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A habit of basing convictions upon evidence and giving them only that degree of certainty which the
evidence warrants, would, if it became general, cure most of the ills from which the world is suffering.

-Bertrand Russel

1. INTRODUCTION

Uncertainty is a central and unavoidable feature of decision problems that people face both in
everyday life, as well as in virtually every field of science. Hydrogeology is no exception to that. In
fact, the relevance of uncertainty to hydrogeology is particularly high, due to the high variability of
many subsurface properties combined with a general scarcity of data. These factors have led to the
development of stochastic hydrogeology where the subsurface properties are modeled as random
variables (Gelhar, 1993; Rubin, 2003). Despite the wealth of research on stochastic modeling, a
systematic investigation into the quantification of uncertainty and its impact on decision problems
has remained limited. For example, Dagan (2002) noted that uncertainty “is a topic that has
received little attention” and more recently, Kitanidis (2015) again pointed out that “it is somewhat
surprising that this topic has not received more attention”. Instead, most discussions evolve around
the specific topic of stochastic concepts, which is a closely related but ultimately an independent
topic. For example, in a discussion forum, Zhang and Zhang (2004) solicited contributions discuss
the perceived lack of applications that stochastic concepts have seen in hydrogeology. Of these
contributions, only Ginn (2004) and Rubin (2004) discussed uncertainty briefly in the context of
probability assessments. This lack may be explainable by the limited scope of that discussion forum,
where only a fixed number of questions were to be answered by the contributors. However, more
recently, Sanchez-Vila and Fernandez-Garcia (2016) organized a Special Issue that covered that
same question but allowed for more space and personal involvement from the participants. While
the topic of uncertainty was touched upon in all solicited contributions, none of them discussed
its nature or aims. This neglect contrasts the closely related fields of hydrology (Mantovan and
Todini, 2006; Vrugt et al., 2009; Clark et al., 2011) as well as geology (Wellmann and Regenauer-
Lieb, 2012; Bond, 2015; de la Varga andWellmann, 2016) which have and continue to have a broad
and deep discussion about the nature, sources, aims and direction of uncertainty analysis. One of
the main impediments for further progress in the field of uncertainty characterization, that has
been identified, is the lack of a coherent terminology and framework (Montanari, 2007; Montanari
et al., 2009).
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A significant challenge for the establishment of a consistent
framework of uncertainty analysis in hydrogeology is caused
by the most prevalent workflow of inverse theory, or, inversion
for short (Neuman, 2004; Tarantola, 2005; Carrera et al., 2005;
Franssen Hendricks et al., 2009; Biegler et al., 2010; Menke,
2012; Linde et al., 2015; Zhdanov, 2015). This workflow, known
as point estimation in inference, is based on a (regularized)
data fitting or optimization approach which tries to identify
a unique solution to the inverse problem. Typical examples
in hydrogeology are goodness-of-fit criteria, i.e., the task of
finding a single set of parameters such that the distance between
predictions and observations is minimized (Indelman et al.,
1996; Sánchez-Vila et al., 1999; Firmani et al., 2006; Schneider
and Attinger, 2008; Riva et al., 2009; Copty et al., 2011;
Pechstein et al., 2016; Zech et al., 2016). Even when point-
estimators are not applied during calibration and a probabilistic
sampling of the parameter distribution is advised instead, often
the analysis is performed again, by deriving single solutions
through, e.g., averaging (Neuman, 2014). There seems to be a
deep distrust of the generally non-unique nature of scientific
inference. Strangely, no rationale for this distrust is ever asked for
nor provided.

Since this workflow of inversion was not designed to
account for uncertainties in the inference, it consequently
exhibits a number of problems from that perspective. First,
aiming for a single best estimate neglects all other parameter
sets that are possible but may be less plausible. Neglecting
possible states can be problematic for inference alone (Good,
2009a). For uncertainty analysis, point estimation is even more
problematic since the use of a single best estimate implies
absolute certainty. Second, these studies usually use the observed
data only, without any reference to available background data
and are therefore liable to the base rate fallacy (Barhillel, 1980;
Kahneman et al., 1982).

Responses to this have been mixed and often inconsistent
(Nearing et al., 2016). Arguably, the most obvious concern is
centered around the so-called problem of equifinality (Beven,
2006), i.e., the observation that many, often diverging, parameter
sets may provide nearly identical goodness-of-fit values. One
response to this insight has been the development and application
of the generalized likelihood uncertainty estimation (GLUE)
framework (Beven and Binley, 1992). Although often described
as an (informal) Bayesian method, it has been strongly criticized
in the literature (Mantovan and Todini, 2006; Stedinger et al.,
2008). Another seminal response has been the development of the
differential evolution adaptive metropolis framework (DREAM,
Vrugt et al., 2009; Laloy and Vrugt, 2012; Laloy et al., 2013).
Unlike GLUE, DREAM is a fully Bayesian inference method
and uncertainty estimator and has seen many applications in
hydrology since its publication. Although DREAM has seen
applications in hydrogeology too (Mariethoz et al., 2010; Hansen
et al., 2012; Shi et al., 2014; Xu et al., 2017; Laloy et al., 2016;
Hayek et al., 2018), no universally accepted Bayesian framework
for uncertainty analysis currently exists. A rising number of
Bayesian inversion methods for inference have been published
over the years (see e.g., Cardiff and Kitanidis, 2009; Rubin et al.,
2010; Shi et al., 2014; Elsheikh et al., 2014; Saley et al., 2016),

yet, the overall adoption of such methods has remained limited.
This lackluster adoption rate can, e.g., be seen by the almost total
absence of Bayesian methods in the aforementioned special issue
on stochastic hydrogeology. Only Cirpka and Valocchi (2016)
even care to mention this topic and only in the context of
Bayesian model selection.

One problem that all the above-mentioned uncertainty
frameworks share, is the lack of formalized prior derivation.
Hydrogeology itself has only produced a small number of studies
on this topic (Kitanidis, 2012; Li et al., 2017; Cucchi et al., 2019),
which is sadly in line with the situation in many other fields.
Since specifying the prior is the first step in any Bayesian analysis,
high emphasis should be put on this step. However, coming
up with universal and objective guidelines for every conceivable
situation has proven to be elusive, so far (Earman, 1992; Scales
and Tenorio, 2001). In fact, detractors of Bayesian inference are
often criticizing the need to define a prior, claiming this step to be
necessarily subjective and arbitrary (Kass and Wasserman, 1996;
Ulrych et al., 2001; Kass, 2011). On the other hand, proponents
of Bayesian inference cite the ability to include background
knowledge in the form of prior probabilities as one of its major
strengths (Jaynes, 1968).

To this date, the single most used inference framework in
hydrogeology is arguably the Model-Independent Parameter
Estimation andUncertainty Analysis framework (PEST, Doherty,
2004). PEST itself constitutes a diverse set of optimization and
estimation tools to calibrate a wide range of environmental
models. The uncertainty framework allows users to estimate the
predictive uncertainty of the model output using a somewhat
inconsistent mixture of Bayesian and calibration techniques
(Doherty, 2010). Such an eclectic approach to inference and
uncertainty characterization may look intriguing. However, as
Kitanidis (2015) pointed out, combining elements from two
internally consistent systems is very risky.

In this manuscript, we will instead make the case for a single
coherent data-driven framework for uncertainty characterization
in hydrogeology. As we will argue below, this framework ought
to be the Bayesian interpretation of probability, i.e., the system
of probabilistic reasoning as developed by Ramsey (1931), Finetti
(1975), Savage (1954), and others.Whenmaking this case, we will
follow the reasoning of Pearl (1988b), who, while talking about
Bayesian probability in the context of artificial intelligence, said
the following:

Obviously, there are applications where strict adherence to
the dictates of probability theory would be computationally
infeasible, and their compromises will have to be made. Still, we
find it more comfortable to compromise an ideal theory that is
well-understood than to search for a surrogate theory, with only
gut feeling for guidance. The merits of a theory-based approach
are threefold:

1. The theory can be consulted to ensure that compromises are
made only when necessary and that their damage is kept to
a minimum.

2. When system performance does not match expectations,
knowing which compromises were made helps identify the
adjustments needed.
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3. Compromised theories facilitate scientific communication;
one need specifies only the compromisemade, treating the rest
of the theory as common knowledge.

To follow the advice of Pearl (1988b), we will start by describing
such an ideal theory, outline the present challenges for its
application and explain how to address them. In section 2, we
will make the case for Bayesian probability by contrasting it to
potential competitors. Next, in section 3, we will conceptualize
the different forms of uncertainty using the Bayesian framework
and identify the most relevant forms for hydrogeology. Finally
in section 4, we will make a number of practical propositions
by outlining what is currently missing, what compromises need
to be made to make the Bayesian paradigm viable and what the
relevant steps are that may help to reduce or even eliminate some
of these compromises.

2. REASONING WITH UNCERTAINTY

A discussion about uncertainty should begin with a clear
understanding of what is meant by this term. In a slightly
ironic twist, the term uncertainty is far from being well-
defined, both in everyday use as well as in the sciences. In fact,
when scanning the hydrogeological literature, a wide range of,
often conflicting, definitions, and conceptualizations are used
(Hoffman and Hammonds, 1994; Hofer, 1996; Walker et al.,
2003; Brown, 2004; Carrera et al., 2005; Refsgaard et al., 2007,
2012; Tartakovsky, 2013; Bond, 2015; Enemark et al., 2019). We
will therefore start by providing an overview of different models
that have been developed to conceptualize this term and facilitate
both qualitative and quantitative reasoning. To avoid the often
ad-hoc or gut driven nature of uncertainty analysis that is found
in the literature, we will start by presenting frameworks that were
developed in the field of epistemology, i.e., the field of philosophy
concerned with the character of knowledge.

In general, uncertainty should be understood as a measure
that describes the distance or gap between a current state of an
agent and the one representing absolute certainty. The latter is
formalized by the True and False statements found in classic
logic, whereas the former extends this concept. Consequently,
we will begin by describing models for such partial certainty
as found in modern epistemic logic. As argued above, we will
make the case for Bayesianism, i.e., the idea that certainty equals
probability and vice versa. Only in the next step we will discuss
a concept of uncertainty and make the case for the Kullback-
Leibler divergence as the distance measure between current and
absolute certainty.

2.1. Models for Reasoning With Certainty
and the Case for Probabilities
In modern epistemology, certainty is defined over possible states
of reality, collectively known as the set of possible worlds �

(Halpern, 2003; Fagin et al., 2004). In Bayesianism, the equivalent
term would be possibility space (Kruschke, 2010), whereas the
equally labeled sample space � from probability theory may or
may not have the same meaning depending on its interpretation
(see below). This possibility space is now meant to contain,

next to the true state of affairs, all other possibilities that are
compatible with a given set of constraints and data available to
an epistemic agent. Such an epistemic agent may be a human,
but with the advent of artificial intelligence, computational agents
have increasingly become the focus of modern research (Russell
and Norvig, 2009). The epistemic state of such an agent is then
defined by a function that assigns weights to each possible world
ω. This function is known as a certainty or credence distribution.

Despite its relatively short history, the field of modern
epistemology has already developed a number of different
measures to describe that certainty distribution. These measures
differ both mathematically as well as conceptually. The latter
difference can best be understood by viewing these different
measures as extensions of classical logic. In logic, a simple
True or False relationship exists between a statement and
the reality that this statement is trying to describe. In these
extensions, discussed below, this simple relationship becomes
more flexible and allows for different kinds of degrees of certainty
(Darwiche and Pearl, 1997).

The most common approach is to conceptualize such a
gradual degree of certainty as stemming from uncertain or
incomplete knowledge. This means that, similar to classical logic,
a given statement is objectively either true or false in reality.
However, due to the agent’s limited knowledge, she cannot fully
determine its veracity and has to assign a limited certainty to
it. This is known as a degree of belief and it is described by a
number between 0 and 1, corresponding to False and True in
classic logic. It can be shown that such degrees of belief follow the
rules of probability theory, i.e., the certainty of an agent is to be
described by a probability measure (Savage, 1954; Lindley, 1987).
To illustrate this model; consider a statement about the mean
conductivity of a given sample being above a given threshold,
say, 10−3m/s. The certainty of this statement could then be
ascertained if we would have access to a well-calibrated histogram
of conductivity values of samples from the aquifer the sample was
taken from.

An extension of this model is derived by the additional
inclusion of uncertainty stemming from ignorance. Using the
now (in)famous epistemology of the former US Secretary of
Defense Donald Rumsfeld (2002), probability describes the
known unknowns whereas ignorance is about the unknown
unknowns. To illustrate this concept, let us consider a revised
version of the above problem: Suppose that our knowledge base is
now less certain such that the sample is only with 90% probability
from the aforementioned aquifer, but with 10% probability
of some unknown provenience. This leaves a 10% certainty
gap in our reasoning system. The seminal work of Dempster
(1968) demonstrated a way of handling this gap, whereas the
later extensions of Shafer (1976) made this calculus into a
full reasoning and inference system. The resulting reasoning
framework is the Dempster-Shafer theory, evidence theory or
theory of belief functions. Like in the example above, Dempster–
Shafer theory is often praised for being able to combine evidence
from different sources with different kinds of uncertainty
attached to it. Its applicability has, however, been limited due to a
number of criticisms (Pearl, 1988b,a, 1990). Note that other fields
use similar concepts, with sometimes very different notations.
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In economy, for instance, uncertainties from lack of knowledge
are called risk, whereas uncertainties from ignorance are called
Knightian uncertainties or simply uncertainties (Knight, 1921).
On the other hand, political science and decision theory often
describe uncertainties as a lack of knowledge and ignorance,
shallow, and deep uncertainty, respectively (Walker et al., 2013).

An alternative approach is to model uncertainty stemming
from uncertain truth. This means that the veracity of a given
statement may never be fully determined, even in cases of
complete knowledge. Using the above example, this could be
the case if the statement is altered such that conductivity of
the sample is said to be large. Even if all relevant data on this
sample are gathered, e.g., some laboratory testing may determine
the conductivity being 10−3m/s, no definitive certainty can be
determined. A statement that the conductivity of the sample is
large given that the conductivity is 10−3m/s may be considered
as sort-of-true. The point is that our limited degree of certainty
is not caused by limited knowledge but by some vagueness
or fuzziness in the statement itself. Measures that are able
to describe such situations are confusingly called possibility
measures, although no particular connection to above possibility
space exists, and the related mathematical framework is, more
appropriately, called fuzzy logic (Zadeh, 1978; Dubois and Prade,
1988). Reasoning systems that employ fuzzy logic have seen
wide-ranging applications in engineering, modern logic, artificial
intelligence systems etc., which testifies to their versatility
and usefulness.

Despite the existence of these comparably sophisticated
systems for reasoning under uncertainty, the simplest approach
of probabilistic reasoning has seen a strong resurgence in the
last decades with the introduction of Bayesian networks (Pearl,
1988b; Neapolitan, 1990). These networks are probabilistic
graphical models that represent the, typically causal, relationship
between different physical processes.

Using the above statements, we would assert that probabilistic
reasoning is the most-suited framework for reasoning under
uncertainty in hydrogeology. Probability represents a simple,
yet very flexible tool that is able to capture most of the
problems encountered in this field. Fuzzy logic, although often
employed in engineering, does not offer much additional benefit
since most evidence being used is numerical in nature and
therefore has virtually no fuzziness associated with it. Contrary
to that, Dempster-Shafer theory does offer relevant benefits as an
uncertainty framework, which do however, need to be considered
in context. The first benefit is simply due to the fact that many
situations of subsurface analysis do include an element of deep
uncertainty, in particular the topic of structural uncertainty.
To address that, we will deal with this problem exhaustively
below and describe a way how to turn this deep into shallow
uncertainty. In this way we are making the topic of structural
uncertainty fully amendable to probabilistic analysis. Second,
as pointed out by Rubin et al. (2018), the Dempster-Shafer
theory can be helpful in accounting for unknown unknowns
that result from the interaction of hydrogeological problems with
societal developments in general (Walker et al., 2013; Maier
et al., 2016). This second benefit is very important but does not
necessarily conflict with our notion of probability as a default

system for uncertain reasoning. Since Dempster-Shafer theory is
a full generalization of probability theory, it is easy to embed a
fully probabilistic analysis within a larger framework. In addition
to these benefits, the Dempster-Shafer theory has a number of
drawbacks that make reasoning with it counter intuitive and
hamper its applicability for real-world problems. In particular,
it is not possible to employ it on top of existing techniques
compared to probability theory or even fuzzy logic and its
applicability to decision theory remains controversial. Although
the number of applications in earth sciences is rising, it is still a
niche theory with only few practical applications (Malpica et al.,
2007). In summary, we propose to use probabilistic reasoning
as the main tool of uncertainty analysis, while being aware of
its limitations, and being prepared to account for other types of
uncertainty by embedding probability measures within a larger
analysis possibly using the Dempster-Shafer theory.

2.2. On the Interpretation of Probability
Owing to the seminal work of Kolmogorov (1933), modern
probability theory is fully grounded in set theory and as
such, it is as well founded and defined as any other field
of mathematics (Kallenberg, 2002). Yet, unlike many other
mathematical disciplines, there is no clear consensus about where
to locate probability in real-world situations.

Roughly speaking, two different interpretations of probability
can be distinguished; physical as well as epistemic probability
(Figure 1). The first interpretation regards probability as an
actual property of physical systems comparable to, e.g., mass,
energy and momentum (Figure 1, upper right corner). This is
best captured in its most widely applied form; frequentism, where
the probability of an event is equated with the relative frequency
of this event in an often-repeated random experiment (Neyman
and Pearson, 1928, 1933). This definition has garnered wide
support in the sciences, due to its clear and lucid formulation
(vonMises, 1982). On the other side, the epistemic interpretation
regards probability as an intrinsic property of epistemic agents
(Figure 1, upper left corner). This means that, unlike mass,
energy or momentum; probability is not a property of a
physical system but of the epistemic state of an agent that is
trying to reason about said system (Finetti, 1975; Savage, 1954;
Jeffrey, 1992).

2.2.1. The Case for Bayesianism
The discussion about the best or most appropriate interpretation
for any given situation is still ongoing and we do not want to
uncritically favor any side. For our topic, however, the epistemic
interpretation, called Bayesian interpretation, of probability
seems to be the only appropriate one. The main rationales for
its use shall be discussed in the following.

First, the epistemic interpretation is simply the more
comprehensive interpretation of the two. In fact, it is a full
generalization of the physical interpretation, since it is able
to cover all cases described by the latter and then some.
This is not the case for the frequentist interpretation since its
application is constrained to cases where physical frequencies are
available. This inclusiveness of Bayesianism is often obfuscated
by calling it the subjective interpretation of probability, as
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FIGURE 1 | Illustration from Descartes (1662) visualizing the difference

between physical objects (upper right corner) and their epistemic

representations (upper left corner).

opposed to the objective interpretation of frequentism. But such
a characterization is misguided since epistemic probabilities can
be subjective, objective and everything in between (Berger, 2006;
Williamson, 2010).

Second, the concept of a long-running sequence of random
experiments is ill defined in the context of hydrogeology. This
is not to deny the relationship that relative frequencies of, say,
conductivity values from other sites have on the characterization
of a given site. As described above, most Bayesians would
agree that such frequencies should always be used when
available (Rubin, 1984). The difference to frequentism is not the
importance of observed frequencies but the role they play in
defining probability. Within the context of hydrogeological site
characterization, we would argue that equating those frequencies
with probability, and the use of frequentist methods therefore as
well, is rather contrived (Renard, 2007).

Third, uncertainty is a property of knowledge and therefore
fundamentally epistemic. This fact is often obfuscated by
the practice of separating uncertainty into so called aleatoric
and epistemic uncertainty, somewhat mimicking the above
distinction between physical and epistemic probability (Hoffman
and Hammonds, 1994; Helton and Burmaster, 1996; O’Hagan
et al., 2006; Gong et al., 2013). Generally speaking, epistemic
uncertainty is said to be reducible by collecting more data
whereas aleatoric uncertainty is caused by intrinsic randomness

which cannot be further reduced by data. Typically, the latter
is illustrated by referring to activities like throwing a die or
tossing a coin. The problem with such examples is that both these
activities are demonstrably deterministic without any intrinsic
randomness (Diaconis et al., 2007). It may be argued that the
physical world itself exhibits pure randomness on the quantum
level of reality. This notion, associated with the Copenhagen
interpretation of quantum mechanics was dominant for the
better part of the 20th century but has become marginalized
more recently in favor of the Everett (Deutsch, 1999; Sebens
and Carroll, 2016) and Bayesian (Schack et al., 2001; Fuchs
and Schack, 2013) interpretations. Whatever the case may be,
within the context of the macroscopic physical laws relevant
to hydrogeophysics, these debates are completely immaterial.
On the macroscopic level, the laws of classical physics exhibit
no randomness, which can therefore not suddenly manifest
in situations that are fully determined by these laws.

The last major reason, for why frequentism does not provide
an adequate framework for uncertainty analysis concerns the
nature of frequentist inference itself. Following Royall (1997),
any statistical inference, as well as any other form of evidential
assessment, can be thought of as addressing a series of three
questions; (i) What does the evidence say?; (ii) What should I
believe?; and (iii) What should I do? Uncertainty itself concerns
the second question, i.e., the question of belief but frequentist
inference actually does not address this question at all (see
Table 1). To explain why, let us start at question (i); the question
of evidence. Evidence is central to the field of inference but
surprisingly difficult to pin down (Feldman and Conee, 1985;
Achinstein, 2003; Dougherty, 2011). In general, the evidence of
some observations are those aspects of it which justify or lend
credence to a hypothesis under question. The most important
theoretical advance for the quantification of this notion came
in the form of the Likelihood Principle (LP, Barnard et al.,
1962), stating that all the evidence of the data is contained
in their likelihood. Although some criticism exists, the LP is
broadly accepted in the field of epistemology, due to being
derived from extremely simple axioms (Barnett, 1999; Good,
2009b; Bandyopadhyay and Forster, 2011; Grossman, 2011). This
first step alone, therefore, puts some pressure on frequentist
hypothesis testing since it does not meet this criterion. In contrast
to that, frequentist estimation, like calibration, parameterization,
regression etc.; does not necessarily conflict with this principle.
Here, the problem comes in the second step, i.e., using the
evidence to justify belief. Frequentism does not deal with belief
but uses the evidence, or some proxy thereof, to jump directly
to decisions. As outlined above, decisions are made by deriving
point estimates, for instance by applying a significance criterion
to a p-value or an optimality criterion to some estimation
procedure (Table 1). Some optimality criteria can be derived
on evidential grounds, like the Maximum Likelihood (ML)
estimator. While ML estimators are widely used, many other
estimators exist, which typically divert from ML by trying to
reproduce only certain features of the data or contain some
application-specific reasoning (Krause et al., 2005; Pushpalatha
et al., 2012; Bennett et al., 2013; Moriasi et al., 2015). This work
flow, which forms the blueprint of most inference techniques
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TABLE 1 | Comparison of the different concepts used in frequentism and Bayesianism.

Given the data, Given the evidence, Given the belief,

what is the evidence? what is the belief? what is the decision?

Frequentism Hypothesis testing Sampling distribution Significance criteria

Estimation Likelihood Optimality criteria

Bayesianism Likelihood Bayes’ theorem Utility function

in hydrogeology, is in contrast to the principles of Bayesian
inference. First, Bayesian inference meets the LP by using only
the likelihood to assess the evidential support of the data.
As mentioned above, adherence to the LP is not unique to
Bayesianism, but a necessary prerequisite. The most important
difference comes in the next step, when Bayesian inference uses
Bayes’ theorem to compute the belief that follows from the
evidence. This step is simply a conclusion from the axioms
of probability theory and a number of more recent studies
have demonstrated how updating through Bayes’ theorem does
indeed maximize the epistemic accuracy of an agent (Greaves
and Wallace, 2006; Leitgeb and Pettigrew, 2010; Easwaran,
2013). However, the application of Bayes’ theorem requires the
derivation of the prior probability, which is regularly criticized.
We will deal with this question in more detail below and
continue for now with the above schematic. Having determined
the belief given the evidence concludes the inferential part of
the statistical analysis. This, however, leaves open the last step
of the analysis, which is to make an informed decision. In above
terms, this canmean to decide which parameter θ to use or which
hypothesis to accept. In Bayesianism, decision making is done
by maximizing the expected utility. Like the two other steps,
the decision making through maximizing the expected utility is
derived from simple axioms making it the most well-subscribed
paradigm in decision making. What is important for us is that
this last step is independent of the other two and the specification
of the utility function is therefore left to the decision maker. This
clear separation of inference and decision makes Bayesianism so
relevant to uncertainty analysis.

Combined, reasons like this have led to the strong rise
Bayesian methods have seen in many fields like physics
(von Toussaint, 2011), biology (Huelsenbeck et al., 2001),
environmental science (Clark, 2005), clinical research (Berry,
2006), genetics (Beaumont and Rannala, 2004), psychology
(Wagenmakers, 2007), cognitive science (Clark, 2015), and
many more. In addition, these reasons have made Bayesianism
the leading paradigm in the field of philosophy of science
(Howson and Urbach, 2005; Bandyopadhyay and Forster, 2011;
Easwaran, 2011a).

2.3. Bayesian Uncertainty Analysis
Having established Bayesianism as the most appropriate
framework for uncertainty analysis, we will quickly restate the
basic properties of Bayesian inference and prediction. In addition
to that, we will demonstrate how the Bayesian framework
provides an axiomatically based definition of uncertainty
and therefore allows a quantitative assessment of uncertainty
reduction as provided by the inference.

2.3.1. Inference
Inference is defined as the process of characterizing a probability
function using data. In Bayesian inference, this probability is
defined over the possibility space � (Kruschke, 2010). As the
name implies, � is supposed to contain all states that are possible
for a given situation, i.e., states whose probability cannot be set
a priori to zero. To avoid the curse of dimensionality, this space
is typically approximated by a parsimonious parametric model,
which is fully determined by the specification of its parameters θ .
The initial certainty for these parameters θ , is the aforementioned
prior p(θ). The likelihood of each parameter set θ is determined
by the data generating process, which in hydrogeology is usually
defined through partial differential equations. Combining prior
and likelihood, Bayes’ theorem can now be used to determine the
probability conditioned on the data z called the posterior

p(θ |z) =
p(z|θ)

p(z)
p(θ). (1)

The only missing element in Equation (1) is the probability
of the data p(z) often called the marginal likelihood or the
evidence. However, for most scenarios, this probability is only a
normalization constant. It can therefore be omitted and Equation
(1) can be computed by normalizing p(z|θ)p(θ). This latter form
is often used in the literature, since modern sampling methods
are versions of the Markov-Chain-Monte-Carlo method, which
guarantees this normalization by design.

Looking at this workflow, it becomes clear how Bayesian
inference is the general probabilistic framework for the inverse
problem with the likelihood being the Bayesian representation of
the relevant forward problem.

2.3.2. Prediction
Using the conditioned, i.e., posterior, probability p(θ |z), the
predictive probability for new unobserved data, i.e., predictions,
z∗ is given by

p(z∗|z) =
∫

2

p(z∗|θ)p(θ |z)dθ . (2)

Bayesian prediction of new data z∗ given the old data z is
therefore achieved by marginalizing the posterior probability
p(θ |z) times the predictive probability p(z∗|θ) of the model as
defined by θ .

This influence of the parameterized space of possible worlds2

on both Bayesian inference and prediction also provides a formal
description of two closely related epistemological problems in
science; namely the Theory-ladenness of Science and the Duhem-
Quine Hypothesis. The former roughly states that scientific
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inference is always affected by, usually implicitly held, beliefs
of the investigator and is strongly associated with the works
of Kuhn (1962) and Feyerabend (1975). The latter is more
general and states that scientific inference is always under-
determined by our observations and additional assumptions are
needed to make sensible conclusions. Next to Duhem (1906)
and Quine (1951), important contributions to the development
of this notion came, e.g., from Van Fraassen (1980), Laudan
(1990), and Stanford (2001). Note that the Bayesian framework
does not solve this problem but does make the impact of 2

on the findings transparent. This means that all theoretical
presuppositions are contained in the definition of 2 and only
influence inference and prediction by virtue of its choice and
through the aforementioned equations.

2.3.3. Uncertainty
In addition to properly describing the change of beliefs due
to new evidence, Bayes’ theorem provides a mathematically
rigorous way to characterize the uncertainty represented in a
probability distribution as well as the uncertainty reduction
achieved during the inference. This is possible due to the
intricate relationship between the concept of information in
information theory and the way probabilities are updated in
Bayesian inference (Ebrahimi et al., 2010). According to Shannon
(1948), the information of a particular value of θi is given
by I(θi) = − log2(p(θi)), with log2 being the logarithm of
base 2. Due to this choice, information is usually measured
in bits, with other bases simply leading to other units. To
characterize the information content of a probability function of
a discrete variable, Shannon (1948) introduced the expected value
of information

H =

∫

p(θ)I(θ)dθ = −

∫

p(θ) log2(p(θ))dθ . (3)

As recounted by Tribus and McIrvine (1971), Shannon initially
called this quantity uncertainty but was unfortunately convinced
by John vonNeuman to use the term entropy instead. In addition,
the Shannon entropy only describes the uncertainty with respect
to a state of complete ignorance which is implicitly defined in
his first and second axioms. Due to this limitation, the Shannon
entropy is not suited for Bayesian inference, where updating
from arbitrary priors to posteriors is possible. To that end,
Equation (3) needs to be amended such that the uncertainty
with respect to other degrees of certainty can be described.
This extended concept is known as the Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951) but should be more
appropriately called relative entropy/uncertainty or information

DKL =

∫

p(θ) log2

(

p(θ)

q(θ)

)

dθ . (4)

Due to its positive sign, the KL divergence is the negative relative
entropy of p with respect to q. It therefore belongs to the class
of entropy measures meaning that uncertainty is the entropy of
a probability function. Such measures have several advantages
compared to, say, variance-basedmeasures like Sobol indices that
are often used in the literature (Ebrahimi et al., 2010). Compared
to the Shannon entropy, this quantity is more fundamental in

several ways. First, DKL can be easily extended to continuous
as well as multidimensional variables. Second, DKL describes
the uncertainty as expressed in one distribution with respect to
another and therefore reduces to the Shannon entropy in the
marginal case of a flat q. Finally, DKL connects the concept of
information with the updating from the prior to the posterior in
Bayesian inference. If p and q are identified with the posterior
and prior distribution, respectively, then DKL is a measure for
the information and therefore the uncertainty reduction achieved
during the inference (Hou, 2005; Tang et al., 2016).

2.4. Challenges of Bayesianism
Although Bayesianism has become such a popular position in
the sciences, it has also received its fair share of criticism
(Gelman, 2008; Easwaran, 2011b). These criticisms often include
rather formal issues like the problem of logical omniscience and
the problem of old evidence (Garber, 1983). Others, however,
are more relevant to its applicability and should therefore be
discussed in the following. Looking at Equation (1), we see
that Bayesian inference consists of determining three expression
only. Next to the likelihood, which is also often used outside
of Bayesian inference, two expressions are peculiar to it and
therefore need to be looked at in detail.

First, let us look at the marginal likelihood in Equation
(1), which poses the biggest computational problem. Since
a direct computation of this expression generally involves
multi-dimensional integrals, Bayesian inference was, for a long
time, confined to a comparably small number of simple cases.
Nowadays, Markov-Chain-Monte-Carlo (MCMC) methods are
used (Gelfand and Smith, 1990; Tierney, 1994; Chib and
Greenberg, 1995), which circumvent the computation of these
often-intractable integrals by sampling directly from the non-
normalized posterior. Implementations of MCMC samplers
exist as either standalone versions (Lunn et al., 2009; Gelman
et al., 2015; Depaoli et al., 2016) or they are implemented for
popular languages like R (Martin et al., 2011; Lindgren and
Rue, 2015; Denwood, 2016) and Python (Patil et al., 2010;
Foreman-Mackey et al., 2013).

Second, let us turn to the prior in Equation (1), which is
both a theoretical and computational problem. The theoretical
problem, known as the problem of the priors (Osherson et al.,
1993), is caused by the limited number of restrictions that
Bayesianism puts on a reasoning system to be rational. Taken
to the extreme, an agent would be free to believe anything as
long as there is no contradiction to the axioms of probability
(Romeijn, 2017). In reality, however, common sense dictates
that a sound opinion is constrained by additional sources of
evidence. Responses from Bayesians to this obvious clash have
been mixed, with roughly two extreme camps existing; subjective
Bayesianism and objective Bayesianism. Subjective Bayesians
stick to the purely theoretical principles and try to mitigate
the conflict through expert elicitation, i.e., the application of
formal rules to elicit expert opinions on a given topic and
turn them into prior distributions (O’Hagan et al., 2006; Albert
et al., 2012). On the other end, we find objective Bayesians who
claim that additional conditions on rational beliefs, in particular
prior beliefs, are necessary. These additional conditions revolve
around the principle of equivocation, which means that, if no
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evidence favors one possibility, a rational agent should initially
equivocate between all possibilities (Williamson, 2010). A more
sophisticated version of this idea is the Maximum Entropy (ME)
method (Jaynes, 1957a,b), where non-flat priors are possible if
some additional, often physically based, constraints or symmetry
arguments make some possibilities less credible from the start.
In practice, most statisticians, scientist and engineers strive for
objectivity but use primarily tried-and-tested approaches, which
strike a balance between objectivity and applicability. While
the ME method has found some application in hydrogeology
(Woodbury and Ulrych, 1993), most studies rely on using flat
or extremely wide distributions over some parameter range
derived from the literature (Woodbury and Ulrych, 1996, 2000;
Marchant and Lark, 2007; Diggle and Ribeiro, 2007; Murakami
et al., 2010; Laloy et al., 2013; Shi et al., 2014; Geiges et al.,
2015; Mara et al., 2017; Hayek et al., 2018). Unfortunately, this
procedure is not as harmless as often perceived, since neither
are ranges particularly objective nor are flat priors necessarily
uninformative (a property which is often used as a proxy for
objectivity) (Gelman et al., 2017). In general, current use of
objective and uninformative priors in hydrogeology is seriously
lacking compared to the standards established in statistics. To
give an example of the latter, let us consider so called reference
priors. These priors are based on the idea to systematically
minimize the impact on the inference. If properly done, the
results would then be dominated by the data alone (Bernardo,
1997). Another example is the use of the data themselves to
determine the best prior. This method is called empirical Bayes
(Carlin and Louis, 2000; Malinverno and Briggs, 2004), since it
uses only the empirically available data for the inference. These
methods have been very successful in statistics due to their ease
of application and apparent objectivity (Valakas andModis, 2016)
but have been heavily criticized on theoretical grounds. The main
critique is that by using the data for both the likelihood and the
prior, empirical priors–and to a lesser extend reference priors as
well—use the data twice. This is a clear violation of the LP, which
is generally seen as a necessary element of Bayesianism (Lindley,
1987; Good, 2009b).

A final point concerns Bayesian decision theory. Including
this topic under challenges may seem strange given that the
Bayesian framework enjoys the best integration with decision
theory of any inferential framework. Beginning with the seminal
works of von Neumann and Morgenstern (1944) and Savage
(1954), Bayesianism has become the de-facto standard in modern
decision theory (Berger, 1985; Jeffrey, 1992; Bernardo and
Smith, 2000; Robert, 2001; Koehler and Harvey, 2004; Baron,
2004; Parmigiani and Inoue, 2009; Gilboa, 2009). It should
consequently be one of its biggest assets. Alas, that is not what
we see. Instead, very little effort has been devoted to connecting
Bayesian inference with any of the established models from
decision theory. To substantiate this pessimism, we simply refer
here to the review of Tartakovsky (2013), who gives an excellent
overview of this topic yet still fails to find more than a handful of
studies, which apply Bayesian decision theory to hydrogeology.
As explained above, this lack is of little consequence for the
specific topic of uncertainty analysis. It is, however, clearly a
challenge for Bayesian inference in general. Looking at Table 1,

current practice means to only implement the first and second
step out of all three. While not the focus of this manuscript, we
opine that a full appreciation of the Bayesian framework will only
become a reality once all its elements are common knowledge and
regularly applied.

3. WHAT KIND OF UNCERTAINTIES ARE
WE TALKING ABOUT

To organize the different forms and sources of uncertainties, a
wide range of often conflicting notations is used in the literature
(Hoffman and Hammonds, 1994; Hofer, 1996; Walker et al.,
2003; Brown, 2004; Carrera et al., 2005; Refsgaard et al., 2007;
Kwakkel et al., 2010; Biegler et al., 2010; Refsgaard et al., 2012;
Guillaume et al., 2012; Tartakovsky, 2013; Caers et al., 2014;
Bond, 2015; Enemark et al., 2019). In the following, we are going
to describe and contextualize these notations using the formalism
established above.

3.1. Understanding Uncertainties Using the
Framework of Bayesianism
A common approach is to separate uncertainties into epistemic
and aleatoric uncertainties (Kiureghian and Ditlevsen, 2009;
Beven and Young, 2013; Bond, 2015). As already explained above,
all uncertainties in Bayesianism are necessarily epistemic and
aleatoric uncertainties simply do not exist in this framework.
In our opinion, this distinction can make sense for practical
applications because, due to often highly non-linear processes,
reality always has a tipping point—sometimes sudden, sometimes
more gradual—beyond which the additional collection of data
becomes too costly to be reasonably entertained. Identifying
such tipping points is important for any engineering task in
order to estimate sensible directions for the additional data
gathering. This notion is often implicitly confirmed by authors
who otherwise seem to argue for the physical presence of aleatoric
uncertainty within macroscopic phenomena. Fox and Ülkümen
(2011) for example admit as much when saying "Aleatory
uncertainty is attributed to outcomes that for practical purposes
cannot be predicted and are therefore treated as stochastic".
Another situation, where the use of aleatoric uncertainty seems
justified, is in the presence of so-called statistical uncertainty
(Beven and Young, 2013). Thismeans that the statistical variation
of a given population, say, the conductivity values of an aquifer,
puts an “inherent” limit on how much the uncertainty can be
reduced. From a Bayesian perspective, such reasoning is simply
false. Kiureghian and Ditlevsen (2009), for instance, articulate
this problem when stating that “The distinction between aleatory
and epistemic uncertainties is determined by our modeling
choices.” To illustrate this point and get at the root of this
prevailing misunderstanding, let us look at the already used
example of conductivity values of an aquifer. Using, e.g., the
whole aquifer as the population, there is indeed an intrinsic limit
of how much the uncertainty can be reduced through sheer data
collection. It would, therefore, seem that this uncertainty fits the
above definition of being aleatoric. However, as Kiureghian and
Ditlevsen (2009) pointed out, there is no metaphysical reason
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to model the whole aquifer as a single statistical population. If
enough data are collected, the aquifer can easily be split up into,
say, its hydrofacies, each of which would now have a much-
reduced statistical uncertainty. This process of fine graining our
statistical model, depending on the amount of data, can be
repeated ad infinitum, which shows that no statistical variation
is ever intrinsic to reality but only determined by our model.
The last class of examples, which are often used to demonstrate
aleatoric uncertainty are actually cases of deep or Knightian
uncertainty (Fox and Ülkümen, 2011; Beven and Young, 2013).
Deep uncertainty is certainly an important and even dominant
form of uncertainty in everyday situations. However, as explained
above, it should be modeled by the Dempster-Shafer framework
and treating it within a probabilistic context is necessarily
error prone. In summary, aleatoric uncertainty, as used in the
literature, is an inconsistent mixture of several distinct concepts,
with varying levels of usefulness.

The second differentiation is to separate uncertainties into
inferential and predictive uncertainties. Within Bayesianism,
these uncertainties are simply defined via Equations (1) and
(2), respectively. This means that the inferential uncertainty
is the DKL of the posterior vs. the prior distribution, whereas
the predictive uncertainty is given as the DKL of the predictive
distribution with the data vs. without them.

Another important differentiation is to separate uncertainties
into input and parametric uncertainties (Refsgaard et al., 2012;
Tartakovsky, 2013). Within the context of Bayesianism, input
uncertainty is simply the uncertainty that is passed down from
receiving nodes in a Bayesian network. This means, the input
uncertainty of a given node is the combined uncertainty of
its parent nodes. On the other hand, parametric uncertainty is
uncertainty in the parameters θ of the used parametric model
and is therefore identical to the inferential uncertainty given by
Equation (1).

The last concept to be discussed is the topic of structural and
conceptual uncertainty. Both these terms are used in sometimes
overlapping and sometimes conflicting ways (Refsgaard et al.,
2012; Tartakovsky, 2013; Enemark et al., 2019). In general,
it is not even clear whether these two terms do differ in
meaningful ways. From a Bayesian perspective, both refer to the
necessary approximation of the possibility space � by a lower-
dimensional parametric subspace 2. Since describing �, e.g., the
conductivity field of a real-world aquifer, in full detail is both
impossible, due to the scarcity of data, as well as numerically
intractable, such approximations will always be necessary. From
our perspective, it can be beneficial to use two different terms in
order to distinguish between the uncertainty expressed between
the different parametric models, called structural models in
the following, and the uncertainty being expressed within any
such given structural model. In the following, we will focus on
the latter and use the term structural uncertainty to describe
this category.

Having used the Bayesian framework to put the different
forms of uncertainty into a proper context, we will finish
this section by ranking these different forms according to
their relevance for hydrogeological modeling. Since such a
ranking is strongly dependent on the context, we will shortly

discuss each form individually. First, parametric uncertainty is
doubtless one of the dominant forms regardless of the situation.
Bayesian inference is perfectly suited to handle it, provided
that proper priors are provided. Structural uncertainty is also
very important, due to the often-pronounced spatial pattern of
many aquifers. Handling this form of uncertainty as well as
structural modeling in general is comparably underdeveloped.
Instead, structural uncertainty is often recast as a form of process
uncertainty, in particular in the case of transport processes
(Neuman and Tartakovsky, 2009). While such alternative process
models may be important for pure modeling purposes, we
are very skeptical about their use in uncertainty analysis. In
addition to this, the parameters of such models are often pure
convenience parameters and they are difficult or impossible
to condition on point measurements. As mentioned above,
conceptual uncertainty is not going to be the focus of this paper.
Instead, we are going to describe in the following the range of
structural models, which are used in hydrogeology and try to
identify the most relevant paradigms. Finally, input uncertainty
is technically not part of hydrogeology since the uncertainty is
passed down from the parent nodes of the Bayesian network.
This is quite apparent in case of groundwater recharge, where
the input uncertainty is the accumulated uncertainty of the
meteorological, land surface, and soil compartments of a complex
hydrological model.

3.2. On the Role of the Structural Model
At this point, we have identified structural and parametric
uncertainty as the most relevant categories of hydrogeological
uncertainty. While in theory both are of similar importance,
the way to handle them in practice is very different. Parametric
uncertainty can be reduced by collecting more data and is
primarily a question of data acquisition. On the other hand,
structural uncertainty is connected to the model for the
subsurface heterogeneity itself. It is therefore much harder to
quantify, which has wide ranging ramifications for uncertainty
analysis. To investigate this problem in more detail, we will first
present and discuss the most common paradigms for generating
subsurface structures.

The most famous of these paradigms is the Gaussian process
(GP) model, also known as Multivariate Gaussian or a Gaussian
random field (Rasmussen and Williams, 2006). In its basic form,
a GP is a very parsimonious model and can therefore be applied
in situations where only few data are available, as often the case
in hydrogeology. In addition, a GP is hierarchical by nature
and therefore scales well with the amount of data available, i.e.,
the dimensionality of 2 can be arbitrarily matched with the
amount of data available for the inference (Gelfand and Schliep,
2016). However, employing a GP as the structural model for a
conductivity field makes a number of strong assumptions about
the properties and characteristics of the conductivity field, some
of which have been strongly criticized (Gómez-Hernández and
Wen, 1998; Zinn and Harvey, 2003; de Marsily et al., 2005;
Linde et al., 2015). The most important of these criticisms
concerns the inability of GPs to reproduce long-ranging high-
conductivity structures, which are reported to exist in many real-
world aquifers (Abelin et al., 1991; Zheng and Gorelick, 2003;
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Kerrou et al., 2008). As a result, using a GP as the structural model
for an aquifer will lead to a failure to (i) detect the presence of
such features as well as (ii) to predict certain behaviors of, say,
break-through curves (Heße et al., 2015; Savoy et al., 2017).

To improve on some of the limitations of GPs, truncated
pluri-Gaussian models have been developed (Le Loc’h and
Galli, 1997; Galli et al., 1994; Emery, 2004; Armstrong et al.,
2011). These methods can be seen as an extension of the
Gaussian paradigm by embedding Gaussian SRFs within a
larger hierarchical framework. Here, hierarchy means that the
Gaussian SRFs are used to create a larger spatial structure. This
larger structure is typically representing distinct hydrogeolocial
units, like hydrofacies or lithofacies. Despite some success in
recent years (Emery, 2007; Mariethoz et al., 2009; Serrano
et al., 2014), their overall geological realism has remained
limited, and alternative paradigms have continued to attract
considerable attention.

Surface-based modeling is one of these other paradigms
(Caumon et al., 2009), often implemented in terms of implicit
surfaces (Calcagno et al., 2008; Chilés et al., 2004). Although not
particularly suited for modeling intricate structures and low scale
heterogeneity, this paradigm provides a realistic representation
of the main geological structures and allows to integrate a good
range of information, including geological data (contact points,
surface orientations, faults) but also information coming from
geophysical surveys.

Geological structures can also be represented as geometrical
objects using object-based models (Koltermann and Gorelick,
1996). Object-based method are mainly based on geometrical
considerations about the expected shapes.

Process-based methods on the other hand arguably provide
the most realistic representation of real word structures
(Koltermann and Gorelick, 1996). Software implementations of
this paradigm are available both as commercial and academic
releases, and for unconditional simulations the computational
costs are acceptable. Nevertheless, as is the case for object-based
methods, process-based methods have difficulty in honoring
all the observed conditioning data, which puts some limit on
their applicability.

The last, modeling paradigms discussed here are the
multiple-point statistic (MPS) based techniques (Guardiano and
Srivastava, 1993; Strebelle, 2002; Mariethoz and Caers, 2014). In
contrast to geostatistical methods based on two-point statistics,
these methods allow to reproduce more realistic structures,
which better represent important features observed in real
world aquifers like connectivity. Computational costs remain
relatively high compared to other paradigms. Nevertheless,
MPS simulation algorithms intrinsically honor all the observed
conditioning data, and the flexibility of the technique allows for
the incorporation of information coming from different sources,
in a straightforward way.

Together, these paradigms form the basis of most of
the models used for generating subsurface heterogeneity.
In addition to the properties already mentioned, they also
differ in how much they are amendable to a Bayesian
framework (Table 2). The Gaussian paradigm is very well-suited,
since most of its parameters are simple statistics of typical

hydrogeological variables (e.g., conductivity, porosity, storativity
etc.). Consequently, there exists a direct way to derive these
parameters from real-world measurements. The truncated pluri-
Gaussian paradigms scores lower in this regard since a crucial
feature of this method is the derivation and application of the
truncation rule. These rules usually ought to come from expert
elicitation but little to no guidelines exist on how to formalize
this process. The surface-based paradigm fares much better in
this regard since the inference of subsurface structures is able
to draw on observable features of the subsurface. In fact, the
possibility to frame these paradigmswithin a Bayesian framework
was already explored by Wellmann et al. (2018) and de la Varga
et al. (2018). Next is the object-based paradigm, where quite often
objects are drawn based on purely geometrical considerations.
It is therefore not straightforward to use this paradigm in a
Bayesian framework. Nevertheless, object-based methods can
profit from the statistics about the morphological attributes of
real-world geological objects (Gibling, 2006; Colombera et al.,
2012). Process-based models, on the other hand, are built on
a plausible physical model by mimicking the geological genesis
of the subsurface. However, the parameter of these models are
usually pure convenience parameters making the derivation of
prior PDFs subjective. The last paradigm discussed above are
MPS, which is not without problems from a Bayesian perspective.
However, its overall aptitude is arguably higher than the two
former paradigms. First of all, realizations of MPS models
are easy to condition on point measurements, which is an
important feature. Looking at the generating mechanism itself,
we see that its parameters are simple convenient parameters that
are not directly connected to physical principles. Despite this
clear drawback, MPS realizations are based in training images,
which means the method is based on observable features of
the subsurface.

In conclusion, we would argue that two of the above presented
paradigms stand out as the most viable candidates for Bayesian
uncertainty analysis. First, the Gaussian paradigm, which scores
high on almost every metric except geological realism (see
Table 2). While this is only one point of many, it is arguably the
most important one. At the same time, GPs score so high on the
other metrics, in particular its wide use, that it should not be
excluded. Furthermore, GPs are good candidates for subdomain
models within a larger hierarchical modeling framework and
can consequently form an important component of a larger
and more realistic framework. The second relevant paradigm is
MPS, which, in some sense, can be placed on the other end of
the spectrum of the paradigms presented here. This is to say
that models based on MPS have a high degree of geological
realism but suffer from a lack of ready-made software tools, that
they are comparably unknown to practitioners and that they are
computationally demanding. However, both paradigms have the
ability to incorporate a variety of data sources and the generation
of heterogeneous structures is based on observable characteristics
of the subsurface. In addition, if the MPS framework is used to
generate only the categorical SRF of the different hydrogeological
units, it can be seamlessly integrated with the Gaussian paradigm.
With these two candidate paradigms in mind, we will continue
our discussion on Bayesian uncertainty analysis.
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TABLE 2 | Overview of the different paradigms for sub-surface structure generation applied in hydrogeology.

Gaussian Truncated Surface-based Object-based Process-based Multi-point

process pluri-Gaussian models models models statistics

Software tools Very high Low Low Low Low Low

Realism Very low Low Moderate High Very high Very high

Comp. costs Low Moderate Moderate High High Very high

Math. theory Very high Moderate Moderate Very low Very low Very low

Versatile data High High Very high Very low Low High

Bayesian High Moderate High Low Low Moderate

4. TOWARD A DATA-DRIVEN
UNCERTAINTY CHARACTERIZATION

As we have discussed earlier, Bayesianism is not free of
practical and theoretical problems. Of these, the question of
prior derivation was presented as the most pressing, with no
universally accepted guideline for prior derivation existing in the
literature. In this last part of the manuscript, we are going to
lay out the current challenges and explain a possible solution by
using data-driven priors.

4.1. Putting Prior Derivation on Solid
Grounds
In this paper, we want to make the case for combining aspects
of objective Bayesianism with frequentist reasoning (Rubin,
1984; Bayarri and Berger, 2004; Little, 2006). While we fully
agree that objectivity is an important goal in any scientific
or engineering enterprise, we do not think that this needs to
be achieved by minimizing the impact of the prior as often
argued. On the contrary! Priors can have both a strong impact
on the analysis and being objective. This can be achieved if
these priors are derived from well-defined empirical frequencies
(see, e.g., Li et al., 2017 for a rare example for hydrogeology).
Hydrogeological variables like conductivity and porosity are
physical properties or can at least be soundly derived from them
(Di Palma et al., 2017). As a result, their parametric and structural
uncertainties can be calibrated against observed frequencies. This
feature, that the parameters of stochastic hydrogeology relate
to physical quantities, makes this mixture of Bayesian analysis
and frequentist reasoning the natural choice for prior derivation.
This notion has, e.g., been voiced by Gelman (2008) when saying
that a hardcore Bayesian is someone “who would apply Bayesian
methods to all problems” whereas a reasonable person “would
apply Bayesian inference in situations where prior distributions
have a physical basis or a plausible scientific model.”

Such basis should be a formalized knowledge base, i.e., a
database DB = (Xi,Zi)i≤n, containing all investigated and
cataloged cases. In the field of hydrogeology, these cases should
be identified with investigated and cataloged sites. Furthermore,
n is the number of these sites, Zi are the measurements of
the target variable at each site i and Xi = (X1

i , . . . ,X
m
i ) is

a vector containing the m cataloged characteristics/features of
each site. In hydrogeology, such characteristics may include
latitude, longitude, climatic properties, rock type, environment
type, physiographic properties etc.

4.1.1. Prior Derivation Using Machine Learning
To derive prior distributions from an established database DB,
a large variety of techniques can be used, including machine
learning. Here, for brevity, we illustrate only a single example of
these techniques, namely supervised feature learning (Figure 2).
As described above, the used database DB contains, next to the
measurements, the features associated with each site. Feature
learning would allow to determine the most predictive features
as well as the functional dependency for any give site. The result
would be a function that maps the observable features of a
site to the distribution of its conductivity values (or any other
target variable). Common machine learning methods that can
tackle such tasks include Random Forests (Breiman, 2001; Segal
and Xiao, 2011), Gradient Boosting Trees (Elith et al., 2008),
or Bayesian Additive Regression Trees (Chipman et al., 2010;
Pratola et al., 2014; Kapelner and Bleich, 2016).

4.1.2. Prior Derivation Using Similarity-Weighted

Frequencies
Machine learning tools like neural networks are well-established
in data science. However, they can be extremely computationally
expensive, need large amounts of data and the resulting models
are notoriously hard to interpret.

Recent developments in the field of epistemology have
provided a sound mathematical procedure to formalize the
intuitive notion about how different cases can be made amenable
to frequentist reasoning and therefore provide the basis for
combining aspects of frequentism and Bayesianism (Billot et al.,
2005; Gilboa et al., 2006, 2010). The basic idea behind it can be
easily illustrated (Figure 3). Given a similarity function s, more
on this later, the probability of the target variable at a new site
n+ 1 can be expressed as

p(Zs
n+1) =

∑

i≤n s(Xi,Xn+1)p(Zi)
∑

i≤n s(Xi,Xn+1)
. (5)

Since Equation (5) strongly depends on the specification of the
similarity function s(Zi,Zj), Gilboa et al. (2010) propose a simple
best fit approach to find such a function, as the sopt(Zi,Zj)
that best explains the given database. To handle the curse of
dimensionality, a parametric model should be used. Following
again Gilboa et al. (2010), we use an exponential model here for

Frontiers in Earth Science | www.frontiersin.org 11 June 2019 | Volume 7 | Article 11814

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Heße et al. A Data-Driven Uncertainty Framework

FIGURE 2 | Schematic of prior derivation machine learning tools.

FIGURE 3 | Schematic of prior derivation using similarity-weighted frequencies.

demonstration

s(Xi,Yj) = exp



−

√

∑

j≤m

wj(xj − x
′j)2



 . (6)

At this point, the task of finding the prior distribution for a target
variable has first been transformed into finding s, and then—
by virtue of a parametric model—transformed into finding the
appropriate weights w = (w1, . . . ,wm). Gilboa et al. (2010)
propose a simple best-fit approach, i.e., finding wopt such that
the sum of squared errors between all elements in the database is
minimized. The principle behind this similarity function and the
way it is used to estimate probability is identical to kernel density
estimation but extended to the feature space of our database.
The choice of the name similarity function, instead of kernel,
was motivated by Gilboa et al. (2010) to emphasize the epistemic
nature of the procedure.

4.1.3. Prior Derivation Using Bayesian Hierarchical

Modeling
Although the above procedure is axiomatically elegant, it is not
without flaws. One problem is that the used databasemight be too
small to contain a relevant number of observations. Basing the
prior on such a database would lead to attribute a zero probability
to structures that have not yet been cataloged. Another problem
is the incorporation of data on different scales like summary
statistics of certain sites.

Such challenges can be handled by Bayesian hierarchical
modeling, which provides a natural way to partially pool data
from different sites by incorporating the structural dependencies
between the data points. In hydrogeology, it is not immediately
clear how data from different sites can be combined and jointly
used for the inference. Hierarchical models facilitate a partial
pooling by first assimilating data from each site independently
and, in a next step, modeling each site as elements of a population
of sites (Figure 4). Bayesian statistics is easy to adapt to such
schemes by modeling the parameters of each site as being
conditional on the statistics of the upper levels.

One drawback of Bayesian hierarchical modeling, compared
to a similarity weighted approach, is that the prior distribution
of a new, as of yet, unexplored site, is simply a random sample
from all possible sites and therefore has a comparably large
uncertainty. Narrowing down the uncertainties could be done
by narrowing down the number of used sited by restricting the
analysis to similar sites, only. Yet, this would necessitate the
existence of a huge database, which we currently do not have
(Cucchi et al., 2019).

4.2. Hydrogeological Data Science in the
Context of Bayesian Uncertainty Analysis
At this point, it should become clear that, irrespective of the
details of the aforementioned approaches, the performance of
data-drivenmethods is not only determined by the sophistication
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FIGURE 4 | Schematic of prior derivation using a Bayesian hierarchical model.

of the used method but is equally dependent on the amount
and kind of data being used (Halevy et al., 2009). This means
that a simple algorithm, having a lot of data, can easily
outperform a highly complex one, with only a modest amount
of data. Increasing the amount of available data is consequently
of similar importance compared to the development of ever
better algorithms.

In general, data generation in hydrogeology is quite costly
compared to, say, hydrology, meteorology or land-surface
modeling. To counter such challenges, much has been invested
in the development and deployment of cost-effective methods
for subsurface characterization. As a result, the total amount of
data being collected every year is quite substantial. However,
collecting these data and making them available to practitioners
remains difficult. To demonstrate why this a problem, we can
use, e.g., the schematic proposed by Rogati (2017). Using the
well-known hierarchy of human motivation (Maslow, 1943),
Rogati (2017) promotes a hierarchy of needs in data science.
According to this schematic, hydrogeology has focused most of
its effort only on the first level of this hierarchy, where she puts
data collection, data storage and data transformation. However,
already at the second level, where she puts routines, protocols and
infrastructure for moving and storing the data, hydrogeology is
comparably underdeveloped. Given that the hierarchy proposed
by Rogati (2017) has 6 levels in total, we can confidently state
that hydrogeology has a long way to go before having a viable
ecosystem for modern data-driven analysis.

This is not to say that there have not been efforts
to provide standardized procedures for sharing and storing
data in hydrogeology (Boisvert and Brodaric, 2011; Brodaric
et al., 2018; Wojda et al., 2010). However, these data
collection initiatives focus almost exclusively on indirect
measurements like hydraulic heads or are restricted to some
specific measurement sites. In contrast, the efforts to collect
direct hydrogeological measurements have been so far been
rather modest. For example, the largest open-access databases
on the topic of hydraulic conductivity is the World-Wide
HYdrogeological Parameter DAtabase (WWHYPDA, Comunian
and Renard, 2009), which contains a little bit over 20.000
measurements from approximately 50 different sites. This
does only reflect a tiny fraction of the total amount of

data that has been collected on this topic and is not
even close to what anyone would label as big data. This
situation means that the field of hydrogeology is currently
seriously under equipped for the deployment of any data-driven
method in general and the derivation of data-driven priors
in particular.

Focusing on the topic of data-driven priors, we can state
that only a minimum number of tools currently exists.
The WWHYPDA provides a modicum of data on hydraulic
conductivity, which can be used to determine parametric
uncertainty for a given site (Cucchi et al., 2019). However,
the amount of data for other variables (e.g., porosity) is
much lower and currently not sufficient for use in a Bayesian
context. Concerning structural uncertainty, the situation is
even less promising. Since the measurements cataloged in
the WWHYPDA do currently not contain spatial coordinates,
it is not possible to determine simple two-point statistics
like a variogram or covariance function. This means that
even for a simple paradigm like Gaussian SRFs, there are
no databases from which prior distributions for, say, the
parameters of a variogram function can be derived. It should
come as no surprise, that the situation for more complex
structural models is no better. In this last portion of the
paper, we would therefore like to present a list of challenges
as well as possible solutions for the field of Bayesian
uncertainty analysis.

4.2.1. Parametric Uncertainty
Currently, the amount of data contained in WWHYPDA
barely allows one to tackle the challenges of parametric
uncertainty. The modest amount of data represented in
WWHYPDA is probably caused by the lack of user contributions
and/or policies that encourage the systematic and central
publication of hydrogeological measurements. Probably, the
best way to quickly populate databases like WWHYPDA
with a sufficient amount of data would be to incorporate
data spread in regional/national repositories, but also strongly
interact with boards of the main scientific journals and set
up a tighter interaction between authors and open data
collection initiatives.
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4.2.2. Structural Uncertainty (Gaussian Process

Paradigm)
A Gaussian process is the simplest paradigm that can be used to
describe structural uncertainty, with spatial structures defined by
two-point statistics through variograms or covariance functions.

To the best of the authors’ knowledge, there is no widely
available open-source database, which provides practitioners
with a catalog of either estimated variogram functions or
measurements that allows one to estimate them.

The abilities of the WWHYPDA could be expanded to
that purpose with only a modest amount of effort. Compared
to its current implementation, only the coordinates of the
measurements need to be added as a feature.

4.2.3. Structural Uncertainty (Multiple-Point Statistics

Paradigm)
In the text above, multiple-point statistics was identified as
the overall most promising paradigm to realistically represent
structural uncertainty. Some efforts have been made to share
repositories of training images [see for example (2014),
companion site of the book Mariethoz and Caers, 2014], in
some cases focusing on some specific environments (Pushpalatha
et al., 2008). In addition, other efforts were made to create
database of analogs, with initiatives mainly sponsored by
oil companies like the SafariDB (2019a), the Sedimentary
Analogs Database and Research Consortium (2019b), the Fluvial
Architecture Knowledge Transfer System (Colombera et al.,
2012), CarbDB (Jung and Aigner, 2012), and WODAD (Kenter
and Harris, 2006). In these cases, the access to the full
functionalities of the database is very often restricted to the
partner institution/companies. Therefore, when talking about
open-access databases, the available resources are quite limited.
In practice, a set of TIs that can even be remotely called
representative of earths subsurface structures simply does not
exists, and the efforts made by consortium sponsored or
private companies are often governed by very restrictive access
policies. As a result, the task of building up an open-access
knowledge base for Bayesian structural uncertainty analysis,
or any other data-driven modeling efforts, has to start from
scratch. Within the scope of this manuscript, we can neither
detail the specific architecture of such a knowledge base nor
explain the necessary steps to create one. We will, however,
try to formulate a set of desiderata that such a data base
should meet.

First, the data base should contain a representative sample of
the structures encountered in the subsurface. Such a desideratum
may sound obvious w.r.t. any statistical analysis. It does, however,
need special attention due to being somewhat vague and elusive.
For example, particularly in the case of three-dimensional case
studies, TIs could come from high-resolution reconstructions
of aquifer analogs (Bayer et al., 2011; Comunian et al., 2011;
Bayer et al., 2015), but also be the result of a more or
less complex simulation with object-based or process-based
methods. Therefore TIs, in particular within a Bayesian context,
can represent very different entities depending on how they
were created.

Second, to derive prior distributions, the most predictive
features of the cataloged sites must be reported as well.
This desideratum is again somewhat weak, since it is not a
priori clear what features of a site are most predictive of its
subsurface structure.

In case a database meeting these desiderata becomes
successful, the algorithm for prior derivation has to be adapted
to the specifics of the MPS paradigm. As already discussed
above, recasting this paradigm in a Bayesian framework is not
straightforward, since the parameters for generating random
realizations are derived ad-hoc and cannot, in general, be
exchanged between different workflows. So, instead of deriving
prior distributions over some parameters, the prior distribution
should be defined over the TIs themselves. In this framework,
one could provide a given prior distribution to each TI, for
example based on the ranking procedure proposed by Pérez
et al. (2014) computed using a portion of the available data.
Then, uncertainty could be assessed by distributing the number
of realizations for each TI proportionally to the prior computed
in the previous step.

Probably, embedding or strongly connecting a database
of TIs within a structure like WWHYPDA, as argued by
Comunian and Renard (2009), would improve its usefulness,
because facies codes of categorical TIs could be directly
linked to parameter distributions. Moreover, if included in
the WWHYPDA structure, TIs could be also organized in a
more efficient and flexible way within the provided catalog of
hydrogeological environments.

5. CONCLUSIONS

In this manuscript, we made the case for a unified data-driven
framework for hydrogeological uncertainty analysis. Following
Pearl (1988b), we attempted this by first identifying the most
suitable theory for such a framework, motivating its use,
explaining its properties, identifying the current challenges,
showing what kind of approximations needed to bemade tomake
the framework viable, and finally detailing a road map to fill the
gaps which currently exist.

As the ideal theory for such a unified framework, we have
argued for Bayesianism. This was done by contrasting the
Bayesian framework with its most relevant competitors. In
the realm of uncertain reasoning, these competitors include
fuzzy as well as Dempster-Shafer reasoning, whereas in the
realm of probabilistic reasoning, the main competitor is the
frequentist framework. While all of these frameworks have their
merits, the Bayesian framework is the only one combining
a sound epistemology with wide-spread use and application.
We then explained the main features, as well as challenges, of
this framework and how it relates to the specifics of the field
of hydrogeology.

With this foundation, we proceeded to contextualize the
different forms of uncertainty, used in the literature. Of these
forms, we identified structural and parametric uncertainty as the
two most relevant. Parametric uncertainty is mainly a question
of data collection, data preparation, and data dissemination. In

Frontiers in Earth Science | www.frontiersin.org 14 June 2019 | Volume 7 | Article 11817

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Heße et al. A Data-Driven Uncertainty Framework

contrast, structural uncertainty is equally a conceptual challenge,
i.e., the hydrogeological community is still lacking a paradigm
for generating subsurface structures, which is widely accepted
and used. To make this point, we reviewed the most common
of these paradigms and discussed their most salient features.
Special attention was put on their compatibility with a Bayesian
framework. We tentatively identified two paradigms as the most
relevant: Gaussian multivariate random fields as well as multiple-
point statistics. While the Gaussian paradigm is mathematically
elegant, it suffers from a lack of geological realism. On the
other hand, the multiple-point statistics paradigm is very
promising due to its conceptual clarity. To provide the data
for the needed prior distribution, training images are the
natural choice.

Finally, we make the point that the field of hydrogeology
needs to increase its efforts in order to provide a large open-
access databases with direct hydrogeological measurements. The
examples given here are derived from specific applications,
i.e., Bayesian uncertainty analysis, but the general point is
independent of such concerns. As long as virtually all efforts
are focused on the measurements themselves, we remain stuck
on the first level of the hierarchy described by Rogati (2017).
Without investing at least, a modicum of work into reaching
the second level, all the advances of modern data science will
remain restricted to extremely myopic and small data sets, at best,

and completely out of reach, at worst. From our perspective, the
reasons for the inability of our community to “move up” remains
somewhat of a mystery. After all, managing and maintaining
a database is easy compared to the sophisticated network of
measurement operations that are managed worldwide, and a
minor redirection of resources from Level 1 to Level 2 of the
schematic depicted by Rogati (2017) would make a big difference.
In fact, we can hardly think of a more impactful way of how
to spend one’s money when trying to improve hydrogeological
data science. We therefore close this paper with a call for such
an initiative.
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Transport of solutes in porous media at the laboratory scale is governed by an Advection

Dispersion Equation (ADE). The advection is by the fluid velocity U and dispersion by

DdL = UαdL, where the longitudinal dispersivity αdL is of the order of the pore size.

Numerous data revealed that the longitudinal spreading of plumes at field scale is

characterized by macrodispersivity αL, larger than αdL by orders of magnitude. This

effect is attributed to heterogeneity of aquifers manifesting in the spatial variability of

the logconductivity Y . Modeling Y as a stationary random field and for mean uniform

flow (natural gradient), αL could be determined in an analytical form by a first order

approximation in σ 2
Y (variance of Y ) of the flow and transport equations. Recently, models

and numerical simulations for solving transport in highly heterogeneous aquifers (σ 2
Y > 1),

primarily in terms of the mass arrival (the breakthrough curve BTC), were advanced. In all

cases ergodicity, which allows to exchange the unknown BTC with the ensemble mean,

was assumed to prevail for large plumes, compared to the logconductivity integral scale.

Besides, the various statistical parameters characterizing the logconductivity structure as

well as the mean flow were assumed to be known deterministically. The present paper

investigates the uncertainty of the non-ergodic BTC due to the finiteness of the plume size

as well as due to the uncertainty of the various parameters on which the BTC depends.

By the use of a simplified transport model we developed in the past (which led to accurate

results for ergodic plumes), we were able to get simple results for the variance of the BTC.

It depends in an analytical manner on the flow parameters as well as on the dimension

of the initial plume relative to the integral scale of logconductivity covariance. The results

were applied to the analysis of the uncertainty of the plume spatial distribution of the

MADE transport experiment. This was achieved by using the latest, recent, analysis of

the MADE aquifer conductivity data.

Keywords: solute transport, heterogeneous porous formations, breakthrough curve (BTC), uncertainty, MADE

experiment, stochastic subsurface hydrology
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1. INTRODUCTION

Aquifers pollution by various contaminants constitutes a major
threat to fresh water resources all over the world. Unlike
the accessible surface water bodies, groundwater pollution is
detectable by wells which cover a limited zone and often respond
after a large portion of the aquifer is already contaminated.
Furthermore, the process is slow, occurring over periods of tens
of years and cleaning by natural attenuation or remediation,
whenever possible, is also slow. Under these circumstances,
transport mathematical models, which may help analyzing field
findings on one hand and predicting solute future spreading on
the other, are of crucial importance.

There are various modes of quantification of transport.
In this study we focus on characterization of solute plumes
longitudinal spreading by the BTC (breakthrough curve)M(x, t)
at vertical control planes located at longitudinal distance x =

const, normal to the mean flow direction. An alternative and
related measure is the longitudinal mass distribution m(x, t) as
function of distance x, for a given time t. We limit the scope
to inert solutes (tracers) and to constant mean head gradient J
(natural gradient flow), a setup of interest for many applications
and an essential first step toward analysis of more complex
configurations. For the benefit of the reader not familiarized
with the groundwater transport theory, we recapitulate in the
following a few essential developments.

The traditional modeling of transport was based on column
laboratory experiments (Bear, 1979) for which the macroscopic
(at the pore, Darcy, scale) concentration C(x, t) satisfies the
advection dispersion equation (ADE)

∂C

∂t
+ U

∂C

∂x
= DdL

∂2C

∂x2
(1)

where U = q/n is the macroscopic flow velocity (q-specific
discharge, n-effective porosity) at the Darcy’s scale and DdL is the
longitudinal dispersion coefficient. For the large Peclet number
Pe0 = Ud/D0 (d-pore scale, D0-molecular diffusion coefficient)
encountered in applications it was found thatDdL = αdLU, where
αdLis the pore scale dispersivity, of order d (Bear, 1979).

FIGURE 1 | The spatial distribution of Y = lnK in a cross section of the Columbus Air Force Base aquifer, where the MADE transport experiment took place (Boggs

and Rehfeldt, 1990; Boggs et al., 1992). It is seen that K = exp(Y ) has anisotropic structure and varies by several orders of magnitude.

Field findings (for a recent compendium see Zech et al.,
2015) have revealed that the longitudinal αL (derived for instance
with the aid of the spatial moments of aquifer plumes) is
larger than αdL by orders of magnitude; αL was coined as
longitudinal macrodispersivity in the literature. The contrast
has been attributed to the impact of aquifers heterogeneity,
manifesting primarily in the spatial variation of the hydraulic
conductivity K(x). For illustration we present in Figure 1 the
spatial distribution of Y = lnK in a cross section of the
Columbus Air Force Base aquifer, where the MAcro Disperion
Experiment (MADE) took place (Boggs and Rehfeldt, 1990;
Boggs et al., 1992). It was obtained by interpolating among the
measured values provided by Bohling et al. (2012) at a relatively
dense set of points. A few significant features of the aquifer
in Figure 1 are worth mentioning: (i) K varies by orders of
magnitude, (ii) the spatial distribution of K is seemingly erratic
and difficult to be captured by smooth interpolators, (iii) the
zones of different K are elongated in the horizontal direction,
the aquifer being coined as anisotropic at the field scale (notice
that for clarity of representation the scale of reduction is smaller
in the vertical direction with respect to the horizontal one, such
that these zones are more elongated than how they appear in
the figure).

The above features have a dramatic impact upon the spreading
of plumes of solutes. For illustration we represent in Figure 2

the concentration spatial distribution obtained by a numerical
solution of the advective transport equation (in 2D). The velocity
field V(x) was derived by a numerical solution of the flow
equation for a K field statistically similar to that of Figure 1,
with logconductivity variance σ 2

Y = 6, under conditions of
constant mean head gradient J. The transport equation was
solved by using a Smooth Particle Hydrodynamic (SPH) scheme,
which is virtually free of numerical diffusion (Boso et al., 2013),
for Pe = I/αdL = 1000 (I is the longitudinal integral scale
of logconductivity).

A few qualitative features of distribution of C in Figure 2

are: (i) for an initial rectangular pulse of constant C = C0, the
plume becomes highly fragmented with time and of progressive
spreading, (ii) the plume splits, with quicker advancing “fingers”
in zones of high K , and practically stagnant solute in regions of
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FIGURE 2 | Numerically simulated concentration field (in 2D) after an instantaneous injection within a thin (linear) source perpendicular to mean flow (indicated by a

red vertical line at x/I = 5, with I the longitudinal integral scale of logconductivity), of dimensions Ly = 80 I and Lx = 0.25 I at time tU/I = 10; the other parameters are

σ2
Y
= 6 and Pe = I/αdL = 1000. The plume is seemingly erratic, with clear fingering patterns and stagnant regions.

low K, (iii) like the K field (see Figure 1) the plume is seemingly
erratic and defies a representation by smooth functions but, at the
same time, it makes the identification of point concentration at a
given location an elusive goal, (iv) in contrast, global measures
like the mass arrival at vertical planes over the entire domain (the
BTC M) smooth out the variations and the extent of spreading
can be quantified for instance by αL, (v) it was found that the
presence of the pore scale dispersion (primarily the vertical one)
causes mixing which affects the local C, but has a minor effect
onM (Fiori and Dagan, 2000) and (vi) space averages like M are
the ones of interest in many applications, e.g., those in which the
goal is to determine the mass of solute pumped by wells which
intercept the plume (Fiori et al., 2016).

This state of affairs has motivated the emergence around 40
years ago (for a review see for instance the books by Dagan,
1989; Gelhar, 1993; Rubin, 2003) of a new discipline, namely
stochastic subsurface hydrology. In its frame the hydraulic

logconductivity field Y(x) is modeled as a stationary random
space function whose univariate distribution and two point
covariance are characterized by a few parameters: the geometric
mean KG, the variance σ 2

Y and the horizontal I and the vertical
Iv < I integral scales, respectively. As a consequence, the
steady Eulerian velocity V(x), is also a random space function,
of constant mean U(U, 0, 0). The statistics of V are obtained by
solving the flow equations for conditions of constant mean head
gradient J(J, 0, 0) and random K(x). Similarly the concentration
field C(x,t) is random and so are its global measures like the BTC
M(x, t). The latter is obtained by solving the transport equation
with advection by the random V and dispersion by the local pore
scale dispersion tensor. Unfortunately, heterogeneity renders
point concentration C(x, t) highly uncertain with a coefficient of
variation that is controlled by pore-scale dispersion and reduces
slowly with time (Fiori and Dagan, 2000). Uncertainty reduces
considerably when global measures are used, such as M(x, t),
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or the sampling volume has dimensions comparable with the
integral scales of Y , thereby making the ensemble mean 〈C(x, t)〉
a reliable and robust measure, similarly to M (Bellin et al., 1994;
Tonina and Bellin, 2008). If the point concentration is of interest,
such as in risk assessment for example, uncertainty can be
reduced by focusing on the probability that a given concentration
threshold is exceeded, irrespective of the position where this
occurs, rather than focusing on a given fixed location where
the ensemble mean concentration provided a unreliable estimate
(Bellin and Tonina, 2007). Another option is by conditioning
on available data (e.g., Y , head, concentration etc), for which,
however, several conditioning points are needed in order to
significantly reduce uncertainty. In any case, as previously stated
our study focuses on the BTC M which is relevant to many
applications and is quite robust and less prone to uncertainty
than point concentration.

A common adopted assumption is that transport is ergodic in
the sense thatM (or similar global attributes) in a realization can
be exchanged with the ensemble mean 〈M〉. This is a basic tenet
in many branches of physics and engineering, e.g., molecular
diffusion driven by Brownian motion or effective properties of
composite materials. It is justified by the large contrast between
the microscopic length scales and the macroscopic ones of
interest in applications. For groundwater transport ergodicity
implies that the solute plume samples a sufficiently large aquifer
volume compared to the integral scales so as to encounter
zones of various K, representative of the entire population. Since
typically I and Iv are of the order of meters and solute plumes of
tens of meters, the contrast is not so large and ergodicity may
be not obeyed and prediction of M by models is subjected to
uncertainty. This feature differentiates transport by groundwater
from the traditional pursuit of the effective properties solely,
prevalent in the literature on heterogeneous media.

Similarly, it is common to assume in applications that the
various parameters and variables like J, U, KG, σ 2

Y , I are
known. In reality, in the field they are only estimated and
subjected to uncertainty as well, impinging on the uncertainty
ofM.

The aim of the present study is to provide a discussion
of uncertainty in modeling transport in three-dimensional
heterogeneous aquifers, with application to the MADE transport
experiment (Zheng et al., 2011) as a platform for discussion;
we summarize what we have learned in the last two decades
or so, in view of applications, with a particular focus on
uncertainty due to plume sampling (i.e., non-ergodicity) and
incomplete knowledge of parameters that are both important
for MADE. A novel analytical formulation is also proposed for
assessing uncertainty due to lack of ergodicity by the plume.
It is emphasized that this is not a review paper and we build
primarily on our developments in modeling flow and transport
in three-dimensional heterogeneous formations.

The plan of the paper is as follows: section 2 provides an
overview of concepts development and paper aims, recapitulating
some of our recent developments in transport of ergodic plumes;
section 3 addresses the modeling of uncertainty in the prediction
of the BTC, the main topic of the paper; section 4 presents
the application of the uncertainty analysis to the MADE-1

experiment, relying on the latest published data; finally, section
5 summarizes and concludes the study.

2. BACKGROUND AND MATHEMATICAL
PRELIMINARIES

2.1. The K Structure
As already mentioned above, we limit the study to stationary
random Y(x). For sedimentary formations of concern here, the
histogram of Y = lnK was found to fit a normal univariate
distribution f (Y), of mean 〈Y〉 = lnKG and variance σ 2

Y (see
for instance the analysis of MADE data by Fiori et al., 2015;
Bohling et al., 2016) which we adopt here. At the lowest order,
the spatial structure is captured by the two point covariance
CY (x1, x2) = σ 2

Yρ(r) where ρ is the autocorrelation and
r = x1 − x2 is the distance vector between the two points
respect to which the covariance is computed. In turn, the
assumed axisymmetric ρ is characterized by the finite horizontal
I and vertical Iv integral scales, respectively. The Y field is
often assumed to be multivariate normal (multi-Gaussian), and
then the structure is completely characterized by 〈Y〉 and CY .
This is a very convenient representation which is commonly
adopted in numerical simulations or analytical approximations.
For other types of structures higher multipoint correlations are
required for a complete statistical characterization. Thus, in our
past numerical simulations of 3D flow and transport (see for
a summary our recent paper Jankovic et al., 2017) we have
generated a few fields which share the same f (Y) and I, Iv
but differ at higher order as manifested for instance by the
spatial connectivity of zones defined by classes of K. Thus,
we considered besides the multivariate normal (multi-Gaussian)
one, two Y fields devised by Zinn and Harvey (2003), obtained
by transformations which led to more connected or disconnected
zones of large conductivity. Besides, we investigated extensively
flow and transport in a structure we coined as MIM (Multi-
Indicator-Model): rectangular blocks which tessellate the space
or spheroidal inclusions of dimensions 2I in the horizontal and
2Iv in the vertical directions, respectively, and are of independent
K = exp(Y). Unlike the three previous ones, the connectivity of
different classes of K values is the same.

It is worthwhile to note that even for thoroughly monitored
aquifers like that of MADE, field data do not generally allow for
determining statistical parameters beyond f (Y) and ρ, i.e., KG,
σ 2
Y , I, and Iv and even those are estimated within ranges of values.

2.2. Flow
We consider here steady flow governed by

q = −K ∇h (Darcy’s law),

∇ · q = 0 (continuity) → ∇ · (K∇h) = 0 (2)

where h (x) is the head. With the assumed constant porosity n
(which is much less variable than K), the velocity V also satisfies
∇ · V =0. The boundary condition of interest here is the one
of constant head, such that the head gradient has components
J(J, 0, 0). Consequently the mean velocity U(U, 0, 0) is also
constant and its fluctuation u(x) is stationary. The relationship
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U = Kef J/n defines the effective conductivity and its dependence
on the structural parameters is the subject of a vast literature (see
e.g., Renard and De Marsily, 1997).

Analytical approximate solutions of the statistics of the h and
V fields, as well as Kef , were obtained in the literature (e.g.,
Dagan, 1989; Rubin, 2003) by a first order approximation in
σ 2
Y , presumably valid for weak heterogeneity. In contrast, based

on numerical simulations, with values of the logconductivity
variance up to σ 2

Y = 8, we have recently presented (Zarlenga
et al., 2018) the dependence of the Kef components on σ 2

Y for
different e = Iv/I and for the above different structures, as
well as by the first order approximation. A striking result is that
the first order approximation of the horizontal component Kefh

is quite accurate for σ 2
Y < 2, which reinforces what already

observed for the velocity covariance function and the spatial
plume moments in an early works by Bellin et al. (1992) and
Salandin and Fiorotto (1998).

2.3. Transport (General)
We consider injection of a solute over an area A0 in the
plane at x = 0. A thin plume with total mass M0 is
modeled as a Dirac pulse of infinitesimal duration δ(t) at
x = 0 (extension to arbitrary spatial or temporal initial
distributed plumes is straightforward); following the definitions
of Kreft and Zuber (1978) injection may be in resident or flux
proportional mode. Thus, the initial mass densitym0 = dM0/db
is constant and equal to M0/A0 for uniform initial resident
concentration while it is given by the variable and random
m0(b) = [V0(b)/V̄0](M0/A0) for the flux proportional one.
Here b(by, bz) is a coordinate in A0, V0(b) =Vx(0, by, bz) and
V̄0 = (1/A0)

∫

A0
V0(b)db is the mean velocity over A0, which

for sufficiently large A0 is equal to the mean velocity U.
We adopt the boundary condition of flux proportional initial

condition which applies to many cases e.g., injection by wells
as it was the case for field experiments including MADE. It
simply states that solutes initially occupy preferential zones
of high conductivity. We also adopt the detection in the flux
proportional mode (Kreft and Zuber, 1978), i.e., the BTC
defined by M(x, t) = M0 −

∫ x
0

∫ ∫

nC(x, y, z, t)dxdydz =
∫ t
0 dt

∫ ∫

nVx(x, y, z)C(x, y, z, t)dydz, where integration in y, z is
over the cross section of the domain. The issue related to injection
and detection conditions and their impact on transport was
extensively discussed in past work (see e.g., Kreft and Zuber,
1978; Dagan, 2017; Fiori et al., 2017). If it satisfies the ADE
(1) with initial condition M(0, t) = M0H(t) (where H is the
Heaviside step function), the solution for the semi-bounded
domain is given by the CDF of the Inverse Gaussian (IG)
distribution (Kreft and Zuber, 1978):

M(x, t)

M0
=

1

2

{

erfc

[

x− Ut

2(DLt)1/2

]

+ exp

(

Ux

DL

)

erfc

[

x+ Ut

2(DLt)1/2

]}

(3)
with DL the longitudinal macrodispersion coefficient, whereas
the relativemass flux is given by the Inverse Gaussian (hereinafter

IG) distribution

µ(x, t)

M0
=

1

M0

∂M

∂t
=

x

2(πDLt3)1/2
exp

[

(x− Ut)2

4DLt

]

(4)

In the frame of random walk transport theory, the Inverse
Gaussian distribution pertains to a first arrival process (see, e.g.,
Redner, 2001), i.e., the detection plane at x serves as an absorbing
boundary. Note that IG is a special case of the more general
Tempered One-Sided Stable distribution (TOSS) with exponent
1/2 (Cvetkovic, 2011).

We proceed now with reviewing the results we obtained
recently for ergodic transport in heterogeneous aquifers.

2.4. Transport (Summary of Results for
Ergodic Plumes)
The starting point for our recent developments are the
systematic accurate numerical simulations (see Jankovic et al.,
2017, and reference therein) of flow and transport in 3D;
they are recapitulated in the Appendix of Jankovic et al.
(2017) and only briefly here. The K field was generated for
a lognormal univariate distribution and two point covariances
CY of integral scales I and Iv, with different values of the
anisotropy coefficient e = Iv/I. The complete characterization
of the structures was achieved by a variety of different
models: multi-Gaussian, the previously mentioned connected
and disconnected fields, spheroidal inclusions and rectangular
blocks tessellating the space (MIM). The BTC was finally
calculated by large-scale numerical simulations, for a variety
of parameters (logconductivity variance, Peclet number, control
plane distances etc.).

A striking result (Jankovic et al., 2017, Figure 3) was that for
the various structures the bulk of M (say M/M0 < 0.95) did
not differ significantly among structures, proving indeed that
M is a very robust measure. Furthermore, the simple model

FIGURE 3 | Comparison of the proposed solution (11) with the results of

Cvetkovic et al. (1992) (Figure 5C), for σ2
Y
= 0.5, x/I = 20 and a few values of

the size of the initial plume (Ly/I = Lz/I = H). The figure displays the cumulative

mass M and the bands M± σM predicted by the present approach (blue lines)

over the original Figure 5C of Cvetkovic et al. (1992).
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(3), with the macrodispersivity given by the well-known first-
order approximation DL = αLU, αL = σ 2

Y I, agreed well with
the bulk of the BTC derived numerically (Fiori et al., 2017)
while it underestimated the late arrival time of the tail of a
few percents of M. However, the tail prediction is anyway quite
imprecise. In particular, it was found that the IG model behaves
similar to the MIMSCA (Multi Indicator Model Self Consistent
Approximation) that we developed in the last 20 years (e.g.,
Dagan et al., 2003; Fiori et al., 2007), that is more accurate for
the prediction of late mass arrival.

Thus, the IG model (3) is quite effective in capturing the
behavior of the bulk of the BTC, for a wide range of flow and
transport parameters; the model depends on a few parameters
characterizing the permeability structure (σ 2

Y , I) and the flow
(J,Kef ). It is emphasized that the first-order approximation was
applied to deriving the longitudinal macrodispersivity αL while
M(x, t) (3) itself depends non-linearly on σ 2

Y and is different
from the Gaussian distribution; the two coalesce for small σ 2

Y or
large tU/I.

Summarizing, the simple formula (3), with DL given by
the first-order approximation, is a very robust model that can
be safely used in applications, e.g., as a screening tool for a
preliminary assessment of the BTC. We note that a similar,
simple approach, although with parameters based on numerical
simulations, was proposed by Hansen et al. (2018).

We move now to the central topic of the present study, the
uncertainty of prediction of the BTC.

3. UNCERTAINTY OF BTC PREDICTIVE
MODELING

3.1. A Few Sources of Uncertainty
Transport predictions by the above modeling approach is prone
to several sources of uncertainty, the major ones being:

(i) Uncertainty in medium characterization, and its
representation in general. Field data are generally scarce
and even the identification of fundamental and basic
quantities like KG (geometric mean of K) and σ 2

Y is difficult
and error prone. This is even more true for higher order
measures, like e.g., the covariance (or variogram) and I,
based on the assumption of stationarity which is also hard
to validate. As a matter of fact, multipoint correlations
are needed for a full characterization of K, which is a
prohibitive task for applications (Boso and Tartakovsky,
2016). Alternative models like facies identification by using
the indicator variogram (Ritzi, 2000) requires identification
of zones of connectivity of K classes, which again is feasible
only for highly monitored aquifers. Fortunately, global
measures like 〈M〉 are quite robust in 3D and adopting for
instance the common multi-Gaussian structure model does
not affect significantly the bulk of the BTC (Bianchi and
Pedretti, 2017, 2018).

(ii) Uncertainty due to the limited domain sampled by the
plume. Thus, the initial plume may not be so large, as
discussed in the previous section, and non-ergodicity issues
may emerge (Kitanidis, 1988; Dagan, 1990; Andričević and

Cvetković, 1998; Attinger et al., 1999). As a consequence,
the quantities of interest, including M, are random, and
uncertain due to non-ergodic behavior emerges. As it was
found in the past and confirmed by the developments of
the following section, uncertainty for small plumes can be
quite large. Instead, the uncertainty related to the size of
the sampling volume (Fiori et al., 2002; Bellin and Tonina,
2007; Severino et al., 2010) is not relevant for the transport
scenario investigated here in which solute is detected at a
large control plane at distance x from the source.

(iii) Uncertainty in the modeling approach. This is a highly
debated issue in the literature, and various models have
been advanced during the years. However, our recent
developments summarized in the previous section, based
on accurate and systematic 3D numerical simulations which
were not available in the literature for the high σ 2

Y values,
show that for global, upscaled, measures like 〈M〉, the ADE
with upscaled first-order longitudinal macrodispersivity
αL = σ 2

Y I, solved under the conditions of flux proportional
injection and detection, offers a simple and quite accurate,
physically based solution.

(iv) Parametric uncertainty. Besides the uncertainty of the
adoptedK model, the same is true for the other hydrological
parameters controlling transport, like e.g., the mean
velocity. Parametric uncertainty is expected to have an
important impact on predictions because of the limitations
of measurements and the significant impact of parameters,
like U.

(v) Additional uncertainty may stem from unsteadiness,
spatial non-uniformity of the mean head gradient, partial
knowledge of the plume initial condition etc. These
sources of uncertainty are rather case specific and less
prone to a general analysis (see e.g., Bellin et al., 1996;
see e.g., Dagan et al., 1996).

According to the above discussion, the major sources of
uncertainty for transport in mean uniform flow are likely (ii) and
(iv), i.e., possible non-ergodicity of the plume and parametric
uncertainty; this is particularly true for the MADE experiment,
as shown in the sequel. Thus, in the following we shall focus
on the uncertainty quantification originating from (ii) and (iv).
Furthermore, we shall apply the uncertainty analysis to MADE,
that is a well-known benchmark, very useful for a thorough
discussion on uncertainty in applications.

3.2. Quantifying Uncertainty Due to
Non-ergodic Effect
3.2.1. General

We follow here the theoretical framework and the notations of
Cvetkovic et al. (1992) and Dagan et al. (1992). Focusing on the
BTC M we may write for flux proportional injection over an
area A0

M(t; x)

M0
=

1

A0

∫

A0

V0(b)

V̄0
H[t − τ (x, b)]db (5)

where we remind that V0 is the local velocity at the location b

within A0 and V̄0 = (1/A0)
∫

A0
V̄0(b)db≈ U. It is also reminded
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that in (5) H is the Heaviside step function and τ (x, b) is the
random travel time to the control plane at x of a fluid particle
injected at x = 0 within A0. The travel time is related to the

random velocity field by dτ/dx =
(

Vx[x, η(x), ζ (x)]
)−1

where y =
η(x, b), z = ζ (x, b) are the equations of a streamline originating
at b within the plane A0 at x = 0. In words, (V0(b)/V̄0) H[t −
τ (x, b)](db/A0) in Equation (5) marks the contribution of the
particle originating at b to the mass that crossed the control
section at x until the time t = τ .

The expected mass 〈M(t; x)〉 is easily calculated from
(5), yielding

〈

M(t; x)
〉

M0
=

1

A0

〈∫

A0

V0(b)

V̄0
H[t − τ (x, b)]db

〉

= G1 (t; x) (6)

where G1 =
∫ t
0 f (τ ) dτ , is the cumulative travel time

distribution, where τ is weighted by the injection velocity V0

(Cvetkovic and Dagan, 1994). Here f (τ ) =
∫

(V0) f (τ ,V0)d(V0)
is the marginal pdf of τ , with f (τ ,V0) being the joint pdf of τ

and V0 .
Formula (6) is the well-known result (Shapiro and Cvetkovic,

1988) that the mean mass arrival is the CDF of travel time.
Furthermore, in view of the findings of section 2.3, it is seen that
G1(τ ) is the CDF of the Inverse Gaussian distribution Equation
(3) and the pdf g1 = dG1/dτ is the Inverse Gaussian (4).

After recapitulating these preparatory steps we move now,
along Dagan et al. (1992), to the derivation of the variance ofM

σ 2
M(t; x)

M2
0

=

〈

M2(t; x)

M2
0

〉

−
〈M(t; x)〉2

M2
0

(7)

Considering the expression (5) for the massM we may write

〈

M2(t; x)

M2
0

〉

=
1

A2
0

〈∫

A0

∫

A0

V0(b)V0(b′)

V̄2
0

H[t − τ (x, b)]H[t − τ (x, b′)]db db′
〉

(8)

Thus, by taking advantage of the linearity of the ensemble mean
operator and considering Equation (6) we arrive at

σ 2
M(t; x)

M2
0

=
1

A2
0

∫

A0

∫

A0

G2
(

t; x, b− b′
)

db db′ − G2
1 (t; x) (9)

where G2 is the bivariate travel time CDF, which is given
by G2

(

t; x, b− b′
)

=
∫ t
0

∫ t
0 g2

(

τ , τ ′; x, b− b′
)

dτdτ ′, with
g2

(

τ , τ ′; x, b− b′
)

being the marginal joint pdf of travel times
τ , τ ′of two particles injected at b and b′, respectively.

The general result (9) by Dagan et al. (1992) has served
Cvetkovic et al. (1992) to effectively compute σ 2

M(x, t) by
adopting a few assumptions: the bivariate g2 is lognormal, the
travel time moments were derived from the velocity field by a
first order approximation in σ 2

Y , A0 is a square. Two quadratures,
which were carried out numerically, were needed to complete
the derivation.

The above approach can be generalized to compute the
covariance ofM (CM) at two different times t1, t2, leading to

CM (t1, t2; x)

M2
0

=
1

A2
0

∫

A0

∫

A0

G2
(

t1, t2; x, b
′ − b′′

)

db′db′′

− G1(t1; x)G1(t2; x) (10)

with G2
(

t1, t2; x, b− b′
)

=
∫ t1
0

∫ t2
0 g2

(

τ , τ ′; x, b− b′
)

dτdτ ′.

3.2.2. Simplified Derivation of σ
2
M
(x, t) and

Comparison With Numerical Simulations

The derivation of the two particles covariance needed in (9)
is complex and requires additional information, like e.g., the
shape of the two particles covariance and its moments. Also, the
calculation of σ 2

M along (9) requires a few numerical quadratures,
as done by Cvetkovic et al. (1992). We simplify the calculations
by using the basic properties of the MIMSCA model which, as
mentioned above, led to very good agreement with the numerical
solution of 〈M〉.

Consider the covering of the input area A0 by rectangles
of sides 2I and 2Iv in the y and z directions, respectively.
Following the MIMSCA model, the travel time of particles
originating within an areal element in A0 is the same whereas
they are statistically independent for particles originating from
different elements. This is the only property we use in the
present derivation.

With the above assumption, the calculation of (9) can
be considerably simplified. The detailed derivations are given
in Appendix A, leading to the final result (A.8), that is
reproduced here

σ 2
M = M2

0 ω (L)G1 (t; x) [1− G1 (t; x)] (11)

where the weight function ω is given by

ω (L) = �

(

Ly

I

)

�

(

Lz

Iv

)

(12)

with Ly, Lz the sides of the rectangular injection area, i.e., A0 =

LyLz and

�(ℓ) =















(

1−
ℓ

6

)

for ℓ < 2

1

ℓ

(

2−
4

3ℓ

)

for ℓ > 2
(13)

In particular ω ≃ 1 for A0/(IIv) ≪ 1 (maximal uncertainty
for small source) and ω ≃ (IIv/A0) for A0/(IIv) ≫ 1 (ergodic,
practically deterministic).

Thus, σ 2
M is given by an analytical expression supposed to

apply to highly heterogeneous formations which separates the
effect of spreading represented by the IGG1 (3) withDL = σ 2

Y IU,
one hand, and the weight function ω accounting for the size of
the injection area on the other hand.

As a first test of (11) we compare it in Figure 3 with the
results of Cvetkovic et al. (1992) described above (σ 2

Y = 0.5,

Frontiers in Environmental Science | www.frontiersin.org 7 June 2019 | Volume 7 | Article 7930

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Fiori et al. Prediction Under Uncertainty in Groundwater Transport

FIGURE 4 | Comparison of solution (11) with the numerical simulations of Jankovic et al. (2017), which were carried out for single realizations and a large source H =

Ly/I = Lz/I = 90. The comparison is achieved by dividing the initial plume in subdomains of H = 2, 5, 10, 15, 30 regarded as independent realizations, a proxy for

Monte Carlo simulations. The BTC M and its standard deviation (SD) for the multivariate normal field at two Control Plane distances (6I and 18I) and two degrees of

heterogeneity (σ2
Y
= 2 and σ2

Y
= 8) are represented. The SD predictions by the simplified model (11) are represented by the dashed lines.

x/I = 20, Ly/I = Lz/I = H) and it is seen that the agreement
if very good in spite of the different methodologies. A more
stringent test is carried out by comparison with the numerical
simulations of Jankovic et al. (2017), which were carried out
for single realizations for the large H = Ly/I = Lz/I = 90.
This was achieved by dividing A0 in subdomains of H ≃

2, 5, 10, 15, 30 regarded as independent realizations, a proxy for
Monte Carlo simulations. The results are displayed in Figure 4,
where both the BTC and its standard deviation (SD) for the
multivariate normal field at two Control Plane distances (6I
and 18I) are represented. The SD predictions by the simplified
model (11) are also displayed (dashed lines). It is seen that, in
spite of the limited number of realizations for some cases (9
for Ly = Lz = 30I) the agreement is quite good, even for

the largest σ 2
Y = 8. The behavior is very similar for other K

structures examined (e.g., connected/disconnected and blocks,
as described in section 2.4; not shown in the figure). Thus, the
simple model proposed here can be an effective tool for the
prediction of the BTC uncertainty due to the non-ergodic effect
(i.e., finite size of the plume compared to the heterogeneity
length scales).

It is worthwhile noting that for a small plume (ω close
to unity) uncertainty affects its time of arrival at the control
plane (de Barros et al., 2011; de Barros, 2018). In contrast, for
a large plume the practically deterministic prediction reflects
the spreading of the BTC. For intermediate cases the two
effects are combined, and they are incorporated in the simple
function ω (12).
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3.3. Impact of Parametric Uncertainty
Even under the basic assumptions of stationarity, steadiness and
mean flow uniformity the mean BTC (Equation 3 with DL =

σ 2
Y IU) depends on a few parameters. Thus, U = JKef /n depends,

besides the mean gradient J, on KG and σ 2
Y since Kef /KG depends

on σ 2
Y as well as on the structure (Renard and De Marsily, 1997).

Of course the knowledge of these parameters is not needed if
Kef is determined for instance directly by pumping tests and/or
U by flowmeters. In all cases these parameters are affected by
uncertainty due to measurement errors, insufficient data etc. The
same is true for the parameters influencing themean BTC namely
σ 2
Y and I besidesU. Finally, the uncertainty quantified by σ 2

M (11)
depends on the additional parameter A0, reflecting the initial size
of the plume.

The uncertainty of these parameters impacts that of M in
addition to the non-ergodic effect. However, the magnitude
depends on the availability of data and their precision, which is
aquifer specific. In the following section we shall examine the
impact of parametric uncertainty for the Columbus Air Force
Base aquifer where the MADE experiment took place and for
which a relatively large amount of data is available.

Nevertheless, we may make a few statements on the relative
impact of various parameters based on the numerical simulations
and theoretical developments. Thus, as mentioned above, Fiori
et al. (2017) and Jankovic et al. (2017) have already found that
〈M〉 is quite insensitive to the structure (as characterized by
connectivity), whereas U, and to a lesser extent heterogeneity σ 2

Y ,
has a larger impact. Rather than a general discussion we defer the
analysis to the MADE case in the following.

4. ANALYSIS OF THE MASS DISTRIBUTION
AT THE MADE-1 EXPERIMENT

The first experiment conducted at the Columbus Air Force Base
(MADE-1) represents the ideal platform for discussing the above
issues regarding uncertainty of solute transport predictions in
aquifers. In terms of the quantity and quality of investigations,
regarding both aquifer characterization and plume monitoring,
the MADE-1 experiment represents a benchmark for analyzing
groundwater transport; it has motivated a large body of research
work, from the testing of innovative measuring techniques to the
development of novel theoretical frameworks. For such reasons,
after more than 30 years, MADE is still providing insight and
topics of discussion in the scientific community, as witnessed for
instance by the recent 2015 AGU Chapman conference (Gómez-
Hernández et al., 2016). Before discussing uncertainty, along
the previous lines, we briefly recapitulate in the following the
main features of the MADE-1 experiment, as well as the flow
and transport parameters that shall be used in the present work,
together with their uncertainty measures. More details can be
found in the original papers (Boggs and Rehfeldt, 1990; Boggs
et al., 1992) and the review (Zheng et al., 2011).

The experiment took place in a highly heterogeneous
sedimentary aquifer at Columbus, Ohio (USA). A plume
was injected in a relatively small area of the domain,
and the plume movement, along the natural gradient, was

TABLE 1 | Mean and standard deviation (SD) for the MADE-1 parameters

employed in the present work.

Symbol Parameter Mean SD

σ2
Y

Logconductivity variance [–] (*) 5.9 0.77

I Horizontal integral scale [m] (*) 9.1 1.94

Iv Vertical integral scale [m] (*) 1.8 0.33

KG Geometric mean of hydraulic

conductivity [m/d] (*)

0.58 0.13

n Porosity [–] (**) 0.31 0.08

J Mean hydraulic gradient [–] (**) 0.0036 –

U Mean velocity [m/d] (estimated) 0.026 0.009

Data are taken from Bohling et al. (2016) (*) and Boggs et al. (1992) (**); in the case of

the data from Bohling et al. (2016), the SD was calculated from their 95 % confidence

intervals after assuming a normal distribution for all parameters except KG, for which

lognormality was assumed. The SD for the mean velocity was estimated from Darcy

formula U = KefJ/n, assuming Kef /KG and J as deterministic.

continuously monitored for about 2 years by a dense network
of multilevel samplers. The relevant transport quantity that was
analyzed at the MADE-1 experiment is the longitudinal mass
distribution m (x; t), which was first analyzed and presented
by Adams and Gelhar (1992). Six snapshots were analyzed, at
t = 49, 126, 202, 279, 370, 503 days since injection. The mass
distribution was derived by calculating the solute mass (after
interpolation of concentration measurements) within a moving
window of 10 m length, at spatial intervals of 5 m. The striking
feature of m is its skewed shape, very much different from
the presumed symmetrical Gaussian behavior, that was mainly
caused by the highly heterogeneous velocity field induced by the
complex aquifer system; such feature has motivated subsequently
a flurry of theoretical developments to explain it. Despite this
dense grid of samplers, mass recovery was incomplete, except for
the snapshot at t = 126 d, and the mass recovery continuously
decreased after it, down to 43% in the last snapshot at t = 503 d
[the topic is discussed by Fiori (2014)].

In the following, the longitudinal mass distribution at
MADE is modeled by the aid of the model (3). Following
Adams and Gelhar (1992), the mass distribution is calculated
within a moving window of 1 = 10m, i.e., m (x; t) =

(M (x+ 1/2; t) −M (x− 1/2; t)) /1, with space intervals of
5m (x = 0, 5, 10, 15, ...). The parameters to be used in the model
were inferred from different studies and are presented in Table 1;
the standard deviation (SD) is also reproduced, when available.
Of particular relevance is the analysis of Bohling et al. (2016)
of the K values based on DPIL measurements, that superseded
a previous analysis by same authors (Bohling et al., 2012). This
study analyzed the conductivity field at an unprecedented detail
and resolution, and constitute the best available conductivity
analysis of MADE data so far.

The mean velocity is calculated by U = KGJǫ/n, with
KG, J, n, ǫ the geometric mean of K, the mean hydraulic gradient,
the mean porosity and the effective conductivity ratio ǫ =

Kef /KG, respectively. Unfortunately, ǫ cannot be measured and
it is variable, as a function of the particular conductivity structure
at hand (the matter is discussed in Zarlenga et al., 2018). An
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estimate of ǫ was provided by the formula (5) derived by Zarlenga
et al. (2018) based on extensive 3D numerical simulations,
obtaining ǫ = 3.93; this results in the estimated U = 0.026 m/d.
The SD of U is calculated by a perturbation approach over the
parameters KG, n, hence assuming J and ǫ as deterministic; as a
consequence, the standard deviation of U appearing in Table 1 is
likely underestimated.

4.1. Prediction of Mass Distribution and
Uncertainty Due to Non-ergodic Effects
Before embarking on the analysis of the spatial mass distribution
(the snapshots), it is worthwhile to estimate the non-ergodic
effect on the uncertainty of the BTC M(x, t), although the latter
was not determined experimentally. According to Equation (11)
the maximal value of σM/M0 is obtained by differentiating
with respect to t and is reached for G1 = 1/2. This leads to
(σM/M0)max = ω1/2/2. We show in the sequel that for MADE
plume initial size the estimate is ω = 0.148, i.e., (σM/M0)max =

0.19. Thus, the width of the band 〈M〉/M0 ± σM/M0 reaches its
maximum at the time for which 〈M〉/M0 = 1/2 and its size is
±0.19. diminishing to zero for 〈M〉/M0 → 0, 1. However, a direct
comparison with the experimental results (the snapshots) needs
reformulation in terms of spatial distribution.

Along the lines of section 4, the longitudinal mass distribution
at MADE is given by

m (x; t) =
M (x+ 1/2; t) −M (x− 1/2; t)

1
(14)

wherem is the longitudinal mass distribution aggregated over the
spatial interval 1 = 10 m.

The expected value and variance ofm for non-ergodic plumes
can be derived with the same procedure of section 3.2.2 , and
detailed in Appendix A. The detailed derivations are given in
Appendix B, and we reproduce here the final result

〈m (x; t)〉

M0
=

G1 (x+ 1/2; t) − G1 (x− 1/2; t)

1
(15)

σ 2
m(x; t) = ω (L)

〈

m(x; t)
〉

(

M0

1
−

〈

m(x; t)
〉

)

In (15), G1 is given by (3), as previously explained, although any
alternative model can be used. As discussed in Fiori et al. (2017),
the time of the snapshots at the MADE experiment was very
small in dimensionless terms, namely tU/I = 0.15 − 1.0, posing
doubts regarding the use of a constant DL in (3). Therefore, the
pre-asymptoticDL, as predicted by the first order approximation,
was employed here; the issue is discussed in Fiori et al. (2017)
and it is further elaborated in Appendix C, leading to the revised
formula (C.3), for the travel time CDFG1 that shall be used in the
present analysis.

The formula (15) for σ 2
m requires the vertical and transverse

dimensions of the initial plume, Ly and Lz . The distances between
the injection wells and the width of the screens in the wells are
not reliable estimates of Ly and Lz as the plume underwent a
significant expansion in all directions soon after the injection,
as visible in the early snapshots. Figure 6a of Adams and Gelhar
(1992) shows that after 9 days the vertical size of the plume was

around 8 m, much larger than the vertical size of the screen of
the wells. Also, Figure 4a from the same paper suggests that,
again after 9 days from the injection event, the size of the plume
was already about 40 m wide. Thus, in the following we assume
Ly = 40 m and Lz = 8 m as the initial sizes of the plume; such
estimates are rather rough and uncertain, but there is no other
way to accurately assess them. With those estimates of Ly, Lz ,
and those of I, Iv of (1), the variance reduction factor due to
the finite size of the plume appearing in (15) is ω (L) = 0.148
(Equations 12, 13).

Figure 5 displays the experimental longitudinal mass
distribution at the MADE-1 experiment for the six snapshots
presented by Adams and Gelhar (1992); black lines); the blue
solid line depicts the theoreticalm (x; t) (Equation 15), while the
dashed lines represent the bounds m + σm (green) and m − σm
(orange). It is seen that the theoretical model captures quite well
the experimental mass distribution at MADE; the result is not
entirely new as a similar comparison was made in Fiori et al.
(2017), although the updated estimates of Bohling et al. (2016)
and the more accurate spatial aggregation over the 1 interval
was made here for the first time. The direct comparison between
experiment and theory is made difficult by the overestimation
of mass in the first snapshot (around 200% of the injected mass
was recovered) and the incomplete mass recovery for increasing
time. Still, the model captures the peak and its timing quite
accurately in most of the snapshots, all the approximations and
uncertainties notwithstanding.

It is seen that the bands of uncertainty, described by the
bounds m ± σm (dashed lines), are rather wide for all snapshots
(note that m is subject to the constraint

∫ ∞

0 m(t)dt = 1).
The bounds tend to increase with time; as a matter of fact
the behavior is quite expected in view of the nature of the
analytical solution (15): the broader is the distribution, the
larger is the uncertainty. The wide bounds of uncertainty pose
doubts regarding the applicability of analytical solutions, based
on stochastic approaches, that implicitly assume ergodicity; in
such cases, it is advisable to present results together with the
bands of uncertainty, as done here. Although the bands can be
rather wide, like the present MADE case, the representation of
Figure 5 in terms of prediction and bands of uncertainty may
be of definite help in applications, for instance the case of risk
assessment and plume management.

Uncertainty can in principle be constrained by some
conditioning of the solution, e.g., based on available K data. Still,
the impact of conditioning permeability at a point is generally
limited to a domain of the order of the integral scales of Y
(see e.g., Dagan, 1985), which has a minor effect on M for
a large plume unless the grid of measurements is dense and
covers the advancing plume. For small plumes conditioning may
be more effective in reducing uncertainty if the measurements
grid covers the trajectory. In any case, conditioning requires
a theoretical model more complex that (3), posing additional
computational burden that may not be otherwise required for
simple preliminary (screening) analysis.

The relative good agreement of m (solid blue line) with
experiments is quite surprising in view of the large uncertainty,
as represented by the upper and lower limits (the dashed lines) of
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FIGURE 5 | Uncertainty due to non-ergodic effects: the experimental longitudinal mass distribution at the MADE-1 experiment for the six snapshots presented by

Adams and Gelhar (1992); black lines); the blue solid line depicts the theoretical m (x; t) (15), while the dashed lines represent the bounds for non-ergodicity

uncertainty m+ σm (orange dashed line, “High”) and m− σm (green dashed line, “Low”). G1 in solutions (15) is given by (C.3). Mass recovery in the experiments was

206, 99, 68, 62, 54, and 43% at snapshots t = 49, 126, 202, 279, 370, 503 days, respectively.
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the figures; it may suggest that the initial size of the plume was
indeed large enough to adequately sample the range of velocity
variations in the aquifer, hence more in favor of ergodicity, and
the estimates of Ly and Lz (that we recall were roughly estimated
from the profiles of Adams and Gelhar, 1992) might perhaps be
too conservative.

4.2. Parameter Uncertainty
Parameter uncertainty impact is assessed here by a simple first
order analysis, that provides the variance of mass distribution m
due to parametric uncertainty

σ 2
m =

Np
∑

i=1

(

pi
∂m

∂pi

)2

CV2
pi
=

Np
∑

i=1

s2
(

pi
)

CV2
pi

(16)

where the function s is the sensitivity, and it represents the
relative variation of the solution to changes in the generic
parameter pi

(

i = 1, ...,Np

)

. The procedure is justified by the
relatively small coefficient of variation of the parameters, that is
below 0.35 for all parameters (see Table 1).

It is instructive to analyze first the sensitivity function s
(

pi
)

,
(Equation 16), as function of the generic parameter pi. Figure 6
illustrates the sensitivity pertaining to the relevant parameters
σ 2
Y ,U, I, Iv for the snapshot t = 202 d (the sensitivities for

the other snapshots are similar). It is seen that the sensitivity
displays an antisymmetric behavior, which is determined by the
constraint that the area underneath the curve m is unitary.
Hence, increasing a parameter has opposite effects in different
segments of the mass distribution. The behavior is similar for
all parameters except Iv, that contributes through the anisotropy
ratio (see Appendix C) and hence has opposite effects with
respect to I. The curves of Figure 6 indicate that themost relevant
parameter for uncertainty is the mean velocityU, followed by the
logconductivity variance σ 2

Y and the horizontal integral scale I;
the impact of the vertical scale Iv is rather small. This finding
already suggests what are the parameters requiring amore careful
and precise estimate in order to reduce uncertainty, with the
mean velocity playing an important role; the issue was also
mentioned in section 3.1.

The bands of parametric uncertaintym±σm, along the model
(16), are represented in Figure 7 for the six snapshots of the
MADE-1 experiment. Comparison with Figure 5 indicates that
the parametric uncertainty effect is smaller than the one due to
non-ergodic behavior (section 3.2).We remind, however, that the
bands may be wider as the variance of the mean velocity U is
expected to be larger than the one estimated here, and reproduced
in Table 1; this issue was discussed in section 4.1. The behavior of
the uncertainty bands observed in Figure 7, with a central area
where the bands shrink, is easily explained by the antisymmetric
shape of the sensitivity, as previously discussed. The width of the
uncertainty bands increases with time, just like the case illustrated
in Figure 5.

The analysis of parametric uncertainty is indeed a first and
relative easy (if data are available) estimate of possible prediction
errors. However, as shown here, it may be not the main source
of uncertainty. It is worth noting that Cvetkovic et al. (2015)
discussed the global sensitivity including mass transfer reactions.

FIGURE 6 | The sensitivity function s, Equation (16), as function of the

parameters σ2
Y
,U, I, Iv for the snapshot at t = 202 days, MADE-1 experiment.

5. SUMMARY AND CONCLUSIONS

Spreading of solute plumes in aquifers, as quantified for instance
by the longitudinal macrodispersivity αL, is much larger than the
one observed in laboratory experiments (pore scale dispersion).
This enhancement is caused by the spatial variability of the
conductivity K, which in the context of stochastic subsurface
hydrology, is modeled as a random space function. The paper
considers flow which is uniform in the mean (natural gradient
flow of velocity U) and inert solutes. Transport is quantified
by the BTC M(t, x) at control planes at x as well as the
associated spatial longitudinal mass distribution m(x, t). The
logconductivity Y = lnK is modeled as stationary, of normal
univariate pdf (parameters KG and σ 2

Y ) and axisymmetric
covariance of horizontal I and vertical Iv integral scales. The latter
are much larger than the pore scale, which explains the above
findings. Flow and transport variables, solutions of the flow and
transport equations, are consequently random as well.

Most of the transport models developed in the past, aiming at
prediction of M, were underlain by the ergodic hypothesis, valid
for plumes of large extent at the I, Iv scales. As a consequence,
the one realization M is approximately equal to the ensemble
mean 〈M〉.

The paper investigates the uncertainty of M (or m) in
three dimensional formations, as quantified by the variance σ 2

M .
Among the various sources of uncertainty, we deal with two:
primarily with the non-ergodic effect present for finite plumes,
as encountered in many applications. Besides we consider the
impact of uncertainty of parameters like U, KG, σ 2

Y , I. Indeed,
the latter are affected by measurement errors even in extensively
monitored aquifers.

The non-ergodic effect on transport was investigated in
the past by adopting the first-order approximation in σ 2

Y in
solving the flow and transport equations (weakly heterogeneous
formations). One of our main aims here is to extend the analysis
to highly heterogeneous aquifers for which σ 2

Y ≤ 8. The
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FIGURE 7 | Parametric uncertainty: the experimental longitudinal mass distribution at the MADE-1 experiment for the six snapshots presented by Adams and Gelhar

(1992), black lines; the blue solid line depicts the theoretical m (x; t) (15), while the dashed lines represent the bounds for parametric uncertainty m+ σm (orange

dashed line, “High”) and m− σm (green dashed line, “Low”). G1 in solutions (15) is given by (C.3).
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investigation is based on our work in the last 15 years on ergodic
transport, both by extensive and accurate numerical simulations
not available in the past for three-dimensional configurations,
as well as by simplified models. This was done for a few types
of heterogeneous structures, differing in the connectivity of
K classes. One of our main results was that 〈M〉 is a very
robust predictor whose bulk can be modeled by the Inverse
Gaussian CDF, with travel time variance given by the first
order approximation.

The main novel theoretical contribution is the development
of a simple analytical model to compute σ 2

M . It combines
the above Inverse Gaussian distribution with an analytical
function of the size of the injected plume relative to the
integral scale, covering the spectrum from small plumes to
ergodic ones. The result is illustrated by depicting the bands of
uncertainty delimited by 〈M〉 ± σM (Figure 4) as dependent on
σ 2
Y . While the present contribution is limited to non-reactive

transport, the methodology can be easily extended to reactive
solutes, along the lines of Cvetkovic and Dagan (1994) and
Fiori et al. (2002).

A major part of the paper is devoted to application of the
concepts to the MADE aquifer (σ 2

Y ≃ 6) transport experiment,
which has become a platform for groundwater contaminant
transport modeling in the last 30 years. We present the observed
snapshots of m(x, t), functions of x for a few values of t, as well
as the bands of uncertainty related both to non-ergodic effects
and uncertainty of parameters. The analysis relies on published
recent analysis of field data, based on renewed characterization
campaigns, and it represents a major overhaul of our previous
analyses of theMADE-1 experiment. The results indicate that the
most relevant parameter for uncertainty is the mean velocity U,
followed by the logconductivity variance σ 2

Y and the horizontal
integral scale I. This finding suggests what are the parameters
requiring a more careful and precise estimate in order to
reduce uncertainty.

The main conclusion of the study is that, even for thoroughly
characterized aquifers (like MADE) prediction of transport
is affected by uncertainty; in particular, the major source of
uncertainty for the MADE-1 experiment seems to be the non-
ergodic behavior, i.e., the finite size of the plume with respect
to the directional correlation scales of hydraulic conductivity.
Uncertainty is prone to be even greater for the common, less
detailed, sites data available in practice.

The above finding, and the general argumentation brought by
the present work, enforces the conclusions from past work that
estimating uncertainty of prediction should become an integral
part of solving aquifer contamination problems, toward risk
analysis. To that aim, characterization efforts should be directed
toward reducing uncertainty of most influential parameters like
the mean velocity U. Due to the prevailing scarcity of data
in practice, it is advisable to use simple models, at least for
screening scenarios.

The envisaged main future developments which may
contribute to uncertainty and risk reduction are 2-fold. On one
hand improvement of characterization technology may provide
a detailed and large volume of data which may need analysis
relying on Big Data treatment approach. On the other hand,
numerical models of flow and transport in which the detailed
aquifer architecture is based on conditioning on the large number
of data should also be devised. At present, simple models like
the ones presented here may serve for preliminary and
screening analysis.
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In heterogeneous aquifers, imaging preferential flow paths, and non-Gaussian effects

is critical to reduce uncertainties in transport predictions. Common deterministic

approaches relying on a singlemodel for transport prediction show limitations in capturing

these processes and tend to smooth parameter distributions. Monte-Carlo simulations

give one possible way to explore the uncertainty range of parameter value distributions

needed for realistic predictions. Joint heat and solute tracer tests provide an innovative

option for transport characterization using complementary tracer behaviors. Heat tracing

adds the effect of heat advection-conduction to solute advection-dispersion. In this

contribution, a joint interpretation of heat and solute tracer data sets is proposed

for the alluvial aquifer of the Meuse River at the Hermalle-sous-Argenteau test site

(Belgium). First, a density-viscosity dependent flow-transport model is developed and

induce, due to the water viscosity changes, up to 25% change in simulated heat tracer

peak times. Second, stochastic simulations with hydraulic conductivity (K) random fields

are used for a global sensitivity analysis. The latter highlights the influence of spatial

parameter uncertainty on the resulting breakthrough curves, stressing the need for a

more realistic uncertainty quantification. This global sensitivity analysis in conjunction

with principal component analysis assists to investigate the link between the prior

distribution of parameters and the complexity of themeasured data set. It allows to detect

approximations done by using classical inversion approaches and the need to consider

realistic K-distributions. Furthermore, heat tracer transport is shown as significantly

less sensitive to porosity compared to solute transport. Most proposed models are,

nevertheless, not able to simultaneously simulate the complementary heat-solute tracers.

Therefore, constraining the model using different observed tracer behaviors necessarily

comes with the requirement to use more-advanced parameterization and more realistic

spatial distribution of hydrogeological parameters. The added value of data from both

tracer signals is highlighted, and their complementary behavior in conjunction with

advanced model/prediction approaches shows a strong uncertainty reduction potential.

Keywords: joint heat and solute tracer tests, density-viscosity dependent flow and transport, alluvial sediments,

preferential flow paths, uncertainty investigation, distance-based global sensitivity analysis, principal component

analysis
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INTRODUCTION AND MOTIVATION

Heterogeneity in porous media, inducing preferential flow paths,
and non-Gaussian effects, influences significantly subsurface
transport (among others: Fuchs et al., 2009; Heeren et al.,
2010). An improved imaging of these preferential pathways, in
connection with reducing uncertainty in transport simulations
and predictions, is crucial for answering future groundwater
quality questions.

Innovative tracer test set-ups, along with relevant
interpretations, are possible new ways for quantifying more
realistically this heterogeneity and the associated uncertainty
(Davis et al., 1980; Maliva, 2016). In this context, heat is
considered as a complementary tracer, compared to conservative
solute tracers (saline tracer or fluorescent dye). Heat is usually
considered as a non-conservative tracer, allows information
about advection-conduction processes to be obtained, and heat
has a natural retardation and more diffusion linked to the heat
capacity of the solid (Anderson, 2005). Using both, solute and
heat, thus provides two tracer plumes that can be compared,
allows more information about the solid matrix properties to be
obtained, and enables the quantification of subsurface processes
(immobile water, matrix contributions) with a better resolution
(Anderson, 2005; Irvine et al., 2015). For example, Wildemeersch
et al. (2014) combine heat and solute tracer experiments to
assess the heterogeneity in an alluvial aquifer. Sarris et al. (2018)
also give a recent application of jointly interpreting heat and
solute tracer data. They show, in a deterministic way, how
these innovative tracer tests can contribute to a high-resolution
description of deposits, and a significant improvement of
transport processes understanding. In the joint heat and solute
tracer inversion by Sarris et al. (2018), heat and solute seem
to be sensitive to hydraulic conductivity and porosity. In their
case study, heat also shows a stronger sensitivity to vertical
hydraulic conductivity, resulting in a more complex aquifer
parametrization, and more realistic transport predictions.

Deterministic approaches are useful for process
understanding. However, predictions based on an unique
“best” model parametrization bear a lot of uncertainty and,
thus, must be justified and used with care (Renard, 2007;
Remonti and Mori, 2016). Deterministic approaches generally
reduce heterogeneity, typically by replacing spatially distributed
properties by averaged properties, leading to poorer predictions
with underestimated uncertainty (Alcolea et al., 2006; Renard,
2007). Using additional information gained from joint heat and
solute tracer tests adds more constraints to the inversion process.
However, when the tracer behavior is getting more complex,
deterministic approaches can quickly turn into ill-posed inverse
problems (Zhou et al., 2014), reducing their predictive reliability.
Classical deterministic inversion approaches could therefore
be questioned.

To explain and adequately represent the observed variables,
more advanced transport simulation and forecast approaches,
such as stochastic methods (Ptak et al., 2004), are generally
required. Monte-Carlo simulations may, for example, be used
to explore uncertainty ranges and to consider heterogeneity
(among others, Ptak et al., 2004; Renard, 2007, Ferré, 2017).
However, the full stochastic inversion of hydrogeological data

when spatial uncertainty plays a key role remains difficult
and time consuming, limiting the applicability of the methods
(Renard, 2007). In this context, transdimensional inference (e.g.,
Sambridge et al., 2012) is a possible approach to combine
the parsimony principle with stochastic inversion. In practice,
transdimensional inference includes the number of parameters
as an unknown, and therefore limits the complexity of the model
to what is necessary to explain the data.

However, if field data is sparse and prior uncertainty is
large, the transdimensional approach would also lead to an
oversimplification of the model, which can be harmful for its
predictive capability (referred to Hermans (2017), about the
importance of realistic consideration of prior uncertainty). In
contrast, a full stochastic approach allows realistically quantifying
the uncertainty for transport predictions, instead of having
a single deterministic inversion or multiple simulations with
(partly) non-quantified approximations (among others, Caers,
2011; Hermans, 2017; Hermans et al., 2018; Scheidt et al., 2018).
In combination with the use of complementary tracers such as
heat, stochastic approaches and data analysis methods have a
strong potential to learn more from collected data sets and falsify
approximations done in conceptual models and prior estimations
(Hermans et al., 2015a,b, 2016, 2018).

A further new potential for hydrogeological applications and
transport predictions is Bayesian Evidential Learning (BEL)
(Hermans, 2017; Hermans et al., 2018; Scheidt et al., 2018).
BEL relies on a limited number of Monte-Carlo simulations
sampling the prior distribution of model parameters, in
order to analyze the global sensitivity of parameters (Park
et al., 2016; Hermans et al., 2018) and falsify the prior
distribution. In comparison to common single parameter
sensitivity analysis, regionalized or global sensitivity analyses
consider heterogenous sources of model uncertainty (e.g.,
Park et al., 2016). The falsification step consists in obtaining
consistency between the sampled simulation data (i.e., prior)
and the reference data (Hermans et al., 2015a; Scheidt et al.,
2018). BEL can also be used, if necessary, to identify a
statistical relationship between historical and forecast variables
(Hermans, 2017; Hermans et al., 2018; Scheidt et al., 2018).
The common inversion step is thus replaced by finding the
direct relationship between the prior (sampled simulation
data) and the desired forecast, which only depends on the
complexity of the subsurface (i.e., model) (Hermans, 2017).
Using Monte-Carlo, samples from the prior distribution are
generated and used to simultaneously simulate synthetic data
and forecasts. Both outcomes are analyzed for detecting
direct relationships. Following this innovative approach, cost-
expensive inversion can be avoided by reformulating the
prediction problem, and the likelihood directly in terms of the
forecast (Hermans, 2017).

For addressing the uncertainty of transport predictions, for
instance due to preferential flow paths, any forecasting approach
should first consider realistic parameter uncertainty related to
heterogeneity. In this paper and the context of BEL, “prior” is
defined as the prior distribution of model parameters, according
to the current knowledge of the field, and from which outcome
samples are randomly drawn in Monte-Carlo methods (Rojas
et al., 2009; Caers, 2011; Hermans, 2017).
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In this paper, the prior uncertainty is investigated for a
heterogeneous alluvial aquifer, using joint heat and solute
tracer data, through a global sensitivity analysis. A performed
tracer experiment (Wildemeersch et al., 2014; Hermans
et al., 2015b) has been previously used by Klepikova et al.
(2016), to calibrate a deterministic model through automatic
inversion. The HydroGeoSphere code (HGS) was used allowing
full 3D simulations (Therrien et al., 2010; Brunner and
Simmons, 2012). HGS was used in conjunction with PEST
as a parameter estimation tool for inversion (Doherty, 1994,
2003). Although those first analyses helped to understand
groundwater flow and solute and heat transport in the
aquifer, they also showed that the approximations impeded
to explain simultaneously all observations. In Hermans et al.
(2015a, 2018), additional stochastic approaches considering
spatial uncertainty were successfully used in explaining
parts of the experimental data, but they considered only
limited data sets or parts of the whole aquifer system.
In this paper, the current conceptual approximations
(the prior) in the description of the alluvial deposits will
be revisited with the goal to improve the heterogeneity
characterization. Generating a prior, consistent with the
observed heat and solute tracer test data, is a necessary step
to being able to realistically predict transport in this complex
geological setting.

Within this context, the objective of the paper is to
take advantage of the complementary behavior of heat and
solute tracers to better characterize the heterogeneity in the
aquifer system. The aim is to formulate a more realistic
prior and analyze its consistency, before moving toward more
advanced prior analysis and direct predictions using the BEL
framework. For this purpose, the variability of the tracer output
signals will be analyzed (1) through a deterministic model,
and (2) using Monte-Carlo simulations, followed by a global
sensitivity analysis.

MATERIALS AND METHODS

Test Site: Hermalle-Sous-Argenteau
The test site of Hermalle-sous-Argenteau (HssA) in the north
of Liege (Belgium) lies between the canal Albert and the
Meuse River (Figure 1A) in an alluvial plain field with a
groundwater natural gradient of around 0.06%. Between the
20m distant injection well (Pz09) and the pumping well
(PP), there are three panels with 10 piezometers including
19 observation points (i.e., most piezometers are screened
at two different levels, Figure 1B). The first panel is located
at 3m, the second at 8m and the third at 15m from the
injection well. An evaluation of the borehole logs during
drilling shows that the aquifer is mostly composed of sandy
gravel. The sand matrix is finer in the top part and its
proportion decreases in the bottom part (Figure 1B). In
previous studies, the adopted conceptual model split the
aquifer in two layers, an upper (K = 2.38·10−3 m s−1)
and a lower (K = 4.67·10−2 m s−1) part (Klepikova et al.,
2016; Hermans et al., 2018). The estimated bulk thermal

conductivity is in the range κb = 1.37W m−1 K−1 to
1.86Wm−1 K−1 (Klepikova et al., 2016).

The reference data set used in this study was described
in Wildemeersch et al. (2014). A joint heat and solute
tracer experiment was performed with a 24 h and 20min
continuous injection of heat (1T = 25.5 K) and naphtionate
(C= 5.48mg L−1) at the rate of 3 m3 h−1, while 30 m3 h−1 were
extracted from the pumping well PP. Temperature distribution
was the focus and therefore measured in all observation
points, while the solute tracer was only measured in PP
for validation purposes. Measurements in Pz13 and Pz17
are not used because these observation wells are uniformly
screened all over the aquifer and do not allow separated
measurements in both the upper and lower compartments
(Klepikova et al., 2016; Hermans et al., 2018).

The observed heat tracer plume shows that the heat injected
in the lower aquifer part tends to move upwards very quickly
toward the first panel, then to be split and move downwards
(Wildemeersch et al., 2014). The measured temperature in
the second upper panel is significantly lower than in the
first upper panel (for detailed measured reference data at all
panels, we refer to the “Supplementary Material Figures 1–4”).
This observed behavior is currently difficult to be simulated
for all observation locations with just one deterministic
model inverted with common methods, e.g., using pilot
points (Klepikova et al., 2016).

Deterministic Porous Media Model
Based on the current conceptual two-layer aquifer model (each
3.5m thick), Klepikova et al. (2016) developed a numerical model
focusing on the heat transport simulation using HGS in finite
difference mode (Therrien et al., 2010) and a pilot point approach
(Doherty, 2003) to calibrate the model against heat data. This
model is density dependent during the first 24 h only, as density
effects were expected to be low afterwards (Ma and Zheng, 2009;
Klepikova et al., 2016). This model describes a 40 × 60 × 7m
volume of alluvial aquifer with a grid of 84,280 elements in total.
No recharge was assumed for the duration of the experiment.
Due to the high permeability of the gravel, the vertical leakage at
the bottom of the model was considered as negligible compared
to lateral input/output. The initial groundwater temperature was
set to Tini = 13.48 ◦C according to the measured values before
the experiment. The model was running under transient flow
conditions due to the simulation of the tracer experiment. Peclet
numbers of 300 for the upper part, and 14,000 for the lower part
were computed, suggesting an expected advection-dominated
transport (Klepikova et al., 2016).

Here, this model is extended with a simultaneous solute
injection. In HGS, the injection is simulated selecting two nodes
next to each other: at the first node, representing the screen
location in the borehole, the solute tracer is injected and one node
below the heat is injected, respecting the actual experimental set-
up. Both injections are simulated using Neumann (2nd type)
boundary conditions. For the solute injection, the prescribed
mass injection rate is 4.3 10−6kg s−1. For the heat injection, the
prescribed injection rate is 8.3 · 10−4 J K−1 s−1 (Klepikova et al.,
2016). The grid is refined to 140,140 rectangular elements with
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FIGURE 1 | (A) Overview of the field site location. (B) Borehole location showing the three panels between the injection well (Pz9) and the pumping well (PP), a typical

log, and borehole equipment [modified figure according to Wildemeersch et al. (2014)].

14 numerical grid sublayers (each 0.5m thick), allowing a better
representation of the spatial heterogeneity and uncertainty. To
account for the influence of immobile water on heat conduction,
an apparent thermal conductivity is computed using:

κs
′ =

κf (θ − neff) + κs (1− θ)

(1− neff)
(1)

θ is the total porosity with 0.12, neff the effective porosity
with 0.05, or otherwise called mobile water porosity, κf the
fluid thermal conductivity with 0.59W m−1 K−1 and κs the
solid thermal conductivity estimated from previous works
to around 1.43W m−1 K−1. As temperature affects the
groundwater density and dynamic viscosity, the injected heat
influences both groundwater flow and transport simulations.
In contrast to Klepikova et al. (2016), the new numerical
implementation allows fully density-dependent, but also
viscosity-dependent simulations.

Stochastic Prior Uncertainty Investigation
This study investigates the prior-uncertainty using Monte-Carlo
simulations, followed by a global sensitivity analysis and prior
falsification. The applied procedure in this study corresponds to
the first, second and third steps of the BEL method as described
by Hermans et al. (2018). In the Monte-Carlo simulations, part
of the calibrated values from the deterministic model parameters
are replaced by random values sampled from random uniform
distributions (Table 1).

In each Monte-Carlo simulation step (prior sampling), a new
HGS forward model is parameterized with randomly generated
advection global parameters, like the log(Kmean), the K variance,
the porosity, the variogram ranges in X,Y,Z directions, the
azimuth, and the gradient between the two main prescribed

head boundary conditions located upgradient from the injection
well and downgradient from the pumping well. Fixed values
[i.e., identical to those chosen by Klepikova et al. (2016)]
are considered for dispersivity, thermal conductivity, specific
heat capacity, specific storage, and bulk density (Table 1). To
represent the K-distribution within eachMonte-Carlo simulation
more realistically, sequential Gaussian simulations are used
following two scenarios.

Scenario A uses the prior distribution from Hermans et al.
(2015a). This prior was not falsified by geophysical and
hydrogeological data acquired during the experiment (Hermans
et al., 2015a) in the middle panel. It was thus not tested against
the whole available data set, as it is proposed here. In particular,
it uses the same two-layer approximation and ignores any trend
in the alluvial deposits grain size distribution. Random Kmean

values between 10−3.5 and 10−2.5 m s−1 in conjunction with a
K-variance between 1 and 100 m s−1 are considered. Models are
randomly generated without any additional constraint.

Scenario B considers the trend observed during
drilling (Figure 1B) in the alluvial deposits, in which it
is assumed that grain size distributions influenced the
hydraulic conductivity values. Within 14 constrained
sublayers, a vertical downwards increasing K-trend is
considered in the geostatistical simulations. Within every
Monte-Carlo step, for the 12 sublayers between the fixed top
(Kmean = 10−4 m s−1) and bottom (Kmean = 10−2 m s−1)
sublayer, new random generated mean values between
Kmean = 10−3.5 and 10−2.5 m s−1, increasing downwards,
are used. To account for field observations (see section Test site:
Hermalle-sous-Argenteau, Wildemeersch et al., 2014; Hermans
et al., 2015b) showing that the heat plume does not follow a
straight path toward the pumping well, the possible occurrence
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TABLE 1 | Parameter simulation ranges for the Monte-Carlo simulations (left column) and chosen fixed parameter values identical to those chosen by Klepikova et al.

(2016) (right column).

Parameter Simulation range U Unit Fixed parameter+ Value Unit

Log(Kmean) A: [−3.5 −2] m s−1 Longitudinal dispersivity (upper / lower part) 1.5/3 m

B: Trend [−4 −2] + [−3.5 −2.5] m s−1 Transversal dispersivity (upper / lower part) 0.15/0.3 m

Variance K [1 100] m s−1 Solid thermal conductivity (apparent) 1.37* W m−1 K−1

Porosity [0.05 0.12] 1 Fluid thermal conductivity 0.59 W m−1 K−1

X [1 to 8] m Solid specific heat capacity 1,000 J kg−1 K−1

Y=Z [0.1 0.5] m Water specific heat capacity 4,189 J kg−1 K−1

Azimuth [0 pi] 1 Specific Storage 10−4 m−1

Gradient at prescribed head BC [0.01 0.1] % Bulk density 1,950 kg m3

+The fixed values are taken from Klepikova et al. (2016).
*The solid thermal conductivity estimated at 1.43W m-1 K-1 is replaced by an apparent value for simulation (see section: Deterministic porous media model).

[ ] Sampled from a random uniform distribution.

of local low hydraulic conductivity zones (flow barriers) in the
aquifer is thus considered. The presence of loam lenses with low
hydraulic conductivity are actually observed at some places in the
Meuse river alluvial deposits and are here assumed as a possible
origin/explanation for the observed behavior. Two flow barriers
are placed in front of Pz14 and Pz17 in the upper part, and the
third one in the lower aquifer part between the injection well
and Pz11. The constrained hydraulic conductivity is four orders
of magnitude lower. Within the sequential Gaussian simulation,
the fixed constrained K-values are considered as hard data for
the random simulations. The size of the potential flow barriers is
thus dependent on variogram characteristics.

For each scenario, 250 simulations are generated through
Monte-Carlo methods. This number was considered sufficient
to model the variability in the prior data sets, while keeping
the computational cost to a minimum, and to estimate the
global sensitivity analysis (see below). The reason lies in the fact
that the used approach analyzes the data response (temperature
or solute curve) which is less complex than the model spatial
heterogeneity, therefore requiring only a limited number of
samples (Hermans et al., 2018).

A distance metric using the root of the square sums of
the difference between each simulated f(ti) and observed g(ti)
data over the same experimental time interval tExp (0–10
days), showing positive zero definition, symmetry, and triangle
inequality, is used to compare the ability of different simulations
to reproduce field data. It allows to identify the best realization
at each observation point within the generated 250 realizations,
separately for each scenario:

Best simulation at observation point means minimizing:

dObsP =

√

√

√

√

tExp
∑

i=1

(

f (ti) − g (ti)
)2

(2)

Best simulations are quantified calculating the root mean square
error (RMSE) and the correlation coefficient (R2).

Distance Based Sensitivity Analysis
A global sensitivity analysis reveals key information about
model parameters most influencing the simulated data at
observation points. With the output signals of the heat and
solute realizations, the distance-based global sensitivity analysis
(DGSA, Park et al., 2016) is applied, considering the global
and spatial parameters of each simulation. DGSA can also
identify conditional effects between pairs of parameters (Fenwick
et al., 2014; Park et al., 2016). In DGSA, the sensitivity is
defined by comparing the parameter cumulative distribution
function (cdf) within k clusters to the original distribution.
The number of clusters must be chosen so that there are
enough simulations in each cluster while allowing sufficient
discrimination between them (Hermans et al., 2018). The k
clusters are computed using the k-medoid clustering technique
applied on a multi-dimensional scaling map of the models.
The latter is computed based on the metrics of equation (2).
In DGSA, random parameters for each simulation are linked
to the corresponding output signal produced by the forward
model. We refer to Park et al. (2016) and Fenwick et al. (2014)
for details.

Every sample of the prior distribution is parameterized using
random generated global parameters, e.g., porosity, gradient,
Kmean, and K-variance values and local parameter, i.e., the
spatial random K-field, generated by geostatistical simulation.
A local parameter is highly dimensional (number of elements)
and therefore difficult to analyze using a sensitivity analysis.
However, those local parameters can be reduced using Principal
Component Analysis (PCA). PCA is one possibility to structure,
simplify and visualize complex data sets by replacing multiple
statistical variables with a limited, smaller, and approximated
amount of linear combinations using the decomposition in
eigenvectors (Krzanowski, 2000). With PCA, the first dimensions
are explaining the average K distribution and, thus, larger scale
heterogeneity, while higher dimensions will be characteristic of
smaller-scale heterogeneity (e.g., Oware et al., 2013; Park and
Caers, 2018). Therefore, the PCA’s first dimensions represent the
degree of heterogeneity in the aquifer. That is used to compute
the score variables for each of the 250 simulations subsequently
in the sensitivity analysis (Park and Caers, 2018).
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Tracer Velocity Comparison
The modified deterministic model and the Monte-Carlo
simulations are further used for a synthetic heat and solute
tracer velocity comparison. The velocity comparison follows
the approach of Irvine et al. (2015), but using here the peak
times instead of the time of 50% of tracer recovery in the
breakthrough curve. The peak time is here preferred, due
to the large uncertainty related to the missing solute tracer
information between the injection and pumping wells. Irvine
et al. (2015) equations are adapted by using, for the strong
advective aquifer system of Hermalle-sous-Argenteau, as thermal
retardation factor Rth = 1. An estimated thermal retardation
factor based on a fixed specific heat capacity is in this study not
sufficient to capture the difference between the two tracers as it
cannot account for spatial heterogeneity. The calculations are:

vsolpeak =
x

tsolpeak

(

modal velocity
)

(3)

vheatpeak = vthpeak · Rth =
x

theatpeak
. 1 (4)

where tsolpeak [s] is the solute peak time of each
prediction/simulation, x [m] is the shortest distance from
the observation well to the injection point and vsolpeak [m s−1]
the corresponding modal velocity. In the heat case theatpeak [s]
is the peak time of each prediction/simulation, Rth the thermal
retardation factor, vthpeak [m s−1] the thermal front velocity using
the peak time.

High K-zones (i.e., corresponding to preferential flow paths)
resulting in a mismatch of solute and heat distributions, lead to
different vheat and vsolute values (i.e., diverging from a 1:1 line in
a vheat vs. vsolute diagram) inducing a decrease of the regression
coefficient (Irvine et al., 2015).

RESULTS

Prior Uncertainty Investigation
The heat observations at panel 1, 2, 3, and the joint observed heat
and solute information at the pumping well are investigated and
used to attempt prior falsification. In a first step, the numerical
model considers groundwater density and dynamic viscosity
effects caused by the injected heat. In a second step, the multiple
heat breakthrough curves and the solute one at the pumping well
are simulated using the multiple realizations generated by the
Monte-Carlo procedure in conjunction with both K-distribution
scenarios. Figure 2 shows the comparison of the deterministic
solution of the density (basis model) and the density-viscosity
dependent model with the reference data, the two simulation
scenarios A and B and the individual best heat simulation for
the upper screened part in Pz11-up, Pz15-up, and Pz19-up
(observation points in the upper middle lane of Panel 1, 2, and 3).

The change of the dynamic viscosity, e.g., at the peak-time for
Pz11-up about 25% (upper screen), has a significant effect on
the simulated temperature, while the effect of density is limited
(0.02%) (Figures 2E,F, 3). Accounting for this effect allows slight
improvement to the fit with the observed heat breakthrough
curve at Pz11-up and Pz15-up using a deterministic approach

(Figures 2C–F). The simulated peak, e.g., at Pz11-up is slightly
improved, as well as the tailing, but the overall fit is still not
satisfying for all three observation points.

Monte-Carlo realizations surround the real data set of the heat
tracer at all three points (Figure 2). It highlights the influence
of spatial parameter heterogeneity on the resulting breakthrough
curves. However, the prior of scenario A seems to be falsified
by the tailing part of the curve observed in Pz11-up and Pz15-
up (Figures 2C,E). Clearly, scenario B considering the observed
vertical downwards increasing K-trend, and describes the tailing
part of the curve more realistically compared to the deterministic
approach and scenario A (e.g., compare Figures 2E,F). For Pz15-
up and Pz19-up the best simulation allows representing the
reference data more accurately, compared to the deterministic
solutions (Figures 2A–D). Again, scenario B gives more realistic
solutions than ignoring any trend in the simulations.

Selecting the 10 best heat simulations from both prior
scenarios for all observation points at panels 1 to 3, upper
and lower screen, further confirms that considering a vertical
downwards increasing K-trend in the simulations is a more
realistic description of spatial heterogeneity (referring to
“Supplementary Material Figures 1–4”). At panel 3 the
observed data fluctuates around a temperature change of 0 ◦C,
without a significant peak. Thus, the solution simulation with
1T = 0 ◦C is identified as the best one. The modeled 1T = 0 ◦C
is exactly zero for the simulation because it corresponds to a set
of parameters where diffusion is larger than advection transport;
the heat therefore does not reach panel 3. These results stress the
need for a more realistic prior-uncertainty quantification and
falsification of prior hypotheses. Here, a purely random K-field
can be considerably improved by including sedimentological
observations that the advocated procedure is capable of taking
advantage of it.

Previous paragraphs do not integrate the joint heat and
solute breakthrough curves at the pumping well (located 5m
downstream from panel 3). Here, the deterministic model
solution calibrated on heat data only (Klepikova et al., 2016),
including now both the density and viscosity changes, fails to
predict the heat and solute tracers behaviors at the pumping well
(Figures 4A,B. Note that the solution depending on density only
is not realistic and is not shown).

Monte-Carlo simulations, with the random K-field without
trend (scenario A), surround heat and solute observed data
(Figures 4A,B), adding indications that spatial heterogeneity is
necessary to generate realistic predictions. The best simulation
for the observed heat signal using equation (2) (R2 = 0.96,
RMSE = 0.01 ◦C) is however different than the one for the
solute signal (R2 = 0.99, RMSE = 1.2·10−5 g L−1). Thus,
the best heat simulation poorly predicts the solute signal and
vice versa (Figures 4A,B). For the random K-field with the
vertical downwards increasing K-trend (scenario B), the heat
breakthrough at the pumping well is not as well simulated
as in the intermediate panels and the solute breakthrough
concentrations are strongly underestimated, even though the
time occurrence of the peak seems to be correctly predicted
(Figures 4C,D). Near the pumping well, the tracer is intensively
diluted due to the high pumping rate (30 m3h−1), making
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FIGURE 2 | Comparison between deterministic solution, real data and prior + best simulation for both random K-distribution scenarios for Pz19-up (Panel 3): (A)

without K-trend (scenario A), (B), with a downwards increasing K-trend (scenario B), for Pz15-up (Panel 2): (C) without K-trend, (D) with K-trend, and for Pz11-up

(Panel 1): (E) without K-trend, (F) with K-trend (10 best heat simulations at each observation point are in Supplementary File). The index of the best solution refers its

number within the 250 simulations.
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FIGURE 3 | Variation of density and water viscosity influenced by the injected heat observed at PZ11-up as absolute change (A) and relative change (B). (Hoffmann

et al., 2018).

FIGURE 4 | Heat and solute simulation results at the pumping well ignoring any trend (A,B) and considering a downwards increasing K-trend (C,D) compared with

the deterministic density-viscosity model. Best heat and solute simulation were used to visualize the complementary tracer (Note that the simulations which consider

only the density dependence to temperature and not the viscosity dependence are not shown and rejected as they are not realistic enough).
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the heterogeneity around this well crucial for explaining the
breakthrough curve (see in Discussion section).

The K-fields corresponding to the best heat and solute
simulations describing the tracer breakthrough curves at the
pumping well using scenario A are largely heterogeneous
(Figures 5A,B). However, for both tracers, K-distributions are
slightly different, which explains in parallel to the less good
modeling of the tailing (Figure 2), why scenario A is not
suitable to adequately describe complementary tracer movement
(Figures 4, 5). The injected heat forms a plume around the
injection well enlarging with time by conduction and advection,
while its temperature amplitude decreases (Figure 5C). Further,
the solute prefers mainly the high hydraulic conductivity
pathways, faster in the lower part than in the upper part
(Figure 5D). Both tracers are best described by two different
parameter distributions and only stochastic inversion could
here result in simulations fitting both, while deterministic
inversion finding one global parameterization, may tend to
derive a smoothed parameter distribution poorly fitting the
data. However, it should be stressed that this prior (scenario
A) would not be able to reproduce the observations in
intermediate panels. For the K-field and tracer distribution of
scenario B (Supplementary Material Figure 5), the best solute
tracer simulation displays a strongly heterogeneous model with
preferential flow paths, while for heat, a more homogenous K-
field respecting the observed trend in the borehole drillings
sedimentology (Figure 1B) is found.

These single local best realizations, for each observation point,
do not explain the full data set, further highlighting the role
of local heterogeneity on the measured signals. This probably
explains why the global fit of the deterministic solution is poor
and highlights the need for more realistic priors instead of trying
to find unique parameterization describing reality.

For the Hermalle-sous-Argenteau test site, the prior
considering a vertical downwards increasing K-trend seems to
better represent the overall hydraulic conditions (until panel 3)
and constitutes a better prior assumption than neglecting any
K-trend. However, it seems to be somewhat falsified between the
last panel and the pumping well in terms of solute concentration
amplitude. This suggests that the current parameterization still
oversimplifies the heterogeneity of the deposits at a larger scale
and cannot be used for inversion or prediction. New hypotheses
should be formulated, or new data collected to identify the
specific processes taking place between the third panel and the
pumping well. Existing ERT transects (Hermans et al., 2015a,b)
and newly acquired cross-hole GPR sections are promising tools
to image heterogeneity patterns with a higher resolution and at a
larger scale.

Distance Based Sensitivity Analysis
The 250 generated models from scenario B are further used
for the distance-based global sensitivity analysis. The distance
metrics (Equation 2) between pairs of Monte-Carlo simulations
is calculated and used as starting point for DGSA. The
sensitivity analysis investigates the global simulation parameter
values within their given range (Table 1) and the spatial
heterogeneity. To analyze spatial heterogeneity, the K-fields

from Monte-Carlo simulations are represented using orthogonal
basis vectors computed through principal component analysis
(PCA) with 250 observation rows and 140,140 corresponding
cell K-values as columns (in total: 35,035,000K values). Only
the first 15 principal components are retained and used as
an approximate measure of heterogeneity. While, those 15
first dimensions explain only 23% of the total variance in K,
the first three principal components together describe 9.6%
of the variance. The small amount of explained variance is
related to the strongly variating K-values from one simulation
to the other. The 15 corresponding PCA scores are further
included in the sensitivity analysis to characterize the role of
spatial heterogeneity.

The sensitivity analysis results for the heat signal at the
panels 1, 2, and 3 in relation are presented in Figures 6A,C,E.
Figures 6B,D,F show the corresponding classification of the
250 models in three clusters. Clusters are used to group the
simulations according to their response (i.e., the first cluster
contains simulations with high temperature far above the
reference data, the second contains simulations with temperature
below the reference data and the third group consists in
simulations around the reference data). Using three clusters gives
satisfactory results in this case.

The sensitivity of a parameter is computed based on the
difference between its cumulative distribution function (cdf)
in each of the cluster compared to the global cdf. Significant
differences mean that the parameter is considered as sensitive.
For all panels, the resampling quantile of the distance is α = 0.95
(we refer to Park et al. (2016) for the detailed explanations of
parameters used in DGSA).

The global “log(Kvar)” is the most sensitive parameter at
Panel 1 and 2 (Figures 6C,E). Its sensitivity decreases within
the third panel (Figure 6A) while “log(Kmean)” is getting more
sensitive (Figures 6A,C,E). The influence of the first component
of spatial heterogeneity “PC1” is large at every distance from
the injection well. The increasing sensitivity and influence of
“PC1” with distance from the injection well is related to the
hydraulic conductivity in the direction of the gradient, which
indicates a strong link to preferential pathways (Figures 6A,C,E).
For the first two panels, most PCA components are sensitive.
This is in accordance with the previous results, showing that
the introduced K-trend is crucial to explain the observed
breakthrough curves (section Prior uncertainty investigation).
The global parameter “gradient” shows a decreasing sensitivity
with distance. The sensitivity of the gradient highlights the
influence of uncertain boundary conditions on the simulations.
The fluxes around the injection well are crucial to initiate the
tracer transport (Figures 6A,C,E). The global “porosity” and
the “azimuth” are, at all three panels, a much less sensitive
parameter for the strong advective system at Hermalle-sous-
Argenteau. The variance explained in the low dimensional
space is relatively constant over all three panels, but the
clusters are getting closer to each other (Figures 6B,D,F).
The sensitivity analysis further indicates that the scale of
heterogeneity playing a role on the tracer distribution at
panel three is different. The vertical K-trend is not sufficient
anymore to explain the observations. It underpins that more
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FIGURE 5 | Simulated results at the pumping well using a prior with no K-trend distribution (Scenario A): Spatial K-distribution as obtained for the picked up best

simulation for (A) heat data and (B) for the best napthionate simulation. Corresponding simulated tracer plumes for best simulation for (C) heat data and (D) for

napthionate data. Under each 3D visualization, a vertical 2D profile is shown along the gradient axis from the injection well through panels 1, 2, and 3, and down to the

pumping well.

realistic imaged preferential pathways (e.g., using improved
imagingmethods like full-waveformGPR inversion) are probably
necessary to understand the heterogeneity surrounding the
pumping well.

The sensitivity analysis results at the pumping well
using the heat and solute signals using the 250 simulation
of scenario B are presented in Figure 7. For the heat
and the solute signals, the “log(Kmean)” is more sensitive
than the “log(Kvar)” and the “PC1,” “PC2,” and “PC3.”
The local heterogeneity is still sensitive and important to
consider, but the results are less sensitive to small scale
heterogeneity as mostly “PC1” to “PC4” are sensitive. For
solute transport, “porosity” is also a sensitive parameter to be
considered (Figures 7A,B), probably due to its direct effect
on advection velocity. The analysis supports that simulating
complementary tracer behavior requires a realistic description
of heterogeneity.

The sensitivity analysis of the pumping well simulations
using scenario B is extended by using alternatively the synthetic
velocity ratio vheat/vsol as prior response for the DGSA (Figure 8).
Replacing the breakthrough curve as model response by the

velocity ratio vheat/vsol, averages the model response over the
complete transport path.

As a reference, the field measured derived modal velocities at
the peak time of heat (i.e., Rth = 1 ≥ wavefront velocity) and
solute at the pumping well are:

vsolpeak
vthpeak

=
2.05 · 10−4 m s−1

1.08 · 10−4 m s−1 = 1.90 (5)

Using the assumption of Rth = 1, for scenario B (Figure 8A), the
obtained velocity ratios are less spread around the observed data.
Many solute velocities forecasts have the same value, but with
a different corresponding heat velocity (Figure 8A). This is an
indication that the heat signal provides more information, while
the variance of the solute velocity responses decreases.

Applying now the DGSA using this alternative prior response,
the sensitivity of “porosity” is now less strong than in the solute
case, but stronger than in the heat case (Figures 7, 8B). Then,
similar to panel 1 to 3, the “log(KVar),” “gradient,” and “PC1” are
the most sensitive parameter at the pumping well (Figure 8B).
Interestingly, the velocity ratio seems to be not directly sensitive

Frontiers in Earth Science | www.frontiersin.org 10 May 2019 | Volume 7 | Article 10849

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Hoffmann et al. Prior-Uncertainty Investigation in Alluvial Sediments

FIGURE 6 | Distance-based sensitivity analysis using the scenario B heat signals at (A) Panel 3, (C) Panel 2, (E) Panel 1, related to the corresponding cluster

cumulative distribution function (CDF) for (B) Panel 3, (D) Panel 2, and (F) Panel 1. The square within each cluster in (B), (D), and (F) is the center of mass of

each cluster.

to “log(Kmean),” but on the global heterogeneity (Kvar and range),
spatial heterogeneity (PC1) and fluxes (gradient). This is a clear
indication that preferential flow paths, being the result of an
interaction between K-heterogeneity and gradient, is the main
reason for the variation in velocity ratio.

At this stage, it can be assessed that the joint heat-solute
tracer experiment results are indeed better represented by a
K-distribution with a vertical downwards increasing K-trend.
The prior with the K-trend is the current best heterogeneity
representation for Hermalle-sous-Argenteau test site between
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FIGURE 7 | Sensitivity analysis at the pumping well using the scenario B for (A) heat and (B) solute signals.

FIGURE 8 | (A) Velocity ratio vheat/vsol comparison using the peak times of the heat and solute breakthroughs generated with Monte-Carlo using Scenario B

(K-Trend). (B) Sensitivity results using the derived velocity ratio vheat/vsol as prior responses for DGSA.

the injection well and panel 3. However, this K-trend is not
representative for the part of the simulated domain between
the third panel and the pumping well as shown by the Monte-
Carlo prior investigation and the DGSA results. This highlights
how important a not-falsified prior is for robust decision
making, and that every model containing approximations
must be use with care for predictions. Furthermore, if the
proposed prior seems valid at the local scale, it is not
sufficient to explain all observations made at the site. The
latter probably requires the inclusion of another level of
heterogeneity, accounting for the change of behavior for
the tracer.

DISCUSSION

In the field tracer experiment, the heat tracer arrives 1 day after
the solute transport and the recovered energy at the pumping
well is very low. This delay is a consequence of the different
transport processes, mainly the retardation effect related to heat
conduction in the solid phase and in the immobile water. For
example, the heat tracer test provides useful information to better
understand the matrix processes quantifying the immobile water
part. This complementary behavior helps to better characterize
the actual transport processes occurring in the aquifer, in
particular the preferential flow paths.
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The previous existing calibrated model was based on heat
tracing data only. The new numerical model implemented
in the framework of the presented study, showed that the
dynamic viscosity has a strong impact on simulated temperature
values even in a narrow temperature range. It clearly appeared
that this model was failing to reproduce the observed solute
concentrations at the pumping well. All attempts to find
one single deterministic model fitting both tracer data failed,
illustrating the difficulty to approximate solute advection and
heat conduction/storage with one single (smoothed) spatial
parameter distribution. Even if a global minimum was found,
any prediction would remain based on a simplified model with
limited prediction capabilities.

To overcome limitations of the deterministic approach,
and to avoid full stochastic inversions, performing prior
parameter uncertainty investigation using multiple Monte-Carlo
realizations offers the possibility to generate more geologically
realistic subsurface parameter distributions. Compared to
transdimensional inference, which although stochastic in essence
and would involve some degree of simplification or parsimony
(Sambridge et al., 2012), keeping the full variability in the model
is necessary to generate realistic predictions. Thus, in this study,
the analysis of those simulations revealed that increasing the
spatial heterogeneity of the alluvial deposits allows to better
reproduce the observed breakthrough curves. The considered
prior uncertainty generates a range of possible outcomes
surrounding the observed data. The specific behavior of the
breakthrough curves, such as the sharp decrease of temperature
after the peaks, is much better reproduced. It is also clearly shown
that approximations made in deterministic approaches (e.g.,
using smoothed K-distributions), strongly influence the results
and contribute to higher uncertainty. Furthermore, it appeared
that modeling the deposits with two separate layers did not allow
the reproduction of the tailing part of the breakthrough curves,
whereas a continuous distribution with a vertical downwards
increasing trend was more able to model this behavior. However,
it was also shown that the used vertical K-trend seems not to be
appropriate, i.e., between the third panel and the pumping well.
Investigating prior uncertainty here has greatly helped to update
the previous conceptual ideas that were mostly based on simple
investigations like borehole log description.

The proposed prior with the K-trend is consistent with all
observation points (Panel 1 to 3) except the pumping well and
Pz18, 19 in the lower aquifer part. Between panel 3 and the
pumping well, there are likely preferential flow paths influencing
the tracer behaviors, not properly described by the proposed
prior. The latter was mainly built based on the high borehole
density from intermediate panels. In the original log description
of the pumping well (drilled in the 90’s), there is no grain size
trend described. One possibility is therefore that the strongly
heterogeneous alluvial deposits cannot be described by a single
simplified parameterization (here Gaussian simulations with a
trend) but must include more heterogeneity at the larger scale
(for example different vertical trend). It appears that lateral
variations occur in the aquifer, stressing the need for a more
global description of the heterogeneity, including larger scale
sedimentological structures such as channels, and advanced
integration of secondary data such as geophysical tomographies

(e.g., Hermans et al., 2015a). Indeed, geophysical data acquired
on the site showed lateral variations in electrical resistivity related
to gravel structures (Hermans and Irving, 2017). A trade-off
between the acquisition of new data to refine understanding and
cost-affordable field studies must be found. In this framework,
the combination of hydrogeological testing (such as joint-heat
tracer tests) with static and time-lapse geophysical data (such as
GPR and ERT) at an early stage of site characterization is the key
to acquire informative data sets at limited costs.

The prior uncertainty analysis also reveals that each specific
temperature breakthrough observation is better reproduced by
a different prior realization and, therefore, spatial parameter
distribution. This clearly identifies spatial heterogeneity as
having a major influence on the simulation results. The
solute tracer breakthrough at the pumping well is better
represented with models showing preferential flow paths,
largely influencing advective-dispersive processes. In contrast,
temperature observations in the intermediate panels and at the
pumping well seem to be better represented with a slightly more
homogeneous model, as conduction is indeed important. This
might indicate that a significant part of the pore space is occupied
by immobile water. This interpretation shows clearly that the
previous conceptual model represented by Peclet numbers of
300 (in the upper layer) and 14,000 (in the lower layer) is not
adequate. Furthermore, it shows that the use of a heat tracer
alone is not necessarily a good choice to calibrate a model,
especially if solute transport should be predicted. Trying to use
one single deterministic model parametrization is limited here
by two points: (1) complementary tracers cannot really predict
each other with classic underlying simplifying assumptions and
one parametrization and (2) heterogeneity patterns are complex,
meaning that highly parameterized inversion might fail to
converge toward a realistic solution.

Similarly, stochastic inversion or optimization techniques
might be very complicated to tune to convergence in such
a complex layout. Here starts the potential of advanced
prediction approaches such as Bayesian Evidential Learning. An
informative prior sampled by multiple realizations containing
complementary tracer processes might be directly used for
prediction if a statistical relationship can be found between data
and prediction variables. This kind of approach is probably very
promising for the future of hydrogeological modeling where
the full, explicit inversion fails due to the lack of sufficient
qualitative data to constrain the geometry of the deposits. Some
uncertainty component might be irreducible and impossible to
resolve through inversion methodologies. Approaches such as
BEL, combined with an in-depth prior uncertainty analysis, can
therefore be a good way to account for those in prediction
uncertainty assessment in a computational efficient way.

The fact that a global sensitivity analysis shows different
sensitivity patterns for heat and solute responses, here the
porosity, is another indication of the complementarity between
the tracers. If heterogeneity is more realistically represented by
the K-Trend distribution (scenario B), heat seems, in comparison
to solute, insensitive to porosity. Although, the Hermalle-
sous-Argenteau site is characterized by a strongly advective
system, the heat data set remains dominated by the effect
of conduction. Heat is mainly stored around the injection

Frontiers in Earth Science | www.frontiersin.org 13 May 2019 | Volume 7 | Article 10852

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Hoffmann et al. Prior-Uncertainty Investigation in Alluvial Sediments

well and is only slightly and very slowly withdrawn from
the reservoir at the pumping well. Some parts of the heat
are transported fully through conduction (immobile water and
solid matrix).

The presented study also shows that using the
Euclidean distance for the distance-based global sensitivity
analysis, might be of limited interest for data sets
containing strong complementary behavior. It can result
in different sensitivities between needed parameterization
for the related output. An alternative proposition is
to use the velocity ratio as a proxy for the model
response, as it allowed to clearly identify preferential
flow paths as the main explanation for the difference in
tracer behaviors.

CONCLUSION

New innovative imaging methods, namely joint heat and
solute tracer tests were combined with advanced field data
analysis tools to better assess preferential pathways and
associated uncertainty in complex alluvial deposits. This
paper demonstrates the limitation of deterministic inversion
approaches in capturing the complementary behavior of
heat and solute tracers. To overcome those limitations,
a prior-uncertainty investigation and a heat-solute velocity
comparison are applied. Monte-Carlo simulations are used to
investigate the range of simulated data and are complemented
by a distance-based global sensitivity analysis. The main
results are:

1) Heat injection with absolute measured temperature signals
between 10 and around 40 ◦C, as observed for common heat
tracer tests, requires considering dynamic viscosity effects in
the simulations.

2) Although much effort has been done to calibrate a
deterministic model on the complex heat tracer data, the
underlying approximations always yield a too smooth K
distribution, failing to predict the solute breakthrough curve.

3) In comparison to (over) simplified deterministic models,
stochastic models allow for the relaxation of those
approximations, and also consider K-fields in conjunction
with heterogeneity. Thus, stochastic models using Monte-
Carlo reproduce measurements significantly better. They can
better reproduce specific behaviors of breakthrough curves
(e.g., the tailing). A simple falsification procedure allows
to easily reject prior hypotheses inconsistent with the data.
It reveals that a single parameterization is not sufficient to
fully describe the complex behavior observed at Hermalle-
sous-Argenteau. Due to complex spatial heterogeneity and
different behavior of the tracers, the simultaneous fitting of
all observation points seems to be almost impossible using
explicit inversion approaches. Approaches focusing on the
prediction and avoiding model inversion (e.g., such as BEL)
might be more successful.

4) The global sensitivity analysis reveals that heat seems to
be less sensitive to advection parameters like porosity than
solute, as was expected based on previous studies. For the

strong advective system at Hermalle-sous-Argenteau, heat
transport does not seem to be affected by porosity, as
long as realistic heterogeneity is considered, using a vertical
downwards increasing K-Trend distribution respecting the
borehole sedimentology. Indicators linked to local spatial
heterogeneity are sensitive parameters for both heat and
solute transport, stressing the need to use an adequate prior
description of the deposits, a prerequisite for any stochastic
Bayesian inversion.

5) The tracer velocity comparison shows that the prior
and the sampled Monte-Carlo simulations yield a better
representation of the joint heat and solute behavior as
observed on the field. This is a key point for further research
steps in modeling and predicting the transport processes in
this aquifer.
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Hydrogeophysics is increasingly used to understand groundwater flow and contaminant

transport, essential basis for groundwater resources forecast, management, and

remediation. It has proven its ability to improve the characterization of the hydraulic

conductivity (K) when used along with hydrogeological knowledge. Geophysical tools

and methods provide high density information of the spatial distribution of physical

properties in the ground at relatively low costs and in a non-destructive manner. Amongst

them, the Electrical Resistivity Tomography (ERT) has been widely used for its high

spatial coverage and for the strong theoretical links between electrical resistivity (ρ)

and key hydrogeological parameters, such as K. Historically, ERT data processing

was based on isotropic hypothesis. However, the unconsolidated aquifers in Canada

reveal in most cases a strong anisotropic behavior for K both with in situ or laboratory

measurements. Recently, electrical anisotropy has been considered model-wise, but it

is seldom considered as an interpretation tool or in the characterization process of the

anisotropy of K. In order to evaluate the potential of ERT to assess the anisotropy of

electrical resistivity, we developed a forward and inverse modeling code. These codes

have been validated and tested on a realistic synthetic case reproducing the behavior of

a real aquifer extensively characterized, the site of Saint-Lambert-de-Lauzon in Quebec

(Canada). On this site, innovative in situ hydraulic tomography has revealed a strong

anisotropy, with up to three orders of magnitude between horizontal and vertical K

components. In order to confirm the link between in situ K- and ρ-anisotropies, an

ERT survey has been performed, using the same wells as for the hydraulic tomography.

The inversion confirms a strong link between K- and ρ-anisotropies. It demonstrates the

suitability of the anisotropic ERT approach coupled with well measurements to provide

better estimates of K and its anisotropy at the scale of a site.

Keywords: hydrogeophysics, anisotropy, electrical resistivity tomography, hydraulic conductivity, modeling,

groundwater
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1. INTRODUCTION

Understanding groundwater flow and contaminant transport in
the subsurface for water management and aquifer remediation
generally requires a good knowledge of the spatial distribution
of hydraulic properties within the aquifers. The hydraulic
conductivity (K) is a key parameter to assess as it affects both
the direction and velocity of flow and contaminant in aquifers.
K can also vary over several orders of magnitude within a
same geological unit, which highlights the importance of having
accurate high-resolution and high-coverage estimates to reduce
errors in groundwater flow and mass transport (de Marsily
et al., 2005) and improve groundwater management. While
several methods have shown their potential to estimate K at
different scales (Butler, 2005), few have been focused on the
characterization of its anisotropy that can greatly affect the
outcomes of different hydrogeological in situ problems, such as
groundwater recharge (e.g., Hart et al., 2006) well capture zone
(e.g., Barry et al., 2009), and spreading of contaminant plumes
(e.g., Falta et al., 2005).

Indeed, K-anisotropy can be obtained from laboratory
permeameters on sediment or rock samples collected in the
field (Wenzel and Fishel, 1942). However, the difficulties in
the experimental procedures related to sample collection and
manipulation may restrict reliable estimations of K-anisotropy
for certain kinds of materials. Moreover, permeameter estimates
may require an up-scaling to field conditions to be representative.
In order to overcome this burdens, several authors have proposed
different hydraulic tests in wells to estimateK-anisotropy, such as
the dipole-flow test using in one well (Kabala, 1993; Zlotnik and
Ledder, 1996; Xiang and Kabala, 1997; Zlotnik and Zurbuchen,
1998; Hvilshøj et al., 2000; Sutton et al., 2000; Zlotnik et al.,
2001) or two wells (Goltz et al., 2008), the single-well vertical
interference test (Burns Jr et al., 1969; Hirasaki et al., 1974;
Onur et al., 2002; Sheng, 2009; Paradis and Lefebvre, 2013), and
hydraulic tomography (Paradis et al., 2015a, 2016a,b).

While previous hydraulic tests were shown to provide
invaluable estimates of K-anisotropy in real field conditions,
these methods are time consuming to operate and can thus only
provide very local information. In this study, we propose using
geophysical data to complement hydraulic tests as geophysical
methods can provide broad pictures of the subsurface in a
considerably shorter amount of time than hydraulic methods.
Electrical methods, in particular direct current (DC) methods,
are frequently used to infer porosity and K (Archie, 1942; Lesmes
and Friedman, 2005). However, only a few studies have been
done to study the anisotropy of the resistivity of unconsolidated
sediments. Anisotropy of electrical conductivity (ρ) is a well-
known phenomenon (Maillet, 1947) but its accurate in situ
estimation has only been studied recently (Greenhalgh et al.,
2010; Kenkel and Kemna, 2016; Gernez et al., 2018). Moreover,
there is a theoretical equivalence between K-anisotropy and ρ-
anisotropy in unconsolidated sediments were the electric current
flows in the conductive saturated pores (Hubbard and Rubin,
2005). Recently, laboratory investigations have demonstrated
strong similarities between ρ- and K-anisotropies on core
samples (Adams et al., 2016). In addition, recent field works have
shown that taking into account ρ-anisotropy in DC surveys leads

to more accurate estimations of both ρ values and structures
(Pekşen and Yas, 2018), and have shown reasonable estimates
of hydraulic anisotropy in slightly anisotropic aquifer systems
(Yeboah-Forson and Whitman, 2014).

The objective of this paper is to demonstrate the ability of
DC methods to quantify ρ-anisotropy and to illustrate how
it compares with K-anisotropy in a real case study. After
introducing the study area (section 2) and presenting theoretical
considerations related to ρ-anisotropy (section 3), we provide
methodological insights, through a synthetic case, related to
DC data acquisition to ascertain the presence of ρ-anisotropy
(section 4). Then, the methodology is applied for a real case
study known to be highly heterogeneous, and ρ-anisotropy
estimated through anisotropic inversion is compared to K-
anisotropy obtained with hydraulic tests at the study site to
strengthen the reliability of the proposed approach (section
5). This study exposes the capacity of DC surveys to improve
hydrogeological characterization.

2. STUDY AREA AND EVIDENCES OF
ANISOTROPIC CONDITIONS

The study area is located in Saint-Lambert-de-Lauzon (SLdL), 30
km south of Quebec City, Canada (Figure 1). The SLdL study
area is a 12 km2 sub-watershed surrounding a decommissioned
sanitary landfill site in an unconfined granular aquifer. The
surficial sediments composing the aquifer consists primarily of
Late Quaternary sandy and silty sediments that were deposited
in the receding Champlain Sea, which was an arm of the Atlantic
Ocean that invaded the St-Lawrence Valley at the time of the last
deglaciation (Bolduc, 2003). Deposition of the Saint-Lambert site
was controlled mainly by longshore currents that redeposited in
littoral and sublittoral settings that supplied the Chaudière River
paleodelta. This geological depositional environment leads thus
to sediment size ranging from fine sand to very fine silt with poor
to very poor grain-size sorting. Furthermore, this environment
showsminor proportions of clay (generally<20%). Clay inmajor
proportions (>50%) is only present below the cross-section
studied. The resulting superposition of finely layered sand and silt
sediments create very heterogeneous distribution of sediments at
centimetric to decametric scales along with more gradual lateral
transitions in these littoral and sublittoral sediments as a result of
changing energy levels along the Champlain Sea shorelines. The
depth of the granular aquifer varies in depth between 0 and 22 m,
the water table is generally within 2 m from the surface (Paradis
et al., 2014; Tremblay et al., 2014).

This site has been extensively characterized by previous
studies using different techniques, such as Ground Penetrating
Radar (GPR) and resistivity surveys, Cone Penetrometer Test—
Soil Moisture Resistivity soundings (CPT/SMR ), hydraulic tests
in wells and logging (Paradis et al., 2014; Tremblay et al.,
2014). These data allowed to obtain valuable information on
the structure of the aquifer system (aquifer and aquitard layers)
including information on its heterogeneity. Particularly, several
observations suggest that the heterogeneous nature of the
sediments at a fine scale may induce anisotropy at larger scale
posing challenges to the interpretation of flow and transport
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FIGURE 1 | Saint-Lambert-de-Lauzon (SLdL) study area. It is located (A) in Québec, Canada, (B) 30 km south of Québec City between to the Chaudière and

Beaurivage rivers. (C) Geology and characterization details of the study area. (D) Anisotropic hydraulic and electrical tomography site corresponding to the “W” on (C).

ERT acquisition is done using an IRIS Syscal Pro system. Nine and Eight electrodes are, respectively, immersed in P17 and P21. Seventeen electrodes are planted

between P17 and P21. P17 and P21 are separated by 8 m, electrodes separation is 1 m inside the wells and 0.5 m at the surface. Adapted from Paradis et al. (2015b).
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processes in this environment. Anisotropy can be due to the
microscopic scale organization of theminerals (micro or intrinsic
anisotropy, e.g., crystals ordered structure or oblong grains) or,
as is the case here, to the macroscopic structural elements of
the ground (macro or extrinsic anisotropy, e.g., fractures or
alternating heterogeneous beds). First, the comparison of 59
vertical hydraulic conductivity (KV ) estimates made on 15 cm
undisturbed sediment samples with a laboratory permeameter
to horizontal hydraulic conductivity (KH) values obtained from
high-resolution multi-level slug tests on similar intervals reveals
a strong K-anisotropy even at this small scale. K-anisotropy (or
the ratio of KH on KV , KH/KV ) was indeed up to two orders
of magnitude (Paradis and Lefebvre, 2013). Then, numerical
inversion of vertical interference slug tests and hydraulic
tomography experiments indicate that K-anisotropy should be
considered to match hydraulic responses measured in wells
(Paradis and Lefebvre, 2013; Paradis et al., 2016a). For a 60 cm
vertical resolution of the numerical grid, KH/KV values ranged
from near isotropy (1) to more than 100. Moreover, comparison
of high-resolution cone-based ρ measurements (SMR probe)
with collocated estimates of the ρ computed with surface-based
surveys (ERT) revealed a bias between the two data sets (Ruggeri
et al., 2014). For instance, the magnitudes of the SMR probe
data are generally higher than those of the ERT surveys. This
suggests that given the SMR probe sense essentially the horizontal
component of ρ due to the configuration of its electrodes (spaced
vertically by 9 cm), lower ρ values from ERT surveys are the
results of the influence of the ρ-anisotropy induced by the
heterogeneous nature of the sediments (section 3.2.2). Finally,
those evidences motivate the need to develop a geophysical
approach able to handle this anisotropy to provide insights about
K-anisotropy in order to better characterize aquifer systems for
groundwater flow and contaminant transport studies.

3. ELECTRICAL RESISTIVITY ANISOTROPY

3.1. Theoretical Considerations and
Definitions
Electrical anisotropy refers to the directional dependence
of electrical conductivity or resistivity which results in the
directional dependence of the measured potential fields. This
means that the current can preferentially flow in certain
directions compared to others. Ohm’s law establishes the
relationship between an injected electric current in the ground
and the induced potential field (Dey and Morrison, 1979). In
order to take into account the 2D electrical anisotropy, the scalar
conductivity σ in Ohm’s law is replaced by the conductivity
tensor ¯̄σ =

[

σH 0
0 σV

]

(or its inverse, the resistivity tensor
¯̄ρ = ¯̄σ−1), with σH and σV being the conductivity values in
the horizontal and vertical directions, respectively (Greenhalgh
et al., 2009). Anisotropic Poisson’s equation has the following
expression in the 2.5D case, i.e., 2-D resistivity structure (plane
invariance) and 3-D current flow (Zhou et al., 2009):

∇ · ( ¯̄σ∇φ̃)+ k2yσHφ̃ = −
I

2
δ
(

r(x, z)− rs(xs, zs)
)

(1)

where φ̃ is the potential in the frequential domain, ky is the
wavenumber, r(x, z) are the coordinates in the computational
domain or on its boundaries, I is the current source intensity
located at rs(xs, zs) and δ is the Dirac function. The coefficient
of anisotropy is defined as λ =

√
σH/σV =

√
ρV/ρH ≥ 1:

anisotropy increases as λ departs from the value of 1 (λ =

1 corresponds to isotropy). In this study, we will consider an
H/V anisotropy. More complex geometries are handleable by the
numerical modeling tool we developed to this end (AIM4RES),
but they will not be investigated in this study.

3.2. Diagnosis of Electrical Anisotropy
The next sections aim at demonstrating the effects of electrical
anisotropy on the interpretation of ERT data using isotropic
ERT inversion. We take advantage of three particular effects to
propose an electrical diagnosis to detect anisotropy on measured
electric potentials. These effects are observable without the need
for a complete characterization study, both in terms of field and
numerical resources.

3.2.1. Importance of Data Acquisition Protocols
The measured electric potential field is linked to the amount
of electric current passing through the different heterogeneous
part of the ground. Hence, in the case of surface ERT
measurements, a thin conductive anisotropic layer and a thicker
less conductive isotropic layer can produce the same electric
potential differences (equivalence principle, Maillet, 1947). In
other words, it is impossible to distinguish between isotropic
layer response from anisotropic layer response using surface
ERT data. Consequently, isotropic ERT inversion (Loke, 2001;
Bouchedda, 2010) of surface anisotropic data always converge
to an equivalent resistivity model which is not representative
of the true electrical state of the ground, leading to erroneous
resistivity model of the earth. To overcome this problem,
anisotropic ERT acquisition and inversion should be used.
To address the data directionnality problem, we unavoidably
need borehole electrodes along with surface electrodes. In
that way, anisotropic ERT inversion requires an optimization
of the acquisition protocol, in order to converge toward the
true solution.

Nevertheless, in presence of anisotropy, isotropic inversion of
ERT directional data leads to unrealistic solutions. It is explained
by the fact that there is no physical isotropic solution fitting
both surface and inhole data. To demonstrate this effect, two
data experiments were simulated using only surface electrodes
in the first one and both borehole and surface electrodes in the
second one. The resistivity model consists of two horizontally
anisotropic layers (Figure 2A). The first layer has a thickness h =

4 m with ρH = 100 �.m and ρV = 400 �.m. The second layer is
a semi-infinite space with ρH = 10 �.m and ρV = 40 �.m. For
the whole section, the anisotropy coefficient λ is 2.

The first experiment was performed using only surface
Wenner array data. We assumed the convergence is reached as
the RMSE values are very low (0.0026%), but the inverted model
(Figure 2B.1) is not consistent with the true resistivity model
(Figure 2A) neither in terms of amplitude of the resistivity nor
in terms of geology. According to the theory, the resistivity of
the upper layer appears to be

√
100 · 400 = 200�.m and the
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FIGURE 2 | (A) Synthetic model, constituted of an anisotropic layer over an anisotropic semi-infinite space. Upper layer: ρH = 100 �.m and ρV = 400 �.m.

Semi-infinite space: ρH = 10 �.m and ρV = 40 �.m. λ = 2 for the whole model. Electrodes (white dots) are located at the surface and in-hole borehole at x = 14m.

In yellow is shown an example of surface-borehole measure angle (D). (B) (section 3.2.1) Isotropic inversions of potentials acquired using (B.1) only surface electrodes

and (B.2) surface and borehole electrodes (borehole at x = 14 m). (C) (section 3.2.2) Comparison between logged (ρlog, blue curve) and inverted (ρinv, red curves)

resistivities: (C.1) isotropically inverted resistivity. (C.2) ρH from inversion vs. ρlog. (C.3) ρV from inversion vs. ρlog (borehole at x = 20 m). The logged resistivity is the

direct resistivity measurement at x = 20 m, therefore the blue curve is the same for all (C.1–3) graphs. (D) (section 3.2.3) Relative error behavior as a function of the

measure angle θ . The points are the error values, their color represents the associated dipole-dipole distance. Orange area represents a positive error, blue area

represents a negative error. (D.1) Relative error from an isotropic inversion of data acquired on an anisotropic model, displaying a sigmoid shape. (D.2) Relative error

from an anisotropic inversion of data acquired on an anisotropic model, relative error is close to zero and is not angle dependant (borehole at x = 25 m).

resistivity of the semi-infinite space appears to be
√
10 · 40 =

20�.m. In addition, the thickness of the upper layer appears to
be λ · h = 8m.

In addition to the previous Wenner surface array, a dipole-
dipole array in the borehole and a mixed surface-borehole
array were added to the acquisition protocol in the second
experiment. The isotropic ERT inversion result of these data
sets are presented in the Figure 2B.2. It can be clearly seen that
isotropic inversion of directional ERT data leads to unrealistic

solutions. Furthermore, the final misfit between measured data
and predicted data is high (RMSE = 22.1%) for isotropic
inversion in comparison to anisotropic inversion (0.002%),
showing that directional data are unable to fit an isotropic
solution. This can be used as an evidence of electrical anisotropy.

3.2.2. Effect of Anisotropy on ERT Measurements
In the case of horizontally anisotropic resistivity
model, it has been pointed out by Maillet (1947) and
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Keller and Frischknecht (1966) that the measurements made
in the horizontal direction are equal to geometric mean of
horizontal and vertical resistivity components, while the
measurements made in the vertical direction are equal to
the horizontal resistivity components. This is the paradox
of electrical resistivity anisotropy: measurements along
vertical profiles in the case of layered anisotropic model are
sensitive to horizontal component as shown in our synthetic
model example. For formal demonstration please see Lüling
(2013). Indeed, electrical resistivity logs can be used as in
situ measurements of the horizontal resistivity ρH that can
be introduced as a constraint in the inversion system or
employed in combination of surface ERT data to diagnose
the anisotropy.

In our case, the electrical resistivity logging was measured
using a CPT-SMR instrument which does not require a well
installation, simplifying its implementation. The probe is 5 cm
thick and 9 cm long. Note that the small probe diameter and the
small electrodes separation make the hole effect negligible and
the measured resistivity is only sensitive to ρH .

In order to demonstrate the effectiveness of resistivity well logs
as anisotropy diagnosis tool, let us compare well logs resistivities
and estimated resistivities from isotropic ERT inversion of
surface data obtained on an anisotropic resistivity models. When
isotropic ground is considered, both resistivities are expected to
be similar. For horizontally anisotropic ground (as in SLdL), well
log resistivities are equal to horizontal resistivity components
whereas isotropic ERT inversion returns an equivalent resistivity
model which combines both horizontal and vertical resistivity
components (equivalence and paradox effects). In other words,
the difference between the two resistivities can be very important
depending on the value of anisotropy coefficient. Consequently,
any difference between the two resistivities is an indication of the
presence of anisotropy.

To illustrate the anisotropy diagnosis using synthetic model
let consider the previous two layered anisotropic model
(Figure 2A). Figure 2C.1 shows the comparison between the
electrical resistivity logging (blue curve, e.g., obtained with a
CPT-SMR logging at x= 14 m) and the corresponding resistivity
(red curve) estimated using the isotropic ERT inversion of
surface data. Both curves depart from each other, indicating the
presence of anisotropy. Figures 2C.2,C.3 show the comparison
between the same electrical resistivity logging and collocated
horizontal and vertical resistivities obtained from anisotropic
ERT inversion of surface and borehole data. As logged resistivity
is carried along a vertical profile, it is only sensitive to
the horizontal resistivity component of the ground and thus
departs from the estimated vertical resistivity of anisotropic
medium which confirms the validity of our methodological
approach to quantify the anisotropy. Please see references for
more details.

3.2.3. Relative Error vs. Array Angle
To assess the effect of anisotropy on data misfit error of isotropic
ERT inversion, we consider the same two layered synthetic model
as in sections 3.2.1 and 3.2.2. The data acquisition is simulated
using only surface-borehole data. The current electrodes are

located in wells and the potential electrodes are located at
the surface. Array configuration were made using 50 surface
electrodes and 15 boreholes electrodes. Electrode spacing is 1 m.
Centers of each bipole describe a skew line with the horizontal,
forming an angle θ (Figure 2A). The simulated potential data
(φtrue) are isotropically inverted. The data misfit relative error
is computed as the normalized difference between the potential
data calculated using the invertedmodel (φcalc) and the simulated
potential data (φtrue):

φcalc − φtrue

φtrue
∗ 100 (2)

Figure 2D displays scatter plots of data misfit relative error as
function of array angle θ for isotropic and anisotropic ERT
inversion. For angles between 0 and 45◦, the relative errors are
mostly negative, meaning that φcalc are underestimated (blue
area in Figure 2D.1). The errors become positive for angles
between 45 and 90◦ (orange area in Figure 2D.1). This sigmoid
error shape is expected when an isotropic inversion is used to
invert ERT data of horizontally anisotropicmedia. The horizontal
resistivity component ρH is lower than the vertical resistivity
component ρV . At low acquisition angles, current flow is mainly
driven by ρH , and isotropic inversion underestimate the apparent
resistivity values. Conversely, current flow is mainly driven by ρV
at high angles and isotropic inversion overestimate the apparent
resistivity values. The underestimations (blue area at low angles)
compensate overall the overestimations (orange area at high
angles). The sigmoid shape arises for any borehole dipole depth.
For a given angle value, the more space is integrated—i.e.,
the deeper the borehole dipole–, they higher the local relative
error (as represented by the colored points in Figure 2D.1). The
total mean error of the measures is −2%. The same relative
error computation is made with anisotropically inverted data. It
shows an error close to zero (−2.75%) and independent of array
angles (Figure 2D.2). A sigmoid relative error shape between
true data and calculated data resulting from isotropic ERT
inversion is then a strong indication of anisotropy existence in
the ground.

The points addressed by section 3.2 give various ways to
detect electrical anisotropy by analyzing ERT data. It can
be difficult to gather information from multiple sources on
the field: lack of outcrops, incapacity of drilling numerous
wells (e.g., as needed for hydraulic tomography), or even total
absence of well. We propose this preliminary methodological
qualitative study to ascertain the presence of electrical anisotropy,
and then a fortiori to ascertain the presence of hydraulic
anisotropy. A full quantitative anisotropic study, in terms
of data acquisition and processing, represents more time,
resources and costs than a common isotropic study. Nevertheless,
processes comprehension and interpretations suffer greatly
from the lack of trustful data, and anisotropy consideration
might be unavoidable to produce better forecasts, reducing
the uncertainties and then the risks on the investigation or
engineering works.
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The next sections methodologically demonstrate the ability
of anisotropic ERT campaigns to quantify the electrical and
hydraulic ground anisotropies.

4. ANISOTROPIC ELECTRICAL
RESISTIVITY INVERSION FOR A
SYNTHETIC CASE

Before starting the real case study, a synthetic electrical model is
created on the basis of hydraulic tomography results. Forward
modeling is performed on this model to generate synthetic
electric potentials to simulate data acquisition in the field. After
that, anisotropic ERT inversion is used to reconstruct ρH and
ρV fields. The comparison between anisotropically inverted
fields and the original synthetic model will allow to assess the
robustness of the proposed approach to estimate ρ-anisotropy.
The section describes the synthetic model (section 4.1), the
optimal data acquisition protocol for anisotropic characterization
of the subsurface (section 4.2), and the details of the forward
and inverse modeling procedures (section 4.3) along with the
performances of inversion (section 4.4).

4.1. Synthetic Model
The synthetic model used in this numerical experiment mimics
the K fields model obtained from the hydraulic tomography
experiment measured between wells P21 and P17 (see Figure 1
for location) by Paradis et al. (2016a). The two wells are
separated by 8 m and the aquifer thickness is 9 m, which
corresponds to the approximate length of the wells. The K
fields were directly transformed in σ values by increasing
K by a factor 105, which were inverted to obtain ρ values,
to make it realistic of earth materials at the site (values
between 102 and 105 �.m, Figure 3). This transformation leads
to log(ρH) ∈ [1.30; 2.52]log(�.m) (Figure 3A), log(ρV ) ∈

[2.44; 4.60]log(�.m) (Figure 3B), and log(ρV/ρH) ∈ [1; 3]
(Figures 3C,D), which could be qualified as a moderate
anisotropic field. For the synthetic simulation, 34 electrodes
(black dots in Figure 3) were placed around the synthetic model:
every 1 m inside the wells and every 0.5 m at the surface.

4.2. Optimal Data Acquisition Protocol
As in the isotropic case presented in section 3, it is crucial to adapt
the data acquisition protocol given that electrode configurations
are not necessarily sensitive to the same subsurface features.
Different electrodes configurations do not have the same
sensitivity to anisotropy (Wiese et al., 2009; Greenhalgh et al.,
2010; Kenkel and Kemna, 2016). In particular, Bing and
Greenhalgh (2000) have detailed the use of cross-hole ERT. Thus,
configurations not sensitive to anisotropy should be avoided
as using them will lead the inversion toward an isotropic
(hence wrong) inverted solution. Using the synthetic model
previously described (Figure 3), nine quadrupoles configurations
were tested (Figure 4) to assess their ability to detect anisotropy
(Figure 5). Those quadrupoles use different combinations of
electrodes placed in wells and at the soil surface. The following
arrays were tested:

FIGURE 3 | Electrical resistivity synthetic model based on real case hydraulic

study results from Paradis et al. (2016a). The horizontal (A) and vertical (B)

resistivities ρH and ρV are the components of the anisotropic resistivity tensor
¯̄ρ. The anisotropy (C) shows locally up to three orders of magnitude. Black

dots represent the electrodes locations. The distribution of anisotropy is

represented on the histogram (D).

FIGURE 4 | Representation of the different subprotocols used during this

study in boreholes and at the surface. For each subprotocol, ◦ represent the

current electrodes C1 and C2 and × represent the potential electrodes

P1 and P2.
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FIGURE 5 | The sensitivity pattern is obtained from the Jacobian matrix (matrix of the potential derivatives according to the resistivity values of the model) computation

of the electrode quadrupoles on the synthetic model from Figure 3. (A) Sensitivity pattern relative to ρH and (B) Sensitivity pattern relative to ρV . Same subprotocols

as Figure 4. ◦ represent the current electrodes C1 and C2 and × represent the potential electrodes P1 and P2.
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• Two inline borehole protocols with the four electrodes in the
left (IB1) or right (IB2) borehole,

• One surface protocol with the four electrodes at the surface (S),
• Two cross-hole protocols with the current electrodes in the

same (XH1) or separated (XH2) boreholes,
• Two surface-borehole protocols using left (SB1, SB2) or

right (SB3, SB4) borehole, with both current electrodes (or
indifferently potential electrodes) in the borehole, the other
two electrodes at the surface (SB1 or SB3) or with one current
electrode and one potential electrode in the borehole, and one
current electrode and one potential electrode at the surface
(SB2 or SB4).

For each of these quadrupoles, the sensitivity of the electric
potentials to ρH and ρV was analyzed using values of the Jacobian
matrix, which is the matrix of the potential derivatives according
to the resistivity values of the model (Greenhalgh et al., 2009).

As each quadrupole have a distinct sensitivity pattern, several
observations can be made from Figure 5. First, inline borehole
(IB1, 1B2) and surface (S) configurations show larger sensitivities
close to the location of the electrodes, which limit the area of
investigation of the surveys performed with those quadrupoles.
On the other hand, crosshole (XH1, XH2) and surface-borehole
(SB1, SB2, SB3, SB4) quadrupoles are sensitive to much larger
areas. However, the magnitude of the sensitivities is larger for
S, SB1, and SB3 quadrupoles, which can better resolve ρH and
ρV in the associated sensitive areas using those configurations.
Then, the sensitivity patterns for symmetric configurations (IB1
and IB2, SB1 and SB3, SB2 and SB4) show similar behavior
despite the electrodes being located in different materials due to
the heterogeneous nature of the synthetic model. The contrast
in ρ material seems thus to have less impact on sensitivities
than the electrode configuration itself. Also, sensitivity patterns
for ρH and ρV are different. This means that a quadrupole can
be more influenced by one component of ¯̄ρ than by the other.
Quadrupoles configuration should be thus chosen accordingly to
avoid bias in the measurements.

Given the previous observations, the S, IB1, IB2, XH1,
XH2, SB1, and SB3 quadrupoles were then found the most
informative and useful for an anisotropic inversion. IB1, IB2,
XH1, XH2, SB1, and SB3 quadrupoles were chosen because
they appear to be more sensitive to the central region of the
investigated section, far from the surface and the wells. They
provide information on the whole section. The S quadrupoles,
even not significantly sensitive in depth, have been considered
because they provide constraints for the model. This further
constraints are particularly important since the surficial cells are
not well-constrained by borehole electrode configurations and
have an important effect on the inversion. Amongst the chosen
subprotocols, electrode configurations might be sensitive to the
same parts of the characterized section, incorporate redundancy.
This redundancy is to be avoided in order to ease convergence of
an inverted solution.

4.3. Forward and Inverse Modeling
In this section, the forward- and inverse-modeling (Dey and
Morrison, 1979) adapted for anisotropic conditions (Gernez

et al., 2018) is used to compute both forward and inverse
modeling of ERT data on a numerical grid made of 8,970 squared
cells of 25 × 25 cm. The forward modeling on the synthetic
model used a protocol made of 755 quadrupoles chosen to be
sensitive to the anisotropy (IB1[73], IB2[63], S[39], XH2[220],
SB1[118], SB3[242]). The synthetic potentials are transformed on
equivalent apparent resistivities ρapp and were then inverted to
reconstruct ρH and ρV fields. For this reason, XH1 has not been
considered since most of its apparent resistivities were negative.
To reduce the risk of the model to converge toward a local
minimum, homogeneous and anisotropic ρ values were also used
to initialize the inverted model (ln ρH = 4.75 ln�.m, ln λ =

6.2146). A weak first-order Tikhonov constraint (α) on the
vertical direction was used (αV/αH = 0.5) in order to promote
horizontal structures (which is consistent which geological
information and GPR data). This horizontal smoothing is used
to favor a layered inverted model. Conversely, a ratio departing
too much from 1 will show horizontal artifacts. By rule of thumb,
we choose 0.1 < αV/αH < 1. Refining is done by trial and error.
A regularized iterative Gauss-Newton method was used to tackle
the non-linear inverse problem.

4.4. Inversion Performances
The Figure 6C presents a histogram of the relative error between
synthetic and inverted potential values after convergence of the
model at the seventh iteration. With most of the relative error
centered on zero and an overall low RMSE of 1.7%, the inversion
is considered to fit almost perfectly the synthetic potentials.

Moreover, the Figure 6A (right) shows ρ fields resulting
from the inversion. While the ρ fields are smoother than the
synthetic model [Figure 3, 6A (left)], the main features of the
subsurface are reproduced, such as alternations of low and high
ρ layers and overall range of ρ variations. Also, the analysis
of the frequency distributions of synthetic and inverted ρ-
anisotropy reveals similarities with quasi-normal distributions
(Figures 3D, 6B). Examination of rho profiles along the depth
(Figure 6D) illustrates more specifically the good agreement
between synthetic and inverted fast alternations between low and
high values of rho-anisotropy: both the trends and magnitudes
of the synthetic and inverted profiles are well-reproduced.
Finally, inverted ρH matches well the logged rho (Figure 6E),
in agreement with the paradox of electrical resistivity anisotropy
detailed in section 3.2.2..

Given the above model performances, we have shown that
anisotropic inverse modeling is able to reconstruct ρ fields,
particularly ρ-anisotropy, even for a very challenging aquifer
with moderate heterogeneity and anisotropy.

5. FIELD CASE STUDY: COMPARISON
BETWEEN ELECTRICAL AND HYDRAULIC
ANISOTROPIES

Through the synthetic study presented in section 4.1, we
demonstrated the ability of our methodology to characterize
an electrically anisotropic environment using an adapted ERT
survey (acquisition and inversion), without further external
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FIGURE 6 | Synthetic study anisotropic inversion results displaying logarithmic inverted resistivities. Unless otherwise stated, ρH and ρV represent the components of

the inverted resistivity ρHinv and ρVinv. (A) True and inverted resistivity models (wells at x = 0 m and x = 8 m). (B) Histograms of the true and inverted anisotropy

distributions. (C) Histogram of the relative error between measured and inverted ρapp. (D) Comparison between true (blue curves) and inverted (red curves)

anisotropies. To compensate the resolution difference, the inverted anisotropy is averaged on the 2.5 m around the wells and in the center of the modeled section. (E)

Comparison between the logged (ρSMR, blue curves), and the inverted horizontal (ρH, red curves) and vertical (ρV , yellow curves) resistivities (corresponding to the left

and right resistivities section). Notice the similarities between ρSMR and ρH.
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FIGURE 7 | Real case study isotropic inversion results displaying logarithmic inverted resistivities. (A) Inverted results from the apparent resistivities acquired between

P17 (x = 0 m) and P21 (x = 8 m) on the tomography site (Figure 1). (B) Comparison between the logged (ρSMR, blue curves) and the inverted isotropic (ρH, red

curves) resistivities (corresponding to the P17 [B1] and P21 [B2] resistivities).

information. In this section, we want to verify with in situ
measurements the possibility to characterize K-anisotropy from
ERT anisotropic inversion.

The wells used for ERT were installed by direct-push
technique in order to minimize skin effects around wells during
testing (Paradis et al., 2011). Conventional well installation
procedures indeed require the use of sand-pack to fulfill the
space between the drilling hole and the screen, which may
hinder the electrical response of the natural formation behind
it. Direct-push well installation procedure allows the screen to
be in direct contact with the aquifer with minimal disturbances
to the surrounding sediments. The screen of the wells is open
to the entire thickness of the aquifer allowing for multi-level
hydrogeological and geophysical surveys. The screens ensure
the free flow of water with slotted openings of 2.5 mm spaced
vertically at every centimeter and covering over half of the
circumference of the screens. The wells are also made of
electrical insulator material (PVC) to ensure the integrity of
electrical measurements.

The ERT setup is displayed in Figure 1. It consists of 17 inhole
electrodes (9 in P17 and 8 in P21) and 17 surface electrodes
located around the plane formed by P17 and P21 wells. P17 and
P21 are separated by 8 m, electrodes separation is 1 m inside the
wells and 0.5 m at the surface. Using this configuration, 18,936
electric potentials were measured with an IRIS Syscal Pro system.
In addition, high resolution horizontal resistivity log data are
available, acquired along P17 and P21 with the CPT-SMR probe.
The SMR probe measures the resistivity using two ring electrodes
9 cm apart at a 1 kHz frequency to reduce polarization effects
(Shinn et al., 1998; Paradis et al., 2015b). The log is 10.41 m
deep at P17 and 9.96 m deep at P21, and ρH is measured over
a 5 cm interval.

Before getting to the inversion, a quality control was done
on the data using the reciprocal data. Interchanging the two
electrodes inside a pair (current or potential) should only alter the

sign of the measured potential data. Alternatively, interchanging
the two pairs (current with electrodes) should provide the same
measured potential data by principle of reciprocity (Slater et al.,
2000). During our survey, 5369 data has been acquired to that
end. Amongst them, 89.6% of these data show a difference of
<15%, and that 84.5% show a difference of <5%. These values
show an overall good quality data set. From the whole data set, we
can extract the data used for the inversion (section 5.2). Inverse
modeling is computed on a numerical gridmade of 8,970 squared
cells of 25× 25 cm, similarly to the synthetic case (section 4).

5.1. Anisotropy Diagnosis of Real Case
Study ERT Data
In section 3.2 two different approaches were presented to
assess the electrical anisotropy by analyzing ERT data. In the
following, anisotropy diagnosis of real case study ERT data is
studied by performing isotropic ERT inversion. After removing
negative ρapp data and poor quality data, 12,933 resistance data
measurements were considered for the inversion. The isotropic
ERT inversion converges after 10 iterations with an acceptable
RMSE of 8.3%. Nevertheless, numerous erratic structures that
do not correspond to the known geology of the site (section
2) appear on the isotropic resistivity image (ρiso, Figure 7A).
More precisely, few small resistivity structures are close to the
electrodes, where the inverted section is usually better resolved
as shown in Figure 2B.2.

When ρiso is compared to the logged ρ in P17 and P21 wells
(Figure 7B), ρiso shows very high frequency variations on both
wells, and its values do not correspond to ρ values. As we have
shown before (section 3 and Figure 3C), this is due to anisotropy.
We then established the presence of anisotropy using a very
fast approach in comparison to hydrogeological experiments.
In fact, ERT data are carried out in less than a few hours,
whereas several weeks are needed for anisotropic hydrogeological
tomography data acquisition. Therefore, electrical anisotropy
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FIGURE 8 | Real case study inversion results displaying logarithmic inverted resistivities. (A) Inverted results from the apparent resistivities acquired between P17 (x =

0 m) and P21 (x = 8 m) on the tomography site (Figure 1). (B) Histogram of the relative error between measured and inverted ρapp. (C) Comparison between inverted

hydraulic (blue curves) and electrical (red curves) anisotropies. Hydraulic data starts at z = 1 m (saturated depth). To compensate the resolution difference, the inverted

resistivities are averaged on the 2.5 m around the wells and in the center of the modeled section. (D) Comparison between the logged (ρSMR, blue curves), and the

inverted horizontal (ρH, red curves) and vertical (ρV , yellow curves) resistivities (corresponding to the P17 and P21 resistivities).
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diagnosis approaches can be used as an assisting tool to help
taking hydraulic decisions.

5.2. Anisotropic Inversion of Anisotropic
ERT Data
As for the synthetic case, XH1, SB2, and SB4 arrays are
not considered. The used protocol is made of 975 measures
(IB1[75], IB2[64], S[38], XH2[436], SB1[186], SB3[176]), based
on the result obtained in the synthetic study. Homogeneous and
anisotropic ρ values were used to initialize the inverted model
with an initial ρH value corresponding to the median of the
measured apparent resistivities and an initial anisotropy value
of λ = 10. The convergence is reached after 6 iterations, after
which misfit or RMSE slightly decrease, but do not improve
significantly anymore. At this point, the inverted model starts
integrating the noise held in the data, so further iterations
are ignored. The relative error between the measured and the
computed ρapp from the inverted model is shown in Figure 8B.
The histogram displays a slight bias of 4.3% in the relative
error and a standard deviation of 10.83%. Unlike the synthetic
case study, detailed information of the ground structure is
unavailable, making hard the building of an optimized protocol.
The chosen protocol was inspired from the synthetic case study
since the latter was based on the hydraulic characterization of
the ground. The residual error can be explained by the difficulty
it met to reconcile its different sensitivities, whose preliminary
examination is not achievable. Nevertheless, the final error (9.3%)
combined with the relative error are considered low in a noisy
real case study context.

The inverted sections are shown in Figure 8A. Both ρH

and ρV sections show subhorizontal structures, as expected
from our geological and hydrogeological knowledge of SLdL.
The comparison between K (blue curve in Figure 8C) and ρ

(red curve Figure 8C) anisotropies show strong similarities in
their patterns and their amplitudes. It indicates the ability of
anisotropic ERT inversion to characterize K-anisotropy. Finally,
CPT-SMR resistivity is compared to anisotropic ERT inversion
results (Figure 8D). Similarly to the synthetic case, the graphs
display the collocated logged (ρSMR, blue curve), horizontal
(ρH , red curve) and vertical (ρV , yellow curve) resistivities
on wells P17 and P21. On the contrary to isotropic ERT
inversion, horizontal resistivities at P17 and P21 are smooth
which is consistent with CPT-SMR resistivities. However, there
is a gap between the two curves. More precisely, horizontal
resistivities are several times higher than CPT-SMR resistivities.
This difference is due to the fully-screened wells effect on ERT
data. CPT-SMR data measurement is carried out by direct-
push before fully-screened well installation. Its coupling is very
good, the electrodes being in direct contact with the undisturbed
investigated underground. In the ERT case, acquisition is done
using electrodes immersed into water in the screened well. Due
to this aqueous environment, a part of the current is channelized
along the well and affects the inverted model. The use of
packers could prevent this channeling. Unfortunately, we were
not able to implement this experiment during the campaign
acquisition. Moreover, to our knowledge, the borehole effect

has been studied in the isotropic case when the electrodes are
mounted on the electrically insulated borehole casing (Doetsch
et al., 2010; Wagner et al., 2015; Lee et al., 2016). This effect is
important only for large resistivity contrasts between the rock
formation and borehole fluid and for large borehole diameters
(Doetsch et al., 2010). Furthermore, sensitivity is very high
close to the electrode. Impact of close objects or structures
are important (Binley and Kemna, 2005). According to us,
because the ERT method is very sensitive to the resistivity
variations close to the electrodes, the screened borehole casing
impacts the resistivity model. In our opinion, borehole effect
in our case is substantially handled by anisotropic inversion
because hydraulic tomography shows approximately the same
anisotropy variations as electrical resistivity tomography. On
the contrary, isotropic inversion shows a lot of artifacts around
the boreholes.

If Figures 8C,D show the comparison between various linked
parameters, a direct proportionality relation between ρ and
K anisotropies is hard to achieve. The sensitivities of the
geophysical and hydraulic methods are not the same. Moreover,
both anisotropy sections are inverted sections, coming from two
different inversions (in terms of grid size, regularization, etc.).
To obtain a direct proportionality relation between ρ and K
anisotropies, or even directly between ρ and K values, further
investigations are needed to that goes beyond the framework
of this work (use of packers to prevent current channeling, use
3-D finite elements code to more efficiently remove the well
effects, etc.).

6. CONCLUSIONS

Hydraulic anisotropy has a major influence on the groundwater
flow and mass transport. Its consideration is essential when it
exists. Through this study, we pointed out: 1. the ability of
isotropic ERT modeling to assess the presence of ρ-anisotropy,
2. the ability of anisotropic ERT modeling to quantify ρ-
anisotropy and 3. the strong relationship existing between
K- and ρ-anisotropies through an in situ survey. To achieve
this work, we developed a new methodology based on an
innovative anisotropic ERT modeling tool. To overcome the
equivalence problem, electrodes were placed inside a fully
screened borehole along with surface electrodes. Anisotropic
ERT inversion is then carried out to estimate the ρ-anisotropic
model. The latter suggest a strong link with the collocated
K-anisotropic characterization: even though the setup used
does not allow a direct proportionality relation, the proposed
geophysical method is able to provide proxy of the in-situ
hydraulic anisotropy.

In this study, we have shown that the anisotropic electrical
resistivity surveys are helpful for anisotropic hydrogeologic
parameters characterization, which paves the way for
large scale hydrogeophysical characterization campaigns,
even in challenging anisotropic environments. Integrated
hydrogeophysical studies can therefore be powerful approaches
in the understanding processes in order to produce more
reliable forecasts.
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In the field of groundwater hydrology and more generally geophysics, solving inverse

problems in a complex, geologically realistic, and discrete model space often requires the

usage of Monte Carlo methods. In a previous paper we introduced PoPEx, a sampling

strategy, able to handle such constraints efficiently. Unfortunately, the predictions suffered

from a slight bias. In the present work, we propose a series of major modifications

of PoPEx. The computational cost of the algorithm is reduced and the underlying

uncertainty quantification is improved. Advanced machine learning techniques are

combined with an adaptive importance sampling strategy to define a highly efficient

and ergodic method that produces unbiased and rapidly convergent predictions. The

proposed algorithm may be used for solving a broad range of inverse problems in many

different fields. It only requires to obtain a forward problem solver, an inverse problem

description and a conditional simulation tool that samples from the prior distribution.

Furthermore, its parallel implementation scales perfectly. This means that the required

computational time can be decreased almost arbitrarily, such that it is only limited by

the available computing resources. The performance of the method is demonstrated

using the inversion of a synthetic tracer test problem in an alluvial aquifer. The prior

geological knowledge is modeled using multiple-point statistics. The problem consists

of the identification of 2 · 104 parameters corresponding to 4 geological facies values. It

is used to show empirically the convergence of the PoPEx method.

Keywords: adaptive importance sampling,machine learning, uncertainty quantification, bayesian inversion,monte

carlo, multiple-point statistics, parallelization

1. INTRODUCTION

Inverse problems play a key role in almost all the geosciences. Indeed, this is often the only
approach allowing to identify hidden structures of the interior of the earth and to estimate the
physical properties of the buried rocks from indirect physical measurements at the surface or in
a few boreholes. In groundwater hydrology, the aim is generally to infer the position of highly
permeable or impermeable rocks and estimate their porosities and permeabilities from punctual
measurements of state variables (e.g., hydraulic heads, tracer concentrations, water temperature,
etc.). As for any geophysical problem, inversemethods are of utmost importance and a fundamental
step in most quantitative hydrogeological studies (de Marsily et al., 2000; Carrera et al., 2005; Zhou
et al., 2014) as well as many environmental modeling problems (Moles et al., 2003; Wainwright and
Mulligan, 2005).
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However, despite its huge significance and despite more
than 50 years of research on this topic in geophysics and
hydrology, current methods are still unable to solve certain
types of problems efficiently. For instance, an open problem
is to solve probabilistic inverse problems that involve discrete
structures such as channels, lenses, karst conduits, or faults
which cannot be represented by standard multi-Gaussian fields
(Gómez-Hernández and Wen, 1998; Journel and Zhang, 2006).
The identification and representation of such geological features
is indispensable because it heavily controls fluid flow in the
underground (Feyen and Caers, 2006). Using a wrong and
smoothed representation of such discrete features is known to
bias significantly the groundwater forecasts and corresponding
uncertainty analysis (Gómez-Hernández and Wen, 1998; Kerrou
et al., 2008).

To overcome this difficulty, different approaches have been
developed and were recently reviewed by Linde et al. (2015). One
general strategy is to construct first a probabilistic prior able to
represent stochastic but geologically realistic structures and to
embed it in the inverse method. Often, this geological prior can
take only discrete values representing the rock types or some
specific geological features.

Inverse methods relying heavily on continuity assumptions
or simple statistical distributions (typically multi-Gaussian) are
not capable to manage this type of problems. On the opposite,
sampling algorithms can account for such complex setup (Oliver
et al., 1997; Robert and Casella, 2004; Fu and Gómez-Hernández,
2008; Mariethoz et al., 2010a; Hansen et al., 2012; Laloy et al.,
2016; Rubinstein and Kroese, 2016). These methods represent
the solution of the inverse problem as a set of models (or
samples) describing the posterior distribution. From this set of
samples, one may approximate any quantity of interest such as
mean values, maximum likelihood values, uncertainty bounds,
or probabilities of characteristic events. Unfortunately, for most
of these approaches, the computational effort is extremely
demanding (Fu and Gómez-Hernández, 2008; Romary, 2010;
Linde et al., 2015) and the challenge is to design an efficient
sampling scheme able to deal with categorical information in the
prior distribution.

In a previous paper (Jäggli et al., 2017), we proposed the
Posterior Population Expansion (PoPEx) algorithm to expand
iteratively an existing set of geological models. PoPEx was
specifically designed for handling discrete parameter values, even
if it can be applied to the continuous case as well. The discrete
parameter fields can be generated with any geostatistical method.

In our previous paper and in this one, we use a multiple-
point statistics technique for expressing the prior distribution
because this allows the user of PoPEx to formulate its prior
geological knowledge in the area where he is carrying out
the inversion. This knowledge is expressed by providing a
training image (TI). Multiple-point statistics (MPS) simulation
techniques (Strebelle, 2002; Arpat and Caers, 2007; Honarkhah
and Caers, 2010; Mariethoz et al., 2010b; Straubhaar et al., 2013)
can learn the spatial patterns from the TI and can produce
stochastic simulations that resemble the TI. The simulations
can be conditioned by local values if they are known (hard
data). The advantage of that approach is that it is flexible.

The same code can generate all kind of geological structures
(channels, lobes, braided systems, fractures, etc.) and therefore
it can be applied to a very wide range of inverse problems and
applications.

Like most sampling techniques, PoPEx produces iteratively
new parameter fields (the samples) using a geostatistical
technique (see for example the book of Chilès and Delfiner,
2009), then runs the forward problem (in our case a groundwater
flow and transport simulation, but it could be any forward
operator), evaluates the misfit and likelihood for that solution,
and accumulates novel knowledge. At each iteration, the
geostatistical simulation algorithm is controlled by PoPEx:
the general mechanism is to condition the simulation of the
parameter fields with a set of punctual values (hard data) selected
preferentially from previous models having a high likelihood.

This method proved to be very efficient on a synthetic example
(Jäggli et al., 2017): a comparison with two existing Markov chain
Monte Carlo (McMC) methods showed that the method was
able to considerably decrease the computational cost. But this
study also allowed us to identify that the initial version of PoPEx
produced slightly biased predictions.

In this paper, we revisit completely the core of the PoPEx
algorithm. The overall goal is to improve the usability, accuracy
and computational time. The most important contribution is
to introduce a new strategy allowing to produce unbiased
predictions. The bias happens because the generation of a new
realization is influenced by all the previous models in the chain.
This sampling strategy favors some realizations over others.
When computing predictions, however, these correlations must
be taken into account. In other words, we propose to consider
the method as an adaptive importance sampling (AIS) (Naylor
and Smith, 1988; Oh and Berger, 1992; Murphy, 2012) and
suggest a simple technique to produce unbiased predictions. The
additional computational cost is negligible and does not increase
the overall running time. From this perspective, the method
can be interpreted as an unsupervised machine learning scheme
that aims to learn an optimal probability density which can be
used in the AIS scheme. The class of inverse problems that
can be addressed is very broad and goes beyond applications in
the field of geostatistics. The only requirements are a forward
problem solver, an inverse problem description (including the
likelihood function), and a conditional simulation tool (e.g., any
geostatistical method) that generates models according to the
prior distribution.

On top of that, we show how the algorithm, together with
all modifications, can be parallelized. We show that it scales
perfectly in the considered example. Hence, the computational
time is directly reduced by the number of parallel chains, without
compromising the outcomes. This is a powerful result, because
the main hindrance against the use of sampling strategies is the
computational costs. With the proposed methodology, models
can be produced in parallel. The only limitations concerns
the number of available CPU’s, or more precisely, the number
of forward problem evaluations that can be run in parallel.
Today, most research and engineering groups have access
to high performance computer facilities, and therefore these
requirements are not too restrictive.
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The paper is organized as follows. Section 2 provides the
required background related to the inverse problem and the
general concepts of the method before explaining the details of
the modified algorithm. A case study together with a convergence
analysis is presented in section 3. Finally, in section 4, the
advantages and limitations of the methodology are discussed and
summarized.

2. METHODOLOGY

In this section, we first review the general definition of the
inverse problem following the notations and approach from
Tarantola (2005). Then we introduce the most important
techniques constituting the base of PoPEx (Jäggli et al., 2017).
As a consequence, the first part of this section mainly presents
material that has been proposed and discussed elsewhere. It is
toward the end of section 2.2 and in section 2.3 that we present
the novel methods that constitute the core of this paper.

2.1. Inverse Problem
The general inverse theory presented by Mosegaard and
Tarantola (2002) and Tarantola (2005) contains the commonly
used Bayesian formulation as special case. Furthermore, it lives
without the (problematic) notion of conditional probabilities
(e.g., Borel’s paradox) and alternatively uses the concept of
states of information. In the following, we slightly enrich their
explanations with a few comments specifically dedicated to the
hydrogeological framework.

Solving an inverse problem is usually related to honoring a
sparse set of observations dobs = {dobs1 , . . . , dobsm } called data. The
nature of these observations can differ widely and may depend
on the overall framework. When studying subsurface properties,
they often represent measurements of state variables such as
hydraulic heads, production data or contaminant concentration.
Due to imperfect measuring devices, these quantities usually
include uncertainties. It is common to use a finite set of
parameters m = {m1, . . . ,mn} to fully describe the physical
system under study. Any possible collection of such values will
henceforth be called a model or equivalently a realization. In
this regard, a model can cover a vast number of physical and
conceptual quantities, as, for instance, boundary conditions,
hydraulic conductivity maps, or specific storage values. The
collection of all possible models is called model space and is
denoted by M. In the hydrogeological framework, a common
approach is to subdivide an aquifer into a finite number of
volume elements (simulation grid) and characterize the hydraulic
conductivity in each grid cell. In this case, the underlying model
m includes one parameter mi per grid element, that defines the
physical property in this small sub-domain. The choice of a set
of representative dimensions is equivalent to the definition of
a parametrization of M. Note that for a given system, such a
coordinate system is not unique. “Permeability,” for example,
can be replaced by “resistivity,” “speed” with “slowness” or
“frequency” with “period.”

In practice it is possible to observe parameters that can also be
included inm. Boreholes, for example, often provide cores, from
which petrophysical values can be deduced with high precision.

If the model space is designed to describe the same quantities, we
simply remove the corresponding degrees of freedom from any
possible model m, and reduce the number of dimensions in the
model spaceM.

In many fields, well-founded physical theories have been
established in order to describe processes and interactions. They
can be used to describe relations between the models and the
observations. From a naïve point of view, it means that for
a given model m the error-free values of the corresponding
data set d can be predicted. This theoretical link between a
model and the observable parameters is called the forward
problem and described by d = g(m). The function g =

{g1, . . . , gm} denotes the forward operator. Tarantola (2005)
formulated the probabilistic solution of an inverse problem as
a non-negative measure function that combines two different
states of information. Typically, these states of information are
captured by the prior and the likelihood function. The prior
distribution ρ(m) describes any available information on the
model parameters, that is independent of the data set. The
likelihood function, L(m), usually embeds the forward operator
and is a probabilistic measure of how well a given model is able
to explain the observations. The solution, called the posterior

distribution, of an inverse problem is the conjunction of the
prior and the likelihood operator such as

σ (m) = c ρ(m)L(m), (1)

where c is a normalization constant. In the Bayesian framework,
the posterior measure is considered to be the product of
(conditional) probability distributions. The latter approach is
contained in Equation (1) and applies under some regularity
conditions. For this reasons, the formulation by Tarantola (2005)
is more general.

2.2. Posterior Population Expansion
(PoPEx)
It is worthwhile to recall several important concepts, that
originally have been introduced by Jäggli et al. (2017).
Afterwards, some small improvements will be suggested. These
modifications just slightly influence the evolution of the sampling
scheme, so that we decided not to rename the method and
still call it Posterior Population Expansion (PoPEx). The general
approach of the PoPEx algorithm is to generate a large number
of models m1, . . . ,mN that represent the posterior probability
density in Equation 1. From this approximation it is possible
to compute posterior probabilities of events. The sampling
procedure, however, requests to compute σ (mk) for every k =
1, . . . ,N, what can be highly intensive in terms of computational
costs. For this reason, the main idea of the PoPEx method is to
make the sampling as efficient as possible. Each generation of a
new model mk is therefore guided by all the previous samples
m1, . . . ,mk−1. For doing so, information maps (denoted by Pk

and D(Pk||Q), see below) are computed iteratively and ensure
that the sampling of mk is strongly guided by ‘good’ models
with high posterior values. The transfer of information from
m1, . . . ,mk−1 to mk runs through a set of value restrictions
imposed on the new model (denoted by HDk, see below).
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2.2.1. Set of Models Mk

The underlying algorithm is able to examine many different
types of uncertainties and parameter identification problems.
It is possible, for example, to consider parameters concerning
boundary and/or initial conditions, spatial heterogeneities,
recharge time series, etc. The model set m is then simply
subdivided into different parts m = {m1,m2, . . . }, where each
mi = {mi1 , . . . ,mir } represents one specific parameter type. The
only requirement is that samples representing that uncertainty
can be generated from a conditional simulation tool.

In order to keep the following descriptions as simple as
possible, we will only consider one type of model parameters
and write m = {m1} = {m1, . . . ,mn}. This set will be used to
describe spatial heterogeneities of hydraulic permeabilities and
is generated by a pixel based MPS technique (Strebelle, 2002;
Mariethoz et al., 2010b; Straubhaar et al., 2011). Such methods
require a spatial subdivision of the computational domain into
a finite number of n ∈ N elements (pixels). The union of all
pixels is called the simulation grid. MPS generate realizations
of a random variable by reproducing multiple-point statistics
from a training image. Each realization can be associated to a
model m = {m1, . . . ,mn} by putting the MPS value from pixel
j into the parameter mj. In the example above, a variable mj

could then be linked to the constant permeability (or resistivity)
in the j-th volume element of the computational domain. The
term “linked” is used because it is not uncommon for the model
parameters mj to not contain permeability (or resistivity) values
directly but only conceptual representatives of such. For the
present work, it is assumed that the prior probability density
ρ is precisely the distribution of the MPS random variable.
Therefore, using the MPS machine to produce independent and
unconditioned models is equivalent to drawing realizations from
ρ. It is important to note that conditioning simulators work
sequentially. This means that they start by randomly selecting
a permutation ς over the set of indices {1, . . . , n} that defines
the order in which the components of a new model are treated.
Whenever mς(j) is about to get informed, conditional simulation
tools only consider previously simulated components and draw
mς(j) according to the probability

P( · |mς(1), . . . ,mς(j−1)).

In other words, at this point of the simulation,mς(j) is considered
to be independent of any uninformed component inm.

Sampling amodel space for solving an inverse problem,means
to iteratively produce a finite number of N realizations

m1→ m2 → · · · → mN ,

that characterize (in some way) the posterior distribution.
During this procedure, the likelihood function must be evaluated
for every model in the chain. It is not uncommon that
this computation is very demanding and represents the most
important source of computational cost. After each iteration k =
1, . . . ,N, the models can be assembled within the collection

M
k = {m1, . . . ,mk}, (2)

while the normalized likelihood values

L̃(mj) =
L(mj)

∑k
r=1 L(mr)

, j = 1, . . . , k,

are joined in L̃k = {L̃(m1), . . . , L̃(mk)}. The tilde notation
indicates that a normalization has been applied, a convention that
will be used throughout this paper. There are two different kinds
of normalization that will be used. In the latter equation, the
total weight was computed by summing all likelihood values from
the previous iterations. This action must be renewed, whenever
a new model mk+1 is sampled. Secondly, we will define spatial
maps. The normalization is then performed through all locational
values, and the resulting map can be interpreted as a spatial
probability density (c.f. Equation 5).

2.2.2. Probability Maps Q and Pk

The possible value range for each model parameter mi depends
on the TI. After defining a set of s− 1 threshold levels this range
may be separated into s different categories, called facies values

or simply facies and denoted by {f1, . . . , fs}. When working with
discrete models, these categories usually define a one-to-one
relation to the set of all possible values in the TI. From the
facies values, it is possible to establish a collection of pixel-based
indicator functions. If m is a given model and each pixel j ∈
{1, . . . , n} is represented by its center location xj, these functions
are defined as

1fi (m; xj) =

{

1 ifmj belongs to category fi
0 otherwise.

(3)

Any linear combination of the quantities in Equation (3) can
be interpreted as a map with constant value in each pixel. The
concept of these indicator functions is very important throughout
the present paper. If the precise pixel location xj is not relevant,
we will henceforth omit its explicit notation. The indicator
functions help to compute moments of the random vector that
is associated to the MPS tool. Let qi represent the pixel-wise
probability of the model values to fall into category fi. If E(·)
denotes the usual expectation operator, they read

qi = E
(

1fi (m)
)

, i = 1, . . . , s.

The set Q = {q1, . . . , qs} then collects all the prior probability
maps for the facies categories. If the MPS machine is trained
to produce stationary and unconditioned simulations, then the
maps qi are constant over the computational domain and equal
the corresponding facies proportion in the training image. On the
other hand, a set Mk = {m1, . . . ,mk} can be used to define a
second collection Pk = {pk1, . . . , p

k
s } such that

pki =

k
∑

j=1

1fi (mj)L̃(mj). (4)

The superscript k in the notation pki indicates the number of
realizations that has been used in its computation. It is important
to perceive the consequences of weighting the summands by the
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normalized likelihood values L̃(mj). Ifmj0 is a model with a large
likelihood value (with respect to the other ones), this means that
some facies patterns inmj0 may be very important. Therefore, the
probability maps in Equation (4) are formed by weighting “good”
facies patternsmore heavily than “bad” ones. Consequently, these
maps may be able to provide information that can be used to
generate “good” models. But at this point it is unclear where this
information can be found and how it could be used. The answer
to this question lies in the relation between Q and Pk. The central
idea of the PoPEx sampling is to consider and learn from all
modelsm1, . . . ,mk, before generatingmk+1. This procedure can
be split into two parts, that will be explained in the following.

2.2.3. Kullback-Leibler Divergence D(Pk||Q)
Kullback and Leibler (1951) introduced a measure called
Kullback-Leibler divergence (KLD) to compare two probability
distributions. It computes how a candidate probability diverges
from an expected one. This is precisely what is needed tomeasure
the information content of Pk with respect to Q. In other words,
the Kullback-Leibler divergence can be used to identify pixel
locations, where the facies probabilities in Pk are “extreme” with
respect to Q. It is given by

D(Pk||Q) =
s
∑

i=1

pki log

(

pki
qi

)

. (5)

Whenever qi > 0 for all i = 1, . . . , s, this equation is well defined.
But let’s assume that there is i ∈ {1, . . . , s} and a pixel xj with
qi(xj) = 0. This means that it is impossible for the MPS tool to
produce a modelmwhere the valuemj falls into the i-th category.
From Equation (4) it follows that pki (xj) must vanish as well. In
short, qi(xj) = 0 implies pki (xj) = 0, and the corresponding terms
in Equation (5) can be ignored. A brief comment on the prior
maps qi may help to enhance the meaning of Equation (5). If
there is a large set of independent models {m1, . . . ,mN} that is
distributed according to ρ, the law of large numbers (LLN) [c.f.
Durrett (2010)] suggests to use approximations

qi ≈
1

N

N
∑

j=1

1fi (mj). (6)

From this perspective, the relation between pki and qi is easier
to detect. Both definitions use the same indicator functions,
but are weighted differently. D(Pk||K) provides a pixel based
information map, that indicates how surprising the facies
patterns become, whenever they are weighted by the likelihood
values. As mentioned earlier, it is possible to normalize the
Kullback-Leibler divergence map spatially. The rescaled map
is denoted by ˜D(Pk||Q) and can be interpreted as a discrete
probability density defined over the pixel locations.

2.2.4. Hard Conditioning Data HDk

We mentioned earlier, that each model must be generated by
a “conditional simulation tool.” This means that it must be
possible to condition (impose) some of the values in m. Doing
so allows fields that honor local data, commonly known as

FIGURE 1 | Overview of the parallelized PoPEx procedure.

hard conditioning (HD) (Mariethoz and Caers, 2014), to be
generated. The enforced value v together with the pixel location
x forms one conditioning object, denoted by (x, v). A reliable set
of hard conditioning data may enhance the chance to generate a
new model mk+1 that provides a large likelihood value L(mk+1).
Considering the previous explanations, it seems natural to
sample a set {x1, . . . , xnk} of hard conditioning locations (where
conditioning should apply) from the normalized Kullback-
Leibler information ˜D(Pk||K). For every selected position xi, we
can then sample a model index j ∈ {1, . . . , k} according to
L̃k and extract the conditioning value (which value should be
imposed) from mj(xi). This produces a set of hard conditioning
data HDk = {(x1, v1) , . . . , (xnk , vnk )}.

So far, nothing original has been proposed. The modifications
that we suggest now, concern the number of elements in HDk.
Jäggli et al. (2017) started with a set of unconditioned models,
before fixing the number of conditioning points to a user defined
parameter and leaving it unchanged. However, the statistical
significance and robustness of the algorithm could certainly
be increased by adding some “randomness” into this selection
procedure. We suggest to change randomly the number of
conditioning points in each iteration. For this, we suggest to fix
an upper bound nmax, and draw the number of conditioning
points from an uniform distribution over the set {0, 1, . . . , nmax}.
The amount of hard conditioning data nk thus may change in
each iteration k. It is therefore possible to occasionally generate
unconditioned realizations.

2.2.5. Parallelization of the Algorithm
Every loop of the PoPEx algorithm consists in four main steps:
derive a set of hard conditioning points, generate a new model,
compute its likelihood value and update the Kullback-Leibler
divergence map. One strategy to parallelize this procedure is to
encapsulate the first three steps in a subprocess separated from
the last one. Then, a master process launches such subprocesses
in parallel on other CPU’s. Each subprocess is simply fed by
the current available KLD map and performs the enclosed steps
independently. After the result of a subprocess is communicated
back to the master process, this latter updates the KLD map and
launches another subprocess. A brief overview of this workflow
is presented in Figure 1.
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The pseudocodes of the parallelized PoPEx algorithm and the
corresponding subprocesses are given in the algorithms 1 and 2,
respectively. The variable “manager” appearing within the main
algorithm is a FIFO (“first in first out”) queue of maximal length
npar that maintains the communication toward the subprocesses.
FIFO stands for queues where new elements are appended at
the tail (line 9) and removed from its head (line 11). In this
regard, the lines 5-10 of algorithm 1 are designed to launch npar
parallel subprocesses (line 8) and retain corresponding handles
(line 9). The lines 11-15 on the other hand, check the status
of the first subprocess (line 12) and react accordingly. If it
has terminated, their outputs are received (line 13) and the
corresponding variables are updated (line 14). If it is still running
however, the handle is sent to the back of the queue (line 17).
The main motivation for appending the running subprocesses
at the end is to rapidly detect and remove other jobs that have
been completed. But as a consequence, reproducibility of the
algorithm is not guaranteed. If reproducibility is crucial, we could
simply change line 17 such that the processes are re-appended at
the head of the queue and ensure that the first npar workers are
launched before lines 11-18 may apply.

Algorithm 1 PoPEx

1: Input: nmax, npar, N and Q
2: k← 0 and P0← Q
3: manager← empty queue # FIFO queue
4: while k < N do

5: nm = length(manager)
6: if nm < npar and k+ nm < N then

7: p← new subprocess
8: p.start(Subprocess(Mk, L̃k,D(Pk||Q), nmax))
9: manager.append(p)
10: end if

11: p←manager.pop()
12: if p.ready() then
13: (mk+1, L(mk+1)) = p.get()
14: updateMk, L̃k and D(Pk||Q)
15: k← k+ 1
16: else

17: manager.append(p)
18: end if

19: end while

Algorithm 2 Subprocess

1: Input:Mk, L̃k, D(Pk||Q) and nmax

2: Output: mk+1 and L(mk+1)
3: sample nk ∼ U(0, nmax)
4: HDk ← hd(nk,Mk, L̃k,D(Pk||Q))
5: mk+1 ← model(HDk)
6: L(mk+1)← likelihood(mk+1)

Calling “hd(nk,Mk, L̃k,D(Pk||Q))” within a subprocess
(algorithm 2, line 4), uses the above strategy to compute a
set of nk hard conditioning couples. On the other hand, the

methods “model(HDk)” (line 5) and “likelihood(m)” (line 6) are
application dependent functions that generate a new model from
a given set of conditioning data and compute the corresponding
likelihood value.

In practice it might be unclear how to provide a suitable
collection Q. Assuming that the involved modeling tool samples
from the prior distribution, opens the door to approximate
Q. Even before launching the PoPEx algorithm, we could
produce a sufficiently large number of unconditioned models,
and approximate Q by Equation (6). As the effort of generating
a model is often negligible with respect to the computation of
the likelihood value, the additional cost for approximating Q is
unimportant. If there is a considerable effort required to generate
a model, we could also consider to start with an initial guess
of Q and iteratively improve it. However, changing Q along the
sampling procedure may render the algorithm unstable.

2.3. Posterior Prediction of Events
Solving an inverse problem, not only serves to represent the
posterior measure function, but also aims to compute the
(posterior) probability of events A ⊂ M. More generally, we
would like to compute integrals with respect to σ , such as

µ =

∫

M

f (m)dσ , (7)

where f (·) is an operator that expresses some quantity of interest.
Because the model space M and the posterior measure function
σ can be very complex, an analytical solution of these integrals
is usually not available. The generic term importance sampling
(IS) (Hesterberg, 2003; Robert and Casella, 2004; Liu, 2008;
Rubinstein and Kroese, 2016) stands for a framework that
provides approximations of such integrals by a weighted sum
over a large number of realizations. Because it is often difficult or
inefficient to directly sample from the distribution σ , importance
sampling suggests instead, to draw realizations from a sampling
distribution φ and weight the summands proportionally to the
ratio σ (m)/φ(m). To find and use an appropriate sampling
distribution φ however, can be challenging.

We propose to consider the PoPEx algorithm as a procedure,
that iteratively learns and adapts the sampling distribution φk.
During this procedure, all the previously generated realizations
are combined and used to localize important regions in themodel
space. This is known as adaptive importance sampling (AIS) and
has been introduced in a econometric framework (Naylor and
Smith, 1988; Oh and Berger, 1992). The generation of a new
model mk+1 is understood as to randomly draw one sample
according to φk. By construction, this distribution must include
the random selection of HDk as well as the conditional modeling
tool. For each model in a chain of N realizations, we compute a
weight ratio wk = σ (mk)/φk(mk) and estimate the integral µ by

µ̂ =

N
∑

k=1

f (mk)w̃k. (8)
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Again, the tilde notation was used to indicate normalized weights
w̃k such that

w̃k =
wk
∑

j wj
.

Several remarks are worth being considered. The computation of
Equation (8) only uses normalized weights. Therefore, it is not
required to know precisely the normalization constant of either
σ or φ. Furthermore, the computation of the weights wk can be
simplified by using the factorization of σ (c.f. Equation 1). Each
likelihood value L(mk) is evaluated during the PoPEx procedure,
so that for constructing the weights, it is sufficient to compute the
ratio

ρ(mk)

φk(mk)
, for k = 1, . . . ,N. (9)

Roughly speaking, this ratio compares the probability measure of
generating a modelmk with and without observed data.

Computation of the Sampling Weights
In every iteration of the PoPEx algorithm, a set of location-value
pairs is derived and imposed as hard conditioning for the next
model. We will show in this section, that when using a pixel-
based MPS technique to generate the models, the sampling ratios
in Equation (9) only depend on the sets HDk. Let us consider
HDk = {(x1, v1) , . . . , (xnk , vnk )} and distinguish two events that
henceforth will be noted similarly:

1. The MPS scheme is assumed to follow the prior probability
measure ρ. Recall that such a tool iteratively supplies
pixels with simulation values from a training image. HDk

appearing within ρ will refer to the event where “the first
nk locations (met during the simulation) were {x1, . . . , xnk}
and they obtained the values {v1, . . . , vnk}.” Following this
line, ρ(m|HDk) expresses the conditional measure to drawm,
when the first nk assignments imposed the values {v1, . . . , vnk}
at the locations {x1, . . . , xnk}.

2. The sampling distribution on the other hand takes the
PoPEx iterations into account. HDk appears within φk

whenever we want to indicate that “during the k-th
PoPEx iteration, HDk has been produced and used as
hard conditioning.” Accordingly, φk(m|HDk) measures the
probability of sampling m at iteration k, knowing that HDk

has been imposed.

Henceforth, we will only consider combinations m and HDk

that produce strictly positive measure values (i.e., where the
values on the nk locations coincide). Furthermore, we will assume
that all the conditioning binomials in HDk are independent of
each other. This assumption is reasonable if the conditioning
locations are well separated. It is therefore necessary, that the
number of conditioning points is adequate with respect to the
simulation grid. The MPS processes involved behind ρ(m|HDk)
and φk(m|HDk) are the same. It follows that the two measure
values must be equal, and thus

ρ(m)

φk(m)
=

ρ(m)

ρ(m|HDk)

φk(m|HDk)

φk(m)
.

Using the definition of conditional probabilities, the ratio can be
rearranged as

ρ(m)

φk(m)
=

ρ(HDk)

ρ(HDk|m)

φk(HDk|m)

φk(HDk)
.

Standard techniques from the field of combinatorial probability
allow to express all the above quantities. On the one hand,
ρ(HDk|m) measures the probability of informing the first nk
pixels according to HDk, when the sampled model is known. But
knowingm implies that the conditioning values inHDk are given,
so that we only need to compute the probability to meet the nk
conditioning locations (in any order) in the very beginning of
the MPS simulation. If there are n pixels in the simulation grid,
ρ(HDk|m) is given by

ρ(HDk|m) =
nk!(n− nk)!

n!
.

On the other hand, because the hard conditioning data is
assumed to be independent, ρ(HDk) reads

ρ(HDk) =
nk!(n− nk)!

n!

nk
∏

j=1

ρ(vj; xj),

where ρ(vj; xj) is the prior probability of meeting the value vj
at location xj. In section 2.2, the simulation values have been
categorized into the set {f1, . . . , fs}. For a fixed HDk, let us define
an index-to-index map r = r(j) such that fr(j) identifies the
category of vj. An approximation to ρ(vj; xj) can be obtained
from Equation (6) by specifying ρ(vj; xj) ≈ qr(j)(xj). This simply
suggests to find the map qr(j) that corresponds to the category of
vj and extract the probability value at xj.

Every iteration contains the following three steps. Select
a number nk, sample conditioning locations from ˜D(Pk||Q)
and extract conditioning values by weighting the simulations
according to the computed likelihood measures in L̃k. They are
performed independently such that the probability of selecting
HDk, knowingm, is measured as

φk(HD
k|m) = φk(nk)

nk
∏

j=1

˜D(Pk||Q)(xj)

while similarly (with the hard conditioning data points being
independent)

φk(HD
k) = φk(nk)

nk
∏

j=1

φk(vj; xj)˜D(P
k||Q)(xj).

The value φk(nk) is the probability of selecting nk while the
measure φk(vj; xj) is the probability to draw a model (according
to L̃k) that presents the value vj at location xj. This quantity can
again be approximated by using the index-to-index relation r(j)
together with the categorical probabilities in Pk (c.f. Equation 4),
such that φk(vj; xj) ≈ pk

r(j)(xj). It is worthwhile to note that when
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working with discrete models, where the categories {f1, . . . , fs}
have a one-to-one relation to the range of all simulation values
in the training image, these approximations are exact. Finally, a
computable ratio is provided by

ρ(m)

φk(m)
=

nk
∏

j=1

qr(j)(xj)

pk
r(j)(xj)

. (10)

This expression is very practical. All the quantities in Equation
(10) are assembled during the PoPEx algorithm, so that the
required effort for evaluating the ratio is negligible. Moreover,
the expression is easily translated into log-probabilities, what can
simplify the floating-point representation of the values. Although
it only represents an approximation of the true ratio, often
the assumptions are not too strongly violated, and the usage
of the above equation is feasible. Finally, the weights wk are
computed by correcting the likelihood measure according to the
hard conditioning data:

wk = L(mk)
ρ(mk)

φk(mk)
= L(mk)

nk
∏

j=1

qr(j)(xj)

pk
r(j)(xj)

. (11)

The ratios in the correction term compare the prior vs. the
likelihood weighted probabilities of observing the selected values
at the locations of the conditioning data. These quantities are
directly available in the Q and Pk maps.

2.3.1. Degeneracy of the Sampling Weights
The estimator µ̃ in Equation (8) suffers from a degeneracy
in the sense that the distribution of WN = {w1, . . . ,wN}

may become increasingly skewed when the dimension of M

grows large (Doucet et al., 2001; Robert and Casella, 2004;
Liu, 2008). This means, that the weights may take small values
with high probability, but occasionally become very large. Using
such weights in Equation (8) would produce estimators that are
dominated by very few samples. Several preventive techniques
exist, and they often try to consider a reduced dimensionality in
the computation of the weights (Doucet et al., 2001; Rubinstein
and Kroese, 2016). The expression in Equation (10) uses a
reduction technique by limiting the computation of the ratio to
the hard conditioning data. But this expression only represents
one part of the weights in Equation (11), so that the degeneracy
problem still exists. A diagnostic that can be used to assess the
skewness of the weights, is called the effective sample size (Owen,
2013) and defined as

ne(W
N) =

(

∑N
i=1 wi

)2

∑N
i=1 w

2
i

=
Nw2

w2
, (12)

where w = (1/N)
∑N

i=1 wi and w2 = (1/N)
∑N

i=1 w
2
i . There is

an obvious link between ne and the variance ofWN . It suffices to
notice, that an estimator of the variance is obtained by w2 − w2.
Strongly varying weights would give w2/w2 << 1 and therefore,
ne << N. In general, lowering the variance increases the effective
number ne. In practice, it is often hard to specify a bound under

which ne is alarmingly small, because this strongly depends on
the application.

We will now present a method that aims to soften the
degeneracy by modifying the variance of the weights. The value
of any positive weight wi > 0 can be changed by exponentiation,
(wi)α , and we know that

lim
α→0

(wi)
α = 1.

For a given 0 < α < 1, the variance can therefore be reduced by
transforming the setWN into

WN
α = {(w1)

α , . . . , (wN)
α}.

It is clear that in the limit α → 0, ne(WN
α ) is equal to the

total number of positive weights in WN . Before computing an
estimator µ̂ from WN , we select an appropriate α, and use the
weights in WN

α instead. To make a good choice for α might
depend on the application and can be challenging. We propose
to define a lower bound l0 and choose α such that

ne(W
N
α ) = max

{

l0, ne(W
N)
}

. (13)

The idea of Equation (13) is to ensure that the computation
of µ̂ is based on at least l0 significant models. Furthermore, it
assures that the growth rate of ne(WN) and ne(WN

α ) are equal
for ne(WN) > l0. This might be important for the asymptotic
behavior of the method. Finally, we propose to use the pseudo
code in the algorithm 3 to compute predictions. The computation

Algorithm 3 Prediction

1: Input: l0 and f (·)

2: Output: µ̂

3: compute α such that ne(WN
α ) = max

{

l0, ne(WN)
}

4: for (wi)α > 0 do
5: compute f (mi)
6: end for

7: compute µ̂

of α can be translated into a smooth, 1-dimensional optimization
problem, and does not require a considerable effort. The most
important effort usually goes into the evaluation of f (mi). But
all the weights are known in advance and therefore we can omit
computations that are associated with zero weights. Furthermore,
the iterations in the algorithm 3 are independent and can be
performed simultaneously in parallel.

3. CASE STUDY AND RESULTS

In this section, we illustrate how PoPEx performs to solve
an inverse problem with an example of a tracer test in a
fluvial aquifer. We also consider the problem of quantifying the
uncertainty related to the prediction of the capture zone of a
pumping well in such geological environments.
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FIGURE 2 | Training image.

3.1. Problem Setup
For this example, the conceptual model for the geological
heterogeneity is derived from a 3D simulation of the geological
processes occurring in a fluvial plain using the FLUMY software
(Lopez et al., 2009). This tool combines a process-based
approach with a stochastic component. A meandering river
crosses an alluvial valley with a given slope and causes erosion
and deposition of sediments. Over time, the river migrates
and alter the topography of the alluvial plain. This process
generates complex geological patterns with a realistic and highly
heterogeneous architecture. However, the thickness of the alluvial
sediments is usually negligible with respect to the horizontal
dimensions of the plain. It is therefore reasonable to reduce the
complexity of the problem and neglect the vertical component of
the flow. The parameter of interest is then the transmissivity of
the aquifer.

Following this approach a 2-dimensional training image was
generated. It is represented in Figure 2. The training image
represents a domain of 5, 000 × 4, 000 m and is subdivided
into 1, 000 × 800 quadratic pixels. It was obtained by vertical
integration of a 3D model generated with FLUMY. The resulting
field was categorized into four facies types f1, f2, f3, and f4
that represent transmissivity values of 10−5, 10−3, 10−2, and
10−1(m2/s), respectively. The drainage porosity and the specific
storage were fixed uniformly to 0.2 and 10−6.

We then consider a smaller area of size 1, 000 × 500 m,
discretized into 200 × 100 quadratic pixels. The area hosts a
pumping well at the location (750, 250) that extracts 15(l/s)
of groundwater for a total duration of 20 days. The terrain is
exposed to a natural slope of 4‰ in the x-direction, while the
basin is closed at y = 0 (m) and y = 500 (m). Corresponding
boundary conditions are: fixed head values of 4 (m) (left)
and 0 (m) (right) together with no-flow on the upper and
lower boundary. A constant tracer concentration of 1(kg/m3) is
enforced at (250, 250) throughout the time period.

For any given model, the subsurface water flow together
with the tracer expansion is computed by the GroundWater

FIGURE 3 | (A) Shows the reference domain with tracer injection (left) and

pumping well (right), while (B) is the observed tracer concentration at the

pumping well.

simulation software (Arpat and Caers, 2007). At days 2, 4, 6,
8, 10, 12, 15, and 20 the solute concentration is recorded at
the pumping well. This provides a set of 8 observations and
represents all the data constraints used for conditioning the
inverse problem.

For modeling the spatial structures, we used the training
image shown in Figure 2 and the DeeSse multiple-point statistics
software (Straubhaar, 2011). An arbitrary seed was used to
generate the reference domain in Figure 3A. The black triangles
indicate tracer injection (left, pointing right) and pumping
well location (right, pointing left), respectively. The tracer
concentration at the pumping well resulting from this reference
domain is shown in Figure 3B. The red dots indicate the
extracted data that was used in the inverse procedure. This means
that the entire reference domain in Figure 3A is unknown to
the PoPEx algorithm. Its only task is to represent an unknown
subsurface model and provide a sparse set of data points that
can be used in the sampling procedure. For constructing the
likelihood measure L(m), we assume the observations to be
independent and consider a multivariate normal distribution
between the predictions g(m) = {g1(m), . . . , g8(m)} and
observations dobs = {dobs1 , . . . , dobs8 } with uniform standard
deviation of σL = 0.0015(kg/m3). This represents 1.5‰ of
the concentration at the injection point, and roughly 5% of
the maximal concentration at the extraction location in the
reference domain (c.f. Figure 3B). The subscript L distinguishes
the standard deviation of the likelihood measure σL from the
posterior density σ in Equation (1). Assuming an uniform
and independent Gaussian behavior of g(m) around dobs, the
density function of the likelihood measure is proportional to

exp
{

− 1
2σ 2

L

∑

i(gi(m)− dobsi )2
}

.

3.2. Tracer Breakthrough Curve
The PoPEx method has been trained to run the above problem
for a total of N = 20, 000 models with nmax = 25. Three random
realizations are shown in Figure 4.

The prior facies probabilities in Q were computed from 500
unconditioned MPS models. For each realization in the PoPEx
chain, the algorithm computed the tracer concentration at the
pumping well, extracted 8 data points and compared them to
the reference data in Figure 3B. Together with the weights
from Equation (11), the posterior distribution of the tracer
breakthrough curve can be computed. Figure 5 shows the 2.5 −
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FIGURE 4 | Three random realizations from the PoPEx sampling. The above problem assigns a large likelihood value to the left, a very low likelihood value to the

middle, and an average likelihood value to the right parameter map.

FIGURE 5 | Prior and posterior concentration probabilities at the pumping well. The curves indicate 2.5− 97.5% region (dashed), 25− 75% region (full) and average

value (blue), while the red dots represent the reference concentration.

97.5% (dashed), 25 − 75% (full) and average (blue) curves of
the prior and the posterior tracer concentration at the pumping
well.

The red dots indicate the extracted reference data. It is
clear that for any sampling strategy a critical measure is the
required computational effort, which usually is proportional to
the number of samples. For this reason, all results are shown
for two different stages in the sampling procedure: after 10, 000
and after 20, 000 realizations. At a first glance, both estimations
of the posterior probabilities are quite similar. This may be
surprising when keeping in mind that the computational effort
for the second estimation is twice as high. However, it can be
seen that the probability lines are steadier and smoother in the
last image. Both estimations of the 50% region (between the
full lines) fully embeds the red reference data and follows the
shape of the reference curve very precisely. The estimation of the
posterior expectation (blue) almost matches the entire curve. The
higher density of data points in the first 10 days, increases the
relative importance of this period with respect to the second half.
Thus, it is reasonable to allow less uncertainty in the beginning
of the simulation. The more generous 95% regions (between the
dashed curves) are still appropriate in reproducing the shape of
the reference curve. This is even more significant when realizing
that the prior distribution is far from being centered around the
reference curve.

3.3. Predict 10-Days Capture Zone
In practice, when producing freshwater from an aquifer, it is
often crucial to protect the resource and determine the capture

zone (Leeuwen et al., 1998). Here, we used the results of the
PoPEx model chain for predicting the posterior probabilities of
the 10-days capture zone. It means that for each location in
the simulation grid, we computed a Bernoulli probability value
for the water to be captured within 10 days. Figure 6 shows
the predicted probabilities for the prior distribution and for
the posterior distribution after 10, 000 and 20, 000 iterations,
respectively.

As expected, since the tracer is arriving in <10 days at the
pumping well, the injection point is located within a region
having a high probability to belong to the 10-days capture zone.
This is already clearly visible in the map generated from 10, 000
realizations. These results show the existence of a connected
path of high transmissivity between the injection point and the
pumping well. However, zones of lower probability are located in
between these two points. This indicates that the position of the
channel is not well identified from these tracer data alone. In the
reference domain, shown in Figure 3, we can see that the yellow
facies (with the largest transmissivity value) first shows a very
tight upwards bend before heading almost directly toward the
extraction well. The injected tracer will mostly follow the region
with the largest transmissivity. Therefore, it will not take a direct
path toward the well and its arrival time will be delayed. The only
information that can be extracted from the observations is the
delay. From the available data, it is therefore impossible to predict
precisely water pathways that are far from the tracer injection and
the algorithm is correctly informing us about that uncertainty.

It is interesting that the reference capture zone (red line)
slightly passes outside the 95% region in the top section of the
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FIGURE 6 | Prior and posterior 10 days capture zone probabilities. The curves indicate 5, 25, 50, 75, and 95% regions, while the red lines delineates the capture

zone in the reference domain.

FIGURE 7 | Exact prediction of the 10-days capture zone probability. The red

lines delineates the capture zone in the reference domain.

computational domain. This should not be interpreted as an
inaccuracy of the PoPEx method, because it similarly appears in
the approximation of the exact solution in Figure 7. However,
it indicates that the training image (prior knowledge) together
with the available observations (likelihood function) make the
upwards extension of the reference zone very unlikely in terms
of the posterior probability.

3.4. Convergence and Parallel Behavior
The synthetic inverse problem described above allows to compute
exact predictions from a sufficiently large set of models. To do
so, we put nmax = 0 and generated an empirical reference set of
1, 000, 000 unconditioned realizations. From this large ensemble,
any prediction can be computed accurately by using Equation (8)
together with weights such that wk = L(mk) (c.f. Equation 11).
As the reference set is sufficiently large, the degeneracy problem
described in section 2.3 can be ignored. The resulting predictions
are considered to be the exact solutions and are denoted by
µex. Although the number of realizations is very large, it is
not unsoiled to call these solutions to be exact. Nevertheless,
these are very accurate approximations of the true solution such
that, in this work, we will call them “exact prediction” or “exact
solution.” The corresponding prediction of the 10-days capture
zone probability is shown in Figure 7.

Once an exact solution is available, we might be interested in
the convergence speed of the PoPEx algorithm. Therefore, after
each iteration k = 1, . . . ,N, a prediction µ̂k is computed by using
the algorithm 3 and compared toµex. As mentioned earlier, these
twomaps define Bernoulli probability values for each point in the
computational domain. It determines whether the groundwater

FIGURE 8 | Error between µ̂k and µex for a fixed l0 = 100 and variable nmax

(A), and fixed nmax = 25 and variable l0 (B).

at the corresponding location belongs to the 10 days capture zone
or not. A convenient distance between two Bernoulli probability
maps µ̂k and µex is the Jensen-Shannon divergence (JSD) [e.g.,
Lin (2006)] reading

J(µ̂k||µex) =
1

2

(

D(µ̂k||m)+ D(µex||m)
)

,

with m = (µ̂k + µex)/2 and D being the Kullback-Leibler
divergence as in Equation (5). This distance measure is computed
pointwise over the simulation grid and therefore defines one
distance value per pixel. A (scalar) error value is then obtained by
computing the spatial average of the Jensen-Shannon divergence
map.

Figure 8 shows the evolution of error between µ̂k and µex

with respect to the iteration k. For increasing the statistical
significance of the results, every curve represents the average
performance of 5 similar runs with different initial seed. First, the
minimumnumber of effectivemodels l0 has been fixed to 100 and
we varied the maximum number of conditioning values nmax ∈

{10, 25}. Figure 8A shows that the two convergence curves are
quite similar. This is not surprising, because the PoPEx algorithm
is designed to correct the influence of the hard conditioning
by using Equation (10). It follows that for a reasonable hard
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conditioning bound, the results are not highly sensible to the
choice of nmax. On the other hand, it can be seen from the
blue curve that for nmax = 10 and k > 9, 000 the error
reaches a “plateau.” This signifies that for a certain time, the
PoPEx algorithm was not able to further improve the prediction
or in other words, that the method could not find sufficiently
important realizations. From such behavior it can be deduced
that the learning effect must be reinforced by increasing nmax.
However, what is important is that the overall convergence rate
of both curves well compares with the dashed line representing
k−1/2. This is significant because if we directly sample from
the posterior probability distribution σ and k is the number
of samples, the Central Limit Theorem (CLT) (Durrett, 2010)
predicts a convergence rate of k−1/2. Because the error curves
represent the average performance of 5 PoPEx runs, it is not
surprising that they slightly fluctuate and do not reproduce the
theoretical rate of k−1/2 precisely.

For the second experience, we fixed nmax = 25 and varied
l0 ∈ {0, 25, 100, 500}. We recall that the choice of a large value
for l0 generally increases the effective number of weights but
implies a risk to produce biased predictions. On the other hand,
when the effective number of weights is too low, the predictions
will be based on very few models and may be biased as well. It
is therefore not surprising that for l0 = 0 the approximation
accuracy is very bad (green curve in Figure 8B). However, the
remaining three convergence curves are highly similar for k ≤
4, 000 where the magenta curve (l0 = 25) reaches a “plateau” and
has difficulties to further improve the approximations. As in the
previous figure, the curved represent the average performance of
5 similar PoPEx runs with different initial seed. It follows that
small fluctuations may arise and should not be overestimated.
However, the stagnation of the curve with l0 = 25 might be
due out of a different reason. Whenever the parameter l0 is small,
the weights in Wk

α are more sensible to highly dominant values.
This means that a model mk0 with very large weight wk0 might
dominate the prediction µ̂k for many iteration k > k0 and
therefore, the approximation error only slightly changes. So such
a behavior indicates that l0 should not be too small. We can
again conclude by the fact for a reasonably large l0, the overall
convergence rate compares very well with the theoretical rate of
k−1/2.

The last part of the results section is dedicated to a short
analysis of the parallel scalability of PoPEx. We repeat the
same exercise by first using npar = 15 on a 64 CPU facility
(34.4(Tflop/s)), and then changing to npar = 75 on 320 CPU’s
(172(Tflop/s)). Therefore, between the first and the second
procedure, the computational capacity has been increased by a
factor of 5. The performances will be compared by measuring
the total sampling time and by a convergence analysis similar
to the one in Figure 8. We fixed nmax = 25 and l0 =
100 and ran PoPEx until 20,000 models have been sampled.
All runs were performed 5 times with different initial seeds.
The total runtime for the two setups was 27.51 ± 1.521[h]
and 5.00 ± 0.397[h], respectively. This signifies an overall
speedup factor of 5.5 ± 0.74 and therefore fully satisfies the
expectations.

FIGURE 9 | Error between µ̂k and µex for a fixed nmax = 25, l0 = 100 and

variable npar (A), and the speedup factor for obtaining the same error

accuracy (B).

Considering the convergence analysis in Figure 8 we are
now interested in the speedup factor for obtaining the same
approximation accuracy when predicting the 10-days capture
zone probability. This means that in each iteration k =

1, . . . , 20, 000, the approximation errors are again computed by a
Jensen-Shannon divergence between the prediction and the exact
solution. In Figure 9A however, we compare the approximation
error vs. the elapsed time in (s).

It can be seen that the convergence rate of both curves are
very similar and the obtained gain factor highly matches the
increasement of the computer resources. This becomes even
more obvious in Figure 9B. It shows the observed speedup
in time for obtaining the same approximation accuracy. This
means that for any error value (y-axis) we computed the
times (and the corresponding speedup factor) that were needed
for reaching the considered approximation accuracy. From
the relatively small statistical set of 5 chains per exercise,
it is not surprising that there is a certain variability in the
computations. However, it is evident that the curve significantly
matches the predicted speedup factor of 5 and therefore
underlines the exceptional scaling behavior of the PoPEx
algorithm.

4. DISCUSSION

This paper presents a fast and efficient sampling method for
solving inverse problems having a complex and discrete prior.
The algorithm is parallelized and scales perfectly. This means
that the number of samples computed in parallel is equal to
the time reduction factor without compromising the quality of
the results. Every sample involves two different main processes:
generate a newmodel and compute the corresponding likelihood
value. In this regard, the main concern for using the proposed
method in practice is the number of such processes that can
be run simultaneously. As there are many supercomputers
publicly available however, handling a significant number of
computations in parallel should not be a major issue.
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Some important concepts of the above algorithm have
originally been introduced by Jäggli et al. (2017) where the
inverse method was named Posterior Population Expansion
(PoPEx). In the present paper we suggest some minor changes
concerning the sampling procedure and completely reconsider
the method to compute predictions. Nevertheless, we decided to
keep the name of the algorithm so that whenever the terminology
PoPEx is used in the following, it refers to the algorithm as
presented in this paper. PoPEx is capable to handle all the four
different types of uncertainty distinguished by Sagar et al. (1975):
spatial heterogeneities, initial conditions, boundary conditions
and sources/sinks. The only requirement for the algorithm to be
efficient, is that some uncertainties are modeled by conditional
simulation tools.

As illustrated in the case study, a possibility is to use Multiple
Point Statistics (MPS) to produce the conditional simulations
of heterogeneity. But whenever MPS tools are used, a critical
issue is to select an appropriate training image. In practice, it is
therefore not uncommon to hesitate about this choice. With the
above method, multiple training images can be included. This
corresponds to a discrete choice that needs to be formulated in
the inverse problem. PoPEx can iteratively learn which image
is most appropriate and provide a posterior distribution of the
training image selection issue.

PoPEx has been tested based on a two dimensional
meandering channel aquifer of size 1, 000 × 500 (m). A natural
gradient of 4‰ and a groundwater extraction rate of 15(l/s)
control the groundwater flow. Considering the high complexity
of the categorical models, together with the small number of
extracted data points, the method solved the inverse problem
efficiently and produced accurate estimations of prediction
uncertainty. After a very large computational effort, we were
able to compute the exact solution and compare it with the
predictions made by a PoPEx chain. It was shown empirically
that the prediction converged to the exact solution very fast.
The convergence speed was comparable with the theoretical rate
of k−1/2 predicted by the central limit theorem (where k is the
number of samples). Furthermore, we demonstrated that the
PoPEx results are not very sensitive to the choice of the two main
input variables nmax and l0. This is very convenient, because there
is no uniform criterion for their optimal choice.

In section 2, we mentioned that PoPEx can be interpreted
as an adaptive importance sampler (AIS). According to Oh and
Berger (1992), the sampling distribution φk of an AIS technique
should follow three properties:

• it should be easy to generate random samples from φk;
• the tails of φk should not be sharper than the tails of f ∗ σ ;
• φk should mimic f ∗ σ well.

The first property depends on the conditional simulation tool
entrained to generate new models and is usually satisfied.
Regarding the third property, it can be shown that the sampling
distribution that minimizes the variance of µ̂k in Equation (8)
is proportional to f ∗ σ . When working with prior distributions
ρ that are fairly flat over the region where f (m)L(m) is
concentrated, taking a sampling distribution proportional to f ∗L

is nearly optimal (Oh and Berger, 1992). But as samples may
be used to generate predictions for many different functions,
PoPEx is trying to learn a sampling distribution according to
the likelihood values L(m) (c.f. Equation 4). However, the link
between L and φk must not be too strong. Let’s assume that for
a sufficiently large k, the sampling distributions is approximately
proportional to Lr for a given power r > 1. In this case we have

σ

φk
∝

ρ

Lr−1
.

For a flat distribution ρ and an infinite model spaceM this ratio
might be unbounded so that the variance of Equation (8) is not
finite.

The main limitation of the PoPEx method is that the
likelihood values in Equation (8) must be evaluated and
represented by a floating-point number. If the dimension of
the data space is very large, it may happen that the numerical
likelihood values are zero for most realizations. In this case, most
of the indicator functions in Equation (4) are multiplied by zero
and the learning process of the method is very slow. But if the
number of observations is large, it is not uncommon that they are
highly correlated. This means that it might be possible to trim the
data set and project the observations onto a smaller data space.
In other words, a possible strategy to overcome this issue would
be to analyze the set of observations, extract a smaller amount
of independent information and define an appropriate likelihood
function. Alternatively, the likelihood function may be written as
a Gibbs field (ormeasure) (Winkler, 2012), i.e.,

L(m) =
1

C
exp{−H(m)}.

Such a measure is induced by a normalization constant C and
an energy function H. The latter is unique up to an additive
constant and therefore, for finite model spaces as well as for
Gaussian distributions we may assume that H ≥ 0. Usually, for
floating point operations it is easier to work with the energyH(m)
rather than with the unnormalized Gibbs measure exp{−H(m)}
directly. During the evolution of the PoPEx algorithm, whenever
Pk is computed from Equation (4), we could weight the indicator
functions 1fi (mj) proportional to

1

1+H(mj)

rather than L̃(mj). For the computation of ergodic predictions
however, we would still need to compute the likelihood values.
But considering the underlying floating point operations, it can
be advantageous to learn from non-zero energy values H(m) in
order to obtain a sufficiently large number of non-zero likelihood
values L(m).
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We present a generalized hybrid Monte Carlo (gHMC) method for fast, statistically

optimal reconstruction of release histories of reactive contaminants. The approach is

applicable to large-scale, strongly nonlinear systems with parametric uncertainties and

data corrupted by measurement errors. The use of discrete adjoint equations facilitates

numerical implementation of gHMC without putting any restrictions on the degree

of nonlinearity of advection-dispersion-reaction equations that are used to describe

contaminant transport in the subsurface. To demonstrate the salient features of the

proposed algorithm, we identify the spatial extent of a distributed source of contamination

from concentration measurements of a reactive solute.

Keywords: source identification, contaminant transport, Markov Chain Monte Carlo, hybrid Monte Carlo, inverse

problems, uncertainty quantification

1. INTRODUCTION

An accurate reconstruction of the release history of contaminants in geophysical systems is essential
to regulatory and remedial efforts. These efforts rely on measurements of pollutant concentration
to identify the sources and/or release history of a pollutant. Unfortunately, available concentration
data are typically sparse in both space and time and are corrupted by measurement errors.
Source identification and reconstruction of release history are further complicated by both spatial
heterogeneity of model parameters and their insufficient characterization, although we do not
consider these effects in the present work.

Detailed reviews of the historic developments and state-of-the-art in the field of inverse
modeling as related to contaminant source identification are presented in Atmadja and Bagtzoglou
(2001b) and Hutchinson et al. (2017). The existing approaches can be subdivided into two broad
classes: deterministic and probabilistic. Deterministic approaches include, but are not limited to,
Tikhonov regularization of convolution integrals (Liu and Ball, 1999; Ito and Jin, 2015), least-square
estimation from analytical approximations (Butcher and Gauthier, 1994), least-square solution
of an optimal control problem (Gugat, 2012), the method of quasi-reversibility (Skaggs and
Kabala, 1995; Bagtzoglou and Atmadja, 2003), and the backward beam equation method (Atmadja
and Bagtzoglou, 2001a; Bagtzoglou and Atmadja, 2003). These approaches provide estimates of
the release history from a source of known locations and are not designed for quantifying the
uncertainty associated with these estimates. The robustness of these methods is highly sensitive
to measurement errors, and their mathematical formulations are often fundamentally ill-posed.

While existing probabilistic approaches, such as randomwalk particle tracking for the backward
transport equation (Bagtzoglou et al., 1992), minimum relative entropy (Woodbury and Ulrych,
1996), and adjoint methods (e.g., Neupauer and Wilson, 1999), alleviate some of these problems,
others remain. For example, these and similar methods do not take advantage of the regularizing
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nature of the measurement noise and, hence, are often
ill-posed. Thus, the minimum relative entropy method
treats concentration measurements as ensemble averages.
Additionally, there are some outstanding issues with quantifying
uncertainty (Neupauer et al., 2000) and the inability of many
existing approaches to handle more than one observation
point (Neupauer and Wilson, 2005).

Finally, most existing approaches to the reconstruction of
release history are restricted to linear transport phenomena, that
is, transport phenomena for which the transport equation is
linear in the concentration, and thus are limited to migration
of contaminants that are either conservative (all the references
above) or exhibit first-order (linear) reaction rates (Neupauer
and Wilson, 2003, 2004). This is because such approaches are
based on either Green’s functions (Skaggs and Kabala, 1994;
Woodbury and Ulrych, 1996; Stanev et al., 2018) or analytically
derived adjoint equations (Neupauer and Wilson, 1999, 2005).
The use of Kalman filters for source identification (Herrera and
Pinder, 2005) is formally limited to linear transport phenomena
and Gaussian errors. While both limitations can be relaxed by
employing various generalizations of the Kalman filter such as
the extended and ensemble Kalman filter (e.g., Xu and Gömez-
Hernández, 2016, 2018), these generalizations are known to fail if
the nonlinearity is too strong. Bayesian optimization approaches
(Pirot et al., 2019), accelerated by the use of Gaussian process
models as surrogates, provide a promising alternative to the
Kalman filter since they impose no linearity requirements.

Purely statistical approaches to history reconstruction, such
as the geostatistical inversion with Bayesian updating (Snodgrass
and Kitanidis, 1997) and various machine learning techniques
(Vesselinov et al., 2018, 2019), are applicable to nonlinear
transport. Since this is achieved by ignoring governing
equations, the reconstructed release histories could have non-
physical characteristics, including negative concentrations. These
problems have been alleviated by introducing additional
constraints into an optimization functional and requiring the
reconstructed field to be Gaussian (Michalak and Kitanidis,
2003, 2004a). Combining these geostatistical approaches with
analytically derived adjoint equations (Michalak and Kitanidis,
2004b; Shlomi and Michalak, 2007) however brings back the
linearity requirement.

We present an optimal reconstruction of contaminant
release history that fully utilizes all available information
and requires neither the linearity of governing transport
equations nor the Gaussianity of the underlying fields.
In section 2 we formulate the problem of reconstructing
the contaminant release history from noisy observations.
Section 3 introduces our general computational
framework, which is further implemented in section 4 for
various examples.

2. PROBLEM FORMULATION

2.1. Reconstruction of Contaminant
Release History
We consider migration of a single chemically active contaminant
in a porous medium � ⊂ R

d, d ∈ [1, 3]. We assume that reactive

transport is adequately described by the advection-dispersion-
reaction equation with reaction term R(c):

∂c

∂t
= ∇ · (D∇c)−∇ · (uc)− R(c)+ r(x, t), x ∈ �, t > 0, (1)

together with corresponding boundary conditions. Here c =

c(x, t) is the solute concentration at point x and time t, u is the
average macroscopic pore velocity,D is the dispersion coefficient
tensor, and r(x, t) is the source function. Both the location and
duration of the contaminant release, i.e., the source function
r(x, t), can be unknown, but only the former source of uncertainty
is treated in the computational examples of section 4, that is, we
assume that r(x, t) = r(x)δ(0).

Introducing the dimensionless quantities

c′ =
c

c0
, x′i =

xi

x0
, i ∈ [1, d], t′ =

t

t0
, D′ = D

t0

x20
,

u′ = u
t0

x0
, r′ = r

t0

c0
,

and the normalized reaction term R′ = Rt0/c0, we rewrite (1) in
terms of dimensionless quantities,

∂c′

∂t′
= ∇ ′ · (D′∇ ′c′)−∇ ′ · (u′c′)−R′ + r′ x′ ∈ �′, t′ > 0.

(2)
The non-dimensionalization of the reaction term is specific to
its functional form. The non-dimensionalization of a particular
case employed in this manuscript is discussed in section 4. For
all the following discussions we will consider the dimensionless
Equation (2) and we will drop the prime notation for denoting
dimensionless quantities.

For the remainder of this work we assume that u, D, and
the boundary conditions are known, while the source function
r(x, t) is unknown. Our goal is to reconstruct the release history
r(x, t) from concentration data c̄mi = c̄(xm, ti) collected at
points {xm}

M
m=1 at times {ti}

I
i=1, and for known u, D, and

boundary conditions.
Concentration measurements are corrupted by measurement

errors. We assume that the measured concentrations c̄mi differ
from the true concentration by an additive measurement noise,
so that

c̄mi = c(xm, ti)+ ǫmi, (3)

where the errors ǫmi are zero-mean Gaussian random variables
with covarianceE[ǫmiǫnj] = δijRmn, whereE[·] is the expectation
operator, δij denotes the Kroneker delta function, and the Rmn,
m, n ∈ [1,M], are components of the spatial covariance
matrix R ∈ R

M×M of measurement errors. This treatment
of measurement noise assumes that the measurements are
well separated in time to neglect any temporal correlations,
but the model can be easily extended to include temporal
correlations. We use the additive error model (3) of Woodbury
and Ulrych (1996) rather than the multiplicative error model of
Skaggs and Kabala (1994) for the purpose of illustration only.
Both models have similar effects on the accuracy of history
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reconstruction (Neupauer et al., 2000) and can be handled by
our approach.

In a typical situation, one has prior information (or a belief)
about potential sources of contamination (a region �c within
the flow domain �) and a time period [Tl,Tu] during which the
release has occurred. Examples of�c include spatially distributed
zones of contamination (e.g., landfills) and a collection of
point sources (e.g., localized/small industrial sites or storage
facilities), some of which have contributed to contamination.
The lower (Tl) and upper (Tu) bounds of the release interval
might represent the time when a landfill became operational
and the time when contamination has first been detected,
respectively. In the absence of prior information about the release
occurrence, one can assume a uniform random distribution of
the release in [Tl,Tu] × �. We allow for an arbitrary number
of measurement points and for either discrete or continuous-in-
time measurements.

2.2. Likelihood Function
To simplify the exposition, we assume a spatially distributed
chemical release at time t = 0 only, i.e., r(x, t) = c(x, 0)δ(t).
Given the measurements c(xm, ti) and the noise model (3), our
goal is to determine the likelihood of a given release configuration
c(x, 0). Unfortunately, the measurements, generally taken at
later times, do not estimate directly the likelihood of a release
configuration. Nevertheless, because the transport Equation (2)
is deterministic, we can implicitly assess the likelihood of
a given release configuration, P[c(x, 0)], from the probability
(likelihood) of a given (computed) concentration history c(x, t).
This likelihood can be expressed as (Alexander et al., 2005)

P[c(x, 0)] ∼ exp{−H̃obs[c(x, t)]}, (4)

where H̃obs[c(x, t)] is the so-called “Hamiltonian” or log-
likelihood function,

H̃obs[c(x, t)] =
1

2

M,I
∑

m,n=1,i=1

1mi(R
−1)mn1ni, (5)

where 1mi ≡ c(xm, ti) − c̄(xm, ti), and R is the covariance
matrix of measurement errors, as defined in section 2.1. Since (2)
uniquely determines the evolution of the solute concentration
from its initial state c(x, 0), the Hamiltonian (5) is a nonlinear
functional of the initial conditions c(x, 0), i.e., H̃obs[c(x, t)] =

Hobs[c(x, 0)].
This formulation assumes that themeasurement errors ǫmi are

Gaussian and uncorrelated with the state of the system. Other
distributions of the measurement noise and the stochasticity
of governing equations can be handled as well (Alexander
et al., 2005). The Hamiltonian for stochastic systems, which
can represent, e.g., uncertain hydraulic conductivity and flow
velocity that are treated as random fields, can be reformulated to
explicitly include the transport equation (Alexander et al., 2005;
Archambeau et al., 2007).

The contribution of highly fluctuating or unphysical
initial conditions is reduced by adding a regularization term

Hreg[c(x, 0)] to the observation Hamiltonian (5) and replacing
the likelihood function (4) with

P[c(x, 0)] ∼ exp{−H[c(x, 0)]}, (6a)

where

H[c(x, 0)] = Hobs[c(x, 0)]+ γHreg[c(x, 0)], (6b)

and the weight γ > 0 is a tuning hyperparameter. The
regularization term Hreg is equivalent to a Bayesian log-prior
distribution on the initial condition. The selection of an
appropriate regularization Hamiltonian is particularly important
for problems in which the observation Hamiltonian does not
specify a proper probability distribution for c(x, 0) due to a lack of
measurements. For a one-dimensional source profile, the squared
gradient of the initial spatial profile can play the role of the
regularization Hamiltonian. In higher dimensions, one can use
a thin-plate penalty functional (Wahba, 1990).

A conceptual difference between our approach and maximum
likelihood methods is worth emphasizing. Rather than sampling
the Gibbs distribution exp{−H[c(x, 0)]}, as we do here,
maximum likelihood methods minimize the Hamiltonian (6b)
over c(x, 0). While standard maximum likelihood methods
determine the mode and variance of the posterior distribution
under a Gaussian approximation, the approach described
below can be used to determine the mean and higher-order
statistics, and it is valid even when the posterior distribution
is multi-modal.

3. MONTE CARLO SAMPLING

In principle, one can sample the Gibbs distribution by using
Markov-chain Monte Carlo (MCMC) (e.g., Michalak and
Kitanidis, 2003). However, quite often, the disadvantage of
local MCMC-based methods is their slow convergence. To
improve convergence, we apply a Generalized Hybrid Monte
Carlo (gHMC), which enables one to efficiently sample release
configurations c(x, 0) with probability given by (6a).

3.1. Hybrid Monte Carlo (HMC)
Hybrid Monte Carlo (HMC) refers to a class of methods that
combine Hamiltonian molecular dynamics with Metropolis-
Hastings Monte Carlo simulations (see Neal, 1993 for an
introductory survey). Specifically, a time-discretized integration
of the molecular dynamics equations is used to propose a new
configuration, which is then accepted or rejected by the standard
Metropolis-Hastings Monte Carlo criteria. The change in total
energy serves as the acceptance/rejection criteria.

In HMC one treats the log-likelihood functionH in (6b) as the
configurational Hamiltonian for a system ofN “particles,” each of
which has unit mass and generalized coordinates q1, q2, . . . , qN .
Each of these generalized positions corresponds to the solute
concentration c(x, t) at a space-time point (x, t). In the following,
the particle positions correspond to the initial concentration at
time t = 0, e.g., qi = c(xi, 0), xi = iL/(N−1), i = 0, . . . ,N−1 for
a contaminant release over the one-dimensional domain [0, L].
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At any given time, the state of the system is completely
described by (q, p), where q = {qi}

N
i=1 and p = {pi}

N
i=1. Here,

the momentum of the ith particle, pi, is dqi/dτ = pi, where τ is
the fictitious time of the molecular dynamics. The kinetic energy
of the system of N particles is given by

HK(p) =
1

2

N
∑

i=1

p2i , (7)

and the total Hamiltonian of the system is

Ĥ(q, p) = H(q)+HK(p). (8)

It follows that the Hamiltonian dynamics are given by

dqi
dτ

= pi,
dpi
dτ

= Fi, Fi = −
∂H

∂qi
, (9)

where Fi is the force acting on the ith particle, that is to be
computed from the governing transport equation. During the
time interval 1τ , the system evolves from its current state (q, p)
to a new state (q̃, p̃), which can be computed by discretizing the
Hamiltonian dynamics (9). An example of such a discretization
is the standard leapfrog method, which is written as

q̃i =qi + 1τ pi +
1τ 2

2
F(q) (10a)

p̃i =pi +
1τ

2
{F(q)+ F(q̃)}, (10b)

for i = 1, . . . ,N. Multiple leapfrog steps, i.e., multiple
applications of Equation (10), can be performed. For the hybrid
Monte Carlo method, the number of leapfrog steps S is larger
than one. For S = 1 we obtain the LangevinMonte Carlo method
(Neal, 1993). This completes the “proposal part” of HMC.

The remaining part of HMC consists of deciding whether
to accept or reject the new state (q̃, p̃). This is done by the
Metropolis-Hastings sampling strategy, according to which the
new state (q̃, p̃) is accepted with probability

Q = min
{

1, exp{Ĥ(q, p)− Ĥ(q̃, p̃)}
}

. (11)

The momenta variables p̃ are resampled after each
acceptance/rejection of the position variables according to
a Gaussian distribution of independent variables ∼ exp(−HK).
The time-marching and acceptance/rejection process represents
one step in the Markov chain, and therefore one Monte Carlo
sample. It is important to note that the update from (q, p)
to (q̃, p̃) does not conserve energy as a result of the time
discretization. The extent to which energy is not conserved is
controlled by the time step 1τ . Detailed balance is achieved if
the configuration obtained after evolving several steps is accepted
with probability Q in (11). Thus, the Metropolis step corrects for
time discretization errors.

As we have noted before, the method samples from the
multivariate target distribution, ∼ exp(−Ĥ), by computing a
Markov chain. Sampling from this density allows us to estimate

the mean state (reconstructed initial configuration) and its
variance. Markov chain sampling from the posterior distribution
involves a transient phase, in which we start from some initial
state and simulate the Markov chain for a period long enough
to reach its stationary density, followed by a sampling phase, in
which we assume that the Markov chain visits states from this
stationary density. If the chain has converged and the sampling
phase is long enough to cover the entire posterior distribution,
accurate inferences about any quantity of interest are made
by computing the sample mean, variance, and other desired
statistics (Landau and Binder, 2009).

3.2. Generalized Hybrid Monte Carlo
(gHMC)
In many cases, the generalized hybrid Monte Carlo (gHMC) of
Toral and Ferreira (1994) can improve the efficiency of standard
HMC by means of the nonlocal sampling strategy described
in some detail below. For q, p ∈ R

N , gHMC replaces the
Hamiltonian dynamics in (9) with a more general formulation,

dq

dτ
= Ap,

dp

dτ
= A⊤F, (12)

where A is a linear operator represented by a RN×N matrix. The
corresponding leapfrog discretization is then given by

q(δτ ) = q+ δτAp+
δτ 2

2
AA⊤F[q], (13a)

p(δτ ) = p+ A⊤ δτ

2
{F[q]+ F[q(δτ )]}. (13b)

The two formulations, (9) and (12), are identical if A is the
identity matrix. The goal is to find a matrix A that leads to a
significant reduction of the temporal correlations of the Markov
chain without appreciably increasing the cost of the update due
to matrix-vector multiplications.

In order to illustrate how the introduction of the matrix A can
help to reduce the correlations of the Markov chain, consider the
problem with q ∈ R

N and Hamiltonian

H(q) =
1

2
(q− µ)⊤6

−1(q− µ),

so that the forcing is given by−6
−1(q− µ). For the case A = I,

it can be seen from (13) that the different components qi are
updated at different rates, given by the covariance matrix 6. For
a given δτ , some components would be updated with long steps,
while others would be updated with shorter steps.

The disadvantage of such a configuration is that too long
of a step for a certain component might increase the total
Hamiltonian enough to produce a rejection according to (11).
If the rejection rate of the chain is too large, one would have
to reduce δτ , which affects all components. The issue of the
rejection rate would be addressed, but then some components
would be updated with very short steps, increasing their
correlation. To solve this issue, one can remove the appearance
of 6 altogether by choosing A such that AA⊤

6 = I. If 6 is a
valid covariancematrix, this is trivially accomplished by choosing
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A as the Cholesky factor of 6. We therefore refer to A as the
“acceleration” matrix.

Unfortunately, in general, the Hamiltonian (6b) for our
problem does not have a simple bilinear form for which an
appropriate selection of acceleration matrix A can be derived.
Nevertheless, it stands to reason that one can build acceleration
matrices for more complex systems to partially reduce the
correlation of the Markov chain.

4. NUMERICAL EXPERIMENTS

In this section we illustrate how the framework outlined above
can be applied to source identification problems. In the first
case we study the implementation of HMC to contaminant
transport problems with a nonlinear reaction term for different
configurations of observations. In the second case we study
a linear advection-dispersion problem and explore possible
selections of the gHMC acceleration matrix.

4.1. Discrete in Space, Continuous in Time
Measurements
We consider a one-dimensional transport with uniform velocity
u and dispersion coefficient D. We employ as the regularization
operator the ℓ2-norm of the gradient of the initial spatial
distribution. Furthermore, we assume that the time of the
contaminant release is precisely known and we impose no
constraints on the total mass of the released contaminant. The
measurements are taken continuously over the time interval
(0,T) at a subset J of discrete locations in the spatial domain. We
assume that the measurement errors are uncorrelated in space
and time and have the same variance σ 2

ǫ at every point. This setup
represents observations of contaminant breakthrough curves at a
number of sampling locations.

The Hamiltonian corresponding to this setup is

H =
1

2σ 2
ǫ

∫ T

0

∑

j∈J

[

c(xj, t)− c̄(xj, t)
]2

dt+ γ

∫

�

|∇c(x, 0)|2 dx.

(14)
It is evaluated, together with its sensitivity with respect to the
initial condition, by using a method-of-lines discretization of
the concentration field c(x, t). Once the governing equation has
been discretized into a system of ordinary differential equations
(ODEs), one can compute the sensitivity ∇qH via the adjoint
sensitivity method (Cao et al., 2003; Li and Petzold, 2004). The
disadvantage of this approach is that it incurs two levels of
numerical error: the integration error of the forward problem,
which affects the initial condition of the adjoint problem, and
the integration error of the backward problem. If these errors are
significant, both the quality of the estimator and the rejection rate
of the Markov chain can be compromised. Reducing the error
requires one to decrease the time step used for integration in
both directions, which would increase the computational cost per
leapfrog step.

To partially alleviate this problem, we use a single-step ODE
integration scheme for the forward problem and compute the
sensitivity of H with respect to the initial condition via multiple

applications of the chain rule (Daescu et al., 2000). Let ci (i =

0, . . . , I) be a vector of discretized states evaluated at time t =

iT/I and c̃i be a vector of the measurements at time ti in the
elements corresponding to the J measurements’ locations and
zeros in the other elements. Let C be a diagonal matrix with
ones on the diagonal elements corresponding to the J subset of
measurement locations and zeros in all other locations. We use
this notation to rewrite the observation Hamiltonian and the
sensitivity as

Hobs(c, q) =
1

2σ 2
ǫ

1t

I
∑

i=1

(ci − c̃i)⊤C(ci − c̃i),

and

∇qHobs =
1

σ 2
ǫ

1t

I
∑

i=1

(

dci

d
q

)⊤

C(ci − c̃i),

respectively, where dci/dq denotes the Jacobian of ci with
respect to q. Using the chain rule, the sensitivity ∇qHobs can be
rewritten as

∇qHobs =
1

σ 2
ǫ

1t

(

dc1

dq

)⊤


C(c1 − c̃1)+

(

dc2

dc1

)⊤
[

C(c2 − c̃2)+ · · ·

]



 .

This implies that the sensitivities can be evaluated by repeatedly
computing products of the form (dci+1/dci)⊤u. If these products
can be computed exactly, then this approach provides the exact
sensitivity of the (space-time discretized) system, which is useful
for problems with costly forward and backward solutions. The
disadvantage of this approach is that it is highly application-
specific and restricts the selection of ODE solvers to a specific
family. Details of the implementation of this discrete sensitivity
analysis approach are presented in Appendix.

We test this formulation on a one-dimensional transport
problem defined in the domain [0, L], L = 1 with
constant velocity u, dispersion coefficient D, and the reaction
model (Lichtner and Tartakovsky, 2003)

R(c) = 2k(c2 − c2eq), (15)

corresponding to a nonlinear heterogeneous (precipitation/
dissolution) reaction with equilibrium concentration ceq. Here
k denotes the dimensionless kinetic rate constant normalized
by porosity, given by k = k̂ t0 c0, where k̂ is the kinetic rate
constant normalized by porosity, with dimensions of inverse
concentration times inverse time, and t0 and c0 are the time and
concentration scales defined in section 2.1. The parameter values
are set to D = 1.0, u = 50.0, ceq = 0.4, and k = 1.0. Boundary
conditions are dc/dx = 0 at x = 0, L. The transport equation
is discretized employing a finite-volumes scheme consisting of
N = 128 cells of uniform size 1x. Concentration measurements
are taken at the M = 3 spatial locations x = L/2, x = 3L/4,
and x = L over the time period (0, 2.5× 10−2) (Figure 1). The
standard deviation of these measurements is set to σǫ = 0.02.
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The release configuration is inferred using the HMC scheme,
carried out with hybrid timestep 1τ = 0.17, number of leapfrog
steps S = 5, and regularizing parameter γ = 0.05. A total
of 1× 105 samples of the release profile were retained after
the burn-in period, which are employed to compute the Monte
Carlo estimates c̄0 and σ̂c0 of the posterior mean and standard
deviation, respectively. These estimates are shown in Figure 2.
In particular, Figure 2A shows the posterior mean estimate c̄0
compared to the true release profile, c0. We also show the 95%
confidence interval of the posterior mean estimate. It can be seen
that the HMC scheme is able to infer the main features of the
initial condition, namely the location of the release and the total
mass of contaminant released. For comparison, we also compute
the Bayesian maximum a posteriori (MAP) point estimate cMAP

of the release profile, also presented in Figure 2A. The MAP is
given by

cMAP = argmin
c

H[c],

FIGURE 1 | Breakthrough curves of contaminant at observation locations

along the transport domain. Noisy measurements used for inference are

shown in dashed.

where H[·] is the Hamiltonian given in (6b). MAP estimation
is similar to the method of Bayesian global optimization
(BGO) (Pirot et al., 2019) in that both aim to minimize the
data misfit. BGO yields an estimate guaranteed to be the global
minima over the search space, while MAP may converge toward
local minima of the data misfit function. It can be seen that
the MAP estimate and the posterior mean estimate are similar,
although in general they need not coincide, as they correspond
to different statistics. We note that, unlike MAP estimation and
Bayesian global optimization, the HMC method is not limited
to point estimates and can be used to quantify the uncertainty
in the reconstruction. Nevertheless, MAP and Bayesian global
optimization estimates are useful when quantifying uncertainty
is not critical as their computational cost is smaller than
that of HMC.

Figure 2B shows the posterior standard deviation. It can be
seen that the posterior standard deviation is large, which is due to
the dearth of data available and the ill-posedness of the inversion
problem.We also note that the posterior standard deviation is the
largest for x = L. Due to the strong advective velocity together
with the outflow boundary condition, c0(L) is only informed by
the observations at x = L at early times.

4.2. Application of gHMC to Linear
Transport
In order to study the construction of an acceleration matrix
A appropriate for contaminant transport, we consider a 1-D
advection-dispersion (no reaction) problem

∂c

∂t
+ u

∂c

∂x
= D

∂2c

∂x2
, x ∈ [0, 2π], t = (0,T], (16)

with uniform coefficients u and D. This equation is subject to the
periodic boundary condition

c(0, t) = c(2π , t), (17)

and (unknown) initial condition

c(x, 0) = c0(x). (18)

FIGURE 2 | Reconstruction of release profile via HMC. (A) Posterior mean c̄0 compared against MAP estimate cMAP and the actual release profile c0. (B) Posterior

standard deviation.
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Similar to the case studied in section 4.1, available concentration
data consist of a set of measurements continuous in time on the
interval (0,T) collected at a subset J of the discrete locations xj,
cobs,j = cobs(xj, t). The measurements are subject to space-time
uncorrelated additive errors of equal variance σ 2

ǫ .

4.2.1. Observation Hamiltonian
The state variable c(x, t) is discretized into N functions cj(t) =

c(xj, t), where xj = 2π j/N, j = 0, . . . ,N − 1 are N equidistant
nodes along the domain [0, 2π). We define the measurement
Hamiltonian as

Hobs =
1

2σ 2
ǫ

∑

j∈J

∫ T

0
[cj(t)− cobs,j(t)]

2 dt, (19)

which defines the likelihood of the measurements given an initial
release vector q with components qj = c0,j. The solution to
(16)–(18) can be represented in terms of its discrete Fourier
transform (DFT)

ĉk =
1

N

N−1
∑

j=0

cje
−ikxj , k = −N/2, . . .N/2− 1, (20)

which defines the N Fourier modes ĉk. The backward or inverse
transform is given by

cj =

N/2−1
∑

k=−N/2

ĉke
ikxj , j = 0, . . . ,N − 1. (21)

Let c denote a vector of discrete values cj and ĉ denote its DFT.
Then, (20) and (21) can be rewritten as

ĉ =
1

N
Fc, c = F

∗ĉ, (22)

where F is the DFT matrix whose elements are

Fpq = ω(p−N/2)q, ω = e−2π i/N (23)

and (·)∗ denotes the Hermitian adjoint. By projection, (16) is
discretized into the set of uncoupled ODEs for the Fourier modes

∂ ĉk(t)

∂t
= −(Dk2 + iku)ĉk, k = −N/2, . . .N/2− 1,

with initial conditions ĉk(0) = q̂k, where the q̂k, k =

−N/2, . . .N/2−1 are the components of q̂, the DFT of q ≡ c(0).
The solution to the ODEs is then given by

ĉk = q̂k exp {−(Dk2 + iku)t}. (24)

Substituting (22) and (24) into (19) yields the following
expression for the measurement Hamiltonian:

Hobs =
1

2σ 2
ǫ

(q̂− q̂obs)
∗

(

∫ T

0
B∗

FJF
∗
J B dt

)

(q̂− q̂obs),

=
1

2σ 2
ǫ

(q̂− q̂obs)
∗Ĝobs(q̂− q̂obs),

(25)

where q̂obs is the DFT of cobs(0),FJ corresponds to the J columns
ofF, B(t) is a diagonal matrix with elements Bkk = exp[−(Dk2+
iku)t], and Ĝobs is a Hermitian (semi)positive definite matrix.
The measurement Hamiltonian specifies a multivariate normal
distribution for q̂, and given that q and q̂ are related via a linear
transformation, it follows that the measurement Hamiltonian
specifies a multivariate normal distribution for q.

If the measurements are available at every node of the
computational domain, i.e., if FJ = F, then FF

∗ = NI and (25)
simplifies to

Hobs =
N

2σ 2
ǫ

(q̂− q̂obs)
∗

(

∫ T

0
B∗B dt

)

(q̂− q̂obs),

which is equivalent to

Hobs =
N

2σ 2
ǫ

N/2−1
∑

k=−N/2

|q̂k − q̂obs,k|
2ĝk (26)

where the coefficients ĝk are given by

ĝk =

∫ T

0
| exp {−(Dk2 + iku)t}|2 dt

=

∫ T

0
e−2Dk2t dt =

1− exp(−2Dk2T)

2Dk2
.

Note that all coefficients ĝk are real, symmetric (ĝk = ĝ−k), and
depend only on the dispersion coefficient D.

It follows from (25) that

∇qHobs =
1

σ 2
ǫ

F
∗Ĝobs(q̂− q̂obs) = F

∗ĜobsF(q− qobs)

= Gobs(q− qobs)

where Gobs = F
∗ĜobsF. That brings the forcing into the

form F[q] = −6
−1(q − µ) required by our analysis in

section 3.2, which suggests a possibility of computing the
acceleration matrices as AA∗ = G−1

obs. Unfortunately this is
not generally feasible, because the matrix Gobs is singular unless
the measurements are taken at every node of the domain. The
singularity of Gobs implies the singularity of the multivariate
normal distribution of q̂ given by Hobs, which means the
distribution is concentrated in a r-dimensional subspace of CN ,
r < N. Since q results from a linear transformation of q̂, the
multivariate normal distribution of q is also degenerate. This
implies that there is a linear subspace of configurations q for
which Hobs does not assign a probability, and therefore cannot
be identified.

An empirical study of the SVD decomposition Ĝobs = USV∗

of the matrix Ĝobs computed for the example of section 4.2.5
provides some insight into features of the degenerate distribution
of q defined by the observations. Specifically, the vectors forming
a basis for ker Ĝobs have negligible terms associated with the
lower Fourier modes of q, i.e., |Vk,j| ≈ 0 for small |k| and

rank Ĝobs < j. This implies that the lower frequency components
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of q fall mostly on the subspace of identifiable configurations. In
general, |Vk,j| 6= 0 for high |k| and rank Ĝobs < j, which implies
that in general high frequency features cannot be identified.

4.2.2. Regularization Hamiltonian
The regularization Hamiltonian extends the distributions of
q and q̂ in order to make them well-defined. After a real-
space discretization, and accounting for the periodic boundary
conditions (17), the ℓ2-norm regularization Hamiltonian takes
the form

Hreg = γq⊤Gregq, (27)

where γ is a regularization hyperparameter and Greg is the
circulant matrix

Greg =
1

1x















2 −1 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 −1 2















,

or Greg = circ{r}⊤, where r = (2,−1, 0, . . . , 0,−1)⊤/1x
and 1x = 2π/N. The matrix Greg extends the probability
distribution by assigning a high energy (low probability)
to configurations with large high-frequency components. To
demonstrate this, we rewrite Greg as

Greg = circ{r}⊤ = F
∗ diag{r̂}F, r̂k =

1

π

[

1− cos

(

2πk

N

)]

,

where r̂ is the DFT of r. The components r̂k of vector r̂ increase
with frequency k, with the zeroth frequency giving rise to r̂0 = 0.
The latter is to be expected since the regularization operator
does not affect the observability of the zeroth frequency, which
corresponds to the average of the initial release.

Note that a Fourier-space discretization of the regularization
Hamiltonian leads to a similar bilinear form for Greg, with
r̂k = 2πk2/N2. Indeed, these r̂k have a similar asymptotic
behavior as k → 0.

4.2.3. Acceleration Matrix
For the full HamiltonianH = Hobs+Hreg, the forcing is given by

F[q] = −Ĝobs(q̂−q̂obs)−Ĝregq̂ = −Gobs(q−qobs)−Gregq (28)

where Gobs = F
∗ĜobsF and Greg = F

∗ĜregF. This suggests
that choosing the acceleration matrix A, such that AA∗(Gobs +

Greg) = I, would reduce the correlation of the Markov chain.
Since Gobs and Greg are Hermitian (semi)positive definite, their
sumG = Gobs+Greg is at least Hermitian (semi)positive definite.
In fact, G is a full rank matrix and thus can be factorized via
a Cholesky decomposition G = S⊤S. The matrix A, defined by
AA∗G = I, is then given by

A = A1 = S−1, S⊤S = G. (29)

The added cost of computing the acceleration matrix A is the
Cholesky factorization cost, and the leapfrog scheme for gHMC

incurs four matrix-vector products. For dense matrices, these
costs areO(N3) andO(N2), respectively.

An advantage of the Cholesky factorization is that the vector of
momenta p in (13) can be chosen as real andmultivariate normal,
with zero mean and identity covariance matrix. A drawback is its
relatively high cost per step in the Markov chain. Moreover, the
matrix G becomes more poorly conditioned as γ → 0, which
affects the stability of the Cholesky decomposition.

A less computationally costly alternative for the construction
of A is to employ the following heuristic: Instead of using the full
correlation matrices in Fourier space, Ĝobs and Ĝreg, to define G,
we approximate it asG ≈ F

∗ diag{ḡ}F, where ḡ is the vector with
components ḡi = {Ĝobs+ Ĝreg}ii. This approximation allows one
to factorize G as G ≈ Ḡ = F

∗DD∗
F, where D = diag{(ḡ)1/2}

with the square root understood as element-wise. This argument
suggests that the acceleration matrix A can be constructed as

A = A2 =
1

N
F

∗D−1, D = diag{(ḡ)1/2},

ḡ = diag{Ĝobs + Ĝreg}, (30)

which gives

Ap =
1

N
(F∗D−1p), A∗F = D−1

(

1

N
FF

)

.

Note that we have replaced the transpose of A with its Hermitian
transpose due to the complex nature of the DFT. This implies that
the transpose in (12) and (13) must be replaced with a Hermitian
transpose, and that in order to guarantee that q ∈ R

N we must
generalize the momenta such that p ∈ C

N . Once the acceleration
matrix A in (30) is constructed, products of the form Ap and
A∗F can be computed using DFTs. The computational cost per
leapfrog step is reduced from four matrix-vector products of
cost ∼ O(N2) to four of cost ∼ O(N logN), and no Cholesky
decomposition is necessary.

Since ḡ = ∂2H/∂q̂2, the approximation (30) can be thought
as building A from the diagonal of the Hessian of H with
respect to q̂ (a similar heuristic is employed in Neal, 1995 for
Bayesian learning). This observation begs the following question:
Why do we take ḡ = ∂2H/∂q̂2 instead of ḡ = ∂2H/∂q2,
which would produce a similar acceleration matrix A without
the Fourier transforms? The answer is that the matrix Ĝobs +

Ĝreg is more concentrated along its diagonal than G is. Hence,
more information about the observation operator is conserved
by taking the diagonal of Ĝobs + Ĝreg than the diagonal of G.

4.2.4. Sampling of Momentum Vector
In order to retain the validity of the leapfrog method with
generalized momenta, we require said momenta to be associated
with a kinetic energy following a bilinear form.We achieve this by
assuming that p ∈ C

N has a general complex normal distribution
CN(0,Ŵ,C) with unit covariance Ŵ and

C = A∗Ḡ(conjA) =
1

N
DFF

⊤D−1. (31)
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For Fpq given by (23),

1

N
(FF⊤)pq =

N−1
∑

r=0

ωr(p+q−N) = Ppq

=

{

1 if p+ q = kN, k = . . . ,−1, 0, 1, . . . ,

0 otherwise.

where Ppq are the components of the permutationmatrix P. Since
D is diagonal and P is a permutation matrix (23), yields C = P.

Let p = X + iY with X,Y ∈ R
N . The vector V⊤ = [X⊤ Y⊤]

is multivariate normal with zero mean. Given Ŵ and C, the
cross-covariance matrix of this vector is

E[XY⊤] =
1

2
Im{Ŵ+C} = 0, E[YX⊤] =

1

2
Im{−Ŵ+C} = 0,

since both Ŵ and C are real. In other words, the real and
imaginary parts of p are mutually uncorrelated. The covariance

FIGURE 3 | Breakthrough curves of contaminant at observation locations

along the transport domain. Noisy measurements used for inference are

shown in dashed lines.

matrix of this vector is

E[XiXj] =
1

2
Re{Ŵij + Cij} =











1 if i = j = 0, −N/2

1/2 if i = −j, i, j 6= 0

0 otherwise,
(32a)

E[YiYj] =
1

2
Re{Ŵij − Cij} =

{

1/2 if i = −j, i, j 6= 0

0 otherwise.
(32b)

It follows from (32) that only the components pk = Xk + iYk

with k = −k are correlated. Their covariances are E[XkX−k] =
0.5, E[YkY−k] = −0.5. Since p must be complex-symmetric to
guarantee that q remains real, we generate p as

X−N/2 ∼ N(0, 1),

X−N/2+1 ∼ N(0, 1/2), Y−N/2+1 ∼ N(0, 1/2)

...

X0 ∼ N(0, 1),

X1 = X−1, Y1 = −Y−1,

...

XN/2−1 = X−N/2+1, YN/2−1 = −Y−N/2+1.

Hence the vector p is generated with N independent identically
distributed normal random variables.

4.2.5. Computational Example
We apply the gHMC algorithm to the model problem (16) with
parameters D = 1.0, u = 10.0, N = 64, and σǫ = 0.02.
Measurements are taken at locations xj, j ∈ J = {47, 63} over
the time period (0, 6× 10−1). The measurements are shown in
Figure 3. To infer the release profile from the observations, we
employ A = A1, S = 5 leapfrog steps, regularization parameter
γ = 1× 10−2, and hybrid timestep tuned to achieve a rejection
rate of 30–35%. A total of 10 chains were generated, each with 2×
104 samples retained after burn-in. These samples are employed
to compute Monte Carlo estimates of the posterior mean and
standard deviation, shown in Figure 4.

FIGURE 4 | Reconstruction of release profile via gHMC and A = A1. (A) Posterior mean c̄0 compared against MAP estimate cMAP and the actual release profile c0.

(B) Posterior standard deviation.
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FIGURE 5 | Autocorrelation functions for qj , j = {0, . . . , 63} \ {47, 63}, and

A = A1 (top), A = A2 (middle), and A = I (bottom).

Figure 4A compares the posteriormean estimate of the release
profile, together with its 95% confidence interval, against the
MAP estimate and the true release profile. It can be seen that
the gHMC scheme is able to infer the main feature of the
release profile. The gHMC estimate also compares favorably
to the MAP estimate. Figure 4B shows the posterior standard
deviation, which, as in section 4.1, is largely due to the relatively
small number of observation locations, the relatively high
measurement error, and the ill-posedness of the inverse problem.

Next, we study the effect of the choice of acceleration matrix
A on the Markov chains produced by the gHMC algorithm and
the Monte Carlo standard error of the posterior mean estimate.
Three alternatives for A are considered: A = A1 in (29), A = A2

in (30), and A = I (no acceleration). The Monte Carlo standard
error is given by σ̂ /

√
neff, where σ̂ is the posterior standard

TABLE 1 | Effective sample size reduction ratio η for various choices of

regularization parameter γ and acceleration matrix A.

γ A = A1 A = A2 A = I

1 × 10−2 3.4 20.7 22.3

1 × 10−3 4.1 102.8 161.2

deviation of the inferred parameter, and neff denotes the MCMC
effective sample size, given by neff ≡ n/η (Kass et al., 1998),
where n is the number of MCMC samples, and η > 1 is a
reduction factor due to the correlation between MCMC samples.
This reduction factor is given by

η = 1+ 2
∞
∑

s=1

ρ(s),

where ρ(s) is the autocorrelation of the MCMC chain at lag
s. We note that, after convergence, gHMC chains for different
choices of A converge to the same posterior mean and standard
deviation. The difference of performance between choices of A
is in terms of the reduction factor η: Better-performing choices
of acceleration matrix result in smaller values of η, so that fewer
samples are necessary to achieve a certain target error in the
estimation of the posterior mean.

We compute 10 gHMC chains for each choice ofA and for two
choices of regularization parameter γ , 1× 10−2 and 1× 10−3,
and employ the samples to compute the autocorrelations ρ(s)
and the effective sample size reduction ratios for each qj, j =

0, . . . ,N − 1, except for j = 47, 63, which are included in the
observations. Figure 5 presents the autocorrelations for γ =

1× 10−3 and each choice of A. It can be seen that A = A1

produces highly uncorrelated chains for each of the qj studied,
A = A2 produces more correlated chains, and A = I

produces the most correlated chains. As expected, A2 provides
a compromise between the low autocorrelation / high expense of
the full Cholesky decomposition and the high autocorrelation /
low cost of A = I.

The maximum effective sample size reduction ratio η for each
choice of A and γ is shown in Table 1. It can be seen that,
consistent with Figure 5, A = A1 produces highly uncorrelated
chains, which leads to low values of η, and therefore to smaller
standard errors. Similarly, A = I leads to the most correlated
chains, the highest values of η, and the highest standard errors,
while the choice A = A2 leads to values of η between those of
A = A1 and A = I. We also note that the values of η for A = A2

and A = I increase significantly by going from γ = 1× 10−2

to γ = 1× 10−3, which is to be expected as the latter is a more
challenging case due to weaker regularization. On the other hand,
the value of η for A = A1 does not increase as dramatically when
going from γ = 1× 10−2 to γ = 1× 10−3, which indicates
that A1 is the best choice of acceleration matrix despite its higher
computational cost per leapfrog step. We conclude that the
gHMC scheme leads to a significant reduction in the estimation
error over the use of HMC without an acceleration matrix.

For problems with reaction terms, the forcing F = −∇qH
is not a linear function of q as in (28). In such cases, the
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selection of the acceleration matrix A is not straightforward.
The challenge is to find an approximation to the forcing that
is linear in q, i.e., preserves the form (28) with Gobs and Greg

independent of q. This is required to guarantee the reversibility
of the Hamiltonian dynamics.

Such an approximation can be obtained by disregarding the
nonlinear reaction term and using Gobs in (25) and Greg in (27),
which are functions only of the temporal and spatial domain
properties and the hyperparameters σ 2

ǫ and γ . This selection
is equivalent to taking F ≈ −Glin(q − qobs), where Glin is
the Hessian of the advection-diffusion (linear) portion of the
Hamiltonian. It gives the acceleration matrix A1 of (29). This
choice is justified for non-periodic boundary conditions if the
contaminant plume does not reach the domain’s boundaries
during the simulation time. An alternative is to take only the
diagonal portion of the Hessian of an advection-diffusion portion
of the Hamiltonian. This would produce the acceleration matrix
A2 in (30).

5. CONCLUSIONS AND FURTHER WORK

We presented a computationally efficient and accurate
algorithm for identification of sources and release histories
of (geo)chemically active solutes. The algorithm is based on
a generalized hybrid Monte Carlo approach, in which MC
sampling is accelerated by the use of discrete adjoint equations.
Some of the salient features of our approach are: (1) its ability to
handle nonlinear systems, since it requires no linearizations, and
(2) its compatibility with various regularization strategies.

The introduction of an acceleration matrix to the gHMC
scheme was tested for an advection-dispersion problem. While
the example presented was limited to one-dimensional domains,
periodic boundary conditions, and homogeneous porous media,
our analysis demonstrated that the proposed acceleration
matrices improve upon basic HMC; therefore, we consider
the proposed acceleration strategy to be promising. The
generalization of these constructions to problems with nonlinear
reaction terms, two- and three-dimensional, heterogeneous
media, and non-periodic boundary conditions, will be the subject
of future work.

Finally, we note the importance of considering the
heterogeneity of flow and transport parameters, such as the

hydraulic conductivity and dispersion coefficient tensors,
for source identification tasks (Xu and Gömez-Hernández,
2018). Attempting to perform Bayesian inference when the
values of these coefficients are assumed to be known but their
values are erroneous may lead to model misspecification and
consequently to posterior densities with little predictive value.
Fortunately, the HMC and gHMC schemes presented in this
work can accommodate the simultaneous identification of
heterogeneous coefficients together with the release history
by extending the state vector q to include the discretized
heterogeneous coefficients. The calculation of the gradient of
the data misfit with respect to the extended state vector can be
accomplished via discrete adjoint sensitivity analysis (Zhang
et al., 2017) for complex dynamical systems. The extension of
the presented framework to the identification of heterogeneous
parameters of geophysical models will be considered in
future work.
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APPENDIX

Discrete Sensitivity Analysis
For the problem in section 4.1 we use the linearized Runge-Kutta
(Rosenbrock) method ROS2 of Verwer et al. (1999) for time
stepping of the forward ODE problem. The advantage of using
this method is that it allows for a linear implicit treatment of the
dispersion operator and a linearization of the reaction operator,
while the advection operator is treated explicitly.

We assume that the advection-dispersion-reaction equation
can be discretized into an autonomous system of ODEs

ct = f(c) = (AD + AA)c− R(c),

where c is the state vector, AD is the discretized linear dispersion
operator,AA is the discretized linear advection operator, andR(c)
is the reaction vector. Time stepping is performed via a scheme

cn+1 = cn + (2− b)1tk1 + b1tk2, (A1)

(I− θ1tJ)k1 = f(cn), (A2)

(I− θ1tJ)k2 = f

(

cn +
1

2b
1k1

)

−
1

b
k1, (A3)

where J = fc(cn) is the Jacobian of f with respect to the state.
The coefficients θ and b are taken for this application as θ = 1−√
2/2 and b = 1/2, respectively. The left-hand side operators of

(A2, A3) are approximated via approximate matrix factorization
(AMF) to obtain the split form

(I− θ1tJ) ≈ (I− θ1tAD)(I+ θ1tRc(c
n)).

The discussion in section 4.1 led us to conclude that it is necessary
to compute products of the form (dci+1/dci)⊤u in order to apply

the discrete sensitivity technique of Daescu et al. (2000). The
formulae for the computation of these products are derived from
the time-stepping scheme (A1-A3). In particular, differentiating
(A1) with respect to the state and multiplying by a test vector u
gives the single-step sensitivity product as

(

dcn+1

dcn

)⊤

u = u+
3

2
1t

(

dkn1
dcn

)⊤

u+
1

2
1t

(

dkn2
dcn

)⊤

u.

The next task is to derive formulas for the Jacobians of the stage
derivatives k1 and k2. LetM be the AMF-ed left-hand-side matrix
of (A2, A3). Differentiating (A2, A3) with respect to the state and
multiplying by the test vector u gives the formulae

(

dkn1
dcn

)⊤

u =

[

J0 −

(

dM

dcn
kn1

)]

v, M⊤v = u

and

(

dkn2
dcn

)⊤

u = J⊤1 v+

(

dkn+1
1

dcn

)⊤

(1tJ1 − 2I) v−

(

dM

dcn
kn2

)⊤

v,

with J0 = fc(cn), J1 = fc
(

cn + 1tkn1
)

.
The computation of the products (dM/dcn)kni , i = 1, 2

is highly problem-specific. It depends on the structure
of the second-order derivatives of the reaction vector
with respect to the state. For the reaction model (15)
and a method-of-lines discretization, the Jacobian Rc is
diagonal, and so the computation of these products is
straightforward. For different reaction models and more
sophisticated discretization schemes the computation might be
more involved.
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This paper focuses on reducing the computational cost of the Monte Carlo method for

uncertainty propagation. Recently, Multi-Fidelity Monte Carlo (MFMC) method (Ng, 2013;

Peherstorfer et al., 2016) and Multi-Level Monte Carlo (MLMC) method (Müller et al.,

2013; Giles, 2015) were introduced to reduce the computational cost of Monte Carlo

method by making use of low-fidelity models that are cheap to an evaluation in addition

to the high-fidelity models. In this paper, we use machine learning techniques to combine

the features of both the MFMC method and the MLMC method into a single framework

called Multi-Fidelity-Multi-Level Monte Carlo (MFML-MC) method. In MFML-MCmethod,

we use a hierarchy of proper orthogonal decomposition (POD) based approximations of

high-fidelity outputs to formulate a MLMC framework. Next, we utilize Gradient Boosted

Tree Regressor (GBTR) to evolve the dynamics of POD based reduced order model

(ROM) (Xiao et al., 2017) on every level of the MLMC framework. Finally, we incorporate

MFMC method in order to exploit the POD ROM as a level specific low-fidelity model

in the MFML-MC method. We compare the performance of MFML-MC method with the

Monte Carlo method that uses either a high-fidelity model or a single low-fidelity model on

two subsurface flow problems with random permeability field. Numerical results suggest

that MFML-MC method provides an unbiased estimator with speedups by orders of

magnitude in comparison to Monte Carlo method that uses high-fidelity model only.

Keywords: uncertainty quantification, POD, multi-fidelity Monte Carlo method, multi-level Monte Carlo method,

machine learning

1. INTRODUCTION

Effective propagation of uncertainties through nonlinear dynamical systems has become an
essential task for model based engineering applications (e.g., water resources management,
petroleum reservoir management) (Elsheikh et al., 2013; Petvipusit et al., 2014; Kani and Elsheikh,
2018). There are many possible sources of uncertainties in the input of multi-phase porous media
flow models such as material properties (e.g., permeability, and porosity), boundary conditions,
and geometrical information of the simulated domain. In this work, we focus on the canonical
problem of uncertainty propagation in subsurface flow models due to the stochastic model inputs
mainly the spatially distributed hydraulic conductivity field. In this setting, the high-fidelity model
outputs [quantities of interest (QoI)] are usually defined as a time series of transport variables
at selected grid blocks (e.g., well locations) in the porous media domain. The propagation
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of uncertainties through multi-phase porous media flow models
remains challenging because of high dimensionality of input
parameter space (e.g., heterogeneous permeability) and the non-
polynomial model nonlinearities (Elsheikh et al., 2012, 2013).
For this class of problems, probabilistic techniques, including
stochastic Galerkin (Ghanem and Spanos, 1991; Stefanou, 2009),
and stochastic collocationmethods (Babuška et al., 2007; Doostan
and Owhadi, 2011) have limited applicability despite they are
computationally very effective for quasi-linear flow models with
the small number of random variables (Li and Zhang, 2007; Lin
and Tartakovsky, 2009).

One viable option to handle such situations is theMonte Carlo
method (MC) where repeated evaluations of the high-fidelity
flow models using different instantiations of the random input
are performed. The output of these simulations is post-processed
for estimates of the desired statistics such as the mean and the
variance of the QoI. Generally, the estimators of the MC method
are unbiased. However, since the accuracy of the MC method is
measured in terms of the estimator variance (Giles, 2013), the
convergence rate of MC estimators toward the desired statistics
scales as

√
N, where N is the number of random samples. Given

this slow convergence rate of MC methods, the MC method is
computationally expensive since a large number of high fidelity
simulation have to be performed to obtain a reasonably accurate
statistical estimate for the QoI. One notable advantage of MC
methods in-comparison to other techniques (Li and Zhang,
2007; Lin and Tartakovsky, 2009) is the ease of implementation
using black-box simulators. Also, the rate of convergence is
independent of the dimensionality of the random model inputs.

In this work, in order to make use of the aforementioned
advantages of the MC method and to alleviate the slow
convergence rate, we employ a variant of control variate
method (Ng, 2013; Giles, 2015) called Multi-Level Monte
Carlo method (Giles, 2013, 2015) which makes use of the
correlation between the high-fidelity model output and a multi-
level hierarchy of low-fidelity model outputs. The key aspect
of MLMC method is the repartition of the computational cost
between different hierarchical levels of models based on the
number of samples required to decrease the variance at each
level. More precisely, the MLMC method relies on the fact that
increasing the number of samples reduces the variance at low
levels and at high levels, the level variances are expected to be
typically small and thus MLMC method incurs few expensive
high-fidelity simulations (Giles, 2013; Müller et al., 2013).

Similar to MLMC method, Multi-Fidelity Monte Carlo
method (Ng, 2013; Peherstorfer et al., 2016) is another control
variate method which combines the outputs from an arbitrary
number of low-fidelity models with the high-fidelity model in
order to speedup the statistical estimation of the QoI. The key
aspect of MFMC approach is the initial selection of low-fidelity
models and the corresponding number of model runs for each
model (Ng, 2013; Peherstorfer et al., 2016). Ng (2013) proposed a
multifidelity approach to reduce the cost of expensive objective
functions in stochastic optimization problems by making use
of inexpensive, low-fidelity models. Peherstorfer et al. (2016)
extended the MFMC method introduced in Ng (2013) to
accelerate uncertainty quantification (UQ) tasks by making use

of many number of low-fidelity models. Furthermore, MFMC
method introduced in Ng (2013) can utilize low-fidelity models
of any type, for example, up-scaled models (Durlofsky and Chen,
2012), POD reduced order models (Berkooz et al., 1993; Antoulas
et al., 2001; Lassila et al., 2014) and response surface based
models (Frangos et al., 2010) could be combined in the MFMC
framework.We refer the readers to read the paper by Peherstorfer
et al. (2018) for a complete review of MFMCmethod.

We now present a brief literature review of MLMC method
as applied to uncertainty quantification (UQ) tasks. It appears
Heinrich (2001) was the one to first apply MLMC in the context
of parametric integration. Kebaier (2005) then used similar
ideas for a two-level Monte Carlo method to approximate weak
solutions to stochastic differential equations in mathematical
finance. Giles (2008) extended the MLMC method to solve
stochastic ordinary differential equations of Ito type. Barth
et al. (2011) and Cliffe et al. (2011) introduced MLMC method
for elliptic partial differential equations (PDEs) with stochastic
coefficients. Abdulle et al. (2013) applied MLMC method to
solve elliptic PDEs in divergence form, where the coefficients
are random with multiple scales. Mishra et al. (2012) generalized
MLMCmethod to nonlinear, scalar hyperbolic conservation laws
with random initial data. Mishra et al. (2016) extended the work
of Mishra et al. (2012) for systems of nonlinear, hyperbolic
conservation laws in several space dimensions. Geraci et al.
(2015) proposed a Multi-Level Multi-Fidelity method in which
the MLMC estimator is modified at each level to benefit from a
level specific low-fidelity model.

In the context of fluid flow in porous media, Müller
et al. (2013) applied MLMC method for two-phase transport
simulations of an oil reservoir with uncertain heterogeneous
permeability. Efendiev et al. (2013) used mixed multi-scale
finite element methods within the MLMC framework to speed
up the computations involving multiphase flow and transport
simulations. Efendiev et al. (2015) coupled the generalized
multi-scale finite element method with the Multi-Level Markov
chain Monte Carlo method (MLMCMC), which sequentially
screens the proposal with different levels of approximations and
combines the samples at different levels to arrive at an accurate
estimate. Elsakout et al. (2015) demonstrated the performance
of MLMCMC for uncertainty quantification tasks involving
reservoir simulation with less computational cost in comparison
to the standard Markov Chain Monte Carlo method. Fagerlund
et al. (2016) combined selective refinement technique with the
MLMC for estimating the sweep efficiency in a two-phase flow
scenario where an absolute accuracy of failure probability in a
magnitude 5 to 10 percent is required. Lu et al. (2016) applied
MLMC method for estimating cumulative distribution functions
of QoI obtained from the numerical approximation of large-
scale stochastic subsurface simulations. For a complete review
of MLMC method, we refer the readers to the following papers
by Giles (2013) and Giles (2015).

Historically, MLMC method constructs a hierarchy of coarse
spatial and/or time discretization models as low-fidelity models.
However, it is also possible to formulate a sequence of low-fidelity
models utilizing projection based reduced order models (Wang
et al., 2017; Xiao et al., 2017) of different dimensions. For
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example, Codina et al. (2015) employed different reduced basis
ROMs in theMLMC framework to estimate the statistical outputs
of stochastic elliptic PDEs. In that work, the authors proposed
an algorithm for optimally choosing both the dimensions of the
reduced basis ROMs and the number of Monte Carlo samples at
each level to achieve a given error tolerance.

In this manuscript, we propose a Multi-Fidelity-Multi-Level
Monte Carlo (MFML-MC) method to address some of the
limitations of standard MLMC method with Galerkin projection
based ROMs (Antoulas et al., 2001; Lassila et al., 2014; Codina
et al., 2015) as low-fidelity models, in particular for large scale
nonlinear UQ problems. We first note that the variance, and
hence the mean square error of the standard MLMC estimator
depends on the correlation between every two consecutive level
ROMs. This requires a large number of levels with a small
difference in the number of dimensions between every two
consecutive ROMs. Therefore, the standard MLMC estimator
not only requires many levels of ROMs but also requires ROMs
of high dimensions until high correlation with the high-fidelity
model is achieved. Hence, the MLMC method involving ROMs
obtained directly from high-fidelity model solution data like the
one mentioned in Codina et al. (2015) can significantly limit
the performance of MLMCmethod. Second, Galerkin-projection
ROMs like PODROMs obtained from the nonlinear high-fidelity
model are subject to severe convergence and stability issues
especially when the dimensions of the ROMs are much smaller
than the dimensions of the high-fidelity model (Bui-Thanh et al.,
2007; He, 2010; Wang et al., 2012). This severely limits the
use of POD ROMs with low dimensions in MLMC framework,
and therefore we cannot expect the reduction in computational
complexity by orders of magnitude as a result of state variable’s
dimension reduction (Kani and Elsheikh, 2018). Third, MLMC
method based on ROMs requires reconstruction of the high-
fidelity model state variable for every sample at each level for
nonlinear problems. Such reconstruction of the high-fidelity
model state variable involves a high dimensional matrix-vector
multiplication, and therefore employing ROMs in the MLMC
method can easily cause computational overheads, in particular
for UQ problems with nonpolynomial nonlinearity. However, we
note that this limitation about reconstructing the high-fidelity
model solution to predict outputs of interest does not apply to
linear ROMs with linear outputs. Fourth, finding the optimal
dimensions of the ROMs is not guaranteed despite the additional
computational complexity in the nonlinear integer optimization
problem formulated in Codina et al. (2016).

The proposed MFML-MC method utilizes a number of ideas
that are detailed as follows. The first idea of the MFML-MC
approach is to obtain a sequence of POD based approximations
of the QoI and use these sequence of POD based approximations
as low-fidelity models in MLMC framework. More precisely,
we compute the optimal POD bases from the singular value
decomposition of the snapshot matrix built directly from the
training samples of the QoI. We then employ the computed
POD bases in the least-squares reconstructionmethod to obtain a
sequence of POD based approximations of the QoI (see section 4
for more details). Since the dimension of the QoI is much
smaller than the state variable’s dimension, the dimension of the

basis vector utilized to approximate the QoI is much smaller
than the basis vector utilized to build a standard POD ROM.
Therefore, building QoI POD instead of a full state variable POD
enables the efficient extraction of high-level PODs at a limited
computational cost. The second idea is to employ the MFMC
method at each level of the MLMC method so that the high-
fidelity model is utilized to provide an unbiased estimator, while
the low computational cost of low-fidelity models are exploited
to run a very large number of realizations in order to obtain a low
variance estimator. The third idea in the MFML-MC approach
is to represent the difference between every two consecutive
level models of the MLMC framework in a reduced dimension.
We utilize principal component analysis (PCA) to perform this
dimensionality reduction. The main reason to utilize PCA for
dimensionality reduction is to exploit the linearity of the expected
value operator. The fourth idea is to use a data-driven approach
to construct a non-intrusive ROM (Wang et al., 2017; Xiao
et al., 2017) in order to compute the reduced representation
mentioned in the third step of MFML-MC method. We use
Gradient Boosted Tree Regressor (GBTR) (Friedman, 2001) to
formulate such level specific low-fidelity non-intrusive ROM in
the MFMC setup. We then utilize the constructed non-intrusive
ROM as a low-fidelity model in the MFMC setup on every
level of the MFML-MC method. To the best of our knowledge,
this paper presents the first attempt to combine the features
of MFMC method and MLMC method using machine learning
techniques for UQ analysis of nonlinear dynamical systems
representing multi-phase porous media flow with uncertainty in
the permeability field. In addition, this paper presents the first
attempt to use the MFMCmethod to estimate the statistics of the
vector-valued time series QoI while the standard MFMCmethod
ismainly used for estimating the statistics of scalar QoI (Ng, 2013;
Peherstorfer et al., 2016).

The remaining of this manuscript is organized as follows. In
section 2, multi-phase porous media flow problem is formulated.
In section 3, MC, MFMC, and MLMC methods are briefly
explained. In section 4, MFML-MC method is introduced. In
section 5, Numerical results for two subsurface multi-phase
porous media flow problems showing the performance of
MFML-MCmethod are reported. We note that building reduced
order models for these porous media flow problems is quite
challenging where standard POD-Galerkin reduced ordermodels
produce inaccurate and unstable results even for the cases where
a large number of POD basis vectors is utilized (He et al., 2011;
Kani and Elsheikh, 2018). Hence, in the two numerical test
cases, standardMLMCwith POD-Galerkin ROM had all the four
limitations as mentioned earlier in this section. Finally, in section
6, conclusions and perspectives are drawn.

2. PROBLEM FORMULATION

We consider an immiscible two-phase (oil and water) flow in
an incompressible porous media domain. The flow behavior of
oil and water in a porous media domain can be described by
conservation of mass and Darcy’s law for each phase (Bastian,
1999; Chen et al., 2006; Aarnes et al., 2007). Neglecting the effects
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of gravitation, capillary, and compressibility, and assuming the
density ratio to be equal to one, Darcy’s law for each phase can be
described as

vα = −K
krα

µα

∇p (1)

where the subscript α = w denotes the water phase, the subscript
α = o denotes the oil phase, vα is the phase velocity, p is the
global pressure, K is the absolute permeability tensor, krα is the
relative permeability of phase α, µα is the viscosity of phase
α (Bastian, 1999; Chen et al., 2006; Aarnes et al., 2007). The phase
relative permeabilities krα models the interactions between the
two phases and usually, krα is described as a function of phase
saturation (volume of phase α in a given pore space of the porous
media domain) (Aarnes et al., 2007).

The total conservation of mass can be expressed in terms of
incompressibility condition that takes the form

∇ · v = q (2)

v = vo+vw is the total velocity vector and q is the total source and
sink term. We can combine the equation of Darcy’s law for each
phase (Equation 1) and the conservation of mass (Equation 2) to
derive equations for global pressure and water saturation:

∇ · Kλ ∇p = q

φ
∂sw

∂t
−∇ · (fwv)+ qw = 0

(3)

where λ = λw + λo is the total mobility, λα = krα/µα is the
phasemobility, fw = λw/(λw+λo) is termed as the fractional flow
function for the water phase and with the constraint sw + so = 1.
In the rest of the manuscript, we use s in place of sw to denote
water saturation.

In this problem, we consider Equation (3) as the high-fidelity
model and we solve Equation (3) for pressure and saturation
using sequential formulation where we solve for pressure first and
then solve for the water saturation. We use finite volume method
to discretize the spatial derivatives of Equation (3) in a spatial
domain of n grid blocks. We use implicit time stepping method
to solve Equation (3) for the high-fidelity model state variable
ys ∈ R

n, where each component of ys is the water saturation value
at the ith grid block.

The QoI is defined as u(t) ∈ R
m, where ui = ys(xi, yi), i =

1 · · ·m≪ n at specific time steps (say t = 10, 20, · · · 200). In the
following, we use u in place of u(t) to simplify the notation and
we are interested in the first moment estimate (i.e., mean) of u.
The grid points of interest (xi, yi) i = 1 · · ·m can be a set of
arbitrary user specific spatial locations. For example, a set of grid
points where injectors and producers are located.

3. MULTI-FIDELITY MONTE CARLO AND
MULTI-LEVEL MONTE-CARLO METHOD

Let x be a realization of the input random vector X(ω), ω ∈ �

where � is the sample space and the quantity of interest be
the expectation of the random variable u. The standard Monte

Carlo method estimates the expectation E[u] of the random
variable u as

û =
1

N

N
∑

i=1

ui (4)

where û is the estimator of E[u], ui = u(xi), and N is the
number of realizations of the model output. As per the law of
large numbers (Central Limit Theorem) (Giles, 2015), a sample
based estimate of the expectation E[u] introduces sampling error
(mean square error) defined as

ǫ = Var(û) =
1

N
Var(u) (5)

where Var(u) is the variance of u. As
√

ǫ known as standard
error scales with 1√

N
for a constant Var(u), MC simulations

are computationally prohibitive because of the slow convergence
rate. One way to achieve a lower ǫ is to reduce the numerator in
Equation (5) (Ng, 2013).

Control variate is a variance reduction technique which uses
alternative estimator for E[u], u ∈ R that takes the form

ûcv = û+ β (v̂− E[v]) (6)

where v(x) ∈ R is an auxiliary random variable. The estimator
ûcv is an unbiased estimator of E[u] with variance defined as Ng
(2013)

Var(ûcv) = Var(û) (1− ρ2) (7)

where ρ is the correlation between u(x) and v(x). Since ρ2 lies
between 0 and 1, Var(ûcv) is always less than Var(û). For UQ
tasks, where the QoI is governed by partial differential equations,
u(x) is obtained from a high-fidelity model output and v(x) is
generally obtained from a low-fidelity model output. In general,
we do not know exactly E[v] and we have to use a more
accurate estimate of E[v]. For example, Ng (2013) replaced E[v]
in Equation (6) by v̂ = 1

M

∑M
i=1 v(xi), whereM≫MHF andMHF is

the number of high-fidelity model samples. Furthermore, it was
proved in Ng (2013) that for a fixed computational budget p, a
perfectly correlated low-fidelity model is not the only condition
for variance reduction over the standard MC estimator but the
low-fidelity model must also be cheaper to evaluate than the
high-fidelity model.

The potential limitation in the aforementioned multi-
fidelity estimator (Ng, 2013) is that it repartitions the given
computational budget p between the high-fidelity model and only
a single low-fidelity model such that the mean square error of the
estimator is minimized. In order to allow an arbitrary number of
low-fidelity models into the control variate method, Peherstorfer
et al. (2016) extended the multi-fidelity approach introduced
in Ng (2013). Multi-Fidelity Monte Carlo method introduced
in Peherstorfer et al. (2016) formulated an optimization problem
that used an arbitrary number of low-fidelity models to derive an
unbiased MFMC estimator of E[u] that takes the form

ûmf = û+ β1 (v̂1 − û)+
I

∑

i=2

β i (v̂i − v̂i−1) (8)
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where v1 · · · vI ∈ R are auxiliary random variables obtained
from I number of different low-fidelity models, v̂i estimates
the expectation E[vi] using Mi samples of low-fidelity model
i, β1 · · ·βI ∈ R are the coefficients. The low-fidelity model
i uses x1 · · · xMi realizations of the input random vector X(ω)
to estimate v̂i, whereas the low-fidelity model i − 1 uses only
the first Mi−1 realizations of X(ω) to estimate v̂i−1. Therefore
the two consecutive estimators v̂i and v̂i−1 are dependent for
all i = 1 · · · I. The cost of the MFMC estimator is C(ûmf ) =
∑I

i=1 Ci · Mi + CHF · MHF, where CHF is the cost of evaluating
a high-fidelity model, and Ci is the cost of evaluating a low-
fidelity model i for all i = 1 · · · I. In Peherstorfer et al. (2016), an
optimization problem was formulated to select optimal values for
the number of samples {M∗

HF,M
∗
1 · · ·M

∗
I }, and for the coefficients

{β1∗ · · ·βI∗} such that the mean square error of the MFMC
estimator is lower than the Monte Carlo estimator for a fixed
computational budget.

The multi-level idea is an another extension of the control
variate approach in which a sequence of low-fidelity models at
different levels (vi ∈ R

m with i = 1 · · · I) is used to evaluate
an approximate statistics of u. First, let the index i encodes
the accuracy of vi with respect to the true solution u ∈ R

m.
This means, as i is increased, the accuracy of vi is refined to
approximate u. Consequently, u can be written as a telescopic
sum in terms of vi with i = 1 · · · I, that takes the form (Müller
et al., 2013)

u = v1 − v0 + v2 − v1 + · · · + vI − vI−1 + u− vI =

I
∑

i=0

Yi (9)

where Yi = vi+1− vi with i = 0 · · · I− 1, YI = u− vI , and we set
v0 = 0. Exploiting the linearity of the expected value operator E,
the expected value E[u] defined in Equation (9) can be written as

E[u] =
I

∑

i=0

E[Yi] (10)

The MLMC estimator for the expected value of u is obtained
by replacing the expected values on the right hand side of
Equation (10) by ensemble averages and is defined as

ûml =

I
∑

i=0

Ŷi =

I
∑

i=0

1

Mi

Mi
∑

j=1

Y
j
i (11)

The mean square error (mse) of MLMC estimator ûml is
derived as

ǫml =

I
∑

i=0

Var(Ŷi) =
I

∑

i=0

1

Mi
Var(Yi) (12)

It is evident from Equation (12) that the mse (ǫml) of MLMC
estimator is sum of several smaller contributions 1

Mi
Var(Yi) with

i = 0 · · · I.
The MLMC method is mainly based on the fact that

1
Mi

Var(Yi) at low levels are reduced by increasing number

of samples (Mi) as low level samples are computed at low
computational cost. At high levels, the level variances Var(Yi)
are expected to be typically small, thus Mi can be small and
hence MLMC method incurs few expensive high-fidelity model
simulations. In summary, MLMCmethod relies on the following
variance hierarchy:

Var(Y0) > Var(Y1) > Var(Y2) > · · · > Var(YI) (13)

and also expects C0 < C1 < C2 < · · · < CI , where
Ci is the computational cost to compute one sample of Yi.
In MLMC method, the optimal values for the number of
samples {M∗

0 · · ·M
∗
I } are computed by solving a constrained

minimization problem where the cost function to be minimized
is the total computational cost (

∑I
i=0 Ci · Mi) of the MLMC

method and constraint is set by fixing ǫml to a specific value (say
ǫ2

2 ) (Müller et al., 2013; Geraci et al., 2015). The optimal values
for the number of samples are expressed as

M∗
i =

2

ǫ2





I
∑

j=0

√

Cj · Var(Yj)





√

Var(Yi)

Ci
i = 0, · · · , I

(14)
Although MLMC in general refer to control variate method
with a sequence of I geometrical levels (mesh discretization
levels), it can also be utilized with a sequence of I reduced
basis models (Codina et al., 2016) or POD basis models. More
specifically, a sequence of POD basis models can be employed as
sequence of low-fidelity models v1 · · · vI .

A practical implementation of the MLMC algorithm is the
following (Müller et al., 2013)

1. Fix a sequence of levels based on grid resolutions or POD basis
i = 1 · · · I.

2. Fix a number of offline samplesMo and fix a threshold for the
estimated standard error.

3. PerformMo samples of high fidelity simulations.
4. If POD basis models, Derive I number of POD basis models.
5. ComputeMo samples of Yi on every level.
6. Solve the optimization (Müller et al., 2013) problem to

estimateMi samples of Yi with i = 0 · · · I.
7. Update the estimates for E[Yi],Var(Yi), and Ci on every level.
8. Compute and update the required number of samples Mi on

each level.
9. On every level, if the updated Mi is more than the number of

samples already computed, then add an additional sample of
Yi and continue with step 6. If no level requires an additional
sample, then quit.

4. MULTI-FIDELITY-MULTI-LEVEL MONTE
CARLO METHOD

In this section, we present a novel variance reduction method
called Multi-Fidelity-Multi-Level Monte Carlo (MFML-MC)
method addressing the limiting facts observed in the standard
MLMC method with Galerkin projection based ROMs (see
section 1 for more details). In MFML-MC method, we formulate
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FIGURE 1 | Outline of the (MFML-MC) method described in section 4. The low-fidelityi (yellow color) denotes low-fidelity model i (i = 1, 2, · · · I) in MLMC setup. The

low-fidelity
(i)
f
(brown color) denotes low-fidelity f in MFMC method formulated in the ith MLMC setup. QoI denotes the quantity of interest or outputs of interest.

a MLMC framework with I levels and then apply the techniques
of MFMC method on every level of MLMC framework. Figure 1
displays the outline of the MFML-MC method and its detailed
formulation is described as five steps in the rest of this section.

The first step ofMFML-MCmethod is to formulate a sequence
of POD approximations of the QoI u and utilize these sequence

as low-fidelity models [v1, · · · , vI] in MLMC framework. More
precisely, in this approach, vi is ith level POD approximation
of u and is computed from least-squares reconstruction method
defined as

u ≈ vi = Uri
u ũ = Uri

u (Uri
u
⊤ u) (15)
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where ũ ∈ R
ri is the reduced representation of u, Uri

u ∈

R
m×ri is the orthonormal matrix containing ri orthonormal basis

vectors in its columns. The optimal orthonormal basis vectors are
computed from the singular value decomposition (SVD) of the
snapshot matrix Xu =

(

(u1 . . . uT)1 . . . (u1 . . . uT)L
)

, where
T denotes the number of time steps and L denotes the number
of training samples corresponding to different realizations of the
stochastic input parameters. The SVD of Xu is expressed as (Kani
and Elsheikh, 2018)

Xu = Uu 6u Wu (16)

where Uu ∈ R
m×m is the left singular matrix, (σ1 > σ2 >

σ3 > · · · σm ≥ 0) are the singular values of the snapshot
matrix Xu. The associated error termed as least–squares errors
in approximating u by vi using only ri basis vectors is given
by (Berkooz et al., 1993; Lucia et al., 2004)

εi = ‖u− vi‖2 =

m
∑

j=ri+1

σj (17)

Please note that the dimension m of the basis vector in Uu is
much smaller than n (the number of grid points). Hence, for a
large scale UQ problems where m≪ n, we can easily form many
levels with smaller εi in this MLMC framework in comparison
to standard MLMC method. Moreover, vI can be obtained by
using less number of basis vectors (rI ≈ m with εI ≈ 0)
in comparison to standard MLMC method with a sequence of
Galerkin projection based ROMs.

The second step of MFML-MC method is to compute the
reduced representation of Yi over all levels in MLMC framework
(see Equation 9). The reduced representation ofYi is expressed as

Ỹi = U
qi
Yi

⊤
Yi (18)

where Ỹi ∈ R
qi is the reduced representation of Yi, U

qi
Yi

∈ R
m×qi

is the orthonormal matrix containing qi orthonormal basis
vectors in its columns. The optimal orthonormal basis matrixU

qi
Yi

is computed from the singular value decomposition (SVD) of
the snapshot matrix XYi =

(

(Yi1 . . . YiT )
1 . . . (Yi1 . . . YiT )

L
)

,
where Yij = vi+1j − vij (i = 0 · · · I − 1) and YIj = uj − vIj
for all j = 1, · · · ,T. Since, Yi is computed from the difference
between two consecutive levels of POD based approximations
vi+1 and vi, i.e., Yi = vi+1 − vi, the least–squares error in
approximating Yi by (U

qi
Yi

Ỹi) is equivalent to the difference of
two consecutive level ε (see Equation 17) which is expressed as
1εi = εi − εi+1 =

∑ri+1
j=ri+1 σj.

Now the MLMC estimator (see Equation 11) for the expected
value of u is expressed as

E[u] =
I

∑

i=0

E[Yi] ≈
I

∑

i=0

U
qi
Yi
E[Ỹi] = ûml =

I
∑

i=0

Ŷi =

I
∑

i=0

U
qi
Yi
ˆ̃Yi

(19)
The third step of MFML-MCmethod is to set ri for all i = 1 · · · I.
In this framework, we set ri = i. Now,1εi = σi and therefore, we

expect Yi to be attracted to a certain low dimensional subspace of
dimension qi = 1ri = (ri+1 − ri) = 1 over all the levels.

In the fourth step, we extend the Multi-Level Multi-
Fidelity method introduced in Geraci et al. (2015) by adopting
multi-fidelity approach (see Equation 8) on every level of
MLMC framework to derive an unbiased estimator of E[Ỹi] in
Equation (19) that takes the form

ˆ̃Y
mf
i =

ˆ̃Yi + β1
i (

ˆ̃Y1
i −

ˆ̃Yi)+
Fi

∑

f=2

β
f
i (

ˆ̃Y
f
i −

ˆ̃Y
f−1
i ) (20)

where Ỹ1
i · · · Ỹ

Fi
i are auxiliary random variables obtained from Fi

number of level specific low-fidelity models of Ỹi,
ˆ̃Y
f
i estimates

the expectation E[Ỹ
f
i ] usingM

f
i samples of Ỹ

f
i for all f = 1 · · · Fi,

and β1
i · · ·β

Fi
i ∈ R are the coefficients on level i, i = 0 · · · I. In

this paper, we set Fi = 1 for all i = 0 · · · I. Next, we use the
optimization problem formulated in Peherstorfer et al. (2016) to
select optimal values M∗

HF, M
1∗
i such that the mean square error

of the MFML-MC estimator ˆ̃Y
mf
i on every level is lower than the

Monte Carlo estimator ˆ̃Yi for the same computational budget.
Now, the MFML-MC estimator for the expected value of u

(see Equation 19) is expressed as

E[u] ≈ ûml =

I
∑

i=0

Ŷi ≈

I
∑

i=0

U
qi
Yi

ˆ̃Y
mf
i (21)

In the fifth step, we utilize a data-driven approach to derive a level
specific low-fidelity model Ỹ1

i in the MFMC setup. In this data-
driven approach, we first consider a discrete nonlinear dynamical
system on every level (i = 0 · · · I) that takes the form

Ỹ1
i (t + 1) = Ỹ1

i (t)+ Fi(x, Ỹ
1
i (t)), (22)

where Fi(x, Ỹ1
i (t)) is the nonlinear term utilized to update Ỹ1

i (t+
1) on level i for all i = 0 · · · I (Nagoor Kani and Elsheikh,
2017). Next, we use GBTR (Friedman, 2001) on every level to
approximate Fi(x, Ỹ1

i (t)). We use (x, Ỹ1
i (t)) as an input to GBTR

and compute Fi(x, Ỹ1
i (t)) as an output. We fit GBTRs using

the same training samples
(

(Yi1 . . . YiT )
1 . . . (Yi1 . . . YiT )

L
)

utilized in the second step.

5. NUMERICAL EXPERIMENTS

In this section, we present numerical results to evaluate the
performance of MFML-MC method. The numerical results
are based on two UQ tasks involving two-phase flow in the
heterogeneous porous media domain. The two test cases are
quarter five spot problem and the uniform flow problem
with the uncertainties in the permeability field (Kani and
Elsheikh, 2018). In section 5.1, we describe high-fidelity model
setup, in section 5.2, we describe low-fidelity model setup
in order to formulate MFML-MC framework, in section 5.3,
we describe MLMC with Galerkin-POD ROMs setup, and in
section 5.4, we define a set of error metrics that we utilize
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to compare MFML-MC method with standard MC method
that uses either high-fidelity model or low-fidelity model.
In section 5.5, we provide the results for quarter five spot
problem and in section 5.6, we provide the results for uniform
flow problem.

5.1. High-Fidelity Model Setup
We consider two-phase flow of oil andwater in a two dimensional
porous media domain [0 1] × [0 1] where water is injected to
displace the residual oil. We consider Equation (3) as a high-
fidelity model to describe the flow behavior of oil and water. We
define the relative permeability based on Corey’s model krw(s) =
s∗2, kro = (1 − s∗)2, where s∗ = (s − swc)/(1 − sor − swc),
swc is the irreducible water saturation and sor is the residual oil
saturation (Aarnes et al., 2007). We set swc = 0.2, sor = 0.2, and
initial water saturation to swc(0.2). We set the porosity field in the
porous media domain to a constant value of 0.2. We set viscosity
ratio of water and oil to 0.2. We consider uncertainties from the
permeability field and assumed to be modeled as a log-normal
distribution function with zero mean and exponential covariance
that takes the form

Cov = σ 2
k exp

[

−
|x1 − x2|

ιk

]

(23)

where σ 2
k
is the variance, ιk is the correlation length. We set σ 2

k
to

1 and ιk to 0.1. Sample realizations of log-permeability values are
displayed in Figure 2.

As mentioned in section 2, we use sequential formulation to
solve Equation (3) for pressure and water saturation (Aarnes
et al., 2007). We first generate a uniform mesh of 96 × 96 blocks
in a spatial domain. We use finite volume method with two point
flux approximation (Aarnes et al., 2007) to solve for pressure
and an upwind finite-volume method with an implicit backward
Euler method combined with Newton-Raphson iterative method
to solve for saturation. We set time step size to 0.015 and we solve
Equation (3) for 200 time steps. We solve pressure and update

velocity field at every 8th time step as pressure field changes
much slower than saturation field over time. Time is measured
by a non dimensional unit called pore volumes injected (PVI)
(Ibrahima, 2016).

As defined in section 2, QoI is u ∈ R
m, where ui =

ys(xi, yi), i = 1 · · ·m≪ n at specific time steps. The first moment
estimate of u(t) at specific time steps are the desired statistic. The
interested grid points ((xi, yi) i = 1 · · ·m) are 6 × 6 grid points
(m = 36) uniformly selected from the 96 × 96 spatial domain.
The interested time steps are t = 10, 20, · · · , 200. We solve
Equation (3) for 25,000 random realizations of the permeability
field and use Monte Carlo method to estimate the statistics of u
(Ibrahima, 2016).

5.2. Low-Fidelity Model Setup
We first compute the optimal POD bases matrices Uu and UYi

for all i = 0 · · · I. We compute the POD matrices from the
SVD of the snapshot matrices Xu,XYi , i = 0 · · · I. We built
the snapshot matrices from 10 random samples of high-fidelity
model solution data. In order to select the 10 random high-
fidelity models to build snapshot matrices, we use K-means
clustering algorithm to cluster 25,000 random permeability
realizations into 10 clusters (Ghasemi, 2015). Then, we solve
the high-fidelity model for a single permeability realization from
each cluster.

Following that, the obtained matrix Uu is utilized to build a
sequence of POD approximations of u (as detailed in the section
4) from the collected training data. Then thematrixU

qi
Yi
is utilized

to compute training samples of Ỹi (the reduced representation of
Yi) for all i = 0 · · · I. We set I = 18, ri = i, and therefore qi = 1
as already mentioned in section 4.

Next, we build a level specific GBTR on every level (i = 0 · · · I)
to estimate Fi and utilize the estimated Fi in Equation (22) to
compute Ỹ1

i (t+1). We use Scikit-learn (Pedregosa et al., 2011) a
machine learning python package to implement the GBTRs. We
use the training samples of Ỹi to fit the level specific GBTR.

FIGURE 2 | Sample plots of log-permeability field. Uncertain permeability field is modeled from a log-normal distribution function with zero mean and exponential

covariance.
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5.3. Standard MLMC With POD-Galerkin
ROMs Setup
We first compute optimal POD basis vectors for the pressure and
saturation solution vectors from the SVD of the corresponding
snapshot matrices. We built the snapshot matrices from the
solution vectors (pressure and saturation) collected from the
solutions of the high-fidelity model for 45 random realizations
of the permeability field. We then built low-fidelity ROMmodels
of different dimensions via Galerkin projection of the discretized
system of the high-fidelity model Equation (3) on to the POD
space spanned by the POD basis vectors.

Following that one can obtain MLMC framework using
Galerkin projection PODROMs as low-fidelitymodels. However,
in the two numerical test cases namely, the quarter five spot
problem (5.5), and the uniform flow problem (5.6), we obtained
accurate and stable POD results only when the dimensions
of the POD-Galerkin ROMs were on the order of magnitude
nearly equivalent to the dimension of the high-fidelity state
variable (Xiao et al., 2017; Kani and Elsheikh, 2018). Hence, the
computational cost to obtain the QoI from the POD-Galerkin
ROM is more than the computational cost to obtain the QoI
from the high-fidelity model for a single realization. Therefore,
it was infeasible to derive an effective MLMC framework with a
hierarchy of low-fidelity models based on standard POD ROMs.
This is expected because the governing equations of the flow
problem Equation (3) has nonpolynomial nonlinearity and is
well known issue in reduced order modeling for multi-phase
subsurface flow problems (Chaturantabut and Sorensen, 2011;
He et al., 2011; Jansen and Durlofsky, 2017; Kani and Elsheikh,
2018). We also note that we conducted extensive study on

reduced order modeling for these two problems in Kani and
Elsheikh (2018) and we obtained inaccurate and unstable results
when using POD ROMs. At this point, we request the readers
to refer figures included in the numerical results section of Kani
and Elsheikh (2018), where some of the standard POD ROM
unstable results are displayed. Hence, we have not included the
comparison of MFML-MC method with MLMC method based
on standard POD ROMs as low-fidelity models.

5.4. Evaluation Metrics
We evaluate the performance of MFML-MC method using two
time specific error metrics defined by

êbiast =
1

Ne

Ne
∑

j=1

‖ûref
t − û

(j)
t ‖22

êǫt =
1

Ne

Ne
∑

j=1

Var(û
(j)
t )

(24)

where Ne is the number of runs utilized to estimate the errors,
ûref
t is the reference result of E[ut] obtained from Monte Carlo

estimate û(MC)
t computed with N = 25, 000 high-fidelity model

samples. û
(j)
t is the approximation of E[ut] that can be obtained

from various estimators including Monte Carlo estimate that
uses only high-fidelity model, Monte Carlo estimate that uses
only low-fidelity model, and the MFML-MC estimator. We note

that, û
(j)
t is obtained for a fixed computational budget p. The

computational budget is measured in terms of the cost required
to run p number of MC realizations that uses only high-fidelity

FIGURE 3 | Test case 1. (Left) Two dimensional quart-five spot problem set-up where water is injected in the lower left corner (blue dot). Oil is displaced and

produced with water in the upper right corner (blue dot). The red dots denotes spatial locations in the porous media domain where the statistics of the QoI u are

investigated. (Right) Decay of singular values of the snapshot matrix Xu.

Frontiers in Environmental Science | www.frontiersin.org 9 August 2019 | Volume 7 | Article 105106

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Jabarullah Khan and Elsheikh Multi-Fidelity Multi-Level Monte Carlo Method

FIGURE 4 | Test case 1: Comparison of estimation of E[ut ] (mean water saturation field at 6× 6 spatial grid) for a fixed computational budget p = 100, where p is the

number of MC realizations that uses only high-fidelity model. (Top Row) Estimation of E[ut ] at time t = 0.3 PVI. (Bottom Row) Estimation of E[ut ] at time t = 0.8 PVI.

FIGURE 5 | Test case 1: Plot of êbiast , and êǫ
t (Equation 24) for the estimation of E[ut ] (water saturation field at 6× 6 spatial grid) obtained from various estimators.

êbiast and êǫ
t are shown as a function of computational budget p = [1, 2, 3, 4, 5]× 102, where p is the number of MC realizations N that uses only high-fidelity model.

(Left) êbiast at time t = 0.3 PVI. (Right) êǫ
t at time t = 0.3 PVI.

model. We also note that, û
(j)
t is evaluated from a different set of

independent samples for set j = 1 · · ·Ne.
Additionally, we utilize two global error metrics defined as

êbias =
1

Ne

Ne
∑

j=1

T
max
t=1

‖ûref
t − û

(j)
t ‖22

êǫ =
1

Ne

Ne
∑

j=1

T
max
t=1

Var(û
(j)
t )

(25)

where all the time snapshots of u are used. We set Ne = 15 to
evaluate the two time specific error metrics and the two global
error metrics.

5.5. Numerical Test Case 1
Test case 1 is two dimensional quart-five spot problem where
water is injected in the lower left corner (0, 0) of the porous
media domain to produce oil and water in the top right corner
(1, 1) (Kani and Elsheikh, 2018). We set q defined in the
saturation equation (Equation 3) to 0.05 at (0, 0) and −0.05
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FIGURE 6 | Test case 1: Plot of êbias and êǫ (Equation 25) estimation of E[u] (water saturation field at 6× 6 spatial grid) obtained from various estimators. êbias and

êǫ are shown as a function of computational budget p = [1, 2, 3, 4, 5]× 102, where p is the number of MC realizations N that uses only high-fidelity model.

at (1, 1). We set no flux boundary condition in all the four
sides of the porous media domain. The left panel of Figure 3
displays the quart-five spot problem set up and the right panel of
Figure 3 displays the decay of the singular values of the snapshot
matrix Xu.

Figure 4 shows the results for the estimation of E[ut] (first
moment of u) obtained from the reference result (MC estimate
with 25,000 samples) and from various MC estimators. In
Figure 4, MC estimator that uses only high-fidelity model is
denoted as MC-HF and that uses only low-fidelity model is
denoted as MC-LF. In Figure 4, results shown in the top row
are obtained at time = 0.3 PVI and results shown in the bottom
row are obtained at time = 0.8 PVI. As shown in Figure 4, the
estimation of E[ut] obtained from MC-LF deviates significantly
from the reference result. This clearly shows that utilizing
only low-fidelity model in MC framework resultant in biased
estimation with respect to the reference result. Furthermore,
Figure 4 shows that the estimation of E[ut] obtained from
MFML-MC estimator is almost indistinguishable from the
reference result. This result confirm that combining higher
number of low-fidelity model realizations with the high-fidelity
model in MFML-MC framework can improve the estimator of
the first moment of the saturation field.

Figure 5 reports the comparison of êbiast and êǫt (see
Equation 24) obtained from various estimators. The left of
Figure 5 reports êbiast and the right of Figure 5 reports êǫt as
a function of computational budget p = [1, 2, 3, 4, 5] × 102,
where p is the number of MC-HF realizations. The results of
êbiast from Figure 5 shows that Monte Carlo estimator that uses
MC-LF is a biased estimator of the mean QoI value. The results
of MFML-MC estimator displayed in left of Figure 5 confirm
that the MFML-MC estimator is an unbiased estimator of the

TABLE 1 | Performance chart of MFML-MC estimator for test case 1.

ǫ p CPU Time (min) Speedup

MC-HF MFML-MC

10−4 5× 102 125 15 8.3

10−5 9× 103 2,250 210 10.5

10−6 25× 103 6,250 490 13.4

ǫ defined in Equation (5) is shown as a function of computational budget p, where p is

the number of MC realizations that uses the high-fidelity model only. ǫ is estimated at time

= 0.3 PVI.

expectation. This shows that despite the low-fidelity model is a
poor approximation of the high-fidelity model, the error of the
MFML-MC estimator can be significantly reduced if the low-
fidelity model is combined with the high-fidelity. The right of
Figure 5 shows that the variance of the MFML-MC and MC-LF
estimators are at least an order of magnitude less when compared
to MC-HF. Nevertheless, while MC-LF is a biased estimator as
shown in left of Figure 5, MFML-MC estimator that uses the low-
fidelity model in combination with the high-fidelity model is an
unbiased estimator of the expectation.

Figure 6 reports the comparison of êbias and êǫ (see
Equation 25) obtained from various estimators. We can clearly
observe the trend of êbias, and êǫ in Figure 6 are similar to
the one observed in Figure 5 which confirms that MFML-MC
method leads to variance reduction with unbiased estimation at
all time steps.

Table 1 compare the speedup factors of MFML-MC method
with respect to the Monte Carlo estimator that uses the high-
fidelity model only. In Table 1, MFML-MC achieves a speedup
with respect to MC-HF that range from 8 up to 15 for the same
specific ǫ.
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FIGURE 7 | Test case 2: (Left) Uniform flow problem set up where water is injected from the left side denoted by blue arrows. Oil and water are produced from the

right side denoted by brown arrows. The red dots denotes the spatial locations of the porous media domain where the statistics of the QoI u are investigated. (Right)

Decay of singular values of the snapshot matrix Xu.

FIGURE 8 | Test case 2: Comparison of estimation of E[ut ] (mean water saturation field at 6× 6 spatial grid) for a fixed computational budget p = 100, where p is the

number of MC realizations that uses only high-fidelity model. (Top Row) Estimation of E[ut ] at time t = 0.3 PVI. (Bottom Row) Estimation of E[ut ] at time t = 0.8 PVI.

5.6. Numerical Test Case 2
Test case 2 is a two dimensional uniform flow problem where
water is injected from the left side of the porous media domain
to produce oil and water from the right side. We set no flow
boundary conditions in the remaining two sides (top and bottom)
of the domain. We set inflow rate to 0.08 and outflow rate to 0.08
due to incompressibility constraint set in the problem (Kani and
Elsheikh, 2018). The left panel of Figure 7 displays uniform flow

problem set up and the right panel of Figure 7 displays the decay
of the singular values of the snapshot matrix Xu.

Figure 8 shows the results for the first moment of the
saturation field (u) obtained from the reference result (MC
estimate with 25000 samples) and from various MC estimators.
The display settings defined in Figure 8 are the same as the
one defined in Figure 4. In Figure 8, we can see that the results
obtained from MFML-MC method are almost indistinguishable
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FIGURE 9 | Test case 2: Plot of êbiast and êǫ
t (Equation 24) for the estimation of E[ut ] (water saturation field at 6× 6 spatial grid) obtained from various estimators.

êbiast and êǫ
t are shown as a function of computational budget p = [1, 2, 3, 4, 5]× 102, where p is the number of MC realizations N that uses only high-fidelity model.

(Left) êbiast at time t = 0.3 PVI. (Right) êǫ
t at time t = 0.3 PVI.

FIGURE 10 | Test case 2: Plot of êbias and êǫ (Equation 25) for the estimation of E[u] (water saturation field at 6× 6 spatial grid) obtained from various estimators.

êbias and êǫ are shown as a function of computational budget p = [1, 2, 3, 4, 5]× 102, where p is the number of MC realizations N that uses only high-fidelity model.

from the reference results whereas MC-LF yields extremely
inaccurate results.

Figure 9 reports the comparison of êbiast and êǫt (see
Equation 24) obtained from various estimators. The variance
reduction can be clearly observed in Figure 9 and the trend of
Figure 9 is similar to the one observed in Figure 5 (Test case 1).

The results of Figure 9 again confirm that combining the high-
fidelity model with the low-fidelity model leads to a variance
reduction. Please note that a similar confirmation was observed
in Figure 5.

Figure 10 reports the comparison of êbias and êǫ (see
Equation 25) obtained from various estimators. As observed in
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TABLE 2 | Performance chart of MFML-MC estimator for test case 2.

ǫ p CPU Time (min) Speedup

MC-HF MFML-MC

10−4 5× 102 148 14 10.8

10−5 9× 103 2,850 197 14.5

10−6 25× 103 7,950 410 19.4

ǫ defined in Equation (5) is shown as a function of computational budget p, where p is

the number of MC realizations that uses the high-fidelity model only. ǫ is estimated at time

= 0.3 PVI.

Figure 6, the results displayed in Figure 9 shows thatMFML-MC
method leads to variance reduction with unbiased estimation.

Table 2 compare the speedup factors of MFML-MC method
with respect to the MC method that uses the high-fidelity model
only. In Table 2, MFML-MC achieves a speedup with respect to
MC-HF that range from 10 up to 19 at a specific ǫ.

6. CONCLUSION

In this paper, we proposed a MFML-MC method combining the
features of both the MFMC method and the MLMC method. In
MFML-MC method, we formulated MLMC framework with a
sequence of POD approximations of high-fidelity model outputs.
Furthermore, in MFML-MC method, we formulated a MFMC
setup on every level of MLMC framework in order to compute
an unbiased statistical estimation. Finally, we utilized GBTR in
the MFMC setup to formulate a level specific low-fidelity model.

We applied MFML-MC method on two uncertainty
quantification problems involving two-phase flows in random

heterogeneous porous media where standard MLMC method
with POD-Galerkin ROMs is ineffective. The uncertain
permeability field is modeled from log-normal distribution
function with exponential covariance function. Estimate of the
first statistical moments of the water saturation at uniformly
selected spatial grid points over a specific instant in time
are calculated by MFML-MC, MC-HF, and MC-LF methods.
Comparisons between MFML-MC and MC-LF suggested that
MC-LF as a biased estimator and MFML-MC estimator as an
unbiased estimator of the expectation. Comparisons between the
MFML-MC and MC-HF computing times showed speedups of
MFML-MC with respect to MC-HF that ranged from 8 up to 19
at equivalent accuracy.

Future work should consider the extension of MFML-MC
method by utilizing two or more level specific low-fidelity models
in the MFMC setup. In addition, it will also be interest to use
MFML-MC method for history matching (Elsheikh et al., 2012,
2013), where we aim to minimize the mismatch between field
observation data and the one computed from the high-fidelity
model simulations by adjusting the geological model parameters.
Future work should also verify the applicability of MFML-MC
method for large-scale realistic problems with many wells and
time varying injection rates by which the potential of MFML-MC
method in speeding up a realistic Monte Carlo simulation can be
magnified.

AUTHOR CONTRIBUTIONS

NJ developed the algorithm, coded the algorithm in python and
obtained the results, and wrote the manuscript. AE is the Ph.D.
supervisor of NJ. NJ did this paper under the guidance of AE.

REFERENCES

Aarnes, J. E., Gimse, T., and Lie, K. A. (2007). “An introduction to the numerics
of flow in porous media using Matlab,” in Geometric Modelling, Numerical

Simulation, and Optimization (Oslo: Springer), 265–306.
Abdulle, A., Barth, A., and Schwab, C. (2013). Multilevel monte carlo methods

for stochastic elliptic multiscale pdes. Multisc. Model. Simulat. 11, 1033–1070.
doi: 10.1137/120894725

Antoulas, A. C., Sorensen, D. C., and Gugercin, S. (2001). A survey of model
reduction methods for large-scale systems. Contemp. Math. 280, 193–220.
doi: 10.1090/conm/280/04630

Babuška, I., Nobile, F., and Tempone, R. (2007). A stochastic collocation method
for elliptic partial differential equations with random input data. SIAM J.

Numer. Anal. 45, 1005–1034. doi: 10.1137/050645142
Barth, A., Schwab, C., and Zollinger, N. (2011). Multi-level monte carlo finite

element method for elliptic pdes with stochastic coefficients. Numerische Math.

119, 123–161. doi: 10.1007/s00211-011-0377-0
Bastian, P. (1999). Numerical computation of multiphase flow in porous media.

(Ph.D. thesis). Habilitationsschrift Univeristät Kiel, Berlin, Germany.
Berkooz, G., Holmes, P., and Lumley, J. L. (1993). The proper orthogonal

decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25,
539–575. doi: 10.1146/annurev.fl.25.010193.002543

Bui-Thanh, T., Willcox, K., Ghattas, O., and Waanders, B. V. (2007). Goal-
oriented, model-constrained optimization for reduction of large-scale systems.
J. Comput. Phys. 224, 880–896. doi: 10.1016/j.jcp.2006.10.026

Chaturantabut, S., and Sorensen, D. C. (2011). Application of POD and
DEIM on dimension reduction of non-linear miscible viscous fingering

in porous media. Math. Comput. Modell. Dyn. Syst. 17, 337–353.
doi: 10.1080/13873954.2011.547660

Chen, Z., Huan, G., and Ma, Y. (2006). Computational Methods for Multiphase

Flows in Porous Media. Dallas, TX: SIAM.
Cliffe, K. A., Giles, M. B., Scheichl, R., and Teckentrup, A. L. (2011). Multilevel

monte carlo methods and applications to elliptic pdes with random coefficients.
Comput. Visualizat. Sci. 14:3. doi: 10.1007/s00791-011-0160-x

Codina, F. V., Ngoc, N. C., Giles, M. B., and Peraire, J. (2015). A
model and variance reduction method for computing statistical outputs of
stochastic elliptic partial differential equations. J. Comput. Phys. 297, 700–720.
doi: 10.1016/j.jcp.2015.05.041

Codina, F. V., Ngoc, N. C., Giles, M. B., and Peraire, J. (2016). An empirical
interpolation and model-variance reduction method for computing statistical
outputs of parametrized stochastic partial differential equations. SIAM/ASA J.

Uncertain. Quantificat. 4, 244–265. doi: 10.1137/15M1016783
Doostan, A., and Owhadi, H. (2011). A non-adapted sparse approximation

of pdes with stochastic inputs. J. Comput. Phys. 230, 3015–3034.
doi: 10.1016/j.jcp.2011.01.002

Durlofsky, L. J., and Chen, Y. (2012). “Uncertainty quantification for subsurface
flow problems using coarse-scale models,” in Numerical Analysis of Multiscale

Problems, eds I. Graham, T. Hou, O. Lakkis, and R. Scheichl (Berlin: Springer),
163–202.

Efendiev, Y., Iliev, O., and Kronsbein, C. (2013). Multilevel monte carlo
methods using ensemble level mixed msfem for two-phase flow and transport
simulations. Compu. Geosci. 17, 833–850. doi: 10.1007/s10596-013-9358-y

Efendiev, Y., Jin, B., Michael, P., and Tan, X. (2015). Multilevel markov
chain monte carlo method for high-contrast single-phase flow problems.

Frontiers in Environmental Science | www.frontiersin.org 14 August 2019 | Volume 7 | Article 105111

https://doi.org/10.1137/120894725
https://doi.org/10.1090/conm/280/04630
https://doi.org/10.1137/050645142
https://doi.org/10.1007/s00211-011-0377-0
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1016/j.jcp.2006.10.026
https://doi.org/10.1080/13873954.2011.547660
https://doi.org/10.1007/s00791-011-0160-x
https://doi.org/10.1016/j.jcp.2015.05.041
https://doi.org/10.1137/15M1016783
https://doi.org/10.1016/j.jcp.2011.01.002
https://doi.org/10.1007/s10596-013-9358-y
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Jabarullah Khan and Elsheikh Multi-Fidelity Multi-Level Monte Carlo Method

Commun. Comput. Phys. 17, 259–286. doi: 10.4208/cicp.021013.
260614a

Elsakout, D., Christie, M., Lord, G., et al. (2015). “Multilevel markov chain monte
carlo (mlmcmc) for uncertainty quantification,” in SPE North Africa Technical

Conference and Exhibition (Cairo: Society of Petroleum Engineers).
Elsheikh, A. H., Jackson, M., and Laforce, T. (2012). Bayesian reservoir history

matching considering model and parameter uncertainties. Math. Geosci. 44,
515–543. doi: 10.1007/s11004-012-9397-2

Elsheikh, A. H., Wheeler, M. F., and Hoteit, I. (2013). Nested sampling algorithm
for subsurface flow model selection, uncertainty quantification, and nonlinear
calibration.Water Resour. Res. 49, 8383–8399. doi: 10.1002/2012WR013406

Fagerlund, F., Hellman, F., Målqvist, A., and Niemi, A. (2016). Multilevel monte
carlo methods for computing failure probability of porous media flow systems.
Adv. Water Resour. 94, 498–509. doi: 10.1016/j.advwatres.2016.06.007

Frangos, M., Marzouk, Y., Willcox, K., and Waanders, B. V. (2010). Surrogate
and Reduced-Order Modeling: A Comparison of Approaches for Large-Scale

Statistical Inverse Problems. Alburquerque: John Wiley & Sons, Ltd.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting

machine. Ann. Stat. 29, 1189–1232. doi: 10.1214/aos/1013203451
Geraci, G., Eldred, M., and Iaccarino, G. (2015). “A multifidelity control variate

approach for the multilevel monte carlo technique,” in Center for Turbulence

Research Annual Research Briefs (Alburquerque).
Ghanem, R. G., and Spanos, P. D. (1991). “Stochastic finite element method:

response statistics,” in Stochastic Finite Elements: A Spectral Approach

(New York, NY: Springer), 101–119.
Ghasemi, M. (2015). Model order reduction in porous media flow simulation and

optimization. (Ph.D. thesis). Texas AM Univeristy, Austin, TX.
Giles, M. B. (2008). Multilevel monte carlo path simulation. Operat. Res. 56,

607–617. doi: 10.1287/opre.1070.0496
Giles, M. B. (2013). “Multilevel Monte Carlo methods,” inMonte Carlo and Quasi-

Monte Carlo Methods 2012, eds J. Dick, F. Kuo, G. Peters, and I. Sloan (Berlin:
Springer), 83–103.

Giles, M. B. (2015). Multilevel monte carlo methods. Acta Numer. 24, 259–328.
doi: 10.1017/S096249291500001X

He, J. (2010). Enhanced linearized reduced-order models for subsurface flow

simulation. (M.S. thesis). Stanford Univeristy, Stanford, CA.
He, J., Sætrom, J., and Durlofsky, L. J. (2011). Enhanced linearized reduced-

order models for subsurface flow simulation. J. Comput. Phys. 230, 8313–8341.
doi: 10.1016/j.jcp.2011.06.007

Heinrich, S. (2001). “Multilevel monte carlo methods,” in Large-Scale Scientific

Computing, eds S. Margenov, J. Waśniewski, and P. Yalamov (Berlin;
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This paper illustrates how an emulator (or meta-model) of a tsunami code can
be a useful tool to evaluate or qualify tsunami hazard levels associated with both
specific and unknown tsunamigenic seismic sources. The meta-models are statistical
tools permitting to drastically reduce the computational time necessary for tsunami
simulations. As a consequence they can be used to explore the tsunamigenic potential
of a seismic zone, by taking into account an extended set of tsunami scenarios. We
illustrate these concepts by studying the tsunamis generated by the Azores-Gibraltar
Plate Boundary (AGPB) and potentially impacting the French Atlantic Coast. We first
analyze the impact of two realistic scenarios corresponding to potential sources of
the 1755-Lisbon tsunami (when uncertainty on seismic parameters is considered). We
then show how meta-models could permit to qualify the tsunamis generated by this
seismic area. All the results are finally discussed in light of tsunami hazard issued by
the TSUMAPS-NEAM research project available online (http://ai2lab.org/tsumapsneam/
interactive-hazard-curve-tool/). From this methodological study, it appears that tsunami
hazard issued by TSUMAPS-NEAM research project is envelop, even when compared
to all the likely and unlikely tsunami scenarios generated in the AGPB area.

Keywords: kriging surrogate, uncertainty quantification, tsunami modeling, hazard analysis, sensitivity analysis

INTRODUCTION

The evaluation of tsunami impact requires accurate simulation results for planning and risk
assessment purposes because of the severe consequences which could be associated to this kind of
event. Considering that tsunami phenomena involve a large span of parameters at different spatial
and temporal scales (Behrens and Dias, 2015), even a single run of a tsunami numerical model can

Abbreviations: µ, shear modulus; [N(m(x), s2(x))], Gaussian process of mean “m(x)” and variance “s2(x)”; [M(x)], kriging
surrogate; {X,Y}, are the coordinates of the design simulations used for kriging parameters evaluation; C(.), covariance
kernel; CEA, commissariat à l’énergie atomique et aux énergies alternatives; D [m], average slip along the rupture surface;
DTHA, deterministic tsunami hazard assessment; GSA, global sensitivity analysis; L [m], length of the rupture surface; MCS,
maximum credible scenario; MCS_h, tsunami hazard level issued by an exploration of a very wide range of tsunamigenic
scenarios; Mo, seismic moment; Mw, seismic moment magnitude; MSE, mean squared error; PTHA, probabilistic tsunami
hazard assessment; R2, squared correlation coefficient; RMSE, root mean squared error; UQ, uncertainty quantifications; W
[m], width of the rupture surface.
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be prohibitively long, in the order of minutes to days, according
to the study area characteristics and to the resolution of
the numerical model. Hence, a common practice when the
computational code is time-consuming is the use of meta-models
(also denoted surrogate-models or emulators). A meta-model is
a mathematical model of approximation of the numerical model,
built on a learning basis (Razavi et al., 2012a). Meta-models have
been applied, for example, in hydraulic fields to model physical
variables such as flows (Wolfs et al., 2015; Machac et al., 2016),
flood damages (Yazdi and Salehi Neyshabouri, 2014), or in the
field of the design for civil flood defenses (Richet and Bacchi,
2019). A comprehensive review of the use of meta-models in
environmental research was proposed by Razavi et al. (2012a) for
the interested reader.

Meta-models have also already been used in the field
of tsunamis. For instance, Sraj et al. (2014) investigate the
uncertainties in the resulting wave elevation predictions due
to the uncertainty in the Manning’s friction coefficient, using
polynomial chaos expansion to build a surrogate model that is
a computationally cheap approximation of the computer model.
Sarri et al. (2012) used in a similar way a statistical emulator
of the analytical landslide-generated tsunami model developed
by Sammarco and Renzi (2008). More recently, Rohmer et al.
(2018) studied the uncertainty related to the source parameters
through a Bayesian procedure to infer (i.e., learn) the probability
distribution of the source parameters of the earthquake. However,
to our knowledge, meta-modeling has never been used for
tsunami hazard analysis.

In this paper, we propose to apply meta-modeling techniques
in the framework of deterministic tsunami hazard assessment
(DTHA) and evaluate how it can be useful in seismic areas with
no (or poor) seismotectonic knowledge. In such cases, when
seismotectonic parameters are uncertain, it may be of interest
to provide a first order idea of the tsunami hazard potential
through DTHA, the implementation of DTHA being simpler
than the probabilistic method (PTHA). The scenario-based (or
DTHA) approach classically relies on the study of “maximum
credible scenarios” (MCS). In particular, DTHA tries to explore
the potential of the largest scenarios, by selecting some of the
extreme ones (i.e., a recorded/reconstructed historical event)
and simulating them for the target area through numerical
modeling (JSCE, 2002; Lynett et al., 2004), without addressing the
likelihood of occurrence of such a big event (Omira et al., 2016).
With this approach, MCS is assessed through an expert opinion.
The outputs of the deterministic analysis are, in general, tsunami
travel time, wave height, flow depth, run-up, and current velocity
maps corresponding to the chosen scenario (Omira et al., 2016).

As mentioned above, DTHA relies on a refined knowledge of
the seismic sources generating the tsunamis. As a consequence,
it could be hampered by the use of specific values of input
parameters which may be subjective depending on the person
or group carrying out the analysis (Roshan et al., 2016). A good
example is the 1755 Lisbon tsunami, generated by an earthquake
in the Azores Gibraltar Plate Boundary (AGPB). The Great 1755
Lisbon earthquake generated the most historically destructive
tsunami near the Portugal coasts (Santos and Koshimura, 2015).
Source location and contemporary effects of such tsunami are not

precisely identified and several earthquake scenarios have already
been published in the literature in the last decades (Johnston,
1996; Baptista et al., 1998, 2003; Zitellini et al., 1999; Gracia et al.,
2003; Terrinha et al., 2003; Gutscher et al., 2006; Grandin et al.,
2007; Horsburgh et al., 2008; Barkan et al., 2009; Cunha et al.,
2010). All of these studies show how variable the parameters of
the seismic source can be and the importance to take into account
their uncertainty.

In DTHA, the classical approach to deal with uncertainties
consists in performing a limited number of deterministic
simulations with conservative values of the seismic sources
(e.g., JSCE, 2002; Lynett et al., 2004; Allgeyer et al., 2013).
However, the great M 9.0 Tohoku-Oki subduction earthquake
of 2011, the largest ever recorded in Japan (Saito et al., 2011),
has clearly shown the limitations of the classical approach
focused on the identification of known maximum tsunamigenic
sources (MCS approach). Recently, Roshan et al. (2016) improved
the DTHA procedure detailed in Yanagisawa et al. (2007)
in order to better evaluate the effects of the seismic source
uncertainties through Monte-Carlo simulations of a limited
number of seismic source parameters (the dip angle, the strike
and the source location), leading to around 300 tsunami
scenarios. The authors presented an improvement of the
classical MCS approach by introducing uncertainties on seismic
source parameters.

In this context, the objective of this work is to propose a
new methodology to evaluate or qualify tsunami hazard levels
associated to both specific and unknown tsunamigenic seismic
sources by integrating the uncertainty related to the seismic
parameters in the DTHA procedure. The main idea is to develop
a meta-model, or emulator, of the tsunami numerical model,
that makes it possible to perform a large number of tsunami
scenarios with reduced computational time and, consequently,
to intensively explore a tsunamigenic area for which geological
and geophysical datasets may be limited. The constructed meta-
models, when exploited with the statistical criteria classically
employed in uncertainty quantification (UQ) studies (Saltelli
et al., 2000, 2008; Saltelli, 2002; Iooss and Lemaître, 2015), can
permit to go beyond the classical approach for DTHA and
perform a better quantification of uncertainties of a large set of
seismic source parameters.

In the next sections we will first present the methodology
used in this study (see section “Methodology”), and then
develop and validate the meta-models for AGPB related tsunamis
impacting the French Atlantic Coast (see section “Application
of the methodology to the French Coast”). In section “Potential
application of meta-models for tsunami hazard analysis,” we (1)
evaluate the impact of two realistic scenarios corresponding to
potential sources of the 1755-Lisbon tsunami (when uncertainty
on seismic parameters is considered), and (2) present the analysis
of the tsunamigenic potential of the AGPB zone, considered for
the purpose of the exercise as a poorly known tsunamigenic area.
Finally, we show how the numerical results obtained with this
method can be discussed in light of tsunami hazard issued by the
TSUMAPS-NEAM research project available on line1.

1http://ai2lab.org/tsumapsneam/interactive-hazard-curve-tool/
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METHODOLOGY

The proposed approach relies on three main steps, as reported
in Figure 1. STEP 1 consists in the construction of a numerical
model able to reproduce the tsunami heights generated by a given
seismic area and impacting a target area. In STEP 2, the numerical
model simulates a regular set of physical tsunamigenic scenarios
(so called design data-base) that are used for the construction and
the validation of an emulator (the meta-model) able to reproduce
the original model results in the target zone. In STEP 3, the
validated meta-models may be used for DTHA assessment and/or
qualification of other THA results. The UQ performed using
meta-models instead of the original model permits to assess the
uncertainty related to a given tsunami scenario (see section “In
the case of expert opinion: uncertainty quantification in DTHA”)
and to explore intensively the tsunamigenic area with nearly
zero computational time (see section “Without expert opinion:
exploration of a large tsunamigenic area”).

Step 1: Tsunami Simulations
The first step consists in the construction of a tsunami numerical
model of the area to explore. In this study, the tsunami numerical
simulations were performed by using the tsunami code reported
in Allgeyer et al. (2013) (or CEA-code), which exploits two
models, one for tsunami initialization and the other one for
tsunami propagation. The initial seabed deformation caused by
an earthquake is generated with the Okada model (Okada, 1985)
and is transmitted instantaneously to the surface of the water.

FIGURE 1 | Global methodology proposed in this study.

This analytical model uses simplistic planar fault parameters with
uniform slip, satisfying the expression of the seismic moment Mo:

M0 = µ · D · L ·W (1)

where µ denotes the shear modulus, D [m] the average slip along
the rupture of length L [m] and width W [m]. Then, the seismic
moment magnitude “Mw” is directly computed through equation
2 (Hanks and Kanamori, 1979), as follow:

Mw =
2
3
· log10(M0)− 6, 07 (2)

The following parameters are also required for tsunami initiation:
longitude, latitude, and depth [km] of the center of the source,
strike [degrees], dip [degrees], and rake [degrees]. A conceptual
scheme of the input parameters for the tsunami-code and
the numerical domain used in this study are reported in
Figure 2. Then, the computation of the tsunami propagation
is based on hydrodynamic equations, under the non-linear
shallow water approximation (the Boussinesq equations as
reported in Allgeyer et al., 2013). Shallow water equations
are discretized using a finite-differences method in space and
time (FDTD). Pressure and velocity fields are evaluated on
uniform separate grids according to Arakawa’s C-grid (Arakawa,
1972). Partial derivatives are approximated using upwind finite-
differences (Mader, 2004). Time integration is performed using
the iterated Crank-Nicholson scheme. No viscosity terms are
taken into account in our simulations. The only parameters of
this model are the bathymetry (space step and depth resolution)
and the time step.

Step 2: Meta-Model Design and
Validation
Meta-Models Design
A variety of metamodels have been applied in the water resources
literature (Santana-Quintero et al., 2010; Razavi et al., 2012b).
Moreover, some examples of applications have already been
published in the context of flood management (e.g., Yazdi and
Salehi Neyshabouri, 2014; Löwe et al., 2018) and in the field
of tsunamis (e.g., Sarri et al., 2012; Sraj et al., 2014; Rohmer
et al., 2018). The classical steps for meta-models construction
and validation are reported in various studies (i.e., Saltelli,
2002; Saltelli et al., 2008; Faivre et al., 2013), and are shortly
summarized in Table 1.

For the study presented here, we rely on conditional Gaussian
processes (also known as kriging (Roustant et al., 2012), derived
from Danie Krige’s pioneering work in mining (Krige, 1951),
later formalized within the geostatistical framework by Matheron
(1963). Kriging meta-model has already shown good predictive
capacities in many practical applications (see Marrel et al.,
2008, for example), it became a standard meta-modeling method
in operational research (Santner et al., 2003; Kleijnen, 2005)
and it has performed robustly in previous water resource
applications (Razavi et al., 2012b; Villa-Vialaneix et al., 2012;
Löwe et al., 2018).

A general kriging model “M(x)” (which later provides an
estimation of the maximum tsunami height in a given location)
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FIGURE 2 | (A) Numerical domain used for the deterministic simulations
performed in this study and (B) geometrical input parameters of the
tsunami-code employed in the study. d [km] is the depth of the seismic source
which is assumed to be at the middle of the fault, hL [km] is the half fault
length, W [km] is the half fault width, x-y-z are three-dimensional axes.

can be defined for x = (x1, ..., xd) ∈ D ∈ Rd as the following
Gaussian process “N(.)”:

M(x) = N(m(x), s2 (x))

Where, for simple kriging:

- m(x) = C(x)TC(X)−1Y is the conditional mean;

TABLE 1 | Steps for meta-models construction, validation and evaluation of the
uncertainty.

Step for
meta-models design

Description

Initial design database Monte-Carlo sampling in the distribution of the
model input parameters.

Construction Estimation of meta-model parameters according to
equations reported in section “Meta-models
design” using training set data base

Accuracy/Optimization k-fold cross validation (Breiman and Spector, 1992;
Kohavi, 1995; Hastie et al., 2009).

Meta-model uncertainty RMSE and R2 issued from the
Accuracy/Optimization step.

- s2(x) = c(x)− C(x)TC(X)−1C(x) is the conditional
variance;

- C : (u, v) ∈ D2
→ C(u, v) ∈ R is the covariance Kernel;

- c(x) is the vector of covariance between the kriging
predictions and the original model evaluations.

It must be noted that {X,Y} are the coordinates of the design
simulations used for kriging parameters evaluation:

- X is a matrix containing for each design simulation (for a
total of N simulations) the value of the seismic source model
parameters defined in section “Step 1: tsunami simulations”
(for a total of 9 inputs parameters):

X =


x1,1 . . . x1,9
. . .

. . .

. . .

xN,9 . . . xN,9


- Y is a vector containing, for each gauge, the maximum water

depth associated to a simulation:

Y =

hmax, 1
...

hmax,N


More than a commonplace deterministic interpolation method
(like splines of any order) this model is much more informative
owing to its predicted expectation and uncertainty. The fitting
procedure of this model includes the choice of a covariance model
[here a tensor product of the “Matern52” function (Roustant
et al., 2012)], and then the covariance parameters (e.g., range
of covariance for each input variable, variance of the random
process, nugget effect), could be estimated using Maximum
Likelihood Estimation (standard choice we made) or Leave-One-
Out minimization [known to mitigate the arbitrary covariance
function choice (see Bachoc, 2013)].

It must be noted that the kriging interpolation technique
requires computing and inverting the n × n covariance matrix
C(X, X) between the observed values Y(X), which leads to
a O(n2) complexity in space and O(n3) in time (Rullière
et al., 2018). In practice, this computational burden makes
Gaussian process regression difficult to use when the number
of observation points is in the range [103,104] or greater, as
in this study. As a consequence, we used in this article the
procedure for estimating the parameters of kriging reported
in Rullière et al. (2018), by using an adapted R-tool available
on line2. The full details of this methodology are reported in
the abovementioned paper. This approach is proven to have
better theoretical properties than other aggregation methods
that can be found in the literature, and permitted us to
drastically reduce the computational time necessary for meta-
models construction and validation.

2https://github.com/drulliere/nestedKriging
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Meta-Models Validation
A general method for meta-models validation is the K-fold cross-
validation method (Friedman et al., 2001). The principle of cross-
validation is to split the data into K folds of approximately equal
size A1A1,. . .,AKAK . For k = 1 to K, a model Ŷ(−k) is fitted from
the data Uj6=kAk (all the data except the Ak fold) and this model
is validated on the fold Ak. Given a criterion of quality L as the
Mean Square Error:

L = MSE =
1
n

n∑
i=1

(ŷi − yi)
2 (3)

the quantity used for the “evaluation” of the model is computed
as follow:

Lk =
1

n/K

∑
i∈AK

L(yiY(−k)(xi)), (4)

where ŷi and yi are, respectively, the meta-model and the
model response and n is the number of simulations in the
kth sample. When K is equal to the number of simulations
of the training set, the cross-validation method corresponds to
the leave-one-out technique not performed in this study. The
methodology employed is described in the DiceEval R-package
reference-manual (Dupuy et al., 2015). In our application case,
we considered K = 10.

In this study, the accuracy of the meta-model is evaluated
through several statistical metrics permitting to quantify the
overall quality of regression models. This includes:

- R-squared (R2), representing the squared correlation
between the observed outcome values and the values
predicted by the model. The higher the adjusted R2 is, the
better the model is;

- Root Mean Squared Error (RMSE), which measures the
average prediction error made by the model in predicting
the outcome for an observation. It corresponds to the
average difference between the observed known outcomes
and the values predicted by the model. The lower the RMSE
is, the better the model is.

Step 3: Uncertainty Quantification and
Global Sensitivity Analysis
Considering the variety and the complexity of the geophysical
mechanisms involved in tsunami generation, tsunami hazard
assessment is generally associated with strong uncertainties
(aleatory and epistemic). In PTHA, uncertainties are classically
integrated in a rigorous way (Sørensen et al., 2012; Horspool
et al., 2014; Selva et al., 2016) and quantified using the logic-
tree approach (Horspool et al., 2014) and/or random simulations
performed using the Monte-Carlo sampling of probability
density functions of geological parameters (Sørensen et al., 2012;
Horspool et al., 2014). An alternative and interesting approach
was recently proposed by Selva et al. (2016), consisting in the use
of an event tree approach and ensemble modeling (Marzocchi
et al., 2015). Moreover, a new procedure was recently proposed
by Molinari et al. (2016) for the quantification of uncertainties
related to the construction of a tsunami data-base based on the
quantification of elementary effects.

In this work we propose a classical methodology that could
also be adapted to analyze tsunamigenic regions with poor
(or no) information on crustal characteristics and based on
the classical uncertainty study steps (Saltelli et al., 2004, 2008;
Faivre et al., 2013; Iooss and Lemaître, 2015). This methodology,
which was already tested in other hydraulic context in recent
years (Nguyen et al., 2015; Abily et al., 2016), relies on
Monte Carlo simulations for UQ steps and on GSA (Global
Sensitivity Analysis) approaches for the analysis of the AGPB
tsunamigenic potential, by computing Sobol indices (Sobol,
1993, 2001). These methods rely on sampling based strategies
for uncertainty propagation, willing to fully map the space of
possible model predictions from the various model uncertain
input parameters and then, allowing to rank the significance
of the input parameter uncertainty contribution to the model
output variability (Baroni and Tarantola, 2014). The objectives
with this approach are mostly to identify the parameter or
set of parameters which significantly impact model outputs
(Iooss et al., 2008; Volkova et al., 2008). GSA approaches are
robust, have a wide range of applicability, and provide accurate
sensitivity information for most models (Adetula and Bokov,
2012). Moreover, even if they are theoretically defined for linear
mathematical systems, it was demonstrated that they are well
suited to be applied with models having non-linear behavior and
when interactions among parameters occur (Saint-Geours, 2012),
as in the present study. For these reasons, these indices were
already adopted for the analysis of bi-dimensional hydrodynamic
simulations in urban areas (Abily et al., 2016) or of complex
coastal models including interactions between waves, current and
vegetation (Kalra et al., 2018) and they seem well suited for
the present work.

For the computation of Sobol’ indices, a large variety
of methodologies are available, as the so-called “extended-
FAST” method (Saltelli et al., 1999), already used in previous
studies by IRSN (Nguyen et al., 2015). In this study, we used
the methodology proposed by Jansen et al. (1994) already
implemented in the open source sensitivity-package R (Pujol
et al., 2017). This method estimates first order and total Sobol’
indices for all the factors “v” at higher total cost of “v × (p + 2)”
simulations (Faivre et al., 2013).

APPLICATION OF THE METHODOLOGY
TO THE FRENCH COAST

The French Atlantic coast is subjected to two main seismogenic
sources that could generate tsunamis, one in the lesser Indies,
and a second one from the AGPB. In this application we
only consider the AGPB and we only compute water heights
offshore for four locations (Figure 3), ignoring the necessary
refinements for propagation to the coast. Because in this
study case the sources are far from the considered gauges,
we propose a very simplified approach to characterize the
source region. In the following we first present how the
meta-model was constructed and validated through a series
of statistical tests in comparison with published data from
Allgeyer et al. (2013).
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FIGURE 3 | Bathymetry covering the computational domain. Red cross hatching area shows location of tsunamigenic sources used for meta-models construction.
The points represent the gauge locations selected for tsunami database construction along the French Atlantic Coast. Gorringe fault and Horseshoe fault are special
structures at the boundary between the Eastern domain (on the right) and the Western domain (on the left).

Numerical Tool and Design Data-Base
All the simulations were performed on the same bathymetric grid
with a space resolution of 2’ (∼3.6 km). The numerical model was
not directly validated by the comparison with similar simulations
from literature. In fact, considering the rough bathymetrical grid
resolution, the developed numerical model is not adapted to the
estimation of the tsunamis run-up and the inundation areas and it
can’t be used for a real assessment of the tsunami hazard along the
French Atlantic Coast. However, this work being methodological,
we consider that the numerical results are consistent with the
objectives of the study. Moreover, the tsunami-code was largely
validated through extensive benchmarks in the framework of the
TANDEM research project (Violeau et al., 2016) by ensuring its
ability to reproduce tsunamis generation and propagation. As
a consequence, the order of magnitude of the tsunami heights
computed in this study should be realistic and adapted to the test
of the methodology.

In order to perform the numerical simulations needed
for the meta-model construction and validation (see section
“Step 2: meta-model design and validation”), the CEA-code

was coupled with the IRSN Promethee bench. Promethee
is an environment for parametric computation that allows
carrying out UQ studies, when coupled (or warped) to a code.
This software is freely distributed by IRSN3 and allows the
parameterization with any numerical code and is optimized
for intensive computing. Promethee was first linked to the
numerical code by means of a set of software links (similar to
bash scripts). In this way, numerical simulations were directly
lunched by the IRSN environment. Then, the statistical analysis,
such as the Monte-Carlo simulations used for the meta-model
construction (see section “Meta-models design”) and UQ (see
section “Analysis of the Impact of Tsunamis on a Target Area
through UQ”) or the Sobol indices computation (see section
“Global Analysis of Seismic Source Influence on the Target Area”)
were also driven by Promethee, which integrates R statistical
computing environment by permitting this kind of analysis
(R Core Team, 2016).

In this methodological work, we considered a widened AGPB
tsunamigenic area and we chose to explore as largely as possible

3http://promethee.irsn.org/doku.php
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TABLE 2 | Summary of the variation range of the seismic source input parameters for the design, the western, the eastern database and for the tsunami scenarios
associated to the Gorringe bank and the Horseshoe bank (hypothesis from Duarte et al., 2013; Grevemeyer et al., 2017).

Seismic source parameter* Design database Western database Eastern database Gorringe bank Horseshoe bank Global database**

Strike [degrees] 0 – 360 0 – 360 0 – 360 40 – 70 40 – 70 0 – 360

Length [km] 40 – 600 40 – 227 40 – 600 180 – 200 160 – 200 40 – 400

Dip [degrees] 1 – 90 60 – 90 10 – 90 10 – 40 10 – 40 10 – 90

Rake [degrees] −180 : +180 −180 : 0 0 : +180 70 : 110 70 : 110 −180 : +180

Width [km] 10 – 310 10 – 23 10 – 310 16 – 224 16 – 228 20 – 200

Slip [m] 1 – 25 1 – 25 1 – 25 5 – 25 5 – 25 1 – 25

Longitude [degrees] −18 : −7 −18 : −10 −10 : −7 −12 : −11 −10.5 : −9.5 −18 : −7

Latitude [degrees] 34 – 40 34 – 40 34 – 40 36.5 – 37.5 35.8 – 36.5 34 – 40

Depth*** [km] 2 – 60 5 – 10 5 – 30 10 – 40 10 – 40 5 – 30

Sismogenic depth [km] 4 – 120 10 – 20 10 – 60 20 – 80 20 – 80 10 – 60

Magnitude range Mw [-] 6.7 – 9.3 6.7 – 8.3 6.8 – 9.3 7.7 – 8.9 7.7 – 8.9 6.7 – 9.3

*Seismic source parameters are assumed uniformly distributed and are randomly sampled for the construction of the Global database. **The global database is composed
of the scenarios simulated with the meta-models (more than 50,000 tsunamis scenarios) for the construction of the western and the eastern database. ***Note that depth
is considered to be the depth of the seismic source which is assumed to be in the middle of the fault (see Figure 2).

the potential tsunami height along the French Atlantic Coast
generated by earthquakes from 34◦ to 40◦N and from 18 to 7◦W,
encompassing to the East the southern part of Portugal down to
Morocco, and reaching the oceanic sea-floor west of the Madeira-
Tore rise (as reported in Figure 3). Because the design database
is a learning base for meta-modeling, the range of variation of
the input parameters (column “Design database” in Table 2)
need to be large in order to cover a wide range of earthquake
scenarios. Thus, if correctly estimated, meta-models will be able
to reproduce the model behavior for a large range of variations of
the seismic inputs parameters, including physical scenarios from
geological studies of the zone.

In order to build the design database, fault parameters as
defined in section “Step 1: tsunami simulations” and Table 2
were sampled randomly and independently with the Monte-
Carlo method and supposing uniform distributions. The uniform
distribution was chosen in order to build meta-models able to
reproduce tsunami heights generated by various tsunamigenic
sources with the same accuracy. The resulting earthquake
magnitudes are computed using the sampled parameters with
equation 2. The shear modulus chosen for the magnitude
estimation is a constant value assumed to be equal to 30
GPA. This design database is a matrix which associates to a
given combination of fault parameters estimates the maximum
simulated water height at each point of the numerical grid and
also at four selected locations along the French Atlantic Coast
called gauges (Table 3 and Figure 3), namely, from North to
South, “Saint-Malo,” “Brest,” “La Rochelle” and “Gastes.” The

TABLE 3 | Location and water depth of the French Gauges chosen for
meta-model construction.

Gauge Longitude [degrees] Latitude [degrees] Depth [m]

Saint-Malo −2.08 48.7 8

Brest −4.65 48.26 28

La Rochelle −1.65 45.93 40

Gastes −1.27 44.35s 15

maximum tsunami water height is the relevant parameter when
estimating tsunami hazard.

Meta-Models Construction and
Validation
Meta-models were constructed using the NestedKriging
procedure described in Rullière et al. (2018), as reported in
section “Step 2: meta-model design and validation.” The design
database contains 5839 scenarios used for the meta-model
construction and validation. The water height characteristics
associated to these scenarios are reported in Table 4. Each meta-
model is a function able to compute the maximum tsunami water
height at the gauge location for a given set of seismic source
parameters (strike, length, dip, rake, width, slip, longitude,
latitude and depth). Obviously, the input parameters should
be included in the parameter range used for the meta-model
construction and reported in Table 2.

For meta-model validation, the design data-base is split into
K folds (K = 10 in this study, for a total of 584 simulations)
of approximately equal size and a model is fitted from the data
and validated on the fold Ak. K-fold cross validation is used for
two main purposes: (i) to tune hyper parameters of the meta-
model and (ii) to better evaluate the prediction accuracy of the
meta-model. In both of these cases, the choice of k should permit
to ensure that the training and testing sets are drawn from the
same distribution. Especially, both sets should contain sufficient
variation such that the underlining distribution is represented.

TABLE 4 | Maximum water height associated with the design database; µ, σ and
Max correspond to the mean, standard-deviation and maximum modeled values.

Saint Malo Brest La Rochelle Gastes

Min [m] 0.00 0.00 0.00 0.00

µ [m] 0.21 0.47 0.37 0.30

µ + σ [m] 0.39 0.93 0.71 0.60

µ + 2σ [m] 0.57 1.38 1.05 0.90

Max [m] 1.60 5.66 3.12 3.07
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TABLE 5 | Summary of meta-model evaluations using cross-validation technique
(mean values).

Gauges L_RMSE [−] L_R2 [%]

Saint-Malo 0.0142 88.66%

Brest 0.0093 87.33%

La Rochelle 0.0262 81.55%

Gastes 0.10 76.33%

The statistical parameters for cross validation are defined in section “Meta-models
validation.”

FIGURE 4 | Cross validation results for the four constructed meta-models.

From a practical point of view, the value of K is typically chosen as
a good compromise between the computational times needed for
the analysis and its reliability (Hastie et al., 2009). Indeed, there is
not, to our knowledge, a well-established methodology allowing
identifying the optimum number of folds necessary for cross-
validation. In this methodological work, we considered K = 10
as a robust value with regards to the objectives of the study.

Results in terms of the criteria of quality L are reported
in Table 5 and Figure 4. It appears that the mean computed
values from cross validation are satisfying when considering the
large range of parameters variations of the design data-base and
the methodological purpose of the study. Indeed, except for
the “Gastes” gauge, the mean R2 is higher than 80%, which is
satisfying according to Marrel et al. (2009) and Storlie et al.
(2009), and the mean RMSE of few centimeters, indicating
that the kriging meta-model is a good emulator choice for
reproducing the CEA-tsunami code behavior.

However, it must be underlined that, out of four gauges,
results obtained for “Gastes” gauge are not satisfying, at least in
terms of statistical performance. In fact, the large variation of
the RMSE parameter (from 0.03 to 0.25 m) and the low values
of R2 (varying from 0.6 to 0.9) reported in Figure 4 suggest
that further numerical runs should be necessary to improve the
accuracy of kriging.

It must be noted that the methodology used for the meta-
model validation is a “state of the art” methodology permitting
to focus on the ability of the meta-model to reproduce the
mean model response and to estimate the model variability
(represented by the variance). Even if this is common in
literature, for hazard studies it would also be of interest to focus
in the future on other criteria that account for the behavior in the
tails of the distributions of the simulated values (extreme values).

Validation With Results From Allgeyer
et al. (2013)
We perform an additional test in order to evaluate the ability of
our meta-models to reproduce state of the art tsunami scenarios
generated by the AGPB and impacting the French coast. With this
aim, we compare our meta-models results with tsunami height
simulated at the same location by Allgeyer et al. (2013). This
comparison is of interest in order to confirm the ability of the
constructed meta-models to reproduce the order of magnitude of
the modeled tsunami height at a given location.

In this study, the authors analyzed the impact of a Lisbon-
like tsunami on the French Atlantic Coast through numerical
modeling. The authors focused on the simulated maximum
tsunami water height in the North Atlantic associated to three
different sources for the 1755 events derived from Johnston
(1996), Baptista et al. (2003), and Gutscher et al. (2006), for a
total of five tsunami scenarios (see Table 6). The same scenarios
were simulated with the constructed meta-models for the four
French Atlantic Gauges and with the CEA-tsunami model with a
more refined grid, spacing of 1’. Even if meta-models prediction
slightly overestimate the modeled tsunami height (see Figure 5
and Table 7), these results indicate a good agreement between
the meta-modeled and the modeled water height, for the “Saint
Malo,” “Brest” and “La Rochelle” gauges. On the contrary,
these results confirm that further numerical runs should be
necessary to improve the accuracy of kriging for “Gastes” gauge,
which largely overestimate the tsunami heights of the original
model (Figure 5).

Considering the methodological purpose of the study, these
results are satisfying. However, for a practical application, a more
extended set of physical scenarios should be of interest for the
validation of the tsunami height predicted by meta-models.

POTENTIAL APPLICATION OF
META-MODELS FOR TSUNAMI HAZARD
ANALYSIS

The objective of this section is to present how meta-models can
be employed for (i) the integration of uncertainties of “known”
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TABLE 6 | Seismic sources simulated in Allgeyer et al. (2013) for the 1755 Lisbon-tsunami.

Hypothesis reported in Allgeyer et al. (2013)

Source Strike [◦] Length [km] Dip [◦] Rake [◦] Width [km] Slip [m] Lon [◦] Lat [◦] Depth [km]

Johnston, 1996 60 200 40 90 80 13.1 11.45 36.95 27

Baptista et al., 2003 250 155 45 90 55 20 −8.7 36.1 20.5

Gutscher et al., 2006 21.7 96 24 90 55 20 −10 36.8 20.5

346 180 5 90 197 20 −7.5 35.5 15.1

346 180 30 90 12 20 −8.6 35.3 3.2

FIGURE 5 | Comparison between the meta-modeled ant the modeled tsunami height issued by the tsunami scenarios reported in Allgeyer et al. (2013). The black
line indicates the perfect match (y = y–).

TABLE 7 | Maximum tsunamis height simulated in Allgeyer et al. (2013) for the 1755 Lisbon-tsunami and computed with meta-models.

Numerical simulations from Allgeyer et al. (2013) Results from meta-models constructed in this study

Source Saint Malo [m] Brest [m] La Rochelle [m] Gastes [m] Saint Malo [m] Brest [m] La Rochelle [m] Gastes [m]

Johnston, 1996 0.22 0.54 0.34 0.08 0.28 0.61 0.41 0.3

Baptista et al., 2003 0.06 0.24 0.12 0.02 0.1 0.28 0.2 0.18

Gutscher et al., 2006 0.14 0.35 0.16 0.03 0.18 0.34 0.18 0.18

0.12 0.41 0.2 0.05 0.15 0.45 0.2 0.3

0.02 0.1 0.07 0.01 0.05 0.13 0.1 0.1
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tsunami scenarios (see section “In the case of expert opinion:
uncertainty quantification in DTHA”) and (ii) the analysis of
the tsunamigenic potential of a poorly known tsunamigenic area
(see section “Without expert opinion: exploration of a large
tsunamigenic area”). Finally, the obtained results are discussed in
light of the tsunami hazard issued by a probabilistic analysis (see
section “Qualifying these approaches with respect to Probabilistic
Tsunami Hazard Assessment”).

We recall here that this is not an operational tsunami
hazard assessment and that all the presented results are
purely methodological.

In the Case of Expert Opinion:
Uncertainty Quantification in DTHA
DTHA is classically assessed by means of considering particular
source scenarios (usually maximum credible scenario) and the
associated maximum tsunami height is generally retained as
hazard level (MCS). A more sophisticated method was recently
proposed by Roshan et al. (2016). The authors tested around
300 tsunamis scenarios in a [8 – 9.5] magnitude range associated
with various faults potentially impacting the Indian coast. Finally,
the authors suggested that an appropriate water level for hazard
assessment (e.g., mean value or mean plus sigma value) should be
retained. They proposed the mean value of the simulated water
heights, as test, by considering that this value may need to be
revisited in the future.

In the case of the tsunamis hazard associated with the AGPB,
the 1755 Lisbon tsunami is the classical reference scenario. In
order to illustrate how to integrate the evaluation of uncertainties
in a MCS approach, we focus on two specific and nearly
deterministic scenarios considered as likely sources generating
the Lisbon 1755 tsunami, namely the Gorringe and Horseshoe
structures (Buforn et al., 1988; Stich et al., 2007; Cunha et al.,
2012; Duarte et al., 2013; Grevemeyer et al., 2017). Both structures
were modeled taking into account available maps (Cunha et al.,
2012; Duarte et al., 2013) and fault parameters (Stich et al.,
2007; Grevemeyer et al., 2017) summarized in Table 2. For
the computation of the tsunami heights associated with these
scenarios, fault parameters are considered uniformly distributed
and are randomly sampled in their range of variation (Table 2),
for a total of nearly 10,000 tsunami scenarios. The magnitude
range associated with the sources of these tsunami scenarios
varies from 7.7 to 8.9, which is coherent with the range of
estimated magnitudes for the 1755 earthquake (Johnston, 1996;
Gutscher et al., 2006). The convergence of statistics (defined as
the evolution of the mean modeled tsunami height and of the
mobile standard deviation) is largely achieved, indicating that
the number of tsunami scenarios is sufficient to represent the
expected variability of tsunamis height.

The distribution of tsunami heights resulting from the two
Gorringe and Horseshoe sources are reported in Figure 6 for
each gauge and a summary of the numerical values in Table 8.
It can be observed that the tsunami heights generated by the
Horseshoe sources are globally lower than those generated by
the Gorringe sources. At first glance, this result does not seem
surprising considering the closer proximity of the French gauges

to the Gorringe bank. It can also be observed that both scenarios
are affected by strong uncertainties. Indeed, the ratio between the
maximum and the mean tsunami height is very large and it can
vary from 2 to 5, according to the chosen gauges. Moreover, the
variability of the modeled values around the mean value can be
higher than 1.0 m for the Gorringe scenarios and it is always
higher than 0.24 m (for Saint Malo gauge).

If we assume that the MCS approach is to take into account
the worst possible scenarios, a hazard level corresponding to
the maximum modeled water height could be retained for each
gauge. However, if we consider the excursion of our numerical
results this hazard level could be too high. This is probably why,
as previously mentioned, other authors proposed to set a mean
level as representative of the tsunami hazard (Roshan et al., 2016).
In general, a first methodological conclusion is that the impact of
the uncertainty on the source parameters on water height can be
high and it should be taken into account by decision makers.

Without Expert Opinion: Exploration of a
Large Tsunamigenic Area
Let’s now assume, for a methodological purpose, that AGPB is
a poorly known seismic area and that the objective of the study
are to (i) evaluate the “possible” impact of tsunamis generated by
this area on a target location (in this example, the French gauges)
and (ii) to better understand the relative influence of the source
parameters on these tsunamis. This latter analysis should permit
to better guide the geological investigations in the area.

With this objective, UQ and GSA appear as two
useful and complementary tools, respectively to answer to
objectives (i) and (ii).

Analysis of the Impact of Tsunamis on a Target Area
Through UQ
We propose to evaluate the tsunami hazard level, called here
MCS_h, by exploring meta-models results based on a very wide
range of tsunamigenic scenarios, beyond those proposed so far
in the literature as we suppose that this tsunamigenic area is
not well known. As a consequence, we accept that through this
approach we explore the effects of both likely and very unlikely
scenarios relative to the MCS (the “MCS_h” scenarios) that could
potentially arise in a context of poor seismotectonic knowledge.
As in the previous case, depending on the specific hazard target
(civil or industrial facilities), and its location with respect to
the source zone, the end-user of this methodology needs to
decide which level of water height to choose from the obtained
distribution. In this exercise, we will consider the maximum
simulated water height for MCS_h.

We build a database (called global database) of tsunami
scenario generated by the considered AGPB area at four French
Atlantic Gauges, with the aim to cover a wider range of
tsunamigenic scenarios (Table 2). For the purpose of this
methodological paper, the modeled area, which encompasses
different seismotectonic domains, was split in a very simplistic
way into two main seismic source zones (Figure 3): a western
domain where normal to transtensive earthquakes occur within
a thin crust and an eastern domain where reverse to transpressive
earthquakes mainly occur on a thicker crust. We considered the

Frontiers in Earth Science | www.frontiersin.org 10 March 2020 | Volume 8 | Article 41122

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00041 February 29, 2020 Time: 17:20 # 11

Bacchi et al. Tsunami Hazard Analysis Through Uncertainty Quantification

FIGURE 6 | Tsunami height frequency distribution associated to the global data base (gray-blue), the Gorringe bank (blue) and the Horseshoe bank (green). The
black and red lines correspond, respectively, to the mean tsunami height associated to a return period of 1 000 and 10 000 years issued by TSUMAPS-NEAM
research project. Dotted lines represent the 2th and 98th percentile of the hazard curves.
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TABLE 8 | Maximum tsunami height distributions associated with the global database (GD), HorseShoe (HS), and Gorringe (GR) scenarios; µm, σm and Maxm

correspond to the mean, standard-deviation and maximum meta-modeled values.

Saint Malo Brest La Rochelle Gastes

Scenarios GD HS GR GD HS GR GD HS GR GD HS GR

Minm [m] 0.00 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

µm [m] 0.09 0.18 0.25 0.18 0.31 0.53 0.19 0.26 0.32 0.13 0.18 0.29

µm + σm [m] 0.17 0.24 0.35 0.34 0.49 0.85 0.36 0.43 0.53 0.27 0.33 0.5

µm + 2σm [m] 0.24 0.3 0.46 0.51 0.66 1.17 0.54 0.63 0.74 0.41 0.47 0.7

Maxm [m] 0.77 0.42 0.66 2.01 0.96 1.60 1.81 1.05 1.04 1.92 0.87 1.06

Western domain west of the 10◦W meridian and the Eastern
domain east of this meridian, coinciding roughly with the base of
the continental slope facing the Portuguese coastline. The main
fault characteristics considered to build the tsunami data-base
in both eastern and western domains are reported in Table 2,
following data contained in Buforn et al. (1988), Molinari and
Morelli (2011), Cunha et al. (2012).

The considered seismogenic thickness takes into account the
depth of the observed seismicity as well as the fact that part
of the upper mantle can potentially be mobilized during major
earthquakes: the western domain seismogenic crust is considered
to be up to 20 km deep (after Baptista et al., 2017), and up
to 60 km for the eastern domain (after Silva et al., 2017). The
fault parameters are considered uniformly distributed and are
randomly sampled in their range of variation. We finally filtered
the resulting database according to an aspect-ratio criterion,
allowing the ratio between the length and the width of the
faults not to exceed the value of 10, which corresponds to
an upper bound of what is observed in nature (Mc Calpin,
2009). The final global database contains nearly 50,000 tsunami
scenarios, resulting in earthquake magnitudes varying from
6.7 to 9.3 (Table 2), depending on the explored earthquake
source characteristics and calculated from Eq 1. This range
of magnitudes is consistent with the magnitude range of the
design database.

The tsunami water heights distributions associated to the four
gauges are reported in Table 8 and Figure 6. As for the previous
paragraph, these results show a very large variability in tsunamis
height, which is not surprising considering the large range of
variation of the source parameters. However, if we compare these
results with those obtained in the previous section, we can also
observe that Gorringe and Horseshoe banks are among the major
contributors to tsunami hazard along the French Atlantic Coast,
generated by seismic sources in the AGPB. Indeed, Figure 6
clearly shows that even if some isolated tsunami scenarios can
generate a hazard level higher than the Gorringe Scenarios,
globally, these sources are representative of the higher tsunamis
from the global data-base.

Global Analysis of Seismic Source Influence on the
Target Area
A sensitivity analysis is hereafter performed in order to
decipher the relative influence of the seismic source parameters.
Homma and Saltelli (1996) introduced the total sensitivity index
which measures the influence of a variable jointly with all its

interactions. If the total sensitivity index of a variable is zero,
this variable can be removed because neither the variable nor
its interactions at any order have an influence on the results.
This statistical index (called Sobol index “ST” in this paper) is
here of particular interest in order to highlight the earthquake
source parameters that mostly control the tsunamis height at each
tested gauge. In Figure 7, we reported the total Sobol index for
the four meta-models of the French Atlantic Gauges computed
with the methodology proposed by Jansen et al. (1994) using the
sensitivity-package R (Pujol et al., 2017). The accuracy of Sobol
indices performed with Jansen’s method depends on the number
of model evaluations. For instance, in this study, we performed
nearly 20 000 simulations using meta-models. Results show that
the slip parameter is globally the most-influencing parameter
for all the French Atlantic Gauges meta-models. Concretely,
nearly 50% of the variance of the tsunami water height (the
uncertainty) could be reduced by a better knowledge of this
parameter. This result is quite obvious considering that the fault-
slip directly conditions the ocean floor deformation and hence
the tsunami amplitude.

However, this analysis also suggests that the most influencing
parameters for the four gauges are slightly different, depending
on their location. One can differentiate results obtained for
the southern gauges (i.e., La Rochelle and Gastes) from those
obtained at northern gauges (i.e., Saint Malo and Brest):

• For the southern gauges, width is the second most
relevant parameter, especially at La Rochelle where it
is almost as important as the slip parameter. Other
important parameters are length and rake, suggesting that
for these gauges, fault source parameters in terms of
magnitudes (depending on width, slip and length according
to equations 1 and 2) and kinematics are the most
important in generating hazard;
• For the northern gauges, apart from slip, strike, width and

rake are also important, but slightly less than the longitude
parameter. This means that the location of the source is here
of major importance. A possible physical reason could be
associated to the lack of the natural barrier composed by
the north of Spain and Portugal which protects southern
gauges from AGPB related tsunamis compared to northern
gauges. As a consequence, the northern gauges should be
more exposed to hazard in comparison to southern gauges,
located in the shadow of Portugal and Spain.
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FIGURE 7 | Total order Sobol Index computed for the French Atlantic Gauges.

Qualifying These Approaches With
Respect to Probabilistic Tsunami Hazard
Assessment
Let’s imagine now that for the target area a reference hazard level
is provided through a probabilistic study and that we aim to
qualify the robustness of this hazard level with regards to possible
tsunamis height issued by expert scenarios (MCS, see section
“In the case of expert opinion: uncertainty quantification in
DTHA”) or by the exploration of poorly known tsunamigenic area
(MCS_h, see section “Without expert opinion: exploration of a
large tsunamigenic area”). The idea is here to compare the results
from a probabilistic analysis with the deterministic approach
proposed in this study, which should permit to completely cover
the uncertainty related to seismic source parameters.

With this aim, we compare our results to the tsunami hazard
level (Figure 6) issued from TSUMAPS-NEAM research project4

in four points located near to the gauges used in this study.
TSUMAPS-NEAM results are provided in terms of Maximum
Inundation Height (MIH), which is the estimated maximum flow
depth from the envelope of the tsunami wave at all times, as
reported in the NEAMTHM18 documentation (Basili et al., 2018,
2019). TSUMAPS-NEAM has developed a long-term PTHA for

4http://www.tsumaps-neam.eu/

earthquake-induced tsunamis for the coastlines of the NEAM
region (NE Atlantic, the Mediterranean, and connected seas).
TSUMAPS-NEAM results largely relied on inputs from the EU
FP7 project ASTARTE, of the GAR15 (global risk quantification
under the HFA), and national PTHAs like those of USA and Italy.
One of the major results of the project is the Interactive Hazard
Curve Tool5 which represents online hazard maps for different
hazard probability/average return periods (mean, median, 2nd,
16th, 84th, and 98th percentiles hazard curves). In TSUMAPS-
NEAM, tsunamis are computed using an approach which relies
on the use of unit sources to reproduce tsunami scenarios
(e.g., Molinari et al., 2016; Baptista et al., 2017). The main
differences with our methodology are that these methods rely
on a decomposition of the tsunami waves form recorded in a
target area with simplified methods (e.g., the Green’s law), and
on the main assumption that the non-linear terms of tsunami
propagation are negligible. The scope of these studies is to
develop a fast emulator, permitting to replace a tsunami model
at some selected locations, along the same philosophy of the
meta-models developed here. As a consequence, according to the
author’s purpose, MIH is suitable for a regional, initial screening
assessment type such as the objective of TSUMAPS-NEAM.
These results must be considered only as input reference study for

5http://ai2lab.org/tsumapsneam/interactive-hazard-curve-tool/
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further site-specific assessment. Considering the methodological
objective of this work, it is of interest to compare our results with
this previous work.

For this exercise, we selected two targets return periods of
1,000 and 10,000 years from the hazard curves of TSUMAPS-
NEAM. To take into account the uncertainty related to these
results, we consider the mean, the 2th and the 98th percentile
hazard curves. These targets, and the associated uncertainty,
are typical of classical risk analysis and permit to compare the
distributions issued by PTHA with our results. For instance,
after the Fukushima accident, a return period of 10,000 years
is considered as the target for hazard assessment in the field of
nuclear safety (WENRA, 2015).

Figure 6 illustrates the comparison of our results (MCS and
MCS_h) with those selected from the TSUMAPS-NEAM project.
One can notice that:

• The tsunami intensity associated to a target mean return
period of 1,000 years does not cover the tsunamis intensities
related to expert scenarios (Gorringe and Horseshoe banks)
or to MCS_h scenarios (all the likely and unlikely scenarios
from AGPB);
• The tsunami intensity associated to a target mean return

period of 10,000 years covers all the tsunami intensities
related to seismic sources from the AGPB, including very
unlikely tsunami scenarios (MCS_h);
• A target hazard level of 10,000 years covers the tsunamis

related to Horseshoe banks;
• A target hazard level of 10,000 years covers the tsunamis

related to Gorringe bank, with the exception of “Brest”
gauge and to some extent that of “Gastes”.

Even if these results are purely methodological, it appears
that a target hazard level of 10,000 years issued from TSUMAP-
NEAM project covers all the variability related to seismic
sources from the AGPB, even by exploring very unlikely tsunami
scenarios (MCS_h) and most of the variability related to Gorringe
and Horseshoe scenarios. However, concerning the “Brest” gauge,
the methodology indicates a high sensitivity of this coastal area to
the characteristics of the Gorringe seismic sources.

DISCUSSION AND CONCLUSION

The research work presented in this paper was performed
in order to test the interest of UQ for the analysis and the
qualification of the DTHA generated by earthquakes. We propose
a new methodology, permitting the assessment of the uncertainty
related to tsunami hazard through the analysis of a wide range
of tsunami scenarios at a given location. This concept should
permit to define a hazard level which goes beyond the definition
of the Maximum Credible Scenario (MCS) classically reported
in the literature (JSCE, 2002; Lynett et al., 2004) and employed
for DTHA and permit to integrate uncertainty in hazard
quantification. Moreover, tsunami hazard evaluated through UQ
can also permit the exploration of tsunamigenic potential of a
poorly known seismic zone, as well as a qualification of PTHA.

From a methodological point of view, meta-models appear as
a very efficient and viable solution to the problem of generating
many computationally expensive tsunamis simulations. As
reported in Behrens and Dias (2015), the statistical emulator
gives perfect predictions at the input points that are used
in its generation process (it interpolates). Statistical emulation
does not accelerate the model itself. The significant advantage
of using the emulator is that it is much less computationally
demanding to be evaluated and, therefore, it can be employed
to carry out fast predictions and inexpensive analyses, such
as sensitivity and uncertainty analyses reported in this study.
Even if it is the first time, to our knowledge, that meta-models
are proposed for THA, they have been already employed for
tsunami modeling (Sarri et al., 2012; Sraj et al., 2014; Rohmer
et al., 2018). As reported in section “Qualifying these approaches
with respect to Probabilistic Tsunami Hazard Assessment,” in
the field of tsunami hazard, an alternative approach relies on
the use of unit sources to reproduce tsunami scenarios (e.g.,
Molinari et al., 2016; Baptista et al., 2017). Results from these
studies are satisfactory for most of the practical applications
such as probabilistic tsunami hazard analysis, tsunami source
inversion and tsunami warning systems. However, we consider
that our methodology can be proposed as an alternative to
these studies as it does not rely on any assumption on tsunami
propagation and can be applied everywhere in the model
domain, without any limitation. For instance, meta-models
could be constructed and validated from detailed simulations
in a given target area, including complex physical phenomena
as overtopping, run-up, and breaking. However, we want to
stress that meta-model construction is time consuming and
needs an appropriate design data-base, which requires a good
compromise between the range of variations of the inputs and
the number of simulations.

Concerning our application at four selected location, with
the exception of “Gastes” gauge, both the statistical tests we
performed and the comparison with result from Allgeyer et al.
(2013) suggest that the meta-models are able to reproduce the
tsunamis generated by the AGPB. Thus, the constructed meta-
models could be employed in a further study to roughly evaluate
the impact of other seismic scenarios from the AGPB and
impacting the French Atlantic Coast offshore. In order to increase
the accuracy of “Gastes” meta-model, the design data-base should
be however enriched.

Results from GSA suggests that beyond earthquake
magnitudes, the position and the orientation of the faults
are influent parameters, at least for the sites considered along the
northern French Atlantic Coast. Indeed, sensitivity analysis can
be a useful tool not only to parametrize the design data-base but
also to orient future geological surveys in a specific area.

In conclusion, MCS_h in the AGPB study region as defined
in our study could be implicitly associated to a mean return
period of 10,000, when considering the strong hypothesis we
did on source characteristics. In this sense, results from UQ
shows that a hazard level of 10,000 years issued from TSUMAP-
NEAM project covers a very wide range of uncertainties related
to characterization of seismic sources from the AGPB, even
by exploring very unlikely tsunami scenarios (MCS_h) and
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most of the uncertainties related to Gorringe and Horseshoe
banks expert opinion scenarios. However, concerning the “Brest”
gauge, even a target hazard level of 10,000 years does not seem
appropriate to cover all the uncertainties related to the Gorringe
source, indicating a high sensitivity of this coastal area to the
characteristics and the kinematics of the Gorringe seismic source.

PERSPECTIVES

For an operational far-field DTHA, it should be necessary,
at first, to improve the actual numerical model in order to
better represent the tsunamis run-up and the inundated areas,
with a more accurate bathymetric grid. For an operational
application to locations closer to the source zones (i.e., Portugal
or Spain, Morocco), it may be challenging to gather the necessary
details for a proper establishment of both models and meta-
models. However this point deserves further attention because
uncertainties will always remain. Thus even in such cases, where
more refined databases need to be established, the proposed
approach should be of interest to at least efficiently explore
in a more exhaustive way the uncertainties (e.g., different
probability distribution of inputs parameters, non-uniform slip
distribution, fault geometries) in the source parameters linked
to the MCS approach. Moreover, it must be noted that for
this methodological study we chose a very simple but widely
used source description (planar faults with homogeneous slip).
However, more robust simulations should take into account
a more complex source representation (e.g., 3D geometry,
heterogeneous slip distribution), as recently suggested by Davies
and Griffin (2019). Indeed, meta-models may also be useful to
account for these parameters, allowing for many simulations.

From a methodological point of view, it could be of interest
to compare our methodology with the alternative approaches
using unit sources to reproduce tsunami scenarios (e.g., Molinari
et al., 2016; Baptista et al., 2017), in terms of simulations needed,
computational time, accuracy, for instance.

Finally, from a numerical point of view, it would be of interest
to (1) introduce recurrence models for each tsunamigenic source
to go toward PTHA calculations, and (2 introduce meta-models

in systems developed for tsunami early warning, considering the
low computational time inherent to this statistical tool.
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Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France

The objective of this study is to investigate the “inversion approach” for flood defense

optimization in an inundated area. This new methodology within this engineering field

consists in defining a “safety criterion” (for instance, “the water level in a given location

must be lower than a given value”) and the combined analysis of all the uncertain

controlled parameters (i.e., flood defense geometry, location, etc.) that ensure the safety

objective for all the possible combinations of uncontrolled parameters (i.e., the flow

hydrograph parameters) representing the natural phenomenon is not exceeded. To

estimate this safety set, a metamodeling approach will be used which significantly

reduces the number of model evaluations required. This algorithm relies on a kriging

surrogate built from a few model evaluations, sequentially enriched with new numerical

model evaluations as long as the remaining uncertainty of the entire safety set remains too

high. Also known as “Stepwise Uncertainty Reduction,” this algorithm is embedded in the

“Funz” engine (https://github.com/Funz) tasked with bridging the numerical model and

any design of experiments algorithm. We applied this algorithm to a real two-dimensional

numerical model of the Garonne river (France), constructed using the open-source

TELEMAC-2D model. We focused our attention mainly on the maximum water depth

in a given area (the “safety criterion”) when considering the influence of a simplified

flood defense during a flooding event. We consider the two safety control parameters

describing the slab and dyke elevations of the flood defense system, to design against

the full operating range of the river in terms of possible watershed flooding. For this

application case, it appears that less than 200 simulations are needed to properly

evaluate the restricted zone of the design parameters (the “safety zone”) where the

safety criterion is always met. This provides highly valuable data for full risk-informed

management of the area requiring protection.

Keywords: kriging surrogate, Bayesian optimization, inversion, level set, uncertainty, hydraulic modeling

1. INTRODUCTION

It is well-known that the world’s major lowland rivers (the Rhine, the Po, the Elbe River, and
the Loire River) are protected against flooding by embankments or other flood defenses (Ciullo
et al., 2019). The embankments and so-called primary flood defenses such as flood walls and dams
(Kind, 2014) are aimed primarily at reducing the likelihood of flooding in the protected area, and
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historically they have been the most commonly-adopted flood
risk reduction measure (Ciullo et al., 2019). The design of these
flood protection measures is therefore of major importance
society-wide, and can have a considerable impact on the
economic and demographic development of the alluvial plains
(White, 1945).

The classical approach for flood defense systems design was
developed in the Netherlands in the wake of the 1953 disaster
(see Vrijling, 2001). Since, reliability-based flood defense design
strategies have been developed all over the world (see Vrijling,
2001; van Gelder and Vrijling, 2004; Ciullo et al., 2019). These
strategies mainly involve the statistical quantification of the
hazard (see Vrijling, 2001; Apel et al., 2004; van Gelder and
Vrijling, 2004; Polanco and Rice, 2014) and the “economic”
optimization of the flood defense systems (see Vrijling, 2001;
van Gelder and Vrijling, 2004; Ciullo et al., 2019). The optimum
design is considered to be the value at which the total cost of
investment (which increases with the height of the flood defense)
and the present value of the risk (which diminishes with the
increasing height) takes its minimum (see Vrijling, 2001; van
Gelder and Vrijling, 2004; Ciullo et al., 2019). Another good
example is the optimization model introduced by van Dantzig
(1956) for the embankment height, which was further developed
by other authors, as reported by Eijgenraam et al. (2016).

These statistical studies are well-suited to the definition of a
global flood protection strategy (at “country” scale), as they are
not supported by intensive numerical modeling. Although the
value of these models is indisputable, the flooding probabilities
of the protected areas are assumed to be independent of one
another, disregarding the change in hydraulic load along the river
stretch as a consequence of the state (e.g., failure, increase in
safety) of the embankments elsewhere (Ciullo et al., 2019).

At a local scale, in practical engineering applications, the
classical method for the design of flooding protections for urban
and industrial facilities relies on the development of sophisticated
and refined numerical model systems able to reproduce surface
flow accurately for a given chosen “design scenario” (such as
the 100-year return period flood event). The quantities of major
interest for the design of a flood defense (wall, urban structures,
drainage network, etc.) are often related to the parameters
describing this design scenario, such as the water height at a given
location, or the water velocity in the inundated area (Milanesi
et al., 2015). Once these quantities are evaluated, the flood defense
is accordingly designed.

Although robust, this “classical approach” can appear too
simplified considering the variability of natural phenomena
and the numerous uncertainties related to natural hazard
modeling. Ideally, flood disaster mitigation strategies should
be based on a comprehensive assessment of the flood risk,
combined with a thorough investigation of the uncertainties
associated with the risk assessment procedure (Apel et al., 2004).
Specifically, numerous studies have demonstrated the influence
of uncertainties on flood hazard assessment (see Apel et al., 2004;
Alho and Mäkinen, 2010; Domeneghetti et al., 2013; Maurizio
et al., 2014; Nguyen et al., 2015; Abily et al., 2016; Bacchi
et al., 2018), sometimes underling the hard-to-estimate damage
caused by flooding (see Apel et al., 2004). These studies are

often based on the use of simplified numerical models which
reduce the computational time (see Apel et al., 2004; Alho and
Mäkinen, 2010; Domeneghetti et al., 2013; Maurizio et al., 2014;
Nguyen et al., 2015), and they are an example of how uncertainty
quantification techniques could be employed for the assessment
of natural hazards. If applied to the design of flood defenses, these
studies can be considered an “improvement” on the classical
approach, since they make it possible to better evaluate the
uncertainties related to the “design” parameters, which in this
case are the target values derived from uncertainty quantification
(i.e., a target water height).

However, both the “classical” and “improved” approach for
flood defense design suffer the same limitations, as they do not
allow the end-user of the methodology to robustly evaluate the
best flood defense configuration (the geometry) for the natural
variability of the simulated phenomenon. Within this context,
the objective of this work is therefore to investigate the “robust
inversion approach,” subsequently referred to as RSUR, for the
design of a flood defense in a two-dimensional inundated area.
This method consists in defining a “safety criterion” (such as
“the water level in the slab must remain lower than 25 cm”)
and the analysis of suitable design parameters (for instance, the
elevation of the flood defenses) that ensure the safety objective
for all the possible combinations of uncertain input parameters
(for instance, the flow hydrograph characteristics) describing the
natural phenomenon to be met.

To estimate this safety set, a standard surrogate approach
will be used (Jones et al., 1998), which significantly reduces the
number of model evaluations needed. This algorithm relies on a
kriging surrogate built from a fewmodel evaluations, sequentially
enriched with new numerical model evaluations as long as the
remaining uncertainty of the entire safety set remains too high
(Chevalier, 2013). This algorithm therefore appears well-suited to
the rigorous study of the uncertainties of very refined numerical
models traditionally used in engineering applications. Belonging
to a more general class of “Stepwise Uncertainty Reduction,” this
algorithm is embedded in the “Prométhée” workbench (using
the “Funz” engine) tasked with bridging the numerical model
and any design of experiments algorithm (further technical
information is provided in an Annex).

In this research work, we first introduce the engineering
problemwewant to solve (section 2). Our proposedmethodology
for model resolution is then presented (section 3) with a focus on
the numerical tools we develop for the methodology’s application
to the chosen real case (section 4). Lastly, the results and main
conclusions and perspectives are reported (section 5). The results
will be introduced as the safety set and will be analyzed in terms
of safety control within the river’s operating range. Once properly
evaluated, this constrained zone provides highly valuable data for
full risk-informed management of the river.

2. PROBLEM SPECIFICATION

The study area is a 50-km-long reach on the Garonne river
between Tonneins and La Réole (Figure 1). The area was settled
to protect flood plains by organizing flooding and flood storage
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FIGURE 1 | Location and span of the modeled study area on the Garonne river including the location of the industrial site (gray surface) and the protection (gray line)

requiring modification to meet the safety criterion.

between 1760 and 1850, when many earthen levees were built to
protect the harvest against spring floods (LPCB, 1983; SMEPAG,
1989). The river was canalized to protect residents from flooding
after the historic 1875 flood event (SMEPAG, 1989).

In this section of the Garonne river, the flood defense
is actually designed for a river flood of nearly 3,500 m3/s.
Specifically, successive storage areas give the Garonne profiles a
particular configuration and allow flooding in the floodplain to be
controlled. Figure 2 shows three flow characteristics on a typical
cross-section of the Garonne to illustrate the flooding sequence:
(1) base flow 1,100 m3/s; (2) bankfull flow 2,400 m3/s; and (3)
flow before overflow of the levees with the lowest protection level
3,500 m3/s. Consequently, flooding of the less protected areas
between Tonneins and La Réole occurs with a low return period,
i.e.,∼10 years, and only a few levees have a standard of protection
higher than 30 years. Due to the flat topography and the presence
of a steep floodplain lateral slope, the floodplains are largely
inundated even for high-probability floods. The December 1981
flood was one of the largest floods occurring since themost severe
flood on record (1875); this flood event was used as a reference for
our study. During this 9-day event, the peak discharge measured
at Tonneins reached 6,040m3/s, corresponding approximately to
a 20-year flood, and the floodplains were fully inundated.

Within this context, it was decided to site an industrial area
spanning nearly 1 km2 in the vicinity of the left bank of the

Garonne river (see gray area in Figure 1). This zone is protected
by a dyke that is nearly 2 km long, 20 m wide and at a constant
elevation of nearly 25.8 m NGF1 (see gray line in Figure 1).
However, the local topography of this zone varies between 18
and 22 m NGF, and the area is fully inundated during a flooding
event characterized by a peak discharge higher than 3,500 m3/s
according to the current design of the dykes (see Figure 2). To
protect the new industrial area against flooding, a decision was
made to investigate the impact of modifying the current crest of
the dyke and the basement of the future industrial area.

More practically, the objective of the study is to identify the
actual dyke elevation and the platform elevation (the slab), to
ensure the industrial area remains operational under all possible
watershed flooding exceeding the defense (occurring at nearly
3,500 m3/s). Specifically, the water height in the vicinity of the
industrial area must not exceed 0.25 m above the slab, which
is the safety criterion of this study. With this aim, we made
the following assumptions for the uncontrolled input parameters
(the flow hydrograph) and the controlled input parameters (crest
of the flood defense, basement of the industrial area), both of
which have a different role in the RSUR algorithm workflow
presented in Table 1 below:

1Nivellement Général de la France (Above Ordnance Datum).
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FIGURE 2 | Typical cross-section of the Garonne between Tonneins and La Réole and the design zone. In gray, the industrial area (slab elevation Za), in orange, the

wall to be designed (elevation Zf ).

TABLE 1 | Qualified parameters of the study: time to peak discharge Tp, peak

discharge rate Qp, dyke elevation Zf , slab elevation Za.

Uncontrolled

parameters

Controlled

parameters

Tp [s] Qp [m3/s] Zf [m NGF] Za [m NGF]

3600.0–86400.0 2600.0–8000.0 20.0–28.0 18.0–25.0

The methodology used and the numerical chain developed for
the study are presented in the next sections.

3. METHODOLOGY FOR ROBUST DESIGN
OF PROTECTIONS

The intrinsic nature of many engineering problems like flooding
protection is a combination of several “canonical” problems (a
word used to express a natural orthogonality), mainly within the
following mathematical classes:

• Optimization (e.g., search for the worst flood conditions).
• Inversion (e.g., set defense to not exceed 25 cm of flooding).
• Randomization (e.g., integrate a probabilistic flooding model

according to a given model like the Gumbel law).

For instance, here we choose to describe the flood protection
problem as a combination of designing protections to avoid
exceeding a given water level (i.e., inversion part) when faced
with the worst rain conditions for a given return period
(i.e., max/optimization part). It should be noted that qualification
of these aspects of the problem is somewhat arbitrary and may
largely depend on the country’s regulation practice and the safety
objective considered.

However, regardless of the choice made, the main nature
of the problem considered (the identification/inversion of a
flood level) is often “tainted” by secondary issues (worst
flooding conditions), and all the parameters belong to one of
these canonical roles. As an example, we could also mention
other common engineering problems like robust optimization
(optimizing some parameters and considering others as random)
or constraint optimization (optimizing some parameters, keeping
others verifying an [in]equality).

This “real-world” engineering practice also brings more
complexity than canonical problems and thus requires dedicated
algorithms in order to be solved efficiently (Chevalier, 2013). In
the following, we will focus on the “robust inversion” problem,
where the objective is to restore the civil engineering safety
set identified for the worst flooding conditions without any
probabilistic assumption.

3.1. Bayesian Metamodeling
The fairly common practice of Bayesian metamodeling is now a
standard for solving any engineering task requiring numerous
CPU-expensive simulations. Indeed, since the seminal paper
describing the Efficient Global Optimization (EGO) algorithm
(Jones et al., 1998; Roustant et al., 2012), many improvements
have been proposed, investigating the algorithms’ efficiency
(Picheny and Ginsbourger, 2013) or different problems to solve
(Chevalier et al., 2014).

The rationale behind this approach consists in replacing most
of the costly numerical simulations with an inexpensive surrogate
function to investigate the properties that are relevant to our
engineering purpose, like possible optimizers, excursion set or
its main parameter effects. This surrogate function is designed
to interpolate a few known “true” simulation points (Figure 3),
taken as conditioning events of an initial uncertain/random
function. Starting with a largely uncertain metamodel (Figure 3),
this iterated process leads to a very precise metamodel around
“true” simulated points, cleverly chosen in relation to our
engineering objective (Figure 3):

A variety of metamodels have been applied in the water
resources literature (Santana-Quintero et al., 2010; Razavi et al.,
2012). Moreover, some examples of applications in the context
of flood management have already been published (e.g., Yazdi
and Salehi Neyshabouri, 2014; Löwe et al., 2018). However,
like the previously mentioned EGO algorithm, for the study
presented here, we will rely on conditional Gaussian processes
(also known as kriging Roustant et al., 2012), derived from
Danie Krige’s pioneering work in mining, later formalized within
the geostatistical framework by Matheron (1973). Our choice is
mainly motivated by this non-parametric metamodeling because
although some properties of the considered response surface
may be assumed (like continuity, derivability, etc.), its precise
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FIGURE 3 | (Left to right, top to bottom) Identification of a safety set on a synthetic case, based on a kriging metamodel iteratively filled/conditioned to reduce set

uncertainty (the dots are detailed simulations performed).

shape cannot be assumed a priori. Thus, kriging became a
standard metamodeling method in operational research (Santner
et al., 2003; Kleijnen, 2015) and has performed robustly in
previous water resource applications (Razavi et al., 2012; Villa-
Vialaneix et al., 2012; Löwe et al., 2018). More practically, it is of
considerable interest when investigating engineering objectives
like max-minima or level sets of such random functions,
inheriting convenient properties of Gaussian processes, and the
method is fast provided the datasets exceed no more than a few
hundred observations. The kriging model (which later provides
an estimation of water height in an industrial area) is then defined
for x ∈ S (x will then represent study variables like the slab and
dyke height or flow hydrograph parameters) as in the following
Gaussian process:

M(x) = N (m(x), s2(x)) (1)

where (for “simple” kriging):

• {X,Y} are the coordinates of the “true” numerical simulations,
taken as conditioning events of the statistical process:

• thus conditional mean ism(x) = C(x)TC(X)−1Y
• thus conditional variance is s2(x) = c(x)− C(x)TC(X)−1C(x)
• C is the covariance kernel C(.) = Cov(X, .), c(.) = Cov(x, .)

More than a commonplace deterministic interpolation method
(like splines of any order), this model is much more informative
owing to its predicted expectation and uncertainty. The fitting
procedure of this model includes the choice of a covariance
model [here a tensor product of the “Matern52” function,
(Roustant et al., 2012)], and then the covariance parameters
(e.g., range of covariance for each input variable, variance of
the random process, nugget effect, etc.), could be estimated
using Maximum Likelihood Estimation (standard choice we
made) or Leave-One-Out minimization [known to mitigate the
arbitrary covariance function choice (see Bachoc, 2013)], or even
sampled within a full Bayesian framework (too far from our
computational constraints at present). Once such a metamodel
is specified, the following criteria will draw on such information
to optimize the algorithm’s iterative sampling policy.

3.2. Design of (Numerical) Experiments
Once the Bayesian metamodeling framework is provided, the
remaining issue is to define the sampling criterion used to fill
the design of experiments: each batch of experiments will be
proposed by the algorithm, then evaluated by the numerical
simulator, and returned to the algorithm in order to propose the
next batch (Algorithm 1). This general iterative process must be
defined for each problem addressed: X input space, Y output
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Algorithm 1: Sequential design of numerical experiments
procedure based on J criterion of interest

Result: Alogrithm target (e.g., optimum, control set,
sensitivity coefficients, . . . )

Input : number of iterations, input variables space S,
black-box function f , criterion maximizing
algorithm target J

Output: sample of points in input space S, corresponding
output values from f , metamodelM

1 Choose a preliminary uniform random sample X for some
x ∈ S

2 Evaluate Y = f (X)
3 Fit metamodelM on {X,Y}
4 while not reached end of iterations do
5 Compute Xnew = argmaxx∈S

(

JM(x)
)

6 Evaluate Ynew = f (Xnew)
7 Append X = X ∪ Xnew and Y = Y ∪ Ynew

8 Fit metamodelM on {X,Y}
9 end

target, and J criterion of interest (see later canonical or hybrid
concrete instantiations):

Improvements to this fully sequential procedure have been
proposed, like asynchronization (Le Riche et al., 2012) whichmay
reduce the servers’ sleep time between iterations (especially if the
simulations have very different computing times). Nevertheless,
it is often easier to consider synchronous batching (Ginsbourger
et al., 2010) as an efficient turn-around to reduce user time, so the
algorithm we will actually use becomes (Algorithm 2):

Note that this last algorithm may be greatly improved and
likened to the previous one, when the criterion J is computable
(in closed form) for a whole batch of points (see Chevalier and
Ginsbourger, 2013 for such optimization criterion), which is
sadly not often the case.

3.2.1. Canonical Optimization Problem
The EGO algorithm (Jones et al., 1998) is the common entry
point for batch sequential kriging algorithms, as it proposes an
efficient criterion (standing for criterion of interest J) called the
“Expected Improvement” (EI):

J : x −→ EI(x) = E[(min(Y)−M(x))+] (2)

• . −→ .+ being “positive part” function,
• M is the kriging metamodel (see Equation 1),
• X is the optimization input space,
• Y are the black-box function evaluations on X

(see Equation 1).

Computing this criteria (using the previous kriging formulas)
is quite simple, so the main issue relates to the optimization of
this criterion, whose maximum will define the most “promising”
point for the next batch. This strategy will just propose the
next point, and although a “multiple expected improvement”
criterion (Chevalier and Ginsbourger, 2013) allows many points

Algorithm 2: Batch sequential design of numerical
experiments procedure based on J criterion of interest

Result: Alogrithm target (e.g.. optimum, control set,
sensitivity coefficients, . . . )

Input : number of iterations, input variables space S,
black-box function f , criterion maximizing
algorithm target J, batch size

Output: sample of points in input space S, corresponding
output values from f , metamodelM

1 Choose a preliminary uniform random sample X for some
x ∈ S

2 Evaluate Y = f (X)
3 Fit metamodelM on {X,Y}
4 while not reached end of iterations do
5 Set X∗ = X, Y∗ = Y ,M∗ = M
6 while not reached end of batch do
7 Compute x∗new = argmaxx∈S

(

JM∗ (x)
)

8 Estimate y∗new = E[M∗(x∗new)] (known as "kriging
believer" proxy)

9 Append X∗ = X∗ ∪ x∗new and Y∗ = Y∗ ∪ y∗new
10 Fit metamodelM∗ on {X∗,Y∗}

11 end

12 Get Xnew = ∁X∗X (ie. new points from X∗ not yet in X)
13 Evaluate Ynew = f (Xnew)
14 Append X = X ∪ Xnew and Y = Y ∪ Ynew

15 Fit metamodelM on {X,Y}
16 end

to be proposed at a time, it remains practically more robust
(numerically speaking) to use heuristics, which are usually
preferred by practitioners: “Constant Liar,” “Kriging Believer”
(see Picheny and Ginsbourger, 2013).

3.2.2. Canonical Inversion Problem
Beyond such criteria dedicated to optimization problems, others
are proposed to solve the (also) canonical problem of inversion,
like Bichon’s criterion (Bichon et al., 2008) which is similar to
Expected Improvement, but focuses on proposing points closest
to the inversion target:

J : x −→ EE(x) = E[(s(x)− |T −M(x)|)+] (3)

• . −→ .+ being “positive part” function,
• M is the kriging metamodel and s its variance (see Equation 1),
• X belongs to the inversion input space S,
• T being the target value of inversion output Y .

Other criteria for inversion have been proposed (Ranjan et al.,
2008), but all of these so-called “punctual” criteria have the same
intrinsic limitation of searching for a punctual solution to the
inversion problem, while the answer should lie in a non-discrete
space (usually a union of subsets of S).

Trying to solve the inversion problem more consistently will
require defining an intermediate value like the uncertainty of
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the excursion set above (or below) the inversion target (Bect
et al., 2012). A suitable criterion will then focus on decreasing
this value, and the final inversion set will be identified through
the metamodel instead of its sampling points. This leads to the
“Stepwise Uncertainty Reduction” (SUR) family of criteria (also
abusively naming the following inversion algorithm) which takes
a non-closed form, unlike the previous punctual ones:

J : x −→ SUR(x)

= −E

[∫

S
P[T < Mn+{x}(x

′)]× P[T ≥ Mn+{x}(x
′)] dx′

]

= −E

[∫

S
P[T < Mn+{x}(x

′)]× (1− P[T < Mn+{x}(x
′)]) dx′

]

(4)

• Mn+{x} is the kriging metamodel conditioned by the n points
{X,Y} (just like “M” in Equation 1), plus the new point x,

• X belongs to the inversion input space S,
• T is the target value of inversion output Y ,
• so P[T < Mn+{x}(x′)] stands for the probability of exceedance

in x′, then P[T < Mn+{x}(x′)]×(1−P[T < Mn+{x}(x′)]) gives a
null contribution in the integral as far asMn+{x}(x′) is certainly
upper or lower than T.

At the cost of a significantly more computer-intensive task, the
SUR criterion will proposemore informative points and avoid the
over-clustering defect often encountered with “punctual” criteria
(even with the EGO algorithm whose exploration/exploitation
trade-off is indeed due to heuristic tuning).

3.2.3. Robust Inversion Hybrid Problem
A by-product of the SUR algorithm is the extensive formulation
used, which allows a flexible expression of the interest
expectation. Therefore, it is now possible to use more complex
interest values, for instance relying on the process properties
of each subspace: Sc for controlled parameters and Su for
uncontrolled parameters. The “Robust Inversion” will then use
the statistic of the marginal uncontrolled maximum (on Su) of
the process to integrate into the criterion (Chevalier, 2013):

J : x −→ RSUR(x = {xc, xu})

= −En

[∫

Sc

Pn+1(x
′
c)× (1− Pn+1(x

′
c))dx

′
c

]

(5)

where:

• x = {xc, xu}:**

– xc stands for the coordinate of x in the input controlled
subspace Sc,

– xu stands for the coordinate of x in the input uncontrolled
subspace Su,

• Pn+1(xc) = P[T < maxxu∈Su (Mn+{xc ,xu}(xc, xu))] is the
marginal uncontrolled maximum probability:

– Mn+{x} is the kriging metamodel conditioned by the n
points {X,Y} (just like “M”), plus the new point x,

– T being the target value of inversion.

Using such an expression combines non-homogeneous
subspaces, here an inversion subspace (for controlled variables)
Sc, and an optimization subspace (for uncontrolled variables) Su.
Thus, this criterion leads to a hybrid algorithm of optimization
“inside” inversion. More generally, this approach may be used to
establish other criteria to solve hybrid problems. For instance,
just replacing the “maxxu” statistic (used to define Pn+1(xc)) by a
mean or quantile on Su may be useful for solving a probabilistic
inversion problem, instead of the present worst-case inversion.
Such hybrid algorithms are often much closer to solving real
engineering concerns than purely canonical algorithms.

At this point of reasoning, it is very important to understand
that a one-point marginal prediction of any kriging model is not
sufficient to fully access the process behavior (and thus integrate
it). Indeed, the correlation function behind process C(., .) is
strongly related to the process sample functional properties,
which may vary greatly depending on the kernel assumption
(Figure 4). Such a process statistic (maximum here) is then
impossible to compute as an independent sum of punctual
evaluations of x ∈ S. A simple, but more costly approach consists
in using a simulation of the random processes instead of its
prediction statistical model.

Using this latter criterion (Equation 5) on our practical case
study, we will now ask the algorithm (Algorithm 2) to sample the
S space, trying to identify the safety set (dyke and slab height),
irrespective of the flooding duration and discharge values.

In a self-supporting form, the batch sequential algorithm
using this RSUR criterion on a TELEMAC-2D model of the
Garonne river becomes:

4. SOFTWARE AND NUMERICAL TOOLS

This work lies within a trend of applied research aimed
at engineering enhancement. In practice, the previous
(Algorithm 3) requires a heterogeneous set of hardware
and software to be applied. The workbench which drives the
simulations according to the algorithm: (Richet, 2019) [which
may also be used through its Graphical User Interface (Richet,
2011)] is intended to fill the gap between:

• the flooding simulations: TELEMAC-2D, running in parallel
on some Amazon Web Services “instances” (i.e., virtual
machines);

• the robust inversion algorithm: RSUR, from the RobustInv R
package (Chevalier et al., 2017). As a “reproducible research”
target, these components are all available as free software and
standard hardware (seeAnnex for details of how to implement
them on a cloud platform).

4.1. Hydrodynamic Model of the Study Area
The Institut de radioprotection et de sûreté nucléaire (Institute
for Radiological Protection and Nuclear Safety, IRSN) has been
involved in the “Garonne Benchmark” project instigated by EDF.
The aim of the project was to obtain an uncertainty quantification
with hydraulic modeling on a stretch of the Garonne river. Earlier
work carried out by Besnard and Goutal (2011) and Bozzi et al.
(2015), has investigated discharge and roughness uncertainty
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FIGURE 4 | Exponential (right) and gauss (left) kernels random processes. Plain line: one sample drawing, dotted line: mean value, blurred zone: quantiles.

Algorithm 3: Batch sequential procedure to sample the safety frontier (maxt(Hp1) < 0.25 m NFG) in control space {Za,Zf }

Result: Safety frontier (maxt(Hp1) < 0.25 m NFG) in control space {Za,Zf }
Input : number of iterations, batch size
Output: Sampling of safety frontier (maxt(Hp1) < 0.25 m NFG) in control space {Za,Zf }, corresponding output values from

TELEMAC-2D, kriging metamodel

1 Choose preliminary Latin Hypercube random sample X = {Tp,Qp,Za,Zf } ∈ {[3600, 86400]× [2600, 8000]× [18, 25]× [20, 28]}
2 Simulate with TELEMAC-2D Hp1(X) (one simulation for each point of X)
3 Evaluate Y = maxt(Hp1(X))
4 FitMatern3/2 krigingM: maximize likelihood on {X = {Tp,Qp,Za,Zf },Y = maxt(Hp1)} with hyper-parameters (variance and
covariance range of Tp,Qp,Za,Zf )

5 while not reached end of iterations do
6 Set X∗ = X, Y∗ = Y ,M∗ = M
7 while not reached end of batch do

8 Maximize on x∗new = {tpn, qpn, zan, zfn} criterion RSURM∗ (x∗new) = −E
[

∫

[18,25]×[20,28] Pn+1(za, zf )× (1− Pn+1(za, zf ))

dzadzf ], where Pn+1(za, zf ) = P[0.25 < max∀tp ,qp (M
∗
n+x∗new

(tp, qp, za, zf ))] stands for the probability of exceeding 0.25 for

any possible {tp, qp} at a given coordinate (za, zf )
9 Estimate y∗new = E[M∗(x∗new)] (mean value ofmaxt(Hp1) predicted by kriging)
10 Append X∗ = X∗ ∪ x∗new and Y∗ = Y∗ ∪ y∗new
11 Fit metamodelM∗ on {X∗,Y∗}

12 end

13 Get Xnew = ∁X∗X (ie. new points from X∗ not yet in X)
14 Simulate with TELEMAC-2D Hp1(Xnew) (one simulation for each point of Xnew)
15 Set Ynew = maxt(Hp1(Xnew)) (for each point of Xnew)
16 Append X = X ∪ Xnew and Y = Y ∪ Ynew

17 FitMatern3/2 krigingM: maximize likelihood on {X = {Tp,Qp,Za,Zf },Y = maxt(Hp1)}
18 end

in 1D and 2D hydraulic models. In order to contribute to the
project, a version of the MASCARET 1D and TELEMAC-2D
model, as well as hydraulic and hydrological data required to
build these numerical models, were provided to the project’s
participants. In Besnard andGoutal (2011), themodels’ capacities
to represent a major flood event were compared.

In this study, we use 2D model TELEMAC-2D from the open
TELEMAC-MASCARET system (http://www.opentelemac.org).
TELEMAC-2D solves 2D depth-averaged equations (i.e., shallow

water Equation 6). Disregarding the Coriolis, wind and viscous
forces and assuming a vertically hydrostatic pressure distribution
and incompressible flow, the 2D depth-averaged dynamic wave
equations for open-channel flows can be written in conservative
and vector form as:

∂U/∂t +∇ · F = S (6)

where
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• t = time (seconds)
• (x, y, z) = coordinate systemwith the x-axis longitudinal, y-axis

transversal and the z-axis vertical upward (meters)
• U = [h, hu, hv]T = vector of conservative variables, with h

being flow depth (meters), u and v = x and y-components of
the velocity vector (meters/seconds)

• F = F(U) = [E(U),G(U)] = flux vector with E =

[hu, hu2 + gh2/2, huv]T and G = [hv, huv, hv2 + gh2/2]T (g
is gravitational acceleration inmeters/seconds2)

• S = S0 + Sf , with S0 = [0,−gh∂zb/∂x,−gh∂zb/∂y]T

= dimensionless bottom slope and Sf = [0,−gn2u(u2 +

v2)1/2/h1/3,−gn2v(u2 + v2)1/2/h1/3]T = energy losses due to
the bottom and wall shear stress, where zb is bed elevation and
n is Manning roughness (seconds/meters1/3).

The roughness is flow and sediment dependent, but for simplicity
it is assumed to be constant in each of the numerical runs.
In this work, turbulence is modeled using a constant eddy
viscosity value.

A two-dimensional model of the study area was constructed
by EDF within the framework of the “Garonne Benchmark”
(Besnard and Goutal, 2011). The model is composed of nearly
82,116 triangular elements with different lengths varying from 10
m (for the dyke crest, or the main channel of the Garonne River)
to 300 m for the inundated areas. The floodplain topography and
bathymetry are represented by the interpolation of the triangular
mesh on the photogrammetry data (downstream part of the study
area) and the national topographic map (upstream part). The
model covers nearly 136 km2 of the Garonne river basin. It is
forced upstream (the “Tonneins” section) by a flow hydrograph
and downstream by considering steady flow conditions (the “La
Réole” section). The model calibration is reported in Besnard and
Goutal (2011).

The presented model was modified slightly in this study
to introduce the industrial area reported in Figures 1, 2. The
industrial platform was inserted into the model by elevating the
topography of the corresponding mesh at a constant mean level
varying from 18.0 to 25.0 m NGF (Table 1).

For the purpose of the study, triangular flow hydrographs
were used in the upstream section of the model. At the
beginning of each simulation, a steady flow corresponding to a
permanent discharge of 2,100 m2/s is imposed on the model.
The flow discharge is then increased linearly until the maximum
water discharge (Qp) is reached at the time step corresponding
to Tp. Once the peak discharge Qp is reached, the discharge
is decreased linearly until the permanent flow of 2,100 m3/s is
reached at a time step of 2 ∗ Tp.

4.2. Robust Inversion Algorithm
The Robust Stepwise Uncertainty Reduction (RSUR) algorithm
was implemented in a dedicated R package (Chevalier et al.,
2017). It should be used in the same way as other R packages
dedicated to Bayesian optimization or inversion like DiceOptim
(Picheny and Ginsbourger, 2013) or KrigInv (Chevalier et al.,
2012). However, for convenient and simple integration (in the
Funz workbench), the standardized wrapper of the MASCOT-
NUM research group (Monod et al., 2019) was applied to

provide a front API2 (http://www.gdr-mascotnum.fr/template.
html) with the following R functions (https://github.com/Funz/
algorithm-RSUR):

• RSUR(options): basic algorithm constructor, will return
RSUR object to hold algorithm state

• getInitialDesign(rsur,input,output): function to return a first
random sample based on input and output information
(dimension, bounds, etc.)

• getNextDesign(rsur,X,Y): function to return iterative new
samples which maximize the RSUR criterion, based on
previous {X,Y} conditions

• displayResults(rsur,X,Y): function to display the current state
of the RSUR algorithm based on previous {X,Y} conditions.

4.3. Funz Workbench
Developed by the IRSN and distributed under the BSD3

license (https://github.com/Funz), Funz is a server client
engine designed to support parametric scientific simulations.
An overhanging graphical user interface design for practical
engineering is also available at http://promethee.irsn.fr. Funz can
be easily and quickly linked to any computer simulation code
through a set of wrapping expressions (a set of regexp-like lines
in the ASCII file). It uses the R programming language that
is freely available and widely used by the scientific community
working with applied mathematics. In addition to its use by
the research community, this language is also used by many
regulatory organizations. It is therefore simple to integrate
algorithms developed and validated by the scientific community
into Funz, which can then be applied to the previously-linked
computer codes. Thus, to perform this study, Funz was used
to link Telemac (plugin available at https://gtihub.com/Funz/
plugin-Telemac) and the RSUR algorithm (available at https://
github.com/Funz/algorithm-RSUR).

Moreover, in order to perform a given set of computations,
Funz can bring together independent servers, clusters (above
their own queue manager if available), workstations, virtual
servers (see Annex for Amazon Web Services / EC2 example),
and even desktop computers running Windows, MacOS, Linux,
Solaris, or other operating systems. While more focused
on medium-sized performance computing (usually less than
100 concurrent connected instances), the high performance
bottleneck is indeed delegated to each connected simulator
instance, able to require dozens of CPUs independently (or even
launch a Funz master itself).

5. RESULTS, ANALYSIS, AND
CONCLUSIONS

5.1. Overview Results of Algorithm
As previously mentioned, the RSUR algorithm is
parameterized with:

• Controlled parameters: Za ∈ [18, 25] (slab elevation), Zf ∈

[20, 28] (dyke elevation),

2Application Program Interface.
3Berkeley Software Distribution.
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FIGURE 5 | Convergence of RSUR criterion during iterations.

• Uncontrolled parameters: Tp ∈ [3600, 86400] (time to peak),
Qp ∈ [2600, 8000] (peak discharge rate),

• Objective function: maxt(Hp1) < 0.25 (p1 being one point in
the center of the slab, this means we aim to not exceed 25 cm
of water on this slab),

• Batches of 8 calculations at each iteration (plus 24 calculations
of input parameter boundary combinations).

• 20 iterations of (algorithm 2).

Among these, the computing parameters (20 batches of 8
simulations) are defined arbitrarily, considering that:

• the number of iterations (20) has to be increased with the
number of variables, so that the relative uncertainty of the
control set reaches some percent in the end;

• the batch size (8) is mainly an opportunistic choice related
to our computing resources, but it is also an empirical
equilibrium to limit the batching effect of the 8 simultaneous
points chosen [to mitigate the temporary hypothesis effect in
M∗, see (Algorithm 2)].

The convergence of the algorithm is measured by the remaining
uncertainty on the control set volume (numerically, this is the
opposite of the RSUR criterion value (see Chevalier et al., 2014
for computing details) in Figure 5. This quantifies the “fuzzy
zone” where it is still unclear whether the safety limit is exceeded
or not, or in other words, where the limit is exceeded with a
probability which is not 0 or 1 (visually the “gray zone”, while
the “white zone” contains definite unsafe points, and the “black
zone” definite safe points, Figure 6).

It should be noted that some intermediate raising of the RSUR
criterion occurs (e.g., between iterations 10 and 11), when the
kriging metamodel is changing abruptly because of the last data
acquired, thus correcting the fitting of some kriging parameters.
Between iterations 10 and 11, the range of covariance over
the Zf variable decreases (from 9.1 to 7.43), so the algorithm

FIGURE 6 | Probability of exceeding the level of 25 cm on the slab, depending

on the controlled Za and Zf parameters, along some RSUR iterations (last

added points as triangles, exceeding the points in red). The fairly dense

sampling of the “safe” zone represents a practical safety guarantee.

expects a lower regularity on the Zf dimension, which leads us
to “discover” an unexpected safe zone for Za > 24 & Zf < 23.

The safety-controlled set Sc = {Za,Zc} is iteratively identified,
with increasing accuracy along the iterations (Figure 6):
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It should be noted that the sampling density of the three
zones is intrinsically different because of the asymmetry of the
algorithm concerning the property of “unsafety”:

• The assumed “safe” zone needs to be sampled densely to
assume its true safety 4.

• The “unsafe” zone is discovered with sparse sampling, as just
one exceeding (of level set) point is sufficient.

• The frontier between safe/unsafe is explored very densely, it
being the critical information returned by the algorithm.

In addition to this raw result on the Sc subspace, it is also useful
to consider some specific coordinates in their Su projection. The
response surface interpolated (by the kriging mean predictor) on
such interest points, whose side of the frontier may lead to the
safety criterion being exceeded (Figures 7–9) (maxt(Hp1) > 0.25
are red points):

• Definitely “unsafe”: exceeding maxt(Hp1) > 0.25, for (Za,Zf )
in the unsafe zone:

• On the frontier: maxt(Hp1) ∼ 0.25, for (Za,Zf ) in the
undefined safety zone:

• Almost definitely "safe": maxt(Hp1) < 0.25, for (Za,Zf ) taken
in the safe zone:

It should be noted that it was quite expected that maximum
duration and discharge would be observed as the most penalizing
configuration of this study, which is confirmed by these
projections. When such an assumption may be proven prior to
a study, it should be reached by using just an SUR algorithm,
reducing the optimization space to a known value: Su =

{Tp,Qp} = {max(Tp),max(Qp)}.

5.2. Validation of Results
Validation of the previous results [i.e., the accuracy of the
safe/unsafe limit where maxt(Hp1) ≃ 0.25] should be performed
considering the accuracy of the kriging metamodel obtained
at the end of the algorithm iterations. Nevertheless, it is
sufficient to verify that the metamodel is sufficiently accurate
for maxt(Hp1) ≤ 0.25, as the inaccuracy of the metamodel for
higher values wheremaxt(Hp1) >> 0.25 has no crippling impact
on safety.

The best possible measurements of metamodel inaccuracy
should be obtained using a fully-independent test basis of points,
which is unattainable in most practical cases, where financial
and resource constraints prevail. A cheaper alternative lies in
cross-validation inaccuracy estimators, keeping in mind that this
estimate is a “proxy” of the metamodel prediction error (see
Bachoc, 2013).We will use the standard “Leave-One-Out” (LOO)
estimator which computes the Gaussian prediction at each design
point xi ∈ X when xi is artificially removed to re-build the kriging
metamodel (see Equation 7):

y−i = Mn−{xi} = N (m−i(x), s
2
−i(x)) (7)

4This will remain an hypothesis, as long as this black-box algorithm does not
consider any physical knowledge about the case study. A deeper physical study
might have rigorously excluded any risk for Za > 24, for instance.

Where Mn−{xi} is the kriging metamodel conditioned by the n
points {X,Y} (just like “M” in (1)),minus the point xi (previously
belonging to X).

We compare this “blind” (somewhat, considering that xi was
not really chosen randomly) prediction y−i (expectation and
95% confidence interval) to the true value yi we already know
(see Figure 10):

We observe that:

• the target value y ≃ 0.25 is sampled closely by several points
(many of them where y ≃ 0);

• these “safety limit” points are quite well-predicted (small bias
and confidence interval), but even at this last iteration few
points are still underestimated in term of risk (i.e., ytrue value >

ypredicted), but it might be improved with somemore iterations;
• although the unsafe zone is not well-predicted (often large

confidence interval), this is not a major concern for the result
(focusing atmaxt(Hp1) < 0.25).

Moreover, along the algorithm iterations the number and
accuracy of the interest points increases (i.e., 95% confidence
interval and bias decreasing together), so that the safety limit
uncertainty decreases at the same time (see Figure 11):

5.3. Engineering Analysis
From an engineering perspective, the numerical tool developed
in this study (sections 3.1, 3.2, and 3.3) allows us to identify
the possible design parameter combinations (Za,Zf ) suitable to
protect the industrial area against all the possible flooding events
identified for the Garonne river (Qp,Tp) (see all hydrographs
simulated in Figure 12):

In particular, according to the parameters reported in Table 1,
we study the combination of the elevation of the industrial
basement Za and the current dyke height Zf for all the possible
flood events that could cause flooding of the area of interest, and
characterized by a peak discharge varying from 2,600 to 8,000
m3/s and a total duration varying from 2 to 48 h. This choice of
uncontrolled parameters for the study seems robust considering
that the historic flood event for this area does not exceed 6,040
m3/s (SMEPAG, 1989).

The results presented in Figure 6 show that the most relevant
parameter for the industrial area’s defense against flooding is
elevation of the industrial area Za. Specifically, the numerical
results show that:

• If the basement of the industrial area is elevated above
24 m NGF, the safety criteria is always met even without
modification of the current protection.

• On the contrary, if the basement of the industrial area
is below 21 m NGF, any modification of the dyke
elevation would be useless as the safety criteria is
never met.

• An intermediary solution could be to set the basement of the
industrial area between 21 and 24 m NGF by controlling the
dyke elevation between 22 and 24 mNGF. The optimum point
could be chosen according to other practical considerations,
like the cost of the civil engineering work (Vrijling, 2001; van
Gelder and Vrijling, 2004; Ciullo et al., 2019).
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FIGURE 7 | Metamodel mean response surface on Su for surely unsafe points.

FIGURE 8 | Metamodel mean response surface on Su for safety limit points.

FIGURE 9 | Metamodel mean response surface on Su for surely safe points.

5.4. Perspectives
The general methodology proposed in this study seems quite
efficient for designing civil engineering for safety purposes.
Although the true penalizing configuration of the worst flood
event may have been assumed beforehand (which was at
least confirmed by a blind metamodel), it might not be
the general case for more complex models (in terms of
protection degrees of freedom). It should be noted that the

rising number of variables (both controlled and uncontrolled)
will have a cost in terms of metamodel predictability, and
therefore in terms of the number of simulations needed to
achieve enough accuracy for the control set limits. Tuning of
such algorithm convergence parameters remains to be done for
general cases.

Moreover, the developed numerical tool could be employed in
several flooding hazard applications, for instance:
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FIGURE 10 | Kriging prediction of maxt (Hp1) vs. true values at the last iteration (19). Gray bars are issued from kriging variance, red line is the safety target, and

dashed line is unbiased prediction.

FIGURE 11 | Kriging prediction of maxt (Hp1) vs. the true values at iteration 1, 7, 13, and 19.

• Quantification of the margins in the existing protections of the
civil/industrial area (i.e., the algorithm ensures the protections
are robust against any possible flood event).

• Reconstitution of a historical event (i.e., it could be possible
to replace the safety criterion with historical knowledge
and check for all the possible configurations of the
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FIGURE 12 | Focused (expected penalizing) flow hydrographs (Tp, Qp).

controlled and uncontrolled parameters reproducing the
historical data).

Lastly, the primary question that remains is the connection of
such an engineering practice to the probabilistic framework often
adopted in regulation practice. The mainstream idea should be
to weight the hydrograph by their probability of occurrence
(thus inside the integral expression of the RSUR criterion),
which will link the protection design to the flood return period
as required.

In a probabilistic framework, results from this kind of
analysis should indicate which return period the protections are

associated with and even which return period is hazardous for the
civil or industrial installation.
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ANNEX: SUPPLEMENTARY INFORMATION
FOR IMPLEMENTATION

As already mentioned, this study relies on the Funz engine
(Richet, 2019) which provides the computing back end to
distribute calculations according to the RSUR algorithm.
Considering that the reproducibility of this study is a standard
deliverable, the following supplementary information details
both the software and hardware implementation.

The “master” computer hosting Funz is a basic desktop
computer (just running the Funz engine and RSUR algorithm),
which will also remotely start the 8 EC2 instances (Script 1),
create the SSH tunnels for protocol privacy and install Telemac
on each instance.

for i in ‘seq 1 8‘
do

FunzDaemon-EC2.sh -d "lib/Funz/scripts/
install_OpenTelemac.sh lib/*.slf" \

-c "bash./scripts/install_OpenTelemac
.sh" -o $i &
done

Script 1: Deploy 8 Funz services on EC2, including the Telemac
installation.

All TELEMAC-2D calculations are then performed on the
8 servers (suited to the mesh used in this model) started
on the Amazon Web Services EC2 cloud computing platform
(Screenshot 1).

The main Funz script (Script 2) then starts the RSUR
algorithm on the Telemac Garonne model, which is compiled
(meaning study parameters are inserted in the template model
files) and sent to the EC2 instances as required when the RSUR
asks for a calculation point.

Funz.sh RunDesign \
-m Telemac \
-if t2d_garonne_hydro.cas t2d_garonne.cli

Qmax_Garonne_CMWR3 \
princi_wall.f poi.txt loihq_Garonne \

-iv $Q_p$=[2600,8000] $T_p$=[3600,86400]
$Z_f$=[20,28] $Z_a$=[18,25] \

-oe "Numeric:max_t(H_p1)" \
-d RSUR -do xinv.index=’3,4’

xopt.index=’1,2’ ytarget=’<0.25’ \
initBatchSize=’8’

initBatchBounds=’true’ batchSize=’8’\
iterations=’20’

Script 2: The main Funz command which starts
the RSUR algorithm on the Telemac Garonne river
model (files t2d_garonne_hydro.cas t2d_garonne.cli
Qmax_Garonne_CMWR3 princi_wall.f poi.txt loihq_Garonne).

Ultimately, this comprehensive study of 20 RSUR
iterations requires about 10 h availability for all
computing instances, equating to a cost of less than
$100 (at the current standard rates of the main cloud
computing platforms).

Screenshot 1 | 8 Amazon EC2 instances running the Telemac calculations on demand from the RSUR algorithm. Sleep times (non-negligible) are waiting for next

RSUR batch.
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This study presents a novel expansion of the clay-fraction (CF)/resistivity clustering
method aiming at developing realizations of subsurface structures based on multiple
point statistics (MPS). The CF-resistivity clustering method is used to define a data
driven training image (TI) for MPS simulations. By combining this TI with uncertainty
estimates obtained from correlation between the resistivity models and the unique
categories in the TI, subsurface realizations are generated honoring geophysical and
lithological data. The generated subsurface realizations were calibrated in a steady
state groundwater model. Forecasts of well catchment zones were derived based on
two wells located in areas with different levels of structural uncertainty. The catchment
probability maps derived from the structural realizations were compared with the well
catchment forecasted by a deterministic subsurface structure, and we are able to
capture this catchment within the estimated uncertainties. We believe that this study is
the first to combine MPS methods with a complete data driven workflow going directly
from lithological and geophysical data to realizations of the subsurface structures. The
main benefits of this is that it is data driven, fast, reproducible, and transparent.

HIGHLIGHTS

- Fast, transparent, and data driven uncertainty estimate for subsurface structures in
groundwater models.

- The methodology uses multiple point statistics to capture the complexity of the
subsurface structures better.

- Method supports generation of three-dimensional training images for practical
application of multiple point statistics.

Keywords: groundwater modeling, uncertainty analysis, multiple point statistics, structural uncertainty, SkyTEM,
SNESIM, MODFLOW

INTRODUCTION

Groundwater models are routinely used as tools for decision support in water resource related
questions (e.g., Boronina et al., 2003; Almasri and Kaluarachchi, 2007; Mylopoulos et al.,
2007; Saravanan et al., 2011; Sedki and Ouazar, 2011; Manghi et al., 2012; Enzenhoefer
et al., 2014). However, despite being advocated often (e.g., Pappenberger and Beven, 2006;
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Tartakovsky et al., 2012) uncertainty analysis is still not common
practice in practical applications of groundwater modeling
studies (Sanchez-Vila and Fernandez-Garcia, 2016; Delottier
et al., 2017). Some arguments for the missing adaptation amongst
professionals include limited access to software solutions
(Renard, 2007; Tartakovsky et al., 2012), insufficient teaching
and training of students, that can bring methods into practice
(Renard, 2007; Sanchez-Vila and Fernandez-Garcia, 2016),
reluctance among clients and decision makers to embrace model
results presented with uncertainty (Freeze, 2004), and a further
push for application of stochastic methods in practice (Renard,
2007), and finally limited access to regional scale, high resolution
datasets. Most of the literature cited above, refers to uncertainty
analysis in a broad context.

In the following, we will limit our focus to the sub-domain
that deals with stochastic methods to represent uncertainty
on subsurface structures in hydrological models. Traditionally,
when performed, these stochastic simulations have been based
on 2-point statistics such as sequential indicator simulation or
sequential Gaussian simulation (Deutsch and Journel, 1998).
However, the simplified assumptions of the 2-point statistics will
often be insufficient to describe the complexity of the subsurface
that governs groundwater flow (Zinn and Harvey, 2003). An
alternative to the 2-point statistics is multiple-point statistics
(MPS) (Hu and Chugunova, 2008; Mariethoz and Caers, 2015).
In MPS, the statistical model consists of a training image (TI).
This TI describes the spatial variability and patterns expected
in the subsurface. As the name implies, MPS use multiple point
information to estimate the correlation in structural patterns, and
thus yields a more realistic representation of subsurface structure.
A detailed review of the various MPS methods available will not
be provided here, additional information can be found in e.g., Hu
and Chugunova (2008) or Linde et al. (2015).

A common challenge for practical application of MPS
methods is the lack of availability of a TI (Bastante et al.,
2008; dell’Arciprete et al., 2012). TI’s are often of conceptual
nature, and encapsulates the experts knowledge of the system
being analyzed (Caers, 2001). TI’s can also be generated using
parametric equations or simple templates (Maharaja, 2008).
Using this approach a set of TI can easily be developed that
encapsulates different conceptual interpretations. This approach
was used by Hermans et al. (2015) for a local scale study of
an alluvial aquifer. A limitation of this approach is that it is
difficult to produce TI’s that resemble the full complexities of
the system, and the resulting TI will often be an over simplified
version of the field conditions. Another common approach to
generating TI is through manual interpretation of subsurface
structures (Huysmans et al., 2008; Hoyer et al., 2017; Barfod et al.,
2018). This approach integrates geological expert knowledge
about the system, thus making it a more direct representation of
it. For practical applications this approach has two limitations.
First, it is a more time consuming methodology, resulting in
a more expensive end product. Second, the derived TI may
be highly non-stationary, therefore putting high constraints on
additional auxiliary data to constrain the modeling (Strebelle,
2002). A TI can also be generated directly from the datasets
collected in the field (Silva and Deutsch, 2014). Similar to

manual interpretations, this approach will often result in a
non-stationary TI, and the simulations must therefore be made
by including additional auxiliary variables. Another limitation
to this approach is that the resolution of the TI is limited by
the collected data (Linde et al., 2015). Processes resulting in
structural variability below this scale of resolution can therefore
not be encapsulated in the TI. It is therefore important, to
acknowledge that model realizations cannot be produced with
a higher resolution than the input dataset can provide. This
methodology also requires input datasets with a sufficiently
high spatial density and areal coverage rarely possible to obtain
by e.g., drilling.

Large spatial coverage can be obtained using airborne
electromagnetic (AEM) methods. The SkyTEM system (Sørensen
and Auken, 2004) is one of the available AEM methods that have
been used extensively for groundwater mapping (Møller et al.,
2009b; Pryet et al., 2012; Korus et al., 2017; Knight et al., 2018). By
inverting the EM dataset a model of the electrical resistivity of the
subsurface can be produced. In sedimentary environments where
the groundwater is uninfluenced by pore water salinity, structures
with high resistivity will often be the water bearing units or
aquifers, and structures with low resistivity will be the aquitards
or confining units. This link between subsurface hydrological
units and resistivity can, however, be both spatially variable and
uncertain. To reduce this uncertainty, the interpretations can
be assisted using lithological logs from boreholes. This process
has been formalized in the clay fraction (CF) inversion method
(Christiansen et al., 2014; Foged et al., 2014). Marker et al. (2015)
further extended this methodology using k-means clustering to
reduce the dimensionality of the CF and resistivity data to derive
a set of hydrogeological units. In the following this methodology
will be named CF-resistivity clustering.

In this study, we investigate how to utilize the CF-resistivity
clustering method to create a 3D TI. A TI can thereby be
created specifically for the investigated area using a fast and
data driven approach. Subsequently, this TI is used together
with an estimate of the subsurface uncertainty and hard data
from boreholes to generate multiple realizations of the subsurface
structures. Structural realizations are then incorporated into a
groundwater flow model and calibrated to available hydrological
data. Finally, the model realizations are used to estimate the
uncertainty of a well catchment zone. By presenting an approach
to deal with structural uncertainty analysis, we show how
geostatistical methods can be applied to problems relevant to
most groundwater resource professionals.

MATERIALS AND DATA

Study Area
The study area used to document the proposed methodology
is located north-west of the town of Aarhus, Denmark
(Figure 1). It is of principle interest to the local authorities
and the public water supply company, due to its proximity
to Aarhus, and its rich groundwater resources are important
for the supply of drinking water. The area has been subject
to several geophysical and geological mapping campaigns
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(Kronborg et al., 1990; Danielsen et al., 2003; Sandersen and
Jørgensen, 2003; Jørgensen and Sandersen, 2006; Møller et al.,
2009a; Høyer et al., 2015). These studies have revealed a dense
network of buried valley structures, which are incised into a thick
sequence of Paleogene clays. In most parts of the area, these clays
form the lower impermeable bed for the primary groundwater
reservoirs located inside these valley structures. However, not all
valleys are filled with sand and gravel (thus constituting aquifers);
some are filled up with glacial deposits mainly consisting of clay
till. These clay-filled valleys can act as hydraulic barriers and clay
layers covering the primary aquifers. Besides the valley structures,
plateaus between the valleys can hold till deposits consisting of
either sand/gravel and clay deposited during the last glaciation.
A more detailed description of the geological structure of the area
can be found in Høyer et al. (2015).

Geophysical and Lithological Data
Lithological information from boreholes was extracted from the
Danish national well database, Jupiter (Møller et al., 2009a).
Within the test site, approximately 400 boreholes were available.
The majority of these boreholes are shallow (below 50 m depth),
and only a small subset (∼3%) reaches depths of more than
100 m (Figure 1). The quality of the lithological information
provided by these boreholes varied, based on their drilling
method, purpose, age, etc. Therefore, to utilize these boreholes
in a modeling context, their quality must be quantified. In
the present study, this was done using the weighting scheme
presented by He et al. (2015).

The geophysical dataset was collected using the SkyTEM304
system (Sørensen and Auken, 2004) in August 2013. The data
consist of 24.600 SkyTEM soundings collected over 330 line
kilometers flown with a line spacing of 100 m. Soundings
were made with a spacing of 25 m along the flight lines. The
geophysical dataset was processed using Aarhus Workbench
following the methodology described by Auken et al. (2009).
During processing, data biased by EM-noise are removed. The
resulting data positions after processing are shown in Figure 1,
where each position represents one 1D EM model. The inversion
was carried out in a spatially constrained inversion (SCI)
(Viezzoli et al., 2008) with a 1D sharp model formulation (Vignoli
et al., 2015) as implemented in the AarhusInv inversion code
(Auken et al., 2015). In an SCI, a stratified geological environment
is mimicked through horizontal and vertical regularization
constraints between proximate 1D resistivity models. The sharp
inversion setup secures that smooth vertical and horizontal
transitions in resistivity are penalized in the objective function,
thus promoting more homogeneous resistivity models with fewer
but sharper boundaries. To avoid over interpreting resistivity
models with low sensitivity at large depths, all models have been
individually blanked at their estimated depth of investigation
(DOI) calculated as described by Christiansen and Auken (2012).

Hydrological Data and Forcing
Time series of stream base-flow estimates were determined
for three sub-catchments within the regional model domain
(outlined in Figure 1C), using the automatic filter approach
presented by Arnold and Allen (1999) and Arnold et al. (1995).

Estimates of steady state hydraulic heads were obtained
for a total of 506 samples within the regional model area
(Figure 1C). 106 of these samples were collected in the 62
wells that are screened in multiple aquifers, while 336 of the
wells only have one screening interval, and thus a single steady
state head estimate. Within the local groundwater model area, a
total of 94 observations were available. 19 of the samples were
collected from the 11 wells screened at multiple depths, while
75 of the wells only have one screening interval. Uncertainty of
each head estimate was evaluated, taking into account factors
such as the source of xy coordinates (GPS, read from map
etc.); the method used to determine the reference level of
a borehole; the length and temporal variation of time series
used for estimating steady state heads; and the quality of the
borehole (ranging from boreholes being part of the national
groundwater monitoring program to old wells used for single
household water supply).

Recharge rates were estimated using input from the national
groundwater resource model of Denmark (Henriksen et al.,
2003; Sonnenborg et al., 2003). First, the three dominating soil
types near terrain were extracted from the model (sand, clay,
and humus). On top of that, four land use types were defined
(urban, farmland, forest, and water). By combining these, a
total of 11 unique combinations were achieved. Subsequently,
information on temperature, daily potential evapotranspiration,
and precipitation was extracted from the national water resource
model (assumed constant over the domain), and these were
mapped onto the 11 unique zones. The recharge time series was
then estimated using a simple linear root zone model (Jeppesen,
2001). Since the model used in the present study is steady state,
these recharge estimates were averaged to a single value for each
of the 11 zones.

Groundwater Model Setup
The groundwater model used in the study is set up in
MODFLOW-USG. This version of MODFLOW was chosen such
that the regional groundwater flow could be incorporated into the
model setup while still having a fine numerical resolution within
the local focus area. Details on the definition of the regional flow
model can be found in Vilhelmsen et al. (2018), and the same
model setup was used in Marker et al. (2017). The outline of
the regional scale model can be seen from Figure 1C where it is
marked with an orange line. The outline of the local scale model
can be seen from Figure 1A where it is marked with a gray dotted
line. Both the local model and the regional model have 11 model
layers, and the local and the regional model have a horizontal
discretization of 50 m and 100 m, respectively.

Two pumping wells have been chosen as focus for the present
study. Both wells are located in existing well field areas. The
location of the wells is marked with black stars on Figure 1.
The Kasted well is part of the Kasted well field, and the Ristrup
well is located within the Ristrup well field. These two locations
were also chosen to represent a subarea with more complex
geological settings (Kasted well), where noise in the geophysical
data set resulted in areas with limited data coverage. The other
well (Ristrup well) is located in a more homogeneous geological
setting, where there was almost full coverage of the EM data.
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FIGURE 1 | Outline of the investigated area located outside the town of Aarhus, Denmark (A). Local scale groundwater model imbedded into the regional model
setup outlined in (C). The Regional model is located in the central part of the Jutland peninsula in Denmark (B).

METHODS AND THEORY

Clay Fraction-Resistivity Clustering
To obtain categorical information from lithological logs and
resistivity models, we used the clay fraction (CF)-resistivity
clustering methodology at borehole locations and sounding
sites (Marker et al., 2017). The basic idea of the CF-resistivity
clustering is to reduce the dimensionality of the input data
(resistivity models and lithological logs), such that these are
represented by a few (three or four) categorical variables. These
categorical variables form the basis for the structural analysis
of the subsurface.

The first step in this analysis is the clay-fraction inversion.
Details on this methodology can be found in Christiansen
et al. (2014) and Foged et al. (2014), and only a short
resumé will be given here. In the CF inversion, boreholes
are subdivided into equal discrete vertical intervals. Within
each interval, the fraction of clay is determined, such that a
CF of 1.0 is obtained if the discrete interval only contains
clay and a CF of 0.0 if the interval does not have clay
layers. The CF estimated at the boreholes, together with the
resistivity models (averaged over the same elevation intervals),
constitutes the dataset used in the CF inversion. The objective
of the inversion is then to estimate a two-parameter error
function that translates resistivities into CF such that the optimal
translation occurs between CF estimated from boreholes and CF
estimated from the resistivity models. Here, the two parameters
are defined as the upper threshold, where all resistivities
are translated to 0% clay, and the lower threshold is where
resistivity values are translated to 100% clay. Since the correlation
between resistivity and borehole lithology can vary spatially

within the survey area, the translation function parameters are
defined on a 3D grid, where each grid node holds the two-
parameter translation model. To constrain the inversion, the
translation functions are regularized such that smooth translation
parameters are preferred.

Once the CF inversion has been completed, each sounding
site will have a set of resistivity and CF values with a predefined
vertical resolution. To include the information at borehole
locations, we also chose to interpolate a resistivity value using
kriging from the geophysical soundings onto the boreholes. This
provided us with both a resistivity and a CF at borehole locations.

For dimensionality reduction of the multivariable cloud to
obtain a categorical dataset, we used K-means clustering (Wu,
2012), as implemented in Scikit-Learn in Python (Pedregosa
et al., 2011). The clustering was performed on the principal
components of the CF and the normalized resistivities (these were
normalized to a scale of 0.0 to 1.0).

The outcome of the cluster analysis is a set of categorical
values distributed in a three-dimensional space, which we can
use to condition the generation of the subsurface realizations.
The location of the categorical values is defined by the location
and depth of the SkyTEM soundings and the locations and
drilling depth of the boreholes. To fill the gaps between these data
points, we use simple indicator kriging (IK) (Goovaerts, 1997,
p. 293). Here, each cluster was treated as an indicator variable,
which was each fitted with a variogram model. IK was then used
to estimate the probability of each cluster distributed on a 3D
grid. Based on these probabilities, an estimate of the most likely
representation of the subsurface structure, given a predefined
number of clusters, was created. This model constitutes the TI
in the following simulations.
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Multiple-Point Geostatistics
We could have used the estimated distribution of categorical
variables together with the estimated variogram models to
generate realizations of the subsurface structures with sequential
indicator simulation (SIS) (Deutsch and Journel, 1998). This
approach was used by Marker et al. (2017) for the same study
area. However, SIS is limited by the amount of structural
information that can be carried in the variogram model (Journel,
2005; Journel and Zhang, 2006). As the density of conditioning
data increases, the dependency of the simulation result on
the variogram model is reduced. However, to approximate the
required data coverage the geophysical data had to be treated
as hard data in the simulation. This constitutes a problem,
since the probability of a given cluster will be dependent
on the CF and the resistivity value of the pertaining data
point. By treating the geophysical data as soft data, this
information can be incorporated into the analysis, but it
reduces the amount of hard data for the SIS, thus rendering
it inapplicable.

To alleviate this problem, we have employed the MPS method
single normal equation simulator (SNESIM) (Strebelle, 2002)
in the present study. The higher order statistics incorporated
in MPS methods allows them to capture and reproduce more
complicated structures compared to variogram-based methods.
Structural realizations will also create more coherent geological
units, often making a better representation of actual field
conditions. In SNESIM, the conditional information needed for
the geostatistical simulation is obtained by scanning the TI. In
SNESIM, this scanning is performed once, and the information
is stored in a search tree structure. SNESIM is a sequential
approach and it will visit each simulation node in the grid based
on a random path. To incorporate hard data in the simulation,
the data categories are assigned to the most proximate grid
node prior to simulation. Soft data is incorporated into the
analysis by updating the TI based probabilities, using the soft data
probabilities. This update is done using the tau model (Journel,
2002). Conditional soft data must therefore be transformed
into probabilities that can be used for conditioning. In the
present study, this is done based on the conditional probabilities
derived from cluster histograms. Alternatively, this information
could be obtained from other statistical correlations between
geophysics and lithology (Hermans et al., 2015; Barfod et al.,
2016; Christensen et al., 2017b).

Single normal equation simulator is a complex algorithm,
with many adjustable parameters. Fine tuning of the algorithm
is therefore not always straight forward. In the present study, we
derived our settings using a combination of the guidelines defined
by Liu (2006) and He et al. (2014), and looping over parameter
combinations using the Python interface implemented in SGeMS
(Remy et al., 2009). The optimal parameters for the present study
is defined in Table 1. These parameters were defined based on
a compromise between simulation results and computational

burden. Parameters are only defined for the subset of parameters
that deviate from default values (Remy et al., 2009).

In the present study we used vertical proportions and soft
conditioning to define the target distributions. Both were defined
based on the outcome of the cluster analysis. The entire workflow
for generating structural realizations from MPS based on CF-
resistivity clustering is outlined in Figure 2.

Groundwater Model, Particle Tracking
and Inversion
The groundwater model was defined in MODFLOW-USG
(Panday et al., 2015). MODFLOW-USG is a control-volume
finite difference version of the well-known USGS groundwater
flow code MODFLOW (Harbaugh et al., 2000; Harbaugh,
2005). Recharge was incorporated using the recharge package.
Major stream segments were simulated using the River package.
Trenches and minor stream segments were simulated using the
drain package. Groundwater abstraction wells were simulated
using the well package, and outer boundary conditions on
the regional model edge were defined as either no-flow or
constant head boundaries. This was determined based on the
local hydrological conditions.

All model realizations, generated using SNESIM, were
incorporated into the groundwater flow model and calibrated
using PEST (Doherty, 2016). This was done by introducing
the local groundwater model in a regional model used to
simulate the potential interactions with the regional flow system.
The parameters included in the inversion were the horizontal
hydraulic conductivities of the determined clusters (except for
the largest cluster, which was fixed based on sensitivity analysis
in both the three- and the four-cluster model). Vertical hydraulic
conductivities were tied to their horizontal counterparts at a ratio
of 1:10. The two other parameter groups were the conductance
terms of the drains and the streams within the local area, and the
recharge multiplier. The objective function was defined as

φ =

Nh∑
i=1

wi
((

hsim,i − hobs,i
)
/σh,i

)2
+

Nq∑
i=1

((
qsim,i − qobs,i

)
/σq,i

)2

(1)
Where Nh is the number of steady state head observations,

hsim is the model simulated hydraulic heads, and hobs are their
observed counter parts. The residuals on the heads were weighted
with the inverse of the observation standard deviation. Similar,
qsimq, qobs, and σq are the simulated, observed and uncertainty
of the stream flow data. For the head data we also introduced
an arbitrary weight (wi) to the hydraulic heads. This was done
to reduce the individual contribution to groups of observations
located closely. All inversions were well posed, and we did not
need to impose any regularization constrains.

To determine the catchment zones for the two pumping
well scenarios we used mod-PATH3DU (Muffels et al., 2014).

TABLE 1 | Parameters used in the SNESIM simulations. Parameters are only defined when they deviate from the default values.

Cmin = 100 Max. conditioning = 100 Number of multigrids = 8 Subgrids = 1 Number of previously simulated nodes = 6 τ = 2
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FIGURE 2 | Outline for generating structural realizations based on MPS.

Catchment zones were determined using backward tracking with
16.000 particles from the pumping well to terrain. This number
of particles was the minimum required to make the catchment
independent on the particle starting locations. Particle starting
locations were randomly distributed within a cylinder. The height
of this cylinder was equal to the pumping-well screening interval,
and the diameter of the cylinder was determined such that the
amount of recharge occurring within the well catchment zone
balanced the amount of groundwater abstracted by the well. This
estimation was done by trial and error based on the calibrated
mode model. The catchment was discretized into 50 m by 50 m
cells, and a cell was determined to be part of the catchment if
at least one particle terminated in the cell. This tracking was
performed for each of the stochastically generated subsurface
structures. Once completed, the catchment probability maps were
generated based on an averaging over all realizations.

RESULTS

Figure 3 shows the results of the k-means cluster analysis. The
clustering was performed for three and four clusters. This was
chosen based on two criteria. The three-cluster model was chosen
since this is most comparable with the deterministic model
available for the area, and the four-cluster model was chosen since
this was deemed optimal in Marker et al. (2017), based on an
optimal data fit criteria. The number of units are also limited

by the resolution of the input variables. In this case consisting
of resistivity and CF values. The subdivision of clusters in the
clouds spanned by the resistivities and the CF can be seen in
the bottom subplots (E and F). Each point in these clouds thus
represents a single pair of CF and resistivity values. These clusters
are then mapped in histograms for the resistivities (subplot
A and B). These histograms can also be used to estimate the
conditional probabilities based on the kernel density functions
(subplot C and D).

Each point in the data clouds represents a specific discrete
interval in a resistivity sounding or a borehole. This means that
the clusters can be mapped back as a point distribution in three
dimensions. The fitted variogram models used for IK can be
seen from Figure 4. Very importantly, the model obtained with
IK (the mode model) is used as a TI in the MPS simulations.
Cross sections through the mode model are shown in Figure 5.
From the three-dimensional distribution of clusters, we can
also calculate the vertical fractions of each cluster with depth.
The result of this calculation can be seen from Figure 5. This
information is used as additional conditional information in the
SNESIM algorithm.

Figure 5 contains the information needed for the MPS
simulations for the three-cluster model. A similar plot can
be made for the four-cluster model, but this was considered
redundant in the present case. The figure shows cross sections
through the TI in the top left, and the vertical fractions in
the top right. In the bottom, probability maps for each cluster
are shown. These probability maps are determined from the
conditional probabilities estimated using the histograms shown
in Figures 3A,B. For each data point in space, we calculated the
conditional probability of a given cluster based on the histograms.
Subsequently, a variogram model was fitted to the probabilities
for each cluster, and the probabilities were interpolated in three
dimensions to fill out the model grid. Finally, the probabilities
over all clusters were scaled such that they summed to one
within each cell in the model grid. These probability grids are the
ones shown in the bottom of Figure 5. The same methodology
was used to estimate the probabilities in the four-cluster model.
A similar methodology to estimate the probabilities was used
by Hermans et al. (2015). The only conditional data that is not
presented in Figure 5 is the hard data used in the analysis.
Hard data were only used for screen intervals of pumping wells
in groundwater model. In the MPS simulations, these intervals
were conditioned to be part of cluster 0, namely the cluster with
the highest sand fraction. This is a reasonable assumption, since
most of these wells have been active for several years and must
therefore be screened in sandy deposits.

Besides using the estimated probabilities for conditioning
the MPS simulations, they can also be used to illustrate the
uncertainty of the underlying structures. Such plots have been
generated in Figures 6, 7. Figure 6 shows a cross section through
the Kasted well field (the location of the cross section can be
seen from Figure 1). Figure 6A shows the cross-section through
the three-cluster model, Figure 6C shows the cross section
through the four-cluster model, and Figure 6D show the cross
section through the deterministic model structure. Each of these
models have then been overlaid with a transparency filter based
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FIGURE 3 | Results of the cluster analysis on CF and resistivities. (A) shows the result of the 3-cluster analysis plotted as histograms in the resistivities. (B) shows
the histograms for the 4-cluster analysis on resistivities. (C) shows the conditional probabilities of the 3-cluster analysis. (D) shows the conditional probabilities of the
4-cluster analysis. (E) show clustering of the cloud spanned by resistivities and CF into 3 clusters. Finally, (F) shows the clustering of the cloud spanned by
resistivities and CF subdivided by 4 clusters.

on the uncertainties determined using the approach described
above. Here transparent parts indicate high uncertainty. For the
deterministic model we used the uncertainties derived from the
three-cluster model. Similar plots can be seen for the cross section
through the Ristrup well field in Figure 7. Based on the cross
sections- some interesting aspects can be observed. First, many
of the dissimilarities between the deterministic and the auto
generated models are smeared out. Second, the plots conform
with the background information from the area, namely that

the heterogeneity and the uncertainty in the structure appears
larger in the Kasted well field compared to the Ristrup well
field. Making this comparison, it should of course be taken into
account that the Kasted profile is three times as long as the
Ristrup profile.

Figure 8 shows a horizontal cross-section through the
same depth interval of the deterministic model, the TI, three
out of the 100 generated model realizations generated using
SNESIM, and three model realizations generated using SISIM.
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FIGURE 4 | Indicator variograms fitted to the 3 and the 4-cluster dataset.

The model realizations generated with SNESIM have much more
resemblance with both the manual interpretation and the TI.
Also, the realizations generated with SISIM, show patterns with
limited correlation to either of the remaining models presented
on the figure. It should also be noted, that the three realizations
generated with SISIM are quite similar. This is a feature caused
by using the geophysical data as hard data in the simulations.

The generated model realizations from SNESIM were all
incorporated into the groundwater model, and calibrated to
hydraulic heads and stream flows. The result of this calibration
with respect to simulated and observed hydraulic heads can
be seen from Figure 9. By comparing the three plots, the
performance of the models is similar. There is a slight scatter
about the identity line, but it appears similar for the three setups,

both with respect to distance and outliers. Taking the structural
uncertainty into account, most simulations estimated using
the deterministic modeling approach fall within the simulated
uncertainties of the structural realizations.

Analyzing the estimated parameter values, the log transformed
hydraulic conductivity for the three-cluster model is −4.97 m/s
for cluster 0 with a standard deviation of 0.14 and −5.21 m/s for
cluster 1 with a standard deviation of 0.27. Cluster 2 was fixed in
the inversion, due to the very low hydraulic conductivity of this
unit. The value for cluster 1 may be a bit high compared to the
expected value, but it is not unreasonable, taking the uncertainty
into account. It is also in line with the expected result, that the
uncertainty of the more clay dominated cluster 1 is larger than
the sand dominated cluster 0. For the four-cluster model the
parameters are (uncertainty in brackets) −5.00 m/s (0.14) for
cluster 0, −5.02 m/s (0.75) for cluster 1, and −5.82 m/s (0.59)
for cluster 2. Cluster 3 was fixed for the same reasons as outlined
above. These parameter values are also in line with the expected,
except maybe for cluster 1, which is a bit high, but its pertaining
uncertainty is also high due to its limited presence in the model.
This can also be seen from the cross sections on Figures 6C, 7C.
The data fits obtained in this study are very similar to those
obtained by Marker et al. (2017).

All the calibrated models were subsequently used to forecast
the location of the catchment zones for the wells at the two
different well fields. The result for the Kasted well using the
three cluster models can be seen from Figure 10. The figure has
been subdivided into two plots, one containing the estimated
probability using the structural realizations (subplot A), and
one containing the catchment probability overlaid with the
particle endpoints obtained from the deterministic structure.
Based on the model realizations, the majority of the deterministic
catchment is contained within the uncertainty of the stochastic

FIGURE 5 | Example of the MPS inputs needed in the analysis. The figure shows the data derived TI, the vertical proportions obtained from the cluster analysis and
the cluster probabilities derived from the conditional probabilities estimated based on the histograms in Figure 3A.
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FIGURE 6 | Cross section through the Kasted model (see Figure 1 for
location). (A) 3 cluster TI, (B) 3 cluster TI blanked with uncertainty, (C) 4
cluster TI, (D) 4 cluster TI blanked with uncertainty, (E) Deterministic structure,
(F) Deterministic structure blanked with uncertainty from 3 cluster analysis.

simulations. The only discrimination between the two is in
the tail stretching toward the west. The tail of the stochastic
realizations is offset toward the north. Subplot B also shows
the outline of the catchment estimated by Marker et al. (2017).
The general trends in the estimated catchments using the SISIM
and the SNESIM approach are similar. However, the SNESIM
approach is closer to the catchment of the model based on the
deterministic structure.

The catchment probability for the Kasted well estimated using
the four-cluster model is presented in Figure 11. Only small
differences can be observed between the catchments estimated
with the three and the four cluster models. These are all observed
in the low probability region, but almost the entire catchment
estimated by the deterministic model structure is contained by
the stochastic models.

FIGURE 7 | Cross-section through the Ristrup model (see Figure 1 for
location). (A) 3 cluster TI, (B) 3 cluster TI blanked with uncertainty, (C) 4
cluster TI, (D) 4 cluster TI blanked with uncertainty, (E) Deterministic structure,
(F) Deterministic structure blanked with uncertainty from 3 cluster analysis.

For the Ristrup well, we have only presented the well
catchment using the four-cluster model. These results can be seen
from Figure 12. Here, the solution is dominated by the effect
of the better resolved geology. This is caused by a full coverage
with geophysics and the higher resistivity contrasts. Combined,
this results in an overall decrease in uncertainty which can be
overed by comparing observed in Figures 7B,D compared to
Figures 6B,D. In the plot this is also apparent from the estimated
catchment probabilities, especially when these are compared to
the catchments estimated using the deterministic structure. These
are much better aligned compared to the Kasted Well (Figure 11).

DISCUSSION

In this study we have documented a methodology to
automatically generate subsurface structures directly from
geophysical data and borehole descriptions. The methodology
is fast and reproducible, meaning that realistic subsurface
structures for hydrological models can be generated in a
few days, once the input data have been prepared. For the
geophysical data this includes processing and inversion, and for
the lithological data this includes a quality control. In the study,
we have extended the CF-resistivity clustering method (Foged
et al., 2014; Marker et al., 2015, 2017) to include MPS. This
has a major benefit with respect to reproducing the structural
patterns observed in the TI, which cannot be resolved using
the two-point statistics contained in a variogram model. In the
present study this is evident by comparing structural realizations
generated using SISIM and SNESIM (Figure 8). Here, the

Frontiers in Earth Science | www.frontiersin.org 9 July 2019 | Volume 7 | Article 181154

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00181 July 9, 2019 Time: 17:38 # 10

Vilhelmsen et al. Data Driven Subsurface Uncertainty Estimation

FIGURE 8 | Deterministic structure and TI together with three structural representations generated using SNESIM and SISIM, respectively.

FIGURE 9 | Observed vs. simulated steady state heads. (A) Deterministic model structure, (B) 3 Cluster models, (C) 4 cluster models. Dotted lines show the plus
and minus 5 m offsets from the identity line.

SISIM realization have limited resemblance with both the TI
and the manual interpretations of the subsurface structures.
Moreover, we also argue, that similarities between the SIS
generated models are much larger than the models generated
with MPS. This is an artifact of applying the geophysical
data as hard constraints, and applying 2-point statistics that
cannot preserve to expected connectivity of the subsurface
structures. To avoid over conditioning the MPS simulations
we have updated the framework such that CF estimates and
resistivity data are not considered as hard data in the analysis.

This is an important contribution, since the uncertainty of
the pertaining cluster is highly dependent on the estimated
resistivity. This can easily be acknowledged from the conditional
probabilities in Figure 3B. A resistivity value of approximately
40 �m would result in cluster 1, but the probability that this
is actually cluster 0 is approximately 30%. In the present study
we have utilized the SNESIM algorithm, but the proposed
methodology could be utilized with other MPS methods such
as e.g., direct sampling Mariethoz et al. (2010) or image quilting
Hoffimann et al. (2017).
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FIGURE 10 | Probability plots of well catchment zones for the Kasted well estimated from the three cluster model realizations. (A) Catchment probability (B)
Probability map overlaid with catchment from deterministic model and outline from Marker et al. (2017).

FIGURE 11 | Probability plots of well catchment zones for the Kasted well estimated from the 4-cluster model realizations. (A) Catchment probability (B) Probability
map overlaid with catchment from deterministic model and outline from Marker et al. (2017).

One of the challenges faced when including geophysical
data in automated structural modeling is that the smoothness
constraints often imposed as regularization in the geophysical
inversion lead to smooth transitions between different subsurface
units. Most often, these results are not directly related to
changes in lithology, since the smoothing effect caused by
the regularization results in a smearing of layer boundaries
(Jørgensen et al., 2013). To avoid this unwanted effect, we
have adopted the sharp inversion formulation in the present
study (Vignoli et al., 2015). This regularization imposes a
penalty on gradients in resistivity, thus producing fewer, but
sharper transitions between layers in the geophysical model. This

methodology has already proven advantageous in groundwater
modeling studies (Christensen et al., 2017a) and structural
interpretations (Barfod et al., 2018). Despite having sharp
layer boundaries in individual 1D resistivity models, these
have to be interpolated if a full 3D representation of the
subsurface resistivity is required. Traditionally this is done using
kriging, thus resulting in smooth transmissions in-between the
sharp resistivity models. Similar to the limitations outlined
above, these smooth transitions are not representations of
the subsurface lithology, but an effect of the interpolation
methodology (Jørgensen et al., 2013; Høyer et al., 2015).
Utilizing such resistivity grids in automated structural modeling
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FIGURE 12 | Probability plots of well catchment zones for the Ristrup well estimated from the 4-cluster model realizations. (A) Catchment probability, (B) Probability
map overlaid with catchment from deterministic model.

will unavoidably lead to unwanted artifacts that cannot be
related to structures. Such effects can be seen in Foged et al.
(2014), Marker et al. (2015), and Jørgensen et al. (2013).
Similar to Marker et al. (2017), we therefore choose to
manage the geophysical data interpretations at the sounding
sites instead of at the interpolated grids. This was done by
transforming resistivity values into clusters directly at the
resistivity and borehole data locations. Using this methodology,
we have minimized the smoothing effects to the extent that
was present in the resistivity models, while at the same time
acknowledging the uncertainty of the underlying structure at
the sounding sites.

Based on the results we argue, that the use of MPS methods
compared to SIS as applied by Marker et al. (2017) has several
advantages. First, we have not treated the geophysical data as
hard data in the simulation. Second, we can easily incorporate
supplementary information into the framework, such as the
vertical proportions or other auxiliary variables, and third, we
are not limited to the information that can be carried in the
variogram model. The latter being particular important in areas
where the data density is low. In a more general context,
similar methodologies could be applied using SIS (Hadavand
and Deutsch, 2017), however, this methodology would still be
limited to the information content that can be carried in the
variogram model.

Compared to previous studies employing CF resistivity
clustering, the proposed methodology is not as limited by ability
of the EM methods to resolve the major lithological units.
This could be areas where clay units have high resistivities
or where salinity reduces the resistivity of aquifers. In such
areas this would result in none uniqueness visualized as
overlapping probability density functions, thereby increasing
the conditional uncertainties. The result would be a relatively
increase in the uncertainty of the derived structural realizations.

In studies, where the majority of the structural modeling
is performed based on EM data, this could potentially be
an important supplement to the derived model or models.
To make the modeler aware of such potential issues, it is
recommended to perform an analysis of the EM resolution
capabilities. This could either be done using a probability
density function as the ones shown in this study, by utilizing
a resistivity atlas (Barfod et al., 2016), or based on background
geological knowledge of the area. The proposed method could
also be restricted to a subdomain of the field site, where
the assumption is valid, and other modeling strategies could
be utilized elsewhere, similar to Høyer et al. (2016) or
He et al. (2015).

The suggested methodology is different from most applied
methods to perform MPS modeling, where the TI is derived
from important expert knowledge (Linde et al., 2015). This study
is not meant to neglect such background or process specific
information. We do, however, argue, that the strength of the
methodology is limited to the time it takes from data to model
development, and it does not exclude incorporation of expert
knowledge into the TI in cases where this is deemed necessary
to obtain a satisfactory modeling result.

In the present study, we limited our analysis to three and four
categorical units. This is a simplification of the true complexity in
large scale aquifer systems. However, it is still common practice to
parameterize subsurface structures in groundwater models with
only a few distinct units. In the present study we set this limit
based on two criteria, namely the comparison to the deterministic
structure and the comparison to the study by Marker et al. (2017).
However, the optimal number of clusters is also limited by the
input data. Here these consists of clay fractions, which to a large
extent is a binary input. 13% of the clay fractions have values
below 0.05 and 73% of the clay fractions have values above
0.95. The geophysical data applied in the present case will have
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the highest sensitivity to subsurface units with high electrical
conductance. In this area this will mainly be Paleogene clays and
clay tills. The method will also be able to distinguish between
sand and clays, but due to the limited sensitivity to units with low
electrical conductivity, it is more difficult to separate e.g., units of
sand and gravel, which both have low electrical conductance in
the present field site.

Non-stationarity in the TI is a challenge normally faced
when performing MPS. In the present case we accounted for
non-stationarity by conditioning structural simulations to a
probability distribution of the different units. In some areas, this
may not be sufficient to address non-stationarity. Under such
circumstances the proposed methodology may not be applicable,
and other methodologies may have to be applied. Alternatively
if the area can be subdivided into more stationary subparts, a TI
can be estimated for each subdomain. These subareas can then
either by managed individually using the proposed methodology,
or the can be simulated using multiple TI. Such capabilities
are not available in the implementation of SNESIM applied
here, but they are available in the Direct Sampling algorithm
(Mariethoz et al., 2010).

Finally, the present study is limited to an analysis of a
method to quantify contribution from structural uncertainty
to forecast of a well catchment zone. Several other sources of
uncertainty exists in groundwater models, including, hydraulic
conductivities, heterogeneity in the distinct units, boundary
conditions, forcing data etc. We did not include these sources,
as we wanted to single out the contribution from the uncertain
structures. The proposed methodology could, however, easily be
combined with these other contributions to encapsulate a more
complete estimate of the forecast uncertainty.

CONCLUSION AND PERSPECTIVES

This study documents a methodology, where the recently
developed CF-resistivity clustering method is combined with
MPS to estimate the contribution from large scale subsurface
structural uncertainty. The derived structures were used to
estimate the contribution to groundwater model forecasts
uncertainty of two different well catchment zones; one screened
in a highly resolved and simpler geological setting and one in a
noisy EM environment with a more complex geology.

Compared to the previous studies using the CF-resistivity
clustering method, the present combination with MPS
methods allows for an improved framework for handling
uncertainties, and it addresses the limitations by the two-point
variogram models.

Similar to previous uses, the main advantage of the
methodology lies in the fact that it is fast, data driven,
reproducible, and transparent. We therefore believe that the
potential for the method is large with respect to model screening
and analysis, either as a direct input to groundwater flow models,
or as a support tool for structural modeling tasks.

The methodology is limited by the direct resolution
capabilities of the EM methods. Effectively this restricts the
resolution to a few distinct units. In the present study, this
resulted in modeling of three and four categorical variables. We
found limited differences in the performance of the respective
groups of models, both with respect to their ability to fit the
hydraulic data and their forecast uncertainty. It is therefore
not expected that the proposed methodology can provide
higher meaningful resolutions than this, except if the model
domain is subdivided into separate regimes, which have distinct
different geophysical responses or hydrogeological structures. To
introduce more units or variability in the models, this must
be done in subsequent steps, e.g., by using MPS methods to
simulate small scale heterogeneity in the large scale structures
(Strebelle, 2002) or using pilot points in the groundwater
model calibration (Doherty, 2003). The SkyTEM dataset and the
borehole descriptions used in the study can be downloaded from
the national Danish databases (Møller et al., 2009a). Borehole and
lithological information is stored in the Jupiter database, and the
geophysical data is stored in the Gerda database.
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In iterative ensemble smoother approaches and ensemble methods in general, the

ensemble size governs the accuracy of the parameter estimates obtained. However,

employing large ensembles may be computationally infeasible in applications with

expensive forward solvers. Here, we reduce the computational cost of using large

ensembles in iterative ensemble smoothing through the use of a proxy solver. To correct

the proxy response for the corresponding model error, the latter of which can bias

posterior parameter estimates if left untreated, we propose a local basis approach. With

this approach, the discrepancy between the detailed and proxy solvers is learned for

a subset of the ensemble and collected in a dictionary that grows with each iteration.

For each ensemble member, the K-nearest neighbors in the dictionary are employed to

build an orthonormal basis which is used to identify the model-error component of the

residual by projection. The proposed methodology reduces the effects of overfitting the

data with the proxy solver, but may lead to underfitting of the data in the absence of a

sufficient number of dictionary entries, meaning that the number of ensemble members

relative to the number of detailed-solver runs cannot be inflated arbitrarily. We present

our approach in the context of the ensemble smoother with multiple data assimilations

(ES-MDA) algorithm, and show its successful application to a high-dimensional synthetic

example that involves crosshole ground-penetrating radar (GPR) travel-time tomography.

Keywords: ensemble methods, ES-MDA, proxy model, model error, inversion, uncertainty quantification

1. INTRODUCTION

Inverse problems commonly involve computationally expensive forward solvers and large
numbers of unknown parameters that are spatially distributed. For risk assessment and effective
environmental decision making, parameter uncertainties are required. These can be obtained
through, for example, Bayesian stochastic inversion whereby the corresponding posterior
distributions are typically sampled using Markov-chain-Monte-Carlo (MCMC) methods. The
Bayesian-MCMC framework offers the advantages of providing a natural quantification of
parameter uncertainties, as well as the flexibility to incorporate probabilistic information about
priors and measurement errors into the inverse problem (Robert and Casella, 2004). However,
depending on the forward solver and the dimensionality of the model-parameter space involved,
it can be extremely computationally expensive. In many real-world applications, for example,
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millions of forward model executions may be required to obtain
meaningful posterior statistics with Bayesian-MCMC methods
(Ruggeri et al., 2015). Although several recent modifications to
the standard Metropolis-Hastings algorithm have significantly
improved the computational efficiency of MCMC (e.g., Haario
et al., 2001; Hansen et al., 2012; Cotter et al., 2013; Chen et al.,
2016; Vrugt, 2016; Beskos et al., 2017), these modifications are
often still not enough to make such methods practically feasible
for many inverse problems.

One way to significantly reduce the computational cost of
stochastic parameter estimation is to employ ensemble-based
methods. With such methods, an initial ensemble of model
parameter sets, drawn from the Bayesian prior distribution,
is updated into posterior samples taking into account the
available data. The most popular ensemble-based method is the
ensemble Kalman filter (EnKF) (Evensen, 1994, 2007), which
was developed as a robust sequential data-assimilation technique.
A modification of the EnKF for solving parameter-estimation
problems is the ensemble smoother (ES), whereby all available
data are assimilated in one global update step rather than
sequentially. The underlying equations for both the EnKF and
ES may be derived from Bayesian statistics (e.g., van Leeuwen,
2001; Evensen, 2007). To deal with non-linear problems, iterative
ensemble techniques have been proposed (e.g., Reynolds et al.,
2006; Emerick and Reynolds, 2012b; Elsheikh et al., 2013; Stordal
and Elsheikh, 2015). The ensemble smoother with multiple data
assimilation (ES-MDA) is one of such techniques, in which the
single update step of ES is replaced with a number of smaller
updates (Emerick and Reynolds, 2012a). The large advantage of
ES methods over MCMC for stochastic parameter estimation is
that the executions of the forward solver can be parallelized in a
straightforward manner.

Despite the computational advantages of ensemble methods
over Bayesian-MCMC approaches, it is well known that
large ensembles are required for the most accurate parameter
estimates and predictions (e.g., Buizza and Palmer, 1998;
Chen and Zhang, 2006; Evensen, 2007). As a result, we still
have with ensemble methods the possibility that, for high-
dimensional inverse problems involving expensive forward
solvers, accurately sampling from the posterior distribution
will remain computationally prohibitive. In such cases, the
only solution is to employ an approximate forward solver or
proxy. Generating such a proxy can be achieved by simplifying
the physics of the problem (e.g., Scholer et al., 2012; Josset
et al., 2015a,b), by coarsening the forward model discretization
(e.g., Arridge et al., 2006; Calvetti et al., 2014), or by constructing
a surrogate model based on, for example, polynomial chaos
expansion, Gaussian processes, or neural network techniques
(e.g., Khu and Werner, 2003; Rasmussen and Williams, 2006;
Marzouk and Xiu, 2009; Goh et al., 2013). However, using a proxy
forward solver in the inversion introduces model error, which
has the potential to strongly bias posterior statistics (Laloy et al.,
2013) and can lead to highly overconfident estimates of the wrong
parameters (i.e., posterior collapse) if not accounted for.

To address the issue of model error arising from the
use of proxy models in stochastic inversion, researchers have
typically focused on two general approaches, both of which rely

upon pairs of detailed and proxy solver runs corresponding
to different sets of model parameters. In the first approach,
these pairs are used to construct a global error model, whose
statistics are incorporated into the estimation procedure through,
for example, the Bayesian likelihood function (e.g., Kaipio
and Somersalo, 2007; Lehikoinen et al., 2010; Schoups and
Vrugt, 2010; Evin et al., 2014; Hansen et al., 2014; Smith
et al., 2015; Piccolo and Cullen, 2016; Oliver and Alfonzo,
2018). Although this can be highly effective in some cases, we
have found that the model errors for many inverse problems
exhibit complex behavior that cannot be described in the
same way over the entire parameter space. With the second
approach, the aim is to construct a local error model, which
is generally accomplished through some kind of interpolation
between known model-error realizations (e.g., Kennedy and
O’Hagan, 2001; Xu et al., 2014; Josset et al., 2015a; Cui et al.,
2018). Although doing this effectively addresses the non-global
nature of the model errors, it is implicitly assumed that the
model-response surface is smooth enough for interpolation
to be effective, and problems may arise in regions of the
model parameter space that are not well-sampled by the
model-error realizations.

Recently, Köpke et al. (2018) presented a new approach to
account for model error arising from the use of proxy forward
solvers in Bayesian-MCMC inversion, whereby information
about the error is gathered during the inversion procedure
through occasional runs of the proxy and detailed solvers
together, the results of which are stored in a dictionary. In
contrast to the existing methods mentioned above, the approach
of Köpke et al. (2018) focuses on identifying by projection the
model-error component of the residual through the construction
of a local orthogonal model-error basis, rather than on the
development of a global or local error model. In this paper, we
adapt this methodology for use with ES parameter-estimation
methods. In particular, we incorporate the related ideas into the
ES-MDA algorithm, where for each ensemble member, the local
basis is created using the K-nearest-neighbor (KNN) entries in
the model-error dictionary. Doing this enables us to accurately
solve the parameter-estimation problem using large ensembles,
while at same time reduce computational costs through the use
of a proxy solver.

The paper is organized as follows: In section 2 we begin with
a short review of ensemble methods followed by the presentation
of our approach to account for model error. In section 3, we then
show the results of applying this methodology to the geophysical
inverse problem of estimating spatially distributed radar-wave
slowness from synthetic crosshole ground-penetrating radar
(GPR) travel-time data. In this regard, results are compared
with inversions based on the standard ES-MDA procedure for
reference. Based on these findings, we discuss in section 4 how
our results compare with standard MCMC sampling, the choice
of parameters in our algorithm needed to provide an optimal
balance between computational efficiency and accuracy, as well
as how the inversion results progress as a function of ES-MDA
iteration. Finally, in section 5, we conclude with some general
comments on the methodology and provide directions for future
research in this domain.
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2. METHODOLOGY

2.1. Ensemble Methods
In a generic formulation of the ensemble Kalman filter (EnKF),
the model state vector yn at data assimilation time step n is
updated after the state forecast step. The update from forecast f
to analysis a is carried out using the following equation (Emerick
and Reynolds, 2012a):

yn,aj = y
n,f
j + Kn(dnpert −H(y

n,f
j )), (1)

with Kalman matrix

Kn = C
n,f
YD (C

n,f
DD + Cn

D)
−1. (2)

Here, j = 1, 2, ..., ne, where ne is the number of ensemble

members; C
n,f
YD is the calculated cross-covariance matrix between

the forecast state vector y
n,f
j and the predicted data dnj = H(y

n,f
j )

obtained through the observation operator H(·); C
n,f
DD is the

calculated auto-covariance matrix of the predicted data; Cn
D is

the covariance matrix of the observed-data measurement errors;
and dnpert is the vector of perturbed observations. The latter is
obtained using dnpert ∼ N (dn

obs
,Cn

D), where dn
obs

denotes the
observed data.

The ensemble smoother (ES) is a variation of the EnKF update
formula presented in Equations (1) and (2) that is specifically
formulated for parameter estimation problems. The general
forward problem

dobs = F(mtrue)+ ǫd (3)

links a set of observed data dobs to a set of “true” model
parameters mtrue through the forward operator F(·) with
measurement errors ǫd ∼ N (0,CD). The corresponding ES
update equation is given by (Emerick and Reynolds, 2012a)

ma
j = m

f
j + K(dpert − F(m

f
j )), (4)

with

K = C
f
MD (C

f
DD + CD)

−1. (5)

Here, m
f
j and ma

j denote the forecast and analyzed model-
parameter vectors, respectively, which correspond to an update

from prior to posterior; C
f
MD is the cross-covariance matrix

betweenm
f
j and the predicted data dj = F(m

f
j ); C

f
DD is the auto-

covariance matrix of the predicted data; and dpert ∼ N (dobs,CD)
is again a vector of perturbed observations. The idea with
equations (4) and (5) is that, after defining an initial parameter
ensemble by drawing from the Bayesian prior distribution, the
ensemble members are updated to represent samples from the
posterior distribution in a single analysis step that incorporates
all of the available data.

2.2. The ES-MDA Algorithm
ES offers an efficient tool to solve parameter-estimation problems
under the assumptions that the prior parameter distribution
is Gaussian and the forward operator F(·) is linear. If these
conditions are not satisfied, then ES can lead to unacceptable
data matches and unphysical results (Aanonsen et al., 2009).
To deal with this issue, we focus in this paper on a recent
development by Emerick and Reynolds (2012a), namely the
ensemble smoother with multiple data assimilation (ES-MDA).
With this approach, one standard ES step, which is comparable to
a single Gauss-Newton iteration when maximizing the posterior
probability of the model parameters (Tarantola, 2005), is replaced
by a number of smaller update steps (or assimilation iterations)
based on a Kalman matrix and perturbed data vector that are
recalculated at each iteration. In order to correctly sample from
the posterior distribution, the measurement-error covariance
matrix CD must be inflated in this procedure. Typically this is
done by scaling CD by the number of assimilation iterations;
however, more generalized inflation coefficients may be used
(Emerick and Reynolds, 2012a). For linear forward solvers, the
ES-MDA algorithm is theoretically equivalent to standard ES
(Emerick and Reynolds, 2012b). For non-linear problems, it can
be shown that the methodology has links to annealed importance
sampling (Stordal and Elsheikh, 2015).

Algorithm 1 outlines the steps involved in the ES-MDA
procedure where, for simplicity, the measurement-error
covariance matrix is assumed diagonal with entries σ 2 and
the corresponding inflation coefficient α is set to equal the
number of assimilation iterations niter . To estimate the inverse
of matrix (CDD + α · CD) we use the truncated singular value
decomposition (TSVD) and retain 99% of the total energy of the
singular values (Emerick and Reynolds, 2012a).

Algorithm 1: Standard ES-MDA

1 set CD = σ 2 I; α = niter
2 draw prior ensemblem containing ne sets of model
parameters

3 for i = 1, ..., niter do
4 perturb observations dpert ∼ N (dobs,α · CD)
5 for j = 1, ..., ne do
6 compute predicted data dj = F(mj)
7 end

8 compute Kalman matrix K = CMD · (CDD + α · CD)−1

9 for j = 1, ..., ne do
10 compute residual rj = dpert − dj
11 update ensemblemj = mj + Krj
12 end

13 end

2.3. Model Error
When working with a perfectly known forward solver F(·)
in the ES-MDA procedure outlined above, the residual rj
corresponding to the jth ensemble member mj, which quantifies
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the misfit between the perturbed observations and the predicted
(forward-calculated) data, is given by

rj = dpert − F(mj)

= F(mtrue)− F(mj)
︸ ︷︷ ︸

parameter-error
component

+ ǫ̃d, (6)

where ǫ̃d denotes the sum of the measurement errors and
perturbation noise. In the case where mj = mtrue, we see from
Equation (6) that the parameter-error term, which represents the
component of the residual related to being at the wrong set of
model-parameter values, will be zero and that the residual energy
will tend to be minimized. In the case where a proxy forward
solver F̂(·) is used in the ES-MDA algorithm, however, the latter
does not generally hold true because

rj = dpert − F̂(mj)

= F(mtrue)− F̂(mj)+ ǫ̃d

= F(mtrue)− F(mj)
︸ ︷︷ ︸

parameter-error
component

+ F(mj)− F̂(mj)
︸ ︷︷ ︸

model-error
component

+ ǫ̃d. (7)

Indeed, the presence of an additional model-error component in
Equation (7) compared to Equation (6) means that the residual
energy may be minimized for model parameter vectors mj that
are substantially different from mtrue, as such parameter sets
well tend to compensate for the model errors. As mentioned
previously, this can lead to strongly biased and overconfident
posterior statistics.

In order to deal with model error in the ES-MDA procedure
arising from use of a proxy solver, we build on the methodology
presented in Köpke et al. (2018) for Bayesian-MCMC inversion,
which focuses on identifying the model-error component of
the residual using a projection-based method. We refer the
reader to that paper for details beyond those given here.
Algorithm 2 outlines the steps involved in our modified ES-MDA
methodology, again assuming that α = niter and CD = σ 2 I

for simplicity, where I is the identity matrix. In addition we
introduce nd, defined as the number of detailed solver runs used
to learn about the model error, and set it to a value to less than or
equal to the number of ensemble members ne.

In themodified ES-MDA algorithm, initial ensemblemembers
mj are drawn from the prior parameter distribution and the

corresponding predicted data d̂j = F̂(mj) are computed using
the proxy solver. In each assimilation iteration, a subset of
the ensemble members having size nd is randomly chosen, for
which the detailed forward responses dj = F(mj) are also

calculated. The resulting nd model-error vectors (i.e., dj− d̂j) and
corresponding parameter setsmj are stored in the dictionariesDE

and DM , respectively. As DM and DE are further enriched with
nd entries in each ES-MDA iteration, more detailed information
about the model error around the posterior solution is gathered.

For each ensemblemembermj, themodel-error component of
the residual is identified and used to correct the proxy response
in order to mimic the detailed forward solver. To this end,

the current model-parameter dictionary DM is searched for
the K-nearest-neighbor (KNN) parameter sets to mj using a
standard Euclidean distance measure (e.g., Hastie et al., 2009).
An orthonormal basis Bj for the model error at mj is then
constructed from these parameter sets using the Gram-Schmidt
technique (e.g., Strang et al., 1993). We assume in our work that
the data-measurement-error and parameter-error components of
the residual are orthogonal to the model-error component, and
therefore cannot be well represented by the basis. An estimate
of the model error ẽj is thus obtained by projecting the residual
onto Bj

ẽj = Bj · B
T
j · rj. (8)

This result, which represents the details missing in the proxy
solution, is then added to the proxy response to obtain a corrected
forward response

d̃j = d̂j + ẽj (9)

with corresponding corrected residual

r̃j = dpert − d̃j. (10)

The corrected forward responses for all of the ensemble members
are used to compute the corrected Kalman matrix

K̃ = CMD̃ · (CD̃D̃ + α · CD)
−1 (11)

which is used with the corrected residuals to update the ensemble.
Under the stated assumptions and with appropriate choices

of ne, nd, and K, Algorithm 2 allows us to effectively reduce
the computational cost of ES-MDA when considering large
ensembles through the use of a proxy solver. The dimensionality
of the parameter-estimation problem and the difference in
computational cost between the proxy and detailed forward
solutions determine how much computational benefit is derived
from this methodology.We refer the reader to Köpke et al. (2018)
for a detailed discussion of the orthogonality assumption between
the model-error and other components of the residual.

3. APPLICATION TO CROSSHOLE GPR
TOMOGRAPHY

3.1. Experimental Design and Forward
Models
As an example, we now apply our modified ES-MDA algorithm
with model-error correction to the crosshole GPR travel-
time tomography inverse problem. A transmitter and receiver
antenna, located in two adjacent boreholes, are used to obtain
the travel times of radar energy between the holes for different
antenna positions. These times are linked to the spatial
distribution of subsurface radar-wave velocity, the estimation of
which is the goal of the inverse problem. Crosshole GPR travel-
time tomography represents an excellent test problem for our
purposes because (i) it has been extremely well-studied, most
notably from a stochastic inverse standpoint (e.g., Giroux et al.,
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Algorithm 2: ES-MDA with model-error correction

1 set CD = σ 2 I; α = niter ; nd ≤ ne; l = 0
2 draw prior ensemblem containing ne sets of model
parameters

3 for i = 1, ..., niter do
4 perturb observations dpert ∼ N (dobs,α · CD)
5 select random subsetmr ofm with r = 1, ..., nd
6 for j = 1, ..., ne do
7 compute predicted data using proxy solver

d̂j = F̂(mj)
8 if mj ∈ mr then

9 l = l+ 1
10 compute predicted data using detailed solver

dl = F(mj)

11 enrichmodel-error dictionaryDE
l
= dl − d̂j

12 enrich corresponding model-parameter dictionary
DM

l
= mj

13 end

14 end

15 for j = 1, ..., ne do
16 search dictionaryDM for K-nearest neighbors tomj

17 take corresponding entries fromDE and place in set
DK(mj)

18 build orthonormal basis B having span{DK(mj)}

19 compute residual rj = dpert − d̂j
20 project rj onto B to estimate model error

ẽj = B · BT · rj

21 correct proxy response d̃j = d̂j + ẽj
22 end

23 compute Kalman matrix K̃ = CMD̃ · (CD̃D̃ + α · CD)−1

24 for j = 1, ..., ne do
25 compute residual r̃j = dpert − d̃j

26 update ensemblemj = mj + K̃r̃j
27 end

28 end

2007; Looms et al., 2008; Scholer et al., 2012; Hansen et al.,
2013; Linde and Vrugt, 2013); (ii) it involves a high-dimensional
and spatially distributed set of model parameters that must be
estimated; and (iii) the forward problem can be solved in a variety
of different ways using different physical approximations.

GPR travel times are linked to the spatial distribution of
electrical properties between the two boreholes, predominantly
the dielectric permittivity, through Maxwell’s equations.
Numerical solution of these equations represents the most
accurate means of calculating the travel times, but at the same
time it is highly computationally expensive. To reduce the
computational cost, the physics of the electromagnetic wave
propagation can be approximated using ray theory, whereby
the effects of frequency are ignored and we solve the eikonal
equation (e.g., Nowack, 1992). To decrease the computational
cost even further, the straight-ray approximation may also

be considered, which means that the ray paths that connect
transmitter and receiver locations are assumed to be straight
lines (e.g., Cordua et al., 2008). The latter approximation is
typically applied in cases where contrasts in velocity do not
exceed 10%; however it is only truly valid when the subsurface
is homogeneous. Here, we consider the eikonal equation
to be our detailed forward solver F(·) and the straight-ray
approach to be our proxy solver F̂(·). This choice was made
for demonstration purposes, as it allows us to compare the
results of ES-MDA inversions obtained using our approach to
those obtained using standard ES-MDA, as well as MCMC,
based on the detailed solver alone. That is, the eikonal solution
is fast enough to allow it to be used in the standard ES-MDA
algorithm with a large number of ensemble members, as
well as for MCMC posterior sampling. Note that, instead
of estimating directly velocity from GPR travel times in our
analysis, we focus on the estimation of subsurface slowness (the
reciprocal of velocity) which makes the straight-ray forward
problem linear.

The survey configuration for our synthetic experiments
consists of two boreholes that are 8-m deep and 4-m apart
(Figure 1). Transmitter and receiver antenna positions are
distributed equally in depth every 0.2 m down the left and right
boreholes, respectively. Sending a radar pulse from all transmitter
positions to all receiver positions yields 1,600 travel-time data.
We consider a pixel-based parameterization of the subsurface
whereby the region between the boreholes by discretized into
20 × 40 square cells of constant-slowness and side length
0.2 m. The synthetic “true” subsurface and initial prior ensemble
members are generated by sequential Gaussian simulation using
the GSLIB software package (Deutsch and Journel, 1992). The
mean slowness is set to 10 ns/m and an exponential auto-
covariance kernel having a standard deviation of 1.7 ns/m
is assumed, with horizontal and vertical correlation lengths
of 6 m and 1.5 m, respectively. The corresponding synthetic
observed data are generated by solving the eikonal equation and
adding measurement errors, the latter of which are simulated as
Gaussian randomnoise having covariancematrixCD = σ 2 Iwith
standard deviation σ = 0.2 ns.

3.2. ES-MDA Results
Our goals in this analysis are to (i) study the effects of model
error on ES-MDA inversions; (ii) investigate the influence of
the ensemble size on the accuracy of the results obtained;
and (iii) explore how the parameters of our modified ES-
MDA procedure with model-error correction can be chosen to
provide an optimal balance between computational efficiency
and accuracy. To this end, we compare parameter-estimation
results for different numbers of ensemblemembers when (i) there
is no model error, meaning that the detailed (eikonal-equation)
forward solver is used within the standard ES-MDA procedure
(Algorithm 1); (ii) model error is present but not accounted
for, meaning that the proxy (straight-ray) forward solver is used
within the standard ES-MDA procedure; and (iii) model error
is present and accounted for through the use of Algorithm 2. In
each case, we examine the combined results from 10 ES-MDA
inversions obtained using different initial ensembles and niter =
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FIGURE 1 | Considered crosshole GPR survey configuration with boreholes

shown as black lines. Transmitter and receiver positions are shown as white

dots and distributed every 0.2 m down the boreholes.

8 assimilation iterations. Ensemble sizes of ne = 20, 40, 80, 160,
320, and 640 are considered in our analysis.

To assess the quality of the inversion results, we consider two
metrics. The average root-mean-square (RMS) travel-time misfit,
which quantifies globally the ability of the posterior ensemble
to represent the observed data, is defined for ES-MDA run i
(i = 1, 2, ..., 10) as follows:

MT
i =

1

ne

ne
∑

j=1

1
√
nT

∥

∥dobs − di,j
∥

∥

2 . (12)

where nT is the number of travel-time data. For the case where
model error is absent and data errors are zero-mean andGaussian
distributed with covariance matrix CD = σ 2I, the expected value
of MT

i will be σ . Note that, in the case where model error is
present but not accounted for, the detailed forward solver di,j in

equation (12) is replaced with the proxy solver d̂i,j.
We also consider in our analysis the average RMS slowness

misfit, defined by

MS
i =

1

ne

ne
∑

j=1

1
√
nT

∥

∥mtrue −mi,j
∥

∥

2 , (13)

where nS is the number of slowness cells. This metric quantifies
how well the posterior ensemble captures the true underlying
model parameters, and can only be employed in the case of
synthetic data where the true subsurface slowness distribution is
known. In addition to the twometrics in Equations (12) and (13),
we plot the mean slowness fields over all ensemble members and

all ES-MDA runs in order to visually compare them with the true
slowness distribution.

Figure 2 summarizes the parameter-estimation results
obtained for the case where there is no model error. In Figure 2A
we observe that the average RMS travel-time misfit decreases
consistently with larger numbers of ensemble members toward
the expected value of σ = 0.2 ns which reflects the prescribed
data errors. After around 320 ensemble members, adding
more members is seen to only slightly further improve the
results. Figure 2B shows that the slowness misfit also decreases
consistently as a function of ensemble size. This is supported
by Figure 2C, which shows that the mean slowness fields
become increasingly detailed and similar to the true subsurface
distribution as the number of ensemble members increases.
The increasing overall accuracy of the ES-MDA results with
larger ensemble size is based on the reduction of sampling
errors following the central limit theorem (Evensen, 2007).
We can conclude that larger ensembles combined with the
detailed forward solver enable us to obtain more reliable
posterior parameter estimates, but at the cost of significantly
greater computational effort when the detailed solver is
computationally expensive.

Figure 3 summarizes the parameter-estimation results
obtained for the case where model error is present but not
accounted for. In Figure 3A we observe that, in accordance
with Figure 2A, the travel-time misfit consistently decreases
with larger ensemble size. However, it approaches a stable
value that is well above the target value of σ = 0.2 ns, because
the presence of model error does not allow data fitting to a
level that is in accordance with the prescribed data errors.
In addition, unlike in Figure 2B, the slowness misfit now
decreases only until ne = 40, after which it increases again
(Figure 3B). For ne ≤ 40, we do not have enough ensemble
members to resolve the details of the posterior distribution
and therefore only the posterior mean can be represented in
the parameter estimation results (Chen and Zhang, 2006).
Conversely, when ne > 40, the solution moves toward a biased
posterior distribution. That is, with more ensemble members
the parameters have the ability to compensate for the model
error and the data become over-fitted, meaning that a better
data match is achieved but the parameters do not represent the
true subsurface model. The mean slowness fields in Figure 3C

allow us to see how the model error introduces bias in the
parameter-estimation results as ne increases; strong artifacts are
clearly observed in these fields for ensemble sizes larger than
160.

Finally, we examine the inversion results obtained for the
case where model error is present and accounted for through
our modified ES-MDA approach. We first consider inversions
where nd = 20 detailed solver runs per iteration are used
to build the model-error dictionary and K = 20 KNN from
this dictionary are used to construct the model-error basis for
each ensemble member. The corresponding results are shown in
Figure 4. Note that, in the case with ne = 20, the detailed solver
is executed for each ensemble member, which corresponds to the
standard ES-MDA procedure in Algorithm 1. In Figures 4A,B

we see that both the travel-time and slowness misfit decrease
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FIGURE 2 | Results of 10 standard ES-MDA runs for the case of no model error. Shown as a function of the number of ensemble members, ne, are (A) box plots of

the average RMS travel-time misfit [ns]; (B) box plots of the average RMS slowness misfit [ns/m]; and (C) the mean posterior slowness fields [ns/m]. Added to the box

plots are the mean (circles), and minimum and maximum values (crosses). The dashed horizontal line in (A) represents the expected value of the travel-time misfit

assuming that the residuals follow the prescribed Gaussian distribution for the data errors.

from ne = 20 until they reach a minimum at around 80–160
ensemble members. This demonstrates that the consideration
of larger ensembles through use of a proxy solver combined
with our model-error correction can lead to more accurate

results compared to standard ES-MDA based on small ensembles
and the detailed forward solver. These results are confirmed in
Figure 4C, where we observe that the bias is largely removed
from the mean slowness fields for ne ≤ 160 in comparison to
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FIGURE 3 | Results of 10 standard ES-MDA runs for the case where model error is present but not accounted for. Shown as a function of the number of ensemble

members, ne, are (A) box plots of the average RMS travel-time misfit [ns]; (B) box plots of the average RMS slowness misfit [ns/m]; and (C) the mean posterior

slowness fields [ns/m]. Added to the box plots are the mean (circles), and minimum and maximum values (crosses). The dashed horizontal line in (A) represents the

expected value of the travel-time misfit assuming that the residuals follow the prescribed Gaussian distribution for the data errors.

Figure 4C. However, for ensemble sizes larger than around 160,
the travel-time and slowness misfit are seen to again increase,
meaning that the data become under-fitted. That is, the ensemble
size becomes too large compared to the number of detailed solver

calculations for the model error to be well represented in the
dictionary, meaning that projection onto the model-error basis
will not properly identify the model-error component of the
residual. This has the effect of introducing bias into the inversion
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FIGURE 4 | Results of 10 runs of our modified ES-MDA algorithm to account for model error, with 20 detailed solver calculations and 20 KNN. Shown as a function of

the number of ensemble members, ne, are (A) box plots of the average RMS travel-time misfit [ns]; (B) box plots of the average RMS slowness misfit [ns/m]; and (C)

the mean posterior slowness fields [ns/m]. Added to the box plots are the mean (circles), and minimum and maximum values (crosses). The dashed horizontal line in

(A) represents the expected value of the travel-time misfit assuming that the residuals follow the prescribed Gaussian distribution for the data errors.

results, which is clearly seen in the mean slowness fields in
Figure 4C when ne > 160.

To explore the latter findings, we consider again Algorithm 2,
but this time using nd = 40 detailed solver runs per iteration and

K = 40 KNN to build the model-error dictionary and construct
the model-error basis, respectively. Here, when ne = 40, the
detailed solver is executed for each ensemble member, which
again corresponds to the standard ES-MDA procedure. Similar
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FIGURE 5 | Results of 10 runs of our modified ES-MDA algorithm to account for model error, with 40 detailed solver calculations and 40 KNN. Shown as a function of

the number of ensemble members, ne, are (A) box plots of the average RMS travel-time misfit [ns]; (B) box plots of the average RMS slowness misfit [ns/m]; and

(C) the mean posterior slowness fields [ns/m]. Added to the box plots are the mean (circles), and minimum and maximum values (crosses). The dashed horizontal line

in (A) represents the expected value of the travel-time misfit assuming that the residuals follow the prescribed Gaussian distribution for the data errors.

to before, we observe in Figures 5A,B that the travel-time and
slowness misfit decrease from ne = 40 until a minimum is
reached. Although it is difficult to determine the exact position

of this minimum due to the limited discretization, we see that
it falls somewhere around 160 ensemble members. After the
minimum value, the travel-time and slowness misfit are again
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seen to increase and the data become under-fitted. This behavior
is well reflected in the mean slowness fields in Figure 5C, which
show good agreement with the true field for ne ≤ 320, but clearly
contain model-error-related artifacts when ne = 640.

4. DISCUSSION

We saw above that use of the modified ES-MDA approach
described in Algorithm 2 can allow for a significant reduction in
posterior bias when employing a proxy forward solver compared
to the standard ES-MDA procedure. This offers the possibility
of considering large ensemble sizes within ES-MDA, which can
be computationally prohibitive in the context of an expensive
detailed forward solver. One issue requiring further discussion,
however, is the balance between (i) the number of ensemble
members considered ne, which in the case of no model error
controls the accuracy of the results obtained; and (ii) the number
of detailed solver runs nd, which determines the success of the
model-error correction. We saw in Figure 4 that, when nd = 20
detailed solver runs per iteration were considered in the modified
ES-MDA procedure, use of ensemble sizes between 40 and 160
allowed for an improvement in parameter estimates compared
to standard ES-MDA based on the detailed solver with ne =

20. When nd = 40 detailed solver runs per iteration were
considered, on the other hand, a corresponding improvement
was found for ensemble sizes between 80 and 320. These results
suggest that, at least for the application presented in this paper,
Algorithm 2 can be successfully applied only for ensembles
having size less than 8 times the number of detailed solver runs
per iteration. Past this number, there will not be enough entries
in the model-error dictionary to allow for an accurate correction
of the model error for all ensemble members, and the benefits
of using an approximate solver with model-error correction will
be compromised. Further exploration of these findings in the
context of other inverse problems is required.

Another issue in need of some discussion is how the results of
using the standard and modified ES-MDA algorithms presented
in Figures 2–5 compare with samples from the “true” posterior
distribution, the latter of which we assume to be available through
MCMC sampling based on the detailed forward solver. To
this end, we show in Figure 6 five randomly chosen posterior
slowness realizations obtained via MCMC sampling based on
the eikonal equation (Figure 6A); standard ES-MDA based
on both the eikonal equation and straight-ray approximation
(Figures 6B,C); and our modified ES-MDA procedure with nd =

20 and nd = 40 (Figures 6D,E). The point-wise posterior mean
and standard deviation, computed over all available samples,
are also shown for reference. The results in Figure 6A were
obtained using the sequential geostatistical simulation technique
(e.g., Ruggeri et al., 2015), where after burn-in, the results of
140,000 MCMC iterations were thinned to provide 140 posterior
samples. For Figures 6B–E, the number of ensemble members
considered was chosen to be the maximum investigated value
(ne = 640) for standard ES-MDA, whereas for our modified ES-
MDA procedure it was set equal to 8 times the number of detailed
solver runs, as discussed above.

In comparing the posterior realizations in Figures 6A,B,
we see that they are highly similar, which suggests that ES-
MDA based on the detailed forward solver and using a large
number of ensemble members allows for adequate sampling of
the Bayesian posterior distribution. The corresponding standard
deviation images generally show a pattern that reflects the
degree of ray coverage; regions of higher slowness contain a
smaller ray density. However, the ES-MDA solution is seen to
contain more variability, which may arise because the 140,000
MCMC iterations utilized were not enough to adequately explore
the posterior space. In examining the stochastic realizations
in Figure 6C, the proxy-related bias in this solution is clearly
apparent. Here, the symmetric pattern of variability reflects
variations in ray density that are controlled solely by the antenna
locations in the straight-ray case. Finally, in comparing the
results in Figures 6D,E with those in Figure 6A, we see that our
modified ES-MDA algorithm largely removes the proxy-related
bias and allows for the generation of posterior samples that are
close in appearance to the MCMC solution, which again validates
our approach. These samples do, however, show a slightly
higher degree of variability with less correlation compared to
Figures 6A,B, with the nd = 40 solution providing a better
match than the nd = 20 solution. As discussed above, with a
fixed number of detailed solver runs per iteration, there is an
upper limit to the number of ensemble members that can be
effectively considered in our procedure, which in turn may not
be enough to characterize exactly the posterior distribution (see
Figure 2). More accurate results would thus likely require greater
numbers of detailed solver runs to allow for an increase in the
ensemble size. The higher degree of variability in these results
may also reflect imperfect removal of the model error, or the
lesser number of samples used to compute the point-by-point
mean and standard deviation.

Lastly, we wish to elaborate on the number of internal ES-
MDA assimilation iterations considered in our approach, which
was held constant at a value of niter = 8 for all of the results
presented section 3.2. To this end, we study in Figure 7 the
travel-time and slowness misfit as a function of iteration for
an ensemble size of ne = 160 when (i) no model error is
present; (ii) model error is present but not accounted for; and
(iii) model error is present and accounted for using nd =

40 detailed solver runs per iteration and K = 40 KNN.
We observe overall that the first assimilation iteration has the
largest influence on reducing the travel-time and slowness misfit
from prior to posterior. This arises because of the linearity
of the proxy (straight-ray) solver and the weak non-linearity
of the detailed (eikonal) solver in our travel-time tomography
application. Indeed, Emerick and Reynolds (2012b) proved that,
for linear problems, one ES update using the measurement noise
covariance matrix is equivalent to multiple ES-MDA updates
using the inflated covariance matrix. When using the detailed
solver in the inversion where there is no model error, for
example, Figures 7A,D show a large decrease in travel-time and
slowness misfit after one iteration and a slow decrease from
iterations 2–8. In this case 4 iterations would be enough to
obtain similar parameter-estimation results to those obtained
using 8 iterations.Whenmodel error is present but not accounted
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FIGURE 6 | Five randomly chosen posterior slowness realizations along with the point-wise mean and standard deviation [ns/m] obtained via (A) MCMC sampling

based on the detailed eikonal solver (140 samples total); (B) standard ES-MDA based on the detailed eikonal solver with ne = 640 (Figure 2; 6,400 samples total);

(C) standard ES-MDA based on the proxy straight-ray solver with ne = 640 (Figure 3; 6,400 samples total); (D) our modified ES-MDA algorithm with 20 KNN,

nd = 20, and ne = 160 (Figure 4; 1,600 samples total); and (E) our modified ES-MDA procedure with 40 KNN, nd = 40, and ne = 320 (Figure 5; 3,200 samples

total).

for, we see in Figure 7B that a good travel-time data match
is achieved and no further improvement is observed after one
iteration. However, Figure 7E shows that the corresponding
slowness misfit is still large after one iteration compared to
Figure 7D, which arises because of overfitting; that is, the
inversion attempts to fit the model error. Applying our proposed
method, we see in Figure 7C that the travel-time misfit is again
primarily reduced in the first iteration and behaves similarly to
the case where no model error is present (Figure 7A). More
importantly, over-fitting is significantly reduced (Figure 7F)
and the slowness misfit after only 4 iterations is similar to
that seen in Figure 7B. This again confirms that employing
our proposed approach can effectively remove proxy-related
bias and allow the ES-MDA procedure to yield results that
are comparable to inversions when no model error is present.

Although it may be possible to arrive at these results in less
iterations than the 8 considered in this paper, it is difficult to
know in advance how the combined approach of proxy solver
and model-error correction behaves in terms of the internal
ES-MDA iterations.

5. CONCLUSIONS

We have presented in this paper an approach that builds on
the work of Köpke et al. (2018) in order to remove the bias
associated with the use of proxy forward solvers in ES-MDA
inversions. This allows for the consideration of larger ensemble
sizes, which help to improve the accuracy of the parameter
estimates obtained. Instead of constructing a local or global error
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FIGURE 7 | Box plots showing the results of 10 ES-MDA runs using 160 ensemble members, as a function of the number of assimilation iterations, for the cases of

(A,D) no model error; (B,E) model error present but not accounted for; and (C,F) model error present and accounted for using Algorithm 2 with 40 detailed solver

calculations and 40 KNN. Added to the box plots are the mean (circles), and minimum and maximum values (crosses). The dashed horizontal line in (A–C) represents

the expected value of the travel-time misfit assuming that the residuals follow the prescribed Gaussian distribution for the data errors.

model, our approach importantly aims to identify the model-
error component of the residual during the ES-MDA procedure,
which is used to correct the proxy forward response. This is
accomplished through construction of an orthonormal model-
error basis for each ensemble member and at each iteration based
on a prescribed number of KNN entries selected from a model-
error dictionary. The latter is created as the inversion proceeds,
and thus no prior information about the model error is required
before running the procedure.

With regard to the considered example problem of estimating
the spatial distribution of subsurface slowness from crosshole
GPR travel times, we saw that our modified ES-MDA approach
allows us to obtain accurate posterior estimates characteristic
of large ensembles with a computational cost comparable to a
small number of runs of the detailed forward solver. The results
did show, however, that the success of the approach depends
on the ratio between the number of ensemble members and the
number of detailed solver runs per iteration used to learn about
themodel error. In particular, for the crosshole GPR tomographic
example considered, this ratio should not exceed a value of
approximately 8.

Despite the successful application of our model-error
approach, there remain a number of topics that should be
investigated further. For example, in the work presented here,
we set the number of KNN equal to the number of detailed
solver runs per ES-MDA iteration used to learn about the model

error. In this case, the same model-error basis is constructed
in the first iteration for each ensemble member. In subsequent
iterations and with a growing dictionary, for each ensemble
member the KNN are used to extract local information about
the model error from the model-error dictionary and a local
model-error basis is calculated, respectively. However, this choice
could be validated and optimized to improve the identification of
the model-error component of the residual. Further, we assume
with our method that the latter is approximately orthogonal
to the data-measurement and parameter-error components,
which allows for its identification using a projection approach.
Although we have found this assumption to yield acceptable
results for a range of test problems examined so far, it requires
further investigation.
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