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Editorial on the Research Topic

Temporal Features in Resting State fMRI Data

It has become increasingly clear that functional connectivity derived from resting-state functional
magnetic resonance imaging (rsfMRI) data is not stationary, but contains ample dynamic
information (Hutchison et al., 2013). However, how to extract and quantify the temporal features
in rsfMRI data, and how these features help us better understand the function of neural circuitries
and networks in health and disease remain active Research Topics. This special issue includes a
group of papers specifically investigating temporal features in rsfMRI data.

The utilization of temporal features in rsfMRI data has considerably enhanced our
understanding of the neuropathophysiology and improved the diagnosis of brain disorders. Zhu
et al. investigated the temporal variability on the connectivity profiles in Parkinson’s disease
(PD) using a sliding-window method. They found that PD patients exhibited greater temporal
variability in both cortical and subcortical networks. Importantly, this dynamic connectivity
measure was associated with the severity of clinical symptoms in patients (Zhu et al.). In another
study, by integrating the strength and temporal variability of complex-network properties derived
from effective connectivity networks in patients with post-traumatic stress disorder (PTSD),
patients with PTSD with comorbid mild-traumatic brain injury (mTBI) and healthy controls,
Rangaprakash et al. identified dysregulation of prefrontal regions over subcortical and visual
regions in PTSD/mTBI. These patients displayed lower variability over time in all network
properties, which can be an indicator of poorer flexibility. Importantly, authors show that network
properties, including dynamic ones, of the prefrontal-subcortical pathway are not only significantly
correlated to symptom severity and neurocognitive performance, but also provide predicative value
in classifying these disorders (Rangaprakash et al.). Furthermore, using a novel high-order dynamic
functional connectivity networks (D-FCNs), Zhao et al. achieved a classification accuracy of 83%
for autism spectrum disorder (ASD). This method can overcome the problems of conventional
sliding-window-based D-FCNs, such as lack of high-level interactions across regions and the
temporal mismatching issue (Zhao et al.).

Temporal features in rsfMRI data are also tightly linked to physiology. For instance, converging
evidence suggests that arousal may have profound effects on rsfMRI signals and connectivity
dynamics. Gu et al. reviewed the relationship between rsfMRI and brain arousal. Authors also
discussed the potential impact of arousal on spurious relationship between functional connectivity
measures and physiology/behavior (Gu et al.). In addition, Wang et al. advanced the capacity of
individual identification based on rsfMRI data by including temporal features in convolutional
recurrent neural networks (ConvRNN). They demonstrate that ConvRNN can achieve a higher
identification accuracy than conventional RNN (Wang et al.).
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Methodology development continues to improve our
capacity to extract temporal features of rsfMRI. Zhou et al.
proposed a protocol designed to track dynamical whole-brain
functional connectivity states, using signed community
clustering with the optimized modularity by two-step
procedures. This method makes it possible to track rapid
dynamical change in functional connectivity (Zhou et al.).
Chen et al. constructed brain networks using unwrapped
fMRI phase image, instead of the magnitude of fMRI data
conventionally used. The functional network connectivity
matrix obtained based on phase fMRI was more sparsely
distributed across the brain, with connections having more
balanced positive/negative correlations. Their findings open
a new avenue to understanding brain function connectivity
(Chen et al.). Yang et al. went beyond the conventional
method of regressing out motion parameters, and developed
an automated convolutional neural network (CNN) model
to obtain optimal motion regressors, which can better reduce
motion-related artifacts.

Finally, we have a better understanding of temporal features
in rsfMRI data. Guan et al. studied the linearity and stationarity
of fMRI time series in individual resting-state brain networks,
and found that different networks had distinct properties of
non-stationarity and non-linearity. Nezafati et al. examined the
complexity of regional brain activity measured by rsfMRI data
using sample entropy. They found that the brain exhibited
significant spatial heterogeneity in levels of entropy/complexity.
In addition, the entropy of brain activity was also modulated by
task performance (Nezafati et al.).

Taken together, the studies in this special issue demonstrate
the importance of investigating temporal features in rsfMRI data,
and exemplify the potential impact of applying these features to
better understand brain function in health and disease.
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Parkinson’s disease (PD) is a neurodegenerative disease characterized by dysfunction in
distributed functional brain networks. Previous studies have reported abnormal changes
in static functional connectivity using resting-state functional magnetic resonance
imaging (fMRI). However, the dynamic characteristics of brain networks in PD is
still poorly understood. This study aimed to quantify the characteristics of dynamic
functional connectivity in PD patients at nodal, intra- and inter-subnetwork levels.
Resting-state fMRI data of a total of 42 PD patients and 40 normal controls (NCs)
were investigated from the perspective of the temporal variability on the connectivity
profiles across sliding windows. The results revealed that PD patients had greater nodal
variability in precentral and postcentral area (in sensorimotor network, SMN), middle
occipital gyrus (in visual network), putamen (in subcortical network) and cerebellum,
compared with NCs. Furthermore, at the subnetwork level, PD patients had greater
intra-network variability for the subcortical network, salience network and visual network,
and distributed changes of inter-network variability across several subnetwork pairs.
Specifically, the temporal variability within and between subcortical network and other
cortical subnetworks involving SMN, visual, ventral and dorsal attention networks as
well as cerebellum was positively associated with the severity of clinical symptoms in
PD patients. Additionally, the increased inter-network variability of cerebellum-auditory
pair was also correlated with clinical severity of symptoms in PD patients. These
observations indicate that temporal variability can detect the distributed abnormalities of
dynamic functional network of PD patients at nodal, intra- and inter-subnetwork scales,
and may provide new insights into understanding PD.

Keywords: Parkinson’s disease, dynamic functional connectivity, resting-state fMRI, subcortical networks,
temporal variability
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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disease that affects millions of people around the world. The
prominent symptoms in PD are the motor deficits including
tremor, rigidity, and bradykinesia, which are mainly due to the
loss of dopaminergic neurons in the substantia nigra (Kalia and
Lang, 2015; Ma et al., 2016). Previous studies had proposed that
the dysfunction of corticostriatal network pathways and neural
circuits is related to the impairments in PD (Hacker et al., 2012;
Agosta et al., 2013; Luo et al., 2014; Amboni et al., 2015; Alia
et al., 2016). Despite being extensively investigated, mechanisms
underlying disturbances in PD are still poorly understood.

The past decade has seen remarkable growth of network
neuroscience and neuroimaging techniques and their
applications to abnormal brain connectivity in psychiatric
and neurological disorders. Several previous studies highlighted
that PD could be considered as a disease related to the
disruptions in several networks using diffusion tensor imaging
(DTI) (Melzer et al., 2013; Lopes et al., 2017), resting-state
functional magnetic resonance imaging (fMRI) (Luo et al.,
2014), task fMRI (Shine et al., 2013b) and other imaging
techniques (Brooks and Pavese, 2011). Functional network
analysis based on resting-state fMRI data, accounting for the
intrinsic blood oxygen level-dependent (BOLD) fluctuations,
offers an effective tool for characterizing interactions between
brain regions and quantifying abnormal organization of brain
network in disorders (Bullmore and Sporns, 2009; Smith
et al., 2009, 2011). Previous studies on large-scale network of
PD patients by graph theoretic analysis revealed disruptions
in the topological properties of brain networks and these
network measures have been demonstrated to serve as potential
biomarkers of PD for clinical diagnosis (Amboni et al., 2015).
Furthermore, altered modular organization of functional brain
networks in PD patients has also been reported (Ma et al.,
2016; Peraza et al., 2017), implying an abnormal functional
integration of PD.

However, the majority of earlier studies have adopted a “static”
point of view, whereas functional connectivity (FC) between
regions are actually associated with dynamic brain activity
over time (Hutchison et al., 2013; An et al., 2017). Dynamic
functional connectivity (dFC) analysis has been directed to
assess relevant FC fluctuations and examine how functional
organization evolves over time. It sheds new insights on the
dynamic spatiotemporal organization of resting brain activity
and captures FC alterations induced by disease pathologies (Preti
et al., 2016; Khambhati et al., 2017). For example, previous studies
have found that Schizophrenia (SZ) patients displayed within-
network disruptions of the DMN (Du et al., 2016) as well as
weaker across-network connectivity between DMN and other
resting-state networks (RSNs) (Rashid et al., 2014; Su et al., 2016).
In addition, the dynamic connectivity patterns have served as
features to gain better identification output in the classification
of MCI subjects (Wee et al., 2016) and of autism patients (Price
et al., 2014) than the standard static approaches. These results
suggest that the abnormal network characteristics of PD may
emerge from dynamic functional connections that cannot be

completely captured by static approaches and may help deepen
our understanding of this disease.

Despite these applications, alterations in the dynamic
properties of PD individuals still remain largely unknown. Kim
et al. (2017) first investigated the temporal states of dFC and
variability of network topology in PD patients using k-means
clustering, and found that PD patients showed a decrease in
the sparsely connected State I, paralleled by an increase in the
stronger interconnected State II, suggesting the altered functional
segregation and abnormal global integration in brain networks.
Sourty et al. (2016) employed Product Hidden Markov Models
(PHMM) to assess the connectivity state changes between a
set of RSNs in dementia with Lewy bodies, a disease sharing
similar features to PD, and figured out networks (i.e., occipito-
parieto-frontal network, the medial occipital network and the
right fronto-parietal network) related to impairment of cognitive
function in patients. However, these studies mainly focused on
the connectivity state changes of the whole brain, ignoring the
dynamic connectivity profile of particular brain regions. A recent
work (Zhang et al., 2016) investigated the temporal properties
of dFC by defining the temporal variability of FCs associated
with a specific brain region, and the temporal variability reveled
a strong correlation with BOLD/EEG activity. This approach
allows localization of regions showing significant variability
between groups, thus helping to reveal the abnormality of
regional dynamics of functional brain networks in various brain
diseases. Another work (Jie et al., 2018) integrated both temporal
and spatial variabilities of dynamic functional networks for
automatic diagnosis of Alzheimer’s Disease and boosted the
diagnosis performance, demonstrating that the spatio-temporal
interaction patterns can provide important information on the
underlying nature of neurodegenerative disease. Actually, PD
is a disease associated with a disruption across diffuse areas of
brain and interactions of multiscale organization. However, the
temporal properties of subnetworks (e.g., the intra- and inter-
network variability) have not been investigated yet. Temporal
variability may help elucidate the aberrant changes underlying
PD patients from the perspective of regional dynamics of
functional brain networks. A systematic examination of dFC
patterns and temporal variability in aspects of nodal, intra- and
inter- subnetworks may further deepen our understanding of PD.

In this study, we performed dFC analysis built on non-
overlapping networks to investigate the aberrant dFC patterns
in PD patients. With a focus on temporal variability of
FC profiles, we systematically examined the dFC changes at
nodal, intra- and inter- subnetwork levels. Our major goal
was to demonstrate whether: (1) the temporal variability could
characterize the underlying alterations in the PD cohort and/or
(2) the changes in temporal variability could account for some
clinical symptoms of PD.

MATERIALS AND METHODS

Participants and Assessment
Forty-four PD subjects were recruited from Ruijin Hospital
affiliated to Shanghai Jiao Tong University. The inclusion criteria
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included: (i) a diagnosis of PD without any record of other
neurological or psychiatric disorders; (ii) age≥ 45 years; (iii) Mini
Mental State Examination [MMSE (Folstein et al., 1975)] ≥ 24;
(iii) no depressive symptoms [evaluated by Beck Depression
Inventory (BDI) (Beck et al., 1961)]. Clinical evaluation was
assessed with Hoehn and Yahr (H-Y) score (Hoehn and Yahr,
1998) for the disease stage and the Unified Parkinson’s Disease
Rating Scale-Part III (UPDRS-III) (Chai et al., 2017) for severity
of motor symptoms. Forty-three normal controls (NCs) were
also included for the study. Three normal participants with
head motion >2 mm of translation or >2 degree of rotation
and two PD patients with poor co-registration in cerebellum
were excluded in the following analysis (see section “Data
Preprocessing” for details), leaving 42 patients and 40 normal
controls for analysis. The relevant demographic and clinical
information are summarized in Table 1. This study was carried
out in accordance with the recommendations of the “ethics
committee of Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China” with written informed
consent from all subjects.

MRI Acquisition
Data acquisition was carried out on a GE 3.0 T HDxt MRI scanner
with an 8-channel phased-array head coil. High-resolution T1-
weighted MRI scans were acquired using a fast, spoiled gradient
echo sequence (FSPGR) with the following parameters: repetition
time (TR) = 5.528 ms, echo time (TE) = 1.74 ms, matrix
size = 256 × 256, flip angle = 12◦, slice thickness = 1 mm,
196 sagittal slices. A total of 210 volumes of resting-state fMRI
data were acquired using an EPI sequence with the following
parameters: TR = 2000 ms, TE = 30 ms, matrix size = 64 × 64,
flip angle = 90◦, voxel size = 3.75 × 3.75 × 4 mm3. Subjects
were required to remain still and awake with eyes closed
during the scan.

Data Preprocessing
Preprocessing of fMRI data was performed using the DPARSF
toolbox (Yan and Zang, 2010). The first 10 volumes of each
functional time series were discarded considering instability
of the initial MRI signal and adaptation of participants to
the circumstance, leaving 200 volumes in total for processing
as follows: slice-timing, realignment to the mean image, co-
registration to the T1 image, motion correction, normalized to

TABLE 1 | Demographic data on patients and normal controls.

PD (n = 42 ) NC (n = 40 ) p value

Gender men/women 23M, 19F 21M, 19F 0.837

Age (years) 61.14(7.13) 62.68 (5.73) 0.288

UPDRS-III (motor) 15.50(6.36) – –

Disease duration (years) 2.96(1.80) – –

Hoehn and Yahr (H-Y) score 1.33(0.45) – –

All data are given as mean (standard deviation). Chi-square test was used to test
differences in gender distribution; two sample t-tests were used for other variables.
PD = Parkinson’s disease; NC = Normal controls; UPDRS-III = Unified Parkinson’s
Disease Rating Scale-Part III.

a standard template (Montreal Neurological Institute), reslicing
to 3 × 3 × 3 mm3, spatial smoothing (FWMH = 6 mm) and
band pass filtered (0.01–0.1 Hz). Finally, the nuisance covariates,
including 24 head motion parameters, white matter signal, and
CSF signal were regressed out. The resulting time courses were
used for the following brain network construction and analysis.
In order to limit the impact of head motion, we excluded the
subjects with head motion greater than 2 mm of translation
motion or more than 2 degrees of rotation.

Definition of Functional Brain Networks
We adopted the spherical 264 functional Region of Interests
(ROIs) defined by Power et al. (2011) across cortical, subcortical,
and cerebellar structures, and extracted a representative
BOLD time series by averaging signal in all voxels within
each ROI. These brain regions were defined by resting-
state FC mapping and multiple task fMRI meta-analysis,
ensuring the functional significance of network nodes. In brain
network analysis, each ROI was defined as a node, and the
functional connectivity between ROIs was estimated from the
corresponding representative BOLD time series. Consistent with
previous study (Cole et al., 2013), the whole brain were mapped
into 13 putative functional modules, including sensorimotor
(SMN), default mode (DMN), cingulo-opercular (CON), fronto-
parietal (FPN), subcortical, salience (SAN), auditory, visual,
ventral attention (VAN), dorsal attention (DAN), memory
retrieval, cerebellum, and uncertain networks (Figure 1A).
This parcellation offers a comprehensive view for the study
of functional brain modules, allowing to identify connectivity
patterns and interactions between different modules. In this
study, we would mainly report and discuss the results related to
the 12 main networks but paying no attention to the “Uncertain”
network, as it does not constitute specific cortical networks with
explicable function.

For better interpretation for the anatomical location of
specific regions, the Automated Anatomical Labeling (AAL) atlas
(Tzouriomazoyer et al., 2002) was also used in this study.

Temporal Variability
For each participant, dFC were computed based on sliding
temporal window approach. Following the strategy in Zhang’s
work (Zhang et al., 2016), we used segments of BOLD time series
without overlapping to calculate temporal variability (nodal,
intra- and inter-network variability). Briefly, the entire BOLD
time series for each subject was divided into non-overlapping
windows. Then within each window, connectivity between
each pair of nodes was estimated by the Pearson’s correlation
coefficients of the BOLD time series (Figure 1B).

Nodal Variability
To characterize the dynamic configuration of a specific region
across all time windows, we calculated the temporal variability
of each node (Mueller et al., 2013; Zhang et al., 2016). For a
given region k, the connectivity profile at time window i can be
denoted as Fi,k, which is a vector with M values that describes
the connection map based on the connectivity between region k
with all other regions. Then the connectivity vectors in different
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FIGURE 1 | Schematic overview of the temporal variability calculation. (A) Network partition of 264 putative functional regions defined by Power et al. (2011) L, Left;
R, right. (B) Each regional BOLD signal was segmented into non-overlapping windows, and the whole brain functional connectivity network was constructed using
Pearson correlation of the representation BOLD time series in each window. (C) From the raw functional connectivity matrix in one time window, nodal connectivity
profile is the vector that describes its connectivity with all the other nodes (e.g., the column marked by black line); intra-subnetwork connectivity profile is the upper
triangle (due to symmetry) of the connectivity matrix within one subnetwork (e.g., SMN); inter-network connectivity profile is the connectivity matrix between two
subnetworks (e.g., SMN-visual, as the block marked by a small black rectangular window). (D) Calculation of temporal variability. The nodal, intra- and inter-network
connectivity profile in each window was unfolded into connectivity vectors, respectively, and the temporal variability was calculated as the average correlation
coefficients of the connectivity vectors across different windows with a deduction from 1.

windows were subsequently used to estimate the variability Vk
of brain region k, which is defined as one minus the average
correlation of that region’s connectivity profile across all time
windows (Mueller et al., 2013; Zhang et al., 2016), that is,

Vk = 1−
2

N (N − 1)

N∑
i=1,j=2,i<j

corr
(
Fi,k, Fj,k

)
,

where N denotes the number of windows (Figures 1C,D). The
second part of Vk is the averaged correlation values between any
two connectivity profiles derived from different time windows,
indicating the similarity between connectivity profiles. A small
value of variability Vk indicates a high correlation of a node’s
functional architecture across different time windows.

As for the parameters selection, previous studies suggested
that window size around 30–60 s should be suitable to capture

the resting-state dFC fluctuations and produce robust results
(Keilholz et al., 2012; Li et al., 2014; Deng et al., 2016).
And another study (Li et al., 2014) showed that changes of
brain connectivity are not sensitive to the specific time-window
length (in the range of 10–20 TRs, 20–40 s). We performed
the variability analysis at different window length (l = 10, 11,
12, . . ., 20 volumes, corresponding to 20, 22, 24, . . ., 40 s,
respectively), and found that variability obtained from different
window lengths produced highly correlated results (r > 0.98,
Supplementary Figure S1), indicating that this metric is not
sensitive to the choice of window length. Therefore, in the
following sections, we reported the results obtained with the
window size of 20TRs (40 s).

Intra- and Inter-Network Variability
The connectivity patterns within and between subnetworks also
fluctuate dynamically over a short period of time (Kiviniemi
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et al., 2011; Takamitsu et al., 2013; Ma et al., 2014). In order to
assess the dynamic interactions within and between subnetworks
and identify the system-level dynamic brain organization, we
defined the intra- and inter- network variability in a way similar
to the definition of nodal variability. For a subnetwork, all
the intra-network connectivity in each window were unfolded
into a long connectivity vector, and then the intra-network
variability was estimated as the average correlation coefficients
of the connectivity vectors across different windows with a
deduction from 1 (Figures 1C,D). Intra-network variability
characterizes the changes of connectivity within subnetwork
over time. High value of intra-network variability means the
functional architecture within the network is poorly correlated
across different time windows, implying an unstable state.
Similarly, for two subnetworks, all the connectivity between
the two subnetworks were unfolded into a long connectivity
vector, and then the inter-network variability was estimated as the
average correlation coefficients of the connectivity vectors across
windows with a deduction from 1 (Figures 1C,D). High value
of inter-network variability means that the interactions between
the two networks reconfigure frequently but not maintain a
stable pattern.

Statistical Analysis
Non-parametric permutation tests (Nichols and Holmes, 2002;
Bassett et al., 2011) were applied to test the between-group
differences in nodal, intra- and inter-network variability. In
each permutation, each subject was randomly reassigned to
one of a pair of groups with the same number of subjects as
in the original patient and control groups. Then the nodal,
intra- and inter-network variability were computed for each
randomized group and the between-group difference for all
the metrics was calculated, respectively. This randomization
procedure was repeated 10000 times, resulting in a sampled
null between-group difference permutation distributions for
each metric. Finally, the p-value was then calculated as the
proportion of total entries resulting from the permutation
distribution that were greater than (or smaller than) the observed
group effect.

Statistical analysis for head motion parameters and
demographic measures were performed using two sample
t-test. Spearman correlation analysis was performed between
altered temporal variability and clinical variables of disease
severity (UPDRS-III score and Hoehn and Yahr staging) at
a threshold for statistical significance of p < 0.05. Statistical
analysis of all the metrics were implemented using Matlab
(version 2014a; MathWorks). Visualization of results were
performed using Python.

Validation Analysis
To evaluate the robustness of our main results, we conducted
some validation analysis. (i) Parcellation scheme: given that the
variability may be affected by the topological spatial constraints
and definition of ROIs, we also constructed functional brain
networks using an additional functional whole-brain parcellation
scheme consisting of 268 ROIs (Shen et al., 2013) (referred to
as Shen268 atlas), in which all the ROIs are assigned to eight

different functional networks. (ii) Window length: to investigate
the potential effects of window length, we performed the
correlation analysis of temporal variability obtained at different
window lengths, and also repeated the analysis with the average
value of variability across different window lengths, following the
strategy used in Zhang et al. (2016).

RESULTS

Nodal Variability
We found significant nodal variability changes in PD patients
across several regions. The nodal variability of precentral and
postcentral gyrus (in SMN), middle occipital gyrus (in visual
network), putamen (in subcortical network) and cerebellum in
patients showed significantly increased variability (p < 0.005,
10000 permutations, uncorrected) compared to NCs (Table 2).
While in this PD cohort, no nodes showed significantly
decreased variability.

Intra-Network Variability
Among the 13 subnetworks, we found that subnetworks
including subcortical network, SAN and visual network tended
to display greater intra-network variability in PD than NCs
(p < 0.05, 10000 permutations, Figure 2A). Only the variability
of intra-subcortical network showed a positive correlation with
UPDRS-III by spearman correlation analysis (Figures 2B,C).

Inter-Network Variability
Distributed Difference of Inter-Network Variability
We explored inter-network variability among all subnetwork
pairs. Figures 3A,B show the mean intra- and inter- network
variability matrices in NCs and PD patients, respectively.
Generally, the intra-network variability of a particular
subnetwork demonstrated a relatively lower value than the inter-
network variability of that subnetwork with other subnetworks,
respectively in both PD and NC groups (Figure 3, NC group:
all p-values no larger than 0.0181, 10000 permutations; PD
group: all p-values no larger than 0.0001, 10000 permutations).
Between group comparisons for the variability matrices
revealed significantly greater inter-network variability in
PD patients compared with NCs in several subnetwork
pairs associated with SMN, visual, subcortical networks
and cerebellum.

Correlation Between Inter-Network Variability and
UPDRS-III
We further identified the subnetwork pairs which showed
significant correlation (p < 0.05, Spearman correlation) to the
clinical status. To ensure correlations are not driven by a
few extreme values, we removed outliers in the data prior to
performing linear regression. We defined an outlier as a value
outside of 3 standard deviation from the group mean. Performing
regression with and without outliers actually did not qualitatively
change the results.

Significant correlation between inter-network variability and
UPDRS-III mainly appeared in subnetwork pairs associated with
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TABLE 2 | Regions showing significant higher nodal variability in PD patients than normal controls.

ROI Index MNI coordinate Nodal Variability p-value (uncorrected) Subnetwork Brain region (AAL atlas)

NC PD

8 –37, –29, –26 0.8033 0.8508 0.0033 Uncertain Fusiform_L

28 20, –29, 60 0.7350 0.8013 0.0005 SMN NA

34 –21, –31, 61 0.7486 0.8042 0.0035 SMN Postcentral_L

41 38, –17, 45 0.7229 0.7980 0.0008 SMN Precentral_R

147 –28, –79, 19 0.7360 0.7817 0.0044 Visual Occipital_Mid_L

227 –22, 7, –5 0.8031 0.8474 0.0026 Subcortical Putamen_L

232 –31, –11, 0 0.8072 0.8565 0.0029 Subcortical Putamen_L

245 22, –58, –23 0.7492 0.8034 0.0046 Cerebellum Cerebellum

FIGURE 2 | (A) The intra-network variability of 13 subnetworks for PD patients and NCs, respectively. Error bars represent mean and standard errors of the two
groups, respectively. ∗p < 0.05. (B) Topographic representation of the nodes and connectivity within subcortical network. (C) Scatter plots of intra-network variability
of subcortical network with respect to the UPDRS-III score in PD patients. Each dot indicates one subject. Linear regression line with 95% confidence interval for
best-fit line (shading area), as well as r and p values (Spearman’s correlation coefficient) are provided.

subcortical network and cerebellum (Supplementary Figure S5).
Compared with NCs, PD group had greater inter-network
variabilities for the subnetwork pairs of subcortical network
with respect to sensorimotor, visual, ventral attention, dorsal
attention, and cerebellum networks, and their variability also had
significant positive correlation with UPDRS-III in PD patients
(Figures 4A–E). In addition, the inter-network variability for
subnetwork pairs of cerebellum and auditory network also
showed group difference as well as significant positive correlation

with UPDRS-III (Figure 4F). We have also evaluated the
correlation between temporal variability and H-Y scores, while
the results showed that the nodal/intra- and inter-network
variability had a weak correlation (all r < 0.23, all p > 0.14)
with H-Y scores.

Validation Results
We validated our main findings using different analysis strategies,
involving sliding window lengths (Supplementary Table S1
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FIGURE 3 | (A) Mean intra- and inter-network variability matrix of NCs. (B) Mean intra- and inter- network variability matrix of PD patients. Asterisks (∗) labeled on the
PD matrix indicate the subnetwork pairs showing significantly increased intra- or inter-network variability in PD patients compared than control subjects. ∗p < 0.05,
∗∗p < 0.005.

and Supplementary Figures S1–S4), parcellation schemes
(Supplementary Table S2 and Supplementary Figures S6–
S8). We found that the temporal variability including nodal,
intra- and inter- network variability estimated from windows
of different lengths were highly correlated, indicating that these
metrics is not sensitive to the choice of window length. For
further validation of the results, we also used the average
variability across different window lengths for the same analysis
procedures, the main results are highly similar with those at
window length of 20TRs. For the results obtained at Shen268
atlas, we observed similar pattern of variability difference of two
groups, which were mainly located at Subcortical-cerebellum,
Motor, and Visual (Visual I, Visual II, Visual association)
networks. Besides, the significant correlation between temporal
variability and UPDRS-III also mainly appeared in subnetwork
pairs associated with Subcortical-cerebellum network. These
results replicated the main findings obtained with Power-
264 atlas.

DISCUSSION

In the present study, we investigated the variability of the
dynamic functional brain network of PD patients at nodal,
intra- and inter-network levels. Our results demonstrated that
PD patients exhibited increased nodal variability involving
precentral and postcentral areas, occipital area, putamen, and
cerebellum. Moreover, PD patients demonstrated significantly
increased intra-network variability within subcortical, salience

and visual networks, as well as distributed increase in inter-
network variability of several subnetwork pairs. Furthermore, the
intra-network variability of subcortical network and the inter-
network variability of subcortical network with respect to SMN,
visual network, VAN, DAN and cerebellum showed significant
correlation with the clinical score UPDRS-III, suggesting the
special role of subcortical network in functional abnormality
of PD. Besides, the inter-network variability of the cerebellum-
auditory pair also had significant correlation with the clinical
score UPDRS-III. These results suggest that PD patients showed
widespread functional network abnormalities in term of temporal
variability, and the abnormal temporal variability also correlated
with clinical manifestations and thus offering new insights in
understanding PD.

Distributed Variability Changes in PD
Patients
At the nodal and intra-network level, we found a widespread
pattern of increased variability in PD patients, encompassing
sensorimotor (SMN), visual, subcortical networks and
cerebellum. A similar pattern was also observed in ROIs
defined by the Shen268 atlas, that is, the variability difference
was mainly located in Subcortical-cerebellum, Motor, and
Visual (Visual I, Visual II, Visual association) subnetworks
(Supplementary Table S2 and Supplementary Figures S6,S7).
Previous study has reported that the primary sensorimotor area
in normal subjects changed little over time (Power et al., 2011;
Bassett et al., 2013). Conversely, in this study, the precentral
and postcentral areas (in sensorimotor network) revealed higher
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FIGURE 4 | (A–E) Subnetwork pairs associated with subcortical network had increased inter-network variability as well as significant correlation with UPDRS-III.
(F) The cerebellum-auditory subnetwork pair which had increased inter-network variability as well as significant correlation with UPDRS-III in PD patients. For each
row from A to F, the left panel is the topographic representation of the nodes and the inter-network connectivity within the corresponding subnetwork pairs,
respectively; the middle panel is the boxplot of inter-network variability for NC and PD groups, respectively; and the right panel is the scatterplot of the inter-network
variability with respect to the UPDRS-III score for PD patients, with each dot indicating one subject, excluding outliers (outside of 3 standard deviation from the group
mean). Error bars represent mean and standard errors of the two groups, respectively. Linear regression line with 95% confidence interval for best-fit line (shading
area), as well as r and p values (Spearman’s correlation coefficient) are provided. ∗p < 0.05, ∗∗p < 0.005.
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variability in patients, unveiling that nodes in SMN of PD
patients demonstrated a non-stationary functional configuration
with other regions. In fact, several studies have identified
abnormal functional connectivity in SMN which is indicative
of impaired sensorimotor integration occurred in PD (Lewis
and Byblow, 2002; Tessitore et al., 2014). Besides, the increased
variability has also been observed in visual network both at nodal
and intra-network levels. Indeed, visual network is another major
complex sensory domain affected by PD, and PD may lead to
visual hallucinations, perceptual, executive and sleep dysfunction
(Archibald et al., 2011; Wu et al., 2011; Weil et al., 2016). These
results together suggest that the altered dFC patterns observed in
our study may be related to the deficits in these sensory regions.
Moreover, the salience network, mainly comprised of the anterior
insula, is a central hub involved in integrating the somatosensory
and cognitive-affective information to guide behavior (Kurth
et al., 2010). The increased intra-salience network variability
found in our data corroborated previous findings of reduced
hub role (Tinaz et al., 2016) and abnormal activation patterns
in insula in PD patients (Christopher et al., 2014, 2015). In
addition, there were other between-group differences in regional
or inter-subnetwork variability associated with subcortical
network and cerebellum, many of which have been suggested to
be related to structural or functional impairment in PD patients
(Brooks et al., 2010). Taken together, the abnormality of regional
variability identified in our study indicates altered dFC across
distributed nodes and subnetworks, reflecting those regions are
at an unstable state.

For the inter-network variability, we found that the inter-
motor variability was higher than intra-motor variability, which
is consistent with previous studies (Elton and Gao, 2015)
that lower variability within subnetwork may maintain a
more stable configuration. In addition, significant higher inter-
network variability was found across distributed subsystem
pairs. The varying interactions between subsystems may be
tied to functional coordination between subnetworks (Zalesky
et al., 2014), the increased inter-network variability in PD
patients implies an unstable state and more dynamic interactions.
Our observations was consistent with Kim et al. (2017),
which reported an increase in the number of transitions
between states and higher variability in global efficiency of
brain network of PD patients, implying a less efficient and
more unstable information transfer within/between functional
subnetworks. Furthermore, substantial efforts have been made
in previous studies to elucidate the neural basis of PD,
with mounting evidence indicating deficits of distributed
brain networks and wide-spread white matter damage in
PD (Brooks and Pavese, 2011; Canu et al., 2016; Koshimori
et al., 2016). Our results putatively reflect the abnormal
global integration of the brain networks in PD from the
dynamic perspective.

Variability Associated With Subcortical
Network
Despite the distributed alteration of temporal variability in
PD patients, the variability showing significant correlation

with clinical score was particularly associated subcortical
network (Supplementary Figure S5), suggesting its clinical
significance in PD. Results obtained with the Shen268 atlas
showed a similar trend, which were mainly associated with the
Subcortical-cerebellum subnetwork (Supplementary Figure S8).
At nodal and intra-network levels, a higher nodal variability
in putamen and intra-network variability within subcortical
network was observed, which is compatible with previous
study highlighting the severely affected striatal dopamine
depletion in putamen and reduced connectivity between striatal
and thalamus within subcortical network (Hacker et al.,
2012). At the inter-network level, the increased inter-network
variability between subcortical network and cortical networks
(sensorimotor, visual, and attention network) in PD patients
also correlated with worsening motor symptoms in PD. All
these cortical networks are known to play a critical role
in the pathogenesis of PD (Kim et al., 2017), and the
dysfunction of cortico-BG-thalamo-cortical circuit associated
with motor deficits is well documented in PD patients
(Alexander et al., 1986). More specifically, altered functional
connection and integration of subcortical to sensorimotor
and visual networks have been reported in PD (Tremblay
et al., 2010; Hacker et al., 2012; Wymbs et al., 2012).
Connectivity changes and dysfunctional integration in attention
work (including dorsal attention network (DAN) and ventral
attention network (VAN)) have also been reported in PD patients
with mild cognitive impairment and visual hallucinations,
respectively (Shine et al., 2013a; Baggio et al., 2015). Here
the higher level variability of FC profile in subcortical-cortical
coupling may therefore provide further information for the
prediction of disease severity. Furthermore, a significantly
increased variability of cerebellum-subcortical coupling in
PD patients was positive associated with UPDRS-III in our
study. According to Bostan et al. (2013), the reciprocal
connections between basal ganglia and the cerebellum provide
the anatomical substrate for the cerebellar contributions to
a wide range of behaviors. The increased variability pattern
between cerebellum and subcortical network, could also support
the markedly lower striatal connectivity with cerebellum in PD
group reported in Hacker et al. (2012), thus reinforcing the
relevance to parkinsonism of the described circuits connecting
the cerebellum to the basal ganglia (Hoshi et al., 2005;
Bostan et al., 2010).

Variability Associated With Cerebellum
Interestingly, in the present study, the node in the cerebellum
showed significantly increased nodal variability in PD patients.
Studies have shown that the cerebellum is involved in motor
coordination (Thach, 1998) as well as integration of motor and
cognitive networks. Pathological changes in the cerebellum have
been reported in a previous study (Wu and Hallett, 2013).
Considering this, our results revealed an abnormal dynamic
connectivity profile between nodes in the cerebellum with other
regions, which may be related to the dysfunction of cerebellum in
PD patients.

We also found that a significantly increased inter-network
variability between cerebellum and cortical network (auditory
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network) showed positive correlation with UPDRS-III. This
emphasizes that the unstable dynamic interaction between the
cerebellum and auditory network may also relate to the motor
symptom of PD. Similar to basal ganglia in subcortical network,
cerebellum has also shown anatomical loops between cerebellum
and nearly all cortical subnetworks, suggesting its high global
brain connectivity (Middleton and Strick, 1994; Kelly and Strick,
2003; Cole et al., 2010). Combined with the observations that the
inter-network variability between subcortical network and other
cortical subnetworks as well as cerebellum were also correlated
with clinical score (UPDRS-III) noted above, our results uncover
the fact that cerebellum also serve as an important role in
PD pathology.

In fact, the subcortical network in this study (mainly
comprised of basal ganglia and thalamus) and the cerebellum
are densely interconnected at the subcortical level and formed
an integrated network (Bostan and Strick, 2018). These
subcortical systems support the convergence of diverse cortical
and subcortical afferents, as well as neuromodulatory signals
from the brainstem, thus serving as a hub for large-scale
network integration in the human brain (Bell and Shine,
2016). Previous studies revealed that pathological lesions of
most disorders were concentrated in hub regions, especially
in the striatum and thalamus, implying that subcortical
hubs represent key pathological foci across multiple brain
disorders (Crossley et al., 2014). Evidence from previous studies
has shown that cortico-subcortical circuits are linked to a
diverse range of limbic, cognitive and motor control functions
(Chudasama and Robbins, 2006; Pennartz et al., 2009). PD
is a neurodegenerative disorder characterized by severe and
early subcortical pathology as well as clinical impairments
extend across cognitive and motor domains. Our results provide
further evidence of a subcortical hub by capturing the dynamic
variability changes in the subcortical network of PD, suggesting
that the subcortical dysfunction may contribute to pathological
changes in PD.

Limitations
Several limitations of this study should be recognized.
First, motor manifestations of PD subjects are evaluated
only using the motor portion of UPDRS without other
neuropsychological tests for the diagnosis of PD. There are
other substantial non-motor symptoms such as cognitive
impairment, autonomic dysfunction and sleep disorders
experienced by PD patients (Wu et al., 2011). Future work
could investigate variability metrics and their association with
other neuropsychological scores and cognitive performance
to establish the relationship between dynamic analysis and
clinical diagnosis. Second, PD is a heterogeneous disorder
with different symptoms and functional connectivity patterns
(Zhang et al., 2015). Due to the diversity of possible status
of drug use, personality, or genetic factors in our data and a
large number of comparisons, some results didn’t pass a false
discovery rate (FDR) for multiple comparisons correction.
Accordingly, we reported the results by setting a relative low
significance level (p < 0.005) in nodal variability and different

statistic levels (p < 0.05 and p < 0.005) in intra- and inter-
network variability. Actually, a more heterogeneous status in
the patients’ group will most likely lead to higher statistical
variance, rendering it more difficult to detect significant
functional connectivity differences between patients and
controls. Therefore, a larger sample size and more strict inclusion
criteria will be needed in further study to reveal temporal
variability differences.

CONCLUSION

This study reported alterations of temporal variability in
PD patients at nodal, intra- and inter-network levels. Our
analysis showed that PD patients have higher nodal variability
in precentral and postcentral area, middle occipital gyrus,
putamen, cerebellum as well as the increased intra- and inter-
motor variability across several distributed subnetworks
compared with normal controls. Moreover, the higher
intra- and inter-network variability associated with the
subcortical network and cerebellum showed significant
correlation with UPDRS-III motor score, suggesting its clinical
significance. Our results suggest that temporal variability of
functional connectivity profile can detect the aberrant dynamic
connectivity patterns, which were associated with the clinical
deficits in PD and thus may deepen our understanding of
the disease.
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Resting-state functional magnetic resonance imaging (rs-fMRI) based on the blood-
oxygen-level-dependent (BOLD) signal has been widely used in healthy individuals
and patients to investigate brain functions when the subjects are in a resting or task-
negative state. Head motion considerably confounds the interpretation of rs-fMRI data.
Nuisance regression is commonly used to reduce motion-related artifacts with six
motion parameters estimated from rigid-body realignment as regressors. To further
compensate for the effect of head movement, the first-order temporal derivatives
of motion parameters and squared motion parameters were proposed previously as
possible motion regressors. However, these additional regressors may not be sufficient
to model the impact of head motion because of the complexity of motion artifacts.
In addition, while using more motion-related regressors could explain more variance in
the data, the neural signal may also be removed with increasing number of motion
regressors. To better model how in-scanner motion affects rs-fMRI data, a robust
and automated convolutional neural network (CNN) model is developed in this study
to obtain optimal motion regressors. The CNN network consists of two temporal
convolutional layers and the output from the network are the derived motion regressors
used in the following nuisance regression. The temporal convolutional layer in the
network can non-parametrically model the prolonged effect of head motion. The set
of regressors derived from the neural network is compared with the same number of
regressors used in a traditional nuisance regression approach. It is demonstrated that
the CNN-derived regressors can more effectively reduce motion-related artifacts.

Keywords: fMRI, denoising, convolutional neural network, motion artifact, nuisance regression

INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI) based on the blood-oxygen-level-
dependent (BOLD) signal has been widely used to investigate brain functions when the subject
is in a resting or task-negative state. The BOLD signal, however, is contaminated by multiple
noise sources, including head motion, cardiac and respiratory motion, thermal motion inherent
to electrical circuits, instrumental drift, and changes in blood pressure and cerebral autoregulation
mechanisms, which may severely corrupt BOLD fMRI time series (Murphy et al., 2013). A few
recent studies have demonstrated that head motion can significantly confound the analysis of rs-
fMRI data (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). These studies came to
a consensus that motion overall tends to increase short-range correlations to nearby voxels, causing
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functional connectivity (FC) to vary with distance between
regions. Even small amounts of motion can have considerable
influence on connectivity measurement (Yan et al., 2013).

The origin of motion-related signal changes can be explained
in terms of three interrelated aspects (Caballero-Gaudes and
Reynolds, 2017). First, any alteration in tissue composition due
to head motion can cause a change in net magnetization and
thus proportionally change the amplitude of the signal in a voxel.
Second, the number of excited spins depends on the position of
a voxel at the current time point and previous time points. Head
movement alters the timing between successive spin excitations
in the voxel, potentially generating spin history artifacts and
thus impacting the signal even beyond the instantaneous time
points. Third, the inhomogeneous magnetic field induced by
head movement changes the spatial distribution of the local
magnetic susceptibility gradients and exacerbates distortions
and signal dropouts in regions sensitive to these effects
(Jiang et al., 1995).

In the last decade, nuisance regression has been a popular
preprocessing strategy to remove motion artifact in rs-fMRI data.
A set of motion regressors, referred as nuisance regressors, is
first specified to characterize motion-related fluctuations in the
data. The denoised data is then obtained by regressing out the
contributions from the motion regressors from the original data.

The selection of nuisance regressors is a critical factor
influencing the performance of nuisance regression. Inappropri-
ate regressors may have negligible effect or even be detrimental
to the analysis. For example, inclusion of the global signal (i.e.,
the average fMRI signal across the whole brain) as a nuisance
regressor has been heavily debated in the past. Multiple studies
have shown that global signal regression (GSR) may introduce
a negative bias in the estimated BOLD response (Macey et al.,
2004; Saad et al., 2012), artificially generate anti-correlation
between brain regions (Murphy et al., 2009), and strengthen
the relationship between motion-connectivity correlation and
regional Euclidian distance (Satterthwaite et al., 2013). The most
common motion regressors are simply the six head motion
parameters (R = [X Y Z pitch yaw roll]) estimated from the fMRI
rigid-body realignment pre-processing step. To further reduce
motion-induced spin history artifacts, 12, 24, or even 36 motion-
related regressors are used in recent studies, which incorporate
original motion parameters, their first-order derivatives, their
squared functions, motion parameters with one or two temporal
shifts or average tissue-based [gray matter (GM), white matter
(WM), cerebrospinal fluid (CSF)] regressors (Friston et al., 1996;
Power et al., 2012; Van Dijk et al., 2012; Satterthwaite et al.,
2013; Yan et al., 2013). An alternative strategy for carrying out
motion correction is to scrub contaminated volumes from fMRI
data prior to data analysis (Lemieux et al., 2007; Power et al.,
2011, 2012). Typically, time points are first identified as motion-
induced artifacts by thresholding certain motion measurements,
e.g., framewise displacement, then spike regressors are created
with a single non-zero value at each identified time point as
well as its neighboring time points, and finally these spikes
are regressed out to generate spike-free data. This scrubbing
strategy can be treated as excluding contaminated time points
from subsequent analysis. The combination of scrubbing and

motion regression was shown to have the greatest reduction in
motion-related artifacts (Satterthwaite et al., 2013). However,
there is a tradeoff between the data quality and remaining time
points. Similar to general nuisance regression, including more
motion regressors can be detrimental to the following analysis
since it is unclear whether significant amount of the neuronal-
related BOLD signal is also removed. In addition, scrubbing has
the potential limitation of removing a large proportion of time
series from a single subject, leading to significant variation in the
number of remaining time points from one subject to another
(Yan et al., 2013).

While there are other approaches to reduce motion-related
artifacts such as slice-wise motion correction (Beall and Lowe,
2014), acquiring data with multi-echo EPI sequences (Kundu
et al., 2012) and ICA-based motion correction approaches
(Griffanti et al., 2014; Pruim et al., 2015), this study focuses
on using the head motion parameters estimated from rigid-
body realignment to derive optimal motion-related fluctuations
in rs-fMRI data. The relationship between head motion and
the resulting change in the MR signal remains unclear, the
realignment parameters and their temporal derivatives or
squared functions may not be sufficient to model the non-
linear MR signal change in the data. We have developed a
robust and automated convolutional neural network (CNN)
model to derive improved motion regressors. In the recent
past, CNN networks achieved classification accuracy record
with ImageNet data (Krizhevsky et al., 2012) and have been
successfully applied in different fields such as object recognition
and sentence classification (Kim, 2014; Liang and Hu, 2015).
In our proposed CNN model, the motion parameters estimated
from rigid-body realignment are the input to the network.
Considering that voxels within white matter and CSF share
similar motion-related artifacts as the voxels within GM but do
not have neural contributions, time series from WM and CSF
but not GM are used for optimizing model parameters to avoid
reducing neural activations.

The CNN network consists of two temporal convolutional
layers and the output data from the network are the optimized
motion regressors used in a subsequent motion regression.
The temporal convolutional layer in the network is particularly
useful for non-parametrically modeling the prolonged effect
of head motion (Power et al., 2014). The regressors derived
from the neural network are compared with the same
number of regressors used in a traditional motion regression
approach. A comprehensive comparison of these two methods
of motion regression is presented using fMRI data from a
publicly available database.

MATERIALS AND METHODS

Subjects
The structural MRI and rs-fMRI data used in this study were
downloaded from the publicly available ADNI database1. The
ADNI was launched in 2003 as a public-private partnership,

1http://adni.loni.usc.edu/
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led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI,
positron emission tomography, other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment and
early Alzheimer’s disease.

Only the subjects identified as normal controls by site
investigators were used in this study. All subjects were scanned
on a 3.0-Tesla Philips MRI scanner. All data were downloaded
from the ADNI database before September 2016, and 76 subjects
(age 74.1 ± 6.6 years, MMSE 28.9 ± 1.3, handedness 67
right/9 left, gender 33 male/43 female) were found satisfying the
conditions described above. The subject ID, scanning parameters
and demographical information can be found in Supplementary
Table S1. The magnetization prepared rapid acquisition gradient
echo (MP-RAGE) sequence was used to acquire T1-weighted
structural images by the investigators of the ADNI consortium.
The structural MRI scans were collected with a 24 cm field of
view and a resolution of 256 × 256 × 170 to yield a voxel size of
1 mm× 1 mm× 1.2 mm. The rs-fMRI data were acquired using
an echo-planar imaging sequence with parameters: 140 time
points; TR/TE = 3000/30 ms; flip angle = 80 degrees; 48 slices;
spatial resolution = 3.3 mm × 3.3 mm × 3.3 mm and imaging
matrix = 64× 64. Details of the ADNI MRI protocol can be found
on the ADNI website2. If a subject had multiple MRI/fMRI scans
satisfying the requirements specified above, the first available
MRI/fMRI data set was used for analysis.

General fMRI Preprocessing
Functional and structural MRI imaging data are processed using
the SPM3 and ANTs4 toolbox. The first five volumes of rs-fMRI
data are discarded to avoid data with unsaturated T1 signal.
Before motion regression, the following fMRI preprocessing
steps are applied: (i) slice timing correction; (ii) rigid-body
head motion correction to the mean EPI image using 7th
order B-Spline interpolation to estimate realignment parameters;
(iii) co-registration to the skull-stripped structural image;
(iv) standard space normalization to the MNI152 2 mm template;
(v) spatial smoothing with 6 mm full width at half maximum;
(vi) linear detrending. Motion regression is applied after these
general fMRI preprocessing steps are completed. Temporal
filtering is a preprocessing step commonly used after motion
regression (Satterthwaite et al., 2013; Power et al., 2014). Since
we aimed to develop an automated method modeling motion
fluctuation and compare it with traditional motion regressors,
temporal filtering is not used to give a direct comparison of
motion-corrected fMRI data.

Deep Neural Network for Denoising
The CNN denoising network is implemented using Keras5 with
Theano6 as backend. The schematic diagram of the CNN network

2http://adni.loni.usc.edu/
3https://www.fil.ion.ucl.ac.uk/spm/
4http://stnava.github.io/ANTs/
5https://keras.io/
6http://deeplearning.net/software/theano/

is shown in Figure 1A. The two sequential layers used in the
CNN network are a 1-dimensional convolutional layer along the
temporal direction. Previous studies showed that motion can
have a prolonged and varying effect in the data (Patel et al.,
2014; Power et al., 2014) and small amounts of movement could
have substantial impact on the BOLD signal in fMRI data (Yan
et al., 2013). The CNN network is proposed to learn the influence
from the data without manual interference. Both layers have filter
size f = 5, stride length s = 1 and same padding so that the
output has the same length as the original input. The filter size
is defined as the number of neighboring time points included
when performing the convolution, and the stride length s = 1
means that the filter convolves the input volume by shifting
one unit at a time. Figure 1B shows how the filters in the first
convolutional layer are applied on the input with filter size and
stride length defined and more detailed explanation about these
hyperparameters (i.e., filter size, stride, and same padding) can be
found on the Keras website. In these two convolutional layers,
32 temporal filters (filter dimension 5 × 6 × 32 as shown in
Figure 1C with bias vector 32 × 1) are specified for the first
one, and 12 temporal filters (filter dimension 5 × 32 × 12 with
bias vector 12 × 1) are specified for the second one to match
the number of traditional motion regressors used in this study,
leading to 2,924 parameters in total in the neural network. We
have also applied the network with different hyperparameters,
including filter size and the number of temporal filters for the first
layer. The setting described above achieved the least validation
error and is selected in this study.

The realignment parameters R ∈ RT×6 are the only input
data to our constructed CNN network, where T is the number
of time points. The realignment parameters R are replicated to
match the number of voxels within WM and CSF masks. Each
replicate is linked with different time series within WM and CSF
masks to make each pair unique. Naturally, thousands of WM
and CSF time series paired with the duplicates of realignment
parameters are the large number of samples required to optimize
designed network, and each pair can be treated as a sample. With
the assumption that WM and CSF voxels share similar motion-
related artifacts as GM voxels but are not likely to have neural
signals, voxels limited to non-GM (i.e., WM and CSF) are used to
derive optimal motion regressors without erroneously modeling
neural signals. Many (if not all) standard denoising techniques
(Behzadi et al., 2007; Griffanti et al., 2014; Pruim et al., 2015) have
used this assumption to reduce motion artifacts or physiological
noise. While a few studies showed activation also in white matter
(Gawryluk et al., 2014; Courtemanche et al., 2018), the question
whether there is BOLD signal in white matter is debatable because
of the lack of neurons in white matter.

These non-GM voxels are randomly assigned to a set of
batches with batch size n = 500. In each batch, the input motion
parameters R are replicated n times to match the number of
voxels in the batch. These duplicate samples become unique
and meaningful when they are linked to different voxel time
series. In detail, the replicated motion parameters are forward-
propagated through the convolutional layers and the output
with dimension n× T × 12 is obtained for this batch. Naturally,
each “sample” has the same output regressor with dimension
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FIGURE 1 | (A) Schematic diagram of the CNN network. The network has two temporal convolutional layers with 32 and 12 filters. The filters are specified with filter
size f = 5, stride length s = 1 and the same padding so that the output length is the same as the original input. The motion parameters are replicated n times to
match the number of voxels in the batch. The correlations between voxel time series and output regressors are used to calculate the loss function for model
optimization. (B) Graphical explanation of filter size and stride. (C) Dimension of the 32 filters in the first convolutional layer.

R̃ ∈ RT×12. The correlation ri between voxel time series and the
12 output regressors is calculated and the sum of correlation
across all voxels in the batch with a minus sign is defined as the
loss function to be minimized, namely L = −

∑n
i=1 ri.

There are two choices to calculate the correlation between time
series and the regressors R̃. The first one is by applying the general
linear model (GLM) to fit the time series yi from voxel i to the
regressors R̃ and then calculating the correlation between yi with
the estimated time series ŷi = GLM(R̃, yi), namely,

choice 1 : ri = corr(yi, ŷi) and ŷi = GLM(R̃, yi) = R̃ R̃+yi. (1)

The second choice is by calculating the maximal
correlation between yi and each single regressor in R̃ with
sign ignored, namely,

choice 2 : ri = maxj|corr(yi, R̃j)|, j = 1, . . . , 12. (2)

Considering that the pseudoinverse of output regressor matrix
R̃, namely R̃+, is required for choice 1 and needs to be updated
for each batch, choice 2 is more computational efficient and is

used to compute the loss function in this study. Once the loss
function is obtained, its gradients are computed for updating the
model parameters by back-propagation and the current batch of
time series is replaced with another batch for the next iteration.
Running through all batches once is called one epoch. The CNN
network converges in less than 40 epochs for the fMRI data
with 135 time points. The computational time for each subject
is less than 2 min on a Tesla K40c GPU with 2,880 cores and
approximately 10 min per subject with GPU disabled.

While all subjects share the same network architecture,
the CNN network is optimized for each subject separately
to achieve subject-specific model (the same architecture but
different parameters). During the optimization, 90% of voxels
are assigned to update model parameters and the remaining
10% of voxels are assigned to monitor whether the network
suffers from over-fitting or under-fitting leading to high bias
or variance, respectively. The initial parameters are randomly
sampled from the Xavier uniform initializer (Glorot and Bengio,
2010). The parameters are updated with the Adam stochastic
gradient-based optimization algorithm (Kingma and Ba, 2015),
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which adapts the parameter learning rates by taking advantage
of both the average first moment (mean) and the average of
the second moments of the gradients (uncentered variance). The
Adam optimizer is parameterized with learning rate η = 0.01,
learning rate decay γ = 0.05, exponential decay rate for the
first moment estimates β1 = 0.9 and exponential decay rate
for the second moments estimates β2 = 0.999. The neural
network is tested with different activation functions including
linear, sigmoid and rectified linear units (ReLU) (Nair and
Hinton, 2010) to derive motion regressors. Linear and sigmoid
activation functions have comparable performance, but ReLU
sometimes leads to invalid loss function due to numerical
instabilities. The result obtained with linear activation function
is shown in the current study. The subject-specific optimal
output regressors are applied on the same subject for reducing
motion-related fluctuation.

White Matter and Cerebrospinal
Fluid Mask
The segmentation of the T1 image is carried out in the native
space of each individual subject and the resultant tissue masks
are normalized to the standard MNI152 space. The WM and
CSF masks are eroded to reduce partial volume effects from
neighboring GM voxels. Eroding the masks is crucial in our study
because of the following two aspects. First, because non-GM time
series are used in the CNN network to train the parameters in the
model, the output regressors can account for some of the variance
of BOLD signal if masks are not eroded. Second, the average
time series of WM and CSF are used as nuisance regressors in
our analysis and these two tissue-based regressors within un-
eroded masks can also contain some BOLD signal. Inclusion of
BOLD signal in nuisance regression has the potential of reduce
the statistical power of fMRI data in the subsequent analysis. WM
and CSF masks are eroded by the SPM spm_erode.m function.
The CSF mask is eroded once as suggested in Power et al. (2014).
To have enough WM voxels to train the CNN network and also
minimize partial volume effects, the WM mask is eroded multiple
times but contains at least 10,000 voxels. Both the non-GM time
series used in the neural network and the average tissue-based
regressors are extracted based on eroded masks.

Motion Regressors
The CNN network designed above has 12 output regressors,
referred as cnn12 in the following. Unless explicitly specified, the
input data to cnn12 are the motion parameters R. The cnn12
regressors for all subjects can be found in the Supplementary
Material. The motion parameters R and their temporal backward
derivative R’, referred to as mot12, are used in traditional motion
modeling. The [R R’] motion regressors in mot12 are equivalent
to another set of 12 motion regressors [R Rt−1] used in other
studies (Friston et al., 1996; Yan et al., 2013), where t-1 refers
to the immediately preceding time point and the first row
for regressors Rt−1 for t = 1 is traditionally filled with zeros.
While previous studies employed varying number of regressors,
including 6 regressors (R), 12 regressors ([R, R’]), 24 regressors
([R R2 Rt−1 Rt−1

2]) and 36 regressors ([R R2 Rt−1 Rt−1
2

Rt−2 Rt−2
2]) (Friston et al., 1996; Power et al., 2012, 2014;

Satterthwaite et al., 2013; Wilke, 2012; Yan et al., 2013), only
mot12 is compared in detail with cnn12 in this study. Tissue-
based signals are also used as nuisance regressors in part of our
analysis and computed as the average signal across the voxels
within either eroded WM or eroded CSF masks as described
in the previous section. The inclusion of GSR has been heavily
debated in the recent past (Murphy et al., 2009; Weissenbacher
et al., 2009; Satterthwaite et al., 2013; Power et al., 2014, 2018),
hence GSR is not used in this study. Unless explicitly specified,
the functional atlas with 264 regions of interest (ROIs) (Power
et al., 2011) is used to compute FC.

Motion Measurements
Framewise displacement (FD) (Power et al., 2012), root-mean-
square framewise displacement (rmsFD) (Satterthwaite et al.,
2013), and DVARS, where D is referring to temporal derivative
of time courses and VARS referring to root-mean-square of the
variance over voxels (Smyser et al., 2010), are the measurements
defined to provide a single estimated head motion parameter
for each time point. We also use mean whole-brain standard
deviation and modularity quality (Q) to provide a single
measurement for each subject.

The motion measurements FD and rmsFD are derived from
rigid-body realignment parameters, including three translational
and 3 rotational parameters specified by R = [X Y Z yaw pitch
roll]. The value of FD is defined as the sum of absolute derivatives
of these six parameters with the three rotational parameters
converted to distance by multiplying with a radius of 50 mm.
The value of rmsFD is defined as the root mean square of relative
displacement of two neighboring volumes. The subjects having
mean FD ≥ 0.25 mm are assigned to the high-motion group
(41 subjects, age 74.9 ± 7.2 years, MMSE 28.7 ± 1.6, handedness
36 right/5 left, gender 20 male/19 female) and the subjects
having mean FD < 0.25 mm are assigned to the low-motion
group (35 subjects, age 73.2 ± 5.8 years, MMSE 29.1 ± 0.9,
handedness 31 right/4 left, gender 13 male/22 female). Unlike FD
and rmsFD that are derived from estimated motion parameters,
DVARS (Smyser et al., 2010) and mean whole-brain variance are
computed based on fMRI data itself. DVARS is defined as the
root mean square of the temporal change of the fMRI voxel-
wise signal at each time point. Mean whole-brain variance for
one subject is computed by first converting fMRI time series
to percent signal change and then calculating the mean of the
variance of all voxels across the entire brain. In this study we
used modularity quality Q to evaluate whether BOLD signal is
removed in addition to motion-related fluctuation. The Q-value
is determined by applying community detection on each subject’s
functional network using the Louvain heuristic (Blondel et al.,
2008), which maximizes the Q-value as the criterion to partition
the functional connectome into sub-networks. Subject motion
has been shown to be negatively correlated to the Q-value in
Satterthwaite et al. (2012), and the Q-value is expected to decline
if the signal is removed (Ciric et al., 2017). An increased Q-value
would indicate that the denoising method effectively reduces
noise in the data without changing the signal.
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FIGURE 2 | Time-dependent whole brain motion measurements and different preprocessed time series within the GM mask for 4 low-motion and 4 high-motion
subjects. White arrows are used to point effects of motion on fMRI signal. Blue arrows are used to point out the performance difference between cnn12 and mot12.
The motion measurements include FD (red), sum of absolute translational parameters (blue) and sum of absolute rotational parameters (black).

RESULTS

To visualize the influence of motion regression, motion
measurements and fMRI time series for 8 subjects are shown
in Figure 2. The figures for all subjects can be found in
the Supplementary Material. The FD (red), sum of absolute
translational parameters (blue) and sum of absolute rotational
parameters (black) are presented in the top panel for each
subject. The normalized time series within GM mask processed
with only general preprocessing steps (raw), traditional motion
regression mot12 and CNN-derived motion regression cnn12 are
plotted on the second, third, and fourth panel, respectively. Head
movements are observed to have highly variable influences on
fMRI signal in terms of three aspects: (1) motion can corrupt
fMRI signal with varying duration (the width of dark band in the
plot, e.g., arrows A1), (2) the direction of signal change could be
mostly in the same direction (e.g., arrow A2) or be opposite at
different voxels (e.g., arrow A3), (3) a large head movement may
not have visually obvious effect (e.g., arrow A4) but a small head
movement can produce marked effect (e.g., arrow A5). By visually
inspecting these time series, cnn12 has a better performance than
mot12 in reducing marked effects, particularly at the time points
marked by blue arrows. A quantitative comparison is presented
in the following.

Similar to Power et al. (2012) we have calculated FC difference
before and after motion correction to evaluate the performance.
Functional connectivity is computed as Pearson correlation
between regional time series. For both high-motion and low-
motion subjects, the scatter plot of between-region connectivity
using raw fMRI data versus inter-node distance is shown in
Figure 3A. The high-motion (black) and low-motion (red) group

have shown negative linear relationship with Euclidean distance
between ROIs with slope of -3.4 × 10−3 and -2.2 × 10−3,
respectively. The dependency for the high-motion group is
significantly stronger than the dependency for the low-motion
group (p < 10−4). The plots of correlation difference 1r versus
Euclidean distance between ROIs are shown in Figure 3B,
where 1r < 0 indicates reduced correlation and 1r > 0
indicates increased correlation after motion regression. The
cnn12-processed data (blue) shows significantly (p < 10−3)
stronger trend and lower intercept (larger magnitude) than
mot12-processed data (black) for both high- and low-motion
groups. Furthermore, the trend between 1r and distance is
significantly (p < 10−4) stronger and the intercept is also
significantly (p< 10−4) lower in the high-motion group for both
cnn12 and mot12 processed data.

With the 264-ROI FC matrices, the modularity quality Q was
computed for each subject. Figure 4 shows the scatter plot of
Q-values for denoised data versus the Q-values for raw data.
The proposed cnn12 method (blue dots in Figure 4) significantly
(paired t-test, p < 0.01) improves the Q-value compared to raw
fMRI data. In contrast, the Q-value for mot12-processed data
(gray dots in Figure 4) is not significantly (paired t-test, p> 0.05)
different from the value for raw data.

Figure 5A shows the remaining variance (in %) of regional
time series after motion regressing using cnn12 or mot12.
This plot is generated with all data from 76 subjects. The
histograms for cnn12 and mot12 are shown in blue and gray
color, respectively. The remaining variance of cnn12-processed
time series is significantly lower than the remaining variance
of mot12-processed time series with p < 10−4. 98.5% of
cnn12-processed time series have remaining variance lower
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FIGURE 3 | (A) Plots of functional connectivity versus Euclidean distance between ROIs using raw data. (B) Plots of functional connectivity versus Euclidean
distance for low- and high-motion groups. Pearson correlation coefficient r is used to calculate functional connectivity and 1r is defined as 1r = r(after motion
regression) - r(before motion regression).

FIGURE 4 | Modularity quantity Q measurement for different processed data.
The Q-value is computed by applying community detection on each subject’s
functional network using the Louvain heuristic, which maximizes the Q-value
as the criterion to partition the network into sub-networks.

than the corresponding time series regressed by mot12. The
median percentages of variance retained for cnn12 and mot12
were 52.7 and 76.0%, respectively. In addition, we have also
computed the remaining variance by including average time
series within WM or CSF masks as additional regressors
(Figure 5B). Consistent with the finding described above, the
time series regressed with [cnn12 WM CSF] have remaining
variance significantly (p < 10−4) less than the corresponding
time series regressed with [mot12 WM CSF]. The median
percentage of remaining variance for cnn12 and mot12 with
average WM and CSF time series as regressors are 43.7 and
58.4%, respectively.

As shown in Figures 6A,B, the mean whole-brain variance
for raw fMRI data is observed to have a significant (p < 0.05)
positive linear relationship with FD (see Figure 6A blue dots,
slope ± 95% confidence interval (CI): 4.3 ± 2.4) and rmsFD
(see Figure 6B blue dots, slope ± CI: 16.4 ± 10.4). Thus,
a reduction of the mean whole-brain variance after motion
regression can be treated as a measurement derived from fMRI
data itself to evaluate the improvement of applying different
motion regressors. The linear relationship between mean whole-
brain variance and quality control measurements including FD
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FIGURE 5 | (A) Remaining variance of regional time series after motion regression. 98.5% ROI time series after mot12 motion regression have a larger variance than
using cnn12 motion regression. The median percentage of remaining variance for cnn12 and mot12 regression are 52.7 and 76.0%, respectively. (B) Remaining
variance of regional time series after nuisance regression with average WM and CSF time series as additional regressors. 95.0% ROI time series using [mot12 WM
CSF] regression have a larger variance than using [cnn12 WM CSF] regression. The median percentage of remaining variance for cnn12 and mot12 regression are
43.7 and 58.4%, respectively.

and rmsFD suggests that greater reduction of motion artifacts
is expected to have weaker linear dependency between the
variance and motion measurements, and lower mean whole-
brain variance value. Using mot12 regressors, the trend of mean
whole-brain variance with mean FD and rmsFD is reduced to
2.8± 1.6 and 10.8± 6.7, respectively. Using cnn12 regressors, the
trend of mean whole-brain variance with mean FD and rmsFD
is reduced to 1.9 ± 1.0 and 7.2 ± 4.4, respectively. The slope of

cnn12 is significantly (p < 0.01) flatter than the slope of mot12
in the linear relationship between mean whole-brain variance
and FD or rmsFD. Boxplot of mean whole-brain variance ratio
for different motion regressors are shown in Figure 6C. Mean
whole-brain variance ratio for a single subject is defined as the
ratio of the variance after motion regression over the variance
before motion regression. Naturally, the ratio of raw fMRI data
(only processed with general preprocessing steps) is equal to
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FIGURE 6 | Comparison of different motion regressors using mean whole-brain variance and DVARS of intensity-normalized BOLD signal. (A,B,D,E) Scatter plots of
fMRI data derived measurements (mean whole-brain variance and DVARS) versus quality control measurements (mean FD and rmsFD). The mean whole-brain
variance is computed by first converting fMRI time series to percent signal change and then calculating the mean of the variance of all voxels time series across the
entire brain. (C,F) Boxplots of the ratio of mean whole-brain variance and DVARS. The ratios of mean whole-brain variance and DVARS are defined as the ratio of the
measurements after motion regression over the value before motion regression. Data from all 76 subjects are used for the analysis. The slopes of the trend with 95%
confidence interval between mean whole-brain standard deviation and mean FD or rmsFD are listed in the figure.

one for all subjects. A ratio less than one indicates that the
mean whole-brain variance is reduced in comparison to raw
fMRI data. Both mot12 (median ratio 0.65) and cnn12 (median
ratio 0.47) have a ratio lower than the value for raw data, and
the ratio for cnn12 is significantly (p < 10−4) lower than the
ratio for mot12.

Similar to the mean whole-brain variance, the DVARS for
fMRI data without any additional preprocessing steps also has
a significant (p < 0.01) positive linear relation with motion
measurements including FD (see Figure 6D blue dots, slope±CI:
1.9 ± 0.6) and rmsFD (see Figure 6E blue dots, slope ± CI:
7.8± 4.4). Both mot12 (slope± CI with FD: 1.6± 0.4; slope± CI
with rmsFD: 6.0± 3.5) and cnn12 (slope± CI with FD: 1.4± 0.3;
slope ± CI with rmsFD: 5.2 ± 3.1) decrease the dependency on
quality control measurements. The cnn12 method achieves the
weakest linear relationship but the change of slope does not pass
a significance level of p < 0.05. Boxplots of DVARS ratio for
different motion regressors are shown in Figure 6F. DVARS ratio
for a single subject is defined as the ratio of the mean DVARS
across time points after motion regression over the mean value
before motion regression. Both mot12 (median ratio 0.93) and
cnn12 (median ratio 0.89) overall have reduced DVARS values.
Furthermore, cnn12 has a DVARS ratio significantly (p < 10−4)
less than mot12.

We have also applied the CNN network with R as
input but determined 6, 12, 24, and 36 output regressors.
The remaining variance after motion regression is compared
with corresponding traditional motion regressors. The detail
of these traditional regressors can be seen in section Motion
regressors. Figure 7 shows the median percentage of remaining
variance after regression. Using more regressors naturally
explains additional variance and thus leads to less variance
remaining. The CNN-derived regressors have a relatively flatter
curve and less variance than traditional regressors. Traditional
method requires more regressors than the neural network to
achieve comparable variance reduction. The traditional method
requires 36 regressors (51.1% remaining variance) to have
comparable remaining variance with the network with 12 output
regressors, namely cnn12 (52.7% remaining variance). Adding
average WM and CSF time series as additional regressors
further lowers the remaining variance for both methods, but
consistently shows similar difference between CNN-derived and
traditional regressors.

One interesting question for cnn12 is whether more input
motion regressors are beneficial for the output regressors. We
have computed the percentage of variance in regressor set 2
explained by regressor set 1 using the notation {regressor set 1,
regressor set 2}. For the pair {regressor set 1, regressor set 2},
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FIGURE 7 | Median percentage of remaining variance with 6, 12, 24, and 36
motion regressors. The 25th and 75th percentiles are used to generate the
shaded area for both CNN-derived regressors (green) and traditional
regressors (red).

FIGURE 8 | Violin plots of the variance explained (in %) between different sets
of regressors. The notation {regressor set 1, regressor set 2} denotes the
variance explained for each of the regressors in set 2 by the matrix of
regressors in set 1 by linear regression and averaged for all regressors in set 2.

the variance explained for each of the regressors in set 2 by the
matrix of regressors in set 1 is computed by linear regression
and averaged for all regressors in set 2. The explained variance
(in %) is used for the violin plot in Figure 8. In all analyses
above, the input data to the neural network are the 6 motion
parameters R, namely cnn12(R), and the input is omitted for
simplicity. In this part, we have also applied the neural network
with the derivative of motion parameters R as additional input,
namely cnn12([R R’]), and all the other settings are exactly
the same as in cnn12(R). As shown in Figure 8, cnn12([R R’])
explained the variance of cnn12(R) (blue) with a median and
mean percentage more than 90%, and vice versa (red). In
contrast, [R R’] could only explain about 56% of variance in
cnn12(R). Furthermore, cnn12-derived regressors have a mean
correlation of 0.65 with raw motion time series across all subjects
and a mean correlation of 0.47 with mask-averaged WM and
CSF time series.

DISCUSSION

Motion-related artifacts are a major problem in the analysis of
rs-fMRI data. Modeling and reducing these artifacts are critical
for improving fMRI analysis. In this study, we have designed
a CNN framework for modeling rigid-body motion artifacts in
rs-fMRI data. To the best of our knowledge, this is the first
study where a deep neural network is designed for denoising
resting-state functional MRI data. The proposed subject-level
CNN model is constructed with two sequential 1-dim temporal
convolutional layers. With the assumption that the voxels within
WM or CSF masks share similar motion-related fluctuation as
the voxels in GM mask but do not contain any BOLD signal
of neural origin, the time series used in the CNN network are
limited to voxel locations within the non-GM mask to avoid
BOLD signal modeled erroneously in the output regressors. The
estimated motion parameters during rigid-body realignment are
replicated to match the number of non-GM voxels and then
each repetition is treated as a sample to optimize the CNN
model. The correlation between non-GM time series and output
regressors is used to compute the loss function for optimizing the
parameters in the model. The 12-regressor CNN network, cnn12,
is compared with traditional motion regression, namely mot12,
for data from 76 subjects downloaded from the ADNI database.
While cnn12 and mot12 have the same number of regressors,
cnn12 takes advantage of the flexibility in the network to model
signal disruption of rigid-body head movements without prior
assumptions. The proposed cnn12 was shown to be superior to
mot12 in terms of multiple quantitative measurements.

High-Motion and Low-Motion Groups
Two prominent effects of motion are the increase of pairwise
correlations for nearby voxels and the increase of whole-brain
correlations if the signal disruption is widespread and similar
over the entire brain (Power et al., 2015). Consistent with
these two effects, the high-motion group has more significant
linear relationship with Euclidean distance between ROIs, and
higher FC than the low-motion group (see Figure 3A). With the
assumption that signal disruption is more severe in the high-
motion group, the difference between the high-motion and the
low-motion groups can be explained by these two effects. These
findings suggest that motion artifacts considerably influence
the analysis and interpretation of fMRI data. Considering the
distance dependent FC, a larger slope of 1r as a function
of the inter-ROI distance indicates that motion regression is
more effective in reducing motion-related fluctuations. The
negative intercept is a sign of decreased correlations. Since
the high-motion group is more severely affected by motion-
related artifacts, the two techniques including mot12 and
cnn12, as expected, have a steeper slope and smaller intercept
(in magnitude) for the plot of1r versus distance. However, cnn12
has significantly reduced motion-related artifacts compared to
mot12, in terms of slope and intercept, for both high- and
low-motion groups.

We would like to point out that both cnn12 and mot12
can only reduce but not completely remove motion-related
artifacts. After motion regression, the FC in denoised data is
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still strongly associated with Euclidean distance between ROIs.
A fixed set of motion regressors for the entire brain can
only partially explain motion artifacts because of the potential
variability of motion artifacts across voxels. Multiple studies
have demonstrated that motion regression should be applied
together with other processing steps to further reduce signal
contamination. For example, Patel et al. (2014) applied wavelet-
or time-domain de-spiking before nuisance regression and Power
et al. (2012) proposed a “scrubbing” technique to remove
motion-related spikes as a complementary strategy to motion
regression. The CNN-derived regressors can also be combined
with these denoising strategies by simply replacing traditional
motion regressors with the derived regressors to further reduce
the influence of head motion. Voxel-specific motion parameters
(Wilke, 2012; Yan et al., 2013) potentially can also be combined
with cnn12 regressors to further reduce artifacts.

Further Comparison of mot12 and cnn12
Multiple studies indicate that neurobiological signals in human
fMRI data only occupy 5–20% of signal variance (Bianciardi
et al., 2009; Marcus et al., 2013). We observe that the remaining
variance by mot12 is significantly higher than cnn12. More than
90% of mot12-regressed time series have variance higher than
cnn12-regressed time series regardless whether additional tissue-
based regressors are used. The median percentage of remaining
variance for cnn12 is 23.3% less than mot12, and the variance
difference is reduced to 14.7% less than mot12 if average WM and
CSF time series are also included for regression. The decreased
variance difference may be because tissue-based regressors share
more common information with cnn12 but less with mot12
regressors. We have applied motion regression with 6, 12, 24, and
36 regressors. The CNN-derived regressors always explain more
variance than traditional regressors, leading to less remaining
variance. Even though cnn12 removes more variance than mot12,
cnn12 remains a higher network modularity. Considering that
the modularity quality is expected to decline if BOLD signal
is removed along with noise in motion regression, this finding
suggests that the extra variance removed by cnn12 is more likely
to be motion-related noise instead of the BOLD signal.

Both mean whole-brain variance and DVARS are measure-
ments computed from fMRI data itself to evaluate the influence
of motion regression. The positive linear relationship in Figure 6
shows that the magnitude of these two measurements are heavily
driven by head movement. The weaker linear relationship with
FD or rmsFD, and smaller value of these two measurements
indicate improved data quality. Compared to mot12, cnn12 had
significantly flatter slope between mean whole-brain variance and
FD or rmsFD. While the slope difference between cnn12 and
mot12 is not significant, cnn12 still achieved the flattest slope
between DVARS and FD or rmsFD. For both mean whole-brain
variance and DVARS, cnn12 achieves a ratio value less than
mot12. The weaker linear relationship and smaller ratio value
consistently suggest that cnn12 outperforms mot12.

Potential Modification of the Network
As mentioned in section Architecture of CNN network, the
realignment parameters are replicated and paired with different

time series within non-GM mask to form a large number
of samples for optimizing the designed CNN network, as
demonstrated in Figure 1. One potential way to modify the
network is to switch the time series and parameters R in the CNN
network and thus output voxel-wise motion regressors instead of
volume-wise motion regressors. In other words, non-GM time
series are used as input data and along with R to compute the
loss function and thus voxel-specific motion regressors could
be obtained with such a revised network. The CNN network is
highly flexible because of the large amount of model parameters
in the network, however, the flexibility can be beneficial or
detrimental to the following analysis depending on the input.
The flexibility in the alternative neural network can easily make
the output of arbitrary input time series highly correlated with
parametersR to achieve optimal loss function but does not extract
any useful information. In contrast, the current framework
requires the output regressors to optimize the summation of
correlations over all non-GM voxels. Output regressors that
are highly correlated with a single time series are not optimal
because they have a minor effect in the loss function due to
the summation over all voxels. While voxel-specific regressors
may be more useful than a fixed set of regressors for the entire
brain, the current framework with switched time series and
realignment parameters has difficulty to extract voxel-specific
regressors properly.

The cnn12 network can also be applied with more motion
parameters as input. We have compared the cnn12 with only
R and with [R R’] as input. Interestingly, the space spanned
by the cnn12(R) regressors is similar to the space spanned by
the cnn12([R R’]) since the variance explained of cnn12(R) by
cnn12([R R’]) is larger than 90% for all subjects (see Figure 8).
This finding suggests that adding the derivative as input does not
have noticeable impact to the output regressors. The unexplained
variance maybe due to the intrinsic randomness in the network.
However, the cnn12(R) regressors can explain a large proportion
of variance that cannot be explained by traditional motion
regressors [R R’], which may be because motion-related artifacts
in fMRI data cannot be sufficiently described by only adding the
preceding time point into consideration (Power et al., 2014).

Novelties of the cnn12 Network
Compared to standard CNN algorithms, the input and loss
function in cnn12 are specified in a novel way. A standard CNN
algorithm requires thousands of samples to train the neural
network. Though the cnn12 network seems to have only the six
motion parameters as input samples (which is not the case),
we associate each set of motion parameters with different voxel
time series in the cnn12 network. Thus, each motion parameter
paired with voxel time series is treated as a different sample and,
consequently, a sufficient number of samples can be generated to
train the neural network.

Many cost functions have been developed for the purpose of
classification or regression in machine learning or deep learning
applications, such as the mean squared error, mean absolute
percentage error, cross entropy, Poisson, and cosine proximity
cost functions. These cost functions are calculated with the
known true values or classes. However, because the ground truth
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is unknown, constructing a cost function for cnn12 denoising
faces a significant challenge. To overcome this challenge, we have
proposed a customized cost function which does not require
knowledge of the true BOLD signal.

Limitations and Future Study
There are a few limitations in this study. First, similar to
most motion regression studies, the same regressors are used
for all voxels in the brain. While the revised neural network
mentioned in the section above potentially can achieve voxel-
specific regressors, unfortunately such a network cannot extract
useful information. We would like to explore other neural
network architectures for modeling voxel-specific motion in a
future study. Second, while this study is only focused on modeling
the influence of head motion, other artifact sources such as
cardiac and respiratory noise also considerably confound fMRI
data analysis. Multiple methods (Glover et al., 2000; Beall, 2010)
have been proposed to model cardiac and respiratory fluctuation
of fMRI data with the assistance of external recordings, which is
not available in the ADNI data. It would be interesting to model
these physiologic noise sources by using our neural network with
input from external recordings. Third, the hyper-parameters, e.g.,
filter size, number of nodes, and learning rate, in a network are
impacted by the data. The hyper-parameters used in this study
are tuned for a single standard EPI sequence. Following studies
with a large sample size are required to gain more knowledge
about the influence of TR, the number of volumes and EPI
sequences, such as multi-echo EPI (Kundu et al., 2012) and
multi-band EPI sequences (Moeller et al., 2010). In addition to
the motion-related artifacts induced in fMRI data, motion may
have a neurobiological basis (Zeng et al., 2014) and could reflect
individual differences. Genetic differences and impulsivity were
found to be factors related to head motion (Kong et al., 2014;
Hodgson et al., 2016). The positive motion-BOLD relationship
(Yan et al., 2013) may reflect neural origins of motion. Therefore,
any approaches for removing motion-related artifacts, including
cnn12, may remove some useful subject-related information.

While the CNN network is developed based on resting-state
data, this technique potentially can also be useful for reducing
motion-related artifacts in task-based fMRI data, whereas an
additional study with large number of subjects is required for
further validation.

CONCLUSION

We have proposed a CNN network modeling motion-related
signal disruption in rs-fMRI data using estimated realignment
parameters and compared the CNN-derived regressors with
traditional motion regressors using publicly available data.
Visually, cnn12 is more effective in reducing head-motion effects.
Quantitatively, cnn12 reduces more variance in regional time
series, reduces more the trend between motion parameters and
other measurements derived from fMRI data itself, makes the
data more homogeneous based on between-subject similarity of
brain connectivity and leads to a larger modularity Q, when
compared to mot12.
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Conventionally, brain function is inferred from the magnitude data of the complex-valued

fMRI output. Since the fMRI phase image (unwrapped) provides a representation of brain

internal magnetic fieldmap (by a constant scale difference), it can also be used to study

brain function while providing a more direct representation of the brain’s magnetic state.

In this study, we collected a cohort of resting-state fMRI magnitude and phase data pairs

from 600 subjects (age from 10 to 76, 346 males), decomposed the phase data by group

independent component analysis (pICA), calculated the functional network connectivity

(pFNC). In comparison with the magnitude-based brain function analysis (mICA and

mFNC), we find that the pFNC matrix contains fewer significant functional connections

(with p-value thresholding) than the mFNC matrix, which are sparsely distributed across

the whole brain with near/far interconnections and positive/negative correlations in rough

balance. We also find a few of brain rest sub-networks within the phase data, primarily

in subcortical, cerebellar, and visual regions. Overall, our findings offer new insights into

brain function connectivity in the context of a focus on the brain’s internal magnetic state.

Keywords: magnitude and phase fMRI, independent component analysis (ICA), functional network connectivity

(FNC), functional connectivity sparseness, functional connectivity balance

INTRODUCTION

Phase functional magnetic resonance imaging (fMRI) is an MRI technique dedicated to fMRI
phase data acquisition and post-acquisition processing and analysis. In principle, an fMRI study
produces a timeseries of complex-valued images consisting of pairwise magnitude and phase
components; therefore, the fMRI phase data are generated together with the magnitude data in
an fMRI experiment (at no extra cost). Since the complex-valued fMRI data (magnitude and
phase images in pairs) are formed from the same magnetic source (the internal inhomogeneous
magnetic fieldmap) through intravoxel dephasing signal detection and subsequent complex
modulo/argument calculations (Chen and Calhoun, 2015b), both are useful for brain function
depiction with different representations (in different measurements). In theory, the fMRI phase
data aremore suitable for brain function analysis since phase imaging represents the brainmagnetic
state seen in internal magnetic fieldmaps.
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There is a body of reports on the exploration and exploitation
of phase fMRI for brain function study (Rowe, 2005, 2009; Arja
et al., 2009; Feng et al., 2009; Balla et al., 2014; Bianciardi et al.,
2014; Chen and Calhoun, 2016b; Ozbay et al., 2016). Under
linear imaging conditions, an fMRI phase image represents the
brain internal magnetic field distribution captured at a timepoint
(Chen and Calhoun, 2015b; Chen et al., 2018b). This portrays
a brain magnetic state (a magnetization state in a main field
B0, in preparation for MRI scanning) during brain activity
(Shmueli et al., 2009; Li et al., 2011; Chen and Calhoun, 2013,
2015a; Wang and Liu, 2015).

In theory, the fMRI magnitude signal is calculated from the
complex signal by a nonnegative nonlinearity (e.g., |±1| = 1)
that fails to represent the source of an internal fieldmap (e.g.,
degenerating the signs associated with the bipolar-valued field
distribution). In comparison, the fMRI phase signal is calculated
from the complex MRI signal through a trigonometric operation,
arctan(ϕ), which can be linearly approximated by arctan(ϕ) ≈
ϕ for |ϕ| < 1 (ϕ denotes a phase signal, measured in units
of radian, related to the field value by a constant scale γTE).
Therefore, a phase image is linearly related to the magnetic
field in linear phase fMRI (Haacke et al., 1999; Chavhan et al.,
2009; Chen and Calhoun, 2015b, 2016b). We may infer the
internal fieldmap source from an fMRI phase image under linear
approximation; however, such inverse mapping is not available
from fMRI magnitude data (due to an irreversible magnitude
nonlinearity like |±1|= 1).

The trigonometric arctan(ϕ) gives a good linearization for
a very small ϕ, as mathematically defined by arctan(ϕ) = ϕ

for |ϕ| << 1. In order to maximally reduce the nonlinearity
associated with arctan(ϕ), we adopt an additive perturbation
model, ϕ(t)= ϕ0 ± δϕ(t), to extract the BOLD-only phase signal
(the perturbation term δϕ(t)) from a timeseries of BOLD phase
signals through complex division (aHilbert inner product) (Chen
and Calhoun, 2016b; Chen et al., 2018b). The BOLD-only phase
signal δϕ results in good linear mapping of the source of BOLD-
only magnetic field perturbation by reducing the nonlinearity
associated with arctan(ϕ).

Given a timeseries of fMRI images, we can break down brain
function into a collection of brain subfunctions (subnetworks)
through an independent component analysis (ICA) method
(Calhoun et al., 2001; McKeown et al., 2003; Guo and Pagnoni,
2008; Calhoun and Adali, 2012). Taking advantage of data-
driven multivariate statistics, the ICA method has been
successfully extended to allow population-level group data
analysis (a technique of group ICA) (Calhoun et al., 2001;
Beckmann et al., 2005; Guo and Pagnoni, 2008; Calhoun
and Adali, 2012). Accordingly, we can apply group ICA
to magnitude and phase data separately for brain function
decompositions, as denoted by mICA and pICA (Chen et al.,
2018a). For comparison of mICA and pICA in correspondence,
we constrain the pICA with the magnitude-inferred group

Abbreviations: BOLD, blood oxygenation level dependent; fMRI, functional

magnetic resonance imaging; mICA, magnitude data independent component

analysis (ICA); pICA, phase data ICA; mFNC magnitude-depicted function

network connectivity (FNC); pFNC, phase-depicted FNC.

information and implement group-information-guided
(GIG) pICA (Du and Fan, 2013).

Using mICA and pICA, we then calculate their functional
network connectivity (FNC) matrices (denoted by mFNC
and pFNC) based on the temporal correlation of mICA
and pICA timecourses (Jafri et al., 2008; Arbabshirani and
Calhoun, 2011). For larger population data analysis, we
may discard the insignificant functional connections based
on statistical significance (based on p-value assessment). For
example, a p-value thresholding (<10−10) removes insignificant
connections in mFNC, enhancing identification of significant
whole-brain connections such as sparsity, balance, and near and
far couplings.

We have recently reported on a method of comparing
magnitude and phase-based brain functional connectivity in
the resting state via statistical analysis over 100 subjects
(Chen et al., 2018a). This revealed interesting similarities and
distinctions between mFNC and pFNC. Here, we used a
larger cohort of subject data (N = 600) to analyze the brain
functional connectivity patterns in mFNC and pFNC matrices.
We addressed the following aspects: intra-domain (short-range,
near) and inter-domain (long-range, far) connections, positive
and negative connections, sparseness and nonuniformity of
connection distribution, and robustness and significance of
group-level connections.

METHODS

Data Collection
A collection of 600 subject datasets (in pairs of magnitude and
phase images) were acquired from a cohort of participants (age:
10–76 years, 346 male/254 female) by subject scanning in a
Siemens TrioTim 3T scanner at the Mind Research Network.
Informed consent was obtained for each subject and the subject
scanning protocol was approved by the IRB at the University
of New Mexico. The data were gained from the subjects
anonymously prior to group analysis.

The fMRI experiments were performed with the following
parameter settings: 12-channel coil, GRE-EPI sequence, TE =

29ms, TR = 2 s, flip angle = 75◦, field of view = 240 cm ×

240 cm, matrix size = 64 × 64, voxel size = 3.75mm × 3.75mm
× 4.55mm, slice thickness = 3.5mm, slice gap = 1.05mm,
total slices 33, acquisition time (TA) = 5min, and total volumes
150. Subjects were instructed to keep their eyes open during the
scanning and fixate on a foveally presented cross. We obtained
two groups of fMRI data, using magnitude and phase images in
pairs, with each in a 4D format (64 × 64 × 33 × 150, 3D spatial
and 1D temporal in dimension).

Data Processing
Preprocessing the fMRI magnitude images included removing
the first two timepoints to avoid T1 equilibration effects;
realignment using INRIalign; slice-timing correction using the
middle slice as the reference frame; spatial normalization into
MNI space with resampled isotropic voxels (3 × 3 × 3mm);
and spatial smoothing with a Gaussian kernel (FWHM= 9mm).
Through data processing, each 4D subject data (magnitude and
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phase separately) in 64× 64× 33× 150 format was converted to
53 × 63 × 46 × 148. For fMRI magnitude image preprocessing,
we used the SPM8 automated pipeline (Chen et al., 2018a) as
reported (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).

Extracting BOLD-Only Phase Signals
The raw phase images were first converted to a range in radian
(–π, π) and denoted by ϕ (bipolarly valued). Then, the phase
series images were subjected to spatial realignment through the
3D affine transformation using the motion correction parameters
(4 × 4 affine transformation) as derived from the magnitude
image realignment in the corresponding magnitude timeseries.
Upon phase timeseries image realignment, a complex division
(Equation A2 in Appendix) was used to extract the temporal
phase changes (BOLD-only phase response) with respect to the
middle frame at the middle timepoint in the series (Chen et al.,
2018b), as denoted by δϕ (bipolarly valued). This calculation is
a time-domain phase-unwrapping technique that can extract the
small temporal phase changes (<< π) buried in phase-wrapped
timeseries signals (Chen and Calhoun, 2016b). Using the phase
image processing, we obtained a 4D phase data δϕ(r,t) for each
subject in a format of 53× 63× 46× 148.

Group mICA and GIG-pICA
The SPM-processed magnitude data were decomposed into
functional networks using a group-level spatial ICA as illustrated
(Chen et al., 2018a) and implemented in the GIFT toolbox
(http://mialab.mrn.org/software/gift/). We decomposed the
group magnitude data into a number of 100 brain subfunctions
(a relatively high model order brain functional ICA), denoted
by mICA. The Infomax spatial ICA algorithm was repeated
10 times in ICASSO (http://www.cis.hut.fi/projects/ica/icasso).
The aggregate spatial maps were estimated as modes of
spatiotemporal ICA(r, t). Subject-specific spatial maps {mICA
j(r)} and timecourses {mICAj(t))} (j = 1, 2, . . . , 600) were
estimated using a back-reconstruction method (Calhoun et al.,
2001; Erhardt et al., 2011). Then, we selected a subset of 50
components (intrinsic connectivity networks) from the 100
plenary by excluding mICAs obviously affected by physiological,
motion, and imaging artifacts as characterized by noncortical
activation in spatial maps and high-frequency fluctuations in
timecourses (Beckmann et al., 2005; Allen et al., 2011, 2014).

The timecourses mICA(t) underwent postprocessing that
included (1) detrending, (2) removing outliers, and (3) low-
pass filtering with a cutoff frequency at 0.15Hz. Finally, the
postprocessed mICA(t) were normalized to have a unit variance
such that the covariance matrices correspond to correlation
matrices (Allen et al., 2014).

Considering the mICA as the brain functional template for
group information guidance, we conducted brain functional
decomposition on the group phase data δϕ using the GIG-ICA
method (Du and Fan, 2013), thus implementing GIG-pICA. We
use the GIG-ICA method for phase data decomposition for two
reasons: (1) facilitating mICA and pICA correspondence and
comparison; and (2) in comparison with the direct ICA phase
data decomposition (in our previous 100-subejct experiment
Chen et al., 2018a) to show the convergence in phase-inferred

features; for example, both pICA methods produce functional
cliques in subcortical region.

The pICA timecourses were then postprocessed in ways
similar to the mICA timecourse postprocessing. As a result, we
obtained a set of 50 pICA components in counterpart to the 50
mICA components.

Group mFNC and Group pFNC Matrices
According to brain structure and functional organization, we
classified the 50 selected mICA components roughly into seven
brain domains based on spatial activation locations, as ordered
by subcortical region (SC(4)), auditory (AUD(2)), sensorimotor
(SM(8)), vision (VIS(10)), cognitive control (CC(14)), default
mode network (DMN(9)), and cerebellum (CB(3)).

An aggregate ICA timecourse was back-reconstructed using
data from 600 subjects to generate the same number of individual
subject ICA timecourses. For each subject, we calculated a
temporal correlation matrix (i.e., producing a subject-specific
FNC matrix). In the results, we obtained 600 single-subject
{mFNCj} and {pFNCj} matrices, j = 1, 2, . . . , 600, for magnitude
and phase data, respectively. We converted the entries in
{mFNCj(n1, n2)} and {pFNCj(n1, n2)} matrices (in size of
50×50×600) to Fisher z-scores (via a Matlab routine atanh(x)).
By averaging the assemblies, we obtained group-level mFNC and
pFNC matrices (in size of 50×50).

Null-Hypothesis Tests on Group mFNC
and pFNC
An entry at (n1, n2) in mFNC(n1, n2) matrix represents a
specific functional connection between subfunction mICAn1 and
subfunctionmICAn2, for n1, n2 = 1, 2, . . . , 50. All the entry values
collected from the 600 subject-specific connections constitute
an assembly of 600 samples. Through a one-sample t-test (on
the null hypothesis that an entry at (n1, n2) in the group-
level mFNC matrix assumes a zero-mean distribution across
the 600 samples {mFNCj}), we obtained a p-value and an H-
rest value. From all of the t-tests on the assembly {mFNCj(n1,
n2), j = 1, 2,. . . , 600, n1, n2 = 1, 2,. . . ,50}, we obtained a p-
value matrix PmFNC (n1, n2) in a value range [0,1] and a H-
test matrix HmFNC(n1, n2) (binary valued {1,0}), in size of 50
× 50. In the same procedure, we obtained a p-value matrix
PpFNC and an H-test matrix HpFNC from the phase data assembly
{pFNCj}. Each entry of the p-value matrix was calculated from
a statistic t-test over the 600 subject-specific FNCs with a
confidence interval. The confidence intervals associated with
the p-value matrix calculation may vary from entry to entry,
which may assume different bounds delimited by positive and
negative values.

The statistical hypothesis test may mistakenly produce some
rejections of null hypothesis (zero mean), which we can control
using the false discovery rate (FDR) through a FDR correction
procedure (Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001, 2005). This is a more powerful method for
correcting FDR for multiple comparisons than the standard
Bonferroni correction. It offers a strong control of the family-wise
error rate (i.e., the probability that one or more null hypotheses
are mistakenly rejected). The FDR correction leads to adjusted
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p-values. We made FDR corrections on PmFNC and PpFNC for a
specified desirable FDR (default p= 0.05).

Based on the binary HmFNC(n1, n2) (H = 1 for zero-
mean rejection, H = 0 for zero-mean accepted at the 5%
level), we excluded the functional connections that have
zero-mean distributions (entries with H = 0). We focused
on the connections in mFNC(n1,n2) whose entries take on
nonzero-mean distributions (determined by H = 1). We edited
pFNC(n1, n2) based on the binary HpFNC(n1, n2).

Numerical Characteristics of mFNC
and pFNC
Based on the FDR-corrected p-value matrices, PmFNC and
PpFNC, we assessed the significance and robustness of the
functional connections through a p-value thresholding as
given by

mFNC<(n1, n2) =

{

mFNC(n1, n2), P
mFNC(n1, n2) <pthresh

0, else

(1a)

pFNC<(n1, n2) =

{

pFNC(n1, n2), P
pFNC(n1,n2) <pthresh

0, else

(1b)

where pthresh denotes a specified p-value (pthresh = 0.05 for the
default statistics significance) and the superscript “<” denotes
a smaller-than p-value thresholding. As pthresh decreases, the
p-value thresholding produces a smaller number of survival
entries (6= 0) in mFNC< and pFNC< matrices, representing
the sparsity of higher significant functional connections; high
significant connections are also strong connections.

For comparative pattern analysis of matrices mFNC< and
pFNC<, we expect the following characteristics:

(1) Statistically significant connections through p-value
thresholding in Eq. (1a,1b) with a span of pthresh = {0.05,
10−10, 10−50, 10−100, 10−150, 10−200}.

(2) Positive/negative connections and connectivity balance in
terms of mean(FNC) ± std(FNC) (Chen et al., 2018a). The
connectivity balance can be also be characterized by the entry
number difference between positive count (denoted by #(+))
and negative count (denoted by #(-1)) of signs in mFNC<

or pFNC <.
(3) Intra-domain (near, in a diagonal block) and inter-domain

(far, in an off-diagonal submatrix) connections.
(4) Sparseness and nonuniformity of significant connections.

The sparsity can be numerically characterized by the small
fractions #(+)/1225 and #(-)/1225, where 1225= 50(50-1)/2
is the number of total entries in a symmetrical 50× 50matrix
excluding the self-connections on the diagonal line. The
nonuniformity is visibly inspected in mFNC< and pFNC<

as some submatrices disappear while some other submatrices
persist during the p-value thresholding.

RESULTS

Group mFNC and pFNC
Considering ICA components as coherent brain functional
networks, we calculated the functional network connectivity
matrix by the temporal correlations (Pearson correlations)
among the ICA timecourses. In Figures 1A,B are shown the
magnitude and phase-depicted mFNC and pFNC matrices (in
size 50× 50), as calculated by the average over the subject-specific
{mFNCj(n1, n2)}and {pFNC

j(n1, n2)} matrices, respectively. Note
the 50 mICA components were arranged in seven domains:
SC(4), AUD(2), SM(8), VIS(10), CC(14), DMN(9), and CB(3), as
shown at the left vertical labels in Figure 1A. Correspondingly,
the 50 pICA components were arranged with the same labels
in Figure 1B.

The ICA-decomposed brain subfunctions are distributed over
the brain geometrical space partitioned in seven domains. In
general, the intra-domain connections are short connections,
whereas the inter-domain connections are always long
connections (except for rare inter-domain connections at
the domain boundary). In an FNC matrix, an intra-domain
short-range (near) connection constitutes the on-diagonal
blocks and an inter-domain long-range (far) connection is
located in the off-diagonal regions. In Figure 1, the magnitude
data show strong positive near couplings in the on-diagonal
blocks (Figure 1A), which differs from the phase-depicted loose
connections (Figure 1B).

One Sample t-tests of Group-Level mFNC
and pFNC
The group-level mFNC and pFNCmatrices were calculated using
an average from assemblies {mFNCj} and {pFNCj}, respectively.
The t-test on themFNCmatrix gives rise anH-test matrix HmFNC

and a p-value matrix PmFNC (in size of 50 × 50), as shown
in Figures 2A,C. The averaged confidence interval for PmFNC

is [0.02, 0.06]. Meanwhile, the pFNC t-test gives rise to HpFNC

and PpFNC, as shown in Figures 2B,D. The averaged confidence
interval for PpFNC is [−0.02, 0.02]. Note that the p-value matrices
were displayed in a magnification by log10. The binary H-test
matrices were interpreted as H = 1 for rejecting null hypothesis
(nonzero mean distributions) and H= 0 for true null hypothesis
(zero mean distributions).

In Figure 2C, there are 1,119 entries (H = 1 for significant
connection) and 106 entries (H = 0 for noisy or random
connection) in the H-test matrix HmFNC (50 × 50, with a total
number of 1,225 entries in the upper triangle). In Figure 2D,
there are 1,092 entries (H = 1) and 133 entries (H = 0) in the
H-test matrix HpFNC. The entries with H = 0 usually take on
small values in mFNC and pFNC matrices, which we consider
as noise and omit accordingly (by resetting them to zeros).

Thresholding mFNC and pFNC
We assessed the statistical significance of the functional
connections in FNC matrices based on p-value thresholding
in Equations (1a,b). In Figure 3, the thresholded matrices
(mFNC<) are drawn from p-value thresholding with pthresh =

{0.05, 10−10, 10−50, 10−100, 10−150, 10−200} using the upper
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FIGURE 1 | Brain resting-state subfunction arrangement and functional network connectivity. (A) Magnitude data depiction: a set of 50 mICA components are

classified into seven (7) brain domains {SC(4), AUD(2), MOT(8), VIS(10), CC(14), DMN(9), and CB(3)} and the mFNC matrix (mean ± std: 0.04 ± 0.23); (B) Phase data

depiction: the pICA components are classified into 7 domains and the pFNC matrix (mean ± std: −0.0005 ± 0.18).

triangle portions of the symmetric matrices. For each mFNC<

matrix (after FDR correction), we calculated the following
characteristics: mean ± std, the number of positive couplings
(#(+)), the sum of positive couplings (

∑

(+)), the number of
negative couplings (#(–)) and the sum of negative couplings
(
∑

(–)). The connectivity balance can be characterized as
mean(mFNC<). We can also quantify the functional connectivity
imbalance by the quantity #(+) – #(–) in mFNC< or alternatively
by

∑

(+) –
∑

(–).
Correspondingly, in Figure 4 we show the thresholded pFNC

matrices using the same p-value thresholdings and numerical
characterizations {#(+), #(–),

∑

(+),
∑

(–)} as used formFNC. In
Figure 4E, the subcortical nuclei (SC) reveal significant negative
couplings with VIS and CB, along with significant positive
couplings with CC (p < 10−150).

In Figure 5, we present the magnitude- and phase-depicted
whole-brain connectivity behaviors for significant connections
as determined by p-value thresholding. Specifically, we show
the plots on the numerical characteristics (in terms of mean,
counts of positive and negative connections (#(+), #(–)), and
sums of positive and negative connections (

∑

(+),
∑

(–)) of
mFNC< and pFNC< matrices under p-value thresholding with
pthresh = {0.05, 10−10, 10−50, 10−100, 10−150, 10−200.}. In
Figure 5A,we show the whole-brain connection balance in terms
of mean(mFNC<) and mean(pFNC<), in which a large mean
value indicates a connection imbalance (deviation from balance
0). In Figure 5B, we use the average of whole-brain connection
strength in terms of mean(|mFNC<|) and mean(|pFNC<|), in
which a large value indicates a strong connection. It is noted
that for small mean(mFNC) and mean(pFNC) values (close to
0), we may use the std(mFNC) and std(pFNC) values to quantify
connection strengths instead what was used in (Chen et al.,
2018a). In Figures 5C,D, we show the positive and negative

numbers (#(+) vs. #(–)) in mFNC< and pFNC< matrices with
respect to the p-value thresholding, where the difference #(+)
– #(–) can be used to quantify the whole-brain connection
imbalance. In Figures 5E,F, we also the show the positive
and negative connections in terms of

∑

(+) and
∑

(–) with
respect to pthresh, where the difference

∑

(+) –
∑

(–) can
also be used to evaluate the connection imbalance. Overall,
our experimental results in Figure 5 show in comparison with
fMRI magnitude data usage that the fMRI phase data reveal
more connection balance (mean(pFNC<) < mean(mFNC<))
in Figure 5A, higher connection strength (mean(|pFNC<|) >

mean(|mFNC<|)) in Figure 5B, andmore balance in positive and
negative distributions as determined by a smaller #(+) – #(–) in
Figures 5C,D. and a smaller

∑

(+) –
∑

(–) in Figures 5E,F.

Significant Couplings in mFNC
We used p-value thresholding on mFNC to examine robustness
and significance of the magnitude-depicted brain functional
connections for whole brain space in resting state (Figure 3).
Here, in Figure 6, we see significant connections survived in
a very strong p-value thresholding (p < 10−200, Figure 3F).
Specifically, we show in Figure 6A the functional connections
across the seven domains (MOT(8), CC(14), AUD(2), DMN(9),
SC(4), CB(3), VIS(10) in an arrangement around a circle)
along with links of intra-domain (all are positive, in bright
red), positive inter-domain (in dim red), and negative inter-
domain (in blue). We observed the following aspects: (1) there
are 60 positive connections and 1 negative connection; (2) the
domains (MOT, VIS, DMN) each contain dense intra-domain
connections; (3) there is no inter-domain connection between
(MOT, VIS), (DMN,CC), (DMN, AUD), (DMN, SC), (DMN,
CB), (SC, CB), (AUD, SC), and (AUD, CB); and (4) there is no
intra-domain link in CB. In Figure 6B, we displayed the only
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FIGURE 2 | One-sample t-tests for the assemblies {mFNCn} and {pFNCn} (n = 1,2,…,600). (A,B) The t-test p-value matrices (displayed by a log10 magnification)

using PmFNC(50,50) for {mFNCn} and PpFNC(50,50) for {pFNCn}; (C,D) The null-hypothesis test results (the entries with H = 1 were used for connection

significance analysis).

negative connection survived in p < 10−200 during brain resting
state, which shows the inter-domain connection between (CC,
CB) in a connection strength 0.41 (p = 2 × 10−209). Obviously,
the magnitude depicted high significant connections in Figure 6

(p < 10−200) in resting brain state are nonuniformly distributed
over the brain space: dense connections in VIS, MOT, and DMN,
sparse connections in CC and SC, and no connections within CB.

Significant Couplings in pFNC
In comparison with the most significant connections in
mFNC in Figure 6, we scrutinize the phase-depicted significant
connections in mFNC under the same p-value thresholding
(p-value < 10−200) in Figure 7. We observed the following
aspects: (1) there are a few connections survived in p-value <

10−200 (10 positive connections and 2 negative connections);
(2) there is no intra-domain connections in MOT,CC, AUD,
DMN; (3) there are 2 negative far inter-domain connections
between (CB, SC); (4) there is 1 positive far inter-domain
connection between (CC, SC); (5) there are no inter-domain
connections among {MOT, CC, AUD, DMN, VIS, CB}; and
(6) only SC has inter-domain connections (1 with CC,

2 with CB). In Figure 7B, we displayed the connections
among {SC1(pICA1),SC3(pICA3),CB1(pICA48)}, which assume
2 negative far inter-domain connections and 1 positive near intra-
domain connection. The subcortical subfunction SC1(pFNC1)
is strongly coupled with SC3(pFNC3) with pFNC(1,3) =

0.80 and a high significance (p-value = 8×10−250), which
constitutes a functional clique in the subcortical nuclei. It
seems plausible for the phase data analysis to show that the
subcortical nuclei (consisting of basal ganglia and thalamus)

form a functional clique that acts as a hub in couplings with
other cortical subfunctions in the resting state. This observation
is consistent with our previous report on the functional
subcortical clique observed from a 100-subject rest fMRI
experiment (Chen et al., 2018a).

DISCUSSION

Inferring BOLD-Only Internal Magnetic
Field Perturbation From Phase MRI
The rationale of phase fMRI for brain function study lies
in the fact that we can infer the brain internal magnetic

Frontiers in Neuroscience | www.frontiersin.org 6 March 2019 | Volume 13 | Article 20438

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chen et al. Phase fMRI Sparse Functional Connectivity

FIGURE 3 | (A–F) Significant connections in group mFNC matrix under p-value thresholding with pthresh = {0.05, 10−10, 10−50, 10−100, 10−150, 10−200}. The

numbers of positive and negative connections (denoted by #(+) and #(–) respectively), and the sums of positive and negative connections (denoted by
∑

(+) and
∑

(–)

respectively) were calculated from the survival entries in the pthresh-thresholded matrices (mFNC<).

field distribution from an fMRI phase image under linear
approximation (a small phase angle condition). For reference
convenience, we provide the approximation theory of phase-to-
field inverse mapping in the Appendix. An fMRI phase image
represents a snapshot capture of the brain magnetic state (in
terms of magnetic field distribution) under linear phase fMRI
approximation. A voxel phase signal represents an intravoxel-
average magnetic field value.

As seen in Equation (A3), phase fMRI procures a phase
image ϕ from the MRI quadrature detection by a trigonometric
operation, arctan(ϕ), which is nonlinear in a general setting.
Mathematically, we have a linear approximation, arctan(ϕ) = ϕ

for |ϕ| << 1 radian (a small phase angle condition). Numerical
simulation (Chen and Calhoun, 2015b) has shown that the phase
fMRI nonlinearity (arctan(ϕ)) is weak for large phase angles
(|ϕ| ∼ π rad). In reality, an fMRI phase image always has
phase wrapping due to the dominant phase background (|ϕ0|
> π radian). In practice, an unwrapped phase image is always
assumed to represent the internal magnetic fieldmap with the
associated nonlinearity of large phase angles (|ϕunwrap| > π).

For fMRI data analysis, we extract the dynamic phase
perturbations (δϕ) using a complex-division approach in
Equation (A8), which are considered the BOLD-only phase
response signals during a brain activity. Then we infer the BOLD-
only magnetic field perturbation (δb) by a linear scaling mapping

in Equation (A9). The small phase perturbation (typically |δϕ| <
0.2 radian) ensures a good linear approximation: arctan(δϕ) =
δϕ for |δϕ| << 1. Note that we cannot infer the brain magnetic
fieldmap from magnitude fMRI due to irreversible nonlinearity.

Bipolar-Valued Brain Magnetic Field
Distribution
A magnetic field may assume positive and negative values. For
brain fMRI study, the brain internal magnetic field is from a
brain tissue magnetization in a main field B0. Specifically, this
brain tissue magnetic susceptibility property (denoted by χ)
undergoes a dipole-convolved magnetization in B0 to establish
an inhomogeneous magnetic fieldmap. Due to the spatial
derivative property of the dipole kernel, even a nonnegative
susceptibility distribution (χ ≥ 0) could induce a bipolar-
valued fieldmap (Chen et al., 2018b). The negative signs in
a χ-induced fieldmap are maintained during the forward
phase fMRI, which result in the fieldmap reconstruction by
an inverse mapping from phase to fieldmap. In comparison,
the negative signs are completely suppressed (inverted) in the
fMRI magnitude signals due to its nonnegativeness (Chen and
Calhoun, 2011). In this sense, the phase fMRI provides a
direct, accurate representation of the brain magnetic state for
bipolar-valued magnetic fieldmaps. Nevertheless, the magnetic
fieldmap still differs from the underlying brain tissue magnetic
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FIGURE 4 | (A–F) Significant connections in group pFNC matrix under p-value thresholding with pthresh ={0.05, 10−10, 10−50, 10−100, 10−150, 10−200}. The

numbers of positive and negative connections (denoted by #(+) and #(–) respectively), and sums of positive and negative connections (denoted by
∑

(+) and
∑

(–)

respectively) were calculated from the survival entries in the pthresh-thresholded matrices (pFNC<).

susceptibility map using a 3D dipole convolution (Chen and
Calhoun, 2013), which in principle can be completely resolved
through functional quantitative susceptibility mapping (fQSM)
or functional susceptibility mapping (Balla et al., 2014; Chen
and Calhoun, 2015a, 2016a,c). More accurate brain functional
connectivity analysis using original magnetic susceptibility
source data is an important research in future.

Positive and Negative Functional
Connections
Research has shown positive and negative functional connections
exist among ICA-decomposed brain networks (subfunctions)
(Xu, 2015; Xu et al., 2015), either in the resting state or
in task performance. Most reports on balanced connectivity
(Marino et al., 2005; Fox et al., 2009; Murphy et al., 2009;
Litwin-Kumar and Doiron, 2012; Liu et al., 2015) were based
on fMRI magnitude data analysis in which the negative
magnitude connections (anticorrelations) were reported as
a result of a “de-mean” preprocessing that is prone to
artifactual negative connections. Using bipolar-valued fMRI
phase data, we found more negative connections that cancel
the positive connection(s) to make a balanced network for
the whole-brain functional connectivity without a de-mean
preprocessing (Chen et al., 2018a).

Overall, the phase-depicted balanced brain functional
connectivity draws from the bipolarity of phase signals
(Figure 1B), while magnitude-depicted positively-biased
connectivity stems from the nonnegative magnitude signals
(Figure 1A). These observations are consistent with our previous
report with a 100-subject experiment data analysis (Chen
et al., 2018a). Since the linear inverse mapping from fMRI
phase to magnetic fieldmap maintains the negative signs, the
δb-depicted negative connections come from negative phase
signals and anti-correlations.

Near and Far Functional Connections
The magnitude-based brain functional connectivity study
(Rosenbaum et al., 2017) has shown that nearby neurons
are positively correlated, pairs at intermediate distances are
negatively correlated, and distant pairs are weakly correlated. We
found similar connection patterns in mFNC (Figure 1A): the
on-diagonal positive blocks indicate strong near (intra-domain)
connections, while off-diagonal blocks have negative and small
values indicating weak far (inter-domain) connections.

In comparison, the phase-based brain function connectivity in
pFNC (in Figure 1B) reveals some different patterns. Figure 1B
reveals negative near connections within domains VIS, CC,
and DMN in small and negative entries in the on-diagonal
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FIGURE 5 | Numerical characteristics of mFNC and pFNC under p-value thresholding. (A) mean(mFNC<) and mean(pFNC<) whole-brain network balance;

(B) mean(|mFNC< |) and mean(|pFNC< |) whole-brain network coupling strength; (C) Counts of positive and negative couplings in mFNC<; (D) Counts of positive and

negative couplings in pFNC<; (E) Sums of positive and negative couplings in pFNC<; and (F) Sums of positive and negative couplings in pFNC<.

blocks; also seen are off-diagonal negative and positive blocks
indicating strong far (inter-domain) connections. In particular,
the subcortical subfunctions (SC(4)) show strong negative
connections with both the visual subfunctions (VIS(10)) and the
cerebellum subfunctions (CB(3)), while the VIS(10) are generally
positively connected with CB(3).

Sparseness and Nonuniformity of Brain
FNC
Given a set of ICA-decomposed brain subfunctions, the whole-
brain functional connectivity is numerically characterized in
an FNC matrix (e.g., mFNC from magnitude data and pFNC
from phase data). An entry value in the FNC matrix represents
the correlation between two subfunctions in a range [−1, 1]:
a large value (∼1) indicates a synchrony and a negative sign
an anti-correlation. The entries with small values (∼0) are
largely due to noise (randomness and instability). For brain
function connectivity depiction, we are concerned with the
strong connections (negative or positive) over the brain space
(near or far connections). By omitting the entries in small
values (i.e., via thresholding like Equation 1), we have a small

number of survival entries in the FNC matrix showing the
sparseness (counting entries in a thresholded FNC matrix) and
nonuniformity of their distribution over the brain space.

In our experiment, we had a large number of subject
data (N = 600) for statistical brain function study. Based
on the FNC assemblies {mFNCj} and {pFNCj}, we conducted
t-tests on the group-level functional connections to obtain
p-value matrices, PmFNC and PpFNC, and H-test matrices,
HmFNC and HpFNC, respectively. We omitted the entries in
mFNC on the condition of HmFNC = 0, whereby we suppress
the small insignificant connection values. By using p-value
thresholding in Equation (1a), we see significant connections
as determined by the p-value thresholds (pthresh = {0.05,
10−10, 10−50, 10−100, 10−150, 10−200.})shown in mFNC< (see
Figure 3).There are sparse (in terms of positive and negative
counts) and nonuniform connections (in dense and sporadic
links) in the brain space as pthresh increases (as seen in
Figure 6), for the most significant connections (pthresh =

10−200). Similar sparsity and nonuniformity of phase-depicted
connectivity occurs in pFNC< (Figures 4, 7). Under a specific
p-value thresholding, the pFNC< is sparser than mFNC< (as
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FIGURE 6 | Illustrations of the most significant couplings in mFNC< (p < 10−200). (A) There are 36 intra-domain positive couplings (near, in bright red color) and 18

inter-domain positive couplings (far, in soft red color), and 1 inter-domain negative coupling (far, in blue color). (B) Features of the negative interdomain coupling

mFNC(29, 48).

FIGURE 7 | Illustrations of the most significant couplings in pFNC< (p < 10−200). (A) There are nine (9) intra-domain positive couplings (near, in bright red color) and

one (1) inter-domain positive coupling (far, in soft red color), and two (2) inter-domain negative couplings (far, in blue color). (B) Features of the two negative

interdomain couplings pFNC(1,48) and pFNC(3, 48).
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indicated in #(pFNC< 6= 0) < #(mFNC< 6= 0); for pthresh
< 10−50, pFNC< is more balance than mFNC< in terms of
|#(pFNC<(+) – #(pFNC<(–)| < |#(mFNC<(+) – #(mFNC<(–
)| or |

∑

(pFNC<(+) –
∑

(pFNC<(–)| < |
∑

(mFNC<(+) –
∑

(mFNC<(–)| (see Figure 3 through Figure 5).
We conclude the subcortical nuclei make a functional clique

(with strong intra-domain couplings) that is negatively coupled
with VIS and CB subfunctions (Figure 4) while positively joined
with the strongest couplings.

Significant connections are survived from p-value
thresholding in Equations (1a,b) with a significance level
specified by pthresh. For connection balance analysis in this
particular 600-subject experiment, we suggest the use of a pthresh
< 10−10 (in Figures 3, 4). For connection sparseness analysis,
we may use a very small pthresh to examine a few number of
high significant connections, as demonstrated in Figures 6, 7
for the extreme scenarios with pthresh = 10−200. Comparing
mFNC< (Figure 3) and pFNC< (Figure 4), the pFNC contains a
smaller number of significant connections than mFNC and that
the connections in pFNC are more balanced than those in the
mFNC. In pFNC analysis, the brain resting state contains two
strong negative connections between subcortical nuclei (SC) and
cerebellum (CB) and the sparse intra-domain connections. Thus,
basal ganglia in the SC domain have the strongest and most
significant function connections with CB during brain resting
state. We found one strong negative connection between CB and
CC and other massive intra-domain connections (specifically
#(+)= 60) from the mFNC analysis.

In neuroscience, it is well-established (Alexander et al., 1986;
Amos, 2000; Stocco et al., 2010) that the central subcortex
(primarily basal ganglia and thalamus) plays a “relay station”
for brain functional information traffic, acting as a cohesive
functional unit with strong connections to the cerebral cortex
and other brain areas. Experimental data analysis (Bell and Shine,
2016) suggests the basal ganglia and thalamus are functional
hubs with a core circuit supporting large-scale integration. Our
600-subject experimental results (reported herein) show strong
subcortical functional cliques in the whole-brain resting state,
which agree with the centralized subcortical hubs concept (Bell
and Shine, 2016; Sherman, 2016; Hwang et al., 2017).

CONCLUSION

Our rationale of using fMRI phase data for brain function study
is based on the fact that fMRI phase imaging (unwrapped)
represents the brain internal magnetic field distribution (the
magnetic source for fMRI complex signal formation, the brain
magnetic state at a stage prior to MRI scan and detection). We

can extract the BOLD-only phase perturbation in small phase
change values through calculations of the timeseries of phase
images, thus ensuring a linear scale mapping to BOLD-only
magnetic field perturbation (magnetic source of fMRI). Using
an fMRI dataset from the cohort of 600, we compared the
phase-depicted brain functional connectivity (pFNC) and the
magnitude-depicted connectivity (mFNC) in terms of measures
of positive and negative connections; near and far connections;

sparsity and nonuniformity; and statistical significance (based
one p-value thresholding).

Our experiments (600-subject resting-state phase fMRI) show
the phase fMRI data has a smaller number of significant whole-
brain connections (sparse connection) in the brain resting
state than the magnitude data depiction. Perhaps, the reduced
number of significant connections in phase fMRI is largely
due to the positive and negative cancellation of linear phase
signals. We found the basal ganglia networks (in subcortical
nuclei) have strong negative connections with other brain
regions in a few of the significant connections in the resting
state. These findings are different from the magnitude-depicted
functional connectivity in prevailing positive connections.
Although we cannot prove or disprove due to a lack of
in vivo brain function connection truth, we cannot completely
confirm our findings from phase fMRI data analysis, but
can justify the phase usefulness within the context of linear
phase fMRI.
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In most task and resting state fMRI studies, a group consensus is often sought,
where individual variability is considered a nuisance. None the less, biological variability
is an important factor that cannot be ignored and is gaining more attention in the
field. One recent development is the individual identification based on static functional
connectome. While the original work was based on the static connectome, subsequent
efforts using recurrent neural networks (RNN) demonstrated that the inclusion of
temporal features greatly improved identification accuracy. Given that convolutional
RNN (ConvRNN) seamlessly integrates spatial and temporal features, the present work
applied ConvRNN for individual identification with resting state fMRI data. Our result
demonstrates ConvRNN achieving a higher identification accuracy than conventional
RNN, likely due to better extraction of local features between neighboring ROIs.
Furthermore, given that each convolutional output assembles in-place features, they
provide a natural way for us to visualize the informative spatial pattern and temporal
information, opening up a promising new avenue for analyzing fMRI data.

Keywords: functional magnetic resonance imaging, individual identification, recurrent neural network,
convolutional neural network, visualization

INTRODUCTION

Mainstream fMRI studies have been focusing on deriving population consensuses using group
analysis. A group analysis in neuroimaging, albeit important, commonly neglects individual-to-
individual variations. The importance of individual variability in neurobiological research has
drawn increasing attention (Mohr and Nagel, 2010). Using task-fMRI, significant individual
differences in brain activation were identified, reflecting alterations in cognitive function and
behavior (Barch et al., 2013). Individual variability in functional connectivity (FC) has been
successfully used to identify subjects from a large group. More specifically, static connectivity
patterns throughout the brain were shown to be subject specific and distinctive across scan
sessions and conditions, providing powerful features for individual identification (Finn et al., 2015).
Therefore, exploring the individual uniqueness of the brain connectivity points to a new avenue to
study the brain.

Although the static FC achieved decent accuracy, it required a sufficiently long data set (600
frames, 7.2 min) and considered only the spatial pattern through the temporal correlation without
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taking temporal features into full account. The performance
degraded with short clips of fMRI data, probably due to temporal
variability (or dynamics) in the resting-state fMRI data, which
leads to high variability in the FC derived from a short window.
On the other hand, the dynamic information of resting state
activity, if taken into account, could provide additional features
for individual identification, improving the accuracy with the
short time series.

In the application of time sequence modeling, recurrent neural
networks (RNNs) have shown outstanding promise in a broad
range of applications, including video classification, machine
translation, and biomedical image segmentation (Sharma et al.,
2015; Chen et al., 2016; Vaswani et al., 2017; Gao et al.,
2018). For fMRI data analysis, RNN was able to model the
dynamics of brain activity in response to sensory stimuli,
providing accurate estimates of hemodynamic response with
temporal dynamics (Güçlü and van Gerven, 2017). RNNs have
also been implemented to incorporate temporal information
along with spatial features from resting-state fMRI data instead
of merely spatial pattern in the connectome (Dvornek et al.,
2017; Chen and Hu, 2018). Furthermore, a convolution-based
RNN was introduced to make full use of features in both
spatial and temporal domains, consistently outperforming fully
connected RNNs (Shi et al., 2015). Therefore, combining the local
features between adjacent ROIs by the convolutional structure
and sequence modeling capability of RNN may lead to a
better approach to extract spatiotemporal features for individual
identification on resting-state fMRI data.

In the meantime, it is also valuable to visualize the underlying
features in the trained convolutional models. Although deep
learning is becoming a panacea in almost every domain, it
has been criticized due to its poor interpretability as being a
black-box. While many attempts have been made to provide
an interpretation and an intuitive understanding of trained
networks, our understanding of how these networks work and
what is important behind their performance have not kept
up with the pace of the development of neural networks.
While dedicated deep learning models have achieved amazing
performance by end-to-end learning through huge volumes of
data, better comprehension of the success of these models can
uncover fundamental principles of deep neural networks and
reveal important features within the data.

In this work, we adopted convolutional RNN or ConvRNN
for individual identification using resting-state fMRI data.
The convolutional recurrent model was able to achieve
individual identification with shared convolutional weights
capturing local coactivation features. In-place visualization of the
informative area by ConvRNN also opened up a new avenue for
understanding fMRI data based on individual differences.

MATERIALS AND METHODS

Dataset and Preprocessing
The resting-state fMRI data for 100 subjects from the Human
Connectome Project (HCP) (54 females, age: 22–36, and
TR = 0.72 s) was used in this work. Each subject had four

resting-state fMRI sessions, 1200 volumes for each session,
leading to 4800 volumes per subject in total (Van Essen et al.,
2013). The fMRI data was preprocessed by the HCP minimal
preprocessing pipeline (Glasser et al., 2013) and denoised
by ICA-FIX (Salimi-Khorshidi et al., 2014), for the removal
of spatial artifact/distortion and motion-related fluctuations.
Surface-based registration was performed with the MSM-ALL
template (Robinson et al., 2014). To decrease the computation
complexity, two hundred and thirty-six regions of interest (ROIs)
over the cerebral cortex, as shown in Figure 1 based on meta-
analysis (Power et al., 2011), were used for subsequent analysis.
BOLD signals within each ROI (10 mm diameter sphere) were
averaged spatially. We ordered our ROIs-based data in a 1D array
and preserved the order of ROIs according to the Power Atlas,
where ROIs having similar functional connectivities are close to
each other. They were also demeaned and scaled to unit variance
over the temporal axis. For each fMRI session, fMRI data with
1200 volumes was divided into twelve 100-frame clips as inputs
of ConvRNN. Data from Day 1 was used as the training dataset.
The two sessions from Day 2 were used as validation and testing
datasets, respectively. The best model was decided based on the
validation dataset and the final performance was assessed on the
testing dataset.

Convolutional Recurrent Neural Network
The architecture of the ConvRNN is given in Figure 2, along
with its unrolling version. In contrast to conventional RNN,
convolution was applied in both the input-to-state and state-to-
state transitions, in place of the Hadamard product. There were
two stacked convolutional layers, with the first convolutional
layer containing 8 filters and the second convolutional layer
having 16 filters. The kernel size of all convolutional filters was
2. Padding was used in all convolutional layers such that the
outputs from each layer had the same spatial dimension as
the original input, which is very important for the subsequent
visualization of the in-place features. Batch normalization layers
were used before the non-linear activation layers of Rectified
linear unit (ReLU) to reshape the distribution of convolutional
layer outputs in order for better convergence and easy training

FIGURE 1 | The spatial distribution of 236 ROIs over the cerebral cortex.
Voxels within the 10 mm diameter sphere were averaged to get the value for
each ROI.
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FIGURE 2 | The architecture of our convolutional recurrent neural network and its unrolling version over time. All red arrows represent the convolutional operations
between each input-to-state and state-to-state transitions. Batch normalization and ReLU as the non-linear activation are utilized after each convolutional layer. Final
classification is based on all hidden states on average. The dimension of the data flow through the diagram is also labeled.

(Ioffe and Szegedy, 2015). The final Softmax layer with 100-
category outputs was used for classification based on averaged
outputs from all hidden states. No temporal or spatial pooling
layer was employed to keep the spatial and temporal resolutions
of the original fMRI data. All kernel weights were initialized by
the Xavier uniform initializer (Glorot and Bengio, 2010), and
recurrent weights were initialized as random orthogonal matrices
(Saxe et al., 2013).

Training of the Neural Network
Our implementation of ConvRNN was carried out in Keras
(Chollet, 2015) with the Tensorflow backend (Abadi et al., 2016).
Considering the limited number of frames for each subject, we
chose 100 frames of fMRI data as inputs during training and
validation, which is the tradeoff between the number of fMRI
clips and the number of frames for each clip. Shuffled minibatches
of training data as inputs were fed into the ConvRNN with
the batch size of 128. Adam optimizer (Kingma and Ba, 2014)
was applied for training with the initial learning rate set to
0.001, and reduced if the validation accuracy stopped increasing.
Dropout layer with 50% was utilized before the final classification
to avoid overfitting only during the training (Srivastava et al.,
2014). After each training epoch, the model was evaluated on
the validation dataset and saved only if better validation accuracy
was achieved. Finally, the performance of the best model was

measured on the testing dataset, which was never involved during
training or validation.

It is well known that RNN is difficult to train properly,
even though it is a powerful model for time series modeling.
The main reasons are vanishing and exploding gradient issues
of Backpropagation Through Time (BPTT) on the unrolling
version of RNN (Bengio et al., 1994). Therefore, advanced
architectures with gating mechanism to overcome the vanishing
and exploding gradient problem, such as the Long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997) and the
Gated recurrent unit (GRU) (Cho et al., 2014), have gained a
lot of popularity in practice to model long-term dependencies.
In this work, LSTM with convolutional structure was applied.
For training techniques, we used L2 regularization for recurrent
weights, along with the gradient clipping strategy as a simple and
computationally efficient method, effectively addressing the issue
of exploding gradients (Pascanu et al., 2013). In the present work,
the clipping norm of the gradient was set to 1. Different L2 values
(0.1, 0.01, 0.001, and 0.0001) on recurrent kernel weights were
tested to achieve the best validation accuracy.

Visualization of the Individual
Identification
Our ConvRNN first performed feature extraction through two
convolutional recurrent layers and then fed the features into
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the Softmax layer for the 100-catergory classification. Original
data was projected to a high-dimensional feature space, which
was easily separated by the classification layer. In the feature
space, fMRI data from the same subject are expected to be
close to each other and cluster tightly. In consideration of
the single classification layer, the identification accuracy of
our ConvRNN relies heavily on the performance of feature
extraction by convolutional recurrent layers. In order to ascertain
and visualize the performance of convolutional recurrent layers
in low dimensional space, t-Distributed Stochastic Neighbor
Embedding (t-SNE) (Maaten and Hinton, 2008) was applied
to map datapoints in high-dimensional feature space onto a
two-dimensional representation.

To visualize and understand informative areas related
to individual identification, intermediate outputs from
convolutional layers were examined. Output patterns were
obtained from convolutional layers after non-linear activation
and mapped onto the cortical surface (20 mm radius sphere).
As all regions are considered equal in our convolutional model
during the training, but they are of different importance to
the final classification. We also used the occlusion method to
visualize informative areas (Zeiler and Fergus, 2014). More
specifically, in order to ascertain the contribution of ROIs with
regard to individual identification, input of each ROI was zeroed
out, and the subsequent performance decrease with the same
model configuration was considered as the contribution of this
ROI to the final classification.

RESULTS

We carried out the supervised classification task to identify each
subject from a group of 100 subjects. First, the identification
accuracy of different models was assessed on the testing dataset
with 100 frames of fMRI data as inputs. As seen in Table 1,
our ConvRNN model was able to achieve 98.50% accuracy on
the testing dataset, where the best performance was obtained
with the L2 value of 0.001 during training. The test accuracy
for the traditional RNN with average temporal pooling was
94.43% (Chen and Hu, 2018). In order to exclude the influence
of temporal averaging, we trained another RNN without the
temporal averaging and achieved an identification accuracy of
95.33%. Furthermore, we evaluated the performance of these
models using different window sizes on the testing dataset. With
the pre-trained models, we adopted different number of frames
(from 1200 frames to single frame) as inputs from the testing
dataset and evaluated the identification performance. Testing
results with different number of frames are plotted in Figure 3.
As shown in the figure, ConvRNN outperformed conventional
RNN (no temporal averaging) in all cases except with 1200 frames
or with less than 10 frames. In contrast, FC could achieve over
90% accuracy with 600 frames of fMRI data. But the individual
identification accuracy drops to 70% on average when only a
short period of fMRI data (100 frames) is used (Finn et al., 2015).

To visualize convolutional outputs on low-dimensional space,
we applied t-SNE on intermediate outputs of our ConvRNN
before the classification layer. There were 16 convolutional filters

TABLE 1 | The accuracy of different models on the testing dataset and their
number of model weights.

Architecture # Parameters Test accuracy
(feature extraction)

RNN (Chen and Hu, 2018) 405K (380K) 94.43%

RNN w/o temporal pooling 405K (380K) 95.33%

ConvRNN 382K (3.8K) 98.50%

FIGURE 3 | The relationship between identification accuracy and the window
size. We evaluated pre-trained models on testing dataset. Our ConvRNN
outperformed RNN except with 1200 frames or with less than 10 frames.

in the second convolutional recurrent layer of our ConvRNN.
With proper padding, the output of the layer was made to have
the same spatial dimension as the input. The feature space with
3776 dimensions was then mapped to a 2D space in Figure 4.
It is clear that 100 subjects (12 clips with 100 frames for
each subject) in the testing dataset appear as non-overlapping
cliques in different colors with each clique representing one
subject. This figure clearly indicates that spatiotemporal features,
capable of individual identification, were successfully obtained by
convolutional recurrent layers.

To visualize intermediate outputs of ConvRNN, average
patterns from first and second convolutional layers of ConvRNN
are shown in Figures 5, 6, respectively. Most patterns from
the first convolutional layer were quite similar (except Filter
6) with large distinctive areas, which could be considered as
the ubiquitous low-level features from fMRI data. While high-
level patterns from the second convolutional layer had diverse
informative regions, which were sparse and localized inside
the area of those low-level features generated by the first
convolutional layer. Meanwhile, when ROIs were individually
occluded, performance degradation was observed when some
ROIs were occluded, while the occlusion of some ROIs led
to negligible degradation of the performance. In Figure 7, the
absolute value of the performance degradation, normalized to
reflect the contribution of each ROI is shown. It is evident that the
informative area generated by alternative occlusion was similar as
the patterns from first convolutional layer of ConvRNN.
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DISCUSSION

While most resting-state fMRI studies have relied on group
averages, this study employed individual differences for

FIGURE 4 | t-Distributed Stochastic Neighbor Embedding (t-SNE)
visualization of 2nd convolutional recurrent layer outputs based on
100-subject testing dataset. Twelve hundred 100-frame testing data from 100
subjects were fed into ConvRNN with outputs being obtained before the
classification layers and projected to 2D space by t-SNE. Projections for
different subjects are in different colors.

individual identification. Unlike the first study of individual
identification employing static FC (Finn et al., 2015), we
incorporated both temporal and spatial features from the fMRI
data. As an improvement of our previous work employing
the recurrent architecture (Chen and Hu, 2018), we applied a
convolutional recurrent neural network which led to a significant
improvement in performance and a straightforward means
to visualize in-place features. Figure 3 shows that ConvRNN
is better than conventional RNN for the majority of the time
windows. The performance of ConvRNN was slightly worse than
conventional RNN with 1200 frames, probably due to the small
number of testing data when the performance was evaluated
on fMRI clips with 1200 frames. On the other hand, since our
ConvRNN was trained with the fixed number of frames (i.e.,
100), it is not be optimized for short clips of data with less than 10
frames, and its performance with frames less than 10 is therefore
worse than that of conventional RNN.

Our ConvRNN has the same number of parameters compared
with the conventional RNN, indicating that both models have
comparable model complexity. Apart from the different types
of recurrent unit, our earlier work (Chen and Hu, 2018)
employed a temporal pooling layer to reduce the temporal
resolution. For a fair comparison with this work, another
conventional RNN was applied without the temporal averaging
layer. The accuracy of the conventional RNN without the
temporal averaging layer was 95.33%, which was 0.9% higher
than that with the temporal averaging. This improvement

FIGURE 5 | Average output patterns of the first convolutional layer with 8 convolutional kernels. Twelve hundred 100-frame testing data from 100 subjects were fed
into the convolutional recurrent model with output patterns generated and averaged from the first non-linear activation layer. Red areas represent large
activation values.
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FIGURE 6 | Average output patterns of the second convolutional layer with 16 convolutional kernels. Twelve hundred 100-frame testing data from 100 subjects were
fed into the convolutional recurrent model with output patterns generated and averaged from the second non-linear activation layer. Red areas represent large
activation values.

due to increased temporal resolution is significantly smaller
than the improvement achieved with the adoption of the
convolutional structure, indicating that the latter is the main
contributor to the performance enhancement. Both the spatial
and temporal features were fully utilized by convolutional kernels
in the ConvRNN with unprecedented identification accuracy.
Also, feature extraction layers of ConvRNN showed strong
discriminating power for 100 subjects, where pre-trained layers
could be applied for transfer learning on new subjects or semi-
supervised learning on partially labeled data. On the other hand,
only one hundredths of the parameters in ConvRNN were from
the convolutional recurrent layers. Convolution with shared
weights in spatial and temporal spans makes it more robust
against overfitting during training. Given the reduced number of
trainable weights, increasing the depth and width of the model
is possible without significantly increasing the model complexity,
possibly capturing more sophisticated features in both spatial and
temporal domains.

FIGURE 7 | The performance degradation with occlusion. Each ROI was
zeroed out separately and evaluated with the pre-trained model of ConvRNN.
The performance degradation reflects the contribution of each ROI. Red
region reflects large performance degradation if corresponding ROIs
were occluded.

Furthermore, convolutional kernels with shared weights
sweep across ROIs and frames. Different from the
indecomposable matrix multiplication in conventional RNN,
ConvRNN generates in-place features with exactly spatial
correspondence as the original data. Furthermore, ConvRNN
accumulates temporal information related to evolving features in
the hidden state. Therefore, it is possible to examine the hidden
states to have an in-place visualization and understanding of
hidden features from ConvRNN. It is also clear that informative
regions from two convolutional layers are totally different, in
agreement with the conclusion drawn from convolutional neural
networks for image classification (Yosinski et al., 2015). Beside
the direct visualization of the hidden state, the occlusion of
ROIs served as an indirect method for visualizing significant
regions under resting state for identification. Two visualization
approaches came to the same conclusion of informative ROIs
in term of individual identification using the resting-state fMRI
data. In terms of resting state networks (RSNs) in the literature
(Holmes et al., 2011; Lee et al., 2012), the informative area
identified by our ConvRNN mainly contained frontoparietal
network (FPN), default mode network (DMN), as well as visual
network (VN). Our result is consistent with a previous study,
which concluded that the most distinguishing network was FPN,
with significant improvement achieved through the combination
of multiple RSNs (Finn et al., 2015). In contrast, occlusion of
language network (LN) and somatosensory motor network
(SMN) did not cause much reduction in performance. One
possible explanation is that there was little explicit or individual-
specific language or motor activity during the acquisition of the
resting-state fMRI datasets used here.

Although DMN and FPN stood out as the most important
networks for individual identification, other networks also
contributed to individual identification (Finn et al., 2017).
It is likely that contributions from most networks may be
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needed with more subjects to be identified. In addition, a
hierarchical approach, incorporating all networks, might be
the most appropriate and robust approach. Furthermore, a
recent study demonstrated that task induced changes in FC
provided better prediction of individuals, whereas resting-
state fMRI data failed to capture the full range of individual
differences (Greene et al., 2018). Such changes in FC could
also be incorporated into our model to further improve the
identification accuracy.

Several limitations should be noted for further work. First,
the present study adopted only 236 ROIs within 10 mm
diameter spheres on average, which was enough for an accurate
identification for a group of 100 subjects. Inadequate power of
identification could be present on new subjects beyond existing
subjects. Possible reasons are the limited feature extraction of our
model and the high variability of the fMRI data. It is likely that
smaller and more ROIs are needed for the identification of more
subjects. But more advanced models with good generalization on
fMRI data should be explored. Second, current visualization of
individual identification depicted in Figure 7 was based on group
average of ROIs’ performance. While this highlights areas that are
most important for individual identification, it does not explicitly
depict individual features. Such features will be the focus of
our future studies. Third, visualization of the spatial pattern is
easy to understand, but the remarkable performance achieved
by RNN suggests that a substantial amount of information is
coming from temporal features. Visualizing and understanding
temporal features are still necessary to gain a deeper insight into

the brain dynamics. Furthermore, other popular architectures
(e.g., Siamese network) and pre-trained models should be applied
and compared with our approach in terms of classification
performance and training efficiency in future work.

CONCLUSION

In this paper, we described the application of the convolutional
recurrent neural network for individual identification based on
resting-state fMRI data. To explore the dynamics in the resting-
state fMRI data, the convolutional architecture with recurrent
structure was implemented to extract and incorporate features in
both spatial and temporal domains. Compared to conventional
RNN model, our ConvRNN model exhibited better identification
performance, with local features between neighboring ROIs being
modeled by convolutional kernels. Moreover, visualization based
on the ConvRNN model provides a direct understanding of the
success of identification; this could lead to a promising alternative
for analyzing fMRI data.
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Dynamical changes have recently been tracked in functional connectivity (FC) calculated
from resting-state functional magnetic resonance imaging (R-fMRI), when a person is
conscious but not carrying out a directed task during scanning. Diverse dynamical
FC states (dFC) are believed to represent different internal states of the brain, in
terms of brain-regional interactions. In this paper, we propose a novel protocol, the
signed community clustering with the optimized modularity by two-step procedures,
to track dynamical whole brain functional connectivity (dWFC) states. This protocol is
assumption free without a priori threshold for the number of clusters. By applying our
method on sliding window based dWFC’s with automated anatomical labeling 2 (AAL2),
three main dWFC states were extracted from R-fMRI datasets in Human Connectome
Project, that are independent on window size. Through extracting the FC features of
these states, we found the functional links in state 1 (WFC-C1) mainly involved visual,
somatomotor, attention and cerebellar (posterior lobe) modules. State 2 (WFC-C2)
was similar to WFC-C1, but more FC’s linking limbic, default mode, and frontoparietal
modules and less linking the cerebellum, sensory and attention modules. State 3 had
more FC’s linking default mode, limbic, and cerebellum, compared to WFC-C1 and
WFC-C2. With tests of robustness and stability, our work provides a solid, hypothesis-
free tool to detect dWFC states for the possibility of tracking rapid dynamical change in
FCs among large data sets.

Keywords: community clustering, signed networks, modularity, temporal changes, resting state functional
magnetic resonance image

INTRODUCTION

Spontaneous fluctuations are a fundamental mechanism representing neural signals that has been
largely explained by functional magnetic resonance imaging (fMRI) data. Resting-state functional
connectivity (FC) can demonstrate the intrinsic network organizations of human brain (Friston,
2011). The cognitive activities of high order brain function involve the dynamic interplay of a
set of brain circuits rather than a specific region, and the spontaneous activity in rest is also
predictive of task and behavior performance (De la Iglesia-Vaya et al., 2013; Reineberg et al., 2015;
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Tavor et al., 2016). Accumulating studies have proposed
to detect the spatiotemporal organization of dynamic
functional connectivity (dFC), and of dynamic whole-brain
functional connectivity (dWFC) (Calhoun et al., 2014;
Kopell et al., 2014; Preti et al., 2017), showing how brain
FC organized over time.

Clustering analysis, particularly k-means is one of the
most common methods of categorizing dFC patterns (Calhoun
et al., 2014). It partitions n samples in observation space
into k clusters, where each sample belongs to the nearest
cluster according to its distance from the cluster centroid.
However, it requires the pre-defined number of clusters k and
is sensitive to initial values that may lead to different results.
Hierarchy clustering (HC) aims to building a dendrogram which
represents a hierarchy of cluster, and the samples could be
attributed to a sub-cluster within a main cluster. Thus, HC
is a more flexible method to understand the dFC structures
in different levels (Vidaurre et al., 2017). However, it also
requires the definition of a specific threshold for cluster
separation. Both k-means and HC are not assumption free
and need a priori knowledge for categorization of the states
of brain activity.

The selection of the number of clusters or the threshold
may bias or affect the interpretation of the states while
lacking comprehensive understanding of the underlying
mechanism of dFC. Principal component analysis (PCA)
coverts a number of possibly correlated variables into
a set of linearly uncorrelated variables, called principal
components. It has been used to investigate dynamic brain
connectivity patterns, “eigenconnectivities,” by ranking and
extracting the principal components of dWFC’s with higher
variability across time and subjects (Leonardi et al., 2013).
Though PCA is a powerful tool to detect the different
features of dFC, it needs to bear a risk of information
loss during the reduction of dimensionality. Other state
detection models based on hidden Markov chain also
require prior knowledge of the expression form and the
number of states (Robinson et al., 2015; Ryali et al., 2016;
Vidaurre et al., 2017).

These approaches are able to uncover the similar time-
varying recurring connectivity patterns into states, and have
revealed the characteristics of dFC linking with the human
demographic characterization, cognitive behaviors and diseases
(Baker et al., 2014; Calhoun et al., 2014; Karahanoğlu and Van
De Ville, 2015; Zhang et al., 2016). However, heterogeneities are
widely observed across studies. There is still a lack of reliable
methods for the research of dFC networks. In this study, we
focused on the co-variation of FCs over time by detecting
the state for dWFC’s across subjects and time from Human
Connectome Project (HCP) data. We proposed the modularity-
optimized community clustering algorithm to categorize the
dWFC’s in an unsupervised and data-driven fashion. This can
provide a more appropriate clustering method while little is
known in dWFC’s states. As the computation for community
clustering is computationally expensive and time-consuming, we
also proposed a two-steps clustering process to reduce the cost of
our proposed algorithm.

MATERIALS AND METHODS

Participants and Data Acquirements
HCP
The dataset used for this study was collected from HCP1 (WU-
Minn Consortium). Our sample includes 812 subjects (ages 22–
35 years-old, 450 females) scanned on a 3T Siemens connectome-
Skyra scanner. For each subject, a three-dimensional T1
structural image was acquired at 0.7 mm isotropic resolution
with 3D MPRAGE acquisition. The four blood-oxygen-level
dependent (BOLD) resting state fMRI (R-fMRI) runs were
acquired in separate sessions on two different days, each for
approximately 15 min (2 mm× 2 mm× 2 mm spatial resolution,
TR = 0.72 s, 1200 timepoints, multiband acceleration factor of 8,
with eyes open and relaxed fixation on a projected bright cross-
hair on a dark background). The WU-Minn HCP Consortium
obtained full informed consent from all participants, and research
procedures and ethical guidelines were followed in accordance
with the Institutional Review Boards (IRB) of Washington
University in St. Louis, MO, United States (IRB #20120436). To
identify WFC, the whole brain was parcellated into 120 regions
according to the automated anatomical labeling (AAL2) atlas
(Rolls et al., 2015), with names and abbreviations listed in Table 1.

Data Preprocessing
HCP Data
The minimally preprocessed R-fMRI data were used, conducted
by HCP Functional Pipeline v2.0 (Glasser et al., 2013), including
gradient distortion correction, head motion correction, image
distortion correction, and spatial transformation to the Montreal
Neurological Institute (MNI) space, with one step spline
resampling from the original functional images. The linear
trend and quadratic term were removed from these functional
images, and several nuisance signals were regressed from the time
course of each voxel using multiple linear regression, including
cerebrospinal fluid, white matter, and Friston 24 head motion
parameters. Finally, temporal band-pass filtering (0.01–0.1 Hz)
was performed to reduce the influence of low-frequency drift and
the high-frequency physiological noise. The preprocessed time-
courses were used for further functional connectivity analyses.

Sliding Window Based Dynamic
Functional Connectivity
Either voxel or regional based BOLD signals can be used to
calculate FCs. Here, we considered to process the regional based
BOLD signals without losing any generality. We denoted time
series {xi(t), t = 0, 1, · · · ,N, i = 0, 1, · · · ,M}, where t is time
and i is the brain region. To characterize the dynamics of FCs,
all BOLD signals were segmented into T non-overlapped sliding
window with length L (Figure 1A). Fisher-z transformed Pearson
correlations between all pairs of regional BOLD signal were
calculated and normalized in each window as following.

FCij (s)
1
=

FZ
(
rij (s)

)
− µ (s)

σ (s)

1http://www.humanconnectomeproject.org/
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TABLE 1 | The anatomical regions defined in each hemisphere and their label in the automated anatomical labeling atlas 2 (AAL2, Rolls et al., 2015).

ID Region description AAL2 Lobe Abbreviation

1, 2 Precentral gyrus Precentral Sensorimotor PreCG

3, 4 Superior frontal gyrus, dorsolateral Frontal_Sup Frontal SFG

5, 6 Middle frontal gyrus Frontal_Mid Frontal MFG

7, 8 Inferior frontal gyrus, opercular part Frontal_Inf_Oper Frontal IFGoperc

9, 10 Inferior frontal gyrus, triangular part Frontal_Inf_Tri Frontal IFGtriang

11, 12 IFG pars orbitalis Frontal_Inf_Orb Frontal IFGorb

13, 14 Rolandic operculum Rolandic_Oper Frontal ROL

15, 16 Supplementary motor area Supp_Motor_Area Sensorimotor SMA

17, 18 Olfactory cortex Olfactory Frontal OLF

19, 20 Superior frontal gyrus, medial Frontal_Sup_Med Frontal SFGmedial

21, 22 Superior frontal gyrus, medial orbital Frontal_Med_Orb Frontal PFCventmed

23, 24 Gyrus rectus Rectus Frontal REC

25, 26 Medial orbital gyrus OFCmed Frontal OFCmed

27, 28 Anterior orbital gyrus OFCant Frontal OFCant

29, 30 Posterior orbital gyrus OFCpost Frontal OFCpost

31, 32 Lateral orbital gyrus OFClat Frontal OFClat

33, 34 Insula Insula Subcortical INS

35, 36 Anterior cingulate & paracingulate gyri Cingulate_Ant Frontal ACC

37, 38 Middle cingulate & paracingulate gyri Cingulate_Mid Frontal MCC

39, 40 Posterior cingulate gyrus Cingulate_Post Parietal PCC

41, 42 Hippocampus Hippocampus Temporal HIP

43, 44 Parahippocampal gyrus ParaHippocampal Temporal PHG

45, 46 Amygdala Amygdala Subcortical AMYG

47, 48 Calcarine fissure and surrounding
cortex

Calcarine Occipital CAL

49, 50 Cuneus Cuneus Occipital CUN

51, 52 Lingual gyrus Lingual Occipital LING

53, 54 Superior occipital gyrus Occipital_Sup Occipital SOG

55, 56 Middle occipital gyrus Occipital_Mid Occipital MOG

57, 58 Inferior occipital gyrus Occipital_Inf Occipital IOG

59, 60 Fusiform gyrus Fusiform Temporal FFG

61, 62 Postcentral gyrus Postcentral Sensorimotor PoCG

63, 64 Superior parietal gyrus Parietal_Sup Parietal SPG

65, 66 Inferior parietal gyrus, excluding
supramarginal and angular gyri

Parietal_Inf Parietal IPG

67, 68 SupraMarginal gyrus SupraMarginal Parietal SMG

69, 70 Angular gyrus Angular Parietal ANG

71, 72 Precuneus Precuneus Parietal PCUN

73, 74 Paracentral lobule Paracentral_Lobule Parietal PCL

75, 76 Caudate nucleus Caudate Subcortical CAU

77, 78 Lenticular nucleus, Putamen Putamen Subcortical PUT

79, 80 Lenticular nucleus, Pallidum Pallidum Subcortical PAL

81, 82 Thalamus Thalamus Subcortical THA

83, 84 Heschl’s gyrus Heschl Temporal HES

85, 86 Superior temporal gyrus Temporal_Sup Temporal STG

87, 88 Temporal pole: superior temporal gyrus Temporal_Pole_Sup Temporal TPOsup

89, 90 Middle temporal gyrus Temporal_Mid Temporal MTG

91, 92 Temporal pole: middle temporal gyrus Temporal_Pole_Mid Temporal TPOmid

93, 94 Inferior temporal gyrus Temporal_Inf Temporal ITG

95, 96 Cerebellum Crus I Cerebelum_Crus1_L Cerebellum CRBLCrus1

97, 98 Cerebellum Crus II Cerebelum_Crus2_L Cerebellum CRBLCrus2

99, 100 Cerebellum lobule III, hemisphere Cerebelum_3_L Cerebellum CRBL3

101, 102 Cerebellum lobule IV V, hemisphere Cerebelum_4_5_L Cerebellum CRBL45

(Continued)
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TABLE 1 | Continued

ID Region description AAL2 Lobe Abbreviation

103, 104 Cerebellum lobule VI, hemisphere Cerebelum_6_L Cerebellum CRBL6

105, 106 Cerebellum lobule VII b, hemisphere Cerebelum_7b_L Cerebellum CRBL7b

107, 108 Cerebellum lobule VIII, hemisphere Cerebelum_8_L Cerebellum CRBL8

109, 110 Cerebellum lobule IX, hemisphere Cerebelum_9_L Cerebellum CRBL9

111, 112 Cerebellum lobule X, hemisphere Cerebelum_10_L Cerebellum CRBL10

113 Cerebellum lobule I II, vermis Vermis_1_2 Cerebellum Vermis12

114 Cerebellum lobule III, vermis Vermis_3 Cerebellum Vermis3

115 Cerebellum lobule IV V, vermis Vermis_4_5 Cerebellum Vermis45

116 Cerebellum lobule VI, vermis Vermis_6 Cerebellum Vermis6

117 Cerebellum lobule VII b, vermis Vermis_7 Cerebellum Vermis7

118 Cerebellum lobule VIII, vermis Vermis_8 Cerebellum Vermis8

119 Cerebellum lobule IX, vermis Vermis_9 Cerebellum Vermis9

120 Cerebellum lobule X, vermis Vermis_10 Cerebellum Vermis10

Column five provides a set of abbreviations for the anatomical descriptions.

rij (s) is the Pearson correlation between subset of signals xi (ts)
and xj (ts) where ts = s, s+ 1, · · · , s+ L− 1, and FZ(·) is the
Fisher r-z transform

FZ
(
rij (s)

) 1
=

1
2

ln
(

1+ rij (s)
1+ rij (s)

)
µ (s) and σ (s) represent the mean and standard deviation of the
total M(M−1)

2 different pairs of FZ(rij (s)), separately. Therefore,
we obtained N/L dWFC’s networks for each subject. Because
of the expensive computation, we used a two-steps clustering
process to reduce the cost of the clustering algorithm. The
dWFC’s calculated from all the time windows of each subject
are grouped into sub-datasets for community clustering. The
similarity matrix was presented by the Pearson correlation
coefficient between any pair of dynamic dWFC’s for further
states detection.

Community Detection of Signed Graph
Each dWFC is considered as a vertex in graph theory. The
community clustering algorithm assigns a graph with n vertices
into c communities σi ∈ {1, 2, . . . , c}; i.e., each node was assigned
to a community σi, where i = 1, 2, . . . , n. Q-modularity of
a weighted graph is defined as the edge weights within the
community minus the expected edge weights of them (Leicht and
Newman, 2008); i.e., Q = 1

m
∑

i,j (Ai,j − pi,j) δi,j, where δi,j = 1
if σi = σj and 0 otherwise; pi,j = kikj/m represents the expected
edge weight between i and vertex j; m is total the weight of
all vertexes. A is adjacent matrix, where Ai,j is the exact edge
weight between vertex i and vertex j. By maximization of the
Q-modularity, the community structure is determined with dense
connections as an intra-community feature, while the sparse
connections as inter-community features. As declared above, it
is natural to use the similarity matrix, calculated from Pearson
correlation coefficient of all pairs of dWFC’s, as the adjacent
matrix in community clustering. In this study, the adjacent
matrix A is a signed weighted matrix, and we employ an approach
based on an extended signed Q-modularity of the graph (Lu et al.,
2017). The graph is divided into two graphs composed by positive

edges and negative edges, respectively, represent by A+ and A−,
where A+i,j ≥ 0 and A−i,j ≤ 0. The extended signed Q-modularity
equals (Lu et al., 2017): (i) the fraction of edge weights, of which
both head and tail nodes fall within the same community, minus
(ii) the expected value of the edge weights of a random graph
that follows the same positive weight degree distribution of the
intrinsic graph, plus (iii) the expected value of the edge weights
of a random graph that follows the same negative weight degree
distribution of this intrinsic graph. This can be formulated as

Q =
1

2m

∑
i,j

(Ai,j − p+i,j + p−i,j) δi,j

m is the sum of the absolute values of elements of the matrix A.
p±i,j stands for the expected coupling probability between vertex i
and vertex j based on positive and negative coupling, respectively,
represented by A±. Figure 2 illustrates the examples of the
community structure in the “weighted” and “signed weighted”
graph. The fast community detection algorithm (CDA) is used
in maximize Q-modularity (Le Martelot and Hankin, 2013). The
code from http://www.elemartelot.org/index.php/programming/
cd-code was modified for handling of signed weighted edges.

Two-Steps Community Clustering of
dWFC’s for Large Data-Set
The correlation coefficient for each pair of dWFC’s for
an individual subject was computed as the similarity index
for community detection. Ideally the community detection
was performed across all subjects and time. However, the
computation is extremely high when the subject population is
large. In consideration of reducing the memory footprint and
calculation time, this stage was developed in two steps due to
the large amount of dWFC’s (Figure 3). Firstly, all the dWFC’s
were separated into many sub-groups in chronological order
such that each subject assigned a number of dWFC’s to each
given group, denoted by S. That is, there were S dWFC’s from
each subject in each group. The number of groups equals to the
total number of dWFC’s of each subject divided by the amount
in each group, i.e., N

LS . The clustering algorithm was applied
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FIGURE 1 | Sliding window based whole functional connectivity (WFC). (A) The whole brain dynamic functional connectivity matrix was computed with 14.4 s
non-overlapping sliding window (length of 20 time points). The corresponding top 100 significant FCs are shown for illustration at upper right of the matrix. (B) An
example of the community clustering results across time and subjects. The similar (reoccurred) network patterns were clustered into 3 modules, representing 3
states. The similarity of dynamic functional connectivity was defined as their Pearson correlation coefficient.

FIGURE 2 | Community in graph. Each dot represents a vertex (node), and the color of nodes represent the community. Each line represents an edge, and the width
and color represent the weighting and sign, respectively. (A) The community of weighted graph. (B) The community of signed weighted graph.

separately in each group, and the cluster centroids (mean of
dWFC’s within a cluster) were kept. Next, all the cluster centroids
extracted from different groups could be further clustered by
applying the community detection on the correlation matrix of
cluster centroids. We also randomly selected N

LS samples from
194880 dWFC samples (60 windows×4 sessions×812 subjects)
into a group for 100 times. To test the stability and similarity
of the clustering results from each group, we compared the
clustering centroids obtained in random groups with those
obtained in chronological groups, regardless of its sampling
method (Figure 4A). Finally, we used the Davies–Bouldin index
(DBI) (Davies and Bouldin, 1979), a well-known clustering
quality measure by averaging the maximal similarity between
each cluster and all other clusters, as a metric for evaluating the

clustering performance both in step 1 (for dWFC’s in each group)
and step 2 (for centroids from different groups). The smaller the
index is, the better the clustering result is. Furthermore, we also
used k-means algorithm to compare the rationality of the number
of states with our method. For each group, we fixed the number
of clusters as K from 1 to 6, and set 100 different initial values to
detect the best partition with the minimal intra-class distance.

Detection of Connectivity States
After two step clustering, all of the dWFC’s were assigned to the
corresponding communities, which we defined the “states” here,
according to their cluster centroids. The occurrence, transition
rate, and mean lifetime of these states were calculated as dynamic
parameters for all WFC’s in MR sessions (Ryali et al., 2016). The
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FIGURE 3 | Flowchart of two-steps community clustering of dynamic whole brain function connectivity. (1) The extraction of dynamic whole brain functional
connectivity based on sliding window; (2) Random group assignment for community clustering, where each group consists of a number of dWFC’s from all subject;
(3) Community clustering results within each group, and the cluster centroids (averaged dWFC of the same state in each group) were preserved; (4) Final community
clustering for the cluster centroids obtained from groups.

features of corresponding WFC communities were computed by
averaging all dynamic WFC’s from each community, denoted
as WFC-Ci. Here we define the “feature score” by computing
the correlation coefficient between WFC-Ci and a given WFC,
and the highest feature score among the states could predict the
corresponding state.

RESULTS

The Three States of Dynamic
Whole-Brain Functional Connectivity
We applied our method in R-fMRI data from 812 healthy
adults released by HCP to estimate the functional network
connectivity states. The AAL2 atlas was considered first
so that the number of regions M was 120. The length
of the time series N was 4800. We set L = 20 and
the influence of window length had been illustrated in
Supplementary Figure S1. We set S = 5 due to the large
computation consumption and we finally obtained 48 groups
(a larger S could help to reduce the inconsistency between
groups, see Supplementary Figure S1). The WFC’s within
a community follows a common variation trend (positive
correlation, Figure 1B) while those from different communities
do not, or even follow a reversed variation trend (negative
correlation). Noted that cluster centroids extracted in step 1
are distinctly divided into three communities (Figure 4A),
both for the chronological groups and random groups, which
revealed high resemblance of clustering results between groups.
Thus, each WFC in a given time window of a given
subject could be assigned to one of the three WFC state.
The feature of the corresponding WFC community (WFC-
C) was calculated by averaging all dynamic WFC’s from
each community; and we computed the feature score among
the three WFC-C’s to represent the predicted state for the
original WFC’s. The distribution of the matching rate between
the clustering states and the predicted states was 93.3% on

average (Figure 4D), which may be helpful to detect the state
for an unknown network without performing the clustering.
For dynamic parameters, the state 3 showed the highest
occurrence, whereas the state 2 showed the lowest occurrence
(Figure 4B). The transition between state 1 and state 3
showed the most frequent rate (Figure 4C). There was no
difference in mean lifetime that the three states had an averaged
mean lifetime of 24.8 s for state 1, 25.1 s for state 2, and
25.9 s for state 3.

The Evaluation of the Number of States
The k-means algorithm was used to compare with our method
(Figure 5A). The DBI was used to evaluate the clustering results
of both steps. The mean DBI of 48 groups reached to the
minimum of 9.58 while K = 3 in step 1 (Figure 5B), showing
a better clustering result for small groups compared to CDA
(the mean DBI = 9.74). However, the DBI of k-means centroids
of K = 3 also achieved the optimal clustering performance in
step 2 with the minimum of 0.54 (Figure 5C), whereas DBI of
community centroids reached a smaller value of 0.52, a better
result of overall clustering across groups. Both of the results in
two steps indicated that the number of 3 clusters was the best for
categorization of dWFC’s states.

Features of the Whole-Brain Functional
Connection States
The AAL2 regions were assigned to Yeo’s seven functional
modules according to the top ratio (the percentage of voxels
of specific region within each network) (Yeo et al., 2011).
Cerebellum and subcortical regions are added as two additional
modules. Figure 6 illustrates the top 200 FC’s in the three
WFC-C’s with functional modules, and the transition rates
among states from HCP data. For state 1 (WFC-C1), the highest
FC’s mainly include functional links both within and across
visual, somatomotor, attention and cerebellar (posterior lobe)
modules. The highest FC’s in WFC-C2 were similar with WFC-
C, but FC’s linking limbic, default mode and frontoparietal
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FIGURE 4 | State Detection of Dynamical WFC. (A) The scatter plot of WFC’s in principal coordinate analysis. Each point represents a cluster centroid (the averaged
WFC’s of the same community) detected in step 1. (Dots represent centroids in chronological groups and circles represent random groups) Distance between WFC
points is defined by 1-correlationwfc−wfc

2, where principal coordinate analysis projects those WFC points into 2D spaces while preserved the original distance as
much as possible. (B) The boxplot of the occurrence of three detected states for all subjects and the p-value of two-sample t-test between the occurrence of
different states. (C) The transition rate between three detected states. (D) The states of dynamic functional connectivity for a single subject (subject #124422 as an
example) were detected based on individual community clustering and feature scores. The states show in colors according to the WFC communities in (A).

modules were more involved whereas the cerebellum, sensory
and attention modules were less involved. In WFC-C3, the
FC’s linking default mode, limbic, and cerebellum were more
involved, whereas somatomotor, dorsal, ventral attention, and
visual modules were much less so, compared to WFC-C1
and WFC-C2.

Robustness of dWFC’s States Across
Window Lengths
The clustering result is independent of window length
(Supplementary Figure S2), shown by the detection of
dWFC’s states with various window lengths among 10, 20,
30, 40, and 50. The averaged dWFC’s in the same community
had a high level of similarity that their Pearson correlation
were close to 1, seen from the diagonal elements of each 3 × 3
matrix (Supplementary Figure S2B). Whereas, comparing the
off-diagonal elements between correlation matrices of different
window size, we still observed a trend that the differences
between three averaged dWFC’s would reduce as the window
length increased.

The Influence of Parcellation Methods
We also detected three communities using dWFC’s calculated
from two different additional atlases, the Shen-268 atlas
(Shen et al., 2013) and Power 264 atlas (Power et al., 2011;
Supplementary Figure S3). The results showed that the number
of dynamic states was independent to the parcellation schemes.
However, the detected state in each window was different across
atlases. By matching the most overlapping states, the averaged
matching rate of states extracted between the AAL2 Shen-268
was 82.7%, and the Power was 66.9%. Besides, we also randomly
relocate the state sequence of the samples, the matching rate was
significantly lower than the estimated matching rate (p< 0.0001),
indicating that the states obtained across the atlases were similar
but not identical.

DISCUSSION

We proposed a new method to categorize and track time-varying
networks in R-fMRI studies. It involves two-step community
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FIGURE 5 | State Detection results using k-means clustering algorithm in step 1. (A) The scatter plot of k means centroids obtained in step 1 in principal coordinate
analysis, K represents the number of the clusters in each group and N represents the number of communities detected by Modularity-based algorithm in step 2.
(B) DB index for the clustering results for groups in step 1. Dots represent the mean value for 48 groups and error bars represent standard deviation. (C) DB index
for the clustering results of k means centroids (blue polygon) and community centroids (red dash line).

detection, which is computing efficient and provides robust
results in large data set application. In recent years, various
methods were proposed to capture time-varying networks in

R-fMRI studies (Pinotsis et al., 2013; Calhoun et al., 2014;
Cavanna et al., 2017; Preti et al., 2017). Essentially, it involves two
main considerations.
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FIGURE 6 | Feature of WFC states. Top 200 functional connections are illustrated in each WFC states, with the Yeo’s 7 functional modules, subcortical and
cerebellar regions. The width of the connections represents the connectivity strength. The transition rates among states are indicated by the arrows. For state 1
(WFC-C1), the high FCs in mainly includes functional links both within and across visual, somatomotor, attention and cerebellar (posterior lobe) modules. WFC-C2
was similar with WFC-C1 in those high FCs, however, the FCs in WFC-C2 between cerebellum and the sensory and attention modules were decreased, and higher
connections within and across limbic, default mode and frontoparietal modules, in which medial temporal gyrus (MTG), Superior temporal gyrus of temporal pole
(TPOsup), inferior temporal gyrus (ITG), inferior parietal gyrus (IPG), dorsolateral superior frontal gyrus (SFG) and medial superior frontal gyrus (SFG medial) are highly
involved. In WFC-C3, FCs within sensory and attention modules are still active, but FCs across those modules are decreased. Another feature of WFC-C3 high
values of FCs in default network modules, as well as FCs across modules including default, limbic and cerebellum networks. MTG, precuneus (PCUN), angular gyrus
(ANG), middle frontal gyrus (MFG), superior parietal gyrus (SPG), and Crus1/Crus2 in cerebellum are highly involved.

The first consideration, what is the best feature to
represent the time-varying networks. For example, ICA
could be used to reveal the spatial-temporal structure of the
fMRI signals in either signal subject or group of subjects
(Calhoun et al., 2009). Time and frequency decomposition
of regional coherence was also calculated through cross
wavelet transform (Yaesoubi et al., 2015). However, most
common method is sliding window based FCs (Hutchison
et al., 2013; Thompson, 2018; Reinen et al., 2018), as brain
function are accomplished by the interplay of a set of brain
areas rather than a specific region (De la Iglesia-Vaya et al.,
2013). A recent study questioned the validity, stability and
statistics significance for various dFC pattern detecting method
(Hindriks et al., 2016). The optimal window size remains
unknown. To track rapid temporal changes in FC, shorter
window is necessary for high temporal resolution; while
FC calculation requires longer window for robustness and
statistics significance. It may need further studies to address
this question through our method. We calculated FC the on

various window sizes to test the reliability of the results. In
our application on HCP data set with high tempo-spatial
solution resolution, the three whole-brain dFC states are stable
and independent of sessions and window lengths. The robust
results suggest that our method could be helpful to establishing
the golden standard in dWFC’s tracking in R-fMRI analysis
(Shakil et al., 2016).

The second consideration is mainly a machine learning
problem or a clustering problem. Lacking prior knowledge about
the categorization of dynamical brain states, an unsupervised
learning method especially clustering analysis is more suitable
for detecting dynamical brain states. K-means, a prototype-
based clustering method, is the most widely used in clustering
analysis for its convenience and computing speed. However,
it needs to set the number of states and initial values in
advance and requires a relatively balanced data structure
for good performance. Though many different methods have
been applied, the number of states in the brain still remains
unknown. For example, two brain states were revealed as a
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within-network state and a between-network state in both
healthy and Parkinson disease patients (Kim et al., 2017).
Di and Biswal (2015) separated out triple brain states:
salience-, default-, and motor- networks. Seven brain states
have also been discovered in work by Allen et al. (2014)
through group ICA based-FC and k-means clustering. Further,
as many as 13 clusters of innovation-driven co-activation
patterns were detected in work (Karahanoğlu and Van De
Ville, 2015). Another important issue of clustering analysis
is the measure of distance or similarity between samples.
Euclidean distance is an intuitive and commonly used distance.
However, the Euclidean distance of WFC depends largely on
the overall level of the functional connectivity, which could be
affected by measurements, individual difference. The Pearson
correlation induces a distance that remains unchanged and
is equivalent to the Euclidean distance after normalization
of the data. That is, 1− corr

(
x, y

)
=‖ x− y ‖2/2m, where

x− y represents the Euclidean distance between sample x
and y and m is the dimension of data. It measures the
consistency of the sequence of FCs within the network
between two WFC’s that will not be influenced by the overall
functional connectivity value. Therefore, we used Pearson
correlation to measure the similarity but also normalized each
dynamical brain network for some following analysis of the
detected brain states.

Due to the large sample size, we complete the clustering in
two steps that we calculate the cluster centroids in each group
and combine these results by clustering all the centroids. But it
brings up a problem to select an appropriate state number K
for each group and deal with the differences of results caused
by different initial values. Hierarchical clustering can detect the
hierarchical relationship in the data and it does not need to
set the initial values. But it is more impossible to afford the
large computation cost, because the computational complexity of
hierarchical clustering is at least O(n2), which n represents the
amount of dWFC. Moreover, the two-steps clustering strategy
is not suitable for hierarchical clustering for it may break or
disrupted the hierarchy of data when dividing samples into
several groups and leave a tricky problem of matching samples at
the same level from different groups. PCA helps to discover and
describe different FC patterns through an appropriate number
of PCs called “eigenconnectivities,” while it is still a question
how to classify dWFC’s into different states so that we can
track the dynamical changes of whole brain network structure.
Hidden Markov chain based methods are usually performed
directly on the bold signal time series of the brain rather
than functional connectivity structure, they require a pre-given
form of the probability distribution of each state as well as
the number of states. Lacking a comprehensive understanding
of the underlying mechanism of dWFC’s states, we categorize
the dWFC’s through community detection methods based on
the similarity of dWFC’s pair, working in an unsupervised,
data-driven fashion. Finally, by computing the feature score
between networks (the similarity), we can easily estimate an
unknown state of network into a specific state, without redundant
clustering procedures. This is helpful for further studies of the
dynamic networks.

By comparison with k-means clustering, our proposed
method with two-step of CDA showed better superiority.
On the one hand, the DBI showed that the best number
of clustering was 3 with k-means, indicating the CDA
could detect the optimal number for the states of dWFC’s.
On the other hand, compared to CDA, although k-means
showed a smaller mean value of DBI for all groups in
the first step, the larger DBI in the second step indicated
longer distances between the centroids among groups, showing
the weakness for the overall detection by the two step
clustering method. According to the procedure of k-means
algorithm, a possible reason might be that the k-means
is sensitive to outliers (Hautamäki et al., 2005). When
an outlier is added to a given cluster, the center of the
cluster will move toward to the outlier, resulting in the
change of the criteria to update the members of this
cluster. Finally, the members of the cluster are more likely
close to the outliers. In contrast, the community clustering
showed better robustness than k-means. According to the
fast community detection algorithm (Le Martelot and Hankin,
2013), an outlier alone can little influence the update of
the community structure in each iteration because of its
small degree, and therefore the community among groups
had more stable and similar structures, showing its advantage
for subdividing a large sample size into several groups
of small samples.

By taking advantage of the higher temporal resolution
in HCP, we can reduce the window to less than 10 s
while maintaining sufficient samples to calculate correlation
coefficients. However, it still remains unclear as to what the
optimal window for detecting dynamical brain states is. Although
community clustering methods are robust for summarizing
the generality of dFC’s independent of time and subjects; this
method might not be sensitive to individual heterogeneities.
Further studies are needed to address whether there might
be sub states within the three dFC states, i.e., to identify the
hierarchical structure of the dynamic FC’s. The self-converged
community clustering method to detect the connectivity states,
does not rely on the appearance of a clear gap between
any two individual dFC’s from various brain states (Leicht
and Newman, 2008). It is a more appropriate clustering
method while few are known in dWFC states. Besides, the
two-steps community clustering protocol for large R-fMRI
data sets is robust and computing efficient. A distinct gap
between community centroids of different states, regardless
of which groups they come from, showing that our method
performed stably in each group. These results revealed that
there were three states existed for all the dWFC across
subjects and time, with the robustness with various window
lengths and parcellations. Of note, the states of dWFC’s were
not identical across parcellations, because of the location of
regions, region size, including/excluding cerebellum, and the
extracted time series were different, resulting in different
dWFC’s across atlases. The parcellation scheme may affect
the dWFC’s with specific functions (e.g., involving cerebellum
or not), and the diversity of states among atlases may be
further studied.
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Brain functioning relies on various segregated/specialized neural regions functioning
as an integrated-interconnected network (i.e., metastability). Various psychiatric and
neurologic disorders are associated with aberrant functioning of these brain networks.
In this study, we present a novel framework integrating the strength and temporal
variability of metastability in brain networks. We demonstrate that this approach
provides novel mechanistic insights which enables better imaging-based predictions.
Using whole-brain resting-state fMRI and a graph-theoretic framework, we integrated
strength and temporal-variability of complex-network properties derived from effective
connectivity networks, obtained from 87 U.S. Army soldiers consisting of healthy
combat controls (n = 28), posttraumatic stress disorder (PTSD; n = 17), and PTSD
with comorbid mild-traumatic brain injury (mTBI; n = 42). We identified prefrontal
dysregulation of key subcortical and visual regions in PTSD/mTBI, with all network
properties exhibiting lower variability over time, indicative of poorer flexibility. Larger
impairment in the prefrontal-subcortical pathway but not prefrontal-visual pathway
differentiated comorbid PTSD/mTBI from the PTSD group. Network properties of
the prefrontal-subcortical pathway also had significant association (R2 = 0.56) with
symptom severity and neurocognitive performance; and were also found to possess
high predictive ability (81.4% accuracy in classifying the disorders, explaining 66–72%
variance in symptoms), identified through machine learning. Our framework explained
13% more variance in behaviors compared to the conventional framework. These
novel insights and better predictions were made possible by our novel framework
using static and time-varying network properties in our three-group scenario, advancing
the mechanistic understanding of PTSD and comorbid mTBI. Our contribution has
wide-ranging applications for network-level characterization of healthy brains as well
as mental disorders.

Keywords: functional MRI, network dynamics, complex network modeling, effective connectivity, dynamic
connectivity, posttraumatic stress disorder, mild traumatic brain injury, machine learning
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INTRODUCTION

The dynamic abilities of the human brain are attributed to
its highly interconnected neural architecture. Functional MRI
(fMRI) connectivity modeling is popularly employed to study
interrelationships between brain regions at the systems-level.
However, fMRI connectivity is limited in that it can characterize
only pairwise relationships (i.e., bivariate). To characterize
connection ensembles (Rubinov and Sporns, 2010), and not
just connection pairs, strategies beyond traditional connectivity
modeling, such as complex-network modeling (Rubinov and
Sporns, 2010) using graph-theoretic techniques, are useful. This
approach makes use of individual connectivity weights as well as
the pattern in which these connections coexist, to make various
inferences on the network structure.

Functional Segregation
A graph comprises of a set of nodes (brain regions) that are
interconnected by edges (connectivity weights), and network
measures quantify different characteristics of the topology
of such graphs. Rubinov and Sporns (2010) illustrate the
applicability and interpretation of several complex-network
measures in brain imaging. Among them, functional segregation,
necessary for optimal specialized processing, informs about
dense-connectedness within separate subnetworks. It quantifies
whether the regions connected to a given node are connected
amongst themselves, thus forming subnetworks wherein
majority of the nodes are connected to every other node.
For example, during altered consciousness, segregation is
reduced, especially in the thalamus (Crone et al., 2013). In
the current study, we employed transitivity (global whole-
brain-level measure), clustering coefficient and local efficiency
(both local node-level measures) to quantify segregation
(Rubinov and Sporns, 2010).

Functional Integration
In contrast, functional integration captures the ease of interaction
between segregated regions (Rubinov and Sporns, 2010). For
example, there is elevated segregation in prefrontal and cerebellar
subnetworks in attention-deficit hyperactivity disorder (ADHD),
but lower integration between these subnetworks (Lin et al.,
2014), indicative of characteristic attentional reaction-time
deficits observed in this population. In the current study, we
employed global efficiency (global measure), shortest path length,
and edge betweenness (both local measures at connection-
level) to quantify integration (Rubinov and Sporns, 2010).
Although traditional connectivity identifies standalone aberrant
connections in clinical groups, these measures of integration
identify those connections that are not only important by
themselves, but are also important for the rest of the
connections in the network.

Graph Measures and Military Population
It has been extensively demonstrated that segregation and
integration are disrupted in psychiatric disorders [for example,
see (Yu et al., 2013; Rocca et al., 2014)]. Most report a
narrow, but balanced relationship between them in healthy
populations (called metastability) (Hellyer et al., 2015), which is

impaired in neurologic and psychiatric disorders (Yu et al., 2013;
Rocca et al., 2014). Using resting-state fMRI and our novel
framework, we investigated network-level aberrations in soldiers
with posttraumatic stress disorder (PTSD) and post-concussion
syndrome (PCS) associated with documented mild traumatic
brain injury(s) (mTBI). PCS is an outcome of mTBI, in which
the individual presents persistent post-concussive symptoms
3 months’ post-injury.

In military populations, there is considerable comorbidity
between mTBI and PTSD (Hoge et al., 2008, 2009), often
attributed to life-threatening events such as exposure to blast
from improvised explosive devices (IEDs), which result in mTBI
as well as psychological trauma. With the prevailing clinical
approaches focusing on patient reporting, and with substantial
overlapping symptoms between PTSD and PCS (Eierud
et al., 2014), a better comprehension of the neurobiological-
mechanistic basis for PTSD and PCS is imperative for improved
diagnosis and treatment outcomes, and for making return-
to-duty decisions. Prior fMRI works on comorbid PTSD and
mTBI are limited (Spielberg et al., 2015), although its prevalence
is considerably high in general society as well as military
populations (Veterans, 2015). In the current study, we explored
our novel framework involving functional segregation and
integration in three groups: soldiers with elevated posttraumatic
stress symptoms (PTSD group), PCS + PTSD (comorbid group
sustaining both PTSD and PCS), and healthy combat controls.
For the sake of disambiguation, we call complex-network
modeling as “network-level,” while connectivity modeling is
termed “connectivity-level” and activation analysis as “region-
level.” Although several studies have identified region-level
and connectivity-level aberrations in specific key prefrontal
and subcortical regions in mTBI and PTSD (Simmons and
Matthews, 2012), a thorough understanding of the aberrations
of directional relationships and associated changes in network
structure have not emerged from them. We address this
limitation in this study.

Effective Connectivity
Graph-theoretic analysis begins from network graphs
constructed using pairwise connections, which can be
obtained through connectivity modeling. Although functional
connectivity (FC) has been the predominant choice so far,
we sought to investigate directional networks with causal
relationships instead of co-activation (a non-directional entity).
It has not been adequately explored, even though it is an equally
important mechanism for network-level interactions. Causal
connectivity has been discovered even in fMRI timescales
(Roebroeck et al., 2005; Abler et al., 2006; David et al., 2008;
Deshpande et al., 2011; Deshpande and Hu, 2012; Ryali et al.,
2016; Rangaprakash et al., 2018a), indicating that identifying
causal networks in addition to co-activation networks is
important for a more extensive characterization. Further, PTSD
and PCS are typically considered as prefrontal dysregulation
disorders (Simmons and Matthews, 2012), meaning that
prefrontal causal connectivity is compromised. This provided
the impetus for us to further investigate directional connectivity.
To our surprise, there have been hardly any fMRI studies
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investigating effective connectivity (EC) in either PTSD or PCS
or the comorbid condition.

Granger Causality
Granger causality (GC), an exploratory technique, was employed
to quantify EC (Deshpande et al., 2010b). It is the most
prevalent technique for deriving causal relationships in natural
systems (Kirchgässner et al., 2012). Both recent simulations
(Ryali et al., 2011; Wen et al., 2013) and experimental
results, including optogenetics and electrophysiology (David
et al., 2008; Katwal et al., 2013; Ryali et al., 2016; Wang
et al., 2016), demonstrate that GC is reliable for drawing
inferences regarding directional relationships between brain
regions when used after deconvolving the hemodynamic
response function (HRF) from fMRI data (as done in the
current study). Several recent fMRI works have also employed
this technique (Deshpande et al., 2013; Sathian et al., 2013;
Grant et al., 2014; Lacey et al., 2014; Wheelock et al., 2014;
Feng et al., 2015; Grant et al., 2015; Hutcheson et al., 2015;
Bellucci et al., 2016).

Dynamic Connectivity
Most studies investigating fMRI connectivity assume
connectivity as stationary over time, although static connectivity
does not capture dynamic variations of connectivity. While
an fMRI scan endures for several minutes, mental processes
occur within a few milliseconds to a few seconds’ time,
implying that connectivity varies over the timescales of fMRI
scans, and that those variations contain biologically relevant
information (Hutchison et al., 2013), which are different from
that contained in static connectivity (Jia et al., 2014). Recent
works have found connectivity dynamics to be a unique and
important marker of brain functioning (Hansen et al., 2015;
Jin et al., 2017). Therefore, the current study utilized both
static EC (SEC) and dynamic EC (DEC). Brain networks were
constructed from strength (SEC) and temporal variability (DEC)
of directional connectivity, using which we obtained strength
and variability of segregation/integration measures, respectively.
Such a characterization of dynamic network properties is
one of the important novel contributions of this work. While
dynamic connectivity has prevailed in neuroimaging for
some time (Hutchison et al., 2013), for the first time we
introduce dynamic modeling of segregation and integration in a
novel framework.

Lower variability of connectivity over time is associated
with both psychiatric and neurologic conditions (Garrett et al.,
2013; Jia et al., 2014; Miller et al., 2016; Rashid et al., 2016;
Rangaprakash et al., 2017a, 2018a), often corresponding to a lack
of cognitive flexibility. Compromised behavioral performance
is linked with reduced temporal variance of connectivity in
both clinical and non-clinical populations (Sakoğlu et al., 2010;
Jia et al., 2014; Rangaprakash et al., 2017a, 2018a). Such
reduction is linked to impaired ability in dynamically adjusting
to changing conditions (thoughts, behaviors, etc.). A healthy
biological system is flexible in response to continual momentary
changes within the internal and external milieu of the organism.

In those terms, temporally “frozen” connectivity and/or complex-
network properties point to compromised brain health. Such a
characterization has been done in recent connectivity studies
(Jia et al., 2014; Rangaprakash et al., 2017a). Higher variability
of connectivity is also considered a marker of greater mental
flexibility (Zhang et al., 2016).

Hypotheses
In this work, we extend these concepts to the reduced temporal
variability (or rigidity) in network properties instead of individual
connection strengths. We hypothesized that PTSD and mTBI are
characterized by altered strength and lower temporal variability
of segregation and integration in directional brain networks.
We associated the connections exhibiting suppressed network
properties with deflation, given that reduced engagement of
certain prefrontal-subcortical and prefrontal-cortical pairwise
connectivities may be considered as an outcome of impaired
regulation from prefrontal regions (Gross, 2014). Similarly,
we associated the connections exhibiting elevated network
properties with inflation, or pathologically enhanced network-
level engagement, given that pairwise hyper-connectivity is seen
as an outcome of neurological disruption (Hillary et al., 2015),
and has been noticed in PTSD (Hayes et al., 2012; Simmons
and Matthews, 2012; Cisler et al., 2014). Within this framework,
we sought to identify such networks properties which were
(i) affected by PTSD but not mTBI (we call this hypothesis-1,
see Figure 1A), and (ii) affected by PTSD as well as comorbid
PTSD and mTBI (we call this hypothesis-2; see Figure 1B).
Such dichotomy would enable us to identify both common
(hypothesis-1) and distinguishing (hypothesis-2) network features
between PTSD and mTBI, given the high comorbidity and
overlapping symptomatology between them (Spielberg et al.,
2015). Notably, we tested the hypothesis on whole-brain data,
in a data-driven manner without imposition of any priors,
using resting-state fMRI, which is not task dependent. With
the network properties that fit our hypothesis, we assessed their
association with relevant behaviors (neurocognitive functioning,
and symptom severity in PTSD and PCS).

Machine Learning
Statistical group separation is the analysis framework for our
hypothesis. However, statistical separation does not automatically
attribute them with predictive diagnostic ability (Deshpande
et al., 2010a) at the individual-subject level. Machine-learning
classifiers have been successfully utilized on fMRI data for
such diagnostic prediction in disorders like major depression
(Deshpande et al., 2009), PTSD (Liu et al., 2015), Parkinson’s
(Marquand et al., 2013), dementia (Chen et al., 2011), ADHD
(Deshpande et al., 2015), prenatal-cocaine-exposure syndrome
(Deshpande et al., 2010a), autism (Deshpande et al., 2013; Libero
et al., 2015), and many others. However, to the best of our
knowledge, there have been no works utilizing complex-network
properties in PTSD/mTBI classification. Given the unique high-
level information contained in network properties, we expected
network measures to possess predictive ability. Neuropsychiatric
conditions such as PCS and PTSD are currently diagnosed
through clinical observation and self-report, hence classification
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FIGURE 1 | Illustration of our hypothesis showing decreasing temporal variability (implying rigidity) of segregation/integration, and either increasing or decreasing
segregation/integration (implying inflation or deflation, respectively) as we move from Control to PTSD to PCS + PTSD. Font and circle sizes are symbolic of the
increasing/decreasing trend, with smaller circles/text representing deflation and rigidity, and larger circles/text representing inflation and flexibility. (A) Hypothesis-1:
some network properties would be disrupted only in PTSD (significant for Control vs. PTSD and Control vs PCS + PTSD comparisons, but not PTSD vs.
PCS + PTSD comparison). (B) Hypothesis-2: some network properties would be significantly different between all three groups. Note that inflation and deflation
generally correspond to elevation or suppression of network properties, respectively, and not just connection strengths of individual paths. However, in the special
case when local network properties of the paths are considered, inflation and deflation are referred to the network properties, as well as connection strengths of the
paths under consideration.

using neuroimaging-based network signatures can be useful in
obtaining more accurate diagnoses in these highly comorbid
conditions. Hence, we employed a machine learning technique
to identify highly predictive features by recursively eliminating
unimportant complex-network features in a data-driven way. In
addition, we sought to find an overlap between connections with

network properties satisfying our primary hypotheses (Figure 1),
and those possessing high predictive ability. As our secondary
hypothesis, we hypothesized that such network properties would
predict the diagnostic membership of a new subject better than
available non-imaging measures (neurocognitive, behavioral and
self-report measures), thus underscoring their relevance to the
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underlying neuropathology of mTBI and PTSD. We place special
emphasis on network properties having all the desirable qualities
assessed in this work: high statistical separation, behavioral
relevance and high predictive ability. Our study illustrates the
utility of our methodological framework using the PTSD/mTBI
cohort as an example.

MATERIALS AND METHODS

A schematic of the entire processing pipeline is available at the
end of the methods section (Figure 4).

Participants
Active-duty soldiers (aged between 18 and 50 years) were
recruited from Fort Benning, GA, United States and Fort
Rucker, AL, United States to participate voluntarily in the study.
The study was conducted in accordance with the Declaration
of Helsinki, and the procedures were approved by Auburn
University’s Institutional Review Board (IRB) as well as the
Headquarters United States Army Medical Research and Materiel
Command, IRB (HQ USAMRDC IRB). Written informed
consent was obtained from all participants.

Eighty-seven male, active duty U.S. Army soldiers were
enrolled in the study, which included 17 with PTSD, 42 with
comorbid PCS and PTSD (PCS + PTSD), and 28 combat
controls (all groups were matched in age, education and race),
all having combat experience in Iraq (Operation Iraqi Freedom,
OIF) and/or Afghanistan (Operation Enduring Freedom, OEF).
Participants were grouped based on symptom severity in PTSD
using the “PTSD Checklist-5” (PCL5) score, post-concussive
symptoms using the “Neurobehavioral Symptom Inventory”
(NSI) score, clinician referral and medical history. (i) Participants
with post-concussive symptoms, clinician referral, history of
medically documented mTBI, and scores ≥ 38 on the PCL5
and≥ 26 on the NSI were grouped as the comorbid PCS+ PTSD
group. (ii) Participants with no history of mTBI in the last 5 years,
a score ≥ 38 on PCL5, and < 26 on NSI and clinician referral
were grouped as PTSD. (iii) Participants with score < 38 on PCL5
and < 26 on NSI, no mTBI within the last 5 years, no DSM-
IV-TR or DSM-V diagnosis of a psychiatric disorder (based on
medical records), and no history of moderate-to-severe TBI were
grouped as combat controls. All participants were assessed by a
licensed medical practitioner, and reported being deployed to a
combat environment. Those with psychotic, mood or substance
dependency disorders were excluded.

Measures
A battery of psychological health measures were administered to
the participants prior to their MRI scan. The battery consisted
of the Brief Traumatic Brain Injury Screen [BTBIS; (Schwab
et al., 2007)], PCL-5 (Blevins et al., 2015), NSI (Cicerone and
Kalmar, 1995), Life Events Checklist (LEC; (Gray et al., 2004)),
Combat Exposure Scale [CES; (Guyker et al., 2013)], Childhood
Environment [CE; (King et al., 2003)], Zung Depression Scale
[ZDS; (Zung et al., 1965)], Zung Anxiety Scale [ZAS; (Zung,
1971)], Alcohol Use Dependency Identification Test [AUDIT;

(Saunders et al., 1993)], and the Epworth Sleepiness Scale [ESS;
(Johns, 1991)]. In Supplementary Section “Psychological Health
Measures,” (SI-2.1) we present, in more detail, the measures that
were most relevant for this study [PCL5, NSI, and CNS vital signs
(CNS-VS]). Neurocognitive composite index (NCI) was derived
from CNS-VS domain scores (Gualtieri and Johnson, 2006) as an
aggregate measure of neurocognitive functioning.

Procedures
For procedures done prior to the fMRI scans during
the scheduled appointment, see Supplementary Section
“Procedures” (SI-2.2).

fMRI
Participants were scanned in a 3T MAGNETOM Verio scanner
(Siemens Healthcare, Erlangen, Germany) using T2∗ weighted
multiband echo-planar imaging (EPI) sequence in resting state
(participants would keep their eyes open and fixated on a white
cross displayed on a dark background on the screen using an
Avotec projection system, and not think of anything specific),
with TR = 600 ms, TE = 30 ms, FA = 55◦, slice gap = 1 mm,
multiband factor = 2, anterior to posterior phase encoding
direction, voxel size = 3 mm× 3 mm× 4 mm, and 1000 volumes.
Brain coverage was confined to the cerebral cortex, subcortical
structures, midbrain and pons (cerebellum was excluded).
Two identical but separate scans were performed for every
participant and processed independently [more information in
the Supplementary Section “Procedures” (SI-2.2)].

fMRI Data Pre-processing
Standard resting-state fMRI data pre-processing steps were done
including realignment, normalization to MNI space, detrending
and regressing out nuisance covariates such as six head-motion
parameters, white matter signal and cerebrospinal fluid signal,
and band-pass filtering (0.01–0.1 Hz). The largest permitted
head motion was half the voxel-size (1.5 mm); no significant
group differences were observed in participant head-motion
(p > 0.05) (also see Table 1). Pre-processing was performed using
Data Processing Assistant for Resting-State fMRI (DPARSF v1.7)
(Chao-Gan and Yu-Feng, 2010), which is based on Statistical
Parametric Mapping (SPM8) (Friston et al., 2007) and Resting-
State fMRI Data Analysis Toolkit (Song et al., 2011).

Deconvolution was then carried out on voxel-level time
series, because confounds arising from spatial and inter-
subject variability of the hemodynamic response function (HRF)
(Handwerker et al., 2004; Rangaprakash et al., 2017c) could lead
to a scenario wherein two fMRI time series show high effective
connectivity but the underlying neural signals are not highly
connected, and vice versa (refer to Figure 2 for an illustration)
(Rangaprakash et al., 2018b,c). Such phenomena have been
specifically found in the case of PTSD and mTBI with functional
connectivity (Rangaprakash et al., 2017c). Additionally, causal
connections could potentially switch directions in case the
underlying HRFs possess different times-to-peak. In this respect,
it has been demonstrated that deconvolution results in improved
estimation of effective connectivity (David et al., 2008; Ryali et al.,
2012, 2016). The viewpoint of cellular neuroscience on BOLD
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TABLE 1 | Mean, median and standard deviation of demographics, head motion,
psychological measures (PCL5, NSI, and CES), and CNS-VS neurocognitive
measures for each of the groups.

Variable Controls PTSD PCS + PTSD

DEMOGRAPHICS AND HEAD MOTION

Age, years Mean 32.6 32.2 33.7

Median 31 32 33

SD 6.7 7.6 6.8

Education, years Mean 15.1 14.5 14.1

Median 16 14 14

SD 1.9 2.2 1.9

Race White 18 (66.7%) 11 (64.7%) 26 (66.7%)

Black 2 (7.4%) 3 (17.6%) 9 (22.0%)

Hispanic 3 (11.1%) 3 (17.6%) 2 (4.9%)

Asian 2 (7.4%) 0 1 (2.4%)

Other 0 0 1 (2.4%)

Head motion (mean
frame-wise displacement)

Mean 0.098 0.121 0.111

Median 0.072 0.076 0.069

SD 0.082 0.106 0.104

Medication 2 (7.4%) 4 (23.5%) 13 (31.7%)∗

Lifetime mTBIs Mean (Range) 0.3 (2) 1.1 (6) 2.5 (15)∗

PSYCHOLOGICAL MEASURES

Traumatic stressa Mean 23.5 56.6 70.9

Median 21.5 48.5 70.5

SD 4.2 17.8 15.2

Post-concussive
symptomsa

Mean 6.6 25.9 43.4

Median 5 17.5 41.5

SD 4.8 19.2 16.1

Combat exposurea Mean 7.2 16.7 28.6

Median 2.5 15 29

SD 9.8 11.2 8.6

NEUROCOGNITIVE MEASURES

Neurocognitive
composite indext,z

Mean 101.2 94.3 81.7

Median 100.7 94.6 82.2

SD 12.9 12.5 20.7

Reaction time Mean 97.4 95.3 84

Median 101 92 91

SD 23 11.9 32.8

Complex attentiont Mean 94.2 78.1 70

Median 99.5 92 80

SD 23.3 30.9 31.3

Cognitive flexibilityt,z Mean 103.6 97.1 80.5

Median 103 93 86

SD 16.3 15.2 26.7

Processing speedt Mean 104.8 100.1 89.9

Median 104 98 92

SD 20.9 11 20.1

Executive functioningt,z Mean 106 101 84.1

Median 104.5 104 90

SD 13.3 13.2 24.8

Verbal memory Mean 99.6 92.1 83.6

Median 106.5 103 83

SD 12.5 9.5 13.9

adenotes p < 0.05, all three groups; tdenotes p < 0.05, Controls vs. PCS + PTSD,
zdenotes p < 0.05, PTSD vs. PCS + PTSD. Traumatic Stress = PCL5; Post-
concussive Symptoms = NSI; Combat Exposure = CES.

fMRI presented in a recent paper (Hall et al., 2016) discussed
several caveats in the interpretation of fMRI results, wherein
careful consideration is warranted based on the underlying
cellular mechanisms. Neurovascular dynamics or HRF variability
is one such primary issue, about which they comment as follows:
“advances in cellular neuroscience demonstrating differences in this
neurovascular relationship in different brain regions, conditions
or pathologies are often not accounted for when interpreting
BOLD.” They advise employing computational modeling (e.g.,
deconvolution) to mitigate the issue. We employed a popular
blind deconvolution algorithm (Wu et al., 2013). Many recent
papers have employed it [see for example (Amico et al.,
2014; Lamichhane et al., 2014; Boly et al., 2015; Rangaprakash
et al., 2017a,b)]. The deconvolution is blind since both the
HRF and underlying latent neural time series are estimated
only from the recorded fMRI data. Resting-state fMRI data is
modeled as event-related using point processes with randomly
occurring events; then, voxel-specific HRFs are estimated using
Wiener deconvolution. This technique is date-driven; hence, we
do not encounter overfitting issues that often plague model-
based approaches.

Since whole-brain fMRI data has high dimensionality, 125
functionally homogeneous brain regions spread out across the
cerebral cortex and encompassing it completely, determined
using spectral clustering [known as the Craddock-200 atlas
(Craddock et al., 2012)], were taken and mean deconvolved time
series were obtained from them. All further analyses (carried out
on the Matlab R© platform) utilized these 125 time series from
every participant.

Effective Connectivity Analysis
A precursor to obtaining network-level characterization is to first
get the connectivity network itself, which is, computing SEC and
DEC matrices from pre-processed fMRI data. Whole-brain SEC
and DEC were computed using GC (Deshpande et al., 2010b),
which is an exploratory technique used to quantitatively measure
directional relationships between brain regions. While SEC uses
a multivariate autoregressive (MVAR) model, DEC employs a
dynamic MVAR model evaluated in a Kalman filter framework
using variable parameter regression (Wheelock et al., 2014).

The concept of Granger causality (GC) is that, if future values
of time series “Y2” can, in a mathematical sense, be predicted
by the past values of time series “Y1,” then a causal influence
is inferred from time series Y1 to time series Y2 (Granger,
1969). GC’s MVAR model predicts one time series from the other
quantitatively, as described briefly next. Given k different time
series Z(t) = [z1(t), z2(t), . . . zk(t)], wherein k corresponds to 125
ROIs of this work, the MVAR model of order p is given by:

Z (t) = M (0) Z (t)+M (1) Z (t − 1)+M (2) Z (t − 2)

+ · · · +M
(
p
)

Z
(
t − p

)
+ E (t) (1)

Here, E(t) is the model error, while M(0) . . . M(p) are model
coefficients. Like in earlier studies (Deshpande et al., 2010b), this
formulation included a zero-lag term with coefficient M(0) which
would eliminate the contribution of zero-lag cross-correlation
between the time series. Since M(0) represents co-variance
between time series and not used in GC computation, the effect
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FIGURE 2 | Using two time series from experimental fMRI data, we illustrate the importance of performing hemodynamic deconvolution for effective connectivity
modeling. The latent neural signals are convolved with the hemodynamic response function (HRF) to provide the BOLD fMRI time series. Within-subject spatial HRF
variability across the brain could often result in a scenario wherein (A) the latent neural signals have true low directional connectivity [quantified using Granger
causality (GC) from blue to pink signal] while the BOLD fMRI time series show high GC wherein the pink time series seems to follow after the blue time series, and
(B) the latent neural variables have true high directional connectivity while the BOLD fMRI time series show low GC. In the former case, while the neural signals nearly
overlap, the delay in the HRFs causes an observable delay in the BOLD time series, resulting in high GC from the blue to the pink BOLD time series. In the latter
case, the delay noticeable in the neural signals (pink signal leads blue) is negated by the delay in the HRFs (blue signal leads pink), resulting in nearly overlapping
BOLD time series and a low GC value.

of zero-lag cross-correlation gets ignored in GC. Given that
diagonal elements of M(0) are set to zero, we only model the
instantaneous cross-correlation, and not the auto-correlation
between the time series.

The coefficients were estimated using multivariate least-
squares estimation. It computes the set of optimal coefficients
with model error being minimized in a least-squares sense.
The model order p can either be chosen by utilizing a
mathematical principle such as the Bayesian Information
Criterion (BIC) (Roebroeck et al., 2005) or based upon the
needs of the application being considered. In neuroimaging,
causal relationships corresponding to neural delays less than
or equal to the TR are of interest (Deshpande et al., 2013),
hence we used a first order model. Given that fMRI’s temporal
resolution is relatively low, a first-order model has been
shown to capture the most relevant directional information
(Deshpande and Hu, 2012).

The degree to which the past Z(t-p) is able to predict the
present Z(t) is given by the coefficient matrix M(p). The sum of
all such coefficients would then correspond to the degree to which
the past values put together can predict the present. As in prior
works (Kaminski et al., 2001), GC was formally derived, based on
the model coefficients, as:

GCij =

p∑
n=1

mij (n) (2)

Wherein mij are the elements of matrix M and GCij refers to
the SEC value from ROI i to ROI j. Notably, a single coefficient
matrix was computed for the entire duration of the experiment,
that is, coefficients are not varying with time. A deeper theoretical
rendering of GC can be found here (Deshpande et al., 2010b).

GC-based methods have been experimentally validated for fMRI
EC analysis (David et al., 2008; Katwal et al., 2013), and they have
been extensively utilized for fMRI EC modeling in recent times
[see for example (Deshpande et al., 2011, 2015)].

Next, DEC was computed by employing time-varying
dynamic Granger causality (DGC), evaluated using a Kalman
filter framework. Dynamic multivariate vector autoregressive
(dMVAR) model was employed for estimating DGC (Grant
et al., 2014; Wheelock et al., 2014). DEC is the underlying time-
varying physiological process, while DGC is the mathematical
measure that quantifies it. This technique has also been used in
several recent studies (Deshpande et al., 2013; Wheelock et al.,
2014; Hutcheson et al., 2015). Unlike GC formulation, dMVAR
model coefficients M’(p,t) are a function of time, hence the
model is “dynamic.”

Z (t) = M′ (0, t) Z (t)+M′ (1, t) Z (t − 1)

+ · · · +M′
(
p, t
)

Z
(
t − p

)
+ E (t) (3)

A Kalman filter framework which uses variable parameter
regression (Büchel and Friston, 1998) was used to estimate
dynamic model coefficients, which involved imposing a
forgetting factor (which was chosen as 1 in our case). DGC was
thus computed as:

DGCij (t) =
p∑

n=1

mij (n, t) (4)

Where mij are the elements of matrix M and DGCij(t) is the
value of DEC from ROI i to ROI j at a given time point t.
Like in GC, zero-lag cross-correlation effects were compensated
here also. Further, a forgetting factor of 1 was used to make
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FIGURE 3 | Illustration of static and dynamic effective connectivity (SEC and DEC) from a neuroimaging standpoint using two experimental fMRI time series. In (A),
the two time series seem highly correlated and nearly overlapping. However, the variations in the pink time series do not appear to happen after (or before) the
variations in blue time series (top-left figure). This poor causal relationship results in a low SEC value (= 0.07). Correspondingly, DEC values hover around the
zero-value (bottom-left figure) since a causal relationship does not seem to emerge for most part of time, except for a brief span (marked by the arrow) when there is
a visible causal relationship. In (B), the pink time series seems to constantly follow after the blue time series (top-right figure), indicating that the pink signal’s
associated brain region activates (and deactivates) immediately after the blue signal’s region activates (and deactivates), thus a causal relationship and a high SEC
value (= 0.95). DEC provides additional insight (bottom-right figure), wherein steady causality is maintained almost for the entire duration except for a brief span
(marked by the arrow), wherein DEC dips because of observable lack of causality in the time series’ of those sections.

the system well-conditioned so that the coefficients may be
estimated accurately.

A 125 × 125 whole-brain SEC matrix was obtained for
every participant by computing GC between all combinations
of connections between the 125 ROIs. With DEC, the dynamic
MVAR model coefficients are a function of time, hence,
with our fMRI data having 1000 time points, we obtained
a 125 × 125 × 1000 DEC matrix per participant. SEC and
DEC matrices were used for further complex-network analysis.
To illustrate the concepts of SEC and DEC in the context of
neuroimaging, we show a simple illustration using a pair of fMRI
time series from our experimental data (see Figure 3).

Complex-Network Analysis
We first describe the network measures of segregation and
integration, and then explain how they were used in the
context of this work. As noted earlier, given the complexity
of our hypothesis, we dealt with weighted directed networks
in this work. Functional segregation was quantified using
transitivity (global measure, one value for whole brain
per participant), clustering coefficient and local efficiency
(both local measures, one value per node/region per
participant). Functional integration was quantified using
global efficiency (global measure), shortest path length
and edge betweenness (both local measures, one value per
connection per participant). We obtained source codes for
these measures from the Brain Connectivity Toolbox (April

2014 release) (Rubinov and Sporns, 2010), and implemented
the entire pipeline in the Matlab R© platform through custom
codes. A detailed account of these measures can be found
in Rubinov and Sporns (2010). For the benefit of readers,
we have explained each of these measures in detail using
a simplified example network in Supplementary Section
“Complex-Network Analysis” (SI-2.3).

Briefly, transitivity is a global measure of overall efficiency of
local processing in the brain. Clustering coefficient (CC) gives a
transitivity-type characterization for every node. Local efficiency
(EffLoc) is closely related to CC, wherein nodes with powerful
neighbors that are involved in several shortest paths have higher
EffLoc, indicating that the node is important in the sub-network
for specialized processing. While CC and EffLoc usually give
similar (but not same) results, their interpretations are different.
In this work, along with transitivity as the global measure, we
employed both CC and EffLoc as local measures, which are the
two popularly used local measures of segregation. We took an
overlap (intersection) of the final significant group differences for
the two measures, so that the affected nodes had differences in
both the measures, thus providing more conservative results with
a broader interpretation.

Global efficiency (EffGlob) is a global measure indicating
the aggregate ease of communication in the entire network.
Shortest path length (SPL) is a measure of how easy it is to
reach one node from the other, and is analogous to meta-
connectivity. Edge betweenness (EB) measures the number of
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all shortest paths in the entire network that contain the given
connection. Like SPL, EB is an important network measure
because it characterizes the importance of a connectivity path
not only through its pairwise connectivity value but also
through the significance of the connectivity path for other
connectivity paths present in the network. If a connectivity path
matters a lot for other paths, i.e., for communication between
various other nodes, then the given path would have high
integration ability (i.e., SPL and EB). Such a characterization
can be obtained only through complex-network modeling since
traditional pairwise connectivity informs us only about the
strength of interaction between just two brain regions. In
this work, we employed EffGlob as the global measure and
both SPL and EB as local measures of integration. As with
segregation, we took an overlap (intersection) of the final
significant group differences in the two local measures, so that the
affected paths had differences in both measures, thus providing
more conservative, but potentially more reliable, results with
wider interpretation.

Next, we describe how these six network measures were used
in the context of this work. SEC and DEC connectivities were
used separately to construct static and time-varying networks
with brain regions as nodes and connectivity strengths between
them as the weighted directed edges of the network graphs.
Absolute value of connectivity was used to construct the network
graphs. With SEC, a single network was constructed for the entire
duration of time in the data, giving a “connectivity strength”
network, which was used to obtain each one of the six complex-
network measures for every run of every participant. With DEC,
we considered each time point of the DEC time series as a
snapshot of the network at that time instant, and then constructed
a graph using the nodes and edge values from that snapshot.
We computed network measures for that snapshot, and repeated
the procedure independently for the rest of DEC time series to
obtain a time series of values for each network measure. Then, for
each network measure, we computed the variance of the network
measure time series to obtain a single value for the entire duration
of the data. This gave us a network with paths whose weights
corresponded to the temporal variability of complex-network
measures. This was obtained for every measure and for every run
of every participant, similar to SEC.

Statistically significant differences in these strength and
variability networks were obtained, in accordance with our
hypothesis (p < 0.05, FDR corrected). We corrected for
31250 comparisons: 125 comparisons of segregation (125 ROIs),
15500 comparisons of integration (125 × 125 − 125),
each for both static connectivity and variance of dynamic
connectivity networks. Differences were controlled for age,
race, education, and head-motion [using mean frame-wise
displacement, as defined by Power et al. (2012)]. That is, we found
significant group differences with both SEC and DEC derived
complex-network measures separately for these three pairwise
comparisons (thus giving a total of six comparisons per network
measure): Control vs PTSD, Control vs. PCS + PTSD, PTSD vs.
PCS+ PTSD. We then identified the common network measures
among four of these comparisons (hypothesis-1) which excluded
PTSD vs PCS + PTSD comparison, and we also identified

common network measures among all the six comparisons
(intersection, hypothesis-2), all of which also fit our hypothesis,
that is, conformed to the increasing/decreasing trend as we
moved from Control to PTSD to PCS+ PTSD.

It is notable that we have taken a conservative approach
in this work. We opted to look for common differences in
pairwise statistical comparisons, rather than performing a single
three-way statistical comparison, which is less conservative.
We obtained common differences in static as well as dynamic
network measures, and we also constrained the differences
to conform to a trend as per our hypothesis. Additionally,
we computed two local measures in segregation as well as
integration, and considered only common differences in them,
which added another level of constraints on our findings.
In addition to these, we notably discarded any paths which
had significant network-level differences in local measures of
integration (i.e., SPL and EB), but not significant pairwise
effective connectivity differences themselves. That is, we included
only those paths which had significantly different SEC and
variance of DEC in accordance with the trend set out in
our hypothesis (p < 0.05, FDR corrected, controlled for
age, race, education and head-motion), in addition to having
significantly different local measures of integration (i.e., SPL
and EB). This was done to ensure that, irrespective of network-
level disturbance, the significant connections that emerged
in this work would have also cleared whole-brain multiple-
comparisons-corrected statistical threshold with traditional static
and dynamic effective connectivity like in most other studies.
This reassured that our results conformed to multiple layers
of validation, verification and statistical standards, and that
evidence of network disruption were obtained via multiple
analysis approaches, in addition to providing novel insights
through network characterization.

Behavioral Relevance of Network
Properties
In an effort to assess the behavioral relevance of complex-network
measures, we first obtained the association of the strength and
variability of complex-network measures (only those which fit
our hypothesis) with symptom severity in PCS (NSI score) and
PTSD (PCL5 score), as well as neurocognitive functioning (NCI
score and subtests). Neurocognitive functioning (e.g., executive
functioning, cognitive flexibility) is often impaired in psychiatric
disorders such as PTSD and PCS (Simmons and Matthews, 2012),
hence identifying such network properties associated with it
would be important. We report significant associations between
complex-network properties and behavioral/clinical measures.

In order to obtain additional insight into how network
properties of the ensemble of identified connections mapped
on to the ensemble of behaviors, we performed partial least
squares regression (PLSR) analysis (Krishnan et al., 2011), which
we employed to predict neurocognitive functioning (NCI and
subtests) and symptom severity (PCL5, NSI) from strength and
variability of network measures obtained from our prior analysis.
We present the percentage variance in behaviors explained by the
complex-network measures.
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Machine Learning Classification Analysis
For predicting the diagnostic membership of a novel subject
based on a novel measurement using the measure, success
in hypothesis testing is neither necessary nor sufficient.
A mechanism to quantify the predictive ability of the features
is not available with the hypothesis testing framework, requiring
us to acknowledge what a technique like hypothesis testing can
do, and cannot do. Statistically significant network properties
necessarily need not have high predictive ability, and vice
versa. Hence, those network properties that are both statistically
significant (in accordance with our hypothesis) and are top-
classifiers (high predictive ability) carry superior importance and
relevance. Therefore, we used machine learning techniques to
identify such network properties (features) which can accurately
classify individuals between controls, PTSD, and PCS + PTSD.
A Recursive Cluster Elimination based Support Vector Machine
(RCE-SVM) classifier (Deshpande et al., 2010a) was used to
classify the participants based on whole-brain network properties
(both strength and variability). Notably, findings from prior
complex-network analysis were not used to bias the machine
learning analysis as whole-brain data was used. A detailed
account of this technique can be found in Rangaprakash et al.
(2017a), and we have explained it thoroughly in Supplementary
Section “Machine Learning Classification Analysis” (SI-2.4) to
benefit the reader.

Briefly, RCE-SVM iteratively eliminates features to minimize
prediction error. The training data is clustered, and upon SVM
classification the clusters are scored using testing data. Low-
scoring clusters are eliminated (RCE step) and the procedure is
repeated until only the top-predictive features remain. In this
work, we made the following parameter choices. The training
set consisted of 80% of the participants, while the testing set
consisted of the remaining 20%. We began the algorithm with
forty clusters in the first RCE step. Based on performance,
the bottom 20% of the clusters were eliminated in every
subsequent RCE step. Two clusters containing the top-predictive
features remained in the final RCE step. With a hundred
random iterations, sixfold cross validation was performed in
every iteration, resulting in a total of 600 iterations over the
complete execution.

To be conservative, we obtained the worst-case classification
accuracy by evaluating the lowest accuracy value gathered from
test data among all 600 iterations (sixfolds × 100 repetitions).
Statistical significance of the accuracies was computed through
estimating p-values using a binomial null distribution B(η,ρ),
with ρ being the probability of accurate classification and η being
the number of participants like in previous studies (Pereira et al.,
2009). Only accuracies with p < 0.05 (Bonferroni corrected) were
taken as statistically significant.

We repeated this procedure and performed classification
independently with 32 available non-imaging measures as
input features instead of network measures. The 32 measures
were: (i) psychological health measures: Perceived Stress Scale,
Epworth Sleepiness Scale, Pittsburgh Sleep Quality Index, Zung
Depression Scale, and Zung Anxiety Scale; (ii) behavioral
measures: all CNS-VS measures including the NCI score;

(iii) exposure/injury descriptives: CES, lifetime concussions, and
Life Events Checklist. Worst-case accuracies and top-classifying
features were obtained, with them being compared with the
results obtained by using complex-network measures.

Machine Learning Regression
(Dimensional) Analysis
Network properties having statistical significance in accordance
with our hypothesis, having behavioral relevance as well as having
high predictive ability were attributed distinctive importance in
this study. Using such features, we finally performed support
vector regression (SVR) to predict PTSD and PCS symptom
severity, in order to assess those features dimensionally. Similar
to the classification analysis, we performed sixfold cross-validated
linear SVR over one million iterations. Specifically, in each
iteration, the regression model was developed using 5/6th of the
randomly chosen participants. The model used features described
above as inputs and learned the underlying function which maps
onto the PCL5 and NSI scores. Subsequently, the model was
used to predict PCL5 and NSI scores in the remaining 1/6th
participants. Our machine learning classification and regression
analyses involved no hyperparameter optimization. We report
correlation (R2) between predicted and measured symptom
severity scores.

Figure 4 summarizes the processing pipeline of all
the methods.

RESULTS

Demographics
The demographics (for the three groups) are presented in Table 1.
There were no significant group differences in age, p = 0.70,
or education, p = 0.15. The results indicated a difference in
the frequency of reported psychotropic use between the groups,
τb = 0.24, p = 0.01, with the highest percentage of medicated
participants being in the comorbid group. The number of
reported lifetime mTBIs also had significant group differences
specifically between control group and the PCS + PTSD group
[F(2,171) = 5.81, p = 0.004], but not the control versus PTSD
groups or PTSD versus PCS+ PTSD groups, p > 0.05.

Psychological
Health and Neurocognitive Function
The results revealed significant differences between the three
groups in posttraumatic symptoms (PCL5), [F(2,81) = 101.65,
p < 0.001], post-concussive symptoms (NSI), [F(2,78) = 49.79,
p < 0.001], and CES, F(2,79) = 40.69, p < 0.001. All p-values
remained significant after corrections for multiple comparisons.
As observed in Table 1, the PCS + PTSD group had the highest
scores out of the three groups on these respective measures.

The results indicated that, after corrections for multiple
comparisons, the control group displayed significantly higher
scores than the PCS + PTSD group on all neurocognitive
measures, p < 0.05, except for reaction time and verbal memory,
p > 0.05. The PCS + PTSD group also had significantly lower
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FIGURE 4 | Schematic of the complete processing pipeline executed in this study. Results corresponding to different analyses are summarized, which can be
viewed in more detail by referring to the corresponding figures.

scores in executive functioning, cognitive flexibility, and the NCI
compared to the PTSD group, p < 0.05. The findings suggest
that both the PTSD and PCS + PTSD groups display lower
scores than controls, but also, the comorbid group had greater
impairments than the PTSD group (see Table 1).

Complex-Network Analysis Using
Effective Connectivity
We used SEC and DEC connectivity matrices to compute six
complex-network measures (two global and four local measures).
With global measures (Figure 5), we found significantly lower
strength and variability of both segregation and integration
in PTSD and PCS + PTSD compared to controls. Our
finding indicates that both specialized processing and efficient
communication are compromised in the disorders at the whole
brain level. However, no significant differences were found
between PTSD and PCS + PTSD groups, indicating that PTSD
might contribute to global aberrations whereas the effect of mTBI
might be more localized.

Local Measures
Further granularity was obtained with local measures. Altered
segregation was mainly observed in prefrontal and occipital
regions (Figure 6A). None of the occipital regions were
statistically different between the PTSD and PCS+ PTSD groups,

FIGURE 5 | Group differences (p-values) for the two global measures
(transitivity and global efficiency) obtained from both SEC and DEC matrices.
We observe that whole-brain differences were driven by PTSD, while mTBI
likely did not cause whole-brain-level changes.

while the majority of the remaining identified regions were
significantly different. While these results were obtained using
a strict statistical threshold, we noticed that when a liberal
threshold was used (not shown here), more prefrontal nodes
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FIGURE 6 | Brain regions with altered functional segregation and/or integration across groups. (A) Regions-of-interest (ROIs) associated with significantly disrupted
functional segregation. (B) ROIs associated with significantly disrupted functional integration. The ROIs were defined by the Craddock-200 atlas (Craddock et al.,
2012). MFG, middle frontal gyrus; TPJ, temporo-parietal junction.

were affected compared to parietal/occipital nodes, which were
all characterized by lower segregation. This might explain why
we observed lower transitivity (global segregation) in PTSD and
PCS+ PTSD compared to controls.

Generally, the terms “inflation” and “deflation” (Figure 1)
correspond to elevation (increased value) or suppression
(decreased value) of static network properties, respectively, and
not just connection strengths of individual paths. Similarly,
“rigidity” corresponds to lower temporal variability of dynamic
network properties. However, in the special case when local
network properties of paths (i.e., integration) were considered,
these terms referred to network properties as well as connection
strengths of the paths under consideration.

Next, aberrant local measures of integration were found along
two distinct pathways (see Figure 6B for the affected ROIs),
which we present as two subnetworks for clarity: (i) fronto-visual
subnetwork (Figure 7A), and (ii) parietal-inflation subnetwork
(Figure 7B). The fronto-visual subnetwork showed prefrontal
deflation of secondary visual areas and lingual gyrus, i.e., lower
strength/variance of network properties (SPL and EB) of
paths connecting certain prefrontal regions to certain visual
regions. This subnetwork was, however, not significantly different
between the PTSD and PCS + PTSD groups, indicating that it
might not be affected by an mTBI (since one difference between
these groups is a history of significant prior mTBI(s) in the
PCS+ PTSD group). Notably, all paths here also exhibited lower
SEC/vDEC connectivity values in addition to lower strength and
variability of integration.

The parietal-inflation subnetwork (see Figure 7B)
showed that the visual areas affected in the fronto-visual
subnetwork were driving two key parietal regions [precuneus,

temporo-parietal-junction (TPJ)]. Additionally, we observed
fronto-subcortical disinhibition resulting in rigid inflation
(increased strength but lower variance of network properties
SPL and EB) of key subcortical areas (amygdala, hippocampus)
and anterior insula, which subsequently resulted in the
inflation of the same key parietal regions (precuneus, TPJ).
Interestingly, this fronto-subcortical-parietal subnetwork was
significantly different between all three groups, indicating
that both PTSD and mTBI affect this subnetwork, while the
occipital part was not significantly different between PTSD
and PCS + PTSD (see Figure 7C). This is a potentially
important finding.

Schematic of the entire network (Figure 8) shows that
the left middle frontal gyrus (MFG), which largely overlaps
with the dorsolateral prefrontal cortex (DLPFC), is the likely
source of the network-level disruption, whose deflation
(suppressed network properties) results in inflation (elevated
network properties) of downstream subcortical and visual
pathways, culminating in parietal inflation. Figures 6–8
were visualized using BrainNet Viewer (Xia et al., 2013). In
Supplementary Information, we provide observations from
additional supplemental analysis performed by us (i) using
a different brain parcellation instead of Craddock-200 [see
Supplementary Section “Observations Using a Different Brain
Parcellation Instead of Craddock-200” (SI-3.1)], (ii) using
eigenvariate time series data instead of mean time series [see
Supplementary Section “Observations Using Eigenvariate
Time Series Data Instead of Mean Time Series” (SI-3.2)], and
(iii) using ROI-level deconvolved data instead of voxel-level
deconvolved data [see Supplementary Section “Observations
Using ROI-Level Deconvolved Data Instead of Voxel-level
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FIGURE 7 | Functional segregation/integration (metastability) results. (A) The network of integration was broken down into two sub-networks. (A) Shows the first of
the two sub-networks, the fronto-visual sub-network that exhibited lower strength of integration and lower temporal variation of integration, which was significant for
control vs. PTSD and control vs. PCS + PTSD comparisons (but not PTSD vs. PCS + PTSD comparison). The yellow node had altered segregation between all
three groups, while the red nodes were different except for the PTSD vs. PCS + PTSD comparison. This sub-network likely represents reduced prefrontal inhibition
of visual memory processing and retrieval. (B) Second of the two sub-networks, the parietal inflation sub-network that exhibited altered strength of integration and
lower temporal variation of integration. Yellow paths were significantly different for all group-wise comparisons. Green paths were altered except for the PTSD vs.
PCS + PTSD comparison. This sub-network showed parietal-inflation caused by subcortical and visual network disruptions, which were in-turn driven by the left
middle frontal gyrus (MFG). (C) The entire network of disruption found in the work, showing nodes/paths in gray which were on a rigid deflated regime (lower
strength and temporal variability of segregation/integration; as well as lower strength and variability of effective connectivity, marking hypo-connected inflexible
connectivity), and nodes/paths in brown, which were on a rigid inflation regime (higher strength of segregation/integration and lower variation of
segregation/integration over time; as well as higher strength and lower variability of effective connectivity, marking hyper-connected inflexible connectivity).
Noticeably, all prefrontal nodes and prefrontal-originating paths exhibited a deflated regime, while the rest (those not associated with prefrontal regions) exhibit an
inflated regime. Such a lucid dichotomy is interesting. It is clearly observable that deflation originates in the prefrontal cortex, which subsequently results in the
inflation of parietal regions through two routes, subcortical and visual. MFG, middle frontal gyrus; TPJ, temporo-parietal junction.

Deconvolved Data” (SI-3.3)]. Our results remained consistent
across different choices.

Behavioral Relevance of Network
Properties
Strength and temporal variability of functional integration values
of four paths, which were significantly different between all

three groups (the yellow connections in Figure 8), as well as
the strength and temporal variability of functional segregation
of MFG and Insula (Figure 6A) showed significant associations
(p < 0.05 Bonferroni corrected) with neurocognitive functioning
(NCI) and severity of both PTSD symptoms (PCL5-score) and
post-concussive symptoms (NSI-score), thus highlighting their
relevance to the underlying pathophysiology (see Table 2).
Notably the associations followed the expected trend: increase
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FIGURE 8 | Schematic of the entire network: Yellow nodes/paths were significantly different for all three group-wise comparisons. Green paths (and red nodes) were
significantly different except for the PTSD vs. PCS + PTSD comparison. Thick lines correspond to connections between major sub-networks while thin lines
correspond to connections within sub-networks. The prefrontal sub-network consisted of MFG and medial frontal, the parietal sub-network consisted of TPJ and
precuneus, the visual sub-network consisted of lingual and primary visual areas while the emotion-memory sub-network consisted of sub-cortical regions such as
amygdala and hippocampus and cortical regions such as the insula. Disrupted left-MFG causes deflation of emotion-memory regions and visual memory-related
regions, culminating in parietal-inflation causing heightened symptoms often observed in PTSD and PCS.

in symptom severity and decrease in behavioral performance
corresponded to higher strength of integration in inflated
paths and lower in deflated paths, and lower variability (i.e.,
rigidity) in integration in all paths (similarly with segregation).
However, those connections which were not different between
PTSD and PCS + PTSD (green paths in Figure 8), as well
as other nodes in Figure 6A and global complex-network
measures had no significant associations with symptoms and
neurocognitive performance.

Since multitude of network paths and nodes had relevant
associations with multiple measures of symptoms and
neurocognitive performance (which we will now refer to as
neurobehavioral indices), it would be interesting to measure
how much variance in the neurobehavioral indices could
be explained by those set of network measures. This was
accomplished using PLSR (Krishnan et al., 2011), which finds
the combined ability of the strength and variability of functional
integration of the four connections and functional segregation
of two nodes to predict neurobehavior. We found that the
strength of network measures could explain 48.95% variance
in the neurobehavioral indices, while the temporal variability
of network measures could explain 57.17% variance. When
both were combined, they could explain 61.74% variance in
the neurobehavioral indices. A significantly large association
between these network measures and neurobehavior (R2 = 0.56,
R = 0.75, p = 3.5 × 10−32) was observed in the latent space
(see Figure 9A for linear fit). The latent space consists of
categorical variables that represent all network measures and

all neurobehavioral indices included into the model, so that
their relationship in the latent space could be considered the
effective association of all the included network measures with
all the neurobehaviors. As such, the latent space variables
contain more “information” in them than the individual
variables themselves, consequently explaining more variance
than individual measures. For this reason, our finding of higher
R2-value must not be surprising (Vul et al., 2009), and this is
fundamental to the multivariate nature of PLS, as elaborated by
Krishnan et al. (2011). Our finding reiterates that the strength
and variability of functional integration of the four paths and
that of segregation of the two nodes identified in this work are
behaviorally relevant.

One a side note, head motion [mean frame-wise displacement
(Power et al., 2012)] was not significantly correlated with
behavioral measures in latent space (R = 0.049, p = 0.52), complex
network measures in latent space (R = 0.056, p = 0.46), PCL5
(R = 0.047, p = 0.54) or NSI (R = 0.015, p = 0.84) symptom severity
scores. This enhanced our confidence in the results.

Machine Learning Classification Results
Top predictors are those that, among all network measures,
possess the highest ability in predicting the diagnostic
membership of a novel subject. To identify the top-predictors,
we performed RCE-SVM classification (Deshpande et al.,
2010a). Classification was done with two different paradigms:
(i) classification using the 32 non-imaging measures (NIMs),
and (ii) classification using strength and temporal variability
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TABLE 2 | Association of strength and variability of complex-network measures with the NCI score and symptom severity in PTSD (PCL5 score) and PCS (NSI score).

Complex network measure Path (Integration) or node (Segregation) Symptom severity score Behavioral measure

Neurocognitive

PCL5 score NSI score Composite

(PTSD) (PCS) Index (NCI)

Static functional integration measures

Shortest path length L_MFG→ L_Insula −0.6902 −0.6756 0.6589

L_Insula→ L_Amygdala 0.6822 0.6759 −0.6298

L_Amyg→ R_Hippocampus 0.6535 0.6930 −0.6389

R_Hippocampus→ L_Precuneus 0.6990 0.6580 −0.3545

Edge betweenness L_MFG→ L_Insula −0.6704 −0.6853 0.5871

L_Insula→ L_Amygdala 0.7370 0.6868 −0.5303

L_Amyg→ R_Hippocampus 0.7080 0.6372 −0.3956

R_Hippocampus→ L_Precuneus 0.7156 0.6669 −0.4193

Variance of dynamic functional integration

Shortest path length L_MFG→ L_Insula −0.7532 −0.7327 0.6704

L_Insula→ L_Amygdala −0.7579 −0.7382 0.6748

L_Amyg→ R_Hippocampus −0.7541 −0.7358 0.6709

R_Hippocampus→ L_Precuneus −0.8520 −0.7737 0.4579

Edge betweenness L_MFG→ L_Insula −0.7330 −0.7287 0.6672

L_Insula→ L_Amygdala −0.7358 −0.7260 0.6586

L_Amyg→ R_Hippocampus −0.7326 −0.7264 0.6590

R_Hippocampus→ L_Precuneus −0.8513 −0.7776 0.4619

Static functional segregation measures

Clustering Coefficient L_MFG −0.6859 −0.6685 0.6245

Local Efficiency L_MFG −0.7013 −0.6990 0.6826

L_Insula 0.6527 0.6550 −0.6290

Dynamic functional segregation measures

Clustering Coefficient L_MFG −0.7478 −0.7271 0.6538

L_Insula −0.7412 −0.7204 0.6533

Local Efficiency L_MFG −0.7524 −0.7324 0.6692

Table presents the correlation values (R-value), which were significant with p < 0.05 Bonferroni corrected.

of network measures taken from the entire brain (all data,
nothing left out). Results showed that classification using
network measures provided significantly better accuracy
(approximately 10% more, p < 0.05 Bonferroni-corrected) than
classification using NIMs (Figure 9B). This result indicates that
network measures have superior predictive ability in identifying
individuals with PCS and PTSD as compared to NIMs.

Table 3 shows the worst-case accuracies and top predictive
features (for average accuracy, please see Supplementary Section
“Supplemental Machine Learning Classification Results” (SI-3.4)
and Supplementary Figure S3). Also of considerable interest
are the top-predictors that resulted in highest classification
accuracy. For classification using network measures, strength,
and temporal variability of functional integration of the following
four paths were the top predictive features: L_MFG→ L_Insula,
L_Insula→ L_Amygdala, L_Amygdala→ R_Hippocampus and
R_Hippocampus → L_Precuneus). Coincidentally these four
paths also showed statistically significant differences in static
as well as time-varying network properties (the yellow paths
in Figure 8, which were significantly different between all
three groups). Also, coincidentally, these were the same four

paths whose network measures had significant associations with
neurocognitive functioning and symptom severity. To expand
upon this, our findings revealed that, in addition to behavioral
relevance and statistical separation, these paths also possessed the
highest predictive ability, all obtained in a data-driven fashion
from whole-brain complex-network data.

Machine Learning Regression Results
Finally, using these network properties (the yellow paths in
Figure 8), we performed SVR to predict PCL5 (and NSI)
scores. Over one million iterations, we found that predicted
and measured PCL5 scores were significantly correlated
(R2 = 0.72 ± 0.05, R = 0.85 ± 0.03, P = 3 × 10−7

± 10−6), as
also were predicted and measured NSI scores (R2 = 0.66 ± 0.04,
R = 0.81± 0.03, P = 7× 10−7

± 10−6). With such high predictive
ability (i.e., 66–72% variance explained in symptom severity),
these network properties assume considerable importance in
the context of PTSD and PCS + PTSD pathology. Figure 4
summarizes the processing pipeline of our entire work, along
with corresponding results.
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FIGURE 9 | Association and prediction results. (A) Partial least squares regression maps independent (all included network measures combined) and dependent (all
neurobehaviors combined) variables into a latent space to find an aggregate relationship between them. The regression displayed in the figure is performed in the
latent space, which contains categorical variables representing all included network measures of the four integration paths (MFG→ Insula, Insula→ Amygdala,
Amygdala→ Hippocampus, Hippocampus→ Precuneus) and two functional segregation nodes (MFG, Insula) (both of which fit our hypothesis), and the
neurobehaviors in latent space. Their association in the latent space could be considered as the net association of all these network measures with all the
neurobehaviors. (A) Shows the linear fit in latent space (R2 = 0.56, R = 0.75, p = 3.5 × 10−32). (B) Machine learning classification result, which was obtained
through recursive cluster elimination based support vector machine (RCE-SVM) classifier, to classify between control, PTSD and PCS + PTSD groups. (B) Shows
worst-case classification accuracies obtained using recursively reducing number of discriminative features (poorer features are successively eliminated). Classification
was independently performed with both complex-network measures obtained from the entire brain and non-imaging measures (NIMs). We observed that network
measures outperformed NIMs, with approximately 10% superior performance in the final RCE step using top-predictive features of network measures.

DISCUSSION

In the current study, we successfully employed a novel complex-
network modeling framework to understand network-level
impairments in PTSD with and without mTBI. With the evidence
that the healthy brain is characterized by a balance between
functional segregation and integration, we sought to identify
aberrations in segregation and integration in these disorders.
We hypothesized that PTSD and mTBI are characterized by
altered strength and lower temporal variability of segregation
and integration in directional brain networks. Specifically, we
sought to identify networks that were affected by PTSD but not
mTBI (hypothesis-1), as well as those affected by both PTSD

TABLE 3 | Machine learning classification was performed using recursive cluster
elimination based support vector machine (RCE-SVM), to classify between
controls, PTSD and PCS + PTSD groups.

Worst-case

accuracy Top-predictive features

Non-imaging measures 70.79% Epworth sleepiness scale and Zung
depression scale

Complex network
measures

81.37% Strength and variability of functional
integration of the four yellow paths
in Figure 8

p-value for row-wise
comparison

7.81 × 10−28

Table presents the obtained worst-case classification accuracies along with top-
predictive features.

and mTBI (PTSD and PCS + PTSD group) (hypothesis-2).
We found evidence to support both hypotheses. This is the
first fMRI study utilizing EC network modeling in either PTSD
or PCS or the comorbid condition; the first study aiming to
classify PTSD from comorbid PTSD/mTBI based on resting-state
network properties using machine learning techniques; and the
first study to examine network properties using both static and
time-varying methods.

With global measures, we found that segregation and
integration were significantly different for control vs PTSD and
control vs PCS + PTSD comparisons only. This implies that the
clinical groups had aberrations at the whole-brain level compared
to controls, which is expected. However, the PTSD and comorbid
groups do not exhibit any differences at the whole-brain level,
suggesting that mTBI might result in more localized aberrations
not detectable by network modeling at the whole-brain level.
To further investigate discrete group differences, we used local
measures of segregation and integration.

In accordance with our hypothesis (Figure 1), group
differences in local segregation measures showed a clear
dichotomy between prefrontal and occipital regions (Figure 6A);
with all identified prefrontal nodes having lower segregation
and all identified occipital and subcortical nodes having higher
segregation. This indicates disruptive reduction in specialized
local processing in the prefrontal cortex, especially in the MFG
and medial prefrontal regions. This disruption had a negative
relationship with the occipital and subcortical nodes, which
showed disruptive increase in local processing. In addition,
none of the occipital nodes were significantly different between
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PTSD and PCS + PTSD, implying that those regions might not
differentiate between PTSD and PCS+ PTSD.

With local integration measures, we found a clear dichotomy
along two distinct pathways. The fronto-visual-parietal pathway
(Figure 7A) was not significantly different between PTSD and
PCS+ PTSD groups, indicating that mTBI likely does not have a
significant impact on this part of the network. Neither these paths
(either connectivities or integration measures) nor the associated
occipital nodes (segregation) exhibited any significant association
with symptom severity (PCL5 and NSI) or neurocognitive
functioning, hence we inferred that this part of the network
does not play a significant role in symptom expression, but it
might act as a supportive backend for other neural processes
causing the symptoms. The other pathway (fronto-subcortical-
parietal, Figure 7A) was significantly different between all
the three groups, and network properties of the paths and
associated nodes also showed significant associations with
symptom severity and neurocognitive functioning. Thus, we
inferred that disruption of this part of the network contributes to
symptom expression, and is likely implicated in mTBI pathology.
This dichotomy provides novel insights into our understanding
of both common and distinguishing network characteristics in
PTSD and mTBI, which has largely plagued the field, given
the high comorbidity and overlapping symptomatology between
them (Simmons and Matthews, 2012).

Another clear dichotomy arises in the strength of network
properties across groups. All prefrontal nodes and the paths
associated with them showed lower segregation/integration in
PTSD and PCS + PTSD compared to controls, suggesting a
strong effect of disruptive deflation prevalent in the prefrontal
cortex. All the subcortical, parietal and occipital nodes showed
higher segregation, and all paths associated with them not
involving prefrontal regions showed higher integration in
PTSD and PCS + PTSD compared to controls, a clear
indication of disruptive inflation in these regions. Notably, these
trends were also replicated in the raw effective connectivity
values. We argue that this is definitive evidence for impaired
prefrontal top-down regulation causing reduced control over
limbic structures and other regions responsible for symptom-
expression. Such unambiguous dichotomy clearly delineates the
distinct functionality between the prefrontal cortex and the rest
of the brain, and highlights its relevance to PTSD and mTBI.

Such dichotomy was not observed in the temporal variability
of network properties, in that all nodes/paths showed lower
variance, indicating some degree of pathological “frozen” state
(in accordance with our hypothesis). In other words, paths with
lower strength of network properties (deflation) tended to remain
in that state over the duration of the scan, potentially suggesting
impaired ability to increase the connectivity and the values of
complex-network measures. Similarly, paths with higher strength
of network properties (inflation) tended to remain inflated, also
indicating impaired ability to decrease the connectivity and the
values of complex-network measures. In total, we identified
15 nodes (segregation) and 16 paths (integration) which were
significantly different with the control vs. PTSD and control
vs PCS + PTSD comparisons, while only four nodes and five
paths were significantly different between all the three groups.
It is noteworthy that all the other nodes, with the exception of

the amygdala and parietal regions, involved in the connections
with affected functional integration also had altered segregation,
implying segregation-integration imbalance in these regions.
This observation corroborates with prior works, which have
found evidence for a fine balance between segregation and
integration (or metastability) in healthy individuals (Hellyer
et al., 2015), which is disrupted in neurologic and psychiatric
disorders (Yu et al., 2013; Rocca et al., 2014).

The networks were obtained with resting-state fMRI data;
hence, they represent the differences in baseline state between
the groups. Based on the prior knowledge regarding the neural
mechanisms underlying cognitive emotion regulation (Gross,
2014), we propose that our network (Figure 8) corresponds to
an aberrant emotion regulation system, with impaired prefrontal
control leading to an insufficient control over emotionally
intensive traumatic memories, which might underpin trauma re-
experiencing, flashbacks, hyperarousal and other symptoms in
soldiers with PTSD and PCS+ PTSD.

Functions of the individual nodes/regions that were
identified as having aberrations in the complex-network
properties provides interesting insights into the neuropathology
underpinning PTSD and mTBI. The MFG has been implicated in
cognitive control (Emmert et al., 2016), which includes emotion
regulation. It plays a pivotal role in the initiation of voluntary
regulation of emotion (Gross, 2014). All of the network-level
aberrations in our results could be traced back to the MFG
(by tracing the directional connections), leading us to the
conclusion that the MFG is the origin of network disruption
in these disorders. Several earlier works have speculated about
the MFG to be the likely origin of network disruption in PTSD
(White et al., 2014; Kennis et al., 2015), including a recent
meta-analysis (Simmons and Matthews, 2012). However, direct
evidence for such a hypothesis has not been found so far. We
provide novel evidence that supports this explanation. In fact, a
recent meta-analysis presented evidence from numerous findings
that repetitive transcranial magnetic stimulation (rTMS) applied
to the MFG may be effective as a treatment for PTSD (Berlim
and Van Den Eynde, 2014). Corroborating this, we discovered
the network of disturbance caused by the impairment of MFG,
wherein MFG is the source of disruptions. Taken together, the
MFG likely plays a key role in the initiation of cognitive control
necessary for emotion regulation, which when compromised,
likely contributes to the maintenance of symptoms associated
with PTSD and PCS+ PTSD.

We noticed prefrontal top-down deflation of functional
integration driven by the MFG, resulting in the inflation of
functional integration in sub-cortical structures via the insula
as well as parietal memory-related and sensory association
regions. The anterior insula plays a major role in mediating
prefrontal control over subcortical regions, and is thus found to
be involved in emotion regulation and dysregulation (Thayer and
Lane, 2000; Gross, 2014). It is structurally well connected with
the amygdala through white-matter tracts (Oishi et al., 2015),
and also plays a key role in subjective emotional experiences
(feelings), integrating emotionally relevant information through
multiple sources, and possibly representing them as one of
the many complex emotions (Thayer and Lane, 2000). We
found that prefrontal deflation of the insula causes inflated
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functional integration in the amygdala, which then results
in inflated local functional integration in the hippocampus.
Inflation of the hippocampus, a region crucial for declarative
memories, might imply elevated explicit traumatic memory
retrieval. It is well documented that both the hippocampus and
the amygdala play a vital role in mTBI and PTSD (Simmons
and Matthews, 2012; Costanzo et al., 2014). Since traumatic
memories are unique in the intensity of associated negative
emotions, emotion and memory share deep interconnection in
PTSD (Vasterling et al., 2009).

The precuneus plays an important role in the generation of
the experience of visual memories, whereas the TPJ is necessary
for higher-level audio-visual verbalization and information
processing (Gross, 2014). The path from the MFG leading to
these regions was characterized by reduced strength and variance
of functional integration. Thus, the memory-related and sensory
association network comprising the precuneus and TPJ may
translate to subcortical inflation and lack of prefrontal control,
contributing to the perseveration of traumatic memories as
observed in soldiers with PTSD.

There was a robust finding of disruption in the occipital
regions in our results. While the majority of the nodes and paths
were associated with the occipital region, none of them were
significantly different between PTSD and PCS + PTSD groups,
and none of them had behavioral relevance (through associations
with symptom severity and neurocognitive performance). Hence,
we inferred that this part of the network does not play a
significant role in symptom generation, but might act as a
supportive backend for the other fronto-subcortical-parietal
processes, which do appear to contribute to the symptoms (owing
to their association with symptom severity). This inference is
justifiable, given that the visual imagery aspect of traumatic
memories dominates the experience of vivid imagery associated
with traumatic memory perseveration in PTSD (Hayes et al.,
2012). It is known that the secondary visual regions, including
the lingual gyrus, largely enables visual imagery (Thompson
et al., 2009). In addition, the degree of activation in visual areas
during imagery is directly proportional to the visual intensity
of the object being imagined (Carpenter et al., 1999). Hence,
it is likely that this measure is not sensitive to discriminate
between PTSD and PCS + PTSD groups. This could provide
substantiation for our inference that the occipital part of
the network might be a backend process providing “imagery
support.” Thus, it appears more likely that symptom severity
can be attributed to the disruptions originating in the MFG,
as illustrated by significant associations with neurocognitive
performance and symptom scores.

There has been little success in addressing diagnostic
limitations associated with homogeneity of symptoms and high
comorbidity between PTSD and mTBI in military personnel
(Costanzo et al., 2014). It is acknowledged that the additional
burden of an mTBI in comorbid PCS+ PTSD results in increased
symptom severity (Vasterling et al., 2009). In the current study,
we provide a mechanistic basis that might distinguish the
underlying neurologic disruptions contributing to symptoms
reported by PTSD cases from those reported by comorbid
PTSD/mTBI cases. It is unclear as to whether the differences

FIGURE 10 | Flowchart illustrating an integrated model of connectivity and
network-level aberrations in PTSD and mTBI. Paths with thin gray lines
correspond to lower strength of network properties and connectivity (SEC)
and lower temporal variability of network properties (i.e., rigidity) and
connectivity (vDEC) in the clinical groups compared to healthy controls,
indicative of breakdown in prefrontal top-down modulation. Paths with thick
brown lines correspond to higher strength and lower temporal variability (i.e.,
rigidity) of network properties and connectivity, indicative of inflation in
subcortical limbic and parietal memory-related regions. Yellow paths were
significantly different between all the three groups, while the green paths were
significantly different only for the control vs. PTSD and control vs.
PCS + PTSD comparisons.

between the PTSD and PCS + PTSD groups are driven by
higher symptom severity of the PCS + PTSD group or by
impairments in white-matter integrity caused by an mTBI.
A recent study found diffused white-matter tracts between the
hippocampus and striatum to be the cause of corresponding
functional connectivity differences between PTSD and comorbid
PTSD/mTBI conditions (Rangaprakash et al., 2017a), yet it is
unclear whether they can be extended to our findings. The
network pathways that seem to differentiate, based on the
strength of associations with neurocognitive measures, between
the PTSD and comorbid PTSD/mTBI cases (PCS + PTSD) were
the MFG, insula, amygdala, hippocampus, and precuneus.

Our results are significant given that regions identified here
have been implicated (albeit inconsistently) in earlier studies
(Hayes et al., 2012; Simmons and Matthews, 2012; Eierud et al.,
2014) to be involved in both PTSD and mTBI; however, a precise
understanding of the underlying mechanisms, network structure,
and their subsequent causal relationships has not emerged from
them. With the help of a novel framework involving complex-
network modeling with static and dynamic EC networks, we
identified the nodes and network paths associated with the
disorders, and detailed their directional relationships. We also
highlighted the commonalities and differences in the PTSD and
PCS + PTSD networks. Our characterization corroborates with
behavioral manifestations of PTSD and PCS + PTSD, thus
substantiating the utility and fidelity of our approach. Figure 10
summarizes our network-level findings with a flowchart.

Additionally, functional integration of four specific paths
had significant associations with neurocognitive performance
and symptom severity (MFG → insula, insula → amygdala,
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amygdala→ hippocampus, hippocampus→ precuneus), as also
did functional segregation of two nodes (MFG and insula),
highlighting their relevance to the underlying neurobehavior
and symptomatology. These paths and nodes were the same as
those which were identified as significantly different between all
the three groups (Figure 8). In the PLS regression model, the
aforementioned network measures explained approximately 62%
variance in neurobehavioral measures.

Finally, we employed supervised machine learning
classification to identify top predictors that could diagnose
a novel subject. Literature is highly limited on the application of
machine learning to the classification of either PTSD or mTBI
[see notable recent works (Liu et al., 2015; Vergara et al., 2016)].
Additionally, there have been no studies to have employed
machine learning to classify comorbid PTSD and mTBI.
A notable contribution of our work is that we performed machine
learning classification, and found that accuracies obtained using
network measures were significantly higher (∼10% more)
than non-imaging measures. Interestingly, we found that the
network measures of the same four aforementioned paths (MFG
→ insula, insula → amygdala, amygdala → hippocampus,
hippocampus→ precuneus) resulted in the highest classification
accuracy. They were identified to be the top features of diagnostic
prediction, in addition to being identified as statistically
significant in accordance with our hypothesis, as also being
behaviorally relevant through associations with neurocognitive
and symptom scores. Each of these attributes were determined
in a data-driven fashion from network properties of the entire
brain, without imposing any priors or biases. In addition, SVR
analysis showed that PCL5 and NSI scores predicted using these
network properties could explain 72% and 66% variance in
measured symptom severity, respectively. These observations
demonstrate that these network-level markers have potential as
high-quality biomarkers of the neurobehavioral characteristics
of PTSD and PCS. Our network-level features satisfy three
out of four conditions posited by Woo and Wager (2015) as
necessary to be a good biomarker (diagnosticity, deployability,
and interpretability). With regard to the fourth condition
(generalizability), based on suggestions by Woo and Wager
(2015), we issue an open call for researchers to share clinical data
with us for validating our classifier using their data.

Our work presents some notable methodological contri-
butions. While modeling of dynamic connectivity has been
prevalent for a while (Hutchison et al., 2013), the modeling
of dynamic properties of complex-network measures is in its
nascent stages. Graph theoretic measures provide additional
characterization of the connectomic brain, which is not available
through pairwise connectivity modeling (Rubinov and Sporns,
2010), hence the development and advancement of dynamic
complex-network modeling (similar to dynamic connectivity
modeling) is important and necessary for brain imaging. A few
studies have probed on this topic. Zalesky et al.’s (2014)
work was one of the first major studies on dynamics of
graph metrics, wherein they introduced the modeling of time-
varying graph measures. Liao et al. (2015) later explored the
structural substrates of time-varying graph metrics, whereas
Chiang et al. (2016) presented a technique for studying

temporal stationarity of graph metrics. Chen et al. (2016)
took forward these developments to study the dynamics of
the salience network’s spatiotemporal organization, while Betzel
et al. (2016) studied the correspondence between dynamics
of connectivity and dynamics of modularity. These studies
have demonstrated the use of time-varying graph metrics in
different ways; however, as Preti et al. (2016) have pointed
out in their review, prior studies have focused on only two
metrics, efficiency and modularity. None of these studies
integrates information from both static and time-varying graph
metrics, nor have they probed into the dynamics of graph
metrics obtained from directional connectivity. Our study is
an advancement over these prior works, in that we present
a technique to compute time-varying global, nodal as well
as connection-level metrics of segregation and integration
from effective connectivity networks, additionally presenting
a novel framework for integrating the variability in dynamic
network information with static network information to study
three different cohorts (two psychiatric populations and a
control group). In our opinion, this is a notable advancement
in the field. Our contribution is broad and robust to
accommodate the specific requirements of different varieties of
brain imaging studies.

This study integrates several dimensions within a single
framework, as follows: (i) Connectivity modeling as well as
complex network modeling, (ii) segregation (node-level) as
well as integration (connection-level), (iii) static as well as
dynamic connectivity, (iv) EC modeling, especially dynamic EC
being a recent advancement, (v) PTSD as well as comorbid
PCS + PTSD, and (vi) statistical analysis as well as machine-
learning based predictive analysis. It is notable that this is the
first fMRI study to utilize either effective connectivity or dynamic
connectivity or static/dynamic complex-network modeling based
on effective connectivity in either PTSD or PCS or the comorbid
condition; and one among a few studies to have utilized machine
learning in either of these disorders. Additionally, since our
findings were based on an overlap/intersection of results with
the PTSD and the PCS + PTSD groups, the observations
and conclusions are also relevant to the characterization of
PTSD alone. We intend to convey that our novel framework
is relevant to the study of any cognitive domain, psychiatric
or neurologic condition. We urge researchers to employ this
framework for enhancing the understanding other disorders and
cognitive domains.

Finally, we present several caveats and limitations of our
work, demanding careful interpretation of the findings, as
also providing suggestions for future works: (1) Participants
sustaining an added burden of PCS in addition to PTSD
displayed higher symptom severity in comparison to those
with PTSD alone. Though there is limited imaging literature
on comorbid PTSD and PCS, we speculate that: (i) PTSD-
related brain aberrations that were already prevalent before
developing PCS would be aggravated by the added burden of
a prior mTBI, or, (ii) alleviated functional neural aberrations
corresponding to elevated symptom severity would be a
consequence of the participants sustaining an mTBI with
subsequently or concomitantly being exposed to a traumatic
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experience, in comparison to participants who were exposed to
psychological trauma alone. Untangling the underlying cause-
effect relationships in comorbid PTSD and PCS could be an
aim of future experimental designs, in order to confirm either
of the two scenarios. (2) Though we compare and discus
the common and distinguishing neural phenotypes of PTSD
and mTBI, it must be noted that our study population did
not consist of a pure mTBI/PCS group; rather it consisted of
a group with elevated PTSD symptoms (pure PTSD group)
and a comorbid group diagnosed with both mTBI/PCS and
PTSD, using which the common and distinguishing neural
phenotypes of PTSD and mTBI/PCS were derived through our
novel framework (Figure 1). (3) Military participants with CES
were part of our study cohort. This is an invaluable strength
of our work since it provides a more representative control
group. Recent works have found differences between healthy
civilians and healthy combat personnel with resting-state fMRI
connectivity (Kennis et al., 2015), “potentially due to military
training, deployment, and/or trauma exposure.” Hence, future
studies could verify if our findings are equally applicable to
civilian or non-combat-related PTSD and PCS. (4) With only
male soldiers being considered in this study, our findings are
not directly generalizable to female soldiers. (5) During RCE-
SVM classification, our entire dataset was split into training
(80%) and testing/validation (20%) data sets, resulting in about
seventeen participants (20% of 87 participants) in the testing set.
This is not a relatively large number for an fMRI connectivity
study. (6) Given the heterogeneous patterns in PTSD and mTBI,
the number of subjects used in this study is relatively small,
which raises concerns about the reproducibility of our results.
Our findings must thus be interpreted with certain degree of
caution. Additionally, we invite researchers to replicate our
study design in larger sample sizes to assess reproducibility of
our findings. To determine clinical utility of the findings for
diagnosis, the findings must be replicated on a larger sample that
is representative of the target population in terms of ethnicity,
gender, etc. (7) Given the uncontrolled nature of resting state
(Hurlburt et al., 2015), it is not possible to determine whether
resting-state connectivity differences between groups are driven
by differences in the “type of mind wandering” exhibited by
controls versus those with disorder, rather than an inherent
“baseline” difference. It is possible that the scanning session
had captured the brain while being engaged in the symptomatic
state itself rather than, or perhaps in addition to, capturing the
underlying physiological weaknesses that putatively caused the
symptoms. This issue could be specific to only some clinical
populations like ours, where symptoms often manifest during
periods of idle thought. It is not possible to completely untangle
this problem with the data we have. However, future studies
could employ methods such as “descriptive experience sampling”
(Hurlburt et al., 2015) in order to characterize the “type of mind
wandering” in PTSD versus controls so as to ascertain whether
such differences might underlie alterations in resting state
connectivity. (8) With our fMRI data being cross-sectional, there
is scope for longitudinal studies to develop similar hypotheses
over the advancement, recovery and rehabilitation phases of
the clinical groups. In addition, it would be an appropriate

test for validating the four pivotal network paths underlying
information integration (L_MFG → L_Insula, L_Insula →
L_Amygdala, L_Amyg→ R_Hippocampus, R_Hippocampus→
L_Precuneus) as candidate imaging biomarkers for PTSD, and
comorbid PCS and PTSD.
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Resting-state functional magnetic resonance imaging (rsfMRI) is being widely used
for charting brain connectivity and dynamics in healthy and diseased brains.
However, the resting state paradigm allows an unconstrained fluctuation of brain
arousal, which may have profound effects on resting-state fMRI signals and
associated connectivity/dynamic metrics. Here, we review current understandings
of the relationship between resting-state fMRI and brain arousal, in particular the
effect of a recently discovered event of arousal modulation on resting-state fMRI.
We further discuss potential implications of arousal-related fMRI modulation with a
focus on its potential role in mediating spurious correlations between resting-state
connectivity/dynamics with physiology and behavior. Multiple hypotheses are formulated
based on existing evidence and remain to be tested by future studies.
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INTRODUCTION

The advent of resting-state functional magnetic resonance imaging (fMRI) (Biswal et al., 1995;
Fox and Raichle, 2007) has revolutionized our understanding of large-scale brain networks,
including their intrinsic organization (Fox et al., 2005), developmental and aging profiles (Fair
et al., 2007; Stevens et al., 2008), state-dependent re-organization (Horovitz et al., 2009; Barttfeld
et al., 2014), genetic basis (Wiggins et al., 2012), and most importantly their modulations in various
brain diseases (Zhang and Raichle, 2010). The majority of studies in this research field has been
focused on inferring functional brain connectivity with fMRI correlations. The majority of these
studies estimated functional connectivity based on an entire session of typical 5–10 min, which
implicitly assumes stationary relationships between different brain regions and ignores temporal
brain dynamics at finer time scales of seconds. Recently, the non-stationary nature of resting-
state fMRI (rsfMRI) became a hot topic of this research field (Chang and Glover, 2010) and a
set of methods/metrics has been proposed to extract and quantify time-varying information in
rsfMRI data, which is expected to provide information supplementary to those stationary analyses
(Hutchison et al., 2013; Preti et al., 2017).

The approaches for quantifying rsfMRI dynamics can be divided into multiple categories. The
most straightforward class is sliding window approaches, which quantify rsfMRI connectivity
within short time windows of 1–2 min and then examine its temporal variability accordingly.

Frontiers in Neuroscience | www.frontiersin.org 1 November 2019 | Volume 13 | Article 119089

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01190
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.01190
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01190&domain=pdf&date_stamp=2019-11-05
https://www.frontiersin.org/articles/10.3389/fnins.2019.01190/full
http://loop.frontiersin.org/people/669403/overview
http://loop.frontiersin.org/people/694425/overview
http://loop.frontiersin.org/people/101465/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01190 November 2, 2019 Time: 13:11 # 2

Gu et al. Arousal in rsfMRI Connectivity and Dynamics

The connectivity metrics could be either conventional
correlation/coherence (Chang and Glover, 2010; Allen et al.,
2012) or more sophisticated metrics, such as network parameters
from graph-theory based quantifications (Braun et al., 2015;
Shine et al., 2016). A group of single-volume resolved methods
has also been proposed to quantify rsfMRI dynamics. These
methods treat fMRI volumes at single time points as basic
units of analyses and try to identify repeated patterns of brain
co-activations using different algorithms, including the temporal
functional mode (TFM) extracted with temporal independent
component analysis (ICA) (Smith et al., 2012), the co-activation
patterns (CAP) identified by clustering (Liu and Duyn, 2013b;
Liu et al., 2013), and the brain states defined using hidden
Markov model (HMM) (Chen et al., 2016; Vidaurre et al.,
2017). Subsequent quantification can then be applied to quantify
temporal dynamics, such as occurrence rate and transitioning
probabilities, of these single-volume fMRI events. The third
category of dynamic approaches expands the second type
by focusing on spatiotemporal structures in rsfMRI signals.
Different algorithms were employed to derive quasi-periodic
patterns (QPP) (Thompson et al., 2014) and lag threads (Mitra
et al., 2015a) from rsfMRI data that may represent propagating
activities of the brain.

These dynamic approaches have been applied to rsfMRI
data to quantify brain dynamics and investigate its associations
with behavior (Vidaurre et al., 2017) and modulations under
pathological conditions (Mitra et al., 2015b). A very consistent
observation across studies and species is the sensitivity of fMRI
dynamics to brain states showing distinct arousal levels (Barttfeld
et al., 2014; Tagliazucchi and Laufs, 2014; Liang et al., 2015;
Mitra et al., 2015c; Ma et al., 2016; Laumann et al., 2017). The
brain arousal is conventionally defined as a transient intrusion of
being awake into sleep stages or an abrupt temporary increase
of the vigilance level (Atlas Task Force, 1992; Halász et al.,
2004), and the sleep and anesthesia conditions are known to
show distinct arousal levels. In particular, the application of
a wake-sleep classifier trained based on dynamic functional
connectivity of a small EEG-fMRI data set to a large cohort
of 1,147 rsfMRI datasets has found that 30% subjects actually
fell asleep within 3 min into resting-state scanning (Tagliazucchi
and Laufs, 2014). These findings not only suggest an important
role of arousal in generating/modulating rsfMRI signals and thus
connectivity/dynamics measures derived from it, but also imply
its prevalent influence on human rsfMRI studies. Consistent
with these observations, a characteristic neurophysiological
event signifying a transient arousal modulation was identified
recently and shown to have profound effect on concurrently
acquired fMRI signals (Liu et al., 2015, 2018), which give us
an opportunity of further looking into the relationship between
the arousal and rsfMRI signals. In this perspective, we will first
review the relationship between the brain arousal and global
rsfMRI signal and a recently discovered neurophysiological
event that may underlie this relationship. We will then
discuss potential implications of these findings on different
aspects of rsfMRI research (Figure 1), including the motion-
rsfMRI, physiology-rsfMRI, and disease-rsfMRI relationships in
different sections.

FIGURE 1 | Arousal modulations may introduce spurious correlations between
rsfMRI connectivity/dynamics and other measures by modulating both.

A NEUROPHYSIOLOGICAL EVENT
UNDERLYING THE GLOBAL RSFMRI
SIGNAL

The global rsfMRI signal averaged over the entire brain and
spatially non-specific fMRI correlations it induces have been
found highly sensitive to brain arousal state (Matsuda et al.,
2002; Schölvinck et al., 2010). The transition into the light sleep
is characterized by a large increase in this global rsfMRI signal
(Fukunaga et al., 2006; Horovitz et al., 2008; Larson-Prior et al.,
2009), and a similar but smaller change was also observed from
an alert eyes-open condition to a sleep-conducive eyes-closed
condition (Wong et al., 2013; Xu et al., 2014; Wei et al., 2018;
Agcaoglu et al., 2019). Caffeine can effectively reduce the global
rsfMRI signal and corresponding EEG vigilance index (Wong
et al., 2013), whereas several hypnotic drugs (Kiviniemi et al.,
2005; Saper et al., 2005; Greicius et al., 2008; Licata et al., 2013)
and sleep deprivation (Yeo et al., 2015) had the opposite effects.
It is also worth noting that multiple studies also showed the
connectivity changes of the default mode network (DMN) under
various states of consciousness (Yan et al., 2009; Vanhaudenhuyse
et al., 2010; Heine et al., 2012; Demertzi et al., 2015). These studies
provided convincing evidence for a close relationship between
the arousal and rsfMRI, particularly its global component, but the
neural basis underlying this relationship had remained unknown
until very recently.

The first clue for the neural basis of the global rsfMRI signal
came from the study of rsfMRI dynamics. It has been suggested
that the rsfMRI connectivity and its dynamics are actually caused
by brain co-activations at different time points that can be
captured by CAPs (Liu and Duyn, 2013b; Liu et al., 2013; Matsui
et al., 2018). Applying the CAP decomposition to rsfMRI data
with and without removing the global signal showed distinct
effects on two types of CAPs. Whereas the global signal regression
(GSR) procedure has very limited effect on higher-order CAPs,
e.g., those related to the DMN, it dramatically changes sensory
CAPs involving the sensorimotor and visual cortices (Liu and
Duyn, 2013a; Liu et al., 2013; Nalci et al., 2017). The finding
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not only confirmed that the global signal is largely driven by
global rsfMRI co-activations occurring only at a proportion of
time points, but also implied the neuronal origin of this fMRI
co-activation since it occurs preferentially with sensory networks
rather than randomly. These results are consistent with another
series of research work on the temporal heterogeneity of the
global rsfMRI signal (He and Liu, 2012; Nalci et al., 2017). With
these findings, the search for the neurophysiological correlate
of the global rsfMRI signal was shifted to the event type of
neuronal processes.

An electrophysiological event signifying a transient arousal
modulation was recently discovered and suggested to underlie
the global rsfMRI signal (Liu et al., 2015, 2018). This sequential
spectral transition (SST) event was first observed in the global
signal of a large-scale electrocorticography (ECoG) recording
from monkeys, showing as a stereotypic time-frequency pattern
of sequential power changes at three distinct frequency bands:
a large, sudden reduction in the middle-frequency (9–21 Hz)
power is followed by an increased broad-band high-frequency
gamma power (>42 Hz) and then a burst of low-frequency
delta waves (1–4 Hz). The SST lasts 10–20 s and shows similar
state-dependency as the global rsfMRI signal (Liu et al., 2015).
Concurrent fMRI-electrophysiology recordings from another
group of monkeys confirmed that the SST induces widespread
fMRI increases, i.e., the global rsfMRI co-activation, shown as
a large peak in the global signal (Liu et al., 2018). In addition
to such one-to-one correspondence between the SST and global
rsfMRI peak, their relationship was further confirmed from
the other two aspects. First, the global rsfMRI co-activation
demonstrated a much larger amplitude in sensory regions,
i.e., the sensorimotor, auditory, and visual cortices, and this
sensory-dominant pattern is consistent with the spatial pattern
of the high-frequency gamma (40–90 Hz) power increase at
the SST event. Second, the global co-activations are associated
with very specific de-activations at subcortical arousal-promoting
areas, i.e., the Nucleus Basalis (NB) at the basal forebrain and
the midline thalamus in the non-specific arousal pathway, in
accordance with a transient arousal drop suggested by the
middle-to-low frequency spectral transition at SST events (Liu
et al., 2018). Consistent with this finding, the inactivation of the
NB in one brain hemisphere of monkeys resulted in a significant
reduction of the global rsfMRI signal in the ipsilateral side
(Turchi et al., 2018). Overall, the finding of the SST event and
its relationship with fMRI signals provide a neurophysiological
understanding of the relationship between the brain arousal
states and rsfMRI connectivity/dynamics.

Arousal-related fMRI changes can have potential implications
in many aspects of rsfMRI research. The sensory-dominant
pattern of SST-induced fMRI changes is expected to introduce
very systematic changes in rsfMRI correlations, which could be
easily misinterpreted as meaningful modulations of functional
brain connectivity. The transient nature of the SST (10–
20 s) will also have profound effects on rsfMRI dynamics
at the time scale of interest to most of dynamic rsfMRI
studies. More importantly, the perils of the arousal-related
fMRI component can go beyond its direct effects on rsfMRI
connectivity/dynamics by potentially introducing their spurious

correlations with other subject measures of physiology, behavior,
and pathology. Arousal state is known to have profound
effects on physiology (Trinder et al., 2001) and also able to
affect behavioral performance (Teigen, 1994) or even head
motions (Van Den Berg, 2006). Many brain diseases, including
Alzheimer’s disease (Musiek et al., 2015), Parkinson’s disease
(Breen et al., 2014), and autism spectrum disorders (ASD)
(Cohen et al., 2014), are known to concur with disrupted sleep
and circadian rhythms (Wulff et al., 2010), and many medications
for these diseases are also known to affect brain arousal state.
Together with the profound effects of arousal modulation on
rsfMRI signals, these may lead to spurious relationships between
rsfMRI connectivity/dynamics and various physiological and
behavioral measurements (Figure 1). The remaining part of this
perspective will have detailed discussions regarding the role of
arousal modulations in mediating the relationship of rsfMRI with
different types of subject measurements.

THE POTENTIAL ROLE OF AROUSAL
MODULATIONS IN MOTION-RSFMRI
RELATIONSHIP

The correlation has been found between the rsfMRI connectivity
and head motions in both intra- and inter-subject analyses
(Power et al., 2012; van Dijk et al., 2012; Yan et al.,
2013). Specifically, more head motions are associated with
increased local but reduced long-range rsfMRI connectivity.
This motion-connectivity association has been interpreted as
a causal relationship with assuming that the head motion
affects fMRI signals and thus their correlations. However, there
are observations inconsistent with this interpretation. First,
the motion-associated rsfMRI signal/correlation change persists
or even reaches its peaks 10 s after motion ceases (Power
et al., 2014; Byrge and Kennedy, 2018). This temporal feature
cannot be caused by the spin-history artifact, which should
have a much short delay to the motion according to simulation
and also monotonically decay over time (Yancey et al., 2011).
Instead, this time delay is in a similar time scale as the
typical hemodynamic delay. Secondly, the associated rsfMRI
connectivity changes showed systematic spatial patterns that
are unexpected from relatively random head motions. Thirdly,
the same amount of head motions causes significant rsfMRI
connectivity changes across subjects but not between different
sessions of the same subjects (Zeng et al., 2014). For these
reasons, the motion-connectivity relationship may not be causal,
but actually mediated by a third factor. We propose that the
arousal modulation could be a candidate that mediates this
relationship for the following reasons. First, a widely used
motion index, differentiated signal variance (DVARS), detects
large fMRI changes, including large global signal peaks that
have been linked to the SST event of arousal modulation.
Secondly, the motion-fMRI correlations also show a sensory-
dominant pattern similar to that of the global co-activations
and SST gamma power (Yan et al., 2013). Thirdly, sleepiness
has been shown to be associated with more head motions
(Van Den Berg, 2006). Transient sleep structures, such as

Frontiers in Neuroscience | www.frontiersin.org 3 November 2019 | Volume 13 | Article 119091

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01190 November 2, 2019 Time: 13:11 # 4

Gu et al. Arousal in rsfMRI Connectivity and Dynamics

microsleep and/or microarousal, and associated physiological
modulations might be direct causes of head motions. Indeed,
a transient respiratory modulation was found to concur with
head motions detected by fMRI changes (Byrge and Kennedy,
2018). For all these reasons, we hypothesize that transient arousal
modulations induce spurious correlations between the head
motion and rsfMRI connectivity, which account for a significant
proportion of the observed motion-rsfMRI relationships. The key
to validating this hypothesis is to differentiate the head motions
of arousal relevance from those caused by discomfort, general
fidgetiness, and other factors, as well as their effects on rsfMRI
signals. It is worth noting that the framewise displacement (FD),
another widely used motion index calculated directly from image
alignment parameters (Yoo et al., 2005), might better serve this
purpose, compared with DVARS, with less contamination from
the arousal-related global signals.

THE POTENTIAL ROLE OF AROUSAL
MODULATIONS IN
PHYSIOLOGY-RSFMRI RELATIONSHIP

Physiological signals, including respiratory volume and cardiac
pulse rate, were also shown to have strong correlations with
rsfMRI signals (Birn et al., 2006; Shmueli et al., 2007; Chang
et al., 2016b; Özbay et al., 2018), which has been regarded
as evidence of non-neuronal contributions to rsfMRI signal
fluctuation. A recent study combing fMRI, physiology, and
electroencephalogram (EEG) provided further insight into this
physiology-rsfMRI relationship (Yuan et al., 2013). It first
confirmed the correlation between the physiology and rsfMRI
but further suggested that they both are also correlated with
the alpha-band EEG power, which is an indicator of brain
vigilance and also shows a large modulation at the SST. Moreover,
this study further showed the physiology-rsfMRI correlation
is dependent on brain states and significant only during the
sleep-conducive eyes-closed condition but not under an alert
eyes-open condition. It is worth noting that the correlations
between rsfMRI and physiological signals also appear to be
much stronger in the sensory regions than the rest of the brain
(Birn, 2006; Shmueli et al., 2007; Yuan et al., 2013; Özbay
et al., 2018). All these findings strongly suggest an involvement
of the arousal in this physiology-rsfMRI relationship. We thus
hypothesize that the physiology-rsfMRI relationship is partly
caused by their co-modulations at transient arousal events, such
as the SST. Given the potential involvement of physiology,
we want to also emphasize that the arousal modulation may
cause fMRI changes via two different routes. It can modulate
neural activities across the cortex via the ascending arousal
pathways, and thus fMRI signal changes through local neuro-
vascular coupling. The SST event and associated global rsfMRI
co-activation are likely evidence for this type of arousal-fMRI
connections. In addition, the brain stem arousal centers are also
able to directly modulate vascular tone, for example, through
sympathetic innervations of the arteries in the brain pial surface
(Hamel, 2005; Özbay et al., 2018), and thus cause global
rsfMRI changes of vascular origin. Large white-matter fMRI

changes associated with cardiac signal changes likely originate
from this type of vascular modulations (Özbay et al., 2018).
Differentiating the contributions from these two mechanisms
remains a challenge for future research.

THE POTENTIAL ROLE OF AROUSAL
MODULATIONS IN DISEASE-RSFMRI
RELATIONSHIPS

Resting-state fMRI connectivity and dynamics have also been
extensively studied under pathological conditions, and significant
modulations were reported in a wide range of neurological
disorder and psychiatric diseases, including the Alzheimer’s
disease, ASD, and major depression (Zhang and Raichle, 2010).
Given that these brain diseases are often associated with
disrupted sleep and circadian rhythms (Wulff et al., 2010), it is
reasonable to suspect that the arousal difference may, at least
partly, account for rsfMRI connectivity modulations observed
in certain brain diseases. A survey of existing literatures indeed
found the evidence for the modulation of the global rsfMRI
signal under certain pathological conditions. A simple example
is schizophrenia. Whereas an early study had suggested that
schizophrenia patients showed hyperconnectivity in the default
network compared with their first-degree relatives and healthy
controls (Whitfield-Gabrieli et al., 2009), it was found later
that these changes may actually arise from an enhanced global
signal in schizophrenia (Yang et al., 2014). A computational
model was also employed to demonstrate that increased neuronal
coupling can indeed enhance the global signal (Yang et al.,
2014). However, based on the evidence we reviewed so far
regarding the relationship between the global rsfMRI signal and
arousal, we argue that the distinct arousal state could be an
alternative explanation for the global rsfMRI signal seen in the
schizophrenia patients.

The global signal could affect rsfMRI findings in a rather
implicit way. Using rsfMRI data from the Autism Brain Imaging
Data Exchange (ABIDE) initiative, a previous study has shown
that interhemispheric rsfMRI connectivity shows a much larger
inter-subject variability in high-functioning ASD adults than
matched healthy controls, and this finding has been interpreted
as idiosyncratic distortions of ASD brains (Hahamy et al., 2015).
The interhemispheric rsfMRI connectivity often shows a sensory-
dominant pattern due to strong bilateral correlations in sensory
regions. Given the sensory-dominant pattern of the global rsfMRI
co-activations of arousal relevance (Liu et al., 2018), the presence
of a strong global signal is also expected to enhance this pattern
and thus its cross-subject similarity. We therefore hypothesize
that the difference in the global rsfMRI signal is responsible
for the interhemispheric connectivity difference between the
ASD and control groups. To test this hypothesis, we examined
ABIDE datasets from three different sites (Figure 2). For two
datasets (CAL: 19 ASD and 19 controls; PBG: 30 ASD and 27
controls) that previously showed a large contrast between the
ASD and control groups, rsfMRI data were actually acquired
under the sleep-conducive eyes-closed condition (Figures 2A–C,
top and middle). Moreover, the control group shows a much
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FIGURE 2 | Distinct global signal in ASD patients may have implicit impact on interhemispheric rsfMRI connectivity. (A) Correlation matrices showing the
inter-subject similarity of interhemispheric rsfMRI connectivity pattern for three datasets collected at different sites. The data from the first two sites, i.e., CAL and
PBG show a big difference between the ASD and control groups with controls showing much higher cross-subject similarities. (B) Conditions for rsfMRI
experiments. The first two sites collected rsfMRI data under sleep-conducive eyes-closed condition. (C) Histograms showing the distribution of all pairwise rsfMRI
connectivity. In the first two datasets, the control groups show overall stronger rsfMRI connectivity compared with the ASD groups. However, this difference was not
observed in the third dataset. (D) RsfMRI connectivity maps with respect to a seed region at the posterior cingulate cortex (PCC) showing the DMN network. In the
first two datasets, the control groups show larger spatially non-specific correlations compared with the ASD groups, presumably due to a larger global signal.
(E) Standard deviation of the global rsfMRI signal. The control groups of the first two datasets are characterized by significantly larger global signal than the ASD
groups, whereas the global signal is smaller and not different in the two groups for the third dataset. ∗0.01 < p < 0.05.

stronger global signal and rsfMRI connectivity than the ASD
group (p = 0.036 for CAL and p = 0.022 for PBG, 2-sample t-test;
Figures 2D,E, top and middle). In contrast, the Utah dataset (58
ASD versus 43 controls) not showing much group difference in
the previous study was acquired under a more alert eyes-open
condition and their global signals are not significantly different
(p = 0.735; Figures 2A–C, bottom). Correspondingly, the global
signal is low in both ASD and control groups for this dataset
(Figures 2D,E, bottom). These preliminary results clearly suggest
that the ASD groups are characterized by the global rsfMRI
signal distinct from healthy controls, especially under the sleep-
conducive eyes-closed condition, which might be attributed to
their abnormal sleep patterns (Devnani and Hegde, 2015).

Arousal might also mediate the correlation between rsfMRI
connectivity/dynamics and certain behavioral measures within
the healthy population in a similar way. Even though the
arousal itself describes a brain state that varies over time,
the ability of regulating arousal could be an individual
trait that is stable within but varies across individuals. If
the healthy population contains subgroups that not only
have distinct ability of regulating arousal but also differ
significantly in certain cognitive functions, rsfMRI connectivity

and dynamics could be spuriously linked to behavioral measures
of cognitive functions via arousal-related rsfMRI changes.
Although this is purely a conjecture to be tested by future studies,
caution needs to be exercised before completely excluding
this possibility.

CONCLUDING REMARKS AND FUTURE
RESEARCH

Here we reviewed the current understanding of the relationship
between the brain arousal and resting-state fMRI, in particular a
newly discovered neurophysiological event underlying the global
rsfMRI signal. We then discussed potential implications
of the arousal-related modulation on rsfMRI research,
i.e., its role in affecting rsfMRI connectivity/dynamics and
mediating their spurious correlations with physiological and
behavioral measures. We also formulated multiple testable
hypotheses based on existing evidence. Future research ought
to validate these hypotheses, which are important not only
for proper interpretations of rsfMRI results but also for better
quantifications of brain connectivity and dynamics using rsfMRI
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with properly dealing with the arousal confounding effects, i.e.,
removing or retaining the arousal-related component based on
research purposes. Before the validation of these hypothesis,
one should be cautious about large global signal and sensory-
dominant pattern in rsfMRI results, which are indicative of
arousal involvement. Researchers may also consider to reduce
the potential arousal influence at the stage of data collection,
for example, by acquiring data at the eye-open state or breaking
down a long scan into multiple shorter ones. The profound
arousal effect on rsfMRI presents additional challenges to
rsfMRI-based measures of brain connectivity/dynamics. But
on the bright side, this would enable fMRI-based arousal
measures (Chang et al., 2016a; Falahpour et al., 2018; Liu
et al., 2018), which may provide new opportunities for
understanding the arousal’s role in affecting brain function and
dysfunction, especially with big neuroimaging data acquired
recently from healthy and diseased populations. It is, however,
worth noting that the performance of these template-based

arousal measures could be dependent on the presence of the
SST events and thus the general vigilance state (Falahpour et al.,
2018). It remains a challenge for future studies to improve
the fMRI-based arousal measure by better understanding
arousal-related fMRI changes.
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The sliding-window-based dynamic functional connectivity networks (D-FCNs) derived
from resting-state functional magnetic resonance imaging (rs-fMRI) are effective
methods for diagnosing various neurological diseases, including autism spectrum
disorder (ASD). However, traditional D-FCNs are low-order networks based on
pairwise correlation between brain regions, thus overlooking high-level interactions
across multiple regions of interest (ROIs). Moreover, D-FCNs suffer from the temporal
mismatching issue, i.e., subnetworks in the same temporal window do not have
temporal correspondence across different subjects. To address the above problems,
we first construct a novel high-order D-FCNs based on the principle of “correlation’s
correlation” to further explore the higher level and more complex interaction relationships
among multiple ROIs. Furthermore, we propose to use a central-moment method to
extract temporal-invariance properties contained in either low- or high-order D-FCNs.
Finally, we design and train an ensemble classifier by fusing the features extracted
from conventional FCN, low-order D-FCNs, and high-order D-FCNs for the diagnosis
of ASD and normal control subjects. Our method achieved the best ASD classification
accuracy (83%), and our results revealed the features extracted from different networks
fingerprinting the autistic brain at different connectional levels.

Keywords: autism spectrum disorder, dynamic functional connectivity networks, resting-state functional MRI,
central-moment features, conventional FC network

INTRODUCTION

Autism spectrum disorder (ASD) is a serious childhood neurodevelopmental disease, characterized
by the impairment in social interaction, communication, and many other behavioral and cognitive
functions in varying degrees (Geschwind and Levitt, 2007). According to the 2018 community
report from the Centers for Disease Control and Prevention (CDCP)1, about 1 in 59 American

1https://www.cdc.gov/ncbddd/autism/data.html.
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children has been identified with some form of ASD, with
about four times more common among boys than among
girls. Thus, accurate early diagnosis and timely intervention
of ASD, especially for the infants under 12 months old,
may have pivotal importance in preventing the progression of
detrimental symptoms (Jin et al., 2015). However, ASD is a
very complex and highly heterogeneous neurological disorder,
which affects many higher-level brain functions and sometimes
whole-brain structures, making it challenging for accurate
diagnosis. To address this, extensive research efforts (Geschwind
and Levitt, 2007; Anagnostou and Taylor, 2011; Jin et al.,
2015; Wang et al., 2018) have been dedicated to analyzing
the neuroimaging data with different modalities, including
structural magnetic resonance imaging (s-MRI) (Wee et al.,
2013), functional MRI (fMRI) (Zhao et al., 2018), diffusion tensor
imaging (DTI) (Deshpande et al., 2013), and positron emission
tomography (PET) (Zürcher et al., 2015), to investigate ASD-
related biological or neurological mechanisms. In this way, the
respective biomarkers could be identified for characterizing ASD.

Recently, resting-state fMRI (rs-fMRI) uses blood-
oxygenation-level-dependent (BOLD) signals to probe brain
activity, which has shown great potential in exploring the
in vivo neuronal underpinnings of ASD (Fornito et al., 2015;
Liu et al., 2016; Huang et al., 2018; Zhao et al., 2018). Since
BOLD signals are sensitive to the spontaneous and intrinsic
neural activities within the brain, re-fMRI can be used as an
efficient and noninvasive way for investigating neuropathological
substrates of many neurological and psychiatric disorders at a
whole-brain system level (Admon et al., 2012; Ganella et al.,
2017; Li et al., 2017). Temporal correlation of the BOLD signals
between different pairs of brain regions of interest (ROIs) is often
used to define brain functional connectivity (FC), which can
be used to explore how brain ROIs interact with each other. In
practice, FC is often modeled as a FC network (FCN), with each
specific brain ROI as a node in the network, and the strength
of FC between a pair of brain ROIs as an edge (or link). In
terms of both topological structures and connection strength,
the differences between normal and disrupted FCN caused
by certain pathological attacks reveal potential biomarkers to
understand pathological underpinnings of ASD. Therefore, FCN
has charted out a promising research direction to investigate the
brain’s functional differences between control and disease groups
(Zhang et al., 2015, 2016; Qiao et al., 2018).

To date, researchers have developed many FCN models
to capture rich information exchange across ROIs so that
functional neurological biomarkers can be reliably identified for
ASD diagnosis (Jie et al., 2014; Ha et al., 2015a; Plitt et al.,
2015). The most commonly adopted FCN, namely, conventional
FCN (C-FCN), is usually rooted in the assumption that the
strength of FC is temporally stationary in the entire rs-fMRI
scan duration (Achard, 2006; Zhao et al., 2018). Under such an
assumption, FC is quantified with the correlation (e.g., Pearson’s
correlation) between a pair of rs-fMRI time series from two
ROIs. As a result, C-FCN captures the functional connectivity
between two ROIs in a static manner, which unfortunately
overlooks the dynamic interaction between brain ROIs during
the scan period.

In fact, recent studies have demonstrated that the dynamic
changes of FC throughout the entire scan time may be an intrinsic
property of brain function (Damaraju et al., 2014a; Kudela et al.,
2017). Given the increasing evidence that dynamic FC during
the entire scan time is very important for understanding the
fundamental properties of brain network and the underpinnings
of disordered brain connectivity changes, different studies have
resorted to dynamic FC networks (D-FCNs) to characterize
dynamic changes of FC, as well as the association of these
dynamic changes with brain diseases (Damaraju et al., 2014b;
Wee et al., 2015; Guo et al., 2017).

The most commonly used strategy of constructing D-FCNs
is the sliding-window approach (Hutchison et al., 2013). The
detailed contracture process of D-FCNs [i.e., low-order dynamic
functional connectivity networks (Lo-D-FCNs), which will be
discussed in the following section) is shown in Figure 1.
Specifically, the entire rs-fMRI time series from a subject were
segmented into multiple overlapping subseries by a sliding
window with prefixed window length and step size between
two successive windows (Figure 1A1). For each subseries, a
FC subnetwork is constructed by calculating the short-term
correlation between different ROIs, which is similar to the
construction of C-FCN. As an example, the construction process
of the second subnetwork is shown in Figures 1A2,B2, where
xi and xj, respectively, denote the average rs-fMRI time series
across all voxels within the ith and the jth ROIs, and their
correlation ρij(2) is computed as the FC strength between the ith
and the jth ROIs. In such a way, we can obtain a FC subnetwork
(Figure 1B2), which reflects a short-term FC relationship
between two ROIs. Repeating the above process, we can obtain
a temporal FC subnetwork series, which is called dynamic FC
networks (D-FCNs, i.e., Lo-D-FCNs) (Figure 1B1). Obviously,
the correlation series (e.g., [ρij (1) , ρij (2) , · · · , ρij (K)] in
Figure 1B1) along the scanning time between a pair of ROIs
can represent the temporal change of FC between the two
ROIs, which indicates that D-FCNs can capture the dynamic
properties of FC throughout the scan time and can provide rich
discriminative information for ASD diagnosis.

While D-FCNs opens a new avenue for us to comprehensively
understand brain activities, it still has the following two issues
need to be addressed.

First, D-FCNs cannot reveal the potentially much complex
and high-level relationship among multiple ROIs. Similar to
C-FCN, D-FCNs is also based on computing pairwise correlation
between neural signals, such as Pearson’s correlation and
partial correlation, between a pair of rs-fMRIs from two ROIs
to estimate the FC strength (Figure 1A2). Although such
simple FC network representation has been widely utilized
for examining brain functional activity, it dramatically ignores
much complex and high-level interactions across multiple ROIs.
In such a sense, C-FCN and D-FCNs are referred to as the
low-order FCN, and thus, D-FCNs also will be named as
Lo-D-FCNs in this paper. Recently, emerging connectomic
studies have demonstrated that examining more complex
interactions involving multiple ROIs can provide more valuable
insights into brain disease fingerprinting and diagnosis (Chen
et al., 2016; Zhang et al., 2016, 2017a,b,c; Guo et al., 2017;
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FIGURE 1 | Flow chart of constructing low- (Lo-D-FCNs) and high-order dynamic functional connectivity networks (Ho-D-FCNs), where (A1) denotes the
resting-state functional MRI (rs-fMRI) time series associated with each region of interest (ROI), (A2) denotes the second rs-fMRI subseries based on a sliding window,
(B1) is the Lo-D-FCNs, (B2) is the second subnetwork of Lo-D-FCNs, (C1) is the Ho-D-FCNs, and (C2) denotes the second subnetwork from Ho-D-FCNs.

Morris and Rekik, 2017; Soussia and Rekik, 2018; Zhao
et al., 2018). Correspondingly, those FCNs, reflecting complex
interactions across multiple ROIs, are referred as the high-
order FCN (Ho-FCN).

By far, much attention has been dedicated to construct Ho-
FCN models for exploring the interactions among multiple
ROIs. For instance, Chen et al. (2016) constructed a Ho-FCN
model based on the correlations between each pair of dynamic
FC time series from sliding-window-based Lo-D-FCNs. Guo
et al. (2017) modeled a Ho-FCN using a minimum spanning
tree for Alzheimer’s disease (AD) classification. Based on a
more simple and intuitive way, i.e., correlation’s correlation
strategy, a new Ho-FCN was developed by Zhang et al.
(2016) for more sensitive early AD detection. Different from
Lo-FCN or Lo-D-FCNs, Ho-FCN presented by Zhang et al.
defines another correlation between two brain regions based
on their FC profiles, rather than BOLD signals. Here, the
FC profile of a brain region means the traditional low-
order FC of this region. In such a way, the correlation’s
correlation is able to reveal some interesting information; for
example, some brain regions may exhibit stronger correlation
with each other in a feature space (defined by FC profile)
than the raw neural signal space. Consequently, Ho-FCN is
able to provide another source of information for diagnosis
(Zhang et al., 2016).

Inspired from the principle of the correlation’s correlation,
we construct a novel high-order dynamic FCNs (Ho-D-
FCNs) for exploring the high-order dynamic FC relationships
among multiple ROIs. Figures 1C1,C2 display the flowchart of
constructing Ho-D-FCNs. For each subnetwork from the Lo-
D-FCNs, such as the second one shown in Figure 1B2, we
regard the correlations series between a ROI and all other ROIs
as its short-time FC profile, which reflects the FC relationship
between this ROI and all other ROIs in a short scanning
time. For example, ρi (2) is the short-time FC profile of the
ith ROI and ρj (2) is that of the jth ROI (Figure 1B2). Then,
the high-order correlation is computed for each pair of ROI
based on the associated short-time FC profiles, such as hpij(2)
shown in Figure 1C2. Intuitively, such correlation reflects the
relatively shorter time resemblance between a pair of FC profiles
from two ROIs (i.e., correlation’s correlation) and thus involves
multiple ROIs. By doing so, we can obtain a corresponding
high-order subnetwork (e.g., Figure 1C2) from each low-
order subnetwork (e.g., Figure 1B2), which reflects how the
low-order temporal correlations between different brain ROIs
interact with each other during a short scan time. Accordingly,
the high-order subnetwork series (Figure 1C1) is referred as
Ho-D-FCNs and utilized to reveal some new characteristics
for biomarker detection. In fact, the experimental result in
The Most Discriminative Features for ASD Diagnosis shows
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that Ho-D-FCNs can provide complementary information to
C-FCN and Lo-D-FCNs.

Second, Lo-D-FCNs is sensitive to the chronological order
of its subnetworks, which limits its use in comparative
studies. Specifically, due to the unconstrained mental activity
during the brain resting state, we cannot establish the
temporal correspondence among these FC subnetworks from
the same temporal window across different subjects. Therefore,
the subnetwork series concatenated along scanning time
(i.e., Lo-D-FCNs) might be dynamically mismatched across
different subjects, which somewhat hinders the investigation and
comparison of dynamic FC at a population level. It is noteworthy
that Ho-D-FCNs presented in previous section also faces the
same problem. By far, no method is proved to be effective in
addressing this issue (Zhang et al., 2017a).

Statistical moment methods, including central, Hu, Zernike
moments, and so on, have been broadly used in many areas for
detecting and deriving various invariant properties of random
signals (Hu, 1962; Hung et al., 2006). For the processing of a
one-dimensional random sequence generated from a random
variable, central-moment method owns the following merits:
(Geschwind and Levitt, 2007) although central moment of
different order partly characterizes some dynamic properties
of a random sequence from its distinct view, their integration
can provide a comprehensive characterization of the fluctuation
properties of this sequence. (Jin et al., 2015) Most of central-
moment features have the clear mathematical interpretability,
e.g., for a sequence, its first-order central moment (i.e., mean)
can reflect the fluctuation central; second-order central moment
(i.e., variance) can reflect the fluctuation level; third-order
central moment can reflect the skewness; and the fourth-order
central moment can reflect the kurtosis. In theory, the change
characteristics of a random sequence can be better represented by
central-moment features. Usually, these central-moment features
with the range from first- to seventh order are enough for us to
analyze and describe the wave profile distribution of a random
variable implicated in the sequence (Anagnostou and Taylor,
2011). More importantly, central-moment features are invariant
to the temporal order of a sequence. In other words, as one
expressional form of a random variable’s probability distribution,
central-moment features of a random sequence are immune to
the order of its elements (in a mathematical sense).

To clarify the characteristic of central moment, we show the
calculated central-moment values of four sequences Y1–Y4 in
Figure 2, where the values in the parentheses following each
sequence (Y1–Y4) sequentially denote the mean, variance, and
third- and forth-order central moment. In Figure 2A, Y1 and Y2
denote two sequences with reversed order. We can see that Y1
and Y2 have the same values of central moment, demonstrating
the invariance of central-moment features with respect to the
sequence order. In Figure 2B, Y3 and Y4 are two symmetric
sequences with identical symmetry axis but rather different
fluctuating range. From the calculated central moments for Y3
and Y4, we can see that, except for the mean, the other central
moments have noticeable difference, which means that central-
moment features are able to reflect the dynamic change of a
sequence. Based on the analysis of Figure 2, we can see that the

central-moment features is invariant to sequence order and is
able to capture the dynamic variation of a sequence.

Inspired by the advantages of central-moment method, we
put forward a new approach that employs central-moment
technique to excavate the temporal-invariance discriminative
features of Lo-D-FCNs. Specifically, we treat each FC correlation
time series of a pair of ROIs in a Lo-D-FCNs (such as
[ρij (1) , ρij (2) , · · · , ρij (K) ] in Figure 1B1), which reflects
the temporal changes of FC between two ROIs, as a one-
dimensional random sequence that is generated from a
random variable, and then, we extract the central-moment
features of the sequence for further classification. Similarly,
for Ho-D-FCNs, we regard the connection strength (i.e., the
connection weight of an edge) series along the scanning time
(such as[hρij (1) , hρij (2) , · · · , hρij (K)] in Figure 1C1) as a
one-dimensional sequence and extract corresponding central-
moment features.

Using the central-moment features, we can summarize the
dynamic variation of either low- or high-order FC among
multiple ROIs along the scanning time and give a general
physiological interpretation to some extent. For example, if the
value of the first-order central moment (i.e., mean value) from the
FC correlation time series between a pair of ROIs in Lo-D-FCNs
or among multiple ROIs in Ho-D-FCNs is relatively large, these
ROIs may have strong functional correlation with each other.
Similarly, if the value of the second-order central moment (i.e.,
variance value) is relatively large, it means that the correlations
among the corresponding ROIs is very unstable during the whole
scanning time; in other words, the periods of high correlation
among all the corresponding ROIs may alternate with the periods
of low correlation. Contrarily, such an interpretation is very hard
to be obtained by directly analyzing Lo-D-FCNs or Ho-D-FCNs
due to the large-scale and dynamic network structure.

In summary, there are three parts of contribution in this paper:
(Geschwind and Levitt, 2007) proposing new Ho-D-FCNs (never
used in previous ASD diagnosis) to reflect high-level connectivity
information across multiple ROIs; (Jin et al., 2015) utilizing a
central-moment method to capture FC properties derived from
Lo-D-FCNs or Ho-D-FCNs without performing chronological
time matching; (Anagnostou and Taylor, 2011) employing three
multilevel FCN models (i.e., C-FCN, Lo-D-FCNs, and Ho-D-
FCNs) to comprehensively investigate complex and multilevel
functional associations among brain ROIs.

MATERIALS AND PREPROCESSING

Subjects
The rs-fMRI dataset used in this paper was downloaded from
a publicly available Autism Brain Imaging Data Exchange
(ABIDE) database (Di Martino et al., 2013). To alleviate data
heterogeneity, we only consider the rs-fMRI data acquired from
45 ASD patients and 47 normal controls (NCs) with ages ranging
from 7- to 15 years old, scanned at New York University
Langone Medical Center. All these considered subjects had
no excessive head motion with a displacement of <1.5 mm
or an angular rotation of <1.5◦ in any of three directions.
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FIGURE 2 | Illustration of the calculated mean, variance, and third- and forth-order central moment (sequentially denoted in the corresponding parentheses) for four
sequences Y1–Y4. (A) Two sequences (Y1 and Y2) with reversed order. (B) Two symmetric sequences (Y3 and Y4) with identical symmetry axis but different
fluctuating range.

The detailed demographic information of these subjects is
summarized in Table 1. As shown in Table 1, there were
no significant differences (p > 0.05) in gender, age, and FIQ
between two groups. ASD subjects were diagnosed based on
the autism criteria in Diagnostic and Statistical Manual of
Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR)
(American Psychiatric Association, 2000). More details on the
data collection, exclusion criteria, and scan parameters can be
obtained from the ABIDE website2.

Data Acquisition and Preprocessing
All included subjects were scanned using a 3-T Siemens Allegra
scanner at the NYU Langone Medical Center. During the 6 min
rs-fMRI scan procedure, most subjects were instructed to relax
with their eyes and stare at a white fixation cross at the center
of the black screen. Their eye statuses were monitored by an eye

2http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html.

TABLE 1 | Demographic information of the subjects.

ASD NC p-values

Gender (M/F) 36/9 36/11 0.2135a

Age (mean ± SD) 11.1 ± 2.3 11.0 ± 2.3 0.773b

FIQ (mean ± SD) 106.8 ± 17.4 113.3 ± 14.1 0.0510b

ADI-R (mean ± SD) 32.2 ± 14.3c – –

ADOS (mean ± SD) 13.7 ± 5.0 – –

ASD, autism spectrum disorders; NC, normal control; M, male; F, female; FIQ, Full
Intelligence Quotient; ADI-R, Autism Diagnostic Interview-Revised; ADO, autism
diagnostic observation schedule. aThe p value was obtained by χ2-test. bThe
p-value was obtained by two-sample two-tailed t-test. cTwo patients do not have
the ADI-R score.

tracker. The mean framewise displacement (FD) was computed
to describe head motion for each individual. The individuals
were excluded if their mean FD is >1 mm (Lin et al., 2015;
Ray et al., 2015). On the other hand, head motion effect was
further corrected with the Friston 24-parameter model in the
following process. The main scanning parameters used in this
dataset include the flip angle = 90, 33 slices, TR/TE = 2,000/15
ms, 180 volumes, and voxel thickness = 4 mm.

For rs-fMRI data preprocessing, we used the Statistical
Parametric Mapping (SPM8) software3. Specifically, the first
10 rs-fMRI volumes were removed to ensure magnetization
stabilization. Then, all rs-fMRI volumes were normalized to the
Montreal Neurological Institute (MNI) space with the resolution
of 3 × 3 × 3 mm3. Subsequently, ventricle, global signals
were regressed out as nuisance signals, while head motion
was corrected with the Friston 24-parameter model (i.e., 6
head motion parameters, 6 head motion parameters from the
previous time point, and the 12 corresponding squared items)
for decreasing head motion effects (Satterthwaite et al., 2013; Yan
et al., 2013). Furthermore, the band-pass filtering (0.01–0.08 Hz)
and signal detrending were also performed to avoid physiological
noise (Cordes et al., 2001), measurement error (Achard et al.,
2008), and magnetic field drifts of the scanner (Tomasi and
Volkow, 2010). Finally, the brain was parcellated into 116 brain
ROIs using the Automated Anatomical Labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002). Next, the average rs-fMRI time
series was calculated for each brain ROI and then represented in
a data matrix X ∈ R170 × 116 , where 170 denotes the total number
of temporal image volumes and 116 denotes the total number
of all brain ROIs.

3http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.
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METHOD

In this section, we mainly detail how to construct our Ho-
D-FCNs based on the “correlation’s correlation” principle. As
mathematical notations, we use uppercase bold letters (e.g., G,
C) to denote FC networks or matrices, lowercase bold letters
(e.g., x) to denote vectors, and lower case letters (e.g., i, j)
to denote scalars.

Figure 3 displays the flowchart of our proposed classification
framework, including the following four steps: ¬ constructing
various FC networks, including C-FCN, Lo-D-FCNs, and Ho-D-
FCNs; ­ extracting the central-moment features, ranging from
the first- to the seventh-order, from Lo-D-FCNs and Ho-D-
FCNs (central-moment extracted from Lo-D-FCNs and Ho-D-
FCNs can be regarded as the network feature since each of its
elements is derived from a correlation time series of a pair of
ROIs); ® selecting the most discriminative features in a two-stage
feature selection process for reducing feature dimensionality and
eliminating irrelevant features to the target classification task; and
¯ classification fusion. We construct an ensemble classifier with
three linear support vector machines (SVM) classifiers (Cortes
and Vapnik, 1995), each being trained with a specific type of
FC features. The classification scores by all SVM classifiers are
finally fused, by weighted averaging, to predict the target class
label (ASD or NC) for a given testing subject.

Multilevel FC Networks Construction
A network structure can be modeled as a graph comprising a set
of vertexes and edges linking them. Let G denote a FC network
where each vertex represents a specific ROI, and each edge is
weighted by the strength of FC between its end vertices (i.e.,
ROIs). Let C denote the connectivity matrix of G, where each
column (resp. row) denotes a specific ROI, and each element of
C denotes the strength of FC between two ROIs. The structure
of G is encoded in C. Next, we will detail how the corresponding
connectivity matrices of C-FCN, Lo-D-FCNs, and Ho-D-FCNs
are constructed.

C-FCN Construction
For each subject, let xi = (xi1, xi2, · · · , xiM)(i = 1, 2, · · · ,N)
denote the average rs-fMRI time series across all voxels within
the ith ROI, where M denotes the total number of temporal
image volumes, and N denotes the total number of all ROIs.
We can generate the conventional correlation-based FC network
(C-FCN) GC by a symmetric matrixCC , defined as:

CC = (ρij)1≤i,j≤N, (1)

where ρij denotes the Pearson’s correlation between the average
rs-fMRI time series from the ith and the jth ROIs, defined as:

ρij = corr(xi, xj), (2)

It can be seen from Equation (1) that each row or column of
CC denotes the Pearson correlation series between a specific ROI
and all other ROIs. Notably, GC encodes the static interactions
between any pair of ROIs during the entire scanning duration,
which fails to capture the dynamic nature of neural activity.

Lo-D-FCNs Construction
To encode the nonstationary interactions between different
ROIs, we adopt the sliding-window strategy to generate
Lo-D-FCNs. Specifically, suppose that the length of the
sliding window is T and the step size between two
successive windows is S, thus the entire rs-fMRI time series
xi = (xi1, xi2, · · · , xiM)(i = 1, 2, · · · ,N) corresponding to the
ith ROI are partitioned into K overlapping segments with a
predefined sliding window, where K = [(M − T)/S]+ 1.

Letting xi(k) =
[
xi1
(
k
)
, xi2

(
k
)
, · · · , xiT

(
k
)]
(k = 1, 2, · · · ,

K) denote the kth time subseries of xi , we can calculate the kth
submatric CLo−D(k) as Equation (1).

CLo−D
(
k
)
=
[
ρij
(
k
)]

1≤i,j≤N
(
k = 1, 2, · · · ,K

)
(3)

where ρij
(
k
)

is computed as:

ρij
(
k
)
ρij
(
k
)
= corr

[
xi
(
k
)
, xj

(
k
)]

(4)

Obviously, CLo−D(k) reflects the interaction between two
ROIs during a relatively shorter time period. The submatrix
series

{
CLo−D

(
k
)}K

k=1 along the scanning time describes the
temporal change of the connectivity strength for all ROI pairs.
The corresponding FCN of

{
CLo−D

(
k
)}K

k=1 is called Lo-D-FCNs
and denoted asCLo−D(k) (see Figure 3).

Ho-D-FCNs Construction
To fully capture high-order functional interactions across
brain ROIs, we adopt the “correlation’s correlation” principle
(Zhang et al., 2016; Morris and Rekik, 2017; Soussia and
Rekik, 2018; Zhao et al., 2018) to generate Ho-D-FCNs.
Specifically, for the ith ROI of a subject, we can get a
correlation series ρi

(
k
)
=
[
ρi1
(
k
)
, ρi2

(
k
)
, . . . , ρiN

(
k
)]

from
the kth submatrixCLo−D(k) (see Equation 3). Mathematically,
ρi
(
k
)

denotes the ith row or column of the symmetric
matrixCLo−D(k). We regard ρi

(
k
)

as the short-time FC profile of
the ith ROI on the kth time subseries, reflecting the correlations
between the ith ROI and all other ROIs during the kth time
section. Then, the correlation is computed between the short-
time FC profile ρi

(
k
)

of the ith ROI and the short-time FC profile
ρj
(
k
)

of the jth ROI as follows:

hρij
(
k
)
= corr

[
ρi
(
k
)
, ρj(k)

]
, (5)

Obviously, hρij
(
k
)

denotes the “correlation’s correlation”
between the ith ROI and the jth ROI in the kth time section,
quantifying how the correlation series ρi

(
k
)

[i.e., the FC profiles
ρi
(
k
)

between the ith ROI and all other ROIs resemble the
correlation series ρi

(
k
)
[i.e., the FC profiles ρj

(
k
)
] between the

jth ROI and all other ROIs. As a result, hρij
(
k
)

can reveal more
complex relationship between the FC profiles ρi

(
k
)

andρj
(
k
)
,

not just the original rs-fMRI time series xi
(
k
)

and xj
(
k
)
. Thus,

the correlation coefficient hρij
(
k
)

can characterize more complex
and abstract interactions among multiple ROIs, which occur in
a relatively shorter time period. We further define a submatrix
CHo−D

(
k
)

in the kth time section as follows:

CHo−D
(
k
)
=
[
ρhij

(
k
)]

1≤i,j≤N , (6)
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FIGURE 3 | Overview of our proposed classification framework, including four main steps: ¬ constructing multiple functional connectivity networks (FCNs), ­

extracting central-moment features, ® feature selection, and ¯ classification fusion. Lo-CM denotes the central-moment features from low-order dynamic functional
connectivity networks (Lo-D-FCNs), and Ho-CM is from high-order dynamic functional connectivity networks (Ho-D-FCNs). The means of other symbols are the
same with those presented in Introduction.

Based on Equation (6), we can construct a Ho-D-
FCNs, denoted asCHo−D

(
k
)
, where the submatrices series{

CHo−D
(
k
)}K

k=1 is regarded as the associated dynamic FC of
CHo−D

(
k
)

along the scanning time. Obviously, CHo−D
(
k
)

can capture high-level interactions across multiple ROIs
while preserving the dynamic aspect of brain functional
activity. Similar to GLo−D, Figure 3 displays the main steps for
constructing GHo−D

(
k
)
.

Feature Extraction and Selection
With the above-mentioned methods in Multilevel FC Networks
Construction, three different types of FCN, i.e., GC, GLo−D
and GLo−D, are obtained to form multilevel representations of
functional interactions across multiple ROIs. In this section,
we mainly introduce how to extract and select features
from these FCNs.

Central-Moment Feature Extraction
We note that both FC networks GLo−D and GHo−D are out
of temporal synchrony across different subjects. In other words,
the kth time subseries, ρl

ij
(
k
)
(k = 1, 2, · · · ,K) [or hρl

ij
(
k
)
] from

the lth subject may be inconsistent with ρr
ij
(
k
)

[or hρr
ij
(
k
)
]

from the rth subject due to the unconstrained mental activities
during resting state. To extract consistent dynamic connectomic
features across subjects, we propose to extract the central-
moment features of GLo−D and carry out the same procedure
for GHo−D. Specifically, we first construct a FC time series ρij
between the ith ROI and the jth ROI by concatenating the
elements ρij

(
k
)

(see Equation 3) as follows:

ρij = [ρij (1) , ρij (2) , · · · ρij
(
k
)
, · · · , ρij

(K)](1 ≤ i, j ≤ N, 1 ≤ k ≤ K), (7)
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where ρij reflects the FC dynamic changes along the scanning
time between the ith ROI and the jth ROI. We calculate its dth
order central-moment mij(d) of ρijas follows:

mij
(
d
)
=

d

√∑K
k=1

[
ρij
(
k
)
− ρ̄ij

]d

K
(d = 1, 2, · · ·D), (8)

where D denotes the highest order. We further get a
central-moment matrix series

{
MLo−D(d)

}D
d=1 from GLo−D

[i.e., {CLo−D
(
k
)
}

K
k=1 ] by the following definition:

MLo−D
(
d
)
=
[
mij

(
d
)]

1≤i,j≤N (d = 1, 2, · · ·D), (9)

It can be seen from Equation (8) that mij
(
d
)

is invariant to the
element order of ρij = [ρij (1) , ρij (2) , · · · ρij

(
k
)
, · · · , ρij (K)].

Thus,
{

MLo−D(d)
}D

d=1 is insensitive to temporal
asynchrony across subject.

We use the same strategy to derive central-moment matrix
series

{
MHo−D(d)

}D
d=1 of GHo−D [i.e., {CHo−D

(
k
)
}

K
k=1 ] using

the following formula:

MHo−D
(
d
)
=
[
hmij

(
d
)]

1≤i,j≤N (d = 1, 2, · · ·D), (10)

where hmij
(
d
)

is computed as follows:

hmij
(
d
)
=

d

√√√√∑K
k=1

[
hρij

(
k
)
− hρij

]d

K
(d = 1, 2, · · ·D), (11)

hρij
(
k
)

denotes the “correlation’s correlation” between the ith
ROI and the jth ROI in the kth time section (see Equation 5).
We also give a brief illustration of MLo−D(d) and MHo−D

(
d
)

construction in Figure 3.

Feature Selection Using a Two-Stage Approach
For the lth subject, we obtain three types of raw features,
i.e., the features C(l)C of C-FCN, the central-moment features
M(l)

Lo−D
(
d
)

of Lo-D-FCNs, and the central-moment features
M(l)

Ho−D
(
d
)

of Ho-D-FCNs, each of which is a N × N symmetric
matrix. Here, N denotes the number of ROIs, and N = 116
is set in our case. Since each matrix is symmetric, we only
vectorize their lower off-diagonal triangular part to define

the feature vector set
{

y(l)0 , y(l)1 , y(l)2

}
, for representing the lth

subject, where y(l)0 , y(l)1 , and y(l)2 denote the vectorization of C(l)C ,
M(l)

Lo−D
(
d
)
, and M(l)

Ho−D
(
d
)
, respectively. The dimensionality

of y(l)c (0 ≤ c ≤ 2) is N(N−1)
2 , and it is 6,670 in our case,

where c denotes the type of feature vector. Obviously, the
feature dimensionality is much larger than the total number
of subjects. More importantly, many features may be irrelevant
to ASD diagnosis.

To remove the redundant features while preserving a small
subset of discriminative features that are most likely relevant
to ASD pathology, we design a two-stage feature selection
strategy. Specifically, in the first stage, for each feature from

y(l)c (0 ≤ i ≤ 2), we perform a two-sample t-test between NC

and ASD subjects, due to its simplicity and efficiency. Then,
we select the features only with their p-values smaller than
a certain threshold. In such a way, we can get a preliminary
set of features that are highly correlated with the class label,
while the rest features not correlated with classification well
be eliminated. However, some feature may be still correlated
to each other, thus causing feature redundancy. Therefore,
to further remove features from these correlated features, we
adopt the L1-norm regularized least squares regression, known
as LASSO (Tibshirani, 1996), to further optimize the feature
subset in the second stage. Note that the t-test is performed
on each feature individually, while LASSO regression considers
all features jointly such that the correlation between features

can be taken into account. Specifically, let ȳ(l)c (0 ≤ c ≤ 2)
denote the features selected by the t-test. I(l) is the class

labels of ȳ(l)c , where I(l) = 1 if the lth subject is ASD and
I(l) = −1 if the lth subject is NC. Let wc represent the weight
vector for the feature selection task. Mathematically, the LASSO
model can be formalized as energy functional to optimize
(Tibshirani, 1996):

min
1
2

L∑
l=1

∣∣∣∣I(l)− < y(l)c ,Wc >
∣∣∣∣2 + λ||Wc||1 (12)

where 〈• , •〉 denotes the inner operator, L denotes the number
of subjects, and λ is a parameter, controlling the model’s sparsity
based on the L1-norm regularization. The larger the value of λ ,
the sparser the model is. In this way, we can jointly achieve sparse
feature selection. In other words, those features with nonzero
elements of wi were eventually retained. Let y(l)c (0 ≤ c ≤ 2)
denote the final selected set of feature from the original pool of

feature vectors y(l)c (0 ≤ c ≤ 2).

Classifier Learning and Fusing
After selecting the most important features by the two-stage
approach, we use SVM with linear kernel for ASD classification.
Considering these features y(l)c (0 ≤ c ≤ 2) are generated from
three FCNs with different level, we train an SVM classifier
for each type of features y(l)c (0 ≤ c ≤ 2). SVM seeks a
maximum margin hyper-plane to separate the samples from
two different classes. The empirical risk on the training data
and the complexity of the model can be balanced by the
hyperparameter γ, thus ensuring good generalization ability on
the unseen data. Finally, we can fuse these three SVM classifiers
together for making the final result. Specifically, each type of

features y(l)c are used to train a specific classifier. Then, for
a test subject, each SVM will output an associated decision
score, indicating the probability of that subject belonging to
a class. Finally, to obtain classification result, we calculate
the weighted average of the three decision scores from these
SVM models with weight α tuned for each SVM, which
reflects the reliability of corresponding decision score. In
Figure 3, we provide a brief illustration of the classifier
learning and fusing.
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EXPERIMENTAL ANALYSIS

For evaluating the performance of our proposed method, we
adopted a sixfold cross-validation (CV) strategy to perform
experiments. For example, all training subjects were randomly
partitioned into six subsets (each subset with a roughly equal
number of samples), and each time the samples within one
subset are selected as the testing dataset, while the remaining
samples within the other five subsets are combined together as
the training dataset for feature selection and classifier training.
For evaluation, we reported the average accuracy of classification
results across all six CV cases. Furthermore, to avoid any
possible bias in fold selection, the entire sixfold CV process
was repeated 10 times, with a different random partitioning
of samples each time. Finally, the average statistics of the 10
repetitions was reported. To carry out our proposed method and
other competing algorithms, some parameters need to set, such as
p-values in the two-sample t-test model, λ in the LASSO model
(Feature Selection Using a Two-Stage Approach), and γ and α

in the linear SVM model (Classifier Learning and Fusing). For
fair comparison, we use nested CV to tune the parameters in
each method. In particular, for each fold in the above sixfold
CV, we perform another fivefold CV on the five subsets, which
is used for training for the selection of parameters. The optimal
values can be determined by this inner fivefold CV when the
average classification accuracy reaches its optimum. Then, the
selected parameters are used to learn a model based on the
entire training dataset, which is further utilized for classification
on the testing dataset. For our approach, we determine the
optimal values for the parameters in the following range: p–values
∈ [0.01 : 0.01 : 0.1],λ ∈ [0.1 : 0.1 : 0.7], γ ∈

[
2−5, 2−4, · · · , 25],

and α ∈ [0.1 : 0.1 : 0.9].
As usual, we adopt six evaluation measures, i.e., classification

accuracy (ACC), sensitivity or true positive rate (TPR),
specificity or true negative rate (TNR), positive predictive
value (PPV), negative predictive value (NPV), and F1 score,
to comprehensively evaluate classification performance. Their
definitions are given as follows:

ACC =
TP + TN

TP + FP + TN + FN
, (13)

TPR =
TP

TP + FN
, (14)

TNR =
TN

FP + TN
, (15)

PPV =
TP

TP + FN
, (16)

NPV =
TN

FN + TN
, (17)

F1 =
2× TP

2× TP + FN + FP
, (18)

where TP, TN, FP, and FN indicate the true positive, true
negative, false positive, and false negative, respectively. Note that

we treat ASD patients as positive samples and NC as negative
samples in this paper.

The Influence of Parameters on D-FCNs
In the construction of D-FCNs (including Lo-D-FCNs and Ho-
D-FCNs) and feature extraction, there are three parameters to
tune: (1) sliding window length T, (2) the step size between
two successive windows S, and (3) the order of central
moment d, which jointly affects the diagnosis accuracy of Lo-
D-FCNs and Ho-D-FCNs. To evaluate the impact of these
parameters on classification performance and select a suitable
combination of parameters for the subsequent multiclassifier
fusion, we vary the values of these parameters in specific
range (i.e., T = [40 : 10 : 90] , S = [2 : 2 : 12] , d = [1 : 1 : 7])
and repeat the classification experiments based on different
combinations of these parameters. It is worth noting that
when d = 1, we use the mean value instead of the first-
order moment so that the method can better reflect the
sample characteristics.

Here, we use the average classification accuracy (ACC) to
evaluate the applicability of parameter combination to ASD
diagnosis. Figure 4 displays the ACC achieved by Lo-D-FCNs
and Ho-D-FCNs using different combinations of T, S, and d
values. The higher the accuracy is, the longer the length and the
warmer the color are.

As shown in Figure 4A, the optimal parameter combination
for Lo-D-FCNs is T = 60, S = 2, and d = 4, its ACC is
79.4, while the minimum value of ACC is 54.0 when
T = 60, S = 10, and d = 3. Likewise, from Figure 4B, we

can see that the optimal parameter combination for Ho-D-
FCNs is T = 40, S = 12, and d = 2, its ACC is 77.6, while the
minimum is 56.1 when T = 70, S = 8, and d = d. Therefore,
based on Figure 4, we can observe that the classification
preformation is rather sensitive to these parameters. For boosting
the final classification accuracy, we set these optimal parameters
(i.e., T = 60, S = 2, and d = 4 for Lo-D-FCNs and T = 40,
S = 12, and d = 2 for Ho-D-FCNs) as the default parameter for
the following experiments.

Fusion Results of the C-FCN,
Lo-D-FCNs, and Ho-D-FCNs
We select the combination of parameters that can lead to the
highest ACC from the SVMs of C-FCN, Lo-D-FCNs, and Ho-
D-FCNs, respectively, and obtain the final classification result by
linear fusion of the SVM ensemble decision scores. In addition
to our model, we also added another recently developed high-
order FC network approach (Zhou et al., 2018) for comparison.
Similar to our approach, this method also used sliding window
approach to capture the dynamic variation of FC, and a series
of traditional FC networks are constructed. Then, both low-
order (termed as LoM) and high-order FC (termed as HiO)
networks are constructed by maximum likelihood estimation
with the assumption that these D-FCNs follow the matrix variate
normal distribution.

Table 2 shows the average classification performance of
nine models. Among them, CC denotes the feature derived
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FIGURE 4 | The average classification (ACC) using different combinations of T, S, and d values. (A) The histogram of different ACC in Lo-D-FCNs. (B) The histogram
of different ACC in Ho-D-FCNs.

TABLE 2 | Autism spectrum disorder (ASD) classification using different feature types and evaluation measures.

Model ACC (%) TPR (%) TNR (%) PPV (%) NPV (%) F1 (%)

CC 74 ± 0.04 72 ± 0.23 76 ± 0.01 74 ± 0.05 74 ± 0.08 73 ± 0.07

CLo−D(1) 75 ± 0.12 73 ± 0.14 76 ± 0.29 74 ± 0.23 75 ± 0.08 74 ± 0.12

CLo−D(4) 79 ± 0.15 79 ± 0.10 79 ± 0.53 79 ± 0.38 79 ± 0.07 79 ± 0.12

CHo−D(2) 78 ± 0.06 79 ± 0.49 77 ± 0.24 76 ± 0.09 80 ± 0.25 77 ± 0.11

HiO 72 ± 0.16 71 ± 0.21 73 ± 0.32 72 ± 0.18 73 ± 0.28 72 ± 0.16

CC + CLo−D(4) 80 ± 0.20 78 ± 0.25 82 ± 0.39 80 ± 0.38 79 ± 0.17 79 ± 0.20

CC + CHo−D(2) 78 ± 0.11 79 ± 0.20 77 ± 0.26 77 ± 0.17 79 ± 0.12 77 ± 0.11

CLo−D(4) + CHo−D(2) 81 ± 0.06 82 ± 0.31 80 ± 0.11 80 ± 0.06 83 ± 0.17 81 ± 0.08

CC + CLo−D(4) + CHo−D(2) 83 ± 0.16 82 ± 0.10 84 ± 0.46 83 ± 0.34 83 ± 0.08 82 ± 0.13

Values highlighted in bold show best results.

from the conventional correlation-based FC network (C-
FCN), and CC + CLo−D denotes the fusion of C-FCN
and Lo-D-FCNs. The number following CLo−D denotes
the order of central moment used to extract features. For

example, CLo−D(1) means the low-order dynamic FC network
with mean as central moment. Notice that the constructed
LoM network in Zhou et al. (2018) is equivalent to our
proposed Lo-D-FCNs when the order of central moment
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FIGURE 5 | The circular graphs and the involved brain regions of interest (ROIs) of the top 10 discriminative connections selected by our proposed method. (A) The
correlation-based functional connectivity (FC) network (C-FCN), (B) the low-order dynamic FC network (Lo-D-FCNs), (C) the high-order dynamic FC network
(Ho-D-FCNs), and (D) the mutual comparison among three sets of connections. The selection frequency is encoded by the thickness of each connecting curve, i.e.,
thicker curves indicate higher selection frequency. For brain region abbreviations, please refer to Table 3.

equals to 1, i.e., CLo−D(1). We also report the standard
deviation of the classification accuracy. The best results are
highlighted in bold.

Based on Table 2, we can draw the conclusions below.
(1) In terms of ACC and other evaluation measures, the

performance of feature types derived from D-FCNs (i.e., Lo-
D-FCNs and Ho-D-FCNs) are superior to that of C-FCN, in
which ACC is increased by 4 and 5%, respectively, and other
performance are also improved accordingly. This result indicates
that the sliding-window-based D-FCNs can provide better
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features for ASD classification. (2) The classification result of
ensemble classifier consistently outperforms that of single feature
type, which supports the assumption of integrating multiorder
connectional features for boosting classification results. (3) The
fusion of C-FCN, Lo-D-FCNs, and Ho-D-FCNs achieved the
best classification performance, indicating that different-level
FCNs can provide complementary relevant information for ASD
diagnosis and classification, and the fusion of this information
can further improve the classification performance. This result
will also be reflected in the following experiments. (4) By
comparing our model with the approach proposed in Zhou et al.
(2018), we also find that our central-moment-based approach
performs better in terms of accuracy. Actually, the performance
of HiO is inferior to the corresponding low-order FC network
[i.e.,CLo−D(1)], which is consistent with the results given in Zhou
et al. (2018). This comparison also verifies the effectiveness of our
central-moment features.

The Most Discriminative Features for
ASD Diagnosis
We used t-test, followed by LASSO regression, to identify the
most discriminative features in C-FCN, Lo-D-FCNs, and Ho-
D-FCNs, respectively. In this study, we used the frequency,
at which features are selected in all cross-validation cases,
to quantify feature relevance to the target classification.
The higher the feature frequency, the more reliable and
discriminative it is regarded.

Figures 5A–C visualizes the top 10 most discriminative
features of C-FCN, Lo-D-FCNs, and Ho-D-FCNs in the form of
circular graphs, where each link corresponds to a connectional
feature and represents the correlation between two brain regions
(Krzywinski et al., 2009). Figure 5D also shows the mutual
comparison among three sets of connections. We use link
thickness to encode the degree of their correlation. The thicker
the link is, the stronger the correlation is; also, the higher
the frequency of the connection selected in cross-validation is,
the greater the contribution to the target classification tasks is.
For the abbreviations of brain regions in Figure 5, please refer to
Table 3. In addition, we mark L (or R) following a brain region
(or ROI) name to denote that it lies in the left hemisphere (or the
right hemisphere), such as ANGR means the right angular gyrus.

From Figure 5 and Table 3, we can derive the following. (1)
The discriminative connections is not limited to connect the
same hemisphere or brain lobe but also includes transhemisphere
and all brain lobe, which indicates that the brain function of
ASD patients has an abnormal distribution pattern over the
whole brain. (2) Most selected brain regions are associated
with emotional expression, language understanding, and motion
coordination, such as precentral gyrus, middle frontal gyrus,
middle cingulate gyrus, posterior cingulate gyrus, amygdala,
angular gyrus, and others. These observations are consistent with
previous studies (Qiu et al., 2010; Ecker et al., 2015; Ha et al.,
2015b; Huang et al., 2018). For example, we found that SFGmedL

(Andrews-Hanna et al., 2014), ANGR (Andrews-Hanna et al.,
2014), PCUNL (Urbain et al., 2015), CALL (Perkins et al.,
2015), FFGR (Urbain et al., 2016), INSL (Leung et al., 2015;

TABLE 3 | Abbreviations of ROIs selected from conventional functional
connectivity network (C-FCN), low-order dynamic FCNs (Lo-D-FCNs), and
high-order D-FCNs (Ho-D-FCNs).

Abbreviation ROI name Abbreviation ROI name

FRO: frontal lobe

PreCG Precentral gyrus MFG Middle frontal gyrus

ORBmid Orbitofrontal cortex
(middle)

IFGoperc Inferior frontal gyrus
(opercular)

ROL Rolandic
operculum

SMA Supplementary
motor area

SFGmed Superior frontal
gyrus (media)

ORBsupmed Orbitofrontal cortex
(medial)

REC Rectus gyrus

INS: insula

INS Insula

LIM: limbic system

DCG Middle cingulate
gyrus

PCG Posterior cingulate
gyrus

PHG Parahippocampal
gyrus

SBC: subcortical structures

AMYG Amygdala PUT Putamen

PAL Pallidum

OCC: occipital lobe

CAL Calcarine cortex SOG Superior occipital
gyrus

MOG Middle occipital
gyrus

IOG Inferior occipital
gyrus

FFG Fusiform gyrus

PAR: parietal lobe

PoCG Postcentral gyrus SPG Superior parietal
gyrus

ANG Angular gyrus PCUN Precuneus

TEM: temporal lobe

TPOsup Temporal pole
(superior)

MTG Middle temporal
gyrus

TPOmid Temporal pole
(middle)

ITG Inferior temporal

CER: cerebellum

II-Cb Crus II of cerebellar
hemisphere

IX-Cb Lobule IX of
cerebellar
hemisphere

X-Cb Lobule X of
cerebellar
hemisphere

VER: vermis

I-II-VER Lobule I, II of vermis III-VER Lobule III of vermis

IV-V-VER Lobule IV, V of
vermis

VI-VER Lobule VI of vermis

VII-VER Lobule VII of vermis VIII-VER Lobule VIII of
vermis

IX-VER Lobule IX of vermis X-VER Lobule X of vermis
(nodulus)

Urbain et al., 2016) contributed more to ASD identification,
which is in line with the recent finding reported in the existing
literatures. (3) Features selected from C-FCN, Lo-D-FCNs, and
Ho-D-FCNs have significant differences, which can be seen
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from three aspects: first, the selected connected features by each
FCN (i.e., the connectional lines in Figures 5A–C are almost
entirely different from each other, except for the connected
features (IX-CbL-PCUNR) selected by both Lo-D-FCNs and Ho-
D-FCNs although with different strength; second, according
to the affiliation relation of the selected ROIs with respect to
corresponding FCNs (Figure 5D), we find that most of the
selected ROIs merely belong to one FCN, except one ROI
(PUCNR) that is jointly selected by all the three FCNs, four
ROIs by C-FNC and Lo-D-FCNs (or Ho-D-FCNs), and five
ROIs by Lo-D-FCNs and Ho-D-FCNs; and third, the regional
distribution of the selected features has huge difference among
the three FCNs. For example, the connectional features selected
by C-FCN mainly distribute in TEML, PARL, OCCL, SBCL−R,
LIML−R, INSL−R, and FORL−R (Figure 5A). The features selected
by Lo-D-FCNs mainly locate in INSR, LIMR, SBCR, OCCR,
PARR, TEMR−L, CREL−R, and VERL−R (Figure 5B) and that
of Ho-D-FCNs is in INSL, LIML, SBCL, TEMR−L, and CERL−R

(Figure 5C). In summary, the above analysis of difference
among three FCNs show that their network infrastructures exist
significantly different, which indicate that FCNs of different level
can provide complementary information for diagnosis. We think
that the main reason causing the huge difference among the
three FCNs is that each FCN actually reflects the correlation
between brain regions from rather different viewpoints. C-FCN
generally captures the static connectional feature since its FC is
measured using the whole scanning time rs-fMRI series from
any pair of ROIs, while Lo-D-FCNs reveals the dynamically
connectional relationship between a pair of ROIs because its
FC metric is similar to C-FCN, just using a short-time rs-fMRI
series. Compared with C-FCN and Lo-D-FCNs, Ho-D-FCNs uses
a vastly different metric to measure the connectional relationship
between a pair of ROIs, i.e., using the synchronization of the
short-time FC profile between two ROIs to represent their
temporary correlation. Therefore, Ho-D-FCNs can reveal some
new FC interaction among ROIs, thus providing supplementary
information to C-FCN and Lo-D-FCNs.

CONCLUSION

In this paper, we proposed new Ho-D-FCNs and used the
central-moment method to eliminate the phase mismatch
problem of dynamic networks. Through the analysis of feature
selection, we believed that the presented Ho-D-FCNs could

provide complementary information to our previous research
(C-FCN, Lo-D-FCNs). Therefore, we fused these three methods
and got the optimal classification results. The experimental
results have shown that: (1) Ho-D-FCNs was indeed helpful
for mining the relevant information for ASD diagnosis; (2)
different level FCNs could provide complementary information
and improve the disease recognition rate through fusion;
and (3) the central-moment method could help to solve the
phase mismatch problem in dynamic networks, including Lo-
D-FCNs and Ho-D-FCNs, which were covered in the paper.
In addition, in the analysis of feature selection, we also
found that most brain regions contributing to classification
are related to emotional expression, language understanding,
and motion coordination. These findings agree with the
behavioral phenotype of ASD (Geschwind and Levitt, 2007;
American Psychiatric Association, 2013).

Finally, it should be indicated that the fusion of the three
methods based on the decision value of SVM might not
adequately integrate the complementary information and thus
have an impact on the classification accuracy. Therefore, feature
fusion is a direction for future improvement, which will be
our future work.
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The linearity and stationarity of fMRI time series need to be understood due to their

important roles in the choice of approach for brain network analysis. In this paper, we

investigated the stationarity and linearity of resting-state fMRI (rs-fMRI) time-series data

from the Midnight Scan Club datasets. The degree of stationarity (DS) and the degree of

non-linearity (DN) were, respectively, estimated for the time series of all graymatter voxels.

The similarity and difference between the DS and DN were assessed in terms of voxels

and intrinsic brain networks, including the visual network, somatomotor network, dorsal

attention network, ventral attention network, limbic network, frontoparietal network, and

default-mode network. The test-retest scans were utilized to quantify the reliability of

DS and DN. We found that DS and DN maps had overlapping spatial distribution.

Meanwhile, the probability density estimate function of DS had a long tail, and that

of DN had a more normal distribution. Specifically, stronger DS was present in the

somatomotor, limbic, and ventral attention networks compared to other networks, and

stronger DN was found in the somatomotor, visual, limbic, ventral attention, and default-

mode networks. The percentage of overlapping voxels between DS and DN in different

networks demonstrated a decreasing trend in the order default mode, ventral attention,

somatomotor, frontoparietal, dorsal attention, visual, and limbic. Furthermore, the ICC

values of DS were higher than those of DN. Our results suggest that different functional

networks have distinct properties of non-stationarity and non-linearity owing to the

complexity of rs-fMRI time series. Thus, caution should be taken when analyzing fMRI

data (both resting-state and task-activation) using simplified models.

Keywords: resting-state fMRI, degree of stationarity, degree of non-linearity, test-retest, overlapping spatial

INTRODUCTION

Functional magnetic resonance imaging (fMRI) has become an important method for investigating
system-level brain activity (Biswal et al., 1995, 2010; He, 2013; Gordon et al., 2017; Gratton et al.,
2018). The majority of fMRI research to date has used a simplified model based on the assumptions
of stationarity and linearity (de Pasquale et al., 2010; Cabral et al., 2014; Panerai, 2014). Stationarity,
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in general, implies that the statistic ormodel parameter of interest
does not change over time (Smith et al., 2012, 2013; Liu and
Duyn, 2013; Allen et al., 2014; Shine et al., 2016; Suk et al.,
2016; Yaesoubi et al., 2018). The stationarity assumption is also
important for the frequency analysis of fMRI time series, as
the Fourier transform is suitable for stationarity (Beck et al.,
2006). Since resting-state fMRI (rs-fMRI) is a powerful tool for
studying human functional brain networks, it is necessary to
understand stationarity in the rs-fMRI time series. However, only
a few studies have used fMRI signals to characterize the non-
stationarity of time series. For example, Ou et al., used a Bayesian
connectivity change point model to statistically investigate rs-
fMRI signals and found that it could differentiate the temporal
dynamics of functional interactions between children with
attention deficit hyperactivity disorder and matched controls
(Ou et al., 2014). Results from the study suggested that
functional connectivity or interactions had temporally non-
stationary characteristics. Muhei-Aldin and colleagues used non-
parametric testing, i.e., the reverse arrangement test, to examine
the stationarity of the fMRI signal during a motor sequence
learning task and showed that the time series were non-stationary
(Muhei-aldin et al., 2014). Bullmore et al., provided a review
of wavelet methods used for the analysis of potentially non-
stationary fMRI time-series signals (Bullmore et al., 2004).

Recently, several studies have investigated the temporal
fluctuations in functional connectivity, i.e., dynamic functional
connectivity, in the human brain and have interpreted their
findings as evidence of non-stationary switching of discrete
brain states (Allen et al., 2014; Hansen et al., 2015). Hutchison
and colleagues used the rs-fMRI and sliding-window approach
to study stimulus-independent fluctuations of functional
connectivity within resting-state networks (Hutchison et al.,
2013). They found that resting-state functional connectivity
is not static and that resting-state networks can exhibit non-
stationary spontaneous relationships irrespective of conscious
and cognitive processing. Theoretically, the activity of neuronal
assemblies should be non-stationary since it reflects the
different stages of a self-organized process (Schoner and Kelso,
1988; Jin et al., 2017). However, several papers have reported
contradictory findings regarding the non-stationarity in fMRI
time series (Gaschler-Markefski et al., 1997; Hindriks et al.,
2016; Laumann et al., 2017). For example, Gaschler-Markefski
and colleagues reported that auditory tasks increased the
non-stationarity in the fMRI time series of the auditory cortex
(Gaschler-Markefski et al., 1997). Laumann et al., reported that
the resting state condition yielded mean kurtosis measures
closer to the stationary null model than task conditions, which
seemed to suggest stationarity in the rs-fMRI signal (Laumann
et al., 2017). Hindriks et al., found that the variation leading to
dynamic functional connectivity was related to the length of the
sliding window (Hindriks et al., 2016). To better understand
the fMRI signal profile underlying functional connectivity, it is
necessary to clarify whether the underlying processes are actually
stationary or non-stationary (Thompson, 2018). Previous studies
inferred non-stationarity in time series using task-related fMRI
or based on the evidence of dynamic functional connectivity

(Muhei-aldin et al., 2014; Ou et al., 2014). The quantitative
non-stationarity profiles of rs-fMRI signals and various brain
regions remain unclear.

On the other hand, the linear time-invariant (LTI) system
plays a crucial role in modeling the fMRI time series to generate
a transfer function from the stimulus to the neural output. The
hemodynamic response used in fMRI data analysis is assumed
to be a linear model in which the neuronal activity is thought
to be linearly convolved with the underlying blood flow/volume
(hemodynamic) changes (Esposito et al., 2002). While the fMRI
time series approximates an LTI system for medium-duration
stimuli, the fMRI response has been found to be non-linear for
short-duration stimuli. For example, Wager et al., reported that
the non-linearity of fMRI data may substantially influence the
detection of task-related activations, particularly in rapid event-
related designs when considering the non-linear effects on the
response magnitude, onset time, and time to peak (Wager et al.,
2005). Therefore, the presence of non-linear or deterministic
behavior has been postulated in various physiological and
pathological states (Freeman, 2000). Non-linearity postulates
that irregular and seemingly unpredictable behaviors are not
necessarily attributed to random external inputs to the systems
but, on the contrary, can be the result of deterministic dynamical
systems (Stam, 2005). Therefore, the detection of non-linearity
is important and should be the first step before any non-linear
analysis. Previous studies have shown the non-linear dynamics
of brain activities by using EEG (Stam, 2005) and rs-fMRI
(LaConte et al., 2004; Deshpande et al., 2006; Xie et al., 2008).
For example, Xie et al., studied the spatiotemporal non-linear
dynamics property in rs-fMRI signals of the human brain by
using the spatiotemporal Lyapunov exponent analysis (Xie et al.,
2008). Furthermore, the Delay Vector Variance (DVV) method
has been used to characterize the non-linearity in fMRI time
series (Freeman, 2003). Gultepe et al. used the DVV method to
identify whether resting-state fMRI signals are linear or non-
linear and found that the default-mode network had more linear
signals compared to the visual, motor, and auditory networks,
while the visual network had more non-linear signals than the
others (Gultepe and He, 2013). Taken together, it is important
to comprehensively study the degree of non-linearity of rs-fMRI
time series in various large-scale brain networks and across
whole-brain gray matter.

To probe the complexity and stability of a system such as
the human brain, it is necessary to investigate both the non-
linearity and stationarity of underlying dynamic activities given
the inherent association and distinction between non-linearity
and stationarity. In this study, we aim to comprehensively assess
the profiles of non-stationarity and non-linearity in rs-fMRI
time series for whole-brain gray matter voxels and functional
networks. We compute quantitative measures for the degree
of stationarity (DS) and the degree of non-linearity (DN) in
nine healthy subjects with 10 test-retest rs-fMRI scans. We then
calculate the test-retest reliability of DS and DN measures. We
hypothesize that voxels and networks with stronger degrees of
non-stationarity and non-linearity partially overlap and have
varied test-retest reliability.
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MATERIALS AND METHODS

Data and Preprocessing
In total, 100 rs-fMRI scans were used in this study and were
obtained from the Midnight Scan Club data (https://openneuro.
org/datasets/ds000224/versions/1.0.0). Data were collected from
10 healthy, right-handed, young adult subjects (5 females and 5
males; age: 24–34 y) by using a Siemens Trio 3T MRI scanner
over the course of 10 sessions conducted on separate days, each
beginning at midnight. Within each session on 10 consecutive
days, 30min of rs-fMRI data were collected in which subjects
visually fixated on a white crosshair presented against a black
background. One subject (MSC08) was excluded due to the
subject falling asleep during the scan, in line with the previous
literature (Gordon et al., 2017). Therefore, the rs-fMRI data
includes nine subjects, each with 10 sessions. The details about
data acquisition and subject information have been reported
previously (Gordon et al., 2017). Our data analysis included the
following steps: (1) preprocess the rs-fMRI dataset; (2) calculate
the DS of the preprocessed fMRI time series and create the
network histogram map; (3) calculate the DN characterizations
of the preprocessed fMRI time series and create the network
histogram map; (4) determine the strength of DS and DN and
identify their spatial overlap; (5) quantify the test-retest reliability
of DS and DN.

The rs-fMRI preprocessing included the following: (1)
discarding the first 10 volumes of each scan for signal
equilibration, wherein subjects adapted to the environment; (2)
slice time correction to account for temporal shifts in fMRI
data acquisition; (3) correction for head motion; (4) use of the
Friston-24 model to control head motion effects (Friston et al.,
1996; Yan et al., 2013), followed by regressing out the signals
from white matter and cerebrospinal fluid to reduce respiratory
and cardiac effects (Fox and Raichle, 2007); (5) normalizing
functional images into the standard MNI space by using the EPI
template with the resampled voxel size of 4mm; (6) spatially
smoothing the result data using an 8-mm full width at half
maximum (FWHM) Gaussian kernel; (7) band-pass filtering
(0.009Hz < f < 0.08Hz); (8) extracting time series from whole-
brain gray matter voxels and from functional networks based on
Yeo’s atlas (Yeo et al., 2011).

The DS Characterization of fMRI Time
Series
The Hilbert-Huang transform (HHT) is an adaptive time-
frequency analysis method (Huang et al., 1998) and has been
used to analyze non-linear and non-stationary signals (Qian et al.,
2015). Compared to the sliding window approach, HHT can
directly and quantitatively characterize the degree of stationarity
in the time series. In addition, the HHT method has high
performance in terms of both time-space and frequency-space
resolution, which facilitates precise expressions of instantaneous
frequency and is conducive to feature extraction of biomedical
signals (Huang and Shen, 2005). The HHT mainly consists of
two parts, namely the empirical mode decomposition (EMD) and
the Hilbert transformation (Huang and Shen, 2005). The EMD is
an efficient and adaptive method for extracting a set of intrinsic

mode functions (IMFs) from non-linear and non-stationary time
series (Lin and Zhu, 2012).

Signal x (n) of length N can be decomposed by EMD to
obtain M basic mode components c1, c2, · · · , cM and residual
componentrM .

x (n) =
∑

M
j=1cj + rM (1)

For each of the IMFs, using Hilbert transform, we obtain

x (n) =
∑

M
j=1aj (n) e

iwj(n)n (2)

The Hilbert spectrum of x (n) can thus be expressed as:

H (w, n) =
∑

bjaj (n) e
iwj(n)n (3)

where

bj =

{

1 wj = w
0 other

(4)

The boundary Hilbert spectrum of x (n) is

h (w) =
∑

N−1
n=0 H (w, n) (5)

The average boundary spectrum is defined as

B (w) =
1

N
h (w) (6)

Thus, the DS can be defined as

DS (w) =
1

N

∑

N−1
n=0

(

1−
H (w, n)

B (w)

)2

(7)

DS (w) is capable of quantitatively detecting the stationarity of the
data. For the stationarity process, the Hilbert spectrum does not
change with time; it only contains the horizontal contour, that
is DS (w) = 0. If the Hilbert spectrum is time-dependent, then
DS (w) > 0, and as DS (w) increases, the signal’s non-stationarity
is enhanced.

The DN Characterization of fMRI Time
Series
The DVV method characterizes a time series based upon its
predictability and compares the result to those obtained for
linearized versions of the signal (surrogates) (Gautama et al.,
2004). Based on a set of N delay vectors (DVs), denoted
by x

(

k
)

=
[

xk−m, xk−m+1,..., xk−1

]

, a vector containing m
consecutive time samples. Every DV x

(

k
)

has a corresponding
target, namely the following sample xk. For a given embedding
dimension m, the mean target variance, σ

∗2, is computed over
all sets �k. A set �k is generated by grouping those DVs that are
within a certain distance from x

(

k
)

, which is varied in a manner
standardized with respect to the distribution of pairwise distances
between DVs. This way, the threshold automatically scales with
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the embedding dimensionm, as well as with the dynamical range
of the time series at hand, and thus, the complete range of
pairwise distances is examined. The proposed DVV method can
be summarized as follows for a given embedding dimensionm:

- The mean, µd, and standard deviation, σ d, are computed over
all pairwise distances between DVs,

∥

∥x (i) − x(j)
∥

∥ (i 6= j).
- The sets �k are generated such that �n =

{

x (i) |
∥

∥x
(

k
)

− x(i)
∥

∥ ≤ τd

}

, i.e., sets that consist of all
DVs that lie closer to x

(

k
)

than a certain distance τ d, taken
from the interval [min {0,µd − ndσd}], e.g., uniformly spaced,
where nd is a parameter controlling the span over which to
perform the DVV analysis.

- For every set �k, the variance of the corresponding targets,
σ
2
k
, is computed. The average over all sets �k, normalized

by the variance of the time series, σ
2
x , yields the measure of

unpredictability, σ ∗2:

σ
∗2 =

1

N

N
∑

k=1

cjσ
2
k σ

2
x (8)

The deviation from the bisector line is thus an indication of non-
linearity and can be quantified by the root mean square error
(RMSE) between the σ

∗2’s of the original time series and the σ
∗2’s

averaged over the DVV plots of the surrogate time series (note

that while computing this average, as well as with computing the
RMSE, only the valid measurements are taken into account, and
then the DN is obtained). In this way, a single test statistic is
obtained, and traditional (right-tailed) surrogate testing can be
performed (the deviation from the average is computed for the
original and surrogate time series).

Threshold for Strong DS and DN
The quartile method (Hyndman and Fan, 1996), as shown in
Figure 1, was used to determine the relative thresholds for strong
DS and DN, which made use of the whole-brain DS and DN
values. The quartile is a numerical value obtained when all values
are arranged from small to large in statistics and are divided into
four equal positions. The third quartile was arbitrarily selected as
the threshold for strong DS and DN in this study.

Definition







Qlower limit < value DS ≤ Q1 weak level non-stationary
Q1 < value DS ≤ Q3 medium level non-stationary
Q3 < value DS ≤ Qupper limit strong level non-stationary

(9)







Qlower limit < value DN ≤ Q1 weak level non-linearity
Q1 < value DN ≤ Q3 medium level non-linearity
Q3 < value DN ≤ Qupper limit strong level non-linearity

(10)

FIGURE 1 | Defined percentage ratio by using the quartile method.
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Where

Qupper limit = Q3 + 1.5× (Q3 − Q1) (11)

Qlower limit = Q1 − 1.5× (Q3 − Q1) (12)

Histogram Map and Overlap Map
After calculating voxel-based values of DS and DN within the
gray matter mask, 90 maps were obtained for nine subjects and
their 10 test-retests. Resulting maps were combined to identify
the histogram map of DS and DN and the distribution of strong
DS and DN as well as the overlap and distinctions by using an
a priori functional network atlas (Yeo et al., 2011) (including
VN: visual network, SMN: somatomotor network, DAN: dorsal
attention network, VAN: ventral attention network, LIMB: limbic
network, FPN: frontoparietal network, and DMN: default-mode
network). Finally, the percentage of overlapping voxels for each
network was calculated.

Test-Retest Reliability
Test-retest studies are essential to determine the reliability of rs-
fMRI measures (Noble et al., 2019). To evaluate the test-retest
reliability as well as the within- and between-subjects variability
of DS and DN, we computed the intraclass correlation (ICC)
(Shrout and Fleiss, 1979) and obtained the test-retest reliability
maps for DS and DN.

ICC =
BMS− EMS

BMS+ (k− 1)EMS
(13)

Equation (13) estimates the correlation of the subject signal
intensities between sessions, modeled by a two-way analysis of
variance, with random subject effects and fixed session effects.
In this model, BMS is between-targets mean square, EMS is
error sums of squares, and k is the number of repeated sessions.
For statistical evaluations, a significance threshold of p < 0.05
was used.

Similarity Analysis
To explore the similarity of DS or DN between functional
networks, Pearson’s correlation was conducted across subjects
and sessions by using average values within each network.
Furthermore, we explored the similarity between DS and DN
within 10 axial slices. Average values of DS and DN across
subjects and sessions were correlated for each slice.

RESULTS

Distribution of DS and DN in Terms of
Voxels and Networks
As displayed by three slice maps in terms of voxels across nine
subjects and their 10 test-retest sessions, we found that the
resting-state brain had varied DS and DN values in different
regions (Figures 2A–E). Mean value maps were plotted by
using the average values of DS and DN across subjects and
sessions, respectively (Figures 2A,D). The variance value maps
were plotted by using the variance values of DS and DN across
subjects and sessions, respectively (Figures 2B,E). Although DS

and DN largely shared the same regions, they still had their
own unique distribution. For example, the peak intensity within
seven networks differed between DS and DN (Figures 2C,F). For
DS, the SMN (DS = 1.758 ± 0.00270) is composed of relatively
higher non-stationary signals compared to the VN (DS = 1.752
± 0.00240) and DAN (DS = 1.681 ± 0.00300) resting-state
network time series, and the p-values from the two-sample t-
tests are p = 0.031 and p = 0, respectively; LIMB (DS = 1.744 ±
0.00650) is composed of relatively higher non-stationary signals
compared to the FPN (DS = 1.681 ± 0.00190) and DMN (DS
= 1.685 ± 0.00170), and the p-values in the corresponding two-
sample t-tests are both p = 0; VAN (DS = 1.735 ± 0.00280) has
relatively higher non-stationarity signals than DAN (DS = 1.681
± 0.00300), and the p-value in the two-sample t-test is p = 0.
In addition, for DN, it was shown that the DAN (DN = 0.0955
± 0.00026) has lower non-linearity relative to the SMN (DN =

0.1065 ± 0.00029), VN (DN = 0.1115 ± 0.00022), LIMB (DN =

0.1083 ± 0.00041), and VAN (DN = 0.103 ± 0.00024), and all
the corresponding p-values from the two-sample t-tests are p =

0. The DMN (DN=0.1085 ± 0.00019) is composed of relatively
higher non-linear signals compared to the FPN (DN=0.0966
± 0.00022) resting-state network time series, and the p-value
in the two-sample t-test is p = 0. Also, Figures 2G,H show a
probability density estimate for voxel-wise DS and DN values for
each subject and group average made by using ksdensity.m in
MATLAB. In Figures 2G,H, 75% is the strong threshold level; we
can use the quartile method (in Figure 1) to get it. As shown in
Figures 2G,H, the statistical characteristics of DS were different
from those of DN, in that DS has a long tail, while DN has tails
more similar to a normal distribution (Figures 2G,H).

Distribution of Strong DS and DN in Terms
of Voxels and Networks
Combining Figure 1 and the distribution of DS and DN in
terms of voxels (Figure 2) allows the distribution of strong DS
and DN maps in the whole brain (shown in Figures 3A,C)
to be obtained. The overlap maps between strong DS and
strong DN are shown in Figure 3E. We found that the same
regions exist in both DS and DN, but each has its own
unique distribution. The histogram maps of percentage ratios
of voxels of the DS and DN characterized networks are shown
in Figures 3B,D, respectively, and we found that the percentage
ratio of voxels for each network ranked from largest to smallest
was: DMN, VN, SMN, FPN, DAN, VAN, and LIMB. Based
on Figure 3F, the percentage ratio of overlap and non-overlap
ranked from largest to smallest was overlapping DS and DN
(25.72%), non-overlapping DN (24.72%), and non-overlapping
DS (16.73%).

Test-Retest Reliability for DS and DN
Test-retest reliability for DS and DN was analyzed in terms
of voxels and networks (Figure 4) by using all rs-fMRI data.
First, the spatial distribution of test-retest reliability for DS and
DN in terms of voxels as plotted, as shown in Figure 4A, and
the ICC values of DS were found to be higher than those of
DN. Then, test-retest reliability for DS and DN were analyzed
in terms of networks, as presented in Figure 4B, which shows
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FIGURE 2 | Distribution of DS and DN in terms of voxels and networks. (A) and (D) show spatial distribution of group average DS and DN in terms of voxels across

nine subjects and their 10 test-retest sessions; (B,E) show variance of spatial distribution of DS and DN in terms of voxels; (C,F) show bar plot of DS and DN,

respectively, within intrinsic brain networks according to a priori functional network atlas (Yeo et al., 2011); (G,H) show probability density estimates of voxel-wise DS

and DN values for each subject and group average, respectively; 75% is the strong threshold level, which is obtained by way of the quartile method (in Figure 1). The

two-sample t-test showed the significant differences between each other (*p < 0.05, ***p < 0.001).

ICC maps from the DS and DN with networks: VN, SMN,
DAN VAN, LIMB, FPN, and DMN. From Figures 4A,B, we
found that the ICC values of DS and DN for each network
were different and also found that the ICC values of DS were
higher than those of DN in each network. Furthermore, upon
inspecting Figures 4A,B, it was found that most of the voxels still
have ICCs hovering around 0.2–0.3. Each network demonstrated
lower ICC for DN andDS, while DS andDN displayed significant
correlation (correlation coefficient r = 0.3337, p < 0.001) across
voxels and networks as calculated by using the cftool.m in
MATLAB. The spatial distribution of test-retest reliability for DS
in terms of voxels when ICC≥0.5 was plotted in Figure 4C. From
Figure 4C, voxels reaching an ICC of at least 0.5 were mainly
found on the DMN, FPN, LIMB, and VAN. More specific to the
brain regions, there were also some voxels with ICC >0.5, such
as Tempor_Pole_Sup_R (X = 34, Y = 6, Z = −24), Caudate_L
(X=−18, Y=−6, Z= 24), Caudate_R (X= 18, Y= 6, Z= 20),
Cingulum_Mid_R (X= 6, Y=−20, Z= 40), Rectus_R (X=−2,
Y= 18, Z=−20), and Congulum_Ant_L (X= 2, Y= 30, Z= 0).

Similarity Analysis for DS and DN
For the similarity between networks (Figure 5A), we found that
DAN and VAN were correlated for DS and DN (r = 0.6559, p

= 0), whereas the association was not significant for the other
five networks (Figure 4A). Furthermore, we used correlation
matrices for the DS andDN associated with different spatial brain
slices (Figure 5B). The slice-based similarity analysis showed a
low correlation between DS and DN (r = 0.3400), which varied
in different slices. High correlation corresponds to the similarity
of the DS and DN in intra-slice variability and the correlation
coefficients are different in different slices.

DISCUSSION

The human brain is a complex system, and there has been
growing research interest in analyzing the complex brain
networks by using rs-fMRI time series (Fox and Raichle, 2007;
Biswal et al., 2010; de Pasquale et al., 2010; Liu and Duyn,
2013; Gao et al., 2018). In this work, the non-stationarity and
non-linearity in rs-fMRI data of the human brain were detected
by using the DS and DN measures. We quantified the degrees
of non-stationarity and non-linearity in the time series of rs-
fMRI by using the HHT and DVV methods. DS and DN were
computed in terms of voxels across nine subjects and for their 10
test-retest sessions. We found that DS and DN had overlapped
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FIGURE 3 | Distribution of strong DS and DN in terms of voxels and networks. (A,C) show spatial distribution of strong DS and DN in terms of voxels; (B,D) show bar

plots of percentage ratios of voxels of DS and DN, respectively, for seven networks; (E) shows spatial distribution of overlapping strong DS and DN in terms of voxels:

blue indicates brain regions with weak DS and DN (below 75%); green and yellow indicated unique brain regions with strong DS and DN (above 75%) respectively; red

indicates brain regions with strong overlapping DS and DN (above 75%); (F) shows a bar plot of the percentage ratios of voxels overlapping and not overlapping

between strong DS and DN. Two-sample t-tests showed significant differences between them (*p < 0.05, ***p < 0.001).
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FIGURE 4 | Test-retest reliability for DS and DN. (A) shows spatial distribution

of test-retest reliability for DS and DN, respectively, in terms of voxels

calculated by using different session numbers; (B) ICC maps from the DS (first

row) and DN (second row) with networks: VN SMN DAN VAN, LIMB, FPN, and

DMN; in the third row, the correlation between ICC for DN and ICC for DS is

displayed. (C) ICC maps from the DS when ICC ≥ 0.5.

spatial distributions together with varied characteristics across
typical intrinsic brain networks, as well as different test-retest
reliabilities. The DS and DN characterization of the rs-fMRI time
series analysis has provided a new method of analyzing ongoing
activities within the resting-state brain.

Distribution of DS
In this study, voxel-based and network-specific DS were
examined. The mean DS value ranged from 0.1 to 2.1
over the whole brain, with the higher DS values in the
brainstem, thalamus, striatum, temporal and occipital cortex,
and cerebellum (Figure 2A), as well as in the networks SMN,
VN, LIMB, and VAN (Figure 2B). From a theoretical point
of view, the activity of neuronal assemblies should be non-
stationary since it reflects the different stages of a self-organized
process (Schoner and Kelso, 1988; Jin et al., 2017). A previous
study revealed by analyzing EEG signals that brain activity
is essentially non-stationary (Kaplan et al., 2005). An fMRI
study also confirmed that there was non-stationary brain
activity during an auditory task (Gaschler-Markefski et al.,
1997). Using rs-fMRI, dynamic functional connectivity has
been researched to delineate the non-stationary changes in
brain activity synchronization (Xie et al., 2008; Ou et al.,
2014). However, a recent study revealed that it is difficult
to detect the non-stationarity in a typical rs-fMRI scan of
10min using the sliding window approach because the effect
of non-stationarity detection varies with the amount of data.
Therefore, the authors pointed out that it is not optimal to
use the sliding window approach for non-stationarity analysis
(Hindriks et al., 2016). Using the HHTmethod, the current study
demonstrated non-stationary signal fluctuation in widespread
brain regions and functional networks, which confirmed the non-
stationarity in the rs-fMRI signal and provides a quantitative
DS map.

Distribution of DN
Using the DVVmethod, we found that voxels with strong DN are
spatially distributed across different functional networks. From
the DN value, the DAN showed a lower non-linear signal, and the
VN, DMN, LIMB, and SMN showed higher non-linear signals
(Figure 2F). The ranking of the DN value for each network
from largest to smallest is as follows: VN, DMN, LIMB, SMN,
VAN, FPN, and DAN. This suggests that despite the absence of
external stimuli to VN, DMN, and LIMB, the baseline activity
of those networks may be more complex than that of other
systems. Both Gautama andMandic have shown that the default-
mode resting-state network time series is relatively more linear
than time series in the auditory and motor networks (Gautama
et al., 2003; Mandic et al., 2008). Gultepe and He previously
reported that visual networks were more non-linear than the
motor and auditory systems (Gultepe and He, 2013). Our finding
supported the conclusion that without external stimulus, during
resting state, the baseline activity of the visual cortex is more
complex than the motor and auditory systems, which may
be associated with complex functional organization for visual
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FIGURE 5 | Similarities analysis. (A) Between network similarities, using the average values of DS and DN within networks, across subjects and sessions by using

Pearson’s correlation. Correlation matrices for the DS (first column) and DN (second column) associated with networks: VN, SMN, DAN, VAN, LIMB, FPN, and DMN.

(B) The similarities between DS and DN for each slice, across subjects and sessions, according to Pearson’s correlation.

processing. Gultepe and He (2013) showed that in a task-based
study using macaque BOLD and monocrystalline iron oxide
particle (MION) signals the recruitment of physiological inputs
such as cerebral blood volume, flow, and metabolic rate of
oxygen into these two systems may be increased compared to
in a resting state study where there is no task (Gautama et al.,
2003). This may reflect their conclusion that the BOLD signal
is more non-linear than the MION signal, which depends on
fewer physiological parameters. The lower embedding dimension
may be indicative of the lower complexity of resting-state systems
within the brain; it is necessary to choose dimensions high
enough to capture the phase space of the dynamical system
(Gautama et al., 2004).

Overlap Between DS and DN
From the overlap of the spatial distributions of strong DS
and DN in terms of voxels, the percentage ratio of voxels
overlapping between strong DS and DN values was 25.72%
and was relatively high compared to unique regions of strong
DN (that is, those regions that have strong DN and weaker
DS properties) (24.72%) and unique regions of strong DS
(those regions that have strong DS and weaker DN properties)
(16.73%). This suggests that regions that overlap between DS and

DN exist but that each has its own unique distribution. Both
stationarity and linearity can be determined by the complexity
and stability of the activities of brain regions, making them
inseparable. The two indicators reflect the profile of stationary
time series and linear system, respectively, which have their
own unique characteristics. For example, the larger the DS
value in the fMRI signals, the more complex brain activities
will be, while the larger the DN value, the more unstable brain
activities will be. Thus, overlapping of strong DN and strong
DS in certain regions demonstrated that those brain regions
have simultaneous non-stationary and non-linear signals. The
DMN showed the largest percentage ratio of voxels with strong
DN and DS values. Thus, among the overlapping regions of
strong DN and DS, DMN was the largest. This suggests that
the DMN has both non-stationary and non-linear signals. It
has been hypothesized that the activity of the DMN is related
to spontaneous thoughts, i.e., intrinsic attention/information
processing (Raichle et al., 2001). The DMN has been observed
to be active at rest and deactivated during active task-states
(Damoiseaux et al., 2008). In addition, the existence of unique
regions of strong DN (24.72%) and unique regions of strong DS
(16.73%) revealed that there are also some regions with their
own unique characteristics, such as those with more complex and
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more stable brain activities, contrasting with those with simpler
andmore unstable brain activities. This further demonstrates that
the brain is a complex system.

Test-Retest Reliability and Similarity
Analysis
We inferred that the ICC values of DS were larger than those of

DN in terms of voxels and networks and that the ICC values
of DS and DN for each network were different. DS and DN
exhibited significant correlation across voxels and networks for
each network. Moreover, the test-retest reliability values for DS
and DN across 10 sessions were surprisingly low because most
voxels had ICC values below 0.5. Most of the voxels had ICCs
hovering around 0.2–0.3, while a few voxels reached 0.6, and
voxels reaching an ICC of at least 0.5 were mainly found on
certain brain regions, such as Tempor_Pole_Sup_R (X = 34,
Y = 6, Z = −24), Caudate_L (X = −18, Y = −6, Z = 24),
Caudate_R (X = 18, Y = 6, Z = 20), Cingulum_Mid_R (X =

6, Y = −20, Z = 40), Rectus_R (X = −2, Y = 18, Z = −20), and
Congulum_Ant_L (X= 2, Y= 30, Z= 0); the ICC values in other
brain regions were no larger than 0.5. These results provide a
quantitative basis for the test-retest reliability of non-stationarity
or non-linearity. In terms of similarity between networks, DAN
and VAN were correlated for DS and DN, while the association
was not significant for other networks. Thus, DS and DN
can be recognized to have a good ability to predict network
types. Moreover, the slice-based similarity analysis showed low
correlation between DS and DN, which varied in different slices.
High correlation corresponds to similarity of the DS and DN
in intra-slice variability, and the correlation coefficients are
different in different slices. The main reason for this is that
the percentage ratio of overlapping voxels with strong DS and
DN values was 25.72%. The overall reliability of topological
measures was similar to that of other parameters derived from
rs-fMRI, such as correlation significance, correlation valence
(positive vs. negative correlations), and network membership
(Shehzad et al., 2009). Resting-state data itself is a complex
aggregation of different brain networks whose activity profiles
overlap (Greicius et al., 2003), but this is also so in brain states
that reflect cognitive and emotional processing (Damoiseaux
et al., 2006).

Previous works have suggested that the fMRI signal consists
of non-linear and non-stationary components (Xie et al., 2008;
Ou et al., 2014), but these components have often been discarded
in conventional generalized linear modeling and functional
connectivity (analysis based on Pearson’s correlation). In this
study, we introduced a quantitative statistical method to identify
the scale of non-linearity and non-stationarity in fMRI signals.
The DS and DN measures enable the characterization of not
only the brain’s signal properties across specific regions but also
the individual subject’s brain dynamic features. Future fMRI
research should compute DS and DN as part of the quality
control step for preprocessing as indicators of data quality,
particularly when dealing with cross-sectional comparisons. For
example, individual DS and DN values should be identified
for clinical populations and healthy controls, respectively,

and then controlled as covariates in the group comparison
of their functional connectivity. In the study of dynamic
functional connectivity associated with non-stationary features,
future research should investigate the potential relationship
between dynamic measures and both DS and DN. It is also
worth understanding the alterations of DS and DN linked
with fMRI preprocessing, such as the complex influence of
micromovement on fMRI signals. Taken together, the current
study revealed that the quantitative map of the whole-brain
DS/DN will provide a tool for future research to further
explore the effect of DS/DN on fMRI measures such as
functional connectivity.

LIMITATIONS

The present work has several potential limitations worth
considering. In this paper, we estimated non-stationarity/non-
linearity effects, respectively. Our major findings showed
that these non-stationarity/non-linearity effects varied across
different functional networks. One potential limitation was that
this work focused on rs-fMRI signals and thus did not provide
DS/DN measures based on task-fMRI data, although several
previous studies have pointed out that non-stationarity/non-
linear effects may differ among different tasks (Wager et al.,
2005; Muhei-aldin et al., 2014; Ou et al., 2014). The second
potential limitation of this study is that this work only
focused on voxels and seven functional networks from Yeo’s
functional network atlas (Yeo et al., 2011). Depending on the
parcellation number of functional networks (up to hundreds),
the corresponding ICC may be different. The spatial extent of
a region and how it may affect the ICC should be carefully
investigated. The third limitation might be the imaging length
of 30min used in this study, which might affect the DS/DN.
Previous studies have shown the ICC of functional connectivity
is improved by long scan length (Braun et al., 2012; Birn
et al., 2013). It is worth investigating the influence of scan
length on the ICC of DS/DN. Lastly, there is the potential
influence of scan sessions occurring at midnight, since we
used the Midnight Scan Club dataset. Hill and Smith have
examined the effect of time of day on the relationship between
mood state, anaerobic power, and capacity, and they found
that the relationship between mood state and subsequent
performance is dynamic and is dependent upon the time of
day (Hill et al., 1993). This study identified the whole-brain
distribution of DS/DN in resting-state fMRI; however, it remains
unclear whether DS/DN is more associated with neuronal
activity or non-neuronal noises such as head motion. With
the quantitative measures reported in the current study, more
research is needed to further explore the mechanism underlying
DS/DN in relation to fMRI preprocessing and the underlying
functional connectivity.

CONCLUSION

In this paper, we investigated the degree of stationarity (DS)
and the degree of non-linearity (DN) of rs-fMRI time series of
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all gray matter voxels and intrinsic brain networks from the
Midnight Scan Club datasets. Results from this study suggest that
the baseline signals from the VN, LIMB, SMN, and DMN have
relatively greater non-stationarity and non-linearity compared
with those of the VAN, DAN, and FPN. This suggests that
when we compute the “static” functional connectivity, it is
necessary to take into account the relative contribution from
the non-linearity and non-stationarity components from the
respective brain regions. For example, when analyzing static
functional connectivity, the VN needs to have more non-
linear and non-stationary components eliminated than does
the FPN. Moreover, the VN, LIMB, and DMN networks
were more non-linear and non-stationary, so shorter-time
data can be used, because the shorter the time, the closer
the characteristics of the data are to being stationary and
linear, so the optimal length of time is required. If the non-
stationary and non-linear properties are not considered, then
the results will be an approximate phenomenological description
of the real characteristics. Our results suggest that different
functional networks have distinct non-stationarity and non-
linearity owing to the complexity and stability of rs-fMRI time
series. Moreover, the DS and DN measures not only enable the
characterization of the brain’s regional signal properties but also
of the individual subject’s brain dynamic features. Therefore,
this quantitative DS/DN method provides a tool for future
research to further explore the effect of DS/DN on fMRImeasures
such as functional connectivity and to improve neural activity

extraction or simulation by considering non-linear and non-
stationary components.
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Resting-state functional magnetic resonance imaging (rs-fMRI) is an immensely powerful
method in neuroscience that uses the blood oxygenation level-dependent (BOLD) signal
to record and analyze neural activity in the brain. We examined the complexity of
brain activity acquired by rs-fMRI to determine whether it exhibits variation across
brain regions. In this study the complexity of regional brain activity was analyzed by
calculating the sample entropy of 200 whole-brain BOLD volumes as well as of distinct
brain networks, cortical regions, and subcortical regions of these brain volumes. It can
be seen that different brain regions and networks exhibit distinctly different levels of
entropy/complexity, and that entropy in the brain significantly differs between brains at
rest and during task performance.

Keywords: functional MRI, complexity, entropy, temporal analysis, resting state, computational neuroscience,
neuro imaging

INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI) uses the blood oxygenation level-
dependent (BOLD) signal to characterize the spontaneous activity of the brain (Biswal et al., 2010).
In functional connectivity analysis, correlation is calculated between the time series of different
regions of interest (ROI). Analysis of regions with high correlation can aid in the identification of
functional networks. However, both within and across networks, fMRI signals can exhibit dynamics
that may reflect changes in brain state or mental activity (Chang and Glover, 2010; Hutchison et al.,
2013; Keilholz et al., 2013, 2016; Keilholz, 2014). If the complexity or regularity of these fluctuations
in the fMRI time-series could be evaluated and analyzed, it might provide insight into general brain
activity, brain structures, and brain networks.

Entropy, in general, is defined as a lack of order or predictability in a system. In the context
of physiologically time-based signals, entropy is a measure of disorderliness in the time dimension.
This can also serve as a parallel for system complexity, as a more complex system will often produce
more disorderly signals. The second law of thermodynamics indicates that the maximum entropy
is reached when a closed system rests at an equilibrium state, so in order to preserve vital activities,
living systems must constantly maintain low-levels of entropy, shying away from equilibrium
(Schrödinger, 1945). The human brain is one such living system, and while it maintains a relatively
low level of entropy when compared to a system at equilibrium, the complex nature of its various
networks’ spontaneous activities can cause a variation in local entropy that reflects differences in
the function of those areas. By calculating the entropy of the signal acquired from the brain, these
variations can be investigated, and the status of the resting brain can be compared across conditions
to understand how the brain adapts during task performance (Bergström, 1969; Singer, 2009).
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Establishment of a general algorithm for entropy requires
a vast data set. The accurate estimation of the probability
distribution function from the limited number of time points
obtained in rs-fMRI studies is difficult. Sample entropy
(Shalit, 1985), an extension of approximate entropy (Pincus,
1991), is an alternative technique that addresses these issues.
The Kolmogorov (1998) complexity model is the basis for
approximate and sample entropy (Wang et al., 2014), which can
be evaluated even with relatively small data sets (Shalit, 1985;
Pincus, 1991). This makes them well-suited for the analysis of rs-
fMRI data, where the number of time points is typically relatively
small (∼200–1000) compared to the number of voxels.

Previous analyses of the entropy of the BOLD signal have
shown that brain signals exhibit various levels of disorder.
Wang et al. (2014) performed a comprehensive study on the
Sample entropy map of approximately 1000 healthy subjects.
They observed a sharp low-high contrast between the neocortex
and the rest of the brain, which may indicate the higher
mental functions performed by cortex (Wang et al., 2014).
Moreover, entropy differs in patients with attention deficient
hyperactivity disorder (ADHD) (Sokunbi et al., 2013) and during
the administration of different drugs (Ferenets et al., 2007).

Motivated by these findings, we performed a more extensive
analysis of entropy to determine the amount of variability present
across brain areas and networks. We compared findings from
task-based and resting state data from the Human Connectome
Project (Van Essen et al., 2012) to characterize how entropy
changed across conditions. The results provide further evidence
that the entropy of the BOLD signal reflects aspects of the
brain’s functional organization and may prove informative about
neural processing.

MATERIALS AND METHODS

Data Acquisition
MRI Data was downloaded from the Human Connectome
Project (Van Essen et al., 2012). This data came from 100
randomly selected, unrelated individuals, ranging from ages
22 to 36 (54 female – 46 male). One anatomical scan from
each individual was used for preprocessing [T1-weighted three-
dimensional magnetization-prepared rapid gradient echo (T1w
3D MPRAGE) sequence; TR = 2400 ms, TE = 2.14 ms,
TI = 1000 ms, FA = 8◦, FOV = 224 mm × 224 mm, voxel size
0.7 mm isotropic] (Milchenko and Marcus, 2013).

In addition, two resting-state functional scans per subject,
each approximately 15 min long, were used, with the following
parameters: TR = 720 ms, TE = 33.1 ms, FA = 52◦,
FOV = 208 mm × 180 mm (RO × PE), matrix = 104 × 90
(RO × PE), slice thickness = 2.0 mm; 72 slices; 2.0 mm isotropic
voxels, multi-band factor = 8, echo spacing 0.58 ms, with right-
to-left (RL) phase encode direction in one scan and left-to-
right (LR) phase encode direction in the other (Feinberg et al.,
2010; Chen et al., 2015). Two working memory task functional
scans per subject, each approximately 5 min long, were used
for comparison with the rest scans, also with RL phase encode
direction in one scan and LR phase encode direction in the

other. The working memory task, described in Barch et al. (2013),
involves a version of the N-back task, assessing both working
memory and cognitive control in a block format. Each task
functional scan includes eight task blocks lasting 25 s as well as
four fixation blocks lasting 15 s. Half the task blocks use a 0-back
working memory task and the other half use a 2-back working
memory task. These blocks are divided into four categories: tools,
body parts, faces, and places. To adjust for the shorter length
of the task scans, rest scans were truncated to the same length
as the task scans.

Preprocessing Methods
Scans were preprocessed using both FSL 5.0 (Jenkinson
et al., 2012) and MATLAB (Mathworks, Natick, MA,
United States). First, FSL was used to register anatomical
data to the 2 mm Montreal Neurological Institute (MNI)
atlas using FMRIB’s Linear Image Registration Tool (FLIRT)
(Jenkinson and Smith, 2001; Jenkinson et al., 2002). Then
the brain was extracted from the scan using BET, and
segmented into gray matter, white matter, and CSF using
FMRIB’s Automated Segmentation Tool (FAST) (Zhang et al.,
2001). Functional data was then motion correction using
MCFLIRT (Jenkinson et al., 2002) and registered to MNI
space using FLIRT.

The seven functional networks based on Yeo et al.’s (2011)
parcellation method (were discriminated from each other. The
mean and the standard deviation of sample entropy for each
network were calculated and mapped to that network.

Entropy Calculation
A combination of home-designed MATLAB codes and the brain
entropy mapping toolbox (BENtbx1) by Wang et al. (2014) from
University of Pennsylvania were used to calculate the entropy
for each voxel. The equation for sample entropy is described in
BENtbx as follows:

Bm(r) =
1

(N −m) (N −m− 1)

N−m∑
i=1

Bmi (r)

Am(r) =
1

(N −m) (N −m− 1)

N−m∑
i=1

Bm+1
i (r)

SE (m, r,N, x) = − ln
[
Am(r)
Bm(r)

]
The fMRI data for one voxel is considered as x = [x1, x2, . . .,
xN], in this set “N” is the number of repetitions (N value is
specified based on functional scan length and TR). In sample
entropy a series of embedded vectors with m consecutive points
are extracted from the data set x: ui = [xi, xi + 1, . . . xi+m−1],
(i = 1 to N−m+ 1, m: pre-defined dimension which specifies the
pattern length). A distance threshold “r” is specified (tolerance
value) and Brm(r) counts the number of uj (j = 1, to N−m, and
j 6= i) whose distances to ui are less than r, as does, Bm+1

i (r) for the

1https://cfn.upenn.edu/~zewang/BENtbx.php
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FIGURE 1 | The average entropy values across scans of each of the seven networks in resting state (A) and during a working memory task (B) were mapped on the
T1-weighted image. The coronal and axial views were selected in a way that all parcellations can be presented in one figure. In (A) the axial view clearly
demonstrates the frontoparietal network, which has the highest value of the entropy during resting state. The somatomotor and limbic networks have low values of
the entropy in the resting state. In (B) the dorsal attention network which has the highest entropy during the working memory task can be seen both in the coronal
and axial view. Also, in (B) the visual and limbic networks are presented, which have the lowest values of entropy in task.

dimension ofm+ 1. Thus the sample entropy can be measured by
averaging across all possible vectors (Wang et al., 2014). A small
value for m results in improvement of sample entropy accuracy

so in current study the value of m was equal to 3. Based on the
previous studies the threshold of r = 0.6 SD would result in similar
values of sample entropy even for different values of m. Thus, in
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FIGURE 2 | The mean sample entropy of cortical regions and subcortical regions at rest and during the working memory task are shown. Subcortical regions have
higher significantly higher entropy than cortical regions (p-value < 0.05) both in task and at rest. The cortical and subcortical regions in rest show significantly higher
values compared to task (p-value < 0.05).

TABLE 1 | The mean and standard deviations of cortical and subcortical regions
at rest and during the working memory task.

Region Rest vs task Mean Standard deviation

Cortical Rest 0.1912 0.0200

Task 0.1815 0.0195

Subcortical Rest 0.1981 0.0232

Task 0.1897 0.0245

this study the value of r = 0.6 SD was used (Pincus, 1991; Richman
and Moorman, 2000).

Correlation Matrices
Pearson correlation was calculated between 7 pre-identified brain
networks (Yeo et al., 2011) and between cortical and subcortical
regions (42 cortical regions and 21 subcortical regions) of the
brain (Harvard-Oxford mask FSL) across scans. This was done

in both rest and task entropy maps, to identify the dependence of
networks and regions on each other in rest and task mode.

In the case of the seven functional networks, X and Y were
length 200 vectors representing the mean sample entropy of a
network in each scan. Correlation was then calculated for each
pair of networks and placed into a 7 × 7 correlation matrix
representing the correlation between each network and every
other network. This was calculated for both for rest and task
sample entropy maps.

The same process was repeated for the 63 cortical and
subcortical regions, where X and Y represented length 200
vectors representing the mean sample entropy of a distinct
subcortical or cortical ROI. This results in a 63 × 63 correlation
matrix of both cortical and subcortical regions.

Paired t-Test and Reliability Evaluation
The paired t-test was used to compare brain entropy maps at
rest and during the working memory task. This was performed
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FIGURE 3 | He sample entropy value of each of the seven cortical networks [1-visual (V), 2-somatomotor (SM), 3-dorsal attention (DA), 4-ventral attention (VA),
5-limbic (LM), 6-frontoparietal (FP), 7-default (DF)] in rest and during the working memory task are shown in the box plot (R = rest, T = task). The mean sample
entropy for each network in rest is significantly higher than during the working memory task (p-value < 0.05, see Table 2)

at voxel-level resolution to produce a whole brain volume t-test,
as well as for the seven networks and the cortical/subcortical
regions. In every case, the two paired samples are length 200
vectors representing entropy in each scan at rest and task. Due
to multiple comparison, the Bonferroni correction was done to
decrease the risk of a type I error. Box plots were produced for
the seven networks as well as the subcortical and cortical regions
to further highlight differences.

In order to examine the reproducibility of the entropy
measurements, we calculated them separately for the first and
second rsfMRI scans for each subject, and for the first and second
fMRI scans for each subject. We then measured correlation
between the values for the seven networks across individuals in
the two scans. We also measured correlation between the final
group level values for the seven networks across the two scans.

The intraclass correlation (ICC) was also used to evaluate the
reliability of the entropy calculation of each functional network

by comparing the variability of entropy of the two scans of the
same subject to the total variation across all subjects (for resting
state and for task performing) using a Microsoft Excel Add-in to
calculate ICC (3,1) (Merisaari et al., 2019).

RESULTS

The sample entropy was calculated at each voxel in all fMRI
task and rest scans (100 subjects, each of them scanned twice
at rest and twice during task performance). Figure 1 shows the
sample entropy network-level maps of resting-state (Figure 1A)
and task-performing (Figure 1B) groups, superimposed onto the
T1-weighted image. As shown in the figure, the frontoparietal
network has the highest entropy during rest, while the dorsal
attention network has the highest entropy during task. The
somatomotor network has the lowest entropy during rest, also the
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limbic network and somatomotor have the lowest entropy during
task. Entropy is generally higher during rest than during task.

Figure 2 shows quantitative values of Sample entropy for
rest and task, divided into cortical and subcortical regions. The
cortical regions in task have the average value of 0.1815± 0.0195.
The average value of Sample entropy of cortical regions
in rest is 0.1912 ± 0.0200, which is significantly higher
than the same regions during the working memory task (p-
value < 0.05). The subcortical regions in rest have the average
value of 0.1981 ± 0.0232. The average value of Sample entropy
for subcortical regions in task is 0.1897 ± 0.0245, which
is significantly lower than the values of the same regions
(subcortical) in rest. Interestingly, the subcortical regions during
task show the widest spread of entropy values (standard deviation
of 0.0245). Table 1 shows the average value and standard
deviation of cortical and subcortical regions in rest and during
task performance.

To further examine the variability of entropy across brain
networks, the values were separated by network (Figure 3).

The frontoparietal network has the highest entropy among
all the cortical networks at rest. The somatomotor network with
0.1830 ± 0.0223 and limbic network with 0.1884 ± 0.0237 have
the lowest entropy during rest. For each network, entropy during
rest was significantly higher than during task (p-value is shown in
the last column of Table 2).

During the working memory task, the dorsal attention
network has the highest entropy. The limbic network,
somatomotor network, and visual network have the low
values of entropy during task performance.

Correlation between the entropy of the networks describes
how entropy in different areas covaries across subjects (Figure 4).
This correlation is generally high but decreases during the task
in comparison to the resting state. The frontoparietal network
and default mode network have the highest correlation in the
resting state (0.95), followed by the frontoparietal network
and ventral attention network (0.92). During the working
memory task, entropy in the ventral attention network is

TABLE 2 | Means and standard deviations of all seven cortical networks at rest
and during working memory task.

Network name Rest vs task Mean Standard deviation p-Value

1 Visual Rest 0.1922 0.0212 1.01E-23

Task 0.1779 0.0186

2 Somatomotor Rest 0.1830 0.0223 2.09E-33

Task 0.1766 0.0239

3 Dorsal attention Rest 0.1908 0.0202 5.67E-29

Task 0.1845 0.0203

4 Ventral attention Rest 0.1906 0.0212 7.86E-33

Task 0.1816 0.0225

5 Limbic Rest 0.1884 0.0237 1.31E-24

Task 0.1778 0.0241

6 Frontoparietal Rest 0.1958 0.0195 2.07E-29

Task 0.1821 0.0221

7 Default mode Rest 0.1917 0.0200 3.28E-30

Task 0.1825 0.0217

strongly correlated with entropy in both the frontoparietal
network and the somatomotor networks (0.89).The dorsal
attention network and frontoparietal network are nearly as
strongly correlated (0.88). The lowest correlation is between
the limbic network and the visual network, both at rest and
during the working memory task. In task, the correlation
between the visual network and the somatomotor network is
among the lowest correlations (0.55), which is different from
the resting state.

We furthered examined the correlation of entropy values
across the 42 cortical regions and 21 subcortical regions in rest
and task (Figure 5). Correlation of entropy values is generally
high within the cortical regions (average of 0.83) and within the
subcortical regions (average of 0.89), but the correlation between
cortical and subcortical regions is not as strong (average of 0.43).
Also, by comparison of Figures 5A,B it can be observed that
correlation between all ROIs is decreased during task, but this
reduction in task mode is more severe in the cortical regions.

To determine the significance of the effects we observed,
a two-factor ANOVA test was performed with the null
hypotheses that

1- performing the memory task has no significant effect on the
entropy of the brain (comparing ROI voxels)

2- brain regions (Cortical/subcortical) has no significant effect
on the entropy of the brain.

As it is presented in Table 3, both the differences across rest
and task and across cortex and subcortex were significant (p-
value < 0.05), but there was no significant interaction effect. We
performed a similar analysis on the data separated by network
during rest and task.

The two null hypotheses were:

1- performing the working memory task has no significant
effect on the entropy of the brain

2- brain cortical networks have no significant effect on the
entropy of the brain.

As it is presented in Table 4, significant differences were
observed between rest and task and across networks (p-
value < 0.05). Moreover, the interaction term was significant,
indicating that task performance affects entropy in a network-
dependent manner.

Table 5 presents the consistency of entropy measurements
across scans. Pearson correlation ranges from 0.46 to 0.59 for rest
and from 0.36 to 0.47 for task. Interestingly, entropy values are
more consistent across scans in rest than in task. The means of
scan 1 and 2 within each network are not significantly different
(α = 0.05).

The ICC values are shown in Table 5 as well. Zuo et al. (2019)
and Xing and Zuo (2018) categorized the ICC values in to the
following intervals 0 < ICC < 0.2 (slight), 0.2 < ICC < 0.4
(fair), 0.4 < ICC < 0.6 (moderate), 0.6 < ICC < 0.8 (substantial),
0.8 < ICC < 1.0 (almost perfect) for reliability quantification. By
considering those intervals, all seven networks can be categorized
as having moderate reliability in resting state. In task, subjects’
visual network, somatomotor network and ventral attention
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FIGURE 4 | The correlation between the mean value of sample entropy for seven cortical networks across 200 scans (100 subjects) in resting state (A) and
performing a working memory task (B).

FIGURE 5 | The correlation between the mean value of sample entropy for 42 cortical and 21 subcortical regions of interest as a measure of similarity in rest is
shown in (A,B) shows the correlation between the same regions during the working memory task. Correlation is generally reduced during task performance, but the
subcortical regions are less affected than the cortical regions.

TABLE 3 | Two-factor ANOVA comparing mean cortical/subcortical entropies in
200 scans at task and rest.

Source Sum of squares d.f. Mean square F score p-Value

Rest/task 0.0164 1 0.0164 34.2164 7.1983e-09

Cortical/
subcortical

0.0115 1 0.0115 23.9758 1.1815e-06

Interaction 8.7399e-05 1 8.7399e-05 0.1824 0.6695

Error 0.3815 796 4.7928e-04

Total 0.4095 799

network are categorized within moderate reliability and dorsal
attention network, limbic network, frontoparietal network, and
default mode network are categorized within fair reliability.

At the group level, the measurements are quite consistent.
Values are given in Table 6. The correlation between average
entropy values for the seven networks across the two scans is
0.96 during rest, and 0.87 during task. The lower group-level

TABLE 4 | Two-factor ANOVA comparing mean network entropies in 200 scans at
task and rest.

Source Sum of squares d.f. Mean square F score p-Value

Rest/task 0.0691 1 0.0691 148.3814 2.7085e-33

Networks 0.0231 6 0.0039 8.2657 6.8201e-09

Interaction 0.0062 6 0.0010 2.2006 0.0402

Error 1.2980 2786 4.6589e-04

Total 1.394 2799

correlation during task is consistent with the reduced consistency
during task observed at the individual level.

DISCUSSION

In this article sample entropy was used to quantify the temporal
complexity of fMRI data. The complexity of time-series obtained
from healthy subjects in resting state and during the performance
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TABLE 5 | Consistency of entropy values in seven functional networks for scan 1 and scan 2.

Rest Task

ICC r p Two-tail ICC r p Two-tail

Visual 0.454 0.456 0.883 0.429 0.432 0.845

Somatomotor 0.474 0.475 0.092 0.467 0.468 0.915

Dorsal attention 0.513 0.523 0.755 0.365 0.369 0.321

Ventral attention 0.586 0.587 0.834 0.454 0.466 0.177

Limbic 0.525 0.527 0.660 0.345 0.363 0.107

Frontoparietal 0.554 0.556 0.464 0.370 0.382 0.174

Default mode 0.535 0.539 0.700 0.381 0.400 0.377

TABLE 6 | The average entropy and standard deviation of each network for scan 1 and scan 2.

Rest Task

Scan 1 (x̄) Scan 1 (σ) Scan 2 (x̄) Scan 2 (σ) Scan 1 (x̄) Scan 1 (σ) Scan 2 (x̄) Scan 2 (σ)

Visual 0.19235 0.02226 0.19202 0.02018 0.1781 0.0174 0.1777 0.0198

Somatomotor 0.18497 0.02280 0.18109 0.02171 0.1765 0.0231 0.1767 0.0247

Dorsal attention 0.19045 0.02187 0.19108 0.01849 0.1857 0.0189 0.1834 0.0217

Ventral attention 0.19084 0.02180 0.19043 0.02078 0.1832 0.0198 0.1800 0.0249

Limbic 0.18790 0.02287 0.18892 0.02466 0.1800 0.0199 0.1756 0.0276

Frontoparietal 0.19515 0.02043 0.19650 0.01854 0.1838 0.0192 0.1804 0.0247

Default mode 0.19129 0.02115 0.19204 0.01880 0.1836 0.0182 0.1814 0.0248

of a working memory task were calculated. Furthermore, Pearson
correlation was calculated to examine the similarity between the
complexities of different brain networks across individuals.

Our results add to existing studies of complexity in the
BOLD signal to show that entropy varies across brain networks
and during working memory as compared to rest. In general,
entropy decreases during a task in a network-dependent manner.
Moreover, when examined across subjects, entropy tends to
change in the same way across many brain areas, giving rise
to strong correlations within subcortical regions and within
subcortical regions. Interestingly, the correlation is weaker
between subcortical and cortical regions, suggesting that while
entropy within each region tends to change in the same way
across subjects, there is greater variability in the relation between
the two regions at the individual level.

Entropy During Rest and Task
Performance
Entropy across the brain has an average value of 0.1913 ± 0.023
(in rest) and 0.1815± 0.019 (in working memory task), indicating
that it falls within a fairly narrow range. Within this range,
however, there are distinct variations across networks and
between cortical and subcortical structures. The cortical areas
both in the task data and rest data demonstrate significantly
lower entropy in comparison to the subcortical areas. These
findings are consistent with previous work by Jia et al. (2017),
who created a sample entropy map of the brain in healthy subjects
and showed higher values in the caudate, the olfactory gyrus, the
amygdala, and the hippocampus, and lower values in primary
sensorimotor and visual areas. If entropy of the BOLD signal is

taken as a surrogate for neural complexity, this indicates that
the neural activity in the cortical areas is more organized than
in subcortical areas, in line with the general view of the cortex
as the primary site of most cognitive processes. The decrease in
entropy in both cortical and subcortical areas during the working
memory task might then reflect an increase in the coordination
of activity needed to perform the task. Interestingly, the decrease
in entropy was not limited to areas typically activated by the
task. For example, the extensive activation during the task is
observed in the frontoparietal network (Barch et al., 2013), but
comparable changes in entropy are found in networks like the
limbic network that are not typically activated. Moreover, the
default mode network is deactivated during task performance,
so that if entropy directly reflected activity, entropy there should
increase during the task. In fact, we observe a decrease in entropy
instead, evidence that entropy is sensitive to aspects of the BOLD
signal that are not directly tied to activity levels. These findings
are consistent with a previous study by Zhang et al. (2016),
who observed differences in entropy across fMRI studies while
subjects were listening passively to (i) emotionally neutral words
alternating with no word as the control condition (neutral-
blank), and (ii) threat-related words alternating with emotionally
neutral word as the experimental condition (threat-neutral). The
relative independence of entropy measures from changes in the
BOLD signal associated with activation during a task suggests
they may provide complementary insight into brain function.

Similarity Across Networks
In both rest and task, the entropy of both the visual network
and the limbic network tends to be less coupled to other brain
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networks across individuals. For the most part, the relationship
between networks is similar across rest and task. However, during
the working memory task, the entropy in the dorsal attention
network becomes less coupled to entropy in the visual and
somatomotor networks. When the brain is further divided into
69 parcels, the decoupling between areas is especially noticeable
in the cortex, where there are clear differences in the amount of
change in correlation between particular cortical areas during the
task. This suggests that there may be an interesting amount of
individual variability that relates to task performance, and future
work should examine whether particular patterns of entropy
changes during task predict performance on the task by the
individual subject.

Limitations
As with all BOLD-based measurements, the entropy calculated
here is based on the hemodynamic response to neural activity
rather than the activity itself. The inherent lowpass filter of the
vasculature limits the frequency content of the signal and reduces
the amount of information it carries. However, the change in
entropy observed during task performance is promising evidence
that some of the information about the complexity of neural
activity is preserved in the BOLD signal.

CONCLUSION

BOLD-based measurements of sample entropy vary across
brain regions, with lower values in cortical than subcortical
areas. During performance of a working memory task, entropy
decreases across the whole brain but in a region-dependent
manner. Both of these findings are consistent with the idea
that entropy encodes information about the complexity of
neural activity that is separate from simple measurements
of activation. When examined across individuals, entropy
changes are generally correlated, particularly within cortical and
within subcortical areas. More variability in this correlation

is observed during the working memory task, hinting at
potentially important differences at the subject level that may be
linked to performance.
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