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Editorial on the Research Topic
The Origin of Plant Chemodiversity - Conceptual and Empirical Insights

Whenever one looks plant -made chemicals, everyone is fascinated with their huge chemodiversity,
being estimated at over one million metabolites (Afendi et al., 2012), and then impressed how
people lives rely on those plant chemicals as food, drugs, flavors, cosmetics, and industrial raw
materials. Although it is generally accepted that such vast plant chemodiversity is the consequence
of the evolutional history of plants as sessile organisms, the queries regarding the origin of plant
chemodiversity are not fully addressed.

By taking the advantage of recently advanced theory and technology of genomics and associated
fields (Rai et al., 2017), such as comparative genomics, metabolomics, bioinformatics and molecular
evolution, one may address the questions mentioned above quite directly. Besides answering such
fundamental questions, the knowledge gained will contribute to the development of sustainable
society, which is formulated as 2030 Agenda for Sustainable Development and its 17 Sustainable
Development Goals (United Nations, 2018).

Only outstanding experts in this field were invited to contribute their articles to this Research
Topic. The collected papers widely cover the topic from conceptual discernment to empirical
insights. Finally, in total, 23 articles were published and divided into several categories: 9 in Review,
2 in Mini Review, 2 in Perspective, 1 in Hypothesis and Theory, 8 in Original Research, and 1
in Correction.

Metabolomics has now maturely held an indispensable position to decipher the chemodiversity
of plants. However, peak annotation of acquired data by untargeted analysis is still challenging. Rutz
et al. report an improved method for annotation of natural products with taxonomic information.
Spatio-temporal metabolite and elemental profiling were applied to investigate salt-stress response
in barley (Gupta et al.). The impacts of natural climate and geography on the metabolome of
tobacco is reported by Ma et al.. The paper by Samec et al. deals with the metabolome of the
Psilotales, which exhibit unique anatomical character in the fern lineage.

Several articles deal with an evolutionary consideration in the expansion of plant
chemodiversity. Two Perspective articles discuss on evolution aspects: The report by Kusano
et al. provides an evolutional perspective regarding two transferases often involved in plant
secondary (recently often referred to as “specialized”) metabolism; another perspective paper by
Shirai and Hanada discusses the effects of copy number variations on functional divergence in
the cross-species and inside-species diversity. Shoji proposes the evolutional model based on
recruitment of genes by focusing on jasmonate-responsive transcription factors. The Mini-Review
article by Maeda provides insight on the evolutional diversification of plant primary metabolism
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Editorial: Origin of Plant Chemodiversity

concerning the robustness of plant metabolism and further
diversification in specialized metabolism.

Two papers deal with the novel concept and approach to
extend our understanding of plant metabolism. The Hypothesis
and Theory article by Schwachtje et al. discusses the imprinting
and priming plant metabolism against upcoming environmental
challenges as a novel concept for adaptation and diversification
of plant metabolism responding to stresses. To obtain further
insights on mechanisms of plant natural products biosynthesis,
computational chemistry may play a central role—Sato et al.
present an overview of cutting-edge aspects of application of
computational chemistry on the biosynthetic mechanisms of
plant specialized metabolites.

The rest of the 13 articles focuses on relatively the pathway-
specific metabolism or metabolites with some generalization
across the biosynthetic pathways. Four papers deal with
flavonoids and phenylpropanoids. Yonekura-Sakakibara et al.
discuss the origin of flavonoid biosynthetic enzymes with
functional genomics implication in their comprehensive Review
Article. Another Review Article (Davies et al.) provides the
current information about the flavonoid pathway in the
bryophytes (liverworts, hornworts, and mosses). The role of
the flavonoid metabolons formed by specific protein-protein
interactions of the biosynthetic enzymes is discussed in the
Review Article (Nakayama et al.). The Original Research
Article by Cheevarungnapakul et al. reports the genes for the
biosynthesis of caffeoylquinic acids in sunflower.

Terpenoids form the largest sub-family of specialized
metabolites with their immense possibility in the expansion
of structural diversity. The Review Article by Karunanithi and
Zerbe provides up-to-date knowledge on the functional diversity
and molecular evolution of the plant terpene synthases widely
across the plant kingdom. The Original Article contributed by
Muchlinski et al. reports biosynthesis and emission of mixtures
of monoterpenes and sesquiterpenes triggered by the generalist
herbivore in Switchgrass. Three papers focus on triterpenoid
saponins. Lei et al. studied the large-scale profiling of saponins
in 201 ecotypes of Medicago truncatula. The Original Article
by Fanani et al. reports the detailed investigation on the
molecular basis for C-30 oxidation of triterpenoids leading to
the production of high-value saponins such as glycyrrhizin in
Legume licorice. Cardenas et al. in their Mini-Review Article
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discuss convergent and divergent evolution in triterpenoid
biosynthesis, and the mechanisms increasing structural diversity
within and across plant species.

Three contributions dealing with nitrogen- and sulfur-
containing specialized metabolites are included. Morris and
Facchini(a); Morris and Facchini(b) provide an overview of
the functional diversification of methyltransferases in the
biosynthesis of benzylisoquinoline alkaloids. The Review by
Chhajed et al. discusses the cellular and subcellular organization
of the glucosinolates -myrosinase system, its chemodiversity and
functions in different cell types, emphasizing single-cell-type
studies. Sugiyama and Hirai provide an up-to-date information
on the diversity and the role of atypical myrosinases beyond the
classical model of glucosinolates -myrosinase system.

Overall, this Research Topic becomes an excellent anthology
to exhibit state-of-the-art on the theme of Topic by contributions
from world-experts of this field. The Research Topic can
play a role as a sort of flagship topic of the Specialty
Section of Plant Metabolism and Chemodiversity. The curiosity-
driven fundamental research on the origin and evolution of
diversification of plant chemicals is primarily essential. Besides,
the basic knowledge obtained could contribute to solving the
current global problems such as climate crisis and pandemic
diseases. I hope this Research Topic could be a landmark of future
research in this field.
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Induced, Imprinted, and Primed
Responses to Changing
Environments: Does Metabolism
Store and Process Information?

Jens Schwachtje*, Sarah J. Whitcomb, Alexandre Augusto Pereira Firmino, Ellen Zuther,
Dirk K. Hincha and Joachim Kopka

Department of Molecular Physiology, Applied Metabolome Analysis, Max-Planck-Institute of Molecular Plant Physiology,
Potsdam, Germany

Metabolism is the system layer that determines growth by the rate of matter uptake and
conversion into biomass. The scaffold of enzymatic reaction rates drives the metabolic
network in a given physico-chemical environment. In response to the diverse environmental
stresses, plants have evolved the capability of integrating macro- and micro-environmental
events to be prepared, i.e., to be primed for upcoming environmental challenges. The
hierarchical view on stress signaling, where metabolites are seen as final downstream
products, has recently been complemented by findings that metabolites themselves
function as stress signals. We present a systematic concept of metabolic responses that
are induced by environmental stresses and persist in the plant system. Such metabolic
imprints may prime metabolic responses of plants for subsequent environmental stresses.
We describe response types with examples of biotic and abiotic environmental stresses
and suggest that plants use metabolic imprints, the metabolic changes that last beyond
recovery from stress events, and priming, the imprints that function to prepare for upcoming
stresses, to integrate diverse environmental stress histories. As a consequence, even
genetically identical plants should be studied and understood as phenotypically plastic
organisms that continuously adjust their metabolic state in response to their individually
experienced local environment. To explore the occurrence and to unravel functions of
metabolic imprints, we encourage researchers to extend stress studies by including
detailed metabolic and stress response monitoring into extended recovery phases.

Keywords: priming, stress response, stress signaling, metabolism, metabolic imprint, plant physiology

INTRODUCTION

Sessile plants are forced to respond to adverse biotic and abiotic conditions in their local environment.
Depending on the nature and intensity of such conditions, a plants physiology can change markedly,
generally because of stress-activated signaling that leads to specific physiological responses. These
responses protect against or mitigate deleterious effects of stress. In a top-to-bottom view; stress-related
cues induce signaling cascades, followed by activities at genetic and protein levels. Metabolite changes
are generally considered to be the last step in this event cascade. Typically, large parts of metabolism
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Schwachtje et al.

Metabolic Imprint and Priming

are affected. Stress-related cues may directly influence enzyme activities
that modify the metabolic state, independent of the transcription/
translation machinery. Finally, metabolic changes result from cues
that do not induce classical stress-signaling. Such direct changes of
metabolism are caused by the fluctuating physico-chemical
environment of a plant, such as varying climate parameters, e.g.,
temperature, or soil properties (Hawkes and Sullivan, 2001; De Deyn
et al, 2008; Sampaio et al,, 2015 Onwuka and Mang, 2018).
Most environmental stresses are transient, such as temporally
limited temperature extremes or drought phases, insect attacks
or microbial infections. After a stress has ended, plants may recover
from the stress and reset metabolism to growth and reproduction
modes; however, recovery may not be complete. Even short-term
environmental stress may have long-lasting effects on the plant
system. A growing number of studies suggest that storing information
about a past stress event benefits plants by preparing them for
the same or a similar stress in the future. This phenomenon is
called priming (Frost et al, 2008; Gamir et al, 2014a; Conrath
et al.,, 2015; Hilker et al., 2015; Mauch-Mani et al., 2017). Several
plant priming mechanisms are well investigated (Table 1).
Priming mechanisms are described at different levels: at
the epigenetic level (e.g., by DNA and histone modification)
and at the transcript or protein level (e.g., persisting changes
in the abundance of transcripts, including transcription factors,
and proteins or modulation of enzyme activities). However,
the metabolic level as a mediator of priming has remained
largely unexplored, even though large parts of metabolism
are altered during stress (e.g., Schwachtje and Baldwin, 2006;
Bolton, 2009; Krasensky and Jonak, 2012; Fraire-Velazquez
and Balderas-Hernandez, 2013). Here, we hypothesize that
persistent stress-induced changes in metabolite concentrations,

TABLE 1 | Examples of stress priming scenarios. Many abiotic and biotic
stresses lead to imprints that improve the plant’s response to a subsequent
stress.

Priming stress Induction by Reference
Biotic/insect Feeding Frost et al., 2008
Oviposition Bandoly et al., 2016
Volatiles Engelberth et al., 2004
Biotic/microorganism Pathogens (SAR) Jaskiewicz et al., 2011;
Dempsey and Klessig,
2012; Zeier, 2013
Rhizobacteria (ISR) van Loon, 2007;
van der Ent et al., 2009
Symbiotic fungi Pozo et al., 2009
Abiotic Cold/freezing Thomashow, 1999; Guy,
2003; Hincha and Zuther,
2014; Zuther et al., 2018
Salt Sani et al., 2013
Heat Stief et al., 2014;
Béurle, 2016
Drought Ding et al., 2012
Other stimuli B-Aminobutyric acid Zimmerli et al., 2001

Jakab et al., 2001
Jisha et al., 2013;
Donohue, 2009;
Rasmann et al., 2011

Salicylic acid
Seed priming with
different techniques

metabolite ratios, or metabolic fluxes represent a metabolic
imprint of prior environmental impacts and that these imprints
can prime responses to future environmental events. We present
evidence that supports our hypothesis and suggest
environmental shift experiments that not only monitor
metabolic responses during a first stress exposure (the priming
event) or during a second stress response (the primed response),
but also monitor short- and long-term recovery phases after
stress events. Such experimental designs may characterize
and identify functions of metabolic imprints at the level
of metabolic priming.

Metabolite-primed responses are only properly defined by the
timing, nature, and dose of the preceding environmental change,
the duration of the recovery period, and in addition by the
nature and dose of the subsequent stress for which metabolism
is primed. In agreement with generalized concepts of non-metabolic
primed stress responses (Hilker et al., 2015), several scenarios
of metabolite-primed stress responses are conceivable:

1. The primed response may be stronger than the non-primed
response level. As a result, defense or tolerance mechanisms
can be amplified.

2. The primed response rate may be accelerated and reach
effective response levels earlier.

3. The primed response is initiated earlier. In this case, the
system’s response rate may remain unchanged, but the effective
levels of response are reached earlier.

4. Primed responses may be triggered by a lower stress dose.

These scenarios are thought to be generally applicable and
have been recently discussed (Hilker et al, 2015). In the
following, we focus on the roles of metabolites during stress
responses, recovery, and priming. We shortly highlight effects
of metabolites at all system levels of plant physiology and
subsequently review metabolic changes that are caused by
stress and last during stress recovery as metabolic imprints.
We link metabolic imprints to a wide range of abiotic and
biotic stresses. Finally, we discuss experimental approaches
that enable discovery of metabolic imprints and functional
analyses of these imprints.

INDUCED METABOLIC RESPONSES

Changes in the biotic and abiotic environment are reflected
by the metabolic state of a plant. Plants have a multitude of
plastic responses hardwired into their genomes (Sultan, 2000).
These responses are induced concomitantly with the stress and
function as defense, tolerance, or repair mechanisms (e.g.,
Dangl and Jones, 2001; Suzuki et al, 2011; Schuman and
Baldwin, 2015). These mechanisms can be defined as stress-
signaling dependent metabolic responses. Additionally, physical
and chemical conditions such as temperature and soil nutrients
influence metabolism, albeit mostly to a lesser degree than
stresses. Temperature affects all reaction and transport rates.
Soil nutrients influence physiology according to their availability.
Consequently, changes in the physico-chemical environment
of a plant will cause concomitant metabolic responses which
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FIGURE 1 | Scheme of initial, induced, imprinted, and primed metabolic responses to recurrent abiotic or biotic stresses. The heat map shows increases (1, red)
and decreases (|, blue) of metabolite levels relative to the pre-stressed, initial metabolic state (white). Most induced responses that are caused by a first stress
period subsequently recover to the initial metabolic states. Few metabolic changes are retained. We argue that these metabolic imprints may be used as a memory
that stores and processes information of preceding stress histories. These processes may contribute to stress priming. A primed response to a second stress
enables organisms to cope better with recurrent stresses. Parts of the primed metabolic responses can be more sensitive, earlier, faster, or result in more extreme
changes of metabolite levels. Note that imprinted metabolites may not necessarily have primed responses. Indeed, metabolic imprints during recovery without prior
induction and primed responses without prior metabolic induction or imprinting are conceivable.

influence single or multiple nutrient fluxes through the plant
system. These changes may ultimately become apparent as
changes in metabolic pool sizes or fluxes. Therefore, induced
metabolic responses need to be interpreted as the synergistic
effects of stress-signaling dependent plant responses and of
external physico-chemical influences.

The study of induced metabolic responses implies an initial
metabolic state that transitions into an induced metabolic state
(Figure 1); however, these states cannot be viewed as steady
states, because they are integrated into non-static physiological
processes governed by diurnal environmental cycles, circadian
rhythms, and developmental progression of specific tissues and
of the whole plant system. Due to these interactions, any
observed induced metabolic response may represent a direct
modification of metabolism that is on top of the underlying
physiological programs of the plant.

METABOLIC IMPRINTS AND
METABOLIC MEMORY

After an environmental stress has ceased, plant metabolism
typically returns to a recovered state that is highly similar to
the initial state (e.g., Hemme et al, 2014; Crisp et al., 2016;
Pagter et al., 2017). A very basic metabolic perturbation and

recovery process may resemble a hysteresis curve, where the
metabolic transition during the perturbation and recovery take
characteristically different paths. The kinetics of metabolic
remodeling are largely dependent on the nature of the
environmental stress, transcriptional activities, the architecture
of the affected metabolic networks, and the set of transport
rates and enzyme activities that act on the induced metabolite
levels. As an example of differential metabolic remodeling
kinetics, glycolysis intermediates reached pre-stress levels quicker
than TCA cycle intermediates in Arabidopsis roots upon recovery
from oxidative stress (Lehmann et al.,, 2012).

Some induced metabolic responses may persist after the
global metabolic state of the plant has recovered to the initial
state (Figure 1). A simple case would be delayed adjustment
of a metabolite to the initial state. Such a delay causes a metabolite
to be more abundant at the onset of a second stress event.
Furthermore, some induced metabolic responses may be effectively
permanent or even cumulative, e.g., due to the absence of a
catabolic pathway or sequestration mechanism (Mackie et al,
2013). Two phases of metabolic response are evident: (1) metabolic
changes that are induced as immediate, specific responses to
the stress, e.g., sugar levels, sucrose/hexose ratio, precursors for
secondary metabolites or energy-related metabolites. During
stress recovery (2) some of these changes may last as mid- or
long-term imprints. Imprints may influence upcoming stress
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responses. Here, we define metabolic imprints to encompass
all metabolic changes that persist after recovery and thus
differentiate the imprinted from the initial, pre-stress state.

According to this definition, metabolic imprints are indicators
of past environmental conditions and/or stress events. In this
sense, metabolic imprints may store information. Imprinted
information becomes metabolic memory, when it is maintained
and used by the plant system to improve future stress responses,
for example to enhance or accelerate metabolite-induced signaling
(Thellier and Liittge, 2013). Metabolic imprints may be caused
by one or more environmental events in the individual history
of a plant. Metabolic imprints have been postulated previously
to act as a stress memory (Bruce et al, 2007). A metabolic
memory may act alone or more likely in synergy with priming
and memory mechanisms at other system levels that are
highlighted in the following.

METABOLITES INFLUENCE BIOLOGICAL
SYSTEMS AT ALL LEVELS

If metabolites are involved in stress responses and represent
stored information, metabolites should in turn influence
metabolic or signaling pathways and other parts of plant
physiology to modify a stress response. Generally, stress
metabolism is seen as hierarchically organized, where external
cues initiate signaling pathways that via transcription, translation,
posttranslational modifications such as phosphorylation and
further regulatory steps ultimately affect metabolism. Metabolites
are generally thought to represent the downstream “end”
products of this hierarchy. Interestingly, this view is currently
complemented by findings that suggest bottom-to-top signaling
mechanisms. Specific metabolites can exert regulatory influence
or feedback on the stress-signaling network and physiology.
Such mechanisms open possibilities for cross talk between
stress-induced metabolites and other levels of physiological
regulation (Bonawitz et al., 2012; Farre and Weise, 2012; Xiao
et al., 2012; Gaudinier et al., 2015; Katz et al., 2015; Francisco
et al,, 2016; Malinovski et al., 2017). Further complexity is
indicated by fluxes of central metabolism that are not necessarily
explained by transcript abundances of the corresponding
enzymes (Chubukov et al., 2013; Schwender et al.,, 2014). In
addition to classical allosteric feedback responses, such as the
suppression of enzyme activity by high levels of reaction
products, metabolite ratios, and possibly also metabolite fluxes
may thus play important roles by directly affecting multiple
levels of the stress response hierarchy.

For example, branched chain amino acids are required for
phosphorylation of G proteins during osmotic stress signaling
in yeast (Shellhammer et al., 2017). Other findings suggest
that certain primary metabolites can influence physiology at
the transcriptional level. In yeast, Pinson et al. (2009) found
that a metabolic intermediate of purine metabolism influences
the interaction of transcription factors and thereby modulates
purine and phosphate metabolism. Amino acids and polyamines
are suggested to directly modify translation because they can

be sensed by translating ribosomes via interactions with
nascent polypeptides, specifically with so-called arrest peptides
(Seip and Innis, 2016). Furthermore, several metabolites are
cofactors or co-substrates of chromatin-modifying enzymes
and thus represent a potential regulatory interface between
the metabolic and chromatin states of the cell (Shen et al,
2016; Van der Knaap and Verrijzer, 2016). For some primary
metabolites, a role in chromatin modulation is suggested,
e.g., fumarate, succinate, o-ketoglutarate, and acetyl-CoA.
Fumarate, for example, is a competitive inhibitor of
a-ketoglutarate, which is a co-substrate of histone demethylases
and TET DNA methylases. Changes in cellular fumarate levels
or ratios of fumarate, e.g., to ketoglutarate, may therefore
contribute to altered histone modification. Different methylated
histone residues are sensitive to changes in the a-ketoglutarate/
succinate ratio (Van der Knaap and Verrijzer, 2016). These
effects may be specific for certain genetic regions.

The TOR and SnRK kinases are sensors of the cellular
energy state and can regulate large parts of metabolism. Plants
adapt to changes in energy requirements during stress using
these sensors (Baena-Gonzalez, 2010; Hey et al., 2010; Rexin
et al, 2015). The kinases are suggested to respond to sugars
and other metabolites, even though the molecular mechanisms
are not yet unraveled in all details. TOR is known to be regulated
by nutrient sensing of nitrogen and carbon metabolites in
plants, yeast, and mammals (e.g., Dobrenel et al., 2016; Gonzélez
and Hall, 2017). But plant defense metabolites of the glucosinolate
family, 3-hydroxypropylglucosinolate, and/or its derivatives, can
also activate TOR kinases (Malinovski et al., 2017). A precursor
of plastidial isoprenoids that is induced by abiotic stress can
induce nuclear stress-responsive genes via retrograde signaling
(Xiao et al, 2012). The mediator complex, which regulates
gene transcription, is involved in phenylpropanoid metabolism
and is suggested to respond in a feedback loop to changes in
this defense-related class of compounds (Gaudinier et al., 2015).

METABOLITES AND STRESS
RESPONSES

Metabolic responses to stress are ubiquitous and well described
for many plant systems. Time-series experiments revealed that
metabolic activities can respond to stress more quickly than
transcriptional activities (Kaplan et al., 2007; Guy et al., 2008;
Caldana et al., 2011; Fraire-Velazquez and Balderas-Hernandez,
2013), thus making metabolic changes an important part of
early stress responses. Several metabolites can directly influence
plant stress responses (Rojas et al, 2014). A few important
examples are discussed below.

Carbohydrate Metabolism

During freezing and drought, soluble sugars, such as sucrose,
trehalose, fructans (fructose-based oligo- and polysaccharides),
and the raffinose family of oligosaccharides can stabilize
phospholipid membrane vesicles (Hincha et al., 2006; Livingston
et al., 2009; Tarkowski and Van den Ende, 2015). Several sugars
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emerged as important factors also during biotic stress signaling
(Baena-Gonzélez and Sheen, 2008; Figueroa and Lunn, 2016;
Li and Sheen, 2016). Sucrose has been shown to regulate
various stress-related responses including circadian clock genes,
phytohormones, energy metabolism, cell wall and anthocyanin
synthesis (Thibaud et al, 2004; Gomez-Ariza et al, 2007;
Tognetti et al, 2013; Tauzin and Giardina, 2014). Glucose
induces the pathogen defense proteins PR-1 and PR-5 in
Arabidopsis via hexokinasel (HXK1) signaling (Xiao et al,
2000; Moore et al., 2003; Cho et al., 2009). For fructose, a
specific pathway has been proposed that involves abscisic acid
and ethylene signaling (Cho and Yoo, 2011; Li et al, 2011).
Engelsdorf et al. (2013) showed that carbohydrate availability
influences defense against a hemibiotrophic fungus during its
necrotrophic phase. The more carbohydrate is available, the
better the plant defends. Similarly, increased relative fructose
content enhances defense against the pathogen Botrytis cinerea
in tomato (Lecompte et al, 2017). Besides the importance of
sugars for stress signaling, plants organize sugar distribution
in a way that pathogens have reduced access to carbohydrates.
Local depletion of nutrients appears to cause a starvation effect
that reduces pathogen propagation (Bezruczyk et al., 2018).

Amino Acid Pathways

In a 2010 paper, Liu and colleagues knocked out the amino
acid transporter lhtl and correlated cellular depletion of the
amino acid glutamine with altered redox status and more
effective defense against several pathogens (Liu et al, 2010).
These authors proposed a yet unknown negative effect of
glutamine on defense signaling and a reduction in the pathogen’s
access to essential nutrients, similar to recent findings on
Pseudomonas-primed ~ systemic responses of Arabidopsis
(Schwachtje et al., 2018). Stuttmann et al. (2011) described
threonine as a potential growth inhibitor of the biotrophic
oomycete Hyaloperonospora arabidopsidis, even though the
underlying mechanism is yet unknown. It is suggested that
indole-3-carboxylic acid activates defenses against Plectosphaerella
cucumerina in Arabidopsis by inducing papillae deposition and
H,0, production, independently of salicylic acid and jasmonic
acid (Gamir et al., 2014b). y-Aminobutyric acid (GABA) interacts
with quorum sensing of Agrobacterium tumefaciens, thus reducing
pathogen virulence in tobacco (Chevrot et al., 2006). GABA
also functions as a direct anti-herbivore defense in Arabidopsis
(Scholz et al., 2015). Furthermore, the proline and the pyrroline-
5-carboxylate (P5C) cycle are crucial for defense responses
against pathogens and abiotic stresses (Liang et al., 2013; Qamar
etal., 2015). Proline is involved in redox balance, osmoprotection,
and stress signaling (Szabados and Savouré, 2009).

Polyamine Metabolism

Polyamines (e.g., spermine, spermidine, and putrescine) are
aliphatic compounds that are synthesized from amino acids (e.g.,
arginine and ornithine). Polyamines are involved in many crucial
processes of cell metabolism and the translation/transcription
machinery, and induce ROS, Ca, and NO signaling (Alcazar
et al, 2010). Salt, heat, and drought stress induce genes for

polyamine synthesis (Tiburcio et al, 2014; Liu et al, 2015;
Miller-Fleming et al., 2015) and enhanced tolerance of abiotic
stresses is correlated with elevated levels of polyamines (Alcazar
et al., 2010). Putrescine induces abscisic acid synthesis at the
transcriptional level during cold stress (Cuevas et al, 2008).
Spermine appears to protect Arabidopsis from heat stress by
increasing the expression of genes encoding heat shock proteins
(Sagor et al, 2013). The pretreatment of tomato fruits with
spermine before heat shock promoted an increase in expression
of signal transduction genes (e.g., calmodulin, serine/threonine
protein kinase) along with genes related to phytohormone
pathways. Moreover, polyamines can modulate chromatin structure
(Pasini et al, 2014). It is also suggested that the connected
putrescine, GABA, and proline pathways play an important role
during abiotic stresses (Shelp et al., 2012, Legocka et al., 2017).

External Application of Natural
Compounds

A few metabolites have been shown to prime pathogen-induced
stress responses when externally applied to plants, e.g., thiamine
(Ahn et al, 2007), riboflavin (Zhang et al, 2009), quercetin (Jia
etal, 2010), and hexanoic acid (Aranega-Bou et al., 2014). Supposedly,
all have in common an activation of the redox system that supports
stress signaling. In a recent study, fumarate and citrate applications
were shown to induce priming against Pseudomonas syringae in
Arabidopsis, in the case of fumarate without changes in classical
defense-related genes and hormones (Balmer et al., 2018). Thereby,
Balmer et al. (2018) confirmed an earlier observation of systemic
fumarate priming upon first exposure to the bacterial pathogen
(Schwachtje et al.,, 2018). Further, a broad induction of plant defense
systems in Arabidopsis was demonstrated after the application of
melatonin (Weeda et al,, 2014).

ARE STRESS-RELATED METABOLITES
STORED IN THE VACUOLE?

To exert a long-term effect that primes future stress responses,
relevant metabolites must be stored in a way that prevents
them from negatively interfering with metabolism during the
recovery phase and that inhibits degradation. Accumulation of
metabolites in chloroplasts, mitochondria, or in the cytosol
would likely disturb core metabolic processes that are necessary
for recovery (Plaxton, 2005). Possible circumventions would
be a reversible conjugation that alters the chemical property
of the metabolite, or storage in a membrane-enclosed cellular
compartment, such as the vacuole. The vacuole can occupy
more than 80% of the cell’s volume and is involved in multiple
critical cellular functions including storage of metabolites and
modification of cytosolic metabolism according to physiological
requirements (Martinoia et al., 2012). The tonoplast enclosing
the vacuole contains many identified membrane proteins that
are responsible for loading and unloading a diverse set of
metabolites (Martinoia et al, 2012). These transporters are
integrated in a larger cellular network that responds to
physiological requirements and stress responses (Martinoia
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et al, 2007; Pommerrenig et al., 2018). The carboxylic acids
fumarate, malate, and citrate represent major components of
the vacuolar metabolome. For example, malate is transported
by two proteins, a specific anion channel (Hafke et al., 2003)
and a solute carrier (Emmerlich et al., 2003). Many other
primary metabolites, such as amino acids and sugars, are stored
in the vacuole (Neuhaus, 2007; Tohge et al, 2011; Szekowka
et al., 2013; Hedrich et al., 2015). Vacuoles are also involved
in plant defenses against herbivores and pathogens by storing
and sequestering toxic metabolites. Thus, specific analyses of
vacuolar metabolite compositions, e.g., by non-aqueous
fractionation (Klie et al., 2011), are required to unravel a possible
long-term storage of stress-induced metabolites that represent
metabolic imprints and may function as a metabolic memory.

EXAMPLES OF STRESS-INDUCED
METABOLIC IMPRINTS

The functional analysis of stress-induced metabolic responses
has been a long-standing focus of plant physiology. In contrast,
metabolic imprints following stress have rarely received attention
but can now be described and analyzed in detail by large-scale
experiments that combine metabolic phenotyping with global
screening of other system levels and physiological analyses (e.g.,
Hemme et al, 2014). The fragmented knowledge on recovery
processes may result from the simplifying assumption that plants
will revert to the identical initial endogenous state after a transient
environmental perturbation. The resetting of the initial state is
thought to alleviate the need to expend energy for the maintenance
of the stress-adapted state. While this assumption may be correct
for the majority of metabolites, the past perturbations may leave
an imprint on metabolism that lasts longer than may be expected
from a system level that is notorious for its extremely rapid
fluctuations (Urbanczyk-Wochniak et al., 2005; Kim et al., 2011).
In the following, we will review evidence of metabolic imprinting
and functions of imprints for priming of systems in the context
of abiotic and biotic stresses.

Abiotic Stress

Abiotic stresses are known to prime plant systems for an
enhanced stress response to a recurrent stress. Recent reviews
highlight abiotic stress priming of temperature, drought,
and other factors (Bruce et al.,, 2007; Hincha and Zuther,
2014; Hilker et al,, 2015). In the following, we will first
highlight proline imprints that were observed in the context
of various stresses before we address more stress-specific
metabolic imprints.

Proline Imprints Are Caused by Various
Abiotic Stresses

Proline accumulation is one of the most studied metabolic stress
responses. Upon environmental stress, proline is mainly generated
from glutamic acid in chloroplasts and increases up to 100-fold
in plants (Liang et al., 2013). Proline has several functions during
stress responses, e.g., as an osmoprotectant, antioxidant, molecular

chaperone to protect protein integrity, pH buffer, or in some
cases it may serve as a carbon and nitrogen source during stress
recovery. Proline also enhances enzyme activities, triggers gene
expression, and modulates mitochondrial functions (Szabados
and Savouré, 2009). By increasing ROS production in mitochondria
via the electron transport chain, proline regulates processes that
support cell survival or induce apoptosis (Liang et al., 2013).
Suppression of proline catabolism, for example via reduction of
proline dehydrogenase gene expression, enhances tolerance toward
salt and drought stress (Ibragimova et al., 2012). In Arabidopsis,
proline accumulates strongly during a 4-day drought phase and
declines to initial levels during a subsequent 4-day recovery phase
(Sharma and Verslues, 2010). In contrast, the drought-resistant
Periploca sepium increases proline levels continuously during a
similar 4-day drought stress but maintains a proline imprint
during a 4-day recovery phase (An et al, 2013). Even after a
8-day recovery, the newly developed buds of Periploca sepium
still contained twice as much proline as control plants. Proline
is apparently also important for recovery of tobacco plants from
drought stress by suppressing a senescence-related promoter
(Vancova et al, 2012). In addition, the proline concentration in
salt stress-resistant salt cress (Thellungiella halophila, renamed
to Thellungiella salsuginea, and Eutrema salsugineum) is significantly
higher than in Arabidopsis already under control conditions (Taji
et al,, 2004; Benina et al., 2013; Lee et al., 2016). In this case,
high proline levels may serve as a constitutive stress adaptation
of an extremophile plant. Also, in T. halophila, proline levels
increased during a 3-day recovery from cold stress but not during
the 3-day stress phase itself. The imprint of the proline pool is
accompanied by other metabolites, such as 5-hydroxyproline and
sucrose (Benina et al, 2013). In Arabidopsis, 3 days after
de-acclimation from cold acclimation, proline levels were still
elevated in leaves. More freeze-tolerant Arabidopsis accessions
showed higher levels than susceptible accessions after 3 days of
recovery (Zuther et al., 2015).

Drought

Several studies describe imprints of metabolite pools other
than proline after exposure to drought. Primary metabolites,
e.g., sugars and organic acids, as well as several secondary
metabolites maintain a characteristic imprint in the resurrection
plant Haberlea rhodopensis after 2 days of recovery from an
8-day drought period (Moyankova et al., 2014). A similar
duration of drought stress and recovery, 8-10-day stress and
2-day recovery, causes a different metabolic imprint of Medicago
sativa nodules (Naya et al., 2007). In this symbiotic system,
pools of several primary metabolites remain reduced during
drought recovery. A recent study describes the metabolic
recovery of drought-stressed sugar beets (Wedeking et al,
2018). The authors found a transient normalization of most
of the measured metabolites after 8 days of recovery from a
13-day drought stress period. Interestingly, during the following
4 days, several amino acids (e.g., phenylalanine, tyrosine, and
leucine) again accumulated in leaves, indicating a metabolic
stress imprint that may be beneficial for a subsequent second
drought phase.
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Low Temperature
Faster than drought stress, temperature stress may rapidly revert.
Temperature changes cause metabolic responses that are
particularly well characterized after heat shock or extended
cold exposure (e.g., Kaplan et al., 2004, 2007; Guy et al., 2008).
The temperature-induced metabolic responses comprise strong
changes in a wide range of metabolite pools that indicate
global reprogramming of primary metabolism in Arabidopsis
rosettes. Data on metabolomic and transcriptomic cold recovery
describe a 24-h metabolic imprint after 4 days of exposure
to 4°C (Kaplan et al., 2004, 2007) and reveal several interesting
aspects. Firstly, most of the cold-induced transcript changes
returned to the pre-stress state after 24 h. In contrast, primary
metabolism was only partially recovered. These differences
between transcriptional and metabolic recovery from cold stress
were recently confirmed in greater detail by Pagter et al. (2017).
Secondly, the metabolite profile of the recovery phase differed
significantly from all measured time points during cold exposure,
supporting the observation that the metabolic reorganization
after stress exhibits different kinetics than the stress response.
Cold de-acclimating metabolism was associated with partially
maintained enhanced freeze tolerance, which apparently remains
active at least 3 days into cold-recovery (Kaplan et al., 2004;
Zuther et al, 2015). Zuther et al. (2018) reported genetic
differences in the transcriptomic and metabolic patterns during
cold memory of the Arabidopsis ecotypes, Col-0 and N14.
A complex picture of metabolic reorganization during recovery
was described after freezing stress of crown tissue of oat (Avena
sativa L.) by Henson et al. (2014). After 3 weeks of cold
acclimation and 1 day of freezing, plants were monitored during
14 days of recovery. At the end of recovery, several amino
acids were largely increased compared to non-stressed plants,
and several sugars and organic acids were reduced. Moreover,
the metabolic profile differed markedly from what is observed
after cold stress recovery, indicating that this overwintering
species relies on specific regulations for freezing resistance.
Analyses of Hordeum vulgare also show stress-imprinted
metabolites that are linked to frost tolerance (Mazucotelli et al.,
2006). For example, 8-day-old barley seedlings were freeze-stressed
at —3°C for 16 h and allowed to recover for 48 h at 22°C.
This treatment resulted in 16-fold higher GABA levels at the
end of the recovery phase. GABA and its precursor glutamate
are part of the GABA-shunt that is linked to the tricarboxylic
acid cycle where it bypasses two reaction steps from a-ketoglutarate
to succinate. Besides glutamate, putrescine and proline can also
be catabolized via GABA (Shelp et al, 2012; Signorelli et al,
2015). The GABA-shunt has a central role in carbon/nitrogen
metabolism and stress signaling, for example for cell death
promotion in response to pathogens or for cold tolerance
(Mazucotelli et al., 2006; Fait et al., 2007; Michaeli and Fromm,
2015). However, the role of GABA during cold—/frost-stress
and possible GABA pool imprints are still not fully understood.

High Temperature
Elevated temperatures leave metabolic imprints in photosynthetic
microorganisms. A recent large-scale study describes the temporal

succession of heat stress responses of Chlamydomonas reinhardtii
during a 24-h induction phase after shift from 25 to 42°C
and the fate of system imprints during 8-h recovery at 25°C
(Hemme et al., 2014). In this experiment, cell division stopped
during heat treatment and remained so during the 8 h of
recovery, resulting in measurements that represent the metabolic
state of cells that all individually experienced the heat stress.
Similar to the example of 4°C cold stress in Arabidopsis (Kaplan
et al., 2004, Pagter et al, 2017), the metabolome, as well as
the proteome, recovered only in part and retained imprints,
regarding, e.g, TCA intermediates and sugar phosphates.
Importantly, the pattern of metabolic induction again differed
from the pattern of metabolic recovery.

Besides temperature perturbations, other abiotic stresses
have been shown to generate lasting imprints. A 6-h oxidative
stress that was induced by menadione generated an imprint
on primary metabolism in Arabidopsis roots that lasted at
least 30 h into recovery (Lehmann et al., 2012). GABA was
part of this imprint, like proline and other amino acids
which remained at a high level, as well as several sugars
and sugar phosphates.

Biotic Stress

Biotic stresses are perhaps the best understood stresses
regarding primed plant systems. Recent reviews highlight
the importance of biotic stress priming for enhanced responses
toward a broad range of insects and pathogens that negatively
influence plant performance and crop production (Frost
et al., 2008; Conrath et al., 2015; Hilker et al., 2015; Mauch-
Mani et al., 2017). At the metabolite level, biotic priming
is mainly studied with respect to volatile organic compounds,
oviposition, and beneficial or pathogenic microorganisms
that are associated with a plant and may prime systemic
tissue. Even though it has often been shown that during
biotic stresses, metabolism in local and systemic plant parts
is severely affected (Schwachtje and Baldwin, 2006; Lemoine
et al., 2013; Zhou et al., 2015), studies on persistent metabolic
changes during and after recovery from pathogen or insect
stress are rare. This applies specifically for interactions of
plants with microorganisms, since these are continuously
associated with the plant, either as beneficial root colonizers
or as leaf pathogens, thus making a clearly defined recovery
phase after a time-limited stress or induction phase unfeasible.
Nevertheless, several metabolites have so far been associated
with priming against biotic stresses.

Plant amino acid metabolism is well known to contribute to
the priming of defense responses (Gamir et al, 2014a). For
example, the lysine catabolite pipecolic acid can act as a key
regulator of SAR (Navarovd et al., 2012; Zeier, 2013). Several
amino acids and intermediates of the TCA cycle are regulated
during priming with pathogenic Pseudomonas syringae or the
chemical B-aminobutyric acid, ie., BABA (Pastor et al, 2014).
The content of most amino acids was reduced in these experiments,
but cysteine, methionine, tryptophan, and tyrosine were specifically
induced by bacteria or BABA during 48 h. Fumarate and malate
were induced by BABA. These two organic acids were also induced
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in another study that investigated systemic priming-related effects
of infection of Arabidopsis with Pseudomonas syringae (Schwachtje
et al, 2018). A systemic increase of fumarate and malate was
observed for 4 days, whereas the transcriptional profile did not
explain the altered metabolite levels. This study suggested a lasting
metabolic priming effect in systemic tissue that includes storage
of metabolites, e.g., fumarate and malate. These metabolites may
be readily available to support energy and carbon demands during
a subsequent pathogen (Pseudomonas syringae) infection.

Altered amino acid levels after contact with a pathogen
can have multiple and possibly conflicting functions. Several
amino acids are precursors of important defense metabolites,
e.g., alkaloids, phenylpropanoids, and glucosinolates. On the
other hand, invasive pathogens like Pseudomonas syringae
propagate in the apoplast and are exclusively dependent on
extracellular plant metabolites. Reduction of sugars and amino
acids in the apoplast and, as indicated by transcript changes,
likely also other nitrogen resources should be an effective
defense strategy that attenuates pathogen propagation and
thereby increases the efficiency of other defense mechanisms
(Seifi et al., 2013; Bezruczyk et al., 2018; Schwachtje et al.,
2018). Several imprinted metabolic signals have been identified
that may contribute to the modulation of SAR, including a
glycerol-3-phosphate-dependent yet non-identified signal,
azelaic acid, dehydroabietinal, jasmonic acid, and methyl
salicylate (Dempsey and Klessig, 2012). The metabolic signals
that are linked to SAR or other primed responses will yield
intriguing novel insights into imprinted primary metabolism/
energy status and the function of such imprints for efficiently
primed plant responses.

In their natural environment, plants usually face more than
one type of stress. The physiological responses toward various
stress combinations, simultaneous or successive, have been
addressed by recent studies (reviewed in Suzuki et al., 2014).
The effects on plant performance can be synergistic, neutral,
or conflicting (Crisp et al., 2016; Lawas et al, 2018) and it
will be a demanding task to unravel how metabolite-based
priming and priming in general by a certain stress may influence
plant responses to other types of stress.

EXPERIMENTAL APPROACHES

The successful search for priming-related metabolites relies on
the timing of experiments. Mostly, stress studies focus on the
immediate response of the plant system toward an applied
stress, but rarely focus on the long-term effects on plant
metabolism. The recovery phase after a stress event is crucial
for the establishment of priming and should thus be studied
more extensively. The history of plants prior to stress experiments
is rarely controlled and comparable between experiments. These
methodology details must be described in detail to enhance
reproducibility of stress experiments.

Several factors interfere with the metabolic state of a plant
during the recovery phase and must be experimentally addressed.

As described above, the metabolic composition of plant tissues
is an integral of perceived environmental stresses (Gratani,
2014) and may lead to variation among individual plants even
under standardized conditions (e.g., Sanchez et al, 2010).
Metabolism is continuously regulated by the circadian clock
(Farre and Weise, 2012) and this regulation also affects stress
responses themselves on genetic and metabolic levels (Lu et al.,
2017). For example, glucosinolate accumulation follows the
circadian rhythm in Arabidopsis and jasmonic acid-based
defenses are synchronized with the likeliness of herbivore
attack (Goodspeed et al., 2012). In return, several biotic stressors
have recently been shown to influence the cycle length of
the circadian clock, e.g., pathogens and insects (Sharma and
Bhatt, 2015; Joo et al, 2018; Li et al, 2018). This requires
experimental setups with extended sampling time points during
the day. Also, the influence of the ontogenetic stage, i.e., the
effects of endogenous physiological aging mechanisms, on
induced metabolic responses should be addressed. Furthermore,
as described above, priming-related metabolites may be stored
in certain cell compartments (e.g., the vacuole). Subcellular
localization of metabolites is difficult to assess but can
be addressed by non-aqueous fractionation (Klie et al., 2011).
Because temporal effects are essential for the assessment of
induced, imprinted, and primed responses, care should be taken
to design time-series experiments with extended and high
temporal resolution including the coverage of diurnal changes.
High replication is advised due to varying histories and
developmental variation of individual plants (e.g., Peters et al.,
2018), this applies particularly to field experiments. Further,
the high chemodiversity of plant metabolites entails many
different chemical properties. To find new candidates for
priming, the application of multiple chromatography systems
for untargeted metabolic profiling should be taken into account
(e.g., Nakabayshi and Saito, 2015; Vasilev et al., 2016).

CONCLUSION

Recent publications tackle the study of metabolic imprints by
analyses of recurrent perturbations or recovering plant systems
and discover functions of novel primed metabolites and metabolic
pathways (Gamir et al., 2014a; Balmer et al., 2015). Intensified
research on the potential functions of metabolic imprints should
be highly fruitful and yield novel insights into priming
phenomena. This view is supported by recent findings that
demonstrate surprisingly diverse effects of metabolites on stress
metabolism, signaling, and transcription. The vast chemical
diversity of plants will likely yield new candidates of metabolic
regulation or priming.

Currently, the knowledge of the short- to long-term kinetics
of metabolic imprints is fragmented. This fact renders vague
the link between observed metabolic imprints and their
potential function as priming signals or memory of past
stress events. Except for the known signaling metabolites
that are involved in primed plant responses, the nature,
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characteristics, and role of metabolic imprinting or priming
remain mostly unknown not least because stress recovery
is rarely investigated in depth by studies employing modern
large-scale metabolomic, proteomic, transcriptomic, or
epigenetic tools. From advanced analyses of metabolic imprints,
we expect to discover new priming mechanisms and to gain
insight into the major contributions of metabolism to priming
and potentially short-lived or even longer-lasting non-neural,
cellular memory.
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Plants produce a vast array of structurally diverse specialized metabolites with various
biological activities, including medicinal alkaloids and terpenoids, from relatively simple
precursors through a series of enzymatic steps. Massive metabolic flow through
these pathways usually depends on the transcriptional coordination of a large set of
metabolic, transport, and regulatory genes known as a regulon. The coexpression
of genes involved in certain metabolic pathways in a wide range of developmental
and environmental contexts has been investigated through transcriptomic analysis,
which has been successfully exploited to mine the genes involved in various metabolic
processes. Transcription factors are DNA-binding proteins that recognize relatively short
sequences known as cis-regulatory elements residing in the promoter regions of target
genes. Transcription factors have positive or negative effects on gene transcription
mediated by RNA polymerase Il. Evolutionarily conserved transcription factors of
the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) and basic helix-loop-helix
(bHLH) families have been identified as jasmonate (JA)-responsive transcriptional
regulators of unrelated specialized pathways in distinct plant lineages. Here, | review
the current knowledge and propose a conceptual model for the evolution of metabolic
pathways, termed “recruitment model of metabolic evolution.” According to this model,
structural genes are repeatedly recruited into regulons under the control of conserved
transcription factors through the generation of cognate cis-regulatory elements in the
promoters of these genes. This leads to the adjustment of catalytic activities that improve
metabolic flow through newly established passages.

Keywords: alkaloids, cis-regulatory element, jasmonates, recruitment model of metabolic evolution, regulon,
specialized metabolism, terpenoids, transcription factor

INTRODUCTION

Biological processes generally depend on the coordinated expression of multiple genes.
Transcription factors play a central role in controlling the RNA polymerase-mediated transcription
of downstream genes. These genes form gene networks, or regulons, with transcription factors
recognizing specific cis-regulatory elements in the promoter regions of these groups of target
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genes. Complex, often long, metabolic pathways rely on the
proper functioning of a large series of metabolic enzymes,
membrane transporters, and other proteins. The activity of
transcription factors often underlies the coordination of gene
expression during various metabolic processes (Patra et al., 2013;
Chezem and Clay, 2016; Zhou and Memelink, 2016).

A diverse range of specialized metabolites, such as bioactive
alkaloids and terpenoids, are produced and accumulate in various
plant species. These metabolites contribute to plant defense
and reproduction in a changing environment. Due to their
useful attributes, many natural products derived from plants or
phytochemicals are utilized as medicines, drugs, dyes, perfumes,
or other industrial materials. In contrast to universally present
primary metabolites, the occurrence of specialized (or so-called
secondary) metabolites is usually restricted to certain taxonomic
groups. Metabolite levels are often highly variable, even within
a single species or individual plant, reflecting the temporal and
spatial dynamics of their production. Genomic and molecular
approaches, often involving coexpression network analysis to
select candidate genes (Yonekura-Sakakibara and Saito, 2013),
have greatly facilitated the identification of structural genes
involved in metabolic pathways. By contrast, the regulatory
aspects of these genes, such as regulatory mechanisms at the
transcriptional and other levels, have remained unexplored,
representing a promising area of research in the coming years.

The central roles of MYB and basic helix-loop-helix (bHLH)
family transcription factors in regulating the anthocyanin
and related flavonoid pathways of many plant species have
been a cornerstone example of the persistence of metabolic
regulons comprising master transcriptional regulators with
their downstream structural genes (Patra et al., 2013; Chezem
and Clay, 2016). Well-studied instances include the regulation
of the glucosinolate pathway by MYB family factors in
Arabidopsis (Chezem and Clay, 2016). In notable contrast to
the regulators that target a specific metabolic pathway (or set of
related pathways), jasmonate (JA)-responsive factors in certain
subgroups of the APETALA2/ETHYLENE RESPONSE FACTOR
(AP2/ERF) and bHLH families have been found to be master
regulators for a diverse range of specialized pathways, mostly
for important alkaloids and terpenoids, in distinct plant linages
(Zhou and Memelink, 2016).

JAs are phytohormones derived from the octadecanoid
pathway that play central roles as signaling molecules during
biotic and abiotic stress responses in plants (Goossens et al.,
2016a). Many specialized pathways are readily elicited by JA
treatment (Goossens et al., 2016a; Zhou and Memelink, 2016).
Indeed, many phytochemicals are thought to be involved in
plant defense responses against pathogens and herbivores based
on the JA-dependent elicitation of their biosynthetic pathways,
along with their toxicity to biological agents. The perception of
JA signals and the resulting cascades leading to gene regulation
primarily occur via proteasome-dependent degradation of JAZ
repressor proteins and the subsequent liberation of a few key
transcription factors, including bHLH family member MYC2,
from JAZ-mediated repression (Thines et al., 2007; Sheard et al.,
2010; Zhang et al., 2015; Goossens et al., 2016a). It is important
to address how the upstream JA signaling circuit is anchored to

downstream defense metabolism. A handful of the JA-responsive
transcription factors of AP2/ERF and bHLH families, have been
identified as missing links between the highly conserved JA
signaling module and more divergent downstream pathways
(Zhou and Memelink, 2016).

In this article, I provide an overview of the JA-responsive
factors and their target metabolic pathways, which encompass
a substantial portion of the specialized pathways for which
transcriptional regulators have been defined (Patra et al,
2013; Zhou and Memelink, 2016). The identification of such
evolutionarily conserved regulators targeting divergent pathways
prompt me to contemplate how these metabolic regulons have
been established during the evolution. This evolutionary issue is
discussed and a conceptual model is proposed, mainly focusing
on the JA-responsive factors and their regulons.

CLADE Il, SUBGROUP IXa ERF
TRANSCRIPTION FACTORS

Transcription factors of the AP2/ERF family are widespread in
plants. The GCC-box (5-AGCCGCC-3) element is a typical
sequence recognized by AP2/ERF transcription factors. The
DNA-binding AP2/ERF domain contains a three-stranded f-
sheet followed by an o-helix, which form a unique interface
required for DNA binding (Allen et al., 1998).

A group of AP2/ERF family transcription factors, including
Octadecanoid-derivative Responsive Catharanthus AP2-domain
(ORCA) proteins from Catharanthus roseus (Van der Fits and
Memelink, 2000; Paul et al., 2017), OpERF2 from Ophiorrhiza
pumila (Udomsom et al., 2016), ERF189 and ORC1 from tobacco
(Nicotiana tabacum; Shoji et al., 2010; De Boer et al, 2011),
JASMONATE RESPONSIVE ERF4 (JRE4)/GLYCOALKALOID
METABOLISMY9 (GAME9) from tomato and potato (Cardenas
et al,, 2016; Thagun et al, 2016; Nakayasu et al., 2018), and
AaORA from Artemisia annua (Lu et al., 2013), are classified
into clade II of subgroup IXa (Nakano et al, 2006; Shoji
et al., 2010, 2013). These transcription factors are involved in
regulating JA-mediated defense metabolism in various plants.
The JA-responsive ERF genes are present in a wide range
of eudicots, usually as multicopy genes (Figure 1A). Multiple
ERF genes are tandemly clustered on chromosomes in some
plant genomes (Figure 1A). The phylogenetic relationships of
ERFs from different species (Figure 1A) imply that independent
generations of these gene clusters in distinct plant families
through tandem gene duplication.

ORCAs in C. roseus

Terpenoid indole alkaloids (TIAs) are a large group of specialized
products, including the valuable chemotherapy drugs vinblastine
and vincristine. A variety of TIAs are derived from the key
intermediate strictosidine, which is formed by condensation
between tryptamine (a product of the shikimate pathway) and
the seco-iridoid compound secologanin. TIA biosynthesis and
its regulation have been intensively studied in the medicinally
important species C. roseus (Apocynaceae) (Zhu et al., 2014).
In C. roseus, ORCA2 and ORCA3 function as transcriptional
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using MEGA-X (Kumar et al., 2018). The Arabidopsis genes are included in the trees as an outgroup. The scale bars indicate the number of amino acid substitutions

per residue. For isoprenoid-derived metabolites, the contribution of the mevalonate (MVA) or methylerythritol phosphate (MEP) pathway to their production is indicated
on the right. Apparent orthologs from Solanaceae plants are connected by dotted lines. Gene clusters are depicted schematically. The region deleted in a low-nicotine

tobacco cultivar (Kajikawa et al., 2017) is highlighted in light green.

regulators that induce the expression of TIA biosynthesis genes,
including strictosidine synthase and tryptophan decarboxylase,
encoding key enzymes in this pathway (Menke et al., 1999;
Van der Fits and Memelink, 2000; Li et al., 2013). ORCA3 is
physically linked to ORCA4 and ORCA5, forming a gene cluster
in the genome (Figure 1A, Paul et al., 2017). ORCA4 shares an
overlapping function with ORCA2 and ORCA3, but ORCA4 also
targets additional TIA genes (Paul et al., 2017). Unlike ORCA2
(Li et al., 2013) and ORCA3 (Van der Fits and Memelink, 2000),
the overexpression of ORCA4 causes a drastic increase in TIA
accumulation (Paul et al,, 2017). C. roseus MYC2 (CrMYC2)
directly upregulates the expression of ORCA3 by recognizing a G-
box-like element in its promoter (Zhang et al., 2011), and it also
coregulates TIA structural genes with ORCA3 (Paul et al., 2017).
In addition to their role in transcriptional regulation, ORCAs and
CrMYC2 are activated by phosphorylation by a kinase involved in
a JA-activated MAP kinase cascade (Paul et al., 2017).

OpERF2 in Ophiorrhiza pumila
Camptothecin is an antitumor TIA that functions by inhibiting
DNA topoisomerase I activity. This clinically important TIA

is produced by various angiosperms from taxonomically
distant families, including Ophiorrhiza pumila (Rubiaceae)
(Sirikantaramas et al., 2007). OpERF2 was originally isolated
from O. pumila hairy roots. The suppressed expression of
this gene resulted in the reduced expression of genes involved
in seco-iridoid and upstream methylerythritol phosphate
(MEP) pathways, which supply secologanin for downstream
camptothecin production, although this did not have a significant
impact on TIA accumulation (Udomsom et al., 2016).

ERF189 and ORC1 in Tobacco

Nicotine is composed with two heterocyclic rings, the ornithine-
derived pyrrolidine ring and the nicotinate-derived pyridine
ring. In tobacco (Nicotiana tabacum, Solanaceae), this toxic
alkaloid is produced in roots and primarily accumulates in leaves,
functioning as a defense compound against herbivores (Dewey
and Xie, 2013). Tobacco ERF189, ORCI, and related ERF genes
are clustered together in the tobacco genome (Figure 1A, Shoji
et al., 2010; De Boer et al,, 2011; Kajikawa et al,, 2017). A
cluster of ERFs including ERF189 and ORCI were found to
be deleted to a large extent in a tobacco cultivar with low
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nicotine content (Figure 1A, Shoji et al., 2010; Kajikawa et al.,
2017). Although not yet proven, ERF189 is considered to be a
primary transcriptional regulator of nicotine biosynthesis, given
that its expression profiles are similar to those of the downstream
biosynthesis genes: strong expression in roots (Kajikawa et al.,
2017), no induction in response to NaCl (Shoji and Hashimoto,
2015; Kajikawa et al., 2017), and the suppression of JA-dependent
induction by ethylene (Shoji et al., 2000, 2010). A large series of
metabolic and transport genes in this pathway are upregulated
by ERF189, which recognizes P-box elements, but not the typical
GCC-box elements, in their promoters (Shoji et al., 2010, 2013;
Shoji and Hashimoto, 2011a). Tobacco MYC2 regulates the
expression of ERF189 and directly activates the transcription
of nicotine biosynthesis genes together with ERF189 (Shoji and
Hashimoto, 2011b; Zhang et al., 2012).

JRE4/GAME?9 in Tomato and Potato

Steroidal glycoalkaloids (SGAs) are cholesterol-derived,
nitrogen-containing metabolites found in the inedible parts of
Solanaceae plants such as tomato (Solanum lycopersicum) and
potato (S. tuberosum) (Cardenas et al,, 2015). In the tomato
and potato genomes, the JRE4/GAMEY gene is present in a
cluster with related ERF genes (Cardenas et al., 2016; Thagun
et al,, 2016). JRE4/GAMEY regulates nearly an entire series
of SGA metabolic steps, including those in the upstream
isoprenoid-producing mevalonate (MVA) pathway (Cdrdenas
et al,, 2016; Thagun et al., 2016; Nakayasu et al., 2018). A loss of
JRE4/GAMED9 function drastically reduced SGA accumulation
and resistance to chewing insects in tomato, demonstrating
the major role of this transcription factor in defense-related
SGA formation (Nakayasu et al., 2018). Tomato MYC2 and
JRE4/GAMEY synergistically activated the promoters of
SGA genes in tobacco protoplasts (Cardenas et al., 2016). In
agreement with the results of promoter binding studies, cognate
cis-regulatory elements are significantly enriched in the proximal
promoter regions of SGA biosynthesis genes, supporting the
direct regulation of these genes by JRE4/GAMEY (Thagun et al,,
2016). A comparison of the genomes of ancestral and cultivated
species of the Solanum genus pointed to the possible selection
of certain alleles of JRE4/GAME9 during domestication, which
might have contributed to the decrease in antinutritional SGA
levels in cultivated Solanum species (Hardigan et al., 2017; Zhu
et al., 2018).

AaORA in Artemisia annua

Artemisinin, a sesquiterpene lactone produced by the traditional
Chinese herb Artemisia annua (Asteraceae), has been exploited
as an effective anti-malaria agent (Tang et al., 2014). A. annua
ORA (AaORA) is a transcriptional regulator of artemisinin
biosynthesis that upregulates the expression of genes involved
in this pathway, including amorpha-4,11-diene synthase,
CYP71AV1, and double bond reductase 2 (Lu et al., 2013).
AaORA is specifically expressed in the trichomes of aerial organs,
including artemisinin-producing glandular trichomes (Olofsson
etal, 2011; Lu et al,, 2013). Since numerous transcription factors
from various families (e.g., bHLH, ERE, bZIP, and WRKY),
in addition to AaORA, were shown to regulate artemisinin

biosynthesis (Tang et al., 2014; Lv et al, 2017), the relative
importance of each transcription factor and their functional
relationships in this process should be addressed.

Arabidopsis thaliana ERF13

AtERFI13 is the only member of clade II, subgroup IXa in
Arabidopsis thaliana (Brassicaceae). In contrast to the ERFs
mentioned above, AtERF13 was not yet shown to be involved
in a specific metabolic pathway. AfERFI3 is induced in
response to a range of biotic and abiotic stresses, such as JA,
wounding, insect feeding, colonization of beneficial bacteria,
high osmolality, and NaCl (Lee et al., 2010; Sogabe et al., 2011;
Srivastava et al., 2012; Schweizer et al., 2013). AtERF13 binds
to COUPLING ELEMENT1 (CEl), a cis-regulatory element
required for abscisic acid (ABA)-responsive gene expression,
and the overexpression of AtERFI13 confers increased sensitivity
to ABA in Arabidopsis, suggesting this gene functions in
abiotic stress resistance (Lee et al., 2010). AtERF13 is also
involved in resistance to insect herbivores, acting downstream
of MYC2 (a central player in JA signaling) and mediating
the expression of a subset of MYC2-regulated defense genes
(Schweizer etal., 2013). AtERF13 is phosphorylated at its tyrosine
residues, as revealed by phosphoproteomic analysis, suggesting
that its activity is regulated via post-translational modification
(Nemoto et al., 2015).

SUBGROUP IVa bHLH TRANSCRIPTION
FACTORS

Another group of JA-responsive transcription factors is attracting
attention as regulators of metabolic pathways in diverse
plants. These transcription factors include bHLH IRIDOID
SYNTHESIS1 (BIS1) and BIS2 from C. roseus (Van Moerkercke
et al.,, 2015, 2016), TRITERPENE SAPONIN BIOSYNTHESIS
ACTIVATING REGULATORI (TSARI) and TSAR2 from
Medicago truncatula (Mertens et al, 2016a), TSAR-LIKE1
(TSARL1) from Chenopodium quinoa (Jarvis et al, 2017),
GubHLH3 from Glycyrrhiza uralensis (Tamura et al., 2018),
and bHLH18, bHLH19, bHLH20/NAIl, and bHLH25 from
Arabidopsis (Matsushima et al., 2004), which all belong to
subgroup IVa of the bHLH family (Figure 1B, Heim et al., 2003;
Goossens et al., 2016b).

Unlike AP2/ERF family members, which are specific to
plants, the bHLH transcription factor family is widely present in
eukaryotic organisms and has expanded, especially in land plants
(Feller et al., 2011). The signature bHLH domain is composed of
an N-terminal basic region that binds to negatively charged DNA
and a helix-loop-helix motif responsible for protein dimerization.
bHLH transcription factors form homo- or heterodimers that
typically bind to E-box (5'-CANNTG-3') elements, such as G-
box (5'-CACGTG-3") and N-box (5-CACGAG-3’) elements, in
the promoter regions of their target genes.

BlISs in C. roseus

In addition to ORCAs and CrMYC2, BIS1 and BIS2, a
pair of homologous JA-responsive bHLH transcription factors,
are involved in regulating TIA formation in C. roseus. BISs
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specifically act on a branch of the TIA pathway that supplies
the seco-iridoid intermediate, secologanin, for incorporation into
TIAs. Overexpression of BISI or BIS2 results in the upregulation
of genes involved in seco-iridoid and upstream MEP pathways,
thereby increasing the accumulation of downstream TIAs (Van
Moerkercke et al., 2015, 2016). The finding that BIS2 is induced
by BISI or BIS2 overexpression points to the existence of
a positive feedback loop (Van Moerkercke et al, 2016). In
contrast to subgroup IIle MYC2 transcription factors, BISs
cannot interact with JAZ proteins and are thus not direct
targets of the repressors integrated into the JA signaling module
(Van Moerkercke et al., 2016).

TSARs in Medicago truncatula

The model legume plant Medicago truncatula (Fabaceae)
produces  oleanane-type triterpenoid saponins.  These
amphipathic glycosides, containing triterpenoid aglycones,
exhibit a diverse range of biological activities (Osbourn et al.,
2011). In M. truncatula, TSAR1 and TSAR2, two homologous
bHLH transcription factors, are JA-responsive transcriptional
regulators of triterpenoid saponin biosynthesis (Mertens
et al., 2016a). While the isoprenoid-producing MVA pathway
is commonly targeted by both TSARs, TSAR1 and TSAR2
specifically regulate two distinct downstream branches of this
pathway, producing nonhemolytic and hemolytic saponins,
respectively (Mertens et al,, 2016a). TSARs activate the gene
encoding 3-Hydroxy-3-Methylglutaryl-CoA Reductase, a rate-
limiting enzyme in the MVA pathway, by directly recognizing
the N-box element in its promoter (Mertens et al., 2016a).

TSARL1 in Chenopodium qunoa

Chenopodium quinoa (Chenopodiaceae), or quinoa, is a staple
food crop in Andean countries. Quinoa seeds have high
nutritional value, but bitterness of the seeds due to the
accumulation of triperpenoid saponins (oleanane-type) is
disadvantageous (Kuljanabhagavad et al., 2008). In C. quinoa,
TSARLI and TSARL?2 are clustered together (Figure 1B) and are
expressed in seeds and roots, respectively (Jarvis et al., 2017).
In sweet quinoa strains, loss-of-function mutations of TSARLI,
including one that appears to cause alternative splicing, allowed
the down-regulation of genes involved in the production of the
antinutritional saponins (Jarvis et al., 2017).

GubHLHS in Glycyrrhiza uralensis

The medicinal legume Glycyrrhiza uralensis (Fabaceae) is rich
in oleanane-type triterpenoid saponins, such as glycyrrhizin,
which is used as a pharmaceutical compound and sweetener,
as well as soyasaponins (Hayashi and Sudo, 2009). G. uralensis
bHLH3 (GubHLHS3), a JA-responsive bHLH transcription factor,
upregulates the expression of soyasaponin biosynthesis genes,
such as those encoding CYP93E3 and CYP72A566, which
are involved in oxidative modifications of the triterpenoid
backbone (Tamura et al., 2018). Consistently, the overexpression
of GubHLH3 increased the levels of soyasapogenol B and other
intermediates of the soyasaponin pathway in G. uralensis hairy
roots (Tamura et al., 2018).

bHLH18, bHLH19, bHLH20/NAI1, and

bHLH25 in Arabidopsis

In Arabidopsis, four genes, bHLH18, bHLH19, bHLH20/NAII,
and bHLH25, encode subgroup IVa bHLH transcription
factors; three of them, except bHLH25, form a gene cluster
(Figure 1B). NAII, which resides in this three-gene cluster,
is indispensable for the formation of the ER body, an ER-
derived rod-shape organelle found in plants of the Brassicales
order (Matsushima et al.,, 2004). ER bodies are constitutively
present in Arabidopsis seedlings and roots. By contrast, in
rosette leaves, wounding and JA treatment induce the formation
of this defense-related organelle, which accumulates large
amounts of PB-glucosidases, whose activities increase when
the compartment is disrupted (Nakano et al, 2014). NAIl
regulates the expression of genes encoding proteins required
for ER body formation and activity, including PYKI10, a
major B-glucosidase in this organelle. PYK10 functions as a
myrosinase that hydrolyzes indole glucosinolates, a group of
important defense compounds in Arabidopsis and related species
(Nakano et al, 2017). The phylogenetic co-occurrence of ER
bodies and indole glucosinolates and the co-expression of
the associated genes also support the functional coordination
between this organelle and glucosinolate metabolism (Nakano
etal., 2017).

A previous study suggested the involvement of bHLHIS,
bHLH19, bHLH20/NAIl, and bHLH25 in JA-mediated
inhibition of iron uptake in Arabidopsis (Cui et al, 2018).
JA represses iron uptake by promoting the degradation of
FIT/bHLH?29, a central transcriptional regulator of iron-uptake
genes critical to metal homeostasis (Cui et al., 2018). The four
subgroup IVa bHLHs interact with FIT protein and promote
its JA-stimulated removal through proteasome-dependent
degradation (Cui et al., 2018).

THE GAIN OF cis-REGULATORY
ELEMENTS

The recruitment of metabolic genes into regulons likely requires
the gain of transcription factor-binding cis-regulatory elements
in the appropriate promoter regions. Such a process is fairly
likely, considering the relatively frequent, simple generation of
short sequence elements in noncoding promoter regions that
can have a degree of redundancy and acquire functions through
mutational changes, such as point mutations and transpositions
(Wray, 2007; Swinnen et al., 2016).

A case study of a tobacco gene involved in nicotine
biosynthesis  supports such a scenario. Quinolinate
phosphoribosyltransferase (QPT) is a primary metabolic enzyme
involved in NAD biosynthesis in all organisms. However, in
tobacco, QPT also supplies a significant amount of intermediates
required for downstream nicotine biosynthesis (Figure 2A). To
satisfy such a metabolic demand, tandem duplication of QPT
has occurred in the Nicotiana lineage, generating a cluster of
QPTI and QPT2 genes (Figure 2, Shoji and Hashimoto, 2019).
These genes are thought to be involved in NAD and nicotine
biosynthesis, respectively, based on their distinct expression
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elements in their promoter regions; a case study of the evolution of QPT2 in the ERF189-controlled nicotine biosynthesis regulon in the tobacco lineage. (A)
Quinolinate phosphoribosyltransferase (QPT) catalyzes a reaction at the entry point in NAD and nicotine biosynthesis. In tobacco, QPT is encoded by distinct QPT1
(blue) and QPT2 (red) genes, which are thought to contribute to NAD and nicotine formation, respectively (Shoji and Hashimoto, 2011a). QPT2 and downstream steps
specific to nicotine formation (red arrows) are regulated by ERF189 in tobacco. Steps including multiple enzymes and undefined reactions are represented by broken
arrows. (B) Schematic depiction of the evolution of QPT genes in the tomato and tobacco lineages. In the tobacco genome, QPTT and QPT2, which are thought to
have arisen through tandem duplication, are located ~75 kb apart on the chromosome. Tomato contains one QPT gene copy in a genomic region syntenic to the
tobacco cluster (Shoji and Hashimoto, 2019). One of the duplicates, QPT2, has become regulated by an evolutionarily conserved ERF transcription factor by gaining
ERF-binding cis-regulatory elements in its promoter. Three functional P-box elements bound by ERF189 are present in the proximal promoter region of QPT2 in extant
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patterns (Shoji and Hashimoto, 2011a). QPT2 harbors multiple
ERF189-binding P-box elements in its promoter required for
its transcriptional activation by ERF189 (Shoji and Hashimoto,
2011a). The progressive acquisition of these elements after
gene duplication has ensured the involvement of QPT2 in the
ERF189-controlled regulon of the nicotine pathway (Figure 2B).
The frequent occurrence of JRE4/GAME9 binding elements in
the proximal promoter regions of SGA biosynthesis genes in
tomato implies that such a notion is also applicable to these
genes (Thagun et al,, 2016).

EVOLUTIONARY CHANGES IN
TRANSCRIPTION FACTORS

In contrast to the gains (and losses) of cis-regulatory
elements that strongly contribute to the rewiring of gene
regulatory networks, mutational changes in transcription
factors, which have profound, pleiotropic effects on
numerous downstream genes, are relatively constrained.
Nevertheless, there are also examples of the modification of the
functionalities and expression patterns of trans-acting factors
(Maerkl and Quake, 2009).

A series of subgroup IXa ERFs have divergent DNA-binding
specificities to GCC-box elements and to related but distinct P-
box and CS1-box elements. Such distinct binding specificities

can be accounted for by a few amino acid differences in a
small stretch of the DNA-binding domain (Figure 3, Shoji et al.,
2013). It appears that a progressive evolutionary trajectory has led
from transcription factors that recognize only a canonical GCC-
box to Nicotiana-specific ERF189-type transcription factors
that bind to P-box but not GCC-box elements via functional
intermediates, such as ORCA3-type transcription factors, which
bind to multiple elements, including both GCC-box and P-
box elements (Figure 3, Shoji et al., 2013). The development
of unique combinations of cis-elements and trans-factors may
have been indispensable for avoiding missed connections among
unrelated regulatory circuits and, thus, the establishment of
lineage-specific specialized pathways. This process appears to
have occurred independently of the development of a broad
range of ERFs targeting GCC-box elements involved in general
defense responses.

Nicotine and SGA biosynthesis pathways in distinct lineages
of the same Solanaceae family, which are regulated by
orthologous ERFs, share many properties, such as JA-dependent
induction and suppression by ethylene (Shoji et al, 2010;
Nakayasu et al., 2018). By contrast, the site of their biosynthesis
differs between the two lineages: nicotine is synthesized
exclusively in tobacco roots, whereas SGAs are produced in
nearly all inedible parts of tomato and potato, including
leaves and roots. This difference depends on the differential
expression patterns of the transcriptional regulators ERF189
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FIGURE 3 | Divergent DNA-binding specificities of subgroup IXa ERF transcription factors. Amino acid residues at positions 3, 6, 7, and 12 in an N-terminal portion of
the DNA-binding AP2/ERF domain are shown (counting from the end of the domain). Basic residues R and K at positions 3, 7, and 12 (blue) increase the nonspecific
affinity of the proteins for DNA by interacting with negatively charged phosphate backbones (Shoji et al., 2013). The substitution of one residue at position 6 from R
(yellow) to K (red) in ERF189-type transcription factors alters the recognition of nucleotide bases (G to T) at a specific position (marked with asterisks) in the
cis-regulatory elements (Shoji et al., 2013). Perhaps progressive evolution has occurred from ancestral AtERF1-type transcription factors to more specialized
ERF189-type transcription factors via functional intermediates with amino acid substitutions at a few positions. The in vitro binding specificities of recombinant ORCA3
are represented by sequence logos (Shoji et al., 2013) GLN, #-1,3-glucanase; STR, strictosidine synthase; PMT, putrescine N-methyltransferase.

and JRE4/GAME9 (Cardenas et al., 2016; Thagun et al., 2016; RECRUITMENT MODEL OF METABOLIC
Kajikawa et al., 2017). To guarantee the function of each group EVOLUTION

of metabolites in plant defense, the tissue-specific expression

patterns of these regulators may have developed independently =~ Metabolism is a fundamental requirement of all living organisms.
after the separation of the two lineages, whereas their responses  Primeval metabolism, or the simple conversion of substances,
to JA and other features have been conserved between lineages.  is thought to rely on a small number of proteinaceous or
These ideas point to the elastic evolution of sets of a particular  other catalysts with low reaction specificities and efficiencies
transcription factor and its downstream metabolic genes as  (Figure 4i). Metabolic systems have evolved toward increasing
independent units with specialized roles in chemical defense in  order and efficiency (Weng et al, 2012). Contemporary

a lineage-specific manner. primary metabolism, which was established early and has been
Despite the functional differences noted above, the JA-  maintained, is carried out by robust systems mediated by

responsive transcription factors are considered components of  enzymes with high specificities and efficiencies (Figure 4ii).

conserved regulatory mechanisms present in various species. Enzymes involved in specialized metabolism are thought to

For instance, in transgenic tomato plants, a promoter reporter  have emerged through duplication, beginning with sophisticated
of tobacco QPT2 regulated by ERF189 was expressed in a JA-  primary enzymes as progenitors, followed by mutational changes
responsive and cell type-specific manner, as in tobacco, and this  in the duplicates and leading to neofunctionalization of the
expression was mediated by JRE4 (Shoji and Hashimoto, 2019).  enzymes (Figure 4iii). Relaxed constraints on the specificities
TSARs and BISs were shown to be functionally exchangeable, as  and efliciencies of newly generated duplicates allow them to
the orthologous bHLH factors regulate each other’s target genes  explore a wide range of catalytic possibilities. The promiscuity
in C. roseus and M. truncatula (Mertens et al, 2016b). Both  of multifunctional enzymes, with broader specificities emerging
of these examples clearly point to the interchangeable nature  through this process, contributes to the expansion of the
of these factors among species with entirely different pathways  metabolic web (Figure 4iii). This web even includes the virtual
(e.g., ornithine-derived nicotine vs. MVA pathway-derived SGAs  activities of hidden enzymes (dotted lines in Figure 4) that do
for ERF189 and JRE4, and MVA pathway-derived saponins vs.  not contribute to actual metabolic flow due to limited substrate
MEP pathway-derived TIAs for TSARs and BISs), supporting the  availability or marginal enzymatic activity; such hidden activities
functional conservation of these factors. are not readily eliminated by (and are more tolerant to) selection.
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primary metabolic pathways (blue lines). (i) Expansion of the metabolic web occurs via the duplication of metabolic genes, and the subsequent mutational changes in
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(neofunctionalization). Such processes have enabled the emergence of specialized pathways (red lines) that contribute to the substantial accumulation of the
metabolites (red circles). Reactions that do not contribute to metabolic flow (and are therefore hidden) are indicated by dotted lines.

If these changes are not deleterious or neutral and are thus not
eliminated by purifying selection, the metabolic grids continue
to build through neutral evolutionary processes such as genetic
drift. It seems reasonable that autotrophic plants accumulate
low-molecular-weight metabolites derived from photosynthetic
assimilates, which usually have antioxidant properties to some
extent and are often sequestered in cellular compartments
such as vacuoles. These natural products, including those that
accumulate in trace amounts, do not necessarily have adaptive
significance (Koonnin, 2016).

The emergence of specialized pathways allowing for the
efficient production and accumulation of substantial amounts
of metabolites requires the selection of specific flows from the
expanded metabolic web, again increasing order and efficiency
(Figure 4iv). This process largely relies on positive natural
selection rather than neutral evolution, which is dependent on
randomness. I propose a conceptual model, recruitment model
of metabolic evolution, describing this process. According to this
model, structural genes are repeatedly recruited into regulons
under the control of evolutionarily conserved transcription
factors (which should be activators rather than repressors), such
as the JA-responsive ERFs and bHLHs (Figure 5). When a gene
in the metabolic web becomes regulated by a transcription factor,
obtaining cognate cis-regulatory elements, metabolic flows are
generated or altered accordingly. Although such events readily
occur at high frequency, most of these mutational changes
are immediately eliminated and are not maintained in the
population. On the other hand, when the newly generated
flows result in the accumulation of beneficial products, such
as defense compounds, conferring adaptive advantages to the
plant, the probability that such changes will be maintained and
eventually fixed in the population increases tremendously. Once

the beneficial flows occur, the likelihood that mutational events
that enhance these flows (such as the transcriptional activation
of other metabolic genes and the optimization of catalytic
specificities and efficiencies associated with the flows) is expected
to rise markedly as well. An initial, mostly accidental, event
creating new metabolic flows may trigger cascading mutational
changes associated with and improving the flows, eventually
leading to the establishment of metabolic regulons and pathways,
perhaps within a relatively short evolutionary timescale. The
bioinformatic and mathematical bases of the model remain to
be explored.

The extensive rewiring of transcriptional circuits alters
metabolic regulons that were once established under the
original transcription factors (Figure 6). During such processes,
takeover of the regulons by new transcription factors (including
those derived from the original transcription factors by
duplication) and the associated changes in the connections in
the circuits occur frequently through changes in cis-regulatory
elements and transcription factors (Figure 6, Johnson, 2017).
Contemporary regulatory networks are often complex and
include multiple transcription factors, which act as either
activators or repressors, and in some cases regulate only specific
parts of pathways (e.g., ORCA3 regulates some but not all
TIA genes). Extensive rewiring of circuits may contribute to
the advent of the complicated regulatory organization found
in extant metabolic pathways, which also could account for
the fact that few metabolic pathways have simple regulons
comprising only a single master regulator and its downstream
structural genes.

Analyses of metabolic have emphasized
mutational changes to catalytic enzymes (Weng et al,
2012; Moghe and Last, 2015). If metabolic genes are

evolution
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recruitment of metabolic genes and enzymes into the regulon under the control of a conserved transcription factor (TF) occurred repeatedly (red numbers). The
catalytic specificity of promiscuous enzymes 2 and 4 was optimized (black numbers in the web). The recruitment of genes affecting metabolic flows in the web (which
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FIGURE 6 | Rewiring of transcriptional circuits. An original regulon (including genes 1 to 6) controlled by TF1 is hijacked by other transcription factors (TF2 and TF3)
and eventually modified (removal of 1 and addition of 7). TF2 arose from TF1 through gene duplication. The colors of the TFs reflect functional changes in these
proteins during evolution.

not functionally expressed and no flows are associated made to the catalytic functionalities of enzymes belonging
with these genes, they are not subjected to positive to a limited number of protein families without hampering
or purifying selection. The recruitment model, which the structural and functional stability of protein frames.
presumes that transcription factors activate genes prior to  Therefore, changes in the combinations of metabolic genes
changes in catalytic activity, adequately addresses this point  with specific temporal and spatial expression patterns might
as well. also have significantly contributed to the rise in chemodiversity

Metabolic evolution is driven by functional changes in  found in plants. Plants have exploited their limited repertoire
catalytic enzymes and changes in the expression patterns of of enzymes in a combinatorial manner to produce these
metabolic genes. There appear to be limits to the changes  diverse compounds.
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PERSPECTIVES OF “EVO-META” BIOLOGY

“Nothing in biology makes sense except in the light of
evolution” is a famous quotation by Dr. Theodosius Dobzhansky,
a Ukrainian-American evolutionary geneticist (Dobzhansky,
1973). The discovery of homeotic genes encoding a group of
transcription factors that direct the organization of the body
plans of vertebrates and invertebrates has helped elucidate the
evolutionarily conserved mechanisms governing development,
leading to the rise of Evolutionary Developmental (Evo-Devo)
biology. Classic anatomy and embryology, as well as modern
developmental biology, share some affinity with evolutionary
biology. Paleontology based on fossil evidence is one of the main
areas of focus in evolutionary biology.

Chemodiversity of specialized products in plants has been
shaped through (and is a product of) evolution. Unfortunately,
it is difficult to predict the hues and fragrances of ancient flowers
from extinct plants. Nevertheless, the chemodiversity found in
extant species and the diverse series of plant genomes, including
those yet to be explored, is highly informative (Nakamura et al.,
2014). A long period of collection of natural products with
divergent chemical structures and biological activities, along
with a better understanding of the grouping of biosynthetic
pathways and associated enzymes, has led to an awareness of
some sort of order behind this chemodiversity. Elucidating the
molecular biology behind regulatory factors, such as master
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transcription factors, that orchestrate these metabolic processes
is expected to reveal the universal principles ruling the metabolic
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The challenges of “Evo-Meta” (Evolutionary Metabolic) biology
aimed at uncovering the origins of this chemodiversity are
just beginning.
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Glucosinolates (GLSs) are a well-defined group of specialized metabolites, and like any other
plant specialized metabolites, their presence does not directly affect the plant survival in
terms of growth and development. However, specialized metabolites are essential to combat
environmental stresses, such as pathogens and herbivores. GLSs naturally occur in many
pungent plants in the order of Brassicales. To date, more than 200 different GLS structures
have been characterized and their distribution differs from species to species. GLSs co-exist
with classical and atypical myrosinases, which can hydrolyze GLS into an unstable aglycone
thiohydroximate-O-sulfonate, which rearranges to produce different degradation products.
GLSs, myrosinases, myrosinase interacting proteins, and GLS degradation products
constitute the GLS-myrosinase (GM) system (“mustard oil bomb”). This review discusses the
cellular and subcellular organization of the GM system, its chemodiversity, and functions in
different cell types. Although there are many studies on the functions of GLSs and/or
myrosinases at the tissue and whole plant levels, very few studies have focused on different
single cell types. Single cell type studies will help to reveal specific functions that are missed
at the tissue and organismal level. This review aims to highlight (1) recent progress in cellular
and subcellular compartmentation of GLSs, myrosinases, and myrosinase interacting proteins;
(2) molecular and biochemical diversity of GLSs and myrosinases; and (3) myrosinase
interaction with its interacting proteins, and how it regulates the degradation of GLSs and
thus the biological functions (e.g., plant defense against pathogens). Future prospects may
include targeted approaches for engineering/breeding of plants and crops in the cell type-
specific manner toward enhanced plant defense and nutrition.

Keywords: glucosinolate, myrosinase, cell type, metabolism, protein-protein interaction

INTRODUCTION

One of the most extensively studied classes of anti-herbivore chemical defenses in plants is
glucosinolates (GLSs), a group of sulfur-rich, amino acid-derived metabolites combining a
B-d-glucopyranose residue linked via a sulfur atom to an N-hydroxyimino sulfate ester,
which are plant-derived natural products (Halkier and Gershenzon, 2006; Halkier, 2016).
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GLSs are widely distributed in the order Brassicales, which
includes vegetables (cabbage, cauliflower, and broccoli), spice
plants supplying condiments (mustard, horseradish, and wasabi),
and reference species, Arabidopsis thaliana (Fahey et al., 2001;
Reichelt et al., 2002). Upon insect feeding or mechanical
disruption, GLSs are hydrolyzed by myrosinases (thioglucoside
glucohydrolase, TGG, EC 3.2.1.147) into unstable thiohydroximate-
O-sulfonates, which rearrange to form different hydrolytic
products such as isothiocyanates (ITCs), nitriles, and other
by-products depending on the nature of the GLS side chain
and the reaction conditions, such as iron, pH, and presence
of myrosinase interacting proteins (Chen and Andreasson,
2001; Wittstock et al., 2016a). This GLS-myrosinase (GM)
system is popularly known as “mustard oil bomb” (Liithy
and Matile, 1984; Ratzka et al., 2002). Myrosin cells (an
idioblast cell type accumulating TGGs) are involved in plant
defense by hydrolyzing GLSs into toxic volatiles such as ITCs
or nitriles (Wittstock et al., 2003). TGGs are known to
be present in all A. thaliana organs and were reported in
A. thaliana and B. napus phloem parenchyma as well as in
guard cells (Andréasson et al., 2001; Thangstad et al., 2004).
In general, GLSs are enriched in “S-cells” that are found in
Arabidopsis flower stalks and occur close to myrosin cells
(Koroleva et al., 2000; Andréasson et al., 2001).

The spatial distribution of GLSs was demonstrated in A. thaliana
leaves by constructing ion intensity maps from matrix-assisted
laser desorption/ionization-time of flight (MALDI-TOF) mass
spectra, where major GLSs were found to be more abundant
in tissues of the midvein and the periphery of the leaf than
the inner lamina (Shroff et al, 2008). Although this study
concluded that GLSs are not abundant on A. thaliana leaf
surfaces, the authors could not obtain information on the cell
type distribution of GLSs in leaves. Moreover, all the genes in
the GLS biosynthetic pathways have been identified, and it is
somewhat known where GLSs are stored (Koroleva et al., 2000;
Andréasson et al., 2001), but it has remained elusive where
GLSs are specifically produced at the subcellular, cellular, and
tissue levels (Rask et al., 2000; Nintemann et al., 2017). Neither
is it clear about the cellular and subcellular compartmentation
of different myrosinases and their interacting proteins, which
include myrosinase-binding proteins (MBPs), myrosinase-
associated proteins (MyAPs), and different specifier proteins.

In the following sections, we discuss various aspects of the
GM system based on current knowledge, starting from the
cellular control of enzymes, cell type, and subcellular organization,
to uniqueness of myrosinases and myrosinase interacting proteins
covering a range of small molecule and macromolecular
interactions of the “mustard oil bomb”

THE GLUCOSINOLATE-MYROSINASE
SYSTEM AND CELLULAR CONTROL OF
ENZYME REACTIONS

As found in the order of Brassicales, including important crops
(e.g., mustard, oilseed rape, radish, broccoli, and cabbage),
GLSs co-exist with myrosinases. When tissue damage occurs,

the “mustard oil bomb” is detonated and GLSs are hydrolyzed
and converted to different degradation products with a variety
of biological activities (Rask et al., 2000; Halkier and Gershenzon,
2006; Yan and Chen, 2007; Bednarek et al., 2009; Clay et al.,
2009; Halkier, 2016; Wittstock et al., 2016a). For example, these
degradation products play important roles in plant defense
against pathogens and herbivores, as well as serve as attractants
to specialists (Rask et al.,, 2000; Barth and Jander, 2006; Clay
et al., 2009; Wittstock et al., 2016a). Several of these degradation
products are involved in plant nutrition (Holmes, 1980;
Armengaud et al, 2004) and growth regulation (Hasegawa
et al., 2000; Hull et al., 2000; Mikkelsen et al., 2000). In plant
metabolism, it is important that enzymes and substrates are
under tight regulation, which is more relevant for toxic
compounds, as these chemical defenses are derived from
specialized metabolites. There are several ways of regulation:
(1) coarse control through biosynthesis; (2) fine control of
enzyme activity through protein interaction and allosteric
regulation; and (3) substrate and enzyme compartmentalization
(Sweetlove and Fernie, 2013). While the regulation is well
studied in primary metabolism (e.g., photosynthesis and
respiration), it is not clear in many of the specialized metabolic
processes such as GLS metabolism. Furthermore, protein-protein
interactions are intrinsic to virtually every cellular process and
have been extensively studied in animals and yeast (Uetz et al,,
2000; Gavin et al., 2002; Ho et al., 2002; Li et al., 2004; Huttlin
et al., 2017). In plants, this area has lagged behind in spite
of recent progress (Hosseinpour et al., 2012; Zhang et al., 2016;
Jiang et al, 2018). Vast majority of the studies did not go
beyond identifying physical interactions to the point of functional
analysis. Figure 1 shows the potential molecular interactions
of the GM system in the context of cell type-specific metabolisms.

CELL TYPE-SPECIFIC CELLULAR AND
SUBCELLULAR ORGANIZATION OF THE
“MUSTARD OIL BOMB”

Myrosinase is located in myrosin cells, which are scattered
cells in radicles, stems, leaves, petioles, seeds, and seedlings
of several species (Husebye et al., 2002). A cell-specific localization
was found in radicles and cotyledons of the maturing embryo
resembling the pattern of the myrosin cells (Bones et al., 1991).
Most GLSs are constitutively present in all Arabidopsis tissues
(Petersen et al., 2002; Brown et al, 2003). The key steps in
the biosynthesis of the different types of GLSs are localized
in distinct cells in separate as well as overlapping vascular
tissues (Nintemann et al., 2018). The presence of GLS biosynthetic
enzymes in parenchyma cells of the vasculature may assign
new defense-related functions to these cell types (Nintemann et al.,
2018). To date, the cellular and subcellular compartmentation
of the “mustard oil bomb” (Liithy and Matile, 1984) is not
completely clear and is rather contradictory. For instance, in
Arabidopsis flower stalks, GLSs were found in the elongated
sulfur-rich “S-cells” situated between phloem and endodermis
(Koroleva et al., 2000; Husebye et al., 2002). However, the
myrosinase TGG1 was found to be abundant in guard cells,
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FIGURE 1 | Putative interactions between myrosinases (TGGs), myrosinase interacting proteins, GLSs, and volatiles in the context of cell type compartmentation. A
myrosin cell shows vacuolar localization of TGGs, myrosinase-binding proteins (MBPs), and myrosinase-associated proteins (MyAPs); peroxisomal localization of
penetration (PEN2); and ER localization of TGG. Transporters that are specific to GLSs such as NRT1/PTR glucosinolate transporter (GTR) 1, GTR2 or non-specific
transporters could be aiding in their transport to site of accumulation such as S-cells or guard cells. Importantly, these cells may have the capability of de novo
biosynthesis of GLSs. In addition, the presence of epithiospecifier modifier (ESM, MyAP-like), epithiospecifier (ESP), and nitrile specifier (NSP) 1, NSP5, etc. may lead
to the breakdown of GLSs to nitriles and isothiocyanates (ITCs) for roles in cell type-specific signaling and defense against pathogen and herbivores. GLSs, TGGs,
and ESP were found in the S-cells, and the presence of ESM and NSP is indicative of other cell types.
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whereas TGG1 and TGG2 were localized to the phloem-
associated cells close to the “S-cells” (Husebye et al, 2002;
Thangstad et al., 2004; Barth and Jander, 2006). Thus, it appears
that myrosinases and their substrates were physically separated
in the plant tissues. However, such an arrangement may not
be the case as a recent proteomics study located the myrosinases
in “S-cells” (Koroleva and Cramer, 2011). In Brassica juncea
seedlings, myrosinase was found to co-localize with GLSs in
aleurone-type cells (Kelly et al., 1998). In Arabidopsis suspension
cells, both myrosinases and GLSs were present (Alvarez et al,
2008). Such diverse co-localization results may indicate that
myrosinases and GLSs are spatially separated at the subcellular
levels. Alternatively, they could be in the same compartment
with tight control of myrosinase activities. GLSs were found
in vacuoles rich in ascorbic acid (Grob and Matile, 1979),
which plays a role to inhibit myrosinase at high concentration
and activate myrosinase at low concentration. This dual regulation
supports the potential co-localization of GLSs and myrosinases
in the same subcellular compartment.

Recent metabolomics data have confirmed the presence of
GLSs in guard cells (Geng et al, 2016; Zhu and Assmann,
2017) and revealed the changes in GLS metabolism in guard
cells upon treatment with CO, (Geng et al., 2016) and ABA
(Zhu and Assmann, 2017). The first indication of the role of
GLS metabolism in stomatal movement was obtained through
analysis of the effect of ABA on stomatal movement of the
Arabidopsis myrosinase mutant tggl (Zhao et al, 2008).
Subsequently, additional reverse genetics studies corroborated
the role of GLS metabolism in stomatal movement (Islam et al.,
2009; Zhu et al, 2014). Furthermore, stomatal closure was
induced by pharmacological treatments with different GLS
hydrolysis products (Khokon et al., 2011; Sobahan et al., 2015).
However, these products and the amounts used are of synthetic
origin and abundance. It is not known what degradation
products are produced and how much in vivo, which GLSs
and myrosinases [TGGs and/or Penetration 2 (PEN2)] are
involved, and how protein interactions regulate the GLS
breakdown in guard cells.
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The Arabidopsis cyp79b2/cyp79b3 mutants are known to
produce mostly aliphatic GLSs (Zhao et al., 2002; Chen et al,,
2003; Grubb and Abel, 2006; Khokon et al., 2011; Sobahan
et al,, 2015), while the myb28/myb29 mutants are known to
produce mostly indolic GLSs (Hirai et al., 2007; Beekwilder
et al., 2008). Furthermore, the tggl/tgg2 double mutant showed
undetectable myrosinase activity, and damage-induced breakdown
of endogenous GLSs was not from aliphatic GLSs and was
greatly slowed for indole GLSs (Barth and Jander, 2006).
Moreover, the tggl/tgg2 mutant lacking the foliar myrosinases
was compromised in activation of their GLS defense. Another
mutant, atvam3 mutant showed abnormal distribution of myrosin
cells and overproduction of TGG1 and TGG2 (Ueda et al,
2006). Thus, beyond TGGs, MYB28, MYB29, AtVAM, CYP79s,
and other biosynthetic genes all affect GLS deposition levels
and possibly cell type specificity of the GM system. To understand
the regulation and correlation of these proteins, we used
GeneMANIA software (Warde-Farley et al., 2010) and predicted
the association of the known genes involved in GLS metabolism
(from our selected gene list in Supplementary Table S1). This
software further added putative proteins with similar functions
and potential involvement in the GM system (Figure 2).

In B. napus leaves, myrosinases are localized in mesophyll
cells and phloem cells (Chen and Andreasson, 2001) and were
mainly stored in protein-rich vacuolar structures of myrosin
cells (Rask et al., 2000; Ueda et al., 2006). There is also a
report of the presence of myrosinase as cytosolic enzymes bound

to intracellular membranes (Luthy and Matile, 1984). The
knowledge of the localization of myrosinases and interacting
proteins was advanced by vacuolar proteomics. Myrosinases,
TGG1 and TGG2, and myrosinase-associated protein (MyAP) 1
were identified in the vacuoles. In the early leaf developmental
stages, TGG1 is more abundant than TGG2, whereas in fully
expanded leaves, both TGG1 and TGG2 levels show increased
accumulation. Concurrently, MyAP1 levels are increasingly
abundant. We have previously observed such regulation of
myrosinase expression, which correlated with GLS turnover
(Petersen et al.,, 2002). The co-localization of myrosinase and
MyAP1 and the concurrent expression during development lead
to the hypothesis that the vacuolar myrosinases may be active
and MyAPs may interact with myrosinase to play a role in
GLS hydrolysis. For example, MyAPs may facilitate ITC production
(Zhang et al., 2006). Indeed, immunogold analysis of leaf sections
showed the presence of TGG1 and TGG2 in the same vacuoles
(Ueda et al., 2006). An independent vacuolar proteomics study
also identified these proteins (Carter et al.,, 2004). In addition,
two more MyAPs (At1g54000 and Atl1g54010) and three
myrosinase-binding proteins (MBPs) (At1g52040, At3g16470,
and At2g39330) were localized in the vacuoles (Carter et al.,
2004). TGG1 and TGG2 were also found in the endoplasmic
reticulum (ER), ER bodies, and transvacuolar strands, and this
localization is dependent on MyAP1 (MVP1). Mutation of the
MyAP1 clearly altered the subcellular localization profiles of
the green fluorescent protein (GFP)-tagged TGG1 and TGG2

(green), defense response to fungus (pink), and stomatal movement (light blue).

FIGURE 2 | Visualization of functional prediction of protein networks in the glucosinolate-myrosinase (GM) system using GeneMANIA (http://genemania.org/). The
protein names are indicated inside the nodes, and the links between the nodes indicate the network edges in which the proteins are connected. The color of the
edges represents evidence for the connection, which includes co-expression (purple), predicted (yellow), shared protein domains (beige), physical interactions (pink),
co-localization (blue), and genetic interactions (green). As to functions associated with each protein, the color code inside the nodes indicates GLS metabolic
process (red), sulfur compound metabolic process (blue), defense response to bacterium (yellow), defense response to insect (purple), response to oxidative stress
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(Agee et al, 2010). Interestingly, the myrosinase PEN2
(hydrolyzing indole GLSs and shown to function in plant defense
(Bednarek et al., 2009; Clay et al., 2009; Millet et al.,, 2010;
Fan et al,, 2011; Johansson et al., 2014; Frerigmann et al., 2016;
Luti et al, 2016; Xu et al, 2016; Vilakazi et al., 2017)) is
targeted to peroxisomes and the outer mitochondrial membrane
(Fuchs et al., 2016). In addition to MyAPs and MBPs, specifier
proteins including epithiospecifier modifier (ESM, MyAP-like),
epithiospecifier protein (ESP), nitrile specifier protein (NSP),
and thiocyanate forming protein (TFP) may affect the outcome
of GLS degradation (Lambrix et al., 2001; Burow et al., 2006;
Zhang et al., 2006; Wittstock et al., 2016a,b; Backenkohler et al.,
2018). ESP was found to be in “S-cells” and in guard cells
with NSP1 and NSP5 (Burow et al., 2007; Zhao et al., 2008).
The functions of these MyAPs, MBPs, and specifier proteins
in “S-cells” and guard cells and their interactions with myrosinases
in different cell types are not known.

To understand the subcellular organization of the GM system,
we compared the proteins and pathways involved in GLS
biosynthesis, degradation, and transport using available and/
or predicted subcellular localization information. Figure 3 and
Supplementary Table S1 provide an overview of the GM system
at subcellular level based on available literature and analysis
using different protein localization tools: (1) Plant-mPLoc'
(Chou and Shen, 2007, 2008, 2010); (2) TAIR? (with annotation
based on literature); (3) Eplant’ using SUBA (Subcellular
Localisation Database for Arabidopsis) with annotation based
on subcellular proteomics and/or protein fluorescence microscopy;
(4) TargetP' based on the N-terminal targeting sequences
(chloroplast transit peptide (cTP), mitochondrial targeting peptide
(mTP), or secretory pathway signal peptide (SP) (Emanuelsson
et al, 2000) [with a reliability score of 1-5 (1 being most
reliable and 5 least reliable)]; (5) LocTree® using support vector
machines for localization prediction (in the form of expected
accuracy); and (6) ngLOCS using Bayesian method for prediction
of localization. As shown in Figure 3, most GM system proteins
were found to be in the cytoplasm followed by nucleus, where
the transcriptional regulators were localized. All the cytochrome
P450s involved in GLS biosynthesis and modification were
localized to endoplasmic reticulum, and other GLS biosynthesis-
related proteins were in the chloroplast and cytoplasm.
Glucosinolate transporters (GTR1 and GTR2) and nitrate
transporters (NRT1.6, NRT1.7, and NRT1.9) were found to
be in plasma membrane. It is not known how glucosinolates
are transported into vacuoles. PEN2 and BZO1 were localized
in peroxisomes. No GM system proteins were found on Golgi
apparatus. Out of the 114 GM system proteins used in this
study (Supplementary Table S1), 65 proteins had experimental
evidence of localization, 26 were predicted using the software
tools (at least three tools with consistent result), and 23 proteins
could not be conclusively localized.

'http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
*https://www.arabidopsis.org/tools/bulk/protein/index.jsp
*https://bar.utoronto.ca/eplant/
*http://www.cbs.dtu.dk/services/TargetP/
*https://rostlab.org/services/loctree3/
Shttp://genome.unmc.edu/ngLOC/index.htm]

DISTINCT MOLECULAR AND
BIOCHEMICAL PROPERTIES
OF MYROSINASES

Myrosinases are classified into two types, typical (classical)
and atypical myrosinases. The crystal structure of a classical
myrosinase shows that the protein folds into an (B/a); barrel
structure (Burmeister et al.,, 1997). In the active site, a Glu
(E) residue is involved in nucleophilic attack to initiate the
release of an aglycone (thiohydroximate-O-sulfonate) and form
a glucosyl-enzyme intermediate. Another Gln (Q) residue
enables the hydrolysis of this intermediate with assistance
from water and ascorbate. Classical myrosinases (with QE
catalytic residues) use ascorbate as a cofactor and proton
donor to facilitate the release of bound glucose (Burmeister
et al,, 1997; Wittstock and Burow, 2010; Bhat and Vyas, 2019).
In contrast, atypical myrosinases have two catalytic Glu residues
(EE), which function as acid/base catalyst in the active site.
They do not require ascorbate. In addition, atypical myrosinases
have two basic amino acid residues at different positions (+6
and +7) for glucosinolate binding compared to +0 position
arginine residue of classical myrosinases (Wittstock and Burow,
2010; Nakano et al., 2017; Shirakawa and Hara-Nishimura,
2018; Bhat and Vyas, 2019). Classical myrosinases are
glycosylated, activated by low concentrations of ascorbate, and
accepted GLSs as the only substrates (Chen and Halkier, 1999;
Chen and Andreasson, 2001). In contrast, atypical myrosinases,
such as PEN2 and PYK10, can hydrolyze indole GLSs and
also use O-glucosides as substrates (Bednarek et al., 2009;
Nakano et al., 2017). Although myrosinase does not use
acylated GLSs and desulpho-GLSs as substrates, it may accept
a wide range of GLS substrates (Chen and Halkier, 1999;
Rask et al., 2000; Barth and Jander, 2006). Myrosinases from
B. napus and Crambe abyssinica degrade different GLS at
different rates (James and Rossiter, 1991; Finiguerra et al.,
2001). However, the mechanism underlying this substrate
specificity is not established. Myrosinases in B. napus are
encoded by >29 genes in three subfamilies, denoted as MA,
MB, and MC. The MA myrosinases occur as dimers, while
MB and MC myrosinases exist in complexes with MBPs and/
or MyAPs (Lenman et al, 1990; Rask et al, 2000). By
heterologous expression in yeast, we have previously produced
a functional free form myrosinase Myrl from the MB subfamily
(Chen and Halkier, 1999). The activity of this Myrl suggests
that MBPs and MyAPs are not absolutely necessary for
myrosinase activity, but raises questions on the functions of
MBPs and MyAPs and their interactions with myrosinases.
Bioinformatic analysis of the Arabidopsis genome revealed
the presence of six myrosinase genes TGGI-TGG6 (Xu et al,
2004). TGGI and TGG2 are expressed in leaves (Xue et al.,
1995; Husebye et al., 2002; Thangstad et al., 2004; Barth and
Jander, 2006; Ueda et al., 2006) and flowers (Ruan et al., 1998;
Barth and Jander, 2006), while TGG4 and TGG5 are specifically
expressed in roots (Zimmermann et al, 2004). TGG3 and
TGG6 are pseudogenes (Husebye et al., 2002; Zhang et al., 2002).
Although TGG1 and TGG2 appear to display a low degree
of substrate specificity, the activities of TGG1 and
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FIGURE 3 | Subcellular localization of Arabidopsis proteins involved in GLS biosynthesis, degradation, and transport. The subcellular organelles and their localized
proteins are given in similar color. Most of the subcellular localizations are based on literature evidence. The names of the proteins with an asterisk are predicted
localization information (i.e., for proteins that do not have localization information in literature) that are based on consensus from at least three software tools used.
The prediction tools used were Eplant, TargetP, LocTree, ngLOC, Plant-mPLoc, and TAIR. Please refer to Supplementary Table S1 for detailed information.

TGG2 have been correlated with the feeding preference
and growth of different generalist and specialist insects (Barth
and Jander, 2006). Interestingly, overexpression of TGGI and
TGG2 leads to accumulation of several GLS degradation
products, including 5-methylhexanenitrile, heptanenitrile,
1-isothiocyanato-3-methylbutane,  1-isothiocyanato-4-methyl
pentane, and 1-isothiocyanato-3-methylhexane. Based on the
degradation product profile, possible endogenous substrates for
the two TGGs include 4-methylthiobutylglucosinolate,
4-methylpentylglucosinolate and 3-methylbutylglucosinolates
(Ueda et al, 2006). Investigating endogenous substrates of
different classical and atypical myrosinases is an important
future direction.

In leaves, TGG1 was found to be abundant in guard cells,
while TGG2 appeared only present in phloem-associated cells
(Barth and Jander, 2006; Zhao et al., 2008). Considering the
presence of GLSs in guard cells (Geng et al, 2016;
Zhu and Assmann, 2017), how the GM system plays a role

in guard cell functions (e.g., stomatal immunity) is an
interesting question. Clearly, mutation of the TGG1 and/or
TGG2 genes affected the guard cell size, stomatal aperture,
and leaf metabolites, such as fatty acids, glucosinolates, and
indole compounds (Ahuja et al., 2016). Another proteomic
study of trichome and epidermal pavement cells did not
identify the TGG1 protein in the samples (Wienkoop et al.,
2004). However, a single cell type study in trichomes found
the presence of gene encoding transcription factors of aliphatic
GLS (MYB28, MYB29 and MYB76) and indole GLS (MYB34,
MYB51 and MYBI22), indicating that trichomes have
biosynthetic genes for the GM system (Frerigmann et al,
2012), but nothing was suggested about myrosinases activity
or expression. Given the defense roles of guard cells and
trichomes, characterization of the GM systems in these special
cell types is of great importance to understand the molecular
mechanisms underlying the cell type-specific functions, e.g.,
defense against pathogen invasion.
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COMPLEX FORMATION
BETWEEN MYROSINASE AND
ITS INTERACTING PROTEINS

As described earlier, myrosinase interacting proteins include
MBP, MyAP, and specifier proteins (ESM, ESP, NSP, and TFP).
The first six MBPs identified in B. napus range in size from
30 to 110 kDa (Taipalensuu et al, 1996; Chisholm et al,
2000). All MBPs contain jacalin-like repeats (Chisholm et al.,
2000; Andréasson et al., 2001). Jacalin-related proteins share
the domain structure of plant lectins and are upregulated by
phytohormones (e.g., jasmonic acid, salicylic acid, and ethylene)
and pathogens (Taipalensuu et al, 1996; Geshi and Brandt,
1998; Xiang et al, 2011; Vilakazi et al., 2017). Recently,
identification of bacterial lipopolysaccharide interacting proteins
in Arabidopsis revealed myrosinases, TGG1 and TGG2, and
a MBP (Vilakazi et al, 2017). It remains unclear how the
MBP levels are regulated and whether MBPs directly interact
and affect myrosinase activity and specificity. In B. napus
seeds, MBPs are present in most cells but not in the myrosin
cells (Rask et al., 2000; Ueda et al., 2006). During germination,
MBPs are co-localized with myrosinases in cotyledons, suggesting
that preformed myrosinase complexes do exist (Geshi and
Brandt, 1998; Eriksson et al., 2002). Using basic local alignment
search tool (BLAST) to interrogate the Arabidopsis genome
reveals >30 putative MBPs. MBP1 and MBP2 are like lectin
jacalins and plant aggregating factors. MBP1 and MBP2 are
abundantly expressed in immature flowers, and the pattern
is similar to that of myrosinase TGG1 (Capella et al., 2001).
MBP expression and myrosinase activity are affected in the
coil mutant, which is insensitive to jasmonate (Capella et al.,
2001). Depletion of MBPs does not alter the cellular distribution
of myrosinases but prevents myrosinases from forming complexes
(Eriksson et al., 2002). Thus, the functions of MBPs are not
fully understood. Interestingly, most NSPs possess jacalin-like
domains and are MBP-like (Kuchernig et al., 2012). The jacalin-
like domain may interact with the glycans of myrosinases to
potentially affect GLS degradation. However, experimental
evidence is lacking. NSPs were shown to enhance simple nitrile
formation (He et al., 2009; Kissen and Bones, 2009; Chen
et al., 2015; Wittstock et al., 2016b). Recently, iron was shown
to be a centrally bound cofactor of ESP, TFP, and NSP involved
in glucosinolate breakdown. In addition, NSP active site has
fewer restrictions to the aglycone conformation than ESP and
TFP. This may explain why NSP facilitates simple nitrile
production, but not production of epithionitrile and thiocyanate
that may need exact positioning of the aglycone thiolate relative
to the side chain (Backenkohler et al., 2018). In addition to
MBPs, MyAPs form complexes with myrosinases in B. napus
(Taipalensuu et al., 1996). In Arabidopsis, TGG2 was pulled
down with MyAP1 in leaf extracts (Agee et al., 2010). MyAPs
display high similarity to GDSL lipases, which have a motif
of Gly, Asp, Ser, and Leu residues in the active site. The
Arabidopsis genome contains >80 genes encoding GDSL lipases,
typically with a GDSL-like motif, a catalytic triad of Ser, Asp
and His residues, and a lipase signature sequence GxSxxxxG

(Brick et al., 1995). The possible lipase activity of MyAP
suggests a potential role of MyAP in releasing acyl groups
from acylated GLSs, thereby making them available for
myrosinase hydrolysis. Arabidopsis contains acylated GLSs in
seeds, but B. napus does not contain acylated GLSs; thus,
MyAP in B. napus may have other functions. A recent study
shows that overexpression of B. napus MyAP]I led to enhanced
plant defense against a fungal pathogen Sclerotinia sclerotiorum
(Wu et al.,, 2017). A MyAP-like ESM was found to favor ITC
production and protect Arabidopsis from herbivory (Zhang
et al., 2006). However, whether this system involves myrosinase
complex formation is still not known. In some plants, ESPs
are involved in GLS hydrolysis (Foo et al., 2000; Burow et al.,
2006). Hydrolysis of alkenyl GLSs in the presence of ESP
leads to the formation of nitriles or epithionitriles, instead
of isothiocyanates (Zabala Mde et al., 2005; Burow et al,
2006). Because ESPs can alter the course of hydrolysis, they
are important in determining plant herbivore choice and host
resistance (Lambrix et al,, 2001). Furthermore, this suggests
that ESP is situated close to the active site so that it could
promptly convert the unstable aglycone to nitriles. Although
kinetic studies have showed that ESP acts as a non-competitive
inhibitor of myrosinase (MacLeod and Rossiter, 1985), no
stable interaction between ESP and myrosinase has been
reported (Burow et al., 2006). Like nitrile formation, the
production of thiocyanate was found to be associated with
TFP. For detailed description of myrosinase specifier proteins,
please refer to a recent review (Wittstock et al, 2016a). In
summary, several other groups of proteins may interact with
myrosinases and function to affect how GLSs are degraded,
leading to the formation of different metabolic products.
Systematic studies to characterize the interaction of these
proteins with myrosinases are needed to elucidate their
specific functions.

DIRECTIONS FOR FUTURE RESEARCH
AND CONCLUSIONS

Currently, the cellular and subcellular location of myrosinases,
GLSs, and their interacting proteins, i.e., the GM system, are
far from established. Given >100 cell types in plants and >5,500
species of GLS producers, it would be a challenge to capture
all the species-specific and cell type-specific information of
the “mustard oil bomb.” In addition, with temporal accumulation
and expression patterns of metabolites and enzymes involved
typically in case of specialized metabolites, these eventual
pictures could be very complex. Using cell type-specific genetic
manipulations (e.g., GFP fusion and CRISPR), one can envision
to capture the cell type-specific expression patterns and
functional role of the glucosinolate biosynthetic proteins,
myrosinases, and myrosinase interacting proteins. There exist
large gaps in the knowledge base of the GM system, e.g.,
myrosinase interacting proteins in terms of their interactions,
co-localizations, regulations, and functions in specific cell types.
Furthermore, the developmental staged appearance and regulation
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of the proteins and metabolites are not clear. Moreover, the
reported interactions of myrosinases and other proteins could
be very much cell type-specific or subcellular localized, which
is not well studied till date. Without resolving the cell type
specificity of the proteins and metabolites, it would be very
challenging to draw mechanistic conclusions on the specific
roles of the enzymes, interactors, transporters, and the metabolites
from tissue- and whole plant-based data where the information
are averaged out (Dai and Chen, 2012; Misra et al, 2014).

In the future, efforts need to focus on large-scale speedy
preparations of organelles and subcellular fractions (e.g.,
vacuoles, peroxisomes, and chloroplasts) in a time-dependent
manner to capture the dynamics of protein interactions and
GLS metabolism. It is obviously challenging to prepare and
enrich plant cell types (e.g., the “S-cells”) in copious amounts
for more system-wide experiments such as transcriptomics,
proteomics, and metabolomics and to obtain preparations
at a given time and for a specific treatment. With the
recent development of single-cell omics tools (Misra et al.,
2014; Efroni and Birnbaum, 2016; Doerr, 2019), such large-
scale molecular characterization of different single cells is
within sight and will greatly enhance the understanding of
the chemodiversity of the GM system at the single-
cell resolution.
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Plant specialized metabolism emerged from the land colonization by ancient plants,
becoming diversified along with plant evolution. To date, more than 1 million metabolites
have been predicted to exist in the plant kingdom, and their metabolic processes have
been revealed on the molecular level. Previous studies have reported that rates of evolution
are greater for genes involved in plant specialized metabolism than in primary metabolism.
This perspective introduces topics on the enigmatic molecular evolution of some plant
specialized metabolic processes. Two transferase families, BAHD acyltransferases and
aromatic prenyltransferases, which are involved in the biosynthesis of paclitaxel and
meroterpenes, respectively, have shown apparent expansion. The latter family has been
shown to be involved in the biosynthesis of a variety of aromatic substances, including
prenylated coumarins in citrus plants and shikonin in Lithospermum erythrorhizon. These
genes have evolved in the development of each special subfamily within the plant lineage.
The broadness of substrate specificity and the exon-intron structure of their genes may
provide hints to explain the evolutionary process underlying chemodiversity in plants.

Keywords: prenyltransferase, acyltransferase, BAHD, Citrus, gene family, molecular evolution, specialized
metabolism, Lithospermum, Taxus

INTRODUCTION

Since land plant colonization 500 million years ago, plant specialized metabolic processes
have expanded considerably, resulting in the development of diverse traits within the plant
kingdom (Weng et al., 2012). The chemical diversity of those natural products provides
various metabolites beneficial for human life, including compounds associated with flavor,
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color, taste, and medicine. A comparative genome analysis
strongly suggested that gene duplications played a major role
in the evolution of divergent metabolic pathways (Fani and
Fondi, 2009). The increase in the number of gene copies
may have allowed promiscuous diversity of the encoded
enzymes, resulting in the synthesis of new metabolites and
providing organismal fitness that enhances the establishment
of biosynthetic pathways in the plant lineage. The expansion
of plant specialized metabolism has been observed in the
genome of Selaginella moellendorffii, a plant that diverged
shortly after the establishment of vascular tissues in plant
evolution (Banks et al., 2011). A representative example of
these expanded gene families is cytochrome P450-dependent
monooxygenases, which constitute 1% of the predicted proteome
in Selaginella. The genome of liverwort, Marchantia polymorpha,
also encodes many terpenoid biosynthetic enzymes sharing
a common isoprenoid pathway, a derivative designated taxadiene
for the synthesis of plant hormones like gibberellin (Bowman
et al,, 2017). In Physcomitrella patens, a diterpene ent-kaurene
is converted to gibberellin-type diterpenes, which act as
regulators of protonema differentiation (Hayashi et al., 2010).

Species of the gymnosperm Taxus synthesize unique diterpene
compounds called “taxoids,” which include an important
anticancer drug, paclitaxel, a derivative designated taxadiene
(Guerra-Bubb et al., 2012). Over 350 taxoid compounds were
identified by 1999, with these compounds having variable side
residues at the Cl1, C2, C4, C5, C7, C9, C10, C13, and C14
positions of the core taxadiene skeleton (Baloglu and Kingston,
1999). Except for a partial biosynthetic route (Croteau et al.,
2006), knowledge about the biosynthetic pathway of taxoids
that contribute to the chemodiversity in Taxus is limited.

Because of their fine-tuned genome data resources, angiosperm
species provide good model systems to study molecular
mechanisms underlying the chemodiversity of plant metabolites
(Kroymann, 2011). For example, meroterpenes, including
furanocoumarin derivatives (Bourgaud et al., 2006) and shikonin
derivatives that are lipophilic red naphthoquinone (Yazaki,
2017), are specialized metabolites synthesized through branched
routes from a metabolic pathway common to the general
phenylpropanoid and isoprenoid biosynthetic pathways (Yazaki
et al,, 2017). The term “primary metabolism” indicates processes
required to sustain life, such as energy acquisition from glucose.
These processes include, for example, the biosynthesis of
ubiquinone, a component of the respiratory chain in
mitochondria. The biosynthesis of shikonin derivatives involves
steps common to those involved in ubiquinone biosynthesis.
To avoid confusion in distinguishing between primary and
specialized (secondary) metabolism, this article uses the term
“‘common metabolism” rather than “primary metabolism” to
indicate biosynthetic pathways conserved in a broad variety
of organisms.

This perspective focuses on two enzyme families as examples
of molecular evolutionary events: the aromatic substrate
prenyltransferase family, which plays a key role in the diversification
of phenolics, and the BAHD (BEAT-AHCT-HCBT-DAT; initials
of representative members) acyltransferase family, which is
responsible for the derivatization of a core metabolite.

EVOLUTION OF THE CITRUS
PRENYLTRANSFERASE GENE FAMILY

Among prenyltransferase superfamily including prenyl chain
elogation enzymes, aromatic prenyltransferases represent a family
responsible for the prenylation of aromatic substances. An aromatic
prenyltransferase of Citrus limon, CIPT1, is responsible for the
biosynthesis of 8-geranylumbelliferone, a coumarin derivative of
a plant specialized metabolite (Munakata et al, 2014). The
chemical diversity of coumarin derivatives is greatly increased
by the involvement of aromatic prenyltransferases, which have
been identified in many plant lineages during the last decade
(Karamat et al, 2014; Munakata et al, 2014). Phylogenetic
analysis has suggested that the diverse prenyltransferases developed
independently in each plant family rather than developing from
a common ancestor within the prenyltransferase gene family
(Munakata et al., 2016). The plant prenyltransferase gene family
contains conserved subfamilies responsible for the ubiquinone,
plastoquinone, and vitamin E biosynthesis pathways (Li, 2016).

An outline of the evolutionary development of plant aromatic
prenyltransferases in Citrus species was revealed by a phylogenetic
analysis of previously characterized prenyltransferases and
prenyltransferases of the model species P patens, S. moellendorffii,
Arabidopsis thaliana, Glycine max, and Lithospermum erythrorhizon
(see below), in addition to Citrus sinensis (Figure 1A).
Phylogenetically, these intrinsic membrane proteins can be grouped
into three major subfamilies, i.e., those involved in the biosynthesis
of vitamin E, plastoquinone, and ubiquinone (shown as yellow
and gray backgrounds and as the black triangle, respectively in
Figure 1A, with the black triangle expanded in Figure 1B). The
biochemical functions of AtVTE2-1 (Savidge et al., 2002), AtVTE2-2
(Venkatesh et al., 2006), and OsPPT1 (Ohara et al, 2006) have
been described. As expected from their fundamental roles, all
model plant species had one or more proteins in each subfamily.
In contrast, a search of the C. sinensis database revealed nine
prenyltransferase-like proteins, forming a Citrus-specific subfamily
within the vitamin E clade (shown in red in Figure 1A). A similar
result was obtained by searching Citrus clementina genome sequences.
These results suggest that Citrus species have developed a unique,
expanded gene subfamily for specialized metabolism, with CIPT1
being biochemically characterized. This analysis also identified a
similar unique subfamily expansion in G. max (shown in blue
in Figure 1A). The first flavonoid-specific prenyltransferase SINSDT1
from a legume species Sophora flavescens (Sasaki et al., 2008) is
in this group, suggesting that flavonoid prenyltransferases in soybeans
were derived from a vitamin E biosynthetic enzyme. Other, later
detected flavonoid prenyltransferases were all classified in this
subgroup (Akashi et al, 2009; Yoneyama et al, 2016). Most of
these enzymes involved in specialized metabolism show strict
substrate specificity in relation to a particular prenyl diphosphate.

Prenyltransferases involved in common metabolism show broad
specificity in relation to substrates of different side chain lengths;
ie,, they accept various prenyl diphosphates of different chain
lengths (Sadre et al., 2010). For example, the ubiquinone biosynthesis
pathway in rice can be modified by introducing a decaprenyl
diphosphate synthase, resulting in the production of non-native
UQI10 rather than native UQ9 (Ohara et al, 2006; Takahashi
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FIGURE 1 | Phylogenetic analysis of the prenyltransferase family in citrus species and Lithospermum erythrorhizon as well as in model plants. (A) Grouping of plant
prenyltransferases into three major clades: a clade represented by the Arabidopsis homogentisate phytyltransferase AtVTE2-1 involved in vitamin E biosynthesis
(indicated by “Vitamin E” and a yellow background), a clade represented by Arabidopsis AtVTE2-2 for plastoquinone biosynthesis (indicated by “Plastoquinone” and
a gray background), and a clade represented by the rice polyprenyltransferase OsPPT1 for ubiquinone biosynthesis (indicated by “Ubiquinone” and a compressed
black triangle). Biochemically characterized proteins are indicated by a white background. The Citrus and legume proteins are shown in red and blue letters,
respectively, and the lineage-specific clades are indicated by brackets with the same colors. (B) Details of the phylogenetic tree of polyprenyltransferases for
ubiquinone in panel (A). L. erythrorhizon proteins are shown in magenta letters. The brackets indicate subclades of polyprenyltransferases involved in ubiquinone
biosynthesis (PPT subfamily), LePGT-like proteins (LePGT subfamily), and unclassified subclade proteins (unclassified). The proteins from other organisms are shown
in black letters. The asterisk indicates the putative PPT-like protein of L. erythrorhizon. The phylogenetic tree was drawn using the MEGA7 neighbor-joining method
with 1,000 bootstrap replicates for alignment of polyprenyltransferase-related proteins, which were calculated with the MUSCLE algorithm. The accession numbers

are shown next to the name of the organism. Biochemically characterized proteins are indicated by a yellow background. The scale bar represents 0.1 amino acid
substitutions per site. (C) LePGT gene is encoded by a single exon gene in the L. erythrorhizon genome, whereas LePPT-like proteins are encoded by genes with
inserted introns, at positions similar to those of the authorized OsPPT gene and the closest tobacco homolog, NtPPT-like gene (gene = LOC107804153). The first
intron insertion site into the coding region is shown. Scale bar, 1 kb of DNA sequence. Blue boxes represent coding exons.

et al,, 2006). These expanded gene families and the broad substrate
specificity of prenyltransferases may provide the opportunity for
neo-functionalization of new enzymes in plant evolutionary history.

EVOLUTION OF THE
P-HYDROXYBENZOIC ACID
GERANYLTRANSFERASE GENE FOR
SHIKONIN BIOSYNTHESIS

A boraginaceaeous medicinal plant, L. erythrorhizon, possesses
a unique subfamily of p-hydroxybenzoic acid geranyltransferases
(PGTs) (Figure 1B) that are specifically involved in shikonin
biosynthesis (Yazaki et al., 2002). An overview of the evolutionary
history of PGT was attained by assessing genome sequences
and transcriptomes of L. erythrorhizon from the GenBank
datasets SRP108575 and SRP141330, respectively, as well as
by reassembling our original data (Takanashi et al., 2019). The

hypothetical PGT-like proteins were found to be closely related
to the ubiquinone prenyltransferase subfamily involved in
common metabolism (magenta in Figure 1B), which was closer
to these hypothetical PGT-like proteins than the specialized
citrus prenyltransferases (Figure 1A). Most PGT-like proteins
are encoded by genes with a single exon, whereas general
ubiquinone biosynthetic polyprenyltransferases (PPTs) are
encoded by genes containing multiple exons (Figure 1C). It
is of interest to determine how the single exon structure was
generated during the evolution of plant specialized metabolism.

MISSING UBIQUINONE
PRENYLTRANSFERASE IN
L. ERYTHRORHIZON

Although ubiquinone is a common metabolite in all eukaryotes,
and the genes encoding PPTs are essential for the survival of
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a broad range of organisms, no orthologous ubiquinone PPT
gene was found in the L. erythrorhizon transcriptome.
Experiments in yeast showed that LePGT cannot synthesize
ubiquinone (Yazaki et al, 2002), and LePGT heterologously
expressed in E. coli was found to inhibit ubiquinone biosynthesis
(Wu et al, 2015). Genomic sequencing identified a contig
fragment that could code for PPT-like proteins (asterisk in
Figure 1B) and that its amino acid sequence was moderately
similar to that of OsPPT1, which is responsible for ubiquinone
biosynthesis in rice. In addition, there were three contigs that
we could not classify, which are labeled “unclassified genes”
(“unclassified” in Figure 1B). In contrast to the particular
PGT that catalyzes shikonin biosynthesis, an intron insertion
was found in the hypothetical gene, at the same position as
in the PGTs of Nicotiana tabacum and Oryza sativa (Figure 1C).
This conserved exon-intron organization was also observed in
the PPT genes from Arabidopsis and rice (Ohara et al., 2006).
This gene product is a strong candidate for a ubiquinone
prenyltransferase in L. erythrorhizon, and its biochemical
characterization is expected in the future.

EVOLUTION OF THE TAXUS
ACYLTRANSFERASE GENE FAMILY

Acyltransferases also substantially contribute to the diversification
of specialized metabolites, in which BAHD and SCPL (serine
carboxypeptidase-like) are representatives. Taxoids such as
paclitaxel present in Taxus species are specialized metabolites
and highly acylated compounds. Five known taxoid
acyltransferases are closely related to each other, with all grouped
in clade V of the BAHD acyltransferase family (D’Auria, 2006).
These Taxus proteins differ in substrate specificities for both
acyl donors and acceptors; i.e., they can utilize acetyl-CoA,
benzoyl-CoA or phenylalanoyl-CoA for O- and N-acylation
of various taxoid molecules (D’Auria, 2006).

To wunderstand the evolutionary development of the
Taxus BAHD acyltransferase family, BAHD clade V was
analyzed phylogenetically in detail (yellow background in
Figure 2A). The amino acid sequences of Taxus BAHD members
were obtained from the transcriptome data of Taxus x media
cultured cells (Yukimune et al., 1996). Phylogenetic analysis showed
that the Taxus BAHD proteins form a Taxus-specific clade (red
bracket in Figure 2A), containing all five characterized
acyltransferases (white background in the Taxus-specific clade),
as well as other Taxus proteins of unknown function (asterisk
in Figure 2A). Within this clade of the BAHD family, O. sativa
and A. thaliana each form a unique clade, suggesting that lineage-
specific subfamily expansion of the BAHD acyltransferases plays
a major role in plant evolution (Fani and Fondi, 2009). In addition
to this Taxus-specific subgroup, other Taxus BAHD proteins have
been identified, with these classified with other model plant BAHD
members (Supplementary Figure S1), suggesting that Taxus species
possess genes encoding general BAHD clade V proteins that are
conserved among a broad range of plant species.

It can be hypothesized that neo-functionalization is induced
by the acquisition of promiscuous enzymatic activity during

plant evolution. We have examined the enzymatic activity of
recombinant proteins prepared from seven isolated cDNAs
encoding BAHD members of the Taxus-specific subfamily (dagger
in Figure 2A). Each crude recombinant enzyme was prepared
using pET22a and OrigamiB as a host-vector system (Novagen),
without a periplasmic signal sequence, according to the
conventional method. Each enzyme was reacted with acetyl-CoA
and 10-deacetyl baccatin III (10-DAB) as substrates, and the
reaction products were analyzed using an UPLC-MS/MS system
equipped with a BEH C18 column (Waters). The clone encoding
5-hydroxytaxadiene 5-O-acetyltransferase (TAT) had 10-DAB:10-
O-acetyltransferase (DBAT) activity (Walker et al., 2000), as
well as the canonical enzyme DBAT (Figures 2B,C; Walker
and Croteau, 2000). The amount of the product formed by
the substrate was 1.4 mol% for TAT and 10.4% for DBAT,
suggesting that the activity of TAT was 13.2% that of DBAT.
This promiscuity of enzymatic activity may represent the
evolutionary footprint of a biosynthetic enzyme that acquires
a new functionality through the alteration of substrate and
product specificities, resulting in the production of a unique
specialized metabolite.

CONCLUSIONS AND PERSPECTIVES

Using two transferase subfamilies as examples, we have shown
the “heritage” of expansion of a gene family, which is relevant for
the development of plant specialized metabolic pathways. A protein
in the specific BAHD subfamily of Taxus species showed promiscuous
enzymatic activity for noncanonical substrates containing side chains
at a noncanonical carbon position. These observations fit the general
context of developmental molecular evolution that explains the
development and establishment of new canonical enzymatic activity
(Weng et al., 2012). The generation in L. erythrorhizon of a PGT
gene subfamily, each containing a single exon and involved in
shikonin biosynthesis, suggests the putative involvement of the
reverse transcription of mature mRNA. If this surmise is valid
for other enzyme families, single exon genes may provide clues
to identifying missing proteins responsible for biosynthetic pathways
for other valuable plant specialized metabolites.

There are yet many missing links, even in actively studied
shikonin and taxoid biosynthetic pathways. The applicable range
of the single exon hypothesis may not be limited only to
biosynthetic enzymes, but to regulatory factors. The identification
of regulatory factors will be essential to understanding the
production of plant specialized metabolites, including membrane
transporters. Comparative genomics will enable the assessment
of the evolutionary footprint of these genes, e.g., the expansion
of specific subfamilies and the proliferation of single exon
genes. Further biochemical and molecular genetics studies may
provide experimental evidence for the involvement of hypothetical
proteins in plant specialized metabolism.

DATA AVAILABILITY

The datasets generated for this study can be found in GenBank.
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FIGURE 2 | Phylogenetic analysis of BAHD acyltransferase proteins from Taxus species and LC-MS/MS analysis of the reaction products of the noncanonical enzyme,
taxadienol 5-acyltransferase. (A) Performance of phylogenetic analysis with hypothetical Taxus BAHD acyltransferase-like proteins and related proteins from model plant
species. The BAHD family was classified into five clades (D’Auria, 2006), with clade V indicated by a yellow background, and representatives of clade -V (VhSMATT,
CER2, BEAT, and ACT, respectively) placed outside the yellow background. Proteins of Taxus, rice, Arabidopsis are shown in red, magenta, and blue letters, respectively,
and the lineage-specific subclades are indicated by the same colors. The bracket “Taxus specific clade” indicates the Taxus lineage-specific subclade containing the five
characterized proteins, TAT, DBAT, DBTNBT, DBBT, and BAPT, indicated by a white background. Asterisks indicate Taxus proteins of unknown function, and daggers
indicate proteins biochemically analyzed in the present study. A representative widely conserved clade in land plants from Physcomitrella to Arabidopsis is indicated by
brackets, with four other subclades compressed (expanded in Supplementary Figure S1), in addition to the clade conserved in seed plants containing the Taxus
specific clade. The accession numbers are given next to the organism names. The phylogenetic tree was drawn using the MEGAT neighbor-joining method with 1,000
bootstrap replicates for alignment calculated with the MUSCLE algorithm. Scale bar, 0.1 amino acid substitutions per site. (B) LC-MS/MS chromatograms of the enzyme
reaction products of Taxus acyltransferases DBAT and TAT using acetyl-CoA and 10-DAB as substrates. The red arrow indicates the peak of the noncanonical reaction
product. The bottom panel shows the chromatogram of standard specimens, 10-DAB and baccatin Ill. The chromatograms show a trace of representative ions

m/z = 545.5 [M + H] + and 604.5 [M + NH4] + for the substrate 10-DAB (blue) and the product baccatin lll (red), respectively. The vertical axis indicates the value relative
to 5 million ion counts. (C) Mass spectrum of the in vitro reaction product peaks found at a retention time of 6.951 min of the chromatogram. The vertical axis indicates
the relative value of ion count of maximum signal at m/z = 604.5. The molecular formulas of 10-DAB and baccatin Il are shown in panel (B).
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This review describes the application of computational chemistry to plant secondary
metabolism, focusing on the biosynthetic mechanisms of terpene/terpenoid, alkaloid,
flavonoid, and lignin as representative examples. Through these biosynthetic studies,
we exhibit several computational methods, including density functional theory (DFT)
calculations, theozyme calculation, docking simulation, molecular dynamics (MD)
simulation, and quantum mechanics/molecular mechanics (QM/MM) calculation. This
review demonstrates how modern computational chemistry can be employed as an
effective tool for revealing biosynthetic mechanisms and the potential of computational
chemistry—for example, elucidating how enzymes regulate regio- and stereoselectivity,
finding the key catalytic residue of an enzyme, and assessing the viability of hypothetical
pathways. Furthermore, insights for the next research objective involving application of
computational chemistry to plant secondary metabolism are provided herein. This review
will be helpful for plant scientists who are not well versed with computational chemistry.

Keywords: biosynthesis, computational chemistry, density functional theory, molecular dynamics simulation,
quantum mechanics/molecular mechanics, plant, secondary metabolite

INTRODUCTION

Recent advances in life science have revealed many plant secondary biosynthetic pathways and
have also contributed to establishing efficient microbial-based manufacturing systems that can
potentially afford greater amounts of important plant secondary metabolites, including artemisinin
(Ro et al., 2006; Paddon et al., 2013), opioids (Galanie et al, 2015), and cannabinoids (Luo
et al, 2019), by introducing all of the biosynthetic genes into the host. These outstanding
achievements are obviously based on long-standing biosynthetic studies. In opioid heterologous
expression systems, not only enzymes from plants but also enzymes from other organisms
were used, which are relevant to the expression levels and substrate specificity. Considering
the progress of biosynthetic studies and synthetic biology, rational engineering of the existing
biosynthetic pathways or designing the novel pathways to obtain desired products appears to
be the next challenge. To achieve this objective, detailed mechanistic investigations of biosynthetic
reactions are critical for the rational modification of biosynthetic pathways or enzymes.
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Although various types of experimental methods, such as
labeling experiments, X-ray crystallography, site-directed
mutagenesis, omics studies (Rai et al., 2017, 2019), and genome
editing, have been applied, clarifying entire biosynthetic pathways
and mechanisms remains a challenge in plant science. Unlike
microorganisms, biosynthetic genes do not form clusters in
plants, which makes biosynthetic studies of plants difficult. Even
finding a biosynthetic gene (enzyme) is a challenge. For example,
thus far, in quinolizidine alkaloid biosynthesis, only two enzymes
have been characterized for their skeletal formation, although
studies on their biosynthesis have been carried out for over
half a century (Bunsupa et al, 2012; Yang et al, 2017).

Recently, an increasing number of computational chemistry
studies on natural product biosynthesis have been published,
which provides new insights that cannot be discovered solely
by experimental approach. However, among plant biologists
and computational chemists, there is still a significant gap in
understanding how computational chemistry is an effectual
tool. Through several representative biosynthetic studies on
terpene/terpenoid, alkaloid, flavonoid, and lignin, this review
describes what can be clarified using computational chemistry
and also describes the computational methods, which are widely
used for the mechanistic investigation of biosynthetic reactions.
An attempt to be comprehensive was made; however, apologies
are offered in advance for any accidental oversights. Moreover,
there are many computational predictions of NMR, UV, and
CD spectra, and mechanistic investigations on fungal or bacterial
secondary metabolism; however, these studies are not covered
here since this review focuses on the “mechanistic investigations”
of “plant” secondary metabolism.

THEORETICAL METHODS FOR
NATURAL PRODUCT BIOSYNTHESIS
RESEARCH

In plant science, cheminformatics such as KEGG (Kanehisa and
Goto, 2000; Kanehisa et al, 2017, 2019) KNApSAcK (Afendi
et al, 2011), etc.,, are widely utilized to predict biosynthetic
pathways. However, computational chemistry is completely different
from these database search approaches. In computational chemistry,
the properties of compounds, such as free energy, spectrum,
reactivity, and molecular orbitals, etc., are obtained by ab initio
calculations based on the Schrodinger equation in molecular
orbital (MO) calculations, the Kohn-Sham equation in density
functional theory (DFT) calculations, and the Newton equation
in molecular dynamics (MD) simulations (Jensen, 2017).
Although a variety of computational methods are available
for the mechanistic investigation of chemical reactions, carefully
choosing appropriate methods is important in terms of accuracy
and computational expenses. Today, quantum mechanics (QM),
i.e, MO or DFT, are mainly used for the evaluation of the
reactivity or properties of small molecules. For mechanistic
investigations using QM calculations, transition state (TS) search
is initially performed, after which frequency calculation is
performed to ensure that the TS has a single imaginary frequency.

Finally, intrinsic reaction coordinate (IRC) calculation is carried
out to obtain the reactant and product (Ishida et al, 1977;
Fukui, 1981; Gonzalez and Schlegel, 1989; Page et al., 1990;
Schlegel and Gonzalez, 1990). Today, hundreds of levels of
theory are available. The choice of the level of theory is quite
critical for computation accuracy in QM, which is dependent
on the type of reactions or chemical structures. Many publications
on benchmark tests exist, in which several combinations of
density functional and basis set are tested against the one
certain reaction or molecule to find the most accurate level
of theory. For example, mPW1PW91/6-31+G (d,p)//B3LYP/6-
31+G(d,p) has been used for the terpene-forming reaction
based on the benchmark test reported by Matsuda et al. (2006).
In this literature, many combinations of basis set and functionals
were tested and compared with the experimental data. The
results indicated that B3LYP/6-31+G(d,p) is the best for geometry
optimization, whereas mPW1PW91/6-31+G(d,p) is the best for
computing the free energy for the terpene-forming reaction.

In plant secondary metabolism, most of the biosynthetic
reactions are thought to be catalyzed by enzymes; however, the
system size, which QM calculations can treat, is usually up to
a few hundred atoms. This means that biological macromolecules,
i.e., enzymes, are too large to be calculated with QM. Theozyme
calculation (Tantillo et al., 1998; Ujaque et al, 2002; Tantillo,
2010) is one way to estimate the enzymatic assistance toward
the chemical conversion, in which the catalytic center, substrate,
and several residues are picked up and subsequently subjected
to DFT calculations (see Section “Theozyme Calculation Identified
the Key Residue for Sesterfisherol Biosynthesis” for more detail).
However, QM calculation is applied only for the isolated model,
and the regions that could affect the chemical conversion are
ignored. Thus, MD simulation is used for large macromolecule
systems, which can simulate the time-dependent structure changes
of enzymes; however, the free energy value is less accurate than
that obtained using QM. For relatively high accuracy, quantum
mechanics/molecular mechanics (QM/MM) is used for large
macromolecule systems, in which the reaction system is divided
into two regions: QM and MM. Generally, the catalytic center
is calculated using QM, and the other parts of the enzyme are
calculated using MM. Moreover, a state-of-the-art QM/MM MD
is also utilized for mechanistic investigations.

TERPENOIDS

Terpene/terpenoids are the largest natural product group. At
least 80,000 terpene/terpenoids have been reported to date
(Quin et al., 2014; Dickschat, 2016; Christianson, 2017). Most
theoretical studies on terpene cyclization have been carried
out by Tantillo and Hong. Although they have provided valuable
insight into carbocation chemistry, only some of their works
are presented in this review due to page limitations. One of
the reasons for the considerable success of this compound
group in computational chemistry is that terpenes consist of
only carbons and hydrogens; therefore, strong interactions
between the substrate and enzyme, such as hydrogen bonding,
are not necessarily considered for its cyclization. In fact, the
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computed inherent reactivity shows good agreement with the
experimental data for the terpene-forming reaction. Moreover,
as was described above, a detailed benchmark test has been
reported, which also supports the computation accuracy. In
this section, several examples ranging from small systems to
large systems will be discussed.

Two Possible Cyclization Mechanisms
Were Assessed Using Density Functional
Theory Calculations

In comparison to mono-, sesqui-, di-, and triterpene,
sesterterpenes are considered relatively minor terpenes, and
only several biosynthetic enzymes have been characterized
to date. In 2017, a genome mining approach to discovering
the biosynthetic genes of sesterterpenes from Arabidopsis
thaliana, Capsella rubella, Brassica oleracea, and Brassica rapa
was reported by Huang et al. (2017), which strongly promoted
the biosynthetic research of sesterterpenoids. They isolated
(+)-arathanatriene,  (—)-retigeranin B,  (+)-astellatene,
(-)-ent-quiannulatene, (—)-variculatriene A, (-)-caprutriene,
(+)-boleracene, (—)-aleurodiscalene A, (+)-caprutriene C,
(-)-caprudiene A, (+)-brarapadiene A, (-)-brarapadiene B,
(-)-arathanadiene A, and (-)-arathanadiene B, and also
characterized the corresponding biosynthetic enzymes
(Figure 1). Interestingly, some of these compounds are originally
found in microorganisms, suggesting the convergent evolution
of biosynthetic genes.

Since sesterterpenes have more carbons than sesqui- and
diterpenes do, their structure is more flexible and complicated,
which makes the mechanistic investigation challenging. For example,
two reasonable pathways can be proposed for (+)-astellatene
formation (Figure 2). In path I, a 5/6/11 tricyclic skeleton is
formed first, whereas path II involves the initial formation of a
5/12/5 tricyclic skeleton. Prior to this research, a labeling experiment
was performed by Ye et al. in the biosynthesis of sesterfisherol,
which is a similar sesterterpenoid. They could not experimentally
distinguish between the 5/6/5 and 5/12/5 tricyclic skeleton
formations because both paths are consistent with the labeling
experiment results (Ye et al, 2015). Moreover, predicting a
reasonable pathway based on presumable intermediates is difficult.
For example, (+)-arathanatriene and (-)-caprutriene could
be formed via path I, whereas (—)-variculatriene A and
(—)-variculatriene B could be formed via path II, indicating that
the experimental approach is not enough to answer this question.
Accordingly, Huang et al. performed DFT calculations to assess
the viability of the proposed biosynthetic pathways of (+)-astellatene
and brarapadiene A (Huang et al.,, 2018).

Based on their computational results, both pathways are
energetically viable; however, path I is inherently preferred
since the highest energy barrier in path I is lower than that
in path II by 6 kcal/mol. This study shows that DFT calculations
can clarify the inherent reactivity of the carbocation intermediate
in terpene biosynthesis, which could be useful for distinguishing
the favored pathway. This combined experimental and
computational approach is very useful, particularly when the
reaction mechanism cannot be accessed solely using experiments.

Density Functional Theory Calculation
Revealed That the Initial Conformation
Affects the Regio- and Stereoselectivity

In terpene cyclization cascade, the computed inherent reactivity
is consistent with the experimental result, indicating that enzymes
do not precisely manipulate the reactions step by step. However,
conventionally, various kinds of terpenoids are synthesized from
common isoprenoid substrates. Therefore, some may wonder
how terpene cyclases can control the regio- and stereoselectivity
without interacting with the intermediate during the cyclization.

To investigate the origin of the terpenoid structural diversity,
Sato et al. carried out a detailed comparative study of two
structurally similar sesterterpenes: sesterfisherol and quiannulatene,
which were synthesized by NfSS and EvQS, respectively (Sato
et al.,, 2018a). Based on their calculations, these sesterterpenoids
are formed via the 5/12/5 tricyclic intermediate unlike for
astellatene (Figure 2, path II). In addition, a careful comparison
study clarified the conformational difference between the eight-
membered rings in these two 5/12/5 intermediates. Here, we refer
to the conformation of the quiannulatene’s 5/12/5 tricyclic
intermediate (IM_Q) as conformation A, and that of sesterfisherol
(IM_S) as conformation B.

They carried out “conformation swapping analysis” among
these two sesterterpenoid intermediates (Figure 3). When IM_Q
is in conformation B, 5/5/5-type triquinane formation proceeds,
which was observed in sesterfisherol biosynthesis (Figure 3B).
However, this triquinane formation reaction does not proceed
inside EvQS, because conformation A is more stable than
conformation B by 2.3 kcal/mol, and the activation energy of
the 5/5/6-type condensation reaction is much lower. When
IM_S is in conformation A, a 5/5/6-type condensation reaction
proceeds, which is observed in quiannulatene biosynthesis
(Figure 3C). However, this reaction cannot proceed inside NfSS
because the energy barrier is too high (AG* = 26.6 kcal/mol).
This analysis suggests that the destination of the cyclization
cascade is determined by the conformation of the intermediates.
For each intermediate, the preferred conformation is different
(A is preferred in quiannulatene biosynthesis, and B in
sesterfisherol biosynthesis), which could be attributed to the
stereochemistry of the 5/11 condensation positions (trans-fused
in IM_Q while cis-fused in IM_S).

Moreover, a further detailed comparison was carried out
for the whole cyclization cascade, from which the initial
conformation was found to be critical for the selectivity (Figure 4).
The orientation of the methyl group of each double bond in
the initial conformation determines the stereochemistry of the
intermediate; accordingly, the conformation of the intermediate
is automatically fixed, and the destination of the cascade is
automatically set. In conclusion, terpene synthase appears to
regulate the regio- and stereoselectivity by fixing the
initial conformation.

Theozyme Calculation Identified the Key
Residue for Sesterfisherol Biosynthesis
Generally, the main roles of terpene cyclases are (1) abstraction
of pyrophosphate, (2) fixing the initial conformation (as was
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FIGURE 1 | Seventeen sesterterpenes were isolated from plants based on the genome mining approach. The compounds’ names and their corresponding
biosynthetic genes are shown below the structures. AtPTS is a terpene synthase from Arabidopsis thaliana; Cr is a terpene synthase from Capsella rubella; Bo is a
terpene synthase from Brassica oleracea; and Br580 is a terpene synthase from Brassica rapa.

described above), (3) protecting the reactive intermediates from
water, and (4) termination of the cyclization. The terpene-forming
reaction is initiated by the elimination of the pyrophosphate group;
afterward, the cyclization is driven by the inherent reactivity of
the carbocation. However, the residue in the active site occasionally
affects the carbocation intermediate in the cyclization cascade.
Considering computational expenses, theozyme calculation is a
great method for estimating the involvement of residues in the
active site. Here, we show one example in which theozyme
calculation and experimental validation worked successfully.

A detailed theoretical study of sesterfisherol biosynthesis
was published by Sato et al. (Narita et al., 2017; Sato et al.,
2018b). While they were exploring the cyclization mechanisms
of sesterfisherol, a deep minima was found that required
extraordinarily high energy, which was different from the
activation energy in terpene biosynthesis. Subsequently, they
examined the possibility of C-H m interactions (Hong and
Tantillo, 2015), since terpene cyclase active sites are generally
formed by aromatic and aliphatic residues. To estimate the
C-H m interaction, a benzene ring was located around the
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FIGURE 2 | Two reasonable biosynthetic pathways of (+)-astellatene. In path |, 5/6/11 tricyclic skeletons are formed. Conversely, a 5/12/5 tricyclic skeleton is
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FIGURE 3 | Conformational swapping changed the regioselectivity. This figure represents the regioselectivity of the 5/11/5 tricyclic intermediates in both
quiannulatene and sesterfisherol biosyntheses, in each conformation. (A) Quiannulatene biosynthesis pathway in comformation A, (B) Quiannulatene biosynthesis
pathway in comformation B, (C) Sesterfisherol biosynthesis pathway in conformation A, (D) Sesterfisherol biosynthesis pathway in conformation B.

carbocation center of the intermediate, and the transition state
structure search was subsequently carried out. Consequently,
an alternative pathway was found, in which the C-H =
interaction lowered the activation energy and also avoided
the deep minima (Figure 5).

Notably, they also experimentally examined this C-H =
interaction by site-directed mutagenesis. First, they constructed
a homology model of NfSS and carried out the docking
simulation. Afterward, several aromatic residue candidates

that could form the C-H m interaction were found in NfSS’s
active site (Figure 6). Due to their experiment, NfSS F191A
produced new compounds instead of sesterfisherol (Figure 5).
This result suggests that F191 is the key catalytic enzyme in
sesterfisherol biosynthesis.

Interestingly, two of the products produced by NfSS F191A
are thought to be derivatives of computationally predicted
intermediates (Byproduct 1 and Byproduct 2), which could
be deprotonated by the pyrophosphate adjacent to the active site.
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FIGURE 4 | Initial conformations of GFPP in quiannulatene and sesterfisherol biosyntheses. (A) 3D representations of IM1 in the quiannulatene biosynthesis
pathway and the sesterfisherol biosynthesis pathway. (B) The orientation of methyl groups attached to the double bonds |, II, IlI, IV, and V.
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FIGURE 5 | Summary of the biosynthetic pathways catalyzed by NfSS WT and NfSS F191A.

As we have shown in this section, the combination of the
theozyme calculation, homology modeling, docking simulation,
and site-directed mutagenesis can be a powerful tool for finding
the key catalytic residues. We think this approach can accelerate
the mechanistic studies of biosynthetic enzymes in plant
secondary metabolism.

High-Resolution All-Atom Model of
Terpene Synthase

As was described above, terpene synthases play an important
role in pre-organizing the initial conformation of the substrate.
However, building molecular models of entire terpene-forming
reactions within an active site remains a challenge. Major et al.
mentioned the following in their review, “A crucial question
in any study of terpene synthases is that of the correct binding
mode. Indeed, crystal structures of terpene synthases often
contain substrates bound in unreactive conformations, partly

due to the stickiness of the hydrocarbon moiety of the substrate
and its lack of hydrogen bond potential. Thus, there is often
great uncertainty regarding the correct binding mode when
commencing multi-scale simulation projects of terpene cyclases”
(Major et al, 2014). To tackle this problem, O’Brien et al.
combined QM calculation and computational docking with
Rosetta molecular modeling suite and reported the high-
resolution all-atom models of epi-aristolochene synthase (TEAS)
from Tobacco (O’'Brien et al., 2016) and (+)-bornyl diphosphate
synthase from Salvia officinalis (O’Brien et al., 2018).

Due to page limitations, we briefly explain their methodologies
here (please refer to the original paper for more details). In the
study, they initially carried out DFT calculations along with the
generally accepted biosynthetic pathway of epi-aristolochene
formation (Figure 7). All computed carbocation intermediates
were subsequently subjected to conformational search using
molecular mechanics force field (MMFF). These conformation
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FIGURE 6 | A carbocation intermediate and NfSS complex obtained by the
docking simulation.
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FIGURE 7 | Energy diagram of epi-aristolochene biosynthetic pathway.
Relative energies to intermediate 2 are shown in kcal/mol.

libraries, containing over a hundred conformers for each
carbocation intermediate, were subsequently optimized using
DFT calculations, and low energy structures within 5 kcal/mol
were used for the docking simulation. For the preparation of
the protein structure, the X-ray crystal structure was minimized
using a constrained FastRelax (Conway et al, 2014) procedure
from the Rosetta modeling suite (Meiler and Baker, 2006; Richter
et al, 2011). The diphosphate/magnesium complex extracted
from the TEAS crystal structure was docked along with previously
generated conformer libraries into the relaxed crystal structure
using the chemically meaningful constraints. To ensure that the
sampling was sufficient, 2,500 docking runs per catalytic orientation
(motif) were performed. The resulting structures were combined
and subsequently subjected to filtering based on three explicit
constraints, involving (1) the departing diphosphate oxygen that
results in the carbocation; (2) deprotonation of carbocation
intermediate 2; and (3) protonation of carbocation intermediate 3.

As shown in Figure 8, motif 1 is abundant in all intermediates,
suggesting that this orientation is the most reasonable docking

mode in TEAS. Furthermore, they carried out the RMSD calculation
on the motif 1 structures in all intermediates and revealed the
least movable docking mode during the cyclization reaction.
Interestingly, only a few orientations are enriched in the early
stage of this biosynthesis, whereas several motifs are enriched
in the late stage of this enzyme reaction. In addition, the RMSD
value was increased in the late stage of this cyclization reaction.
These are consistent with the generally accepted concept that
the substrate affinity decreases as the reaction proceeds. We think
this method is applicable for future efforts to carry out the
rational redesign of reaction specificity of this class of enzymes.

Quantum Mechanics/Molecular Mechanics
Molecular Dynamics Calculation Revealed
the Substrate Specificity of Geranyl
Diphosphate Synthase

Although the inherent reactivities of the carbocation
intermediates, computed by DFT calculations, are consistent
with the experimental results, terpene cyclases occasionally
affect the carbocation intermediates, as shown in Section
“Theozyme Calculation Identified the Key Residue for
Sesterfisherol Biosynthesis”. Therefore, the calculation including
both the substrate and whole protein structure might be required
to estimate the significance of the enzymatic support. For this
purpose, the QM/MM method is widely used due to its
computational cost. Here, we introduce a detailed study of
geranyl diphosphate synthase (GPPS) from Mentha piperita,
reported by Wu and Xu (Liu et al, 2014).

GPPS accepts isopentenyl diphosphate (IPP) and dimethylallyl
diphosphate (DPP) as substrates and yields geranyl diphosphate
(GPP), which is the first step of the chain elongation in
isoprenoid biosynthesis. In the current study, they carried out
MD simulations to reveal the mechanism of an “open-closed”
conformation change of the catalytic pocket in the GPPS active
site and identified a critical salt bridge between Asp91 (in
loop 1) and Lys239 (in loop 2), which is responsible for opening
or closing the catalytic pocket. In addition, the small subunit
regulates the size and shape of the hydrophobic pocket to
flexibly host substrates with different shapes and sizes (DPP/
GPP/FPP, C;/C,y/C;s5). Furthermore, QM/MM MD simulations
were carried out to explore the binding modes for the different
substrates catalyzed by GPPS. GPPS is known to be a bifunctional
enzyme and can catalyze GPP, GGPP, and a negligible amount
of FPP formation. QM/MM MD simulation revealed that the
distances and angles between two substrates are critical for
the reaction. These parameters are similar when GPP or GGPP
is produced, whereas the reverse is the case when FPP is
produced. This study shows how QM/MM MD simulation is
effective for clarifying the enzymatic effect toward the reaction
in plant metabolism. Moreover, the key residues Asp91, Lys239,
and GIn156, which could be good candidates for the site-
directed mutagenesis, were found based on the computation.

As was described in Section “High-Resolution All-Atom
Model of Terpene Synthase,” building the high-resolution all-atom
model of terpene synthase has been challenging for a long
time, which is one reason there are only a few examples of
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FIGURE 8 | Docking results using Rosetta. The structures of the intermediates are shown on the left. The darker the green in each box, the higher the percentage
of low energy structures that are found in that catalytic orientation. If no low energy solutions were found for a particular intermediate, then no value was given.
The number is the percentage of total low energy structures found for the catalytic motif when docking a particular intermediate.

QM/MM calculations of terpene synthase. We expect an increased
number of reports on the all-atom modeling, using QM and
Rosetta modeling suite, in the near future, which would promote
QM/MM calculations. Moreover, we hope this kind of research
will facilitate the mechanistic investigation and rational
engineering of the biosynthetic pathways in plants.

ALKALOIDS

Unlike terpenoids, alkaloids have polar moieties that can form
strong interactions with the enzyme. Therefore, more careful
model construction is necessary, such as theozyme, MD
simulation, or QM/MM. Accordingly, few theoretical studies
on alkaloid biosynthesis have been reported to date. Here,
we introduce four theoretical studies on the inherent reactivity
in alkaloid biosynthesis.

Density Functional Theory Calculation
Revealed a Favorable Mechanism for
p-Carboline Formation Catalyzed by
Strictosidine Synthase

Strictosidine is an important common intermediate that can
be converted to many kinds of plant indole monoterpenoid
alkaloids, such as ajmalicine, quinine, vinblastine, reserpine,
camptothecin, and vincamine. The Pictet-Spengler condensation
reaction of tryptamine with secologanin, catalyzed by strictosidine
synthase, has been intensively studied, and several X-ray crystal
structures have been reported. The Pictet-Spengler reaction
consists essentially of two steps. First, an electron-rich aromatic
amine attacks the aldehyde of secologanin to form an iminium
intermediate. Second, an aryl amine attacks the electrophilic
iminium to yield a positively charged intermediate that is then
deprotonated to yield a B-carboline product. Although the ligand-
bound crystal structure is available, the detailed mechanism of
B-carboline formation remains unclear. Notably, carbon 2 and
3 of the indole moiety are nucleophilic; therefore, two possible
mechanisms can be written (Figure 9). In path I, carbon 2
attacks the iminium moiety, after which the direct six-membered
ring formation proceeds. In path II, carbon 2 attacks the iminium

moiety, thereby forming spiroindolenine, which is subsequently
converted to P-carboline by a 1,2-alkyl shift. To clarify which
pathway is more reasonable, Maresh et al. carried out DFT
calculations (Maresh et al., 2008).

As shown in Figure 10, the formation of the six-membered
ring is several orders of magnitude faster than spiroindolenine
formation, which is consistent with the empirical rule: that
6-endo-ring closures are favored over 5-endo-trig cyclization.
However, the formation of the spiroindolenine intermediate has
been observed by isotopic scrambling. In addition, spiroindolenine
formation requires only 8 kcal/mol, and it appears to occur
under ambient conditions. Therefore, if the deprotonation is
slow enough, spiroindolenine can be formed during the course
of the reaction. Moreover, this calculation also suggests that
the 1,2-alkyl shift that connects iminium spiroindolenine and
the six-membered ring intermediate requires significantly high
energy, which does not contribute to the mechanism.

Even though we obtained X-ray crystal structures, revealing
the detailed reaction mechanisms is often challenging. This
study indicates that the combined strategy of computations
and kinetic isotope experiments is quite effective in distinguishing
two possible pathways. We hope this approach will be widely
utilized in the study of plant secondary metabolism.

Camptothecin E Ring Opening Reaction
Camptothecin (CPT) is a plant alkaloid that was originally
isolated from the Chinese tree, Camptotheca acuminate, in 1966
(Wall et al., 1966). It features a planar pentacyclic ring structure
with a pyrrolo [3-4-f] quinolone moiety (rings A, B, and C),
a conjugated pyridine group (ring D), and one o-hydroxy
lactone ring (ring E); consequently, it has received interest
from scientists due to its remarkable anticancer activity in
preliminary clinical trials. Although two CPT analogs, topotecan
and irinotecan, have been approved and are currently used in
cancer chemotherapy, the pharmacological investigation into
CPT had been suspended on one occasion due to the poor
solubility of CPT in water and most organic solvents (Gupta
et al., 1995; Wu and Liu, 1997; Wall, 1998).

The stabilities of CPT and its derivatives in solution were
reported to be highly pH-dependent by several experimental
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analyses. In addition, CPT and its derivatives tend to aggregate
in solution, particularly in dimer formation. One of the key
factors is the E-ring-opening reaction that can proceed at neutral
pH. Zou et al. carried out DFT calculations to obtain the
theoretical basis for this E ring opening reaction (Zou et al,
2013). In their study, they revealed (1) that the E-ring opening
reaction can proceed under the physiological pH (AG* = 12.94 in
aqueous), (2) the solvation effect, and (3) the substitution effect.
This study is a good example of how computational chemistry
is an effective tool for revealing the degradation process of
plant alkaloids and for examining their instability.

Biosynthetic Dipolar Cycloaddition:
Daphniphyllum Alkaloids, Flueggine A,

and Virosaines

Cycloaddition is one of the most important reactions for
skeletal formation in both total synthesis and biosynthesis of
natural products. There have been many theoretical studies
on Diels-Alderase which provide insightful mechanistic
approaches that cannot be easily addressed by experimental
approaches. These reports also show that the inherent reactivity
of a molecule is relevant to many cyclization reactions promoted
by enzymes. Here, we show two theoretical studies of plant

alkaloids from Daphniphyllum (Tantillo, 2016) and Flueggea
(Painter et al., 2013).

The development of cascade polycyclizations by Heathcock
and co-workers, to construct Daphniphyllum alkaloids, is a
milestone in biomimetic total synthesis, in which bicyclic
intermediate A is thought to be converted into tetracyclic
intermediate D via intermediates B and C (Heathcock et al,
1992; Heathcock, 1996). Based on their calculations, A is
converted to B with an activation energy of only 7.1 kcal/mol
via concerted [4 + 2] cycloaddition (aza-Diels-Alder reaction).
This result represents a potential biological Diels-Alder reaction
for which enzymatic barrier lowering would not be required.
It also demonstrates that enzymatic preorganization of the
substrate is not required for a successful reaction, presumably
because most conformers are unreactive. Interestingly, B is
directly converted to D via ene reaction, in which C is not
a minima but a transient structure (Figure 11).

While there have been many studies on [4 + 2] cycloaddition
reactions, other types of cycloadditions received less attention.
Flueggine A and virosaine alkaloids, isolated from Flueggea
virosa, are thought to be synthesized from a common precursor
that could be derived from norsecurinine or tyrosine (Figure 12).
Interestingly, this proposed biosynthetic pathway involves a
nitrone-alkene (3 + 2) cycloaddition reaction.

In the referenced study, they examined all possible eight
stereoisomers for flueggine A formation. The predicted energy
barrier for the cycloaddition in water via this transition state
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FIGURE 11 | Biosynthetic pathway of Daphniphyilum alkaloids.
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FIGURE 12 | Plausible biosynthetic pathways of virosaine A, B, and flueggine A.
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structure is 10.3 kcal/mol, which is lowest among all the
transition state structures for this reaction, implying that
selectivity control by the enzyme is not required. Based on
the distortion interaction model, this transition state has both
considerably small distortion energy and considerably large
interaction energy. They also examined virosaine formation,
and the activation energy was only ~1 kcal/mol, indicating
that enzymatic assistance is unnecessary.

It is always difficult to ascertain if the Diels-Alder reaction
involved in the proposed biosynthetic pathway is enzymatic
or not. However, computational chemistry provides us with
the energy landscape of the reaction, which can assist in
narrowing down the candidate biosynthetic genes
plant science.

in

Elucidation of A'-Piperideine Dimer
Formation in Quinolizidine Alkaloid
Biosynthesis

Unlike for fungi and bacteria, revealing whole biosynthetic
genes relevant to a plant secondary metabolite is still quite
challenging. Quinolizidine alkaloids (QAs), a subclass of
Lys-derived plant alkaloids widely distributed in Leguminosae,
have been intensively studied for over half a century. However,
most of their biosynthetic genes, enzymes, and intermediates
remain unknown. Particularly, in the quinolizidine skeletal
formation process, which is thought to be common in all
QA biosynthesis, only two enzymes, L-lysine decarboxylase
(LDC) (Bunsupa et al., 2012) and copper amine oxidase (CAO)
(Yang et al., 2017), have been identified to date (Figure 13A).
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(B) Four possible stereoisomers of piperideine dimers.
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Therefore, there is no valid information on how many genes,
enzymes, and reactions are required for production of QAs
after A'-piperideine formation. In a plausible biosynthetic pathway
of QAs, 5-aminopentanal is spontaneously converted to
A'-piperideine (Figure 13A). The dimerization of A'-piperideine
has been proposed; however, it is unclear whether or not it
requires enzymatic assistance. Therefore, Sato et al. carried out
theoretical investigations to uncover the biosynthetic mechanism
of A'-piperideine dimerization (Sato et al, 2018c). There are
four possible stereoisomers for the piperideine dimer, i.e., (R,R),
(S,S), (RS), and (S,R) (Figure 13B). In the mentioned study,
they constructed a model that has two molecules of A'-piperideine
and two to four molecules of water for each isomer.

The results of the DFT calculations indicate that piperideine
dimerization spontaneously proceeds under neutral conditions
and yields only (R,R) or (S,S) dimers. (R,S) and (S,R) dimer
formations require considerably higher energy barriers; therefore,
they cannot be formed under neutral conditions. Based on the
previous literature, tetrahydroanabasin, which could be formed
from the (R,R) piperideine dimer through isomerization, was
isolated from a QA producing plant. Therefore, (R,R) piperideine
formation could be favored in a QA producing plant. This
stereochemistry is also consistent with the other QA derivatives.
For example, (—)-lupinine and (+)-epilupinine could be synthesized
from (R,R)-piperideine and (R,S)-piperideine dimers, respectively.
However, we cannot rule out the possibility that the enzyme
assists this dimerization reaction since the (S,S)-piperideine dimer
has not yet been isolated. Moreover, nature occasionally uses
an enzyme for the reaction that can spontaneously proceed
under aqueous conditions (Chen et al., 2018).

In the study of QA biosynthesis, differential expression
analysis was performed to search for LDC genes, which also
provided dozens of other candidate genes. The combination
of computational chemistry and expression-based approach
could be a significantly powerful tool for narrowing down the
candidate genes.

OTHER SECONDARY METABOLITES

Unlike the case with other natural product groups, there are
only a few mechanistic investigations on flavonoid and lignin
biosynthesis, although there are many studies on spectrum prediction
regarding flavonoid. Here, we introduce one study about anthocyanin
biosynthesis and three studies about lignin biosynthesis.

A Long-Standing Issue in Anthocyanin
Biosynthesis Was Solved Using Density
Functional Theory Calculations

The biosynthetic pathways of flavonoids have been intensively
studied, and related genes, enzymes, and intermediates have
been characterized. In the late stage of the biosynthesis of
anthocyanin, dihydroflavonoid is converted to anthocyanidin,
which is catalyzed by two enzymes, dihydroflavonol reductase
(DFR) (Gong et al,, 1997) and anthocyanidin synthase (ANS)
(Figure 14, Route A; Saito et al.,, 1999; Nakajima et al., 2001;
Turnbull et al., 2004). Interestingly, reduction proceeds just
after the oxidation in this conversion, which appears to be a
detour pathway and energy consuming, because the oxidation
state does not change after these two reactions. An alternative
non-enzymatic pathway, that is a simple spontaneous
tautomerization, was proposed (Figure 14, route B). However,
this spontaneous pathway does not proceed inside the plant
because the suppression of genes leads to a decrease in the
amount of anthocyanidin. Therefore, the question about this
biosynthetic pathway is why this tautomerization pathway is
not feasible. To answer this question, Sato et al. carried out
DFT calculations (Sato et al., 2018d).

Based on their calculations, the first tautomerization via
the non-enzymatic pathway requires ca. 30 kcal/mol, which
is too high to be achieved under ambient conditions. This is
due to the instability of the transition state structure that has
a highly electron rich en-diol moiety adjacent to the electron-
rich aromatic ring. Interestingly, dihydroflavonol without hydroxyl
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groups at the 5 and 7’ positions require lower activation
energies than the original one does, indicating that the hydroxyl
group is the natural controller of the yield of anthocyanidin.
Moreover, the first tautomerization requires less activation
energy under the acidic conditions, suggesting that this
tautomerization requires enzymatic support. They searched for
enzymes that could catalyze this type of tautomerization using
the KEGG database, but no enzyme was found.
Furthermore, they investigated the later part of the anthocyanin
biosynthetic pathway. However, interestingly, their DFT calculation

suggests that 2-flaven-3,4-diol is directly converted to
anthocyanidin under acidic conditions, which was originally
thought to be converted via 3-flaven-2,3-diol formation (Figure 14).
This new finding is consistent with the experimental result in
the previous literature, in which hydrochloride was used to
terminate the ANS reaction, and 3-flaven-2,3-diol was not detected.

As we described here, computational chemistry can simulate
a reaction that cannot actually occur and can also easily delete
the functional groups to assess their effect on the reaction,
which is quite difficult in organic synthesis. This study emphasizes
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the usefulness of the computational approach to test the To reveal the inherent reactivity of monolignol, Sangha et al.
hypothetical pathways. initially carried out DFT calculation for the six possible radical
coupling products, as shown in Figure 15A. The result indicates
o that the formation of B-O4, B-B, and B-5 type monolignol
Lignin radical couplings is enthalpically favored over those of others,
Unlike the other types of natural products that are mentioned  which is consistent with the experimental data suggesting that
above, only a few examples were reported for the mechanistic  these three bonds are most common in natural lignin.
investigation of lignin biosynthesis. The theoretical investigation Next, they focused on horseradish peroxidase C (HRPC), which
of lignin biosynthesis is challenging for some reasons, ie., triggers the radical polymerization cascade in lignin biosynthesis.
radical reaction, branched polymer structure, various kinds of  Lignin's subunits can be classified into three groups; guaiacyl
coupling products, etc. To reveal the mechanism of lignin  (G), syringyl (S), and p-hydroxyphenyl (H) (Figure 15B). The
biosynthesis, a consecutive theoretical study has been reported  ratio of the subunits is relevant to the efficiency of the deconstruction
by Sangha et al. (2012, 2014, 2016). of biomass. Therefore, they examined the binding affinity of three
The initial step of lignin biosynthesis is initiated by the radical  monolignols, including p-coumaryl, coniferyl, and sinapyl, toward
coupling reaction of monolignols. Besides the reactive oxygen,  the horseradish peroxidase C (HRPC). To answer this question,
the monolignol derived radicals are reactive at the C1, C3, C5,  they carried out MD simulations. The results indicated that the
and P positions due to the delocalization via the conjugated ®  binding affinity of the monolignols toward HRPC decreases in
system. Conventionally, lignin polymerization, catalyzed by  the order of p-coumaryl > sinapyl > coniferyl alcohol.
peroxidases and laccases, takes place in three steps: (1) monolignol Since lignin biosynthesis is a combination of simple radical
binding to the enzyme active site, (2) H,O,-mediated oxidation  coupling reactions, many possible reaction pathways can
at the active site to form radicals, and (3) radical coupling be proposed. As we have shown in this section, computational
reaction to form lignin polymers. chemistry can reveal the inherent reactivity and can provide
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FIGURE 15 | Initial step of radical-radical coupling of monolignol radicals during lignin biosynthesis. (A) Possible coupling mechanisms in lignin biosynthesis.
(B) Three main monolignols that constitute lignin structure.
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a rational explanation for substrate specificity, which is helpful
for narrowing down the candidate structures. We believe that
computational chemistry can eliminate the hindrances to precise
mechanistic investigations of radical coupling reactions in
lignin biosynthesis.

SUMMARY AND PERSPECTIVES

As we have shown in this review, computational chemistry
can be a powerful tool for revealing the biosynthesis of
secondary metabolites in plants. Unlike cheminformatics,
computational chemistry provides not only reasonable reaction
pathways and energy barriers but also many new insights, as
described above. For example, ring cyclization order in astellatene
biosynthesis, key catalytic residues of biosynthetic enzymes,
the controlling mechanism of regio- and stereoselectivity in
quiannulatene biosynthesis, docking mode in the active site
of terpene synthase, detailed reaction mechanisms of piperideine
dimerization, etc., which cannot be achieved solely by traditional
experimental methods.

Although computational approaches using QM calculation,
MD simulation, and QM/MM are well established in terpene-
forming reactions and cycloadditions, only a few preliminary
studies on other types of plant secondary metabolism have
been reported until now. Many studies on other types of natural
products are required to sophisticate this powerful computational
approach. Particularly, more reports on the oxidation reactions,
mainly catalyzed by P450, FMO, or iron-dependent enzymes
(Nakashima et al., 2018), are desired because oxidation is one
of the key reactions facilitating the structural diversity and
complexity of plant secondary metabolites.

As was mentioned in Section “Introduction,” the next goal
of these applicable studies using computational chemistry in
natural product biosynthesis is to engineer or design novel
biosynthetic pathways and enzymes to obtain desired products.
One approach to achieve this objective is swapping the
biosynthetic enzymes (genes) with other genes that can accept
the biosynthetic intermediate, which could produce novel
natural products. Another approach could be to design novel
enzymes by computational chemistry (Kiss et al.,, 2013). The
methodology of de novo enzyme design was reported by a
decade ago, although it has not yet been applied to plant
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A total of 1,622 samples representing 201 Medicago truncatula ecotypes were
analyzed using ultrahigh pressure liquid chromatography coupled to mass spectrometry
(UHPLC-MS) to ascertain saponin profiles in different M. truncatula ecotypes and
to provide data for a genome-wide association study and subsequent line selection
for saponin biosynthesis. These ecotypes originated from 14 different Mediterranean
countries, i.e., Algeria, Cyprus, France, Greece, Israel, ltaly, Jordan, Libya, Morocco,
Portugal, Spain, Syria, Tunisia, and Turkey. The results revealed significant differences
in the saponin content among the ecotypes. European ecotypes generally contained
higher saponin content than African ecotypes (o < 0.0001). This suggests that
M. truncatula ecotypes modulate their secondary metabolism to adapt to their
environments. Significant differences in saponin accumulation were also observed
between the aerial and the root tissues of the same ecotypes (p < 0.0001). While
some saponins were found to be present in both the aerial and root tissues, zanhic acid
glycosides were found predominantly in the aerial tissues. Bayogenin and hederagenin
glycosides were found mostly in roots. The differential spatially resolved accumulation of
saponins suggests that saponins in the aerial and root tissues play different roles in plant
fitness. Aerial saponins such as zanhic glycosides may act as animal feeding deterrent
and root saponins may protect against soil microbes.

Keywords: Medicago truncatula, ecotypes, triterpene saponin, metabolomics, LC-MS/MS

INTRODUCTION

Legumes are economically important and widely cultivated crops. They contain relatively high
protein content and are important sources of protein for both humans and animals. Their high
protein content may be attributed to their unique symbiotic relationship with nitrogen-fixing
bacteria. Legumes also produce a vast array of natural products including flavonoids, isoflavonoids,
anthocyanins, condensed tannins, lignin, and saponins (Dixon and Sumner, 2003). These natural
products play important roles in many important biological processes and are important to
legume quality. For example, flavonoids serve as signaling compounds in the symbiotic plant-
microbe interactions and induce the expressions of Nod genes in the nitrogen-fixing bacteria.
Condensed tannins can prevent bloat associated with animals grazing on legumes with high protein
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content such as alfalfa and clover. Saponins are triterpene
glycosides composed of tritepenoid aglycones (normally referred
to as sapogenins) conjugated with various carbohydrate residues.
They have been documented to possess anti-fungal, anti-bacterial
and anti-insect properties and contribute to plant development
and defense against pathogens (Moses et al., 2014). However,
due to their hemolytic activity and membrane permeabilization
nature, saponins are considered as anti-nutritional. They have
been reported to cause bloat, reduce digestibility of proteins,
interfere with uptake of nutrients in the gut, and result in
reduced weight gain (Francis et al., 2002). These undesired anti-
nutritional effects of saponins negatively affect the efficient use of
high-protein containing legume forages such as alfalfa and clover
as animal feeds. Manipulation of the saponin contents in legumes
through genetic engineering and/or molecular breeding may
provide an efficient way to improve the nutritional values or field
performance of legume forages. However, this effort is hindered
by our limited understanding of triterpene saponin biosynthesis.
In addition, the effects of growth conditions and developmental
stages on levels of individual saponins in legumes are still not
clear. Information about saponin variation among the many
different ecotypes is also lacking. This knowledge is particularly
useful in breeding of low saponin containing legume forages.
LC-MS based metabolomics is ideally suited for the analysis of
saponins in complex plant extracts. It has been successfully used
in the analyses of saponins in many legumes including Medicago
truncatula (Huhman et al, 2005; Kapusta et al., 2005a,b),
M. arborea (Tava et al., 2005), alfalfa (Sen et al., 1998; Bialy et al.,
1999), clover (Perez et al., 2013), and soybean. Using LC-Fourier
transform ion cyclotron resonance mass spectrometry (FT-ICR
MS), Pollier et al. (2011) revealed a complex mixture of saponins
in the hairy roots of M. truncatula. More recently, saponins in
12 annual Medicago species have been profiled and compared
(Tava and Pecetti, 2012). The content of saponins were found
to range from 0.38 to 1.35% (dry weight), depending on the
species. In addition, differences in the aglycone moieties were
observed among the 12 Medicago species. While some aglycones
such as bayogenin and hederagenin were found in all the species,
some including medicagenic acid and zanhic acid were species-
dependent (Tava and Pecetti, 2012). The large number of MS/MS
and NMR data collectively generated over the past years by a
number of different groups constitutes an important and valuable
resource for saponin annotation in M. truncatula (Bialy et al.,
1999; Kapusta et al., 2005a,b; Tava et al., 2005; Pollier et al., 2011).
Saponins are broadly classified into hemolytic (oleanates)
and non-hemolytic (soyasapogenol) (Figure 1). It is generally
believed that the hemolytic activity of olenate saponins
is conferred by the presence of a C28-carboxylic group
(Voutquenne et al., 2002). Glycosylation of the C28-carboxylic
group dramatically reduces and even eliminates the hemolytic
activity. Our understanding of triterpene saponin biosynthesis
in M. truncatula is still very limited. All the saponins are
believed to derive from beta-amyrin that is formed through
the cyclization of 2,3-oxidosqualene catalyzed by beta-amyrin
synthase (Figure 1) (Tava et al, 2011). Hydroxylation and
subsequent oxidation of beta-amyrin lead to multiple pentacyclic
triterpene aglycones (or sapogenins), glycosylation of which

results in diverse and complex saponins. The hydroxylation and
oxidation of aglycones are believed to be catalyzed by cytochrome
P450 proteins (Tava et al, 2011). In M. truncatula, a well-
established model legume and close relative to alfalfa (Medicago
sativa), CYP716A12 has been identified to oxidize beta-amyrin
to erythrodiol and then subsequently to oleanolic acid (Carelli
et al., 2011; Fukushima et al., 2013). Mutants in CYP716A12,
lha (lacking hemolytic activity), were found to lack hemolytic
saponins and only produce non-hemolytic soyasaponins (Carelli
et al, 2011). Oxidation of oleanolic acid to hederagenin,
gypsogenin, and gypsogenic acid was found to be catalyzed
by CYP72A68 (Tzin et al.,, 2019). Formation of non-hemolytic
triterpene aglycones 24-hydroxy-beta-amyrin and soyasapogenol
B from beta-amyrin is catalyzed subsequently by CYP93E2 and
CYP72A61v2 (Fukushima et al., 2013). A cytochrome P450
(CYP72A67) involved in hemolytic sapogenin biosynthesis was
also identified. It was found to be responsible for hydroxylation
at the C-2 position of oleanolic acid for downstream sapogenin
biosynthesis (Biazzi et al., 2015). However, enzymes involved in
the formation of other sapogenins are still unknown. In addition,
the effects of the environment on the production of saponins
in M. truncatula is not clear. To increase our understanding
of saponin accumulation in different ecotypes and provide a
basis for selecting appropriate M. truncatula lines for future
correlated gene expression analyses and for the discovery of
genes involved in triterpene aglycone biosynthesis, we profiled
saponins in 1,622 samples representing 201 M. truncatula
ecotypes from 14 different countries using UHPLC-MS (Table 1).
Differential distributions of saponins in roots and aerial tissues
were observed. Zanhic acid saponins were found predominantly
in leaves, whereas hederagenin and bayogenin saponins were
mostly found in roots. The differential spatial accumulation
suggests that different classes of saponins may play different roles
in plant defense responses. In addition, different ecotypes were
found to accumulate different amounts of saponins, with highest
saponin containing ecotypes found mostly in Europe and lowest
saponin containing ecotypes were from Africa.

MATERIALS AND METHODS

Biological Materials

Seeds were scarified with sulfuric acid, sterilized with 5% bleach
and germinated on damp sterile filter paper. Three days after
germination seedlings were transplanted into root cones (Stuewe
& Sons Inc.) filled with Turface (BWI Texarkana) which had
been rinsed in distilled water and autoclaved. The ecotypes
were grown in a growth room under controlled conditions.
Day length was 16 h, with a gradual increase in light. The
light source included both fluorescent and incandescent bulbs,
and light intensity averaged ~225 wJ. Temperature was set
at a constant 21°C. Plants were watered with Broughton and
Dilworth (100 ppm N) fertilizer every day. Enough seedlings were
planted to analyze four replicates of each ecotype. In most cases,
this was accomplished but a few ecotypes grew poorly and three
or fewer replicates were harvested. The large number of plants
necessitated growth in three separate groups, and A17 and R108
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FIGURE 1 | Proposed Biosynthesis of Triterpene Sapogenins in M. truncatula. All the sapongenins are derived from beta-amyrin through a series of oxidations that
include hydroxylation and subsequent oxidations catalyzed by P450s. Glycosylation of the sapogenins results in the diversity of saponins. In M. truncatula,
CYP716A12 has been identified to oxidize beta-amyrin to erythrodiol and subsequently to oleanolic acid, and CYP72A68 was found to convert to oleanolic acid,
gypsogenin, and subsequently to gypsogenic acid (Fukushima et al., 2013; Tzin et al., 2019). CYPI93E2 oxidize beta-amyrin to 24-hydroxy-beta amyrin which is
converted to soyasapogenol B by CYP72A61v2 (Fukushima et al., 2013). CYP72A67 responsible for hydroxylation at the C-2 position of oleanolic acid for
downstream sapogenin biosynthesis was also identified (Biazzi et al., 2015).
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TABLE 1 | Geographical origin of the 201 M. truncatula inbred lines used for
saponin profiling.

Geographic origin Number of lines

North Africa

Algeria 41
Libya 8
Morocco 10
Tunisia 14
Europe

France 28(13)2
Greece 16(2)°
Italy 9
Portugal 11(1)°
Spain 32
Middle East

Cyprus 9
Israel 5
Jordan 2
Syria 2
Turkey 3

-
—

Others of unknown origin

a13 out of the 28 lines were from Corsica. 2 out of the 16 lines were from Crete.
©1 out of the 11 lines was from Madeira.

were grown with each group as controls. Plantings were staggered
so that all plants could be harvested during the same morning
time frame (3-5 h after full light) to insure a uniform position in
the diurnal photosynthetic cycle. Plants were harvested at 5 weeks
of age before the onset of flowering. Roots and aerial tissues were
separated and immediately frozen in liquid nitrogen.

The tissues were lyophilized and dry weights were recorded.
All tissues were ground to a fine powder and 10 mg
each was weighed for extraction. If plant material was
limited, extraction volumes were reduced proportionally. Tissues
were incubated with 80:20 methanol:water solution containing
18 pg/ml umbelliferone.

UHPLC-QTOF-MS

Roots and aerial tissues were lyophilized until dry and ground
to a fine powder. Ten milligrams (10 £ 0.06 mg) of powder
for all tissues were accurately weighed and extracted on an
orbital shaker for 2 h with 1 mL of 80% of methanol containing
18 pg/mL umbelliferone as an internal standard. Samples were
centrifuged at 2,900 x g for 30 min at 4°C, and the supernatants
were collected. Five microliters of the supernatant were injected
into a Waters UPLC system coupled to a quadrupole-time of
flight mass spectrometer (QTOF-MS, Waters QTOF Premier).
Chromatographic separations were performed on a Waters
reverse phase column (2.1 x 150 mm, BEH C18, 1.7 um particles)
using the following gradient: mobile phase B (acetonitrile)
increased from 5 to 70% over 30 min, then to 95% in 3 min,
held at 95% for 3 min, and returned to 95% mobile phase
A (0.05% formic acid in water) for equilibration for 3 min.
The flow rate of the mobile phases was 0.56 mL/min, and the
column and autosampler temperatures were maintained at 60

and 4°C, respectively. Mass spectral data were acquired from
m/z 50 to 2,000 in the negative electrospray ionization mode,
with the nebulization gas set at 850 L/h (350°C) and the cone
gas at 50 L/h (120°C). Raffinose (m/z 503.1612) was used as the
reference compound in the independent lock-mass mode, with
the lock mass scan (1 s) collected every 10 s for accurate mass
measurements. The concentration of raffinose was 50 fmol/mL,
and the flow rate 0.2 mL/h.

The raw data files obtained from UHPLC-QTOF-MS analyses
were processed with MarkerLynx software (version 4.1, Waters)
for mass features extraction and alignment with the following
parameters: minimum peak intensity: 500 counts, mass tolerance:
0.05 Da, and retention time window 0.2 min. The peak areas
were normalized by dividing each peak area by the value of
the internal standard peak (area of metabolite/area of area of
internal standard x 1,000). Annotations of metabolites were
performed by matching their m/z to those of the previously
observed saponins in M. truncatula (Huhman et al, 2005;
Kapusta et al., 2005a,b; Pollier et al., 2011). Retention time was
also used in the Rt-m/z pair matching when it was available.
Tandem MS was performed on a number of saponins, mainly the
most abundant ones, to validate the annotations by matching to
previously reported MS/MS data. The MS/MS experiments were
performed using a UHPLC-Bruker QTOF MS. The tandem data
were compared to previously published data for identification
confirmation (Kapusta et al., 2005a; Pollier et al., 2011). The
normalized data (i.e., data normalized to the internal standard)
were used for statistical analyses. Multivariate statistical analyses
were performed using JMP software from SAS (Cary, NC). Tukey
HSD (Tukey Honest Significant Differences) was performed
using TukeyHSD function in r, and the not significantly different
groups were labeled with the same letters using the HSD.test
function in the “agricolae” package.

RESULTS AND DISCUSSION

The M. truncatula ecotypes (201 lines, 1,622 plants)
analyzed in this work represented 14 geographical origins,
ie, Algeria, Cyprus, France, Greece, Israel, Italy, Jordan,
Libya, Morocco, Portugal, Spain, Syria, Tunisia, and Turkey
(Table 1). The raw data are freely available for download at
https://sumnerlab.missouri.edu/download/. Aerial and root
tissues were separated, lyophilized and weighed. The dry weight
for each ecotype’s aerial and root tissues is shown in Figure 2.
Almost all the ecotypes (93.3%) were found to produce more
aerial tissues than roots by weight. Significant difference in
the average total dry weight was observed among the ecotypes
(p < 0.0001), with a 90 fold difference between the lowest line
(HMO095, France, 6.42 + 9.43 mg, mean =+ standard deviation,
n = 5) and the highest line (HM174, Spain, 548.98 & 68.25 mg,
mean =+ standard deviation, n = 5). It was also found that there
was a significant positive correlation between the aerial and the
root dry weight (r = 0.86, p < 0.0001), indicating that ecotypes
producing more aerial tissues also tended to produce more root
tissues. The average total dry weight for ecotypes of the same
country of origin is shown in Table 2. Most of the North African
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FIGURE 2 | Dry weight distribution of the M. truncatula ecotypes. A great majority of the ecotypes (92.3%) were found to produce more aerial tissues (closed
triangles) than roots (closed squares) by weight. Significant difference in the dry weight was observed among the ecotypes (p < 0.0001) with the highest total dry
weight being 548.98 + 68.25 mg (HM174, Spain) and the lowest 6.42 + 9.43 mg (HM095, France). Significant positive correlation between the aerial and the root
dry weight was also observed (- = 0.86, p < 0.0001), indicating that ecotypes that produced more aerial tissues also tended to produce more root tissues.
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and Middle East ecotypes appeared to produce less biomass
compared to the European ecotypes, but the difference was not
statistically significant (p = 0.3). This is due to large variations
of dry weight among the ecotypes from the same country as
evidenced by the large standard deviation associated with each
average dry weight (Table 2). Thus, the dry weight of ecotypes,
when grown in greenhouse, appeared to be ecotype specific and
did not show a statistically significant correlation between their
dry weight and their geographic origin. This is probably due to
the different growth rates of the different ecotypes. For example,
the two well characterized and mostly used ecotypes, A17 and
R108, have previously been found to have different seed-to-seed
generation times (Hoffmann et al., 1997). The generation time of
R108 was 12-14 weeks, which is about 3 weeks shorter than A17.
Ecotypes with even shorter seed generation times (e.g., 7 weeks
shorter than A17) was also found (Hoffmann et al., 1997). As the
ecotypes were harvested at the same time and not at the same
developmental stage, the different generation time among the
ecotypes may contribute to the high variance observed (Table 2).
Although it was desirable to harvest all the ecotypes at the same
developmental stage, it was simply not feasible given the scale of
this experiment.

Saponin profiling of the aerial and root tissues was
performed in a random manner and spanned over a period
of 5 months (November 2012-March 2013). The data are
shown in Supplementary Tables 1,2. Reproducibility is always
a concern when large-scale experiments of this magnitude are
performed. To monitor the reproducibility, a blank wash and a
quality control (QC) mixture were performed every 10 samples
to monitor any carry-over or changes in instrumental response.
An internal standard solution (extraction solution only) was
also analyzed every 20 samples. Eighty-seven injections of the
internal standard solution were made during the 5-months of
analyses and the responses were used to calculate the relative
standard deviation (RSD) to quantify reproducibility. The RSD
was determined to be 15.3%, comparable to a previously reported
value (15.9%) in a metabolomics project (Kirwan et al., 2013) and
below that (20%) recommended for large-scale metabolomics
(Food and Drug Administration [FDA], 2001; Zelena et al,
2009). Annotation of saponins was performed by matching the

mass features’ m/z to those of saponins found in M. truncatula
and then confirmed by MS/MS (Figure 3). Figure 3 shows a
representative UHPLC-MS chromatogram of the aerial and
root tissues of HapMap 135 (line number: L000332, country of
origin: Israel). Significant differences were observed between the
metabolic profiles of the aerial and root tissues (Figures 3A,B).
For example, a peak (m/z 973.5069_Rt12.48 min) found
predominantly in the root tissues was annotated as glucose-
glucose-glucose-bayogenin and confirmed by tandem MS
(Figures 3C,D). The relative abundances of saponins (area of
metabolite peak normalized to that of the internal standard in
the sample) were used for statistical analysis such as principal
component analysis (PCA) and multiple mean comparisons.
The results showed that there was significant difference in the
saponin content among different ecotypes (p < 0.0001) as well
as between the aerial and the root tissues of the same ecotypes
(p < 0.0001). These data indicated that the geographical origin
has an impact on the production of saponin in plants and that
saponins differentially accumulated in roots and aerial tissues.
Their differences and biological implications are discussed below.

TABLE 2 | Average total dry weights and their standard deviations of ecotypes.

Country of Average aerial dry Standard Average rootdry Standard

origin weight (mg/line) error weight (mg/line) error
Algeria 61.21 6.45 45.98 7.37
Cyprus 50.52 11.80 22.87 4.81
France 91.93 11.89 81.11 14.31
Greece 77.74 10.83 50.11 8.89
Israel 104.72 36.14 87.20 38.89
Italy 91.79 13.59 62.93 17.87
Jordan 57.66 17.53 18.20 5.73
Libya 69.71 9.74 42.79 6.35
Morocco 92.91 13.07 62.68 9.35
Portugal 81.28 10.80 56.74 16.68
Spain 77.23 9.59 62.67 12.40
Syria 51.49 31.00 25.63 12.68
Tunisia 68.26 13.62 52.48 13.29
Turkey 71.74 10.42 28.82 6.80

The average total dry weight was calculated by averaging the average weights of
all individual M. truncatula lines from the same country of origin.
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FIGURE 3 | Representative UHPLC-MS metabolite profiles of M. truncatula. (A) UHPLC-ESI-MS chromatogram of aerial tissue extract of M. truncatula HapMap 135
(line number: LO00332, country of origin: Israel). (B) UHPLC-ESI-MS chromatogram of root tissue extract of HapMap 135. (C) Mass spectrum of a peak at Rt
12.48 min in the root tissue extract showing m/z at 973.5183 and identified as hexose-hexose-hexose-bayogenin. (D) MS/MS spectrum of the precursor ion at m/z
973.5 at a collision energy ramped from 55 to 90 V, confirming glucose-glucose-glucose-bayogenin. MS spectrum was acquired with a QTOF Premier (Waters) and
MS/MS spectrum with a MaXis Impact QTOF (Bruker Daltonics). The data show that hexose-hexose-hexose-bayogenin is predominantly accumulated in the roots of
M. truncatula. Bayo: bayogenin; Hex: heoxse.

Saponin Content Among Ecotypes

Principal component analysis was performed for all samples
and means for the total, aerial and root saponin content in
ecotypes of the same country of origin were calculated (Figure 4).
Figure 4 shows the PCA results (Figure 4A), mean of total
saponins (Figure 4B), mean of aerial saponins (Figure 4C)
and mean of root saponins (Figure 4D) in ecotypes from
the same country. There was a significant difference in the
total saponin content among the ecotypes of different countries
(p < 0.0001). The lowest saponin-containing ecotypes were
found to originate from Tunisia and contained only 60% of
the amount of saponins in the highest saponin-containing
ecotypes (Portugal). Figure 4B also shows that the low saponin-
containing ecotypes were mostly from Africa except those
originating from Turkey. These ecotypes (Algeria, Libya, Tunisia,
and Turkey) contained comparable amounts of total saponins
(p = 0.4). This may be explained by the similar environments

such as similar climates, seasonal changes and soil conditions in
these countries as most of them are in the African continent.
In contrast, ecotypes originating from Israel and European
countries such as France, Italy, Portugal, and Spain typically
contained higher amount of saponins. The two highest saponin-
containing ecotypes were from Portugal and Israel. This distinct
difference between the African and the European ecotypes
indicated a clear geographic segregation of M. truncatula around
the Mediterranean area in terms of saponin production, with
the ecotypes in the north region (Europe) segregated from
those in the south region (Africa). Similar segregation has also
been observed in a previous microsatellite diversity study of
346 inbred lines of M. truncatula ecotypes that revealed a
stratification of the M. truncatula population between the North
and the South of the Mediterranean basin (Ronfort et al., 2006).
It was further suggested that the M. truncatula colonization of
the Mediterranean region was via two routes from its original
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habitat around the Middle East (Ronfort et al., 2006). However,
the molecular mechanism responsible for the difference, i.e.,
higher saponin contents in European ecotypes and lower saponin
contents in the African ecotypes, is not clear. Plant secondary
metabolism is complex and influenced by both biotic and abiotic
stimuli. Plants under different environments can modulate their
secondary metabolism to increase their fitness and adapt to
the environments. The effect of environments on plant saponin
biosynthesis has been recently reviewed (Szakiel et al., 2011).
Both biotic and abiotic factors (e.g., temperature, light, humidity,
water availability, soil fertility, insects, herbivores, competition
from neighboring plants) and their interactions all can affect
saponin biosynthesis. For example, saponin content was found
higher in aphid-infested alfalfa compared to the uninfested alfalfa
(Gotawska et al., 2012). A study of herbivore-induced responses
in alfalfa further indicated that saponin content increased with
higher herbivore densities (Agrell et al., 2003). Methyl jasmonate
treatment that mimics mechanical wounding of plants was also
found to increase the production of saponins in M. truncatula
(Suzuki et al,, 2002), suggesting that grazing also results in
higher saponin content in forage legumes. The environmental
abiotic factors also affect saponin content significantly. It has been
shown that saponin content decreased significantly in medicinal
plants exposed to drought stress (Soliz-Guerrero et al., 2002;

Zhu et al., 2009) and the application of an appropriate amount
of inorganic fertilizer was able to partly restore saponin content
in Bupleurum (Zhu et al, 2009). In Brachiaria, the main
forage for ruminants cultivated worldwide in both tropical and
subtropical climates, the saponin content was found to correlate
negatively with the duration of sunshine and maximum ambient
temperature, but positively with relative humidity (Lima et al,,
2012). This suggests that the combination of high temperature,
long duration of sunshine and arid condition in Africa might,
at least in part, be responsible for the lower saponin content
in the African ecotypes. A recent study using over 20,000
annotated genes from M. truncatula showed that genes involved
in defense against pathogens and herbivores constituted the
single largest functional class of genes under positive selection
in adaptive evolution (Paape et al,, 2013). Other genes under
positive selection included those involved in mediating symbiotic
relationship with rhizobia and one-third of the annotated
histone-lysine methyltransferases that could be involved in
epigenetic modifications (Paape et al., 2013). The relatively higher
saponin content in European ecotypes may reflect such a positive
selection of genes related to disease and defense response as
saponins are anti-feeding and anti-microbial (Da Silva et al,
2012; Golawska et al., 2012). Significant variations in the response
of M. truncatula ecotypes to Verticillium albo-atrum, a soil-borne

Frontiers in Plant Science | www.frontiersin.org

July 2019 | Volume 10 | Article 850


https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Lei et al.

Saponin Profiles of Medicago truncatula Ecotypes

pathogenic fungus, have been reported recently (Ben et al,
2013). Comparison of the resistant and susceptible M. truncatula
ecotypes led to the identification of three QTLs associated
with resistance to the Verticillium wilt in the resistant lines.
The resistance appeared to be selected within environments
as it did not seem to correlate with the population structure
(Ben et al., 2013).

In addition to the total saponin content, the aerial and
root tissues of the African ecotypes were also found to
contain significantly less saponins than the European ecotypes
(p < 0.0001) (Figures 4C,D). In the aerial tissues, the lowest
saponin containing ecotypes were found to be from Algeria.
They contained only 60% of the saponins found in the highest
saponin-containing ecotypes (Israel). In roots, Tunisia’s ecotypes
contained the least amount of saponin, only 55% of the saponin
in the highest saponin-containing ecotypes (Portugal). Figure 4
also reveals that roots contained higher saponin content than
the aerial parts. For example, compared to their aerial parts, the
roots of Portugal’s ecotypes contained about twice the amount of
saponins (Figures 4C,D). The differences between the aerial and
the root tissues were not only quantitative but also qualitative
as evidenced by the distinct saponin profiles in the aerial
parts (Figure 3A) and the roots (Figure 3B). This was further
supported by PCA analysis that showed the aerial tissues were
clearly segregated from the root tissues (Figure 4A), suggesting
that the difference between the aerial and the root tissues would
be greater than the difference among ecotypes. The differential
accumulation of saponins in the aerial and the root tissues may
reflect the different roles of these saponins in plant fitness and
defense response as discussed below.

Differential Accumulation of Saponins in
the Aerial and Root Tissues

The results of the saponin profiling in the aerial and the
root tissues are shown in Figure 5. Figure 5 shows the
accumulation of individual classes of saponins (i.e., bayogenin
glycosides, hederagenin glycosides, medicagenic acid glycosides,
soyasaponin B glycosides, soyasaponin E glycosides, and zanhic
acid glycosides) in the aerial (Y-axis) and the root (X-axis)
tissues of the ecotypes. It reveals clear differences in the spatial
accumulation of saponins. Regardless of the country of origin,
bayogenin glycosides, hederagenin glycosides and soyaspogenin
E glycosides were mostly found in the roots, while zanhic acid
glycosides were only detected in the aerial tissues. In contrast,
medicagenic acid glycosides and soyasaponin B glycosides were
found in both the aerial and root tissues although the aerial
tissues appeared to contain more medicagenic acid glycosides.
The finding is similar to a previous report that zanhic acid
glycosides, medicagenic acid glycosides and soyasaponin B
glycosides were found to be the three dominant groups of
saponins in M. truncatula foliar tissues (Kapusta et al., 2005b;
Confalonieri et al,, 2009). It is also consistent with several
previous reports that zanhic acid was the major aglycone in
the aerial parts of M. truncatula (Kapusta et al., 2005a,b) and
zanhic acid glycosides could not be detected in the roots of
M. truncatula (Confalonieri et al., 2009). A more recent study of

M. truncatula hairy roots showed that the zanhic acid glycosides
were also absent in the hairy roots (Pollier et al., 2011). Zanhic
acid glycosides are therefore leaf-specific saponins. This suggests
that P450 enzyme(s) involved in the biosynthesis of zanhic
acid can best be studied using leaf tissues. Comparisons of
P450 gene expression profiles between the aerial and root
tissues may facilitate the identification of enzymes converting
medicagenic acid into zanhic acid. Zanhic acid formation is the
last step of the sapogenol biosynthesis pathway (Figure 1). The
accumulation of zanhic acid glycosides and the lack of other
sapoinins in the earlier steps of the pathway in the aerial tissues
suggest that the physiological role of zanhic acid glycosides
cannot be substituted for by other saponins such as hederagenin
and bayogenin glycosides. The differential accumulation of
saponins in the aerial and the root tissues may reflect the
effect of the different environments on the aerial parts and
the roots. Compared to roots, one of the unique stresses that
the aerial parts face is herbivore feeding and wounding. This
suggests that zanhic acid glycosides may be potent anti-feeding
metabolites. Indeed, some zanhic acid glycosides have been
found to be the most bitter and throat-irritating components
among the complex sapoinins in alfalfa (Oleszek et al., 1992)
and the most active compounds in disrupting the transmural
potential difference in mammalian small intestine (Oleszek
et al,, 1994). Therefore, zanhic acid glycosides are generally
considered as anti-nutritional and the major anti-feeding agents
against herbivores in leaves. Similar to alfalfa, medicagenic acid
glycosides were also found in the aerial parts of M. truncatula
ecotypes and their amounts were higher in the aerial parts than in
the roots (Figure 5). Unlike zanhic acid glycosides, medicagenic
acid glycosides have been reported to possess, in addition to the
anti-feeding property, a broad and strong anti-microbial activity
(Oleszek et al., 1990; Oleszek, 1996; Avato et al., 2006; Jarecka
et al., 2008). For example, medicagenic acid glycosides strongly
inhibited the growth of Trichoderma viride, a fungus that is
highly sensitive to alfalfa saponins and has been traditionally
used to quantify saponins (Zimmer et al., 1967). In contrast,
zanhic acid glycosides were found inactive against a wide range
of fungi including T. viride; even at higher concentrations
(Oleszek et al., 1992; Oleszek, 1996). Because the difference
between medicagenic acid and zanhic acid is the presence of
C16-hydroxy group in zanhic acid, it has been suggested that
the C16-hydroxy group is responsible for the strong bitter taste
but low anti-fungal activity of zanhic acid glycosides (Oleszek,
1996). Soyasaponin B glycosides were also found to accumulate
in the aerial parts and the roots (Figure 5). This is consistent
with the previous report that soyasaponin B glycosides were
found in both aerial and root tissues of alfalfa (Sen et al., 1998).
Soyasaponin B glycosides are non-hemolytic saponins. They
have been reported to possess anti-feeding and antifungal
activities. The combination of saponins of distinct functions
in leaves provides an excellent defense against herbivores and
fungal attacks. Indeed, incorporation of dried alfalfa leaf tissue
in their diet significantly inhibited growth and development
of larvae of the European corn borer (Ostrinia nubilalis). In
contrast, saponin fractions isolated from alfalfa root tissues, when
incorporated into their diet at equivalent concentrations, had
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little effect on larvae development although they inhibited their
growth (Nozzolillo et al., 1997). Feeding Spodoptera littoralis
(Egyptian Cotton Leafworm) larvae with a diet supplemented
with saponins isolated from alfalfa also significantly reduced
their growth, fecundity and fertility and increased their mortality
(Adel etal., 2000). Medicagenic acid and its glycosides were found
to be much more effective in inhibiting larvae than hederagenin
and its glycosides which are normally accumulated in roots. In
a more recent study, the number of aphids infesting alfalfa was
found to be inversely related to the contents of zanhic acid and
medicagenic acid glycosides in the leaves (Gotawska et al., 2012).

It was also demonstrated that these compounds were induced
upon aphid infestation, indicating their anti-feeding properties.
All these suggest that saponins in leaves have been tailored
to defend against herbivore feeding through increased
bitterness and toxicity.

Compared to leaf saponins, root saponins consisted of a
different set of triterpene glycosides, with the major difference
being the absence of zanhic acid glycoisdes and the presence of
bayogenin glycosides and hederagenin glycosides (Figure 5). This
suggests that P450s responsible for converting medicagenic acid
to zanhic acid is not active in roots. This is not surprising as
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leaves and roots are in different environments and may require
different saponins to respond to different abiotic and biotic
stress. The absence of the bitter zanhic acid glycosides in roots
suggests that anti-feeding is less important in roots than in
leaves. The abundance of bayogenin and hederagenin glycosides
found in roots suggests that these root-specific compounds are
important to root fitness. We hypothesize that they likely serve
important roles in defense against soil pathogenic microbes.
Indeed, saponins from Medicago hybrida roots were found to
substantially inhibit six pathogenic fungi Botrytis cinerea, Botrytis
tulipae, Fusarium oxysporum f. sp. callistephi, F. oxysporum f. sp.
narcissi, Phoma narcissi, and F. oxysporum Schlecht (Saniewska
etal.,, 2006). Similarly, saponins isolated from roots of alfalfa were
also found to have strong anti-fungal activity (Jarecka et al., 2008).
The strong antifungal activity was attributed to some hederagenin
and medicagenic acid glycosides (Saniewska et al., 2006; Jarecka
et al., 2008). Bayogenin glycosides have also been reported to
possess anti-fungal activity (Martyniuk and Biaty, 2008). Their
inhibitory effects against Cephalosporium gramineum, a soil
fungus that infects roots of plants, were markedly higher than
their similar hederagenin glycoside counterparts (Martyniuk and
Bialy, 2008). Bayogenin differs with hederagenin only in that
it possesses a hydroxyl group at C2 position (Figure 1). The
hydroxyl groups at C2 and C3 positions are important for
antifungal activities, possibly due to the increased polarity and
solubility (Oleszek, 1996). Selective methylation of the hydroxyl
groups in medicagenic acid showed that the hydroxyl group at
C3 position is essential for antifungal activity (Levy et al., 1989).
While glycosylation of the C3 hydroxyl group did not affect the
overall antifungal activity, methylation or acetylation resulted in
a significant loss of the antifungal activity. This suggests that
the polarity of these compounds is important in their antifungal
activity. The spatially differential accumulation of saponins in the
aerial parts and roots shows that plant secondary metabolism is
flexible and adaptable. Different tissues of the same plant can
accumulate different sets of metabolites to increase their fitness
and adapt to the environments. In M. truncatula, the bitter
herbivore deterrent zanhic acid glycosides are predominantly
found in the aerial tissues while the anti-fungal agents such
as hederagenin and bayogenin glycosides are mostly found in
roots to defend against soil borne fungi. In contrast, medicagenic
acid glycosides, the broad spectrum and strong anti-microbial
compounds, are accumulated in both the aerial and root tissues.

CONCLUSION

Saponin profiling of 201 M. truncatula ecotypes revealed a clear
differential spatial accumulation of saponins in the aerial parts
relative to the roots. Zanhic acid glycosides were only found in
the aerial tissues. In contrast, bayogenin glycosides, hederagenin
glycosides, and soyasaponin B glycosides were predominantly
accumulated in roots, thus suggesting interesting ecological
roles for these compounds in plant defense. Overall, zanhic
acid glycosides, medicagenic acid glycosides and soyasaponin B
glycosides were the three major triterpene saponins found in
the aerial parts, while medicagenic acid glycosides, bayogenin

glycosides, hederagenin glycosides, SoyE glycosides, and SoyB
glycosides constituted the major root saponins. Although
medicagenic acid glycosides were found in both the aerial and
root tissues, aerial parts were found to contain more medicagenic
acid glycosides. Significant correlation between the quantity of
saponins and the ecotypes’ country of origin was observed. The
European ecotypes were found to contain higher content of
saponins than most of the African and the Middle-East ecotypes.
This dataset also represents an extremely valuable resource
for discovery of biosynthetic genes and deciphering saponin
biosynthesis. Based on the correlation analysis of the metabolic
profiling data and gene expression data, a number of P450 genes
have been selected for further characterization to elucidate their
roles in saponin biosynthesis in M. truncatula (Tzin et al., 2019).
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Members of the Psilotales (whisk ferns) have a unique anatomy, with conducting tissues
but lacking true leaves and roots. Based on recent phyogenies, these features appear to
represent a reduction from a more typical modern fern plant rather than the persistence
of ancestral features. In this study, extracts of several Psilotum organs and tissues
were analyzed by Gas Chromatography — Mass Spectrometry (GC-MS) and High
Performance Liquid Chromatography — Quadrupole Time of Flight — Mass Spectrometry
(HPLC-QTOF-MS). Some arylpyrones and biflavonoids had previously been reported to
occur in Psilotum and these metabolite classes were found to be prominent constituents
in the present study. Some of these were enriched and further characterized by
Nuclear Magnetic Resonance (NMR) spectroscopy. HPLC-QTOF-MS and NMR data
were searched against an updated Spektraris database (expanded by incorporating
over 300 new arylpyrone and biflavonoid spectral records) to aid significantly with peak
annotation. Principal Component Analysis (PCA) with combined GC-MS and HPLC-
QTOF-MS data sets obtained with several Psilotum organs and tissues indicated a
clear separation of the sample types. The principal component scores for below-
ground rhizome samples corresponded to the vectors for carbohydrate monomers
and dimers and small organic acids. Above-ground rhizome samples had principal
component scores closer to the direction of vectors for arylpyrone glycosides and
sucrose (which had high concentrations in above-and below-ground rhizomes). The
unique position of brown synangia in a PCA plot correlated with the vector for biflavonoid
glycosides. Principal component scores for green and yellow synangia correlated with
the direction of vectors for arylpyrone glycosides and biflavonoid aglycones. Localization
studies with cross sections of above-ground rhizomes, using Matrix-Assisted Laser
Desorption/lonization — Mass Spectrometry (MALDI-MS), provided evidence for a
preferential accumulation of arylpyrone glycosides and biflavonoid aglycones in cells

Frontiers in Plant Science | www.frontiersin.org 7

July 2019 | Volume 10 | Article 868


https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2019.00868
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2019.00868
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2019.00868&domain=pdf&date_stamp=2019-07-09
https://www.frontiersin.org/articles/10.3389/fpls.2019.00868/full
http://loop.frontiersin.org/people/702926/overview
http://loop.frontiersin.org/people/313418/overview
http://loop.frontiersin.org/people/157628/overview
http://loop.frontiersin.org/people/33462/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Samec et al.

Chemical Diversity in Psilotum nudum

of the chlorenchyma. Our results indicate a differential localization of metabolites with
potentially tissue-specific functions in defenses against biotic and abiotic stresses. The
data are also a foundation for follow-up work to better understand chemical diversity in
the Psilotales and other members of the fern lineage.

Keywords: arylpyrone, biflavonoid, mass spectrometry, metabolomics, nuclear magnetic resonance, whisk fern

INTRODUCTION

Free—sporing vascular plants encompass two distinct
evolutionary lineages, the lycophytes and ferns, with the
latter resolved as more closely related to seed plants (Kenrick and
Crane, 1997; Pryer et al., 2001). Whisk ferns (order Psilotales),
which comprise two genera (Psilotum and Tmesipteris) in
the family Psilotaceae, have conducting tissues but no veins,
and lack true leaves and roots. Water and mineral absorption
occurs through underground, horizontally creeping rhizomes,
sometimes in association with symbiotic fungi (mycorrhizae)
(Ducket and Ligrone, 2005). Plants grow mostly as epiphytes
(using other plants as physical support) in moist habitats.
The stem-like aerial portion of rhizomes of members of the
Psilotaceae is covered by an epidermis, followed inward by
extensive cortical areas, a single-layered endodermis, and a
thick-walled protostele that accommodates the water and
nutrient-conducting tissues (Pittermann et al., 2011). The
epidermal layer of the photosynthetic above-ground rhizomes
contains stomata for gas exchange (Nilsen, 1995). In the
genus Psilotum, above-ground rhizomes have many branches
with scale-like appendages called enations. These structural
outgrowths resemble miniature leaves but, unlike true leaves,
have no internal vascular tissues. Above these enations,
positioned laterally along the distal portions of aerial shoots, are
spore-containing synangia, which result from the fusion of three
adjacent sporangia (Renzaglia et al., 2001).

Because of its unusual anatomical characteristics, P. nudum
was traditionally thought to be descended from the earliest
vascular plants (Banks, 1975), and conflicting views regarding the
placement of the Psilotales remained in the literature for decades.
Recent phylogenies based on both morphological characters and
extensive sequence data provided strong evidence that Psilotales,
Ophioglossales (moonworts) and Marattiales (king ferns) — all
eusporangiate ferns - form a monophyletic clade that is sister to
leptosporangiate ferns, the largest group of living ferns (Doyle,
2018; Rothwell et al., 2018). The unique anatomy of extant
Psilotales therefore appears to represent a reduction from a
more typical modern fern plant rather than the persistence of
ancestral features. While recent progress has been made with
regard to resolving the classification of vascular plants, there is
still a notable lack of knowledge regarding the phytochemical
diversification associated with the adaptive radiation of ferns.

Abbreviations: AMT tag, accurate mass-time tag; CHCA, «-cyano-4-
hydroxycinnamic acid; DBA, 2,5-dihydroxybenzoic acid; GC-MS, gas
chromatography - mass spectrometry; HPLC-QTOF-MS, high performance
liquid chromatography - quadrupole time of flight — mass spectrometry;
MALDI-MS, matrix-assisted laser desorption/ionization — mass spectrometry;
NMR, nuclear magnetic resonance; PC, principal component; PCA, principal
component analysis.

We selected Psilotum nudum (L.) Beauv. to evaluate chemical
diversity in the fern lineage, as only limited knowledge exists
on this topic. Psilotin and 3’-hydroxypsilotin are unusual Cj;
arylpyrone glycosides unique to the Psilotaceae (McInnes et al.,
1965; Tse and Towers, 1967; Balza et al., 1985; Takahashi et al.,
1990). Psilotic acid is a C6-C4 organic acid that is structurally
related to the psilotin aglycone (psilotinin) (Shamsuddin et al.,
1985). Prominent flavonoid glyosides in the Psilotaceae are
O-glucosides of the biflavonoid, amentoflavone, and C- and
O-glycosides of the flavone, apigenin (Cooper-Driver, 1977;
Wallace and Markham, 1978; Markham, 1984). A survey
across sixteen pteridophytes (ferns and fern allies), including
P. nudum, concluded that the sterol composition is generally
similar to that of spermatophytes (seed plants), with p-sitosterol,
campesterol and stigmasterol as principal constituents (Chiu
et al., 1988). P. nudum tissues were also demonstrated to
contain representatives of several phytohormone classes (auxins,
cytokinins and gibberellins) (Takahashi et al., 1984; Abul et al.,
2010). In this pilot study, which is the beginning of efforts to
chart out the most abundant classes of specialized metabolites
in ferns, we demonstrate the utility of multi-platform analyses
for capturing the unique chemical fingerprints of different
P. nudum organs and tissues. In addition, we report the tissue-
level localization of the most prominent arylpyrone glycoside and
biflavonoid constituents.

MATERIALS AND METHODS

Chemicals and Solvents

Solvents for extraction and chromatography were of the highest
commercial grade and obtained from Sigma-Aldrich (St. Louis,
MO, United States). Deuterated solvents for nuclear magnetic
resonance (NMR) spectroscopy were obtained from Cambridge
Isotope Laboratories Inc. (Andover, MA, United States),
with details in Table 2. All authentic standards, reference
materials (red phosphorus, a-cyano-4-hydroxycinnamic acid,
9-anthracenecarboxylic acid, sinapic acid and vanillic acid)
and reagents (N-methyl-N-(trimethylsilyl)trifluoroacetamide)
were generally purchased from Sigma-Aldrich (St. Louis, MO,
United States); exceptions: 2,5-dihydroxybenzoic acid (TCI
America, Portland, OR, United States) and leucine enkephalin
(Waters, Milford, MA, United States).

Plant Growth

Psilotum nudum (L.) P. Beauv. plants had been established from
rhizomes roughly 6 years before the initiation of the experiments
described here. A voucher specimen was deposited with the
John G. Searle Herbarium of the Field Museum (Chicago,
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IL, United States). Plants were maintained in a greenhouse
under ambient lighting, with supplemental lighting during winter
months provided by high-intensity discharge lamps. The daily
light integral varied from 15 to 25 mol m~2 d~!. Temperatures
ranged between 22 and 27°C and the humidity was set to 70%. At
the time of harvesting, P. nudum produced synangia that, based
on color (green, yellow or brown), could be differentiated into
three developmental stages (immature, mature, and senescent).
Five biological replicates were harvested at the same time of
day (11:00 AM, Pacific Daylight Savings Time) for the following
organs: below-ground rhizome, above-ground rhizome (stem),
and (separately) green, yellow and brown synangia. Samples
were immediately frozen in liquid nitrogen, freeze-dried (aerial
parts for 5 days, rhizomes for 7 days). Lyophilized material
was homogenized to a fine powder under liquid nitrogen using
mortar and pestle. Defined quantities of homogenate were
weighed out, placed in a 2 ml microfuge tube, and stored as
aliquots at ~20°C until further use.

Metabolite Extraction and Derivatization
for Analysis by Gas Chromatography -
Mass Spectrometry

Frozen tissue homogenate from each sample (15 £ 3 mg)
was transferred to 8 ml glass tubes and overlaid with 700 pnL
methanol (containing myristic acid-d; (CDN Isotopes, Quebec,
Canada) as internal standard at 1.5 mg/ml) and 25 pL water.
Tubes were capped tightly and heated in a water bath to
70°C for 15 min, centrifuged for 2 min at 3,500 x g and
supernatants transferred to new 8 ml glass vials. To each
supernatant, 700 wL of water and 375 pwL of chloroform were
added and the contents of the tube mixed with a multi-tube
vortexer (VWR Scientific, South Plainfield, NY, United States)
for 15 min at a speed setting of 4. Extracts were centrifuged
for 15 min at 3,500 x g, the upper aqueous phase was
combined with the first methanol extract (henceforth referred
to as aqueous methanol extract), and the lower organic phase
was collected separately (chloroform extract). The two extracts
were separately evaporated to dryness [Vacufuge Plus for aqueous
methanol extract (Eppendorf, Hauppage, NY, United States);
EZ-Bio Evaporator for chloroform extract (GeneVac LTID,
Ipswich, United Kingdom)]. Dried samples were derivatized
just-in-time by adding 10 pL of a 40 mg/ml solution of
methoxyamine hydrochloride in pyridine and shaking gently
at 30°C for 90 min, then adding 50 wL of N-methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA; Sigma-Aldrich, St.
Louis, MO, United States) and shaking gently at 37°C for 30 min.
Samples were allowed to cool to room temperature, and the
extract was transferred to a glass insert, which was then placed
in a 2 ml glass reaction vial.

Gas Chromatography — Mass

Spectrometry Analysis

Gas chromatography - mass spectrometry (GC-MS) was
performed under the following conditions: injection volume:
1 pL (splitless mode); GC instrument: 6890N (Agilent

Technologies, Santa Clara, CA, United States), GC; column: DB-
5MS + DG (30 m x 0.25 mm x 0.25 pm; J&W Scientific, Santa
Clara, CA, United States); inlet temperature: 250°C; temperature
program: start at 60°C, ramp to 320°C at 3°C/min, hold for
10 min; retention time locking: myristic acid-d,7 at 42.06 min at
an inlet pressure of 10.65 psi; MS instrument: 5975 MSD (Agilent
Technologies, Santa Clara, CA, United States); transfer line
temperature: 250°C; electron ionization at 70 eV. Data analysis
was performed using ChemStation, version E.02.00.493 (Agilent
Technologies, Santa Clara, CA, United States). Custom spectral
databases (specifying retention time, a quantification signal and
three qualifier ions) were created using authentic standards
from our in-house library for the identification of GC-MS peaks
(Supplementary Table S1). Peaks generated by unidentified
analytes were annotated based on community reporting
guidelines (Bino et al., 2004; Fiehn et al, 2007). Raw data
values were normalized for sample weight and signal intensity
associated with the internal standard. Normalized data values
were z-transformed (autoscaled) prior to statistical analyses.

Metabolite Extraction for High
Performance Liquid Chromatography -
Quadrupole Time-of-Flight - Mass
Spectrometry

Frozen tissue homogenate from each sample (30 £ 5 mg) was
transferred to a 2 ml reaction tube and extracted with 1 ml of 80%
aqueous methanol (containing 6 mg/L anthracene-9-carboxylic
acid as internal standard) for 10 min [multi-tube vortexer (VWR
Scientific, South Plainfield, NY, United States) at highest speed
setting] and subsequent sonication for 20 min (ultrasonic bath
at highest intensity setting, Fisher Scientific, Hampton, NY,
United States). Following centrifugation for 10 min at 13,000 x g,
supernatants were filtered through 0.22 pm polypropylene filter
material and collected in plastic inserts for 2 ml reaction vials.

High Performance Liquid

Chromatography - Quadrupole
Time-of-Flight - Mass Spectrometry
Analysis

High Performance Liquid Chromatography - Quadrupole
Time-of-Flight - Mass Spectrometry (HPLC-QTOF-MS) was
performed under the following conditions: HPLC system: 1290
system (Agilent Technologies, Santa Clara, CA, United States)
consisting of thermo-controlled autosampler (set to 4°C), binary
pump (operated at 0.6 ml/min), isocratic pump [operated at
0.1 ml/min flow rate to introduce a reference mass solution
containing 300 nM purine (exact mass 120.043596 g/mol) and
250 nM hexakis-(1H, 1H,3H-tetrafluoropropoxy)-phosphazine
(exact mass 921.002522 g/mol) in acetonitrile/water (95:5; v/v)],
thermo-controlled column compartment (set to 60°C), and
diode array detector (scanning range 210-600 nm, resolution
1.2 nm); injection volume: 10 pl; Column: HD Zorbax SB-Aq
(100 x 2.1 x mm; 1.8 pm pore size, Agilent Technologies,
Santa Clara, CA, United States); Mobile phase: 0.1% (v/v)
formic acid in water (solvent A) and 0.1% (v/v) formic acid
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in acetonitrile (solvent B). Gradient: 5% B at start; linear
gradients to 10% B at 5 min, 20% B at 10 min, 80% B at
35 min, 95% B at 45 min; QTOF-MS instrument: 6530 series
with electrospray ion source (Agilent Technologies, Santa Clara,
CA, United States); polarity: positive; drying gas flow rate:
10 L/min; drying gas temperature: 325°C; nebulizer pressure:
2.4 bar; m/z range: 100-1,200 (high gain mode); scan rate:
1.4 scans/s for MS and 4 scans/s for MS/MS. Data analysis
was performed using the MassHunter Workstation software
package [B.07.00, Qualitative Analysis and B.06.00, Profinder,
Agilent Technologies, Santa Clara, CA, United States). For
each detected peak, molecular feature extraction (considering
retention time (tolerance window 1.30 s) and high mass accuracy
(m/z tolerance window 10 ppm)], deconvolution, and alignment
across samples were performed using the recursive feature
extraction algorithm (settings: threshold of 10,000 counts and
peak spacing tolerance of 0.0025 m/z). Quasi-molecular ions
and adducts were considered ([M+H]*, [M+Na]*, [M+K]*,
[M+NH4] "), as were the corresponding dimers. The minimum
absolute height required for feature extraction in the recursive
step was set to 10,000 counts (sum of all peaks for a given
molecular entity), which had to be fulfilled in at least three
of five biological replicates. The global filter was limited to
2,000 results. Peak annotation was performed based on a
combination of chromatographic, mass spectral (accurate mass
and MS/MS fragmentation patterns), evaluation of the literature,
and searches against spectral databases (Table 1). Peaks generated
by unidentified analytes were annotated based on community
reporting guidelines (Bino et al., 2004; Fiehn et al., 2007).
MS/MS spectra for identified peaks were submitted to MassBank
(Horai et al, 2010) to expand a widely used community
spectral resource. Normalized data values for HPLC-QTOF-MS
peaks were z-transformed (autoscaled) and combined with the
normalized and z-transformed GC-MS data (Supplementary
Table S2). The combined HPLC-QTOF-MS and GC-MS data set
were processed by Principal Component Analysis (PCA) using
the R statistical package', for which the settings and outcomes are
summarized in Supplementary Table S3.

Metabolite Isolation and Analysis by
Nuclear Magnetic Resonance
Spectroscopy

Above-ground biomass from P. nudum was harvested and
homogenized to a fine powder in the presence of liquid nitrogen.
A 300 mg aliquot of the homogenate was extracted with 10 ml of
80% aqueous methanol by vigorous mixing for 10 min (Vortex
Mixer, VWR Scientific, South Plainfield, NY, United States;
operated at highest speed setting) and subsequent sonication
in an ultrasonic bath for 20 min. Following centrifugation of
this mixture for 10 min at 13,000 rpm, the supernatant was
recovered and filtered through a 0.22 pwm polypropylene filter.
The extract was stored at -20°C until further processing. Aliquots
(100 1 each) of the filtered extracts were injected onto a C18
reversed phase and absorbance at 280 and 360 nm was monitored

Uhttps://www.r-project.org/

(1100 Series HPLC system; Agilent Technologies, Santa Clara,
CA, United States). The mobile phase consisted of two solvents
(A: 0.2% (v/v) acetic acid in water; B: 0.2% (v/v) acetic acid in
methanol) and the separation of metabolites was achieved using
the following gradient: 2% B at start, with a series of linear
gradients to 35% B at 10 min, 60% B at 21 min, 90% B at 40 min,
and 98% B at 50 min. The flow rate was set to 1.3 ml/min. Trial
runs indicated when metabolites of interest eluted and fractions
were collected accordingly. The eluents of several runs were
accumulated and each of these fractions evaporated to dryness
in a rotary evaporator. Each residue was dissolved in a deuterated
solvent and NMR spectra were acquired with the settings listed in
Supplementary Table S4. Spectral records for bioflavonoids and
arylpyrones were generated based on information extracted from
the literature (listing in Supplementary Table S5) and integrated
into the Spektraris database (Cuthbertson et al., 2013; Fischedick
etal., 2015). The combined spectral data from HPLC-QTOF-MS
and NMR were then used to search for matches in the Spektraris
online resource (Table 2).

Metabolite Imaging by Matrix-Assisted
Laser Desorption/lonization — Mass
Spectrometry

Psilotum nudum above-ground rhizomes were cross-sectioned
into 2 cm segments, embedded in 3% (w/v) agarose, and
stored at -80°C until further processing. On the day of
the metabolite imaging analysis, the chamber of a CM 1950
Cryostat (Leica Biosystems, Buffalo Grove, IL, United States)
was set to —20°C, embedded samples were sectioned to 30 um
thickness and sections immediately transferred to an imaging
target plate (Waters Corp., Milford, MA, United States). The
ionization matrices tested for their suitability with P. nudum
metabolites were 2,5-dihydroxybenzoic acid (DBA), a-cyano-4-
hydroxycinnamic acid (CHCA), sinapic acid and vanillic acid
(each at 40 mg/ml (w/v) in methanol/water (1:1; v/v)). Matrices
were applied with a sample preparation system (TM-Sprayer of
HTX Technologies, Chapel Hill, NC, United States) connected
to an 1100 Series HPLC Binary Pump (Agilent Technologies,
Santa Clara, CA, United States). The settings were: flow rate
at 0.05 ml/min; nozzle temperature at 80°C; spraying velocity
at 1,250 mm/min; 12 passes; and track spacing of 1 mm.
The final amount of matrix deposited per linear distance was
0.19 mg mm~2. Besides matrix-covered samples, the following
chemicals were also spotted onto the imaging target plates: red
phosphorus for instrument calibration (10 mg/ml in acetone),
leucine-enkephalin to generate a lock mass [10 mg/ml mixed
with 3.4 mg/ml CHCA in methanol/water (1:1; v/v)], and
authentic standards [1 mg/ml of amentoflavone, psilotin and 3’-
hydroxypsilotin mixed with 5 mg/ml DHB in methanol/water
(1:1; v/v)]. Metabolite imaging was performed by Matrix-Assisted
Laser Desorption/Ionization Mass Spectrometry (MALDI-MS)
on a Synapt G2-S instrument equipped with an ion mobility
drift tube and operated with MassLynx software version 4.1
(Waters, Milford, MA, United States). The imaging target plate
was introduced into the sample chamber and the laser operated
with the following settings: 1,000 Hz firing rate; laser energy

Frontiers in Plant Science | www.frontiersin.org

July 2019 | Volume 10 | Article 868


https://www.r-project.org/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

B0 UISIBNUOL MMM | 8OUBIOS JUBId Ul SIORUOI

898 eIy | 01 8Wn|oA | 610z ANp

TABLE 1 | Annotation of HPLC-QTOF-MS peaks.

Accurate Mass - Monoisotopic Mass Appm Molecular MS (ESI-Positive) MS/MS(ESI-Positive) Annotation References; Further
Time Tag (Measured/Calculated) Formula (Varying Collision Energies) Evidence
BML-LCMS18- 368.1101/368.1107 1.79 C17H2009 [M+H]* 369.1198 10 eV: 391.0999 (100), 3’-Hydroxypsilotin Balza et al., 1985; NMR
4.66-368.1101 [M+Na]* 391.0999 1283.0436 (80), 207.0649 (55), (Table 2; F2)
[M+K]* 407.0696 189.0564 (30) 50 eV: 123.0438
[2M+Na]* 759.2115 (100), 189.0540 (35), 227.0002
[PM+K]* 775.1595 (34), 98.9747 (26), 199.0080
(23), 110.9751 (19), 115.0537
(18), 171.0427 (17), 147.0451
(16), 231.0246 (15)
BML-LCMS18- 530.1636/530.1636 0.00 C23H30014 [M+Na]* 553.1530 30 eV: 553.1504 (100), 3’-Hydroxypsilotinin-di-
4.76-530.1636 207.1641 (11) 50 eV: 123.0433 O-hexoside
(100), 173.0570 (48), 85.0281
(23), 189.0512 (29), 115.0534
(26), 203.0539 (17), 116.9908
(15), 147.0437 (14)
BML-LCMS18- 514.1688/514.1686 0.08 C23H30013 [M+H]* 515.1751 30 eV: 537.1603 (100), Psilotinin-di-O-hexoside
5.12-514.1688 [M+Na]* 537.1591 191.0746 (40), 391.0731 (15), |
[2M+Na]* 1051.3232 173.0627 (14), 107.0520 (7)
50 eV: 107.0538 (100),
173.0650 (87), 201.0111 (26),
229.0230 (20), 117.0743 (12),
145.0677 (12), 98.9808 (11)
BML-LCMS18- 352.1168/352.1158 2.79 C17H2008 [M+H]* 353.1250 10 eV: 375.1075 (100), Psilotin Mclnnes et al., 1965;
5.20-352.1168 [M+Na]* 375.1075 173.0598 (70), 107.0487 (63), Authentic Standard
[2M+Na]+ 727.2223 191.0699 (45), 123.0434
50 eV: 107.0492 (100),
98.9753 (78), 173.0588 (66),
110.9858 (64), 183.0123 (44),
127.0544 (43), 167.0168 (42),
117.0706 (33), 201.0072 (31),
145.0635 (25), 229.0171 (23),
BML-LCMS18- 206.0568/206.0580 0.12 C11H1004 [M+H]* 207.0652 30eV: 207.0677 (100), 3’-Hydroxypsilotinin
5.52-206.0568 [M+Na]* 229.0475 189.0546 (81), 123.0443 (62)
50 EV: 123.0451 (100),
189.0566 (29), 173.0595 (27),
147.0451 (12)
BML-LCMS18- 514.1686/514.1686 0.00 C23H30013 [M+H]* 515.1741 30 eV: 537.1757 (100) 50 eV: Psilotinin-di-O-hexoside
6.83-514.1686 [M+Na]* 537.1575 173.0591 (100), 107.0476 (86), Il
[2M+Na]* 1051.3228 201.0053 (69), 85.0275 (55),
229.0168 (49), 127.0540 (41),
145.0625 (36), 97.0267 (34)
BML-LCMS18- 190.0627/190.0631 0.20 C11H1003 [M+H]* 191.0703 30 eV: 173.0589 (100), Psilotinin
8.31-190.0627 [M+Na]* 213.0528 107.0491 (82) 50 eV: 107.0472
(100), 173.0592 (76), 145.0669
(18)
BML-LCMS18- 594.1583/594.1585 0.02 C27H30015 [M+H]* 595.1654 10 eV: no fragmentation 50 eV: Apigenin-6,8-di-C- Markham, 1984;
11.20-594.1583 [M+Na]* 617.1470 271.0583 (100) glucoside Authentic Standard
(vicenin-2)
(Continued)
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TABLE 1 | Continued

Accurate Mass -
Time Tag

Monoisotopic Mass
(Measured/Calculated)

Appm

Molecular
Formula

MS (ESI-Positive)

MS/MS(ESI-Positive)
(Varying Collision Energies)

Annotation

References; Further
Evidence

BML-LCMS18-
13.99-1024.2462

BML-LCMS18-
14.26-432.1067

BML-LCMS18-
14.50-578.1636

BML-LCMS18-
14.82-1024.2480

BML-LCMS18-
156.78-862.1946

BML-LCMS18-
16.60-862.1938

BML-LCMS18-
17.66-702.1582

BML-LCMS18-
18.12-700,1418

BML-LCMS18-
18.28-702.1562
BML-LCMS18-

19.16-700.1424

BML-LCMS18-
19.96-554.0856

BML-LCMS18-
20.73-540.1053

1024.2462/1024.2485

432.1067/432.1056

578.1636/5781636

1024.2480/1024.2485

862.1946/862.1956

862.1938/862.1956

702.1582/702.1585

700,1418/700,1428

702.1562/702.1585

700.1424/700.1428

554.0856/554.0849

540.1053/540.1067

2.21

2.44

0.00

0.03

1.21

214

0.38

1.46

3.23

1.00

1.24

0.64

C48H48025

C21H20010

C27H30014

C48H48025

C42H38020

C42H38020

C36H30015

C36H28015

C36H30015

C36H28015

C30H18011

C30H20010

[M-+HJ* 1025.2536
[M+Na]* 1047.2336

[M+HI* 433.1130
[M+Nal*+ 455.0945

[M+HI* 579.1712
[M+Na]* 601.1520
[2M+Nal* 1179.3113
[M+HI* 1025.2551
[M+Na]* 1047.2352

[M+HI* 863.2021
[M+Na]*+ 885.1831
[M+K]* 901.1516
[M+HI* 863.2010
[M+Nal*+ 885.1825

[M-+H]* 703.1642
[M+Na]* 725.1487

[M+H]+ 701.1490
[M+Na]* 723.1310

[M+H]* 703.1632
[M+Nal*+ 725.1442
[M+HJ* 701.1493

[M+Nal* 723.1304

[M-+H]* 555.0931

[M+HI* 541.1125
[M+Nal* 563.0948
[2M+Nal* 1103.1994

10 eV: no fragmentation 50 eV:
539.0979 (100), 701.1499 (81),
269.1301(10)

10 eV: no fragmentation 50 eV:
271.0597 (100), 1563.0175 (4)

10 eV: no fragmentation 50 eV:
271.0598 (100)

10 eV: no fragmentation 50 eV:
539.0966 (100), 701.1482 (73),
863.1989 (14)

10 eV: no fragmentation 50 eV:
539.0967 (100), 701.1482 (6)

10 eV: no fragmentation 50 eV:
539.0963 (100), 701.1473 (34)

10 eV: no fragmentation 50 eV:
421.0545 (100), 541.1130 (43),
311.0555 (17), 337.0343 (16),
271.0582 (10), 153.0175 (8),
137.0583 (7), 147.0434 (7),
297.0413 (6), 379.0452 (5)
10 eV: no fragmentation 50 eV:
539.0976 (100), 403.0443 (12),
377.0654 (5)
10 eV: no fragmentation 50 eV:
389.1015 (100), 541.1112 (65),
153.0958 (55), 415.0787 (20),
403.0439 (7)

10 eV: no fragmentation 50 eV:
539.0965 (100), 403.0434 (19),
377.0658 (8), 1563.017 (5)
10 eV: no fragmentation 50 eV:
403.0641 (100), 153.0641 (94),
405.0951 (78), 377.0672 (70),
121.0297 (51), 347.0569 (40),
375.0844 (39), 335.0551 (36),
271.0600 (25), 283.0604 (24),
555.0880 (24)

10 eV: no fragmentation 50 eV:
311.0555 (100), 337.0350
(100), 283.0604 (94), 421.0558
(36), 312.0585 (19), 147.0433
(11), 335.055 (10), 253.0490
(8), 1563.0189 (8),

Amentoflavone-tri-
hexoside
|
Apigenin-7-O-glucoside
(apigentrin, cosmosin)

Apigenin-7-0O-
rhamnoglucoside
(rhofolin)
Amentoflavone-tri-
hexoside
I
Amentoflavone-di-
hexoside
|
Amentoflavone-di-
hexoside
Il
Dihydroamentoflavone-
hexoside
|

Amentoflavone-
hexoside
|
Dihydroamentoflavone-
hexoside
I

Amentoflavone-
hexoside
Il

Hydroxy-amentoflavone

2,3-Dihydro-
amentoflavone

Wallace and Markham,
1978;
Authentic Standard
Wallace and Markham,
1978

Zhang Y.X. et al., 2011

Zhang Y.X. et al., 2011
NMR (Table 2; F8)

(Continued)
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TABLE 1 | Continued

Accurate Mass - Monoisotopic Mass Appm Molecular MS (ESI-Positive) MS/MS(ESI-Positive) Annotation References; Further
Time Tag (Measured/Calculated) Formula (Varying Collision Energies) Evidence
BML-LCMS18- 702.1573/702.1585 1.67 C36H30015 [M+H]* 703.1641 10 eV: no fragmentation 50 eV: Dihydroamentoflavone-
20.96-702.1573 [M+Na]* 725.1468 541.1118 (100), 421.0543 (48), hexoside
393.0621 (10), 271.0578 (4) Il
BML-LCMS18- 538.0912/538.0900 2.24 C30H18010 [M+Na]* 561.0785 10 eV: no fragmentation 50 eV: Amentoflavone Wallace and Markham,
21.15-5638.0912 [2M+H]* 1077.1844 377.0657 (100), 403.0452 (98), 1978; Wang et al.,
[2M+Na]* 1099.1671 347.0551 (56), 335.0552 (55), 2015;
283.0600 (36), 153.0178 (34), NMR (Table 2;F10);
539.0964 (27), 121.0282 (25), Authentic Standard
307.0601 (23), 387.0855 (21),
311.0549 (16)
BML-LCMS18- 540.1058/540.1057 0.28 C30H20010 [M+H]* 541.1130 10 eV: no fragmentation 50 eV: 2'" 3"-Dihydro- Zhang Y.X. et al., 2011
21.41-540.1058 [M+Na]* 563.0935 389.1016 (100), 153.0176 (86), amentoflavone
121.0281 (16), 270.0524 (10),
253.0485 (6), 377.0642 (6),
403.0457 (6), 347.0741 (5)
BML-LCMS18- 583.4640/583.4640 0.00 C30H18010 [M+H]* 539.0979 10 eV: no fragmentation 50 eV: Robustaflavone Zhang Y.X. et al., 2011;
22.03-583.4640 153.0165 (100), 387.0853 (93), Wang et al., 2015;
403.0447 (84), 521.0858 (76), NMR (Table 2; F11)
413.0647 (60), 377.0664 (56),
539.0966 (52), 270.0523 (49),
283.0692 (43), 347.0577 (42),
121.0324 (39), 389.0987 (34),
335.0987 (30), 311.0538 (30)
BML-LCMS18- 554.1201/554.1213 2.16 C31H22010 [M+H]* 555.1270 10 eV: no fragmentation 50 eV: Dihydro-O-methyl- Markham, 1984
22.59-554.1201 [M+Na]* 577.1097 167.0316 (100), 389.0992 (33), amentoflavone
[2M+Na]* 1133.2517 257.0411 (22), 123.0427 (17),
270.0510 (11)
BML-LCMS18- 552.1052/552.1056 0.81 C31H20010 [M+H]* 553.1127 10 eV: no fragmentation 50 eV: O-Methyl- Markham, 1984; Wang
23.38-552.1052 [M+Na]* 575.0941 89.0586 (100), 193.0483 (83), amentoflavone etal, 2015
149.0224 (76), 73.0284 (56), (tentative)
237.0731 (56), 275.0447 (33),
285.0382 (22), 268.0692 (16),
254.0553 (13), 553.1074 (10),
286.0421 (7), 387.0759 (6)
BML-LCMS18- 542.1212/542.1213 0.18 C30H22010 [M+H]* 543.1291 10 eV: no fragmentation 50 eV: Binaringenin Feuereisen et al., 2017
23.80-542.1212 [M+Na]* 565.1101 153.0180 (100), 271.0592 (75),
2M+K]*t 1123.1935 391.1183 (26), 147.0427 (21),
297.0376 (10), 166.9972 (10),
179.0342 (10), 423.0729 (5)
BML-LCMS18- 540.1060/540.1057 0.65 C30H20010 [M+H]* 541.1136 10 eV: no fragmentation 50 eV: Dihydrohinokiflavone
24.14-540.1060 [M+Na]* 563.0941 1563.1777 (100), 389.1015 (96), (tentative)
[2M+Na]* 1103.1995 257.0438 (53), 270.0514 (33),
285.0385 (18), 421.0533 (17),
BML-LCMS18- 538.0896/538.0900 0.74 C30H18010 [M+H]* 539.0979 10 eV: no fragmentation 50 eV: Hinokiflavone Zhang Y.X. et al., 2011;

24.50-538.0896

[M+Nal* 561.0785
[2M+H]* 1077.1844

539.0971 (100), 254.0571 (87),
270.0517 (76), 257.0441 (76),
242.0569 (56), 286.0460 (47),
387.0870 (34), 153.0165 (30)

Wang et al., 2015
NMR (Table 2; F14)
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TABLE 2 | Peak annotation based on Spektraris searches with combined HPLC-QTOF-MS and NMR spectroscopy data.

Accurate Mass - Molecular NMR Solvent NMR Signals (chemical shift, with integral, signal Spektraris Annotation References;
Time Tag Formula multiplicity, coupling constant and position in Search Score Further Evidence
parentheses) (out of 100)
BML-LCMS18- C17H2009 D-O 7.21 (1H, d, 8 Hz, H-5"), 7.13-7.11 (1H, m, H-4), 6.94 (1H, 96 3’-Hydroxypsilotin Balza et al., 1985
4.66-368.1101 d, 4 Hz, H-2’), 6.87 (1H, dd 8 and 7 Hz, H-6’), 6.07 (1H,
dd, 12 and 4 Hz, H-3), 5.42 (1H, dd, 8 and 4 Hz, H-6), 5.0
(1H, m, H-1°) 3.89 (1H, dd, 8 and 4 Hz, H-6), 3.72 (1H, dd,
16 and 4 Hz, H-6), 3.63 (4H, m), 2.64 (2H, m, H-5a,b)
BML-LCMS18- C17H2008 CD3z0D 7.4 (1H, d, 4 Hz, H-2), 7.11 (1H, m, H-4), 6.08 (1H, ddd, 90 Psilotin Mclnnes et al.,
5.20-352.1168 16, 8 and 4 Hz, H-3), 5.48 (1H, dd, 12 and 4 Hz, H-6), 3.89 1965
(1H, dd, 12 and 4 Hz, H-6A'), 3.72 (1H, dd, 12 and 4 Hz,
H-6B’), 3.5 (4H, m), 2.65 (2H, m, H-5a,b)
BML-LCMS18- C30H20010 DMSO-d6 7.58 (2H, d, 12 Hz, H-2'/7 and H-6'7/), 7.45 (2H, m, H-2 82 2,3-Dihydro- Zhang Y.X. et al.,
20.73-540.1053 and H-6") 7.04 (1H, d, 8 Hz, H-5’), 6.79 (2H, d, 8 Hz, H-3"" amentoflavone 2011
and H-5"""), 6.59 (1H, s, H-3"), 6.33 (1H, s, H-6"), 5.85
(2H, m, H-6 and H-8), 5.47 (1H, d, 4 Hz, H-2), 3.15(1H, m,
H-3a), 2.75(1H, m, H-3b)
BML-LCMS18- C30H18010 DMSO-d6 8.01 (1H, dd, 8 and 4 Hz, H-6’), 7.94 (1H, d, 4 Hz, H-2), 99 Amentoflavone Geiger et al., 1993
21.15-5638.0912 7.58 (2H, d, 8 Hz, H-2""" and H-6""), 7.13 (1H, d, 8 Hz, (8',8"-biapigenin)
H-5’), 7.01 (1H, s,H-3), 6.8(1H, s, H-3"), 6.7 (2H, d, 8 Hz,
H-3"" and H-5"), 6.63 (1H, d, 8 Hz, H-8), 6.35 (1H, s,
H-6"), 6.21 (1H, d, 4 Hz, H-6)
BML-LCMS18- C30H18010 DMSO-d6 7.9 (8H, m, H-6’, H-2""" and H-6"""), 7.2 (1H, d,4Hz, H-2"), 87 Robustaflavone Geiger et al., 1993
22.03-583.4640 6.95 (1H, d, 4Hz, H-5"), 6.91 (1H, d, 16 Hz, H-3"" and (3,6 -biapigenin)
H-5""), 6.82(1H, s, H-3). 6.73 (1H, s, H-3"), 6.71 (1H, s,
H-8"), 6.43 (1H, d, 4 Hz, H-8), 6.14 (1H, d,4Hz, H-6)
BML-LCMS18- C30H18010 DMSO-d6 7.9 (BH, m, H-2’, H-2""" and H-6""), 7.18 (2H, d, 4 Hz, H-3’ 81 Hinokiflavone Geiger et al., 1993

24.50-538.0896

and H-6"), 6.92 (2H, d, 4Hz, H-3"” and H-5") 6.88 (3H, m,
H-3, H-5" and H-3"), 8.75 (1H, s, H-3), .72 (1H, s, H-8"),
6.41 (1H, d, 4 Hz, H-8), 6.13 (1H, d, 4Hz, H-6)

(4’,6”"-O-biapigenin)
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Chemical Diversity in Psilotum nudum

of 40 (arbitrary units); and a step size of 25 pwm. Lock mass
correction was repeated every 600 s for a duration of 5 s. Other
settings: helium gas flow at 90 ml min~!; trap wave velocity at
311 m s~!; trap wave height at 4 V; ion mobility wave velocity at
650 m s~!; ion mobility wave height at 40 V; transfer ware velocity
at 191 m s~!; transfer wave height of 0.1 V; and ion mobility
wave delay of 450 ps. The highest signal intensity for the analytes
of interest (and thus most desirable signal-to-noise ratio) was
achieved in positive polarity for psilotin and 3’-hydroxypsilotin,
whereas for amentoflavone negative polarity was preferable.
MS/MS experiments were performed by selecting a precursor ion
and a collision energy of 30 eV in the transfer cell. MALDI-
MS data were processed using the High Definition Imaging
software version 1.2 (Waters, Milford, MA, United States) with
lock mass correction. Metabolite identification was achieved by
comparing accurate mass, MS/MS fragmentation patterns, and
ion mobility drift time with those of authentic standards. Signals
for isomers of amentoflavone, for example robustaflavone and
hinokiflavone, were detectable with authentic standards but not
in tissue samples, where their concentrations were too low for
MS-based imaging.

RESULTS

Strategy for Multi-Platform Analysis of
Metabolites in P. nudum Organs

In an attempt to capture chemically diverse metabolites, we used
a strategy that accessed five P. nudum organs/tissues (below-
ground rhizome, above-ground rhizome, and synangia harvested
at different developmental stages [green (young), yellow
(maturing) and brown (mature)], and generated hydrophilic
(methanol/water) and hydrophobic (chloroform/methanol)
extracts (Figure 1). These two types of extracts were
processed separately for GC-MS analysis (Supplementary
Figure S1). Methanol/water extracts were also subjected to
HPLC-QTOF-MS analysis in positive ionization mode only
(preliminary experiments indicated that chromatographic runs
in negative polarity did not add significant spectral information)
(Supplementary Figure S1). These data sets were normalized,
autoscaled, and then combined for multivariate statistical
analyses (Figure 1). Fractions representing selected metabolites
of interest were collected from chromatographic separations of
extracts and further characterized by 'H-NMR. The different
metabolomics platforms (GC-MS and HPLC-QTOF-MS) were
chosen because they provide complementary information about
different metabolites classes (details presented in the upcoming
paragraphs). Cryosections of P. nudum above-ground rhizomes
were sprayed with a chemical matrix and the cell type-level
localization of the most abundant metabolites determined by
MALDI-QTOF-MS (Figure 1).

Peak annotation for GC-MS data was achieved based on
comparisons of retention times and mass spectral characteristics
with those of authentic standards, which led to the high-
confidence identification of 83 metabolites in our extracts. MS
and MS/MS data from HPLC-QTOF-MS runs (acquired in
positive polarity mode) were searched against comprehensive

online databases (MassBank?, Metlin’, and National Institute
of Standards and Technology*). However, these searches were
mostly unsuccessful due to a lack of relevant reference spectra
in these databases, and we therefore decided to expand the
Spektraris online resource’® with spectral records acquired as part
of this study or extracted from information in the literature.
Accurate mass, inferred molecular formula, NMR spectral data,
and bibliographic information for 328 metabolites (arylpyrone
and biflavonoid aglycones and corresponding glycosides) were
integrated into Spektraris-NMR, which now contains spectral
records for approximately 21,500 metabolites (status: February,
2019). The combination of accurate mass and retention time data
(AMT-tags) acquired by HPLC-QTOF-MS were then searched
against Spektraris records (for details of this approach see
Cuthbertson et al., 2013), which provided tentative identifications
for 27 metabolite peaks (4 annotations with high confidence
because of available authentic standards) (Table 1). By also
including 'H-NMR data in Spektraris searches (Fischedick et al.,
2015), eight metabolites could be identified with high confidence
(Table 2). Relevant structures of arylpyrones and bioflavonoids
are shown in Figure 2 and the annotation process for selected
peaks is outlined in more detail in the following paragraph.
Arylpyrone glycosides with a psilotinin aglycone eluted
early (4.6-6.9 min), followed by flavonoid glycosides (11.2-
14.6 min), biflavonoid glycosides (14.0-19.3 min), and then
biflavonoid aglycones (19.9-24.7 min). In addition to the quasi-
molecular ion ([M+H] 1), adducts ((M+Na]* and [M+K]T) and
dimers ([2M+Na]* and [2M+K]™") were detected consistently
for almost all analytes (Table 1). An authentic standard of
psilotin (R; 5.20 min; m/z 353.1250 ([M+H]"); C;7H0Os)
(McInnes et al, 1965) allowed us to investigate the typical
fragmentation patterns of this class of arylpyrone glycosides. At
low fragmentation energy (10 eV), the loss of glucose generated
a fragment representing the psilotinin aglycone (m/z 191.0699;
[M-GIlc]™; C11H1903), a second fragment with additional loss
of water (m/z 173.0598; [M-Glc-H,0]"; C11H;903), a third
fragment at m/z 123.0438 (C;H;0,), and a fourth fragment
with m/z 107.0487 (C;H;0O). The absorption spectrum of the
peak in chromatograms and the authentic psilotin standard was
essentially identical (Supplementary Figure S2). Furthermore,
following purification of the peak by HPLC, the NMR spectrum
of the isolated metabolite matched literature reports (McInnes
et al.,, 1965) (Table 2). The signature fragments generated from
the psilotin HPLC-QTOF-MS peak (corresponding to C1;H;9O3
and C;H;0) were also detected in MS/MS spectra of four
additional peaks (plus further common fragments at 50 eV).
The molecular ions of two of these peaks indicated the potential
presence of two hexose moieties (R; 5.12 and 6.83 min; m/z
515.1751 ([M+H]T); Cy3H30013), which was corroborated by
fragmentation patterns ([M - 2 x Glc]™ and [M - 2 x Glc -
H,0] ™). The third peak of this series had a molecular ion
consistent with 3’-hydroxypsilotin (R; 4.66 min; m/z 369.1198

Zhttps://massbank.eu/MassBank/
Shttps://metlin.scripps.edu/
*https://chemdata.nist.gov/
“http://langelabtools.wsu.edu/spektraris/
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(IM+H]™"); C17H009) (Balza et al., 1985), an annotation that
was confirmed based on the NMR spectrum of the isolated
metabolite (Tables 1, 2). The fourth peak appeared to contain
the same aglycone but with two attached hexose moieties and
was therefore tentatively annotated as 3’-hydroxypsilotinin-di-O-
hexoside (R; 4.76 min; m/z 553.1530 ([M+Na]™1); C23H30O14).
Based on the characteristics of the peak corresponding
to apigenin 7-O-glucoside, for which an authentic standard
was available (R; 14.26 min; m/z 433.1133 ([M+H]™);
C21H20010) (Wallace and Markham, 1978), the fragment
indicative of an apigenin aglycone was m/z 271.0597 ([M-
Glc]™; C15H100s5), with m/z 153.0175 (C;HsO4) representing a
second prominent fragment obtained from this flavone aglycone
(Kachlicki et al., 2016). Two additional peaks had comparable
fragmentation patterns, one of which showed a quasi-molecular
ion corresponding to apigenin-7-O-rhamnoglucoside (R;
14.50 min; m/z 579.1712 ([M+H]*); Cy7H3p014), a metabolite
that had previously been reported to occur in P. nudum (Wallace
and Markham, 1978). The mass spectrum of the second of these
peaks was indicative of a metabolite with two hexose moieties (R;
11.20 min; m/z 595.1654 ([M+H]T); C27H30015) and therefore

likely corresponds to an apigenin di-hexoside. Interestingly,
apigenin-6,8-di-C-glucoside (vicenin-2) was described before as
an abundant constituent of P. nudum extracts (Markham,1984),
which was used as a tentative annotation for the peak of
interest (Table 1).

All biflavonoid glycosides thus far characterized from
P. nudum extracts contained an amentoflavone (3',8"-
biapigenin) aglycone with likely O-linked hexose moieties
(Wallace and Markham, 1978; Markham, 1984). The
amentoflavone authentic standard (C3oH;301¢) eluted at
21.15 min (Table 1). Six additional peaks with the characteristic
m/z 539.0963 fragment (corresponding to this aglycone) plus
common MS/MS fragments of the aglycone (Zhang Y.X.
et al, 2011; Feuereisen et al., 2017) were detected in our
extracts. Based on their quasi-molecular ion, these peaks
were tentatively annotated as amentoflavone-hexosides (R;
18.12 and 19.16 min; m/z 701.1490 ([M-+H]"); C36H25015),
amentoflavone-di-hexosides (R; 15.78 and 16.60 min;
m/z 863.2021 ([M+H]T); C4H330) or amentoflavone-
tri-hexosides (R; 13.99 and 14.82 min; m/z 1025.2551
([M+H]%); Cy8Hyg055). Three peaks in the same retention
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FIGURE 2 | Structures of the main flavonoid, biflavonoid and arylpyrone agylcones of P nudum (positions for common glycosylation sites are indicated with purple
arrows).
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time region (R, 17.56, 18.28, and 20.96 min) had a quasi-
molecular ion (m/z 703.1642 ([M+H]T); CscHz00;15) and
characteristic aglycone fragment (m/z 541.0545; C3oH20010)
indicative of two additional mass units compared to
amentoflavone-hexosides. The aglycone in these cases is
dihydroamentoflavone (C-C-linked dimer of apigenin and
naringenin), and the peaks were therefore annotated as
dihydroamentoflavone-hexosides (Table 1). The absorption
spectrum of the amentoflavone standard in the ultraviolet
and visible range was identical to that of the corresponding
peak in our HPLC runs (Supplementary Figure S2). Two
arylpyrone aglycones, 3'-hydroxypsilotinin (R; 5.52; m/z
207.0652 ([M+H]'); C11H190O4) and psilotinin (R; 8.31; m/z
191.0703 (M+H]™); C;1Hj03), were tentatively identified
based on chromatographic properties and similarity of
MS/MS fragmentation patterns to those of their glycosides
(Supplementary Figure S3).

To enable the differentiation of biflavonoid aglycones,
four fractions collected by HPLC were subjected to 'H-NMR
spectroscopy. Taking into account the previously published
elution order of biflavonoids on reversed-phase HPLC materials
(Zhang Y.X. et al, 2011), MS and MS/MS data, and by
combining this information with MS and NMR data searches
against the Spektraris database, four peaks could be identified
with high confidence (20.73 min, 2,3-dihydroamentoflavone;
21.15 min, amentoflavone; 22.03 min, robustaflavone; and
24.50 min, hinokiflavone (Figure 2 and Tables 1, 2). The
peak at 19.96 min (m/z 555.0931 ([M+H]T); C3H3011)
was tentatively identified as hydroxyamentoflavone based
on its earlier elution (compared to amentoflavone) and
MS/MS fragmentation patterns (Zhang Y.X. et al, 2011).
Analogous comparisons allowed the tentative identification
of dihydro-O-methyl-amentoflavone (Rt 22.59 min; m/z
555.1270 ([M+H]™"); C3;H,01), O-methyl-amentoflavone (Rt
23.38 min; m/z 553.1127 ([M+H]T); C31H30010), binaringenin
(Rt 23.80 min; m/z 543.1291 ([M+H]"); C30H2010), and
dihydrohinokiflavone (Rt 24.14 min; m/z 541.1136 ([M+H]™);
C30H20010) (Markham, 1984; Zhang Y.X. et al., 2011; Wang
et al., 2015; Feuereisen et al., 2017) (Table 1).

A third class of metabolites with high abundance in HPLC-
QTOEF-MS runs had the chromatographic and mass spectral
properties of highly functionalized triterpenoids (steroids)
(Supplementary Table S2). While the typical membrane sterols
of P. nudum have been reported before (Akihisa et al., 1992),
the more functionalized steroids detected here have not been
mentioned in previous studies. A more detailed characterization
of these underexplored specialized metabolites will be the subject
of future endeavors to further evaluate chemicals diversity in
the fern lineage.

Principal Component Analysis
Differentiates Metabolomics Data Sets

From Different P. nudum Organs

Multivariate statistical analyses, such as PCA, aid with reducing
the complexity of extensive data sets into a smaller number
of Principal Components (PCs). When this approach was

brought to bear on our combined GC-MS and HPLC-
QTOF-MS data sets, the first three PCs accounted for roughly
71% of the varied influences of the original characteristics
(metabolite patterns across all sample types), and indicated a
clear separation of the five sample types (P. nudum below-
ground rhizome, above-ground rhizome, and synangia
harvested at three different developmental stages), with a
tight clustering of biological replicates (Figures 3A,B). Below-
ground rhizome samples were characterized by positive
scores in PC1 and PC3, with neutral values in PC2. Above-
ground rhizome samples also had positive scores in PCl1
but negative scores in PC2 and PC3 (Figures 3A,B). All
samples from synangia had negative scores in PCI, but were
differentiated by a combination of negative PC2/positive
PC3 scores (green synangia), negative PC2/PC3 scores
(yellow synangia) or positive PC2/neutral PC3 scores (brown
synangia) (Figures 3A,B).

Component loadings were then evaluated for characteristics
that contributed to the differences among sample clusters in PCA
and visualized in a biplot (Figure 3C and Supplementary Table
$3). The scores for below-ground rhizome samples (positive
PC1 and PC2) corresponded to the vectors for carbohydrate
monomers and dimers (e.g., glucose, fructose, galactose, and
raffinose) and small organic acids (malic acid, citric acid, and
succinic acid). Above-ground rhizome samples occupied a biplot
position (positive PC1, negative PC2) closer to the direction of
vectors for some arylpyrone glycosides (psilotin and psilotinin-
di-O-hexoside II) and sucrose (which had high concentrations
in both above- and below-ground rhizomes) (Figure 3C).
The unique position of brown synangia (negative PC1/positive
PC2) correlated with the vector for biflavonoid glycosides
(e.g., dihydroamentoflavone hexoside I and amentoflavone-tri-
O-hexoside II). Scores for green and yellow synangia were similar
(negative scores in both PC1 and PC2) and correlated with the
direction of vectors for arylpyrone glycosides (e.g., psilotinin-di-
O-hexoside I) and biflavonoid aglycones (e.g., amentoflavone and
hinokiflavone) (Figure 3C).

Organ-Specific Accumulation of

Metabolites

The PCA component loadings indicated that specific metabolite
classes might explain the separation of sample types. We
therefore generated a heatmap of metabolite accumulation
patterns across P. nudum organs (Figure 4). The relative
quantities of five biflavonoid glycosides, based on normalized
peak areas, were quite high in brown synangia, followed by
yellow and green synangia. These metabolites were also of
fairly high abundance in samples of above-ground rhizomes,
but extremely low in below-ground rhizomes (Figure 4).
The quantities of six additional biflavonoid glycosides were
considerably lower in all samples. Amentoflavone was the
by far most abundant biflavonoid aglycone, with very high
amounts present in yellow and brown synangia, relatively
high quantities in above-ground rhizomes and green synangia,
and fairly low levels in below-ground rhizomes (Figure 4).
Similar patterns were observed for five additional biflavonoid
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FIGURE 3 | Psilotum nudum organs have a unique metabolic fingerprint, based on PCA of combined GC-MS and HPLC-QTOF-MS data. (A) PCA plot for PC1 and
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aglycones (three dihydrobiapigenin isomers, binaringenin and
hinokiflavone), albeit at much lower abundance compared to
amentoflavone. Among arylpyrone glycosides, psilotin was most
abundant in rhizomes and above-ground rhizomes, but was also
accumulated to appreciable amounts in synangia (Figure 4).
3’-Hydroxypsilotin was primarily found in synangia, with an

abundance comparable to that of psilotin. Three other arylpyrone
glycosides were of relatively low abundance in all samples.
Sucrose was equally abundant in rhizomes, above-ground
rhizomes and green synangia (Figure 4). Glucose, fructose and
other small molecule carbohydrates were most abundant in
rhizomes, with significantly lower amounts being present in all
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other samples. The highest levels of small organic acids were
also found in rhizomes. While malic and citric acid were fairly
abundant in all samples, other organic acids (e.g., a-ketoglutaric
acid, glyceric acid and fumaric acid) were detected at considerably
lower levels in rhizomes and yet lower levels in all other
samples (Figure 4).

MALDI-MS Imaging Indicates
Preferential Accumulation of
Amentoflavone and Arylpyrone
Glycosides in Stem Epidermis and Outer
Cortex

Building on recent successes with MS-based imaging of
sesquiterpene alkaloids and triterpenoids (Lange et al., 2017),
MALDI-MS was employed for localizing metabolites of interest
in the current study. Two arylpyrone glycosides, psilotin and
3’-hydroxypsilotin, and a biflavonoid aglycone, amentoflavone,
were selected for because they were highly abundant in tissue
samples (MS-based imaging is much less sensitive compared
to tissue extraction followed by HPLC-QTOF-MS) and were
available as authentic standards in sufficient quantities for
methods development. Based on the results of preliminary
experiments, 30 pm cryosections of above-ground rhizomes
served as biological material, 2,5-dihydroxybenzoic acid was
chosen as matrix substance to aid with ionization of metabolites
desorbed from tissue sections, and leucine-enkephalin was
selected to provide an external lock mass. The ionization of
psilotin and 3’-hydroxypsilotin was most effective in positive
ionization mode, where potassium adducts (m/z 391.0797 and
407.0750, respectively) were readily detectable with unique drift
times in the ion mobility cell. Mass spectrometric signals for
psilotin, 3/-hydroxypsilotin and amentoflavone were highest in
the epidermal and outer cortex layers, which collectively form
the chlorenchyma (Figures 5A-D). The 3'-hydroxypsilotin signal
was also apparent, albeit at significantly lower abundance, in the
protostele. Amentoflavone ionized particularly well in negative
mode, with the quasi-molecular ion being more abundant than
adducts (m/z 537.0827) and traveling through the ion mobility
cell with a unique drift time (Figures 5B,C,E). Based on MALDI-
MS experiments performed with above-ground rhizome extracts,
the normalized peak area for amentoflavone was 5-fold higher
than that of hinokiflavone and 47-fold higher than that of
robustaflavone, and the abundance of the latter two metabolites
was too low for localization studies.

DISCUSSION

Expanding the Coverage of Spectral
Databases to Incorporate Information on

Chemical Diversity in the Fern Lineage

Biflavonoids have long been known to accumulate prominently
across the bryophytes, pteridophytes and gymnosperms, with
only sporadic occurrence in the angiosperms (Geiger and Quinn,
1988; Iwashina, 2000). When we began processing the data
presented as part of the current study with P. nudum, we noticed

a surprising paucity of spectral data relating to biflavonoids
in publicly available MS and NMR databases. We therefore
embarked on a literature search to gather phytochemical and
spectral data for this important class of metabolites, which was
then used to generate 328 new spectral records for the Spektraris
online resource (Cuthbertson et al., 2013; Fischedick et al,
2015). Additionally, electronic files representing the MS/MS data
acquired with biflavonoids were submitted to MassBank, a widely
used online mass spectral repository (Horai et al., 2010).

The orthogonal data sets acquired in this study (retention
time on GC or HPLC, quasi-molecular ion (and inferred
molecular formula), MS/MS data, and NMR spectra), combined
with the use of authentic standards, aided substantially in
peak annotation. The inclusion of NMR data was particularly
impactful for the annotation of peaks for the biflavonoids
(amentoflavone, robustaflavone, and hinokiflavone) that consist
of two fused apigenin molecules (differing only in the coupling
position). Using our integrative approach, a total of 83 GC-
MS and 8 HPLC-QTOF-MS peaks were identified with very
high confidence. An additional 23 HPLC-QTOF-MS peaks
were tentatively identified (for example, amentoflavone-tri-O-
hexoside I, where uncertainty pertains only to the position and
exact nature of the hexose moiety) (Table 1). While we were
able to determine the structures of some of the more abundant
aglycones, the identification of biflavonoid glycosides, which
occur as larger families of closely related structures, has proven
much more difficult. Our data sets also contained a very large
number of peaks that could not be identified. Some of these, based
on peak area counts, appeared to be fairly abundant. These results
indicate that significant efforts will be needed to generate a more
comprehensive account of chemical diversity in P. nudum and,
more broadly, in the fern lineage.

Below-Ground Rhizome of P nudum
Contains High Levels of Soluble Sugars
and Organic Acids, Possibly Indicating
Differential Nutrient Allocation

The above- and below-ground portions of the P. nudum rhizome
are part of the same organ and it is thus notable that, in our
study, significantly higher amounts of soluble sugars (in order
of abundance: fructose, glucose, raffinose and galactose) and
organic acids (in order of abundance: malic acid, citric acid and
phosphoric acid) were present in the below-ground part of the
rhizome. The abundance of soluble sugars might be interpreted as
evidence for a storage function for P. nudum rhizomes but, to the
best of our knowledge, the corresponding storage sugar polymers
have not been analyzed in this species. The chemical properties
of rhizome starches have been reported for other ferns (Zhang
S.etal, 2011; Yu et al,, 2015) and this work indicates indirectly
(based on the high abundance of sugar precursors) that storage
function is a possibility. It is also conceivable that relatively high
levels of soluble sugars and organic acids are a reflection of active
metabolism to support horizontal rhizome growth in P. nudum.
However, while information is available regarding the correlation
of fern development and some classes of metabolites (White and
Turner, 1995; Abul et al., 2010), we were not able to find literature
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FIGURE 5 | MALDI-MS imaging of specialized metabolites in cross sections of P nudum above-ground rhizomes (stems). (A) Image of specimen for arylpyrone
glycoside analysis; (B) [M+K]* signal for psilotin (colored in red); (C) [M+K]* signal for 3'-hydroxypsilotin (colored in green); (D) image of specimen for biflavonoid
analysis; (E) [M—H]~ signal for amentoflavone (colored in blue). Note the accumulation of metabolites of interest in the chlorenchyma (dark green tissue in specimen

images).

on soluble sugar quantities in fern rhizomes. Further research is
clearly necessary to begin to appreciate the tissue specialization
within fern rhizomes.

Rhizomes Accumulate Particularly High
Amounts of Psilotin, an Arylpyrone
Glycoside With Demonstrated Biological
Activities

Our data indicated that psilotin and psilotinin, both arylpyrones
unique to the Psilotaceae, were most abundant in the rhizome
(both below- and above-ground), while being only half or one-
third as abundant in samples from synangia. The biflavonoid
amentoflavone was also highly abundant in the above-ground
part of the rhizome but occurred at fairly low quantities in
the below-ground parts (Figure 4). This begs the question
if psilotin and its aglycone psilotinin might play a particular
role in the below-ground rhizome, where arylpyrones are
major constituents. Interestingly, it was demonstrated more
than 40 years ago that psilotin acts as a germination inhibitor
for turnip, onion and lettuce seeds (Siegel, 1976). It is,
therefore, conceivable that psilotin (and possibly its aglycone
as well) plays a defensive or allelochemical role in and around
the below-ground rhizome. Psilotin was also shown to have
antifeedant activities against the European corn borer (Ostrinia
nubilalis) at concentrations below those present in P. nudum

(Arnason et al., 1986). However, in the absence of more complete
data on the bioactivities of arylpyrones, this interpretation is
highly speculative. It is also unknown how psilotin might be
secreted into the rhizosphere to exert allelochemical activities.
The fact that the inhibitory effects of psilotin on germination
can be reversed by the addition of GAj (Siegel, 1976), a
gibberellin hormone, can be interpreted as evidence for a
possible role of this arylpyrone in growth regulation, but the
mechanism and target(s) of such an activity have not yet
been explored. In the above-ground rhizome, psilotin and
amentoflavone (the latter also exerting high bioactivity; Yu et al.,
2017) may act collectively as defense metabolites. Currently,
information about such activities has been inferred from in vitro
assays only and it would thus be informative to also assess
potential defensive functions of arylpyrones and bioflavonoids in
in vivo investigations.

Occurrence of Biflavonoids and
Arylpyrones in Chlorenchyma Is
Consistent With Function as Sunscreen

Pigments

Based on our MALDI-MS imaging data, psilotin and
amentoflavone are accumulated preferentially in the
photosynthetically active tissues of above-ground rhizomes
(above-ground rhizomes) (Figure 5). Considering the absorption
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characteristics of these metabolites (Supplementary Figure S2),
a protective function against excess photosynthetically active
radiation and certain wavelengths (e.g., high energy ultraviolet-B)
radiation would be a reasonable hypothesis for their tissue-level
localization (Yamaguchi et al., 2009; Waterman et al., 2017).
Our localization data sets for amentoflavone (chlorenchyma)
are also consistent with the literature for other plants. For
example, amentoflavone was accumulated preferentially in
the leaf epidermis in Agathis robusta (Gadek et al., 1984)
and Ginkgo biloba (Beck and Stengel, 2016). An interesting,
as yet unanswered, question pertains to the functional role
of the differential subcellular localization one would predict
for the metabolites of interest. Psilotin is likely stored in
the vacuole, in analogy to other (polar) phenolic glycosides
(Wink, 1993), while amentoflavone is an apolar biflavonoid
aglycone that was previously found to be associated with
cell walls (Gadek et al., 1984). Both locations allow for the
sequestration of these bioactive metabolites, thereby protecting
cellular metabolism in different subcellular locations (Agapakis
et al.,, 2012). Another advantage of the differential localization
of psilotin and amentoflavone could be that greater quantities
of these pigments can be accumulated, but this hypothesis
remains to be tested.
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Formation of Flavonoid Metabolons:
Functional Significance of Protein-
Protein Interactions and Impact on
Flavonoid Chemodiversity

Toru Nakayama*, Seiji Takahashi and Toshiyuki Waki

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan

Flavonoids are a class of plant specialized metabolites with more than 6,900 known
structures and play important roles in plant survival and reproduction. These metabolites
are derived from p-coumaroyl-CoA via the sequential actions of a variety of flavonoid
enzymes, which have been proposed to form weakly bound, ordered protein complexes
termed flavonoid metabolons. This review discusses the impacts of the formation of
flavonoid metabolons on the chemodiversity of flavonoids. Specific protein-protein
interactions in the metabolons of Arabidopsis thaliana and other plant species have been
studied for two decades. In many cases, metabolons are associated with the ER
membrane, with ER-bound cytochromes P450 hypothesized to serve as nuclei for
metabolon formation. Indeed, cytochromes P450 have been found to be components of
flavonoid metabolons in rice, snapdragon, torenia, and soybean. Recent studies illustrate
the importance of specific interactions for the efficient production and temporal/spatial
distribution of flavonoids. For example, in diverse plant species, catalytically inactive type-IV
chalcone isomerase-like protein serves as an enhancer of flavonoid production via its
involvement in flavonoid metabolons. In soybean roots, a specific isozyme of chalcone
reductase (CHR) interacts with 2-hydroxyisoflavanone synthase, to which chalcone
synthase (CHS) can also bind, providing a mechanism to prevent the loss of the unstable
CHR substrate during its transfer from CHS to CHR. Thus, diversification in chemical
structures and temporal/spatial distribution patterns of flavonoids in plants is likely to
be mediated by the formation of specific flavonoid metabolons via specific protein-
protein interactions.

Keywords: metabolon, flavonoids, chemodiversity, biosynthesis, protein-protein interaction, binary interaction,
cytochrome P450, ER

INTRODUCTION

Flavonoids are a class of plant specialized metabolites with a basic C6-C3-C6 skeleton, for
which 10 major classes (i.e., chalcones, aurones, flavanones, flavones, isoflavones, dihydroflavonols,
flavonols, leucoanthocyanidins, anthocyanidins, and flavan-3-ols) have been described (Figure 1).
In nature, flavonoids generally occur as glycosides or acylglycosides, with more than 6,900
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FIGURE 1 | Proposed general pathways of flavonoid biosynthesis. Ten flavonoid classes are shown within boxes. Enzymes that are discussed in terms of their
protein-protein interactions in this review are shown within circles. Enzyme abbreviations are: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase;
4CL, 4-coumarate:CoA ligase; CHS, chalcone synthase; CGT, chalcone 4’-O-glucosyltransferase; AS, aureusidin synthase; IFS, 2-hydroxyisoflavanone synthase;
HID, 2-hydroxyisoflavanone dehydratase; CHI, chalcone isomerase; FNS, flavone synthase; F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; F3'H, flavonoid
3’-hydroxylase; F3'5’H, flavonoid 3,5’-hydroxylase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; LAR, leucoanthocyanidin 4-reductase; FGT,
flavonoid 3-O-glucosyltransferase. Note that F3'H and F3'5’H may act on flavanones, flavones, and flavonols, depending on the plant species (not shown).
Flavonoids and related metabolites are p-coumaroyl-CoA (1), 2,4,4’,6'-tetrahydroxychalcone (THC) (2), and naringenin (3).

different structures (Arita and Suwa, 2008). Each plant lineage
produces structurally distinct flavonoids in a lineage-specific
manner, which play important roles in plant survival and
reproduction. For example, in many cases, flower colors arise
from anthocyanins and other flavonoids, which contribute to
attracting pollinators (Andersen and Markham, 2006). In legumes,
(iso)flavonoids in root exudates serve as chemoattractants for
specific symbiotic bacteria as well as genetic inducers of
nodulation (Barz and Welle, 1992; Subramanian et al., 2006,
2007). These (iso)flavonoids also play important roles in plant
defensive mechanisms against infections by pathogens and
invasion by herbivores (Aoki et al., 2000). Moreover, consumption
of flavonoids is relevant for human nutrition, as illustrated by
soybean [Glycine max (L.) Merr.] isoflavones, which exhibit
estrogen-like and antioxidant activities and have been implicated
in the ability of soy to prevent hormone-dependent cancers
and cardiovascular diseases (Wiseman, 2006). These diverse
bioactivities of flavonoids in plant biology and human nutrition
are closely related to their diversity in chemical structure.
Flavonoids are derived from the amino acid L-phenylalanine
via the general phenylpropanoid pathway, shown in Figure 1
(Winkel-Shirley, 2001). Chalcone synthase (CHS), the first
committed enzyme of the flavonoid pathway, catalyzes the
production of 2’,4,4’,6'-tetrahydroxychalcone (THC, 2; Figure 1),
which serves as a precursor for the other flavonoids (Austin
and Noel, 2003). Aurones are directly derived from chalcones
in limited plant species (Nakayama et al., 2000, 2001; Kaintz
et al., 2014), while other flavonoids, including flavones,
isoflavones, flavonols, and anthocyanidins, are derived after
the conversion of chalcones to flavanones catalyzed by chalcone
isomerase (CHI) (Winkel-Shirley, 2001). While the core flavonoid
pathway is well conserved among seed plants, specific lineages
develop specific flavonoid pathways to enhance fitness in
particular environmental conditions. Enzymes involved in
flavonoid biosynthesis (Figure 1) include polyketide synthases
(e.g., CHS), 2-oxoglutarate-dependent dioxygenases [e.g.,
flavanone 3-hydroxylase (F3H, also termed FHT), anthocyanidin
synthase (ANS; also termed leucoanthocyanidin dioxygenase,
LDOX), flavonol synthase (FLS), flavone synthase I (FNSI)],
short-chain dehydrogenases/reductases [e.g., dihydroflavanol
4-reductase (DFR)], aldo-keto reductases [e.g., chalcone reductase
(CHR)], and cytochrome P450 monooxygenases [e.g., flavone
synthase II (FNSII), flavonoid 3’-hydroxylase (F3'H), flavonoid
3',5'-hydroxylase (F3'5'H), and 2-hydroxyisoflavanone synthase
(IES)]. These enzymes are hypothesized to have evolved from
enzymes involved in primary metabolism (Weng and Noel,
2012; Moghe and Last, 2015). Cytochromes P450, shown with
an asterisk in Figure 1, have been shown to be anchored to
the cytoplasmic surface of the ER (Ralston and Yu, 2006),

while most of the other enzymes are proposed to be soluble
enzymes. A variety of regio-specific glycosyltransferases,
acyltransferases, methyltransferases, and prenyltransferases acting
on flavonoids have evolved in a lineage-specific manner to
enhance the structural diversity of flavonoids (Ono et al., 2010;
Sasaki and Nakayama, 2015).

It is generally accepted that the intracellular environments
are of macromolecular crowding state (Fulton, 1982). Given
our understanding of diffusion rates of small solutes and
macromolecules in cells and organelles (Verkman, 2002), it is
now recognized that cells and organelles are not simply bags
of enzymes; rather, metabolic enzymes in the same pathway
tend to be associated with each other in cellular environments,
with each of these metabolic pathways confined to a specific
region of the cell (microcompartmentalization of cellular
metabolism) (Saks et al,, 2008). The weakly bound, ordered
complexes of enzymes involved in sequential metabolic pathways
are referred to as “metabolons” (Ovadi and Srere, 2000; Srere,
2000; Ovadi and Saks, 2004; Jorgensen et al., 2005; Sweetlove
and Fernie, 2013). The formation of a metabolon is believed
to provide catalytic advantages via substrate channeling, including
preventing the loss of intermediates by diffusion, reducing the
transit time between active sites, protecting the chemically
labile intermediates, circumventing unfavorable equilibria, and
segregating the intermediates of competing reactions (Ovadi,
1991). The formation of metabolons is well defined in primary
metabolic pathways of prokaryotic and eukaryotic cells, including
glycolysis (Giege et al, 2003; Graham et al, 2007), the
tricarboxylic acid cycle (Wu et al., 2015 Wu and Minteer,
2015), the Calvin-Benson cycle (Suss et al., 1993), and nucleotide
synthesis (An et al, 2010). In plant specialized metabolism,
metabolons formed during the biosynthesis of cyanogenic
glycosides (Laursen et al.,, 2016) and lignins (Gou et al., 2018)
in Arabidopsis thaliana (L.) Heynh. and other plant species
have been studied in detail (Sweetlove and Fernie, 2013). In
many cases, metabolon formation takes place on biological
membranes or cytoskeletal elements via specific interactions
of soluble enzymes with these cellular structures. However,
because protein-protein interactions in metabolons are weak
in most cases, it is difficult to isolate metabolons in their
intact forms.

The concept of flavonoid metabolons was first proposed in
1974 to explain the efficiency of flavonoid synthesis in plant
cells (Stafford, 1974). Subsequently, the association of flavonoid
enzymes on biological membranes (e.g., the ER) and the
formation of complexes were supported by several lines of
experimental evidence (Hrazdina and Wagner, 1985a,b; Hrazdina
et al., 1987; reviewed by Winkel, 2004). Since then, flavonoid
metabolons have been assumed to form in diverse plant species;
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a model of flavonoid metabolon was proposed as a linear
array of consecutive flavonoid enzymes along the ER (Hrazdina
and Wagner, 1985a,b; Stafford, 1990). To date, specific protein-
protein interactions in flavonoid metabolons have been studied
in multiple plant species. Substrate channeling between DFR
and leucoanthocyanidin 4-reductase (LAR) was predicted by
computational studies, which also suggested the functional
significance of metabolon formation during flavonoid synthesis
(Diharce et al., 2016). Thus, elucidation of the structural
organization of metabolons provides a basis for understanding
how flavonoid structures are diversified, as well as how the
temporal and spatial accumulations of flavonoids are regulated
(Laursen et al, 2015). This review describes our current
knowledge of specific protein-protein interactions identified in
flavonoid metabolons and discusses their functional significance
in flavonoid biosynthesis.

CYTOCHROMES P450 CAN
BE COMPONENTS OF
FLAVONOID METABOLONS

It has been shown so far that soluble enzymes involved in
plant specialized metabolism are associated on the cytoplasmic
surface of ER to form metabolons, nucleated by ER-bound
cytochromes P450. More than three decades ago, some of the
soluble enzymes related to the general phenylpropanoid and
flavonoid pathways, L-phenylalanine ammonia-lyase (PAL), CHS,
and flavonoid glucosyltransferase, were found to be associated
with the ER membrane in several plant species including
Hippeastrum (amaryllis, order Asparagales) and Fagopyrum
esculentum (order Caryophyllales) (Hrazdina and Wagner,
1985a,b; Hrazdina et al., 1987), suggesting the occurrence of
ER-bound metabolons for the synthesis of phenylpropanoids
and flavonoids. Meanwhile, the formation of metabolons during
the syntheses of other classes of plant specialized metabolites,
including cyanogenic glucosides and lignins, was shown to
involve the anchoring of soluble enzymes by cytochromes P450
to specific domains of the ER membrane [reviewed by Ralston
and Yu (2006)]. In 2004, in tobacco (Nicotiana tabacum, order
Solanales), cinnamate 4-hydroxylase (C4H), a cytochrome P450
(CYP73A) that is involved in the general phenylpropanoid
pathway (Figure 1), was found to be responsible for the weak
association of soluble isozymes of PAL (PAL1 and PAL2) with
ER membranes (Figure 1), using a combination of biochemical
and fluorescence microscopic methods (Achnine et al., 2004).

Formation of a flavonoid metabolon on cytochrome P450
was first demonstrated in 2008 in rice (Oryza sativa L.; order
Poales, a monocot) that accumulates flavones, flavonols,
proanthocyanidins (oligomeric flavan-3-ols), and anthocyanins
(Shih et al., 2008). In this plant, an isozyme of flavonoid
3'-hydroxylase (F3'H1), a cytochrome P450 (CYP75B) catalyzing
the 3’-hydroxylation of the B-ring of flavonoids (Figure 1),
was shown to bind to CHS1 (a CHS isozyme) (Figure 2A)
by yeast two-hybrid (Y2H) assays (Shih et al., 2008). The series
of binary interaction assays showed that CHSI also interacts

with F3H, DFR, and ANSI1 (an isozyme of rice ANS), but
not with CHI (Figure 2A). Interactions among CHI, F3H,
F3'H1, DFR, and ANS1 were not detected. It was proposed
that in rice, CHS could serve as a common platform for a
flavonoid metabolon, which might be anchored to the cytoplasmic
surface of the ER via F3'H1. In 2016, two groups independently
published evidence supporting the association of soybean
flavonoid enzymes in metabolons tethered to the ER-bound
cytochromes P450 IFS (CYP93C) and C4H (Figures 2Ca,Cb;
Dastmalchi et al., 2016; Waki et al, 2016; Mameda et al,
2018). Additionally, physical interactions among flavonoid
enzymes in snapdragon (Antirrhinum majus L.) and torenia
(Torenia hybrida) were clarified, in which FNSII (CYP93B1,
Figures 2D,E) was found to be a component of flavonoid
metabolons (Fujino et al., 2018) (see below).

FLAVONOID DIVERSITY AND
FLAVONOID METABOLONS

During the past two decades, physical interaction partnerships
of flavonoid enzymes and related proteins have been studied
in multiple phylogenetically distinct plants, including rice,
A. thaliana, soybean, snapdragon, and hops (Humulus lupulus
L. var. lupulus), each of which belongs to different orders of
plants and accumulates different classes of flavonoids (see
below). The data suggest that production of specific flavonoids
in these plants is attained via spatially and temporally dependent
interactions between specific proteins during plant growth and
stress responses. These data are discussed in more detail below.

FLAVONOID METABOLONS IN
ARABIDOPSIS

A. thaliana (order Brassicales), in which 54 flavonoid species
have been identified to date, primarily accumulates flavonols
and proanthocyanidins and also produces anthocyanins under
stress conditions (Saito et al.,, 2013). Studies of A. thaliana
flavonoid enzymes provide one of the best-characterized flavonoid
metabolons with respect to protein-protein interactions. Direct
protein-protein interactions among soluble flavonoid enzymes
in A. thaliana have been studied by Y2H assays, affinity
chromatography  (AC), immunoprecipitation (IP), and
physicochemical methods: Forster resonance energy transfer
(FRET) detected by fluorescence lifetime imaging microscopy
(FLIM) and surface plasmon resonance refractometry (SPR)
(Burbulis and Winkel-Shirley, 1999; Owens et al., 2008; Crosby
et al,, 2011; Watkinson et al., 2018). In this plant, interactions
between the following enzyme pairs have been identified
(followed by methods in parentheses): CHS-CHI (Y2H, AC,
and IP), CHS-F3H (AC), CHS-DFR (Y2H and FRET),
CHS-isozyme of FLS (FLS1) (Y2H and FRET), CHI-DFR (Y2H),
CHI-F3H (AC and IP), FLSI-DFR (Y2H and FRET), and
FLS1-F3H (Y2H) (Figure 2B, black arrows). Interactions of
catalytically inactive paralogs of FLS with CHS and DFR were
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also found via Y2H (Owens et al., 2008). These binary interactions
suggested a flavonoid metabolon model (Figure 2B) with CHS
as the hub. Moreover, this model features a globular association,
rather than a linear array, of flavonoid enzymes in the metabolons.
FRET-FLIM analyses revealed that FLS1 and DFR, the key
enzymes of branch pathways (Figure 1), interact with CHS
in a mutually exclusive manner in planta (Crosby et al., 2011).
This provides a possible in planta mechanism for regulating
metabolic flux by changing physical interactors with CHS,
which is pivotal in the pathway.

It has been shown that not only flavonoid enzymes but also
a protein with no catalytic activity can be a component of the
flavonoid metabolon in A. thaliana. Phylogenetic analyses suggest
that CHI enzymes have evolved from a non-catalytic ancestor
related to fatty acid-binding proteins (FAPs) and land plant-
specific CHI-like proteins (CHILs) with no catalytic activity
(Ngaki et al., 2012; Kaltenbach et al., 2018). Thus, CHIs, FAPs,

and CHILs, all of which are soluble proteins, constitute a larger
structurally related family, the CHI-fold family, in which CHIs
correspond to types I and II, and FAPs and CHILs, respectively,
correspond to types III and IV within the family. In 2014,
CHILs were shown to serve as enhancers of flavonoid production
(EFPs), as loss-of-function mutations and suppression in morning
glory (Ipomoea nil) and torenia, respectively, resulted in a
significant diminution of flavonoid contents (Morita et al., 2014).
CHIL is also produced by A. thaliana. Y2H analyses indicated
that in A. thaliana, CHIL binds to CHI (Figure 2B, green
arrow), suggesting that CHIL is a component of the flavonoid
metabolon (Jiang et al., 2015). Recently, CHIL of A. thaliana
(AtCHIL) was also shown to physically interact with CHS of
the same plant species (AtCHS) (Figure 2B, green arrow) by
Y2H and luciferase-complementation imaging assays (LuCIA)
(Ban et al., 2018). The coexpression of AfCHIL with AtCHS in
yeast Saccharomyces cerevisiae resulted in a 1.8-fold enhancement
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of AtCHS-catalyzed production of THC. The interactions of
CHIL with CHI and CHS might be related to the observed
role of CHIL as an EFP. It must be mentioned that the binding
of CHIL to CHS has also been observed in the flavonoid systems
of hops, rice (Figure 2A), Selaginella moellendorffii (a lycophyte),
and Physcomitrella patens (a bryophyte), as assayed by LuCIA
(Ban et al, 2018). The coexpression of CHILs with CHS of
these plants in S. cerevisiae also enhanced the CHS-catalyzed
production of THC, suggesting the conservation of the EFP
role of CHIL proteins throughout land plants.

The dynamism and versatility of CHS-mediated protein-
protein interactions likely take place in organ- and organelle-
specific manners in A. thaliana. Immunofluorescence and
immunoelectron microscopic analyses showed that CHS and
CHI co-localize at the ER and tonoplasts in epidermal and
cortex cells of A. thaliana roots (Saslowsky and Winkel-Shirley,
2001). This observation suggests that a subset of CHS and
CHI enzymes in root cells might not be assembled into
metabolons that are mentioned above. As both of these
enzymes are soluble, these data suggest that one or more
other proteins function in recruiting these enzymes to
membranes, although this protein remains to be identified.
It remains to be determined whether CHS and CHI interact
with cytochromes P450 in A. thaliana. In this context, in
A. thaliana root cells, F3'H is unlikely to be involved in
recruiting CHS and CHI to the ER, as suggested by the
results of immunolocalization in the A. thaliana F3'H mutant
tt7(88) (Saslowsky and Winkel-Shirley, 2001).

CHS and CHI have also been shown in the nucleus of A.
thaliana by multiple immunolocalization methods (Saslowsky
et al., 2005). CHS of A. thaliana, a dimeric enzyme, possesses
sequences resembling a nuclear localization signal, which is
located on the surface opposite from the dimerization interface.
This signal could direct CHS and associated enzymes into the
nucleus. Moreover, immunoblotting of nuclear CHI suggested
post-translational modifications that also might be responsible
for the nuclear localization of the enzyme. Interestingly, CHS
was recently found to interact with MOS9 (a nuclear protein
associated with epigenetic control of R genes that mediate
effector-triggered immunity) as analyzed by Y2H, SPR, and
FRET, with a K; of 210 nM (Figure 2B, blue arrow) (Watkinson
et al, 2018). Addressing this finding further may uncover
additional mechanisms for controlling flavonoid pathways, as
well as linking them to defense mechanisms and other
physiological functions.

THE SOYBEAN ISOFLAVONOID
METABOLON

The soybean (order Fabales) produces isoflavones, which are
a class of flavonoids with a 3-phenylchromone structure and
distributed almost exclusively in legumes (Aoki et al., 2000).
Isoflavones play important roles in symbiotic plant-microbe
interactions and defensive mechanisms against pathogen
infection in soybean (Barz and Welle, 1992). Moreover, soybean
isoflavones show a variety of bioactivities that are beneficial

to human health (Wiseman, 2006). The soybean produces
two distinct types of isoflavonoids: 5-deoxyisoflavonoids
(daidzein and its conjugates) and 5-hydroxyisoflavonoids
(genistein and its conjugates) (4 and 8, respectively, Figure 3A).
In unstressed soybean plants (cv. Enrei), 5-deoxyisoflavonoids
accumulate in the roots (93% mol/mol of total root isoflavonoids)
and seeds (60% mol/mol of the total seed isoflavonoids)
(Mameda et al., 2018).

Characterization of Isoflavonoid Metabolon
Protein-protein interaction analyses of soybean isoflavonoid
enzymes suggested that biosynthesis of isoflavones takes
place via the formation of a metabolon on cytochromes
P450. Specifically, the analysis using split-ubiquitin Y2H
and bimolecular fluorescence complementation (BiFC) assay
systems revealed that each enzyme located upstream of
the isoflavonoid pathway (CHS, CHI, and GmCHR5
(an isozyme of soybean CHR); Figures 1, 3A) interacts with
isozymes of IFS (CYP93C) to form a metabolon (Figure 2Ca;
Waki et al., 2016; Mameda et al., 2018). It has been proposed
that C4H also serves as a nucleus for the metabolon formation
as analyzed via BiFC and IP (Figure 2Cb; Dastmalchi et al,,
2016). Moreover, arogenate dehydratase (ADT), a shikimate
pathway enzyme that has primarily been reported to be a
plastidial enzyme, was reported to interact with IFS on the
basis of IP (Figure 2Cb; Dastmalchi et al., 2016). The
fluorescence localizations observed during these BiFC analyses
were consistent with P450-mediated interactions taking place
at the ER (Waki et al., 2016). As the activities of IFS and
C4H are indispensable for the formation of isoflavones, these
cytochromes P450 are considered to play both catalytic and
structural roles in the metabolon.

The affinity of the soybean isoflavonoid enzymes for
IES isozymes varies among paralogs. Isoflavonoid enzymes
shown in Figure 2C are encoded by multiple genes in soybean.
For example, there are at least nine paralogs (GmCHSs) encoding
CHS (Schmutz et al., 2010; Shimomura et al., 2015), 12 encoding
CHI (Shimada et al., 2003; Ralston et al., 2005), and two
encoding IFS (Cheng et al., 2008). For each enzyme, different
isozymes exert different physiological functions (Shimizu et al.,
1999; Tuteja et al., 2004; Livingstone et al., 2010). The analysis
using split-ubiquitin Y2H system suggested GmCHSI has a
higher affinity for GmIFS1 than for GmCHS7 (Waki et al,
2016), and GmCHRS5 binds to GmIFS isozymes but other
GmCHR isozymes cannot (see below for details) (Mameda
et al., 2018). These observations could be related to differential
regulation and physiological roles of each enzyme paralog.

An Implication for Functional Significance
of Protein-Protein Interactions During
5-Deoxyisoflavonoid Biosynthesis

Although 5-deoxyisoflavonoids accumulate in the roots and
seeds of unstressed plants in a high ratio (Mameda et al,
2018), its mechanistic details remained unknown. During the
course of 5-deoxyisoflavonoid biosynthesis, isoliquiritigenin
(Figure 3A, 6) (a 6'-deoxychalcone) is produced via a
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FIGURE 3 | Biosynthesis of flavonoids in soybean (A) and hops (B). (A) Biosyntheses of 5-hydroxy- and 5-deoxyisoflavonoids in soybean. CHR, chalcone
reductase. See Figure 1 for abbreviations for other enzymes. (B) Biosyntheses of prenylated flavonoids in hops. PT, aromatic prenyltransferase; OMT,
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demethylxanthohumol (9), and xanthohumol (10).

CHS-catalyzed reaction coupled to CHR catalysis (Bomati et al.,
2005). The soybean genome encodes 11 CHR paralogs (Mameda
etal,, 2018), among which only GmCHRI had been characterized
enzymatically (Welle and Grisebach, 1988; Welle et al., 1991).

Although CHR has been referred to as chalcone reductase, it
does not actually act on THC (2, Figure 3A) but instead on
one of the diffusible intermediates of the CHS-catalyzed reaction,
most likely p-coumaroylcyclohexantrione (5, Figure 3A),
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which is highly unstable and is rapidly aromatized to produce
THC in an aqueous system (Bomati et al., 2005). THC and
isoliquiritigenin then undergo the reactions catalyzed by CHI,
IFS, and 2-hydroxyisoflavanone dehydratase (HID) to produce
genistein (4) and daidzein (8), respectively (Figure 3A; Mameda
et al,, 2018). The amount of the CHR product isoliquiritigenin
does not generally exceed 25% (mol/mol) of the total CHS
products (isoliquiritigenin, THC, and naringenin) during the
combined action of dilute CHS and GmCHRI1 (0.05 uM each)
in vitro. These low product ratios for CHR catalysis during
in vitro assays could arise from the fact that only a small
fraction (<25%) of 5 produced during CHS catalysis is transferred
to the active site of GmCHRI1 while the majority (>75%)
escapes and diffuses to the aqueous system to give rise to THC.

To establish a high 5-deoxyisoflavonoid ratio in the cells
of soybean roots and seeds (i.e., a high product ratio for CHR
catalysis), 5 has to be immediately transferred, prior to
aromatization, from the active site of CHS to that of CHR.
One possible mechanism for achieving this would be binding
of CHR to CHS, facilitating the channeling of 5 between them.
However, the crystal structure of CHR suggested that direct
association of the active sites of CHR and CHS is impossible
and that passive diffusion may be the only way to transfer 5
from CHS to CHR (Bomati et al., 2005). In fact, Y2H assays
showed that GmCHRI1 (the only GmCHR paralog whose
catalytic activity was confirmed) was unable to interact with
any of the GmCHS isozymes (Waki et al, 2016; Mameda
et al, 2018). Alternatively, a shorter distance or transit time
for 5 between the two enzymes could be achieved in a metabolon
and located very close to each other. Because CHS isozymes
have been shown to interact with IFS isozymes (GmIFS)
(Figure 2Ca; Dastmalchi et al., 2016; Waki et al., 2016), the
involvement of GmCHR1 in the isoflavonoid metabolon was
examined. However, GmCHRI1 was not found to interact with
any of the enzymes examined including IFS isozymes (Waki
et al., 2016; Mameda et al., 2018). Moreover, the product ratio
for CHR catalysis did not exceed 50% even when high
concentrations of GmCHRI and CHS were used in in vitro
enzyme assays (Oguro et al, 2004; Mameda et al, 2018).
Therefore, the involvement of GmCHRI in the observed high
proportion of 5-deoxyisoflavonoids in the roots and seeds of
unstressed plants was unlikely.

Thus, 11 GmCHR paralogs were comprehensively analyzed
for their possible biosynthesis  of
5-deoxyisoflavonoids in the roots and seeds of unstressed
plants, and the data obtained strongly suggested the
involvement of a previously unappreciated soybean CHR,
GmCHRS5 (Figure 2Ca). Specifically, among the GmCHR
paralogs examined, the expression patterns of GmCHRS5 were
the most consistent with the observed patterns of the
accumulation of daidzein conjugates in the roots and the
seeds of unstressed plants. When interactions of these GmCHR
isozymes with soybean isoflavonoid enzymes (Figure 3A)
were analyzed by split-ubiquitin Y2H assays, GmCHR5
uniquely interacted with IFS isozymes (Mameda et al., 2018).
Moreover, in vitro assay results suggested that the product
ratio for CHR catalysis depended on the GmCHR5

involvement in

concentration, with higher concentrations resulting in higher
ratios (approaching 90%) (Mameda et al., 2018). Thus, the
results of enzyme assays, transcription analyses, and protein-
protein interaction assays were all consistent with the fact
that GmCHR5, but not other CHR isozymes, is the key
player in the accumulation of 5-deoxyisoflavonoids in the
roots and seeds of unstressed plants. It would be highly
likely that the interactions of CHS and GmCHRS5 with
IFS could allow the microcompartmentalization of the
metabolic process, resulting in a product ratio for CHR
catalysis high enough for the dominated accumulation of
5-deoxyisoflavonoids in the roots and seeds of unstressed
plants. This illustrates the previously proposed functional
significance of metabolon formation, i.e., preventing the loss
of intermediates by diffusion and reducing the transit time
between active sites. This also supports the hypothesis that
specific spatial distributions of a flavonoid can be attained
by inclusion of a specific isozyme in a flavonoid metabolon
in a spatially specific manner.

Functional Differentiation of GmCHR
Isozymes in the Soybean

GmCHRI and GmCHR6 are unable to interact with any of
the isoflavonoid enzymes shown in Figure 3A (Mameda et al,,
2018). However, this does not necessarily rule out their
involvement in 5’-deoxyisoflavonoid biosynthesis but is rather
consistent with functional differentiation of GmCHR isozymes
in the soybean. Previously, expression of GmCHRI, GmCHRS,
and GmCHR6 was shown to be induced upon microbial
infection (Sepiol et al., 2017). Moreover, GmCHR6 is located
near a quantitative trait locus region linked to resistance to
a pathogenic oomycete (Sepiol et al, 2017). In soybean, the
production of both types (5-deoxy- and 5-hydroxy-) of
isoflavonoids is induced by microbial pathogens. The production
of both types of isoflavonoids, rather than the exclusive
production of 5'-deoxy type, would be needed to fully implement
relevant soybean defense mechanisms. The induced production
of GmCHRI1 and GmCHRS6, showing the maximum product
ratio for CHR catalysis of 50%, make it possible to accumulate
high levels of both types of isoflavonoids in infected plants.
Thus, it would be likely that GmCHR5 plays a key role in
the exclusive accumulation of 5-deoxyisoflavonoids in the roots
and seeds of unstressed plants while GmCHR1 and GmCHR6
play key roles in the induced defense mechanisms against
microbial pathogens.

FLAVONOID METABOLONS IN THE
ORDER LAMIALES

Snapdragon and torenia are flowering ornamentals in which
colorful petals are the most eye-catching trait. The petal
colors in these lamiales plants are mainly provided by
flavonoids, which represent different flavonoid classes from
those mainly found in A. thaliana and soybean. The petal
colors of snapdragon—magenta, orange, red, pink, yellow,
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cream, and white—are produced by a combination of
anthocyanins (orange, pink, red, and reddish purple), aurones
(yellow), and flavones (co-pigments) (Ono and Nakayama,
2007). Torenia accumulates anthocyanins and flavones in its
flower petals, which are responsible for the bluish purple
and pink colors (Ueyama et al., 2002).

In 2018, physical interactions among flavonoid enzymes in
snapdragon and torenia were clarified, illustrating the formation
of flavonoid metabolons responsible for flower coloration (Fujino
et al., 2018). Binary interactions found in split-ubiquitin Y2H
and BiFC assays were: FNSII-CHS, FNSII-CHI, ENSII-DFR,
CHS-CHI, CHI-DFR, and F3'H-CHI in snapdragon; and
FNSII-CHI, ENSII-F3H, FNSII-DFR, ENSII-ANS, CHI-DEFR,
and F3'H-CHI in torenia (Figures 2D,E). Split-ubiquitin Y2H
assays also suggested that binding of CHI and DFR to FNSII
is not exclusive in snapdragon.

Interestingly, enzymes involved in the late stage of anthocyanin
biosynthesis (DFR in snapdragon; DFR, F3H, and ANS in
torenia) were found to interact with FNSII (cytochrome P450
CYP93B1) (Figures 1, 2D,E; Fujino et al.,, 2018). The activity
of ENSII is not needed for anthocyanin biosynthesis, suggesting
that FNSII could function as a scaffold for anthocyanin
biosynthesis. Although further studies are needed to test this
hypothesis, several findings are consistent with FNSII as an
important component of the metabolon for anthocyanin
biosynthesis. Previously, attempts were made to engineer torenia
flowers showing a deeper petal color using metabolic engineering
(Ueyama et al., 2002). To achieve this, FNSII was co-suppressed
in blue-violet torenia flowers to diminish FNSII activity. As
anthocyanin synthesis competes with flavone synthesis for
flavanones as the shared precursors (Figure 1), this was predicted
to favor anthocyanin production at the expense of flavone
formation (see Figure 1). This strategy was inspired by the
observations in black dahlia (Dahlia variabilis, order Asterales)
accumulating large amounts of anthocyanins, in which FNSII
production is suppressed by endogenous posttranscriptional
gene silencing (Thill et al., 2012; Deguchi et al.,, 2013). In the
black dahlia, suppression of FNSII increased production of
anthocyanins while flavone production was decreased. Metabolic
engineering of torenia showed that the co-suppression of FNSII
diminished flavone and increased flavanone levels in petals,
as expected (Ueyama et al., 2002). However, anthocyanin levels
in the petals of the FNSII-suppressed torenia decreased
considerably, producing a paler flower. The reason for this
result was unknown, but this observation can now be explained
by ENSII acting as a component of the metabolon related to
anthocyanin production.

Interestingly, in the anthocyanin-accumulating snapdragon
petals, flavones were accumulated first, followed by anthocyanins,
and finally aurones (Toki, 1988; Fujino et al., 2018). This
sequence of flavonoid accumulation is consistent with the
transcriptional patterns of snapdragon flavonoid enzyme genes
during flower development (Fujino et al., 2018). Thus, on the
basis of interactions (Figure 2D) and temporal gene expression
patterns of flavonoid enzymes in red snapdragon petal cells,
a model of the flower stage-dependent formation of the flavonoid
metabolon has been proposed (Fujino et al, 2018). In this

model, CHS, CHI, and ENSII are expressed and form a flavone
metabolon on the ER surface at the beginning of the flower
development. Halfway through flower development, F3H and
DEFR are expressed to form an anthocyanin metabolon by using
the preexisting flavone metabolon as a scaffold.

The similarity of interaction partnerships in the flavonoid
metabolons of snapdragon and torenia (Figures 2D,E) is
consistent with the close phylogenetic relationship of these
plants. Collectively with the fact that the A. thaliana genome
lacks IFS and FNSII genes, interactions in flavonoid metabolons
may differ between plant species while those of closely related
plant species are more similar to each other (Figure 2). This
is consistent with the observed structural diversity of flavonoids
in plants and the fact that each plant lineage produces structurally
distinct flavonoids in a lineage-specific manner.

PROTEIN-PROTEIN INTERACTIONS
OF FLAVONOID ENZYMES AND
PROTEINS IN HOPS

Hops uniquely accumulate the prenylated flavonoids
xanthohumol (3’-prenyl-6'-O-methyl-THC) (10, Figure 3B)
and demethylxanthohumol (3'-prenyl-THC) (9) in the glandular
trichomes (lupulin glands) of female cones, a key ingredient
in beer brewing (Stevens and Page, 2004). Recent studies of
the synthesis of these prenylated flavonoids provide examples
of the involvement of non-catalytic CHI-fold proteins in flavonoid
metabolons as specialized auxiliary proteins (Ban et al., 2018).

In hops, the soluble, trichome-specific isozyme of CHS
(CHS_H]1) is involved in the biosynthesis of prenylchalcones
and catalyzes the production of THC (2, Figure 3B); THC is
then prenylated by the membrane-bound, aromatic
prenyltransferase PT1L, then 6’-O-methylated by the soluble
O-methyltransferase OMT1 to produce xanthohumol (10,
Figure 3B; Ban et al., 2018). Recent studies have shown that
non-catalytic members of the CHI-fold protein family, CHIL1
(a type-III, FAP-related protein) and CHIL2 (a type-IV, EFP-related
protein), are involved in the syntheses of prenylated flavonoids
in hops. CHIL2 was found to interact with CHS_H1 and PTIL
by Y2H, LuCIA, and IP assays (Ban et al., 2018). As PT1L is
a membrane-bound enzyme with eight predicted transmembrane
domains and proposed to localize in trichome plastids (Li et al.,
2015), these results suggest a membrane-anchored metabolon
for xanthohumol biosynthesis. In vitro enzymatic assays showed
that CHIL?2 slightly enhances the catalytic efficiencies of CHS_H1
and PT1L. Specifically, the binding of CHIL2 to CHS_HI1 results
in a 6-18-fold increase in k. and 5.5-6.0-fold increase in K,
for p-coumaroyl-CoA (1, Figure 3B) and malonyl-CoA, with
up to 2.9-fold increase in k./K,, values; whereas, the binding
of CHIL2 to PTIL results in a slight increase in V,, and
slight decrease in K, for these substrates, with up to a 2.2-fold
increase in V. /K, values. S. cerevisiae was engineered for the
production of demethylxanthohumol. The engineered yeast
co-expressing CHIL2 and CHS_H1 with PT1L produced greater
amounts of demethylxanthohumol than those expressing CHS
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alone, consistent with CHIL2 functioning as an EFP in vivo.
Thus, specific binding of CHIL2 to CHS enhances the rate
of CHS-catalyzed entry from the general phenylpropanoid
pathway to the flavonoid pathway (Figure 1) to potentiate
flavonoid production. Unlike CHIL2, CHILI did not interact
with CHIL2, PT1L, CHS_HI, p-coumaroyl-CoA ligase (see
Figure 1), or OMT, as found by multiple methods (Ban et al.,
2018). Binding assays and computational docking studies
suggested that CHIL1 binds to demethylxanthohumol and
THC to stabilize their ring-opening conformations,
circumventing isomerization of THC to naringenin flavanone
(Ban et al., 2018). This role of CHILI is consistent with the
high accumulation of xanthohumol and demethylxanthohumol
in hop glandular trichomes, in which almost no THC and
naringenin were detected. PT1L is also involved in bitter
acid biosynthesis in this plant and physically interacts with
another membrane-bound, plastidial, aromatic prenyltransferase,
PT2, to form a metabolon that catalyzes the prenylations in
the P-bitter acid pathway. In this pathway, PT1L catalyzes
the first prenylation and PT2 catalyzes the subsequent two
prenylations (Li et al., 2015; Ban et al, 2018). Thus, PTIL
might serve as a key scaffold for the biosynthesis of both
terpenophenolics (bitter acids and prenylated flavonoids) in
hop glandular trichomes.

CONCLUSION AND FUTURE
PERSPECTIVES

Interactions between enzymes and proteins in the flavonoid
metabolons clearly vary between plant species. This is consistent
with the species-dependent structural diversity of flavonoids
and points to a role for differential metabolon formation in
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Plants produce a diverse array of lineage-specific specialized (secondary) metabolites,
which are synthesized from primary metabolites. Plant specialized metabolites play
crucial roles in plant adaptation as well as in human nutrition and medicine. Unlike well-
documented diversification of plant specialized metabolic enzymes, primary metabolism
that provides essential compounds for cellular homeostasis is under strong selection
pressure and generally assumed to be conserved across the plant kingdom. Yet, some
alterations in primary metabolic pathways have been reported in plants. The biosynthetic
pathways of certain amino acids and lipids have been altered in specific plant lineages.
Also, two alternative pathways exist in plants for synthesizing primary precursors of the
two major classes of plant specialized metabolites, terpenoids and phenylpropanoids.
Such primary metabolic diversities likely underlie major evolutionary changes in plant
metabolism and chemical diversity by acting as enabling or associated traits for the
evolution of specialized metabolic pathways.

Keywords: plant chemical diversity, metabolic enzymes, primary metabolism, specialized metabolism, evolution
of plant metabolism, amino acid biosynthesis

INTRODUCTION

Plants produce a diverse array of secondary or specialized metabolites, which play critical roles in
plant adaptation under various environmental conditions. These phytochemicals are also widely
used in human nutrition and medicine. Nearly one million metabolites are estimated to be
produced throughout the plant kingdom (Afendi et al., 2012), though many of them are yet to be
discovered. All of these specialized metabolites are synthesized from a certain primary metabolite
precursor(s), such as sugars, amino acids, nucleotides, organic acids, and fatty acids, which are
essential for maintaining cellular homeostasis and the life of whole organisms. Besides their vital
nature, primary metabolic pathways are highly regulated and integrated to complex metabolic
networks (Baghalian et al., 2014; Sulpice and McKeown, 2015; Beckers et al., 2016; Filho et al., 2018).
Consequently, genes encoding primary metabolic enzymes are subjected to purifying selection
and generally considered to be conserved among the plant kingdom, unlike highly diversified
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specialized metabolism (Pichersky and Lewinsohn, 2011; Weng
et al, 2012; Moghe and Last, 2015; Moore et al, 2019).
Yet, some primary metabolic pathways were altered during
plant evolution, which had profound impacts on overall plant
physiology, metabolism, and adaptation. This review describes
examples of primary metabolic diversification in different plant
lineages and discusses their potential roles in the evolution of
downstream specialized metabolic pathways and plant chemical
diversity as enabling or associated traits.

ENABLERS OF EVOLUTIONARY
DIVERSIFICATION OF THE
PHOTOSYNTHETIC CARBON FIXATION
PATHWAYS

One of the most fundamental metabolic pathways of plants,
photosynthetic carbon fixation, has been modified in a number
of plant lineages to what is known as C4 photosynthesis
and Crassulacean acid metabolism, though the former will be
mainly discussed here. Unlike 3-phosphoglycerate (3PGA), a
three carbon molecule produced by ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco) in Cs photosynthesis, Cy4
photosynthesis initially generates a four carbon molecule,
i.e,, oxaloacetate, by phosphoenolpyruvate (PEP) carboxylase
(PEPC). Oxaloacetate is further converted to malate or aspartate
and shuttled from mesophyll to bundle sheath cells, where
CO;, is released for refixation by Rubisco (Figure 1) (Langdale,
2011; Sage et al, 2012; Furbank, 2016). This highly intricate
mechanism is seemingly maladaptive due to high metabolic costs
(e.g., fixing carbon twice, regeneration of PEP), but provides
adaptive advantage under arid, warm, and high light conditions
by concentrating CO; and attenuating the oxygenation side
reaction of Rubisco and hence photorespiration (Christin and
Osborne, 2014; Sage and Stata, 2015). Thus, besides the decline
in atmospheric CO, around 30 million years ago (Pagani et al.,
2005), such extreme environmental conditions, in which some
plants existed, likely acted as an “environmental enabler” for
the evolutionary diversification of the photosynthetic carbon
fixation, the entry step of plant metabolic pathways.

The C, photosynthetic pathway evolved more than 60
times independently across the plant phylogeny (Sage et al,
2011, 2012). Notably, C4 photosynthesis is unevenly distributed
across the phylogeny and particularly prevalent in specific
plant lineages, such as Poaceae and Caryophyllales (Christin
et al, 2009, 2015; Sage et al, 2011). Recent comparative
analyses of C3; and C4 plants as well as C3-C4 transitory
species revealed that the repeated evolution of C4 photosynthesis
was likely facilitated by certain “pre-conditions” or “enabling
traits” that emerged or were present in certain plant lineages
(Ludwig, 2013; Sage et al., 2014; Heckmann, 2016; Miyake,
2016; Schliiter and Weber, 2016). These enabling traits include
“genetic enablers,” such as Cy-like cell-type specific expression
of C4 enzymes (e.g., PEPC, Williams et al., 2012; Christin
et al., 2013a, 2015) and “anatomical enablers,” such as proto-
Kranz anatomy (Christin et al.,, 2013b; Lundgren et al., 2014;

Sage et al., 2014), in Cs ancestors. These pre-conditions further
facilitated emergence of “metabolic enablers,” such as shuttling
of photorespiratory glycine from mesophyll to bundle sheath
cells acting as CO, pump (Sage et al, 2013; Schulze et al,
2013). This so-called C, photosynthesis is present in many sister
species to Cy lineages (Sage et al, 2011, 2012; Khoshravesh
et al,, 2016) and appears to be accompanied by shuttling of
other metabolites, such as alanine/pyruvate or aspartate/malate,
for balancing of nitrogen between the mesophyll and bundle
sheath cells (Mallmann et al., 2014; Schliiter and Weber, 2016).
Once these pre-conditions were established, C4 photosynthesis
could evolve relatively easily and thus repeatedly, such as through
optimization of kinetic properties of C4 enzymes (e.g., PEPC)
and bundle sheath specific expression of Rubisco (Langdale,
2011; Sage et al, 2012; Furbank, 2016; Reeves et al, 2017).
Thus, the combination of environmental, genetic, anatomical,
and metabolic enablers allowed astounding alterations in the core
primary metabolic pathway, photosynthetic carbon fixation, in
certain plant lineages.

DIVERSIFICATION OF AMINO ACID
BIOSYNTHETIC PATHWAYS AT THE
INTERFACE OF PRIMARY AND
SPECIALIZED METABOLIC PATHWAYS

Amino acid biosynthetic pathways not only provide essential
protein building blocks but connect central carbon metabolism
to a variety of specialized metabolism. Some of these amino
acid pathways have diversified in certain plant lineages and
likely contributed to the chemical diversity of their downstream
specialized metabolism.

Isopropylmalate synthase (IPMS) catalyzes the committed
step of leucine biosynthesis (de Kraker et al, 2007). IPMS
competes for the 3-methyl-2-oxobutanoate (3MOB) substrate
with valine biosynthesis (Figure 1) and is typically feedback
inhibited by the end product, leucine, through its C-terminal
allosteric regulatory domain (Koon et al., 2004; de Kraker and
Gershenzon, 2011). Glandular trichomes of Solanaceae plants
accumulate insecticidal specialized metabolites, acylsugars,
which have various aliphatic acids attached to a sugar backbone
(e.g., sucrose, Fan et al, 2019). A wild tomato Solanum
pennellii and the cultivated tomato, Solanum lycopersicum,
have 2-methylpropanoic and 3-methylbutanoic acid (iC4
and iC5) acyl chains, which are derived from 3MOB and 3-
isopropylmalate, intermediates of valine and leucine metabolism,
respectively (Figure 1). Analysis of introgression lines between
S. lycopersicum and S. pennellii, followed by expression
and biochemical analyses, revealed that the C-terminal
regulatory domain of the IPMS3 isoform is truncated in
S. lycopersicum, making this isoform insensitive to leucine-
mediated feedback inhibition (Schilmiller et al., 2010; Ning
et al., 2015). In contrast, the IPMS3 isoform of S. pennellii is
further truncated into its catalytic domain and has lost the
enzyme activity. Thus, the de-regulated and inactive IPMS3
in S. lycopersicun and S. pennellii directs more carbon flow
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toward leucine and valine metabolism, respectively. Having
the broad substrate specificity of downstream acyl-CoA-
dependent acyltransferase (Schilmiller et al., 2015), increased
availability of 3MOB and 3-isopropylmalate contributes
to the formation of iC4 and iC5 acylsugars, respectively.
Brassicaceae species including Arabidopsis thaliana also has a
truncated IPMS homolog but with point mutations that alter
substrate specificity to now function as methylthioalkylmalate
synthase in the initial step of methionine-derived glucosinolate
biosynthesis (de Kraker and Gershenzon, 2011). Unlike the
latter example of recruitment of specialized metabolic enzymes
from primary metabolism, as discussed in previous reviews
(Weng, 2014; Moghe and Last, 2015), the study by Ning et al.
(2015) revealed a role of altered branch chain amino acid
biosynthesis in the acyl chain diversity of acylsugars in the
Solanum genus.

Anthranilate synthase (AS) catalyzes the committed step of
biosynthesis of an aromatic amino acid, L-tryptophan, and its
enzyme activity is strictly regulated through feedback inhibition
of one of the AS enzyme complex, ASa, by tryptophan (Romero
et al, 1995; Li and Last, 1996). Two copies of ASa genes,
ASal and ASa2, were found in Ruta graveolens (the Rutaceae
family) that uses anthranilate to produce unique specialized
metabolites, acridone alkaloids (Bohlmann et al., 1995). While

ASa2 was constitutively expressed, ASal was induced under
elicitor treatment, which stimulates the accumulation of acridone
alkaloids. Interestingly, the ASal enzyme was much more
resistant than ASa2 to the tryptophan-mediated feedback
inhibition, suggesting that the expression of the de-regulated
ASal enzyme allowed elevated accumulation of the anthranilate
precursor and hence efficient production of the downstream
specialized metabolites, acridone alkaloids, in this unique
plant lineage (Bohlmann et al., 1996; Figure 1). A naturally
occurring feedback-insensitive ASa enzyme has also been
identified in Nicotiana tabacum (the Solanaceae family, Song
et al., 1998), but its in planta function is currently unknown.
Further evolutionary analyses across the Rutaceae family
can evaluate if the increased availability of anthranilate
served as an enabling trait for later evolution of acridone
alkaloid biosynthesis. Alternatively, the de-regulated ASal
might have evolved after the emergence of the acridone
alkaloid pathway as an associated trait and further elevated the
alkaloid production.

L-Tyrosine is another aromatic amino acid required for
protein synthesis but also used to produce diverse plant natural
products, such as tocochromanols, benzylisoquinoline alkaloids,
cyanogenic glycosides (e.g., dhurrin), and rosmarinic acids
(Schenck and Maeda, 2018). Tyrosine is typically produced
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via arogenate dehydrogenase (TyrA,) that is localized within
the plastids (Rippert et al., 2009; Wang et al, 2016) and
strongly feedback inhibited by tyrosine (Figure 1; Connelly
and Conn, 1986; Rippert and Matringe, 2002a,b). Recent
studies, however, uncovered diversification of the tyrosine
biosynthetic pathways in different plant lineages. In addition
to the highly regulated plastidic TyrA,-mediated pathway,
many legumes including Glycine max (soybean) and Medicago
truncatula have an additional tyrosine biosynthetic pathway
mediated by prephenate dehydrogenase (TyrA;,) (Rubin and
Jensen, 1979; Schenck et al., 2015), which is often found
in microbes (Bonner and Jensen, 1987; Bonner et al., 2008;
Schenck et al.,, 2017b). Notably, these legume TyrA, enzymes
are localized outside of the plastids and completely insensitive
to feedback inhibition by tyrosine (Schenck et al, 2015,
2017a), suggesting that the alternative tyrosine pathway is
physically separated from the canonical plastidic pathway and
escaped feedback inhibition by tyrosine (Figure 1). While the
metabolic and physiological functions of the alternative cytosolic
TyrAp pathway in legumes is largely unknown, some legumes
accumulate very high levels of tyrosine and tyrosine-derived
compounds (e.g., L-DOPA in Mucuna pruriens, Wichers et al.,
1993; Lokvam et al., 2006). A recent study found that the
expression of gene encoding the tyrosine-insensitive TyrA,
enzyme is elevated in Inga species that accumulate tyrosine
and its derived secondary metabolites (e.g., tyrosine-gallates)
at 5 to 20% of seedling dry weight (Coley et al, 2019).
Thus, the presence of the feedback-insensitive TyrA, enzyme
in the legume family likely provided a unique pre-condition
that enabled increased tyrosine biosynthetic activity and hyper-
accumulation of tyrosine-derived compounds in this specific
genus of legumes.

Betalains are red to yellow alkaloid pigments uniquely
produced in the plant order Caryophyllales, which include
Beta vulgaris (beet), spinach, quinoa, and cactus. Betalain
pigments are derived from tyrosine and replaced more
ubiquitous red to purple anthocyanin pigments derived
from phenylalanine in many Caryophyllales species (Tanaka
et al., 2008; Brockington et al., 2011; Polturak and Aharoni, 2018;
Figure 1). Like Arabidopsis and unlike legumes, Caryophyllales
species only have arogenate-specific TyrA, enzymes; however,
one TyrA, isoform (TyrA,a) exhibits relaxed sensitivity to
tyrosine inhibition (Lopez-Nieves et al., 2018; Figure 1). The
presence of the de-regulated TyrA,a enzymes positively and
negatively correlates with those of betalain and anthocyanin
pigmentation, respectively, across Caryophyllales. Evolutionary
analyses, by utilizing transcriptome data of over one hundred
Caryophyllales species (Brockington et al, 2015), revealed
that the de-regulated TyrA,a enzymes emerged before the
evolution of the betalain biosynthetic pathway (Lopez-Nieves
etal,, 2018). Thus, the enhanced supply of the tyrosine precursor,
due to relaxed regulation of the TyrA, enzyme, likely acted
as a metabolic enabler for the subsequent evolution of a
novel downstream specialized metabolic pathway, betalain
biosynthesis, in this specific plant order (Figure 1). Further
evolutionary analyses of associated genes and enzymes involved
in the betalain pathway and the competing phenylalanine

and phenylpropanoid pathways will provide novel insight
into how primary and specialized metabolism evolved
coordinately in a macroevolutionary scale beyond the levels
of species and genera.

ANCIENT DIVERSIFICATION OF IPP AND
PHENYLALANINE BIOSYNTHETIC
PATHWAYS IN PLANTAE

In the ancient history of Plantae, alternative primary
metabolic pathways evolved and likely contributed to
later evolution of plant specialized metabolism and
chemical diversity. Terpenoids and phenylpropanoids are
the two major classes of plant natural products, which
are synthesized from the primary metabolite precursors,
isopentenyl  pyrophosphate  (IPP) and phenylalanine,
respectively (McGarvey and Croteau, 1995; Gershenzon
and Dudareva, 2007; Vogt, 2010; Tohge et al., 2013). Notably,
plants possess two alternative pathways to synthesize IPP
and phenylalanine.

In addition to sterols and quinones, plants use IPP to
synthesize photosynthetic pigments (chlorophylls, carotenoids),
plant hormones (brassinosteroids, abscisic acid, gibberellins),
and a diverse array of terpenoid compounds (McGarvey and
Croteau, 1995; Gershenzon and Dudareva, 2007; Tholl, 2015).
Such a high demand of IPP for synthesis of diverse terpenoid
compounds in plants is supported by the two alternative
IPP biosynthetic pathways, the methylerythritol phosphate
(MEP) and mevalonate (MVA) pathways, which take place
in the plastidic and extra-plastidic subcellular compartments,
respectively (Vranova et al., 2013; Rodriguez-Concepcion and
Boronat, 2015). The MEP pathway utilizes glyceraldehyde 3-
phosphate derived from the pentose phosphate pathways in
the plastids and hence can draw carbon flux directly from
photosynthetic carbon fixation (Figure 1). While the MVA
pathway appears to be an ancestral pathway that evolved in all
three domains of life (i.e., eukaryotes, archaea, and most bacteria)
or in their last universal ancestor (i.e., cenancestor) (Lombard
and Moreira, 2011), the plastidic MEP pathway has mosaic
evolutionary origins (Lange et al., 2000; Matsuzaki et al., 2008).
A common ancestor of plastid bearing eukaryotes likely acquired
MEP pathway enzymes from various bacterial ancestors (i.e.,
cyanobacteria, a-proteobacteria, Chlamydia) through horizontal
gene transfers (Matsuzaki et al., 2008) and the MEP pathway
was vertically transmitted to the descendants, the entire Plantae
including algae and plants.

L-Phenylalanine is the primary metabolite precursor of
phenylpropanoids and is synthesized via two alternative
pathways in plants (Tzin and Galili, 2010; Maeda and
Dudareva, 2012; Yoo et al.,, 2013; Qian et al,, 2019). In many
microbes, phenylalanine is synthesized via the phenylpyruvate
intermediate, catalyzed by prephenate dehydratase (PDT)
and phenylpyruvate aminotransferase (Figure 1) (Bentley,
1990). Although an analogous phenylpyruvate pathway also
exists in the plant cytosol (Yoo et al., 2013; Qian et al.,, 2019),
plants synthesize phenylalanine mainly in the plastids via the
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L-arogenate intermediate: prephenate is first transaminated
by prephenate aminotransferase (PPA-AT) to arogenate
(Graindorge et al, 2010; Dal Cin et al, 2011; Maeda
et al., 2011), which is then converted to phenylalanine by
arogenate dehydratase (ADT; Siehl and Conn, 1988; Cho
et al, 2007; Maeda et al, 2010; Figure 1). Evolutionary
analyses of the PPA-AT and ADT enzymes suggested that
an ancestor of green algae and land plants appear to have
acquired both of these two enzymes from an ancestor of
Chlorobi/Bacteroidetes bacteria, likely through horizontal
gene transfer (Dornfeld et al., 2014). Some cyanobacteria
also have PPA-AT enzymes but with a distinct evolutionary
origin from those of plants and Chlorobi/Bacteroidetes bacteria
(Graindorge et al., 2014; Giustini et al., 2019). Thus, these dual
primary metabolic pathways of isoprenoid and phenylalanine
biosynthesis appear to have evolved in a common ancestor
of Plantae. Although evolutionary analyses of such deep
phylogenetic nodes are challenging, these dual precursor supply
pathways potentially served as metabolic enablers for the
evolutionary expansion of terpenoids and phenylpropanoids,
the hallmarks of chemical diversity uniquely seen in the
plant kingdom today.

DIVERSIFICATION OF LIPID
METABOLISM IN PLANTS

Notable chemical diversity also exists in plant lipid metabolism
(Badami and Patil, 1980; Ohlrogge et al., 2018), which makes
the boundary of primary and specialized (secondary) metabolism
difficult to define. Besides major acyl chains (e.g., oleic 18:1,
linolenic 18:3) found in most plant lipids, some plants produce
unusual fatty acids: For example, oils of castor (Ricinus
communis, Euphorbiaceae family) and Vernonia galamensis
(Asteraceae family) consist of primarily (80-90%) hydroxylated
and epoxy fatty acids, respectively (Canvin, 1963; Ayorinde
et al., 1990). Also, diverse acetylenic natural products having a
carbon-carbon triple bond(s) or alkynyl functional group can be
produced by modification of the fatty acid precursors (Minto
and Blacklock, 2008; Negri, 2015). The production of these
hydroxylated fatty acids and polyacetylenes are mediated by
divergent fatty acid desaturases with altered product specificities
and catalytic properties (van de Loo et al., 1995; Broun et al., 1998;
Liu et al., 1998; Broadwater et al.,, 2002; Minto and Blacklock,
2008; Negri, 2015). Tremendous diversity of cuticular waxes has
been also documented across the plant kingdom likely due to
the presence of specialized acyl chain elongation and modifying
enzymes (Jetter et al., 2007; Busta and Jetter, 2018).

Recent studies also revealed an intriguing alteration in the
core lipid metabolic pathway, triacylglycerol (TAG) biosynthesis,
in a specific plant lineage. The fruits of Bayberry (Myrica
pensylvanica, Myricaceae family) accumulate abundant and
unusual extracellular glycerolipids: TAG, diacylglycerol (DAG),
and monoacylglycerol with completely saturated acyl chains
at up to 30% of fruit dry weight (Harlow et al, 1965;
Simpson and Ohlrogge, 2016). This unique surface wax attracts
birds for seed dispersal and is used for making scented

candles (Fordham, 1983). Fleshy fruits of oil palm, olive, and
avocado also accumulate a large quantity of glycerolipids but
intracellularly and by upregulating conventional fatty acid and
TAG biosynthetic pathways (Bourgis et al., 2011; Kilaru et al,
2015). In contrast, a novel TAG biosynthetic pathway evolved
in Bayberry through “re-purposing” genes and enzymes involved
in cutin biosynthesis by altering their gene expression (Simpson
and Ohlrogge, 2016; Simpson et al., 2016). These alterations
include elevated expression of genes encoding the G subfamily of
ABC (ABCQG) transporters and lipid transporter proteins likely
required for lipid transport across cell membranes and walls,
respectively, which will allow extracellular formation of TAG
(Simpson et al., 2016). It will be interesting to examine how
such reprograming of existing lipid metabolic pathways occur in
a step-wise manner during evolution, which will provide useful
information for engineering other plants to produce and secrete
abundant extracellular glycerolipids.

SUMMARY AND PERSPECTIVE

Although not as frequent as those of specialized metabolism,
accumulating evidence indicates that pathways and enzymes of
primary metabolism can be diversified during the plant evolution.
Such relatively rare alterations in primary metabolism likely
contributed to major evolutionary innovations in the plant
kingdom, including the evolution of downstream specialized
metabolic pathways and hence plant chemical diversity. Some
alterations in primary metabolism appear to have acted as
enabling traits for the evolution of novel specialized metabolism,
at least in the case of de-regulated tyrosine biosynthesis
in Caryophyllales that preceded the emergence of betalain
pigmentation (Lopez-Nieves et al., 2018). In other instances,
primary metabolic alterations likely co-evolved with and support
efficient operation of specialized metabolic pathways. It remains
to be examined how prevalent the phenomenon is beyond
the pathways and plant lineages that have been examined so
far and what impacts such primary metabolic diversification
had on overall metabolism, physiology, and environmental
adaption of diverse plant species. Another intriguing question
is how seemingly maladaptive alterations in highly conserved
and constrained primary metabolism were maintained in
certain plant lineages, especially until the emergence of a new
downstream pathway which might have eventually provided
adaptive advantage. What are the environmental, anatomical, and
genetic enablers underlying primary metabolic diversification? In
the case of tomato feedback-insensitive IPMS and legume TyrA,
enzymes, their specific expression in the apical trichome cells
(Ning et al., 2015) and extra-plastidic subcellular compartment
(Schenck et al., 2015) likely allow minimal disturbance to de
novo biosynthesis of branch chain and aromatic amino acids,
respectively. Further addressing these questions will lead to
broader understanding of the evolution of plant metabolism
at a macroevolutionary scale. The acquired knowledge of
primary metabolic diversification and its underlying genetic and
biochemical basis will also allow us to redesign plant metabolism
in a holistic manner from primary to specialized metabolism.
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Sunflower (Helianthus annuus L.) sprouts accumulate high amounts of caffeoylquinic acids
(CQAS) including chlorogenic acid (5-CQA) and 1,5-diCQA. These compounds, which
can be found in many plants, including tomato, globe artichoke, and chicory, have many
health benefits, including antioxidant, antinepatotoxic, and antiglycative activities. However,
CQA profiles and biosynthesis have not previously been studied in sunflower sprouts. In
the present study, we found that 5-CQA and 1,5-diCQA were the major CQAs found in
sunflower sprouts. We also identified minor accumulation of other CQAs, namely 3-CQA,
4-CQA, 3,4-diCQA, and 4,5-diCQA. According to genome-wide identification and
phylogenetic analysis of genes involved in CQA biosynthesis in sunflower, three genes
(HaHQT1, HaHQT2, and HaHQT3) encoding hydroxycinnamoyl CoA:quinate
hydroxycinnamoy! transferase (HQT) and two genes (HaHCT1 and HaHCTZ2) encoding
hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) were
identified. Expression analysis of these five genes in hypocotyls and cotyledons strongly
suggested that HaHQT2 could be the main enzyme responsible for CQA biosynthesis,
as HaHQT2 had the highest expression levels. In addition, when transiently expressed in
the leaves of Nicotiana benthamiana, all three HaHQTs, which were soluble and not
membrane-bound enzymes, could increase the content of 5-CQA by up to 94% compared
to that in a control. Overall, our results increase understanding of CQA biosynthesis in
sunflower sprouts and could be exploited by plant breeders to enhance accumulation of
health-promoting CQAs in these plants.

Keywords: hydroxycinnamoyl-coenzyme A:quinate hydroxycinnamoyl transferase, hydroxycinnamoyl-coenzyme

A:shikinate/quinate hydroxycinnamoyl transferase, caffeoylquinic acid, sunflower (Helianthus annuus L.), sprout,
functional characterization
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INTRODUCTION antimicrobial properties of CQAs are well documented by
previous studies. In addition, several in vitro and in vivo
Increased health consciousness among consumers and concerns  studies have shown additional benefits of CQAs, such as a
about the negative health effects of chemical preservatives used  reduction in the risk of cardiovascular diseases (de Sotillo
in the food industry has led to increase an interest in natural  and Hadley, 2002), hepatoprotective properties (Salomone et al.,
and herbal substances. Fruits and vegetables accumulate a wide ~ 2017), and inhibition of HIV replication and integration
range of bioactive compounds with many health-promoting ~ (McDougall et al., 1998; Gu et al., 2007). Notably, CQAs can
benefits. Among these bioactive compounds, phenolics are of  confer resistance to abiotic stressors such as UV light (Cle
high importance, and caffeoylquinic acids (CQAs) comprise et al., 2008) and to biotic stressors (Niggeweg et al., 2004;
one of the most common phenolic groups. When caffeoyl  Leiss et al., 2009; Legrand et al., 2016) in plants. The bioactivity
moieties combine with quinic acid, CQAs are formed. These  of CQAs mainly depends on their isomerization. For example,
CQAs can be categorized into various groups based on the the number and position of caffeic acid moieties in diCQAs
position, number, and identity of their acyl group. The affect their antioxidant properties (Xu et al., 2012).
monocaffeoylquinic acid (monoCQA) group includes 1-CQA, Sunflower (Helianthus annuus L.) seeds and sprouts are rich
3-CQA (known as neochlorogenic acid), 4-CQA (known as in phenolic compounds and vitamins and thus exhibit a wide
cryptochlorogenic acid), and 5-CQA (known as chlorogenic  variety of potential health-beneficial characteristics, including
acid). The dicaffeoylquinic acid (diCQA) group includes anti-inflammatory, antimicrobial, antioxidant, antihypertensive,
1,3-diCQA, 1,4-diCQA, 1,5-diCQA, 3,4-diCQA, 3,5-diCQA, and  and wound-healing properties (Fowler, 2006; Bashir et al., 2015;
4,5-diCQA (Figure 1). Guo et al,, 2017). In a study by Weisz et al. (2009), monoCQA
CQAs can be found in numerous plant species, including  and diCQA contents comprised up to ~3,359 and 460 mg per
Cichorium intybus (chicory; Legrand et al, 2016), Cynara 100 g dry weight of seed kernels, respectively. Among the 11
cardunculus L. var. scolymus (globe artichoke; Moglia et al.,  phenolic compounds analyzed in sunflower seed kernels, 5-CQA
2016), and Helianthus annuus L. (sunflower; Sun et al., 2012)  was the most abundant. In another study by Sun et al. (2012),
in the family Asteraceae; Solanum lycopersicum L. (tomato)  the antiglycative and antioxidant characteristics of four edible
and Nicotiana tabacum L. (tobacco) in the family Solanaceae  sprouts were investigated, and it was found that sunflower
(Niggeweg et al., 2004); Coffea spp. (coffee; Lallemand et al.,  sprout extract exhibited similar antiglycative properties compared
2012) in the family Rubiaceae; and Ipomoea batatas L. (sweet  with aminoguanidine, a well-known synthetic antiglycative
potato; Kojima and Kondo, 1985) and Ipomoea aquatica (water ~ agent. The strong antioxidant and antiglycative properties of
spinach; Lawal et al., 2016) in the family Convolvulaceae.  sunflower sprouts were attributed to their rich 1,5-diCQA
The antioxidant, anti-inflammatory, anti-hypertension, and  content. Pajak et al. (2014) examined the effect of germination

HO.__.O 0
«OR4
; HO
OH
R0 Y TORs
OR, OH
QA CA
Compound Abbreviation Common name Ry, Ry Ry Rs
Monocaffeoylquinic acid monoCQA
1-O-caffeoylquinic acid 1-CQA - CA H H H
3-O-caffeoylquinic acid 3-CQA Neochlorogenic acid H CA H H
4-O-caffeoylquinic acid 4-CQA Cryptochlorogenic acid H H CA H
5-O-caffeoylquinic acid 5-CQA Chlorogenic acid H H H CA
Dicaffeoylquinic acid diCQA
1.3-di-O-caffeoylquinic acid 1,3-diCQA - CA CA H H
1.4-di-O-caffeoylquinic acid 1,4-diCQA = CA H CA H
1,5-di-O-caffeoylquinic acid 1,5-diCQA Cynarin CA H H CA
3,4-di-O-caffeoylquinic acid 3,4-diCQA - H CA CA H
3,5-di-O-caffeoylquinic acid 3,5-diCQA 7 H CA H CA
4 5-di-O-caffeoylquinic acid 4 5-diCQA - H H CA CA
QA, quinic acid; CA, caffeic acid; H, hydrogen
FIGURE 1 | Structures of caffeoylquinic acids found in plants. The names, abbreviations, common names, and chemical structures of caffeoylquinic acid
derivatives, including monocaffeoylquinic acids (monoCQAs) and dicaffeoylquinic acids (diCQAs) are shown.
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on nutritional value (total phenolics and flavonoids) and
antioxidant properties of sunflower seeds. Interestingly, they
found that total phenolics, flavonoids, and antioxidant capabilities
were significantly higher in sunflower sprouts than seeds.
Moreover, HPLC profiling of sunflower phenolics revealed that
CQA content was 3.7-fold higher in sprouts than seeds. Taken
together, these observations prompted us to investigate sunflower
sprouts for our study.

CQAs are biosynthesized via the phenylpropanoid pathway
in plants (Comino et al, 2009). The starting point of this
pathway is the aromatic amino acid phenylalanine (Phe), which
is deaminated by phenylalanine ammonia lyase (PAL) to
form cinnamic acid. Then, cinnamate-4-hydroxylase (C4H)
and 4-coumarate coenzyme A ligase (4CL) sequentially

convert cinnamic acid to form p-coumaroyl-CoA. Two possible
routes have been proposed for the next step in CQA
synthesis. In the first route, hydroxycinnamoyl-CoA:quinate
hydroxycinnamoyl transferase (HQT) converts p-coumaroyl-CoA
to coumaroylquinate, which 1is then hydroxylated by
p-coumarate-3’-hydroxylase (C3'H) to form CQA (Niggeweg
et al., 2004; Comino et al., 2009; Menin et al., 2010). In the
alternative second route, hydroxycinnamoyl-CoA:shikimate/
quinate hydroxycinnamoyl transferase (HCT) catalyzes the
formation of p-coumaroylshikimate from p-coumaroyl-CoA.
The p-coumaroylshikimate is subsequently hydroxylated to
caffeoylshikimic acid by C3'H (Mahesh et al,, 2007; Moglia
et al., 2009). Notably, HQT and HCT both catalyze reversible
reactions (Figure 2).
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FIGURE 2 | Biosynthetic pathway of caffeoylquinic acids in plants. The roles of phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H),
4-hydroxycinnamoyl-CoA ligase (4CL), hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl! transferase (HQT), hydroxycinnamoyl-CoA:shikimate/quinate
hydroxycinnamoy! transferase (HCT), and p-coumaroyl ester 3’-hydroxylase (C3'H) are depicted.
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HQT and HCT enzymes belong to the BAHD superfamily of
plant-specific acyl-CoA-dependent acyltransferases (Yu et al., 2009;
Tuominen et al, 2011). However, our knowledge regarding the
biosynthesis of diCQAs is still limited. In a study by Lallemand
et al. (2012), a recombinant HCT enzyme cloned from coffee was
shown to synthesize diCQAs from 5-CQA. In addition, the enzyme
HQT was reported to convert 5-CQA to diCQAs in tomato (Moglia
et al, 2014). Legrand et al. (2016) identified two HCTs (HCT1
and HCT2) and three HQTs (HQT1, HQT?2, and HQT?3) in chicory.
Notably, increased levels of 3-CQA were detected in N. benthamiana
leaves transiently expressing HQT1 or HCTI. Moreover, genes
involved in CQA biosynthesis, including HQT, HCT, C3'H,
Acyltransf 1, and Acyltransf 2, have been isolated and characterized
in artichoke (Comino et al., 2007, 2009; Moglia et al., 2009; Menin
et al, 2010). Moglia et al. (2016) found two HCTs and three
HQTs in artichoke, which is the same number of HCTs and HQTs
found chicory. To the best of our knowledge, there are currently
no published studies in the literature on how CQAs are formed
during sprouting stages and how high the CQA content is. Therefore,
we focused on sunflower sprout, which is currently gaining popularity
among health-conscious consumers. In addition, none of HQTs
and HCTs have been identified in sunflower. Acquiring a deeper
understanding of CQA biosynthetic enzymes in sunflower is critically
important to aid efforts to biofortify sunflower sprouts as functional
foods. In the present study, we report the identification and functional
characterization of key genes involved in CQA biosynthesis in
sunflower sprouts.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Sunflower (H. annuus L.) seeds were purchased from a local
supplier (“Super Top,” Thailand). The seeds were first washed,
soaked in tap water for 8 h, and wrapped with wet cheesecloth
overnight. Next, they were germinated on coconut dust at
30°C under 60% relative humidity for 9 days, with dark
conditions for the first 48 h, followed by a 12/12 h light/dark
photoperiod for the remaining days. The seed coat was gently
removed at hour 56 (after exposure to the light for 8 h;
Supplementary Figure S1A). To compare metabolites and genes
expression of the sample obtained from different developmental
stages and tissues, the experiment was divided into two sets.
For the first set, whole plants excluding roots were collected
at different time points (days 3-9, 2 h after light exposure at
each day; Supplementary Figure S1B) after germination. For
the second set, cotyledons and stems were collected similarly
at day 5. For both sets, there were five replicates per time
point, and each replicate consisted of 10 sprouts. Replicates
were collected separately, frozen in liquid nitrogen, ground
into a fine powder using an MM400 mixer mill (Retsch®,
Germany) at 30 Hz for 1 min, and then stored at —80°C until
further use. In addition, half of the samples were also freeze
dried for HPLC analysis.

To grow five-week-old plants for an agroinfiltration
experiment, N. benthamiana seeds were sown on peat moss

and grown in a controlled-climate room at 25°C and with
a 16/8 h light/dark photoperiod (artificial light of 4,500
Lux). Two-week-old plants were transplanted individually
into pots and were left to continue growing under the
same conditions.

Determination of Caffeoylquinic Acids
Contents of Plant Tissues

To analyze CQA contents of plant tissues, 20 mg dry weight
of sunflower sprout tissue and 20 mg fresh weight of
N. benthamiana leaves were extracted with 1 ml of 80% (v/v)
methanol containing an internal standard, 0.05 g L™ puerarin.
The reactions were mixed vigorously at 15°C for 15 min by
shaking at 1,500 rpm and then centrifuged at 12,000 x g for
15 min. Supernatant was collected and filtered through 0.2 pm
nylon syringe filters.

A Shimadzu UFLC system equipped with an SPD-M20A
photodiode array detector (Shimadzu, Japan) and Kinetex® C18
(250 mm x 4.6 mm, 5 um; Phenomenex®, USA) was used
to analyze 10 pl of the extract from sunflower sprouts and
N. benthamiana leaves. Chromatographic separation was
performed using 0.1% (v/v) TFA in water (solvent A) and
0.1% (v/v) TFA in acetonitrile (solvent B) as the mobile phase.
The following elution gradient was used: 5% B for 5 min,
5-15% B for 10 min, a 25-min hold, 15-100% B for 4 min,
a 2-min hold, 100-5% B for 4 min, and a 5-min hold. The
flow rate was set at 1.5 ml min™', and the column oven
temperature was maintained at 40°C. UV spectra were acquired
in the range of 190-800 nm, and chromatograms were obtained
at 320 nm. Peaks corresponding with the retention time and
UV spectrum of a commercial standard were identified as
CQAs. Amounts of each CQA were calculated according to
the calibration curve in the range of 0.5-0.007825 mg ml™".
Puerarin was used as an internal standard (Sigma-Aldrich,
USA). All CQA standards used in this study were purchased
from Carbosynth, England.

Additionally, to confirm identities of the CQAs, the
components were analyzed using an Agilent UHPLC system
(Agilent  Technologies, USA) using Kinetex® C18
(250 mm x 4.6 mm, 5 pm; Phenomenex®, USA). The following
elution gradient was used: 0-5% B for 5 min, 5-15% B for
30 min, a 65-min hold, 15-100% B for 5 min, a 5-min hold,
100-5% B for 5 min, and a 10-min hold. The flow rate was
set at 0.5 ml min™', and the column oven temperature was
maintained at 40°C. For MS/MS analysis, QTRAP® 4,500 MS/
MS System (AB Sciex™, USA) in multiple reaction monitoring
(MRM) and negative ionization mode (ESI-) was used. Operating
conditions for MS analysis were as follows: heat block temperature
of 500°C, curtain nitrogen gas 30 psi, nebulizer and auxiliary
gases of 50 psi, collision nitrogen gas at medium position,
ionization voltage of —4,500 V, and entrance potential (EP)
of —10. For the tested compounds, the following transition
under optimal instrumental conditions of collision energy (CE)
of =35 eV, declustering potential (DP) of —50 V, and collision
cell exit potential (CXP) of —12 V.
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Identification of Putative HQT and HCT

Genes in Sunflower (HaHQTs and HaHCTs)
The HQT of tomato (Solanum lycopersicum; NP_001234850.2;
Moglia et al, 2014) was used as a query for tBlastn search
against the sunflower genome database HA412HO bronze assembly".
The open reading frames of HQT and HCT were identified.
Then, using EMBL-EBI Clustal Omega (McWilliam et al., 2013),
the amino acid sequences of putative HaHQTs and HaHCTs
were aligned with well-characterized HQTs/HCTs belonging to
different plant species (Supplementary Figure S2). These candidates
including HaHQT1 (accession number MK598073), HaHQT2
(accession number MK598074), HaHQT3 (accession number
MK598075), HaHCT1 (accession number MK598076), and HatHCT2
(accession number MK598077) were selected for further study.

Phylogenetic Analysis

Amino acid sequences of putative HaHQTs and HaHCTs were
aligned with sequences of previously characterized enzymes
using BioEdit ClustalW multiple alignment (Hall, 1999), and
a Neighbor Joining (NJ) tree was created using MEGA7 software
(Kumar et al., 2016) with 1,000 bootstrapped data sets.

RNA Isolation, cDNA Synthesis, and
Cloning of Putative HaHQTs

Total RNA was isolated from 100 mg fresh weight of sunflower
sprouts using TRI reagent® (Molecular Research Center, Inc.,
USA). Next, RNA concentration and integrity were analyzed
by measuring A, and Ay, on an Eppendorf Biophotometer® D30
(Eppendorf, Germany) and by agarose gel electrophoresis,
respectively. The RNA was treated with RNase-free DNase I
(Thermo Fisher Scientific, USA), and then, the first strand
cDNA was synthesized by RevertAid Reverse Transcriptase
using oligo(dT),, primers (Thermo Fisher Scientific, USA)
according to the manufacturer’s instructions.

The full-length putative HiHQT's were amplified with Phusion
Hot Start II High-Fidelity DNA Polymerase (Thermo Fisher
Scientific, USA) using the prepared ¢cDNA of sunflower sprout
as a template. Then, the amplified DNA was cloned into pCR™8/
GW/TOPO®TA vectors (Invitrogen, USA) resulting in pCR™8/
GW/TOPO®-HaHQTs and subsequently sequenced. One clone
of each putative gene was used for further study (sections
Promoter Analysis and Transient Overexpression of HaHQTs
in N. benthamiana).

Gene Expression Analysis of Sunflower
Sprout

Total RNA was extracted from sunflower sprouts as described
above (section RNA Isolation, cDNA Synthesis, and Cloning
of Putative HaHQTs). Then, qRT-PCR was performed using
gene-specific primers (Supplementary Table S1). Eukaryotic
translation initiation factor 5A (ETIF5A; XM_022156448.1),
elongation factor 2 (EF2; XM_022137686.1), and actin 7 (ACT7;

'www.sunflowergenome.org

XM_022154554.1) of sunflower were used as reference genes
(Ochogavia et al., 2017). Reactions were conducted in volumes
of 10 pl in a 96-well PCR plate using Luna® universal qPCR
master mix (New England Biolabs®, USA). A CFX Connect™
Real-Time PCR Detection System and CFX Manager™ Software
(BIO-RAD, USA) were used to conduct PCR, and melting curve
analysis was used to confirm the existence of a single product.
Relative expression level of each gene was calculated using 27
(Schmittgen and Livak, 2008) according to the average Ct values
of three reference genes (Beckman et al., 2011).

For droplet digital PCR (ddPCR), a 20-pl reaction mixture
containing gene-specific primers (Supplementary Table S1), QX200™
ddPCR™ EvaGreen Supermix (BIO-RAD, USA), and ¢cDNA was
generated as a droplet with QX200™ Droplet Generation Oil for
EvaGreen (BIO-RAD, USA) using QX200™ droplet generator (BIO-
RAD, USA). EF2 was used as a reference gene. The PCRs were
performed in a 96-well PCR plate using a T100™ Thermal Cycler
(BIO-RAD, USA). After amplification, QX200™ Droplet Reader
(BIO-RAD, USA) was used to measure the fluorescence intensity
of each individual droplet. Absolute transcript levels (copies/20 ul
reaction) were processed using QuantaSoft™ Software (BIO-RAD,
USA). Relative transcript number of each gene was presented as
a ratio of the absolute transcript levels (copies/20 pl reaction) of
the target gene to the reference gene (Taylor et al, 2017).

Promoter Analysis

The 2,000 bp upstream regions of start codon of putative
HaHQTs were in silico scanned for regulatory elements using
Matlnspector (Cartharius et al., 2005). The genomic localization
of the analyzed promoters was Chrl0: 227227684...227229684
for HaHQT?2 and Chr2: 166074069...166076069 for HaHQTS3.

Transient Overexpression of HaHQTs in
Nicotiana benthamiana

The putative HaHQT's from pCR™8/GW/TOPO®-HaHQTs were
transferred into pEAQ-HT-DEST1 (pEAQ1) expression vectors
(Peyret and Lomonossoff, 2013) using Gateway® LR Clonase®
II (Invitrogen, USA). The resultant pEAQI-HaHQTs were
then transformed into Agrobacterium tumefaciens LBA4404
by electroporation.

A. tumefaciens colonies containing each construct were grown
in 25 ml of LB broth containing 50 mg L™' kanamycin, 50 mg L™
streptomycin, and 50 mg L' rifampicin and shaken at 250 rpm
at a temperature of 30°C overnight. Cells were harvested by
centrifugation at 3,000 x g for 10 min and washed in MM
buffer twice (10 mM MES and 10 mM MgCl,, pH 5.6). Then,
the pellet was resuspended in MM buffer to an optical density
of 0.4 at ODgy, and acetosyringone was added to a final
concentration of 100 mg L™". The culture solution was incubated
at room temperature for 2 h. Genes of interest were transferred
into the abaxial leaves of 5-week-old plants, by first nicking
the leaf on the backside with a needle and then infiltrating the
gene-harboring A. tumefaciens using a needleless 1-ml syringe.
After 5 days, the infiltrated leaves were collected, frozen in
liquid nitrogen, and ground into a fine powder for HPLC analysis.
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Subcellular Localization

In silico subcellular prediction of localization was performed
using the iPSORT (Bannai et al., 2002), WoLF PSORT
(Horton et al.,, 2007), LOCALIZER (Sperschneider et al.,
2017), TargetP (Emanuelsson et al., 2000), and ChloroP
servers (Emanuelsson et al., 1999).

For in planta experiments on subcellular localization, four
biological replicates were used. First, HaHQTs were amplified
with Phusion Hot Start IT High-Fidelity DNA Polymerase (Thermo
Fisher Scientific, USA) using pCR™8/GW/TOPO®-HaHQTs as
templates. The primers (excluding stop codons) listed in
Supplementary Table S1 were used in the PCRs. The PCR
products were cloned into pCR™8/GW/TOPO®TA vectors
(Invitrogen, USA), and nucleotide sequences were verified. Then,
the HaHQTSs were transferred into the C-terminal green fluorescent
protein (GFP)-fused destination vector pPGWB5 (Nakagawa et al.,
2007) using Gateway® LR Clonase® II (Invitrogen, USA),
generating pGWB5-HaHQTs. The pGWB5-HaHQTs were then
transformed into A. tumefaciens LBA4404 by electroporation.

A. tumefaciens containing each construct and A. tumefaciens
containing a silencing suppressor p19 gene (Lindbo, 2007) were
co-infiltrated into 5-week-old plants (section Plant Material
and Growth Conditions) as in section Transient Overexpression
of HaHQTs in N. benthamiana but with some modifications.
In brief, cells obtained from each culture were washed, suspended
in MM buffer, and adjusted to an optical density of 0.8 at
ODyy. The culture suspensions of each A. tumefaciens harboring
pGWB5-HaHQT construct were then mixed with that of
A. tumefaciens harboring pl9 at a ratio of 1:1. Then,
acetosyringone was added to a final concentration of 100 mg L.
At 3 days after infiltration, protein localization was visualized
under FluoView® FV10i-DOC confocal laser scanning microscope
(Olympus, Japan). Excitation/emission of GFP, autofluorescence
of chloroplast, and phase contrast detection were recorded at
473/510, 559/600, and 559/600 nm, respectively.

Statistical Analyses

Statistical analyses were performed using IBM® SPSS® Version
22.0 (IBM, USA) statistical software. Following one-way ANOVA,
mean concentrations of CQAs and expression levels of genes
were compared between days for each CQA or gene type
using Duncans multiple-range test (p < 0.05). In addition,
concentration of each CQA and expression levels of genes
were compared between hypocotyl and cotyledon tissue types
by Student’s t test (p < 0.05).

RESULTS

Caffeoylquinic Acids Profiling in

Sunflower Sprouts

Although CQAs in sunflower seeds have been reported
(Weisz et al., 2009), previous studies have, to the best of our
knowledge, not clearly quantified and characterized CQA content
in sunflower sprouts. Therefore, we analyzed CQAs during
germination from days 3 to 9. Six CQAs were identified

(Figure 3A), and 1,5-diCQA was the most abundant.
Accumulation of 1,5-diCOA increased during germination,
reaching a maximum of ~15 mg/g dry weight (Figure 3B).
This increasing accumulation level during sprouting was also
observed in other CQAs, including 3-CQA, 4-CQA, 3,4-diCQA,
and 4,5-diCQA. Notably, the amount of the second most
abundant derivative, 5-CQA, did not significantly change over
the period. In addition, at day 5 post-germination, we profiled
CQA content in two sunflower sprout tissue types: hypocotyl
and cotyledon. Cotyledons accumulated much higher levels of
5-CQA and 1,5-diCQA than hypocotyls and contained ~6-fold
higher concentrations of 5-CQA. The other CQAs were detected
at much lower levels in both tissues. The identities of all CQAs
were also confirmed using LC-MS to compare their fragmentation
patterns and molecular masses with those of authentic standards
(Supplementary Figure S3).

Genome-Wide Identification and
Phylogenetic Analysis of HaHQTs and
HaHCTs

A total of five genes encoding sunflower HQTs and HCTs
were identified. Multiple alignment of amino acid sequences of
all identified HQTs and HCTs showed the conserved motifs
of HXXXD and DFGWG, which are signature to the members
of the BAHD superfamily (Supplementary Figure S2).
Phylogenetic analysis revealed that three HaHQTs and two
HaHCTs were clustered together with HQTs and HCTs from
chicory and globe artichoke (Figure 4). The number of HQT
and HCT isoforms found in sunflower was identical to the
number identified previously in chicory and globe artichoke.
We annotated HaHQTs (HaHQT1, HaHQT2, and HaHQT3)
and HaHCTs (HaHCT1 and HaHCT?2) based on their clustering
with the previously characterized HQTs and HCTs from those
two species. Moreover, these HaHQTs and HaHCTs were located
on different chromosomes, e.g., HaHQT! on chromosome 9,
HaHQT2 on chromosome 10, HaHQT3 on chromosome 2,
HaHCT1 on chromosome 16, and HaHCT2 on chromosome 5.

Gene Expression Profiles of HaHQTs and
HaHCTs in Sunflower Sprouts

To investigate a possible correlation between CQA content
and expression levels of corresponding biosynthetic genes,
qRT-PCR was used to analyze the expression profiles of
identified HaHQTs and HaHCTs. Sunflower sprouts for this
analysis were sampled at seven time points, from days 3 to 9
after germination. As shown in Figure 5A, expression level
of HaHQT1 was not that much different among these time
points. However, the expression level of HaHQT2 was
peaked at day 3 and was followed by a significant decrease
from day 4. Similarly, expression level of HaHQT3 was peaked
at day 3 and was decreased until day 9, whereas expression
level of HaHCT1 was constant from days 3 to 7 and was
significantly decreased from days 7 to 8. Then, it was kept
constant again. Noticeably, expression level of HaHCT2 was
increased during germination period. In addition, we investigated
the expression levels of these genes in hypocotyls and cotyledons
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FIGURE 3 | HPLC profiles and concentrations of caffeoylquinic acids in sunflower sprout extracts from different time points during germination and from different
tissues. HPLC chromatograms of caffeoylquinic acids of sunflower extracts from whole sprout, hypocotyl, and cotyledon, using puerarin as an internal standard (A);
extracts of sunflower sprouts sampled at different time points (days 3-9) during the germination period were measured by HPLC; comparisons are shown for
different time points within each caffeoylquinic acid derivative. Bars represent the mean values + standard deviation (SD) of five biological and independent
replicates; for each derivative, different alphabets indicate significant differences according to Duncan’s multiple-range test (p < 0.05) (B); and tissue specific
concentrations of caffeoylquinic acid derivatives measured in the hypocotyls and cotyledons of sunflower sprouts sampled at 5 day post-germination; an asterisk (x)
above the bars indicates a significant difference between the two tissues (Student’s t test, p < 0.05) (C).
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nucleus; mito, mitochondria; chlo, chloroplast; cysk, cytoskeleton).

FIGURE 4 | Phylogenetic analysis and in silico subcellular localization prediction of sunflower HQTs and HCTs. Sunflower HQTs and HCTs were aligned with HQTs
and HCTs from other representative species, including globe artichoke (CcsHQT1; ABK79689.1, CcsHQT2; ADL62854.1, CcsHQT3; ADL62855.1, CcsHCTT;
AAZB80046.1, CcsHCT2; KVH99042.1), chicory (CIHQT1; ANN12610.1, CIHQT2; ANN12611.1, CIHQT3; ANN12612.1, GIHCT1; ANN12608.1, CIHCT2;
ANN12609.1), and tomato (SIHQT; NP_001234850.2). The phylogenetic tree was constructed with MEGA7 and the neighbor-joining method, using a bootstrap test
of phylogeny. In silico subcellular localization was predicted using web-based tools, including iPSORT, WolLF PSORT, TargetP, and ChloroP (cyto, cytosol; nucl,

at day 5. Interestingly, HaHQTI and HaHQT2 were expressed
at significantly higher levels in cotyledons than in hypocotyls,
while that of HadHQT3 was significantly higher in hypocotyl
than in cotyledon (Figure 5B). However, the expression levels
of two HaHCTs were not significantly different between the
two tissues. Gene expression analysis by ddPCR confirmed
the higher expression level of HaHQT2 than other HaHQTs
and HaHCTs (Figure 5C). These results provided compelling
evidence that HaHQT2 could be the main CQA biosynthetic
gene in the sunflower sprouts. Therefore, we selected HaHQT's
for further functional characterization.

Promoter Analysis

To gain more insights into the regulatory network controlling
the expression levels of HaHQT genes, we analyzed the promoter
regions of those HaHQT genes. Due to the incomplete genome
database, only promoter regions of HaHQT2 and HaHQT3
were analyzed. As shown in Supplementary Table S2, these
two promoters share some common motifs such as phytochrome,
defense response, circadian rhythm, axillary bud outgrowth,
light, stress, and phytohormone (auxin, salicylic acid, abscisic
acid, jasmonate, gibberellin, ethylene, cytokinin) responsive
elements as well as sulfur and sucrose responsive elements.
In addition, we found several binding elements for MYB and
Dof transcription factors. These two transcription factors were
reported to be involved in the phenylpropanoid biosynthesis.

Subcellular Localization of HaHQTs

In silico subcellular analysis of sunflower HaHQTs predicted
their localization in either cytosol or chloroplast (Figure 4)
with no detection of nuclear localization signal (NLS) in all
HaHQTs. For assessment in planta, Agrobacteria harboring
each GFP-fused expression construct (pGWB5-HaHQTI,

pGWB5-HaHQT2, or pGWB5-HaHQT3) together with the
gene-silencing suppressor pl9 were infiltrated in N.
benthamiana leaves. Protein localization was analyzed using
a confocal laser scanning microscope. In planta, all three
GFP-tagged HaHQTs were soluble and not membrane-bound
proteins, possibly localized in the cytosol (Figure 6;
Supplementary Figure S4). Fluorescence signals were also
detected in the nucleus. In addition, observation of mesophyll
clearly confirmed that these HaHQTs were not localized in
chloroplast (Supplementary Figure S5).

Transient Expression of HaHQTs in
Nicotiana benthamiana
