2.389097546 1.33E−47

CARM1 0.26 0.00968 1.141422929 0.000834388

CDKAL1 −0.21 0.03518 0.8683625 3.52E−08

CTSG −0.16 0.10656 0.655654701 4.50E-13

CXCL1 0.46 1.30E−06 83.27818074 2.62E−212

CXCL5 0.34 0.00056 26.29025755 2.84E−33

CXCR2 0.52 6.60E−08 6.492199066 1.40E−239

DDX58 0.33 0.00092 2.797571851 1.14E−69

DEFB4A 0.35 0.00034 1901.591548 2.62E−271

ELANE −0.0041 0.96819 0.491347624 6.77E−10

FBXL19 0.34 0.00062 1.85489088 5.24E−28

GJB2 0.48 4.30E−07 20.36794869 0

HLAC 0.18 0.07342 1.194566942 0.001439986

IFIH1 0.42 1.40E−05 3.162866511 7.72E−104

IL12B 0.29 0.00397 29.88723345 3.40E−57

IL17A 0.24 0.01769 439.3348171 1.25E−65

IL22 0.1 0.31571 63.88350813 3.46E−30

IL23A 1 < 2E−16 3.760844628 8.35E−45

IL36RN 0.48 4.90E−07 7.305421524 1.16E−230

IL4R 0.51 6.60E−08 3.093054089 8.95E−181

KLF4 0.012 0.90338 0.667068955 3.81E−15

KRT1 −0.012 0.90464 1.206311292 0.001401592

KRT10 −0.062 0.54239 1.110563157 0.047606741

KRT14 0.22 0.02787 1.536561931 1.27E−11

KRT16 0.27 0.00767 45.90558693 0

KRT17 0.39 6.00E−05 4.076992497 2.38E−54

KRT37 0.3 0.00255 5.231342887 2.43E−46

KRT5 0.094 0.35243 1.303825713 1.61E−07

KRT6A 0.39 8.30E−05 24.37406248 0

KRT6B 0.29 0.00374 8.511861588 5.34E−107

KRT6C 0.25 0.01245 117.818558 3.29E−294

LCE3A 0.39 6.50E−05 184.4450577 6.18E−144

LCE3B 0.2 0.04403 67.28771597 2.14E−38

LCE3D 0.31 0.00208 36.65620978 0

MPO −0.24 0.01605 1.474609904 0.0051495

NFKBIA 0.31 0.00184 1.194928571 6.14E−07

NOS2 0.64 1.20E−12 45.89643372 5.06E−181

NOS3 −0.024 0.81219 1.120615697 0.065873995

PTPN22 0.09 0.38043 2.512943835 2.58E−45

RELB 0.3 0.0023 1.63227558 3.66E−17

RUNX3 0.073 0.47497 0.879564111 0.003653355

SOCS1 0.41 3.10E−05 1.851306719 1.98E−17

STAT3 0.51 6.50E−08 2.199106208 7.64E−127

STAT5A 0.012 0.90974 0.825113995 1.27E−08

TNFAIP3 0.825113995 1.27E−08 1.053151539 0.237418045

TNFRSF9 0.24 0.01749 6.76780515 2.64E−126

TNIP1 0.4 4.20E−05 1.591537669 1.52E−33

TRAF3IP2 0.28 0.00626 1.27943256 1.21E−23

TYK2 0.084 0.41131 1.10633692 0.027521096

UBE2L3 0.22 0.03143 1.247192396 1.13E−20

VDR 0.36 0.00025 1.010394091 0.770645743

VEGFA 0.092 0.36524 1.300943308 1.11E−08

VEGFB −0.12 0.22006 0.640896258 1.01E−36
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TABLE 2 | Correlation (R-values) of IL17A, IL22, and IL23A with genes linked to

psoriasis susceptibility through genome-wide association studies.

R-value

Gene IL17A IL22 IL23A

CARD14 0.18 0.16 0.3

CARM1 −0.08 0.1 0.26

CDKAL1 −0.2 −0.15 –0.21

DDX58 0.35 0.06 0.28

DEFB4A 0.32 0.3 0.4

GJB2 0.54 0.39 0.48

HLAC −0.07 −0.05 0.02

IFIH1 0.37 −0.02 0.34

IL12B 0.47 0.28 0.32

IL17A 1 0.18 0.31

IL22 0.18 1 0.13

IL23A 0.31 0.13 1

IL36RN 0.5 0.4 0.35

IL4R 0.37 0.36 0.49

KLF4 –0.36 −0.03 0

LCE3A 0.21 0.26 0.26

LCE3B −0.03 0.2 0.17

LCE3D 0.08 0.21 0.32

NOS2 0.49 0.31 0.47

NOS3 0.04 0.08 0.1

PTPN22 0.49 0.09 0.22

RELB 0.03 0.2 0.35

RUNX3 –0.18 −0.04 0.13

SOCS1 0.37 0.24 0.36

STAT3 0.32 0.45 0.35

TNFAIP3 −0.04 0.03 0.21

TNFRSF9 0.35 0.02 0.3

TNIP1 0.23 0.18 0.37

TRAF3IP2 0.07 0.28 0.24

TYK2 0 0.06 0.14

UBE2L3 0.18 0.06 0.17

VDR 0.07 0.17 0.4

VEGFA 0.01 0.23 0.2

VEGFB −0.25 −0.18 −0.21

Bolded cells p < 0.05.

the existence of uniquely secreting IL-17 and IL-22 T cells or
the existence of other cytokine-secreting phenotypes (48, 64–69),
although these other studies usually relied upon non-physiologic
ex vivo T cell stimulation. Another possibility is that other cell
types, such as γδ T cells or mast cells, contribute to the IL-
22 production in psoriasis (48, 65, 70). Even neutrophils have
been implicated as major producers of IL-22 and IL-17A (71)
and recent animal models have re-explored their role as effector
cells in psoriasis pathophysiology (22, 72, 73). Indeed, there
are numerous studies supporting a key function of these cells
(71, 74–78). Single cell sequencing may provide information
to verify the relationship between IL17A and IL22 expression.
Although it is possible that dual-secreting IL-17A/IL-22 Th17

TABLE 3 | Correlation (R-values) of IL17A, IL22 and IL23A in psoriasis with genes

linked to atopic dermatitis susceptibility through genome-wide association studies

(56–61).

R-value

Gene IL17A IL22 IL23A

ADAMTS10 −0.16 −0.05 −0.10

C11orf30 0.16 −0.07 −0.03

LRRC32 −0.18 −0.04 −0.11

CARD11 0.10 0.05 0.15

CCDC80 −0.24 −0.05 –0.22

CLEC16A 0 0.12 0.38

CYP24A1 0.32 0.14 0.32

FLG −0.28 –0.16 –0.36

GLB1 −0.14 −0.02 −0.02

GPSM3 −0.04 0 0.06

IL18R1 0.23 −0.05 0.02

IL18RAP 0.23 0.05 0.27

IL2 0.09 0.01 0.04

IL6R −0.03 −0.10 0.11

KIF3A 0.14 −0.02 −0.01

IL13 0 0.26 0.06

NLRP10 −0.17 −0.11 –0.19

OR10A3 0.08 −0.08 0.08

OVOL1 0.32 0.28 0.32

PFDN4 0.01 −0.12 −0.06

PRR5L 0.28 −0.05 −0.06

RAD50 0.20 0.13 −0.01

TMEM232 0 0.11 −0.06

SLC25A46 0.06 0.03 −0.07

TNFRSF6B −0.06 0.14 0.28

ZGPAT 0.03 0.12 0.18

ZNF652 −0.38 –0.19 –0.42

Bolded cells p < 0.05.

cells exist, our results suggest that they are not a major source
of IL-22.

Although we did not find evidence for a strong link between
IL22 with IL17A or IL23A, our results do support a strong
correlation between the expression of IL22 and the keratin
genes, such as KRT6A, KRT6B, KRT6C, KRT16, KRT17, a
finding in accord with IL-22’s ability to induce epidermal
hyperproliferation (48). IL-22 is clearly a major cytokine involved
in psoriasis pathophysiology. In animal models, it has been
demonstrated to simulate psoriasis-like epidermal changes (47,
79) and elevated levels of IL-22 positively correlate with disease
severity in humans, as measured by Psoriasis Area Severity Index
(PASI) scores (80–83).

CONCLUSION

Although dual-secreting T cells may exist, our results
demonstrate that it is unlikely that the classical Th17 cells
(IL-17A/ IL-22 dual-secreting T cells) play a universal role in
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FIGURE 9 | Psoriasis susceptibility genes that positively correlate across IL17A, IL22, and IL23A, supporting a link between these cytokines and genes that have

been linked to psoriasis through GWAS.
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psoriasis pathophysiology. RNA-Seq analysis revealed that the
expression of these cytokines seems to be largely unrelated
to one another in the psoriasis transcriptome. However, the
expression of IL17A did correlate with IL23A but, interestingly,
unique relationships between IL23A and genes unrelated to
IL17A were also established, supporting a broad function
of IL-23.

Taken together, these results do not support the current
dogma that IL-17A/IL-22 dual-secreting Th17T cells are the
major driver of psoriasis pathophysiology. In addition, our results
support unique functions of IL-23 that are unrelated to its known
role in supporting Th17 responses. Finally, we demonstrate that
the expression of genes linked to psoriasis susceptibility also
correlate with expression of either IL17A, IL22, or IL23. This
supports the aforementioned cytokines’ involvement in multiple
avenues of psoriasis susceptibility.

2D mapping of inflammatory transcriptomes is an exciting
innovative modality that may help us visualize relationships
of all genes expressed in a disease process. When applied
to gene expression relationships in psoriatic lesional skin,
distinct clusters of cell lineage genes could be identified,
supporting the presence of a complex crosstalk among separate
cell lines in disease development. In the near future, single
cell transcriptome analysis will provide additional insight into
psoriasis pathogenesis. Identifying the cells responsible for the
psoriasis phenotype will bring us one step closer to developing
a cure for psoriasis.
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Hidradenitis suppurativa/acne inversa (HS) is a chronic inflammatory disease involving

hair follicles that presents with painful nodules, abscesses, fistulae, and hypertrophic

scars, typically occurring in apocrine gland bearing skin. Establishing a diagnosis of

HS may take up to 7 years after disease onset. HS severely impairs the quality

of life of patients and its high frequency causes significant costs for health care

system. HS patients have an increased risk of developing associated diseases, such as

inflammatory bowel diseases and spondyloarthropathies, thereby suggesting a common

pathophysiological mechanism. Familial cases, which are around 35% of HS patients,

have allowed the identification of susceptibility genes. HS is perceived as a complex

disease where environmental factors trigger chronic inflammation in the skin of genetically

predisposed individuals. Despite the efforts made to understand HS etiopathogenesis,

the exact mechanisms at the basis of the disease need to be still unraveled. In

this review, we considered all OMICs studies performed on HS and observed that

OMICs contribution in the context of HS appeared as not clear enough and/or rich of

useful clinical information. Indeed, most studies focused only on one aspect—genome,

transcriptome, or proteome—of the disease, enrolling small numbers of patients. This

is quite limiting for the genetic studies, from different geographical areas and looking

at a few aspects of HS pathogenesis without any integration of the findings obtained

or a comparison among different studies. A strong need for an integrated approach

using OMICs tools is required to discover novel actors involved in HS etiopathogenesis.

Moreover, we suggest the constitution of consortia to enroll a higher number of patients

to be analyzed following common and consensus OMICs strategies. Comparison and

integration with the findings present in the OMICs repositories are mandatory. In a

theoretic pipeline, the Skin-OMICs profile obtained from each HS patient should be
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compared and integrated with repositories and literature data by using appropriate

InterOMICs approach. The final goal is not only to improve the knowledge of HS

etiopathogenesis but also to provide novel tools to the clinicians with the eventual aim of

offering a tailored treatment for HS patients.

Keywords: hidradenitis suppurativa, genomics, transcriptomics, proteomics, OMICs, data integration, public

repositories

INTRODUCTION

Hidradenitis suppurativa/acne inversa (HS) is a chronic-
recurrent, inflammatory, debilitating skin disease that usually
presents after puberty. It is hallmarked by painful, deep-seated,
chronic, suppurating lesions most commonly located in the
axillary, inguinal, anogenital, and infra-mammary areas (1,
2). Treatment strategies rely on both medical and surgical
options. Medical treatment is founded on the use of antibiotics,
such as tetracyclines, rifampicin and clindamycin, retinoids,
and immunosuppressive agents. Anti-TNFα agents, notably
adalimumab that is the only biologic agent approved for HS, are
the mainstay of treatment in moderate-to-severe HS (3–5).

HS incidence in different countries ranges from 6 per 100.000
in Olmsted County (6) to 6.7 per 1,000 in Australia (7) to 1.8
per 100 in Denmark (8). This epidemiological variability may
reflect differences both in the awareness of physicians and in
susceptibility to HS in distinct populations. In fact, it has been
shown that in the United States, African Americans are more
susceptible to HS, even if the underlying causes are unknown
(9, 10).

The idea that the disorder is primarily caused by an
inflammation of apocrine sweat glands is nowadays rejected
and follicular hyperkeratosis and perifolliculitis are regarded
as the earliest events detected in HS skins (11, 12). Follicular
hyperkeratosis probably engenders the occlusion of the terminal
hair follicles, its dilation, and finally its rupture (12). It is thought
that keratin, corneocytes, hair shaft, sebum products spilled
from breached pilosebaceous units into the dermis (13) can act
as danger-associated molecular patterns (DAMPs) activating an
immune response in deep dermis sustained by CD3+ T cells
(mainly CD4+, but also CD8+), B lymphocytes, macrophages
and, more importantly, neutrophils (13). CD4+ T cells (T helper
(Th)) and neutrophils are the main producers of IL-17 (14, 15)
that, together with TNF-α, IL-1β, and IL-10, are the cytokines
found consistently overexpressed in HS lesional and perilesional
skin (16–19).

Very few data are available for the events of the “subclinical
inflammation” phase (20) but the hypothesis of microfilm-
forming microbes or skin pathogens as main drivers of HS
inflammation is fading away. In fact, Ring et al. (21) showed
by peptide nucleic acid (PNA)-FISH a paucity rather than
an enrichment of bacterial aggregates in HF pre-clinical HS
skin when compared with healthy controls. Next-generation
sequencing (22) studies performed on skin microbiome of
HS patients during flares showed the existence of a dysbiosis
(21, 23) that could allow the development of a pathobiome
or an augmented expression of virulence factors by otherwise

harmless commensal bacteria (24, 25) probably driven by host
inflammation, as shown in atopic dermatitis (26). It is still
debated whether these bacteria maintain a vicious circle that
amplifies and sustains skin inflammation or are the primum
movens of the disease (27).

GENOMICS

Genetics of HS: γ-Secretase
Identification of English families where HS was transmitted
as an autosomal dominant trait has shed light on the genetic
basis of disease susceptibility (28). Still, in pedigrees with
members from more generations affected, the percentage of
first-degree relatives affected was 34%. This was, according
to the authors, quite far from the 50% expected for a
dominant disease but was incompatible with a multigenic
trait transmission. Interestingly, some families showed more
women affected than men, with a 3:1 female to male
ratio that today is confirmed by several epidemiological
studies (8, 9), whilst other ones showed a preferential male-
to-male transmission predicting that one gene-one disease
cannot be applied for HS. Authors stated that assessment of
genetic transmission could have been complicated by reduced
penetrance, unpredictable onset age, and variable clinical
severity, leading to the fact that family members presenting
mild clinical manifestations might have remained undiagnosed.
In addition, a strong feeling of shame associated with the
disorder may lead relatives to conceal their condition to the
family (28).

Gao and colleagues analyzed a four generations Chinese
family by linkage analysis using microsatellite markers mapping
the genes for HS in a region of about 76Mb at chromosome
1 (1p21.1 - 1q25.3) (29). Later on, Wang et al. (30), using the
same strategy with Gao et al. analyzed two Chinese Han families
identifying a region on chromosome 19q13 containing about
200 Refseq genes. By Sanger sequencing, Wang et al. found
two different one-nucleotide deletions not found in 200 healthy
controls in PSENEN, encoding for presenilin enhancer (PEN2).
As PSENEN encodes for one of the four subunits of γ-secretase
complex (31), they sequenced all γ-secretase genes in four
families and found 1 frameshift mutation in PSEN1 (14q24.2) and
3 in NCSTN (1q23.2). Notably, each family presented a different
mutation and all the mutations caused haploinsufficiency of
one γ-secretase following the non-sense mediated decay (NMD)
of their mRNA. Since γ-secretase catalyzes the intramembrane
proteolysis of Notch receptors (30), deficiency of which caused
histological features of HS in several mice models (32–34),
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Wang and collaborators concluded that HS is the results of an
attenuated Notch signaling in the skin of patients with NCSTN,
PSENEN, and PSEN1 inactivating mutations (30).

A DNA variant affecting splicing was found later by Liu
et al. (35) in the family analyzed by Gao and collaborators
thus confirming the association of NCSTN mutations (and the
chromosome region 1q23.2) with HS. NCSTN and PSENEN
novel mutations segregating with the trait were found in families
fromUK (36), France (37), Japan (38) and one African-American
family from the United States (39).

Interestingly, two studies on sequentially recruited patients
showed that very few “sporadic” patients, i.e., patients that
did not report a family history for HS, presented pathogenic
DNA variants in the three morbid genes (40, 41). Deep
sequencing of NCSTN was performed by Liu et al. (42) on
95 European and African-American HS patients enrolled in
the Pioneer I and II clinical trials. The majority (n = 57)
of patients had a family history of the disease but only one
patient with a nonsense mutation (rs387906896; p. R117X) and
one sporadic patient with a missense variant (rs147225198; p.
A410V) were found, thus reinforcing the idea that mutations
in γ-secretase genes are responsible for a small percentage
of HS cases and are not sufficient alone to explain all
HS phenotypes.

Reduced penetrance of NCSTN mutations has been shown
once in a Japanese family analyzed by Nomura et al. (43) where
the proband’s 70-year-old sister carrying the missense variant
p.Q568X had never manifested any sign of the disease probably
because, unlike to the other affected family members, she claimed
to have never smoked.

To date more than 30 mutations have been described in
NCSTN in HS patients (44, 45), 15mutations in PSENEN (46–48)
and only one “likely pathogenic” mutation in PSEN1 (44).

Interestingly mutations in PSENEN results in 3 different
phenotypes: (1) HS, (2) Dowling-Degos Disease (DDD), or (3)
HS and DDD (47, 49), whilst DDD is not associated with any
mutations in NCSTN.

Even if the common idea is that HS is the result of a deficient
NOTCH signaling in patients with mutations in γ-secretase
genes, this claim has been weakened lately by different findings.

For instance, the “likely pathogenic” mutation
PSEN1 c.725delC was shown to increase, not to diminish,
NOTCH signaling in zebrafish (50). In addition, genomic
variations in TSPEAR that decrease NOTCH signaling similarly
to γ-secretase mutations, have been associated to a novel form
of ectodermal dysplasia affecting tooth and hair follicles without
any sign of skin inflammation typical of HS (51).

The mechanism by which NCSTN, PSEN1, and PSENEN
mutations lead to HS has yet to be elucidated. This seems a rather
complex mechanism as γ-secretase has more than 100 identified
substrates (31, 52) and process 21 Receptor Tyrosine Kinases
(RTKs) involved in important cellular processes such as cell cycle,
survival, differentiation, and migration (53). Gamma-secretase
deficiency could also regulate inflammation as it processes
important cytokines receptors such as IL-1β R1/R2 and IL-
6R (31).

Genetic of the HS: Other Genes
As shown inTable 1 and depicted in Figure 1, in addition to the 3
genes that encode for the subunits of γ-secretase complex, other
8 genes are involved in HS.

Mutations in the connexin-26 gene (GJB2) on chromosome
13q11-q12 GJB2 gene, that encodes connexin-26 (Cx26),
have recently been linked to HS. Mutations in this gene
caused Keratitis-ichthyosis-deafness (KID) syndrome, a rare
congenital disorder of the ectoderm that gives rise to keratitis,
erythrokeratoderma and neurosensory deafness. HS has been
reported in association with KID syndrome in a few cases with
distinct Cx26 mutations such as D50N, A40V, G12R (55–57).

Cx26 is one of the main connexins in human skin and is
normally restricted to hair follicles and eccrine sweat glands (58).

The mutations of Cx26 disturb the gap junctions, specialized
channels that connect the cytoplasm of adjacent cells. These
cellular structures are important for tissue homeostasis,
growth and development and for cellular response to external
stimuli (59).

The exact correlation between HS and Cx26 mutations
and the interplay of gap junctions and inflammation remain
to be elucidated; it is believed that HS might result from
the hyperproliferative tendency of KID syndrome patients’
epidermis, leading to follicular plugging, cyst formation, and
rupture and spillage of keratin and glandular secretions into the
subcutaneous tissue, causing an inflammatory response (55).

Recently, Higgins et al. (60) identified a germline missense
mutation in fibroblast growth factor-receptor 2 (FGFR2) gene
in exon 5 (c.G492C, p.K164N) in a patient with HS. FGFR2 is
normally expressed in keratinocytes, hair follicles and sebaceous
gland. It is a tyrosine-protein kinase that plays an essential role in
cell proliferation, differentiation, migration, and apoptosis, and
in the regulation of embryonic development (61). Unfortunately,
to date there are no functional and expression studies about
this mutation. A predictive analysis with the help of several
prediction algorithms has assessed that this mutation may have
a pathological consequence on the impaired protein function.
Considering that FGFR2 mutations are also associated with
acne and that FGFR2 results in the activation of the HS-related
PI3K/Akt pathway (caused by mutations in γ-secretase genes),
exploration of this aspect could be relevant (62, 63).

Marzuillo et al. (64) identified mutations in inositol
polyphosphate-5-phosphatase 1 (OCRL1) gene in HS patients.
OCRL1 encodes an inositol polyphosphate 5-phosphatase and
is involved in regulating membrane trafficking and primary
cilium formation. Mutations in OCRL1 are associated with Dent
disease 2 (DD2), a disorder characterized by proximal tubule
dysfunction. In a case report Marzuillo et al. described 5 DD2
patients with OCRL1 mutations and 4 of these patients were
diagnosed as having HS.

Mutations in OCRL1 drastically reduce the OCRL1 activity,
causing an increase of phosphoinositol-4,5-bisphosphate
(PI(4,5)P2) levels in the plasma membrane, a substrate of this
enzyme. The correlation between HS and DD2 could just be due
to an accumulation of PI(4,5)P2, able to increase susceptibility to
cutaneous infections.
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TABLE 1 | Summary of the genes involved in HS pathogenesis, including their encoding proteins, functions, and mutation category.

Gene Encoding protein Function Mutation category

PSENEN Presenilin enhancer

protein 2

Essential subunit of the gamma-secretase complex, an endoprotease

complex that catalyzes the intramembrane cleavage of integral membrane

proteins such as Notch receptors, and Amyloid-beta Precursor Protein

Frameshift, nonsense,

splicing, missense

PSEN1 Presenilin 1 Catalytic subunit of the gamma-secretase complex, an endoprotease

complex that catalyzes the intramembrane cleavage of integral membrane

proteins such as Notch receptors, and Amyloid-beta Precursor Protein

Frameshift

NCSTN Nicastrin Essential subunit of the gamma-secretase complex, an endoprotease

complex that catalyzes the intramembrane cleavage of integral membrane

proteins such as Notch receptors, and Amyloid-beta Precursor Protein

Missense, nonsense,

frameshift, splice site

GJB2 Gap junction protein

beta 2, Connexin-26

Member of the gap junction protein family specialized in cell-cell contacts

that provide direct intracellular communication.

Missense

FGFR2 Fibroblast growth

factor receptor

Member of the fibroblast growth factor receptor family that plays an

essential role in the regulation of cell proliferation, differentiation, migration,

and apoptosis, and in the regulation of embryonic development

Missense

OCRL1 Inositol polyphosphate

5-phosphatase

Involved in regulating membrane trafficking and primary cilium formation Missense

TNF Tumor necrosis factor Multifunctional proinflammatory cytokine involved in the regulation of a wide

spectrum of biological processes including cell proliferation, differentiation,

apoptosis, lipid metabolism, and coagulation

Non coding variant that

is associated with gene

expression

IL-12Rb1 Interleukin-12 Receptor

Subunit Beta-1

IL-12/IL-23 pathway. IL-12 is implicated in the differentiation of the Th-1

immune response and IL-23 is mediating T17 response, the latter priming

chronic neutrophils influx

Missense

DEFB103 Defensin beta 3 (hBD3) Play an important role in innate epithelial defense Copy number variation

DEFB4 Defensin beta 2 (hBD2) Play an important role in innate epithelial defense Copy number variation

MYD88 Myeloid differentiation

primary response

protein MyD88

Plays a central role in the innate and adaptive immune response and it is

involved in the Toll-like receptor and IL-1 receptor signaling pathways

Nonsense

FIGURE 1 | Genes associated with susceptibility and progression of hidradenitis suppurativa. Susceptibility to the disease is caused by mutations in genes involved in

keratinocytes homeostasis having a role in maintaining the integrity of the epithelial barrier. Common polymorphisms in genes encoding for proteins involved in the

immune response have been associated to severity of the disease and influence the inflammatory and chronic phases. The disease model depicted is based on the

most accepted model reported by Berna-Serna and Berna-Mestre (54) for hidradenitis suppurativa.

Considering evidence suggesting the central role of deranged
immune response in the pathogenesis of HS, several genetic
studies have focused the attention on genes encoding for protein
of immune response.

In this context, Savva et al. (65) decided to investigate SNPs
in tumor necrosis factor (TNF) and Toll-like receptor 4 (TLR4)
genes, in DNA from 190 patients and 84 healthy controls. They
found that only one SNP of the promoter region of the TNF gene
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(-238 TNF gene polymorphism) is related both with susceptibility
to HS and with the natural course of the disease; in fact, it is
related to more frequent exacerbation and more severe disease.
Regarding TLR4 SNPs, they failed to identify the impact of these
SNPs on susceptibility to HS (65).

Indeed, Giatrakos et al. (66) have hypothesized that the
dysregulation of antigen-presentation could play a role in the
pathogenesis of HS, in particular the IL-12/IL-23 pathway.
Considering that both IL-12 and IL-23 receptors have a common
subunit encoded by the IL-12Rb1 gene and that there is an
association between this gene and several autoimmune disorders,
they decided to investigate the association between the risk for
developing HS and SNPs in IL-12Rb1. Studying DNA from 139
patients and 113 healthy controls, they observed that SNPs in IL-
12Rb1 did not seem to play a role in the genetic predisposition;
however, they found that these SNPs impacted considerably on
the clinical phenotype of the disease; in fact, they are associated
with more severe disease, extended skin involvement and earlier
disease onset (66).

Of note, few times genetic findings contradicted common
concepts in HS pathogenesis. This is true, for instance, for
the study of copy number variation (CNVs) of β-defensin
genes DEFB103 and DEFB4 (67). The idea that HS is caused
by uncontrolled growth of skin microflora or by a bacterial
pathogen colonizing the skin of the patients is testified by the
common use of antibiotics as a first line treatment for the
disease. Thus, researchers would have expected a deficiency in
antimicrobial peptides production, but Giamarellos-Bourboulis
and collaborators showed that an increased number of DEFB103
and DEFB4 genes, associated with augmented expression of β-
defensin 2 and 3 proteins, is an important risk factor for HS
susceptibility. However, patients with more copies of these genes
were protected against a severe phenotype in terms of both age of
initiation and number of affected sites (see Figure 1).

Recently, Agut-Busquet et al. (68) observed an association
of Myeloid differentiation primary response gene 88 (MYD88)
SNPs and susceptibility to severe HS, analyzing the DNA of
101 HS patients. This gene encodes a cytosolic adapter protein
that plays a central role in the innate and adaptive immune
response. This protein is involved in the Toll-like receptor and
IL-1 receptor signaling pathway in the innate immune response
(69). Agut-Busquet et al. found a significantly increased risk of
developing severe HS (Hurley III) for the GG genotype of rs6853
inMYD88 gene.

Genotype-Phenotype Correlation
Different authors have attempted to clinically classify HS
in order to stratify patients for clinical trials and identify
subpopulations prone to respond to specific therapies. Canoui-
Poitrine et al. (70) identified 3 subtypes of disease (“axillary-
mammary,” “follicular,” and “gluteal”) by means of a latent class
analysis on prospective clinical data of 618 consecutive patients,
while 6 different phenotypes (regular type, frictional furuncle
type, scarring folliculitis type, conglobata type, syndromic type,
ectopic type) were suggested by Van der Zee and Jemec (71).
Despite these efforts to distinguish different clinical categories
of HS, establishing a clear genotype-phenotype correlation is

not possible to date. However, several mutations affecting the
components of the inflammasome cascade or the proteins
that regulate inflammasome function have been described in
syndromic HS patients. The two main syndromes including
HS as a part of their cutaneous manifestations are PASH, a
disorder presenting with the triad pyoderma, acne and HS (72–
76), and PAPASH, a syndrome described by our group and
characterized by the same triad of PASH and pyogenic arthritis
(77) in whom genetic studies evaluating exons 10 and 11 of
the PSTPIP1 gene revealed a p.E277D previously unreported
missense mutation.

PASH patients are generally young adults with a very early
onset of the clinical manifestations of the syndrome, especially
acne (72–74, 78, 79). For the first two reported PASH cases,
it was hypothesized that the presence of alleles with a higher
number of CCTG motif repeats close to the PSTPIP1 promoter
deregulated PSTPIP1 expression and predisposed to neutrophilic
inflammation (72). This microsatellite may, therefore, be
involved as a modifier gene, although it is probably not causal
(80). The initial hypothesis was that PASH is a monogenic
disorder, but nowadays its polygenic autoinflammatory nature
has been confirmed (74, 81). An observational study of five
PASH patients (74) showed that their nine gene mutations
had already been entered in the database of single nucleotide
polymorphisms and that seven were in the registry of hereditary
autoinflammatory disorder mutations. Four of these five patients
had genetic alterations typical of monogenic autoinflammatory
diseases, and the only patient without any genetic changes
had Crohn’s disease, which is regarded as an autoinflammatory
disease. Indeed, mutations of the MEFV (Mediterranean fever)
gene have previously been associated with the typical clinical
picture of recessive familial Mediterranean fever (FMF) and
mutations of the NOD2 (nucleotide-binding oligomerization
domain-containing protein 2) gene are associated with an
increased risk of developing Crohn’s disease (82). A loss-of-
function mutation in the NCSTN gene has been reported
in one PASH patient (79). The nature and location of this
mutation do not distinguish it from the reported HS mutations
(83), thus supporting a close relationship between isolated HS
and PASH.

TRANSCRIPTOMICS: DIFFERENTIAL
GENE EXPRESSION IN HS

The impact of genetics in the susceptibility to hereditary
and sporadic HS is not only limited to mutations impairing
proteins known to be associated with the disease (i.e., those
involved in the γ-secretase pathway); other genetic variations
such as epigenetic changes, or variations in regulatory regions
could play a role in HS susceptibility or in HS clinical
phenotype modulation.

With this purpose, several studies analyzed the gene
expression profiles in different anatomical districts (i.e., lesional
skin, peripheral blood) of HS patients aimed at discovering
novel actors possibly involved in the diseases or in its clinical
modulation (see Table 2).
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TABLE 2 | Overview of gene expression in lesional and non-lesional skin of HS patients, healthy controls, and subjects suffering from other skin diseases, such as

psoriasis and atopic dermatitis.

Gene Expression Tissue Technique Number of subjects References

Whole genome 50 probes differentially

expressed (no validation), 10

putative disease-related

pathways

Lesional skin,

non-lesional skin whole

blood

Affymetrix GeneChip.

NO VALIDATION

27 (17 HS patients, 10

healthy donors)

(84)

Drosha, DGRC8, Dicer

Exportin-5

Drosha ↓, DGRC8 ↓ in non

lesional skin

Skin lesions and

non-lesional skin

RT QPCR, IHC 28 (18 HS patients, 10

healthy controls)

(85)

miRNA-155-5p, miRNA-223-5p,

miRNA-31-5p, miRNA-21-5p,

miRNA-125b-5p, and

miRNA-146

miRNA-155-5p ↑,

miRNA-223-5p ↑,

miRNA-31-5p ↑,

miRNA-21-5p ↑,

miRNA-146a ↑,

miRNA-125b-5p ↓

Lesional and

perilesional skin

RT QPCR 25 (15 HS patients, 10

healthy controls)

(86)

TRBP1, TRBP2, PACT, AGO1,

AGO2, metadherin, SND1

TRBP1 ↓,

PACT ↓, AGO1 ↓, AGO2↓,

SND1 ↓

Lesional skin,

peri-lesional skin

psoriasis, healthy skin

RT QPCR 38 (18 HS patients, 10

psoriasis patients, 10

healthy controls)

(87)

IL-12, IL-23, IL-17 Il 12 ↑, IL17 ↑, IL-23 ↑ Lesional skin, healthy

skin

RT QPCR, IHC 18 (10 patients with

HS, 8 healthy controls)

(88)

IL-22, IL-20, IL-17A, IL-26,

IFN-γ, IL-24, IL-1β, hBD1, hBD2,

hBD3, S100A7, S100A8,

S100A9

IL-22 ↓, IL-20 ↓,

hBD1 ↓, hBD2 ↓, hBD3 ↓,

S100A7 ↓, S100A8 ↓, S100A9 ↓

HS lesional skin vs.

Psoriatic and atopic

dermatitis lesional skin

RT QPCR 37 (8 healthy controls;

14 Psoriasis patients; 7

HS patients; 8 patients

with atopic dermatitis)

(89)

IL-1β, IP-10, RANTES, hBD1,

hBD2, hBD3, S100A7, S100A8,

S100A9, RNAse7

IL-1β↑, IP-10↑, RANTES ↑,

hBD1↓, S100A7↑

Keratinocytes isolated

from hair follicles

RT QPCR – (90)

IL-17, IL-1β, TNF-α, NLRP3,

IL1β, IL18

IL-17↑, IL-1β↑, TNF-α↑,

NLRP3↑, IL1β↑, IL18 ↑

LESIONAL,

non-lesional skin,

uninvolved skin from

the same patients.

RT QPCR, FC,

enzyme-linked

immunosorbent assays

54 (44 HS patients, 10

healthy controls)

(20)

IL32 IL32 ↑ Lesional skin and

serum

RT QPCR, IHC, ELISA 36 (20 HS patients, 8

psoriasis patients, 8

atopic dermatitis

patients)

(91)

IL36 IL36 ↑ Lesional skin and

serum

RT QPCR, IHC, ELISA 38 (25 HS patients, 6

psoriasis patients, 7

healthy donors)

(92)

TLR2 TLR2 ↑ Skin lesions, CD68+

macrophages,

CD209+ DCs

RT QPCR, IHC, FC 16 (9 HS patients, 7

healthy controls)

(93)

hBD3, RNAase 7, psoriasin

(S100A7), dermicin (DCD)

hBD3 ↑ Lesional skin, healthy

skin

RT QPCR 93 (36 HS patients 57

healthy controls)

(94)

GSE72702 expression profile of

genes encoding

sphingolipid-related enzymes

from Gene Expression Omnibus

database

Perilipin 1 ↑,

S1P (sphingosine-1-phosphate)

↑, SMase, (sphingomyelinase) ↑;

CerS2 (Ceramide synthase 2) ↓,

SK2 (sphingosine kinase) ↓, SPT

(serine palmitoyl CoA

transferase) ↓

Skin inflammatory

lesions, skin biopsies of

healthy controls

In silico

Microarray repository

NOT VALIDATED

30 (17 HS patients; 13

healthy skin tissue)

(95)

↑, up-regulated in HS lesional skin; ↓, down-regulated in HS lesional skin.

Whole Genome Expression
To the best of our knowledge, the most complete gene
expression profiling in HS patients has been performed by
Blok et al. (84), who analyzed lesional skin and whole blood
from 17 HS patients comparing their whole gene expression
profile with 13 samples of healthy skins (from non lesional
areas of HS patients) and whole blood from 10 healthy
donors. The authors studied the whole genome expression

using the Affymetrix GeneChip HT HG-U133+PM Array
(Affymetrix, Santa Clara, CA, US). The first interesting finding
is that no differences in NCSTN, PSEN1, and PSENEN gene
expression have been found either at skin level or in whole
blood from patients and controls. Blok et al. claim that the
absence of differences in whole blood between HS patients and
controls should be related to a possible post-transcriptional
negative control of cytokines production due to augmented
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serum level of tumor necrosis factor (TNF)-α as reported by
Matusiak et al. (96).

When considering HS patients skin, Blok et al. identified 50
probes differentially expressed between lesional and non-lesional
skin of HS patients as well as 10 pathways possibly involved
in the disease (97); these pathways are (in order of statistical
significance based on p-values): Granulocyte adhesion and
diapedesis, agranulocyte adhesion and diapedesis, atherosclerosis
signaling, hepatic fibrosis, primary immunodeficiency signaling,
communication between innate, and adaptive immune cells,
dendritic cell maturation, complement system, systemic lupus
erythematosus signaling and leukocytes extravasation signaling.

The authors, in our opinion, did not exhaustively explain
the findings obtained, just justifying the differences in gene
expression based on the genetic background of HS patients.
However, it should be underlined that Blok et al. acknowledged
the limitation of their study related to the relatively small
number of samples analyzed and overall to the lack of validation
(both immunohistochemistry on in situ hybridization as well
as RT-QPCR).

miRNA Regulatory Elements Expression
Another important aspect of gene expression regulation has been
widely considered by Hessam et al. (85–87); in three independent
studies, the authors analyzed miRNA expression profiles in
inflammatory lesions from HS patients.

In the first study, the authors. (85) assessed, using RT
QPCR, the expression of Drosha, Drosha co-factor DGRC8,
Dicer and Exportin-5 in skin lesions and non-lesional skin
from HS patients, skin lesions from patients with psoriasis and
skin biopsies from healthy individuals. By finding a down-
regulated gene expression of Drosha and DGRC8 just in non-
lesional skin from HS patients, the authors hypothesized an early
intervention of these miRNA regulators during the first, clinically
and histologically not detectable, stages of inflammation, thus
suggesting that when inflammation signs become observable only
at that moment Dicer and Exportin-5 are involved.

In the second study (86), the expression of inflammation-
related miRNA (namely miRNA-155-5p, miRNA-223-5p,
miRNA-31-5p, miRNA-21-5p, miRNA-125b-5p, and miRNA-
146) was evaluated through RTQPCR in lesional and perilesional
skin of 15 HS patients and 10 healthy controls: the above-
mentioned miRNA was shown as differentially expressed in
HS patients as compared to controls, leading the authors to
hypothesize a function in the modulation of the inflammatory
response in the lesional skin of HS patients.

In the third study, Hessam et al. (87) enrolled HS and
psoriasis patients as well as healthy controls analyzed
the expression profile of RNA-induced silencing complex
(98) components (specifically, transactivation-responsive
RNAbinding protein-1 (TRBP1), TRBP2, protein activator
(PACT) of the interferon-induced protein kinase R, Argonaute
RISC Catalytic Component-1 (AGO1) and Component- 2
(AGO2), metadherin, and staphylococcal nuclease and Tudor
domain-containing-1 (SND1)), also in this case using RT QPCR,
in their inflamed tissues (skin biopsies). The authors concluded,
after RISC component comparison between skin biopsies of

HS and psoriasis patients and healthy controls, that all RISC
components were differentially expressed thus highlighting
a possible role in the modulation of skin inflammation in
HS patients.

Indeed, the three studies of Hessam et al., also in this case
with the limitation of the low number of individuals considered
and the lack of information about ethnicity of patients and
controls enrolled, possibly accounting for genetic differences,
evidenced novel possible biomarkers correlating with local skin
inflammation to be eventually considered in the follow-up of HS
patients (4).

Cytokine Expression
Due to their widely accepted role in the modulation of
inflammatory processes, cytokine-encoding genes have been
extensively studied in the context of HS etiopathogenesis.

Schlapbach et al. (88) analyzed, using RTQPCR and validating
their findings with immunohistochemistry, lesional skin of HS
patients and compared IL-12, IL-23, and IL-17 gene expression
with skin biopsies from healthy controls. The authors observed
a specific expression of the IL-23/Th17 pathway in lesional skin,
thus evidencing, as expected, a connection between the immune
system and the inflammatory phenotype in the HS lesions.

Starting from the observation that IL-22 has been reported
as correlated with chronic cutaneous diseases such as psoriasis,
Wolk et al. (89) evaluated IL-22 encoding gene expression in
HS patients. In their work, the authors showed diminished
expression of IL-22 and IL-20, but not of IL-17A, IL-26,
IFN-γ, IL-24, or IL-1β in HS lesional skin. Furthermore, a
correlation between a shortage of IL-22 and IL-20 and reduced
expression of antimicrobial peptides (hBD1, hBD2, hBD3,
S100A7, S100A8, S100A9) has also been found in HS lesional
skin. Wolk et al. concluded that IL-22, same as for other chronic
skin diseases, could be another actor potentially involved in
HS etiopathogenesis.

Hotz et al. (90) observed a significant increase in IL-1β, IP-
10 secretion, and chemokine ligand 5 (CCL5/RANTES), either
constitutively or on pattern recognition receptor stimulations, in
keratinocytes isolated from hair follicles of patients with HS.

Using a multitasking experimental approach involving RT
QPCR, flow cytometry and enzyme-linked immunosorbent
assays, Kelly et al. (20), detected an augmented expression
of genes encoding IL-17, IL-1β and TNF-α in biopsies of
lesional skin from HS patients when compared to biopsies
from non-lesional skin and uninvolved skin from the same
patients. Moreover, the authors demonstrated an involvement
of the inflammasome platform in HS lesions, being increased
the expression of NLRP3, IL-1β, and IL-18. Finally, differential
cytokine expression was detected in perilesional and non-lesional
skin biopsies, leading the authors to hypothesize the presence of
inflammation in HS patients present before the development of
clinically evident lesions.

Thomi et al. (91) reported an increased expression of IL-36
encoding gene in skin biopsies and serum from HS patients,
highlighting a local and systemic involvement of this cytokine,
but the exact mechanism of action of IL-36 in HS pathogenesis
has not been suggested.
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In another independent study, the same authors (92) observed
enhanced IL-32 gene expression in both lesional skin and serum
from HS patients when compared to healthy controls or patients
suffering from psoriasis and atopic dermatitis. Moreover, Thomi
et al. identified the cells producing IL-32, namely natural killer
cells, T cells, macrophages and dendritic cells localized at dermal
level. The authors conclude that IL-32 could be a potential target
for novel drug development.

At last, Jenei et al. (99) suggested after performing protein
arrays that not only the microbiota and chemical content of
human skin show three main topographical areas (dry, moist,
oily/sebaceous), but probably in correlation to this, the immune
and barrier characteristics of these topographical regions are also
distinct, which can make these skin regions become prone to the
development of “region-specific” inflammatory skin diseases, like
HS on apocrine gland-rich areas and acne or rosacea.

Other Differentially Expressed Genes
Hunger et al. (93) aimed at exploring the function of TLR2
in the modulation of the clinical phenotype of HS patients,
studies TLR2 encoding gene expression in skin lesions of HS
patients. Using a multidisciplinary approach consisting in RT
QPCR, immunohistochemistry and flow cytometry, the authors
demonstrated an up-regulated TLR2 gene expression in HS
patients skin lesions, also identifying CD68+ macrophages and
CD209+ DCs as the cells expressing TLR2.

Hofmann et al. (94) published a seminal paper on defensins
gene expression in the epithelium of HS patients. The authors
analyzed through RT QPCR, the expression of HBD3, RNAase 7,
psoriasin, and dermicin antimicrobial peptides encoding genes
in lesional skin from HS patients (36 individuals) and skin
biopsies from healthy controls (57 subjects). It has been observed
a defective RNAase 7 expression (both at RNA and protein levels)
in HS patients, while HBD3 expression (both RNA and peptide)
was increased in HS patients but not in those with a more severe
phenotype (Hurley grade III). The authors suggest that lack
of antimicrobial peptide expression could predispose to major
susceptibility to infections in skin lesions, while reduced HBD3
expression in severe HS cases could be related to a potential
anti-inflammatory role.

Dany and Elston (95) using a microarray-based approach
analyzed the expression of sphingolipid-related enzymes in
skin inflammatory lesions of HS patients and skin biopsies
of healthy controls. The authors observed an up-regulation of
genes encoding ceramide and sphingomyelin generating enzymes
as well as augmented expression of genes encoding enzymes
catabolizing ceramide to sphingosine and those converting
ceramide to galactosylceramide and gangliosides. Dany and
Elston suggested that, based on the findings obtained and
acknowledging the limitation due to the lack of evaluation of the
sphingolipids generated by the evaluated enzymes, sphingolipid
metabolism ismodified inHS lesional skin. This study also suffers
the absence of RT QPCR validation of the microarray results.

PROTEOMICS

Two studies on proteins being involved in HS development have
been performed by Blok et al. (97) and Zouboulis et al. (100).

The authors analyzed sera from 17 patients with moderate to
severe HS (based on Hurley scale), treated with ustekinumab,
a monoclonal antibody directed against IL-12 and IL-23 and
approved for the treatment of psoriasis. The clinical trial has been
designed to understand if any proteomic marker was possibly
involved in the successful (or not) treatment with the drug
for 40 weeks follow-up. Blok et al. analyzed 1,129 proteins
in the sera of HS patients at the beginning and the end of
ustekinumab treatment.

Serum proteomic analysis revealed a different expression
of 54 proteins in the 17 HS patients when compared to 10
healthy subjects. These 54 differentially expressed proteins, after
accurate pathway analysis, resulted involved in inflammatory
processes, cellular signaling related to immune processes and
tissues architecture modulation. Moreover, among the 4 patients
who achieved a good response after drug administration, all
were characterized by up-regulated production of Leukotriene
A4 Hydrolase (LTA4H), follicle-stimulating hormone (FSH),
luteinizing hormone (LH), and human chorionic gonadotropin
(HCG), firstly detected with protein array, then validated by
ELISA. No effect of ustekinumab treatment has been observed
when considering TNF-α, IL-17A, IL-17F.

At the end of their clinical the authors suggest that treatment
with ustekinumab, a drug used for psoriasis, was somehow
beneficial for HS patients, also proposing the dosage of LTA4H,
together with the clinical evaluation using the Hidradenitis
Suppurativa Clinical Response (HiSCR) score, for the prediction
of the immunosuppressive drug in patients with mild or
severe HS.

This work is of some interest in the field of serum markers
possibly associated with HS and its treatment. What is strongly
needed to unravel the molecular mechanisms at the basis of
HS by means of proteome analysis in lesional, pre-lesional, and
healthy skin in biopsies from mild to severe HS patients, as
studied in the second preliminary study by Zouboulis et al. (100)
in 8 HS patients involved and uninvolved skin and 8 gender-,
age-, and skin location-matched female patients. The response to
pharmacological treatment could be also considered but themain
goal should be depicting what is happening at proteomic level in
the skin of individuals with HS. Of course, the identification of
serological markers related to the clinical conditions and drugs
response of patients suffering from HS is also envisaged, since it
is easy to be employed in their routine follow-up.

DATA INTEGRATION SKIN-OMICS

After several studies tackling HS pathogenesis using a single
OMICs approach, the one of Hoffmann et al. (101) finally
succeeded to integrate skin/serum transcriptomics and
proteomics findings obtained in a limited number of HS
patients (n = 17) with different degree of disease severity and
healthy subjects (n = 10). The authors made comparisons
between transcriptomic and proteomics profiles present in the
main repositories or reported in previous articles (see those
described above). This integrated approach, the first to our
knowledge used until now to disclose the mechanisms at the
basis of HS pathogenesis, provided interesting results and opened
a new path to approach this complex disease.
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Hoffmann et al. propose, based on integrated OMICs findings
a novel pathogenic model for HS consisting of two distinct
and subsequent stages, initiation with the well-known follicular
obstruction and progression of the disease, being the latter
characterized by a strong immune response to microbiota, thus
adding a novel actor in HS etiopathogenesis.

The authors hypothesized that the differential genes and
protein expression (i.e., enhanced expression of innate immune
response, immunoglobulins, complements proteins, augmented
interferon signature) could be due to the attempts of the immune
system, both innate, and adaptive to react to microbiota present
in HS patients skin; this is particularly evident if we consider
the role of activated complement proteins in HS patients in
the fight against commensal skin bacteria, being the main taxa
(identified through literature search and metagenomic analysis)
Porphyromonas and Prevotella. Moreover, it is suggested that
the strong involvement of the skin-related immune system is a
mechanism already observed in other cutaneous diseases that
could share with HS the same immunologic mechanisms of
response to skin dysbiosis.

Despite the novel approach used, the study of Hoffmann
et al. suffers the important bias characterizing all OMICs studies
performed to date: few patients analyzed, lack of correlation
and integration with GWAS findings. In fact, the authors did
not consider in their interesting integrate approach the genetic
findings present in the literature, that could have contributed
to identifying genetic causative variants in genes encoding the
immune system actors involved in the response to dysbiosis,
so missing validation of their findings by triple-checking their
results with the genetic findings.

CONCLUSIONS

In this review, we collected all the information concerning the
OMICs studies performed on HS patients aimed at unraveling
the mechanisms at the basis of the disease or associated to clinical
severity and/or the successful response to pharmacological
treatment (including biological drugs).

The general picture of the OMICs contribution in the context
of HS is not so clear and/or rich of clinical useful information,
since most of the studies focused only on one aspect (genome,
transcriptome, or proteome) of the disease, enrolling small
numbers of patients (this is quite limiting for the genetic studies)
from different geographical areas, looking just a few aspects of HS
pathogenesis without any integration of the findings obtained or
a comparison within studies.

In this sense just two articles [(97, 100): described above]
constructively compared the transcriptomic and proteomic
profiles of skin and serum from HS patients with previous data
present in biological repositories. We do think that this is the
right path to be followed to disclose the fine mechanisms at the
basis of HS and its clinical course.

An integrated approach using OMICs tools is strongly
required to study the full genome, the skin transcriptome and
proteome (from lesional, perilesional, and non-lesional biopsies
as well as serum) of HS patients stratified based on the severity
of the diseases, type of treatment and response to drugs; the
number of enrolled patients, with the same ethnic background,
is a key issue, especially for the genetic studies, in this sense
we do recommend the constitution of consortia to better
address this key-point. A comparison and integration with the

FIGURE 2 | Integrated OMICs pipeline set up for disclosing the actors involved in hidradenitis suppurativa pathogenesis and proposing a personalized treatment for

the patients.
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findings present in the OMICs repositories is mandatory, so in
a theoretic pipeline the Skin-OMICs profile obtained from each
HS patient should be compared and integrated with repositories
and literature data by using appropriate InterOMICs approach
(i.e., see the interesting work performed on 16 types of cancer
integrating pathways and biological network data by Cava et al.
(102). Figure 2 shows the possible integrated strategy to be
adopted for tailored diagnosis and treatment of HS patients.

In our opinion, this is the more rapid and robust approach
to study the contribution of genome, transcriptome, proteome
in the constitution of integrated pathways and networks able to
better unravel HS etiopathogenesis, possibly discovering targets
for novel drugs design or to personalize HS treatment, in
accordance with the new challenges of the precision medicine.
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Neutrophil-mediated skin diseases, originally named neutrophilic dermatoses (NDs),

are a group of conditions due to an altered neutrophil recruitment and activation,

characterized by polymorphic cutaneous manifestations with possible internal organ

involvement. Although a number of diseases are included in this setting, the two

prototypic forms are pyoderma gangrenosum (PG) and Sweet’s syndrome (SS) which

usually present with skin ulcers and plaque-type lesions, respectively. They have central

features significantly overlapping with autoinflammatory conditions which manifest

as repeated episodes of tissue inflammation. However, in contrast to appropriate

inflammatory responses to insults or to autoimmune disease, there is an absence of

identifiable pathogens, autoantibodies, or autoreactive lymphocytes. The recognition

of monogenic autoinflammatory diseases which can present with NDs has led to

study several genes involved in autoinflammation in NDs. Based on discovering of a

number of mutations involving different autoinflammatory genes, neutrophil-mediated

skin diseases are nowadays regarded as a spectrum of polygenic autoinflammatory

conditions. Although disease mechanisms have not yet been completely elucidated,

NDs are recognized as diseases involving dysfunctional cellular signaling mediated

by pathways mainly related to inflammasome and IL-1 with the contributory role of

IL-17 and other effector molecules. The precise elucidation of the above-mentioned

pathologic mechanisms may pave the way to tailored treatments for patients with

different neutrophil-mediated skin diseases.

Keywords: neutrophil-mediated skin diseases, autoinflammation, inflammasome, cytokines, pyoderma

gangrenosum

INTRODUCTION

Neutrophilic dermatoses (NDs) are a heterogenous subset of conditions with common features
and overlapping pathophysiology. They primarily present with cutaneous manifestations due
to accumulation of neutrophils but may affect additional tissues. The most well-defined
NDs include pyoderma gangrenosum (PG), Sweet’s syndrome (SS), subcorneal pustular
dermatosis, neutrophilic eccrine hidradenitis (NEH), bowel-associated dermatosis-arthritis
syndrome (BADAS), rheumatoid neutrophilic dermatitis, Behçet’s disease (BD), amicrobial
pustulosis of the folds (APF) and generalized pustular psoriasis. The presentations by pathology
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of the neutrophil-mediated autoinflammatory skin diseases for
which there is genetic and immunological evidence are reported
in Table 1. As PG with its syndromic forms is the prototypical
ND and has a large body of research available, it will be the
focal point of the discussion. Concerning the other entities, since
there are no extensive research data available in the literature,
their links with suggested mechanisms would be speculative.
Each disease may present within an overlapping spectrum both
clinically and histopathologically which can make diagnosis
difficult and management challenging. The central features of
NDs have significant overlap with disorders included within
the spectrum of autoinflammatory conditions which manifest
as reoccurring periods of tissue inflammation (18). However,
in contrast to appropriate inflammatory responses to insults

TABLE 1 | Clinical, genetic, and immunological features of the main autoinflammatory neutrophil-mediated skin diseases.

Disease Cutaneous presentation Genetics Immunology References

PG Ulcers with undermined,

erythematous-violaceous

borders

MEFV, NLRP3, NLRP12, NOD2, and LPIN2

mutations

Increased skin IL1β, IL1RI, IL1RII, TNFβ, TNFRI,

TNFRII, IL17, IL17R, L-selectin, IL8, CXCL

1/2/3, CXCL16, RANTES, MMP-2, MMP-9,

TIMP-1, TIMP-2, Siglec 5, Siglec 9, Fas, FasL,

CD40, and CD40L

(1, 2)

R52Q mutation in the PSTPIP1 gene Not evaluated (3)

G258A and R52Q mutations in the PSTPIP1

gene

Not evaluated (4)

Not evaluated Increased skin IL23 (5)

Ptpn6 mutations Increased serum IL1α (6–8)

PAPA Ulcers with undermined,

erythematous-violaceous

borders; inflammatory acne

E250K in the PSTPIP1 gene Increased serum IL1β (9)

E250Q and A230T mutations in the PSTPIP1

gene

Not evaluated (10)

PASH Ulcers with undermined,

erythematous-violaceous

borders; nodules, abscesses,

fistulae

p.I591T, p.M694V, p.V726A mutations in the

MEFV gene; p.R702W and p.G908R in the

NOD2 gene; p.Q703K in the NLRP3 gene;

p.A106T in the IL1RN gene; p.E277D in the

PSTPIP1 gene; and p.G8R in the PSMB8 gene

Increased skin IL1β, IL1RI, IL1RII, TNFα,

TNFRI, TNFRII, IL-17, IL17R, L-selectin, IL-8,

CXCL1/2/3, CXCL16, RANTES, MMP-2,

MMP-9, TIMP-1, TIMP-2, Siglec 5, Siglec 9,

Fas, FasL, CD40, and CD40L

(1)

Increased CCTG microsatellite repeats in the

PSTPIP1 gene

Not evaluated (11)

MEFV, NLRP3, NLRP12, NOD2, and LPIN2

mutations

IL-1-b, IL-17, TNFα, IL-8, CXCL1/2/3, and

CXCL16

(2)

PAPASH Ulcers with undermined,

erythematous-violaceous

borders; nodules, abscesses,

fistulae

p.E277D missense mutation in the PSTPIP1

gene

Not evaluated (12)

DIRA Generalized pustular psoriasis Monogenic (IL1RN mutations) Increased serum IL1α, macrophage

inflammatory protein 1α, TNFα, IL8, and IL6

(13)

DITRA Generalized pustular psoriasis Monogenic (IL36RN mutations) Increased keratinocyte production of IL8 in

response to proinflammatory cytokines (IL36α,

IL36β, and IL36γ) as well as to IL1β and

polyinosinic–polycytidylic acid

(14, 15)

CAPS Urticaria-like lesions Monogenic (NLRP3 mutations) Increased serum IL1β and IL18 (16, 17)

CAPS, Cryopyrin-Associated Periodic Syndromes; CD40, cluster of differentiation 40; CD40, CD40 ligand; CXCL, chemokine (C-X-C motif) ligand; DIRA, Deficiency of IL-1 receptor

antagonist; DITRA, Deficiency of IL-36 receptor antagonist; E-selectin, endothelial selectin; IL, interleukin; IL1RN, interleukin-1 receptor antagonist; IL-xR, interleukin-x receptor; LPIN2,

Lipin 2; L-selectin, leukocyte selectin; MEFV, Mediterranean fever; MMP, matrix metalloproteinase; NLRP, nucleotide-binding domain, leucine-rich repeat containing gene family, pyrin

domain-containing protein; NOD2, Nucleotide-binding oligomerization domain-containing protein 2; PAPA, Pyogenic sterile arthritis, Pyoderma Gangrenosum, and acne; PAPASH,

Pyogenic sterile arthritis, PG, and acne; PASH, Pyoderma Gangrenosum, Acne and Suppurative Hidradenitis; PG, Pyoderma Gangrenosum; PSMB8, proteasome subunit beta

8; PSTPIP1, proline–serine–threonine phosphatase interactive protein 1; RANTES, Regulated upon Activation, Normal T cell Expressed, and Secreted; Siglec, Sialic acid-binding

immunoglobulin-type lectins; TIMP, Tissue inhibitor of metalloproteinases; TNF, tumor necrosis factor; TNFR, tumor necrosis factor receptor; VEGF, vascular endothelial growth factor.

or to autoimmune disease, there is an absence of identifiable
pathogens, autoantibodies, or autoreactive lymphocytes (16).
The concept of autoinflammation arose out of the discovery of
conditions resulting from specific genetic mutations leading to
chronic inflammation devoid of autoreactive T cells (or antigen
specific T cells) or autoantibodies. The first autoinflammatory
disease identified, TNF (tumor necrosis factor) receptor-
associated periodic syndrome (TRAPS), was described in
1999 upon identification of TNF receptor mutations in the
autosomal dominant condition (19). Dysregulation of innate
immunity signaling pathways particularly the overexpression of
the proinflammatory cytokine interleukin (IL)-1, is considered
to be the prominent mechanism behind the pathophysiology of
these disorders (20).
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MECHANISMS OF INFLAMMATION IN

NEUTROPHILIC DERMATOSES

Insights From Inherited Autoinflammatory

Syndromes
The recognition of several monogenic diseases which can
present with ND has led to an improved understanding of
the possible mechanisms of polygenic non-mendelian inherited
ND. These monogenic syndromes include CAPS (Cryopyrin-
Associated Periodic Syndromes), DIRA [Deficiency of IL-1
receptor antagonist (IL-1RA)], DITRA [Deficiency of IL-36
receptor antagonist (IL-36RA)], PAPA (Pyogenic sterile arthritis,
PG, and acne), and chronic recurrent multifocal osteomyelitis
(CRMO) (21, 22).

CAPS are a group of rare inherited inflammatory disorders
associated with dominant mutations in the cryopyrin-coding
gene NLRP3 (nucleotide-binding domain, leucine-rich repeat
containing gene family, pyrin domain-containing protein 3) on
chromosome 1q44 which is also known as CIAS1, PYPAF1, or
NALP3. Currently, more than 90 mutations involving NLRP3
and associated with CAPS phenotypes have been reported.

CAPS contain a spectrum of hereditary periodic fever
syndromes including familial cold autoinflammatory syndrome
(FCAS), Muckle-Wells Syndrome (MWS), and chronic infantile
neurological cutaneous and articular syndrome (CINCA),
also known as neonatal-onset multisystem inflammatory
disease (NOMID). Characteristic symptoms are periodic
fever and urticarial lesions. Dependent on severity, they can
be associated with several clinical manifestations, including
arthritis, conjunctivitis, amyloidosis, sensorineural hearing loss,
aseptic meningitis, and/or cerebral atrophy (17).

DIRA is an autosomal recessive mutation in IL1RN (IL-
1RA gene) on chromosome 2 leading to the absence of IL-
1RA, resulting in an IL-1 signaling hyperactivity (13, 23). DIRA
manifest as perinatal-onset pustular dermatitis, joint swelling,
painful osteolytic lesions, and periostitis.

DITRA is caused by homozygous or compound heterozygous
damaging mutations in IL36RN and is characterized by
generalized pustular rashes and systemic inflammation (14, 15).
IL36RN encodes for IL-36RA which inhibits binding of IL-36
to its receptor. When IL36RA is functionally impaired there
is an enhanced IL-36R signaling which directly and indirectly
attracts immune cells, especially neutrophils, giving rise to
the pustular rashes (14, 15). IL-36 has been reported to be
upregulated in a psoriasis-like inflammatory mouse model (24),
confirming the role of this cytokine family in the pathogenesis of
pustular psoriasis (25). Moreover, a strong correlation has been
demonstrated in human psoriatic skin between the expression
of IL-36 and that of other cytokines, such as IL-17, IL-
23, TNF-α, and IFN-γ (26), suggesting that a positive gene
expression loop might occur in psoriasis. Moreover, IL-36 also
enhances IL-1α levels, further amplifying the inflammatory
network (27). Thus, the IL-1/IL-36 inflammatory axis appears
to be a key player of disease pathology in generalized pustular
psoriasis (28) and its role may be intriguingly hypothesized
also in other NDs, although it needs to be confirmed by
dedicated studies.

PAPA syndrome is due to two primary mutations (A230T
and E250Q) in the gene encoding proline–serine–threonine
phosphatase interactive protein 1 (PSTPIP1) (10, 29).
Hyperphosphorylation of the mutated PSTPIP1 protein results
in increased pyrin mediated activation of the inflammasome,
dysregulation of caspase 1, and overexpression of IL-1β (29).
The presence of a prototypical ND such as PG in the context
of PAPA syndrome, caused by a single inflammasome regulator
gene mutation, suggests an autoinflammatory component
in the pathophysiology of NDs (30). The occurrence of
mutations in a single gene encoding an inflammasome regulating
protein, as seen in PAPA, is similar to what happens in the
first monogenic autoinflammatory conditions identified, i.e.,
familial Mediterranean fever and CAPS. Yet further studies have
identified autoinflammatory syndromes with features of ND
that are linked to mutations in multiple genes. In addition to
PAPA, PG can present with other autoinflammatory syndromes
including PG, acne, and suppurative hidradenitis (PASH) and
pyogenic arthritis, PG, acne, and suppurative hidradenitis
(PAPASH). The findings of these syndromic forms of PG along
with reports of familial presentations of PG suggest the shared
genetic basis of this ND (1, 11, 12, 31, 32).

Investigation of 7 cases of PASH and 13 cases of isolated PG
revealed multiple mutations in a variety of autoinflammatory
genes, including PSTPIP1, Mediterranean fever (MEFV),
Nucleotide-binding oligomerization domain-containing protein
2 (NOD2), NLRP3, NLRP12, Lipin 2 (LPIN2) (2). The MEFV
gene encodes for the protein pyrin, which is an innate immune
system sensor which plays a central role in inflammasome
activation. Different mutations in the genetic sequence can lead
to variable clinical presentations with overlapping features.

In NDs, MEFV (S242R) mutations have been identified and
lead to a chronically active pathogen-related response with
inflammasome activation and IL-1β secretion (33). NOD2 is
an intracellular pattern recognition receptors (PRRs) that plays
a key role in orchestrating the proper assembly of autophagy-
related proteins. Autophagy involves a cellular response resulting
in the degradation of cytoplasmic components and is important
in the transfer of microbial components to intracellular PRRs.
The catabolic autophagy pathway responds to a wide variety
of cellular stressors including nutrient deprivation, hypoxia,
DNA damage, mechanical injury, reactive oxygen species (ROS),
and the presence of microbial ligands (34). Loss of function
mutations in NOD2 result in impaired autophagy and have been
associated with inflammatory bowel disease (IBD), a condition
characterized by heightened production of proinflammatory
cytokines and often associated with ND comorbidity (35).
Autophagy has been shown to be important in mitochondrial
homeostasis (36) and its deficiency is associated with increased
mitochondrial membrane permeability and ROS production, and
the release of mitochondrial DNA into the cytosol (36–38).
Mitochondrial DNA and ROS are both activators of the NLRP3
inflammasome (36, 37). Studies have revealed that macrophages
with defective autophagy have decreased NLRP3 inflammasome
activation (38). We speculate that mutations in NOD2 lead to
defective autophagy causing increased production of ROS and
the release of mitochondrial DNA resulting in NLRP3 activation
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and subsequent ND. These findings point to the polygenic basis
of NDs and helped establish the categorization of NDs among
the autoinflammatory disorders. The polygenic nature suggests
that NDs arise from a multifactorial response in genetically
predisposed patients.

Neutrophil Production and Recruitment
In normal physiology, neutrophils are heralded as major effector
cells in acute inflammation. As the most abundant leukocytes
in circulation, neutrophils have been extensively described
as protagonists against infection and innate immune system
responders to insults. Within the bone marrow, the production
and differentiation of neutrophils is regulated primarily by
granulocyte colony-stimulating factor (G-CSF) (39). G-CSF also
acts to promote release of mature neutrophils from the bone
marrow into circulation. This is accomplished by the uncoupling
of the CXC-chemokine receptor 4 (CXCR4) and CXC-chemokine
ligand 12 (CXCL12) (39).

Within tissues, the “neutrostat” loop is a feedback pathway
which normally suppresses neutrophilic response by suppressing
production of G-CSF. This loop is initiated after phagocytosis
of infiltrative neutrophils, resulting in suppression of IL-23
production by resident macrophages and dendritic cells and
subsequent decreased secretion of IL-17, an important promoter
of G-CSF production (40–42). Evaluation of patients with NDs
has shown significantly elevated serum G-CSF, and therapeutic
G-CSF is implicated in a majority of drug-induced SS cases,
indicating a plausible but undiscovered contributing mechanism
underlying ND (43–47). In addition, elevated IL-17 levels have
been found in tissue samples from patients with PG, SS, and APF,
a rare ND presenting with pustular lesions typically involving the
skin folds and anogenital area (48–52). IL-17 is a key cytokine
in both activation and induction of neutrophils to produce IL-
8, a potent chemokine that is the principle chemoattractant of
neutrophils. Increased levels of IL-8 have been found in ND
lesional skin, and the chemokine works synergistically with TNF-
α to potentiate and maintain a proinflammatory state (1, 2, 16,
18–21, 49, 50, 53). In mice models, experiments have revealed
that protein kinase C α (PKCα) within keratinocytes promotes
neutrophil infiltration of the epidermis, and may also play a
central role in upregulation of G-CSF and IL-6 gene expression
independent of TNF-α signaling, giving the possibility of a
peripheral mechanism of ND (54).

Innate Immune System Activation
The innate immune system uses germline encoded PRRs to
recognize pathogen-associated molecular patterns (PAMPs),
including (foreign) PAMPs and (endogenous) damage-associated
molecular patterns (DAMPs), to initiate the production of
proinflammatory cytokines (55). Changes in local cellular
homeostasis including temperature, pH, oxygen, and osmolarity
are recognized as DAMPs by resident tissue macrophages
(55). Recognition of DAMPs initiates an inflammatory cascade
involving the inflammasome which consists of a central
scaffold of proteins, a sensor (including Nod-like Receptors),
the adaptor protein ASC [apoptosis associated speck-like
protein containing a caspase-associated recruitment domain

(CARD)] and the effector protein caspase-1 (22). Members
of the NLRP (Nucleotide-binding oligomerization domain,
Leucine-rich Repeat and Pyrin domain-containing) family, are
the primary cytoplasmic PRRs that mediate inflammasome
activation (55). Oligomerization of the inflammasome results in
caspase-1 activation leading to the cleavage of pro-IL-1β and pro-
IL-18 to IL-1β and IL-18 (22, 55). Gain-of-function mutations in
NLRP3 gene are responsible for the development of autosomal
dominant inflammatory disorders which typically presents with
episodic urticarial neutrophil-rich cutaneous lesions, known
as CAPS (see above) (56). Although NLRP3 mutations are
prototypically responsible for inflammasome activation, other
mutations such as those involving IL-1 and IL-36 pathway
genes may also induce inflammasome activation (13, 14). The
symptoms of CAPS are the result of overexpression of IL-
1β secondary to constitutive activation of the cytoplasmic
macromolecular complex. Evaluation of patients with ND
have also shown elevated serum and lesional tissues IL-
β levels (50, 57, 58). In addition, keratinocytes exposed to
ultraviolet B irradiation, contact allergens or in the setting
of psoriasis activate similar inflammasome pathways resulting
in IL-1β production and subsequent neutrophil localization
and activation (59–61), although there is support from mouse
models that bone marrow-derived cells with isolated NLRP3
mutations are sufficient to induce IL-1β associated cutaneous
autoinflammation (62).

Immune Signal Transduction
Immune cell proinflammatory signal transduction is inhibited
by the tyrosine phosphatase known as Src homology region
2 (SH2) domain–containing phosphatase-1 (SHP-1) (63, 64).
Dysfunctional activity of SHP-1 is associated with various
diseases including multiple sclerosis, leukemia and psoriatic
arthritis (65–69). SHP-1, also known as PTPN6 (protein tyrosine
phosphatase nonreceptor type 6), is encoded by the gene Ptpn6.
Heterozygous mutations and splice variants of Ptpn6 have been
identified in patients with PG and SS (4).

Ptpn6spin mice are the product of a Y208N (or Tyr208Asn)
missense mutation leading to amino acid substitution in the
carboxy-terminal SH2 domain of SHP-1. These mice develop
severe cutaneous inflammation driven by overexpression of
IL-1α (6). Histopathologically, the inflammatory cutaneous
lesions resemble human NDs, with neutrophil-rich infiltrate
and pustules within the epidermis, and are associated with
neutrophilia. These data may support the role of mutations
involving Ptpn6 in triggering NDs in humans.

The Kanneganti group have utilized this murine model to
characterize key regulatory components of neutrophil-mediated
cutaneous autoinflammation. These authors have surprisingly
shown that IL-1α signaling, but not IL-1β or caspase-1 associated
inflammasome, plays a key role in orchestrating cutaneous
autoinflammation in Ptpn6spin mice (6). Their work has
elucidated the complex regulation of the IL-1α pathway and
identified a number of signaling components as pivotal in
the development of cutaneous inflammation in Ptpn6spin mice,
such as IL-1 receptor (IL-1R), myeloid differentiation primary
response gene 88 (MyD88) (7), spleen tyrosine kinase (Syk)
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FIGURE 1 | Model of IL-1α (Interleukin 1α)-mediated autoinflammation in

neutrophilic dermatoses. In normal physiologic conditions SHP-1 (Src

homology region 2 domain-containing phosphatase-1) acts to inhibit Syk

(spleen tyrosine kinase) which subsequently downregulates the activation of

IL-1R and Dectin-2 proinflammatory pathways. Dysfunction in SHP-1 leads to

uncoupled Syk activity, subsequently leading to a neutrophil-driven

autoinflammatory state via an exaggerated release of proinflammatory

cytokines and other effector molecules. Bcl10, B-cell lymphoma/leukemia 10;

CARD9, Caspase recruitment domain-containing protein 9; FcRy, Fc receptor

common γ chain; G-CSF, Granulocyte Colony Stimulating Factor; IL-1R,

Interleukin 1 receptor; MALT-1, Mucosa-associated lymphoid tissue lymphoma

translocation protein 1; MyD88, Myeloid differentiation primary response 88;

RIPK1, Receptor-interacting serine/threonine-protein kinase 1; TAK1,

Transforming growth factor beta-activated kinase 1; TNF-α, Tumor necrosis

factor α.

(7), receptor interacting protein kinase 1 (RIPK1) (6), tumor
growth factor-β activated kinase 1 (TAK1) (7) and apoptosis
signal-regulating kinase 1 (ASK1) (8).

SHP-1 was also shown to regulate IL-1α signaling primarily
through preventing phosphorylation of MyD88 by Syk (7). This
pathway is illustrated in Figure 1. Of note, the Kanneganti group
showed that inflammation in Ptpn6spin mice is independent of
toll-like receptors (TLRs), IFN-α/β receptor (IFNAR), integrin
β-3 (ITGB3), NOD2–RIPK2 signaling, and independent of
stimulator of IFN genes (STING) (7, 70). Support for unique role
of IL-1α signaling in the development of cutaneous inflammation
in Ptpn6spin mice is strengthened by ruling out the influence of
these additional innate immune signaling pathways (7, 70).

Recently, CARD9 signal transduction was identified as an
essential mediator of cutaneous inflammation in Ptpn6spin

mice (71).
CARD9 is an adapter protein downstream of Syk and is central

transducer for multiple innate signaling pathways including
the C type lectin receptors, Dectin-1 and Mincle pathways
(72). CARD9 forms a complex with MALT1 (mucosa-associated

lymphoid tissue lymphoma translocation protein 1) and BCL10
(B-cell lymphoma/leukemia 10) leading to initiation of the
NF-κB (nuclear factor kappa-light-chain-enhancer of activated
B cells) signaling cascade and increased transcription of pro-
inflammatory cytokines (TNF and IL-6) resulting in T helper
(Th)17 polarization (73).

As previously discussed, IL-17 is a key signaling molecule in
ND pathogenesis. CARD9 is thus linked to cytokine production,
innate anti-fungal immunity, and myeloid cell activation (72).
Identification of the key role of CARD9 in the autoinflammatory
signaling pathway suggests the interconnection between NDs
and other autoinflammatory conditions. Interestingly, CARD9
mutations are associated with IBD (74) and deletion in
CARD9 significantly dampens the IL1-mediated cutaneous
inflammatory disease in a mouse model knockout for CARD9
(70). Aberrant signaling involving SHP-1, Syk, and CARD9
can lead to neutrophil-mediated autoinflammation driven by
overproduction of IL-1α. Thus, blocking these signals may
provide a novel approach to design effective therapeutic strategies
to treat NDs.

PATHOGENESIS-DRIVEN TREATMENT OF

NEUTROPHILIC DERMATOSES

Several lines of evidence indicate that IL-1 blockers, namely
anakinra, rilonacept, gevokizumab, and canakinumab, are
effective in the treatment of skin manifestations of different
autoinflammatory disorders. The introduction of these
pharmacological agents represents a breakthrough not only
in the management of monogenic inherited autoinflammatory
diseases but also of skin diseases where neutrophils play a
crucial pathogenic role. More specifically, Brenner et al. (75)
reported complete healing of PG and acne in a patient affected
by PAPA after 1 month-therapy with anakinra 100 mg/day.
Similarly, canakinumab 150mg every 8 weeks led to complete
remission of PG and acne lesions in another PAPA patient.
Two case reports are present in the literature on two patients
with PASH treated with anakinra, who both experienced a
partial remission of skin lesions (11, 76). In an open-label,
proof of concept study conducted on six patients with active
PG who were given three subcutaneous injections once every
4 weeks of the anti-IL-1β monoclonal antibody gevokizumab,
complete remission of PG was observed in four patients, a
partial response in one patient and another one did not respond.
(ClinicalTrials.gov Identifier: NCT01882504) Conversely, a
phase 3 trial demonstrated limited effectiveness of the same drug
on PG patients. (ClinicalTrials.gov Identifier: NCT02326740
and NCT02315417) Complete PG clearance under canakinumab
treatment has been described in two patients after 3 (77)
and 12 months (78), respectively. Canakinumab effectiveness
has also been assessed in an open-label study on five PG
patients unresponsive to systemic steroids, with three out
of five achieving complete remission at 16-week follow-up
visit (79). A prompt and long-lasting response to anakinra
in terms of both cutaneous and systemic manifestations has
been described in a patient with SS (80). In another SS patient,
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Kluger et al. observed that, despite a relatively rapid response
to anakinra, both skin and systemic symptoms relapsed upon
drug withdrawal (81). Amazan et al. reported on a woman
with steroid- and anti-TNFα- refractory APF who experienced
complete healing of her lesions on a regimen of 100 mg/day
anakinra (82).

A rapid and robust clinical response to secukinumab,
an anti-IL-17 monoclonal antibody, was reported in an
adolescent with severe cutaneous manifestations due to
DITRA (83). In addition to the latter clinical observation, a
pathomechanistic link between IL-36 and Th17 differentiation
may be postulated also based on the findings by Carrier
et al. (26), who showed a direct correlation between IL-
36 gene expression and IL-17 levels in the lesional skin of
psoriatic patients.

Future perspectives in the management of PG involve the IL-
1α blockade. IL-1α overproduction has been demonstrated
in response to deregulated SHP-1 activity triggering a
severe neutrophil-mediated inflammatory disease that
develops independently of inflammasome. Based on these
findings, there is an ongoing phase 2 open-label trial using
bermekimab, an IL-1α inhibitor, in PG (ClinicalTrials.gov
Identifier: NCT01965613).

CONCLUSIONS

NDs are a complex, variable and heterogenous group of
diseases which have significant overlap in presentation and
pathogenesis. Our understanding of the molecular mechanisms
of NDs is based primarily on the discovery of familial variants,
classification of autoinflammatory syndromes and development
of mouse models. While understanding of disease mechanisms
has not yet been completely elucidated, NDs are recognized
as a polygenic multifactorial disease process which involves
dysfunctional cellular signaling mediated by pathways mainly
related to inflammasome and IL-1 with the contributory role of
IL-17 and other effector molecules. The precise elucidation of the
above-mentioned pathologic mechanisms will pave the way to
tailored treatments for patients with different NDs.
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Behçet’s disease (BD) is a systemic inflammatory disease with a chronic,

relapsing-remitting course of unknown etiology hallmarked predominantly by

mucocutaneous lesions and ocular involvement. BD shares some common features

with autoimmune and autoinflammatory diseases and spondyloarthropathies

(MHC-I-opathies). It is related to more than one pathogenic pathway triggered by

environmental factors such as infectious agents in genetically predisposed subjects.

The interplay between genetic background and immune system is linked to the BD

presentation. Genetic factors have been investigated extensively, and several recent

genome-wide association studies have confirmed HLA-B∗51 to be the strongest genetic

susceptibility factor. However, new non-HLA susceptibility genes have been identified.

Genetic variations in the genes encoding the cytokines could affect their function and

be associated with disease susceptibility. Infectious agents such as Streptococcus

sanguinis or the differences in salivary or gut microbiome composition can be considered

to trigger the innate-derived inflammation, which is, subsequently, sustained by adaptive

immune responses. Altered trimming of microbial and/or endogenous peptides by

endoplasmic reticulum aminopeptidase 1 (ERAP1), presented by HLA-B∗51, may play a

key role in BD pathogenesis causing an alteration in T cell balance with downregulation

of Tregs and expansion of Th1 and Th17. The activity of neutrophils is increased and

there is an intense neutrophil infiltration in the early stage of inflammation in organs

affected by the disease. Association with HLA-B∗51 and increased IL-17 response

seems to have an important role in neutrophil activity. In this paper, we provide an

overview of the most recent advances on BD etiopathogenesis.

Keywords: Behçet’s disease, etiology, genetics, immunology, infectious agents

INTRODUCTION

Behçet’s disease (BD) is a systemic inflammatory disease with a chronic, relapsing-remitting course,
and its etiology is still unknown. The disease is characterized by a range of clinical manifestations
including oral aphthae, genital ulcers, skin lesions, ocular, vascular, articular, gastrointestinal,
urogenital, pulmonary, and neurologic involvement. BD is prevalent in regions along the “Silk
Road,” extending from Japan to Mediterranean countries. BD often begins between the ages of
20–40. The disease is equally distributed between men and women and the diagnosis can be made
only on the basis of clinical symptoms and signs. The course of the disease is more severe in male
patients with younger age at onset and an increased number of organs affected at diagnosis (1).
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Disease can be recognized by clinical findings because of the
absence of a universally accepted diagnostic laboratory test. BD
diagnosis is largely based on mucocutaneous symptoms which
are a common characteristic of various diagnostic criteria used
in the diagnosis of the disease so far (2). The International Study
Group for Behçet’s disease criteria (requires the presence of oral
ulcer plus any two of recurrent genital ulcer, typical eye lesions,
typical cutaneous lesions, or a positive skin pathergy test) is the
most commonly used and internationally recognized diagnostic
criteria by the authors of this field (2, 3).

Besides considerable morbidity, BD has increased mortality
because of the pulmonary artery and large vessel, neurological,
and gastrointestinal involvements. Therefore, knowing the
etiopathogenesis of BD is extremely important to better
understand the disease and, more importantly, to develop
targeted therapies. BD has been listed among autoimmune
diseases by some authors because of positive response to classical
immunosuppressive agents and involvement of autoantigens
and antigen-specific T cells. Others claim the disease should
be included in the group of autoinflammatory diseases because
of unprovoked episodes of inflammation without evidence of
antigen-specific T cells or autoantibodies, increased activity
of neutrophils, elevated levels of interleukin (IL)-1β (4).
Most authors evaluate the disease as a spondyloarthropathy
(MHC-I-opathy) based on Human Leukocyte Antigen
(HLA) class I association and epistatic endoplasmic reticulum
aminopeptidase 1 (ERAP-1) interactions, increased T helper
(Th) 17 type immune response, neutrophilic inflammation and
barrier dysfunction in environmentally exposed organs (5).
According to the current literature, BD cannot be definitely
classified under any of these three groups and defining it
as autoimmune, autoinflammatory or spondyloarthropathy
appears to be a simplified approach (6). BD shares some
common features with all the above-mentioned entities
and involves more than one pathogenic pathway triggered
by environmental factors such as infectious agents in
genetically predisposed subjects. We will discuss the most
recent evidences on the etiology of BD under the subtitles of
infectious, genetic and immunological etiology sections of this
review (1, 7, 8).

INFECTIONS

Infectious agents have long been proposed as triggering factors in
BD development. Antigens from viruses such as herpes simplex
virus (HSV)-1 or bacteria belonging to Streptococcus species
such as Streptococcus sanguinis have been suspected to have
high homology with human proteins such as heat-shock proteins
(HSP) and the cross-reaction leads to an immune response
in genetically predisposed individuals (1, 9). Professor Hulusi
Behçet was indeed one of the first authors who regarded the
disease as possibly related to an infectious agent (10). Several
studies have investigated the association between HSV-1 and
BD. Studd et al. in an situ DNA-RNA hybridization method,
detected a higher frequency of hybridization between HSV-1
DNA and complementary RNA in mononuclear cells of BD

patients compared with healthy controls. The results show
the presence of at least a portion of the HSV-1 genome in
mononuclear cells of BD patients (11).

Several Streptococcus strains have become increasingly
important in infectious etiology. The development of some
clinical manifestations of the disease in hypersensitivity tests
against streptococcal antigens is one of the most relevant
evidences (12). In addition, antibodies against S. sanguinis and
S. pyogenes were obtained more frequent in BD patients than in
controls (13). Streptococcal 65-kDa HSP from an uncommon
serotype (KTH-1, strain BD113-20) of oral S. sanguinis has
been reported to be an important trigger in the pathogenesis
(14). Neurofilament medium (Nf-M) was recently suggested
as possible antigen able to trigger an immune response via
molecular mimicry with bacterial HSP-65 (15). Immunoglobulin
M in BD patients has been reported able to react with some
streptococcal proteins such as streptococcal α-enolase and
glyceraldehyde 3-phosphate dehydrogenase (16).

Cho et al. demonstrated that the S. sanguinis GroEL protein is
a target of the serum anti-S. sanguinis IgA antibody. In addition,
serum IgA reactivity against recombinant S. sanguinis GroEL
has been correlated to reactivity against recombinant human
hnRNP A2/B1 suggesting how autoreactive lymphocytes may be
activated by infectious triggering (17).

As BD usually starts from the oral mucosa, it has been
speculated that oral microbial flora may be implicated in the
pathogenesis of the disease (18). BD patients can develop new-
onset oral ulceration or experience both cutaneous and systemic
flare-ups following dental procedures or surgical treatments
for chronic tonsillitis (19, 20). Antimicrobial agents have been
used successfully for treating various disease symptoms (21).
Several previous studies and our experience showed oral health
impairment in BD patients compared with healthy subjects (18,
22, 23). Oral health improvement in BD patients may positively
modify their disease course. Dental treatments in BD patients
could be associated with a relapse of oral aphthae in the short
time but could decrease their number in longer follow-up (∼6
months) (24), also leading to better oral health in the long-term
follow-up. Higher levels of various Streptococci were found in
the oral mucosa of BD patients. In addition, S. sanguinis strain
resulted able to induce the secretion of inflammatory cytokines
by the KTH-1 cells. It is plausible that an inflammation process
induced by infectious agents in subjects with predisposing genetic
background leads to the development of BD (25, 26).

No association between BD and other bacterial species such as
Borrelia burgdorferi and or Helicobacter pylori have been found
(27, 28). Cytomegalovirus, Epstein-Barr virus, Parvovirus B19,
Varicella zoster virus, Hepatitis virus have also been investigated
as possible triggering factors but these studies were characterized
by low-level evidences (29, 30).

Recent studies have shown that the differences in salivary or
gutmicrobiome compositionmay have a role in the pathogenesis.
In a study of the salivary microbiome using high- throughput
sequencing of the 16S rRNA V4 region, Coit et al. reported
that BD patients have a significantly less diverse microbial
community structure than healthy controls (31). In another
study, Consolandi et al. compared the fecal microbiota of BD
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patients to healthy controls. They reported both a peculiar
dysbiosis of the gut microbiota and a significant decrease
of butyrate production in BD patients. Authors speculated
that a defect of butyrate production might lead to both
reduced T regulatory cells (Tregs) responses and activation of
immunopathological T-effector responses (32).

In summary, until now, no infectious agent has been
isolated as the specific etiologic agent. Additionally, results of
antibacterial and antiviral treatments are controversial. However,
there is a general agreement that infectious agents or microbiome
is not directly responsible for the emergence of BD, but they play
a triggering role in the development of the disease by causing
dysfunction of the immune system.

GENETICS

Increased prevalence of the disease along the ancient “Silk Road,”
familial aggregation, association with the genes inside the major
histocompatibility complex (MHC) region and outside the MHC
region are the main evidence of genetic influence and a complex
inheritance model of disease (33, 34). The strongest genetic
susceptibility factor for BD is located inside the MHC class
I region including the Human Leukocyte Antigen-B51 (HLA-
B∗51). The odds ratio for individuals carrying HLA-B∗51/B5
allele to develop BD compared with no-carriers was found to be
5.78 (33).

Genome-wide association studies (GWAS) have clearly shown
the role of several single nucleotide polymorphisms (SNPs) in the
etiopathogenesis of various diseases, including BD (35–41). In a
multicenter study, Hughes et al. studied the association between
HLA-B∗51 and BD as well as other risk loci within the HLA
region: 8572 variants were screened, and imputation and meta-
analysis of 24834 variants were performed in two independent
groups of BD patients. The most significant association was
with rs116799036, which is located between HLA-B and MHC
Class I Polypeptide-Related Sequence A (MICA) (42). Recently,
Takeuchi et al. genotyped 1900 Turkish BD and 1779 controls
with the Immunochip and demonstrated that the major BD-
related polymorphism was known as rs1050502, an HLA-B∗51
gene variant (43). However, the presence of HLA-B∗51 alone
only partially explains the genetic disease risk and all clinical
manifestations of BD. Several recent GWAS have confirmed the
association between BD and HLA-B∗51, except for Fei et al’s
investigation. These studies also revealed new susceptibility loci
both on other HLA Class I regions and on non-HLA genes
(35–41). These genes provide a significant role in understanding
disease pathogenesis and offer novel treatment strategies.

In general, BD-associated gene polymorphisms were localized
in molecules responding to microorganisms, as well as in genes
encoding cytokines and adhesion molecules. Polymorphisms
within genes encoding the cytokinesmay affect their function and
may be associated with disease predisposition (44). Researchers
identified several non-HLA genetic associations by GWAS
including ERAP1, IL23 receptor (IL23R), IL-23R/IL-12RB2, IL-10,
and STAT genes (38, 45).

ERAP1 variations have been identified as significant predictive
loci of BD susceptibility. The gene encodes an amino-peptidase
having the critical role to trim N-terminal of peptides. This

mechanism was affected by the amino acids sequence of the
corresponding protein (46–51). ERAP1 is characterized by
several common polymorphisms encoding variant amino acids
related not only to BD, but also to ankylosing spondylitis
(AS) and psoriasis (47–51). The same SNPs associated to BD
risk resulted protective against AS and psoriasis: this effect
depends on the different HLA interacting with ERAP1 (46,
49). ERAP1 polymorphisms was a risk factor preferentially
in BD patients with HLA-B∗51-positivity; ERAP1 rs17482078
(p.Arg725Gln) might influence the peptide repertoire binding
to HLA-B∗51 (47). A recent paper suggested the critical role
of the altered peptide presentation by HLA-B∗51 in influencing
disease pathogenesis (52). Based on these alterations, T-cell
and natural killer (NK) cell recognition were probably affected,
providing the basis for the association of ERAP1 and HLA-B∗51
with BD (53). A very recent alternative pathogenic hypothesis
linking HLA-B∗51 with BD involves the gut microbiome
and the HLA-B∗51 misfolding. Both ER stress and unfolded
proteins were consequences of the misfolding and also the
inflammation trigger. Some combination of the misfolded
proteins probably influences BD pathogenesis, but this point
has not yet been addressed in BD patients and several small
studies reported a role in AS pathogenesis with HLA-B-
27 (52).

The association between SNPs of IL-10 and IL-23R/IL-12RB2
genes and BD was demonstrated in Turkish (35, 40) and
Japanese population (35, 39). A reduced mRNA expression
in BD patients monocytes was recognized in the presence of
the A-allele of rs1518111 IL-10 compared with wild-type G-
allele. PBMCs or monocytes produced significantly less IL-10
following stimulation with Toll-like receptor (TLR) ligands in
individuals homozygous for A-allele of rs1518111 (35). Afkari
et al. showed that IL-10 rs1800872A allele contributes to
BD genetic risk by modulating IL-10 expression: BD patient
group showed lower gene expression levels compared to the
controls (54). Most disease-associated GWAS variants were
found to be localized on the IL-23R side of the hotspot.
These results indicate the association of BD with IL-23R rather
than IL-12RB2. The association of IL23R rs17375018 and a
haplotype of four gene variations and BD was reported, but
no functional data were available for this variation. Targeted
resequencing of IL23R in BD Japanese and Turkish patients
showed novel association pieces of evidence including the
reduced frequency of those rare missense variations with a
protective role by reduced IL-23-dependent IL-17 production,
as demonstrated in Crohn’s disease (35). IL23 induces T cell
activation for IL17 production and is one of the most significant
activators of Th17 pathway (1). The association between
BD susceptibility and IL23R-IL12RB2 locus was confirmed
in a Korean population: the intergenic rs1495965 SNP was
significantly related with BD risk both in discovery and
replication phases (55).

Association between STAT4 rs7574070 and BD was
underlined in different studies (35, 37, 38). In addition, the
disease-associated A allele was related to increased gene
expression, greater severity of disease course and higher
IL-17 production (35). IL1A-IL1B, IRF8, and CEBPB-PTPN1
were three novel disease markers recently identified by direct
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genotyping in GWAS besides ADO-EGR2 discovered by
imputation (43).

The variation of the promoter region of TNF has also been
reported as a risk marker for BD. Alterations of TNF expression
related to gene polymorphisms may be responsible for the higher
cytokine activity (56, 57). Polymorphic alleles weremore frequent
in BD patients and were related to higher TNF production
by monocytes or mononuclear cells (45, 57). Mutations in the
Mediterranean fever gene were also considered additional BD
susceptibility factors (45).

The role of other genes located outside the HLA region,
encoding chemokines (e.g., CCR1-CCR3, CCR5), cytokines
(such as for IL-1β, IL-6, IL-8, IL-12, IL-17, IL-18, IL-23),
oxidative stress-related proteins (glutathione transferase and
myeloperoxidase), cell membrane receptors (TNFRSF1A, TLR2,
4, 7, 9), immunoregulatory proteins (e.g., IRF1, IRF5, CTLA-4,
NF-jB), extracellular proteins (like ICAM- 1,MMP-9), and others
including those for KLRC4, TNFAIP3, DEFA1, NEMO, NOD2,
TLR4, and FUT2 were analyzed in several investigations with
conflicting findings (45, 58–62).

Besides genetic contribution, also epigenetic processes, such
as DNA methylation, histone modification, and non-coding
RNAs, microRNA (miRNA) in particular, have been suggested
as involved in BD pathogenesis (45, 63). The epigenetic aspects
were also investigated by analyzing miRNA signatures associated
with BD patients with active disease and showed that miRNAs
target pathways relevant in BD, such as TNF, IFN-γ, and vascular
endothelial growth factor receptor signaling cascades (64, 65).
Alipour et al. reported that disease pathogenesis could be affected

by altered methylation levels of interspersed repetitive sequences
(IRs) elements, as well as by histone modifications and miRNA
regulation, in particular, higher levels of miR-182 and miR-3591-
3p and lower levels of miR-155, miR-638 and miR-4488 (63).

Recently, Zhou et al. screened a Caucasian family formed by
an affected mother and two affected daughters presenting with
oral and genital ulcers, uveitis, and arthralgia/arthritis clinical
signs. Exome sequencing revealed two strong candidate variants,
p.C78W of TNFRSF9 and p.L227X of TNFAIP3 genes. These
mutations affect immune cell survival and proinflammatory
cytokine production. Therefore, one or two of this mutation may
contribute to this dominantly-inherited condition and can help
us to understand how BD symptoms develop (66).

IMMUNITY

Activated innate immunity plays an important role in the
pathogenesis of BD. Microbial triggers are sensed and processed
by the innate immune system via pathogen-related and/or
danger-associated molecular patterns. Overproduction of
inflammatory cytokines by innate immune cells such as
macrophages and dendritic cells may cause a higher production
of adaptive Th1- and Th17-related cytokines. BD lesions in their
early stages are predominated by neutrophils which are major
immunoregulatory cell group of the innate immune system.
Another member of innate immunity, natural killer (NK) cells
are also found in BD lesions (67).

BD is considered as a neutrophilic vasculitis and the role
of neutrophils in BD pathogenesis has long been known (7).

FIGURE 1 | Possible regulation mechanisms in the etiopathogenesis of Behçet’s disease.

Frontiers in Immunology | www.frontiersin.org 4 May 2019 | Volume 10 | Article 1067115

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Leccese and Alpsoy Behçet’s Disease: An Overview of Etiopathogenesis

Surface molecules, indicating neutrophil activation status (CD10,
CD14, and CD16), oxidative burst and phagocytic function of
neutrophils have been explored and the presence of proactive
neutrophils in BD patients was reported (68). Tissue injury
in BD can be modulated by neutrophils in several manners:
neutrophils were hyperactivated, probablyHLA B∗51-associated,
and usually were involved in perivascular infiltration (68, 69).
No significant differences were observed in the oxidative burst,
phagocytic microbicide activities or cytokine pattern when BD
patients and controls were compared in Perazzio and colleagues’
study. However, significant differences in phagocytic dysfunction
were found in patients with severe active disease compared
with subjects with mild disease (45, 70). In addition, the
structural and functional modification of fibrinogen resulted
related to reactive oxygen species and neutrophil activation
via neutrophil NADPH oxidase (69). Therefore, neutrophil
activation was considered as the main source of oxidative stress
through the oxidation of proteins. Hyper-activated neutrophils
secrete some cytokines that are both autocrine and also
stimulate Th1 cells (45). Recently, Yavuz et al. reported that
testosterone causes a significant neutrophil activation together
with Th-1 type immune alterations which may explain a more
aggressive disease with a higher mortality rate in male BD
patients (71).

NK cells were also identified in BD lesions where seems
they have a role in driving the CD4+ Th1 response which
is the main feature of BD lesions (72, 73). However, several
studies underlined increased NK cells in the peripheral blood, in
particular during the active phases of the disease (72, 74, 75).

Dysregulation of the immune system contributes to
BD etiopathogenesis, with increased systemic levels of
inflammatory cytokines (45, 72). It’s well known that
CD4+T cells can differentiate into two types: Th1 cells
subset, which secretes IFN-γ, IL-2, and TNF and promotes
cell-mediated immunity, and Th2 cells, which produce IL-
4, IL-5, IL-10, and IL-13 and promote antibody-mediated
immunity (76).

The alteration of T cell balance, especially Th1/Th17
expansion and decreased regulation by Tregs, are supposed to
have a significant role in BD pathogenesis (7, 43). In particular,
increased frequencies of Th17 cells were reported in the BD
cutaneous lesions (77). Th17 and IL-17 pathways might have
a part in the development and/or activity of BD (1). Increased
production of IL-17, IL-23, and IFN-γ by PBMCs besides
increased frequencies of IL-17 and IFN-γ producing T cells in
BD patients with active uveitis was reported (78). IL-17 levels of
BD patients with active stages of uveitis, oral and genital ulcers
and articular symptoms were significantly higher compared with
patients with inactive stages of the same symptoms. Hamzaoui
et al. demonstrated that the percentage of circulating Th17 cells
and plasma interleukin IL-17 levels were increased in active BD
(52, 79). Increased neutrophil activity and neutrophil infiltration
in the affected organs of BD might be caused by the increased
IL-17 response (80). A recent study reported that, under Th17-
stimulating conditions, T cells express both IL-17 and IFN-
γ. Production of large amounts of IL-17 and IFN-γ by all
lymphocyte subsets in BD patients were associated with increased

innate responses, early tissue neutrophil infiltrations and late
adaptive immunity (67). Moreover, in experimental autoimmune
uveitis (EAU) the role of Herpesvirus entry mediator (HVEM), a
member of the Tumor Necrosis Factor Receptor family, has been
evaluated. The HVEM seemed to be involved as a co-signaling
molecule inducing both Th1 and Th17 responses in EAU. In
addition, in the same mouse model, the use of anti-HVEM
antibodies blocking HVEM co-signal ameliorated EAU (81).

Takeuchi et al. compared the proinflammatory and Th1-,
Th2-, and Th17-related cytokines frequency in a group of BD
patients with recurrent uveitis and a group of remitted uveitis
before and after infliximab treatment. They found higher levels of
IL-1β, IL-4, IL-17A, IL-17F, IL-21, IL-22, IL-31, IFN-γ, sCD40L,
and TNF-α, with a significant difference for IL-17F, in BD-
recurrent uveitis patients respect to the BD-remitted uveitis
group, before drug infusion. In addition, only IL-10 levels were
found higher in the remission group than in the other group
(82). Emmi et al. showed that cytotoxic Th1 and Th 17 cells can
play a role in inducing mucosal damage during the early stages
in BD patient with active intestinal involvement (83). These
results confirm that Th17 and IL-17 pathway are active and play
an important role, particularly in acute attacks of the disease.
Conversely, a reduction in Tregs and cytokine IL-10 were notified
in the disease (72, 84).

Due to recent progress in molecular methods and basic
scientific researches, our knowledge about the disease has
considerably increased. GWAS have become a very important
step in understanding BD pathogenesis. New genes such as
ERAP1 have been introduced which help to understand the
possible pathogenic mechanism of HLA-B∗51. In the future,
similar studies in different populations with a higher number of
patients will provide significant advances in the etiopathology
of BD. Despite all these advances, clinical expression of the
disease is quite heterogeneous and show regional differences. The
underlying environmental and genetic factors of this situation
are not fully elucidated. Being a complex disease, BD is related
more than one pathogenic pathway. Although, management of
the disease has evolved noticeably because of more effective
and targeted therapies we still need new treatment options for
severe and non-responsive cases such as biological treatments
developed for the underlying etiopathological mechanism (85).

In conclusion, environmental factors (S. sanguinis etc.) or the
differences in salivary or gutmicrobiome composition can trigger
the innate-derived inflammation, which may be subsequently
sustained by adaptive immune responses. Epistatic interactions
between HLA-B∗51 and ERAP1 variants seems to cause T cell
homestasis perturbation, especially Th1 and Th 17 activation
and Tregs response suppression. The activity of neutrophils is
increased and there is an intense neutrophil infiltration in the
early stage of inflammation in organs affected by the disease.
Association with HLA-B∗51 and increased IL-17 response have a
key role in the neutrophil activity (Figure 1).
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