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Editorial on the Research Topic
Roles of Fc Receptors in Disease and Therapy

The humoral immune response is one of the central tenets of mammalian immunity. Delivered
through the production of antibodies of multiple classes (IgG, IgM, IgA, IgD, and IgE) and
sub-classes (e.g., IgG1, IgG2, IgG3, and IgG4 in humans) their activities are achieved through
their inherent ability to bind with exquisite specificity to a given target antigen and then engage
various immune effector functions to elicit the appropriate response. Chief amongst these are
cellular immune effectors such as macrophages, NK cells, and neutrophils which are engaged
through their expression of Fc receptors (FcR), binding the Fc portion of the immunoglobulins.
Accordingly, different classes and isotypes of antibody engage a selection of different FcR. For
example in the murine system there are receptors that are specific for IgG, IgM, IgE as well as
receptors that are dually-specific for IgM and IgA with paralogues in human cells. A bewildering
array of immune and non-immune cells express these various receptors in different combinations,
leading to a highly complex system for regulating and evoking antibody responses. Various FcR
evoke cellular activation (FcyRIIa and FcyRIIa), whereas others are inhibitory (FcyRIIb), with still
others being capable of evoking intracellular transport and recycling of IgG (FcRn) to establish long
serum half-lives. Clearly, careful regulation of expression, signaling and modulation is required for
a healthy, well-functioning and balanced immune system. In this Research Topic, a series of articles
are provided to reveal comprehensive insights on the role of these various FcR in health and disease,
taking into account the wide spectrum of receptors and cells expressing them. Most importantly
the insights presented in these articles pave the way for powerful immunotherapies and emerging
principles about how FcR can be exploited for therapeutic purposes for various diseases, including
infectious diseases, autoimmune diseases, and cancer.

In total, 6 original research articles were contributed on the various topics, spanning the genetics
and function of the disparate FcyR. While Kerntke et al. revisited the question of the number and
expression pattern of FcyR on myeloid cells, Nagelkerke et al. dissected the genetic variation within
the family, including duplications and deletions within the low affinity FcyR-locus. How the GPI-
linked FcyRIIIb affects tumor cell killing by PMN through therapeutic monoclonal antibodies is
furthermore tackled by Treffers et al. while Kang et al. describes a new re-engineered IgG molecule
that selectively engages FcyRIIIa-V158 for enhanced therapeutic benefit through a single FcyR.
Brandsma et al. also investigated the differential capacity of tumor killing through FcR that engage
different antibody isotypes, specifically addressing the role of FcaR vs. FcyR. Parameters affecting
the function of FcRn were also tackled. Finally, Kendrick et al. mathematically modeled FcRn
kinetics and suggest a novel reduced-order model based on a new expression for the fractional
catabolic rate that can be used to predict plasma IgG responses.
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Editorial: FcyR in Disease and Therapy

This Research Topic also features 18 Review Articles spanning
these disparate areas. FcRn is tackled by Pyzik et al. and
Nagelkerke et al. also contributes a comprehensive review of
FcyRII-FeyRIII genetics. Anania et al. systematically discuss the
structure-function relationship of FcyRII receptors, while the
contribution of FcyRIIb in the development of autoimmune
diseases in mouse models gets a comprehensive assessment by
Verbeek et al.. Breedveld and van Egmond review pathologies
and new opportunities resulting from targeting FcoR. In
addition, Foss et al. extend the scope of this topic to the cytosolic
FcR, TRIM21, while Liu et al. and Kubagawa et al. discuss
the role of the IgM binding, FcpuR in immunity. The role of
FcR in infectious diseases and vaccine development is covered
by Boudreau and Alter, discussing FcR and their role in the
protection against influenza infection and future prospects to
leverage FcR immune activity for the development of vaccines
with Jenks et al. focusing on the subversion of immune responses
by FcR encoded by Herpes simplex virus. The involvement of FcR
in various inflammatory diseases such as rheumatoid arthritis,
systemic lupus erythematosus, and immune thrombocytopenia
with a focus on antibody-mediated autoimmunity is covered by
Mkaddem et al.. This includes the mechanism of FcR-receptor-
mediated inflammation and how to potentially exploit this
knowledge therapeutically. Katsinelos et al. focuses on the role of
antibodies and receptors involved in neurodegeneration during
Alzheimer’s and Parkinson’s disease, while Castro-Dopico and
Clatworthy discuss the role of FcR in inflammatory diseases of
the gut, namely inflammatory bowel diseases. Patel et al. discusses
the multiple variables that are at play in the interface between
target and effector cells through IgG-FcyR engagement, with a
focus on the largely undescribed role for FcyR-glycosylation in
mediating the underlying recognition events. FcR signaling is
also specifically covered by Gomez et al. for FceRI in Allergic
disease, including seasonal rhinitis, atopic dermatitis, urticaria,
anaphylaxis, and asthma, while Koenderman et al. reviews
how the activation status of FcR can be affected by inside-out
signaling. Finally, the importance of FcR in cancer and cancer

therapies, in particular, the role of checkpoint inhibitors therein,
is given comprehensive review by Chen et al. and special focus on
FcyRIIb mediated antitumor immunity by Teige et al.

Overall, it is clear that the knowledge acquired from
the articles contained within this special issue highlights the
complexity of the FcR family and their importance in multiple
aspects of health and disease. However, equally clear is the
fact that this family of receptors, despite being investigated for
over 4 decades, still harbors many secrets, reinforcing that we
still lack a complete understanding of their complex regulation,
interaction and impacts. As central to humoral immunity,
modulating disease pathogenesis and acting as a key determinant
of antibody therapeutics, it is also similarly evident that further
research in this area is still warranted. We look forward to
seeing what the intensive study of these receptors shows in the
coming decade.
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The function of the low-affinity IgG-receptor FcyRlllb (CD16b), which is uniquely and
abundantly expressed on human granulocytes, is not clear. Unlike the other Fcy receptors
(FcyR), it is a glycophosphatidyl inositol (GPI) -anchored molecule and does not have
intracellular signaling motifs. Nevertheless, FcyRIllb can cooperate with other FcyR to
promote phagocytosis of antibody-opsonized microbes by human neutrophils. Here we
have investigated the role of FcyRlllb during antibody-dependent cellular cytotoxicity
(ADCC) by neutrophils toward solid cancer cells coated with either trastuzumab
(anti-HER2) or cetuximab (anti-EGFR). Inhibiting FcyRlllb using CD16-F(ab’), blocking
antibodies resulted in substantially enhanced ADCC. ADCC was completely dependent
on FcyRlla (CD32a) and the enhanced ADCC seen after FcyRlllb blockade therefore
suggested that FcyRlllb was competing with FcyRlla for IgG on the opsonized target
cells. Interestingly, the function of neutrophil FcyRlllb as a decoy receptor was further
supported by using neutrophils from individuals with different gene copy numbers of
FCGR3B causing different levels of surface FcyRIllb expression. Individuals with one
copy of FCGR3B showed higher levels of ADCC compared to those with two or
more copies. Finally, we show that therapeutic antibodies intended to improve FcyRllla
(CD16a)-dependent natural killer (NK) cell ADCC due to the lack of fucosylation on the
N-linked glycan at position N297 of the IgG+ heavy chain Fc-region, show decreased
ADCC as compared to regularly fucosylated antibodies. Together, these data confirm
FcyRlllb as a negative regulator of neutrophil ADCC toward tumor cells and a potential
target for enhancing tumor cell destruction by neutrophils.

Keywords: FcyRlllb, neutrophil, ADCC, cancer, granulocyte, Fc-receptor, CNV, glycoengineering
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INTRODUCTION

Fc-receptors play a vital role in cancer immunotherapy by
inducing ADCC and antibody dependent cellular phagocytosis
(ADCP). Most cancer targeting therapeutic antibodies currently
on the market are of the IgG class, and thus human
FcyRs constitute the key receptors for ADCC during cancer
immunotherapy (1). The principal FcyR receptor on neutrophils
required for mediating ADCC of solid cancer cells appears to
be FcyRlIla (2, 3), with ~30-60-thousand copies expressed per
cell (4), sometimes in combination with the activating receptor
FcyRIIc, present on a minority of about 15-20% of Caucasian
individuals (5). The high affinity receptor FcyRI (CD64) is
only present on activated neutrophils, but does generally not
contribute to ADCC of solid cancer cells even when expressed
(3). Both FcyRI and FeyRIIa signal via immunoreceptor tyrosine-
based activation motifs (ITAM), encoded in the cytoplasmic
tail of the receptors (FcyRlIla) or in the associated y-chain
(FcyRI). Lastly, neutrophils express the highly abundant, 100-
200-thousand copies per cell, low affinity receptor FcyRIIIb,
which is a GPI-linked Fc-receptor that lacks intrinsic intracellular
signaling capacity (4). This receptor is selectively present on
neutrophils and on a subset of basophils (6). In spite of the lack
for direct signaling through FcyRIIIb evidence from a number of
studies show that FcyRIIIb cooperates together with other FcyR
in the context of the phagocytosis of opsonized microbes (7).
This suggests that the abundantly expressed FcyRIIIb primarily
acts to facilitate enhanced recognition and that ITAM signaling
via the other FcyR, in particular FcyRIIa, is sufficient, or at least
instrumental, to trigger the phagocytic process. The FcyRIIIb-
encoding gene, FCGR3B, which only occurs in humans and
certain primates (8), is located within the FCGR2/3 locus on
human chromosome 1, where it is prone to gene copy number
variation (CNV) (9). The CNV of FCGR3B ranges from very
rare individuals with no FCGR3B, to individuals with five copies
of this gene (10). FCGR3B CNV has been shown to affect
various diseases, i.e., a low CNV of FCGR3B was shown to
result in an increased susceptibility to autoimmune diseases like
systemic lupus erythematosus (SLE) (11, 12), primary Sjogren’s
syndrome (pSS) (12), Wegener’s granulomatosis (WG) (12) and
rheumatoid arthritis (RA) (13). A high CNV of FCGR3B has
been associated with psoriasis vulgaris in Han Chinese (14).
Nevertheless, no enhanced susceptibility to bacterial or fungal
infection was observed in very rare individuals lacking FcyRIIIb
expression (15), also showing that their neutrophils were able
to function normally in regards to phagocytosis and superoxide
generation (16). In addition, several polymorphic variants of the
FCGR3B gene, known as the NA1, NA2, and SH haplotypes
exist (17, 18), which do not result in marked differences in IgG-
affinity. On the level of neutrophil-mediated ADCC of cancer
cells all polymorphic variants appear similarly effective (3), but

Abbreviations: FcyR, Fcy receptor; ADCC, antibody dependent cellular
cytotoxicity; NK cell, natural killer cell; ADCP, antibody dependent cellular
phagocytosis; ITAM, immunoreceptor tyrosine-based activation motif; CNV,
copy number variation; G-CSE granulocyte-colony stimulating factor; IFNy,
interferon-y.

neutrophils from NAINA1 individuals have been reported to
bind and phagocytose IgG-opsonized bacteria and red cells
somewhat more effectively than their heterozygous NAINA2 and
homozygous NA2NA2 counterparts (19, 20).

Neutrophils constitute a major first line of host immune
defense against fungal and bacterial infection (21). After
extravasation from blood circulation they can enter a variety of
tissues, including solid tumors (22-25). And even though the
role of neutrophils in cancer is complex, with evidence for both
positive or negative effects on tumor development (26), it is clear
that neutrophils can contribute to the destruction of cancer cells
particularly upon treatment with cancer therapeutic antibodies,
as demonstrated now in a variety of animal models (27-30).
Recently, we have found that neutrophils destroy antibody-
opsonized cancer cells by a unique cytotoxic mechanism, termed
trogoptosis, where neutrophils take up small pieces of cancer
cell membrane, which leads to mechanical injury of the plasma
membrane of cancer cells causing necrotic cell death (31). This
neutrophil-mediated cytotoxic process can further be enhanced
by inhibiting the interaction between the innate inhibitory
immunoreceptor signal regulatory protein a (SIRPa) and CD47
(31-33). SIRPa is specifically expressed on myeloid cells and
interacts with its ligand CD47, which is expressed ubiquitously,
and is often overexpressed on cancer cells, acting as a “don’t
eat me” signal to prevent phagocytosis by macrophages (33-35).
Interference with CD47-SIRPa interactions has also been shown
to increase ADCC by monocytes and neutrophils, making this
interaction an innate immune checkpoint and an attractive target
for enhancing antibody therapy in cancer (32, 33, 36). Obviously,
it is of interest to identify other pathways that negatively impact
neutrophil ADCC.

Even though FcyRIIIb is a very abundant protein on
neutrophils (37), its actual function has remained uncertain.
Available evidence in the context of phagocytosis of antibody-
opsonized bacteria by human neutrophils suggests that FcyRIIIb
cooperates with activating FcyR, like FcyRIla/c, to promote
phagocytosis (7, 38-40), and we have confirmed this in the
current study. However, here we show that with respect to
neutrophil mediated ADCC, FcyRIIIb rather acts as a decoy
receptor for IgG, likewise competing with FcyRIIa for the binding
of therapeutic antibodies, thereby resulting in decreased ADCC.
Thus, in the context of cancer FcyRIIIb on neutrophils uniquely
functions as a limiting factor, thereby identifying it a as potential
target for enhancing the therapeutic efficacy of cancer therapeutic
antibodies.

MATERIALS AND METHODS

Cells and Culture

The HER2/Neu-positive human breast cancer carcinoma cell
line SKBR3 (ATCC) was cultured in IMDM medium (Gibco)
supplemented with 20% fetal bovine serum, 2 mM L-glutamine,
100 U/mL penicillin and 100 pg/mL streptomycin at 37°C and
5% CO,. SKBR3-CD47KD cells were generated by lentiviral
transduction of pLKO.1-puro—CD47KD (5’ ccgggcacaattacttgga
ctagttctcgagaactagtccaagtaattgtgcettttt 3'), resulting in a CD47
expression of 10-15% of the parental cell line according to
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instructions provided by the manufacturer (Sigma), as show
previously (32). Transduced cells were selected with 1 pg/mL
of puromycin. As control cell line, empty vector shRNA were
used (SKBR3-SCR). The CD47 knockdown cell line was routinely
verified by flow cytometry.

The EGFR-positive human epidermoid carcinoma cell
line A431 (ATCC) was cultured in RPMI medium (Gibco)
supplemented with 10% fetal bovine serum, 2 mM L-glutamine,
100 U/mL penicillin and 100 pg/mL streptomycin at 37°C and
5% CO,. A431-CD47KO cell lines were generated by lentiviral
transduction of pLentiCrispR-v2—CD47KO [pLentiCrispR-v2
was a gift from Feng Zhang (Addgene plasmid #52961)], using
5’ cagcaacagcgecgcetacca 3’ as the CD47 CrispR target sequence.
Transduced cells were selected with 1pg/mL of puromycin,
followed by limiting dilution. A clone lacking CD47 expression
was selected by flow cytometry. An A431-SCR cell line was
used as control for the CD47KO generated using CRISPR-Cas9
technology using a scrambled vector.

Neutrophil Isolation

Neutrophils from healthy donors were isolated as previously
described (41). In short, granulocytes were isolated from blood by
density gradient centrifugation (2,000 rpm, 20 min, 20°C) with
isotonic Percoll (1.069 g/mL) and erythrocyte lysis. The pellet
fraction was lysed with ice-cold NH4Cl (155 mmol/LNH,CI, 10
mmol/L KHCO, 0.1 mmol/L EDTA, pH 7.4) solution for 5-
10min to destroy erythrocytes. Cells were centrifuged at 4°C
(1,500 rpm, 5min), and residual erythrocytes were lysed for
another 5min. After this, granulocytes were washed twice in
cold phosphate buffered saline (PBS) containing HSA (0.5%
wt/vol).Isolated neutrophils were used at a concentration of
5 x 10° cells/mL. Cells were cultured in HEPES™ medium
(containing 132 mM NaCl, 6.0 mM KCl, 1.0 mM CaCl,, 1.0 mM
MgSOy4, 1.2mM K,;HPOy, 20 mM Hepes, 5.5 mM glucose, and
0.5% HSA), in the presence of 10 ng/ml clinical grade G-CSF
(Neupogen; Amgen, Breda, The Netherlands) and 50 ng/mL
recombinant human interferon-y (Pepro Tech Inc, USA) at a
concentration of 5 x 10° cells/mL for 4 or 16 h. After 16 h, cell
viability was determined by the percentage of FITC-Annexin
V (BD Pharmingen, San Diego, CA) positive cells on FACS,
after which the cell concentration was corrected to 5 x 10°
viable cells/mL. Cells were consequently washed and prepared for
analysis by ADCC assay. All blood was obtained after informed
consent and according to the Declaration of Helsinki principles
(version Seoul 2008).

Antibodies and Reagents

FcyR expression was determined on FACS and depicted as MFI
(median fluorescent intensity) using the following antibodies:
anti-human FcyRI (Clone 10.1, mouse IgG1, BD Pharmingen,
San Diego, CA), anti-human FcyRIIa (Clone AT10, mouse
IgG1, AbD Serotec, Oxford, U.K.), anti-human FcyRIIIb (Clone
3G8, mouse IgGl, BD Pharmingen, San Diego, CA), all
FITC labeled. FcyRs antagonistic antibodies were used in
ADCC and trogocytosis assays at a final concentration of
5 pg/mL: monovalent human Fc fragments (Bethyl, USA)
for blocking FcyRI as used previously (3), anti-human CD32
F(ab), (Clone 7.3, Ancell) to block FcyRIIa/b/c, anti-human

CD16 F(ab’); (Clone 3G8, Ancell) to block FcyRIIla/b at a
concentration of 10 pwg/mL. CD11b expression was determined
with the FITC labeled anti-CD11b antibody (Lot 8000236273,
Pelicluster), and SIRPa with the FITC labeled mouse IgG;
antibody 12C4, previously described in (32). FITC-labeled mouse
IgGl was used as isotype control (Pelicluster). Afucosylated
trastuzumab was generated in our laboratory as described
before for afucosylated rituximab (42). Briefly, CHO-KI or
Lec13 cells were transfected with antibody LC and HC
expression constructs using transfection kit V from the Amaxa
Nucleofectior System (Lonza, Cologne, Germany). The medium
was exchanged by culture medium after 48 h, which contained
500 pg/mL hygromycin B. Single-cell subclones were created
by limiting dilution. The produced antibodies were purified
from the cell culture supernatant using CaptureSelect™ IgG-
CH1 Affinity Matrix (Thermo Fisher Scientific). IgA2-HER2
was generated by synthesizing (IDT, Leuven, Belgium) the
variable heavy and light chain V gene encoding for trastuzumab
(sequence as obtained from https://www.drugbank.ca/) and
cloning into pcDNA3.1 expression vectors encoding for the
constant regions for IgA2 and kappa, respectively, as described
previously (43). The resulting expression vectors were then
used to produce the antibodies in HEK Freestyle cells as we
described previously (44, 45). Briefly, after transfection, cell
supernatant was harvested after 5 days, after which cells were
centrifuged (>4000g) and the supernatant was filtered using
a 0.45nm puradisc syringe filter (Whatmann, GE Healthcare,
10462100). Antibody concentration was determined via enzyme-
linked immunosorbert assay (ELISA), as described previously
(46). To create afucosylated antibodies, the decoy substrates
for fucosylation, 2-deoxy-2-fluoro-l-fucose (2FF) (Carbosynth,
MD06089) were added 4h post transfection. Similarly, human
anti-pneumococcal serotype 6B Gdobl antibodies (IgG;) (47,
48), regular and afucosylated were produced in the same
system (44, 45). They were used at a concentration of
10 pg/mL throughout the experiment to opsonize S. pneumoniae.
Polyclonal human IgG (IVIG, nanogam, Sanquin) was used to
opsonize S. aureus at a concentration of 1 mg/mL) for 10 min
at 37°C.

ADCC

Cancer cell lines were labeled with 100 wCi °'Cr (Perkin-Elmer)
for 90 min at 37°C. After 3 washes with PBS, 5 x 10° cells were
incubated in RPMI medium supplemented with 10% fetal bovine
serum, 2 mM L-glutamine, 100 U/mL penicillin and 100 pg/mL
streptomycin for 4 h at 37°C and 5% CO, in a 96-wells U-bottom
plate together with neutrophils in a E:T ratio of 50:1 in the
presence of 5 pug/mL therapeutic antibody. After the incubation
supernatant was harvested and analyzed for radioactivity using
a gamma counter (Wallac). The percentage of cytotoxicity was
calculated as [(experimental cpm- spontaneous cpm)/ (total
cpm-spontaneous cpm)] x 100%. All conditions were measured
in triplicate.

Trogocytosis Assay

To determine the amount of tumor membrane taken up by
neutrophils a FACS based assay was used. Cancer cells were
labeled with a lipophilic membrane dye (DiO, 5wM, Invitrogen)
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for 30 min at 37°C. After washing the target cells with PBS
they were incubated with neutrophils in a U-bottom 96-
wells plate at a E:T ratio of 5:1 in the absence or presence
of 0.5ug/mL therapeutic antibody. Samples were fixed with
stopbuffer containing 0.5% PFA, 1% BSA and 20mM NaF
and measured by flow cytometry. After gating for neutrophil
population, the mean fluorescent intensity (MFI) and the
percentage of cells positive for DiO were determined.

Bacterial Phagogytosis

Uptake of FITC labeled S. aureus was performed in a 96 wells
plate for 15min at 37°C shaking, with 0.5 x 10° neutrophils
and 25 x 10° bacteria in a final volume of 250 wL in HEPES*
medium. Bacteria were opsonized with polyclonal I1gG (IVIG)
(1 mg/mL) for 10 min at 37°C. Cells were fixed with stopbuffer
(0.5% PFA, 1% BSA, 20 mM NaF) for 30 min at 4°C and measured
by flow cytometry (BD FACSCanto II). Uptake of Dy488 labeled
heat killed Streptococcus Pneumoniae was performed in a 96
wells plate for 30 min at 37°C while shaking, with 1.5 x 10%
neutrophils and 5 x 10° bacteria in a final volume of 225 pLL in
HEPES™ medium. When applicable, neutrophils were incubated
with FcyR blockers for 15min at RT. Bacteria were opsonized
with GDobl1 antibody at a concentration of 10 pg/mL throughout
the experiment. Cells were fixed with stopbuffer (0.5% PFA, 1%
BSA, 20mM NaF) for 30 min at 4°C and measured by flow
cytometry (BD FACSCanto II).

MLPA

Genotyping of individuals for FCGR3B CNV was performed
using the FCGR-specific Multiplex Ligation-dependent Probe
Amplification (MLPA) assay (MRC Holland), using genomic
DNA isolated from whole blood with the QIAamp® kit (Qiagen,
Hilden, Germany). The MLPA assay was performed as described
previously (49). In brief, 5 uL of DNA (20 ng/pL) was denatured
at 98°C for 5 min and subsequently cooled to 25°C in a thermal
cycler with heated lid; To each sample 1.5 iL buffer and 1.5 pL
buffer probe mix were added and incubated for 1 min at 95°C,
followed by 16h at 60°C. After this, 32 pnL of ligase-65 mix
was added to each sample at 54°C, followed by an incubation
of 15min at 54°C and 5min at 98°C, followed by a 4 times
dilution of the ligation mixture. This was followed by addition
of 10 LL of polymerase mix, which contained one single primer
pair, after which the polymerase chain reaction (PCR) was started
immediately. PCR conditions were 36 cycles of 30 s at 95°C, 30's
at 60°C, and 60s at 72°C, followed by 20 min at 72°C. After
the PCR reaction, 1 wL of the PCR reaction was mixed with 0.5
nL CXR 60-400 (Promega, Madison, WI) internal size standards
and 8.5 WL deionized formamide, and the mixture was incubated
for 10min at 90°C. The products were then separated by
electrophoresis on an ABI-3130XL (Applied Biosystems, Foster
City, CA).Data were analyzed using GeneMarker v1.6 sofware.

IL-8 ELISA

IL-8 production was measured using the Human IL-8 ELISA
Ready-SET-Go! (2nd Generation) kit (eBioscience, Thermo
Fisher Scientific, Waltham, MA) according to manufacturer’s
instructions. Wavelengths were measured with an iMark

microplate absorbance reader (Bio-rad Laboratories, Hercules,
CA).

Study Approval

The study was performed according to national regulations
with respect to the use of human materials from healthy,
anonymized volunteers with written informed consent, and the
experiments were approved by the Medical Ethical Committee
of the Academic Medical Center in Amsterdam according to the
Declaration of Helsinki principles (version Seoul 2008).

Data Analysis and Statistics

Statistical differences were determined by either paired or
ordinary one way ANOVA, with Sidak or Dunnetts post-test, or
by paired student’s t-test, as indicated in the figure legend.

RESULTS

We studied the role of FcyRIIIb during neutrophil ADCC toward
solid cancer cells. Although FcyRIIIb is apparently unable to
signal by itself, it definitely has the capacity to bind IgG and as
such could potentially influence responses via other activating
Fcy-receptors on neutrophils, in either a positive or negative
fashion. Such activating FcyRs present on neutrophils include
FcyRI, only present after neutrophil activation, and FcyRlla,
which appears to be the main receptor required for ADCC
against cancer cells expressing the tumor antigens HER2/Neu
or EGFR (Supplementary Figure 1) (2, 3). Neutrophil-mediated
ADCC toward cancer cells can be enhanced after neutrophil-
activation, e.g., by granulocyte-colony stimulating factor (G-
CSF) and interferon-y (IFNy) (32). This stimulation causes
a change in the expression levels of the FcyRs, resulting in
expression of FcyRI, a small decrease in expression in FcyRlIla,
and, of particular interest, a substantial decrease in FcyRIIIb
(Figure 1A). The reduction in FcyRIIIb expression could well be
due to cleavage of FcyRIIIb by protease release after neutrophil
activation (50, 51). As mentioned before FcyRIIIb is subject to
considerable gene CNV (9), and the expression levels of FcyRIIIb
are directly linked to the number of copies present in the genome
(Figure 1B). Upon stimulation FcyRIIIb levels on neutrophils
are gradually reduced and the variation among individuals with
different FcyRIIIb levels are essentially blunted (Figure 1B).

FcyRIllb Functions as a Decoy Receptor

During Neutrophil ADCC

We first determined the effect of blocking FcyRIIIb with F(ab’),
fragments of specific anti-FcyRIIIb on both their ability to
take up cancer cell fragments (trogocytosis) (Figure2A) as
well as their cytotoxic capacity, as measured by >!Cr-release.
The use of F(ab’),-fragments is absolutely critical here as
intact anti-FcyR antibodies may also exert non-specific blocking
by the so called “Kurlander” phenomenon (52). Blocking
FcyRIIIb resulted in a prominent increase in both trogocytosis
and ADCC, clearly suggesting that FcyRIIIb plays a negative
role in neutrophil-mediated antibody-dependent destruction
of cancer cells (Figures 2B-J). Similar results were obtained
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FIGURE 1 | Expression of FcyR on neutrophils depends on activation status and CNV. (A) FcyR expression, shown as representative histograms and bar graphs
(MFI), was determined for freshly isolated neutrophils and neutrophils stimulated for 4 h or overnight with G-CSF and IFNy. (B) Neutrophils were isolated from donors
with different copy numbers of FCGR3B, and their FcyRlllb expression was checked using flow cytometry, before stimulation, after 4 h stimulation and after overnight
stimulation with G-CSF and IFNy. Individuals with only one copy of FCGR3B are represented by green dots, donors with two copies by black dots, donors with three
or more copies of FCGR3B by blue dots. Each symbol represents an individual donor per color. Data shown are mean + SEM (A) and mean (B) with N = 20 (A) and
N = 5-8 (B), statistical analysis was performed by one-way paired ANOVA with Tukey post-test. ns, non-significant; **p < 0.01, **p < 0.001, and ***p < 0.0001.
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FIGURE 2 | Inhibition of FcyRlllb results in increased ADCC and trogocytosis. (A) Gating strategy for FACS-based trogocytosis assay. Histograms show neutrophil
population becoming positive for DIO after incubation with trastuzumab coated SKBR3-scrambled (SKBR3-SCR) cells. (B=J) Blocking FcyRlllb increases ADCC and
trogocytosis of trastuzumab coated SKBR3-SCR cells (white background) when using non-stimulated (B-D), 4 h stimulated (E-G) and to a lesser extent overnight
(H-J) stimulated neutrophils (with G-CSF and IFNy). This effect is also present when inhibiting CD47-SIRP« interactions by CD47 knock-down (SKBR3-CD47KD, gray
background). Data shown are means + SEM with (B) N = 26, (C) N = 20, (D) N =20, (E)N =17, (F)N =18, (GQIN =18, (H)N =14, () N = 8, (J) N = 8, statistical
analysis was performed by paired t-test. ns, non-significant; *p < 0.05, **p < 0.01, **p < 0.001, and ****p < 0.0001.

when using other solid cancer cells, such as the EGFR-  when evaluated after overnight stimulation with G-CSF and
positive A431 cell line combined with the therapeutic antibody =~ IFNy both neutrophil trogocytosis and ADCC were higher
cetuximab (Supplementary Figures 2A-C). However, with both  and the effect of FcyRIIIb blocking eventually disappeared
tumor targets, this negative role of FcyRIIIb was only visible  (Figures 2H-J), which could be explained, at least in part,
when using freshly isolated neutrophils or neutrophils that by the observed reduction in FcyRIIIb surface expression
had only been briefly stimulated (i.e., for 4h; Figures 2E-G),  (Figure 1). Of interest, under these conditions the enhancing
when relatively large quantities of FcyRIIIb are still present effect of CD47-SIRPa interference on cytotoxicity was still
on the neutrophil cell surface (see Figurel). In contrary, clearly visible (Figure 2H). Whether or not FcyRIIIb is highly
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expressed on neutrophils, FcyRIIa remains the primary receptor
responsible for triggering ADCC (Supplementary Figure 1).
Thus, the principal FcyR mediating trogocytosis and subsequent
ADCC of antibody-opsonized solid cancer cells by human
neutrophils is FcyRIla/c, and FcyRIIIb appears to function as
a decoy receptor that apparently competes with FcyRIla/c for
binding to the Fc-portion of the opsonizing cancer therapeutic
antibody.

To mimic checkpoint inhibitor blockade, we used SKBR3
cells with shRNA-knock-down for CD47 (reduction by
~85-90%) (SKBR3-CD47KD) to inhibit the interactions
between CD47 and SIRPa (32, 33, 36). The effect of
inhibiting both CD47-SIRPa interactions and FcyRIIIb
became even more apparent (Figure2, gray background),

FcyRIIIb blockade were not part of the same inhibitory
pathway and that such interferences could generate additive
effects.

We hypothesized that blocking of FcyRIIIb could perhaps be
resulting in increased production of IL-8 by neutrophils, which
was previously described to occur when crosslinking FcaRI on
neutrophils (53). The use of IgA therapeutic antibodies enhances
neutrophil-mediated ADCC of cancer cells compared to using
IgG antibodies (54, 55), which could be in part due to the
production of cytokines, such as IL-8, by the neutrophils. We
therefore determined the presence of IL-8 in the supernatant
after neutrophil-mediated ADCC of SKBR3 cells in the presence
or absence of FcyRIIIb blocking antibodies. The IL-8 levels
that were produced using an anti-HER2 IgG antibody were

also indicating that disruption of CD47-SIRPa and  significantly lower compared to IgA, as reported before (45),
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and additional inhibition of FcyRIIIb showed no enhanced
production of IL-8 (Supplementary Figure 2D).

FCGR3B CNV Determines Neutrophil
ADCC

As indicated above FcyRIIIb surface expression on neutrophils
is subject to considerable variation, and this is largely caused by

gene copy number variation within the FCGR2/3 locus (15). This
enabled us to further study the observed negative contribution
of FcyRIIIb to neutrophil ADCC. We therefore evaluated
neutrophils from individuals with different copy numbers of
FCGR3B determined by MPLA-based genotyping (49). Indeed,
individuals with one copy of the gene have significantly increased
ADCC and trogocytosis capacity compared to individuals with
2 or 3 or more copies, using neutrophils either freshly isolated
or after 4h stimulation with G-CSF and IFNy (Figure 3).
However, after overnight stimulation this difference essentially
disappeared in all tested individuals and irrespective of FCGR3
gene copy number (Figure1l). When comparing individuals
with low (1x) and high FcyRIIIb (2-4x) expression blocking
of FcyRIIIb could enhance ADCC to indistinguishable levels
(Supplementary Figure 3), demonstrating that the difference in
ADCC capacity between individuals with different FCGR3B CNV
can indeed largely be attributed to the difference in FcyRIIIb
expression on neutrophils. In these experiments the levels of
other surface molecules relevant in the context of neutrophil
ADCC (31, 32), including FcyRs, integrins or SIRPa were
similar in all donors with different copy numbers of FCGR3B
(Supplementary Figure 4).

When correlating the FcyRIIIb expression to either
trogocytosis or ADCC capacity of neutrophils, irrespective
of FCGR3B genetic status, we also noted a significant inverse
correlation, but as expected this occurred only when using either
freshly isolated neutrophils (Supplementary Figures 5A-C)
or 4h (Supplementary Figures 5D-F) stimulated neutrophils,
but this correlation disappeared upon overnight neutrophil
stimulation (Supplementary Figures 5G-I) consistent with
the loss of surface FcyRIIIb. By comparison, we did not
find any significant correlations when comparing FcyRIla
expression levels and killing (Supplementary Figure 6). These
findings show that in non-stimulated neutrophils FCGR3B
CNV is an important determinant of ADCC capacity, with
higher levels of CNV and concurrent FcyRIIIb surface
expression negatively affecting neutrophil ADCC, thereby
providing genetic evidence for a role of FcyRIIIb as a decoy
receptor.

Antibody Afucosylation Negatively Impacts
Neutrophil ADCC

A number of mutations and posttranslational modifications
of therapeutic antibodies have previously been explored for
the purpose of improving their clinical potential. One of
these alterations is antibody afucosylation, which changes
the glycan linked to asparagine at position 297 (N297).
Afucosylation of this glycan increases the binding affinity
of the antibody to FcyRIIla (44, 56, 57), and this has
been shown to increase ADCC by PBMC, including NK
cells and monocytes, that express activating FcyRIIla (58—
61). However, afucosylation also improves binding to FcyRIIIb
~15 fold (44) compared to normal IgG which impacts
neutrophil ADCC (2, 62), but to what extend this affects
neutrophil trogoptosis toward tumor cells has not been
previously investigated. Consistent with the above findings,
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neutrophil-mediated ADCC of SKBR3 cells using afucosylated
trastuzumab resulted in a highly significant and prominent (up
to ~80-90%) decrease in ADCC when compared to normally
fucosylated trastuzumab (Figure 4A). Interestingly, trogocytosis
was also substantially affected and showed both a decrease
in the net-amount of target membrane uptake on average
by neutrophils (Figure 4B) and decrease in the number of
participating neutrophils (Figure 4C), confirming the negative
effect of FcyRIIIb under these conditions. As expected from the
above the difference in ADCC response between afucosylated
and fucosylated trastuzumab became smaller when neutrophils
had been activated. Furthermore, by inhibiting FcyRIIIb on
neutrophils we were able to completely rescue the ability of
afucosylated trastuzumab to perform ADCC and trogocytosis
(Supplementary Figure 7) showing that the reduced killing of
afucosylated trastuzumab by neutrophils can indeed be entirely
attributed to its enhanced binding to FcyRIIIb. Clearly, this
shows that antibody afucosylation, while enhancing the ADCC
capacity of NK cells and monocytes, negatively affects neutrophil
ADCC.

FcyRIllb Contributes to IgG-Mediated

Phagocytosis of Bacteria

It has previously been shown that FcyRIIIb does stimulate
phagocytosis of bacteria and platelets cooperatively with other
activating FcyRs, such as FcyRIla, which is further stimulated
by afucosylation of the opsonizing antibodies (7, 38, 40). To
determine whether we could replicate this cooperative role we
used S. aureus opsonized with polyclonal human IgG, which
is a commercial blood product containing polyclonal IgG
isolated and pooled from thousands of donors. We noticed
that blocking either FcyRIla or FcyRIIIb on neutrophils
resulted in a decreased phagocytosis of S. aureus, with the
most optimal reduction in phagocytosis being achieved by
blocking both receptors (Figure5A). No role for FcyRI in
bacterial phagocytosis by neutrophils was found. However, since
polyclonal IgG contains all IgG isotypes (approx. 65% IgG;)
and our ADCC experiments are done using only monoclonal
IgG; antibodies we wanted to be certain that these results
were not due to effects of one of the other IgG isotypes. To
be able to specifically look at IgG; mediated effects, we used a
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heat-killed Streptococcus pneumoniae of serogroup 6B, which
can be opsonized with a 6B-specific recombinant human
IgGl monoclonal antibody (GDobl) (47). This confirmed
a cooperative role of FcyRIla and FcyRIIIb, with the two
receptors functioning in a largely redundant fashion with no
additive role for FcyRI (Figure 5B; Supplementary Figure 8).
Of interest, when using an afucosylated variant of GDODbI,
with increased affinity for FcyRIIIb, FcyRIIb clearly became
the dominant FcyR mediating phagocytosis (Figure 5B).
Collectively, this corroborates previous results that FcyRIIIb
on human neutrophils plays a facilitating role in microbial
phagocytosis, and this strongly contrasts with the negative role
of this receptor during ADCC.

DISCUSSION

Here we found that FcyRIIIb on neutrophils acts as a decoy
receptor during human neutrophil ADCC toward cancer
cells, thereby restricting tumor killing mechanisms exerted
via FcyRIla. This is in line with previous reports showing
that signaling through FcyRlIla is apparently entirely essential
for active ADCC in neutrophils (2, 3). For phagocytosis,
other mechanisms are apparently at play, as we and others
found neutrophil FcyRIIIb to actively participate in bacterial
ingestion (7, 63). This is possible as FcyRIIIb is a GPI-
linked receptor, causing it to preferentially reside in detergent-
resistant membranes, or lipid rafts, enriched in signaling

molecules such as myristoylated src-kinases. In addition, it
associates through its ectodomains with other receptors, and
certainly with other FcyR in cis during encounter with IgG-
opsonized targets, providing receptor cross-talk (4, 39, 64, 65).
The enhanced recognition via FcyRIIIb apparently facilitates
phagocytosis, while in contrary it impedes ADCC as we show
here. Of interest, this may not only be true for phagocytosis of
microbes and/or small particles, but maybe also for relatively
small tumor cells such as CLL cells. Here, FcyRIIIb seems
to have a beneficial effect (38, 66), although there still seems
to be some discussion about whether small tumor cells are
phagocytosed or in fact trogocytosed by human neutrophils
(67). In general, antibodies of the IgG1 subclass bind to the
various Fcy-receptors expressed on neutrophils with a wide
range of affinities. In particular, the binding affinity of FcyRIIIB
for IgGl is approximately 10-fold lower compared to FcyRITIA
(68). This might explain the relative high amount of FcyRIIIB
molecules on the neutrophil plasma membrane needed to create
the “buffering” decoy effect of FcyRIIIB as we describe herein in
the context of ADCC specifically (see Figure 6 for a graphical
representation).

In further support that FcyRIIIb negatively affects ADCC,
we found a clear gene-dosage effect of FCGR3B through the
CNV of the gene, with higher numbers gradually decreasing
ADCC even further. Potentially FCGR3B CNV can be used as a
new biomarker for cancer immunotherapy, where patients can
be stratified with likelihood of benefitting from therapy when
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CNV or unstimulated PMN)
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FIGURE 6 | Graphical representation of working model. ADCC by neutrophils is low when neutrophils are not stimulated, or if there is a high number of FcyRlllb
present on the neutrophil cell surface, due to high CNV of FCGR3B (A). ADCC is high when neutrophils are stimulated, with G-CSF and IFNy, or when there is a low
number of FcyRlllb present on the neutrophil cell surface, due to low CNV of FCGR3B (B). ADCC by neutrophils can be increased after therapeutic intervention, i.e.,
by blocking FcyRilllb with blocking antibodies, which results in high ADCC (C). In all situations, FcyRilla is required for neutrophil ADCC and is, due to high presence of
FcyRlllb in (A), unable to sufficiently bind the therapeutic antibody opsonizing the cancer cell surface. When there is less FcyRilllb present on the cell surface (B) or
after FcyRlllb blockade (C), neutrophils are more effective in ADCC of solid cancer cells.
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patients have a lower FCGR3B CNV combined with the right
tumor antigens (e.g., HER2/Neu or EGFR).

To date, this FcyRIIIb decoy effect during ADCC has not
been possible to study in vivo due to the fact that mice do
not express a GPI-linked FcyR ortholog or homolog (27-30).
However, in the future it might be interesting to study this effect
in humanized models [mice expressing human FcyR or mice
with human immune system (69)] to see the relative contribution
of FcyRIIIb on neutrophils in therapy and if its effect can be
circumvented.

Furthermore, our findings raise doubt whether the use of
afucosylated monoclonal antibodies for antibody therapy against
cancer is beneficial in all situations. Glycoengineering antibodies
in this manner is currently being applied to various monoclonal
antibodies to increase their capability to enhance ADCC and
phagocytosis. This modification is well-documented to increase
binding to FcyRIIla, which is expressed by natural killer cells,
monocytes and macrophages, (62, 70, 71). Less consideration
has been given to the fact that this type of glycoengineering
similarly enhances its affinity to FcyRIIIb, which is only
present on granulocytes (44). Here, we confirm that engineered
antibodies with enhanced affinity to FcyRIIIb by afucosylation
have deleterious effects on ADCC by neutrophils (2, 62). This
effect could partially be negated by using a combination of a
targeting antibody and preventing the CD47-SIRPa- checkpoint
inhibitor axis. Thus, it can be anticipated that the net effect of
cancer therapeutic antibody afucosylation is basically a trade-oft
between the beneficial effects on various immune cells on one
hand and the detrimental effects on neutrophils.

One of the obvious implications of our findings is that
selective blockade of FcyRIIIb could be a potential way to
enhance the effect of cancer therapeutic antibodies and thereby
improve clinical outcome for patients and/or reduce their
need for other non-specific agents such as chemotherapeutics.
However, while interesting to explore further this is not a trivial
challenge as the activating FcyRIIla receptor on other cells has
a very similar extracellular region, making it perhaps impossible
to achieve the required specificity. Nevertheless, as we show here
the effects of blocking FcyRIIIb appear interesting so if the issue
of specificity can be solved one way or another this may be an
interesting concept to pursue (see also Figure 6 for a graphical
representation).

We have shown in the current study that inhibition of
FcyRIIIb also increases ADCC when this is combined with
interference of CD47-SIRPa interactions. FcyRIIIb specific
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Allergies and asthma are a major cause of chronic disease whose prevalence has
been on the rise. Allergic disease including seasonal rhinitis, atopic dermatitis, urticaria,
anaphylaxis, and asthma, are associated with activation of tissue-resident mast cells
and circulating basophils. Although these cells can be activated in different ways, allergic
reactions are normally associated with the crosslinking of the high affinity Fc receptor
for Immunoglobulin E, FceRI, with multivalent antigen. Inflammatory mediators released
from cytoplasmic granules, or biosynthesized de novo, following FceRI crosslinking
induce immediate hypersensitivity reactions, including life-threatening anaphylaxis,
and contribute to prolonged inflammation leading to chronic diseases like asthma.
Thus, inappropriate or unregulated activation of mast cells and basophils through
antigenic crosslinking of FceRI can have deleterious, sometimes deadly, consequences.
Accordingly, FceRI has emerged as a viable target for the development of biologics that
act to inhibit or attenuate the activation of mast cells and basophils. At the forefront
of these strategies are (1) Anti-IgE monoclonal antibody, namely omalizumab, which
has the secondary effect of reducing FceRI surface expression, (2) Designed Ankyrin
Repeat Proteins (DARPIns), which take advantage of the most common structural motifs
in nature involved in protein-protein interactions, to inhibit FceRI-IgE interactions, and (3)
Fusion proteins to co-aggregate FceRI with the inhibitory FcyRllb. This review presents
the published research studies that support omalizumab, DARPIns, and fusion proteins
as, arguably, the three most currently viable strategies for inhibiting the expression and
activation of the high affinity FceRI on mast cells and basophils.

Keywords: FceRl, allergy, omalizumab, DARPIn, fusion protein, mast cells, basophils, FcyRllb

INTRODUCTION

Allergic disease refers to a variety of disorders that include seasonal allergies, atopic dermatitis,
urticaria, life-threatening anaphylaxis reactions to food, and allergic asthma. Curiously, the
incidence of allergic disease has increased dramatically in recent decades, and continues to rise
in developed countries. Allergies and asthma are among the most prevalent chronic diseases
worldwide (1, 2). The culprits are a variety of pre-formed inflammatory mediators including
histamine, serine proteases, proteoglycans, and other enzymes, that are stored in cytoplasmic
granules and released from mast cells and basophils immediately following “degranulation,”
and eicosanoids like prostaglandins and leukotrienes that are very rapidly biosynthesized from
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Inhibition of FceRI Signaling

arachidonic acid. Prolonged stimulation also induces the
activation of various transcription factors, and synthesis of new
cytokines that contribute to inflammation and recruitment of
other cell types.

Mast cells can be activated by a variety of agents. However,
allergic reactions are generally associated with crosslinking of
the high affinity Fc receptor for immunoglobulin E (IgE), FceRI,
with multivalent antigen (3). High affinity FceRI is comprised
of an IgE-binding o chain, a signal enhancing B chain, and
two signal transducing y chains. The tetrameric receptor, afy2,
is expressed predominantly on tissue-resident mast cells and
circulating basophils (4). However, in a proportion of human
subjects, mostly atopic patients, a trimeric form of the receptor
lacking the p chain, ay2, is expressed on other cell types including
airway smooth muscle (5), bronchial and intestinal epithelial cells
(6, 7), Langerhan cells (8, 9), dendritic cells (10, 11), monocytes
(12), and eosinophils (13), neutrophils and platelets (14-16).

Binding of IgE to FceRI on mast cells and basophils enhances
FceRI expression (17-21). It is thought that IgE binding to FceRI
protects the receptor from being internalized and degraded.
On the other hand, IgE binding to FceRI on dendritic cells
and monocytes (but not basophils) facilitates the internalization
and degradation of IgE-bound FceRI within endolysosomal
compartments (22). In addition to showing that IgE levels are
important in stabilizing FceRI expression, these observations also
indicate a role for FceRI in clearance of serum IgE. Moreover,
they suggest that afy2 expressed on mast cells and basophils
is predominantly involved in signal transduction leading to
mast cell and basophil activation or degranulation, whereas oy2
on antigen presenting cells is mostly involved in IgE-FceRI
internalization.

The role of FceRI as the primary activator of mast cells
and basophils leading to the release of allergic/inflammatory
mediators resulting in IgE-mediated immediate hypersensitivity
reactions and allergic inflammation is well-documented (3).
Accordingly, FceRI has emerged as a target of biologics for
regulating allergic reactions. Currently, anti-IgE monoclonal
antibody omalizumab, DARPins, and fusion proteins that co-
aggregate FceRI and FcyRIIb are at the forefront of the strategies
currently employed or actively being investigated as a means
of regulating the expression and/or activation of FceRI for
the therapeutic purpose of inhibiting mast cells and basophils
(Figure 1).

OMALIZUMAB

Perhaps the most studied strategy directed against allergic disease
is the use of anti-IgE antibodies. Omalizumab (Xolair®) is a
humanized anti-IgE mouse monoclonal antibody that is FDA-
approved for the treatment of mild to severe allergic asthma and
chronic spontaneous urticaria (23-26). Omalizumab works by
binding to circulating free IgE, thereby, reducing the amount
that would normally be available to bind FceRI on mast cells and
basophils. In an early Phase I study of 15 allergic and asthmatic
patients with serum levels of IgE between 187 and 1,210 ng/ml,
intravenous injection of omalizumab resulted in reduction of

IgE to 1% of pre-treatment levels (27). It is widely reported that
omalizumab competes with FceRI for the C3e domain of IgE, thus
preventing it from binding FceRI-bound IgE (28, 29). However,
another study reported that steric hindrance by C2e domain,
rather than direct competition for site binding, was responsible
for the inability of omalizumab to bind FceRI-bound IgE (30).
Regardless, omalizumab cannot bind IgE bound to FceRI on
mast cells or basophils, and, therefore, does not crosslink IgE-
bound FceRI to induce the release of allergic mediators. Since
binding of IgE to FceRI on mast cells and basophils enhances
the expression of FceRI (17-21), the reduction in free IgE by
omalizumab leads to diminished expression of FceRI on the
surface of mast cells, basophils, and dendritic cells (21, 27, 31, 32).
In one study, treatment of atopic individuals with omalizumab
for 3 months reduced the expression of FceRI on basophils by
~97% from ~220,000 to ~8,300 receptors per basophil (27).
An in vitro study with in situ-matured mast cells from human
skin demonstrated that IgE-dependent enhancement of FceRI
on human skin mast cells was both prevented and reversed
by omalizumab (21). In this study, omalizumab prevented the
upregulation of FceRI by 90% when added simultaneously with
polyclonal IgE at a molar ratio of 2.9 (omalizumab to IgE).
Omalizumab also dose-dependently decreased FceRI expression
on human skin mast cells when added to cultures after FceRI had
already been upregulated with IgE, suggesting that omalizumab
could disassemble pre-formed IgE:FceRI complexes. This was
later confirmed with a cell-free system and human basophils
(30, 33). The exact mechanism by which omalizumab “strips” IgE
off of FceRI is not exactly known, but allosteric destabilization
and facilitated dissociation of the IgE:FceRI complex, at least
at high concentrations of omalizumab, are suspected (33-36).
Human skin mast cells with IgE-enhanced FceRI levels were
more sensitive to stimulation with a low dose of anti-FceRI
mADb compared to mast cells with basal levels of FceRI in terms
of degranulation, PGD; biosynthesis, and cytokine production.
Reduction of FceRI levels with omalizumab restored sensitivity
to stimulation, and mediator release, to basal levels.

The efficacy and safety of omalizumab as treatment against
allergic asthma and urticaria has clearly been demonstrated,
including as an add-on therapy with traditional treatments
such as glucocorticoids (23, 24). The therapeutic potential of
omalizumab in other IgE-mediated disorders in which FceRI
plays a role, including food allergy (37-39), allergic rhinitis (40,
41), and atopic dermatitis (42, 43) has also been demonstrated.
However, one major concern is the duration of the positive
effects of omalizumab post-treatment. In one study (44), serum
free IgE was reduced by 96-98%, and wheal-and-flare reactions
to skin prick tests were significantly reduced in 40 patients
with allergic rhinitis who were treated with omalizumb for
28 weeks. However, serum free IgE levels and skin reactivity
increased following a reduction in the amount of omalizumab
administered, and returned to baseline when therapy was
completely discontinued. In another study (45), loss of control
of asthma symptoms following discontinuation of omalizumab
was recorded in 57% of the participants with a median time-
point of 13 months after discontinuation. In these studies,
FceRI levels on mast cells or basophils was not monitored, but
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FIGURE 1 | Current strategies to inhibit FceRI signaling in allergic disease.

given that omalizumab decreases FceRI expression on these cell
types (21, 27, 31, 32), it is expected that receptor expression
increased when treatment was terminated. Thus, treatment
with omalizumab could require personalized optimization in
terms of dosage and duration of treatment to yield maximal
benefits.

Omalizumab as an adjunct to allergen immunotherapy (AIT)
against IgE-mediated food allergy and allergic asthma is also
currently under investigation (46-50). The main types of AIT
are subcutaneous immunotherapy (SCIT) and sublinguinal
immunotherapy (SLIT) (51). SCIT and SLIT have been shown
to be efficacious for perennial and seasonal allergic respiratory
disease (50, 52, 53). However, SCIT or SLIT are contraindicated
for severe or uncontrolled asthma (54). It is thought that pre-
treatment with omalizumab of patients with severe uncontrolled
asthma, which has been shown to be efficacious, could allow
AIT in patients that previously could not tolerate it (48,
55). However, studies to investigate AIT in combination with
omalizumab are currently lacking. With regard to food allergies,
omalizumab treatment in conjunction with oral immunotherapy
(OIT) has shown promise in desensitizing allergic patients to
peanuts, milk, and multiple food allergens (56-60). Overall,
the few reported studies have shown promise for the use
of omalizumab in combination with AIT for IgE-mediated
disease.

Other anti-IgE antibodies have also been developed and tested
including Ligelizumab (QGE031), Quilizumab (MEMP1972A),
XmAb7195, and MEDI4212 that might provide additional
opportunities for anti-IgE therapy in the future (61). To date,
however, none have been shown to be clinically superior
to omalizumab, or data is still coming out. In some cases,
for example QGEO031 for asthma, development has been
discontinued. Nevertheless, these or other anti-IgE antibodies
could provide additional opportunities for anti-IgE therapy in the
future.

DARPINS

DARPins (designed ankyrin repeat proteins) are a class of small
(14-21 kDa) binding proteins comprised of a varying number
of stacked ankyrin repeat domains (62), which are one of the
most common structural motifs involved in protein-protein
interactions in nature. Natural ankyrin repeats are 33 residue
motifs comprised of two a-helical structures connected by a
loop that stack one on top of the other to form ankyrin repeat
domains (63). A single DARPin library module is comprised
of a 33 residue repeat of which seven residues are randomized
and non-conserved. Typically, two to four library modules are
genetically fused and flanked by N-cap and C-cap repeats to form
one protein domain (64, 65). Binding of ankyrin repeat domains
can affect stability and effector function of the target protein. The
motivation for engineering DARPins was to generate binding
proteins that could be used to target proteins with high affinity
and specificity, essentially replacing the use of monoclonal
antibodies (62).

In one of the first studies (66), two monovalent DARPins
(B-A4-85 and C-A3-30) capable of binding two different
epitopes of human FceRIa were identified and successfully
fused to each other with the flexible linker [Glyy-Ser]s. A
bispecific DARPin (30/85) was identified as being capable of
simultaneously binding FceRla at both epitopes with affinity
for FceRIo greater than that of IgE. In in vitro studies,
DARPin 30/85 blocked IgE binding to FceRI, and inhibited
IgE-induced degranulation of human FceRla-transfected RBL-
2H3 cells to a similar extent as omalizumab. In a similar
study (67), two monovalent DARPins, E2_79 and E3_54, that
were specific for IgE, and could inhibit IgE-FceRI interactions,
were identified. Bivalent proteins were genetically engineered
by coupling the monovalent DARPins with the glycine-serine
linker. E2_79/E2_79, at 5-fold molar excess with IgE, inhibited
the binding of IgE to FceRla by >90%, comparable binding
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by omalizumab. E2_79/E2_79 also effectively bound free IgE
in serum. The researchers further demonstrated that both
the monovalent and bivalent DARPins inhibited IgE-mediated
degranulation of FceRla-transfected RBL-2H3 cells. Bivalent
DARPin E2_79/E2_79 was particularly effective, exhibiting an
ICs5p of 0.54nM compared to 1.77nM for omalizumab. It
was later shown that E2_79, in addition to binding free IgE,
could also stimulate the dissociation of pre-formed IgE:FceRI
complexes by a facilitated dissociation mechanism at one of
two binding sites identified for E2_79 on the IgE:FceRI complex
(36). In a separate study, treatment with E2_79 significantly
reduced surface expression of FceRI on human ex vivo isolated
primary basophils, and inhibited FceRI-induced activation and
leukotriene C4 (LTCy4) biosynthesis (30). Further, a biparatopic
DARPin, bi53_79, which was engineered by fusing the disruptive
E2_79 with non-disruptive E3_53 anti-IgE DARPins exhibited
a >10-fold increase in capacity to disrupt FceRLIgE complexes,
and was more effective at inhibiting anaphylactic reactions
in vivo compared with E3_79 alone. Noteworthy, E2_79 and
bi53_79 acted faster and were more effective than omalizumab in
parallel experiments. These studies demonstrate the therapeutic
potential of DARPins as inhibitors of FceRI-induced allergic
reactions. Thus, supporting the notion that DARPins have the
potential to supplant monoclonal antibodies such as omalizumab
as treatment for allergic asthma and other allergic diseases
(62, 65).

However, DARPins are protein structures, and the potential
for immunoreactivity resulting from the production of anti-
DARPin antibodies should be met with extreme caution.
Clearly the immune response to DARPin proteins could be
a major limitation in the use of DARPins as therapeutic
agents. In addition, the possibility of negative or deleterious
effects of inhibiting the activation of FceRI-expressing cell
types should also be considered. For example, mast cells and
eosinophils play a major role in the clearance and expulsion of
parasites particularly helminths. Likewise, mast cell mediators
also protect against insect and reptile venom. Thus, blocking
the activation of mast cells could inhibit the positive or
protective effects associated with FceRI activation. This might
be particularly relevant in countries where parasitic infections
are endemic. It is argued that DARPins would be more cost
effective than monoclonal antibodies because they can be
produced in large scale in bacteria; however, the relative cost
to human safety must be considered. Importantly, in July
2018, Allergan and Molecular Partners announced that Abicipar
pegol, a DARPin engineered to target vascular endothelial
growth factor (VEGF), had reached the primary end point
in two Phase III trials for the treatment of neovascular age-
related macular degeneration (AMD). In two trials, Abicipar
pegol demonstrated non-inferiority to the approved anti-VEGF
ranibizumab (Lucentis®). Of significant concern, however, was
a significantly greater incidence of ocular inflammation with
Abicipar pegol than Lucentis®. Allergan is expected to file
Abicipar pegol with the FDA in early 2019. Thus, whether
DARPins are safe and efficacious in humans is currently being
determined.

CO-AGGREGATION OF FCeRI WITH
FCyRIIB

Given the requirement for tyrosine phosphorylation events in
the initiation and propagation of FceRI signaling in mast cells
and basophils (68-72), one strategy to inhibit FceRI-mediated
reactions has been to take advantage of the inhibitory property of
FcyRIIb. FcyRIIb is the only known inhibitory IgG Fc receptor
(73, 74). In contrast to FceRI, which utilizes immunoreceptor
tyrosine-based activation motif (ITAM), FcyRIIb utilizes the
inhibitory counterpart (ITIM) that, upon receptor activation,
recruits SH2-domain containing phosphatases including SHIP.
The phosphatases interfere with the tyrosine-based activation
of early signaling molecules resulting in the inhibition of
signal transduction (75-77). FcyRIIb is expressed on human
basophils and cord blood-derived mast cells (78-80). It is
not constitutively expressed on human skin mast cells (81),
but FcyRIIb expression can be induced in human intestinal
mast cells with interferon y (82) and on human basophils
with IL-3 (79) suggesting that it could be induced in tissue-
derived mast cells. Various experiments have been performed
demonstrating that co-aggregation of FceRI and FcyRIIb inhibits
IgE-dependent activation and mediator release from mast cells
and basophils. In one study (83), it was demonstrated that
serotonin release from mouse bone marrow-derived mast cells
(BMMCs) sensitized with anti-ova IgE, and then challenged with
ova, was dose-dependently inhibited when the BMMCs were
challenged with DNP-ova complexed with anti-DNP IgG. The
requirement for co-aggregation of FceRI and FcyRIIb to inhibit
mast cell mediator release was further tested and confirmed in rat
basophilic leukemia cells (RBL-2H3) transfected with FcyRIIb.
Another study (84) used a bispecific antibody expressing one
Fab fragment specific for human IgE, and the other for FcyRIIb,
to show that simultaneous crosslinking of FceRI and FcyRIIb
inhibited antigen induced histamine release from human cord
blood-derived mast cells and peripheral blood basophils. Cassard
et al. (79) used an IgG anti-IgE, which binds FceRI-bound
IgE via its Fab, and FcyR via their Fc domain, to demonstrate
that co-aggregation of FceRI and FcyRIIb negatively regulates
IgE-induced activation of human and mouse basophils, and
release of histamine and IL-4. Furthermore, a comprehensive
in vivo study utilizing passive and active immunization of
mice determined that FceRI-FcyRIIb crosslinking contributed
significantly to the inhibition of IgE-mediated anaphylaxis by
IgG blocking antibodies particularly under low concentrations of
IgG blocking antibody (85). Collectively, these studies support
the notion that co-aggregation of FceRI and FceRIIb is a viable
strategy to limit allergic responses.

Over the years, Fce-Fcy fusion proteins to co-aggregate FceRI
and FcyRIIb have been investigated. One of the earliest bi-
functional fusion proteins that was engineered, termed GE2,
is comprised of the hinge-Cy2-Cy3 domains of the human
IgG Fc and Ce2-Ce4 domains of human IgE Fc connected
by a 15 amino acid (Glyy-Ser)s linker (86). Human GE2 was
shown to bind to both FceRI and FcyRII at levels equivalent to
human IgE and IgG, respectively. Functionally, GE2 inhibited
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IgE-dependent degranulation of human basophils in time-
and dose-dependent manner with maximal inhibition observed
when the cells were sensitized with antigen-specific IgE and
GE2 simultaneously. GE2 co-aggregation of FceRI and FcyRII
inhibited Syk phosphorylation, a critical event in FceRI signaling
(87, 88), and in vivo IgE-induced passive cutaneous anaphylaxis
in transgenic mice expressing a human FceRla. Kepley, et al.
(78) subsequently used GE2 to further demonstrate that co-
aggregation of FceRI and FcyRII on human umbilical cord
blood-derived mast cells inhibited degranulation and cytokine
production. In a similar study, Mertsching et al. (89) created
a murine homolog of human GE2, termed mGE, consisting
of Cy2,2-Cy2,3 and Ce2-Ce3-Ce4 domains connected by the
(Glyy-Ser); linker. mGE was shown to inhibit IgE-dependent
degranulation and cytokine production from wild type but
not FcyRIIb-deficient mice BMMCs. mGE also inhibited in
vivo passive cutaneous and systemic anaphylaxis in mice, with
extended protection. Conversely, mGE treatment increased
FcyRIIb phosphorylation and its association with SHIP and
SHP1/2 phosphatases.

In an effort to enhance the efficacy of FceRI-FcyRIIb
co-engagement while eliminating the possibility of FceRI
crosslinking, Cemerski et al. (90) engineered a tandem Fce-Fcy
fusion protein comprised of a murine Fce domain linked to
a human Fcy domain IgG;, which, due to S267E and L328F
amino acid substitutions at the Fcy domain, exhibited >100-
fold greater affinity for human FcyRIIb compared to the native
IgG Fc composition (91, 92). This fusion protein was shown
to inhibit IgE-dependent degranulation of human FcyRIIb
transgenic BMMCs. However, in the reported experiments, the
tandem fusion protein containing the native IgG Fc domain
inhibited mast cell degranulation to a similar extent as a control
tandem fusion protein lacking affinity for FcyRIIb. The authors
concluded that inhibition of mast cell degranulation by co-
engagement is more potently suppressed when the tandem fusion
protein has higher affinity for FcyRIIb. To our knowledge, the
tandem Fc fusion protein with enhanced affinity for FcyRIIb has
not been compared to the other reported FceRI-FcyRII fusion
proteins, GE2 (86) and hGE2 (89).

Two pre-clinical studies in non-human primates have
demonstrated the potential clinical applicability of FceRI-
FcyRIIb fusion proteins in inhibiting allergic reactions. Zhang
et al. (93) first demonstrated that GE2 could inhibit mediator
release from mast cells and basophils that had been pre-sensitized
with IgE before treatment with GE2 as would be the case
in allergic individuals undergoing treatment. The researchers
demonstrated that GE2 inhibited Fel d 1 (cat allergen)-induced
histamine release from human basophils and lung mast cells
from cat allergic patients. Mirroring this, GE2 blocked Fel
d 1-induced passive cutaneous anaphylaxis in human FceRla
transgenic mice that were sensitized with serum from cat allergic
subjects. GE2 itself was shown to not induce mediator release or
induce anaphylaxis. In their pre-clinical study, GE2 was shown
to inhibit skin test reactivity to dust mite (Dermatophagoides
farinae) allergen in Rhesus monkeys that were naturally allergic
to the D. farina allergen. In a later study, Mertsching et al. (89)
generated another FceRI-FcyRIIb fusion protein, termed hGE2,

based on the GE2 construct of Zhu et al. (86) absent of any non-
native sequences. hGE2, administered to cynomolgus monkeys
that had been sensitized with the roundworm Ascaris suum,
was shown to protect the monkeys from cutaneous anaphylaxis
induced with A. suum extract. The monkeys were reportedly
protected from local anaphylaxis for up to three weeks.

Interestingly, a humanized monoclonal anti-IgE antibody
(XmAb7195) was reported to have an IgE-binding affinity 5.3-
fold greater than omalizumab, and 400 times greater binding
affinity for FcyRIIb due to mutations in its Fc region (94).
XmAb7195 was shown to block free IgE and inhibit IgE
production in B cells by co-engaging IgE and FcyRIIb. Although
XmAb7195 did not bind FceRI-bound IgE (94), this study
supports the notion of using anti-IgE IgG antibodies to co-
aggregate FcyRIIb and FceRI to inhibit allergic disease. First-
in-Human Phase 1 clinical trials have been conducted with
XmAb7195, but results on safety, tolerability and bioavailability
have not been reported (61).

DARPins have also been used to co-aggregate FceRI and
FcyRIIb. Eggel et al. (95) generated an anti-IgE DARPin fusion
protein in which DARPin E53, which showed reactivity against
a non-FceRla epitope capable of binding free and receptor-
bound IgE, was joined via the (Glys-Ser)s linker to a human
IgG; Fc region. DE53-Fc, as it was named, was shown to not
be anaphylactogenic, and inhibited allergen-induced activation
of basophils in whole blood samples from allergic donors. In
a subsequent study (96), a DE53-Fc mutant construct with
increased affinity for FcyRIIb due to a single site-directed point
mutation in the IgG Fc region was shown to be more efficient
at co-aggregating FceRI and FcyRIIb, resulting in enhanced
inhibition of basophil activation. Recently, Zellweger et al.
(97) generated DARPin D11_E53, which simultaneously bound
human FcyRIIb and FceRI-bound IgE. The bispecific molecule
was shown to inhibit allergen-induced degranulation and
LTC4 biosynthesis in human primary basophils and huFceRIa-
expressing mouse BMMCs in vitro, and decreased in vivo
passive systemic anaphylaxis induced in huFceRIa transgenic
mice. This study demonstrated that FcyRIIb-mediated inhibition
of degranulation requires direct ligation with FceRI, and that
DARPins, at least D11_E53, could safely be applied to animals
to inhibit anaphylaxis.

CONCLUDING COMMENTS

The dramatic increase in prevalence of allergies warrants
additional research to develop new strategies and therapies to
treat allergic disease. At the forefront are the anti-IgE monoclonal
antibody omalizumab, DARPins, and fusion proteins that
directly or indirectly alter FceRI expression and activation. In
order to maximize the use of omalizumab, additional clinical
studies are needed to identify allergic diseases against which
omalizumab could be effective beyond asthma and spontaneous
urticaria. The development of newer anti-IgE antibodies could
also have an impact. The development of DARPins hold the
promise of targeting FceRI or IgE with greater specificity
and better efficacy than monoclonal antibodies without the
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hurdles associated with development of humanized monoclonal
antibodies. As potential clinical therapeutics, DARPins also have
the potential to reach a broader population since allotypic
differences associated with the use of monoclonal antibodies
might not factor in their development. However, safety issues
regarding immunogenicity due to anti-DARPin antibodies and
unwanted effects due to inhibiting positive effects of mast cell
activation must be considered. Whether DARPins can supersede
monoclonal antibodies remains to be determined. Harnessing
the inhibitory properties of FcyRIIb to inhibit FceRI with fusion
proteins also shows promise as evidenced in pre-clinical studies
with non-human primates. It is hoped that these strategies will
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Multiple Variables at the Leukocyte
Cell Surface Impact Fc y
Receptor-Dependent Mechanisms

Kashyap R. Patel, Jacob T. Roberts and Adam W. Barb*

Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, lowa State University, Ames, IA, United States

Fc y receptors (FcyR) expressed on the surface of human leukocytes bind clusters of
immunoglobulin G (IgG) to induce a variety of responses. Many therapeutic antibodies
and vaccine-elicited antibodies prevent or treat infectious diseases, cancers and
autoimmune disorders by binding FcyRs, thus there is a need to fully define the
variables that impact antibody-induced mechanisms to properly evaluate candidate
therapies and design new intervention strategies. A multitude of factors influence the
lgG-FcyR interaction; one well-described factor is the differential affinity of the six distinct
FcyRs for the four human IgG subclasses. However, there are several other recently
described factors that may prove more relevant for disease treatment. This review covers
recent reports of several aspects found at the leukocyte membrane or outside the
cell that contribute to the cell-based response to antibody-coated targets. One major
focus is recent reports covering post-translational modification of the FcyRs, including
asparagine-linked glycosylation. This review also covers the organization of FcyRs at the
cell surface, and properties of the immune complex. Recent technical advances provide
high-resolution measurements of these often-overlooked variables in leukocyte function
and immune system activation.

Keywords: antibody, IgG, N-glycosylation, post-translation modification, ADCC—antibody dependent cellular
cytotoxicity, immune complex, ADCP—antibody dependent cellular phagocytosis

INTRODUCTION: THE IMPORTANCE OF MODULATING THE
Fc-FcyR INTERACTION

Immunoglobulin G (IgG) is the most thoroughly studied and well characterized molecule of
the humoral immune response. IgG activates the immune system through cell-bound Fc vy
Receptors (FcyRs; Figure 1). The IgG fragment antigen-binding (Fab) domains confer specificity
and aflinity toward an antigen while the distinct hinge and fragment crystallizable (Fc) domain
of the four IgG subclasses (IgG1-4) provide the structural basis for specificity and affinity to
bind FcyRs (1). The six structurally distinct members of the classical human FcyRs (FcyRI or
CD64, FcyRIla/CD32a, FcyRIIb/CD32b, FcyRIIc/CD32c, FcyRIIIa/CD16a, and FcyRIIIb/CD16b)
are expressed on leukocytes of both the myeloid and lymphoid lineage (Figure 2). This group
of proteins can be divided into two types: activating receptors (CD64, CD32a, CD32¢, CD16a,
and CD16b) that lead to cell activation through immunoreceptor tyrosine-based activation motifs
(ITAM) on cytosolic tails or on co-receptor molecules, and an inhibitory receptor (CD32b) that
signals through immunoreceptor tyrosine-based inhibitory motifs (ITIM) (2-4). Only CD32s
contain ITAM or ITIM domains, and the other receptors must associate with an ITAM-containing
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FIGURE 1 | Multiple variables affect FcyR-mediated immune function. (A) cellular variables influencing FcyR activity that are present before the effector cell engages a
target cell. (B) cellular variables influencing FcyR-mediated activity while the effector cell is engaged with a target cell. (C) molecular variables associated with the

adaptor protein (FceRI y chain or CD3 ¢ chain) (3, 5) (Figure 2).
In either situation, the ratio of activating to inhibiting signals
determines the outcome of an immune response (6).

Receptor clustering is essential for FcyR signaling. Circulating
IgG coats an antigen to form an oligomeric complex, positioning
the Fc portions of the IgG molecules away from the target surface
and exposed to interact with FcyRs. The antibody-coated target
is also referred to as an immune complex. The multiple IgG
molecules of the immune complex provide an opportunity for
multivalent interactions with FcyR-expressing leukocytes and
must compete with non-complexed serum antibodies occupying
the FcyRs that will, in turn, cluster FcyRs on the cell surface
(7, 8). Depending on the receptors engaged, the clustering of
the extracellular domains triggers phosphorylation of tyrosine
in the ITAMs or ITIMs, which subsequently recruits signaling
molecules that promote a cellular response (9). The types of
FcyR-mediated effector cell responses are diverse and include,
but are not limited to, antibody-dependent cellular cytotoxicity

(ADCC), antibody-dependent cellular phagocytosis (ADCP),
release of cytokines and antigen uptake for presentation (10-14).
FcyRs are critical for maintaining immune system homeostasis
as well as preventing pathogenic infections and they play a major
role in inflammatory diseases and autoimmune disorders (9, 13,
15-17). The combination of distinct antagonistic and synergistic
factors contribute to a considerable functional diversity within
this group of antibody receptors. Here we will discuss multiple
factors which influence the antibody:FcyR interaction and
modify the immune response (Figure 1).

RECEPTOR PRESENTATION AT THE CELL
SURFACE

FcyRs are predominately expressed on cells originating from
hematopoietic progenitor stem cells including dendritic cells,
neutrophils, basophils, eosinophils, macrophages, monocytes,
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mast cells, NK cells, B cells, a subset of T cells, and platelets as
well as non-hematopoietic cell types such as syncytiotrophoblasts
at various levels (18-20). FcyR expression varies depending
on cell lineage; not surprisingly gene copy number is also
implicated in disease. These factors can greatly influence the
dynamic ability of the immune system to respond to the diverse
repertoire of foreign invaders. Thus, variable surface expression
by different immune cell types influences how the immune
system responds to a foreign invader. This section will cover
the cellular expression of FcyRs and immune modulation of
expression through downregulation and induction.

Five activating FcyRs are expressed in humans (Figure 2). The
highest affinity, CD64, is expressed on monocytes, dendritic cells
and macrophages (11), mast cells (21), and neutrophils following
IEN-y exposure (22, 23). The low affinity CD32a is expressed on
mast cells, neutrophils, macrophages, eosinophils, and platelets
(24). CD32c is expressed by 7-15% of individuals on NK cells and
B cells and results from a gene mutation (4). The high/moderate
affinity CD16a is expressed predominantly on NK cells, a subset
of monocytes, mast cells, basophils, macrophages and is inducible
in CD4+ T-cells (25, 26). The low/moderate affinity CD16b
is found only in humans and expressed predominantly on

neutrophils (27), a subset of basophils (28) and has inducible
expression on eosinophils (29, 30). CD32b is the sole inhibitory
receptor and is expressed on basophils, B cells, macrophages,
dendritic cells, a subset of monocytes and neutrophils (24).
Interestingly, CD32b is also expressed in non-hematopoeitic
cells, including the endothelium of various organs (31).

Variability in Receptor Amount

Gene duplications in individuals lead to copy number variation
(CNV) of some FcyRs in the population. Surprisingly, only
CD16a, CD16b, and CD32c of the FcyRs exhibited CNV in
a sample population of 600 subjects (32). CNVs have been
correlated to autoimmune disorders as well as variations in
surface expression levels. CNV of CD16b is correlated to surface
expression on neutrophils and implicated in SLE susceptibility
(33, 34), as well as other autoimmune disorders (35, 36).
Furthermore, CD16a CNV appears to be functionally significant
since increased surface expression positively correlated with
increasing CD16a gene number (ranging from one to three
copies) (32, 35). A CD16a indel has been shown to increase
surface expression as well (37).
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FcyR amount at the cell surface varies by cell type and receptor
identity (Figure2). On neutrophils, there are an estimated
100,000-300,000 surface exposed CD16b molecules and 10,000
40,000 CD32a molecules (38, 39). The predominant monocyte
subtype at roughly 80% of the pool, “classical” monocytes, does
not express CD16a. “Non-classical” monocytes express CD16a
at a level of roughly 10,000 CD16a molecules per cell but
upon differentiation into macrophages express 40,000 CD16a
molecules per cell while CD32 remained the same at ~10,000
molecules per cell (40). Another study found macrophages
express 5-10 fold higher CD64, CD32a, and CD32b while
CD16a expression was comparable to non-classical monocytes.
M2c macrophages expressed overall higher levels of FcyRs
than M1 macrophages with the following order of expression:
CD32a, CD32b > CD64 > CD16a (41). A high number of
CD16a molecules are expressed on CD16+ NK cells (100,000-
250,000) (42).

Expression levels also vary based on the cell status. Following
activation, innate immune cells can induce expression of
FeyRs (23, 25, 29, 30, 35). There is also evidence of receptor
downregulation upon activation. Downregulation mechanisms
include both decreases in expression as well as shedding FcyR
from the cell surface following metalloproteinase cleavage.
CD32a is shed from Langerhans cells and also expressed as a
soluble form (43). CD32b is shed upon activation of B-cells (44).
CD16a and CD16D are likewise shed upon activation of NK cells
and neutrophils at a known cleavage site by the metalloprotease
ADAM17 (45-48). Intriguingly, sCD16b is relatively abundant in
serum (~5nM) (49) and levels vary based on the immune state of
the individual (50). Surprisingly, CD64 is the only human FcyR
in which a soluble, serum-borne form has not been reported.
This may be explained by the presence of a third extracellular
CD64 domain in place of the cleavage site found in CD32s and
CD16s (Figure 2).

Soluble FcyR forms modulate immune responses. Soluble
CD16b binds myeloid cells, NK cells, subsets of T cells, B
cells, and monocytes through complement receptor 3 (CR3 or
Mac-1 or aM B2, comprised of CD11b/CD18) and complement
receptor 4 (CR4 or ax B2, comprised of CD11¢/CD18). These
interactions cause the release of IL6 and IL8 by monocytes and
indicate a potential role for soluble CD16b in inflammation
(51). Shedding of CD16a from NK cells allows disengagement
of the immune synapse from the target cell and the subsequent
ability to kill again. One study demonstrated that repeated
engagement by CD16a depleted perforin, however, shedding
of CDl16a allowed perforin replenishment upon subsequent
activation by another activating receptor, Natural killer group
2 member D (NKG2D), which recognizes ligands not normally
expressed on healthy tissue (52). Thus, it appears that the act
of shedding of CD16 can allow disengagement of the foreign
particle which would be crucial for the immune cell’s survival
and preservation of potential future cytolytic activity. Though
shed receptors are proinflammatory and recruit immune cells
as discussed above, a complete picture of the mechanisms of
regulating surface expression upon immune activation is not
currently available.

Receptor Clustering at the Membrane Is

Required for Effector Function

The correct presentation of FcyRs on the cell membrane is
essential for proper immune cell function. ADCC can destroy
virally infected cells and cancer cells, and is thus a target for
monoclonal antibody (mAb) therapies (53). ADCP is also an
important mechanism in mAb therapy targeting malignant cells
(14). ADCC and ADCP are dependent on the ability of low to
moderate affinity FcyRs to cluster on fluid plasma membranes
for activation to occur (54) (Figure 1). Equally important is the
regulation of these receptors when no activation signal is present.

Proper activation of FcyRs following Fc engagement by
macrophages requires clustering of FcyRs and the displacement
of inhibitory receptors. In one study utilizing murine RAW
264.7 cells, segregation of CD45, a phosphatase responsible for
dephosphorylating ITAMs, is dependent on antigen distance
from the target membrane (55) (Figure 1). It appears that if
the antibody is >10nm from the target surface, there is a
substantially impaired ADCP response. This phenomenon is due
to the location of the epitope; epitopes closer to the surface
exclude the inhibitory CD45 molecule (which stands ~22 nm tall
vs. FcyR-IgG complex = 11.5nm) from the immune synapse.
Interestingly, a follow-up study that focused on FDA-approved
mAbs found the targets were small surface proteins (<10nm
in height) suggesting there may be a requirement for mAb
epitopes to be located close to the surface for therapeutic efficacy.
CD45 was also excluded from the immune synapse in activated
human T cells (56). Another study concerning inhibitory module
segregation on human macrophages demonstrates CD64, but not
CD32a, and inhibitory signal regulating protein o (SIRPa), in
conjunction with CD47 (a receptor that inhibits macrophage
phagocytosis), are clustered on quiescent cells but upon
activation segregate in a process regulated by spleen tyrosine
kinase (SYK)-dependent actin cytoskeleton reorganization (57).
Recently, FcyR diffusion has been shown to be inhibited by
the CD44 transmembrane protein which is immobilized by
linearized actin filaments via ezrin/radixen/moesin (ERM) and
binds hyaluronan in the glycocalyx (58). This study used
primary human macrophages as well as murine cell lines
and murine models, utilizing single particle tracking found
CD44 and hyaluronan decreased the diffusion rate of FcyRs,
while also sterically blocking the binding of FcyRs to immune
complexes (Figure 1).

Receptor clustering overwhelms constitutive inhibition
as described previously, allowing phosphorylation of the
ITAM. ITAMs are phosphorylated via SYK, Src family kinase
(SFKs) or ¢-chain-associated protein kinase 70 (ZAP-70) for
downstream activation of phosphoinositide-3-kinase (PI3K),
NF-kB, extracellular signal regulated kinase (ERK), phosphatidyl
inositol 4-phosphate 5-kinase y (PIP5Ky), GTPases and other
SRC-family kinases (53, 54, 59, 60). Along with FcyR clustering,
actin polymerization and depolymerization is equally important
for phagocytosis in RAW 264.7 macrophages by creating
lammellipodium/pseudopods. These protrusions are controlled
by Rac GTPase and lipid composition (54, 59) (Figurel).
Clustering has also been observed on the plasma membrane

Frontiers in Immunology | www.frontiersin.org

3

February 2019 | Volume 10 | Article 223


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Patel et al.

Surface Features Impact FcyR Mechanisms

of murine derived macrophages using total internal reflection
microscopy (TIRF) of a lipid bilayer supporting I1gG (61). The
FcyR microcluster appears on the macrophage pseudopod edge
and is subsequently transported to a synapse-like structure
thereby recruiting SYK and production of PtdIns(3-5)P3
coordinated with lamellar actin polymerization. Another study
on quiescent human macrophages found lateral diffusion
of FcyRs is regulated by tonic activity of SYK causing actin
cytoskeleton organization to increase the likelihood of FcyRs to
be pre-clustered upon finding a pathogen (62).This study further
described differential FcyR mobility upon activation. FcyRs at
the periphery of the actin-rich pseudopod were more mobile than
those already immobilized by binding of IgG-rich regions. The
authors explained that this mobility difference is controlled by
SYK-mediated regulation of the actin-cytoskeleton which would
increase the likelihood of FcyRs to engage more IgG molecules at
the leading edge of the lamellipodium/pseudopod and not waste
time diffusing into already IgG-dependent, FcyR-immobilized,
actin-rich rich regions of plasma membrane. Mobility of FcyRs
was described earlier to be decreased at the trailing end of
polarized macrophages by CD44 that was bound to linear actin
and connected to hyaluronan (58). It was also found in this
study that on the leading edge of polarized macrophages, the
side that encounters opsonized material, Arp2/3-driven actin
branching predominates, initiated by phosphotidlyinosotide
(3-5)-trisphosphate production, and increased FcyR mobility
allowing for more efficient clustering at the immune synapse.
When Arp2/3-driven actin branching predominates, it
was found CD44 is more mobile allowing greater FcyR
mobility (Figure 1).

In the human NK92 cell line, transduced to express CD16a,
a study showed P2 integrins mediate the dynamics of FcyR
receptor microclusters in a protein-tyrosine kinase 2 (Pyk2)-
dependent manner, controlling the rate of target cell destruction
by ADCC (63). B2 integrins bind ICAM-1 on the target cell
allowing adhesion and signal transduction through Pyk2 for
actin remodeling and the subsequent enhancement of FcyR
mobility. Furthermore, sites of granule release are surrounded
by clusters of CD16a and release points are devoid of actin.
Human NK cell lytic granules also converge at the surface in a
dynein and integrin-signal dependent manner which aids spatial
targeting of the weaponized molecules to limit off-target damage
(64). Surprisingly, CD16a is essential for ADCC of human
CD16+ monocytes and upon CD16a engagement, B2 integrins
are activated along with TNFa secretion thereby indicating that
non-classical monocytes (CD16+) are the sole monocyte class
capable of ADCC (65).

During the early stages of phagocytosis by RAW 264.7 cells,
direct contact between FcyRs and IgG is increased by greater
IgG density on particles, and increased IgG density results in
an increased level of early signals. However, late stage signals
are “all or nothing,” not concentration dependent, and regulated
by PI3K concentration in the phagocytic membranes (66). In
this study, low IgG density decreased the amount of opsonized
particles but not the rate of phagosome formation and low IgG
density particles that did result in phagocytosis recruited the
same amounts of late stage signaling molecules (PIP3, Protein

kinase C & type, p85 subunit) and actin. Overall it appears
that FcyRs control the initial binding process essential for
scanning the foreign particle and initial activation by binding
IgG and later stages of commitment to destruction of the
particle are controlled by both IgG density and membrane
lipid composition.

On murine and human macrophages, receptor clustering
upon activation is consistent with a change in the heterogeneity
of the membrane lipid composition to a highly ordered
phagosomal membrane that is heavily enriched in sphingolipids
and ceramide but lacking cholesterol (67) (Figure 1). The authors
state that lipid remodeling mediates F-actin remodeling and
the biophysical characteristics of the phagosomal membrane are
essential for phagocytosis. On human B cells, a polymorphism
of the inhibitory receptor CD32b (Ile232Thr) located in the
middle of the transmembrane domain, is described to decrease
inhibitory function (68). This mutation was shown to result
in aberrant localization to a sphingolipid and cholesterol rich
region in contrast to the Ile232 wild-type. Aberrant localization
is not surprising considering the introduction of a polar residue
into the transmembrane domain (69). Furthermore, the ability
of CD32b to inhibit B cell receptor (BCR)-mediated PIP3
production, AKT, phospholipase C-y-2 (PLCy2) activation and
calcium mobilization was impaired in cells expressing the CD32b
Thr232 allotype as compared to Ile232. The authors indicate the
FcyR locus was associated with SLE and this polymorphism may
promote disease. Thus, it appears lipid composition is important
for FcyR-mediated mechanisms.

The unique construction of CD16b indicates the potential for
a different activation mechanism for neutrophils. Neutrophils
predominantly express CD16b with 10-fold less CD32a. CD32a
signal transduction is well described and thought to be the
canonical FcyR signal transduction via phosphorylation of
ITAMs and subsequent SYK recruitment (70). However, CD16b
contains a GPI anchor and does not have a polypeptide
transmembrane domain nor is it known to associate with
a signaling coreceptor, therefore, it is unclear how CDI16b
promotes signaling in neutrophils (Figure 2). CD16b plays a
role in the initial binding of immune complexes in concert
with B2 integrins (71). Currently there are conflicting studies
suggesting that CD16b can transduce a signal on its own
(70, 72, 73), or it transduces a signal by acting with CD32a
(74). A recent study found CD16b cross-linking increased IL-
10 and TNFa expression, phosphorylated SHP-2 in a lipid-raft
mediated manner and inhibited apoptosis in neutrophils. Lipid
composition certainly may be an important part of CD16b signal
transduction in mechanisms similar to those discussed previously
for macrophage phagocytosis and CD32b on B-cells, however the
role of lipids in neutrophil activation is not understood (75-81).
Interestingly proteinase 3 (PR3), CD16b, cytochrome b558, and
NADPH oxidase co-immunoprecipitate on lipid rafts and PR3
and CD16b colocalize in confocal imaging suggesting these may
interact in a lipid raft (75). Other findings suggest CD16b signals
in conjunction with CR3 via lectin-like interactions (82), leading
to neutrophil respiratory bursts (72). The function of GPI-linked
CD16b remains undefined despite the high abundance of CD16b
in the body and critical roles in mAb therapies (83).
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The Type of FcyR Membrane Anchor

Impacts Activation

There are clear differences between the signaling and antibody-
binding affinity of soluble and membrane-anchored FcyR forms.
However, less is known about the effects of the specific FcyR
membrane anchors on affinity and cell activation. All FcyRs
are localized to the membrane by a transmembrane polypeptide
moiety or a glycosylphosphatidylinositol (GPI) moiety (CD16b
only) (Figure 2). A micropipette adhesion assay demonstrated
CD16a attached to microspheres via a GPI anchor bound roughly
5-fold tighter to IgG1-coated red blood cells (RBCs) than CD16a
tethered by a transmembrane domain (84, 85). Interestingly, it
also appears IgG1-coated spheres treated with phosphoinositide
phospholipase C (PIPLC) to remove the diacylglycerol moiety
bound to GPI-linked CD16a with 12-fold less affinity. These
authors observed a 60-fold decrease when the GPI-anchor was
completely removed. A CD16b-GPI construct showed 2-fold
decrease of affinity upon PIPLC treatment and an 11-fold
decrease following removal of the GPI-anchor. The authors
hypothesized that enhancement of binding affinity associated
with the GPI anchor may be due to an allosteric effect on CD16,
changing the structure to bind IgG more effectively; such an
allosteric mechanism was observed with other GPI-anchored
proteins (80). Further studies will be required to fully elucidate
how the GPI-anchor affects CD16b and how specific aspects of
the membrane anchor confers distinct properties in vivo.

POST-TRANSLATIONAL MODIFICATION
OF THE ANTIBODY AND RECEPTOR

Asparagine-linked (N-) glycosylation is one of the most
common protein modifications performed by the eukaryotic
cell and is a substantial modification of all FcyRs [Figure 2;

for a thorough review of N-glycan processing, see (86)].It is
important to note, however, the resulting glycans processed in
the ER and Golgi can be grouped into three distinct forms:
(1) minimally-processed oligomannose type N-glycans, (2)
intermediate processed hybrid-type N-glycans with processing
on one of the two core mannose branches, and (3) highly-
processed complex-type N-glycans with extensively modified
branches (Figure 3).

Several variables introduce a significant degree of
heterogeneity into the N-glycan present at any single site
on a glycoprotein, ranging from substrate availability, protein
anchor type, to accessibility of N-glycan site, potentially creating
a vast diversity of protein forms and functions (87-90). This
heterogeneity also renders glycoproteins challenging targets for
in vitro studies to characterize structure. Minimally-processed
hybrid and oligomannose type N-glycans are not expected at
the cell surface because these forms harbor terminal mannose
residues that may bind to the mannose receptor and elicit an
immune response (91, 92). Though many previous glycomics
studies report high levels of oligomannose N-glycans recovered
from primary cells, the abundance of these under-processed
forms is likely due to cell lysis and recovery of unprocessed
glycans from the ER. If under-processed forms are present on
the cell surface, these must be protected from binding to the
mannose receptor. Therefore, highly processed complex-type
N-glycans are expected as the predominant species at the
cell surface.

The functional impact of N-glycosylation at the conserved
asparagine 297 residues in IgGl is well established. IgGl
glycosylation at Asn-297 is essential for the IgG-FcyR interaction
(93). The N-glycosylation profile of serum IgG changes
due to multiple factors, including age, gender, infection,
pregnancy, and disease (94-97). The variation in IgGl Fc
glycoforms is known to change antibody affinity toward the
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FcyRs (98), and this fact has also been leveraged to develop
glycoengineered mAbs and anti-inflammatory glycoforms of
intravenous immunoglobulin (IVIG) (99, 100). The wealth
of knowledge regarding IgG glycoforms is due in large
part to protein abundance and ease of obtaining samples.
However, little is known about the glycosylation of FcyRs on
immune cells.

FcyRs are heavily glycosylated molecules, containing two to
seven N-glycans (Figure 2). The extent of FcyR modification
was evident as early as 1988 as certain FcyRs from native tissue
migrated much slower in SDS-PAGE gels than expected based
on the polypeptide mass alone. Furthermore, the migration rate
increased after treatment to specifically remove N-glycans (101,
102). There is a prominent gap in knowledge about the impact of
FcyR N-glycosylation on immune function largely due to limited
studies of the native FcyRs purified from primary leukocytes.
However, it is known that CD16a expressed by NK cells
had a distinct N-glycosylation profile when compared CD16a
expressed by cultured monocytes, though this determination
was made using lectin binding (103) and surface CD16a on the
NK cell and monocyte displayed differential antibody-binding
affinity that was attributed to differences in cell-specific CD16a
N-glycosylation (104).

Even though native glycoforms of all FcyRs are not known,
the effect of N-glycosylation on binding affinity has been well
characterized in vitro using protein expressed with mammalian
cells. Aglycosylated, recombinant, soluble (s)FcyRs bind IgGl
Fc at different affinities than glycosylated forms, thus the IgG-
FcyR interaction is sensitive to receptor N-glycosylation (105-
107). Recent studies reported substantial differences in affinity
for sFcyRs expressed in recombinant systems (106, 108-110),
N-glycosylation profiles of NK cell CD16a and soluble CD16b
from serum revealed surprising heterogeneity and substantial
differences from recombinantly-expressed protein (109, 111).

Specific CD16a Glycoforms Bind Antibody
With High Affinity Comparable to CD64

The analysis of N-glycan composition from FcyRs provides
a characteristic profile of a protein (112). Glycomics analysis
of CD16a on circulating NK cells from three healthy donors
revealed a surprising abundance of under-processed forms
(~45% hybrid and oligomannose-type N-glycans). CD16a is
N-glycosylated at five sites (Figure2). The remainder of
the N-glycans were primarily complex type, biantennary N-
glycan structures with a high degree of sialylation (78%) and
fucosylation (89%) (109). The under-processed forms do not
likely originate from unprocessed CD16a in the ER because all
of the observed hybrid forms were sialylated, a modification
that occurs in the late Golgi compartments (113) (Figure 3).
Moreover, the presence of oligomannose type N-glycans on
CDl16a from almost all recombinant sources suggests that
restricted processing is a conserved feature (108-110). N-glycans
at Asn38 and Asn74 were not observed using this glycomics
approach to study NK cell CD16a; perhaps these large glycans
ionize too poorly to be observed in a derivatized form, but robust

ionization of the peptide provides measurable signals for CD16b
N38 and N74 glycopeptides (111).

Recombinant expression has thus far failed to generate CD16
with glycan profiles matching those measured for CD16a or
CD16b from primary cells. CD16a is the most heavily studied
FcyR due to its role in ADCC and the associated therapeutic
applications. Glycomics characterization of soluble extracellular
domain of CD16a (sCD16a) from HEK293, NS0, and CHO cell
lines showed stark differences when compared to CD16a from
NK cells, including a high abundance (over 90% compared to
55% in NK cells) of biantennary and triantennary complex type
N-glycans with low levels of sialylation (108-110). Moreover,
each recombinant system has the potential to synthesize unique
N-glycan structures that are not commonly found on native
human proteins, such as LacDiNAc (GlcNAc-GalNAc) from
HEK?293 cells, a-Gal epitopes (aGal-BGal-BGlcNAc), terminal N-
acetylglycolylneuraminic acid in NSO cells and only a-2,3 linked
sialic acids in CHO cells (106, 114). These terminal modifications
can potentially alter the binding affinity to IgG in an unexpected
and undesirable manner.

Differences between native and recombinant CD16a
processing render studies of binding affinity using recombinant
material suboptimal, however, these materials still represent
the best option for many in vitro studies. Furthermore, binding
affinity measurements have utilized the soluble extracellular FcyR
domains due to challenges associated with extracting full-length
material from the membrane. Tethering CD16a to the membrane
changes the N-glycosylation, likely due to differential localization
within the Golgi (88, 109). Unfortunately, the N-glycosylation
profile of full-length CD16a (frCD16a) expressed with HEK293
cells revealed an N-glycan profile unlike that found on NK cells
(109). N-glycans from frCD16a showed less under-processed
oligomannose and hybrid types (27% in frCD16a and 45% in
NK cell CD16a) and the complex-type N-glycans were highly
branched. Thus, cell-type specific glycosylation accounts for
the dissimilar N-glycan profile on CD16a from primary and
recombinant sources and impacts binding affinity measurement,
as discussed below.

Recombinant FcyRs are valuable to characterize the role of
N-glycosylation on IgG binding affinity, despite clear differences
in N-glycan processing when compared to endogenous material.
One recent study reported a 40-fold increase in affinity toward
afucosylated 1gG1-Fc (GO form) when complex type N-glycans
on CDl6a were replaced with Mans N-glycans (110). This
gain revealed that CD16a can bind with an affinity comparable
to CD64, the “high affinity FcyR” A comparable study
demonstrated that higher amounts of larger sialylated complex
type N-glycans on CD16a expressed in CHO cells correlated with
lower affinity for Rituximab (108).

Of five CD16a N-glycans, only two appear essential for
high affinity interactions. Mutating the protein to eliminate N-
glycan addition with N45Q and N162Q substitutions reduced
the affinity for IgG1-Fc (109, 115-117). However, the reported
influence of N-glycan composition was primarily driven by the
N-glycan at N162: only the N162Q mutation abolished the
affinity gain due to Mans N-glycans on CD16a (110). These
observations are in agreement with the fact that glycans at N45
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and N162 form interactions with the CD16a polypeptide and
influence protein structure (118) and glycans at these two sites
showed the greatest restriction in N-glycan processing using the
HEK293 and CHO systems (119). Thus, cell-type specific CD16a
N-glycosylation patterns influence affinity for IgG1 and a range
of potential affinities are accessible purely through modifying
N-glycan processing.

N-glycosylation of CD16b
CD16b is a highly similar paralogue of CD16a and only found in
humans (97% sequence homology of the extracellular antibody-
binding domain). However, two common CD16b alleles encode
either four (NA1l) or six (NA2) N-glycosylation sites (120,
121) (Figure 2). Considerable site-specific diversity in N-glycan
structures was present on sCD16b obtained from 21 of pooled
human serum (111). Serum sCD16b is generated by ADAM17
cleavage of cell surface CD16b upon neutrophil activation (48).
Thus, sCD16b were likely membrane bound when the N-glycans
were being processed. The N-glycans at each site had unique
profiles ranging from smaller oligomannose type N-glycans at
N45 to large complex type N-glycans with extensive elongation,
sialylation, and fucosylation at N38 and N74, unlike sCD16b
expressed in recombinant systems (106, 114, 122). Additionally,
allele specific (NA1 and NA2) N-glycosylation profile at N162
and N45 of donor matched serum and neutrophil CD16b
confirmed the observations of CD16b from pooled serum,
revealing moderate variability in the abundance of the most
prominent glycoforms (123). The profile of sCD16b from serum
was distinct from CD16a expressed by NK cells that displayed
a greater level of under-processed N-glycans (109, 111). The
presence of oligomannose type N-glycans only at N45 strongly
suggests under-processing of N-glycan is restricted to a single site
on the protein with as many as six N-glycosylation sites (111).
The stark differences in the glycosylation profile of sCD16b
from serum compared to recombinant sCD16b further
emphasized the importance of cell type specific N-glycosylation.
Glycomics analysis of CD16b from HEK293, NSO and BHK
revealed mainly multiantennary complex type N-glycans with a
high degree of sialylation and fucosylation (106, 114, 122). The
N-glycosylation profile of recombinant sCD16a and sCD16b
are comparable as most of the N-glycosylation sites are shared
(124). There was a minimal difference (2-fold increase) in
affinity when sCD16b-Man5 binding to IgGl-Fc (GOF form)
was compared to sCD16b with complex-type N-glycans (110).
This was surprising considering that the extracellular antibody
binding domains of CD16a and CD16b (NA2) differ at only four
amino acid residues. Moreover, both CD16s are functionally
distinct because CDIl16a-complex type has a 15-fold greater
affinity for IgG-Fc than CD16b-complex type (110). The affinity
and sensitivity to glycan composition for CD16b was improved
to that of CD16a by mutating a single residue, Asp129, to Gly
based on the CD16a sequence (124). The authors demonstrate
with x-ray crystallography and molecular dynamics simulations
that Asp129 buckles the CD16b backbone upon binding IgG1
Fc. Thus, buckling shifts a nearby residue, Argl55, which makes
a different contact with the N162-glycan that is not observed
in CD16a.

N-glycosylation of CD32

The N-glycosylation profiles of sCD32a and sCD32b expressed
with recombinant systems were highly comparable (106, 108,
114). There are two to three N-glycosylation sites on CD32:
CD32a (3), CD32b (2), and CD32c (2; 32b and 32c have
identical extracellular domains) (Figure 2). Glycomics analysis
of CD32a and CD32b expressed in HEK293, NSO, and CHO
displayed predominantly biantennary and triantennary complex
type N-glycan structures with a low degree of sialylation and
varying levels of fucose (106, 108, 110, 114). Binding affinity
between sCD32a and sCD32b was comparable and neither
appeared sensitive to N-glycan composition as sCD32(a or b)-
Man5 and sCD32(a or b)-complex type bound IgGl Fc with
similar affinities (106, 110). CD32a polymorphisms (R131 or
H131) cause differences in binding to IgG subtypes, potentially
changing the sensitivity of immune complexes to phagocytosis
by neutrophils and monocytes (121, 125). However, N-glycan
analysis on the receptor expressed in CHO cells showed no
substantial difference in glycosylation pattern between the
two CD32a allotypes (108). The site-specific N-glycosylation
profile and native N-glycosylation profile for any CD32 is not
currently available.

N-glycosylation of CD64 Also Impacts
Binding Affinity

The high affinity FcyR, CD64, is distinct from other FcyRs
because it contains an additional extracellular domain (126).
Moreover, CD64 can potentially receive N-glycosylation
modification at seven sites in its extracellular domain (Figure 2).
A comparative glycomics analysis of the sCD64 expressed in
HEK293, NSO, and CHO cell lines showed biantennary and
multi-antennary complex type N-glycans with varying degrees
of sialylation and fucosylation as the most abundant glycoforms
(106, 108, 114). A distinct feature which was conserved across
sCD64 expressed in all three cell lines was the higher abundance
of oligomannose structures when compared to recombinant
CD16 or CD32. It was speculated that the presence of Mans
forms (the most abundant oligomannose N-glycan in these
cell types) conferred a stabilizing effect toward IgG1 binding
since the higher abundance of Mans forms (14.4% in NSO
and 5.2% in CHO) correlated with an increase in binding
affinity to Rituximab (108). According to the authors, the
increased affinity was due to the lack of core fucose on the
Mans structure which can potentially prevent steric hindrance
effects similar to that observed in fucosylated N-glycan on
IgG1 (115, 127). The authors also observed that the presence
of large sialylated complex type N-glycans on CD64 correlated
with reduced binding affinity for Rituximab, indicating that
these glycans destabilized the interaction (108). Even though
N-glycan composition on CD64 can affect IgGl1 affinity, the
N-glycosylation profile of native CD64 and the composition of
N-glycans at each site remains unknown.

N-glycosylation processing depends on the amino acid
sequence and secondary structures which affect the exposure
of substrate monosaccharide residues to the glycan processing
enzymes (Figure 3). Presence of both the under-processed and
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highly-processed (tetraantennary sialylated) N-glycan structures
on NK cell CD16a and recombinant sCD64 suggests site-specific
glycan modification. Oligomannose structures at specific sites
on sCD16a have been implicated in modulating IgG affinity;
similarly, specific sites on CD64 can be involved in modulating
CD64-1gG1 affinity (108, 110). Thus, a thorough analysis
of site-specific N-glycosylation analysis of recombinant and
endogenous FcyRs from all expressing tissues is required to fully
elucidate the role of N-glycosylation pattern at specific sites in
affinity modulation.

HOW MULTIVALENCY IMPACTS IgG-FcyR
INTERACTIONS

Investigating factors that contribute to the monovalent affinity
of IgG-FcyRs interaction revealed clear differences in the affinity
of antibody subclasses for certain receptors, however, multivalent
avidity likely determines the in vivo immunological response
initiated by these interactions. High IgG concentrations in
the serum of ~10 mg/ml provide monomeric antibody to
the receptors at a concentration of ~67 uM, vastly exceeding
the Kp of IgGl for all human receptors (7). Thus, surface-
borne FcyRs are occupied on cells circulating in the peripheral
compartment and multivalent interactions must compete with
monomeric IgG to cluster receptors (7, 8). Receptor cross-
linking and clustering on the effector cell surface is essential
for signal transduction through FcyRs, thus multivalent immune
complexes or opsonized targets are the functionally appropriate
ligands for the receptors (Figure 1) (54, 128). Distinct FcyRs are
engaged depending on the responding cell type, the IgG subclass,
the antibody concentration on the opsonized target, and the
size of immune complex (Figures 1, 2) (129, 130). Furthermore,
the differential binding of immune complexes has therapeutic
as well as pathogenic properties, especially during infection and
autoimmune disease but not all aspects are well-defined (9, 15).
Therefore, defining the critical factors associated with immune
complex recognition is required to fully understand the antibody-
mediated immune response.

Immune Complex Size Determines Effector

Function

The importance of interactions between multiple monovalent
ligands and multiple receptors is well known, however, the
study of multivalent interactions remains challenging. Early
attempts to generate multivalent immune complexes through
heat aggregation of IgG produced aggregates with varied valency,
immunogenicity and ill-defined sizes (131, 132). Technological
advances in recent years produced immune complexes of defined
size and valency which accurately represent those generated
in vivo (130). Functional interrogation using defined immune
complex revealed that immune complex size contributes to
interactions with FcyRs.

Immune Complex Size Affects Binding
The concentration of antigen-specific antibody in the serum
and likewise immune complex size is expected to change

during an immune response, and size-associated changes in the
immune response are well described (130, 133). Nimmerjahn
and coworkers used well-defined immune complexes formed
by all four IgG subclasses binding to FcyRs expressed on a
CHO cell surface to systematically determine that there was
a clear size-dependent gain in binding by IgG2 and IgG4
immune complexes and the size of an immune complex can
overcome IgG glycan truncation, a modification that destroys
the monovalent interaction (134). Moreover, the binding patterns
were comparable to experiments using primary leukocytes that
increased cytokine secretion in response to larger immune
complexes. These data led to a mathematical model that describes
effects of valency and IgG subclass on in vivo function (135).
The differential binding due to a change in the size of immune
complex can potentially lead to substantial changes in cell
signaling and recent technical advances provide a means to
quantitate signaling with cell-based assays (136).

Role of Immune Complex Size in Autoimmune
Disorders

The formation of immune complexes with soluble self-antigen
is implicated in the pathophysiology of several autoimmune
diseases (137). IVIG is a frequent treatment for a variety of
autoimmune disorders, but the exact mechanism of action is
not known (138). Even though there is a well-documented
role of CD32b in decreasing an immune response triggered by
autoantibody immune complexes in murine model of immune
thrombocytopenia (ITP) (139), a recent study demonstrated that
engaging the inhibitory CD32b alone is not responsible for the
decrease in phagocytosis of RBC opsonized by autoantibody
in human ITP patients. Instead, the direct engagement of
IgG by CD64 and CD32a caused the decrease in phagocytosis
(140). Surprisingly, though IVIG dimers and multimers are
not necessary for therapeutic efficacy in murine models for
ITP, small IVIG oligomers provided more potent inhibition
of phagocytosis, indicating a role of IVIG immune complexes
in blocking pathogenic immune complexes from binding to
activating FcyRs (141). Consistent with this observation, immune
complexes formed with the anti-citrullinated protein antibodies
isolated from rheumatoid arthritis patients bound preferentially
to activating and not inhibiting FcyRs expressed on CHO
cells (142). Moreover, CD64 on activated neutrophils and
CD32a on macrophages were recognized as receptors for the
autoantibody immune complex, eliciting the secretion of pro-
inflammatory cytokines. These observations formed the basis
for developing engineered multivalent immune complexes as
therapeutic options.

Considerations Regarding Immune Complex Size in
Therapeutic Development

Multivalent synthetic immune complexes show promise
and may prove useful in the clinic. For example, a trivalent
IgG-Fc construct inhibited autoantibody-mediated FcyR-
dependent cellular responses in primary human cells and
autoimmune murine models (143). Likewise, an engineered
hexameric-Fc construct bound to primary differentiated
human macrophages and triggered internalization, colocalizing
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with the activating FcyRs and elicited a decrease in the
phagocytosis of antiCD20-coated human B cells and platelets
in a murine ITP model (144). The hexameric Fc construct
did not trigger internalization of CD32b and exhibited a
much shorter serum half-life in animal models than IgGl,
however, the inhibition was effective for several days after
the initial injection, suggesting a potential for clinical use.
In contrast to the approach of preventing the internalization
of pathogenic immune complex to block phagocytosis of
healthy cells or activating a pro-inflammatory response, a
designed bispecific antibody formed larger complexes that
neutralized soluble antigens, leading to rapid clearance
from serum of a murine model (145). Thus, studies of
multivalent IgG-FcyR interactions provide guidance for
the development of effective therapeutic options. However,
there are multiple antibody and antigen associated factors
which govern the antigenicity of immune complexes that
must be considered when designing antibodies with defined
FcyR-dependent functions.

Features of the Antibody and Antigen That
Impact Antigenicity of the Immune

Complex in vivo

The Ratio of Antibody to Antigen

Antibody concentration relative to antigen changes throughout
the progression of an immune response against an infectious
pathogen. Considering influenza infection as an example, the B-
cell response can take up to 7-14 days to produce antibodies
(146). Generally, the antigen-specific antibody titers increased
by up to 10.2-fold, depending on the patient, vastly changing
the antibody to antigen ratio and the antibody production
can be sustained or subside depending on clearance of
the organism.

A minimal threshold of antibody density must be surpassed
to elicit an immune response during encounters between
an opsonized target and effector cell, typically seen during
pathogenic infection (147, 148). Antibody concentrations that
exceed the threshold lead to an increase in phagocytic activity,
as demonstrated by primary mouse bone marrow derived
macrophages phagocytosing opsonized sheep erythrocytes.
Moreover, at relatively high concentrations of IgG, a valency
dependent induction of IL-10 production was seen (148).
Similarly, infection with Cryptococcus neoformans in mice could
be cleared using a specific ratio of antibody to antigen, ratios
with excessive antibody led to a detrimental host response mainly
due to a reduction in pro-inflammatory cytokines secretion in
organs associated with the infection (149). Apart from changes
in cytokine secretion potential, larger immune complexes formed
with high concentrations of neutralizing antibody against dengue
virus actually inhibited antibody-dependent enhancement by
binding to the inhibitory receptor CD32b on phagocytic
monocytes (150). Thus, relative antibody concentration can
modulate immune response in an FcyR-dependent manner by
altering the size and concentration of immune complexes; this
effect may be similar to the therapeutic benefit of IVIG in
autoimmune conditions.

Concentration of the Immune Complex

Immune complex concentration likewise impacts viral infection.
Apart from the traditional view of Fab-mediated neutralizing
activity, Fc dependent effector functions are becoming
increasingly recognized in protection against viral infection
(16, 17, 151). Classical FcyR-dependent protective mechanisms
such as ADCC and ADCP, as well as antibody dependent
enhancement of infection, are influenced by the size of the
immune complex and IgG subtype coating the viral particle
(17, 152). The production of a high concentration of immune
complexes are common during chronic viral infection in mice
(153). However, high concentrations do not always lead to
favorable outcomes. A high concentration of immune complex
blocked FcyRs on primary murine macrophages and dendritic
cells, negatively impacting viral clearance, and other FcyR-
related activity (153). These phenomena were independent of
CD32b and reversed once the immune complex concentration
was reduced. Thus, the role of FcyRs during pathogen infection
is complex and varied but there is a clear dependence of cellular
response based on immune complex size and concentration,
similar to that observed in autoimmune disease discussed above.

Affinity of the Antibody for Antigen

At a fixed antibody concentration, the affinity of the antibody
toward the antigen can determine how many Fcs are displayed
on the immune complex and are available to interact with FcyRs
(154). A recent study showed that at saturating concentrations,
antibodies with high affinity for antigen elicited a weaker ADCC
response compared to antibodies with lower affinity (Kp
0.8 nM and 72 nM, respectively) (155). The observed difference
in the immune response was attributed to the higher proportion
of monovalent antigen binding displayed by the lower affinity
antibody, recruiting a larger number of antibodies to the cell
surface and increasing the number of Fcs available to the
leukocyte. A notable feature of this observation is the initial
IgG response often produces antibodies with antigen-binding
affinities similar to the lower affinity antibody in this study.
Antibody concentration and antibody-antigen affinity are not
the only factors affecting immunogenicity of immune complex.
A comparative analysis of three anti-TNFa antibodies with a
range of affinities (Kp = 0.18-5.1n1M) showed that the size
and composition of the immune complex was determined by
the properties associated with epitope location and binding
energetics (156).

Epitope and Antigen Location

Location of the epitope influences the immune response.
Neutralizing antibodies targeting the stalk region of the influenza
hemagglutinin protein induced FcyR-dependent cytotoxicity
while antibodies binding the head domain did not (12).
A comparable analysis of anti-Ebola antibodies showed that
binding to the most membrane distal portion of viral surface
glycoprotein elicited the highest ADCP and antibody-dependent
neutrophil phagocytosis (ADNP) compared to antibodies that
bound to the membrane proximal regions (157). Even though
epitope location on the antigen is not directly implicated in
changes in immune complex size in these studies, it is likely

Frontiers in Immunology | www.frontiersin.org

37

February 2019 | Volume 10 | Article 223


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Patel et al.

Surface Features Impact FcyR Mechanisms

that the epitope location causes changes in immune complex
properties since three different monoclonal antibodies against
different epitopes on sCD154 and TNFa also formed different
immune complexes (156, 158). In other cases, the height of
the antigen from the target surface affected phagocytosis in a
valency-independent manner (55). Antigens which are <10 nm
from target surface promoted phagocytosis when compared to
antigens further away from the surface because close contact
between target and effector cell surface was necessary to exclude
effector cell the inhibitory CD45 from the immune synapse
following FcyRs clustering (as noted above). Additionally,
antibodies binding West Nile virus epitopes that are normally
buried can form immune complexes, given suflicient incubation
time, though these immune complexes are smaller and led to
lower neutralization levels (154). Thus, location of the epitope
can affect the immune response but the effect of epitope location
on immune complex size is not fully understood.

The location of the antigen (soluble or cell bound) affects
FcyR clustering and the subsequent immune response. A soluble
antigen may form relatively smaller immune complexes which
are endocytosed but a cell surface antigen forms a relatively larger
opsonized target that is more likely phagocytized as determined
using mouse bone marrow-derived macrophages (133). Both
mechanisms, triggered through FcyRs, are distinct and induce
different signaling and subsequent immune responses (128, 159).
In one example, small soluble immune made with soluble CD154
would be expected to be endocytosed, and CD154 tethered toa T
cell membrane led to the formation of very large complexes at the
cell surface (158). Surprisingly, the specific monoclonal antibody
greatly influenced the immune complex structure. It is also
known that opsonized targets can exhibit lateral diffusion on the
leukocyte surface which also affects the multivalent interaction
with FcyRs (160).

Malleable vs. Rigid Target Surfaces

In addition to size and shape, deformability of the target
also impacts activation. The phagocytosis of opsonized
polyacrylamide beads tuned to exhibit different rigidity
established that phagocytosis of ridged particles was preferred
over relatively more deformable particles by mouse bone
marrow-derived macrophages (161). A related study
demonstrated that murine macrophage RAW264.7 cells
phagocytosed emulsion droplets at a lower IgG concentration
when compared to solid particles (162). It was speculated that
the attachment of IgG on the surface of rigid particles prevents
the lateral diffusion of opsonizing antibodies, while lateral
diffusion was observed in opsonized emulsion droplet. Thus,
the location of the antigen, which facilitated higher cell surface
FcyRs interaction at lower antibody concentrations, can affect
recognition of the complex.

IgG-Subclass Impact Inmune Response

FcyR binding is also affected by IgG subclass. Specificity of a
specific IgG subclass binding to a FcyR is largely studied in
context of a monovalent interaction (23), however, immune
complexes and opsonized target cells are the natural ligands.
Additionally, specific IgG subclasses are related to various

disorders indicating immune complex composition is important
(1, 152, 163). Therefore, studying these interactions in a
multivalent form is required to accurately determine their
binding properties and the subsequent immune response. The
observation that immune complexes of certain IgG subclasses
only bind at higher concentrations indicates that IgG subclass is
also a variable which can affect the immune response (164).

The Fcs of different IgG subclasses have distinct amino acid
residues and hinge regions which can affect binding to the FcyRs,
despite a high degree of sequence conservation (Figure 2) (1). A
systematic analysis of multivalent binding for the four human
IgG subclasses to the cell surface FcyRs revealed the IgG2 and
IgG4 subclasses, which showed minimal affinity in a monovalent
interaction, bound as immune complexes to FcyRs expressed
on CHO cells at higher concentrations (164). This study also
demonstrated that allotype variants of FcyRs had different
binding properties toward immune complexes generated by
different IgG subtypes. CD16a V158 bound IgG3 immune
complexes with high affinity while CD16a F158 bound more
weakly and CD32a H131 had a higher affinity to IgG2 immune
complex compared to CD32a R131. Another report showed
that the CD32a H131 variant bound to IgGl, IgG2, and 1gG3
with higher affinity than CD32a R131. This observation may
explain why the CD32a R131 allotype is associated with greater
susceptibility to bacterial infections and autoimmune disorders
(163). Thus, the wide range of binding affinities displayed by
FcyRs toward IgG subclass specific immune complexes can
impact clinical outcome.

The use of different IgG subclasses in designed immune
complexes can also impact potential therapeutic use. Incubation
of a hexameric IgG1 Fc construct, discussed above as an inhibitor
of phagocytosis, elicited the release of higher cytokine levels in
whole blood when compared to PBMCs, likely due to CD16b
engagement on neutrophils (not present in PBMCs) (165).
Furthermore, the hexameric IgG1 Fc construct also triggered
release of cytokines from platelets through a CD32a-dependent
interaction. However, a hexameric 1gG4 Fc construct did not
promote the release of cytokines from neutrophils or platelets.
This result is consistent with the reduced affinity of IgG4 for
CD16b and CD32a when compared with I1gG1, highlighting the
potential utility of specific FcyR interactions.

SUMMARY

The multitude of factors influencing the immune system each
affects a wide range of responses. This review covers a relatively
limited collection of variables that contribute to an FcyR-
dependent immune response (Figure 1). There appear to be few
inviolable laws governing this aspect of the immune system, and
every newly discovered variable introduce a new handle to tune
the immune response, at least in vitro. It is well known that
different monoclonal antibodies to a single target elicit different
responses, in many cases through the mechanisms described
here. If any lessons are to be learned, it is that each antibody
must be thoroughly evaluated using systems that recapitulate
as closely as possible endogenous immune system components.
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One striking example of this tenet is the observation that the
efficacy of a hexameric IgG1 Fc increased when neutrophils and
platelets were incorporated in an in-vitro assay with PBMCs
(165). Moreover, soluble complement components can also bind
the immune complex to affect the immune response as reported
in few studies described above (130, 148, 149). Laboratory
studies often focus on immune complexes formed by monoclonal
antibodies, but that is likely not the case in vivo with a
polyclonal immune response to vaccines or infection; one study
demonstrated that a mixture of disease neutralizing and disease
enhancing antibodies against Bacillus anthracis formed immune
complexes that elicited a protective immune response (166).
Thus, these observations highlight the complex yet important
features associated with studying FcyRs function in vivo.

Animal models have, and will continue to have, an important
role in studies designed to understand human FcyRs in immune
function. Despite the differences in FcyR cellular expression
patterns and minor differences in binding affinities to human
IgG subclass, animal (mainly murine and non-human primate)
models have sufficiently recapitulated human FcyR biology to be
used for studying FcyR function and test therapeutic molecules
(167-173). A recent study determined that the mouse FcyRIV
and the human equivalent to human CDI16a both share the
conserved N-glycosylation site at N162 which mediates tight
binding to afucosylated mouse IgG similar to observations in
human system, and human IgG binds mouse FcyRs with similar
affinity patterns as human FcyRs demonstrating conservation
of certain functional features of human FcyR biology in mouse
model (170, 174). Furthermore, several studies mentioned
in this review have employed murine autoimmune models,
humanized models, cell lines or primary cells to test efficacy
of engineered antibody products and delineate mechanistic
aspects of the FcyRs dependent cellular response, demonstrating
that these models are indispensable for understanding human
FcyR biology (61, 66, 139, 141, 143, 162). The two successful
strategies to attain humanized FcyR mouse models eliminate
the influence of mouse FcyRs in studying human FcyR function
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T cells play critical roles in anti-tumor immunity. Up-regulation of immune checkpoint
molecules (PD-1, PD-L1, CTLA-4, TIM-3, Lag-3, TIGIT, CD73, VISTA, B7-H3) in the
tumor microenvironment is an important mechanism that restrains effector T cells from
the anti-tumor activity. To date, immune checkpoint antibodies have demonstrated
significant clinical benefits for cancer patients treated with mono- or combination
immunotherapies. However, many tumors do not respond to the treatment well, and
merely blocking the immune suppression pathways by checkpoint-regulatory antibodies
may not render optimal tumor growth inhibition. Binding of the antibody Fc-hinge region
to Fc gamma receptors (FcyRs) has been shown to exert a profound impact on antibody
function and in vivo efficacy. Investigation of immune checkpoint antibodies regarding
their effector functions and impact on therapeutic efficacy has gained more attention
in recent years. In this review, we discuss Fc variants of antibodies against immune
checkpoint targets and the potential mechanisms of how FcyR-binding could influence
the anti-tumor activity of these antibodies.

Keywords: FcyR, checkpoint blockade, antibody therapy, cancer immunotherapy, IgG isotype

INTRODUCTION

Immune checkpoints refer to multiple inhibitory pathways that control the immune system to
maintain self-tolerance and modulate the intensity of physiological immune responses in order
to minimize pathological damage (1-3). Antagonizing antibodies against immune checkpoint
inhibitory molecules has achieved great success in cancer treatment (1, 2). However, many
tumors do not respond to the treatment, and antibody optimization (especially in the isotype
selection) is essential for improving outcomes (4, 5). target-binding specificity, imparted by the
antibody’s variable region, is well-known to be critical for the primary functional activities of
the antibody. However, mounting evidence has shown that the antibody’s constant region also
plays a crucial role, much of which is mediated through interaction of the crystallizable fragment
(Fc) with Fcy receptors (FcyRs) (6). Fc endows IgG antibodies with effector functions, which
include antibody dependent-cellular cytotoxicity (ADCC), complement-dependent cytotoxicity
(CDC), antibody-dependent cellular phagocytosis (ADCP), Induction of cytokines/chemokines
and endocytosis of opsonized targets (7).

To date, therapeutic IgG antibodies (either approved or in clinical development) belong to the
IgG1, IgG2 or IgG4 subclasses. Each IgG isotype has a distinct binding affinity to the various FcyRs,
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which are expressed differently on immune cells. A combination
of these features leads to diverse and highly regulated
antibody responses.

Antagonizing antibodies against major T-cell inhibitory
pathways, such as PD-1/PD-L1 and CTLA-4, have become
important parts of cancer therapeutics (1). Consequently,
the next wave of therapeutic antibodies targeting alternative
immunosuppression pathways (e.g., LAG-3, TIM-3, B7-H3,
VISTA, CD73) are rapidly emerging (8). The majority of
the immune checkpoint antibodies have low or significantly
reduced binding to FcyRs to avoid potential ADCC and CDC,
especially when the target molecule is expressed on effector
T cells (9). However, for targets such as CTLA-4, TIGIT, and
VISTA, competent Fc is required for optimal anti-tumor immune
responses in various mouse models (10-12). The mechanisms
of action (MOA) may involve the killing of regulatory T cells
(Tregs), promoting immune synapse formation and production
of pro-inflammatory cytokines due to cross-linking of FcyRs with
the competent Fec.

In this article, we summarize the major properties of different
IgG isotypes and FcyRs, describe the MOA of different immune
checkpoint targets in inhibiting anti-tumor immunity and review
the recent studies on the important roles of either binding or
not binding to FcyRs in immune checkpoint antibody therapy.
It should be noted that many of the findings come from mouse
models; the clinical significance of these findings has yet to
be determined.

IgG ISOTYPES AND FcyRS

In humans, there are four isotypes of IgG (IgG1-4), differing
from the other in their binding profiles to various FcyRs and to
complement subunits, such as C1q. IgG1 has the highest affinity
to all FcyRs and Clq, leading to significant effector functions,
such as ADCC, ADCP, and CDC (5, 13). Although human IgG3
can also mediate competent effector functions, it has a very
long hinge region and complex disulfide bonds, resulting in
significantly greater polymorphism, which may increase the risk
of immunogenicity. Therefore, the IgG3 isotype is rarely chosen
in antibody therapeutics (14) and is not further discussed in
this review. In comparison, IgG2 and 1gG4 induce significantly
weaker or no ADCC and CDC (13). The binding features
of different IgG isotypes to various FcyRs are summarized in
Table 1 and discussed below.

The overall structures of IgG1, IgG2, and IgG4 are very similar
with more than 90% sequence homology. The major differences
reside in the hinge region and CH2 domain, which form primary
binding sites to FcyRs (19-21). The hinge region also functions
as a flexible linker between the Fab and Fc portion.

In addition to differential binding affinity to FcyRs, IgG4, and
IgG2 demonstrate other unique features. IgG4 has a unique Sy
in the hinge region, which allows for interchangeable disulfide
bond configurations and formation of “half-antibodies” (22).
In vivo, 1gG4 with different specificity may shuftle, resulting
in monovalent-bispecific antibodies (a process called “Fab-arm
exchange”) (23). Sy28P mutation of IgG4 can efficiently eliminate

TABLE 1 | Binding activities of human FcyR to IgG isotypes and resulting effector
functions.

FcyR | Variants 19G1 19G2 19G4
Affinity? | Effector Affinity | Effector Affinity | Effector
functions functions functions
ADCP,
NA High ADCP None None High Cytokine
release
Hq34 Medium Medium | Myeloid Low Recento
) r
lla ADCP cell-induced clust('eoringc
R131 Low Low ADCCDP Low
\232d Clearance of Clearance of
b Low IC, Immuno- | None None Low IC, Immuno-
nggd suppression suppression
V58 Medium Low Low
llia ADCC None None
Fi58 Low None None

aAffinity values are based on IC binding to FcyR, adapted from Bruhns et al. (13).
bBased on Arce Vargas et al. (15).

®Based on Oberst et al. (16).

9The Tagp variant is less potent in inhibitory activity than the losp variant (17). However,
the lozo T mutation leads to significantly better phagocytosis (18).

fab-arm change. Therefore, the majority of recently approved
therapeutic IgG4 antibodies adopt an S;;sP mutation (24).
In IgG2, several disulfide bond isomers (IgG2A, I1gG2B, and
IgG2A/B) can be formed (25, 26). Many factors such as cell
culture conditions or thermal stress contribute to the formation
and equilibrium of different isomers (27). In vivo, IgG2A isomer
can convert to the form of IgG2B (28). Among the three isomers,
IgG2B has the most compact structure (26). In addition, as
compared to the form of IgG2A, the IgG2B conformation imparts
super-agonistic properties to immunostimulatory antibodies,
such as anti-CD40 antibodies (29). The feature of IgG2
isomer transformation is FcyR-independent and its activity has
been demonstrated for IgG2 CD40 mAb in the clinical trial
CP870-893 (29).

In mice, IgG2A functionally resembles human IgG1, whereas
mouse IgGl1 is considered the closest functional equivalent of
human IgG4. The D¢5 A mutation can further reduce the affinity
of mouse IgGl1 for the Fc receptor, leading to a “silent F¢” and
antibodies harboring this mutation have been widely used in
mouse models to evaluate the effects of FcyR-binding on in vivo
therapeutic efficacy (30-32).

Based on the differences in structure, function, and affinity
for IgG binding, FcyRs are classified into three major groups:
FcyRI, FcyRII (FeyRIla and FcyRIIb) and FeyRIII (FeyRIIIa and
FcyRIIIb) (13). Among them, FcyRI, FcyRIla, and FcyRIIIa are
activating receptors containing the signal transduction motif,
immunoreceptor tyrosine-based activation motif (ITAM), in the
y subunit of FcyRI and FcyRIIIa, or in the cytoplasmic tail
of FcyRIIa (14). In contrast, FcyRIIb is an inhibitory receptor.
Cross-linking of FcyRIIb leads to the phosphorylation of the
immunoreceptor tyrosine-based inhibitory motif (ITIM) and
inhibitory signaling transduction (33).

FcyRl

FcyRI is a high-affinity Fc receptor for both the monomeric
IgG and immune complex (IC) (13). The affinities of FcyRI
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to IgGl or IgG4 are similar (Kp of 1-10 nM). In contrast,
FcyRI has no binding to IgG2. FcyRI is mainly expressed on
monocytes/macrophages, dendritic cells (DCs), and activated
neutrophils. One of the major functions of FcyRI is to activate
myeloid cells to phagocytose IgG1 and IgG-bound target cells via
ADCP (34). Due to high-affinity binding of FcyRI to monomeric
IgG and high serum concentrations of IgG (~15 mg/mL), it is
believed that most FcyRI is occupied by endogenous IgG (35).
However, a recent study has shown that stimulation of myeloid
cells with cytokines, such as tumor necrosis factor-o (TNF-a) and
interferon-y (IFN-y), could induce the clustering of FcyRI and
increase the binding of FcyRI to ICs (36). Multiple studies have
also shown that FcyRI plays an important role in modulating
immune responses in autoimmune diseases, inflammation, and
antibody therapy (37-39).

FcyRIIA AND FcyRIIIA

Both FcyRIla and FcyRIlla are low-affinity FcyRs, which
bind weakly to monomeric IgG, but strongly to IC.
FcyRIla and FcyRIIIa receptors are primarily expressed on
monocytes/macrophages, dendritic cells, natural killer cells and
platelets. FcyR polymorphisms exist in FcyRIla and FcyRIIla
receptors, resulting in two isoforms of each receptor: Hj3; and
Ry3; of FcyRIIa(40), Visg and Fjs5g of FcyRIIIa (41), respectively.
FcyRIIa-H;3; variant is considered a high responder as compared
to Ry3; variant (low responder) due to a higher affinity for IgG1
and increased effector functions (such as phagocytosis) (13, 22).
Similar to FcyRI, FcyRIIa is one of the major phagocytic FcyRs
that mediates ADCP. In human, FcyRIIIa is the primary receptor
for NK- and macrophage-mediated ADCC. FcyRIIla-Vsg
variant (high responder) has a higher affinity for IgG1 and can
also interact with IgG4 (13). Functionally, IgG-induced NK cell
activity is increased in FcyRIIIA-V/V 53 homozygotes compared
with FcyRITIA-F/F;sg individuals (42).

FcyRIIB

FcyRIIb is expressed on many types of immune cells including
B cells, DCs, monocytes/macrophages, mast cells and basophils
(33). In addition, FcyRIIb was found to be expressed on liver
sinusoidal endothelial cells (LSEC) and plays an important
role in IC clearance (43). On B cells, FcyRIIb functions as
a primary inhibitory FcyR to suppress B cell activation and
antigen internalization after binding to the immune complex
(33). FcyRIIb also inhibits the type I interferon production by
DCs. The binding affinities of monomeric IgG to FcyRIIb are
extremely low (K4 ~ 2 x 10°M~1), whereas the affinities of IC to
FcyRIIb are significantly higher (13). Despite the critical roles of
FcyRIIb in the negative regulation of immune responses, several
studies have shown that FcyRIIb is required for the induction
of efficient anti-tumor activity by agonistic anti-TNF receptor
superfamily-antibody therapeutics such as anti-CD40 antibodies
(44, 45). The overall binding features of human FcyR to IgG
isotypes are summarized in Table 1.

MOUSE FcyRIV

In addition to the FcyRs described above, in mice, there is a
unique FcyR (i.e., FcyRIV), whose expression is restricted to
myeloid lineage cells (46). FcyRIV bind to mouse IgG2a and
IgG2b with intermediate affinity and plays critical roles in IgG2a-
and IgG2b-mediated in vivo efficacy (46, 47). Mouse FcyRIV
is functionally similar to human FcyRIIla, but not expressed
on natural killer cells (47). In a mouse model, anti-CTLA-4
antibody-mediated depletion of Tregs is largely dependent on
FcyRIV (10).

Fc ENGINEERING TO REDUCE OR
ELIMINATE FcyR BINDING

Several modifications to IgG can directly affect their binding
to FcyRs. The NygyA mutation was the first mutation to be
described with significantly reduced FcyR-binding (48). It was
later demonstrated that mutations of residues 234 and 235 in
the lower hinge region (EU numbering system) to alanine could
also lead to significantly reduced FcyR-binding; the Ly34A/Ly35A
double mutation on the human IgG1 backbone is also known as
the “LALA” mutation (49). In addition, hybrid antibody isotype
IgG2m4, which is based on the IgG2 with four key amino
acid residue changes derived from IgG4 (Ha63Q, V309L, A330S,
and P33;S), has been shown to have significantly reduced FcyR
binding (50).

IMMUNE CHECKPOINT MOLECULES AND
THEIR THERAPEUTIC ANTIBODIES

CTLA-4
CTLA-4 (cytotoxic T-lymphocyte-4, or CD152) is a member of
the Ig superfamily, which plays a critical role in inhibiting T-
cell immunity (51). The ligands are the B7 family members,
CD80 (B7-1) and CD86 (B7-2). As a CTLA-4-related protein,
CD28 is constitutively expressed on naive T cells and enhances
T-cell activation when engaged by B7-1/2 on antigen-presenting
cells (APC) (52, 53). In contrast, CTLA-4 surface expression
increases in a day or two after T cell activation (51, 52). CTLA-
4 is also highly expressed on Tregs and plays an important
role in the homeostasis and suppressive functions of Tregs
(54). There is no known canonical immunoreceptor tyrosine-
based inhibitory (ITIM) motif in the cytoplasmic tail of CTLA-4
(55). The exact signaling pathway of CTLA-4 upon engagement
with its ligands still remains largely unknown. Accumulating
evidence suggested that CTLA-4 primarily exerted its inhibitory
functions by competing off CD28 binding to CD80 and/or
CD86, due to the higher affinity of CTLA4 to CD80 or CD86
(55). In addition, CTLA-4 has been shown to down-regulate
CD80 and CD86 on APC, thus inhibiting CD28-mediated
co-stimulation (54).

In mouse tumor models (melanoma and colorectal cancer),
several groups have clearly shown that surrogate anti-CTLA-
4 antibody-mediated anti-tumor efficacy is dependent on Fc
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anti-CTLA-4 antibodies (A), depletion of Tregs after engaging FcyR™ effector cells [macrophages (Md) and NK cells] plays a critical role in their efficacy. In contrast,
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effector functions and correlate with depletion of tumor-
infiltrating Tregs (10, 30, 56) (Figure 1A). In 2011, the FDA
approved the first anti-CTLA-4 antibody, ipilimumab (IgGl
wild-type), for the treatment of melanoma. Furthermore, the
combination of PD-1 blockade with ipilimumab demonstrated
increased, durable anti-tumor activity in renal cell carcinoma
and non-small cell lung cancer (NSCLC) (57, 58). Interestingly,
anti-CTLA-4 clones, which lose the ability to block the B7-
CTLA-4 interaction, remain fully active in inducing tumor
rejection, suggesting that other mechanisms are involved in
anti-CTLA-4 antibody-mediated anti-tumor efficacy besides the
blocking of B7-CTLA-4 (59). In an ex-vivo assay, melanoma
patient-derived non-classical monocytes could kill Tregs via
ADCC (60). In addition, patients who responded to ipilimumab
tended to have a higher percentage of CD14TCD16™ monocytes
in the periphery. Using human FcyR-transgenic mice, Arce
Vargas et al. clearly demonstrated that antibodies with isotypes
equivalent to ipilimumab increased the CD8" to Treg ratio
by depleting intra-tumoral Tregs to promote tumor rejection
(15). Furthermore, a response to ipilimumab in melanoma
patients is associated with a high-affinity FcyRIIIa (CD16-Vsg)
polymorphism. A second anti-CTLA-4 mAb, tremelimumab,
is a human IgG2 isotype with minimal FcyRIIla-mediated
ADCC effects (61). However, anti-mouse CTLA-4 antibody
with human IgG2 isotype could also deplete Tregs in human
FcyR-transgenic mice in a FcyRIla-dependent manner (15).
Despite the convincing data from mouse models, there
has not been direct evidence indicating that anti-CTLA-
4 immunotherapy could efficiently deplete Tregs in human
cancers (62, 63).

PD-1/PD-L1

In recent years, immune therapy targeting the PD-1/PD-L1
pathway has become a backbone clinical strategy for cancer

treatment. Programmed cell death 1 (PD-1) is an inhibitory
immune modulatory receptor (64-66). It is inducibly expressed
on activated T, NK, and B lymphocytes (67), macrophages, DCs
(68), and monocytes (69) as an immune suppressor for both
adaptive and innate immune responses. PD-1 is highly expressed
on tumor-specific T cells. Engagement of PD-1 by its ligands,
PD-L1 (70) or PD-L2 (71, 72) leads to the exhaustion of T cell
function and immune tolerance in the tumor microenvironment.
Blockade of PD-1 pathway has been shown to restore the
function of “exhausted” T cells, resulting in significant anti-
tumor activity (70, 73). To date, five PD-1 antibodies have
been approved and many others are under development for
the treatment of a broad spectrum of cancers (Table 2). Most
of these anti-PD-1 antibodies are of IgG4 isotype with the
S228P mutation (IgG4 Sy,gP), which has similar effector-binding
properties as the natural IgG4 with reduced ADCC and “null”
CDC, but still retaining high affinity to FcyRI and binding to
FcyRIIb. In the MC38 mouse model, Dahan et al. reported
that engagement of FcyRs reduced the anti-tumor activity of
an anti-PD-1 antibody by eliminating CD8" tumor-infiltrating
lymphocytes (TILs) via ADCC in a FcyRI-dependent manner (9).
In addition, engagement of FcyRIIb by an anti-PD-1 antibody
could also decrease its anti-tumor activities. Arlauckas et al.
demonstrated that anti-PD-1 antibodies can be captured from
the T-cell surface by FcyR-bearing macrophages. The blockade
of FcyRs could thus prolong the binding of the anti-PD-1
antibody to CD8" TILs and enhance the anti-tumor activity
in vivo (74). A preclinical study by our group also suggested
that FcyRI binding had a negative impact on the anti-tumor
activity of anti-PD-1 antibodies in a humanized xenograft model.
The binding could induce FcyRI™ macrophages to phagocytose
PD-1" T cells via ADCP and reverse the function of an anti-
PD-1 antibody from blocking to activating (37). Recently, several
published research papers documented the phenomenon that the
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TABLE 2 | Select PD-1 and PD-L1 antibodies under development for cancer
treatment.

Target Company mAb Clinical IgG isotype or
stages mutant with effector
function nullified
PD-1  Bristol-Myers Nivolumab Approved  1gG4 SoogP
Squibb
PD-1  Merck Pembrolizumab Approved  1gG4 SpogP
PD-1  Regeneron/Sanofi  Cemiplimab Approved  1gG4 SoogP
PD-1  Novartis Spartalizumab Phase 3 9G4 SoogP
PD-1  BeiGene Tislelizumab Phase 3 IgG4mut, FcyR null
PD-1  Junshi JS001 Approved  1gG4 SpogP
PD-1 Hengrui Camrelizumab  Phase 3 9G4 SoogP
PD-1  Innovent Sintilimab Approved  IgG4 SoogP
PD-L1 Roche Atezolizumab  Approved  IgG1mut, FcyR null
PD-L1 AstraZeneca Durvalumab Approved  IgG1mut, FcyR null
PD-L1 Merck Avelumab Approved  1gG1
KGaA/Pfizer

hyperprogression frequencies of certain cancer types treated with
FDA-approved anti-PD-1 antibodies were substantially higher
than the control chemotherapy group (75-77). Lo Russo et al.
linked the interaction between the anti-PD-1 antibody and
FcyR' macrophages to the hyperprogression in NSCLC during
PD-1 blockade therapy (78). Based on these observations, an
anti-PD-1 antibody with pure blocking activity would be more
desirable, since an anti-PD-1 antibody with FcyR-binding activity
can mediate cross-linking between PD-11 T-cells and FcyR"
macrophages, induce the depletion of PD-17 T effector cells, and
thus compromise the T-cell activity of tumor growth inhibition
(9, 37, 74) (Figure 1B).

Programmed death ligand 1 (PD-L1) is constitutively
expressed by immune cells of myeloid lineages (79) and the cells
at immune-privileged sites (80, 81). It is also inducibly expressed
on T, NK and B lymphocytes, epithelial and endothelial cells
upon stimulation by pro-inflammatory factors, such as IFN-
y and TNF-a (82). PD-L1 is the main ligand of PD-1, and
the PD-L1/PD-1 axis is the major controller of the peripheral
immune tolerance (65). In tumors, PD-LI is expressed on both
tumor cells (83) and tumor-infiltrating immune cells and can
suppress anti-tumor immunity independently (84). Unlike anti-
PD-1 antibodies, the three approved PD-L1 antibodies have
differentiated FcyR-binding properties (Table 2). Atezolizumab
and durvalumab are designed to eliminate FcyR-binding and
effector functions (85, 86), while avelumab retains intact Fc
functions (87). Recent preclinical data suggested that the
engagement of FcyRs could augment the anti-tumor activity
of anti-PD-L1 antibodies via the ADCC effect against the PD-
L1" immune suppressive myeloid cells (88) or tumor cells (89).
However, it is also speculated that the effector function could
be detrimental to the anti-tumor immunity due to the depletion
of PD-L1t APC cells and T effector cells. To understand
the role of FcyR-binding on anti-PD-L1 anti-tumor efficacy,
future studies are needed to elucidate the expression of PD-L1

in the tumor microenvironment and the effect of anti-PD-L1
antibody treatment.

TIM-3

TIM-3 (T cell immunoglobulin and mucin-domain containing-
3, also known as HAVCR2) is a member of the T-cell
immunoglobulin- and mucin-domain-containing family that
plays an important role in promoting T-cell exhaustion in
both chronic viral infections and tumor escape from immune
surveillance (90, 91). It is primarily expressed on immune cells,
such as T cells, NK cells, DCs, and monocytes/macrophages (92).
When expressed on effector T cells, activation of TIM-3 has been
shown to reduce cytokine production, T-cell proliferation, and
cytotoxicity, all of which could be rescued by TIM-3 blocking
antibodies (93, 94). TIM-3 is also expressed on FoxP3" Treg cells,
especially in human tumor tissues, and is correlated with poor
clinical parameters (95, 96).

Four TIM-3 ligands have been identified, which include
PtdSer, Gal-9, carcinoembryonic antigen-related cell adhesion
molecule 1, and high mobility group box 1 (97). To date,
the detailed mechanisms of TIM-3 signaling remain unclear.
Upregulation of TIM-3 expression in TILs, macrophages, and
tumor cells has been reported in many types of cancers (98-101).
Increased expression of TIM-3 in those cancers is associated with
a poor prognosis and/or patient survival.

Following PD-1 antibody blockade, TIM-3 expression has
been shown to be upregulated on TILs from both patient samples
and animal models, resulting in “adaptive resistance” to anti-PD-
1 treatment (102-104). Blockade of the TIM-3 receptor alone or
in combination with PD-1/PD-L1 blockade has been shown both
in vitro and in vivo to rescue functionally “exhausted” T cells
(3,93, 105).

In pre-clinical mouse models of colorectal cancer (MC38
and CT26), the effects of “silent” Fc vs. “competent” Fc on
TIM-3 antibody-mediated anti-tumor activity with or without
anti-PD-1 antibody treatment were evaluated by several groups
(106, 107). The results showed that the combination of “Fc-silent”
TIM-3 Ab with PD-1 Ab led to significantly more synergistic
tumor-inhibitory effects than the one with “competent” Fc, while
TIM-3 blocking Ab monotherapy demonstrated marginal anti-
tumor efficacy. The exact mechanisms of Fc effector functions
(ADCC and/or ADCP) in the negative regulation of anti-TIM-3
antibody-mediated anti-tumor efficacy remain unknown.

To date, the first-in-human phase 1/2 clinical trials have
been initiated for four anti-TIM-3 antibodies: TSR-022
(NCT02817633), MBG543 (NCT02608268), BMS-986258
(NCT03446040), and LY3321367 (NCT03099109). TESARO
recently released the clinical data of TSR-022, in monotherapy
or in combination with an anti-PD-1 antibody (TSR-042) in
patients who progressed following anti-PD-1 treatment (108).
The results showed that the combination of TSR-022 and TSR-
042 (500 mg) was generally well-tolerated in both NSCLC and
melanoma patients, and clinical activities have been observed in
the combination therapy, especially at a high dose of TSR-022
(300 mg) with an objective response rate (ORR) of 15% (3/20)
and 40% stable disease (8/20) (108).
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LAG-3

LAG-3 (Lymphocyte activation gene-3, or CD223) is a member
of the immunoglobulin superfamily (IgSF) (109). The immune-
regulatory roles of LAG-3 were demonstrated in LAG-3
knockout mice, in which increased susceptibility to autoimmune
diseases was observed (110, 111). LAG-3 is primarily expressed
on activated T, natural killer (NK), and plasmacytoid dendritic
cells (pDC), but not on resting T cells (109, 112). In addition,
LAG-3 expression on Tregs is positively correlated with their
immune-suppressive activity (113). Sequence homology analysis
revealed that LAG-3 is structurally related to CD4, but with
higher affinity (60 nM) to MHC class IT (MHC-II) molecules, thus
inhibiting CD4-MHC-II interaction and negatively regulating
T-cell receptor (TCR) signaling (109, 114). In addition, LAG-
3 can exert negative regulation of CD8" T cells via CD4T T
cell-dependent and/or independent manners (115, 116). Similar
to PD-1, LAG-3 is expressed on tumor-infiltrating lymphocytes
(TILs), but to a less extent. Besides MHC-II molecules, LAG-
3 has been shown to bind to galectin-3 (Gal-3) and LSECtin
(115, 117). The exact biological function of these two ligands
binding to LAG-3 remains unknown. Recently, fibrinogen-
like protein 1 (FGL1) has been identified as a novel high-
affinity ligand for LAG-3 (118). In vitro, FGL1 could induce
T-cell inhibition in a LAG-3-dependent manner. In the MC38
colorectal cancer model, ablation of FGL1-LAG-3 interaction
with either anti-FGL1 or anti-LAG-3 blocking antibodies inhibits
tumor growth.

In mouse tumor models (SalN fibrosarcoma, MC38 colorectal
cancer, and MBT-2 bladder cancer), dual blockade of LAG-
3 and PD-1 receptors with blocking antibodies has shown to
significantly improve the anti-tumor activity than either antibody
alone (111, 119). In a study by Jun et al, a pair of anti-mouse
LAG-3 surrogate antibodies with IgG1 (D265A) [anti-mLAG-
3 IgG1(D265A)] or 1gG2a (anti-mLAG-3 IgG2a) isotypes were
generated based on a commercial clone (COB7W). Comparative
study of these two antibodies either alone or in combination with
anti-mouse PD-1 antibody in the CT26 mouse colorectal cancer
model showed that anti-mouse LAG-3 antibody with minimal
Fc effector functions [IgGl (D265A)] had anti-tumor efficacy,
and the one with effector function (IgG2a) had no apparent
tumor inhibitory effect (120). In addition, when combined
with PD-1 blocking antibody, anti-mLAG-3 IgGl (D265A)
showed significantly synergistic anti-tumor effects, whereas anti-
mLAG-3 IgG2a with intact effector function in combination
with an anti-mouse PD-1 antibody was less efficacious than
anti-mouse PD-1 alone, suggesting that the effector function
of LAG-3 antibody might interfere with anti-mouse PD-1
mediated efficacy. The anti-tumor efficacy of anti-mouse LAG-3
antibodies without effector functions was also observed by other
groups (119, 121, 122).

As of now, there are six LAG-3 antibodies being evaluated
in clinical trials. All these LAG-3 antibodies have Fc with
either reduced or “null” effector functions. Preliminary
data showed that combining anti-LAG-3 therapy (BMS-
986016) with nivolumab in melanoma patients refractory
to PD-1/PD-L1 treatment could help patients overcome

resistance and restore T-cell function with an ORR up to
18%, especially in patients with high LAG-3 expression
(=1%)(123).

TIGIT

TIGIT (T cell immunoglobulin and ITIM domain, also known
as WUCAM or Vstm3) is a member of the CD28 family of
proteins that play an important role in inhibiting T- and NK
cell-mediated functional activities in anti-tumor immunity (124-
126). TIGIT is mainly expressed on T and NK cells. T cells in the
tumor microenvironment (3) often co-express TIGIT with other
“checkpoint” inhibitory immune receptors, such as PD-1, LAG-3,
and TIM-3 (93, 127).

Two TIGIT ligands, CD155 (PVR) and CD112 (PVRL2,
nectin-2), have been identified; they are primarily expressed on
APCs (such as dendritic cells and macrophages) and tumor
cells (125, 126, 128, 129). The binding affinity of TIGIT to
CD155 (Kd: ~1nM) is much higher than to CD112. Whether the
TIGIT: CD112 interaction is functionally relevant in mediating
inhibitory signals is yet to be determined. High-affinity binding
of TIGIT to CD155 could compete with another co-stimulatory
receptor, CD226 (DNAM-1), which binds to the same ligands
with lower affinity (Kd: ~100nM) and delivers a positive signal
(130), therefore reducing T- or NK-activation. In addition, the
interaction between TIGIT and PVR on dendritic cells (DCs)
could deliver a “reverse signaling” in DCs, leading to reduced DC
activity and T-cell activation (126). TIGIT expression on Tregs
has been associated with a highly immune-suppressive phenotype
in tumor tissue and TIGIT signaling in Tregs may favor Treg
stability (131, 132).

Blockade of the TIGIT receptor alone or in combination with
PD-1/PD-L1 blockade could rescue functionally “exhausted” T
cells both in vitro and in vivo (133, 134). In the CT26 cancer
model, Fc with effector functions is critical for TIGIT antibody-
mediated anti-tumor activity (11, 135). The TIGIT antibody
with wild-type (WT) human IgGl Fc (EOS884448) has been
shown to be capable of preferentially depleting Treg cells in
vitro (11). The authors demonstrated that the surrogate mouse
TIGIT antibody of the mIgG2a isotype has potent anti-tumor
activity either as monotherapy or in combination with a PD-
1 antibody. In contrast, the mouse anti-TIGIT antibody with
Fc devoid of effector functions did not show any of the anti-
tumor efficacies, indicating that Fc-mediated effector functions
are required for TIGIT antibody-mediated anti-tumor effects.
In addition, the observed efficacy was associated with increased
activity of effector T cells (CD8" and CD4™") and also with Treg
depletion within the TME. Argast et al. also observed that effector
functions were critical for TIGIT antibody-induced in vivo
efficacy (135).

To date, there are six TIGIT antibodies (see Table 3) in clinical
trials, with different IgG isotypes or mutant forms. The most
advanced, MTIG7192 (NCT03563716), is in a phase 2 trial in
combination with the anti-PD-L1 antibody atezolizumab for
treatment of advanced NSCLC. How the effector functions affect
clinical activities remains to be seen.

Frontiers in Immunology | www.frontiersin.org

50

February 2019 | Volume 10 | Article 292


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Chen et al.

FcyR-Binding and Checkpoint Antibody Therapy

TABLE 3 | Anti-TIGIT in clinical trials.

Company mAb Clinical IgG Isotype and Fc

stages effector functions
Genentech MTIG7192 Phase 2 19G1
Merck Sharp & Dohme  MK-7684 Phase 2 19G1
Bristol-Myers Squibb BMS-986207 Phase 1/2 IgG1mut, FcyR null
Oncomed OMP- Phase 1 IgG1

313M32

Arcus AB-154 Phase 1 9G4 SoogP
Potenza ASP8374 Phase 1 IgG1mut, FcyR null
CD73

CD73 (also known as 5’-ecto-nucleotidase, or NT5E) is a
glycosylphosphatidylinositol (136) anchored cell surface protein,
which has both enzymatic and non-enzymatic functions (137).
As anucleotidase, it catalyzes the extracellular dephosphorylation
of adenosine monophosphate (AMP) to adenosine. Adenosine
is believed to be an immunosuppressive molecule inhibiting
CD8" T cells, NK cells, and dendritic cells, while promoting
the proliferation of immunosuppressive cells (138, 139). In
some cases, CD73 can be shed from the cell surface with
retained enzymatic activity (140). Expression of CD73 varies
on normal tissues but remains at constitutively high levels on
many types of cancer cells. High CD73 expression has been
shown to be correlated with unfavorable clinical outcomes (141-
147), which is consistent with the immunosuppressive role
of adenosine.

Three CD73 blocking antibodies have been entered into
clinical trials (i.e., BMS-986179, CPI-006, and MEDI9447).
Compared with small-molecule inhibitors, anti-CD73 mAbs offer
the possibility of directly targeting both enzymatic and non-
enzymatic CD73 pathways (148). In vitro data showed that
MEDI9447 (human IgGl1 variant) could inhibit the enzymatic
activity of both soluble- and membrane-bound CD73 through
prevention of the conformational transition of CD73 to an active
state, and could induce internalization of membrane-bound
CD73, and restore T-cell proliferation from the inhibition by
AMP (149, 150). In a mouse model, MEDI9447 monotherapy
showed significant anti-tumor efficacy, which was further
increased when combined with a PD-1 antibody (150). In the
Fc region of MEDI9447, triple mutations (L34F/Ly35E/P33;1S)
were introduced to eliminate its binding to FcyRs (Including
FcyRI, FcyRIla, and FcyRIIIa) and Clq (150, 151). Similarly,
CPI-006 from Corvus is also an IgGl isotype with a “silent”
Fc. It could fully block the production of adenosine by
inhibiting the enzymatic activity of CD73 (IC50, 17nM) without
internalization, while also activate B cells independent of
adenosine reduction (152).

Another anti-CD73 antibody, BMS-986179, is an IgG2/IgG1
hybrid with a “null” effector function. BMS-986179 could
not only inhibit CD73 enzymatic function but also induce
rapid, near-complete internalization (153). The disulfide bond
isomerization of IgG2 is thought to be the major mechanism
for BMS-986179-induced CD73 efficient clustering and

internalization. Results from mouse models indicated that the
combination of PD-1 blockade and a surrogate anti-mouse-
CD73 antibody treatment resulted in more enhanced anti-tumor
efficacy than either treatment alone (153). In a phase 1/2a
study (NCT02754141), 59 patients with advanced solid tumors
were treated either alone with BMS-986179 or in combination
with nivolumab. Preliminary results showed that both the
monotherapy of BMS-986179 and the combination were well-
tolerated and clinical activities were observed with 7 partial
responses and 10 stable diseases (154).

VISTA

VISTA (V-domain Ig-containing Suppressor of T cell
Activation,also known as B7-H5, B7H5, Cl0orf54, DDlalpha,
GI24, PD-1H, PP2135, SISP1) is a type I transmembrane protein
with a single extracellular IgV domain, functioning as a negative
regulator of T-cell immunity. It is predominantly expressed on
hematopoietic cells, at the highest level on myeloid cells and at
lower levels on T cells (155). In vitro studies indicated that not
only could VISTA-Ig inhibit T-cell activation and proliferation,
but it could also induce Treg differentiation (155). The receptor
for VISTA remains unknown. Results from murine models
suggested that VISTA and PD-1 suppressed T-cell function in
a synergistic manner, providing the possibility of combined
therapy targeting both VISTA and PD-1 to enhance anti-tumor
immunity (156).

To date, JNJ-61610588, a fully human IgG1 antibody (with
wild-type Fc) is the only anti-VISTA monoclonal antibody in a
clinical trial (NCT02671955). A preliminary study showed that
JNJ-61610588 could induce monocytes and T-cell activation, as
well as T-cell proliferation in vitro (12). Interestingly, active
Fc and Fc receptor crosslinking is required for the efficacy,
since neither the silent Fc version of VSTB140, with an IgG2
sigma constant region, nor the Fc blocking of JNJ-61610588
exhibited activity. Consistent with in vitro findings, the anti-
tumor activity of JNJ-61610588 in mouse tumor models was
observed. The exact mechanisms and clinical evidence remain to
be seen.

B7-H3

B7-H3 (Human B7 homolog 3, also known as CD276) is a
member of the B7 family of immune proteins. The majority of
studies suggest that B7-H3 is an immune checkpoint molecule
(157-159), although it was initially characterized as a co-
stimulatory molecule for T-cell activation and IFNy production
(160). The B7-H3 receptor expressed on T cells remains to be
identified (161). B7-H3 has limited expression on normal tissues
but is preferentially expressed on a wide spectrum of cancer cells
and tumor vasculature, which is associated with poor outcomes
in multiple cancers (162-168).

MGA271 (or enoblituzumab), is an Fc-enhanced humanized
IgGl anti-B7-H3 antibody developed by MacroGenics.
Mutations were introduced in the IgG1 Fc domain to increase
its affinity to FcyRIIIa but decrease the affinity to FcyRIIb (169).
Enhanced ADCC against a wide arrange of B7-H3 positive
tumor cell lines (including prostate, lung, breast, colon, bladder,
renal cancers and melanoma) was observed across all the
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donors with different FcyRIIla polymorphisms (low-affinity
158F homozygous, high-affinity 158V homozygous, and 158F/V
heterozygous). Consistent with in vitro data, greater anti-tumor
efficacy was observed in the group with MGA271 than the one
with wildtype IgG1 Fc in human FcyRIIIa-158F-transgenic mice
(170). Initial evidence of anti-tumor activity was observed in a
clinical trial with MGA271, with no dose-limiting toxicities or
severe immune-related side effects (171).

CONCLUDING REMARKS

In this review, we have summarized recent advances in the
study of FcyR-binding on checkpoint antibody therapy. For
targets such as CTLA-4, multiple studies indicated the critical
role of competent IgG1-Fc for anti-CTLA-4 antibody-mediated
intratumoral depletion of Tregs via ADCC (10, 15). This MOA
may largely be attributed to the preferential surface expression
of CTLA-4 on Tregs and the presence of significant numbers
of CD16™" macrophages inside tumors (15). In mouse models,
anti-CTLA-4 mAbs do not block CTLA-4-B7 interaction, yet they
remain active in anti-tumor efficacy, suggesting that intratumoral
depletion of Tregs by anti-CTLA-4 antibodies might be the
primary MOA (172). A similar phenomenon was observed for
TIGIT or VISTA in mouse models, in which their antibody-
elicited anti-tumor efficacy is mainly dependent on Fc-mediated
effector functions (11).

So far, five approved anti-PD-1 mAbs (nivolumab,
pembrolizumab, and cemiplimab) are of human IgG4 isotype.
The choice was made primarily based on the fact that the
affinity of IgG4 to FcyRllla is very low, inducing little ADCC
(13). However, IgG4 binds to FcyRI with high affinity, which
can negatively impact the efficacy of PD-1 therapy (9, 37).
Moreover, IgG4 can also bind to FcyRIIb, leading to reduced
anti-tumor efficacy, likely through the induction of a more
immunosuppressive environment (9, 78). Therefore, an IgG
variant of the anti-PD-1 antibody with null FcyR-binding is
expected to be the optimal candidate for therapeutic blocking
of PD-1 without the unwanted engagement of FcyR pathways.
A similar rationale applies to co-inhibitory receptors TIM-3
and LAG-3, in which blocking antibody-mediated anti-tumor

REFERENCES

1. Pardoll DM. The blockade of immune checkpoints in cancer
immunotherapy. Nat Rev Cancer (2012) 12:252-64. doi: 10.1038/nrc3239

2. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a
common denominator approach to cancer therapy. Cancer Cell (2015)
27:450-61. doi: 10.1016/j.ccell.2015.03.001

3. Dietze KK, Zelinskyy G, Liu J, Kretzmer F, Schimmer S, Dittmer U.
Combining regulatory T cell depletion and inhibitory receptor blockade
improves reactivation of exhausted virus-specific CD8+ T cells and
efficiently reduces chronic retroviral loads. PLoS Pathog. (2013) 9:1003798.
doi: 10.1371/journal.ppat.1003798

4. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune
checkpoint blockade therapy. Cancer (2018)  8:1069-86.
doi: 10.1158/2159-8290.CD-18-0367

Discov.

efficacy might be compromised when the Fc maintains intact
effector functions.

Three PD-LI-targeting mAbs have been approved:
atezolizumab, durvalumab (IgG1l variant with null or reduced
Fc-FcyR binding), and avelumab (wild-type IgGl, ADCC-
enabling) (173). Comparison of clinical activities of these mAbs
may provide important insight into the contribution of FcyRs
for the anti-PD-L1 treatment of human cancers.

It should be noted that most of the findings in this review
about the role of IgG antibody and FcyR binding on immune-
oncology therapy were obtained from mouse models (some even
in human FcyR-transgenic mice). There are several factors that
need to be taken into consideration, including, how well the
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patients, and how different the abundance and distribution of
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and macrophages) inside tumors. Further investigation through
clinical pathology and pharmacology studies is needed to assess
the translational applicability of these findings in mouse models
to human cancer treatment.
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Targeting the Antibody Checkpoints
to Enhance Cancer
Immunotherapy-Focus on FcyRIIB

Ingrid Teige, Linda Martensson and Bjérn L. Frendéus*

Biolnvent, Lund, Sweden

Immunotherapy with therapeutic antibodies has increased survival for patients with
hematologic and solid cancers. Still, a significant fraction of patients fails to respond
to therapy or acquire resistance. Understanding and overcoming mechanisms of
resistance to antibody drugs, and in particular those common to antibody drugs
as a class, is therefore highly warranted and holds promise to improve response
rates, duration of response and potentially overall survival. Activating and inhibitory
Fc gamma receptors (FcyR) are known to coordinately regulate therapeutic activity
of tumor direct-targeting antibodies. Similar, but also divergent, roles for FcyRs in
controlling efficacy of immune modulatory antibodies e.g., checkpoint inhibitors have
been indicated from mouse studies, and were recently implicated in contributing to
efficacy in the human clinical setting. Here we discuss evidence and mechanisms
by which Fc gamma receptors—the “antibody checkpoints”-regulate antibody-induced
antitumor immunity. We further discuss how targeted blockade of the sole known
inhibitory antibody checkpoint FcyRIIB may help overcome resistance and boost activity
of clinically validated and emerging antibodies in cancer immunotherapy.

Keywords: therapeutic antibody, antibody checkpoint, fc gamma receptor, cancer immunotherapy, drug
resistance, tumor microenvironment

INTRODUCTION

Monoclonal antibody-based therapies have revolutionized cancer treatment improving survival
for patients with hematologic and solid cancers. The clinically most successful antibodies exert
antitumor activity either by targeting tumor cells directly (direct-targeting antibodies) (1-4),
or by targeting and activating immune cells that seek up and kill cancer cells in the tumor
microenvironment (immune checkpoint antibodies) (5-13).

While both types of mAb are highly potent with cancer curative potential a significant fraction
of patients fail to respond or develop resistance to treatment (14-17). An improved understanding
of mechanisms underlying resistance, and in particular those common to antibody drugs as a class—
including direct-targeting and immune checkpoint antibodies-is needed for rational development
of drugs that could help boost efficacy, and prevent or overcome antibody drug resistance. Given the
broad use of antibodies in cancer treatment, such drugs would have the potential to fundamentally
improve cancer survival.
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FcyR Regulation of Antibody-Induced
Immunity-“The Antibody Checkpoints”

The Fc receptors (FcR) are the only receptors of the immune
system known to regulate the activity of antibodies as a class
(18). FcRs orchestrate antibody-induced effector cell responses
and immunity through low affinity, high avidity interactions
with aggregated antibody Fc-domains of antibody-coated cells
or immune complexes, generated following antibody Fv-binding
to target receptors. Because Fc domains are conserved between
antibodies of a given subclass e.g., IgA, IgE, IgM, or IgGy,
IgG,, IgGs or IgGy, FcRs regulate antibody-induced immune
responses irrespective of antigen specificity. For this same reason
FcRs regulate immune responses induced both by endogenously
generated antibodies (e.g., antibodies mounted in response to
infection or underlying inflammatory or autoimmune disease)
and recombinantly produced therapeutic monoclonal antibodies
(18, 19). Of particular relevance for cancer immunotherapy the
Fc gamma receptors (FcyR) are known to regulate the activity of
Immunoglobulin G type of antibodies (20), the group to which
all antibodies approved for cancer therapy belong.

The family of FcyRs share several characteristics with the
T cell immune checkpoints in how they regulate effector cell
activation and immune responses (Figure 1). Recent work by
ourselves and others, reviewed in detail below, demonstrate a
critical role for this receptor family as concerted regulators of
antibody-induced innate and adaptive immunity. Consequently,
the FcyRs are therapeutically important immune checkpoints,
and since they control immune activity of IgG antibodies as a
class, we propose to refer to them as “antibody checkpoints.” We
will herein use antibody checkpoint and FcyR interchangeably.

Antibody and T Cell

Checkpoints-Similarities and Differences
Like the T cell checkpoints the Fc gamma receptors (FcyR)
fall into either of two functionally distinct groups, which
coordinately regulate immune effector cell activation and
ensuing immune responses (Figure 1). Activating FcyR, like co-
stimulatory T cell checkpoints, promote effector cell activation,
and immunity. In contrast, inhibitory FcyR, like the T cell
co- inhibitory checkpoints, block cellular activation and down-
modulate immune responses. Adding to complexity, antibody
checkpoints may-similar to the T cell checkpoints—-promote
checkpoint receptor extrinsic signaling by facilitating cross-
linking and signaling of ligand receptors (21, 22). In case of
the antibody checkpoints, this would equate to FcyR-mediated
cross-linking of antibody Fv-targeted receptors (Figure 2).
Depending on ligand receptor function, such signaling may be
activating or inhibitory, as has been described for agonistic
CD40 and agonistic Fas antibodies, respectively (23-27).
FcyR extrinsic signaling may, or may not, contribute to
therapeutic efficacy.

The activating and the inhibitory FcyR receptors transmit
their signals into FcyR-bearing immune cell via immunoreceptor
tyrosine-based activation motifs (ITAM), and immunoreceptor
tyrosine-based  inhibitory motifs (ITIM), respectively.
Specifically, how target cell-bound antibodies modulate immune

cell activation is determined by their relative engagement
of activating and inhibitory Fcy receptors. This in turn
is determined by the size of the FcyR-engaging immune
complex, i.e., the number of antibodies coated onto a target
cell (determined by cellular expression levels of antibody
targeted receptor), availability of activating and inhibitory Fcy
receptors, and antibody isotype. Different antibody isotypes
bind with different affinity to activating and inhibitory Fcy
receptors, resulting in different activating: inhibitory (A:I)
ratios, and differential ability to mediate e.g., activating FcyR-
dependent target cell deletion (28) or inhibitory FcyR-dependent
agonism (23, 24).

As in the T cell checkpoint family, there are several activating
antibody checkpoints that individually, and collectively,
positively regulate antibody-induced cell activation. In
humans, the activating FcyR’s are: FcyRI (CD64), FcyRIla
(CD32a), FcyRIIc (CD32c), and FcyRIIlla (CD16a) (29, 30).
The GPI-linked FcyRIIb lacks an intracellular signaling
domain and ITAM motifs, but is nevertheless often considered
an activating FcyR, since it has been shown to promote
neutrophil activation and effector cell mediated target cell
killing in response to challenge with antibody-coated target cells
(31, 32). The activating mouse FcyRs are: FcyRI, FcyRIII, and
FeyRIV (28, 30, 33).

Most Fc gamma receptors bind monomeric IgG with low
to intermediate (M) affinity [as reviewed in detail elsewhere
(28, 29, 33)]. Immune complex formation allows for high-avidity
binding of multimerized IgG Fc’s to the low-affinity FcyRs, which
are cross-linked, leading to FcyR-expressing cell activation. In
contrast, free circulating IgG has too low affinity to promote
stable Fc:FcyR binding, and cannot promote FcyR-cross-linking,
or cell activation. How high affinity FcyRs e.g., FcyRI and mouse
FcyRIV, which may bind monomeric uncomplexed IgG, sense
and trigger activation in response to immune complexes and
antibody-coated cells remains a subject of debate. It is however
clear that the high affinity FcyRs may critically contribute to
therapeutic antibody efficacy and pathology (33, 34).

Multiple isoforms and allelic variants of the individual FcyRs
are known, and the affinities of the clinically most significant
variants for different human IgG subclasses have been described
(29). Of particular significance for cancer immunotherapy,
two isoforms of the low and intermediary affinity antibody
checkpoints FcyRIIa (H131R) and FcyRIIla (V158F), which
bind IgG and antibody-coated target cells with higher affinity
and avidity, have been associated with improved survival of
diverse cancer patients in response to antibody-based cancer
immunotherapy (35-39). These, and additional polymorphisms
of low and intermediary affinity activating and inhibitory FcyRs,
which alter affinity for IgG, or modulate FcyR expression levels,
are further associated with susceptibility to antibody-mediated
chronic inflammatory and autoimmune disease (40). Of further
functional consequence, there is extensive gene copy number
variation in high and low affinity loci that affect expression levels
of individual FcyRs (41-43).

The antibody checkpoints differ from the T cell checkpoints in
notable and critical aspects, which have important consequences
for the type of immune response induced, and for design
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FIGURE 1 | Antibody and T cell checkpoints. Both T cell and antibody checkpoints comprise activating (co-stimulatory) and inhibitory receptors. However, antibody
checkpoints are co- expressed only on innate immune cells e.g., macrophages and dendritic cells, and comprise only a single inhibitory member (FcyRIIB).

T cell checkpoints
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1. Killing of
target cell

>
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receptor’s function e.g., macrophage co-stimulation or tumor cell apoptosis.

FIGURE 2 | Antibody checkpoint intrinsic and extrinsic signaling. (A) Intrinsic signaling. Antibody checkpoints relay aggregated antibody Fc-induced signals into
effector cells (M®) in a concerted manner through ITAM containing activating (aFcyR) and ITIM-containing inhibitory (iFcyR) Fc gamma receptors. FcyR-expressing
cell responses include phagocytosis, immune complex endocytosis, and antigen presentation. (B) Extrinsic signaling. Antibody checkpoints promote clustering and
signaling induced by antibody targeted receptors in an antibody Fv and Fc co-dependent manner. Cellular responses are determined by the antibody-targeted

tumor cell apoptosis

v

immune activation

l antigen ‘ activating FcyRs

\o”antibody
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of drugs aimed at harnessing and enhancing FcyR-mediated
immunity (Figure 1).

Firstly, in contrast to the T cell checkpoints the Fc gamma
receptors are not generally expressed on T cells, but principally
on cells of the innate immune system, and in a restricted manner
on B cells (FcyRIIb) and NK cells (FcyRIIla and FcyRIlc, the
latter in ~20% of caucasians) (18, 30, 41). In particular cells

specialized in MHC class II-restricted antigen presentation, e.g.,
macrophages and dendritic cells, express both activating and
inhibitory FcyRs, enabling fine-tuned regulation of antibody-
induced immune responses (28, 44). Consequently, the antibody
checkpoints hold the key to unleash antibody-induced immunity
first and fore-most through improving innate immune effector
mechanisms, e.g., macrophage dependent phagocytosis (ADCP),

Frontiers in Immunology | www.frontiersin.org

March 2019 | Volume 10 | Article 481


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Teige et al.

FcyRs in Antibody Antitumor Immunity

and dendritic cell mediated antigen presentation, and cross-
presentation (45-51). Triggering and enhancing innate immune
activation and robust antigen presentation is known to critically
contribute to and underlie robust adaptive T cell-mediated
antitumor responses, including those induced by antibodies
targeting T cell checkpoints (18, 52-54). Modulation of antibody
checkpoints therefore has the potential to improve also adaptive
antitumor responses, possibly decreasing the threshold of tumor
mutational burden for cancers to respond to antibody-mediated
cancer immunotherapy (55). Finally, and in stark contrast to
the multiple inhibitory T cell checkpoints described, only a
single inhibitory antibody checkpoint-Fc gamma receptor IIB-is
known (Figure 1).

ANTIBODY CHECKPOINTS DETERMINE
ANTI-CANCER ANTIBODY EFFICACY

Cancer Cell Direct-Targeting Antibodies

The CD20-specific antibody rituximab was the first antibody to
be approved by the FDA for cancer therapy and is arguably the
clinically best validated antibody used in cancer immunotherapy.
As such rituximab provides a prime example of a tumor cell
direct-targeting antibody that has been exhaustively studied from
a mechanism-of-action perspective. While multiple mechanisms,
including induction of apoptosis and triggering of complement
mediated cell lysis, have been proposed to contribute to and
underlie rituximab therapeutic activity (56, 57), the strongest
preclinical, and clinical evidence point to Fc gamma receptor
dependent mechanisms (58-61).

Independent retrospective studies have established a
correlation between one or more activating Fc gamma receptors
and clinical efficacy in different types of lymphoma. Patients
homozygous for high affinity allelic variants of the activating
antibody checkpoints FcyRIIIa or FcyRIla showed improved
responses and survival in response to rituximab therapy
compared to patients carrying one or more lower affinity
alleles (35, 36). Similar links between response and FcyR-
dependent mechanisms have been observed for additional
cancer cell direct-targeting antibodies e.g., herceptin (anti-
Her2) and cetuximab (anti-EGFR) in breast cancer (38) and
colorectal patients, respectively (37, 39). These observations
have spurred biotech and pharmaceutical companies to
engineer antibodies with improved binding to activating
antibody checkpoints. Obinutuzumab, a glycoengineered
antibody with improved affinity for FcyRIIla, was approved
for clinical use based on increased overall survival in a head-
to-head comparison with rituximab in CLL patients (15).
Taken together, these observations demonstrate that antibody
checkpoints can determine clinical efficacy of cancer cell
direct-targeting antibodies.

Consistent with the well-conserved function of activating
and inhibitory antibody checkpoints between mouse and man,
similar dependencies between activating FcyRs and cancer cell
direct-targeting antibodies have been made in mouse cancer
experimental models. Further in keeping with common, ITAM-
signaling dependent, functions of the several activating antibody

checkpoints, genetic ablation of individual activating FcyRs
typically has shown limited effects on in vivo therapeutic efficacy
compared to ablation of all activatory FcyRs (28, 33, 62).

In stark contrast, genetic deletion of the sole inhibitory
antibody checkpoint FcyRIIB fundamentally enhances in vivo
therapeutic activity of cancer cell direct-targeting antibodies,
including those specific for CD20, Her2, and EGFR i.e., clinically
validated targets in therapy of hematologic malignancy as
well as solid cancer (63). These observations indicate the
significant therapeutic potential of targeting the inhibitory
antibody checkpoint, and indicate that redundancy needs to be
accounted for when seeking to enhance antibody efficacy by
modulating activating antibody checkpoints, much as has been
observed in targeting of the multiple different T cell checkpoints
(6, 14, 64).

Interestingly, and in further support of FcyRIIB being a
tractable target in cancer immunotherapy, recent data has
demonstrated that this inhibitory antibody checkpoint limits
therapeutic antibody efficacy and promotes antibody drug
resistance by additional mechanisms distinct from inhibitory
signaling in immune effector cells, when expressed on tumor B
cells (65) (Figure 3). Beers et al. found that FcyRIIB expressed
on tumor B cells promoted internalization of rituximab antibody
molecules from the tumor B cell surface, increasing antibody
consumption and leaving fewer rituximab molecules to engage
critical FcyR-dependent effector cell-mediated antitumor activity
e.g., ADCP (66). FcyRIIB expression correlated with rituximab
internalization across several different lymphoma subtypes
studied. Highest and most homogenous expression of FcyRIIB is
observed in Chronic Lymphocytic Leukemia (CLL), Mantle cell
lymphoma (MCL), and Marginal Zone Lymphoma, although a
fraction of Follicular lymphoma (FL) and Diffuse Large B cell
Lymphoma show exceptionally high FcyRIIB expression (67, 68).
Further consistent with tumor B cell expressed FcyRIIB limiting
antibody therapeutic efficacy and promoting antibody resistance,
retrospective clinical studies of MCL and FL patients treated
with rituximab-containing therapy showed decreased survival
of patients with higher FcyRIIB expression on tumor cells (67,
69). Tumor cell expressed FcyRIIB appears to be a general
mechanism limiting antibody therapeutic efficacy and promoting
antibody drug resistance in the tumor microenvironment. Using
a humanized model of treatment refractory B cell leukemia,
and the CD52-specific antibody alemtuzumab, Pallasch et al.
found that FcyRIIB is highly overexpressed on leukemic tumor
cells in such antibody drug-resistant tumor microenvironments,
and that shRNA-mediated knock-down of tumor cell FcyRIIB
restored responsiveness to therapeutic antibody resulting in
animal cure (70). Finally, high expression of FcyRIIB in B cell
malignancy may indicate that immunocompetent antibodies to
FcyRIIB could have single agent therapeutic activity in this
setting (65, 71).

Collectively, these and other observations provided
the rationale to develop antagonistic anti-FcyRIIB
antibodies  that  block  FcyRIIB-mediated  antibody
internalization for combination immunotherapy of B

cell cancer with direct-targeting antibodies e.g., rituximab
(65, 72) (Figure 3).
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FIGURE 3 | Tumor cell expressed FcyRIIB promotes antibody drug resistance. (A) Resistance is mediated by FcyRIIB-mediated removal of antibody molecules from
the tumor cell surface through a process of internalization. (B) Blocking antibodies to FcyRIIB prevent internalization, leaving greater numbers of therapeutic antibody
on the tumor cell surface, promoting immune effector cell-mediated antitumor activity.

Antibodies to Immune Checkpoint

Inhibitory Receptors

Antibody targeting of immune inhibitory T cell checkpoints
e.g., CTLA-4, PD-1 and PD-LI has transformed solid cancer
therapy shifting focus from cancer cell-direct targeting therapies
to immune modulatory drugs, which induce long-term remission
and apparent cures albeit in a small fraction of advanced stage
cancer patients. Such immune checkpoint-directed therapy has
increased overall survival for patients with various cancers,
notably including multiple solid cancer types e.g., melanoma,
lung, bladder, and head and neck cancer, and are approved by
the Food and Drug Administration (14, 73, 74).

While originally thought to act solely via “blocking the
brake” on effector T cells (74, 75), recent preclinical and clinical
data indicate a critical role for FcyR’s in regulating therapeutic
efficacy of antibodies to inhibitory T cell checkpoints. Vargas
et al. for the first time in human subjects, demonstrated a link
between antibody checkpoints, and clinical response to T cell
checkpoint targeted antibody therapy (76). Melanoma patients
carrying a high affinity allele of the activating FcyRIIIa (V158)
showed improved survival in response to treatment with the anti-
CTLA-4 antibody ipilimumab compared to patients carrying a
lower affinity FcyRIIIa (F158) allele. Interestingly, in the two
retrospectively studied cohorts, a prerequisite for response to
anti-CTLA-4 antibody therapy was that patients had inflamed
tumors i.e., T cells had infiltrated tumors prior to commencing
therapy. The observation that antibody checkpoints determine
clinical efficacy of ipilimumab was not unexpected, since anti-
CTLA-4 antibody therapy in the mouse critically depends on
FcyR-mediated deletion of regulatory T cells (77-80), which
express CTLA-4 at higher levels compared with effector T

cells in the tumor microenvironment (76). Consistent with co-
ordinate regulation of anti-CTLA-4 antibody therapeutic efficacy
by the antibody checkpoints, in a FcyR-humanized mouse model
antibody variants engineered for enhanced binding to activatory
FcyR showed enhanced therapeutic activity (76). In contrast,
antibody variants with diminished binding to activating FcyR
failed to induce protective immunity against cancer.

So, how about the other clinically validated T cell checkpoints?
Do antibody checkpoints regulate the activity also of antibodies
targeting the PD-1/PD-L1 axis? Evidence from mouse models
suggests that indeed they do. Interestingly, however, these
data indicate differential FcyR-regulation for anti-PD-1 and
anti-PD-L1 antibodies. Dahan et al. reported that anti-PD-
L1 antibodies therapeutic efficacy was enhanced with antibody
isotypes that preferentially engage activating over inhibitory
antibody checkpoints (81). Conversely, anti-PD-1 antibody
variants that did not engage FcyRs showed greatest therapeutic
activity, and FcyR-engaging antibodies’ activity decreased with
increasing A:I ratios. Similarly, Pittet and coworkers found
that in vitro and in vivo efficacy of clinically approved anti-
PD-1 antibodies nivolumab and pembrolizumab, and a murine
surrogate antibody variant with claimed similar engagement
of mouse FcyR compared to these mAb, was compromised
by FcyR-engagement (82). Deglycosylation of antibodies with
EndoS rendering them incapable of engaging FcyRs, or
antibody-mediated FcyR-blockade, significantly improved anti-
PD-1 antibody therapeutic activity. This demonstrates that FcyRs
negatively regulate anti-PD-1 antibody efficacy. Further studies
are needed to dissect the relative importance of activating vs.
inhibitory antibody checkpoints in regulating anti-PD-1/PD-L1
antibodies’ therapeutic activity.
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Antibodies to Immune Checkpoint

Co-stimulatory Receptors

The power of treating cancer by engaging patient’s own immune
defense mechanisms through immunotherapy with antibodies
to the co-inhibitory T cell checkpoints, has prompted the
question of whether targeting also co-stimulatory immune
checkpoints e.g., 4-1BB, OX40, CD40, and GITR can translate
into similarly efficacious and perhaps complementary pathways
of anti-cancer immunity?

Preclinical and limited clinical data has indicated both
single agent activity of antibodies to co-stimulatory immune
checkpoints and complementary effects following combination
with checkpoint blocking antibodies e.g., anti-PD-1 (83-89).
As found for antibodies to the immune inhibitory checkpoints,
and as discussed below, efficacy of immune agonist checkpoint
antibodies is regulated by the FcyRs (77-79, 89), with some
showing preferential engagement of activatory FcyR (i.e., high
A ratio), and others of inhibitory FcyR (i.e., low A:I ratio), for
optimal therapeutic activity (Table 1).

So, what is the common denominator determining FcyR-
dependency, and preferential engagement of inhibitory vs.
activating FcyR for efficacy of individual targets and antibodies?
In a recent landmark paper, Beers and co-workers used
a multi-pronged approach to study molecular and cellular
FcyR-dependent mechanisms underlying therapeutic activity of
antibodies to the co-stimulatory immune checkpoint 4-1BB (89).
Firstly, the authors used anti-4-1BB antibodies with identical
Fv-regions but differing in isotype-therefore targeting the same
epitope on 4-1BB but showing preferential engagement of
activating (mouse 1gG2a, high A:I ratio) or inhibitory (mouse
IgGl, low A:l ratio) antibody checkpoints. Second, effects
were studied in immunocompetent tumor-bearing animals
differing only by FcyR repertoire—expressing only activating,
only inhibitory or both activating and inhibitory antibody
checkpoints. Using this approach, the authors found that anti-4-
1BB antibodies can stimulate anti-tumor immunity by different
mechanisms; Boosting of effector CD8™ T cells, or depletion of
regulatory T cells (Figure 4). Both mechanisms were regulated
by antibody interactions with FcyR, but differently so.

Anti-4-1BB antibodies’ depletion of intratumoral Treg
cells was shown to be dependent on activating FcyR (89).
Antibody isotypes with high A:I ratio showed enhanced
Treg deletion, and Treg deletion was diminished in animals
lacking activating Fc gamma receptors. A similar dependence
on activating antibody checkpoints for Treg depletion had
previously been demonstrated for antibodies to other immune
receptors e.g., GITR, OX40, CD40, CTLA-4, or IL-2R, ie,
independent of specificity for co-stimulatory or inhibitory
immune checkpoints (Table 1).

Conversely, boosting of CD8' T cell responses was most
pronounced with antibody isotypes of low A:l ratio. The
mechanism underlying enhanced CD8" T cell responses likely
involves FcyRIIB-mediated antibody cross-linking, and thereby
promoted signaling, of antibody-targeted co-stimulatory 4-1BB
receptors on CD8"T T cells. Agonist anti-tumor activity of
anti-CD40 antibodies has previously been proposed to rely

on FcyRIIB-mediated antibody cross-linking and promoted
signaling in CD40-expressing antigen presenting cells (23, 24)
(Table 1; Figure 2B).

Interestingly, the authors found that concurrent
administration of equal doses of high A:I variant (mlIgG2a),
Treg-depleting, anti-4-1-BB antibodies, and low A:I variant
(mIgGl), CD8™" T cell boosting, anti-4-1-BB antibodies reduced
therapeutic efficacy. In contrast, sequential administration of first
activating FcyR-optimized antibody to deplete Tregs, followed
by inhibitory FcyR-optimized antibody to agonize CD8' T
cells, enhanced therapeutic efficacy compared to single agent
treatment. These observations indicated competing mechanisms
of high A:I antibody mediated Treg depletion, and low A:I
antibody mediated CD8™" T cell boosting. This notion that was
corroborated through a series of complementary experiments.
In short, although the two studied isotype variant antibodies
show preferential binding to activatory (mIgG2a, high A:I ratio)
and inhibitory (mIgG1, low A:I ratio) FcyRs, respectively, both
antibody variants will co-engage activating and inhibitory FcyRs
in vivo, where their “preferred” type (activating or inhibitory) of
FcyR on effector cells is limited in numbers, relative to target cell
coated antibody Fc’s available for FcyR engagement. Therefore,
concurrently administered high A:I ratio and low A:I ratio
antibodies will compete for binding to available activating and
inhibitory FcyR, resulting in a “frustrated system” of suboptimal
Treg depletion and suboptimal CD8™ T cell boosting.

Importantly, if translated to human, these findings could
have broad implications for cancer immunotherapy. Human
IgG1 and IgG4 antibodies-two of the most common isotypes
used in cancer immunotherapy-bind human activating and
inhibitory FcyRs with rather similar affinity, compared with the
more “polar” affinities of mIgG2a and mIgGl for activating,
and inhibitory FcyRs, respectively. Human IgGl and IgG4
might therefore be expected to be quite sensitive to such
competition, which could help explain the poor translation of
promising mouse data to the human clinical setting. Further, the
findings are likely relevant to other signaling antibody targets,
most notably co-stimulatory receptors of the TNF receptor
superfamily. Earlier studies had reported decreased efficacy
following concurrent treatment with antibodies to OX40 and
PD-1, although underlying molecular mechanisms were not
studied (88).

Collectively, these observations shed important light on
how antibody checkpoints regulate mechanisms common to
cancer cell direct-targeting and immune checkpoint targeting
antibodies. Therapeutic activity of either type of antibody
may rely principally on target cell depletion (e.g., anti-
CD20 or anti-IL-2R), cell depletion and block of target
receptor signaling (e.g., anti-Her2 or anti-CTLA-4), or strictly
on receptor/ligand blockade e.g., anti-PD-1 (Figure 5). Thus,
classification of antibodies into cancer cell-direct targeting,
immune checkpoint blocking, or immune checkpoint agonists,
is inadequate and needs revision (98). Instead, careful dissection
of individual antibodies’ mechanism(s) of action with respect
to their ability to block or agonize receptor signaling and/or
deplete target cell(s), and their regulation by interactions with

Frontiers in Immunology | www.frontiersin.org

March 2019 | Volume 10 | Article 481


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Teige et al.

FcyRs in Antibody Antitumor Immunity

TABLE 1 | Antibody checkpoints determine efficacy and mechanism-of-action of immune modulatory antibodies.

Antibody MoA

Co-stimulatory checkpoints

Co-inhibitory checkpoints

GITR 0X40 4-1BB CD40 IL-2R CTLA-4 PD-1 PD-L1
High A:l ratio Effect Treg depletion CD407 cell Treg depletion ' Treg depletion *FcyRs TAM
depletion reduce depletion?
efficacy
FcyR- aFcyRp aFcyRt aFcyRt aFcyR1 aFcyRt aFcyR1p aFcyR1
modulation iFcyR{ iFcyR{ iFcyR{ iFcyRy iFcyR{ iFcyR{
Low A:l ratio Effect Teff costimulation APC costimul.
FcyR- aFcyR| aFcyR| aFcyR|
modulation iFcyRt iFcyRt iFcyRt
FcyR-indep. Effect Block Teff suppression
mAbs Isotype(s) rlgG2b migG1 migG2a, migG1, rlgG1, halgG, higG1 migG1/2a/ migG1/2a/
mIgG1 hIgG1/2/SE/ mIgGZa 1D265Av 1D265A
SELF/VO/NV11 rigG1, higG4
Clone(s) DTA-1 OX86 LOB12.0 1C10, 3/23, PC-61 9H10, 4F10, 4H2, 14D8
FGK45, 9D9, RPMI-14,
CP-870,893 ipilimumab nivolumab,
pembro

Table indicates antibody Mechanism-of-Action (MoA) as a function of antibody isotype preferential engagement of activating (High A:l ratio) or inhibitory (Low A:l ratio) antibody
checkpoints. Mechanisms of immune modulatory antibodies to co-stimulatory immune checkpoints, co-inhibitory immune checkpoints or the IL-2R are indicated. Effect indicates main
cell type and function identified as underlying therapeutic effects of High A:l, and Low A:l variant antibodies, respectively. FcyR-modulation: arrows indicate how activatory FcyR (aFcyR)
and inhibitory FcyR (iFcyR) positively (1) or negatively (|) regulate indicated effect. Bottom two lines indicate antibody isotypes and clones used in referenced studies. References:
GITR (79), 0X40 (90-95), 4-1BB (89), CD40 (23, 24, 96), IL-2R (97), CTLA-4 (76-80), PD-1 (81, 82), PD-L1 (81).

the antibody checkpoints, will be critical for identification
and rational combination of antibodies with complementary
non-competing mechanisms-of-action (Table 1). As discussed
below, such knowledge will additionally pave the way for
antibody-checkpoint targeted therapies, e.g., antibody blockade
of inhibitory FcyRIIB or Fc-engineering for enhanced affinity to
activating FcyR, to help boost efficacy and overcome resistance in
the immune suppressed tumor microenvironment.

Targeting the Antibody Checkpoints to
Improve Cancer Immunotherapy-Focus
on FcyRIIB

The documented role of the antibody checkpoints as master
regulators of the clinically most relevant classes of anti-cancer
antibodies detailed above, suggests that targeting of this receptor
family be an attractive strategy to enhance efficacy and overcome
resistance to antibody-based cancer immunotherapy.

While Fc gamma receptor regulation of antibody efficacy
is highly functionally conserved between mouse and man,
important differences in absolute and relative binding
affinities of the species’ respective antibody subclasses for
their corresponding activating and inhibitory FcyRs have slowed
translation into human therapeutic antibody candidates and
clinical development. Recent development of FcR-humanized
mouse models (99), and highly specific antagonist or agonist
antibodies to individual human and mouse activating and
inhibitory receptors (30, 65), have now enabled such translation.

Antibody engineering to enhance affinity for activating
antibody checkpoints has obtained clinical proof-of-concept
through the afucosylated CD20-specific antibody obinutuzumab
(15), with additional afucosylated antibodies in late stage
clinical development (100). While clinically validated, and
elegant in the sense that simple removal of a fucose group
of residue N297 in the antibody constant domain results in
very significantly enhanced binding to FcyRIIla (101), this
approach has its limitations. Firstly, emerging data indicates
that intratumoral macrophages and dendritic cells—critical
effectors underlying antibody-induced antitumor immunity
(102)-express FcyRIIA and FcyRIIB at highest density (76).
Further, FcyRITA may be the only activating Fc gamma receptor
expressed on human dendritic cells, which additionally express
FcyRIIB for coordinate regulation of antigen presentation
(45). Consequently, harnessing the full potential of antibody
checkpoint-regulated anti-cancer immunity is likely to require
engagement and enhancement of additional activating FcyRs
besides FcyRIlIla, and ideally reduced or no engagement of
the inhibitory antibody checkpoint. As discussed below, the
great structural similarity between individual activating and
inhibitory antibody checkpoint receptors poses significant
technical challenges to succeed in engineering of antibodies with
such properties. Nevertheless, Fc-engineering by substitution
of two or more amino acids has generated antibody molecules
with enhanced affinity for both FcyRIIA and FcyRIIIA,
albeit with retained or slightly enhanced affinity also for the

Two principal Strategies to Dbetter harness antibody 1nh1b1t0ry FCYRIIB (103, 104) Whether such molecules will
checkpoint-dependent ~ antitumor immunity have been  show therapeutically relevant pharmacokinetics or enhanced
pursued-Fc engineering or FcyR blockade (Figure 6). efficacy remains to be demonstrated in clinical trials.
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FIGURE 4 | Activating and inhibitory antibody checkpoints determine efficacy and mechanism-of-action of immune agonist antibodies. This schematic figure models
(A) Antibody engagement of activating and inhibitory FcyRs determine target cell depletion and agonism, respectively. The two mechanism compete when antibody
variants (isotype) capable of binding both FcyR are used, resulting in reduced or no therapeutic activity. (B) Antibody variants with enhanced binding to activating
FcyR (high A:l ratio) show improved depletion of Treg cells, which express higher numbers of receptors compared with effector cells, resulting in immune activation
through elimination of suppressor cells. (C) Antibody variants with enhanced binding to inhibitory FcyR (low A:l ratio) show improved CD8™ T cell agonism, resulting in
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Based on the significant upregulation of the sole inhibitory
antibody checkpoint FcyRIIB in the tumor microenvironment
(97), and its documented role in conferring resistance to
antibody-based therapy in this niche (65, 70, 97), we have
pursued antibody-mediated blockade of FcyRIIB as an
alternative and complementary approach to Fc-engineering
to harness the full potential of antibody checkpoint-regulated
immunity. In theory, besides being an apparent critical
pan-antibody regulator conferring antibody drug resistance
in the tumor microenvironment, targeted blockade of
FcyRIIB by a separate antibody has the advantage of enabling

combination therapy and boosted efficacy with multiple existing,
clinically validated, antibodies including those engineered
for enhanced binding to activating FcyR (65). The strategy
does, however, put exquisite requirements on a therapeutic
antibody candidate, both from target receptor specificity
and function-modulating perspectives. The extracellular,
antibody accessible domain, of the inhibitory FcyRIIB is
~93% homologous with the activating FcyRIIA. Nevertheless,
probing of a highly diversified human recombinant antibody
library (65), or immunization of mice transgenic for human
FcyRITA (105), generated diverse pools of highly specific
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FIGURE 5 | Antibody preferred mechanism-of-action and FcyR-engagement is dependent on target receptor function and expression. This schematic figure models
four exemplary antibody MoA's, pertinent to both immune checkpoint and tumor cell direct-targeting antibody types. (1) Blocking mAb. PD-1, a co-inhibitory antibody
checkpoint expressed at high and similar levels on intratumoral Treg and Teff cells, is best targeted using a PD-1/PD-L1 blocking Fc-null antibody variant, since
FcyR-mediated Teff cell depletion is undesirable (2) Blocking and depleting mAbs. Anti-CTLA-4 is overexpressed on intratumoral Treg compared with Teff, and
activatory FcyR-engagement correlates with survival in melanoma patients treated with ipilimumab. Preferred MoA is two-fold: CTLA-4/B7 blockade and Treg
depletion through FcyR-dependent mechanisms (3) Agonist mAb Preferred MoA is FcyR-engaging antibody variant, where FcyRs promote receptor cross-linking and
signaling. (4) Depletion only mAb. Anti-IL2R antibody preferred MoA is ligand non-blocking and FcyR-dependent (Treg) cell depletion. IL-2R overexpressing Tregs are
selectively depleted, while free IL-2 may promote Teff survival and expansion.

antibodies that selectively bound to FcyRIIB, and not to  able to block antibody-induced FcyRIIB inhibitory signaling
FcyRIIA, and which in a dose-dependent manner blocked  (65). Remaining candidates either did not block, or agonized,
immune complex binding to cell surface-expressed FcyRIIB.  FcyRIIB signaling. The latter category could have therapeutic
Functional screening revealed that only a minority of the  potential in treatment of chronic inflammatory and autoimmune
highly FcyRIIB specific human recombinant antibodies were  disease (106).
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FIGURE 6 | Antibody-induced antitumor immunity can be enhanced by modulation of antibody: FcyR interactions. Left panel (no antibody checkpoint modulation).
Antibody efficacy is balanced by co-engagement of activating and inhibitory FcyR. Center panel (enhanced engagement of activating FcyR). Antibody efficacy is
improved through Fc-engineering for enhanced binding to activating FcyR. Right panel-Antibody efficacy is enhanced by blockade of the inhibitory FcyRIIB.

Based on observations that FcyRIIB limits antibody efficacy
and promotes tumor cell resistance by dual mechanisms in B
cell malignancy, acting at the level of both immune effector
cells and tumor B cells, we have further characterized the
therapeutic potential of antagonistic anti-FcyRIIB antibodies to
boost efficacy and overcome resistance to antibody therapy in
vivo focusing initially on this setting. A lead human antagonistic
anti-FcyRIIB IgG1 antibody (6G11 or BI-1206), which showed
synergistically enhanced rituximab B cell depletion in FcyRIIB
and CD20 humanized mice, and overcame refractoriness of
primary leukaemic B cells to anti-CD20-based antibody therapy
in vivo, is currently in early phase clinical testing (65).

Besides affording efficacy, therapeutic targeting of Fc gamma
receptors, whether by blocking antibodies or Fc-engineering,
must be safe and associated with therapeutically relevant
pharmacokinetics. In addition to its high expression on B
cells and certain macrophage/dendritic cells, FcyRIIB has
been reported to be highly expressed in mouse and rat
liver sinusoidal endothelial cells (LSEC) (107), where they
have been implicated in removal of circulating small immune
complexes (108). These observations raise potential safety
concerns of undesirably cytotoxic activity with therapeutic
antibodies targeting FcyRIIB. However, our recent observations
of human and mouse liver indicate lower LSEC expression
in man (30), and dosing of FcyRIIB humanized mice with
therapeutically relevant doses of anti-human FcyRIIB IgGl
antibody 6G11 showed no apparent acute or chronic treatment

related adverse effects (30, 65). Ultimately, the safety and
efficacy of targeting FcyRIIB needs to be assessed in human
subjects. Two clinical trials are ongoing to evaluate safety and
explore efficacy of the BI-1206 antibody as single agent and in
combination with rituximab in B cell malignancy (NCT03571568
and NCT02933320). Our ongoing efforts aim at translating
observations of FcyRIIB-regulated antitumor immunity to the
solid cancer clinical setting.

As noted above FcyRIIB may promote anti-tumor activity
by facilitating extrinsic signaling of certain co-stimulatory
receptors expressed on tumor or immune cells. A possible
strategy to enhance therapeutic activity of such antibodies
would therefore be to enhance their affinity for FcyRIIB. In
keeping with this, anti-DR5 antibodies carrying the S267E
(“SE”) mutation, increasing human IgG1 affinity for FcyRIIB
several hundred-fold, showed improved tumor regression in
mouse models humanized for FcyRIIB (109). Analogously,
human IgG2 anti-CD40 antibodies equipped with SE or
SE/LF mutated backbones (the latter further increases affinity
for FcyRIIB) showed enhanced CD8" T cell activation, and
improved ability to clear tumors, in mice humanized for
FcyRs and CD40 (96). However, increasing antibody affinity
for FcyRIIB in these two cases improved not only efficacy but
also side effects. Increased DR5 agonism of the SE variant
anti-DR5 was associated with increased liver enzyme release.
SE and SE/LF variant anti-CD40 antibodies increased not
only T cell activation and anti-tumor immunity, but also
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depletion of platelets, which express CD40 (96, 109). Thus, Fc-
engineering for enhanced FcyRIIB affinity or selectivity needs
close consideration of antibody (Fv-) targeted receptor’s cellular
distribution and function(s).

CONCLUDING REMARKS

Emerging preclinical and clinical data demonstrate that
the activating and inhibitory Fc gamma receptors-the
“antibody checkpoints”-control antitumor immunity induced
by the clinically most successful antibodies used in cancer
immunotherapy. Therapeutics that harness the power of
antibody checkpoint-regulated anti-tumor immunity, through
Fc-engineering to enhance binding to activating FcyRs,
or through blockade of the inhibitory FcyRIIB, have been
approved or are in development. If safe and well-tolerated,
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While neutralizing antibody titers measured by hemagglutination inhibition have been
proposed as a correlate of protection following influenza vaccination, neutralization alone
is a modest predictor of protection against seasonal influenza. Instead, emerging data
point to a critical role for additional extra-neutralizing functions of antibodies in protection
from infection. Specifically, beyond binding and neutralization, antibodies mediate a
variety of additional immune functions via their ability to recruit and deploy innate
immune effector function. Along these lines, antibody-dependent cellular cytotoxicity,
antibody-mediated macrophage phagocytosis and activation, antibody-driven neutrophil
activation, antibody-dependent complement deposition, and non-classical Fc-receptor
antibody trafficking have all been implicated in protection from influenza infection.
However, the precise mechanism(s) by which the immune system actively tunes antibody
functionality to drive protective immunity has been poorly characterized. Here we
review the data related to Fc-effector functional protection from influenza and discuss
prospects to leverage this humoral immune activity for the development of a universal
influenza vaccine.

Keywords: influenza, antibody, Fc receptor, vaccine, ADCC, glycosylation, adjuvant

INTRODUCTION

Influenza viruses are enveloped negative-strand RNA viruses with segmented genomes that can
infect a variety of birds and mammals, including humans (1). Seasonal influenza affects 10-20% of
the world’s population per year (2), which is estimated to cost $4.6 billion yearly for hospitalizations,
doctor’s visits, and medications in the United States alone (3). Additionally, influenza causes U.S.
employees to miss approximately 17 million workdays due to flu, at an estimated cost of $7 billion
ayear in sick days and lost productivity (3). Increased infection and mortality occurred during four
pandemics in the 20th and 21st centuries, in 1918, 1957, 1968, and 2009 (4), and could occur again if
a new strain, such as avian influenzas H5N1 or H7ND9, begins to circulate in the human population.

To address this looming threat, the National Institute of Allergy and Infectious Diseases
(NIAID) has named the development of a universal influenza vaccine, defined as one that provides
protection against symptomatic disease from >75% of influenza A strains, as one of its research
priorities (5). A key component of the strategic plan is the initial characterization of the correlates
of immunity against influenza infection and disease (6). While neutralization has been widely
considered the major protective correlate of immunity, hemagglutinination-inhibiting neutralizing
antibodies alone have been only modestly linked to protection from seasonal influenza infection,
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suggesting the involvement of extra-neutralizing antibody
functions (7-10). Moreover, currently licensed seasonal influenza
vaccines provide only moderate (10-60%) protection against
specific strains of seasonal influenza, and little to no protection
from emerging pandemic influenza (11). This low efficacy is
caused by subtype and strain variability of the two major viral
antigens, hemagglutinin (HA) and neuraminidase (NA), as well
as by antigenic drift (12). All the available seasonal influenza
vaccines, including the inactivated influenza vaccine (IIV),
adjuvanted IIV (FluAd), and live attenuated influenza vaccine
(LIAV), are given yearly due to limited response durability
and the need to induce de novo immunity to novel circulating
strains. The development of yearly influenza vaccines relies on
predictions published by the World Health Organization to
determine the strain composition for a given year (13). Due to the
long lead times in producing adequate quantities of the vaccine,
the strains must be selected roughly 6 months in advance of
vaccine administration (13), leading to population vulnerability
should a new strain enter circulation. When these predictions
did not match seasonal circulating strains, the effectiveness was
very low (11).

Beyond efforts to match sequences to ensure seasonal
immunity, the current surrogate of protection used to evaluate
influenza vaccines is the hemagglutination inhibition (HAI) assay
(14). HAI was identified as a predictor of protection from
infection in the initial study of egg-grown inactivated vaccine
efficacy conducted in 1943 by Salk et al. (15). HAI measures the
ability of an antibody or serum sample to prevent HA binding to
red blood cells, and is considered a proxy for neutralization by
receptor blockade (14). HAI, however, does not fully explain or
predict protection in humans (7-9). Indeed, individuals lacking
detectable HAI titers were found to be resistant to influenza
infection. Additionally, infection risk was clearly linked to age
independently of HAI titer (7). While HAI is considered a
classical surrogate of protection from influenza infection, it alone
is not sufficient to fully explain protection (10).

Humoral immune responses to influenza are largely directed
toward the hemagglutinin molecule (HA). HA, the primary viral
glycoprotein, exists as a trimer made of monomers composed
of two subunits, HA1, roughly corresponding to the “head” and
HAZ2, or “stem” (16) (Figure 1). Heterosubtypic or cross-reactive,
antibodies to the HA head region are relatively rare due to
heavy glycosylation and low sequence conservation in this region
(17, 18). Although highly variable, cross-reactive neutralizing
antibodies have been discovered against the HA head. However,
these antibodies bind primarily to specific conserved epitopes,
including the receptor binding domain (18). In contrast, while
several protective antibodies have been identified against the HA
stem, as it is more conserved, this region of the HA is poorly
immunogenic (17).

Heterosubtypic protective antibodies against influenza
primarily target either the receptor binding site on the HA head
or the more conserved HA stem (19). However, the stem region
is infrequently targeted compared to easily inducible strain-
specific HA head responses (20). Regardless of target, antibodies
against HA can mediate protection by neutralization or extra-
neutralizing functions, and both modalities may be exploited

Neuraminidase

M1 matrix protein

M2 ion channel
NP-coated genome

FIGURE 1 | Schematic structure of influenza virion. Surface proteins
hemagglutinin (HA) and neuraminidase (NA) are present on the surface at an
approximate 3:1 ratio. The M2 ion channel also spans the envelope. M1 matrix
protein forms the inner capsid, which surrounds the segmented RNA genome
coated in nucleoprotein (NP).

by a single antibody specificity. Antibodies that target the head
largely provide protection by preventing the virus from entering
the target cell, and are thus referred to as neutralizing antibodies
(19). Non-neutralizing functional protective influenza-specific
antibodies have been documented against both the HA head and
stem (21, 22); however, their mechanisms of action are more
complex and varied (23). Although protective non-neutralizing
antibodies have been documented across the HA molecule,
these types of protective antibodies more dominantly target the
stem region of HA and can exhibit wide reactivity, capturing
most influenza A viruses (20). Because the neutralizing capacity
of antibodies is dose-dependent (21), in this review the term
non-neutralizing will be used to describe antibodies that
cannot efficiently neutralize virus at the concentration currently
being studied.

While the mechanism of protection mediated by neutralizing
antibodies is simple to comprehend, the extra-neutralizing
mechanisms of action of antibodies are less well-understood.
Emerging evidence has suggested that mechanisms including the
ability of antibodies to leverage the innate immune system may
contribute to protection against influenza (21-31). Critically,
antibodies possess two functional domains: the Fab, which
recognizes the antigenic epitope, and the Fc, which interacts with
Fc receptors (FcR) or complement to drive antibody-mediated
effector functions (Figure 2). Passive transfer studies using both
native IgGl and FcR-binding ablated monoclonal antibodies
(mAbs) clearly illustrated the importance of Fc-mediated
functions in protection from infection (21, 22). Moreover,
follow-up studies using FcR and complement knockout mice
further clarified the critical nature of specific Fc-effector
functions in protection (21-23, 25-31). Antibody mediated
macrophage phagocytosis (28, 32), neutrophil production of
reactive oxygen species (28), cellular cytotoxicity (29), and
complement deposition (26, 27, 32, 33) have all been implicated
as protective functions leveraged by antibodies to drive
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FIGURE 2 | Antibody structure highlighting functions of both the Fab and Fc regions. Antibody image shows heavy chain in dark blue, light chain in light blue, and
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protection from infection and/or viral clearance. Strikingly,
even broadly neutralizing HA-stem targeting and pan-strain
HA-head targeting mAbs require FcRs to confer protection
(22). In this review, we explore the various mechanisms
beyond neutralization that are exploited by antibodies to confer
protection from influenza and promote viral clearance.

FCR-MEDIATED FUNCTIONS IN
INFLUENZA INFECTION AND
VACCINATION

Antibody-Dependent Cellular Cytotoxicity

(ADCC) by Natural Killer (NK) Cells
Antibody-dependent cellular cytotoxicity (ADCC) is largely
mediated by the interaction of pathogen or cell-surface bound
antibodies with Fc gamma receptor IIla (FcyRIIIa) on NK cells in
humans (Figure 3D) and FcyRIV on monocytes, macrophages,
and neutrophils in mice (34, 35). FcyRIIla is found on the
surface of human NK cells, monocytes, and macrophages (36).
Engagement of FcyRIIla by antibody causes the release of
cytotoxic granules from NK cells, uptake by macrophages,
apoptosis of infected targets, and secretion of antiviral cytokines
and chemokines (37-40).

It was first reported in 1977 that human peripheral blood
leukocytes engaged in influenza-specific ADCC, and that this
effect correlated with antibody-mediated virus neutralization (41,
42). In vitro ADCC activity was linked to protection conferred
by antibodies in a mouse model of influenza infection (21, 43).
Mice that received an FcR-binding competent antibody capable
of inducing ADCC in vitro (measured by CD107a expression)
exhibited increased survival and decreased morbidity compared
to mice that received either an antibody unable to bind to
FcRs or a less potent ADCC-inducing antibody (21). Similarly,
macaque models of repeated influenza infection confirmed the
rapid development of ADCC following infection in animals
previously exposed to influenza. This highlighted the presence
of antibodies in the bronchoalveolar lavage (BAL) capable of
inducing activation of NK cells, which were associated with

increased viral clearance and decreased duration of disease (44).
Analogously, in human studies, ADCC titers were associated
with a reduction in disease burden in a seasonal influenza
experimental infection study (45). Additionally, older adults, who
had previously seen 2009 pandemic influenza-like viruses in the
past, and who retained long-lived ADCC, but not neutralizing,
antibody titers, were protected during the 2009 HIN1 pandemic
(46). This provided further evidence that ADCC-mediating
antibodies are associated with protection.

However, despite our emerging appreciation for the potential
role of ADCC in protection from infection and disease, the
seasonal influenza vaccine poorly induced broadly reactive
ADCC-inducing antibodies in healthy children and adults (45,
47-49). Conversely, the presence of cross-reactive HA-specific
antibodies that can activate NK cells in older adults suggests
that these functional antibodies accumulate over the course of
many years of repeated natural infection with influenza (48, 50).
Despite the delay in their evolution, the data clearly suggest
that these functional cross-reactive antibodies emerged naturally
over time. Moreover, some healthy American adults possessed
ADCC activity against avian H7N9 and H5N1 viruses that do not
circulate in North America but could cause pandemic outbreaks.
This indicated the natural evolution of cross-reactive functional
antibodies targeting diverse HA antigens in the absence of
exposure and/or other conserved viral proteins such as NP
and M2 (31, 51). Furthermore, broadly cross-reactive ADCC-
inducing antibodies were reported in individuals who lack
broadly neutralizing influenza-specific antibodies (46, 50-52),
suggesting that these functions emerge separately and may evolve
under distinct stimuli. Collectively, the data clearly demonstrate
that broadly protective ADCC inducing antibodies are associated
with protection and evolve naturally over time.

HA head-specific mAbs induced less ADCC than stalk-specific
antibodies in an in vitro NK cell activation assay (21). This
difference in function has been suggested to be related to the
inability of the head-specific mAbs to efficiently multimerize
when bound to antigen on the cell surface and interact with
low-affinity FcRs to induce functional responses (21). A recent
study suggested an alternative explanation in experiments using
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FIGURE 3 | Known FcR-dependent innate immune effector functions acting in
influenza infection. (A) Clearance of virions and infected cells by macrophage
phagocytosis. (B) Clearance of virions and infected cells by neutrophil
phagocytosis, and the release of cytokines and reactive oxygen species. (C)
Clearance of infected lung epithelial cells and activation of the adaptive
immune system by antibody interaction with C1Q. (D) Clearance of infected
lung epithelial cells by ADCC. (E) Neutralization of virus by FcRn-bound
HA-specific antibodies.

FLAG-tagged HA to direct FLAG-specific antibody to certain
regions of the HA molecule. The data from this study suggested
that two points of contact were required between infected and
effector cells for efficient ADCC activity (53). These direct
contacts are (1) between the mAb Fc and FcR and (2) between the
cell surface sialic acid and viral HA (53). However, the co-ligation
of FcR and viral protein has not been borne out by studies in other
infection or disease contexts, or in polyclonal pools of antibodies
directed against native HA.

An additional layer of complexity in dissecting non-
neutralizing antibody mediated mechanisms of protection in
vivo is the comparison of polyclonal vs. monoclonal mediated
antibody functions. Emerging data suggest that the level of
in vitro ADCC is influenced by the ratio of ADCC-inducing
to ADCC-inhibiting antibodies (22, 54). ADCC-inhibiting
antibodies, which can be neutralizing, were shown to compete
for binding sites on HA on the surface of viral particles and
infected cells (22, 54). While the delivery of single protective
ADCC-inducing mAbs demonstrated striking protection from
infection in vivo (21, 22), polyclonal pools of antibodies
exhibited a much more complex balance of epitopes targeted

and functional competition that collectively may contribute to
differential protection from infection during seasonal exposure.
While it is clear that functional antibodies play a vital role in
protection against influenza infection, experimental approaches
able to comprehensively dissect the nature of polyclonal antibody
interactions are urgently needed to further define the nature of
protective antibody activity and guide vaccine design.

Antibody-Dependent Macrophage

Phagocytosis and Activation
ADCC-inducing antibodies, as well as the direct cytopathic
effects of the virus, drive infected cell apoptosis (55). These
infected apoptosing cells are then cleared through phagocytosis
to maintain tissue homeostasis (56). Post-infection, macrophages
are rapidly recruited to the lung and are present in BAL, airway,
and alveoli to support the rapid clearance of infected and/or
dying cells (57). While the supernatant of influenza-infected
cells can stimulate monocyte phagocytosis independently of
antibody involvement (57), antibodies contribute to accelerated
clearance of viral particles and infected cells through interactions
with FcyRIa and FcyRIla on immune cells (58). Antibody
mediated viral phagocytosis, resulting in viral degradation, was
linked to decreased spread and severity of infection (58). While
this mechanism was not directly associated with prevention of
infection, it was linked to reduced severity of symptoms and viral
shedding, and thus attenuating disease in humans.
Antibody-dependent  cellular  phagocytosis ~ (ADCP)
activity (Figure 3A) in healthy human serum, mediated by
monocytes/macrophages, was shown to correlate with HATI titer
both for circulating and non-circulating strains of influenza
(58). Interestingly, ADCP activity was still detectable in diluted
serum samples, even at dilutions where neutralization was no
long detectable (58). This indicated that phagocytic antibodies
may mediate viral clearance even at very low levels, and thus
could still provide protection or lessen the severity of disease.
Along these lines, non-neutralizing protective mAbs in mice
required alveolar macrophages to provide protection. This
protection was partially dependent on the induction of a
robust inflammatory response in the lung as shown by tissue
histology and increased cytokine/chemokine production, and
was partially through direct phagocytosis (30). Additionally,
broadly neutralizing HA-specific mAbs also exhibited enhanced
protection in the presence of alveolar macrophages (30). This
macrophage-mediated protection was dependent on interactions
of the antibody with FcRs on the macrophage surface, as
evidenced by experiments using FcR-binding null antibodies
that failed to provide protection from infection (30). Together,
these studies indicate that FcR-mediated macrophage activation
reduces disease burden and protects mice from lethal influenza,
and that healthy human serum has influenza-specific antibodies
capable of inducing this function.

Antibody-Dependent Neutrophil

Phagocytosis and Activation
Neutrophils are among the first cell populations recruited to the
site of infection and/or inflammation, and have been implicated
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in the protective response to influenza (59). Neutrophils are
involved in the phagocytic clearance of both virions and infected
cells, release immunostimulatory cytokines and chemokines
to recruit additional immune cells, and form neutrophil
extracellular traps (NETs) to capture and inactivate the virus (60).
During influenza infection, neutrophils generate the chemokine
CXCL12, required for efficient recruitment of cytotoxic CD8*
T cells to the lung (61). However, beyond this indirect anti-
viral role, human neutrophils express high levels of FcyRIa/b/c,
FcyRlIla, and FcyRIIIb after activation, enabling them to respond
rapidly and efficiently to antibody coated targets (36). In addition,
neutrophils constitutively express the FcoRI, an activating
receptor that binds IgA and activates cytotoxic and phagocytic
responses via a shared FcR y-chain (62).

Like macrophages, neutrophils are intimately involved in
the phagocytic clearance of infected and apoptotic cells in
the lung during influenza infection (Figure 3B) (57). Impaired
neutrophil phagocytosis through depletion of neutrophils was
linked to decreased survival in a mouse model of influenza
infection (57, 63). Following phagocytosis, neutrophils form
phagolysosomes containing reactive oxygen species (ROS) to
eliminate the virus (60). Both HA head- and stalk-specific mAbs
induced the production of ROS by neutrophils in vitro in an FcR
dependent manner, shown following Fc-blockade resulting in
reduced ROS production (28). Influenza-specific class-switched
IgA antibodies were also implicated in neutrophil activation and
ROS production (28). Despite the ability of some antibodies
to recruit neutrophil activity in vitro, the critical nature of
neutrophils in protection from infection remains controversial.
Some animal studies using neutrophil depletions finding no
significant roles for these cells in protection mediated by passively
transferred non-neutralizing mAbs (30), arguing that alveolar
macrophages may play a more dominant role in protection. In
other studies, neutrophil recruitment and function was linked to
protection from infection and reduction in disease (63, 64). Thus,
additional studies will be required to ultimately define the role of
neutrophils in influenza infection.

Antibody-Dependent Complement

Activation

The complement system can recognize and eliminate viruses
directly or can contribute to viral clearance via antibody mediated
activation (Figure 3C) (33). The requirement for complement in
protection from lethal influenza infection in mice was established
in 1978 and has been more recently replicated on novel influenza
strains (26, 65). Influenza virions were shown to be susceptible
to both classical and alternative complement mediated lysis in
vitro only when opsonized by antibodies (27). However, the
level of susceptibility varied by strain. Further supporting the
involvement of antibody-mediated complement elimination in
the influenza immune response, synergy between the classical
and alternative complement pathways was shown to provide
protection against pandemic HINI strains in mice and the
cooperativity of both pathways is associated with enhanced viral
clearance (27). In these experiments, C3 knockout mice (deficient
in all complement pathways because C3 is the central point

of the cascade), C4 knockout mice (deficient in classical and
lectin pathways), and complement factor B (FB) knockout mice
(deficient in alternative pathway) were infected with influenza
and disease progression was compared. While both C4- and FB-
deficient mice showed increased mortality, neither pathway alone
nor the additive mortality approached the level of mortality in
C3 knockout mice, who have both pathways of complement
ablated. This indicated that the two complement pathways work
synergistically to clear infection (27).

Beyond antibody driven virion elimination, the complement
protein C3 was also shown to promote higher titers of influenza-
specific IgG antibodies. C3 also improved CD4+ and CD8+ T
cell responses in the mouse models of influenza infection (33).
Vaccination was administered to C3 knockout mice, resulting in
dampened antibody titers leading to increased mortality when
compared to wild type mice. The role of complement in driving
immunity was proposed to be effectuated by the formation of
pro-inflammatory complement degradation products C5a and
C3a, which can serve a dual role of directly recruiting T cells
and enhancing T cell priming by recruiting and stimulating
antigen-presenting cells to the site of infection (33).

In human serum, neutralization and complement-dependent
lysis activities by mAbs have not always correlated, although
neutralizing antibodies can induce complement-dependent lysis
(66). Both IgG1 and IgM antibodies have been implicated in the
activation of the complement system in influenza infection (27).
Complement-stimulating antibodies correlated with protection
from infection in children in a serosurveillance study of
seasonal influenza (50), which was potentially attributable to
their generally higher cross-reactivity compared to neutralizing
antibodies (31). Importantly, if complement-inducing antibodies
do in fact generally possess higher cross-reactivity when
compared to neutralizing antibodies, complement lysis of
virus is an attractive strategy for limiting initial infection
with influenza by otherwise non-protective non-neutralizing
antibodies, broadening the epitopes that can be targeted
by vaccination.

Additional Functions Via Non-classical FcR
The neonatal Fc receptor, FcRn, is involved in transcytosing IgG
across the placenta during fetal development, across the vascular
endothelium to increase extravascular antibody levels, and across
the mucosal epithelium to provide humoral defense within the
mucosa (67). Additionally, FcRn has a non-canonical role in
antiviral immunity against influenza. FcRn was implicated in
facilitating antibody-mediated neutralization of influenza virions
by HA head-specific antibodies that bind to the virus at acid pH
(Figure 3E) (68). These unusual head-specific antibodies were
then shown to neutralize the virus by preventing trafficking of
the viral ribonucleoproteins into the nucleus for replication (68).

Systems level analyses aimed at defining biomarkers of
productive immunity to flu vaccination identified pre-existing
antibody titers as a negative predictor of response to vaccination
(69), thought to act by capturing, destroying, and preventing
response to vaccine antigens (historically called original antigenic
sin) (70). However, recent studies suggested that pre-existing
antibodies shape the immune response to influenza vaccination
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in ways that could be utilized to improve protection. Individuals
with the most influenza-specific antibody affinity maturation had
significant changes in antibody glycosylation, namely increased
sialic acid (71). A mechanism was proposed in which pre-
existing cross-reactive influenza antibodies, which opsonize
incoming vaccine antigen, drove the delivery of immune
complexes to germinal centers of lymph nodes by subcapsular
sinus macrophages or non-cognate B cells, preferentially when
antibodies were sialylated (72, 73). This delivery relied on
interaction of immune complexes with the non-canonical IgG Fec-
receptor CD23 to capture antigen and move it to germinal center
(71). This delivery of antigen to lymph nodes was speculated to
increase and extend the contact between B cells and antigens
of interest to drive affinity maturation, which can increase
both the affinity and potential evolution of neutralization (74,
75). Identified broadly cross-reactive neutralizing mAbs specific
to influenza HA were shown to be highly affinity matured,
indicating that this pathway may be essential for the development
of broad humoral immunity (76).

In addition to trapping and delivery, these sialylated Fcs
were also shown to increase B cell inhibitory FcR, FcyRIIb,
expression, resulting in elevated thresholds required to activate B
cells during development in the germinal center (77). With these
elevated activation thresholds, B cells that require higher affinity
interactions or an ability to capture more antigen to become
fully activated within the germinal center may then experience
more aggressive somatic hypermutation and consequent affinity
maturation. Sialylated immune complexes bind to non-cognate
B cells at high levels in the presence of CD23 (77) to increase
affinity maturation. This may offer a novel approach for the
design of next generation vaccines able to leverage the potent
immunomodulatory activity of the Fc-domain of antibodies.

Together, these data suggest that the quality of the antibody
response may not only influence direct antiviral activity, but
may also be critical in influencing the response to vaccination.
Seasonal influenza infection in humans has been shown to
induce moderate antibody cross-reactivity (78), and these pre-
existing cross-reactive antibodies may be molding the affinity
maturation of new antibodies following vaccination through
mechanisms that increase somatic hypermutation, including
increased antigen retention within germinal centers (71).
Harnessing, increasing, and improving this pathway presents a
novel method of improving the breadth and binding affinity of
antibodies following influenza vaccination.

CONTROL OF FCR-MEDIATED
FUNCTIONS BY ANTIBODY PROPERTIES

Subclass and Isotype Variation

The functional potency of an antibody is significantly affected by
the antibody’s subclass, which determines the binding affinity of
the antibody for FcRs (79). Antibody function is determined at
the time of B cell programming via class switch recombination
(IgA, IgM, IgG, IgD, or IgE; Figure 4). Because each isotype
can interact with a distinct family of FcRs present on innate
immune cells within disparate compartments, each isotype has

the capacity to drive unique antibody effector functions. Beyond
the isotypes, there is additional capacity to select for subclasses
of particular antibody isotypes. In humans, four IgG subclasses
can be additionally selected during an immune response, each
of which have further differential affinities for individual FcRs
(36). IgG1 antibodies are the most prevalent at approximately
65% of total serum IgG, with the other three subclasses in
decreasing fractions in numerical order (80). Because individual
subclasses have different affinities for FcRs (36), subclasses
drive different antibody effector functions. IgG1 and 1gG3 are
considered to be the most functional subclasses due to their
enhanced ability to bind to FcRs, while 1gG2 and IgG4 have
lower affinities for FcRs (81, 82). However, IgG3 has a shorter
half-life, related to decreased binding affinity to FcRn and due
to a proteolytically vulnerable hinge, although multiple allotypes
of IgG3 with longer half-lives have been reported among non-
Caucasian populations (83).

The relative magnitude and distribution of IgG subclass
responses vary between acute influenza infection and
vaccination. Vaccination increased IgG3 production when
compared to acute infection in adults and children who were
previously exposed to natural influenza but not previously
vaccinated (84). IgG3 levels following seasonal influenza
vaccination correlated with cytokine production by peripheral
blood mononuclear cells (PBMCs) stimulated ex vivo with
infectious influenza virus, suggesting that enhanced IgG3
responses were a marker of a more effective response to
vaccination (80). While IgG3 is widely considered to be the most
functional subclass due to its affinity for FcRs, the specific effects
of IgG3 in protection from influenza remain largely unclear.

While IgG is present at higher levels in the blood, IgA
antibodies are produced at considerable levels in mucosal tissues
(85). Secreted IgA represents ~70% of the body’s total Ig
production and, in mucosa, is primarily dimeric, with only small
fractions of monomer, trimer, and tetrameric IgA in the mucosa.
In serum, IgA is primarily monomeric (86). Mucosal IgA can
prevent influenza infection in the nasal and upper respiratory
mucosa with higher heterologous neutralization than IgG with
the same Fab (85, 87-89). The protective activity of IgAs was
linked to both direct viral neutralization as well as viral capture
and cross-linking to the mucosal surface, preventing cell entry in
the absence of classical neutralization (85). However, beyond its
direct antiviral effects, IgA may also recruit the indirect activity
of the innate immune system, via the Fc-receptor for IgA, FcaRI,
which is constitutively expressed on neutrophils and increases
in expression as neutrophils mature (62). Stimulation of this
receptor by influenza-specific IgA was linked to increased ROS
production (28), although the precise effect of this activation
during influenza infection is unclear.

Antibody Fc Glycosylation

Beyond isotype and subclass selection, the humoral immune
response additionally modifies antibodies via post-translational
changes in Fc-glycosylation to further tune antibody affinity for
FcRs, and thus to modulate antibody effector function (90). Each
IgG molecule contains two N-glycosylation sites, at asparagine
297 (N297) on each heavy chain (Figure 4). The core Fc glycan
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FIGURE 4 | Structures of antibody isotypes and subclasses. Fc domains are in color while Fab domains are in gray. Stars indicate N-linked Fc glycans. IgA isotypes
are shown as both monomers (predominant in serum) and dimers (predominant at mucosal surfaces).

structure is biantennary, with a structure consisting of two-  influenza-specific antibodies rose rapidly, and had increased
branched linked N-acetylglucosamine (GlcNAc), a mannose,  galactosylation, increased sialylation, and reduced bisection
followed by 2 branched mannoses, each followed by an additional =~ compared to pre-existing influenza-specific antibodies
GIcNAc on each mannose (Figure 5). Three additional sugars (102, 103). However, these glycan shifts normalized after a
can then be added at variable levels, including a core fucose = month, suggesting that these transient changes in influenza-
on the first GlcNAc, galactoses that can be added to each  specific antibody glycan profiles may reflect differences in
terminal GIcNAg, sialic acids that can subsequently be added  glycosylation by plasmablasts, not plasma cells. Even in the
to the each galactose, and finally the addition of a bisecting  absence of vaccination, HA-specific antibodies exhibited unique
GIcNAc to the core mannose (Figure 5) (91). Given the variable  glycan profiles compared to HIV-specific antibodies from the
addition of each of the 4 additional sugars, a total of 36  same individuals. Specifically, HA-specific antibodies were more
distinct glycan structures can be added to any given IgG (92).  highly galactosylated and sialylated and contained reduced
Importantly, while glycans do not interact directly with FcRs,  b-GIcNAc (102), highlighting the unique glycan profiles that
they influence the flexibility and structure of the antibody Fc,  are naturally selected on influenza-specific antibodies. Whether
thereby changing interactions with FcRs (93). Complete removal  individuals who control the virus more effectively tune antibody
of the Fc glycan ablates low affinity FcR binding, with only  glycosylation in a specific or selective manner is unclear, but
high affinity FcyRI retaining measurable binding ability (94).  represents a simple strategy to modulate antibody function.
Additionally, IgA and IgM antibodies are also Fc-glycosylated

(Figure 4), although it is unclear how this glycosylation changes OPTIMIZING ANTIBODY RESPONSES
affoty for Fes - SR THROUGH VACCINATION

Across diseases, dramatic shifts have been identified in IgG
glycosylation, such as a significant increase in agalactosylated Adjuvants
antibodies in chronic inflammatory diseases such as autoimmune  Ope of the greatest hurdles of influenza vaccination is
flares and HIV infection (95, 96). In the monoclonal therapeutics overcoming response anergy caused by previous exposures to
community, the systematic removal of specific components  influenza in the aging immune system. An attractive strategy
of the Fc N-glycan have highlighted the critical role of o overcome this anergy and generate protective humoral
individual sugars in shaping antibody effector function (97).  immunity, particularly for novel strains or universal vaccine
Specifically, the presence of sialylation drives anti-inflammatory  formulations, is the use of adjuvants to enhance and tune the
activity in wvivo (98, 99). The removal of fucose either response to vaccination. There are currently four adjuvants
directly or indirectly, through the upregulation of the bisecting  licensed for use in influenza vaccines in the United States
GIcNAc, results in increased antibody affinity for FcyRIIla  apd/or in Europe: aluminum salts (alum), MF59, AS03, and
and consequently enhanced ADCC (90, 100). Conversely,  virosomes (104). In addition to adsorbing antigens and creating
agalactosylated antibodies decrease ADCC and drive pro-  multivalent lattices of antigens, alum activates the inflammasome
inflammatory responses (90). promoting more effective responses upon antigen-presenting cell

Beyond our emerging appreciation for a role of sialylated  delivery (105). Alum induces primarily a Th2-driven response
antibodies in vaccine induced affinity maturation (71, 101)  (104). However, Thl responses are likely to be more critical
described above, influenza vaccination is known to alter  in the clearance of intracellular pathogens, including influenza
Fc glycosylation (102, 103). Soon after immunization, (105). Oil-in-water emulsions, such as MF59 and AS03, are
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to the core mannose. Antibody structure: PDB 1IGY.

FIGURE 5 | Structure of antibody glycan. Antibody image shows heavy chain in dark blue, light chain in light blue, and glycan in magenta. In glycan schematic, solid
lines indicate core glycan consisting of two-branched linked N-acetylglucosamine (GIcNAc; blue rectangle), a mannose (green circle), followed by 2 branched
mannoses, each followed by an additional GIcNAc on each mannose. Dotted lines indicate additional sugars that can be added at variable levels, including a core
fucose on the first GIcNAc (red triangle), galactoses (yellow circle) to each terminal GIcNAc, sialic acids (pink diamond) to the each galactose, and a bisecting GIcNAc
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predicted to work through a more balanced Th1/Th2 response,
enhancing both T cell and antibody responses via delivery to
antigen presenting cells as well as through the recruitment
of specific innate immune cells to the site of injection (106).
Specifically, in an adjuvanted HIV vaccine trial in macaques,
MF59 increased recruitment of neutrophils, monocytes, and
MDC:s to the site of injection and recruitment of neutrophils
to the draining lymph node (107). In the context of influenza
vaccination, MF59 increased the heterosubtypic, or broadly
reactive, antibody response and increased neutralizing antibody
responses to influenza (108, 109). Unfortunately, MF59 also
shifted the response even further toward the immunodominant
HA head and away from the HA stem (110). Yet, MF59
increased the affinity of antibodies developed following both
seasonal and novel pandemic influenza vaccines, suggesting that
if skewed selectively to particular target antigenic sites, this
adjuvant could drive enhanced affinity maturation to the correct
sites of vulnerability (110). Virosomes or phospholipid vesicles,
have also been studied in the context of influenza HA and NA
vaccines, showing similar profiles to MF59 (104). The effects of
these adjuvants on FcR-mediated antibody functionality are only
beginning to be studied (107).

Other adjuvants are currently under investigation to
specifically and selectively enhance influenza specific immunity.
For example, liposomes provide unique scaffolds for antigen
delivery (105), and were shown to increase the humoral and
Thl response, boosting neutralization, in mice following
influenza vaccination (104). Additionally, virus-like particles, or
nanoparticles, which deliver antigens in a multivalent manner,
similar to their native conformation, increased heterosubtypic
IgG2a neutralizing antibody titers in mice, the mouse analog

of IgG3, the most functional antibody subclass in humans
(111). Presentation of antigens in the form of a viral particle
may play an essential role in driving functional antibody
responses (112-114). Another type of adjuvant, ISCOMS
(antigen, cholesterol, phospholipid and saponin-defined
immunomodulatory complexes), created a balanced, protective
immune response based on strong MHC class I presentation in
trials with a pandemic influenza antigen (104). However, tests of
ISCOMS with cancer antigens showed that this adjuvant shifted
the response away from antibodies, toward CD4+ and CD8+
T cells, with limited changes seen to antibody responses (115).
Finally, Toll-like receptor (TLR) agonists, involved in early
pathogen sensing, are known to tune the inflammatory response
to tailor immunity in a pathogen specific manner (104). Several
TLR agonists were shown to increase influenza-specific antibody
titers following vaccination, however their effects on antibody-
mediated functions beyond neutralization are unexplored
(104, 116). Thus, while previous studies with these adjuvants
have primarily focused on neutralizing antibody responses,
additional insights on the specific effects of adjuvants on shaping
protective FcR activity will provide additional avenues to tune
and direct protective immunity against influenza infection.

Antigen Design and Glycosylation

In addition to efforts to promote more effective immune
stimulation through adjuvants, intense investigation has focused
on the development and design of unique antigens able to
selectively direct the immune response away from strain-specific
immunodominant sites to those that are more conserved (17).
These include the design of computationally enhanced globally
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relevant HA sequences, the design of mini-antigens and chimeric
antigens, and glycan-enhanced antigens.

Computationally optimized broadly reactive antigens
(COBRAs), designed based on computational modeling of
influenza strains to create mosaic antigens aimed at focusing
the immune response on the evolution of heterosubtypic
responses, had some success in eliciting broadly reactive HAI
titers that target both seasonal and pandemic strains of influenza
(117-120). In a recent study, COBRA H3s did not increase the
breadth of HAI reactivity by vaccine-induced antibodies across
a panel of strains. However, these COBRA H3s did increase
the phylogenetic diversity of neutralized strains (120), meaning
that the COBRA-induced responses altered which strains were
recognized and neutralized without increasing the total number
of strains recognized (120). These data suggest that COBRA
antigens can increase heterosubtypic responses to conserved
epitopes on the immunodominant head, but are unable to create
broadly reactive responses to the conserved HA stem.

Given the complexity of altering immunodominance using
whole HA molecules, additional efforts have aimed to direct
immunity against minimal antigenic regions associated with
broadly protective responses including the stem (121, 122) and
the receptor binding site (123). Although broadly protective
non-neutralizing responses can target the stem region of HA,
these responses are typically subdominant (124). HA stem-only
antigens or antigens with conserved stem domains but altered
HA heads have been developed (17). For example, a “headless”
HA vaccine tested in mice created a broadly protective non-
neutralizing immune response (125). Furthermore, chimeric HA
vaccines, which were used to immunize animals with “exotic”
chimeric molecules that coupled unusual heads to a single
stem region, have shown promise. Specifically, using heads that
have not circulated in the population, coupled to conserved
stems, this vaccine strategy drove robust focused stem-specific
protective immune responses and higher cross-reactive HA-
specific antibody titers, and are now in clinical trials (126, 127).

Seasonal influenza vaccines have been produced in eggs since
the introduction of yearly vaccination, and the manufacturing
techniques have remained largely unchanged for decades
(128). Emerging data and technical advances are increasing
the attractiveness of cell culture-based production strategies,
rather than egg-based production. Beyond issues related to
speed and cost of vaccine production across these platforms,
qualitative differences in antigens from egg-based vaccines
compared to circulating viruses may necessitate this shift.
HA is highly N-glycosylated in a host-cell dependent manner
(129-131). The glycosylation of egg-grown vaccine virus is
different than that of naturally infecting virus (132). Emerging
data points to the importance of glycosylation not only in
shaping antigen-exposure on the surface of the HA molecule,
such as masking of specific epitopes (131, 133), but also
in contributing to the antigenicity of mAb binding epitopes
(134-136). Differential HA glycosylation between egg- and cell
culture-grown virus impacted innate immune interactions with
the virus in the lung, including neutralization by surfactant
protein D (SP-D) (137) and binding to mannose-specific lectins
(138). Moreover, altered glycosylation was shown to change

both cellular and humoral response kinetics in vitro and
in vivo (131, 139). Vaccination of mice with de-glycosylated
HA led to decreased CD4+ T cell activation and cytokine
production, resulting in reduced HA-specific antibody titers and
HALI titers (131, 139). Studies of the antibody response using
differentially glycosylated (not de-glycosylated) HAs showed
that glycosylation alters the binding and neutralization of
monoclonal antibodies, but lacked further detail about the effects
of glycosylation on polyclonal antibody pools or on Fc-mediated
function (131, 139, 140).

Epidemiological studies in recent years investigating poor
vaccine protective efficacy have shown that antigen glycosylation
had a direct impact. In the 2016-2017 flu season, the
circulating H3N2 virus had a new glycosylation site compared
to previous seasons. However, the egg-adapted version of
the viral strain used to produce the vaccine lacked this
site through an amino acid mismatch in an antigenic site,
resulting in decreased vaccine effectiveness (134). Given that
glycosylation can strongly impact epitope antigenicity, a vital
mismatch at a site of neutralization sensitivity resulted in
the induction of non-protective immunity and rendered
the circulating virus invisible to vaccine induced immune
responses. Shaping glycosylation to produce representative
antigens is critical to achieving protective immune responses
to vaccination.

Additional Antigenic Targets

While the majority of the humoral immune response is directed
toward the immunodominant HA molecule, antibodies also
emerge against other targets including neuraminidase (NA),
nucleoprotein (NP), and Matrix-2 (M2) (Figure 1). Antibodies
targeting NA, while not neutralizing, can prevent viral exit
from infected cells to block subsequent rounds of infection
(12), and have been associated with seasonal protection (12,
141-143). However, NA-specific antibodies have also been
shown to drive ADCC (51, 144), suggesting that this less
immunodominant target is vulnerable to multiple modes of
antibody mediated targeting.

The highly conserved internal viral proteins NP and M2
have been shown to induce an immune response that is
also broadly reactive (145). NP-specific antibodies, which are
always non-neutralizing (146), mediated viral clearance through
FcRs and protection in mouse models of influenza infection
(143, 147). Similarly, non-neutralizing M2-specific antibodies
mediated ADCC and ADCP to clear infected cells and promoted
rapid viral clearance (141, 142). Thus, while current vaccination
strategies largely focus on the development of broadly reactive
immunity against HA, additional largely non-neutralizing
conserved antigens exist within influenza that may represent next
generation targets for protective universal immunity.

CONCLUSION

More than 4 decades of research has clearly illustrated the
importance of both direct neutralization and non-neutralizing
functional antibodies in protection against influenza infection
and disease. Because neutralizing and non-neutralizing antibody
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activities are not induced in a mutually exclusive manner,
vaccine strategies able to leverage both functions of antibodies
are likely to confer the greatest level of protection. However,
the precise innate immune effector functions to precise
sites of viral vulnerability on HA or other target antigens
remain to be determined. With emerging novel vaccine design
strategies, coupled to emerging immune modulatory adjuvants,
opportunities to drive universal protection are on the horizon.
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FcyRs have been the focus of extensive research due to their key role linking innate
and humoral immunity and their implication in both inflammatory and infectious disease.
Within the human FcyR family FcyRIl (activatory FcyRlla and FcyRlic, and inhibitory
FcyRllIb) are unique in their ability to signal independent of the common y chain. Through
improved understanding of the structure of these receptors and how this affects their
function we may be able to better understand how to target FcyR specific immune
activation or inhibition, which will facilitate in the development of therapeutic monoclonal
antibodies in patients where FcyRIl activity may be desirable for efficacy. This review is
focused on roles of the human FcyRIl family members and their link to immunoregulation
in healthy individuals and infection, autoimmunity and cancer.

Keywords: Fc receptor, FcyR, inflammation, infection, autoimmunity, cancer, mAb therapeutics

INTRODUCTION

Fc receptors are, by definition, receptors for the Fc portion of immunoglobulins (Ig). These have
been traditionally viewed primarily as cell surface receptors for Ig and whose interaction drives
a surprisingly diverse range of responses mostly within the immune system or related to the
physiology of antibodies in immunity.

Receptors for IgM, IgA, IgG, and IgE have been defined over the last 40 years with the majority of
research focused on the receptors found on leukocytes. These receptors induce or regulate leukocyte
effector functions during the course of immune responses. It is noteworthy, and also beyond the
scope of this review, that a limited number and type of Fc receptors are also expressed on cells
outside the immune system where they affect or participate in physiology of antibody function.

In humans, the largest grouping of Fc receptors is the “leukocyte Fc receptors” expressed
primarily on effector cells. Their ectodomains bind ligand, the IgG antibody Fc region, and belong
to the Ig-superfamily. They include the high affinity IgE receptor FceRI and the distantly related
IgA receptor FcaRlI, but the largest group are the IgG receptors or the FcyRs which themselves
comprise several groups—FcyRI, the high affinity IgG receptor, the FcyRII family (FcyRIIA,
FcyRIIB, FcyRIIC), and the FcyRIII family (1, 2).

THE HUMAN FcyRIl (CD32) FAMILY OF LEUKOCYTE FCR

General Comments

The human FcyRII family (also known as CD32 in the Cluster of Differentiation nomenclature)
consists of a family of primarily cell membrane receptor proteins. They are encoded by the mRNA
splice variants of three highly related genes—FCGR2A, FCGR2B, and FCGR2C, which arose by
recombination of the FCGR2A and FCGR2B genes (3).
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All members of the FcyRII family are integral membrane
glycoproteins and contain conserved extracellular domains,
exhibiting an overall 85% amino acid identity (3, 4). The high
degree of amino acid and DNA identity has posed challenges
in the analysis of receptor function using monoclonal antibody
or nucleic acid based methods. Thus, some caution should be
exercised when analyzing literature or interpreting experimental
data. The encoded products of the three genes are low-affinity
receptors that are defined practically as interacting poorly with
monomeric IgG, i.e., micromolar affinity (5, 6), but when arrayed
on the cell surface, they avidly bind multivalent complexes of IgG,
e.g., immune complexes.

The FcyRIIA (also FcyRIIC) and FcyRIIB proteins have
opposing cellular functions. FcyRIIA proteins are activating-type
Fc receptors. In contrast, FcyRIIB is a key immune checkpoint
that modulates the action of activating-type Fc receptors and the
antigen receptor of B cells. When expressed, the FcyRIIC proteins
retain the activating function of the cytoplasmic tail of FcyRIIA
and the binding specificity of FcyRIIB ectodomains.

The focus of this review is the FcyRII family and their
actions as receptors for immunoglobulins. It should be noted that
FcyRIIA also acts as a receptor for pentraxins, a product of innate
immunity that is important in infection and inflammation and
which has been recently reviewed elsewhere (7). Since much of
the biology of the Fc receptors has been determined in the mouse,
it is noteworthy that the human and mouse FcR families differ
significantly, with FcyRIIB being the only FcyRII forms in the
mouse. Also, although the human and mouse FcyRIIB homologs
are highly conserved, there are differences in their splice variants
in the two species (see below). Importantly, cellular expression
can also vary between humans and mice.

Human FcyRII gene polymorphism, mRNA splicing, and
copy number variation (CNV) further diversifies the potential
biological consequences of IgG interactions with the FcyRII
receptor proteins. These properties and roles of each group of
FcyRII proteins are reviewed in detail in the following sections.

PROPERTIES OF FcyRIIA

Molecular Structure
The human FcyRIIA proteins were originally defined by cross-
species gene cloning (8). They are encoded by the FCGR2A gene
(Figure 1) and are comprised of eight exons; two encoding the
5°UTR, and leader sequence and the N-terminus of the mature
protein; one exon for each of the two Ig-like domains of the
extracellular region; one exon for the transmembrane domain;
and three exons encoding the cytoplasmic tail and 3’ UTR
(3). Three mRNA transcripts, two of which encode membrane
proteins, arise by alternative splicing of the mRNA (Figure 1).
The most extensively characterized form is the canonical 40
kDa integral membrane protein, FcyRIIA1, that contains all but
the first (C1*) cytoplasmic sequence (3, 4, 8-10). A second,
but relatively rare, membrane form has been recently described
(11, 12). FcyRIIA3 is identical in sequence to the canonical
FcyRIIA1, with the notable exception of a 19-amino acid insert
in its cytoplasmic tail, arising from the inclusion of the C1* exon
which was believed previously to be a vestigial or cryptic exon (4).

This insertion is highly homologous (18/19-amino acids) to the
insertion present in the cytoplasmic tail of inhibitory FcyRIIB1
(11-13). mRNA splicing that successfully gives rise to FcyRIIA3
is associated with an FCGR2AS7#21871A>G GNP that creates a
splice acceptor site, which greatly increases the inclusion of the
Cl1* exon (11).

An unusual mRNA has been reported that lacks the
transmembrane exon resulting in a potentially secreted 32
kDa polypeptide (14). This FcyRIIA2 form is not extensively
characterized and its physiology is uncertain. However, it
raises the possibility that naturally occurring soluble forms
may act as modulators of immune complex-induced activation
and inflammation and it is noteworthy that recombinant
soluble FcyRIIA inhibits immune complex-induced activation of
inflammatory cells in vitro and in vivo (9).

Cellular Expression

The FcyRIIA proteins are unique to primates (15, 16). FcyRIIA1
is the most widespread and abundant of all FcyR, present
on Langerhans cells, platelets and all leukocytes, with the
exception of most lymphocytes (Table 1) (1, 16, 17). FcyRIIA3
is expressed by neutrophils and monocytes (11) and FcyRIIA2
mRNA is present in platelets, megakaryocytes, and Langerhans
cells (14). The levels of FcyRIIA expression are influenced
by cytokine exposure. Interferon (IFN)-y, interleukin (IL)-3,
IL-6, IFN-y, C5a, prostaglandin-E (PGE), and dexamethasone
increase expression, but IL-4, tumor necrosis factor (TNF)-a,
and TNF-B reduce expression (18-21). There are also reports
of FcyRII induction on CD4 and CD8T cells upon mitogen or
TCR stimulation. Both FcyRIIA and FcyRIIB are reported to be
expressed on activated CD4 T cells (22, 23).

FcyRIIA Signaling ITAM Activation vs. ITAM
Inhibition

Like other activating-type immunoreceptors, FcyRIIA and
FcyRIIC signal via the Immunoreceptor Tyrosine-based
Activation Motif (ITAM) pathway (24-26) with a major
structural difference. In the case of all other activating-type
immunoreceptors—which includes the antigen receptors as well
as the activating type FcR, e.g., FceRI, FcyRIIIA—the ligand
binding chain and the signaling subunits are encoded in separate
polypeptides e.g., FcyRIIIA and the common FcR-y chain dimer.
The assembly of a functional signaling complex requires their
non-covalent association (17). However, in the case of FcyRIIA
and FcyRIIC, the ITAM is present in its own IgG binding chain.
Furthermore, the FcyRIIA ITAM is unusual in that it does not
fit the canonical ITAM consensus sequence and includes three
additional aspartic residues (Table 2), although how this affects
FcyRII function remains unknown (13). ITAM signaling is
essential for FcyRITA-dependent phagocytosis and the induction
of cytokine secretion induced by its aggregation by immune
complexes. Such high stoichiometry aggregation of receptors
results in receptor-associated src family kinase, particularly Fyn
(27), mediated phosphorylation of the two tyrosines of the ITAM
and the recruitment of Syk and the propagation of activatory
signaling pathways. In human FcyRIIA transgenic mice, Fyn
deficiency is protective in models of FcyR dependent nephritis
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FIGURE 1 | Composition of FCGR2A, FCGR2B, and FCGR2C and their splice variants. Leader (L), ectodomain (D), transmembrane (TM) cytoplasmic tail (c), and
intervening sequence (IVS). Expressed exons are illustrated in color, while spliced exons (selectively expressed) are represented in black. The location and position
number of amino acids affected by well characterized polymorphisms are shown above the exons except for the FCGR2B leader exons where the nucleotide
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and arthritis, indicating a pivotal pro-inflammatory role for Fyn
kinase in ITAM signaling (27).

Since the original characterization of the activating role
of ITAM pathway was described, it is now apparent that
ITAMs can under certain circumstances mediate inhibitory or
modulating function termed ITAMi (inhibitory ITAM) (28, 29).
Under conditions of low stoichiometric interaction, the receptor-
associated src family kinase Lyn phosphorylates only one of
the two tyrosine residues (mono-tyrosine phosphorylation)
within the ITAM, with two juxtaposed receptors presenting

mono-phosphylated-ITAMs to recruit the two SH2 domains
of the SH2-domain containing protein tyrosine phosphatase 1
(SHP-1). This interaction is not dissimilar to SHP1 binding
via its dual SH2 domains to inhibitory immunoreceptors with
dual ITIMs (30). Then Lyn phosphorylation of Tyr>3¢ of SHP-
1 positively regulates SHP-1 phosphatase activity resulting in the
inhibition of cell activation (27). Animal studies suggest that the
ITAMi effect ameliorates pathological inflammatory responses
and may also be important in controlling “baseline” receptor
activation. This ITAMi effect is not unique to the unusual
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TABLE 1 | Leukocyte Expression of FcyRIl forms.

Cell type FcyRIIA FcyRIIB FcyRIIC?
T cells i i ?

B cells — +++ +

NK cells — —¢ +
Macrophages +++ ++ ?
Monocytes +++ + ?
Neutrophils +++ + ?
Eosinophils ++ . °
Basophils ++ +++ —

Mast cells ++ —d —
Platelets ++ — —

+ + + High, ++ Moderate, + Low, or — No expression. e no data.

aExpressed only in ~20% of humans;

b Expression induced in some T cell subpopulations;

CExpressed as a result of promoter modification related to FcyRIIC allelism.

dConflicting results.

TABLE 2 | Sequence comparison of ITAMs of activating type FcyR.

Receptor ITAM Consensus?

FcR-y chain YTGL STRN—— —QET YETL

FcyRIIA and Fey IIC YMTL NPRAPTDDDKNI YLTL

4Bold letters in FcRy chain and FcyRIIA sequences indicate the critical Tyr and Leu
residues of the ITAM consensus motif YxxL/I (6-12) YxxL.

FcyRITIA ITAM (29) as it has been also described for FcaRI
(31, 32) and FcyRIIIA (33), both of which signal through the
common FcR-y chain dimer which contains canonical ITAMs.

Cellular Responses

FcyRIIA aggregation by IgG cross-linking initiates a variety
of effector responses, depending on cellular expression which
is affected by the local cytokine environment, and cross-talk
between other FcR and TLR (34, 35). Internalization via both
endocytosis and phagocytosis can be mediated by FcyRIIA
in cell lines, ie., ts20 (36, 37), COS-1 (38), U937 (39) as
well as in primary human cells i.e., neutrophils (40, 41),
monocytes (40), platelets (40, 42), and macrophages (43). FcyR
phagocytosis requires ITAM activation, which also initiates
the ubiquitin conjugation system. Conversely, endocytosis is
dependent only on ubiquitination and clathrin, not ITAM
phosphorylation (36, 37).

The internalization of antigen: antibody immune complexes
by FcyR on antigen presenting cells (especially dendritic cells) is
an important part of antigen presentation for the development
of effective immune responses. This process also increases the
efficiency of T cell activation particularly in response to low
concentrations of antigen (44). The role of human FcyR in
antigen presentation is well documented in in vitro systems
and it appears that all FcyR are important at some level (45—
47). However, more recent analyses have shown FcyRIIA is the
major receptor in the development of so-called “vaccinal effects”

of monoclonal antibody therapy in cancer. It appears that the
therapeutic antibodies targeting cancer cells can induce a long
lasting protective response beyond the acute therapeutic phase
of the therapy (48).

FcyRIIA1 activates neutrophils and other myeloid effector
cells for direct killing of IgG-opsonized target cells including
tumor cells and virus-infected cells (49). Also, FcyRIIA binding
of IgG immune complexes triggers granulocytes to release
inflammatory mediators such as prostaglandins, lysosomal
enzymes, and reactive oxygen species, as well as cytokines
including IFNy, TNFa, IL-1, and IL-6 (50, 51). The FcyRIIA3
splice variant form is an even more potent activator of human
neutrophils than FcyRIIA1, and is responsible for some severe
adverse reactions to immunoglobulin replacement therapy (11).
The mechanistic basis of this potency relates to its longer
retention time in the cell membrane and the consequential
enhanced ITAM signaling (12). Whilst this enhanced potency
may present a risk factor for hypersensitivity to immunoglobulin
replacement therapy, it may provide some benefit for protection
against infection.

The limited number of studies of FcyRII expression of
human T cells suggest FcyRII crosslinking on TCR-stimulated
CD4T cells enhances proliferation and cytokine secretion,
suggesting an activating function of FcyRIIA (22, 23). The nature
of FcyRIIA expression on CD4 T cells is not straightforward nor
completely characterized. Purified CD4 T cells when stimulated
with anti-CD3/CD28 induced surface expression of FcyRII
on 10% of cells and intracellular expression in 50%. In
contrast, unstimulated cells express little FcyRII (23). Imaging of
FcyRII-expressing CD4 T cells sorted from unstimulated normal
peripheral blood mononuclear cells, or those from HIV-1*
individuals shows cells displaying punctate FcyRIIA staining (23)
or discrete patches of B cell membrane. These B cell membrane
patches include FcyRIIB and CD19 markers (52), consistent with
possible trogocytosis by the activated T cell from the B cell.
Similarly, FcyRIIIA is also expressed on activated CD4 T cells,
and this expression appears to be both intrinsic upon cell
activation and acquired by trogocytosis of APC membrane (53).

FcyRIIA plays an important role in the normal physiology
of platelet activation, adhesion, and aggregation following
vessel injury (54). More recent studies indicate FcyRIIA
associates with glycoprotein (GP) Ib-IX-V on platelets and
can thereby be indirectly stimulated by von Willebrand factor
(VWE) or after stimulation of G-protein-coupled receptors
(GPCRs) (54). Interestingly, FcyRIIA signaling on platelets is
regulated by proteolytic cleavage of the cytoplasmic tail, or
“de-ITAM-ising” (55).

PROPERTIES OF FcyRIIB

Molecular Structure

Initially, FcyRIIB was discovered in the mouse by protein
sequence and molecular cloning analyses (56, 57) and the human
FCGR2B gene was then isolated by cross species hybridization.
Human FCGR2B has similar structure to human FCGR2A, being
comprised of eight exons. The two major forms of FcyRIIB—
FcyRIIB1 and FcyRIIB2 (Figure 1)—arise from mRNA splicing
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which results in the inclusion or exclusion of the Cl exon
sequence in FcyRIIB1 and FcyRIIB2 isoforms, respectively (3, 4).
The inclusion of the C1 exon sequence in the FcyRIIBI results
in tethering to the membrane of B cells, whereas its absence
from FcyRIIB2 allows rapid internalization of the receptor in
myeloid cells. Both forms contain the Inmunoreceptor Tyrosine-
based Inhibitory Motif (ITIM) in their cytoplasmic tails. The
extracellular domains are 95% identical to the two domains
of FcyRITIA and almost completely identical to the FcyRIIC
(3, 8, 17). Although the focus of this review is the human
FcyRIL, it should be noted that mouse FcyRIIB comprises three
splice variants FcyRIIB1, FcyRIIB1/, and FcyRIIB2, with the
predicated amino acid sequences of the latter two corresponding
to the human FcyRIIBI and FcyRIIB2 variants. Any functional
differences between the two mouse FcyRIIB1 and FcyRIIB1’
forms are unknown (58). There are also amino acid sequence
differences between human FcyRIIB1 and mouse FcyRIIB1/1/
and the functional consequences of these are also unknown.

Cellular Expression

As indicated in “General Comments” above, the analysis of
expression of human FcyRIIB protein has been historically
difficult because of the extremely high sequence conservation of
the extracellular domains of FcyRIIB, FcyRIIA, and FcyRIIC and
lack of specific monoclonal antibody probes. The high degree of
DNA sequence conservation has also confounded analysis. Much
of the early literature has relied on either PCRs or interpretation
of data using antibodies that are cross-reactive with, or specific
for, FcyRIIA or a combination of these methods and reagents.
The relatively recent development of such FcyRIIA/C and
FcyRIIB specific antibodies (59-61) has now helped to clarify
expression patterns, but there are still differences reported
between groups using these reagents. Some caution should still be
exercised in analysis of the historic literature. Furthermore, cell
expression patterns of FcyRIIB in mouse myeloid derived cells is
substantially different to human FcyRIIB, thus additional caution
is advised in interpreting the data. Nonetheless, it is clear that
FcyRIIB (FcyRIIB1) is highly expressed by B cells, and its mRNA
has also been identified at lower levels on monocytes (Table 1)
(62). The levels of FcyRIIB expression are influenced by cytokine
exposure. Cytokines such as IL-10, IL-6, and dexamethasone
increase expression of FcyRIIB, while TNF-a, C5a and IFN-y
inhibit expression (18-20).

FcyRIIB (FcyRIIB2) is highly expressed on basophils and at
low levels on monocytes (63). Expression on other granulocytes is
somewhat complex and controversial. The differences in reported
expression of FcyRIIB on mast cells may reflect technological
limitations or differences in tissue origin of the cells under
investigation. Intestinal and cord blood derived mast cells
have been reported as expressing FcyRIIB on the basis of
mRNA expression (64). In one study using human leukocyte
reconstituted mice and a FcyRIIB specific polyclonal antibody,
FcyRIIB protein was detected (65). However, skin mast cells lack
FcyRIIB surface expression (66) and using a FcyRIIB specific
mAb, peripheral blood derived mast cells do not express FcyRIIB
(A. Chenoweth personal communication). Neutrophils either
lack (60) or express very low levels of FcyRIIB (59), and the

FcyRIIB-specific mAb 2B6 does not usually stain NK cells (60).
However, in that proportion (~20%) of the population where
FcyRIIC is expressed, NK staining by FcyRIIB antibodies might
be expected as FcyRIIC EC domain is identical to FcyRIIB.
A further complication is that FcyRIIC CNV affects control
elements of the FCGR2B gene permitting FcyRIIB expression in
NK cells (67) (see FcyRIIC below).

One of the more interesting features of FcyRIIB is its presence
on non-leukocyte cells including airway smooth muscle (68) and
liver sinusoidal endothelial cells (69). Its abundance in liver, in the
mouse, accounting for three quarters of the total body expression,
appears to provide a large sink for the removal in IgG immune
complexes, which has been exploited in therapeutic monoclonal
antibodies whose Fc portions have been engineered for high
affinity binding to FcyRIIB (70, 71). This appears to be a “stand
alone” function of FcyRIIB where small immune complexes are
internalized without risk of pro-inflammatory activation.

FcyRIIB Modulation of Immunity

FcyRIIB was the first immune “checkpoint” defined (72), with
mouse studies showing a pivotal role in controlling autoreactive
germinal center B cell activation and survival in mice with
dysfunction resulting in loss of tolerance and autoimmunity (73,
74). Mice with humanized immune systems reconstituted with
stems cells homozygous for the dysfunctional FcyRIIB Thr?3?
allele develop autoantibodies with specificities characteristic of
lupus and human rheumatoid arthritis (75). This critical action
of its ITIM in controlling the ITAM activation pathway is
extensively reviewed elsewhere (25, 76). The ratio of activating
vs. inhibitory receptors is a key factor in determining the cellular
threshold for cell activation and resulting immune response (18,
77). An ITIM, consensus amino acid sequence YXXL (where X
represents any amino acid), is found in the cytoplasmic domains
of both FcyRIIB1 and FcyRIIB2. The co-engagement of FcyRIIB
with an activating type receptor such as FcyRIIA or the B cell
antigen receptor (25) modulates their ITAM-mediated activation
signal. FcyRIIB expression on innate effector cells modulates
cell activation mediated by activating FcyRs, including dendritic
cell maturation and antigen presentation. FcyRIIB also regulates
signaling from varied innate cell receptors including TLRs and
complement receptors, reviewed in Bournazos et al. (34) and
Espeli et al. (78).

Much of the detail in understanding of the ITIM:ITAM system
of immune cell modulation has been derived from FcyRIIB1
ITIM-mediated regulation of the B cell receptor (BCR) signaling
in mouse B cells. Conventional FcyRIIB-mediated inhibition
requires ligand-dependant co-engagement/aggregation of ITAM-
containing receptors (79, 80). The FcyRIIB ITIM modulation
targets the two major ITAM driven pathways—ITAM tyrosine
phosphorylation, and the generation of phospholipid mediators,
e.g., Phosphatidylinositol (3,4,5)-trisphosphate (PIP3). Briefly,
src kinases such as Lyn kinase, which participate in the
phosphorylation of the ITAM of the ligand-clustered activating
receptors, also phosphorylate the FcyRIIB ITIM of the co-
aggregated inhibitory receptor. Notably, FcyRIIB1 has been
reported to be phosphorylated by Lyn and Blk, whereas FcyRIIB2
solely by Blk (81).

Frontiers in Immunology | www.frontiersin.org

90

March 2019 | Volume 10 | Article 464


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Anania et al.

The FegRIl (CD32) Family

The phosphorylated-ITIM of FcyRIIB recruits the inositol
phosphatases SHIP1 and SHIP2, as is extensively reviewed
in Getahun and Cambier (25). The preferential recruitment
of SHIP, over SHP1 and SHP2, to the phosphorylated
FcyRIIB cytoplasmic domain is determined by the SHIP SH2
domain’s affinity for the pITIM (82). Notably studies of SHIP
recruitment to the cytoplasmic domain of mouse FcyRIIB1
found phosphorylation of Tyr’2°, outside the ITIM, bound
the SH2 domain of the adaptor Grb2 which bridged and
stabilized the FcyRIIB:SHIP complex (83). Human FcyRIIB lacks
an equivalent tyrosine, and has a small adjacent deletion. It
fails to recruit Grb2 but still recruits SHIP1 that modulates
BCR-induced Ca mobilization (84). SHIP dephosphorylates
phosphatidylinositol species, with the predominant in vivo
substrate being phosphatidylinositol 3,4,5-trisphosphate and
ultimately recruits p62 Dok to form a highly active membrane
localized enzymatic complex. This inhibits the Ras activation
pathway, decreases MAP kinase activation and reduced PLCy
function leads to less activation of PKC. SHIP-dependent ITIM
inhibition of the MAP kinase pathway, together with the anti-
apoptotic kinase Akt can thereby affect cellular proliferation and
survival (25).

The same mechanisms defined for BCR regulation are
applicable to human and mouse myeloid cells, where many
observations have been confirmed, particularly for FcyRIIB2
regulation of FceRI (25, 76). Overall FcyRIIB1 and FcyRIIB2
signaling pathways are similar, however their principal functional
difference lies in their localization in the cell membrane.
The Cl1 insertion (85) of FcyRIIB1 prolongs membrane
retention, whereas FcyRIIB2 is rapidly internalized. The
equivalent C1* sequence in FcyRIIA3 also alters membrane
localization (see above).

An ITIM independent mechanism of B cell regulation by
FcyRIIB has been reported wherein FcyRIIB, by binding antigen
bound IgG, co-aggregates with the BCR and prevents the
membrane organization of BCR and CD19 (86, 87). In another
mode of regulation of the adaptive humoral response, FcyRIIB
has been reported to be expressed on plasma cells and binding
IgG immune complexes and trigger apoptosis (88). Studies have
also identified other mechanisms of FcgRIIB modulation of the
IgE receptor and the BCR the existence of which in human cells
has not been determined. Mouse bone marrow derived mast
cells, which differ phenotypically from human mast cells, showed
an unconventional FcyRIIB ITIM-dependent regulation of the
high affinity IgE receptor, FceRI, where intracellular mediated co-
aggregation of FceRI with FcyRIIB occurs independently of the
FcyRIIB ectodomain binding to antigen complexed IgG (89).

Cellular Responses

The specific effects of FcyRIIB signaling are dependent on
the context of the co-engaged activating receptors and the
cell type. In B cells, FcyRIIBI inhibition of the BCR is a
critical immune checkpoint for regulating antibody production
(25, 90). The powerful nature of this immune checkpoint is
evident from studies in clinical, genetic, and animal models that
show that altering the balance between ITIM modulation and

ITAM activation is central to the pathogenesis and severity of
disease (91).

As  humoral responses develop, circulating
antigen:antibody complexes simultaneously engage the antigen-
specific BCR via the antigen of the complex and FcyRIIB via
the Fc region, thereby modulating antigen receptor signaling.
In FcyRIIB1, the Cl1 insertion impairs endocytosis, increasing
the interaction time between FcyRIIBI, and the BCR. The
C1 insert, irrespective of its position in the cytoplasmic tail,
tethers the receptor to the cytoskeleton and so prevents the
receptor localizing to coated pits and so disrupting endocytosis
(92, 93). A di-leucine motif within the FcyRIIB ITIM sequence
is also required for endocytosis (93, 94). Thus, the C1 insert
confers cytoskeletal tethering and membrane retention which
counter other cytoplasmic tail sequences including the di-leucine
residues that would otherwise promote endocytosis.

FcyRIIB2 has also been studied in B cells in experimental
systems where it also co-engages the BCR and regulates its
function. FcyRIIB2 lacks the cytoplasmic C1 insertion and is
rapidly internalized. A rare Tyr***Asp polymorphism occurs
within the unique membrane-tethering 19-amino acid insertion
of FcyRIIB1. FcyRIIB1-Asp*> binding of mouse IgGl was
slightly lower in comparison to the Tyr?*> variant of FcyRIIBI,
as was mIgG1l anti-CD3 induced T cell mitogenesis (95, 96).
FcyRIIB1-Asp?®® retained the capacity to form caps and was
effective in down-regulating increases in calcium upon cross-
linking by serum IgG (95).

This prolonged surface expression of actively signaling
FcyRIIB1 may also be important for the elimination by apoptosis
of self-reactive B cells during somatic hyper-mutation (97).
Thus, FcyRIIB1 constrains the selective antigen specificity of
the humoral immune system and directs the B cell production
toward an appropriate antibody repertoire.

FcyRIIB is upregulated after antigen stimulation via immune
complexes on follicular DCs (FDCs) (98). FDCs retain immune
complexes and recycle them periodically to their plasma
membrane, a process believed to be important in development
of B cell immune cell memory (99). The presentation of
immune complexes by activated FDCs expressing FcyRIIB
provides antigens to B cells in a highly immunogenic form
by multimerising the antigens, thus extensively crosslinking
multiple BCRs, minimizing B cell FcyRIIB ITIM-mediated
inhibition and providing co-stimulatory signals (100).

The functional response of a cell that expresses both ITAM-
bearing receptors and FcyRIIB can be altered by their expression
levels. Basophils express activatory FceRI and FcyRIIA, as well
as FcyRIIB, which can inhibit IgE-induced responses (101, 102).
This balance can be altered by IL-3 which upregulates expression
of both FcyR, but more strongly enhances FcyRIIB2 expression
(101). Under normal physiologic conditions it is believed that
FcyRIIA co-aggregation may, by providing activated Lyn, aid
FcyRIIB inhibitory function (102).

Monocyte-derived dendritic cells (moDCs) that were treated
with IFNy to upregulate their activating FcyRs (FcyRI and
FcyRIIA) had increased IgG-mediated cellular maturation, while
moDCs treated with anti-inflammatory concentrations of soluble
monomeric I1gG (IVIg) to increase FcyRIIB expression had

immune
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decreased cellular maturation (18). Similarly, monocytes with
increased expression of activating FcyRs over FcyRIIB as
induced by IFNy or TNFa had enhanced IgG-triggered cytokine
production, while monocytes with enhanced FcyRIIB expression
by IL-4 and IL-10 prevented IgG-triggered cytokine production
(103). Furthermore, FcyRIIB~/~ mouse macrophages developed
robust inflammatory responses after exposure to subthreshold
concentrations of immune complexes that failed to induce
responses in FcyRIIB-expressing cells, demonstrating a role of
FcyRIIB in setting a “threshold” for cellular activation (104).

PROPERTIES OF FcyRIIC

Molecular Structure

The expression of the membrane FCGR2C is complex. It is
subject to a polymorphism (GIn'>*STOP) wherein ~80% of the
population do not express functional FcyRIIC proteins and
also CNV, which in turn impacts expression of the FCGR2B
gene as described above (67, 105). The FCGR2C gene arose by
recombination between FCGR2B and FCGR2A. The functional
transmembrane FcyRIIC protein encoded by this gene is
an activating receptor wherein the extracellular domains are
derived from and are identical to FcyRIIB (exons 1-4), but
the transmembrane and cytoplasmic tail are derived from the
activating type ITAM-containing FcyRIIA (exons 5-8).

Multiple mRNA splice variants of FcyRIIC have been
identified (Figure 1), though their physiology is unclear.
Interestingly, some FcyRIIC-GIn'? individuals still lack FcyRIIC
expression due to alternative splicing that gives rise to multiple
non-functional forms (67). Additionally, the FCGR2C locus
shows CNV, which may contribute to variation in gene
expression, at the transcript and/or protein level, also impacting
other FcyRII expression and function (67, 106).

Expression and Cellular Responses
In individuals expressing the activatory FcyRIIC, it has been most
extensively studied on NK cells (Table 1). NK cells expressing
FcyRIIC had increased levels of ADCC upon receptor cross-
linking, causing mediator release and lysis of target cells (67, 105-
108). Although not extensively studied, it appears that FcyRIIC is
also expressed on CD19+ B Cells. Its co-ligation with the BCR
caused enhanced BCR signaling and B cell function, relative to
FcyRIIB ITIM-dependent negative regulation in the absence of
FcyRIIC. This FcyRIIC expression on B cells is associated with
systemic lupus erythematosus (SLE) in humans, possibly related
to the altered or unbalanced ITAM/ITIM signaling (108).
Interestingly, multiple other SNPs, 114945036, rs138747765,
and rs78603008, have been significantly associated with FcyRITA
or FcyRIIC mRNA expression in B cells in European populations
(109). However, protein expression data is not yet available.

STRUCTURAL BASIS OF FcyRll
INTERACTION WITH IgG

Human FcyRs have distinct binding specificities and affinities for
the four IgG subclasses (2). The determination of affinity and
IgG subclass specificity has relied on a wide range of methods

TABLE 3 | Relative binding of human IgG by FcyR expressed on the cell surface.

Human FcyR Human IgG Subclass

19G1 19G2 19G3 19G4
FeyRIIA His™S' +++ ++ NENE— -
FcyRIIA Arg'3! ++ + ++++ +
FcyRIIB + — + 4+ + +
FCyRIIC + — +++ +

mostly based on the binding of immune complexes to cell-
expressed FcyR. More sensitive methods have used recombinant
ectodomains and monomeric IgG using highly sensitive cell free
systems such as SPR (5, 6, 110). A survey of the literature on
the measurement of specificity and affinity of these receptors
shows some variation in the methods used and the values
calculated. Even the application of more sophisticated methods
such as SPR show some degree of variation from group to
group. Notwithstanding the variations and limitation in analyses
of the interactions, it is clear that the FcyRII family (FcyRIIA,
FcyRIIB, and FcyRIIC), are sensors of immune complexes and as
such, interact poorly with uncomplexed monomeric IgG (1 uM
affinity) but avidly bind immune complexes (5, 6, 15, 110).

There is general agreement that all FcyRII, indeed all FcyR,
bind human IgG1 and IgG3 but there are significant differences
in the interaction with IgG2 and IgG4 (Table 3). The allelic
His!3! form of human FcyRIIA is the only receptor which avidly
binds human IgG2 complexes, while FcyRIIA-Arg!3! binds IgG2
poorly (Table 3). However, it is possible that under circumstances
of high local concentrations of opsonizing antibodies that
binding interactions occur with FcyRITA-Arg!®! though whether
there is a functional outcome is unknown (6, 111).

In contrast, FcyRIIB binds IgG4 but not IgG2 and moreover,
binds IgG1l and IgG3 an approximately 10-fold lower affinity
than the activating FcyRIIA. This is consistent with its powerful
physiological inhibitory function as IgG binding affinities equal
to or higher than the activating receptors might otherwise
prevent pro-inflammatory responses that are necessary in
resisting infection. Not surprisingly, FcyRIIC has the same IgG
binding properties at FcyRIIB (6).

Other factors that affect interactions between IgG and the
FcyRII are the size of the IgG immune complex (112), the
distribution of epitopes (111, 113), the geometry of the Fc in
the complex, and receptor localization in membrane domains
(114) which may also influence the avidity of immune complex
binding. The state of the cell expressing the receptor (115)
can also influence interaction with IgG. FcyRIIA function
may be modified by “inside-out signaling” whereby external
stimuli such as granulocyte-macrophage colony-stimulating
factor (GM-CSF), IL-5, and IL-3 in eosinophils (116) and
N-formylmethionyl-leucyl-phenylalanine (fLMP) in neutrophils
increase receptor avidity (117). The mechanism for this FcyRITA
“activation” is unknown but could involve receptor dimer
forms (5, 115, 117, 118). This inside-out signaling has also
been identified for the high affinity IgG receptor, FcyRI,
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FIGURE 2 | The interaction of IgG-Fc with FcyRIIA and FcyRIIB is similar. The
perspectives shown are of two ectodomains of the (A) FcyRIIA [adapted from
3RY6 (61)] and (B) FcyRIIB [adapted from 3WJJ (123)] (shown in dark blue) in
complex with IgG-Fc (shown in gray). The structural components of the
receptor contributing to IgG binding are the two tryptophan residues that form
the Trp sandwich (red), the BC loop (green), the C'E strand (yellow), and the
FG loop (purple), with the “high/low resonder” polymorphic residue His 3" Arg
highlighted (orange).

where it is associated with cytoskeletal-dependent clustering of
receptors (119).

X-ray crystallographic structural data is available for all FcyR
but only in complex with the native or mutated I1gG1 (61, 120-
122). Tt is clear that the interaction of FcyRITA and FcyRIIB
with IgGl1 is asymmetric. The “bent” FcyR extracellular region
of one FcyR molecule inserting between, and making contacts
with, both IgG1 H-chain Fcs, as is also the case with other FcyR
(Figure 2) (2, 124). The key conclusion from these studies is that
the principal contact regions of the FcyRIIA and FcyRIIB are
similar and occur predominantly within the second domain BC
loop, C strand, C'E loop, and the FG loop, with a contribution
of the interdomain linker. The BC loop and the interdomain
linker provide the two critical tryptophan residues, conserved in
all FcyR, that sandwich the Pro®*! of the IgG1 CH2 FG loop.

The lower hinge of IgG has a dominant role in determining
the specificity of FcyR interactions. In the case of IgGl,
the lower hinge residues, Pro**3Leu?**Leu***Gly***Gly*¥,
of both H-chains form extensive contacts with FcyRIIA
(61). Interestingly, this region is quite different in IgG2
(Pro,Val,Ala,Gly) and suggests that the IgG2 interaction with
FcyRIIA may be quite distinct at the atomic level but as yet

no structure of IgG2 in complex with FcyRIIA is known.
Nonetheless, the IgG1:FcyRIIA complex structure suggests that
the preferential IgG2 binding by FcyRIIA-H'! over FcyRIIA-
R13!_the “high/low responder” polymorphism (125)—may be
explained structurally by the smaller histidine side chain more
readily accommodating interaction with the Fc adjacent to the
lower hinge compared to the longer arginine side chain (61).

The structural basis for the effect of the rare GIn'?’Lys
polymorphism that also affects IgG2 binding is interesting (126).
The Lys'?” does not appear to make contact with the IgG1 Fc and
sits adjacent to the binding region, so that the effect on Fc binding
is presumably indirect. This indicates a possible selective pressure
for IgG2 binding by this receptor (126).

ROLES OF FcyRIl IN HEALTH AND
DISEASE

The balance between activation and inhibitory signaling is
important in the control of healthy antibody dependant
responses and disturbance to this balance can have adverse, but
in some cases positive, consequences to health.

Genetic polymorphism studies of human FCGR2 genes
have helped to establish roles of FcyRII proteins in several
autoimmune diseases and in resistance or susceptibility to
infectious diseases (Table4). In vivo mechanistic studies in
experimental animal models, including transgenic and gene
replacement systems, have also been helpful in establishing
specific protective or deleterious roles of FcyRII in infectious
disease, inflammation, autoimmunity, and cancer and have been
reviewed extensively elsewhere (139-143).

Infection

The in vivo roles of the FcyRII receptor family in humans
have been derived by extrapolation of animal studies and by
genetic studies of human populations. The FcyRIIA high/low-
responder polymorphism influences susceptibility to infections,
as FcyRITA-Arg!3! has poor IgG2 binding (144, 145). Individuals
expressing FcyRITA-His!®! are more resistant to infection by
Streptococcus pneumonia, Haemophilus influenza, and Neisseria
meningitides. This is potentially due to more avid binding of IgG2
by FcyRITA-His'3! over FcyRIIA-Arg!3!, consequently resulting
in more efficient effector responses such as uptake by phagocytes,
induction of degranulation and elastase release by granulocytes
in vivo (144, 146, 147).

FcyRs do not function in isolation under physiological
conditions in vivo and it is notable that co-operation between
Toll-like receptors (TLRs) and FcyRs is an important feature of
effective pathogen elimination (148). TLRs are often co-expressed
with FcyRIIA and co-engagement results in enhanced functional
responses of these individual receptors, e.g., enhanced TNFa,
IL-23, and IL-1B release by DCs (35, 149, 150).

The role of FcyR in HIV is complex and apparently conflicting
data may reflect different aspects of HIV infection and clinical
outcomes. In a small study of immunocompetent patients who
had undergone successful and early antiretroviral treatment,
who expressed FcyRIIA-His'*!, and had a IgG2 response
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TABLE 4 | Function or clinical association of polymorphic residues of FcyRll.

Receptor Polymorphism Function/clinical association Reference
FcyRIIA GIn27Trp Impaired calcium mobilization and MAP kinase phosphorylation; associated with CVID (127)
(rs9427397, rs9427398)
GIn127Lys GIn'27 interferes with the interaction of adjacent receptor residues with IgG2 (126)
His131Arg His131 able to bind IgG2; both forms associated with autoimmune disease; allograft (128, 129)
(rs1801274) rejection and mAb cancer treatment outcomes
c.7421871A>G Permits alternative splicing of the C1* exon resulting in expression of “hyperactive” (11,12)
FcyRIIA3. Risk factor for IVIg anaphylaxis.
Hypomethylation Increased susceptibility genes for Kawasaki disease and IVIg resistance (130)
FcyRIIB Promoter haplotype Deregulated FcyRIIB expression may contribute to pathogenesis (59, 131)
(rs3219018, rs34701572)
11e232Thr Thr232 alele does not partition to lipid rafts and is associated with impaired regulation of (132-137)
(rs1050501) ITAM signaling, predisposing to SLE but protective for malaria
Tyr235Asp Asp235 has reduced binding, internalization and signaling (95, 96)
FcyRIIC GIn13stop Commonly referred to as the ORF/Stop polymorphism, determines functional expression (105, 106)
of receptor, may contribute to autoimmune disease
GIn57stop Unknown mechanism, associated with autoimmune disease and vaccine efficacy for HIV (106, 138)
(rs1801274)

to a gpl20 vaccine regime, there was a partial control of
viral replication during interruption of anti-retroviral therapy
(151). However, analysis of the Vax004 gpl20 vaccine trial
found no evidence of association of FcyRIIA polymorphism
with protection against HIV infection, although this was an
unsuccessful vaccine trial overall (152). HIV studies have
emphasized the protective role of NK cell FcyRIIIA in antibody
dependent cellular cytotoxicity. However, recent studies have
found a potent role for FcyRIIA in the protective functions of
macrophages and neutrophils, which are abundant effectors at
the mucosal sites of HIV acquisition (153). HIV co-infections
generate an even more complex clinical picture. FcyRITA-His!'3!
homozygous individuals are more susceptible to developing
AlDs-related pneumonia, and have an increased risk of placental
malaria in HIV-infected women (154) and other perinatal
infections (155, 156).

While few resting CD4 T cells express FcyRIIA, these cells
are highly relevant to HIV research. Resting CD4 T cells latently
infected with HIV are an important target in strategies to
eliminate HIV in anti-retroviral therapy (ART) patients, as
these quiescent cells provide safe harbor for “silent” virus that,
upon reactivation, causes viral recrudescence within weeks of
treatment interruption. FcyRIIA was reported as a surface
marker of this key quiescent population in ART patients (157)
but other studies found no enrichment of HIV proviral DNA
by sorting CD4 T cells based on FcyRIIA expression (52, 158).
Rather than on resting CD4T cells, FcyRII expression was
mostly on activated CD4 cells associated with transcriptionally
active virus (159). Furthermore, another study sorted a CD4™
population that apparently expressed FcyRIIB, not FcyRIIA.
However, these FcyRIIBT cells derived from contaminating
B cells, occurring as T-B cell doublets, and also from single
CDA4T cells, with a punctate staining pattern that included other
B cell markers, and was suggestive of trogocytosis rather than
intrinsic CD4 T cell expression (52). These studies indicate some

of the technical challenges that can accompany determining
FcyR expression.

Though the numbers are small there is suggestive evidence
that polymorphism in the FCGR2C locus, in particular FCGR2C-
126 C>T SNP was associated with a protective anti-HIV
vaccination response. In the RV144 vaccine trial, individuals
homozygous for FCGR2C-126C/C had an estimated vaccine
efficacy of 15% whereas individuals homozygous for the
FCGR2C-126T/T or heterozygous—126 C/T had an estimated
vaccine efficacy of 91% (138). Whether this association relates to
effector function via a functional FcyRIIC protein or is due to
linkage to another effector system encoded in this chromosomal
region is uncertain (109).

FcyRs also have an established role in antibody-dependent
enhancement (ADE) of dengue virus (DENV) infection.
Immune complexes of DENV opsonized with non- or sub-
neutralizing levels of antibodies interact with FcyRs on
monocytes, macrophages, and dendritic cells, led to increased
uptake, viral replication, and more severe infection (160). In
keeping with its modulating role, FcyRIIB inhibits ADE in
experimental systems (161). Indeed, while FcyRIIA facilitates
DENV entry, mutation of the ITAM to an ITIM significantly
inhibited ADE, and conversely, replacing the inhibitory motif in
FcyRIIB with an ITAM, conferred ADE capacity (162).

The hypo-functional FcyRIIB-Thr?3? variant is enriched in
populations from malaria endemic areas. This suggests that
reduced FcyRIIB modulation of responses and a consequential
enhancement of B cell and inflammatory cell activation
confers a survival advantage in these populations (132, 163).
Indeed, enhanced activatory FcR responses including increased
phagocytic capacity and TNF production by innate cells and
enhanced B cell responses is evident by elevated malaria specific
antibody titers (164).

Interestingly, the FcyRIIB-Thr?*? polymorphism has been
shown to confer increased phagocytosis of antibody opsonized

Frontiers in Immunology | www.frontiersin.org

94

March 2019 | Volume 10 | Article 464


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Anania et al.

The FegRIl (CD32) Family

bacteria by monocyte-derived macrophages (132). Models
suggest FcyRIIB is integral for the balance between efficient
pathogen clearance and the prevention of the cytokine-mediated
effects of sepsis (163). In geographic areas where there is less
infectious disease pressure, FcyRIIB-Thr?3? is associated with
susceptibility to autoimmunity.

FcyR in Autoimmunity

Imbalance between inhibitory and activatory FcyR functions
predisposes individuals to pro-inflammatory autoimmune
disease. FcyRIIA activation induces the production of pro-
inflammatory cytokines, including IFN and TNFa, which
are active in the promotion of inflammation, systemic lupus
erythematosus (SLE), Kawasaki disease (KD), Grave’s disease,
and Rheumatoid Arthritis (RA) (35, 165-167).

The FcyRIIA-His'3! allelic form is associated with other
autoimmune diseases, including Guillain-Barré syndrome,
ulcerative colitis and KD, possibly due to increased inflammatory
cell activation via IgG2 (168-170).The FcyRITA-Arg!'3! allelic
form is associated with susceptibility to SLE, angina pectoris,
acute coronary syndrome (ACS), myasthenia gravis, and RA
(171-174). This may be related to the impaired ability of
FcyRITA-Arg!3! to process and recycle IgG2, causing the release
of pro-inflammatory cytokines, aggravating disease (175, 176).

Other FcyRIIA  polymorphisms, although less well
characterized, are associated with inflammatory diseases.
Recently a glutamine/tryptophan polymorphism at position 27
(GIn?’Trp) has been identified, where homozygous individuals
were over represented in CVID (127). No difference in expression
was observed and FcyRIIA-Trp?” had modest impairment of
calcium mobilization and MAP kinase phosphorylation
in vitro (127).

Epigenetic =~ modifications of FCGR2A  such as
hypomethylation have also been described in CVID patients,
particularly at the promoter CpG site cg24422489 (130, 169). This
increased susceptibility for KD and resistance to Ig replacement
therapy, with significant hypomethylation of FcyRIIA in patients
with acute KD and coronary artery lesions (130, 169, 177).

The recently described rare intronic A>G SNP that controls
expression of the splice variant FcyRIIA3 occurs in <1% of
healthy subjects (11, 12). However, it is associated with KD,
immune thrombocytopenia (ITP), and CVID (11). Furthermore,
severe adverse reactions in response to immunoglobulin
replacement therapy occurred in patients expressing FcyRIIA3
and neutrophil activation (mediator and elastase release) was
enhanced. Increased signaling by FcyRIIA3 was due to its altered
membrane localization and longer membrane retention time (11,
12). Thus, increased inflammatory responses toward therapeutic
IgG may paradoxically diminish the utility of the major treatment
regime in this subset of CVID patients.

Polymorphism and CNV of activatory FcyRIIC is associated
with increased severity of RA and ITP (106, 178). This has been
attributed to expression variance in these individuals causing an
imbalance between activatory and inhibitory signals.

Since the inhibitory FcyRIIB forms modulate the activation
of B cells and innate effector cells, decreased expression of the
FcyRIIB leads to dysregulated antibody function and increased

antibody-dependant inflammatory cell responses and thus
increased susceptibility to autoimmune diseases. Polymorphisms
in the FCGR2B promoter or transmembrane domain of FcyRIIB
influence receptor expression and signaling potency and are
associated with susceptibility to autoimmune diseases including
SLE, Goodpasture’s disease, ITP, and RA (133-135, 156, 179, 180).
Multiple polymorphisms in the promoter region of FCGR2B have
been identified. The promoter haplotype FCGR2B—386G>C
SNP in combination with FCGR2B-120T>A SNP (FCGR2B-
386C +—120A) enhances promoter activity and transcription,
however this enhanced haplotype has low prevalence (59, 131).
FCGR2B-343G>C SNP is enriched in European American SLE
patients and homozygous expression of FCGR2B-343C is linked
to SLE susceptibility (131, 179). This is due to decreased AP1
transcription complex binding, which causes decreased FcyRIIB
expression on B cells and macrophages and altered antigen
clearance (179).

The frequency of the transmembrane polymorphism
FcyRIIB-Thr?*?Ile differs among different ethnic populations,
with FcyRIIB-Thr?3? associated with SLE in Asian but not
African American or European populations (134). FcyRIIB-
Thr?* shows reduced lateral mobility in the membrane
which impairs its ability to inhibit the co-localization of BCR
and CDI19 microclusters and consequent B cell activation
(181). This causes increased B cell and myeloid cell activation
(133, 136, 137), which elevates B cell (antibody) responses and
heightens IgG-dependant pro-inflammatory responses, resulting
in autoimmunity.

Cancer

The roles of FcyR in cancer relate largely to the harnessing
of antibody-dependant effector functions such as ADCC or
ADCP by therapeutic mAbs during the treatment [reviewed in
(2, 139)]. However, it also appears that mAb therapy may also
have long term therapeutic benefits. Studies on DCs indicate
that FcyRIIA activation is necessary and sufficient to induce a
strong T cell anti-tumor cellular immunity inducing long term
anti-tumor vaccine-like or “vaccinal effects” in humanized mice
(48). Engagement of FcyRIIA induced DC maturation and up-
regulation of costimulatory molecules, priming them for optimal
antigen presentation and cross-presentation, thus stimulating
long-term anti-tumor T cell memory (48).

Conversely, the inhibitory role of FcyRIIB may be
disadvantageous to antibody-based therapies and other immune
stimulating therapies. Thus, blocking inhibitory function of
FcyRIIB on effector cells or antigen presenting cells such as DCs
might be a strategy to enhance anti-tumor immune responses
during immunotherapy (18, 182, 183).

HARNESSING OR TARGETING FcyRIl FOR
ANTIBODY BASED THERAPIES

Monoclonal antibodies are a versatile class of biotherapeutic
drugs because of the multifunctional nature of the antibody
molecule. IgG-based therapeutic mAbs are effective for the
treatment of a variety of diseases due to their high specificity
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and affinity for their target antigen and, in some cases, their
strong induction of FcyR effector functions. Depending on
the nature of the disease and molecule, the mAb efficacy
may depend on one or more mechanisms of action, ranging
from simple antigen neutralization, complement-dependent
cytotoxicity, FcyR-dependant cellular effector functions, or
inhibition via FcyRIIB. Thus, effective patient responses can
be dependent on FcyR based mechanisms, e.g., altered binding
due to the FcyRITA-His!*! Arg polymorphism, which influence
the efficacy of therapeutic mAbs such as rituximab and
cetuximab (184, 185).

The efficacy of the anti-EGFR mAb, cetuximab, and
subsequent progression free survival was associated with
expression of the His!3! variant of FcyRIIA (185). Patients with
the FcyRITA-His!®! genotype also responded better to rituximab
treatment in non-Hodgkin’s lymphoma (184). Conversely,
FcyRIIB expression on lymphoma cells is a risk factor for anti-
CD20 rituximab therapy failure due to FcyRIIB internalizing the
CD20:rituximab complex and thereby reducing exposure of the
opsonized lymphoma cell to the immune effector systems (186).

Inhibition of activatory FcyR could block early development
of inflammatory disease. This has been explored experimentally
in humanized mouse models of RA, using antibody fragments
(or small molecules) designed to bind human FcyRIIA to inhibit
disease (29, 187). Synthetic FcR mimetics have also been used to
block the function of FcyRIIA in vitro (188) and the modulation
of FcyRITA and FcyRIIB function in humans (189).

FcyRIIB is a powerful modulator of ITAM-dependent
receptors such as the BCR or high affinity FceRI. Strategies to
harness this powerful inhibitory capacity are being developed
by engineering mAb Fc regions with enhanced and/or selective
engagement with FcyRIIB. Such strategies rely on the co-
engagement of FcyRIIB with the mAb-targeted activating
receptor. This engineering of therapeutic mAbs with increased
affinity to FcyRIIB has diverse clinical applications. Indeed, anti-
CD19 binds the BCR complex and the engineered Fc co-engages
FcyRIIB with increased affinity, suppressing B cell activation
without B cell depletion (190, 191). This novel approach to
treat autoimmune disease demonstrates the importance of
understanding FcyR biology and interactions with IgG in order
to optimally exploit antibody functions for specific therapies.

Another example is the anti-IgE, omalizumab, an effective
treatment for allergic asthma by neutralizing IgE binding to
FceRI. Mutations introduced in XmAb7195, an omalizumab
“equivalent” antibody, enhanced affinity for FcyRIIB. Like
omalizumab, XmAb7195 binds to and neutralizes circulating IgE
(71). However, its enhanced Fc interaction with FcyRIIB may
also promote co-aggregation of FcyRIIB with the BCR of IgE+
B cells, and may suppress activation of the BCR, diminishing
allergic antibody production. In addition, data from mouse
studies suggest that the XmAb7195:IgE complexes are rapidly
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The human Fc-gamma receptors (FcyRs) link adaptive and innate immunity by binding
immunoglobulin G (IgG). All human low-affinity FcyRs are encoded by the FCGR2/3
locus containing functional single nucleotide polymorphisms (SNPs) and gene copy
number variants. This locus is notoriously difficult to genotype and high-throughput
methods commonly used focus on only a few SNPs. We performed multiplex
ligation-dependent probe ampilification for all relevant genetic variations at the FCGR2/3
locus in >4,000 individuals to define linkage disequilibrium (LD) and allele frequencies
in different populations. Strong LD and extensive ethnic variation in allele frequencies
was found across the locus. LD was strongest for the FCGR2C-ORF haplotype
(rs759550223+rs76277413), which leads to expression of FcyRllc. In Europeans,
the FCGR2C-ORF haplotype showed strong LD with, among others, rs201218628
(FCGR2A-Q27W, r? = 0.63). LD between these two variants was weaker (-2 = 0.17) in
Africans, whereas the FCGR2C-ORF haplotype was nearly absent in Asians (minor allele
frequency <0.005%). The FCGR2C-ORF haplotype and rs1801274 (FCGR2A-H131R)
were in weak LD (2 = 0.08) in Europeans. We evaluated the importance of ethnic
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variation and LD in Kawasaki Disease (KD), an acute vasculitis in children with increased
incidence in Asians. An association of rs1801274 with KD was previously shown in
ethnically diverse genome-wide association studies. Now, we show in 1,028 European
KD patients that the FCGR2C-ORF haplotype, although nearly absent in Asians, was
more strongly associated with susceptibility to KD than rs1801274 in Europeans. Our
data illustrate the importance of interpreting findings of association studies concerning
the FCGR2/3 locus with knowledge of LD and ethnic variation.

Keywords: Fc-gamma receptor,
immunogenetics

INTRODUCTION

The human cellular receptors for Immunoglobulin G (IgG), the
Fc-gamma receptors (FcyR), have an important role in immunity
by linking the adaptive and innate immune systems. Many
genetic variations in the genes encoding FcyRs have been found
to be associated with auto-immune (1-5), auto-inflammatory
(6-8), and infectious diseases (9, 10), and with efficacy of
immunotherapy in cancer patients (11-15). Several activating
and one single inhibitory FcyR (FcyRIIb) exist, with differential
expression on various leukocyte subsets (16, 17). Human FcyRs
can be distinguished into one high-affinity receptor (FcyRI)
and five low-affinity FcyRs (the different isoforms of FcyRII
and FcyRIII) (16, 17). All five genes encoding the low-affinity
FcyRs (FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B) are
located in a complex gene cluster at chromosome 1q23.3. Many
functionally relevant single nucleotide polymorphisms (SNPs)
and copy number variants (CNVs) are described in the FCGR2/3
locus, leading to altered receptor functions ranging from different
binding affinity to IgG to complete absence of expression of
certain genes (17-19). The FCGR2/3 locus involves a segmental
duplication, making it constitutively difficult to genotype because
of the high degree of homology between the genes (18, 20). Due
to the close proximity of all the five different FCGR2 and FCGR3
genes, the polymorphic variants in these genes are likely to be in
strong Linkage Disequilibrium (LD). However, except for some
incidental reports on LD between some of the SNPs (21-24), a
comprehensive analysis of LD between the functional variants at
this locus has not been previously performed.

One of the diseases in which only one genetic variant
of the FCGR2/3 locus has been thoroughly studied is
Kawasaki Disease (KD). KD is an acute systemic vasculitis
that predominantly occurs in children <5 vyears (25).
About 25% of untreated KD patients develop coronary
artery aneurysms, which may lead to ischemic heart disease,
myocardial infarction and sudden death at young age (26).
Although the etiology of KD remains unknown, the general
consensus is that KD reflects an abnormal inflammatory
response to an unknown infectious trigger in genetically
susceptible individuals. Standard treatment consists of a single
infusion of high-dose intravenous immunoglobulins (IVIg)
in combination with aspirin (27). Although the mechanism
of action of IVIg in KD is unclear, early treatment shortens
the duration of fever and reduces the incidence of coronary

FCGR polymorphism, linkage disequilibrium, Kawasaki disease (KD),

artery aneurysms to less than 5% (28). Since IVIg therapy
is effective in the majority of patients, the receptors for IgG,
the Fc-gamma Receptors (FcyRs), are of particular interest in
KD research.

In our GWAS study on KD (6), we identified the FCGR2A-
131H SNP (rs1801274) to be associated at genome-wide
significance. This variant results in a substantial difference in
the ability of FcyRlIla to bind the human IgG2 subclass (19).
rs1801274 shows the strongest evidence of association with KD
and this finding has been intensively studied and validated in a
number of cohorts of varying ethnicity (6, 7, 29-34). Apart from
the FCGR2A-H131R SNP (rs1801274), only a few other SNPs
in this locus have been evaluated for KD susceptibility, without
any significant association (29-31). Nevertheless, because of the
sequence homology and the genetic complexity, a very large part
of the FCGR2/3 locus was not covered in GWAS or other studies
before. Hence, we postulated that other variants at the locus may
also play a role in KD susceptibility, which could either be tagged
by FCGR2A-131H (rs1801274), or act independently. To address
this, we performed further fine-mapping of the FCGR2/3 gene
cluster in a case-control as well as a family-based linkage study
with a total of 1,028 patients with KD, and genotyped healthy
control individuals of different ethnic groups to define LD
and ethnic variation. We used a previously developed accurate
multiplex ligation-dependent probe amplification (MLPA) assay
covering all the functionally relevant SNPs and CNVs at the
FCGR2/3locus (5).

In the present study, including more than 4,000 individuals,
we found marked ethnic differences in allele frequencies for
most of the SNPs and CNVs. The most prominent difference
was observed for the FCGR2C-ORF haplotype, which we have
previously shown to result in expression of the activating FcyRIIc
(35). In most individuals, FcyRIIc cannot be expressed as a
result of a polymorphic stop codon in exon3 (rs759550223),
but the expressed FCGR2C-ORF haplotype is associated with
susceptibility to immune thrombocytopenic purpura (5). We
now show that the FCGR2C-ORF haplotype is virtually absent in
Asian and African populations. FCGR2C-OREF is in very strong
LD with several other SNPs in the European population, but
could be identified as a novel susceptibility haplotype for KD
in this population, independent of the FCGR2A-H131R SNP.
Our comprehensive analysis of the FCGR2/3 locus will greatly
contribute to a better understanding of the relevance of the
different FcyRs in inflammatory diseases.
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SUBJECTS AND METHODS

Study Populations

KD Cases

Unrelated KD cases were recruited from Australia, The
Netherlands and the United States. All cases from Australia
(109) and the United States (62) were also included in our
previous GWAS (6), whereas the cases from the Netherlands
(234) consisted of 166 cases from the GWAS and 68 new cases.
There was no overlap with patients in the study previously
reported by Biezeveld et al (30). The diagnosis of KD was based
on the standard diagnostic clinical criteria from the American
Heart Association.

Cohorts of Control Subjects

Europeans

Since no DNA of the control population in our previous GWAS
was available, we genotyped a new group of unrelated controls
of European descent, consisting of healthy individuals from
Austria (478), Australia (156), The Netherlands (199), and the
United Kingdom (86). All were of European descent by self-
reported ethnicity (36, 37).

Chinese

The Chinese population consisted of 428 healthy individuals
from Canada of Han-Chinese descent, all of which were
grandparent-proven Han-Chinese.

African

The South African population consisted of 149 healthy blood
donors of African descent by self-reported ethnicity as reported
before (38). The Ethiopian population consisted of 142 healthy
blood donors of African Ethiopian descent by self-reported
ethnicity (38). The West African population consisted of
65 sickle-cell disease patients from the Netherlands, all of
which were of West-African descent by self-reported ethnicity,
including individuals from Ghana (52), Nigeria (4), Sierra Leone
(4), Togo (3), and Cameroon (2). The Surinam population
consisted of 78 sickle-cell disease patients of African Surinamese
descent by self-reported ethnicity. The Antillean population
consisted of 6 sickle-cell disease patients from the Netherlands
who were from Curagao and were of African Caribbean descent
by self-reported ethnicity, and 68 healthy blood donors from
Curagao who were of African Caribbean descent by self-reported
ethnicity as described previously (38).

Family-based association study
623 KD patients (none overlapping with the case control study)
were included, consisting of KD patients from the United States
(386, of which 348 complete trios and 38 incomplete trios, 153
European), Australia (104, all complete trios, 72 European) and
the Netherlands (98, all complete trios, 82 European) and Italy
(35, all complete trios, all Mediterranean). All KD patients in
the family-based association study from the United States and
Australia were included in our previous GWAS (6), the patients
from the Netherlands and Italy were new.

In total, 4,091 individuals were genotyped. Table S1 provides
an overview of all individuals. This study was carried out in

accordance with the recommendations of the Kawasaki Study
Protocol approved by the Medical Ethical Committee at the
Academic Medical Centre in Amsterdam, the Netherlands, with
written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. The protocol was approved by the Medical Ethical
Committee at the Academic Medical Centre in Amsterdam, the
Netherlands and by the medical ethical committees of the other
participating centers.

Clinical Data

Clinical information was collected by review of the clinical KD
registries. CAAs were defined based on the definition of the
Japanese Ministry of Health or Z-scores >2.5 according to the
Boston Z-score data. According to the definition of the Japanese
Ministry of Health a coronary artery was considered abnormal
if the diameter of the internal lumen was > in children younger
than 5 years or > in a child aged 5 years or older, or if the internal
diameter of a segment was at least 1.5 times larger than that of an
adjacent segment. IVIg response was determined in the patients
receiving treatment with IVIg within 11 days after the disease
onset. Patients who received more than one dose of IVIg because
of persistent or recrudescent fever more than 36 h after the initial
IVIg dose were defined as IVIg non-responders.

Genotyping by MLPA and Construction of
Haplotypes From MLPA Data

The MLPA assay was performed according to the manufacturer’s
protocol, essentially as described previously (5, 39) and is
described in great detail in the Supplemental Methods.

Flow Cytometry, Gene Expression
Microarray and RT-qPCR

Flow cytometry, gene expression microarray and RT-qPCR were
performed as described in the Supplemental Methods.

Statistical Analysis

Genotype/Allele Frequencies and Linkage
Disequilibrium

Differences in copy number and allele frequencies between
(sub)populations and differences in allele frequencies between
groups of individuals with normal, decreased and increased
copy number were tested using Fisher’s Exact test. Haplotype
frequencies and linkage disequilibrium (expressed as r* or D’)
between (multiallelic) markers were estimated in the populations
and the parents from the KD trios using the gap package (40)
(version 1.1-12).

Association With Susceptibility to Kawasaki Disease
(KD)

In the case-control study, genotype frequencies were compared
between KD cases and healthy controls using Fisher’s exact
test and odds ratios were estimated using (multiple) logistic
regression. In the parent-affected offspring trios, the association
between KD and the markers was examined using the
(multimarker) FBAT (TDT) test statistic from the FBAT toolkit
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(41). Results from the case-control and KD trios were meta-
analyzed using a fixed effect model and the generic inverse
variance method following an approach described by Kazeem
and Farrall (42) and using Review Manager software (Version 5,
Cochrane Collaboration).

Comparison of Expression Levels

In case of multiple expression values per donor, the mean of these
values was taken for the statistical analyses. Expressions between
groups were compared using Mann-Whitney tests (two groups)
or a Kruskal-Wallis test with post-hoc Mann-Whitney tests (>2
groups) using GraphPad Prism 6.02.

Apart from the TDT and meta-analyses and the expression
analysis, all statistical analyses were carried out using R software
(Version 3.0.3, R Core Team). A p-value below 0.05 was
considered as statistically significant.

RESULTS
Characterization of the FCGR2/3 Locus

The FCGR2/3 locus is a complex region due to the presence
of a large segmental duplication and copy number variants
(CNV) (18, 43). MLPA was previously shown to accurately call
copy number variation at the FCGR2/3 locus (5, 20). We used
the MLPA to accurately identify all eight known functional
SNPs and haplotypes, as well as the four CNV regions (CNRs),
at the FCGR2/3 locus, which have previously been associated
with various autoimmune and infectious diseases (Figure 1 and
Table S2).

Allele Frequencies of CNV and SNPs at the
FCGR2/3 Locus Vary Among Different
Ethnic Groups, Especially for the Classic

and Nonclassic FCGR2C-ORF Haplotypes

The frequencies of many of the functional SNPs and CNVs have
been reported to vary among different ethnic backgrounds (10,
21, 44-47), but information about the FCGR2C haplotypes is yet
to be established. To explore differences in frequencies of SNPs
and CNRs between several ethnic groups, we genotyped and
compared large groups of healthy human subjects. Significant
differences (P < 0.05) between ethnic groups were found for
CNRs and for all SNPs except the FCGR3A-V158F SNP, which
had no difference in frequency among all groups (Table 1).
Analysis of subgroups within the European and African
populations revealed subtle differences within the European
population and marked differences within the African population
(Table S3).

Among the groups included, the largest difference in allele
frequency was revealed for the FCGR2C-haplotypes. FCGR2C
consists of three haplotypes; the FCGR2C-Stop pseudogene
that is not expressed as a result of the FCGR2C-Q57X SNP
(rs759550223), its expressed counterpart, the so-called classic
FCGR2C-ORF with an open reading frame at rs759550223, and
the nonclassic FCGR2C-ORF, which has an open reading frame
at rs759550223 but has an almost complete lack of expression
as a result of a splice site mutation in intron7 (rs76277413)
(35). Figure 1E gives a schematic overview of the haplotypes
of FCGR2C. The classic FCGR2C-ORF haplotype results in

the expression of FcyRIIc as an activating IgG receptor on
myeloid cells and NK cells, as we have characterized previously
(5, 48). We now formally demonstrate that the nonclassic
FCGR2C-ORF haplotype can be determined by MLPA (see
Supplemental Methods 